
Copyright Security-Assessment.com 2006

Unpacking Malware, Trojans and
Worms

PE Packers Used in Malicious Software

Presented by Paul Craig
Ruxcon 2006

Copyright Security-Assessment.com 2006

• Mental Refresher Course!
• #1 ­ PE­COFF: The Windows Executable Format.
• #2 ­ Who How What of Windows Import Address Tables.

• What is a PE Packer?
• PE Packers in Malicious Software.
• Detecting a PE Packer.
• Fundamental Weaknesses.
• PE Unpacking
• Automation
• Getting Tricky
• Unpacking NSPack
• Conclusion

Overview

Copyright Security-Assessment.com 2006

Refresher #1 ­

 PE­COFF:
The Windows Executable Format.

Section­By­Section

Copyright Security-Assessment.com 2006

PE COFF: Refreshing the mind.
• DOS MZ Header

• Legacy Support for DOS
• 4D 5A (MZ) – Magic Number

• Mark Zbikowski
• Check if being ran in DOS.

• “ This program must be ran under
Windows.”

• Handy to know that this string, is
(almost always) in the DOS MZ
header.

Copyright Security-Assessment.com 2006

PE COFF: Refreshing the mind.
• PE Header

• 50h 45h 00h 00h – “ PE”
• Data structures of execution settings

• Machine Type
• Date/Time Stamp
• Size of executable
• Where the code begins.

Copyright Security-Assessment.com 2006

PE COFF: Refreshing the mind.
• A table of sections that exist inside the

application.

• Each table has a name, permission and a
size.

• When windows allocates memory pages for
each the sections, the pages are set with the
corresponding section permissions.

• Section Table

Copyright Security-Assessment.com 2006

PE COFF: Refreshing the mind.

• Executable sections are basically groups
of different types of data.

• Grouping is based on common
characteristics. IE is the data
readable/writeable/executable?

• Compilers/linkers try to keep the number
of sections as low as possible.

• Memory efficiency!

• Sections

Copyright Security-Assessment.com 2006

Refresher #2 ­

The Who, How, What, Why of
Windows Import Address

Tables

Copyright Security-Assessment.com 2006

Windows Import Address Table

• The Import Address Table is a table of external functions that
an application wants to use.
– Example, function Sleep(), from KERNEL32.DLL

• An Import Table will contain the location in memory of an
imported function.
• This is handy when we want to call the function.

• Applications use the Import Address Table to find other DLL’ s
in memory.

Copyright Security-Assessment.com 2006

Windows Import Address Table
• One Problem though..

• When the executable is compiled, and the Import Table is
built, the compiler and linker do not know where in
memory the particular DLL will be.

• The location is dynamic, dependant on operating system,
service pack and any security patches that may be installed.

• We need Windows to tell us the location in memory at
runtime. There is a good chance the location will be
different location, PC to PC.

Copyright Security-Assessment.com 2006

Windows Import Address Table
• When compiled, an executables Import Address Table contains

NULL memory pointers to each function. It will have the name of
the function, and what DLL it comes from, but that’ s it.

• When we start to execute an application, Windows will find the
Import Address Table location (from PE header), and overwrite our
NULLS with the correct memory location for each function.

• Windows populates the Import Address Table for us, telling us
where we can find each function.

• When we want to call an external function, we call a pointer to the
value in the Import Address table.

• It becomes our lookup table.

Copyright Security-Assessment.com 2006

Windows Import Address Table
• Example: Application wants to call GetProcAddress from

KERNEL32.DLL.

PUSH EBP
CALL DWORD PTR [0041302C] - (Call whatever is stored at 0041302C)

Look at the executable in a hex editor, the Import Table contains NULL’ s.
0041302C = 00 00 00 00
However, if we look at the same location once the application is running from inside a

debugger, we see.
0041302C = AB 0C 59 7C

• Windows populated the Import Table with the correct value.
• 7C590CAB = Location of GetProcAddress

Copyright Security-Assessment.com 2006

Ok, enough mental
refreshing!!

What is a PE packer?

Copyright Security-Assessment.com 2006

What is a PE­Packer?
• Think of it as an executable file, inside another executable file.

Which can be inside another executable file.
• Think Russian dolls (Matryoshka).

• The executable file is ‘ packed’ inside another executable file!

• When executed, the ‘ outer’ executable will unpack the contents of
the ‘ inner’ executable into memory and execute it.

• The inner most executable is the ‘ real’ executable!

Copyright Security-Assessment.com 2006

What is a PE­Packer?
• The first PE packers were designed as a method of reducing the

size of an executable on disk, through compression.
• Pklite from PKWARE (think PKZIP)

• PkLite ‘ wraps’ around the target application, and compresses it.

• The packed executable is smaller on disk, but when ran will ‘ unzip’
itself into memory.

• Once uncompressed in memory, the enclosed executable file is
executed normally.

Copyright Security-Assessment.com 2006

Step by Step PE Packer.

I just double clicked HelloWorld.exe
a packed .exe file.

What happens now?

Copyright Security-Assessment.com 2006

DOS – MZ header

Copyright Security-Assessment.com 2006

PE header

Copyright Security-Assessment.com 2006

Windows reads section table

Copyright Security-Assessment.com 2006

Memory allocated for executable

Copyright Security-Assessment.com 2006

Disk image copied to memory

Copyright Security-Assessment.com 2006

Windows populates IAT of PE packer

Copyright Security-Assessment.com 2006

.UNPACKER section starts executing

Copyright Security-Assessment.com 2006

.UNPACKER unpacks .PACKED-DATA
into memory

Copyright Security-Assessment.com 2006
Unpacked, it is now larger in memory

Copyright Security-Assessment.com 2006PE Packer populates Import Table

Copyright Security-Assessment.com 2006Reset stack registers

Copyright Security-Assessment.com 2006Jump to Original Entry Point (OEP)

Copyright Security-Assessment.com 2006 And it runs!

Copyright Security-Assessment.com 2006

PE Packers In Malicious Software
• So what’ s the big deal with PE packing?

• Static analysis of PE packed data is not possible.
• The payload is only unpacked at runtime!
• It physically does not exist on disk, only in memory.

• Packed binaries can evade signature based AV.
• A malicious executable is hiding inside an innocent

executable.

• Unless a virus scanner uses sandbox technology, it can
be practically impossible to determine what's ‘ inside’ the
executable.

Copyright Security-Assessment.com 2006

PE Packers In Malicious Software
• Lets put it a different way.
• What did the snake eat for lunch?

Copyright Security-Assessment.com 2006

PE Packers In Malicious Software
• I have a phobia of snakes!

• Look at the snake all you want, it is not going to help!

• Static analysis is impossible.

• The snake might have eaten a weapon of mass destruction for all
we know!

• Analysis is only possible when the snake is ‘ unpacked’ .

• Trojans/malicious software rely on ‘ Snakes’ to hide themselves
from anti virus software.

Copyright Security-Assessment.com 2006

Detecting a PE-Packer

Copyright Security-Assessment.com 2006

Detecting a PE Packer

• The first step in PE unpacking is to detect if a PE packer is
being used.

• Do not rely solely on automated tools.
– They can be defeated, evaded.
– Custom PE packers can be used which are unknown to the

tool.

• Analyzing the PE header and executable layout will tell us more
than enough.

Copyright Security-Assessment.com 2006

Detecting a PE Packer
• Acting suspiciously draws suspicion!

• ‘ Only dodgy people act dodgy.’

• There are 4 simple steps that will tell us if an exe has been
packed.

• #1 - Very small import table.
• A large application that only uses a few imports?
• Example: LoadLibaryA, GetProcAddress …
• These functions are used to locate other functions.
• IE, when populating an import table manually.

Copyright Security-Assessment.com 2006

Detecting a PE Packer
• #2 - String table is missing or contains only garbage.

• The string table is a table of commonly used strings in
the application.

• Strings stored in one location so the compiler/linker do
not need to keep multiple copies of the string in memory.

• A missing, corrupted or encrypted string table is usually
a pointer that a PE packer has been used.

• PE packers like to add entries into the string table.

Copyright Security-Assessment.com 2006

Detecting a PE Packer
• #3 - Code body is far smaller than expected.

• Remember, disassembly would only show the PE packer
stub routine.

• You will see large amounts of ‘ data’ inside the
executable.

• Its packed, so we don’ t see it as code

• #4 - Weird looking section names.
• Compilers/linkers will try to have a standard naming

convention for each code/data section.
• Easy to spot something ‘ strange’ .

Copyright Security-Assessment.com 2006

Copyright Security-Assessment.com 2006

Detecting a PE Packer

• Once we have analyzed the executable ourselves, THEN we
then use PE scanning tools to help identify the packer
that’ s being used.
– PEiD (http://peid.has.it)
– GT2 (http://www.programmerstools.com/)

• Tools can be wrong, don’ t be lazy.

Copyright Security-Assessment.com 2006

The Fundamental
Weakness.

“ If it executes, we can unpack it.”

Copyright Security-Assessment.com 2006

Fundamental Weakness
• No matter how an executable is packed, it MUST be unpacked at

runtime for my CPU to run it!
• My CPU has to run the plaintext, unpacked binary at some

stage!
• I don’ t care if its packed using 2048bit RSA, my CPU only runs

straight x86 ASM.

• Its all really about the timing.
• If we want to get the unpacked data, we need to know the

exact moment and location where the data will be unpacked
and available.

• It may only be available and intact for a very short amount of
time.

Copyright Security-Assessment.com 2006

PE Unpacking

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking
• Re-create the executable, in its original form, before it was

packed.

• This allows us to perform static analysis on the now
unpacked ‘ payload’ data.

• We should not need the PE packer stub again, so we can
delete it.

• Bring the executable back to its virgin state.
– Before it was packed.

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking
Step #1.

Locate the OEP (Original Entry Point) jump.

• After the PE packer has finished unpacking itself and has populated
the Import Address Table of the ‘ .PACKED-DATA’ , it will usually
reset/clear any stack registers it was using.

• Shortly after this, a jump/call will occur that will start the execution of
the now unpacked data.

• This is the OEP Jump

• The destination of this jump is the EntryPoint of the unpacked data!

Copyright Security-Assessment.com 2006

It looks something like this.

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking
Step #2 – For The Old School Only

• If your true old school you of-cause use Softice
(A ring0 debugger). At this stage you need to
manually suspend the application at the OEP
JMP (Pause the process)

• Modify the OEP jump/call to be an infinite loop
(JMP EIP).

• If you use OllyDBG, just ignore this.

• Guy on the left uses Softice, in-fact he use to
work at Compuware.

Copyright Security-Assessment.com 2006

­­ Softice JMP EIP ­­

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking
Step #3 :Dump the executable memory image

• The application is currently unpacked in memory, but has not yet
begun to execute the unpacked data.

• We need to dump the memory image of the executable back to disk.

• We use a process dumping tool.

• After the memory image is dumped to disk we are left with a snapshot
which contains both the unpacked (payload) data, and the PE packers
‘ unpacking’ stub.

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking
Step #4 : Change EntryPoint of dumped image.

• The dumped executable’ s EntryPoint still points to the start of the
PE Packer, the ‘ unpacking’ routine.

• We want the executable to start running the unpacked data first, not
the PE packer, we don’ t need the PE packer anymore!

• We know the Original EntryPoint is 004035B0h, this is where the PE
packer was going to jump to.

Copyright Security-Assessment.com 2006

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking
Step #4 Continued…

Calculate the EntryPoint RVA

• All PE values are stored in RVA format.
(Relative Virtual Address, an offset from the BaseImage)

The BaseImage is where the application begins in memory.

• RVA EntryPoint = OriginalEntryPoint – BaseImage
004035B0h - 00400000h = 35B0h

• The Original EntryPoint is 35b0h bytes into the executable!

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking
Step #4 Continued…

Change the EntryPoint value in the PE header.

• Using a PE editor, such as LordPE/ProcDump we change the
executables EntryPoint value to 35b0h.

• If we execute the executable now, it will start executing the
unpacked data first, not the PE packer!

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking
• The dumped executable image is almost able to run, but it is still

missing one vital piece of information.

• It does not have a valid Import Address Table!

• The current import address table is that of the PE packer itself!
• It only has three entries!

LoadLibaryA()
GetProcAddress()
ExitProcess()

Remember: The PE-packer uses LoadLibaryA/GetProcAddress to
populate the Import Address Table of .PACKED-DATA!

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking
Step #5: Rebuild the Import Address Table

• We need to find the Import Address Table of our now unpacked
data.

• We need Windows to populate our import table with the correct
values for each external function at runtime.

• Without it, the executable will not run.  and static analysis is
also harder.

• We will overwrite the PE packers own Import Address Table
(which only had three entries) with the correct table.

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking
• To do this, we use:

• ImpRec – Google “ ImpRec MackT UCF”

• ImpRec will search the executable image in memory (starting
from the OEP value) and should find our Import Address Table.

• We then dump it back to disk.

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking

• Once we have a copy of the import address table on disk, we
re-insert it into the dumped executable.

• Overwriting the old Import Address Table with our “ full
bodied” table.

• Now when we execute the binary windows will populate the
Import Address Table with the correct values, allowing us to
use external functions.

• Code execution will start at the unpacked data, and bob’ s your
uncle!

Copyright Security-Assessment.com 2006

Demo #1
PE Unpacking - UPX.
• Ok so we know what we want to do, lets do it.

• Notepad.exe
• Packed with UPX (the Ultimate Packer for eXecutables)

• UPX can be unpacked with upx.exe – d
• We will modify this binary though so upx will not

recognize it, and fail to unpack it.

• Ok lets unpack it by hand.

Copyright Security-Assessment.com 2006

PE Unpacking:
Automation

Copyright Security-Assessment.com 2006

PE Unpacking: Automation.

• That was easy, because UPX is an easy PE packer.

• Although it was easy it still took time.

• Time = Money

• Having to unpack 100 UPX packed binaries would become
really tedious.

• Tedious = Not fun!

• Since we now know how UPX works, we should automate
the unpacking process.

• So, lets write a quick, automated unpacking script for any
UPX packed binary, so we don’ t have to do this by hand
again.

Copyright Security-Assessment.com 2006

PE Unpacking: Automation.

• To do this will use OllyScript (The scripting language plugin
for OllyDBG)

• OllyScript simulates a user’ s debugging session within
OllyDBG.

• We can place breakpoints, step, run, do all the normal
OllyDBG tasks, only script them.

• OllyScript is important when dealing with PE packers, it can
take hours to unpack a single protector. You don’ t want to
do it too often!

• Learning OllyScript is a must if you plan on doing any
unpacking of your own.

Copyright Security-Assessment.com 2006

PE Unpacking: Automation.
• We know the UPX code flow goes like this

#1 – The target application is un-compressed.
#2 – UPX will populate the packed data’ s Import Table.
#3 – POPAD
#4 – JMP <OEP>

The golden rule of UPX is “ The first unconditional JMP after POPAD
is the OEP JMP”

This works on all versions of UPX, very simple.

Copyright Security-Assessment.com 2006

PE Unpacking: Automation.
• So we write a script which does something like..

– Search for the first POPAD in the code.
– Place a breakpoint on it
– Run the application

– Search for the next JMP instruction.
– Breakpoint again.
– Run the application again.

– We end up at the OEP JMP.. Finished.

Copyright Security-Assessment.com 2006

Demo #2
PE Unpacking: Automation

Copyright Security-Assessment.com 2006

PE Packers:
Getting Tricky.

Copyright Security-Assessment.com 2006

• So far we have only looked at UPX, a straight-forward relatively
friendly PE packer.

• UPX is a great way to learn how PE packers work, in essence all
packers are very similar if not identical to UPX.

• But rarely are packers so straight-forward to follow and logical in
nature.

• Most PE packers are designed with a focus on anti-unpacking, they
don’ t want you to unpack them!

• The golden rule still applies though, eventually a packer must
execute the unpacked code.

• Its just a matter of when!

Getting Tricky.

Copyright Security-Assessment.com 2006

Getting Tricky.
#1 – Exceptions

• Structured Exception Handler – SEH CHAIN
• A single linked list of exception handlers (frames) to use when an

exception occurs.
• Linked SEH frames make an “ SEH chain”
• Can be used to go from A to B, via an exception.

• The Goal:
• Create an exception handler to catch an exception.

– “ If you crash, go here”
• Then raise an exception.

– “ Crash” , and we end up “ here”
• The Idea:

• Get to the exception handler code.
• Debuggers hate exceptions!

Copyright Security-Assessment.com 2006

Getting Tricky.
• Each SEH frame within the chain consists of two pointers.

• A pointer to the previous SEH frame.
• A pointer to the exception handler for the frame.

• A pointer to the SEH chain is kept inside FS:[0]
• Thread Information Block - http://en.wikipedia.org/wiki/Win32_Thread_Information_Block

• Real easy to spot, FS:[0] is only used for exception handling.

• Keep an eye on the SEH Chain window inside OllyDBG.

Copyright Security-Assessment.com 2006

Getting Tricky.
Example:

PUSH 00401C84 ; Push to the stack the new top SE handler location
MOV EAX,DWORD PTR FS:[0] ; Save the existing top SE frame location to EAX
PUSH EAX ; Push the top level back to the stack, its now the 2nd frame
MOV DWORD PTR FS:[0],ESP ; Move a pointer to the stack into FS:[0] (Chain is now active)
XOR EDX, EDX ; Clear EDX
DIV EDX ; Divide by zero exception

• 00401C84 is now the first SE handler.
• The old SE handler is now the second handler.
• When we execute DIV EDX we will cause an exception.
• This exception will be handled by the top SE handler.

• Tell OllyDBG to Ignore all exceptions.
• Set a breakpoint on 00401C84 (The handler).
• Run the application.
• We end up at the SE handler.

Copyright Security-Assessment.com 2006

#2 – Detecting a debugger

• Great way to try to stop a pesky reverse engineer is to detect his
debugger.

• Windows API Calls.
• A call to IsDebuggerPresent() will return > 0 if the process is

currently running in the context of a debugger, such as OllyDbg.
– Unable to detect kernel debuggers such as Softice

• Many other Windows API’ s can be used to detect a debugger.
• ZwQueryProcessInformation()
• CheckIsRemoteDebuggerPresent()
• SetDebugPrivilege ()

Getting Tricky.

Copyright Security-Assessment.com 2006

Getting Tricky.
• IsDebuggerPresent API just returns a byte in the PEB.

• The PEB (Process Environment Block) is a process specific area of
user land memory which contains details of each running process.

• We find the location of the PEB from the TIB.
– TIB->PEB->isProcessBeingDebugged

Example:
MOV EAX,DWORD PTR FS:[18h] ; Get the location of the TIB
MOV EAX,DWORD PTR DS:[EAX+30h] ; Get the location of the PEB
MOVZX EAX,BYTE PTR DS:[EAX+2h] ; Second byte of PEB = isProcessBeingDebugged.

EAX > 0 , debugger is present.

Not hard to spot while tracing.. A “ Normal” application would rarely have a need to access FS:[18h]

Copyright Security-Assessment.com 2006

Getting Tricky.

• Many different ways to defeat debugger checks.

• Automatic plug-ins for OllyDBG
• HideOD, IsDebuggerPresent
• These plug-in’ s hide a debuggers presence by keeping the

PEB isBeingDebugged flag at 0
• They use other methods to hide from each of the debugger

detection API’ s in Windows.

• Ollyscript: ‘ DBH’ – Hide debugger

• Using the OllyDBG command line plug-in
• “ set byte ptr ds:[fs:[30]+2]] = 0“

• Manually patch your way out…

Copyright Security-Assessment.com 2006

Demo #3
SEH Wonderland

Copyright Security-Assessment.com 2006

Demo #4
Almost finished!!
• No presentation at a hacker conference is complete without

some 0day remote shell!

• Give it up, for an OllyScript bind shell exploit!

• All your debuggers are belong to me!

Copyright Security-Assessment.com 2006

Conclusion
• PE packing an executable is not hard.

• Even a modified UPX can thwart static analysis attempts.
• When unpacking an executable, we don’ t need to know

exactly how its payload is packed.
• All PE packers must unwrap themselves eventually, we

can leave this to the PE packer.
• We are simply an observer, until we find the OEP.
• Then dump the executable image to disk.
• Redirect the EntryPoint to the discovered OEP.
• Rebuild the Import Address Table.

• Script it, so we never have to do it again!

Copyright Security-Assessment.com 2006

Questions ?

http://www.security-assessment.com

paul.craig@security-assessment.com

Copyright Security-Assessment.com 2006

Links/References

• Iczelion Win32 ASM Page - http://win32assembly.online.fr/
• EXE Tools – http://www.exetools.com
• Yates2k R.E - http://www.yates2k.net/
• Programmers Tools - http://programmerstools.org/
• RETeam.org – http://reteam.org
• ARTeam Research – http://arteam.accessroot.com
• LordPE - http://mitglied.lycos.de/yoda2k/LordPE/info.htm
• TIB - http://en.wikipedia.org/wiki/Win32_Thread_Information_Block
• PEB -

http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Process/P
EB.html

• OpenRCE – http://www.openrce.org

• Security-Assessment.com – http://www.security-assessment.com

