
VBootKit 2.0 - Attacking
Windows 7 via Boot Sectors

HITB-Dubai 2009

2009-4-23

Nitin Kumar
Security Researcher

nitin@nvlabs.in
Vipin Kumar

Security Researcher
vipin@nvlabs.in

2

What we do ?

Analysing malware
Code Reviewing
Network PenTests

 and also, a bit of this and a bit of that.

3

Presentation outline

Introduction to Bootkits
Windows 7 boot process (x64)
Vbootkit 2.0 architecture and working
Vbootkit 2.0 Payloads aka shell-codes

Remote Command & Control protocol
Privilege escalation of programs

Demo
Remote Keylogger

Demo
Login without passwords

Demo
Vbootkit and DRM
Question time and Thanks

4

Introduction to Bootkits

Bootkits are rootkits in which first point of control is
during the boot process such MBR , VBR etc
Bootkits are almost impossible to detect
Bootkits can be used to avoid all protections of an OS,
because OS consider that the system was in trusted
stated at the moment the OS boot loader took control.
Customized MBR/boot sectors are used for both to
keep themselves in control and also to spread
Age-old boot sector attacks are back in picture, ready
to grab control of your system.

5

Windows 7(x64) Boot Process

MBR loads NT Boot Sector (8 KB in size, currently
only 5 KB is used).NT boot sector has the ability to
read FAT32 and NTFS. It finds and loads a file
BOOTMGR.EXE from the system32 or system32/boot
directory at 2000h:0000h or 0x20000 to be exact.

BOOTMGR.EXE has a 16 header prepended to itself.
This 16 bit header checks the checksum of embedded
executable and maps it at 0x400000.This executable
doesn't have any external dependencies and is self-
contained

6

Windows 7(x64) Boot Process

Execution of BOOTMGR starts in 32 bits in BmMain
function. It no longer verifies itself. Vista (32 bit) used
to verify it's digital signature. However,(this change is
welcome).NO software in world can detect changes to
itself and declare that the results can be relied

After this, it checks for hibernation state,if it’s found, it
loads winresume.exe and gets done

It then mounts BCD database and enumerates boot
entries,settings etc

7

Windows 7(x64) Boot Process

After user selects a boot entry,It is launched using
BmLaunchBootEntry with added switches. However,
CPU is changed to 64 bit mode just before jumping to
WINLOAD.EXE

Now WINLOAD.EXE is loaded,It loads
NTOSKRNL.EXE, HAL.DLL, dependencies, boot
drivers after loading SYSTEM registry hive

Creates a PsLoadedModuleList &
LOADER_PARAMETER_BLOCK structure which
contains memory map,options list etc
Control is then transferred to kernel using
OslArchTransferToKernel after stopping boot
debugger

8

Summary of Booting Process

BIOS MBR Volume Boot Sector NT
Boot

Sector
BOOTMGR.EXEWINLOAD.EXE

Windows 7 kernel HAL.DLL Boot drivers

Legend CPU Mode
Blue > UNKNOWN
Green > 16 bit
Red > 32 bit
Black > 64 bit

9

Windows 7 Kernel Startup

NTOSKRNL uses 2 phases to initialize system
First phase(phase 0) initializes the kernel itself

Calls HalInitialiseBios
Inits Display driver
starts Debugger
Calls KiInitializeKernel

Second phase (phase 1) initializes the system
Phase1InitializationDiscard
HalInitSystem
ObInitSystem
Sets boot time bias for ASLR
PsInitialSystemProcess
StartFirstUserProcess (starts SMSS.EXE)

10

But what is Minwin and minkernel ???

Minwin is Microsoft's internal project kinda stuff which
is how small and independent can the Windows
kernel(and related core components) can be made
but at the same time keep it useful and working. A
severely stripped down version (almost 20 MB) of
Windows 7 was able to run a http server (but no
GUI). Windows 7 takes several GIGs to even start on
my PC.
Minkernel is the step towards Minwin so as to make
the kernel more streamlined and small and it actively
started from Windows 7 onwards.It doesn't mean
rewrite of the kernel, it's just making it more stream-
lined.

11

Vbootkit 2.0

12

Objective of Vbootkit 2.0

The objective is to get the Windows 7 (x64) running
normally with some of the our changes done to the
kernel.
Also, the Vbootkit 2.0 should pass through all the
security features implemented in the kernel without
being detected namely Patchguard v3, Driver signing.
No files should be patched on disk,it should run
complete in memory to avoid later on detection.

13

Overview

Basically, we follow a very simple algorithm for vbootkit

Hook INT 13 (for disk reads)
Keep on patching files as they load
Hook onto next stage
Repeat the above process, till we reach the kernel,
then sit and watch the system carefully

Vbootkit 2.0 features a major design change,
 Instead of patching protections, we try to take control in

such a place, so as the trigger never occurs but we
get the control in our own hands.

14

Vbootkit – Functional workout

Our code gains execution from the CD-Rom,PXE
relocates ourselves to 0x9e000.
Hook INT 13 .
The hook searches every read request for a
signature,if the signature matches it executes its
payload.
Vbootkit 2.0 reads MBR and starts normal boot
process with INT 13 hook installed
When the NT boot sector loads BOOTMGR.EXE , our
hooks finds the signature and executes the payload
The signature is last 8 bytes from bootmgr.exe
excluding zeroes
 The payload patches bootmgr.exe at single location

15

Vbootkit – Functional workout (cont.)

Now, the 16 bit header starts execution and we face
the first security check. It’s a simple checksum
protection stored the PE Header.However,we never
modified BOOTMGR.EXE, the check passes
successfully

Now the bootmgr is mapped at 0x400000 and just
before execution is transferred to BOOTMGR.EXE,
Vbootkit gains control
We apply a single patch to BOOTMGR.EXE and give
control back.
BOOTMGR.EXE which used to verify itself earlier,
now no longer verifies itself, thus making our job a lil
easier.

16

Vbootkit – Functional workout (cont.)

Now bootmgr loads its resources and displays boot
menu.
After the user , selects an Entry to boot, the bootmgr

calls BlImgLoadPEImageEx to load WINLOAD.EXE. It
also verifies the digital signature of the file.
The location is executed just before BOOTMGR.EXE

transfer execution to WINLOAD.
Vbootkit puts a patch in WINLOAD.EXE at a similar

place as in BOOTMGR.EXE. The patch location is
OslArchTransferToKernel for both BOOTMGR and
WINLOAD

17

Vbootkit – Functional workout (cont.)

Winload completely trusts BOOTMGR.EXE that it has
provided a safe environment, so it validates all the
options, maps SYSTEM registry hive, loads boot
drivers , prepares a structure called loader block.This
loader block contains entry of al drivers loaded, their
base addresses also also contains the memory map
of the system(which block is used).It also passes the
famous option list, which is processed by kernel to set
some features such as enabling of debugger,DEP
(Data Execution Policy),patchguard etc

18

Vbootkit – Functional workout (cont.)

Our Winload detour takes control just before the
control is passed to kernel. This transfer of control
takes place in a function called
OslArchTransferToKernel
This detour relocates vbootkit once again to blank
space in kernel memory which has read/write access,
and applies an 20 byte detour to a function called
StartFirstUserProcess.It’s in the INIT section of
kernel.It allocates memory, relocates Vbootkit 2.0 to
newly allocated space and jumps to new location

19

Vbootkit – Functional workout (cont.)

First job after obtaining control is to FIX the kernel, to
avoid any triggers and to continue gracefully. We also
create a number of kernel threads which will satisfy
the payloads then return back.

The tasklist done above is
Fix the kernel
Create shell code threads
Allocate workspace buffers
Hook PING requests
Install keylogger
Return back

20

Summary of detours applied by Vbootkit 2.0

BIOS MBR Volume Boot Sector NT
Boot

Sector
BOOTMGR.EXEWINLOAD.EXE

Windows 7 kernel HAL.DLL Boot drivers

Legend CPU Mode
Blue > UNKNOWN
Green > 16 bit
Red > 32 bit
Black > 64 bit

21

Payloads

22

Remote Command & Control

23

Remote Command & Control protocol

Vbootkit 2.0 uses a very simple protocol to
communicate with remote clients. Communication is
done over a PING packets.

The protocol is based on a request response model.
After a request is made, if it cannot be satisfied

immediately, it is put in delayed mode, In delayed
mode, the response will be sent in the next packet

24

Remote Command & Control protocol

Command Byte

Response Code Byte

8 Byte signature

Data

Command Byte

Response Code Byte

Response Data

Command Packet Response Packet

PING Packet

25

Remote Command & Control protocol

Vbootkit
affected

Windows 7
System

Client

Command ping Packet

If response is ready, fill packet
with data and mark response valid
otherwise mark delayed response

Get Delayed response if required

Return Response

Communication FLOW

26

Privilege Escalation

27

Privilege Escalation

All the process running in a system are maintained by
the kernel using a structure called EPROCESS.
These structures are linked together using a doubly
linked list structure

 PCB

.

UniqueProcessId

 Active Process Links

*BLINK *FLINK

…

*Token

….

Imagename

…..

 PCB

.

UniqueProcessId

 Active Process Links

*BLINK *FLINK

…

*Token

….

Imagename

…..

 PCB

.

UniqueProcessId

 Active Process Links

*BLINK *FLINK

…

*Token

….

Imagename

…..

28

Token structure

typedef struct _EX_FAST_REF
{ union {
 PVOID Object;
 ULONG RefCnt: 3;
 ULONG Value;
 };} EX_FAST_REF, *PEX_FAST_REF;
It is part of the Object Manager Fast-Referencing

implementation (ObFastReferenceObject, etc).It allows the
kernel to encode the reference count as a pointer bias, so
that the object is actually only truly "referenced" once with the
Object Manager, and every other additional time inside the
EX_FAST_REF structure itself. The bias towards the 8-byte
alignment is the number of fast references an object can
have. When the last fast-reference is removed, the Object
Manager actually gets the real ObDereferenceObject call

29

How Vbootkit 2.0 does privilege escalation?

Vbootkit first finds SERVICES.EXE, since it is part of
OS and always runs with SYSTEM level privileges
and stores its token
After receiving command, It scans the process list for
running Command Prompts(CMD.EXE), All running
instances are given the service token of
SERVICES.EXE thus giving SYSTEM level privileges.

30

Privilege Escalation Demonstration Time

31

Keyboard & mouse data flow in Windows

I8xGetByteAsynchronous
function in i8042 driver is used
to fetch data from the chip.

It's declaration is
I8xGetByteAsynchronous(
char device,char* outputbyte)

Keyboard device ID: 1

I8042 chip

I8042prt driver

kbdclass mouclass

32

Hooking i8042prt

Hooking at this place has many advantages
Ability to get keyboard data
Ability to get mouse data
Ability to inject keyboard keys
Ability to inject mouse data
Ability to modify data such making 'Z' to 'A' and so on
Single hook lets you do many things

However, there are disadvantages also
More complex
Instead of giving you keys, it gives you scan-codes, both
make and break sequence
You have to map the keys yourself

33

Implementation in Vbootkit 2.0

Implementation is basic, the Vbootkit 2.0 internally uses a 256
byte cyclic buffer to store keyboard data. Currently mouse
data is ignored but it can also be captured and remote
transfered easily just as keyboard

Whenever Vbootkit sees a Keyboard Buffer Request
Command, it copies the buffer to the PING packet as
response and continues capturing keystrokes

Returned data is converted to key by the client and is currently
a very basic implementation(only done as POC)

34

Remote Keylogger Demonstration

35

Password Removal

36

Security Accounts Manager (SAM)

SAM stores users' passwords in a hashed format (in an LM
hash and an NTLM hash).It has been reverse engineered
from time to time to obtain the hashes and remove
passwords.

It's structure is not documented. However,some fields are
used .

37

Windows 7 Password Checking algorithm

This is real simple.
Check if the NT Hash len field contains 4 or 0, this
signifies password field is black
If the password hash length is not blank, fetch the hash
Calculate hash from user supplied password
Compare both the hash
if equal then login the user
Otherwise display wrong password message

38

Password Length fields in V-value in SAM

39

Vbootkit 2.0 Password removal

Vbootkit on receiving command to remove password
will go through all the users
And check whether they have a null password
If they have null password, skip the user
Otherwise, null the password length
Keep repeating until all the users have been
processed

40

Recovering Passwords

After the user's job is done, Vbootkit 2.0 should put
everything in place, so as the original user doesn't
panic
This is done by putting the original nthash length field
to its original value.
This puts the user's password back in place

The whole setup lets us login into the system without
any password, get the job done and then put
everything back in place.

41

controlling passwords demo

42

Is this enough ??

43

of course, NOT

Vbootkit 2.0 currently supports fetching the registry, one value
as a time but right now we support fetching only strings.

This slowly but steadily lets us build most of the registry of the
remote system.

Key modification is also supported, but the feature is broken
right now.(and yes, we are not fixing it, because this is just a
POC)

44

A quick question ?

What's the expected size of Vbootkit 2.0 ??
just 3 KB

45

Vbootkit & DRM

Vbootkit 2.0 (even older Vbootkit 1.0) can be used to
capture streams. This is because Vbootkit runs in
completely undetected form(less no. of payloads
definitely means even less chances of detection).

Windows Vista and Windows 7 Protected Media
Path(PMP) model is completely violated by Vbootkit.

 To Capture, all audio streams (in WAV format), Vbootkit
has to put a hook on the CopyTo function in the right
place and the DRM is no longer standing in your
way !!!. This is true for all known and unknown audio
DRM implementations.

46

References

Brown, Ralf. Ralf Brown’s Interrupt List. http://www.cs.cmu.edu/~ralf/files.html
Russinovich, Mark. “Inside the Boot Process, Part 1.”
http://www.windowsitpro.com/Article/ArticleID/3952/3952.html
Windows Vista Security
http://blogs.msdn.com/windowsvistasecurity/
Microsoft. Boot Configuration Data Editor FAQ,
http://www.microsoft.com/technet/windowsvista/library/85cd5efe-c349-427c-
b035-c2719d4af778.mspx
P. N. Biddle. “Next-Generation Secure Computing Base,” PDC, Seatlle, 2004,
http://download.microsoft.com/download/1/8/f/18f8cee2-0b64-41f2-893d-
a6f2295b40c8/TW04008_WINHEC2004.ppt
M. Conover (2006, March). “Analysis of the Windows Vista Security Model,”
http://www.symantec.com/avcenter/reference/Windows_Vista_Security_Model
_Analysis.pdf
Microsoft. “First Look: New Security Features in Windows Vista,” TechNet,
http://www.microsoft.com/technet/technetmag/issues/2006/05/FirstLook/default
.aspx
Randall Hyde ,Art of assembly Language
Bugcheck and Skape, Kernel Mode Payloads on Windows
http://www.uninformed.org/?v=3&a=4&t=pdf

47

Questionnaire ??

Questions ??
Comments ??
Ideas ??
email us

nitin@nvlabs.in
vipin@nvlabs.in

http://www.nvlabs.in

mailto:nitin@nvlabs.in
mailto:vipin@nvlabs.in
http://www.nvlabs.in/

48

Thanks

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48

