Unpacking malicious software using IDA Pro extensions

A paper by Dennis Elser

In almost all cases of today‘s malicious software, executable packers or -crypters are
used in order to obfuscate code and data. In some cases unpackers and dumpers are
available. In very few cases they actually work on packed malware executables due
to modifications of internal structures such as the PE header.

In the following example an unknown binary is loaded into IDA Pro'. The code at
the entry point of the executable looks like this:

UFx1:01015360

UPx1:01015360 public start

UP1:01015360 start proc near

UPx1:01015360 pusha

UPx1:01015361 mony esi, offset dword_1011000
UPx1:01015366 Tea edi, [esi-10000h]
UPx1:0101536C push edi

UPx1:0101536D ar ebp, OFFFFFFFFh
UPx1:01015370 Jmp short Toc_1015382

Fig. 1

A segment named “UPX1”, an invalid import address table and an empty list of
strings are an indicator for a packed file. UPX? however, can not unpack the file
because internal structures have been modified. This technique often is used by
malware authors to make unpacking and reverse engineering harder.

The first step now is to obtain a readable representation of the packed executable.
A good and quick start in achieving this is to run the executable and dump the
previously packed segment(s), once they have been unpacked. Preferably, the dump
should be made right after the executable has been completely unpacked in
memory. This often is the case after the original entry point (OEP) has been
reached. Finding the OEP isn‘t always trivial and can be a time consuming process
because you need to single step through the code. Using the IDA Pro SDK, a
plugin named EPF’ (Entry Point Finder) has been created, aimed towards
automating the process of finding the original entry point.

An isolated environment (a virtual machine for example) is used to carefully

UP¥1:01015360 public start
UPx1:01015360 start proc near
SIEE - UPX1:01015360 pusha

UPx1:01015361 mow £51, offset dword_1011000
UPx1:01015366 lea edi, [esi-10000h]
UPx1:0101536C push edi

UPx1:0101536D or ebp, OFFFFFFFFh
UP¥1:01015370 jmp short loc_1015382

Fig. 2

run the executable in IDA Pro‘s debugger. Figure 2 shows the extended instruction

pointer (EIP) pointing to a “pusha” mnemonic. This statement is used as the first
instruction to “back up” the content of all standard registers. Many executable
compressors use a “popa” instruction at the end of their code to restore the
previously saved state. This behavior can be exploited by the EPF plugin; the plugin
offers an option to let the IDA Pro debugger trace code until a specific mnemonic
is reached.

Entrypoint Finder x|

E ntrypoint Finder plugin.,

Pleaze zelect

(" Trace untl EIF reaches a different section
" Trace until EIP reaches a specific mermary area

(+ Trace untl EIF reaches a specific mnemaonic;

" Trace until & register holds = srarific wslhis -
Ol S e Please Enter a mniemonic belaw,

(Enemonic ipnpa l LI

FRegister {eaw j
Value |0:DEADBEEF =l
[~ Track Eip |
(8] Cancel | Help |

Fig. 3

After the EPF plugin has been started and configured, the process can be resumed
(be careful, don‘t run malware on your host system!). After a few seconds, the
process is paused and EPF turned off. The following message appears:

Tracer will stop at mnemonic popa

-= EPF 15 now on

-»= EPF: Please resume the praocess now!
->= EPF: Mnemonic found at 010154AE.

Auko Down [Disk: 1GB UMKNOWN 0008
Fig. 4

The code at EIP points to a “popa” mnemonic followed by a jump and the end of

UPx1:01015448 Toc_1015448:
LPx1:01015448 call dword ptr [esi+1B8EE4R]
UP=1:010154AE
UPx1:0101544E Toc_101544E :

A UPXL:D10154AE popa
Px1:0101544F Jmp near ptr dword_1007390
UPx1:0101544F start endp

Fig. 5

the “start” procedure. Single stepping over the jump leads to the following message

box:
x

? IDA has detected that EIP points ta
“-/ ah address which is ot defined as code.
whould youl like to directly create an instruction at EIP 7

[~ Don't dizplay this message again

Fig. 6

Choosing “Yes” creates an instruction at EIP and IDA Pro begins to analyze control
flow.

UPXD 01007350
Py0 201007390 loc_1007380:
A& upk0:01007330 push 70k
* UP¥0:0100739F push 10K 2h
*UPHD 01007384 call sub_ 1007568
* R0 01007349 =or ebx, ehx
* UPXD 01007348 push eh
*UPHD 01007 3AC moy edi, dword_1001000+0CCh

Fig. 7

EIP now points to a segment labeled “UPX0”. This is very likely the original entry
point. It is reasonable to make a dump of the segment now. The DumpSeg* plugin
can list and dump all segments available.

B
Mame of zegment | Start addiess | End address | -_!
¥ debuglad Q0se000 003800
8t debug3s 003B000 Q03200
¥ debuglas 00SCoo0 Q0sC200
Off debug3? 0030000 0030300 b
L malware. exe 100000 oooon
B LIPS0 oo o0 oiotion
S LIP1 0101100 001E00 Durnp segment to disk. Chrl+E
¥ debugos 0101800 maicon Refresh Chel+U
B debug3s 0101C00 o100 :
3# debug3s 0101000 M01EDD Copy Chrl+Ins
O vbapsz.dil £E50000 £E50100
88 debug040 BESO100 BEBOS00
8 debugld GEE0500 BRS0E00
St debugd2 BEB0E0N BESOS00
¥ debugd3 BEE0800 BEE0A00
art
3t vubhelp.dil BRA0000 BEGE0100
8 debugl4d EEEMO0 eeso2o0 0 f————
O debugds BEE0200 £EE0300 el
8 debugl4f EEEO300 eesmsO0
8 debugd? GE60400 BEEO700 A
Of debugl4s EEEOFOD EBG0B00 sl—
CoLLy
2 I Cancel Help Search | """"
COLL
[Line 30 oF 111]

The dumped segment can then be reloaded and analyzed by IDA Pro.

References

1.)IDA Pro, DateRescue (http://www.datarescue.com/idabase)
2.)UPX, Markus F.X.J. Oberhumer & Laszlo Molnar

3.)EPF, Dennis Elser (http://www.backtrace.de)

4.)DumpSeg, Dennis Elser (http://www.backtrace.de)

