
Rootkits vs. Stealth
by Design Malware

Joanna Rutkowska
invisiblethings.org

Black Hat Europe 2006, Amsterdam, the Netherlands

Joanna Rutkowska, invisiblethings.org, 2006. 2

Simple definitions…

Backdoors – give remote access to the compromised
machine (smarter ones typically use covert channels),

Localstuff – key loggers, web password sniffers, DDoS agents,
Desktop camera, eject, etc… (can be more or less fun),

Rootkits – protects backdoors and localstuff from detection.

Method of infection – exploit, worm, file infector (virus), etc... –
not important from our point of view.

We will see later that rootkits are not necessary to achieve full
stealth…

Joanna Rutkowska, invisiblethings.org, 2006. 3

Different approaches to
Compromise Detection…

Look around in the system
Process Explorer, netstat, etc… (this can be done automatically by
smart HIDS),

Don’t be tempted to skip this step as it’s easy to overlook very simple
malware when focused on advanced kernel detection only.

Cross view based approaches
Look for rootkit side-effects,

Detect hidden files, registry keys, processes.

Signature based approaches
Scan for known rootkit/backdoor/localstuff engines.

Check Integrity of Important OS elements
Explicit Compromise Detection (ECD)

Joanna Rutkowska, invisiblethings.org, 2006. 4

Surviving the reboot?

Should malware really care?

In many companies people do not turn their computers off for
the night,

And even if they do, how many damage can be done when
having a backdoor for several hours and being unable to
detect it?

Servers are very rarely restarted,

And also we have worms…

Joanna Rutkowska, invisiblethings.org, 2006. 5

Theoretical Scary Scenario…

Joanna Rutkowska, invisiblethings.org, 2006. 6

Network infected

1

2

3

4

Joanna Rutkowska, invisiblethings.org, 2006. 7

Client re-infection

1

2

Joanna Rutkowska, invisiblethings.org, 2006. 8

Digression: Passive Covert Channels

Passive Covert Channels idea:
http://invisiblethings.org/papers/passive-covert-channels-linux.pdf

NUSHU (passive covert channel POC in TCP ISNs for Linux
2.4 kernels):
http://invisiblethings.org/tools/nushu.tar.gz

How to detect NUSHU (and how to improve it so it will not be
detectable) by Steven Murdoch et al:
http://www.cl.cam.ac.uk/users/sjm217/papers/ih05coverttcp.pdf

Maybe network based detection (not signature based!) is the
future?

Joanna Rutkowska, invisiblethings.org, 2006. 9

Surviving the reboot…

Still unconvinced that we shouldn’t care about restart
survival?
Ok, we want to place a trigger somewhere on the file system,
but we don’t want to be caught by X-VIEW detection (ala RkR
or Black Light)…
Of course it’s trivial to cheat those tools (in more or less
generic way), but we want a “stealth by design” solution…
So, why not try using a good polymorphic file infector for this?

Mistfall engine is several years old, but still is considered among
AV people as one of the most challenging file infector!
Should we sleep well and not worry that in the meantime
somebody could/can write something better?
Watch out for files which are digitally sign (all system binaries)!

Joanna Rutkowska, invisiblethings.org, 2006. 10

What about hiding other stuff?

Process Hiding?

Win32 Services hiding?

Sockets hiding?

Kernel module/DLL hiding?

Kernel filter drivers hiding?

Joanna Rutkowska, invisiblethings.org, 2006. 11

Hidden Processes?

It’s convenient to have a possibility to run (in a stealthy manner) an
arbitrary process…

However, it should be always possible to find extra hidden process
executing inside OS, as the OS should be aware of this process:

scheduler (but look at smart PHIDE2)

Object manager

So, do we really need hidden processes?

Maybe we can use injected threads into some other processes to do
the job? (compile your favorite tools with .reloc sections)

Or even better – if we have a smart backdoor (e.g. kernel NDIS
based) why not build most of the functionality into it? [see the demo
later]

Joanna Rutkowska, invisiblethings.org, 2006. 12

Hidden Win32 Services?

Services are very easily detectable – much easier then just
ordinary processes.

But, if we agreed that we don’t need processes then it should
be obvious that we don’t need services too.

Joanna Rutkowska, invisiblethings.org, 2006. 13

Hidden Sockets?

That was always a very bad idea!

Hiding something which is still visible from a network point of
view is a bad idea.

Use covert channels (passive if possible)

If you need to do it in a traditional way, use knock scenario
and connect back.

Joanna Rutkowska, invisiblethings.org, 2006. 14

Hidden modules (kernel and DLLs)?

Very bad idea – very easy to find.
It’s even better not to hide kernel modules at all (just place
them in system32\drivers so they look not suspicious)!
And if one wants the real stealth – why to use modules at all?
Load, allocate a block of memory, copy and relocate and
unload the original module (no traces left in kernel).
Or do the same when exploiting kernel bug.

Related thing: resistance to signature based scanners
Shadow Walker,
Cut and Mouse (detect when somebody starts reading memory
near you and relocate),
How to do it without touching IDT?

Joanna Rutkowska, invisiblethings.org, 2006. 15

Hidden kernel filters?

People use them usually to:
hide files (but not registry)

hide sockets

Implement simple network backdoors

install key loggers

We don’t need them!

No need to bother to hide them.

Joanna Rutkowska, invisiblethings.org, 2006. 16

Stealth malware without rootkits

We don’t need all those rootkit technologies, but still we’re
capable of writing powerful malware!

Imagine a backdoor which
uses covert channel

has its own TCP/IP stack implementation

has its own implementation of all useful ‘shell’ commands (ls,
mkdir, ps, kill, put, get, etc…)

has ability to manually create short-life processes (not hidden)

Implemented as relocate-able code, no module in kernel.

No need to hide anything! (process, sockets, modules,
services)

Let’s see the demo now…

Joanna Rutkowska, invisiblethings.org, 2006. 17

DEMO: Pretty Stealth Backdoor

Introducing backdoor

Showing no traces in the system log

Showing no signs of kernel module reminders (modGREPER)

Showing no hidden process detected

Showing tcpdump trace from another machine

Bypassing Personal Firewalls

Joanna Rutkowska, invisiblethings.org, 2006. 18

Things which can be subverted

File system:
• boot sectors
• file infections
• ASEPs (mostly registry keys)

BIOS flash, ?

CODE sections:
• processes
• kernel
• kernel drivers

DATA sections:
• processes
• kernel
• kernel drivers

CPU registers: Debug Registers, Some MSRs, ?

volatile
persistent

Joanna Rutkowska, invisiblethings.org, 2006. 19

Things which can be subverted…

Persistent storage (file system, etc) subversion is necessary
only to reboot survival (nothing more).

It’s the volatile storage which is crucial to system compromise
(we can’t have a backdoor which is not in memory).

Today many detection tools are focused on file system
verification (registry is also file system).

Joanna Rutkowska, invisiblethings.org, 2006. 20

Interaction with OS infrastructure

Pretty Stealth Backdoor

The only interaction
between the backdoor
and OS! Just few
DWORDs!

DATA

CODE

Joanna Rutkowska, invisiblethings.org, 2006. 21

Lessons learnt

Malware doesn’t need to modify code sections (we can
always verify code section integrity)

The real problem is malware which modifies only data
sections.

We saw a backdoor which modified only few DWORDs
somewhere inside NDIS data section!

Joanna Rutkowska, invisiblethings.org, 2006. 22

Malware classification proposal

Type 0: Malware which doesn’t modify OS in any
undocumented way nor any other process (non-intrusive),

Type I: Malware which modifies things which should never be
modified (e.g. Kernel code, BIOS which has it’s HASH stored
in TPM, MSR registers, etc…),

Type II: Malware which modifies things which are designed to
be modified (DATA sections).

Type 0 is not interesting for us,

Type I malware is/will always be easy to spotted,

Type II is/will be very hard to find.

Joanna Rutkowska, invisiblethings.org, 2006. 23

Type I Malware examples

Hacker Defender (and all commercial variations)

Sony Rootkit

Apropos

Adore (although syscall tables is not part of kernel code
section, it’s still a thing which should not be modified!)

Suckit

Shadow Walker – Sheri Sparks and Jamie Butler
Although IDT is not a code section, it’s still something which is
not designed to be modified!

However it *may* be possible to convert it into a Type II (which
would be very scary)

Joanna Rutkowska, invisiblethings.org, 2006. 24

Fighting Type I malware

VICE

SDT Restore

Virginity Verifier 1.x [see the DEMO later]

Patch Guard by MS on 64 bit Windows

Today’s challenge: false positives

Lots of nasty apps which use tricks which they shouldn’t use
(mostly AV products)

Tomorrow: Patch Guard should solve all those problems with
false positives for Type I Malware detection…

… making Type I Malware detection a piece of cake!

Joanna Rutkowska, invisiblethings.org, 2006. 25

Patch Guard

By Microsoft, to be (is) included in all x64 Windows
http://www.microsoft.com/whdc/driver/kernel/64bitPatching.mspx

Actions forbidden:
Modifying system service tables

Modifying the IDT

Modifying the GDT

Using kernel stacks that are not allocated by the kernel

Patching any part of the kernel (detected on AMD64-based
systems only) [I assume they mean code sections here]

Can PG be subverted? Almost for sure.

But this is not important!

Joanna Rutkowska, invisiblethings.org, 2006. 26

Patch Guard

Important thing is: PG should force all the legal (innocent)
apps not to use all those rootkit-like tricks which dozens of
commercial software use today…
PG should clear the playground, making it much easier to
create tools like SVV in the future,
it won’t be necessary to implement smart heuristics to
distinguish between Personal Firewall-like hooking and
rootkit-like hooking.
So, even if we see a POC for bypassing PG (I’m pretty sure
we will see sooner or later) in the future, it will not make PG
useless…
It will only proof my statement that it’s good to have several
detection tools (from different vendors preferably)

Joanna Rutkowska, invisiblethings.org, 2006. 27

System Virginity Verifier Idea

Code sections are read-only in all modern OSes

Program should not modify their code!

Idea: check if code sections of important system DLLs and system
drivers (kernel modules) are the same in memory and in the
corresponding PE files on disk

Don’t forget about relocations!
Skip .idata

etc…

tcpip.sys

.text

MZ ...

0x80000000

0xffffffff

.text

tcpip base
address

SVV

verdict

Joanna Rutkowska, invisiblethings.org, 2006. 28

Extending SVV 1.x

Check not only CODE sections, because there are more
things which should stay untouched…

IDT

MSR registers

Debug Registers (need tricks to verify them)

…?

Joanna Rutkowska, invisiblethings.org, 2006. 29

DEMO: Fighting Type I Malware

Demo showing SVV detecting some malware:
Apropos Rootkit

EEYE BootRoot

HackerDefender

Demo showing how SVV handles potential false positives
introduced by software like Personal Firewall, etc…

Joanna Rutkowska, invisiblethings.org, 2006. 30

Type II Malware examples

NDIS Network backdoor in NTRootkit by Greg Hoglund
(however easy to spot because adds own NDIS protocol)
Klog by Sherri Sparks – “polite” IRP hooking of keyboard
driver, appears in DeviceTree (but you need to know where to
look)
He4Hook (only some versions) – Raw IRP hooking on fs
driver
prrf by palmers (Phrack 58!) – Linux procfs smart data
manipulation to hide processes (possibility to extend to
arbitrary files hiding by hooking VFS data structures)
FU by Jamie Butler
PHIDE2 by 90210 – very sophisticated process hider, still
easily detectable with X-VIEW...

Joanna Rutkowska, invisiblethings.org, 2006. 31

Fighting Type II Malware

There are three issues here:
To know where to look

To understand what we read

To be able to read memory

But… we all know how to read memory, don’t we?

Later on this, now let’s look at some demo…

Joanna Rutkowska, invisiblethings.org, 2006. 32

DEMO: Type II Malware Detection

Demo showing spotting klog using Device Tree and KD

Demo showing he4Hook detection using KD

Joanna Rutkowska, invisiblethings.org, 2006. 33

Type II Malware Detection cont.

“To know where to look” issue

On the previous demo, we somehow knew where to look…

…but there are lots of data in OS…

…how to assure that we check all potential places?

Joanna Rutkowska, invisiblethings.org, 2006. 34

Memory Reading Problem (MRP)

What about those popular functions:
__try/__except – will not protect from BugChek 0x50

MmIsAddressValid() – will introduce a race condition (and
also we won’t be able to access swapped memory)
MmProbeAndLockPages() – may crash the system for various
of reasons, one of them being TLB corruption!

The true is: We can’t read arbitrary Windows kernel memory
without the risk of crashing the system!

But Why? We’re in ring0, we can do everything, can’t we?

If it’s such a problem to read kernel memory, how it’s possible
that all those Windows machines work?!

Joanna Rutkowska, invisiblethings.org, 2006. 35

MRP cont.

It’s not the problem of what can we physically do, but rather of
what can we do from the “protocol point of view”,

And kernel was not designed to allow 3rd party to read
memory areas which belong to somebody else (reading NDIS
data structure by somebody who is not NDIS itself),

3rd party reading memory which it doesn’t own may be subject
to race conditions or cause TLB corruption,

So, before we try to read something we really need to think it
over if we really can safely read it!

It seems that Microsoft's help is very necessary here.

Joanna Rutkowska, invisiblethings.org, 2006. 36

Stealth by Design vs. Type II Malware

“Stealth by Design” != “Type II”

Lots of Type II malware today is not SbD:
All the process hiders (FU, PHIDE2)

Files hider (he4hook)

Some Type I malware is SbD:
Eeye bootroot NDIS backdoor

SbD is about not hiding anything – avoiding cross view
detection by design.

X-VIEW detection is useless when detecting SbD malware.

Explicit Compromise Detection (ECD) is useful here.

Joanna Rutkowska, invisiblethings.org, 2006. 37

Stealth by Design vs. Type II Malware

Type II is about implementing malware so that there is no
easy way to detect it by performing integrity scan (of
filesystem, code sections, etc...)

Type II is about avoiding ECD.

Type II challenge: modify those parts of OS, which are hard to
verify that were modified!

X-VIEW may sometimes work.

SbD Malware which is of Type II may be extremely difficult to
detect

X-VIEW doesn’t work

ECD is usually difficult

Joanna Rutkowska, invisiblethings.org, 2006. 38

File infectors…

Advanced EPO File Infectors are SbD…

…but if infected file has a digital signature (like all Windows
system files), then even the most advanced virus is Type I
only!

Joanna Rutkowska, invisiblethings.org, 2006. 39

Stealth by Design vs. Type II
Malware

X-VIEW useless.

ECD may be difficult.

Network based
detection may be
easier?

X-VIEW useless.

ECD easy and effective.

Stealth By
Design

ECD may be difficult

X-VIEW easier and
more effective.

ECD easy and effective.

X-VIEW works well too.

Classic Rootkit
Technology

Type II MalwareType I Malware

ECD = Explicit Compromise Detection
X-VIEW = Cross View Based Detection

Joanna Rutkowska, invisiblethings.org, 2006. 40

DEMO: Pretty Stealth Backdoor Again

Showing that it’s Type II backdoor
Code verification

SDT verification

IDT verification

IRP verification

NDIS protocols (btw, not a strict Type II requirement)

We already saw it’s Stealth by Design…

So where is the backdoor?

Joanna Rutkowska, invisiblethings.org, 2006. 41

Challenge

Create a list of where should we look (NDIS data structures,
device IRPs, attached filters, …

What else? Is the list finite?

OMCD project
Open Methodology for Compromise Detection

http://isecom.org/omcd/

But do we really need *Open* Methodology? Should such a
project be public?

But on the other hand…

Joanna Rutkowska, invisiblethings.org, 2006. 42

Challenge

Maybe we shouldn’t worry about advancement in malware
technology?

Commercial Hacker Defender shows another trend:

Implement lots of Simple and Stupid Implementation Specific
Attacks (SaSISA) against all the tools on the market…

So, all commercial AV products are ineffective against custom
malware (which one can buy for $$$),

Most of that “commercial malware” is detectable by private
detectors (which one can buy for $$$$-$$$$$),

Private detectors can’t cost too little!

Joanna Rutkowska, invisiblethings.org, 2006. 43

Losers and Winners

Mr. and Mrs. Smith always lose!

Large companies may win (using private detectors)…

Authors of SASISA-based malware earn money and laugh
from AV companies!

Providers of custom rootkit/compromise detection services
laugh from SASISA-based malware :)

AV may start become those providers of custom detectors for
large companies at some point in the future…

Everybody waits for the next generation OS which will
introduce more then two CPU privileges modes (4 years?),
hopefully eliminating SASISA…

Joanna Rutkowska, invisiblethings.org, 2006. 44

Thank you
for your time!

