
Bitlocker and Windows Vista

This is an INCOMPLETE draft version.
Visit www.nvlabs.in for updates.

Nitin Kumar Vipin Kumar
Security Researcher Security Researcher
nitin.kumar@nvlabs.in vipin.kumar@nvlabs.in

mailto:nitin.kumar@nvlabs.in
http://www.nvlabs.in/
mailto:vipin.kumar@nvlabs.in

Contents

Abstract
Acknowledgements

Abstract
 This paper provides a complete technical overview of Microsoft® BitLocker™ Drive
Encryption, a new data-protection feature in Microsoft Windows Vista™. The technical overview will
cover all modes of operation of bitlocker and it functions.

This paper assumes that the reader understands Cryptography basics and Trusted Platform Model
(TPM) technology.

This information applies for the Microsoft Windows Vista™ operating system.

The current version of this paper is maintained on the Web at: http://www.nvlabs.in/
References and resources discussed here are listed at the end of this paper.

Disclaimer: The subject matter discussed in this document is presented in the interest of education.
The authors cannot be held responsible for how the information is used. While the authors have tried to
be as thorough as possible in their analysis, it is possible that they have made one or more mistakes. If a
mistake is observed, please contact one or both of the authors so that it can be corrected.

Notes: Testing was performed on Windows Vista RC2 (Build 5744). Majority of the stuff remains
valid for all versions of Windows Vista.

http://www.nvlabs.in/

Requirements for Bitlocker

Bitlocker requires:-
1. TPM (Trusted Platform Module)
2. Capability to boot from USB drive

Now, we will go through the above in small details.

TPM :- Trusted Platform Module (TPM) is both the name of a published specification detailing a
secure crypto-processor that can store secured information, as well as the general name of
implementations of that specification, often called "TPM chip", "Fritz chip" or "TPM Security Device"
(Dell). The TPM specification is the work of the Trusted Computing Group. The current version of the
TPM specification is 1.2 Revision 103, published on July 9, 2007.

USB Drive:- The keys can also be written on a USB device instead of TPM. So, the system must
support the reading and writing even without the support of drivers.

Bitlocker Modes of Operation

The following is the list of operational modes of Bitlocker

● Basic

○ TPM only :- all keys are stored within TPM

● Advanced

○ USB:- Key is stored on an external device

○ TPM + PIN:- TPM stores key together with a user specific PIN

○ TPM + USB:- TPM stores ½ key and USB stores another ½ half.

● TPM + USB + PIN (available in Vista SP1):- TPM stores ½ key, USB stores another
½ half, together with a user specific PIN.

Algorithms available in Bitlocker

Bitlocker uses one of the following algorithm to encrypt data

1. AES 128 bit
2. AES 128 bit + Diffuser
3. AES 256 bit
4. AES 256 bit + Diffuser

Diffuser is an additional stage designed to protect against ciphertext-manipulation attacks.

Keys in bitlocker

The following are the keys involved in bitlocker
1. VMK unlockers or VMK opening key (256 bit / 32 byte)
2. VMK key (256 bit / 32 byte)
3. FVEK key (128 bit/16 byte or 256 bit / 32 byte)
4. TWEAK key (128 bit/16 byte or 256 bit / 32 byte)
5. Sector key (256 bit / 32 byte)

In case of different sizes of keys, the keys depend on the algorithm used to encrypt the volume.

The TWEAK key and Sector key are present and/or used only if diffuser is enabled.

Bit locker Volume Structure

Bitlocker Volume boot Sector or Sector 0 is 96 % similar to NTFS boot sector except the following
changes

1. The Signature changes from “NTFS “ to “-FVE-FS-” at offset 3.i

2. The MFT_Mirror field at offset 0x38 is modified so as it now points to FVE_META_DATA.

Illustration 1: Bitlocker Volume Boot Sector

 Illustration 2: FVE META DATA First 64 bytes

FVE_META_DATA

FVE_META_DATA is the structure which contains all the information about keys,which keys are
present and so on. It's a Control File if spoken in NTFS partition. Since nothing can be recovered from
the partition, if the keys cannot be found, 3 copies are present and spread in the partition, so in case one
gets damaged, another copy can be used.

The default size of Control File is 16,384 bytes.

 The above is represented in C code as
struct FVE_META_DATA {

int8 Signature[8];
int8 header[8];
int8 reserved[16] ;
int64 FVE_MetaData_LCN[3];
int64 MFT_Mirror; // this value is filled from NTFS boot

sector before conversion
} MORE_FVE_DATA;

FVE Signature Total Structure
Size

Bitlocker Version

All other location of
FVE META DATA MFT Mirror Taken from Original

Boot Sector before bitlocker was
enabled

The next 48 bytes constitute the MAIN_HEADER. It contains the size of remaining data. This wraps
the all encrypted VMK. However, it doesn't wrap the FVEK.

In c code,
struct _MAIN_HEADER {

int32 Size; // Size of structure + size of data

int32 Version; // it's 1 for now

int32 Isize; // it is size of initial structure and is always 0x30

int32 Size1; //a copy of Size

int8 Reserved1[16]; // it's probably used to store something hash or salt but unknown,
int32 Reserved2; // it's the same as Version
int32 Encryption_Type; /* it's should be one of these

 0x8000 AES 128 + diffuser
 0x8001 AES 256 + diffuser
 0x8002 AES 128
 0x8003 AES 256
 */

FILETIME Time; // it is the time when this structure was
started to fill up so we can analyze this to found time or when it
was last updated and tell when was Bitlocker enabled
} MAIN_HEADER;

Size of structure
+ data

Encryption Type Time when this
structure was
created

VersionSize of structure
+ data

After this follow, a number of headers representing different data..The header size is 8 bytes and has
the following structure.

struct _HEADER {
int16 Size; // size of 8 byte + data
int16 unknown1;
int16 Type; // represents data followed by the header
int16 Version; // it's 1

} HEADER;

To jump from one header to another, read size , add it to current position and you are done.

The following header types are known

● 2 : the data structure is a unicode string

● 5: Encrypted key or data is stored

● 8 : Data structure is a key container

Bitlocker uses AES CCM mode to store keys. This provides both authentication and encryption. In this
mode, a hash is created for the data to be stored. This hash is also stored and encrypted together with
the data.Data is encrypted using AES-CBC mode.

Header Type 5: Encrypted Key or Data

Header
Partial Counter

Illustration 3: Sample Encrypted Key

 AES requires counter to be 16 bytes. However, since only 12 bytes are present. This should be be
completed

Completing the Counter

1 byte (15 - length of counter – 1) (so it evaluates to 2 for current version of bitlocker)

12 byte partial counter

2 byte 0

1 byte 0 (this is incremented after each block of encryption).

So, now we have a full 16 byte initialization vector.

The actual data is encrypted using CCM modeii (Counter with CBC-Mode). It is an authenticated
encryption algorithm designed to provide both authentication and privacy.

So, here is how it is done in Bitlocker.

Encryption:

First, a TAG(also called CBC-MAC) is created by repeated processing of the data, to get a final 16
byte block.

This block is now prepended to the actual data and is encrypted with AES 256 in Counter Mode, using
the counter obtained as above.So, after encryption, block size increases by 16 bytes.

Decryption:
The whole encrypted data block is decrypted using the AES 256 in counter mode.Now the TAG (first
16 bytes) is extracted and a TAG(CBC-MAC) is computed from from the remaining data. If both the
TAGs , the decrypted one and the one calculated from the decrypted data match, Data has been
successfully decrypted.

VMK- Unlockers or Openers

A number of unlockers are present, such as recovery password, USB key, TPM etc.

Some of which would be dealt in detail

Recovery Password: It is 48 digit key which is used to decrypt volume, in case of other methods
fail or due to any other reason such as modification of boot environment or tampering with boot files.

SAMPLE Message and key

 1. Save this numerical recovery password in a secure location away from

 your computer:

 471207-278498-422125-177177-561902-537405-468006-693451

 To prevent data loss, save this password immediately. This password helps

 ensure that you can unlock the encrypted volume.

Obtaining Key from Password:

 Since this key only represents 128 bit, a key expansion procedure takes place. Which
converts it into a full 256 bit which can the decrypt the FVEK.

Pseudocode

1. Divide each block by 11 , if the remainder is not 0 in all cases the key is not valid

2. collect the quotients from the above, and concatenate them to obtain a 128 bit key.

3. Take a 88 byte buffer and zero it. The structure of the buffer is as follows

// use 1 byte packing

typedef struct {

unsigned char sha_current[32];

unsigned char sha_password[32];

unsigned char salt[16];

int64 hash_count;

}blob;

4. Take SHA256 of the key and place it in the above structure in sha_password

5. The salt is place in the salt field of the above structure

6. Now run a loop 0x100000 (1048576) times

7. Find SHA256 of the entire structure and place it in sha_current field

8. increment hash_count field counter in the structure

9. repeat steps 6 through 9 , till the loop is over

10. Take the first 32 bytes of the structure as the 256 bit key which can be used to decrypt the
VMK corresponding to this key

USB key: in this form a key is stored on a USB drive which can unlock it's own encrypted VMK.

The file has a name such as 3926293F-E661-4417-A26C-C52286C5F149.BEK

BEK stands for Bitlocker Encryption Key(Most probably).

This file has a similar structure to that of MAIN_HEADER and thus will not be discussed here.
However, the file ends with a KEY HEADER which will be followed by a 32 byte encryption key
which will unlock the VMK. Also, the encryption and decryption has been discuused here, it will not
be discussed here.

TPM: TPM is used to store the encryption key. TPM uses an internal key. This is how it works.

For complete working of TPM, iii

TPM has few basic operations such as generate key, decrypt,encrypt and clear operations.Also, the
keys are locked with PCRs.

If the PCRs are correct, TPM will select required key and decrypt the data.

So, when Vista Boots, PCRs are automaticaly initialized, after BOOTMGR gains control, it supplies
the encrypted VMK to TPM, and checks the result, if VMK could not be decrypted, BOOTMGR will
display an error message, since system was tampered and a recovery password should be used to
unlock the system and so on.

Completely discribing the TPM working is beyonf the scope of this paperiv

TPM + PIN : - In this combination , key is stored by the TPM together with user specific PIN input by
the user. PIN is nothing both a 4-20 digit number. However before using the PIN, it should be
expanded to 32 bytes. This is done by taking the SHA256 of the PIN. It is supplied to the TPM
together with the encrypted VMK to get the decrypted VMK.
 !!! probably the key is xored with SHA256 has of
PIN

TPM + USB: - This combination is similar to TPM + PIN except the data is stored on a USB key and
expansion of key is .not required.

FVEK (Full Volume Encryption KEY)

FVEK is unlocked by the VMK. On disk the the FVEK is stored in encrypted form using using AES
CCM mode of encryption.

The size of FVEK depends upon the the algorithm chosen by the user.A default of AES 128 + diffuser
is used

 AES 128 128 bit key

 AES 256 256 bit key

 AES 128 + diffuser 512 bit key

 AES 256 + diffuser 512 bit key

In case of diffuser, extra key called TWEAK key is also stored within the FVEK. If TWEAK key is
present , it starts at boundary of 256 bits, so some bits of the FVEK can go unused in case of 128 bit
algorithms

Division of FVEK 512 bits into parts

AES 128 + diffuser

AES 256 + diffuser AES 256 + diffuser

AES 128 + diffuser

AES 256

AES128

FVEK TWEAK Key

Data Encryption

Data is encrypted using AES. Most of it has been implemented in assembly, taking care of speed.

AES 128 and AES 256: In both these modes, data is encrypted using AES-CBC with zero
initialization vector.

AES 128 + diffuser

AES 256 + diffuser:

 except for the key size, both operate similar.

We will start with decryption because the encryption was analysed in decryption mode and encryption
was obtained by reversing the stages of decryption.

CipherText

FVEK

AES CBC

Diffuser B 3 times

Diffuser A 5 times

TWEAK key

Sector Key 512 bits

XOR

Plain text

The PseudoCode steps are

1. Decrypt Ciphertext with FVEK key in AES-CBC mode

2. Run Diffuser B in decryption direction 3 times

3. Run Diffuser A in decryption direction 5 times

4. Calculate Sector Key from TWEAK key

5. XOR data obtained in step 3 with Sector Key

6. Plaintext

Now every step in the pseudocode will be detailed.

Step 1: Decrypt Ciphertext with FVEK key in AES-CBC mode
 First we have to calculate Initialization Vector.To obtain IV, take the sector number in 64 bits in
little endian order, also zero other 8 bytes, encrypt it with FVEK key.

 Now do AES-CBC mode decryption with the IV obtained below

Step 2: Run Diffuser B in decryption direction 3 times
 Diffuser B is already been documented by Microsoft. Read more at
BitLockerCipher200608.pdf !!!!!!!!!!!!!!!!!!!!!!!!!!

 Run diffuser B 3 times in decryption direction.

Step 3: Run Diffuser A in decryption direction 5 times
 Diffuser A is also been documented by Microsoft.

 Run diffuser A 5 times in decryption direction.

Step 4: Calculate Sector Key from TWEAK key
 Take a buffer of 16 bytes, zero it.Now copy the Sector Number in little endian format and
encrypt it with TWEAK key to obtain first 16 bytes of Sector key.

 Take a buffer of 16 bytes, zero it.Now copy the Sector Number in little endian format and make
the 16th byte as 128 or 0x80,now encrypt it with TWEAK key to obtain remaining 16 bytes of Sector
Key. Concatenate both part to obtain full 32 byte or 512 bit Sector Key.

Step 5: XOR data obtained in step 3 with Sector Key
 XOR the data with Sector key. Since data is minimum of 512 bytes , repeat sector key as
many times as necessary.

Step 6: Plaintext

 Whatever, you have now is the plaintext

VMK structure

48 digit Recovery
Password

i For more information about NTFS partition structure, use http://www.ntfs.com/ntfs-partition-boot-sector.htm
ii http://en.wikipedia.org/wiki/CCM_mode
iii TPM specification wiki
iv TPM specification

	Bitlocker Modes of Operation
	Algorithms available in Bitlocker
	Keys in bitlocker
	Bit locker Volume Structure

	FVE_META_DATA
	VMK- Unlockers or Openers
	FVEK (Full Volume Encryption KEY)
	Data Encryption

