
Unpacking malicious software using IDA Pro extensions

A paper by Dennis Elser

In almost all cases of today's malicious software, executable packers or -crypters are
used in order to obfuscate code and data. In some cases unpackers and dumpers are
available. In very few cases they actually work on packed malware executables due
to modifications of internal structures such as the PE header.

In the following example an unknown binary is loaded into IDA Pro1. The code at
the entry point of the executable looks like this:

Fig. 1

A segment named “UPX1”, an invalid import address table and an empty list of
strings are an indicator for a packed file. UPX2 however, can not unpack the file
because internal structures have been modified. This technique often is used by
malware authors to make unpacking and reverse engineering harder.

The first step now is to obtain a readable representation of the packed executable.
A good and quick start in achieving this is to run the executable and dump the
previously packed segment(s), once they have been unpacked. Preferably, the dump
should be made right after the executable has been completely unpacked in
memory. This often is the case after the original entry point (OEP) has been
reached. Finding the OEP isn't always trivial and can be a time consuming process
because you need to single step through the code. Using the IDA Pro SDK, a
plugin named EPF3 (Entry Point Finder) has been created, aimed towards
automating the process of finding the original entry point.

An isolated environment (a virtual machine for example) is used to carefully

Fig. 2

run the executable in IDA Pro's debugger. Figure 2 shows the extended instruction

pointer (EIP) pointing to a “pusha” mnemonic. This statement is used as the first
instruction to “back up” the content of all standard registers. Many executable
compressors use a “popa” instruction at the end of their code to restore the
previously saved state. This behavior can be exploited by the EPF plugin; the plugin
offers an option to let the IDA Pro debugger trace code until a specific mnemonic
is reached.

Fig. 3

After the EPF plugin has been started and configured, the process can be resumed
(be careful, don't run malware on your host system!). After a few seconds, the
process is paused and EPF turned off. The following message appears:

Fig. 4

The code at EIP points to a “popa” mnemonic followed by a jump and the end of

Fig. 5

the “start” procedure. Single stepping over the jump leads to the following message
box:

Fig. 6

Choosing “Yes” creates an instruction at EIP and IDA Pro begins to analyze control
flow.

Fig. 7

EIP now points to a segment labeled “UPX0”. This is very likely the original entry
point. It is reasonable to make a dump of the segment now. The DumpSeg4 plugin
can list and dump all segments available.

Fig. 8

The dumped segment can then be reloaded and analyzed by IDA Pro.

References

1.) IDA Pro, DateRescue (http://www.datarescue.com/idabase)

2.)UPX, Markus F.X.J. Oberhumer & Laszlo Molnar

3.)EPF, Dennis Elser (http://www.backtrace.de)

4.)DumpSeg, Dennis Elser (http://www.backtrace.de)

