Unpacking Malware, Trojans and
Worms

PE Packers Used in Malicious Software

Presented by Paul Craig
Ruxcon 2006

G 7o)
Copyright Security-Assessment.com 2006 secu I‘ity- assessment.com

Overview

« Mental Refresher Course!
« #1 - PE-COFF: The Windows Executable Format.
« #2 - Who How What of Windows Import Address Tables.

« What is a PE Packer?

- PE Packers in Malicious Software.

« Detecting a PE Packer.

« Fundamental Weaknesses.

« PE Unpacking

« Automation

« Getting Tricky

« Unpacking NSPack

« Conclusion

Copyright Security-Assessment.com 2006

Refresher #1 -

PE-COFF:

The Windows Executable Format.
Section-By-Section

<<ry

Copyright Security-Assessment.com 2006

PE COFF: Refreshing the mind.

* DOS MZ Header
HelloWorld.exe

cxal

* Legacy Support for DOS

* 4D 5A (MZ) - Magic Number
e Mark Zbikowski

* Check if being ran in DOS.

« “This program must be ran under
Windows."

* Handy to know that this string, is
(almost always) in the DOS MZ
header.

(S Ja)

Copyright Security-Assessment.com 2006

PE COFF: Refreshing the mind.

* PE Header
HelloWorld.exe

cxal

* 50h 45h 00h 00h - “PE”
* Data structures of execution settings
e Machine Type
e Date/Time Stamp
« Size of executable
« Where the code begins.

Copyright Security-Assessment.com 2006

PE COFF: Refreshing the mind.

* Section Table A table of sections that exist inside the
HelloWorld.exe application.

* Each table has a name, permission and a
Size.

Section Table

* When windows allocates memory pages for
each the sections, the pages are set with the
corresponding section permissions.

— Sechons |nfarmations ;

Mame | Yirtual Size | Virtual Dffzet | Characteristics |
et Q0002Cca0 00007 000 GO000020
.data Q0oo0aFo Q0004000 CO0o0040
T3 00001 248 0005000 40000040
(S Ja)

Copyright Security-Assessment.com 2006

PE COFF: Refreshing the mind.

* Sections
HelloWorld.exe

Executable sections are basically groups
of different types of data.

* Grouping is based on common
characteristics. IE is the data
readable/writeable/executable?

* Compilers/linkers try to keep the number
of sections as low as possible.

* Memory efficiency!

Copyright Security-Assessment.com 2006

Refresher #2 -

The Who, How, What, Why of
Windows Import Address
Tables

Windows Import Address Table

* The Import Address Table is a table of external functions that
an application wants to use.

— Example, function Sleep(), from KERNEL32.DLL

* An Import Table will contain the location in memory of an
imported function.

* This is handy when we want to call the function.

* Applications use the Import Address Table to find other DLL’s
In memory.

Copyright Security-Assessment.com 2006

Windows Import Address Table

* One Problem though..

* When the executable is compiled, and the Import Table is
built, the compiler and linker do not know where in
memory the particular DLL will be.

* The location is dynamic, dependant on operating system,
service pack and any security patches that may be installed.

* We need Windows to tell us the location in memory at
runtime. There is a good chance the location will be
different location, PC to PC.

Copyright Security-Assessment.com 2006

Windows Import Address Table

* When compiled, an executables Import Address Table contains
NULL memory pointers to each function. It will have the name of
the function, and what DLL it comes from, but that’s it.

* When we start to execute an application, Windows will find the
Import Address Table location (from PE header), and overwrite our
NULLS with the correct memory location for each function.

* Windows populates the Import Address Table for us, telling us
where we can find each function.

* When we want to call an external function, we call a pointer to the
value in the Import Address table.

* It becomes our lookup table.

Copyright Security-Assessment.com 2006

Windows Import Address Table

* Example: Application wants to call GetProcAddress from
KERNEL32.DLL.

PUSH EBP
CALL DWORD PTR [0041302C] - (Call whatever is stored at 0041302C)

Look at the executable in a hex editor, the Import Table contains NULL's.

0041302C = 00 00 00 00

However, if we look at the same location once the application is running from inside a
debugger, we see.

0041302C = AB 0C 59 7C

* Windows populated the Import Table with the correct value.

o« 7C590CAB = Location of GetProcAddress
<<ry

Copyright Security-Assessment.com 2006

Ok, enough mental
refreshing!!

What is a PE packer?

<<ry

Copyright Security-Assessment.com 2006

What is a PE-Packer?

* Think of it as an executable file, inside another executable file.
Which can be inside another executable file.

e Think Russian dolls (Matryoshka).
* The executable file is ‘packed’ inside another executable file!

* When executed, the ‘outer’ executable will unpack the contents of
the ‘inner executable into memory and execute it.

* The inner most executable is the ‘real’ executable!

Copyright Security-Assessment.com 2006

What is a PE-Packer?

* The first PE packers were designed as a method of reducing the
size of an executable on disk, through compression.

 Pklite from PKWARE (think PKZIP)

* PkLite ‘wraps’ around the target application, and compresses it.

* The packed executable is smaller on disk, but when ran will ‘unzip
itself into memory.

* Once uncompressed in memory, the enclosed executable file is
executed normally.

Copyright Security-Assessment.com 2006

Step by Step PE Packer.

| just double clicked HelloWorld.exe
a packed .exe file.

What happens now?

< ry

Copyright Security-Assessment.com 2006

EXE IMAGE ON DISK

Section Table

Section Table

DOS - MZ header

Not Running in DOS mode, good!
Jump to PE Header

EXE IMAGE ON DISK

Section Table

Section Table

PE header

Windows retrieves data structures of PE
configuration parameters.

File Header:

Machine Type: 014C (Intel 386 or later)

Number of Sections: 3h

Time Date Stamp: 2A425E19h (Fri Jan 09 16:56:32)
Size of Optional header: 00EOh

Optional Header:

Entry Point: 00074C8Ch

Image Base: 00400000h

Import Table Virtual Address: 83000h
Size: FCh

EXE IMAGE ON DISK

Section Table - Section table is read and system memory allocated for each

of the sections.

Sections are mapped (copied) into allocated memory space
starting from the ImageBase value (00400000h).

UNPACKER

VirtualSize: 6000h (24576)

Characteristics: E0000040h

(Section contains initialized data, Section can be executed as code,
Section can be read,Section can be written to)

.TEMPSPACE
VirtualSize: 1000h (4096)

Section Table Characteristics: E0000040h

(Section contains initialized data, Section can be executed as code,
Section can be read, Section can be written to)

.PACKED-DATA

VirtualSize: 19000h (102400)

Characteristics: E0000080h

(Section contains uninitialized data, Section can be executed as code,
Section can be read, Section can be written to)

Windows reads section table

EXE IMAGE ON DISK EXE IMAGE IN MEMORY

ImageBase: 00400000h

System memory allocated for sections
and headers of the exe image.

Section Table

Memory allocated for executable

EXE IMAGE ON DISK EXE IMAGE IN MEMORY

EXE image is copied into allocated
{ memory space.

Disk EXE image is no longer used by Windows.

Section Table

Section Table

Disk image copied to memory

EXE IMAGE ON DISK EXE IMAGE IN MEMORY

Windows populates the Import Address Table of the
PE Packer with correct pointers.

Functions populated.
KERNEL32.DLL

LoadLibarayA
GetProcAddress
ExitProcess

Section Table

Section Table

Windows populates IAT of PE packer

EXE IMAGE ON DISK EXE IMAGE IN MEMORY

Code execution is passed to EntryPoint value.
(00074C8Ch)

Exe begins to execute from .UNPACKER
section.

Section Table

Section Table

.UNPACKER section starts executing

EXE IMAGE ON DISK EXE IMAGE IN MEMORY

- PE-packers unpacking routine is now executed. Section Table

Contents of .PACKED-DATA are uncompressed
into system memaory.

.UNPACKER unpacks .PACKED-DATA
Into memory

EXE IMAGE ON DISK EXE IMAGE IN MEMORY

.PACKED-DATA is now uncompressed in memory

Unpacked, it is now larger in memory

EXE IMAGE ON DISK EXE IMAGE IN MEMORY

Import table of the packed binary (.PACKED-DATA)
must be located and each value in the Import Table
populated by the PE packer.

Windows didnt do it for us, so the PE packer has to
do it manually.

Section Table

PE Packer populates Import Table

EXE IMAGE ON DISK EXE IMAGE IN MEMORY

Stack registers are reset to NULL to ensure

. the PE packer has no effect on code execution. Section Table

POPA/POPAD
POP EDI, ESI, EBP, ESP, EDX, ECX, EAX
XOR EAX, EAX ...

Reset stack registers

EXE IMAGE ON DISK EXE IMAGE IN MEMORY

PE Packer jumps to OEP (Original Entry Point),

. the entry point of the unpacked binary. Section Table

Via a Jmp, Call or Ret.

Usually goes along way, and often called "Jump Far”

Jump to Original Entry Point (OEP)

EXE IMAGE ON DISK EXE IMAGE IN MEMORY

Section Table

Packed binary finally executes.

Hello World..

And it runs!

PE Packers In Malicious Software
* So what’s the big deal with PE packing?

e Static analysis of PE packed data is not possible.
* The payload is only unpacked at runtime!
* |t physically does not exist on disk, only in memory.

* Packed binaries can evade signature based AV.

* A malicious executable is hiding inside an innocent
executable.

* Unless a virus scanner uses sandbox technology, it can
be practically impossible to determine what's ‘inside’ the
executable.

<<ry

Copyright Security-Assessment.com 2006

PE Packers In Malicious Software

* Lets put it a different way.
 What did the snake eat for lunch?

|

<<ry

Copyright Security-Assessment.com 2006

PE Packers In Malicious Software

* | have a phobia of snakes!

* Look at the snake all you want, it is not going to help!
e Static analysis is impossible.

* The snake might have eaten a weapon of mass destruction for all
we know!

* Analysis is only possible when the snake is ‘unpacked’.

* Trojans/malicious software rely on ‘Snakes’ to hide themselves
from anti virus software.

<<ry

Copyright Security-Assessment.com 2006

Detecting a PE-Packer

<<ry

Copyright Security-Assessment.com 2006

Detecting a PE Packer

* The first step in PE unpacking is to detect if a PE packer is
being used.

* Do not rely solely on automated tools.
— They can be defeated, evaded.

— Custom PE packers can be used which are unknown to the
tool.

* Analyzing the PE header and executable layout will tell us more
than enough.

Copyright Security-Assessment.com 2006

Detecting a PE Packer

* Acting suspiciously draws suspicion!
* ‘Only dodgy people act dodgy.’

* There are 4 simple steps that will tell us if an exe has been
packed.

* #1 - Very small import table.
* A large application that only uses a few imports?
 Example: LoadLibaryA, GetProcAddress ...
* These functions are used to locate other functions.
* |E, when populating an import table manually.

<<ry

Copyright Security-Assessment.com 2006

Detecting a PE Packer

* #2 - String table is missing or contains only garbage.

* The string table is a table of commonly used strings in
the application.

e Strings stored in one location so the compiler/linker do
not need to keep multiple copies of the string in memory.

* A missing, corrupted or encrypted string table is usually
a pointer that a PE packer has been used.

* PE packers like to add entries into the string table.

Copyright Security-Assessment.com 2006

Detecting a PE Packer

* #3 - Code body is far smaller than expected.

* Remember, disassembly would only show the PE packer
stub routine.

* You will see large amounts of ‘data’ inside the
executable.

* Its packed, so we don’t see it as code

* #4 - Weird looking section names.

* Compilers/linkers will try to have a standard naming
convention for each code/data section.

* Easy to spot something ‘strange’.

Copyright Security-Assessment.com 2006

-

Iiew-.-‘l'-.l gﬁ E:-:pu:urtsl I% Impu:urtsl N Namesl \[?_I] Functions "+ Stings | B_ Structuresl En Enumsl

PISTER| Cnames window 0
Address Length Type | Sting Mame | Address I
wdata01.. 00000005 C YilSk I| C start 01014000
w.t data:01.. 00000OOE C H+)U A aKemel32 0014044
wdata01.. 00000007 C TaMPRe T GetFrocAddiess OTO074CTE
o dataOl.. 00000005 C 0 TMdAd A aPalycryptPeC20 01014CED
o data01.. 00000005 C MbbSG A P 01014004
o data0l.. 00000005 C Juil) ||l A aCpe 01014D0C
o data01.. 00000006 C W BHTS :

O data0l.. 00000005 C© \'eCle

wdata01.. 00000005 C “Flmia

wdata01.. 00000005 C kOoph

L data:01.. 00000005 C Wi

o datal.. 00000005 C QChblx

w0 data0.. 00000007 C nTgndsb®

O data01.. 000DOOOG C \'O#. G

.t gegll2.. 00000009 C KERMEL32
L gegl0d.. 00000024 C PolyCrypt PE [c] 2004-2005, JLabs oftware.

b T T TR

B1018013 ; ——— -

81014015 db 55h, 9Eh, 55h

B1014018 ; ————

81014018 add al, dh :

8161461A push ebp Line 1 of &

61014018

81014618 loc_101481B: ; CODE XREF: seqB02:681814021}j

A1A14R1R rudp

Copyright Security-Assessment.com 2006

Detecting a PE Packer

* Once we have analyzed the executable ourselves, THEN we
then use PE scanning tools to help identify the packer
that’s being used.

— PEID (http://peid.has.it)
— GT2 (http://www.programmerstools.com))

* Tools can be wrong, don’t be lazy.

<<ry

Copyright Security-Assessment.com 2006

The Fundamental
Weakness.

“If it executes, we can unpack it.”

<<ry

Copyright Security-Assessment.com 2006

Fundamental Weakness

* No matter how an executable is packed, it MUST be unpacked at
runtime for my CPU to run it!

* My CPU has to run the plaintext, unpacked binary at some
stage!

* |l don’t care if its packed using 2048bit RSA, my CPU only runs
straight x86 ASM.

* Its all really about the timing.

* If we want to get the unpacked data, we need to know the
exact moment and location where the data will be unpacked
and available.

* [t may only be available and intact for a very short amount of
time.

<<ry

Copyright Security-Assessment.com 2006

PE Unpacking

<<ry

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking

* Re-create the executable, in its original form, before it was
packed.

* This allows us to perform static analysis on the now
unpacked ‘payload’ data.

* We should not need the PE packer stub again, so we can
delete it.

* Bring the executable back to its virgin state.
— Before it was packed.

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking

Step #1.

Locate the OEP (Original Entry Point) jump.

After the PE packer has finished unpacking itself and has populated
the Import Address Table of the ‘.PACKED-DATA’, it will usually
reset/clear any stack registers it was using.

Shortly after this, a jump/call will occur that will start the execution of
the now unpacked data.

* This is the OEP Jump

The destination of this jump is the EntryPoint of the unpacked data!

<<ry

Copyright Security-Assessment.com 2006

It looks something like this.

EXE IMAGE IN MEMORY

Section Table

00412F1D: OR EAX, EAX
00412F1F: JE 00412F28
00412F21: MOV DWORD PTR DS:[EBX], EAX
00412F23: ADD EBX,4
00412F26: JMP 00412F09
00412F28: CALL DWORD PTR DS:[ESI+12030]
00412F2E: POPAD
00412F2F: JMP 004035B0

Objectives of PE Unpacking

Copyright Security-Assessment.com 2006

Step #2 - For The Old School Only

If your true old school you of-cause use Softice
(A ring0 debugger). At this stage you need to
manually suspend the application at the OEP
JMP (Pause the process)

Modify the OEP jump/call to be an infinite loop
(JMP EIP).

If you use OIllyDBG, just ignore this.

Guy on the left uses Softice, in-fact he use to
work at Compuware.

-- Softice JMP EIP --

EXE IMAGE IN MEMORY

BRAT LI & o ol o s

Section Table

00412F1D: OR EAX, EAX
00412F1F: JE 00412F28
00412F21: MOV DWORD PTR DS:[EBX], EAX
00412F23: ADD EBX 4
00412F26: JMP 00412F09
00412F28: CALL DWORD PTR DS:[ESI+12030]
00412F2E: POPAD
00412F2F: JMP 00412F2F

With the JMP EIP in effect we can let the application run
away, knowing it will never get past this instruction.

Objectives of PE Unpacking
Step #3 :Dump the executable memory image

* The application is currently unpacked in memory, but has not yet
begun to execute the unpacked data.

* We need to dump the memory image of the executable back to disk.

* We use a process dumping tool.

* After the memory image is dumped to disk we are left with a snapshot
which contains both the unpacked (payload) data, and the PE packers
‘unpacking’ stub.

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking
Step #4 : Change EntryPoint of dumped image.
* The dumped executable’s EntryPoint still points to the start of the
PE Packer, the ‘unpacking’ routine.

* We want the executable to start running the unpacked data first, not
the PE packer, we don’t need the PE packer anymore!

* We know the Original EntryPoint is 004035B0h, this is where the PE
packer was going to jump to.

<<ry

Copyright Security-Assessment.com 2006

Section Table

Current EntryPoint, in PE Packer

EntryPoint of Unpacked Data

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking

Step #4 Continued...
Calculate the EntryPoint RVA

* All PE values are stored in RVA format.
(Relative Virtual Address, an offset from the Baselmage)

The Baselmage is where the application begins in memory.

* RVA EntryPoint = OriginalEntryPoint - Baselmage
004035B0h - 00400000h = 35B0h

* The Original EntryPoint is 35b0h bytes into the executable!

<<ry

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking

Step #4 Continued...
Change the EntryPoint value in the PE header.

* Using a PE editor, such as LordPE/ProcDump we change the
executables EntryPoint value to 35b0h.

* |If we execute the executable now, it will start executing the
unpacked data first, not the PE packer!

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking

* The dumped executable image is almost able to run, but it is still
missing one vital piece of information.

* It does not have a valid Import Address Table!

* The current import address table is that of the PE packer itself!
* It only has three entries!
LoadLibaryA()

GetProcAddress()
ExitProcess()

Remember: The PE-packer uses LoadLibaryA/GetProcAddress to
populate the Import Address Table of .PACKED-DATA!

<<ry

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking

Step #5: Rebuild the Import Address Table
* We need to find the Import Address Table of our now unpacked
data.

* We need Windows to populate our import table with the correct
values for each external function at runtime.

* Without it, the executable will not run. ® and static analysis is
also harder.

* We will overwrite the PE packers own Import Address Table
(which only had three entries) with the correct table.

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking

* To do this, we use:
* ImpRec - Google “ImpRec MackT UCF”

* ImpRec will search the executable image in memory (starting
from the OEP value) and should find our Import Address Table.

* We then dump it back to disk.

<<ry

Copyright Security-Assessment.com 2006

Objectives of PE Unpacking

* Once we have a copy of the import address table on disk, we
re-insert it into the dumped executable.

* Overwriting the old Import Address Table with our “full
bodied” table.

* Now when we execute the binary windows will populate the
Import Address Table with the correct values, allowing us to
use external functions.

* Code execution will start at the unpacked data, and bob’s your

uncle!
<<ry

Copyright Security-Assessment.com 2006

Demo #1
PE Unpacking - UPX.

e Ok so we know what we want to do, lets do it.

* Notepad.exe
 Packed with UPX (the Ultimate Packer for eXecutables)
* UPX can be unpacked with upx.exe -d

* We will modify this binary though so upx will not
recognize it, and fail to unpack it.

* Ok lets unpack it by hand.

Copyright Security-Assessment.com 2006

PE Unpacking:
Automation

<<ry

PE Unpacking: Automation.

* That was easy, because UPX is an easy PE packer.
* Although it was easy it still took time.
* Time = Money

* Having to unpack 100 UPX packed binaries would become
really tedious.

* Tedious = Not fun!

 Since we now know how UPX works, we should automate
the unpacking process.

* So, lets write a quick, automated unpacking script for any
UPX packed binary, so we don’t have to do this by hand

again. <>

Copyright Security-Assessment.com 2006

PE Unpacking: Automation.

* To do this will use OllyScript (The scripting language plugin
for OllyDBG)

* OllyScript simulates a user’s debugging session within
OllyDBG.

* We can place breakpoints, step, run, do all the normal
OllyDBG tasks, only script them.

* OllyScript is important when dealing with PE packers, it can
take hours to unpack a single protector. You don’t want to
do it too often!

* Learning OllyScript is a must if you plan on doing any
unpacking of your own. <>

Copyright Security-Assessment.com 2006

PE Unpacking: Automation.

* We know the UPX code flow goes like this

#1 - The target application is un-compressed.

#2 — UPX will populate the packed data’s Import Table.

#3 - POPAD
#4 - JMP <OEP>

The golden rule of UPX is “The first unconditional JMP after POPAD
is the OEP JMP”

UUUUUUUUU

18154F8

. B 26
-—E9 RADIEFFFF
1]
aa

ruoan cor
FUSH ERX
PUSH EBX
FPUSH EDI
CALL HERR EEF
FOP ERX

FOPAD

LEA ERX,OWORDO PTR 55: CESP-301]
FUSH &

CHP ESP, ERX

JHE SHORT notepad.Al18154E2
SUE ESP,-S2A

JHMF notepad. 81867390

OE D&

OB @&

This works on all versions of UPX, very simple.

Copyright Security-Assessment.com 2006

PE Unpacking: Automation.

* So we write a script which does something like..
— Search for the first POPAD in the code.
— Place a breakpoint on it
— Run the application

— Search for the next JMP instruction.
— Breakpoint again.
— Run the application again.

— We end up at the OEP JMP.. Finished.

<<ry

Copyright Security-Assessment.com 2006

Demo #2
PE Unpacking: Automation

<<ry

Copyright Security-Assessment.com 2006

PE Packers:
ettlng rlky

Copyright Security-Assessment.com 2006

Getting Tricky.

* So far we have only looked at UPX, a straight-forward relatively
friendly PE packer.

 UPX s a great way to learn how PE packers work, in essence all
packers are very similar if not identical to UPX.

* But rarely are packers so straight-forward to follow and logical in
nature.

* Most PE packers are designed with a focus on anti-unpacking, they
don’t want you to unpack them!

* The golden rule still applies though, eventually a packer must
execute the unpacked code.

* Its just a matter of when!

Copyright Security-Assessment.com 2006

Getting Tricky.

#1 — Exceptions

e Structured Exception Handler - SEH CHAIN

* A single linked list of exception handlers (frames) to use when an

exception occurs.
* Linked SEH frames make an “SEH chain”
* Can be used to go from A to B, via an exception.

e The Goal:

* Create an exception handler to catch an exception.
— “If you crash, go here”
* Then raise an exception.
— “Crash”, and we end up “here”
The ldea:
* Get to the exception handler code.
* Debuggers hate exceptions!

Copyright Security-Assessment.com 2006

Getting Tricky.

* Each SEH frame within the chain consists of two pointers.
* A pointer to the previous SEH frame.
* A pointer to the exception handler for the frame.

* A pointer to the SEH chain is kept inside FS:[0]

Thread Information Block - http://en.wikipedia.org/wiki/Win32_Thread_Information_Block
* Real easy to spot, FS:[0] is only used for exception handling.

« Keep an eye on the SEH Chain window inside OllyDBG.

~0xFFFFFFFF (End of list)

EXCEPTION_REGISTRATIDN

Hamdler ————® _sxcopt_handler|...)

EXCEPTION _REGISTRATION

Hamdler ~—————— except_handier|...)

Thread Informatisn Block (FS:[0])

] reyv
EXCEPTION _REGISTRATION P a@

Hamdler ————® _sacopt_handler|...)

Copyright Security-Assessment.com 2006 STACK

Getting Tricky.

Example:

PUSH 00401C84 ; Push to the stack the new top SE handler location

MOV EAX,DWORD PTR FS:[0] ; Save the existing top SE frame location to EAX

PUSH EAX : Push the top level back to the stack, its now the 2nd frame
MOV DWORD PTR FS:[0],ESP ; Move a pointer to the stack into FS:[0] (Chain is now active)
XOR EDX, EDX : Clear EDX

DIV EDX ; Divide by zero exception

« 00401C84 is now the first SE handler.

e The old SE handler is now the second handler.

« When we execute DIV EDX we will cause an exception.
e This exception will be handled by the top SE handler.

« Tell OllyDBG to Ignore all exceptions.
« Set a breakpoint on 00401C84 (The handler).

* Run the application.
« We end up at the SE handler.

Copyright Security-Assessment.com 2006

Getting Tricky.

#2 — Detecting a debugger

* Great way to try to stop a pesky reverse engineer is to detect his
debugger.

e Windows API Calls.

* A call to IsDebuggerPresent() will return > 0 if the process is
currently running in the context of a debugger, such as OllyDbg.

— Unable to detect kernel debuggers such as Softice

* Many other Windows API’s can be used to detect a debugger.
* ZwQueryProcessinformation()
* ChecklsRemoteDebuggerPresent()
* SetDebugPrivilege ()

Copyright Security-Assessment.com 2006

Getting Tricky.

* IsDebuggerPresent API just returns a byte in the PEB.

* The PEB (Process Environment Block) is a process specific area of
user land memory which contains details of each running process.

* We find the location of the PEB from the TIB.
— TIB->PEB->isProcessBeingDebugged
Example:
MOV EAX,DWORD PTR FS:[18h] ; Get the location of the TIB
MOV EAX,DWORD PTR DS:[EAX+30h] ; Get the location of the PEB
MOVZX EAX,BYTE PTR DS:[EAX+2h] ; Second byte of PEB = isProcessBeingDebugged.
EAX > 0, debugger is present.
Not hard to spot while tracing.. A “Normal” application would rarely have a need to access FS:[18h]

<<ry

Copyright Security-Assessment.com 2006

Getting Tricky.

Many different ways to defeat debugger checks.

Automatic plug-ins for OllyDBG
* HideOD, IsDebuggerPresent

* These plug-in’s hide a debuggers presence by keeping the
PEB isBeingDebugged flag at 0

* They use other methods to hide from each of the debugger
detection API’s in Windows.

Ollyscript: ‘DBH’ — Hide debugger

Using the OllyDBG command line plug-in
“set byte ptr ds:[fs:[30]+2]] = 0

Manually patch your way out... <<rp

Copyright Security-Assessment.com 2006

Demo #3
SEH Wonderland

<<ry

Copyright Security-Assessment.com 2006

Demo #4
Almost finished!!

* No presentation at a hacker conference is complete without
some Oday remote shell!

* Give it up, for an OllyScript bind shell exploit!

* All your debuggers are belong to me!

<<ry

Copyright Security-Assessment.com 2006

Conclusion

* PE packing an executable is not hard.
* Even a modified UPX can thwart static analysis attempts.

* When unpacking an executable, we don’t need to know
exactly how its payload is packed.

* All PE packers must unwrap themselves eventually, we
can leave this to the PE packer.

 We are simply an observer, until we find the OEP.
* Then dump the executable image to disk.

* Redirect the EntryPoint to the discovered OEP.

* Rebuild the Import Address Table.

* Scriptit, so we never have to do it again!

Copyright Security-Assessment.com 2006

Questions ?

http://www.security-assessment.com

paul.craig@security-assessment.com

Copyright Security-Assessment.com 2006

Links/References

Iczelion Win32 ASM Page - http://win32assembly.online.fr/

EXE Tools - http://www.exetools.com

Yates2k R.E - http://www.yates2k.net/

Programmers Tools - http://programmerstools.org/

RETeam.org - http://reteam.org

ARTeam Research - http://arteam.accessroot.com

LordPE - http://mitglied.lycos.de/yoda2k/LordPE/info.htm

TIB - http://en.wikipedia.org/wiki/Win32_Thread_Information_Block

PEB -
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%200bjects/Process/P
EB.html

OpenRCE - http://www.openrce.org

Security-Assessment.com — http://www.security-assessment.com

Copyright Security-Assessment.com 2006

