CP/M’

OPERATING SYSTEM
MANUAL

D G TAL RESEARCH"

P.O. Box 579
Padfic Grove, California 93950

COPYRIGHT

Copyright © 1976,1977, 1978, 1979, and 3982 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated intoany language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of Digital Research, Post Office Box 579, Pacific
Grove. California 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warrantiesof merchantability or fitnessfor
any particular purpose. Further, Digital Research reservestheright to revise this publica-
tion and to make changes from time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M isaregistered trademark of Digital Research. MP/M, MAC, and SID are trade-
marks of Digital Research. Z-80 is a trademark of Zilog, Inc.

First Printing: July 1982

CONTENTS

CP/M FEATURES AND FACILITIES ...

1.1 Introduction
1.2 Functional Description

1.2.1 General Command Structure e e

1.2.2 File References

1.3 Switching Disks
1.4 Built-inCommands............. ..
141 ERA........
142 DIRo,
1.43 RENiviiiin it
144 SAVEol
1.45 TYPEccciiiiii.
146 USER,
Line Editing and Output Control ..
Transient Commands

e
o Ul

1.6.1 STAT .ivviiiiiiniinnnnn,

1.6.1 ASM ...l
163 LOAD
1.6.4 PIP oo
1.65 EDot
1.6.6 SYSGEN

1.6.7 SUBMIT

1.68 DUMP.......covviiinnnt
1.6.9 MOVCPM

1.7 BDOSError Messages « -« xuuens
1.8 Operation of CP/M on the MDS ..

2.1 Introduction toED
2.1.1 ED Operation
2.1.2 Text Transfer Functions ..

2.1.3 Memory Buffer Organizationc. oo,
2.1.4 Line Numbersand ED Start Upc..ooin

2.1.5 Memory Buffer Operation
2.1.6 Command Strings
2.1.7 Text Search and Alteration

2.1.8 Source Libraries «vvvuvuri it ittt ttnnnnttnnnnnr e nns

2.1.9 Repetitive Command Executionoiiiinin.n

2.2 EDError ConditiONS «vvveerinrrnnrrnnernnsnnnssnnssnsrnnnsnnsss

2.3 Control Charactersand Commands

et

NNNNNPE =
NNOBRNWNSDOIO WO 0 0 Em SO O () W e

29

CP/M ASSEMBLER ...

3.1 INtroduCtion ... e e e e
3.2 Program FOrmatiiiiii i e
3.3 Forming theOperandc.ciiiiiiiiiiii ittt nnarannnnns
3.3.1 LabEls (oo e e
3.3.2 Numeric Constants ...ttt inin i i
3.3.3 Reserved Words «vvviir it e e
3.34 String Constantsoviiii i e e
3.3.5 Arithmetic and Logical Operatorscccvveunn...
3.3.6 Precedence of Operatorsc.cvevuiiininrncnnannnan.
3.4 Assembler DireCtivescciiiiiiiiii it
341 The ORG Dir€CliVE +vvvvrninnnrrrerrnnnnnssseeennnnns
342 TheEND Dilr€CtiVe «eueurnrnrnrnrnrnrnrnrnsnsnsnrnsnrnss
34.3 TheEQU DireCtive ...viviiiiiiiiiinarnnrnirasnnsnssnnns
344 TheSET DIireCtive ..uuvieiiiiinnrnernennsnnsnnsnssnnns
34.5 ThelFand ENDIF DIirectives «.vuvivirnrirnrninnnnrannnns
3.4.6 The DB DIreCtive ...ttt iinensn
347 The DW Dir€CtivVe « v eniiinniinrnsnsnnnenennsnsnsnss
3.48 TheDS DireCtive ..veiiiiiiiiieinneiarnerasnnrnsnnsnss
3.5 Operation CodeS ..ivveiiiiiiiiiirisitisnsnsnsassarasasasasasans
3.5.1 Jumps, Calls, and RetUrNScviriiini it enennenns
3.5.2 Immediate Operand INstructionsccovivivvnann
3.5.3 Increment and Decrement Instructionsevvevuenns
3.5.4 Data Movement Instructionso i
3.5.5 Arithmetic Logic Unit Operationscoovivuen...
356 Control Instructions .uviiiiieii i iirnrnernrnrnrnrnranns
3.6 EIrrOor MESSAgES .+ vt rvnttnntrnnssnnsssnnssnnssnnssnnssnnssnnnsns
3.7 A SamPle SESSION v v tivn i

CP/M DYNAMIC DEBUGGING TOOLee,

g R 1 01 4 Yo [T 11
4.2 DDT COMMANAS vttt ittt et ii e iin e eaanannns
4.2.1 The A (Assembly)Commandcvoviviririrerarenenss
422 The D (Display)Commandvvvtiiiininininenennnnnnss
4.2.3 TheF (Fill)Command ...cvvviuiiiiiiiniiiiiinnnnnnnns
424 TheG (Go)Commandvviveiiiiinrirnrnsnsnsnraranass
425 Thel (Input) Command +..uvvivennrnnrrnrennrnnrsnsens
4.2.6 Thel (List)yCommandccoiiviiriinennnnnnennnn.
427 TheM (Move)Commandc.coveiimvmenennrennennenn
428 TheR(Read)Commandcccciiiiiniennnnann.
429 TheS(Set)Commandc.vuiiiiiumrnenninnanenen.
4210 TheT (Trace)Commanduveevrrnnrnnrennrnnnrsnnss
4211 The U (Untrace) Commandvviviiiirinrnrarinnnrnns
4212 The X (Examingi Command ... veovviinrnnrnnnrnansnnss
4.3 Implementation NOtES +.vvvvirerririnrarsnransaransnrnnsnrnnnans
4.4 AN EXaMPle «vviniiii it i it e et e e

CP/M 2 SYSTEM INTERFACE. ...

5.1 INtroduCtion «eveieiiiiiiannsnenrasansnsnsasassasnsasasnnsnsnns
5.2 Operating System Call Conventions ...vvviiiiiiiiiiiiniiiinnnas
5.3 A Sample File-to-File Copy Programciiiiiiiiiiiiiirarananass
5.4 A Sample File Dump Utility «vvvviriininiiiii ittt i enanas
5.5 A Sample Random Access Program «....cuoiiieiiiiinrinnrnnnnanss
5.6 System function SUMMaAry -« .«ovoriiiiniiiinaaararasasaranass

47

i d
7

48
49

50

50

50
51
52
52
53
54
54
55
55
56
57
57
57
58
58
59
60
60
61
62
62
63

69

69
71
71
72
72
72
73
74
74
74

L4
£

75
76
76
77
78

6 CP/MALTERATION 127

6.1 INtrodUCtioN .. .u ettt i i ittt it e 127
6.2 First Level System Regenerationccoiiiiiiiniiinennaan. 128
6.3 Second Level System Generationeeuiiiiiiiiiiiiiaaaann 131
6.4 Sample GETSYS and PUTSYS Programccovieeoinninenun... 133
6.5 Diskette Organizationcooiiiiiiiiiii i iiieianaaneannns 136
6.6 The BIOS Entry POINtS . ..iini it ii e iie e e 137
6.7 ASample BIOS . e 143
6.8 A Sample Cold Start Loaderooiiiiiniiiiiiiiiiiiniiieaannn. 143
6.9 Reserved Locations iN Page Zerocoumviniimieieinanineann. 134
6.10 Disk Parameter TaDIES .. oiviiiii it i it e e ti e canannenn 145
6.11 The DISKDEF Macro Library ...t 148
6.12 Sector Blocking and Deblockingccoiiiiiiiiiiiiiiiiiaa. 152
APPENDIXES
A The MDS Basic /O System (BIOS) ..vuiiiiiiiinnnrrrrnrrreenens 153
B ASkeletal CBIOS ittt iiiiiiiiisiiaasisnaareannsennnsennns 175
C A Skeletal GETSYS/PUTSYS Program «.ovvevvininnennrnnrnnnenns 187
D The MDS-800 Cold Start Loader for CPIM 2ciiviinnnnn.. 191
E A Skeletal Cold Start Loaderoveirnrinrnrnnenrnnenrnnenennens 197
F CP/M Disk Definition Libraryveviiiiiiiiiiiiininnranrnenss 201
G Blocking and Deblocking Algorithms ccoviiiiiiiaa, 209
H Glo88ary ittt e e e e e 219
I CP M MESSAGES v ittt i it iae e ee e saeeneanonasnnsaenesneenenans 235
INDEX 245

2.1 Overall ED Operation ..., 34
2.2 Memory Buffer Organizationcioiiiiiiiiiiiiniiieiianenanns 34
2.3 Logica Organization of Memory Buffer, 36

CP/M Features and
Facilities

1.1 Introduction

CP/M isamonitor control program for microcomputer system development that uses
floppy disks or Winchester hard disksfor backup storage. Using acomputer system based
upon Intel's 8080 microcomputer, CP/M provides a general environment for program
construction, storage, and editing, along with assembly and program check-out facilities.
An important feature of CP/M is that it can be easily altered to execute with any
computer configuration that uses an Intel 8080 (or Zilog Z-80) Central Processing Unit
and has at least 20K bytes of main memory with up to 16 diskette drives. A detailed
discussion of the modifications required for any particular hardware environment is
given in Chapter 6. Although the standard Digital Research version operates on a
single-density Intel MDS 800, several different hardware manufacturers support their
own input-output drivers for CP/M.

The CP/M monitor provides rapid access to programs through a comprehensive file
management package. The file subsystem supports a named file structure, allowing
dynamic allocation of file space aswell assequential and random file access. Using thisfile
system, a large number of programs can be stored in both source and machine-
executable form.

CP/M 2 is a high-performance, single-console operating system that usestable-driven
techniques to allow field reconfiguration to match awide variety of disk capacities. All
fundamental filerestrictions are removed, maintaining upward compatibility from pre-
vious versions of release 1. Featuresof CP/M 2 include field specification of onetosixteen
logical drives, each containing up to eight megabytes. Any particular file can reach thefull
drive size with the capability of expanding to thirty-two megabytes in future releases.
The directory size can be field-configured to contain any reasonable number of entries,
and each fileisoptionally tagged with readionly and system attributes. Usersof CP/M 2
are physically separated by user numbers, with facilitiesfor file copy operations fromone
user area to another. Powerful relative-record random access functions are present in
CP/M 2 that provide direct access to any of the 65536 records of an eight-megabyte file.

CPiM also supports a powerful context editor, Intel-compatible assembler, and
debugger subsystems. Optional software includes a powerful Intel-compatible macro
assembler, symbolic debugger, along with various high-level languages. When coupled

with CP/M’s Console Command Processor, the resulting facilities equal or excel similar
large computer facilities.
CP/M is logically divided into several distinct parts:

BIOS Basic /O System (hardware-dependent)
BDOS Basic Disk Operating System

CCP Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the diskettedrives
and to interface standard peripherals (teletype, CRT, paper tape readeripunch, and
user-defined peripherals). They can be tailored by the user for any particular hardware
environment by " patching" this portion of CP/M. The BDOS provides disk management
by controlling one or moredisk drivescontaining independent filedirectories. TheBDOS
implements disk allocation strategies that provide fully dynamic file construction while
minimizing head movement across the disk during access. The BDOS has entry points
that include the following primitive operations, which can be programmatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open afile for further operations.

CLOSE Close a file after processing.

RENAME Change the name of a particular file.

READ Read a record from a particular file.

WRITE Write a record to a particular file.

SELECT Select a particular disk drive for further operations

The CCP provides asymbolic interface between the user's console and theremainder
of the CP/M system. The CCPreads the console device and processes commands, which
include listing the file directory, printing the contents of files, and controlling the
operation of transient programs, such asassemblers, editors, and debuggers. The stand-
ard commands that are available in the CCP are listed in Section 1.2.1.

The last segment of CP/M istheareacalled the Transient Program Area{TPA). The
TPA holds programs that are loaded from the disk under command of the CCP. During
program editing, for example, the TPA holds the CP/M text editor machinecode and data
areas. Similarly, programs created under CP/M can be checked out by loading and
executing these programs in the TPA.

Any or al of the CP/M component subsystems can be "overlaid" by an executing
program. That is, once a user's program isloaded into the TPA, the CCP, BDOS, and
BlOSareascan be used as the program's data area. A "' bootstrap" |oader is programmati -
cally accessible whenever the BIOS portion is not overlaid; thus, the user program need
only branch to the bootstrap loader at the end of execution and the complete CP/M
monitor is reloaded from disk.

The CP/M operating system is partitioned into distinct modules, including the BIOS
portion that defines the hardware environment in which CP/M is executing. Thus, the
standard system is easily modified to any nonstandard environment by changing the
peripheral drivers to handle the custom system.

1.2 Functional Description

The user interactswith CP/M primarily through the CCP, which readsandinterprets
commands entered through the console. In general, the CCP addresses one of several
disks that are on-line (thestandard system addresses up to sixteen different disk drives).
These disk drives are labeled A through P. A disk is"logged in" if the CCPis currently
addressing the disk. To clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by the symbol " >"indicating
that the CCP isready for another command. Upon initial start-up, the CP/M system is
brought in from disk A, and the CCP displays the message

CP/M VER m.m

where m.misthe CP/M version number. All CP/M systemsareinitially set tooperateina
20K memory space, but can be easily reconfigured to fit any memory size on the host
system (seeSection 1.6.9). Following system sign-on, CP/M automatically logsin disk A,
prompts the user with the symbol “A>" (indicating that CP/M is currently addressing
disk "A"), and waits for a command. The commands are implemented at two levels:
built-in commands and transient commands.

121 General Command Structure

Built-in commands are a part of the CCP program itself, while transient commands
are loaded into the TPA from disk and executed. The built-in commands are

ERA Erase specified files.

DIR List file names in the directory.

REN Rename the specified file.

SAVE Save memory contents in afile.

TYPE Type the contents of a file on the logged disk.

Most of the commands reference a particular file or group of files. The form of afile
reference is specified below.

1.2.2 File References

A filereferenceidentifies a particular fileor groupof fileson aparticular disk attached
to CP/M. Thesefile references are either " unambiguous" (ufn) or " ambiguous" (afn).An
unambiguous file reference uniquely identifies a single file, while an ambiguous file
reference is satisfied by a number of different files.

File references consist of two parts: the primary filename and the filetype. Although
the filetype is optional, it usually is generic; that is, the filetype "ASM," for example, is
used to denote that the file is an assembly language source file, while the primary

filename distinguishes each particular source file. The two namesare separated by a“.”,
as shown below:

filename.typ

where filenameis the primary filename of eight charactersor less, and typ isthefiletype
of no more than three characters. As mentioned above, the name

filename

is also allowed and is equivalent to a filetype consisting of three blanks. The characters
used in specifying an unambiguous file reference cannot contain any of the special
characters

<>, =2 1o%l () /N

while all alphanumerics and remaining special characters are allowed.

An ambiguous file reference is used for directory search and pattern matching. The
form of an ambiguous filereference is similar to an unambiguous reference, except the
symbol “?” can be interspersed throughout the primary and secondary names. In various
commandsthroughout CP/M, the”?” symbol matchesany character of afile namein the
“?” position. Thus, the ambiguous reference

X?Z.C7?™M
is satisfied by the unambiguous file names

XYZ.COM
and
X3Z.CAM

Note that the ambiguous reference

is equivalent to the ambiguous file reference

P70 727

while
filename.*

and

*.typ

are abbreviations for

filename.???
and

respectively. As an example,

isinterpreted by the CCPasacommand tolist the namesof al disk filesin thedirectory,
while

searches only for afile by the name X.Y. Similarly, the command

causes a search for all (unambiguous) file names on the disk that satisfy this ambiguous
reference.

The following file names are valid unambiguous file references:
X XYz GAMMA
XY XYZ.COM GAMMA.I
As an added convenience, the programmer can generally specify thedisk drive name
along with the file name. In this case, the drive name is given as a letter A through P
followed by a colon (:). The specified drive is then "logged in" before the file operation
occurs. Thus, the following are valid file names with disk name prefixes:
AXY B:XYZ C:GAMMA
P:XYZ.COM B:X. A?M C:*. ASM

All alphabetic lower case lettersin fileand drive namesare translated to upper case when
they are processed by the CCP.

1.3 Switching Disks

The operator can switch the currently logged disk by typing the disk drive name (A
through P) followed by a colon (:) when the CCP is waiting for consoleinput. Thus, the
sequence of prompts and commands below can occur after the CP/M system is loaded

from disk A:

witch back to A

1.4 Built-in Commands

The file and device reference forms described can now be used to fully specify the
structure of the built-in commands. The user should assume thefollowing abbreviations
in the description below:

ufn unambiguous file reference

afn ambiguous file reference

Recall that the CCP always translates lower case characters to upper case characters
internally. Thus, lower case alphabetics are treated asif they are upper casein command
names and file references.

14.1 ERAafm

The ERA (erase) command removes files from the currently logged in disk (i.e., the
disk name currently prompted by CP/M preceding the“>>"). Thefiles that are erased are
those that satisfy the ambiguous file reference afn. Thefollowingexamplesillustrate the
use of ERA:

ERA X.Y The file named X.Y on the currently logged disk is
removed from the disk directory and the space is
returned.

ERA X.* All fileswith primary name X areremoved from the

current disk.

ERA *. ASM All files with secondary name ASM are removed
from the current disk.

ERA X?Y.C?M All fileson thecurrent disk that satisfy theambigu-
ous reference X?Y.C?M are deleted.

ERA ** Erase al files on the current disk (in this case the
CCP prompts the console with the message

ALL FILES (Y/N)?

that requires aY response before files are actually
removed).

ERA B:*.PRN All filesondriveB that satisfy theambiguousrefer-

the currently logged disk.

1.4.2 DIR afm

The DIR (directory)command causes the namesof dl files that satisfy the ambiguous
file name afn to be listed at the console device. As a specia case, the command

DIR

lists the files on the currently logged disk (the command "DIR" is equivalent to the
command "DIR *.*). Valid DIR commands are

DIR XY

DIR X?Z.C?M

DIR ?7.Y

Similar to other CCP commands, the afn can be preceded by a drive name. The

following DIR commands cause the selected drive to be addressed before the directory
search takes place.

DIR B:

DIR B:X.Y

DIR B:*. A?M

If no files on the selected diskette satisfy the directory request, the message” NO
FILE" is typed at the console.

1.4.3 REN ufnl=um2

The REN (rename)command allows the user tochange the namesof filesondisk. The
file satisfying ufn2 is changed to ufn1. The currently logged disk is assumed to contain
thefile to rename(ufn2). The user can also type aleft-directedarrow instead of theequal
sign if the console supports this graphic character. Examples of the REN command are

REN X.Y=Q.R The file Q.R is changed to X.Y.
REN XYZ.COM=XYZ.XXX The file XYZ.XXX ischanged to XY Z.COM.

The operator precedes either ufn1 or ufn2 (or both) by an optional drive address. If
ufnl is preceded by a drive name, then ufn2 is assumed to exist on the same drive.
Similarly, if ufn2 is preceded by adrive name, then ufnl isassumed to exist on that drive
aswell. The same drive must be specified in both casesif both ufn1 and ufn2 are preceded
by drive names. The REN commands below illustrate this format.

REN A:X.ASM=Y .ASM ThefileY.ASM ischangedtoX.ASMondrive
A.

REN B:ZAP.BAS=ZOT.BAS Thefile ZOT.BAS ischanged to ZAP.BAS on
drive B.

REN B:A.ASM=B:A.BAK ThefileA.BAK isrenamed toA.ASMondrive
B.

If ufn1 is already present, the REN command wil! respond with the error "FILE
EXISTS” and not perform the change. If ufn2 does not exist on thespecified diskette, the
message " NO FILE" is printed at the console.

4.4 SAVE nufm

The SAVE command places n pages "" 50-byte biocks) onto disk from the TPA and
names this file ufn in the CP/M distribution system, the TP A starts at 100H (hexadec-
imal} which is the second page of memory The SAVE command must specify 2 pages of
memory it the user » program occupies theareafrom 160H through 2FFH The machine
code file can be subsequently loaded and executed Examples are

SAVE 3 X.COM Copies 100H through 3FFH to X.COM.

SAVE 40 Q Copies 100H through 28FFH to Q (note that 28 is
the page count in 28FFH, and that 28H = 2716+8 =
40 decimal).

SAVE 4 X.Y Copies 100H through 4FFH to X.Y.

The SAVE command can also specify adisk drivein the ufn portion of the command, as
shown below.

SAVE 10 B:ZOT.COM Copies 10 pages (100H through 0AFFH) to thefile
ZOT.COM on drive B.

1.4.5 TYPE ufn

The TYPE command displays the contents of the ASCII source file ufn on the
currently logged disk at the console device. Valid TYPE commands are

TYPE XY
TYPE X.PLM
TYPE XXX

The TYPE command expands tabs (clt-I characters), assuming tab positions are set at
everv eighth column The ufn can also reference a drive name

TYPE B:X.PRN The file X.PRN from drive B is displayed.

14.6 USERn

The USER command allows maintenance of separate files in the same directory and
takes the form

USER n

where n is an integer value in the range ¢ to15 On cold start, the operator 1s automati-
cally “logged” into user area number ¢, which is compatible with standard CP/M 1
directories The operator may issue the USER command at any time to move to another
logical area within the same directory Drives that are logged-in while addressing one
user number are automatically active when the operator moves to another, a user
number 1s simply a prefix that accesses particular directory entries on the active disks

The active user number i1s maintained until changed by asubsequent USER command,
or until a cold start when user 0 1s again assumed

1.5 Line Editing and Output Control

The CCP allows certain line editing functions while typing command lines

ctl-C CP/M system reboot when typed at start of line.

cti-E Physical end of line: carriage is returned, but line is not sent until
the carriage return key is depressed.

cti-H Backspace one character position.

cti-J Terminate current input (line feed!.

cti-M Terminate current input (carriage return)

ctl-R Retype current command line: typesa"cleanline” following charac-
ter deletion with rubouts.

cti-U Delete the entire line typed at the console.

cti-X Same as ctl-U.

ctl-Z End input from the console (used in PIP and ED)

rub/del Delete and echo the last character typed at the console.

The control functions ctl-P and ctl-S affect console output.

cti-P Copy dl subsequent console output to the currently assigned Lig
device (see Section 1.6.1).Output issent to thelist device and the
console device until the next ctl-P is typed.

ctl-S Stop the console output temporarily. Program execution and out-
put continue when the next character is typed at the console{e.g:,
another ctl-S). This feature stops output on high speed consoles,
such as CRT’s, in order to view a segment of output before
continuing.

The ctl-key sequences are obtained by depressing the control and letter keys simul-
taneously. Further, CCP command linesaregenerally up to 255 charactersinlength; they
are not acted upon until the carriage return key is typed.

1.6 Transient Commands

Transient commands are loaded from the currently logged disk and executed in the
TPA. The transient commands for execution under the CCP are below. Additional
functions are easily defined by the user (see Section 1.6.3).

STAT List the number of bytes of storage remaining on the currently
logged disk, provide statistical information about particular files,
and display or alter device assignment.

ASM Load the CP/M assembler and assembl e the specified program from
disk.
LOAD Load thefilein Intel “HEX” machine code format and produce afile

in machine executable form that can be loaded into the TPA (this
loaded program becomes a new command under the CCP).

DDT Load the CP/M debugger into TPA and start execution.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9

PIP Load the Peripheral Interchange Program for subsequent disk file
and peripheral transfer operations.

ED Load and execute the CP/M text editor program.
SYSGEN Create a new CP/M system diskette.

SUBMIT Submit a file of commands for batch processing.
DUMP Dump the contents of afile in hex.

MOVCPM Regenerate the CP/M system for a particular memory size.

Transient commands are specified in the same manner as built-in commands, and addi-
tional commandsare easily defined by the user. For convenience, the transient command
can be preceded by adrive name that causes the transient to be loaded from the specified
drive into the TPA for execution. Thus, the command

B:STAT

causes CP/M to temporarily "log in" drive B for the source of the STAT transient, and
then return to the original logged disk for subsequent processing.
The basic transient commands are listed in detail below.

161 STAT

The STAT command provides general statistical information about file storage and
device assignment. It is initiated by typing one of the following forms:

STAT

STAT "command line"

Specia formsof the" command line" allow the current device assignment to be examined
and altered. The various command lines that can be specified are shown, with an
explanation of each form to the right.

STAT If the user typesan empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

d: R/W, SPACE: nnnK
or

d: R/O, SPACE: nnnK

for each active drive d:, where R/W indicates the
drive can be read or written, and R/O indicatesthe
driveisread only (adrive becomesR/O by explicitly
setting it to read only, as shown below, or by inad-
vertently changing disketteswithout performinga
warm start). Thespace remaining on thediskettein
drive d: is given in kilobytes by nnn.

10

STAT &

STAT afn

STATd: afn

STAT d:=R/O

If adrive name is given, then thedrive is selected
before the storage is computed. Thus, the com-
mand " STAT B:” could be issued while logged into
drive A, resulting in the message

BYTES REMAINING ON B: nnnK

Thecommand line can also specify aset of filestobe
scanned by STAT. The files that satisfy afn are
listed in alphabetical order, with storage require-
ments for each file under the heading

RECS BYTS EX D:FILENAME.TYP
rrrr bbbK ee d:filename.typ

where rrrr isthe number of 128-byte recordsallo-
cated to the file, bbb is the number of kilobytes
allocated to the file (bbb=rrrr*128/1024), eeisthe
number of 16K extensions (ee=bbb/16), d is the
drive name containing the file (A...P), filename is
the (up to) eight-character primary filename, and
typ is the (up to) three-character filetype. After
listing the individual files, the storage usage is
summarized.

The drive name can be given ahead of theafn. The
specified driveisfirst selected, and theform “STAT
afn" is executed.

This form sets the drive given by d to read only,
remaining in effect until the next warm or cold
start takes place. When a disk is read only, the

message
BDOS ERR ON d: READ ONLY

will appear if thereis an attempt to write to the
read-only disk d:. CP/M waits until a key is
depressed before performing an automatic warm
start (at which time the disk becomes R/W).

The STAT command allowscontrol over the physical tological device assignment (see
the IOBYTE function described in Chapters 5 and 6).There are four logical pe ipheral
devices that are, at any particular instant, each assigned one of several physical peripheral

devices. The four logical devices are

CON:

RDR:
PUN:
LST:

The system console device (used by CCP for communication with
the operator)

The paper tape reader device
The paper tape punch device
The output list device

The actual devices attached to any particular computer system aredriven by subrou-
tines in the BIOS portion of CP/M. Thus, the logical RDR: device, for example, could

11

actually be ahigh speed reader, teletypereader, or cassettetape. T o allow someflexibility
in device naming and assignment, several physical devices are defined below:

TTY: Teletype device {(slow speed console)

CRT: Cathode ray tube device (high speed console)

BAT: Batch processing (consoleiscurrent RDR:, output goes to current
LST: device)

UcCHt: User-defined console

PTR: Paper tape reader (high speed reader)

URI: User-defined reader #1

UR2: User-defined reader #2

PTP: Paper tape punch (high speed punch)

UP1: User-defined punch #1

uUP2: User-defined punch #2

LPT: Line printer

ULt User-defined list device #1

It isemphasized that the physical device names may or may not actually correspond to
devices that the namesimply. That is, the PTP: device may be implemented as a cassette
write operation if the user wishes. The exact correspondence and driving subroutineis
defined in the BIOS portion of CP/M. Inthestandard distribution version of CP/M, these
devices correspond to their names on the MDS 800 development system.

The command

STAT VAL:

produces a summary of the available status commands, resulting in the output

Temp R/O Disk d:$R/O

Set Indicator: filename.typ $R/0 $R/W $SYS $DIR
Disk Status: DSK: d:DSK

fobyte Assign:

which gives an instant summary of the possible STAT commands and showsthe permiss-
ible logical-to-physical device assignments:

CON: =TTY: CRT: BAT: UCH:
RDR: = TTY: PTR: UR1: UR2:
PUN: = TTY: PTP: UPI: UP2:
LST: = TTY: CRT: LPT: UL1:

The logical device to the left takes any of the four physical assignments shown to the
right. The current logical to physical mapping is displayed by typing the command

STAT DEV:

12

producing alist of each logical device to the left and the current corresponding physical
device to the right. For example, the list might appear as

CON: = CRT:
RDR: = URT:
PUN: = PTP:
LST: = TTY:

Thecurrent logical to physical device assignment ischanged by typingaSTAT command
of the form

STAT Id1 = pdl, {d2 =pd2, ..., Idn = pdn

where 1d1 through Idn are logical device names and pd1 through pdn are compatible
physical device names (i.e., Idi and pdi appear on the same line in the"VAL:" command
shown above). Valid STAT commands that change the current logical to physical device

assignments are

STAT CON:=CRT:
STAT PUN: = TTY:, LST:=LPT:, RDR:=TTY:

The command form

STAT d:filename.typ $S

where'd:" isan optional drive name and “filename.typ” isan unambiguous or ambiguous
file name, produces the output display format

Size Recs Bytes Ext Acc
48 48 6k 1 R/O A:ED.COM
55 55 12k 1 R/O (A:PIP.COM)
65536 128 16k 2 R/W A:XX.DAT

where the $S parameter causes the" Size" field to be displayed. (Without the $S, the Size
field is skipped, but the remaining fields aredisplayed.) The Sizefield liststhe virtual file
size in records, while the “Recs” field sums the number of virtual records in each extent.
For filesconstructed sequentially, the Size and Recs fields areidentical. The “Bytes” field
lists the actual number of bytes allocated to the corresponding file. The minimum
alocation unit is determined at configuration time; thus, the number of bytes corre-
sponds to the record count plus the remaining unused spacein thelast allocated block for
sequential files. Random accessfiles are given data areas only when written, sothe Bytes
field contains the only accurate allocation figure. In the case of random access, the Size
field gives the logical end-of-file record position and the Recs field counts the logical
recordsof each extent. (Eachof these extents, however, may contain unallocated “holes”
even though they are added into the record count.) The"Ext" field counts the number of
physical extents allocated to the file. The Ext count corresponds to the number of
directory entries given to thefile. Depending on allocation size, there can be up to 128K
bytes (8logical extents) directly addressed by a single directory entry. (In aspecial case,
there are actually 256K bytes that can be directly addressed by a physical extent.)
The Acc field givestheR/O or RIW fileindicator that ischanged using thecommands
shown. Similarly, the parentheses shown about the PIP.COM filename indicate that it

13

has the " system" indicator set, so that it will not be listed in DIR commands. The four
command forms

STAT d:filename.typ $R/O
STAT d:filename.typ $R/W
STAT d:filename.typ $SYS
STAT d:filename.typ $DIR

set or reset various permanent fileindicators. The R/O indicator places thefile (or set of
files) in aread-only statusuntil changed by asubsequent STAT command. TheR/O status
is recorded in thedirectory with thefileso that it remains R/O through intervening cold
start operations. The R/W indicator places the filein a permanent readiwrite status. The
SY Sindicator attaches the system indicator to thefile, while the DIR command removes
the system indicator. The “filename.typ” may be ambiguous or unambiguous, but files
whose attributes are changed are listed at the console when thechange occurs. The drive

name denoted by “d:” is optional.
When afileis marked R/O, subsequent attemptstoeraseor writeintothefileresultin

a terminal BDOS message
BDOS Err on d: File R/O

The BDOS waits for a console input before performing a subsequent warm start (a
"return" is sufficient). The command form

STAT d:DSK:

lists thedrivecharacteristics of thedisk named by "d:" that isin therangeA:, B, ..., P.. The
drive characteristics are listed in the format

d: Drive Characteristics
65536: 128 Byte Record Capacity
8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries
0: Checked Directory Entries
1024: Records/ Extent
128: Records/ Block
58: Sectors/ Track
2: Reserved Tracks
where “d ” 1s the selected drive, followed by the total record capacity (65536 is an
eight-megabyte drive), followed by the total capacity listed in ktlobytes The directory
size is listed next, followed by the'checked" entries The number of checked entries is
usually identical to the directory size for removable media, because this mechantsm is
used to detect changed media during CP/M operation without aninterveningwarmstart
For fixed media, the number isusually zero, because the media are not changed without at
least acold or warm start The number of records per extent determines the addressing
capacity of each directory entry (1024 times 128 bytes, or 128K in the previousexampl e)
The number of records per block shows the basic allocation size {in the example, 128

recordsiblock times 128 bytes per record, or 16K bytes per block) The listing 1s then
followed by the number of physical sectors per track and the number of reserved tracks

14

For logical drives that share the same physical disk, the number of reserved trackscan be
quite large because this mechanism s used toskip lower-numbered disk areasallocated to
other logical disks The command form

STAT DSK:

produces a drive characteristics table fur al currently active drives. The final STAT
command form is

STAT USR:

which produces alist of the user numbers that have fileson thecurrently addressed disk.
The display format is

Active User: 0
Active Files: 013

where the first line lists the currently addressed user number, as set by the last CCP
USER command, followed by alist of user numbersscanned from the current directory.
In this case, the active user number is 0 (default at cold start), with three user numbers
that have active files on the current disk. The operator can subsequently examine the
directories of the other user numbers by logging-in with USER 1 or USER 3 commands,
followed by a DIR command at the CCP level.

1.6.2 ASM ufm

The ASM command loads and executes the CP/M 8080 assembl er. The ufn specifiesa
source file containing assembly language statements where the filetype isassumed to be
ASM and is not specified. The following ASM commands are valid:

ASM X
ASM GAMMA

The two-passassembler isautomatically executed. Assembly errorsthat occur during the
second pass are printed at the console.
The assembler produces a file

X.PRN

where X is the primary name specified in the ASM command. The PRN file containsa
listing of the source program (with imbedded tab characters if present in the source
program), along With the machinecode generated for each statement and diagnostic error
messages, if any. The PRN fileislisted at theconsole usingthe TY PEcommand, or sent to
aperipheral device using PIP (seeSection 1.6.4}. The user should note that the PRN file
contains theoriginal source program, augmented by miscellaneousassembly information
in the leftmost 16 columns (program addresses and hexadecimal machine code, for
example). The PRN file servesasa backup for the original sourcefile. If thesourcefileis
accidentally removed or destroyed, the PRN file can be edited (see Chapter 2) by remov-
ing theleftmost 16 charactersof each line. Thisisdone by issuing asingleeditor “macro”
command. The resuiting file is identical to the original source file and can be renamed
(REN) from PRN to ASM for subsequent editing and assembly. The file

X.HEX

15

is also produced, which contains 8080 machine languagein Intel "HEX" format suitable
for subsequent loading and execution {see Section 1.6.3). For completedetailsof CP/M’s
assembly language program, see Chapter 3.

The source file for assembly is taken from an alternatedisk by prefixing the assembiy
language file name by a disk drive name. The command

ASM B:ALPHA

loads the assembler from the currently logged drive and processes the source program
ALPHA.ASM on drive B. The HEX and PRN files are al'so placed on drive B in thiscase.

1.6.3 LOAD ufm

The LOAD command reads the file ufn, which is assumed to contain "HEX" format
machinecode, and produces a memory imagefile that can subsequently beexecuted. The
file name ufn is assumed to be of the form

KHEX

and only the filename X need be specified in thecommand. The LOAD command createsa
file named

X.COM

that marks it as containing machine executable code. The file is actually loaded into
memory and executed when the user types the filename X immediately after the prompt-
ing character “>" printed by the CCP.

Generally the CCP reads the filename X following the prompting character and looks
for a built-in function name. If no function nameisfound, the CCP searches the system
disk directory for a file by the name

X.COM

if found, the machine code isloaded into the TPA, and the program executes. Thus, the
user need only LOAD a hex file once; it can be subsequently executed any number of
times by typing the primary name. In thisway the user can “invent” new commandsin the
CCP. {Initialized disks contain the transient commandsasCOM files, which aredel eted at
the user’s option.) The operation takes place on an alternate drive if the file name is
prefixed by a drive name. Thus

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and operates
upon drive B after execution begins.

The user should note that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example) that
begin at T00H of the TPA. Theaddressesin the hex records must bein ascending order;
gapsin unfilled memory regionsare filled with zeroes by the L OA D command asthe hex
records are read. Thus, LOAD must be used only for creating CP/M standard “COM”
files that operate in the TPA. Programs that occupy regions of memory other than the
TPA are loaded under DDT.

i1.64 PIP

PIP is the CP/M Peripheral interchange Program that implements the basic media
conversion operations necessary to load, print, punch, copy, and combinedisk files. The
PIP program is initiated by typing one of the following forms:

(1) PIP

{2} PIP ‘command line’

In bath cases PIP isloaded into the TPA and executed. In form (1}, PIP reads command
iines directly from the console, prompted withthe“*” character, until an empty command
line is typed (i.e., a single carriage return is issued by the operator). Each successive
command line causes some media conversion to take place according to the rules shown
below. Form (2) of the PIP command is equivalent to the first, except that the single
command line given with the PIPcommand isautomatically executed, and PIPterminates
immediately with no further prompting of the console for input command lines. The
form of each command line is

destination = source#1 source#2, ... , source#n

where" destination™ is the file or peripheral device to receivethe data and “source#1, ...,
source#in” isaseries of oneor morefilesor devicesthatarecopied fromleft toright tothe

destination.
When multiple filesaregiven in the command line(i.e., n>1) theindividual filesare

assumed tocontain ASClIcharacters, with an assumed CP/M end-of-filecharacter (ctl-Z)
at the end of each fiie (see the O parameter to override this assumption). Lower case
ASCII alphabetics are internally translated to upper case to be consistent with CP/Mfile
and device name conventions. Finally, the total command line length cannot exceed 255
characters (cti-E can be used to force a physical carriage return for lines that exceed the
console width).

The destination and source elements are unambiguous references to CP/M source
fileswith or without apreceding disk drive name. That is, any file can be referenced witha
preceding drive name (A: through P:} that defines the particular drive where thefile may
be obtained or stored. When the drive name is not included, the currently logged disk is
assumed. The destination file can also appear asone or more of the sourcefiles, in which
case the source fiie is not altered until the entire concatenation is complete. If it already
exists, the destination file is removed if the command line is properly formed (itis not
removed it an error condition arises). Thefollowing command lines (withexplanationsto
the right) are valid as input to PIP:

X=Y Copy tofileX fromfileY, where X
and Y are unambiguousfile names;
Y remains unchanged.

X=Y.,Z Concatenate filesY and Z and copy
to file X, with Y and Z unchanged.
X ASM=Y.ASM,Z. ASM FIN.ASM Create the file X.ASM from the

concatenation of theY, Z, and FIN
files with type ASM.

NEW.ZOT=B:OLD.ZAP Move a copy of OLD.ZAP from
drive B to the currently logged
disk; name the file NEW.ZOT.

17

B:A.U=BBVACWDX Concatenate file B.V from drive B
with C.W from drive A and D.X.
from thelogged disk; create the file
AU ondriveB.

For convenience, PIP allows abbreviated commands for transferring files between
disk drives. The abbreviated forms are

PIPd:=afn

PIP d,:=d,:afn
PIP ufn =d;
PIP dy:ufn = d,:

The first form copies al files from the currently logged disk that satisfy the afn to the
samefilesondrived(d= A ... P). Thesecond formisequivalent to thefirst, where the:
sourcefor thecopy isdrived, {(d; = A ... P). Thethird formisequivaient to thecommand
“PIP d;:ufn=d,:ufn” that copies thefilegiven by ufn fromdrived, tothefileufnondrived, .

Thefourth formisequivalenttothethird, wherethesourcedisk isexplicitly given by d,:.
The source and destination disks must be different in all of these cases. If an afn is

specified, PIPlists each ufn that satisfies theafn asit is being copied. If afile exists by the
same name as the destination file, it is removed on successful completion of the copy and
replaced by the copied file.

The following PIP commands give examples of valid disk-to-disk copy operations:

B:=*.COM Copy adll files that have the secondary name
"COM" to drive B from the current drive.
A=B:ZAP.* Copy dl files that have the primary name
"ZAP" to drive A from drive B.
ZAP.ASM=B: Equivalent to ZAP.ASM=B:ZAP.ASM
B:ZOT.COM=A: Equivalent to B:ZOT.COM=A:ZOT.COM
B:=GAMMA.BAS Same as B:GAMMA . BAS=GAMMA.BAS
B:=A:GAMMA BAS Same as B:GAMMA.BAS=A:GAMMA BAS

PIP allows reference to physical and logical devices that are attached to the CP/M
system. The device namesarethe same asgiven under the STAT command, along with a
number of specially named devices. The logical devicesgiven in the STAT command are

CON: (console), RDR: (reader), PUN: (punch),and LST: (list)
while the physical devices are

TTY: iconsole, reader, punch, or list)

CRT: {console, or list), UC1: (console)
PTR: (reader), UR1: (reader), UR2: (reader)
PTP: (punch), UP1: (punch), UP2: (punch)
LPT: (List), UL1: (ist)

(The"BAT:" physical device is not included, since thisassignment is used only toindicate
that the RDR: and LST: devices are used for console input/output.)

18

The RDR, LST, PUN, and CON devices are all defined within the BIOS portion o
CP/M, and are easily altered for any particular I/O system. (Thecurrent physical device
mapping is defined by IOBYTE; see Chapter 6 for a discussion of this function). The
destination device must be capable of receiving data (i.e., data cannot be sent to the
punch}, and the source devices must be capable of generating data {i.e., the LST: device
cannot be read).

The additional device names that can be used in PIP commands are

NUL: Send 40 "nulls" (ASCII ¢’s} to the device (this can be issued at the
end of punched output).

EOF: Send a CP/M end-of-file (ASCII ctl-Z) to the destination device
(sent automatically at the end of all ASCII data transfers through
PIP).

INP: Special PIP input source that can be patched into the PIP program:

PIPgets theinput datacharacter-by-characterby CALLing location
103H, with datareturned inlocation 109H (parity bit must be zero).

OUT: Special PIP output destination that can be patched into the PIP
program: PIP CALLs location 106 H with datain register C for each
character to transmit. The user should note that locations 109H
through 1FFH of the PIP memory image are not used and can be
replaced by special purpose drivers using DDT (see Chapter 4).

PRN: Sameas L ST: except that tabs are expanded at every eighthcharac-
ter position, lines are numbered, and page gjects areinserted every
60 lines with an initial eject (same as using PIP options [t8np]).

File and device names can be interspersed in the PIP commands. In each case, the
specific device is read until end-of-file (ctl-Z for ASCII files, and end-of-data for non-
ASCII disk files). Data from each device or file are concatenated from left to right until
the last data source has been read. Thedestination device or fileiswritten using thedata
from the source files, and an end-of-file character {(ctl-Z) is appended to the result for
ASCII files. If the destination is a disk file, a temporary file is created ($$$ secondary
name) that is changed to the actual file name only on successful completion of the copy.
Files with the extension " COM" are always assumed to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on thekeyboard
(areturn suffices). PIP will respond with the message'" ABORTED" to indicate that the
operation has not been completed. If any operationisaborted, or if anerror occursduring
processing, PIP removes any pending commands that were set up while using the
SUBMIT command.

PIP performsaspecial functionif thedestination isadisk filewith type "HEX” (an I ntel
hex-formatted machine codefile), and the sourceisan external peripheral device, such as
a paper tape reader. In this case, the PIP program checks to ensure that the source file
contains a properly formed hex file, with legal hexadecimal values and checksum records.
When an invalid input record isfound, PIP reports an error message at the console and
waitsfor correctiveaction. Itisusually sufficient toopen the reader and rerun asection of
the tape (pull the tape back about 20 inches). When the tape is ready for the reread, a
single carriage return is typed at the console, and PIP will attempt another read. If the
tape position cannot be properly read, the user continues the read (by typing a return
following the error message), and entersthe record manually with the ED program after
thedisk file isconstructed. For convenience, PIPallowstheend-of-fileto beentered from
the console if the source file is an RDR: device. In this case, the PIP program reads the
device and monitors the keyboard. If ctl-Z is typed at the keyboard the read operationis
terminated normally.

19

Valid PIP commands are

PIP LST: = X.PRN Copy X.PRN tothe LST deviceand
terminate the PIP program.

PIP Start PIP for a sequence of com-
mands (PIP prompts with “*”}.

*CON:=X.ASM,Y.ASM,Z ASM Concatenate three ASM files and
copy to the CON device.

*X.HEX=CON:Y.HEX,PTR: Create a HEX file by reading the

CON (until a cti-Z is typed), fol-
lowed by data from Y.HEX and
PTR until actl-Z is encountered.

(carriage return) Single carriage return stops PIP.

PIP PUN:=NUL: X.ASM EOF: NUL: Send 40 nulls to the punch device;
copy the X.ASM file to the punch,
followed by an end-of-file (cti-Z)
and 40 more null characters.

The user can also specify oneor more PIPparameters, enclosed in left and right square
brackets, separated by zero or more blanks. Each parameter affects the copy operation,
and the enclosed list of parameters must immediately follow the affected file or device.
Generally, each parameter can befollowed by an optional decimalinteger value(the S and
Q parameters are exceptions). Valid PIP parameters are

B Block mode transfer: data are buffered by PIP until an ASCII x-off
character (ctl-S) is received from the source device. This allows
transfer of datatoadisk filefromacontinuous reading device, such
as a cassette reader. Upon receipt of the x-off, PIP clears the disk
buffers and returns for more input data. The amount of data that
can be buffered dependson the memory sizeof the host system (PIP
will issue an error message if the buffers overflow).

Dn Delete characters that extend past column nin the transfer of data
to the destination from the character source. This parameter is
generally used to truncate long lines that are sent to a (narrow)
printer or console device.

E Echo al transfer operations to the console as they are being
performed.
F Filter form feeds from the file. All imbedded form feeds are

removed. The P parameter can be used simultaneously to insert
new form feeds.

Gn Get Fle from user number n (n in the range 0-15}.

H HEX data transfer: all data are checked for proper Intel hex file
format. Nonessential characters between hex records are removed
during the copy operation. Theconsolewill be prompted for correc-
tive action in case errors occur.

| Ignore “:00” records in the transfer of Intel hex format file (thel
parameter automatically sets the H parameter).

L Translate upper case alphabetics to lower case

20

N Add line numbersto each line transferred to the destination, start-
ing at one and incrementing by 1 Leading zeroes are suppressed,
and the number is followed by a colon If N2 1s specified, leading
zeroes areincluded and atab isinserted following the number. The
tab is expanded if T is set

0 Object file (non-ASCIl) transfer: the normal CP/M end-of-file is
ignored.
Pn Include page ejectsat every n lines (with an initial pageeject).lf n=1

or is excluded altogether, page ejects occur every 60 lines. if the F
parameter is used, form feed suppression takes place before the
new page ejects are inserted.

Qsiz Quit copying from the source device or file when the string s
(terminated by ctl-Z) is encountered.

R Read system files.

Ssiz Start copying from the source device when the string s (terminated

by ctl-Z) is encountered. The S and {J parameters can be used to
"abstract™ a particular section of afile (such as asubroutine). The
start and quit strings are always mcluded in the copy operation.

If the user selectsform (2) of the PIP cornmand, the CCP translates
stringsfollowing the Sand Q) parameters to upper case. Form (1) of
the PIP invocation does not perform the aufomatic upper case
translation.

(1) PIP
{2) PIP 'command line’

Tn Expand tabs (ctl-I characters) to every nth column during the
transfer of characters to the destination from the source

U Translate lower case alphabetics to upper case during the copy
operation.

v Verify that data have been copied correctly by rereading after the
write operation (thedestination must be a disk file).

Werite over R/O files without console interrogation

Z Zero the parity bit on input for each ASCII character.

Valid PIP commands that specify parameters in the fiie transfer are

PIP X.ASM=B:[v] Copy X.ASM from drive B to the current
drive and verify that the data were properly
copied.

PIP LPT:=X.ASM[nt8u] Copy X.ASM to the LPT: device; number each

line, expand tabs to every eighth column, and
translate lower case alphabetics to upper case.

PIP PUN:=X.HEX]il,Y.ZOT[h] First copy X.HEX to the PUN: device and
ignore the trailing “:00” record in X.HEX;
continue the transfer of data by reading
Y.ZOT, which contains HEX records, includ-
ing any “:00” records it contains.

21

PIP X.LIB = Y.ASM [sSUBRI:fz qJMP L31z]
Copy from thefile Y.ASM into thefile X .LIB.
Start the copy when the string “SUBRI:” has
been found, and quit copying after the string
"JMPL3" is encountered.

PIP PRN:=X.ASM[p50] Send X.ASM to the LST: device with line
numbers, tabs expanded to every eighth
column, and page ejects at everv 50th line.
The assumed parameter list for a PRN fileis
nt8p60; p50 overrides the default vaiue.

Under normal operation, PIP will not overwrite a file that is set tc a permanent R/O
status. If an attempt is made to overwrite an R/O file, the prompt

DESTINATION FILE IS R/O, DELETE (Y/N)?

i is

isissued. If the operator responds with the character “v” the file isoverwritten. Other-
wise, the response

** NOT DELETED **

is issued, the file transfer is skipped, and PIP continues with the next operation in
sequence. To avoid the prompt and response in the case of R/O file overwrite, the
command line can include the W parameter

PIP A:=B:*.COM[W]

which copies all nonsystem files tothe A drivefrom the B driveand overwritesany R/O
filesin the process. If the operation involves several concatenated files, the W parameter
need only be included with the last file in the list, asin the example

PIP A.DAT = B.DAT,F:NEW.DAT,G:OLD.DAT[W]

Fileswith the system attribute can be included in PIP transfers if the R parameter is
included; otherwise, system files are not recognized. The command line

PIP ED.COM = B:ED.COMIR]

for example, reads the ED.COM filefrom the B drive, even if it has been marked as an
R/O and system file. The system file attributes are copied, if present

Downward compatibility with previous versionsof CP/Misonly maintained if thefile
does not exceed one megabyte, nofileattributesareset, and thefileiscreated by user ¢. if
compatibility isrequired with nonstandard (e.g.," double density") versions of 1.4, it may
be necessary to select 1.4 compatibility mode when constructing the internal disk
parameter block. (See Chapter 6 and refer to Section 4.10, which describes BIOS
differences.)

Note: Tocopy filesintoanother user area, PIP.COM must be located in that user area
Follow the procedure shown below to make ~ copy of PIP.COM in another user area.

USER 0 Log-in user 0.

DDT PIP.COM (note PIP size s) Load PIP to memory.
GO Return to CCP.
USER 3 Log-in user 3.

SAVE SPIP.COM

22

where sistheintegral number of memory " pages” (256-byte segments) occupied by PIP.
The number s can be determined when PIP.COM isloaded under DDT, by referring to
the value under the NEXT display. If, for example, the next available addressis 1100,
then PIP.COM requires 1C hexadecimal pages (or 1 times16 + 12 = 28 pages), and the
value of sis28in the subsequent save. Once PIP1s copied in this manner, it can becopied
to another disk belonging to the same user number through normal PIP transfers.

1.6.5 ED ufn

The ED program isthe CP/M system context editor that allowscreation and alteration
of ASCII files in the CP/M environment. Complete details of operation are given in
Chapter 2. ED allows the operator to create and operate upon source files that are
organized as a sequence of ASCII characters, separated by end-of-line characters (a
carriage-return line-feed sequence). There is no practical restriction on line length (no
single line can exceed the size of the working memory) that isdefined by the number of
characters typed between carriage returns. The ED program hasa number of commands
for character string searching, replacement, and insertion that are useful in creation and
correction of programs or text files under CPIM. Although the CP/M has a limited
memory work space area (approximately 5000 charactersin a20K CP/M system), thefile
sizethat can beedited is not limited, since data are easily " paged" through thiswork area.

If it does not exist, ED createsthe specified source file and opens thefiie for access. If
the source file does exist (see the A command), the programmer "appends" data for
editing. The appended datacan then bedisplayed, altered, and writtenfrom thework area
back to thedisk (seethe W command).Particular pointsin the program can be automati-
cally paged and located by context (seethe N command),allowing easy access to particular
portions of alarge file.

Given that the operator has typed

ED X.ASM

the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run. Upon completion of ED, the X.ASM file
(original file)isrenamed to X.BAK, and the edited work fileisrenamed to X.ASM. Thus,
the X.BAK filecontainstheoriginal (unedited) file,and theX.ASM filecontains the newly

edited file. The operator can always return to the previousversion of afile by removing
the most recent version and renaming the previousversion. If.thecurrent X. ASM file has

been improperly edited, the sequence of commands below will reclaim the backup file.

DIR X.* Check to see that BAK file is available.
ERA X.ASM Erase most recent version.
REN X.ASM=X.BAK Rename the BAK file to ASM.

Theoperator can abort theedit at any point (reboot, power failure, ctl-C, or Q command)
without destroying the original file. In this case, the BAK file is not created and the

original file is always intact.
The ED program allows the user toedit the source on onedisk and create the backup
file on another disk. This form of the ED command is

ED ufn d:

23

where ufnisthenameof thefileto edit on the currently logged disk and d is the name of
an alternate drive. The ED program reads and processes the source file and writes the
new file to drive d using the name ufn. After processing, the original file becomes the
backup file. If the operator is addressing disk A, the following command is valid:

ED X.ASM B:

This edits the file X.ASM on drive A, creating the new file X.$$% on drive B. After a
successful edit, A:X.ASM isrenamed to A:X.BAK, and B:X.$$$% isrenamed to B:X.ASM.
For convenience the currently logged disk becomesdriveBat theend of theedit. The user
should note that if afile named B:X.ASM exists before the editing begins, the message

FILE EXISTS

is printed at the console asa precaution against accidentally destroying asourcefile. The
operator first erases the existing file and then restarts the edit operation.

Similar to other transient commands, editing can take placeon adrivedifferent from
thecurrently logged disk by preceding the source file name by adrive name. Examples of

valid edit requests are

ED A:X.ASM Edit the file X.ASM on drive A, with new file and
backup on drive A.
ED B:X.ASM A: Edit thefile X.ASM ondrive Btothetemporary file

X.$$% ondrive A. After editing, change X.ASM on
drive B to X.BAK and change X.$%$% on drive A to
X.ASM.

166 SYSGEN

The SYSGEN transient command allows generation of an initialized diskettecontain-
ing the CP/M operating system. The SYSGEN program prompts the console for com-
mands by interacting as shown.

SYSGEN cr Initiate the SY SGEN program.
SYSGEN VERSION m.m SY SGEN sign-on message.
SOURCE DRIVE NAME Respond with the drive name (one
(OR RETURN TO SKIP) of the letters A, B, C, or D) of the

disk containing a CP/M system,
usuadly A. If a copy of CP/M
already exists in memory duetoa
MOV CPM command, type a car-
riage return only. Typing a drive
name d will cause the response:

SOURCE ON d THEN TYPE RETURN Place a diskette containing the
CP/M operating system on drived

{disoneof A, B, C, or D). Answer
by typing a carriage return when
ready.

24

FUNCTION COMPLETE System is copied to memory. SYS-
GEN will then prompt with:

DESTINATION DRIVE NAME If a diskette is being initialized,

(OR RETURN TO REBOOT) place the new disk into adrive and
answer with the drive name. Oth-
erwise, type a cr and the system
will reboot from drive A. Typing
drive name d will cause SYSGEN
to prompt with:

DESTINATION ON d Place new diskette into drive d;

THEN TYPE RETURN type return when ready.

FUNCTION COMPLETE New diskette isinitialized in drive
d.

The"DESTINATION" prompt will be repeated until asingle carriage return istyped at
the console, so that more than one disk can be initialized.

Upon completion of a successful system generation, the new diskette contains the
operating system and only the built-in commands are available. A factory-fresh, IBM-
compatible diskette appears to CP/M asadiskette with an empty directory; therefore, the
operator must copy the appropriate COM files from an existing CP/M diskette to the
newly constructed diskette using the PIP transient.

The user can copy al files from an existing diskette by typing the PIP command

PIP B: = A: *.*[v]

which copies all filesfrom disk drive A to disk drive B and verifies that each file has been
copied correctly. The name of each file is displayed at the console as the copy operation

proceeds.

The user should note that a SY SGEN does not destroy the filesthat already existona
diskette; it only constructs a new operating system. If a diskette is being used only on
drives B through P and will never be the source of abootstrap operation ondrive A, the
SYSGEN need not take place.

1.6.7 SUBM T ufn parm#1 ... parm#n

The SUBMIT command allows CPiM commands to bebatched for automatic process-
ing. The ufn given in the SUBMIT command must be thefile name of afilethat existson
the currently logged disk, with an assumed file type of "SUB." The SUB file contains
CP/M prototype commands with possible parameter substitution. Theactual parameters
parm#1 ... parm#n aresubstituted into the prototype commands, and, if no errorsoccur,
the file of substituted commands are processed sequentially by CP/M.

The prototype command file is created using the ED program, with interspersed™$"
parameters of the form

$1%$28%3 ... $n

corresponding to the number of actual parameters that will be included when thefileis
submitted for execution. When the SUBMIT transient isexecuted, theactual parameters
parm#1 ... parm#n are paired with the formal parameters $1 ... $n in the prototype
commands. If the numbers of formal and actual parameters do not correspond, the

25

submit function is aborted with an error message at the console. The SUBMIT function
creates a file of substituted commands with the name

$$$.5UB

on the logged disk. When the system reboots (at the termination of the SUBMIT), this
command file is read by the CCP as a source of input rather than the console. If the
SUBMIT function is performed on any disk other than drive A, the commands are not
processed until the disk is inserted into drive A and the system reboots. The user can
abort command processing at any time by typing arubout when thecommand isread and
echoed. In this case the $$$.SUB file is removed and the subsequent commands come
fromthe console. Command processing isalso aborted if the CCP detects an errorinany
of the commands. Programs that execute under CP/M can abort processing of command
files when error conditions occur by erasing any existing $$3.SUB file.

Tointroducedollar signsintoaSUBMIT file, the user may type a”$$” which reduces
to a single “$” within the command file. An up-arrow symbol “A” may precede an
alphabetic character x, which produces a single ctl-x character within the file.

The last command in a SUB file can initiate another SUB file, allowing chained batch
commands.

Suppose the file ASMBL.SUB exists on disk and contains the prototype commands

ASM $1

DIR $1.*

ERA ".BAK

PIP $2:=$1.PRN
ERA $1.PRN

and the command
SUBMIT ASMBL X PRN

isissued by the operator. The SUBMIT program readsthe ASMBL.SUB file, substituting
"X" for all occurrences of $1and “PRN” for al occurrences of $2. This resultsin a
$$$.SUB file containing the commands

ASM X

DIR X.*

ERA *.BAK

PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT function can accessa SUB file on an alternate drive by preceding thefile
name by adrive name. Submitted filesare only acted upon when they appear on drive A.
Thusit ispossibletocreateasubmitted fileondrive Bthat isexecuted at alater timewhen
inserted in drive A.

An additional utility program called XSUB extends the power of the SUBMIT facility
to include line input to programs as well as the console command processor. The XSUB
command is included as the first line of the submit file. When it is executed, XSUB
self-relocates directly below the CCP. All subsequent submit command lines are pro-
cessed by XSUB so that programs that read buffered console input (BDOSfunction 10)

26

receive their input directly from the submit file. For example, the file SAVER.SUB can
contain the submit lines

XSUB

DDT

i1$1.COM

R

€O)
SAVE 1 $2.COM

with a subsequent SUBMIT command

that substitutes X for $1 and Y for $2 in the command stream. The XSUB program |oads,

followed by DDT, which is sent to the command lines PIP.COM, R, and GO, thus

returning to the CCP. The final command SAVE 1 Y.COM is processed by the CCP.
The XSUB program remains in memory and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent submit command
streams do not require the XSUB, unless an intervening coid start hasoccurred. The user
should note that XSUB must be loaded after the optional CP/M DESPOOL utility, if both
are to run simultaneously.

168 DUNP ufn

The DUMP program types the contents of the disk file (ufn) at the console in
hexadecimal form. The file contents are listed sixteen bytes at a time, with the absolute
byte address listed to the left of each line in hexadecimal. Long typecuts can beaborted by
pushing the rubout key during printout. (Thesource listing of the DUMP program is
given in Chapter 5 as an example of a program written for the CP/M environment.)

1.6.9 MOVCPM

The MOV CPM program allows the user to reconfigure the CP/M system for any
particular memory size. Two optional parameterscan be used to indicate the desired size
of the new system and the disposition of the new system at program termination. If the
first parameter isomitted or an “*” isgiven, the MOV CPM program wili reconfigurethe
system to its maximum size, based upon the kilobytes of contiguous RAM in the host
system (starting at 0000H). If the second parameter is omitted, the system is executed,
but not permanently recorded; if “*” is given, the system is left in memory, ready for a
SYSGEN operation. The MOV CPM program relocates a memory image of CP/M and
places this image in memory in preparation for a system generation operation. The
command forms are

MOVCPM Relocate and execute CP/M for management of the

current memory configuration (memory is exam-
ined for contiguous RAM, starting at 100H). On

27

MOVCPM n

MOVCPM * *

MOVCPM n”~

The command

MOVCPM **

completion of the relocation, the new system is
executed but not permanently recorded on the
diskette. The system that isconstructed containsa
BI1OS for the Intel MDS 800.

Create a relocated CP/M system for management
of an nkilobytesystem (n must bein therangeof 20
to 64}, and execute the system as described.

Construct a relocated memory image for the cur-
rent memory configuration, but leave the memory
image in memory in preparation for a SYSGEN
operation.

Construct a relocated memory image for an n kilo-
byte memory system, and leave the memory image
in preparation for a SY SGEN operation.

for example, constructs a new version of the CP/M system and leavesitin memory, ready
for a SYSGEN operation. The message

READY FOR 'SYSGEN' OR
'SAVE 34 CPMxx.COM’

is printed at the console upon completion, where xx is the current memory size in
kilobytes. The operator can then type

SYSGEN

SOURCE DRIVE NAME
(OR RETURN TO SKIP)

Start the system generation.

Respond with a carriage return to skip the
CP/M read operation since the system is
already in memory as aresult of the previous
MOV CPM operation.

DESTINATION DRIVE NAME Respond with B to write new system to the

(OR RETURN TO REBOOT)

DESTINATION ON B,
THEN TYPE RETURN

diskette in drive B. SYSGEN will prompt
with:

Ready the fresh diskette on drive B and typea
return when ready.

If the user responds with" A" rather than “B” above, thesystem will bewritten to drive A
rather than B. SYSGEN will continue to type the prompt

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

until the operator responds with a single carriage return, which stops the SYSGEN
program with a system reboot.

28

The user can then go through the reboot processwith theold or new diskette. | nstead
of performing the SYSGEN operation, the user can type

SAVE 34 CPMxx.COM

at the completion of the MOV CPM function, where “xx” is the value indicated in the
SYSGEN message. The CP/M memory image on the currently logged disk isin aform
that can be" patched." Thisis necessary when operating in a honstandard environment
where the BIOS must be altered for a particular peripheral device configuration, as
described in Chapter 6.

Vaid MOV CPM commands are

MOVCPM 48 Construct a 48K version of CP/M and start
execution.
MOVCPM 48 * Construct a 48K version of CP/M in preparation

for permanent recording; response is

READY FOR 'SYSGEN’ OR
'SAVE 34 CPM48.COM’

MOVCPM = * Construct a maximum memory version of CP/M
and start execution.

The newly created system is serialized with the number attached to the original
diskette and is subject to the conditions of the Digital Research Software Licensing
Agreement.

1.7 BDOS Error Messages

There are three error situations that the Basic Disk Operating System intercepts
during file processing. When one of these conditions is detected, the BDOS prints the

message:
BDOS ERR ON d: error

where d is the drive name and "error" is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

The "BAD SECTOR" message indicates that the disk controller electronics has
detected an error condition in reading or writing the diskette Thiscondition isgenerally
caused by a malfunctioning disk controller or an extremely worn diskette If the user
tinds that the CP/M reportsthis error more than onceamonth, thestateof thecontroller
electronics and the condition of the media should bechecked T heuser can alsoencounter
this condition in reading files generated by acontroller produced by adifferent manufac-
turer Even though controllersare claimed to be IBM-compatible, one often finds small
differences in recordtng formats The MDS-800 controller, for example, requires two
bytes of one's following the data CRC byte, which is not required in the IBM format Asa
result, diskettes generated by the Intel MDS can be read by almost al other IBM-
compatible systems, while disk files generated on other manufacturers' equipment will
produce the "BAD SECTOR" message when read by the MDS Recovery from this
condition 1s accomplished by typing a ctl-C to reboot (the safest course), or a return,

29

which ignores the bad sector in the file operation. The user should, however, note that
typing areturn may destroy diskette integrity if the operation isadirectory write. The
user should be sure to have adequate backups in this case.

The"SELECT" error occurs when there is an attempt to address adrive beyond the
range supported by the BIOS. In this case, the value of din the error messagegivesthe
selected drive. The system reboots following any input from the console.

The”READ ONLY” message occurswhen thereisan attempt towriteto adisketteor
file that has been designated as read only in a STAT command or has been set to
read only by the BDOS. The operator should reboot CP/M by using the warm start
procedure {(ctl-C) or by performing a cold start whenever the diskettes are changed. If a
changed diskette is to be read but not written, BDOS allows the diskette to be changed
without the warm or cold start, but internally marksthedriveasread only. Thestatusof
thedriveissubsequently changed to read/write if awarm or cold start occurs. Onissuing
this message, CP/M waits for input from the console. An automatic warm start takes
place following any input.

1.8 Operation of CP/M on the MDS

This section gives operating procedures for using CP/M on the Intel M DS microcom-
puter development system. Basic knowledge of the M D Shardwareand softwaresystems
is assumed.

CP/Misinitiated in essentially the same manner as Intel's ISIS operatingsystem. The
disk drivesare labeled 0 through 3 onthe MDS, corresponding toCP/MdrivesA through
D, respectively. The CPiM system diskette isinserted into drive 0, and the BOOT and
RESET switches are depressed in sequence. Theinterrupt 2 light should go on at this
point. The space bar isthen depressed on the system console, and the light should go out
(if it does not, the user should check connections and baud rates). The BOOT switch is
turned off, and the CP/M sign-on message should appear at the selected console device,
followed by the"A>" system prompt. The user can then issue the various resident and
transient commands.

The CP/M system can be restarted (warm start) at any time by pushing the INT 0
switch on the front panel. Thebuilt-inIntel ROM monitor can beinitiated by pushing the
INT 7 switch (which generates an RST 7), except when operating under DDT, in which
case the DDT program gets control instead.

Diskettes can be removed from the drives at any time, and the system can be shut
down during operation without affecting data integrity. The user must not remove a
diskette and replace it with another without rebooting the system (cold or warm start)
unless the inserted diskette is"read only."

As a result of hardware hang-ups or malfunctions, CP/M may type the message

BDOS ERR ON d: BAD SECTOR

wheredisthedrivethat hasapermanent error Thiserror can occur whendrivedoorsare
opened and closed randomly, followed by disk operations, or can be caused by adiskette,
drive, or controller failure. The user can optionally elect to ignore the error by typing a
singlereturn at the console. Theerror may produceabad datarecord, requiring reinitiali-
zation of up to 128 bytes of data. The operator can reboot the CP/M system and try the
operation again.

Termination of aCP/M session requiresnospecial action, except that it isnecessary to
remove the diskettes before turning the power off to avoid random transients that often
make their way to the drive electronics.

30

Factory-fresh, IBM-compatible diskettes should be used rather than diskettes that
have previously been used with any ISIS version. In particular, the ISIS "FORMAT"
operation produces nonstandard sector numbering throughout the diskette. This non-
standard numbering seriously degrades the performance of CP/M and will operate
noticeably slower than the distribution version. If it becomes necessary to reformat a
diskette (which should not be the case for standard diskettes), a program can be written
under CP/M that causes the MDS 800 controller to reformat with sequential sector
numbering (1-26) on each track.

IBM-compatible 8-inch diskettes in general do not need to be formatted. However,
514-inch diskettes will need to be formatted.

31

ED

21 Introduction to ED

ED is the context editor for CP/M, and is used to create and alter CP/M sourcefiles.
ED is initiated in CP/M by typing

ED filename
or

ED filename. typ

In general, ED reads segmentsof thesourcefilegiven by filenameor filename.typintothe
central memory, where the file is manipulated by the operator and subsequently
written back to disk after alterations. If the sourcefiledoes not exist before editing, it is
created by ED and initialized toempty. Theoverall operationof ED isshowninFigure2.1.

21.1 EDOperation

ED operates upon the source file, denoted in Figure 2.1 by x.y, and passes all text
through a memory buffer where the text can be viewed or altered (thenumber of lines
that can be maintained in the memory buffervaries with the line length, but has a total
capacity of about 5000 charactersin a 20K CP/M system). Text material that has been
edited is written into a temporary work file under command of the operator. Upon
termination of the edit, the memory buffer iswritten tothetemporary file, followed by
any remaining (unread) text in the source file. The name of the original file ischanged
fromx.y tox.BAK sothat themost recent previously edited sourcefilecan bereclaimed if
necessary (see the CP/M commands ERASE and RENAME). The temporary fileis then
changed from x.$%$% to x.y, which becomes the resulting edited file.

The memory buffer islogically between the source file and working fileasshownin

Figure 2.2.

33

Figure 2.1 Overall ED Operation

(5 Source x
’\ Libraries
\
: d Irit
/ Source —*\pj;{):}n (‘;\j’)e Temporary
File - (R) File
filename.txt | ‘ filename $%%

3\,
Memory Buffer

Aft =
£ er
Edit §F

Backup

filename.bak

D = memory buffer
O = disk file

Figure 2.2 Memory Buffer Organization

Source File Memory Buffer
1 First Line 1 First Line
2 Appended 2 Buffered
3 Lines Text
SPe] i mMe
! ? 2
I I~]
| Unprocessed I Next i Free
[Source I Append | Memory
i Lines f | Space
L | e
SP = Source Pointer
MP = Memory Pointer

Next
Write

TP = Temporary Pointer

34

B e

\

Temporary File

First Line

Processed

Free File
Space

2.1.2 Text Transfer Functions

Given that nisaninteger valuein the range 0 through 65535, several singleletter ED
commands transfer lines of text from the source file through the memory buffer to the
temporary (and eventually final) file. Single letter commands are shown in upper case,
but can be typed in either upper or lower case.

nA Append the next n unprocessed source linesfrom the source file at
SPtotheend of thememory bufferat MP. Increment SPand MP by
n. If upper case translation is set (see the U command) and the A
command istyped in upper case, all input lineswill automatically be
translated to upper case.

nw Write the first n lines of the memory buffer to the temporary file
free space. Shift the remaining lines n+1 through M Pto the top of
the memory buffer. Increment TP by n.

E End the edit. Copy all buffered text to temporary file and copy all
unprocessed source lines to temporary file. Rename files as des-
cribed previously.

H Move to head of new file by performing automatic E command.
Temporary file becomes the new source file, the memory buffer is
emptied, and a new temporary file iscreated (equivalent toissuing
an E command, followed by areinvocation of ED using x.y asthefile
to edit).

0 Return to original file. The memory buffer isemptied, the tempor-
ary file isdeleted, and the SPisreturned to position 1 of the source
file. The effects of the previous editing commands are thus
nullified.

Q Quit edit with no file alterations, return to CP/M.

Thereareanumber of special casestoconsider. If theinteger nisomittedinany ED com-
mand where an integer is allowed, then 1 is assumed. Thus, the commands A and W
append onelineand writeoneline, respectively. Inaddition, if apoundsign (#) isgiveninthe
place of n, thentheinteger 65535isassumed (thelargest valuefor nthat isallowed).Since
most reasonably sized source files can be contained entirely in the memory buffer,
the command #A isoften issued at the beginning of the edit to read theentire source file
to memory. Similarly, the command #W writes the entire buffer to the temporary file.
Two special forms of the A and W commands are provided as a convenience. The
command 0A fillsthe current memory buffer at least half full, whileOW writeslines until
the buffer isat least half empty. An error isissued if the memory buffer sizeisexceeded.
The operator can then enter any command (such as W) that does not increase memory
requirements. The remainder of any partial line read during the overflow will be brought
into memory on the next successful append.

2.1.3 Memory Buffer Organization

The memory buffer can beconsidered asequenceof sourcelinesbroughtin withthe A
command from asource file. The memory buffer hasan associated (imaginary)character
pointer CP that moves throughout the memory buffer under command of the operator.
The memory buffer appearslogically as shown in Figure 2.3 where the dashes represent
characters of the source line of indefinite length, terminated by carriage-return (<cr>)
and line-feed (<1f>>) characters, and CP represents theimaginary character pointer. The

35

user should note that the CPisalwayslocated ahead of thefirst character of thefirstline,
behind the last character of thelast line, or between two characters. Thecurrent line CL
is the source line that contains the CP.

Figure 2.3 Logical Organization of Memory Buffer

Memory Buffer

f-l it ————————— <er><Af>
line

————————— <er><f>
CUMENt mm e o o o e e

<|IT>

line CL /\ <er>«|f
last cp
”ne <cr><lf>

2.14 Line Numbersand ED Start-up

ED produces absolute line number prefixes that can be used to reference a line, or
range of lines. The absolute line number is displayed at the beginning of each line when
ED isin"insert mode" (seethel command in Section 2.1.5), whereearh line number takes

the form

nnnnn:

where nnnnn is an absol ute line number in the range of 1 to 65535. If the memory buffer
is empty or if the current lineis at the end of the memory buffer, nnnnn appears as 5

blanks.
The user may reference an absolute line number by preceding any command by a

number followed by acolon, in the same format as the line number display. In thiscase,
the ED program moves the current line reference to the absolute line number, if theline
existsin the current memory buffer. Theline denoted by the absolute line number must
be in the memory buffer (see the A command). Thus, the command

345 T

isinterpreted as' move to absolute 345, and type the line." Absolute line numbers are
produced only during the editing process and are not recorded withthefile. In particul ar,
the line numbers will change following a deleted or expanded section of text.

The user may also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute number by a colon. Thus, the

command

14007

36

is interpreted as "type from the current line number through the line whose absolute
number is 400.” Combining the two line reference forms, the command

345::400T

for example, isinterpreted as" move to absolute line 345, then typethrough absoluteline
400.” Absolute line references of thissort can precedeany of the standard ED commands.
Line numbering is controlled by the V" (Verify line numbers) command. Line num-
bering can be disabled by typing the “-V” command.
If the file to edit does not exist, ED types the message

NEW FILE

The user must enter an “i” command so that text can beinserted into the memory buffer
by typing input linesterminated by carriage-returns. A singlectl-Z character returns ED
to command mode.

2.1.5 Memory Buffer Operation

When ED begins, the memory buffer isempty. The operator may either append lines
(A command) from the source file or enter the lines directly from the console with the
insert command

ED then accepts any number of input lines, where each line terminateswith a<cr> (the
<Jf>is supplied automatically), until acontrol-z (denoted by tz} is typed by the operator.
The CP is positioned after the last character entered. The sequence

<lcr>

NOW IS THE<cr>

TIME FOR<cr>

ALL GOOD MEN<cr>

1z
leaves the memory buffer as

NOW IS THE<cr><If>
TIME FOR<cr><if>
ALL GOOD MEN<cr><if>

Generally, ED accepts command letters in upper or lower case. If the command is
upper case, all input valuesassociated with the command are translated to upper case. In
particular, if the "I command is typed, all input lines are automatically translated
internally to upper case. Thelower case form of the “i” command is most often used to
allow both upper and lower case letters to be entered.

Various commands can beissued that manipulate the CP or display source text in the
vicinity of the CP. The commands shown below with a preceding n indicate that an

37

optional unsigned value can be specified. When preceded by I, the command can be
unsigned, or have an optional preceding plusor minussign. As before, the poundsign (#)
is replaced by 65535. If an integer n isoptional, but not supplied, then n = 1is assumed.
Finally, if a plus sign is optional, but none is specified, then + is assumed.

38

+nD

+nK

Move CP to beginning of memory buffer if + and to bottom if -.

Move CP by =n characters (moving ahead if +), counting the
<er><If> as two distinct characters.

Delete n characters ahead of CP if plus and behind CP if minus.

Kill (i.e., remove) ==n lines of source text using CP as the current
reference. If CPisnot at the beginning of thecurrentlinewhenK is
issued, the characters before CP remain if + is specified, while the
characters after CP remain if - is given in the command.

If n =0, move CP to the beginning of the current line (if it is not
already there). If n # 0, first move the CP to the beginning of the
current line and then moveit to the beginning of theline that isn
linesdown (if +) or up (if -). The CP will stopat the top or bottom of
the memory buffer if too large a value of n is specified.

If n=0, type thecontentsof thecurrent line upto CP. If n=1, type
the contents of the current line from CP to the end of the line. If

n>>1, type the current line along with n - Llines that follow, if +is
specified. Similarly, if n>>land -isgiven, typethe previous nlinesup
to the CP. Any key can be depressed to abort long type-outs.

Equivalent to £nLT, which moves up or down and types asingle
line.

2.1.6 Command Srings

Any number of commandscan be typed contiguously (upto thecapacity of theconsole
buffer) and are executed only after the <cr>> is typed. Thus, the operator may use the
CPI/M console line editing operation to manipulate the input command line:

ctl-C
cti-E

cti-H
cti-J

cti-M
cti-R

cti-U
ctl-X
ct-Z
rub/del

CP/M system reboot when typed at start of line.

Physical end of line: carriage isreturned, but lineis
no: sent until the carriage return key isdepressed.

Backspace one character position.
Terminate current input (line feed).
Terminate current input (carriagereturn;j.

Retype current command line: types a' clean line”
following character deletion with rubouts.

Delete the entire line typed at the console.
Same as ctl-U.
End input from the console (used in PIP and ED).

Delete and echo the last character typed at the
console.

Suppose the memory buffer contains the characters shown in the previous section,
with the CP following the last character of the buffer. The command strings shown
below produce the results shown to the right. Use lower case command letters to avoid
automatic translation of strings to upper case.

Command String Effect Resulting Memory Buffer

1. B2T<¢er> Move to beginning NOW IS THE<cr><If>
of buffer and type TIME FOR<cr><If>
2 lines: ALL GOOD MEN<cr><if>
'NOW IS THE
TIME FOR'

2. 5C0T<cr> Move CP 5 NOW I S THE <cr><if>
characters and type
the beginning cP
of the line
'NOW I'

3. 2L-T<cr> Move two lines NOW IS THE<cr><If>
down and type TIME FOR<cr><If>
previous line ALL GOOD MEN<cr><If>
'TIME FOR' m

4. -L#K<cr> Move up one line, lel W IS THE<cr><If>
delete 65535 lines @
that foliow

5. I<er> Insert two lines NOW IS THE<cr><If>

TIME TO<¢cr> of text with auto- TIME TO<¢cr><If>
INSERT<cr> matic translation INSERT<cr><If>
1z to upper case

6. -2L#T<cr> Move up two lines NOW IS THE<cr><If>
and type 65535 TIME TO<cr><If>
lines ahead of CP/ \INSERT<cr><If>

'NOW IS THE'

7. <cr> Move down one line NOW IS THE<cr><If>
and type oneline TIME TO<cr><if>
'INSERT' INSERT<cr><If>

217 Text Search and Alteration

ED also hasacommand that locates strings within the memory buffer. Thecommand
takes the form

nFs <cr>
or
nFs 1z

where srepresents the string to match, followed by either a<{cr>>or ctl-Z, denoted by !z.
ED starts at the current position of CP and attempts to match the string. The match is
attempted n times, and, if successful, the CPis moved directly after the string. If the n
matches are not successful, the CPis not moved from itsinitial position. Search strings
can include cti-L, which is replaced by the pair of symbols <<cr><if>.

39

The following commands iilustrate the use of the F command:

Command String Effect Resulting Memory Buffer

1. B#T<cr> Move to begin- NOW IS THE<cr> <if>
ning and type (p} TIME FOR<lcr><if>
entire buffer ALL GOOD MEN<cr><lf>

2. FS T<cr> Find the end o NOW IS T A HE<cr><If>
the string 'S T’

3. FItzOTT Find the next 'I' NOW IS THE<cr><if>

and type to the TI A ME FOR<cr><Ii>
CP; then type the

remainder of the A | GOOD MEN<cr><If>
current line:

'ME FOR'

An abbreviated form of the insert command is also allowed, which isoften used in
conjunction with the F command to make simple textual changes. The form is
| stz

or
I s<cr>

where sis the string to insert. If the insertion string is terminated by a !z, the string is

inserted directly following the CP, and the CP positioned directly after the string. The

action is the same if the command is followed by a <cr>> except that a <cr><if>> is

automatically inserted into the text following the string. Consider the following com-

mand sequences as examples of the F and | commands:

Command String Effect Resulting Memory Buffer
1 BITHIS IS tz<cr> Insert 'THIS IS’ THIS IS ANOW THE <cr><if>
at the beginning
of the text

TIME FOR<cr><If>
ALL GOOD MEN<cr><if>

FTIME!z-4DIPLACE!z<cr> Find 'TIME' and THIS IS NOW THE<cr><If>

2. delete it; then PLACEA FOR<cr><If>
insert 'PLACE' CP

ALL GOOD MEN<cr><If>

3. 3F01z-3D5D1 Find third THIS IS NOW THE <cr><<If>
CHANGES1z<cr> occurrence of ‘O’ PLACE FOR<cr><If>
{i.e., the second ‘O’ ALL CHANGES A <cr><if>
in GOOD), delete
previous 3
characters and the
subsequent 5 charac-
ters; then insert

'CHANGES'

-8CISOURCE<cr>

Move back 8
characters and
insert the line

THIS IS NOW THE<cr><if>
PLACE FOR<cr><if>
ALL SOURCE<cr><f>

‘SOURCE<cr> <>’ CHAN GES<cr> <>

ED also provides a single command that combines the F and I commands to perform
simple string substitutions. The command takes the form
NS sqtzso <cr>
or
NS sqtzsy 1z

40

and has exactly the same effect as applying the following command string a total of n
times:
F s1!z-kDlsoy <cr>
or
F sqtz-kDlsp 1z

wherek isthelength of thestring. That is, ED searches the memory buffer starting at the
current position of CP and successively substitutes the second string for thefirst string
until the end of buffer or until the substitution has been performed n times.

As a convenience, a command similar to Fis provided by ED, which automatically
appends and writes lines as the search proceeds. The form is

nNs <cr>
or
nNs tz ,

which searchestheentiresourcefilefor thenth occurrenceof thestrings (theuser should
recall that F failsif the string cannot be found in thecurrent buffer). Theoperationof the
N command is precisely the same as F except in the case that the string
cannot be found within the current memory buffer. In this case, the entire memory
content iswritten (i.e., an automatic #W isissued). Input lines are then read until the
buffer isat least half full or the entire source fileis exhausted. The search continuesin
this manner until the string has been found n times or until the source file has been
completely transferred to the temporary file.
A final line editing function, called the juxtaposition command, takes the form

ndsqizsptz sy <cr>
or
ndsqtzsotzsy tz

with the following action applied n times to the memory buffer: search from the current
CP for the next occurrenceof thestrings;. If found, insert thestring s,, and moveCPto
follow s5. Then delete all characters following CP up to (but not including) the string s,
leaving CPdirectly after s, If s3 cannot befound, then nodeletion ismade. If thecurrent
line is

NOW IS THE TIME<cr><If>
the command
JW t1zWHAT 1zt <cr>
resultsin
NOW WHAT <cr If>
(The user should recall that !l {(cti-L} represents the pair <cr><f> in search and
substitute strings.)

The number of characters allowed by ED in the F, S, N, and Jcommandsislimited to
100 symbols.

41

2.1.8 Source Libraries

ED also allows theinclusion of source librariesduring the editing processwith theR
command. The form of this command is

R filename ¢z
or)
R filename <cr>

where filename is the primary filename of a source file on the disk with an assumed
filetype of 'LIB'. ED reads the specified file, and places the characters into the memory
buffer after CP, in a manner similar to the | command. Thus, if the command

RMACRO<cr>

isissued by the operator, ED reads from the file MACRO.LIB until the end-of-file and
automatically inserts the characters into the memory buffer.

ED also includesa™ block move" facility implemented through the X (Xfer) command.
The form

nX

transfers the next n lines from the current line to a temporary file called

X$$$$55.L1B

which is active only during the editing process. In general, the user can reposition the
current line reference to any portion of thesourcefileand transfer linesto the temporary
file. The transferred linesaccumulateoneafter another in thisfileand can beretrieved by

simply typing
R

which is the trivial case of the library read command. In this case, the entire transferred
set of linesisread into the memory buffer. The user should notethat the X command does
not remove the transferred lines from the memory buffer, although aK command can be
used directly after the X, and the R command does not empty the transferred LIB file.
That is, given that a set of lines has been transferred with the X command, they can be
reread any number of times back into the source file. The command

0X

is provided, however, to empty the transferred line file.

The user should note that upon normal completion of the ED program through Q or
E, thetemporary LIB fileisremoved. If ED isaborted through ctl-C, the LIB filewill exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

2.1.9 Repetitive Command Execution

The macro command M allows the ED user to group ED commands together for
repeated e aluation. The M command takes the form

nM CS <cr>
or
nMCS 1z

42

where CSrepresents astring of ED commands, not including another M command. ED
executes the command string n times if n>>1. If n=C or 1, the command string is exe-
cuted repetitively until an error condition is encountered (e.g., the end of the memory
buffer is reached with an F command).

As an example, the following macro ckanges all occurrences of GAMMA to DELTA
within the current buffer, and types each line that is changed

MFGAMMA!z-5DIDELTA1z0TT<cr>
or equivalently

MSGAMMA1IZDELTA1z0TT<lcr>

2.2 ED Error Conditions

On error conditions, ED prints the message “BREAK X AT C” where X is one of the
error indicators shown below:

? Unrecognized command.

> Memory buffer full (useoneof the commands D, K, N, S, or Wto
remove characters); F, N, or S strings too long.

Cannot apply command the number of times specified (e.g., in F
command).

0] Cannot open LIB filein R command.

If thereisadisk error, CP/M displays the following message:

BDOS ERR on d: BAD SECTOR
The operator can choose to ignore theerror by pressing the return key at the console (in
this case, the memory buffer data should be examined to see if they were incorrectly
read), or the user can reset the system by ctl-C and reclaim the backupfileif itsexists. The
filecan be reclaimed by first typing the contents ot the BAK tile toensurethat it contains
the proper information

TYPE x.BAK
where x is the file being edited. Then remove the primary file

ERA x.y
and rename the BAK file

REN x.y=x.BAK
The file can then be reedited, starting with the previous version.

ED also takes file attributes into account. If the operator attempts to edit aread/only

file, the message

“* FILE IS READ/ONLY **

43

appears at the console. The file can be loaded and examined, but cannot be altered.

Normally the operator simply ends the edit session and uses STAT to change the file

attribute to R/W. If the edited file has the " system™ attribute set, the message
'SYSTEM' FILE NOT ACCESSIBLE

is displayed and the edit session is aborted. Again, the STAT program can be used to
change the system attribute, if desired.

2.3 Control Charactersand Commands

The following tabulation summarizes the control charactersand commands available

in ED:
Control Character Function
ctl-C System reboot
ctli-E Physical <cr><f> (not actually entered in
command)
cti-H Backspace
cti-J Logical tab (cols 1, 9, 16,...)
ctl-L Logical <cr><If> in search and substitute
strings
ctl-R Repeat line
ctl-U Line delete
ctl-X Line delete
ctl-Z String terminator
rub/del Character delete
Command Function
nA Append lines
+B Begin or bottom of buffer
+nC Move character positions
+nD Delete characters
E End edit and close files (normal end)
nF Find string
H End edit, close and reopen files
I Insert characters, use i if both upper and
lower case characters are to be entered
nd Place strings in juxtaposition
+nK Kill lines
+nlL Move down/up lines
nM Macro definition
nN Find next occurrence with autoscan

44

nwW
nZ

Return to original file
Move and print pages
Quit with no file changes
Read library file
Substitute strings

Type lines

Translate lower to upper case if U, no trans-
lation if -U

Verify line numbers, or show remaining free
character space

A special case of the V command, OV, prints
the memory buffer statistics in the form

free/total

where free is the number of free bytes in the
memory buffer (in decimal) and total is the
size of the memory buffer

Write lines
Wait (sleep) for approximately n seconds

Move and type (£nLT).

Because of common typographical errors, ED requires several potentially disastrous
commands to be typed as single letters, rather than in composite commands. The

commands

E(end), H(head), Oforiginal), Q(quit)

must be typed as single letter commands.

Thecommandsl, J, M, N, R, and Sshould betyped asi, j, m, n, r,and sif both upper and
lower case charactersare used in the operation, otherwise all charactersareconvertedto
upper case. When a command is entered in upper case, ED automatically converts the
associated string to upper case, and vice-versa.

45

CP/M Assembler

3.1 Introduction

The CP/M assembler reads assembly language source files from the diskette and
produces 8080 machine language in Intel hex format. The CP/M assembler isinitiated by

typing
ASM filename

or

ASM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the name

filename.ASM

which contains an 8080 assembly language source file. Thefirst and second formsshown
abovediffer only in that the second form allows parametersto be passed to the assembl er
to control source file access and hex and print file destinations.

In either case, the CP/M assembler loads and prints the message

CP/M ASSEMBLER VER n.n

where n.n isthecurrent version number. In the case of thefirst command, the assembier
reads the source file with assumed file type ASM and creates two output files

filename.HEX
and
filename.PRN

The HEX file contains the machine code corresponding to the original program in Intel
hex format, and the PRN file contains an annotated listing showing generated machine

47

code, error flags, and sourcelines. If errors occur during translation, they will belistedin

the PRN file as well as at the console.
The form ASM filename parms can be used to redirect input and output filesfrom

their defaults. In this case, the parms portion of the command isathree-letter groupthat
specifiesthe origin of the sourcefile, thedestination of the hex file, and the destination of
the print file. The form is

filename.p1p2p3

where p1, p2, and p3 are single letters
P1: AB, ..., P designates the disk name that contains the source file
p2: A,B, ..., Pdesignates the disk name that will receive the hex file

Z skips the generation of the hex file

p3: A,B, ..., Pdesignates the disk name that will receive the print file
X places the listing at the console
Z skips generation of the print file

Thus, the command

ASM X.AAA
indicates that the source file (X.ASM) isto betaken from disk A and that the hex (X.HEX)
and print (X.PRN) files are also to be created on disk A. This form of the command is
implied if the assembler isrun fromdisk A. That is, given that the operator iscurrently
addressing disk A, the above command is equivalent to

ASM X
The command

ASM X.ABX

indicates that the source fileisto be taken from disk A, the hex fileis to be placed on disk
B, and the listing file is to be sent to the console. The command

ASM X.BZZ
takes the source file from disk B and skips the generation o the hex and print files (this
command is useful for fast execution of the assembler to check program syntax).
The source program format is compatible with the Intel 8080 assembler (macrosare
not implemented in ASM; see the optional MAC macro assembler). There are certain

extensionsin the CP/M assembler that makeit somewhat easier to use. Theseextensions
are described below.

3.2 Program Format

An assembly language program acceptable as input to the assembler consists of a
sequence o statements of the form

line# label operation operand ;comment

48

where any or al of the fields may be present in a particular instance. Each assembly
language statement is terminated with a carriage return and line feed (theline feed is
inserted automatically by the ED program),or with the character !, which istreated asan
end-of-line by the assembler (thus, multiple assembly language statements can be writ-
ten on the same physical line if separated by exclamation mark symbols).

The line# is an optional decimal integer value representing the source program line
number, and ASM ignores this field if present.

The label field takes the form

identifier
or

identifier:

and is optional, except where noted in particular statement types. The identifier is a
sequence of alphanumeric characters where the first character is alphabetic. Identifiers
can be freely used by the programmer to label elements such as program steps and
assembler directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar symbol ($), which can be used
to improve readability of the name. Further, all lower case alphabetics are treated as if
they were upper case. The following are all valid instances of labels

X Xy long$name
X: yxl: longer$named$data:
X1Y2 X1x2 x234$5678$9012$3456:

The operation field contains either an assembler directive or pseudo-operation, or an
8080 machine operation code. The pseudo-operations and machine operation codes are
described below.

The operand field of the statement, in general, contains an expression formed out of
constants and labels, along with arithmetic and logical operations on these elements.
Again, the complete details of properly formed expressions are given below.

Thecomment field containsarbitrary characters following the ; symbol until the next
real or logical end-of-line. These charactersare read, listed, and otherwiseignored by the
assembler. The CP/M assembler alsotreatsstatementsthat begin with an * in column one
as comment statements, which are listed and ignored in the assembly process.

The assembly language program is formulated as a sequence of statements of the
above form, terminated by an optional END statement. All statements following the
END areignored by the assembler.

3.3 Forming the Operand

T odescribe theoperation codes and pseudo-operationscompletely, it is necessary first
to present the form of the operand field, since it is used in nearly all statements.
Expressions in the operand field consist of simple operands (labels, constants, and
reserved words), combined in properly formed subexpressions by arithmetic and logical
operators. The expression computation is carried out by the assembler as the assembly
proceeds. Each expression must produce a16-bit valueduring the assembly. Further, the
number of significant digitsin the result must not exceed theintended use. That is, if an
expression isto be used in abyte moveimmediate instruction, the most significant 8 bits
of the expression must be zero. The restriction on the expression significance is given
with the individual instructions.

49

3.3.1 Labels

As discussed above, a iabel is an identifier that occurs on a particular statement. In
general, thelabel isgiven avalue determined by the type of statement that it precedes. If
the label occurson a statement that generates machine code or reserves memory space
{e.g., a MOV instruction or a DS pseudo-operation), the label is given the value of the
program address that it labels. If the label precedes an EQU or SET, thelabel isgiven the
value that results from evaluating the operand field. Except for the SET statement, an
identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the assembler.
TXisvalue can then be combined with other operands and operators toform theoperand
field for a particular instrustion.

3.3.2 Numeric Constants

A numeric constant isal6-bit valueinoneof several bases. The base, called the radix
of the constant, is denoted by a trailing radix indicator. The radix indicators are
binary constant (base 2)
octal constant (base8)
octal constant (base8)

decimal constant (base 10)

I U o Q0 w

hexadecimal constant (base 16)

() is an alternate radix indicator for octal numbers since the letter O is easily confused
with the digit 0. Any numeric constant that does not terminate with aradix indicator is
assumed to be a decimal constant.

A constant is thus composed as a sequence of digits, followed by an optional radix
indicator, where the digits are in the appropriate range for the radix. That is, binary
constants must be composed of O and I digits, octal constants can contain digitsin the
range 0-7, while decimal constantscontain decimal digits. Hexadecimal constantscontain
decimal digits as well as hexadecimal digits A (10D), B(11D), C(12D), D (13D), E (14D),
and F(15D). The user should notethat theleading digit of a hexadecimal constant must be
adecimal digit to avoid confusing a hexadecimal constant with an identifier (aleading O
will always suffice). A constant composed in this manner must evaluate to a binary
number that can be contained within a16-bit counter, otherwise it is truncated on the
right by the assembler. Similar to identifiers, imbedded $ signs are allowed within
constants to improve their readability. Finally, the radix indicator is translated to upper
caseif alower caseletter isencountered. Thefollowing areal valid instances of numeric
constants

1234 1234D 11008 1111$0000%1111$0000B
1234H OFFEH 33770 33%77%22Q
33770 0fe3h 1234d Offffh

3.3.3 Reserved Words

Thereare several reserved character sequences that have predefined meaningsinthe

50

operand field of astatement. The namesaf 8080 registersaregiven below. When they are
encountered, they produce the values shown to the right.

A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

(Again, lower case names have the same valuesas their upper caseequival ents.)Machine
instructions can also be used in the operand field and evaluateto their internal codes. In
the case of instructions that require operands, where the specific operand becomesapart
o the binary bit pattern of theinstruction (e.g., MOV A,B), thevalued theinstruction
(inthiscase MOV) is the hit pattern of the instruction with zeroesin the optional fields
(e.g., MOV produces 40H).

When the symbol $ occursin the operand field (not imbedded within identifiers and
numeric constants), its value becomestheaddressd the nextinstruction togenerate, not
including the instruction contained within the current logical line.

3.3.4 String Constants

String constants represent sequences of ASCII characters and are represented by
enclosing the characters within apostrophe symbols (). All strings must be fully con-
tained within thecurrent physical line (thusallowing ! symbolswithin strings) and must
not exceed 64 charactersinlength. Theapostrophe character itself can beincluded within
astring by representing it asadoubl e apostrophe (thetwo keystrokes™),whichbecomesa
single apostrophe when read by the assembler. In most cases, the string length is
restricted to either one or two characters (the DB pseudo-operation is an exception), in
which case the string becomes an 8- or 16-bit value, respectively. Two character strings
become a 16-bit constant, with the second character as the low order byte, and thefirst
character as the high order byte.

The value of acharacter isitscorresponding ASCII code. Thereis no case translation
within strings, and thus both upper and lower case characters can be represented. The
user should note, however, that only graphic (printing) ASCII characters are allowed
within strings.

Valid strings are which represent
‘A’ 'AB' ab’ ‘¢’ A AB ab c
" lalll PETE FRET al’ ' +
‘Walla Walla Wash.' Walla Walla Wash.
'‘She said ""Hello" to me.' She said "Hello" to me
'l said "Hello" to her.' | said ""Hello™ to her

51

3.3.5 Arithmdic and Logical Operators

The operands described above can becombined in normal algebraic notation using any
combination of properly formed operands, operators, and parenthesized expressions.
The operators recognized in the operand field are

a+b unsigned arithmetic sum of aand b
a-b unsigned arithmetic difference between a and b
+b unary plus (producesb)
-b unary minus (identical to 0 - b)
a*b unsigned magnitude multiplication of aand b
alb unsigned magnitude division of a by b
aMOD b remainder after a/ b
NOT b logical inverse of b (all Gs become Is, |'s become 0s), where b is

considered a 16-bit value

a AND b bit-by-bit logical and of aand b

aORb bit-by-bit logical or of aand b

a XOR b bit-by-bit logical exclusive or of aand b

aSHL b the value that results from shifting a to the left by an amount b,
with zero fill

aSHR b the value that results from shifting a to the right by an amount b,
with zero fill.

In each case, aand b represent simple operands (labels, numeric constants, reserved
words, and one or two character strings) or fully enclosed parenthesized subexpressions
such as

10+20 10h+37Q LI/3 (L2+4) SHR 3
(‘a'and 5fh) + ‘0" ('B'+B) OR (PSW+M)
(1+(2+c)) shr (A-(B+1))

Note that all computations are performed at assembly timeas16-bit unsigned operations.
Thus, -1 is computed as 0-1, which results in the value offffh (i.e., all1s). The resulting
expression must fit theoperation codein whichitisused. For example, if theexpression is
used in an ADI (addimmediate) instruction, the high order 8 bitsof the expression must
be zero. Asaresult, the operation ADI -1 produces an error message (-1 becomes 0ffffh,
which cannot be represented asan 8-bit value), while ADI (-1) AND OFFH is accepted by
the assembler since the AND operation zeroes the high order bits of the expression.

3.3.6 Precedenced Operators

As a convenience to the programmer, ASM assumes that operators have a relative
precedence of application that allows the programmer to write expressions without
nested levels of parentheses. Theresulting expression hasassumed parenthesesthat are
defined by the relative precedence. Theorder of application of operatorsin unparenthe-
sized expressions islisted below. Operatorslisted first have highest precedence(theyare
applied first in an unparenthesized expression), while operators listed last have lowest

52

precedence. Operators listed on the same line have equal precedence, and are applied
from left to right as they are encountered in an expression

*/ MOD SHL SHR
-+
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler as the
fully parenthesized expressions shown to the right

a*b+c (a*b)+c
a+b*c a+(b*c)
aMODb*c¢cSHLd ((aMOD b) *c) SHL d

aOR b ANDNOTc+dSHLe aOR (bAND (NOT (c + (d SHL e))))

Balanced parenthesized subexpressions can always be used to override the assumed
parentheses; thus, the last expression above could be rewritten to force application of
operators in adifferent order as

(aOR b) AND (NOT c) +d SHL e
resulting in the assumed parentheses
(a2 OR b) AND ((NOT c) + (d SHL e))

An unparenthesized expression is well-formed only if the expression that results from
inserting the assumed parentheses is well-formed.

3.4 Assembler Directives

Assembler directives are used to set labels to specific values during the assembly,
perform conditional assembly, define storage areas, and specify starting addressesin the
program. Each assembler directive is denoted by a pseudo-operation that appearsin the
operation field of the line. The acceptable pseudo-operations are

ORG set the program or data origin

END end program, optional start address
EQU numeric "' equate"

SET numeric "' set"

IF begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

53

DW define data words

DS define data storage area

The individual directives are detailed below.

3.4.1 The ORG Directive
The ORG statement takes the form

label ORG expression

where "label" is an optional program identifier and expression is a 16-bit expression,
consisting of operands that are defined beforethe ORG statement. Theassembl er begins
machine code generation at the location specified in the expression. There can be any
number of ORG statements within a particular program, and there are no checks to
ensure that the programmer is not defining overlapping memory areas. T he user should
note that most programswritten for the CP/M system begin with an ORG statement of

the form
ORG 100H

which causes machine code generation to begin at the base of the CP/M transient
program area. If alabel is specified in the ORG statement, the label isgiven the value of
the expression (thislabel can then be used in the operand field of other statementsto
represent this expression).

3.4.2 The END Directive

The END statementisoptional in an assembly language program, but if it is present it
must be the last statement (all subsequent statements areignored in the assembly).The
two forms of the END directive are

label END

label END expression

where the label isagain optional. If thefirst formis used, theassembly process stops, and
the default starting address of the program istaken as0000. Otherwise, theexpression is
evaluated, and becomes the program starting address (thisstarting addressisincluded in
the last record of the Intel formatted machine code hex file, which results from the
assembly). Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H (beginning of the transient program
area).

54

3.4.32 The EQU Directive

The EQU (equate) statementisused toset up synonymsfor particular numeric val ues.
The form is

label EQU expression

where the label must be present and must not label any other statement. The assembler
evaluates the expression, and assigns this value to the identifier given in the label field.
The identifier is usually a name that describes the value in a more human-oriented
manner. Further, this name is used throughout the program to" parameterize™ certain
functions. Suppose data received from a teletype appear on a particular input port and
data are sent to the teletype through the next output port in sequence. The series of
equate statements could be used to detine these ports for a particular hardware
environment

TTYBASE EQU 10H ;BASE PORT NUMBER FOR TTY

TTYIN EQU TTYBASE ;TTY DATA IN

TTYOUT EQU TTYBASE+1 ;TTY DATA OUT
At a later point in the program, the statements that access the tel etype could appear as

IN TTYIN ;READ TTY DATA TO REG-A

ouT TTYOUT ;WRITE DATA TO TTY FROM REG-A
making the program more readable than if theabsolute /O portshad been used. Further,
if the hardware environment is redefined to start the teletype communications ports at
7FH instead of 10H, the first statement need only be changed to

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements

3.4.4 The SET Directive
The SET statement is similar to the EQU, taking the form
label SET expression

except that the label can occur on other SET statements within the program The
expression 1s evaluated and becomes the current value associated with the label Thus,
the EQU statement defines alabel with asingle value, while the SET statement definesa
value that is valid from the current SET statement to the point where the label occurson
the next SET statement The use of the SET issimilar to the EQU statement, but 1s used
most often in controlling conditional assembly

55

3.4.5 ThelF and ENDIF Directives

ThelFand ENDIF statementsdefinearange of assembly language statementsthat are
to be included or excluded during the assembly process. The form is

IF expression
statement#1

statement#2

statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF (all operands in the expression must be defined ahead of the IF statement). If the
expression evaluates to a nonzero value, then statement#l through statement#n are
assembled; if the expression evaluates to zero, the statements are listed but not
assembled. Conditional assembly isoften used to write a single' generic'" program that
includes a number of possiblerun-timeenvironments,with only afew specific portions of
the program selected for any particular assembly. The following program segments, for
example, might be part of a program that communicateswith either a teletype or aCRT
console (but not both) by selecting a particular valuefor TTY before theassembly begins.

TRUE EQU OFFFFH ;DEFINE VALUE OF TRUE
FALSE EQU NOT TRUE ;DEFINE VALUE OF FALSE
TTY EQU TRUE ;TRUEIFTTY, FALSEIFCRT
TTYBASE EQU 104 ;BASE OF TTY 1/0 PORTS
CRTBASE EQU 20H ;BASE OF CRT I/O PORTS
IF TTY :ASSEMBLE RELATIVE TO
;TTYBASE
CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT EQU TTYBASE+1 ;CONSOLE OUTPUT
ENDIF
IF NOT TTY JASSEMBLE RELATIVE TO
;CRTBASE
CONIN EQU CRTBASE ;CONSOLE INPUT
CONOUT EQU CRTBASE+1 ;CONSOLE OUTPUT
ENDIF
IN CONIN ;READ CONSOLE DATA
ouT CONOUT 'WRITE CONSOLE DATA

In this case, the program would assemble for an environment where a teletype is
connected, based at port 10H. The statement defining TTY could be changed to

TTY EQU FALSE

and, in this case, the program would assemble for a CRT based at port 20H.

56

3.4.6 The DB Directive

The DB directive alows the programmer to define initialized storage areasin single
precision (byte) format. The statement form is

label DB e#1, e#2, ..., e#n

where e#1 through e#n are either expressions that evaluate to 8-bit values (the high
order bit must be zero) or are ASCII strings of length no greater than 64 characters.
There is no practical restriction on the number of expressions included on a single
source line. The expressions are evaluated and placed sequentially into the machine code
filefollowing thelast program addressgenerated by the assembler. String charactersare
similarly placed into memory starting with the first character and ending with the last
character. Strings of length greater than two characters cannot be used as operandsin
more complicated expressions. The user should note that ASCII characters are always
placed in memory with the parity bit reset (0). Also, thereis no translation from lower to
upper case within strings. The optional label can be used to reference the data area
throughout the remainder of the program. Examples of vaid DB statements are

data: DB 0,1,2,3,4,5
DB data and 0ffh,5,377Q,1+2+3+4
sign-on: DB 'please type your name',cr,lf,0
DB '‘AB' SHR 8, ‘C’, 'DE' AND 7FH

3.4.7 The DW Directive

The DW statement is similar to the DB statement except double precision (twobyte)
words o storage are initialized. The form is

label DW e#l, e#2, ..., e#n
where e#1 through e#n are expressions that evaluate to 16-bit results. The user should
note that ASCII stringsof oneor two charactersare allowed, but stringslonger than two
characters are disallowed. In al cases, the data storage is consistent with the 8080
processor: the least significant byte of the expression isstored first in memory, followed
by the most significant byte. Examples are

doub: DW Offeth,doub+4,signon-$,255+255
DW 'a, 5, ‘'ab’, ‘'CD’, 6 shl 8 or Iib.

3.4.8 The DS Directive

The DS statement is used to reserve an area of uninitialized memory, and takes the
form

label DS expression

57

where the label isoptional. The assembler begins subsequent code generation after the
area reserved by the DS. Thus, the DS statement given above hasexactly the sameeffect
as the statement

label: EQU $;LABEL VALUE IS CURRENT CODE LOCATION
ORG S$+expression ;MOVE PAST RESERVED AREA

3.5 (peration Codes

Assembly language operation codes form the principal part of assembly language
programs and form the operation field of theinstruction. In general, ASM acceptsall the
standard mnemonicsfor the Intel 8080 microcomputer, which aregivenindetail in Intel's
78080 Assembly Language Programming Manual.” Labelsareoptional oneachinputline.
The individual operators are listed briefly in the following sections for completeness,
althoughit is understood that the Intel manual s should be referenced for exact operator
details. In the following tables,

e3 represents a 3-bit value in the range 0-7 which can be one of the
predefined registers A, B, C, D, E, H, L, M, SP, or PSW.

e8 represents an 8-hit value in the range 0-255.

e16 represents a 16-bit value in the range 0-65535.

These expressions can be formed from an arbitrary combination of operandsand opera-
tors. In some cases, the operands are restricted to particular valueswithin the allowable
range, such as the PUSH instruction. These caseswill be noted as they are encountered.

In the sections that follow, each operation codeislisted initsmost general form, along
with a specific example, with a short explanation and special restrictions.

3.5.1 Jumps, Calls,and Returns

The Jump, Cal, and Return instructions alow several different forms that test the
condition flags set in the 8080 microcomputer CPU. The forms are

JMP e16 JMP L1 Jump unconditionally to label

JNZ el6 JNZ L2 Jumpon nonzero condition tolabel

JZ el16 JZ 100H Jumpon zero condition to label

JNC el6 JNC L1+4 Jump no carry to label

JC e16 JC L3 Jumpon carry to label

JPO el16 JPO $+8 Jumpon parity odd to label

JPE e16 JPE L4 Jump on even parity to label

JP e16 JP GAMMA Jump on positive result to label

JM el16 JM al Jumpon minus to label.

CALL e16 CALL St Call subroutine unconditionally

CNZz elb CNZ S2 Call subroutine on nonzero
condition

58

(04
CNC
CccC
CPO
CPE
CP
CM

RST

RET
RNZ
RZ
RNC
RC
RPO
RPE
RP
RM

e16
e16
e16
e16
el16
e16
elb

e3

CzZ 10CH
CNC S1+4
CC s3

CPO $+8
CPE $4

CP GAMMA
CM bl1$c2

RST O

Call subroutine on zero condition
Call subroutine if no carry set
Call subroutine if carry set

Call subroutine if parity odd

Call subroutine if parity even
Call subroutine if positive result

Call subroutine if minus flag.

Programmed restari, equivalent to
CALL 8%e3, except one byte call.

Return from subroutine
Return if nonzero flag set
Return if zero flag set
Return if no carry

Return if carry flag set
Return if parity is odd
Return if parity is even
Return if positive result

Return if minus flag is set.

3.5.2 Immediate Operand Ingdructions

Several instructions are available that load single or double precision registers or
single precision memory cellswith constant values, along with instructionsthat perform
immediate arithmetic or logical operations on the accumulator (register A).

MVI e3,e8

ADI e8

ACI e8

SUl e8

SBI e8

ANI e8

XRI e8

ORIl e8

MVI B,255

ADI'1

ACI OFFH

SUIL+3

SBI L AND 11B

ANI $ AND 7FH

XRI 1111$00008

ORI L AND 1+1

Move immediate data to register
A,B,C D,E HL, or M(memory)

Add immediate operand to A with-
out carry

Add immediate operand to A with
carry

Subtract from A without borrow
(carry)

Subtract from A with borrow
(carry)

Logica "and" A with immediate
data

"Exclusive or" A with immediate
data

Logica "or" A withimmediatedata

59

CPIl €8

LXI e3.e16

CPI1'a’

LXI B,100H

Compare A with immediate data
(sameas SUI except register A not
changed).

Load extended immediate to regis-
ter pair (e3 must be equivalent to
B,D,H, or 5P).

3.5.3 Increment and Decrement Instructions

The 8080 provides instructions for incrementing or decrementing single and double
precision registers. The instructions are

INR e3

DCR €3

INX €3

DCX e3

INR E

DCR A

INX SP

DCX B

Single precisionincrement register
(e3 producesone of A, B, C, D, E,
H, L M)

Single precision decrement regis-
ter (e3 producesoneaof A, B,C, D,
E.H L M)

Double precision increment regis-
ter pair (€3 must be equivalent to
B,D,H, or SP)

Double precision decrement regis-
ter pair (e3 must be equivalent to
B.D,H, or SP).

3.5.4 DataMovement Instructions

Instructions that move data from memory to the CPU and from CPU to memory are

given below.

MOV e3.e3

LDAX e3

STAX e3

LHLD e16

SHLD e16

LDA e16

60

MOV AB

LDAX B

STAX D

LHLD L1

SHLD L5+x

LDA Gamma

Move data to leftmost element
from rightmost element (e3produ-
ces one of A,B,C,D,EH,L, or M).
MOV M,M is disallowed

Load register A from computed
address (e3 must produce either B
or D)

Store register A to computed
address (e3 must produce either B
or Dj

Load HL direct from location e16
(doubl e precision load to H and L)

Store HL direct to location elé
(doubleprecision storefrom H and
L to memory)

Load register A from address elé

STA e16

POP €3

PUSH e3

IN e8

OUT e8

XTHL

PCHL

SPHL

XCHG

STA X3-5

POP PSW

PUSH B

IN G

OUT 255

Store register A into memory at
elé

Load register pair from stack, set
SP {e3 must produce one of B, D,
H, or PSW)

Store register pair into stack, set
SP (e3 must produce one of B, D,
H, or PSW)

Load register A with data from
port 8

Send data from register A to port
ed

Exchange data from top of stack
with HL

FIl program counter with data
from HL

Fll stack pointer with data from
HL

Exchange DE pair with HL pair

355 Anthmeic Logc Unit Operaions

Instructionsthat act upon the single precision accumulator to performarithmeticand

logic operations are

ADD e3

ADC e3

SUB e3

SBB €3

ANA e3

XRA €3
ORA e3

CMP €3

DAA

CMA

ADD B

ADC L

SUB H

SBB 2

ANA 1+1

XRA A
ORA B

CMP H

Add register given by e3 to accum-
ulator without carry (e3 must pro-
duceoneof A,B,C,D,E H,orL)

Add register to A withcarry, e3 as
above

Subtract reg €3 from A without
carry, e3 is defined as above

Subtract register e3 from A with
carry, 3 defined as above

Logica "and" reg with A, e3 as
above

"Exclusive or" with A, e3 as above

Logical "or" with A, 3 defined as
above

Compare register with A, e3 as
above

Decimal adjust register A based
upon last arithmetic logic unit
operation

Complement the bitsin register A

61

STC
cMC
RLC

RRC

RAL

RAR

DAD e3

Set the carry flag to 1
Complement the carry flag

Rotate bits left, (re)set carry as a
side effect (high order A bit
becomes carry)

Rotate bits right, (re)set carry as
side effect (low order A bit
becomes carry)

Rotate carry/A register to left
{carry is involved in the rotate)

Rotate carry/A register to right
(carry is involved in the rotate)

DAD B Double precision add register pair
e3 to HL (e3must produce B, D, H,
or SP).

3.5.6 Control Instructions

The four remaining instructions categorized as control instructions are

HLT
DI
El
NOP

Halt the 8080 processor
Disable the interrupt system
Enable the interrupt system

No operation.

3.6 Error Messages

When errors occur within the assembly language program, they are listed as single
character flags in the leftmost position of the source listing. The line in error is also
echoed at the console so that the source listing need not be examined to determine if
errors are present. The error codes are

D

62

Data error: element in data statement cannot be placed in the
specified data area.

Expression error: expression is ill-formed and cannot be computed
at assembly time.

Label error: label cannot appear in this context (may be dupiicate
label).

Not implemented: features that will appear in future ASM versions
(e.g., macros) are recognized, but flagged in this version.

Overflow: expression is too complicated (i.e., too many pending
operators) to be computed and should be simplified.

Phase error: label does not have the same value on two subsequent
passes through the program.

R Register error: the value specified as a register is not compatible

with the operation code.

S Syntax error: statement is not properly formed.

formed.

Value error: operand encountered in expression is improperly

Several error messages are printed that are due to terminal error conditions:

3.7 A Sample Session

NO SOURCE FILE PRESENT

NO DIRECTORY SPACE

SOURCE FILE NAME ERROR

SOURCE FILE READ ERROR

OUTPUT FILE WRITE ERROR

CANNOT CLOSE FILE

Thefile specified in the ASM com-
mand does not exist on disk.

Thedisk directory isfull; erasefiles
that are not needed and retry.

Improperly formed ASM file name
(e.g., it is specified with ? fields).

Sourcefile cannot be read properly
by the assembler; execute a TY PE
to determine the point of error.

Output files cannot be written
properly; most likely cause isafull
disk; erase and retry.

Output file cannot be closed; check
to see if disk is write protected.

The following session shows interaction with the assembler and debugger in the
development of a simple assembly language program. They arrow representsacarriage

return

A>ASM SORT

CP/M

015C

003H USE FACTOR

keystroke.

ASSEMBLER - VER 1.0

Next free address

END OF ASSEMBLY

A>DIR SORT.%

SORT
SORT
SORT
SORT

A>TYPE SORT.PRN;

Assemble SORT.ASM

Percent of table used 00 to ff (hexadecimal)

ASM Source file

BAK Backup from last edit

PRN Print file (contains tab characters)
HEX Machine code file

Source,line

4

i

SORT PROGRAM IN 8P/M ASSEMBLY LANGUAGE

START AT THE BEGINNING OF THE TRANSIENT

PROGRAM AREA

Machine code location

0100

ORG

100H

63

Generated machine code

0100 214601#SORT:
0103 3601

0105 214701

0108 3600

010A 7E
010B FEOS
010D D21801

0110 214601
0113 7EB7C20001

[l

0118 FF

Truncated :
0119

5F16002148 CONT:
0121 4E792346

0125 23

’

0126 965778239k

i

012B DAS3FO1

012E B2CA3FO01
0132 56702B5E
0136 7128722873

0138 21460134

'

013F 21470134C3INCH

0146 00 SW:
0147 I
0148 050064001EAV:

000A = N
SORT.HEX

A>TYPE

COMPL:

LXl H,SW ;ADDRESS SWITCH TOGGLE

MVI M1 ;SET TO 1 FOR FIRST ITERATION
LXI H,i ;JADDRESS INDEX

MVI M0 ;1=0

COMPARE | WITH ARRAY SIZE

MOV AM A REGISTER = |

CPIN-1 ;CY SET IF 1< (N-1)

JNC CONT ;CONTINUE IF | < = (N-2)

END OF ONE PASS THROUGH DATA
LXlI H,SW ;CHECK FOR ZERO SWITCHES
MOV A, M! ORA A! JNZ SORT ;END OF SORT IF SW=0

RST 7 ;GO TO THE DEBUGGER INSTEAD OF REB

CONTINUE THIS PASS
ADDRESSING I, SO LOAD AV(l) INTO REGISTERS

MOV E, Al MVI D, O LXI H, AV! DAD D! DAD D
MOV C, M! MOV A, C! INX H! MOV B, M
LOW ORDER BYTE IN A AND C, HIGH ORDER BYTE IN B

MOV H AND L TO ADDRESS AV{i+1)
INX H

COMPARE VALUE WITH REGS CONTAINING AV (1)
SUB M! MOV D, Al MOV A, B! INXH!SBBM ;SUBTRACT

BORROW SET IF AV(i+1) 3 AV(i)
JC INCI ;SKIP IF IN PROPER ORDER

CHECK FOR EQUAL VALUES
ORA D! JZ INCI ;SKIP IF AV(l) = AV(I+1)
MOV D, M! MOV M, B! DCX H! MOV E, M
MOV M, C! DCX H! MOV M, D! DCX H! MOV M, E

INCREMENT SWITCH COUNT
LXI H.SW! INR M

INCREMENT |
LXI H,It INR M! JMP COMP

DATA DEFINITION SECTION

DB 0 ;RESERVE SPACE FOR SWITCH COUNT
DS 1 ;SPACE FOR INDEX

DW 5, 100, 30, 50, 20, 7, 1000, 300, 100, -32767

EQU ($-AV)/2 ;COMPUTE N INSTEAD OF PRE
END

Equate value

N

Machine code in

:100110002146617EB7C20001FF5F16002148011988 HEX format

:10010000214601360121470136007EFE09D2190140
:10012000194E79234623965778239EDA3F01 BQCAA?Jk

64

:100130003F0156702B5E712B722B732146013421C7]

:07014000470134C30A01006E } Machine code in
-10014800050064001 E00320014000700E8032C01BB
:0401580064000180BE | HEX format
:0000000000 J

A>DDT SORT.HEXy Start debug run

16K DDT VER 1.0

NEXT PC

015C 0000 Default address (no address on END statement)
-XPy

P=0000 100y Change PC to 100

-UFFFFy Untrace for 65535 steps
Abort with rubout

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 LXI H,0146*0100
-T10y Trace 106 steps

COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H, 0146
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M, 01
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H, 0147
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M, 00
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=010A MOV A M
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPI 09
C1ZOM1EOI0 A=00 B=0000 D=0000 H=0147 S=0100 P=010D JNC 0119
C1ZOM1EOO A=00 B=0000 D=0000 H=0147 S=0100 P=0110 LXI H, 0146
C1ZOM1EQI0 A=00 B=0000 D=0000 H=0146 S=0100 P=0113 MOV A M
C1ZOM1EO0I0 A=01 B=0000 D=0000 H=0146 S=0100 P=0114 ORA A
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0115 JNZ 0100
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H, 0146
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M, 01
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H, 0147
COZOMOEQIO A=01 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M, 00
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=010A MOV A, M*010B
-A10D Stopped at 10BH-"
010D JC 119y Change to a jump on carry

0110y

-XPy

P=010B 100y Reset program counter back to beginning of program

-T10y Trace execution for 10H steps

Altered instruction

COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=0100 LXI H,0146
COZOMOEQOIO A=00 B=0000 D=0000 H=0146 S$=0100 P=0103 MVI M,01
COZOMOEOIO A=00 B=0000 D=0000 H=0146 S$=0100 P=0105 LXI H,0147
COZOMOEOIO A=00 B=0000 D=0000 H=0147 8$=0100 P=0108 MVI M,00
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010A MOV AM
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPI| 09
C1ZOM1EOIO A=00 B=0000 D=0000 H=0147 S$=0100 P=010D JC 0119
C1Z0M1EOI0 A=00 B=0000 D=0000 H=0147 S$=0100 P=0119 MOV EA
C1ZOM1EQI0O A=00 B=0000 D=0000 H=0147 S=0100 P=011A MVI D,00

65

C1ZOMLEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=011C LXI H,0148
C1ZOM1EOIO A=00 B=0000 D=0000 H=0148 S=0100 P=011F DAD D
COZOM1EOI0 A=00 B=0000 D=0000 H=0148 $=0100 P=0120 DAD D
COZOM1EOO A=00 B=0000 D=0000 H=0148 $=0100 P=0121 MOV C,M
COZOM1EOI0 A=00 B=0005 D=0000 H=0148 $=0100 P=0122 MOV AC
COZOM1EOD A=05 B=0005 D=0000 H=0148 S=0100 P=1023 INX H
COZOM1EOO A=05 B=0005 D=0000 H=0149 S=0100 P=0124 MOV B,\:0125

-L100, Automatic breakpoint

0100 LXl H,0146
0103 MVI M,01
0105 LXlI H,0147
0108 MVI M,00
010A MOV AM
010B CPI 09
010D JC 0119
0110 LXI H,0146
0113 MOV AM
0114 ORA A
0115 JNZ 0100
-Ly

List some code
> from 100H

0118 RST 07
0119 MOV EA List more
O11A MVI D,00 j
011C LXI H,0148
-Abort list with rubout
-G, 118y Start program from current PC (0125H) and run in real time to 11BH

*0127 Stopped with an external interrupt 7 from front panel (program was
“Tay Look at looping program in trace mode, |ooping indefinitely)
COZOMOEOIO A=38 B=0064 D=0006 H=015:5 S$=0100 P=0127 MOV DA
COZOMOEOIO A=38 B=0064 D=3806 H=0156 S=0100 P=0128 MOV AB
COZOMOEOIO A=00 B=0064 D=3806 H=0156 S=0100 P=0129 INX H
COZOMOEOIO A=00 B=0064 D=3806 H=0157 S=0100 P=012A SBB M*(12B
-D148

Data are sorted, but program does not stop.
0148 05 00 07 00 14 00 tE 00
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 OO 00 00 2.D.D.

0160 00 00 00 0C 00 00 00 00 00 00 00 00 00 00 00 OO
-GO 5 Return to CPIM

A>DDT SORT. HEXy Reload the memory image
16K DDT VER. 1.0

NEXT PC

015C 0000

-XP

P=0000 1004 Set PC to beginning of program

66

-L10Dy List bad OPCODE
OloD JNC 0119
0110 LXI H,0146
-Abort list with rubout
-A10D¢ Assemble new OPCODE
OloD JC 119y
0110y
-1.100y4 List starting section of program
0100 LXI H,0146
0103 MVI M,01
0105 LXI H,0147

0108 MVI M,00
-Abort list with rubout

-A103y Change switch initialization to 00
0103 MVI M,04
0105y

-“C Return to CP/M with ctl-C (GO works as well)

SAVE 1 SORT.COMy Save 1 page (256 bytes, from 100H to 1ffH) on disk in case

there is need to reload later
A>DDT SORT.COMy Restart DDT with saved memory image

16K DDT VER 1.0

NEXT PC

0200 0100 COM file always starts with address 100H
-Gj Run the program from PC=100H

*0118 Programmed stop (RST 7) encountered

-D148
/Data properly sorted

0148 05 00 07 00 14 00 1E 00........

0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00O OO 00 OO 2.D.D..

0160 00 00 0C 00 00 00 OC 00 0OC 00 00 00 00 00 0O 0O
0170 00 00 0C 00 00 00 00 00 00 00 OO 00 00 00 0C 00

-GO ; Return to CP/M

A>ED SORT.ASMy Make changes to original program

“N,0°Z0TTy Find next “,0”

MVI M, 0 1=0

- Up one line in text
FooLxi H, I ;ADDRESS INDEX

*-¢ Up another line

MVI M, 1 ;SET TO 1 FOR FIRST ITERATION
*KTy Kill line and type next line

LXI H, | ;ADDRESS INDEX
*I+ Insert new line

MVI M, 0 ;ZERO SW
*Tf

LXI H, 1 ;ADDRESS INDEX
*“NJNC "Z0Ty

JNC*Ty

CONT ;CONTINUE IF | <= (N-2)
*-2DIC"ZOLTy

JC CONT ;CONTINUE IF I <<= (N-2)
"Ey Source from disk A

HEX todisk A

A>ASM SORT.AAZ;'—— Skip PRN file
CP/M ASSEMBLER - VER 1.0
015C Next address to assemble

003H USE FACTOR
END OF ASSEMBLY

A>DDT SORT.HEX; Test program changes

16K DDT VER 1.0
NEXT PC

015C 0000
G100y

*0118
-D148y
Data sorted
0148 05 00 07 00 14 00 1E 00........
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.D.D..........
0160 00 00 00 00 OO OO0 00 00 OO OO OO0 00 OO0 00 00 0O................

-Abort with rubout

-GOy Return to CP/M— —program checks OK.

68

CP/M Dynamic
Debuggi ng Tool

41 Introduction

The DDT program allows dynamic interactive testing and debugging of programs
generated in the CP/M environment. Invoke the debugger with acommand of oneof the
following forms:

DDT

DDT filename.HEX

DDT filename.COM
where "filename" is the name of the program to be loaded and tested. In both cases, the
DDT program is brought into main memory in place of the Console Command Processor
(the user should refer to Chapter 5 for standard memory organization), and resides
directly below the Basic Disk Operating System portion of CPiM. The BDOS starting

address, located in the address field of the IMPinstruction at location 5H, isaltered to
reflect the reduced Transient Program Area size.

The second and third forms of the DDT command perform the same actions as the
first, except thereis a subsequent automatic load of the specified HEX or COM file. The
action is identical to the sequence of commands

DDT
Hilename.HEX or Ifilename.COM
R
where the | and R commands set up and read the specified program to test. (The user
should see the explanation of the | and R commands below for exact details.)
Upon initiation, DDT prints a sign-on message in the format

DDT VER m.m

where m.m is the revision number

69

Following thesign-on message, DDT promptstheoperator with thecharacter"-"and
waits for input commands from the console. The operator can type any of several single
character commands, terminated by acarriagereturn to execute thecommand. Each line
of input can be line-edited using the standard CP/M controls

rubout remove the last character typed
cti-U remove the entire line, ready for retyping
cti-C system reboot.

Any command can be up to 32 characters in length (an automatic carriage return is
inserted as the 33rd character), where thefirst character determines thecommand type

A enter assembly language mnemonics with operands
D display memory in hexadecimal and ASCI|

F fill memory with constant data

G begin execution with optional breakpoints

set up a standard input file control block

list memory using assembler mnemonics

move a memory segment from source to destination
read program for subsequent testing

substitute memory values

trace program execution

untraced program monitoring

X - n v -

examine and optionally alter the CPU state.

The command character, in some cases, is followed by zero, one, two, or three hexade-
cimal values, which areseparated by commasor single blank characters. All DD T numeric
output isin hexadecimal form. The commandsare not executed until the carriage return
is typed at the end of the command.

At any point in thedebug run, theoperator can stop executionof DD T by using either
actl-C or GO (jmp to location 0000H), and save the current memory image by using a
SAVE command of the form

SAVE n filename.COM

wherenisthe number of pages (256 byte blocks) to besaved on disk. Thenumber of blocks
is determined by taking the high order byte of theaddressin the TPA and converting this
number to decimal. For example, if the highest address in the Transient Program
Areais 1234H, the number of pagesis12H or 18 in decimal. The operator could type a
ctl-C during thedebugrun, returning to the Console Command Processor level, followed
by

SAVE 18 X.COM

70

The memory image is saved as X.COM on the diskette and can be directly executed by
typing the name X. If further testing is required, the memory image can be recalled by

typing
DDT X.COM

which reloads the previously saved program from location 100H through page 18
(23FFH). The CPU state is not a part of the COM file; thus, the program must be
restarted from the beginning to test it properly.

4.2 DDT Commands

Theindividual commands are detailed below. In each case, the operator must wait for
the prompt character (-) beforeentering the command. If control is passed to a program
under test and the program has not reached a breakpoint, control can bereturned toDDT
by executing a RST 7 from the front panel. In the explanation of each command, the
command letter is shown in some cases with numbers separated by commas, and the
numbersare represented by lower case | etters. These numbers are alwaysassumed to be
in a hexadecimal radix and from one to four digits in length (longer numbers will be
automatically truncated on the right).

Many of thecommandsoperate upon a" CPU state" that correspondsto the program
under test. The CPU state holdstheregistersof the program being debugged and initially
contains zeroes for ail registers and flags except for the program counter (P) and stack
pointer (S), which default to 100H. The program counter is subsequently set to the
starting address given in thelast record of aHEX fileif afileof thisformisloaded (seethe
| and R commands).

4.2.1 TheA (Assembly) Command

DDT alows in-line assembly language to be inserted into the current memory image
using the A command, that takes the form

As

where s is the hexadecimal starting address for the inline assembly. DDT prompts the
console with the address of the next instruction to fill and reads the console, looking for
assembly language mnemonics (see the Intel 8080 Assembly Language Reference Card
for a list of mnemonics), followed by register references and operands in absolute
hexadecimal form. Each successiveload addressis printed before reading theconsole. The
A command terminates when the first empty lineis input from the console.

Upon completion of assembly language input, the operator can review the memory
segment using the DDT disassembler (seethe L command).

The user should notethat the assembl eridisassembl er portion of DDT can beoverlaid
by the transient program being tested, in which casethe DD T program respondswithan
error condition when the A and L commands are used.

71

4.2.2 The D (Display) Command

The D command allows the operator to view the contents of memory in hexadecimal
and ASCII formats. The forms are
D
Ds
Ds,f

In thefirst case, memory isdisplayed from thecurrent display address (initially 100H) and
continues for 16 display lines. Each display line takes the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb ccccccececceececccce

where aaaa is the display address in hexadecimal and bb represents data present in
memory starting at aaaa. The ASCII characters starting at aaaa are to theright (repres-
ented by the sequenceof ¢’s), where nongraphiccharactersareprinted asaperiod(.). The
user should note that both upper and lower case alphabetics are displayed, and will
appear as upper case symbols on a console device that supports only upper case. Each
display line gives the values of 16 bytes of data, with thefirst line truncated sothat the
next line begins at an address that is a multiple of 16.

The second form of the D command is similar to the first, except that the display
address is first set to address s. The third form causes the display to continue from
address s through addressf. In all cases, the display addressis set to the first address not
displayed in this command, so that a continuing display can be accomplished by issuing
successive D commands with no explicit addresses.

Excessively long displays can be aborted by pushing the return key.

423 TheF (Fill) Command

The F command takes the form
Fs.f.c

wheres isthestarting address, f is the final address, andcisahexadecimal byte constant.
DDT stores the constant c at address s, increments thevalue of sand testsagainst f. If s
exceeds f, the operation terminates, otherwise the operation is repeated. Thus, thefill
command can be used to set a memory block to a specific constant value.

4.24 TheG (Go) Command

A program is executed using the G command, with up to two optional breakpoint
addresses. The G command takes the forms
G
Gs
Gs,b
Gs,b,c
G,b
G.be

72

The first form executes the program at the current valueof the program counter in the
current machine state, with no breakpoints set (theonly way to regain control in DDT is
through a RST 7 execution). The current program counter can be viewed by typing an X
or XP command. The second formissimilar tothefirst except that the program counter
in the current machine stateis set to address s before execution begins. Thethirdformis
the same as the second, except that program execution stops when address b isencoun-
tered (b must beintheareaof the program under test). Theinstruction at location bisnot
executed when the breakpoint is encountered. The fourth form isidentical to the third,
except that two breakpoints are specified, one at band theother at c. Encountering either
breakpoint causes execution to stop, and both breakpointsarecleared. Thelast twoforms
take the program counter from the current machine state and set one and two break-
points, respectively.

Execution continues from the starting address in real-time to the next breakpoint.
Thereis nointervention between the starting addressand the break address by DDT. If
the program under test does not reach a breakpoint, control cannot return to DDT
without executing a RST 7 instruction. Upon encountering a breakpoint, DDT stops
execution and types

*d

where d isthe stop address. The machine state can be examined at this point using the X
(Examine) command. The operator must specify breakpoints that differ from the pro-
gram counter address at the beginning of the G command. Thus, if the current program
counter is 1234H, then the commands

G,1234

and

G400,400

both produce an immediate breakpoint without executing any instructions.

425 The | (Input) Command

The | command allows the operator toinsert afile name into the default file control
block at SCH (thefile control block created by CP/M for transient programsis placed at
thislocation; see Chapter 5). The default FCB can be used by the program under test asif
it had been passed by the CP/M Console Processor. The user should note that thisfile
nameisalso used by DDT for reading additional HEX and COM files. Theform of thel
command is

lfilename
or
lfilename.typ
If the second form is used and the filetype is either HEX or COM, subsequent R

commands can be used to read the pure binary or hex format machinecode. {Section 4.2.8
gives further details.)

73

4.2.6 Thel (List) Command

The L command is used tolist assembly language mnemonics in a particular program
region. The forms are

L
Ls
Ls.f

The first form lists twelve lines of disassembled machine code from the current list
address. Thesecond form setsthelist addresstosand then liststwelvelinesof code. The
last form lists disassembled code from s through address f. In al three cases, the list
address isset to the next unlisted location in preparation for a subsequent L command.
Upon encountering an execution breakpoint, thelist addressisset tothecurrent value of
the program counter (G and T commands). Again, long typeouts can beaborted using the
return key during the list process.

4.2.7 The M (Move) Command

The M command allows block movement of program or data areas from onelocation
to another in memory. The form is

Ms,f,d

where s is the start address of the move, f isthe final address, and d is the destination
address. Data are first removed from s to d, and both addresses are incremented. If s
exceeds f, the move operation stops; otherwise, the move operation is repeated.

4.2.8 The R (Read) Command

The R command is used in conjunction with the | command to read COM and HEX
files from the diskette into the transient program areain preparation for thedebug run.
The forms are

R
Bh

where b is an optional bias address that is added to each program or data address asit is
loaded. Theload operation must not overwriteany of the system parametersfrom 000H
through OFFW (i.e., the first page of memory).If bisomitted, then b=0000 is assumed.
The R command requires a previous | command, specifying the name of a HEX or COM
file. The load address for each record is obtained from each individual HEX record, while
an assumed load address of 100H is used for COM files. The user should note that any
number of R commands can be issued following the | command to reread the program
under test, assuming the tested program does not destroy thedefault areaat 5CH. Any
filespecified with the filetype " COM" isassumed to contain machinecodein purebinary
form (created with the LOAD or SAVE command), and al othersareassumed tocontain
machine code in Intel hex format (produced, for example, with the ASM command.)

74

Recall that the command
DDT filename.filetype

which initiates the DDT program, is equivalent to the commands

DDT

-lfilename.filetype

-R
Whenever the R command is issued, DDT responds with either the error indicator “?”
(filecannot be opened, or achecksum error occurred in aHEX file),or with aload message
taking the form

NEXT PC

nnnn pppp

where nnnn is the next address following the loaded program and pppp is the assumed
program counter (100H for COM files, or taken from the last record if a HEX fileis

specified).

4.2.9 The S (Set) Command

The Scommand allows memory |locations to be examined and optionally altered. The
form of the command is

Ss

where s is the hexadecimal starting address for examination and alteration of memory.
DDT responds with a numeric prompt, giving the memory location, along with the data
currently held in memory. If theoperator typesacarriagereturn, thedataare not altered.
If a byte value is typed, the value is stored at the prompted address. In either case, DD T
continues to prompt with successive addresses and values until either aperiod (.} istyped
by the operator or an invalid input value is detected.

4.2.10 The T (Trace) Command

The T command allows selective tracing of program executionfor 1 t065535 program
steps. The forms are

T
Tn

In the first case, the CPU state isdisplayed and the next program step is executed. The
program terminates immediately, with the termination address displayed as

*hhhh
where hhhh isthe next address to execute. Thedisplay address (usedin the Dcommand)

isset tothevalueof Hand L, and thelist address (usedin the L command) is set to hhhh.
The CPU state at program termination can then be examined using the X command.

75

The second form of the T command is similar to the first, except that execution is
traced for n steps (n is a hexadecimal value) before a program breakpoint occurs. A
breakpoint can be forced in the trace mode by typing arubout character. The CPU stateis
displayed before each program stepistakenin trace mode. Theformat of thedisplay isthe
same as described in the X command.

The user should note that program tracing isdiscontinued at the CP/M interface and
resumes after return from CP/M to the program under test. Thus, CP/M functionsthat
access I/O devices, such as the diskette drive, run in real-time, avoiding /O timing
problems. Programs running in trace mode executeapproximately 500 timesslower than
real-time since DDT gets control after each user instruction is executed. Interrupt
processing routines can be traced, but commands that use the breakpoint facility (G, T,
and U) accomplish the break using an RST 7 instruction, which means that the tested
program cannot use this interrupt location. Further, the trace mode always runs the
tested program with interrupts enabled, which may cause problems if asynchronous
interrupts are received during tracing.

The operator should use the return key to get control back to DD T during trace,
rather than executing an RST 7, to ensure that the trace for current instruction is
completed before interruption.

4211 The U (Untrace) Command

The Ucommand isidentical tothe T command except that intermediate program steps
are not displayed. The untrace mode allows from 1 to 65535 (OFFFFH) steps to be
executed in monitored mode and is used principally to retain control of an executing
program while it reaches steady state conditions. All conditions of the Tcommand apply
to the U command.

4.2.12 The X (Examine) Command

The X command allows selective display and alteration of thecurrent CPU state for
the program under test. The forms are

X
Xr

where r isone of the 8080 CPU registers

C Carry flag (0/1)
z Zero flag (0/1)
M Minus flag (0/1)
E Even parity flag {0/1)

Interdigit carry (Oily
Accumulator (0-FF)
BC register pair (O-FFFF)
DE register pair (O-FFFF)
HL register pair (O-FFFF)
Stack pointer (O-FFFF)
Program counter (O-FFFF)

T W I U w >

76

In the first case, the CPU register stateis displayed in the format
CtZfMfEflf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where f isa 0 or 1 flag value, bb is a byte value, and dddd is a double-byte quantity
corresponding to theregister pair. The”inst” field containsthedisassembled instruction,
which occurs at the location addressed by the CPU state's program counter.

The second form allows display and optional alteration of register values, where ris
oneof theregistersgiven above(C, Z, M, E, I, A, B, D, H, S, or P}. Ineach case, theflag or
register valueisfirst displayed at theconsole. TheDDT program then acceptsinput from
theconsole. If acarriage returnistyped, theflag or register valueis not altered. If avalue
in the proper range istyped, theflag or register valueisaltered. The user should notethat
BC, DE, and HL are displayed as register pairs. Thus, the operator types the entire
register pair when B, C, or the BC pair is altered.

4.3 Implementation Notes

The organization of DDT allows certain nonessential portions to be overlaid to
gain alarger transient program areafor debugging large programs. The DDT program
consists of two parts: the DDT nucleus and the assembler/disassembler module. The
DDT nucleusisloaded over the Console Command Processor, and, although loaded with
the DD T nucleus, the assernblerldisassembler is overlayable unless used to assemble or
disassemble.

In particuiar, the BDOSaddress at location 6H (addressfield of theJM Pinstruction at
location 5H) ismodified by DD T to address the base location of the DD T nucleus, which,
in turn, contains a JM Pinstruction to the BDOS. Thus, programs that use this address
field tosize memory see the logical end of memory at the baseof the DD T nucleus rather
than the base of the BDOS.

The assemblerldisassembler module resides directly below the DDT nucleus in the
transient program area. If the A, L, T, or X commands are used during the debugging
process, the DDT program again alters the address field at 6H to include this module,
further reducing the logical end of memory. If a program loads beyond the beginning of
the assembl erl disassembler module, the A and L commands are lost (their use producesa
“?2”in response) and the trace and display (T and X) commands list the “inst” field of the
display in hexadecimal, rather than as a decoded instruction.

77

4.4 An Example

The following example shows an edit, assemble, and debug for a simple program that
reads a set of data values and determines the largest value in the set. The largest valueis
taken from the vector and stored into "LARGE" at the termination of the program

A>ED SCAN.ASM

*l{

LOOP
LOOP:

NFOUND

¥
VECT:

LEN
LARGE:

1-Z
*BOPY

LOOP:

NFOUND:

78

Create source program;
“¥” represents carriage return.

ORG 1-00H :START OF TRANSIENT
:AREA ¥

MVI B, LEN ;LENGTH OF VECTOR TO SCANy

MVI C,0 :LARGER-RST VALUE SO FARy

LXI H, VECT ‘BASE OF VECTORY

MOV AM :GET VALUEY

SUB C :LARGER VALUE IN C?J

JNC NFOUND :JUMP IF LARGER VALUE NOT
JFOUNDY

NEW LARGEST VALUE. STORE IT TO C ¥

MOV C. A

INX H :TO NEXT ELEMENTJ

DCR B :MORE TO SCAN?J

INZ LOOP :FOR ANOTHER /

END OF SCAN, STORE Cy

MOV A, C :GET LARGEST VALUE ¢

STA LARGE y

JMP 0 ;REBOOT/

TEST DATA

DB 2.0.4,3,56,1,5

EQU $-VECT :LENGTH

DS 1 ‘LARGEST VALUE ON EXITY

END ¥

ORG 100H :START OF TRANSIENT AREA

MVI B,LEN :LENGTH OF VECTOR TO SCAN

MVI C,0 :LARGEST VALUE SO FAR

LXI H,VECT :BASE OF VECTOR

MOV AM :GET VALUE

SUB C :LARGER VALUE IN C?

JNC NFOUND :JUMP IF LARGER VALUE NOT
: FOUND

NEW LARGEST VALUE, STORE IT TO C

MOV C.A

INX H :TO NEXT ELEMENT

DCR B :MORE TO SCAN?

INZ LOOP :FOR ANOTHER

END OF SCAN, STORE C

MOV AC :GET LARGEST VALUE

STA LARGE

JMP 0 :REBOOT

TEST DATA

VECT: DB 2,0,43586.1,5

LEN EQU $-VECT ;LENGTH
LARGE: DS 1 ;LARGEST VALUE ON EXIT
END

*Ey=—End of edit

A>ASM SCANy Start Assembler

CP/M ASSEMBLER - VER 1.0

0122

002H USE FACTOR

END OF ASSEMBLY Assembly complete; lock at program listing

A>TYPE SCAN.PRN ¥
Code address Source program

0100<«" l ORG 100H ;START OF TRANSIENT AREA
0100 0608 MVI B,LEN :LENGTH OF VECTOR TO SCAN
0102 CEXO Machine code MVI CO :LARGEST VALUE SO FAR
0104 211901 LXlI HVECT. ;BASE OF VECTOR
0107 7E LOOP: MOV AM ‘GET VALUE
0108 91 SUB C :LARGER VALUE IN C?
0109 D20DO01 JNC NFOUND ;JUMP IF LARGER VALUE NOT
:FOUND
NEW LARGEST VALUE, STORE IT TO C
010C 4F MOV C, A
po10D 23 NFOUND:INX H :TO NEXT ELEMENT
010E 05 DCR B :MORE TO SCAN?
010F C20701 JNZ LOOP ;FOR ANOTHER
END OF SCAN, STORE C
0112 79 MOV A, C :GET LARGEST VALUE
0113 322101 STA LARGE
0116 C30000 JMP 0O :REBOOT
Code—data listing ;
truncated : TEST DATA
0119 020004030~VECT: DB 2,0,4,3,5,6,1,5
0008 = Value of LEN EQUS$-VECT ;LENGTH
0121 equate LARGE: DS 1 :LARGEST VALUE ON EXIT
0122 END

A>DDT SCAN.HEXy Start debugger using hex format machine code

DDT VER 1.0

NEXT PC Next instruction
0121 0000 to execute at
-X¥ Last load address + 1 PC=0

C0ZOMOEOIO A=00 B{QOOO D=0000 H=0000 S=0100 P=0000 OUT 7F
-XPy Examine registers before debug run

P=0000 100y Change PC to 100

-X# Look at registers again

79

COZOMOEQOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,08
-L100¢

PC changed. Next instruction
0100 MV B.08 N to execute at PC=100
Oof 02 MVI C,00
0104 LXI H,0119
0107 MOV AM . .
0108 SUB C Disassembled machine
0109 JNC 010D code at 100H
010C MOV CA (see source listing
010D INX H for comparison)
010E DCR B
01CF JMZ 0107
0112 MOV AC p
Ly

N
0113 STA 121
0116 JMP
0119 STAX B
011A NOP A littlemore machine
011B INR B code. Note that pro-
011C INX B } gram endsat | ocation
011D DCR B 116 with a JMP to
011E MVi B,01 0000. Remainder of
0120 DCR B listing is assembly of
0121 LXI D,2200 data.
0124 LXI H,0200

-Al116y Enter in-line assembly mode to change the JIMPto 0000 into a RST 7, which
will cause the program under test to return to DDT if 116H is ever executed.
0116 RST 7

0117¢ (Singlecarriage return stops assemble mode)

-L113y¢ List code at 113H to check that RST 7 was properly inserted

0113 STA 0121

0116 RST 07 in place of IMP
0117 NOP

0118 NOP

0119 STAX B

011A NOP

011B INR B

011C INX B

-X § Look at registers

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,08

Execute Program for one stop. Initial CPU state, beforeyis executed
COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI’B,08*Q102
-TY Automatic breakpoi nt/

80

Trace one step again { note O8H in B)

COZOMOEOIO A=00 B=0800 D=0000 H=0000 S=0100 P=0102 MVI C,00*0104
-T

f Trace again (Register C is cleared)
COZOMOEQOIO A=00 B=0800 D=0000 H=0000 S=0100 P=0104 LXI H,0119*0107
-T3y Trace three steps
COZOMOEOIO A=00 B=0800 D=0000 H=0119 S$=0100 P=0107 MOV AM
COZOMOEOIO A=02 B=0800 D=0000 H=0119 S=0100 P=0108 SUB C
COZOMOEOI A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JNC 010D*010D

-D119y Display memory starting at 119H. Automatic breakpoint at 10DH

011902 00 04 03 05 06 01). Program data — Lowercasex -
0120 {05/11 00 22 21 00 02 7E EB 77 13 23 EB BB (& B1. "1I.. W #.(X)
0130 C2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00.'...)v....
0140 00 00 00 0O 00 OO 00 00 00 00 00 00 00 00 00 00'oveveeernnns
0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...'.v'eveevnvnnn..
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Data are displayed
0170 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 00 inASCII witha “.”
0180 00 00 00 00 00 OO 00 OO 00 00 00 00 00 00 00 00 in the position of
0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 nongraphic
01A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 oo Characters =
01B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00eoenvvn....
01C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00evveeenn....
-X*

Current CPU state

COZOMOEOI A=02 B=0800 D=0000 H=0119 S=0100 P=010D INX H
-T5

#Trace 5 steps from current CPU state
COZOMOEOI A=02 B=0800 D=0000 H=0119 S=0100 P=010D INX H
COZOMOEOI A=02 B=0800 D=0000 H=011A S=0100 P=010E DCR B
COZOMOEQI A=02 B=0700 D=0000 H=011A S=0100 P=010F JNZ 0107
COZOMOEOIl A=02 B=0700 D=0000 H=011A S=0100 P=0107 MOV AM
COZOMOEOIl A=00 B=0700 D=0000 H=011A S=0100 P=0108 SUB C*Q109

Uy _ o _ Automatic breakpoint
Trace without listing intermediate states

C0Z1MOEII1 A=00 B=0700 D=0000 H=011A S=0100 P=0109 JNC 010D*0108
-XI
~CPU state at end of Us
COZOMOE1I1 A=04 B=0600 D=0000 H=011B S=0100 P=0108 SUB C
-Gy Run program from current PC until completion (in real-time)

“0116 breakpoint at 116H, caused by executing RST 7 in machine code.
"Xf

CPU stateat end of program
COZ1MOEII1 A=00 B=0000 D=0000 H=0121 S$=0100 P=0116 RST 07

-XP,
4 "~ Examine and change program counter
P=0116 100y

_X’

COZ1MOE1I1 A=00 B=0000 D=0000 H=0121 S=0100 P=0100 MVI B,08
-T10¢

81

Trace 10 (hexadecimal) steps

COZ1MOE111
COZ1MOE1 11
COZ1MOE1 11
COZ1MOE111
COZ1MOEIIL
COZOMOEOI1
COZOMOEOI
COZOMOEOI
COZOMOEOI
COZOMOEOI
COZOMOEOI
COZ1MOETI1
COZ1MOE1!1
COZIMOEIIL
COZOMOE!I1
COZOMOE!I1
-A109/

0109 JC 100y

010Cy

Stop DDT so that a version of
the patched program can be saved

-GOY

First data element
Current largest value
Subtract for comparison, C

A=00 B=0800 D#0000
A=00 B=0000_D=000

A=02 B%0800 H=0000
A B=0800) D=0000
A=02 B=0800 D=0000
A=02 B=0800 D=0000
A=02 B=0700 D=0000
A=02 B=0700 D=0000
=00 B=0700 D=0000
00 B=0700 D=0000
00 B=0700 D=0000
00 B=0700 D=0000
00 B=0600 D=0000
00 B=0600 D=0000

Insert a' hot patch"
the machine code
to change the

JNC to JC

>>>r > > >

0o no

/

H=/CI‘! 21
H=0121
H=0121
H=0119
H=0119
H=0119
H=0119
H=011A
H=011A
H=011A
H=011A
H=011A
H=011A
H=011B
H=011B
H=011B

into

$=0100
$=0100
$=0100
S=0100
$=0100
$=0100
S=0100
$=0100
$=0100
S=0100
$=0100
$=0100
$=0100
$=0100
$=0100
$=010Q

P=0100 MVI B,08
P=0102 MVI CO
P=0104
P=0107
P=0108
P=0109
P=010D |
P=010E PCR B
P=010F /UNZ 0107
P=0107 MOV AM
P=01¢g8 SUB C

P=0409 JNC 010D
P=010D INX H
P~010E DCR B

=010F JNZ 0107
P=0107 MOV A.M*0108

Prégram should have moved the
value from A into C since A>C.
Since this code was not executed,
it appears that the JNC should
have been a JC instruction

A>SAVE 1 SCAN.COM{Program resideson first
page, so save 1 page.

A>DDT SCAN.COM
“\Restart DDT with the save memory
image to continue testing

DDT VER 1.0

NEXT PC

0200 0100

-L100/ List some code
0100 MVI B,08
0102 MVI C,00
0104 LXI H,0119
0107 MOV AM
0108 SUBC
0109 JC 010D
010C MOV CA
010D INX H
010E DCR B
010F JNZ 0107
0112 MOV A,C
-XPy

P=0100y

82

Previous patch is present in X.COM

-T10/

Trace to see how patched version operates

Data is moved from A to C

COZOMOEOQIO A=00 B=0000 D=0000 H=0000 S=0106 P=0100 MVI B,08
COZOMOEOIO A=00 B=0800 D=0000 H=0000 S=0100 P=0102 MVI C,00
COZOMOEOIO A=00 B=0800 D=0000 H=0007S=0100 P=0104 LXI H,0119
COZOMOEOIO A=00 B=0800 D=0008/;}9/1g S=0100 P=0107 MOV AM
COZOMOEOIO A@ B=0800 D=000 =0119 S=0100 P=0108 SUB C
COZOMOEOIT A=02 "g=0800 ‘?)90'0 H=0119 S=0100 P=0109 JC 010D
COZOMOEOI1 A=02 B23Q800 P2=0000 H=0119 S=0100 P=010C MOV C,A
COZOMOEQI A=02 D=0000 H=0119 S=0100 P=010D INX H
COZOMOEOQI A=02 B=0802 D=0000 H=011A S=0100 P=010E DCR B
COZOMOEOI A=02 B=0702 D=0000 H=011A S=0100 P=010F JNZ 0107
COZOMOEOIN A=02 B=0702 D=0000 H=011A S$=0100 P=0107 MOV AM
COZOMOEOI A=00 B=0702 D=0000 H=011A S$=0100 P=0108 SUB C
CIZOMIEOIO A=FE B=0702 D=0000 H=011A S=0100 P=0109 JC 010D
CIZOMIEOIO A=FE B=0702 D=0000 H=011A S=0100 P=010D INX H
CIZOMIEOIO A=FE B=0702 D=0000 H=011B S=0100 P=010E DCR B
C1ZOMOE111 A=FE B=0602 D=0000 H=011B S=0100 P=010F JNZ 010770107
-X¥# Breakpoint after 16 steps/

C1ZOMOE1I1 A=FE B=0602 D=0000 H=011B $=0100 P=0107 MOV AM
-G,108y Run from current PC and breakpoint at 108H

*0108
-Xl
Next data item

C1Z0OMOE1I1 A=04 B=0602 D=0000 H=011B S=0100 P=0108 SUB C
-T

' Single step for a few cycles
C1ZOMOE1I1 A=04 B=0602 D=0000 H=011B S=0100 P=0108 SUB C*0109
-T}

COZOMOEOIN A=02 B=0602 D=0000 H=011B S$=0100 P=0109 JC 010D*010C
-X/

COZOMOEOI1 A=02 B=0602 D=0000 H=011B S=0100 P=010C MOV CA
-Gy Run to completion

*0116
'X{

COZ1MOE111 A=03 B=0003 D=0000 H=0121 S=0100 P=0116 RST 07

-8121; Look at the value of "LARGE"
0121 03y Wrong value!
0122 00y
0123 22f
0124 21/

83

0125 00y

0126 02t

0127 7E; End of the S command
-L100,

0100 MVI B,08)

0102 MVI C,00

0104 LXI H,0119

0107 MOV AM

0108 SUB C

0109 JC 010D

01CC MOV C.A

010D INX H

01CE DCR B

010F JNZ 0107

0112 MOV A,C

-L / \ Review the code

0113 STA 0121

0116 RST 07

0117 NOP

0118 NOP

0119 STAX B

011A NOP

011B INR B

011C INX B

011D DCR B

O11E MVI B,01

0120 DCR B

—XP;

P=0116 100; Reset the PC

_T‘
Single step, and watch data values
COZ1MOE1i1 A=03 B=0003 D=0000 H=0121 S=0100 P=0100 MVI B,08*0102

_T*

C0Z1MOE111 A=03 B=0803 D=0000 H=0121 S$=0100 P=0102 MVI C,00*0104
-T

f Count set N /"Largest" set
COZ1MOETIT A=03 B=0800 D=0000 H=0121 S$=0100 P=0104 LXI H.0119*0107
-T

/ P Base address of data set
COZ1MOE1i1 A=03 B=0800 D=0000 H=0119 S=0100 P=0107 MOV A M*0108
-T

f L First data item brought to A
COZ1MOE1I1 A=02 B=0800 D=0000 H=0119 S=0100 P=0108 SUB C*0109
-T‘

COZOMOEOQIT A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JC 010D*010C
—T‘

84

COZOMOEOQI1L A=02 B=0800 D=0000 H=0119 $=0100 P=010C MOV C,A*010D
_T}

First data item moved to C correctly
COZOMOEOI1 A=02 B=0802 D=0000 H=0119 S=0100 P=010D INX H*010E
-T;

COZOMOEOIT A=02 B=0802 D=0000 H=011A S=0100 P=010E DCR B*010F
-T;

COZOMOEOI A=02 B=0702 D=0000 H=011A S=0100 P=010F JINZ 0107°0107
Ty

C0ZOMOEOI1 A=02 B=0702 D=0000 H=011A S=0100 P=0107 MOV A ,M*0108
-Tf

Second data item brought to A
C0ZOMOEOI1T A=00 B=0702 D=0000 H=011A S=0100 P=0108 SUB C*0109
_T’(

Subtract destroys data value that was loaded!
C1Z0M1EQI0 A=FE B=0702 D=0000 H=011A S=0100 P=0109 JC 010D*010D
—Tf

C1ZOM1EOI0 A=FE B=0702 D=0000 H=011A S=0100 P=010D INX H*010E
-L100;

0700 MV B.,08

0102 MVI C,00

0104 LXI H.0119

0107 MOV AM .
This should have been a CMP so that register A

0los SUB € —— would not be destroyed

0109 JC 01 :

010C MOV CA

010D INX H

010E DCR B

010F JINZ 0107

0112 MOV A.C

-A108y

0108 CMP C, Hot patch at 108H changes SUB to CMP
0109

-G0y Stop DDT for SAVE

A>SAVE 1 SCAN.COM , Save memory image

A>DDT SCAN.COMy Restart DDT

DDT VER 1.0

NEXT PC

0200 0100

-XPy

P=0100

-L116,

85

0116 RST 07)

0117 NOP Look at code to see if it was properly loaded
0118 NOP (long typeout aborted with rubout)

0119 STAX B g typeou

011A NOP

-G,116y Run from 100H to completion
*0116

-XCy Look at carry (accidental typo)
Cty

X y Look at CPU state

C1Z1MOE111 A=06 B=0006 D=0000 H=0121 S$=0100 P=0116 RST 07
-8121y Look at *'large’” —it appears to be correct.

0121 06y

0122 00y

0123 22

-G0y Stop DDT

A>ED SCAN.ASM/ Re-edit the source program, and make both changes

“NSUBy
*OLTY
ctl-Z SUB C ;LARGER VALUE IN C?
*SSUB1ZCMP1ZOLTy
CMP C ;LARGER VALUE IN C?
JNC NFOUND ;JUMP IF LARGER VALUENOT FOUND
*SNC1ZC1ZOLTy
JC NFOUND ;JUMP IF LARGER VALUENOT FOUND

*E;
Re-assemble, selecting source from disk A

A>ASM SCAN.AAZy «—Hex to disk A
Print to Z (selects no print file)

CP/M ASSEMBLER VER 1.0
0122

002H USE FACTOR
END OF ASSEMBLY

86

A>DDT SCAN.HEX; Re-run debugger to check changes

DDT VER 1.0
NEXT PC
0121 0000
-L116y
0116 JMP 0000 Check to ensure end is still at 116H
0119 STAX B
011A NOP
011B INR B
- {rubout)

-G100,1164 Go from beginning with breakpoint at end

*0116 Breakpoint reached
-D121y Look at "LARGE"

—— Correct value computed
0121 Q<00 22 21 00 02 7E EB77 13 23 EBCB 78 B1 .. 'I.. . W.#..X.
0130 C2 27 01 C303 29 00 OO 00 OO OO OO OO OO OO OO ."...)..vevn...
0140 00 00 00 00 OO OO OO OO OO OO OO OO OO OO OO OOenn...

- (rubout) Abortslong type-out

@g Stop DDT, debug session complete.

87

CP/M 2 System Interface

5.1 Introduction

This chapter describes CP/M, release 2, system organization including the structure
of memory and system entry points. The intention is to provide necessary information
required to write programs that operate under CP/M and that use the peripheral and disk
[/O facilities of the system.

CP/M islogicalydivided intofour parts, called the Basic1/O System (B1OS) the Basic
Disk Operating System (BDOS), the Console Command Processor (CCP), and the
Transient Program Area(TPA). The BIOSisa hardware-dependent module that defines
the exact low level interface with a particular computer system that is necessary for
peripheral device l/O. Although astandard BIOSis supplied by Digital Research, explicit
instructions are provided for field reconfiguration of the BIOS to match nearly any
hardware environment (seeChapter 6). The BIOSand BDOSarelogically combined into
a single module with a common entry point and referred to as the FDOS. The CCPisa
distinct program that uses the FDOS to provide a human-oriented interface with the
information that iscataloged on the backup storage device. The TPA isan areaof memory
(i.e., the portion that is not used by the FDOS and CCP) where various nonresident
operating system commands and user programs are executed. The lower portion of
memory is reserved for system information and is detailed in later sections. Memory
organization of the CP/M system is shown below.

High
Memory FDOS (BDOS+BIOS)
FBASE:

ccpP
CBASE:

TPA
TBASE:

System Parameters

BOOT:

89

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and FBASE
vary from version to version and are described fully in Chapter 6. All standard CP/M
versions, however, assume BOOT = 0000H, which isthe basedf random access memory.
The machine code found at location BOOT performs asystem " warmstart,” which loads
and initializes the programs and variables necessary to return control to the CCP. Thus,
transient programs need only jump to location BOOT to return control to CP/M at the
command level. Further, thestandard versionsassume TBASE = BOOT+0100H, whichis
normally location 0100H. The principa entry point to the FDOS is at location
BOOT+0005H (normally 0005H) where a jump to FBASE isfound. The addressfield at
BOOT+0006H (normally 0006H) contains the value of FBASE and can be used to
determine the size of available memory, assuming that the CCP is being overlayed by a
transient program.

Transient programs are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each prompt. Each
command line takes one of the forms:

command
command fiiel

command file1 file2

where " command" is either a built-in function such as DIR or TYPE or the name of a
transient command or program. If the command is a built-in function of CP/M, it is
executed immediately. Otherwise, the CCP searches the currently addressed disk for a
file by the name

command.COM

If the fileis found, it isassumed to be amemory image of a program that executesin the
TPA and thus implicitly originates at TBASE in memory. The CCP loads the COM file
from the disk into memory starting at TBASE and can extend up to CBASE.

If thecommand isfollowed by one or two file specifications, the CCP preparesone or
two filecontrol block (FCB) namesin the system parameter area. Theseoptional FCBs are
in the form necessary to access files through the FDOS and are described in the next
section.

The transient program receivescontrol from the CCPand beginsexecution, using the
I/O facilities of the FDOS. The transient program is*called” from the CCP. Thus, it can
simply returntothe CCP upon completion of itsprocessingorcan jump to BOOT to pass
control back to CP/M. In the first case, the transient program must not use memory
above CBASE, while in the latter case, memory up through FBASE-1 can be used.

The transient program can use the CP/M 11O facilities to communicate with the
operator's console and peripheral devices, including the disk subsystem. The /O system
is accessed by passing afunction number and an information address to CP/M through
the FDOS entry point at BOOT+0005H. In the case of a disk read, for example, the
transient program sends the number corresponding toadisk read, along with theaddress
of an FCB to the CP/M FDOS. The FDOS, in turn, performs the operation and returns
with either adisk read completion indication or an error number indicating that the disk
read was unsuccessful.

90

5.2 Operating System Call Conventions

This section provides detailed information for performing direct operating system
calls from user programs. Many of the functions listed below, however, are accessed
more simply through the /O macrolibrary provided with the M AC macro assembler and
listed in the Digital Research manual entitled, MAC Macro Assembler: Language Manual and
Applications Guide.

CP/M facilities that areavailablefor access by transient programsfall intotwogeneral
categories: simple device I/O and disk file /O. The simple device operations include:
Read a Console Character
Write a Console Character
Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character
Get or Set /O Status
Print Console Buffer
Read Console Buffer

Interrogate Console Ready
The FDOS operations that perform disk [/O are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

Set/Reset File Indicators

91

As mentioned above, access to the FDOS functions is accomplished by passing a
function number and information address through the primary point at location
BOOT+0005H. In general, the function number is passed in register C with theinforma-
tion address in thedouble byte pair DE. Single bytevaluesarereturned in register A, with
double byte values returned in HL {a zero value is returned when the function number is
out of range). For reasons of compatibility, register A =L and register B =H upon return
in all cases. The user should note that the register passing conventions of CP/M agree
with those of Intel's PL/M systems programming language. CP/M functions and their
numbers are listed below

0 System Reset 19 Delete File

1 Console Input 20 Read Sequential

2 Console Output 21 Write Sequential

3 Reader Input 22 Make File

4 Punch Output 23 Rename File

5 List Output 24 Return Login Vector

6 Direct Console I/O 25 Return Current Disk

7 Get /O Byte 26 Set DMA Address

8 Set /O Byte 27 Get AddriAlloc)

9 Print String 28 Write Protect Disk
10 Read Console Buffer 29 Get R/O Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next 37 Reset Drive

40 Write Random with Zero Fill

(Functions 28 and 32 should be avoided in application programs to maintain upward
compatibility with CP/M.)

Upon entry to a transient program, the CCP leaves the stack pointer set to an
eight-level stack area with the CCPreturn address pushed onto the stack, leaving seven
levels before overflow occurs. Although this stack is usually not used by a transient
program (i.e., most transientsreturn to the CCP through a jump tolocation 0000H), itis
sufficiently large to make CP/M system calls since the FDOS switchesto alocal stack at
system entry. The assembly language program segment below, for example, reads
characters continuously until an asterisk isencountered, at which timecontrol returnsto
the CCP (assuming a standard CP/M system with BOOT = 0000H).

BDOS EQU 0005H ;STANDARD CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION
ORG 0100H ;BASE OF TPA
NEXTC: MVI C,CONIN ;READ NEXT CHARACTER
CALL BDOS ;RETURN CHARACTER IN <A>
CPI ™ ;END OF PROCESSING?
INZ NEXTC ;LOOP IF NOT
RET ;RETURN TO CCP
END

92

CP/M implements a named filestructureon each disk, providing alogical organization
that allows any particular filetocontainany number of recordsfrom completely empty to
the full capacity of the drive. Each drive islogically distinct with adisk directory and file
data area. The disk file names are in three parts: the drive select code, the filename
consisting of oneto eight nonblankcharacters, and thefiletype consisting of zerotothree
nonblank characters. The filetype names the generic category of a particular file, while
the filename distinguishes individual files in each category. The filetypes listed below
name a few generic categories that have been established, although they are somewhat

arbitrary.

ASM Assembler Source PLI PL/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol Fle

COM Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each"'line" of the
source file is followed by a carriage-return line-feed sequence (0DH followed by 0 AH).
Thus one 128-byte CP/M record could contain several lines of source text. Theend of an
ASCII fileisdenoted by acontrol-Z character (1AH) or areal end-of-filereturned by the
CPI/M read operation. Control-Z characters embedded within machine code files (e.g.,
COM files) areignored, however, and theend-of-filecondition returned by CP/M is used
to terminate read operations.

Filesin CP/M can bethought of asasequence of up to65536 recordsof 128 bytes each,
numbered from 0 through 65535, thus allowing a maximum of 8 megabytes per file.
However, the user should note that although the records may be considered logically
contiguous, they may not be physically contiguous in the disk data area. Internally, all
filesare divided into 16K byte segments called logical extents, so that counters are easily
maintained as 8-bit values. The division into extents is discussed in the paragraphs that
follow; however, they are not particularly significant for the programmer, since each
extent is automatically accessed in both sequential and random access modes.

In the file operations starting with function number 15, DE usually addresses a file
control block (FCB}. Transient programs often use the default file control block area
reserved by CP/M at location BOOT+005CH (normally 005CH) for simple file opera-
tions. The basic unit of fileinformation isa128-byte record used for al file operations;
thus, a default location for disk 1/O is provided by CP/M at location BOOT+0080H
(normally 0080H), which is the initial default DMA address (seefunction 26). All direc-
tory operations take placein areserved area that does not affect write buffers as wasthe
casein releasef, with the exception of Search First and Search Next, where compatibility
is required.

The FCB dataarea consists of asequence of 33 bytes for sequential accessand a series
of 36 bytes in the case when the file is accessed randomly. The default FCB normally
located at 005CH can be used for random access files. since the three bytes starting at
BOOT+007DH are available for this purpose. The FCB format is shown with the

following fields:

[dr [f1 [f2 |/ /8 [t1 [t2 [t3 [ex [s1 [s2 |rc [dO |/ Adncr (rO [r1 |r2]
00 01 02 ... 08 09 10 11 12 13 14 15 16 .. 31 32 33 34 35

93

where

dr drive code (0-16)
0 => use default drive for file
I => auto disk select drive A,
2 =>auto disk select drive B,

16=>> auto disk select drive P.

f1...18 contain the file name in ASCII upper case, with
high bit = 0

1,12,13 contain thefile typein ASCII upper case, with high
bit = 0 t1’, t2°, and t3’ denote the bit of these
positions,

t1’ = 1 =>Read/Only file,
t2’ = 1 =>SYSfile, no DIR list

ex contains the current extent number, normally set
to 00 by the user, but in range 0-31 during file /O

s1 reserved for internal system use

s2 reserved for internal system use, set tozeroon call
to OPEN, MAKE, SEARCH

rc record count for extent "ex,"” takes on values from
0-127

d0...dn filled-in by CP/M, reserved for system use

cr current record to read or write in asequential file

operation, normally set to zero by user

r0,r1,12 optional random record number in the range 0-
65535, with overflow tor2, r0, r1 constitute a 16-
bit value with low byte r0, and high byte r1

Each file being accessed through CP/M must have a corresponding FCB, which
provides the name and allocation information for all subsequent file operations. When
accessing files, it is the programmer's responsibility tofill the lower 16 bytesof the FCB
and initialize the cr field. Normally, bytes 1 through 11 are set to the ASCII character
values for the file name and file type, while al other fields are zero.

FCBs are stored in adirectory area of the disk, and are brought into central memory
before the programmer proceeds with file operations (see the OPEN and MAKE func-
tions). The memory copy of the FCB is updated as file operations take place and later
recorded permanently on disk at the termination of the file operation (seethe CLOSE
command).

The CCP constructs the first 16 bytes of two optional FCBs for a transient by
scanning the remainder of the line following the transient name, denoted by filel and
file2 in the prototype command line described above, with unspecified fields set to ASCI|
blanks. The first FCB is constructed at location BOOT+005CH and can be used asisfor
subsequent file operations. The second FCB occupiesthedo ...dn portionof thefirst FCB
and must be moved to another area of memory before use. If, for example, the operator

types
PROGNAME B:X.ZOT Y.ZAP

94

thefile PROGNAME.COM isloaded into the TPA and thedefault FCB at BOOT+005CH
isinitialized to drive code 2, file name X, and file type ZOT. The second drive code takes
the default value 0, which is placed at BOOT+006CH, with the file name Y placed into
location BOOT+006DH and file type ZAP located 8 bytes later at BOOT+0075H. All
remaining fields through cr are set to zero. The user should note again that it is the
programmer's responsibility to move this second file name and type to another area,
usually aseparatefilecontrol block, before opening thefile that beginsat BOOT+005CH,
because the open operation will overwrite the second name and type.

If no file names are specified in the original command, the fields beginning at
BOOT+005DH and BOOT+006DH contain blanks. Inall cases, the CCPtranslates|ower
case alphabetics to upper case to be consistent with the CP/M file naming conventions.

As an added convenience, the default buffer areaat location BOOT+0080H isinitial-
ized to thecommand linetail typed by theoperator following the program name. Thefirst
position contains the number of characters, with thecharacters themselvesfollowing the
character count. Given the above command line, the area beginning at BOOT+0080H is
initialized as follows:

BOOT+0080H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +A +B +C +D +E
E e IBI I:I le l.r IZ! IOI rrl [rYl I.I lzr IAI rPl

where the characters are translated to upper case ASCIl with uninitialized memory
following the last valid character. Again, it is the responsibility of the programmer to
extract theinformation from this buffer before any fileoperations are performed, unless
the default DM A address is explicitly changed.

Individual functions are described in detail in the pages that follow.

Function 0: System Reset

Entry Parameters:
Register C: 00H

The system reset function returnscontrol to the CP/M operating system at the CCP
level. The CCP reinitializes the disk subsystem by selecting and logging in disk drive A.
This function has exactly the same effect as a jump to location BOOT.

Function 1: Console Input

Entry Parameters:
Register C: 01H

Returned Value:
Register A: ASCII Character

The console input function reads the next console character to register A. Graphic
characters, along with carriage return, line feed, and back space (ctl-H} are echoed to the

95

console. Tab characters (ctl-1) move the cursor to the next tab stop. A check ismade for
start/stop scroll (ctl-S) and startistop printer echo {(ctl-P). The FDOSdoes not return to

the calling program until a character has been typed, thus suspending execution if a
character is not ready.

Function 2: Console Output

Entry Parameters:
Register C: 02H
Register E: ASCII Character

The ASCII character from register E is sent to the console device. Asin function I,
tabs are expanded and checks are made for startistop scroll and printer echo.

Function 3: Reader Input

Entry Parameters:
Register C: 03H

Returned Value:
Register A: ASCII Character

The Reader Input function reads the next character from the logical reader into

register A (see the IOBYTE definition in Chapter 6).Control does not return until the
character has been read.

' Function 4: Punch Output

Entry Parameters:
Register C: 04H
l Register E: ASCII Character

The Punch Output function sends the character from register E to thelogica punch
device.

Function 5: List Output

Entry Parameters:
Register C: 05H
Register E ASCII Character

The List Output function sends the ASCII character in register E to thelogical listing
device.

96

Function 6: Direct Console /O

Entry Parameters:
Register C: 06H
Register E: OFFH (input) or
char (output)

Returned Value:
Register A: char or status

Direct console IO is supported under CP/M for those specialized applications where
basic console input and output are required. Use of thisfunction should, in general, be
avoided sinceit bypassesall of CP/M’s normal control character functions (e.g., control-S
and control-P). Programs that perform direct 1/O through the BIOS under previous
releases of CP/M, however, should bechanged tousedirect I/ O under BDOSsothat they
can be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal FF, denoting a
consoleinput request, or an ASCII character. If theinput valueisFF, function6 returns
A = 00 if no character is ready, otherwise A contains the next console input character.

If the input value in E is not FF, function 6 assumes that E contains a valid ASCI!
character that is sent to the console.

Function 6 must not be used in conjunction with other console I/O functions.

Function 7: Get 110 Byte

Entry Parameters:
Register C: 07H

Returned Value:
Register A: /O Byte Value

The Get /O Byte function returns the current value of IOBYTE in register A. See
Chapter 6 for IOBY TE definition.

Function 8: Set 110 Byte

Entry Parameters:
Register C: 08H
Register E: 1/O Byte Value

The Set 1:O Bytefunction changes the IOBY TE value to that given in register E

97

Function 9: Print String

Entry Parameters:
Register C: O09H
Registers DE: String Address
i i

The Print String function sends the character string stored in memory at theiocation
given by DE to the console device, until a $ is encountered in the string. Tabs are
expanded as in function 2, and checks are made for start/stop scroll and printer echo.

Function 10: Read Console Buffer

Entry Parameters:
Register C:. 0AH
Registers DE: Buffer Address

Returned Value:
Console Characters in Buffer

The Read Buffer function reads a line of edited console input into abuffer addressed
by registers DE. Console input is terminated when either input buffer overflows or a
carriage return or line feed is typed. The Read Buffer takes the form:

DE:+0 +1 +2 +3 +4 +5 +6 +7 +8 . . .+n
Imx|nc |c1 |c2 |c3 |c4 |c5 |c6 [c7 |...|?7]

where mx isthe maximum number of charactersthat the buffer will hold (1 to255)and nc
is the number of charactersread (set by FDOS upon return), followed by the characters
read from the console. If nc < mx, then uninitialized positions follow the last character,
denoted by ?? in the above figure. A number of control functionsare recognized during

line editing:

rub/del removes and echoes the last character
cti-C reboots when at the beginning of line
ctl-E causes physical end of line

cti-H backspaces one character position

cti-d (line feed) terminates input line

cti-M (return) terminates input line

ctli-R retypes the current line after new line
cti-U removes current line

ctl-X same as ctl-U.

The user should also note that certain functionsthat return the carriage to the leftmost
position {e.g., ctl-X} do so only to the column position where the prompt ended (inearlier

98

releases, the carriage returned to the extreme left margin). This convention makes
operator data input and line correction more legible.

Function 11: Get Console Status

Entry Parameters:
Register C. 0BH

Returned Value:
Register A: Console Status

The Console Status function checks to seeif acharacter hasbeen typed at theconsole.
if acharacter isready, the value OFFH isreturned in register A. Otherwise acoH valueis
returned.

Function 12: Return Verson Number

Entry Parameters:
Register C. oCH

Returned Value:
Registers HL: Version Number

Function 12 provides information that allows version independent programming. A
two-bytevalueisreturned, with H = 00 designating the CP/M release(H = 01 for MP/M),
and L =00 for all releasespreviousto2.0. CP/M 2.0returnsahexadecimal 20 inregister L,
with subsequent version 2 releases in the hexadecimal range 21, 22, through 2F. Using
function 12, for example, the user can write application programs that provide both
sequential and random access functions.

Function 13: Reset Disk System

Entry Parameters:
Register C. ODH

The Reset Disk Functionis used to programmatically restore thefile system toareset
state where al disks are set to readiwrite (seefunctions 28 and 29), only disk drive A is
selected, and the default DMA address is reset to BOOT+0080H. This function can be

used, for example, by an application program that requires a disk change without a
system reboot.

99

Function 14: Select Disk

Entry Parameters:
Register C. ©EH
Register E: Selected Disk

The Select Disk function designates the disk drive named in register E as the default
disk for subsequent file operations, with E=0fordriveA, 1 for driveB, and soon through
15, corresponding to drive P in a full 16 drive system. The driveis placed in an on-line
status, which activatesitsdirectory until the next cold start, warm start, or disk system
reset operation. If thedisk medium ischanged whileit ison-line, thedrive automatically
goesto areadionly statusin a standard CP/M environment (seefunction 28).FCBs that
specify drive code zero (dr = 00H) automatically reference the currently selected default
drive. Drive code values between 1 and 16, however, ignore the selected default driveand
directly reference drives A through P.

Function 15: Open File

Entry Parameters:
Register C:. O0OFH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Open File operation is used to activate a file that currently exists in the disk
directory for the currently active user number. The FDOS scans the referenced disk
directory for a match in positions 1 through 14 of the FCB referenced by DE (bytest is
automatically zeroed), where an ASCII question mark (3FH) matches any directory
character in any of these positions. Normally, no question marksare included, and bytes
ex and s2 of the FCB are zero.

If adirectory element is matched, the relevant directory information is copied into
bytesdo throughdn of the FCB, thusallowing accesstothefilesthrough subsequent read
and write operations. The user should note that an existing file must not be accessed until
a successful open operation is completed. Upon return, the open function returns a
directory code with the value 0 through 3 if the open was successful or oFFH (255
decimal) if the file cannot befound. If question marks occur in the FCB, thefirst matching
FCB is activated. Note that the current record (cr) must be zeroed by the program if the
file is to be accessed sequentially from the first record.

100

Function 16: Close File

Entry Parameters:
Register C: 10H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The CloseFilefunction performstheinverse of the open filefunction. Given that the
FCB addressed by DE has been previously activated through an open or make function
(seefunctions 15 and 22), the close function permanently records the new FCB in the
referenceddisk directory. The FCB matching process for the closeisidentical totheopen
function. Thedirectory code returned for asuccessful closeoperationis0, 1, 2, or 3, while
a0FFH (255decimal) is returned if the file name cannot befound in thedirectory. A file
need not be closed if only read operations have taken place. If write operations have
occurred, however, the close operation is necessary to record the new directory informa-

tion permanently.

Function 17: Search for Firg

Entry Parameters
Register C:. 11H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Search First scans the directory for amatch with thefile given by the FCB addressed
by DE. The value 255 (hexadecimal FF} isreturned if thefileis not found; otherwise, 0,1,
2, or 3isreturned indicating thefileis present. When thefileisfound, thecurrent DMA
address is filled with the record containing the directory entry, and the relative starting
positionis A * 32 (i.e., rotate the A register left 5 bits, or ADD A fivetimes). Although not
normally required for application programs, the directory information can be extracted
from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any position from {1 through
ex matchesthe corresponding field of any directory entry on thedefault or auto-selected
disk drive. If thedr field containsan ASCII question mark, theautodisk select function is
disabled and the default disk issearched, with thesearch functionreturning any matched
entry, allocated or free, belonging to any user number. This latter function is not
normally used by application programs, but it allows complete flexibility to scan all
current directory values. If thedr field is not aquestion mark, thes2 byteisautomatically

zeroed.

101

Function 18: Search for Next

Entry Parameters:
Register C: 12H

Returned Value:
Register A: Directory Code

The Search Next function is similar to the Search First function, except that the
directory scan continues from thelast matched entry. Similar tofunction 17, function 18
returns the decimal value 255 in A when no more directory items match.'

Function 19: Delete File

Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Delete File function removes files that match the FCB addressed by DE. The
filename and type may contain ambiguous references (i.e., question marks in various
positions), but the drive select code cannot be ambiguous, as in the Search and Search
Next functions.

Function 19 returns a decimal 255 if the referenced file or files cannot be found;
otherwise, a value in the range 0 to 3 is returned.

Function 20: Read Sequential

Entry Parameters:
Register C: 14H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make
function (numbers 15 and 22), the Read Sequential function reads the next 128-byte
record from the file into memory at the current DMA address. The record isread from
position cr of the extent, and the cr field isautomatically incremented to the next record
position. If thecr field overflows, the next logical extent isautomatically opened and the
cr field is reset to zero in preparation for the next read operation. The value 00H is
returned in the A register if the read operation was successful, whileanonzero valueis
returned if no data exist at the next record position (e.g., end-of-file occurs).

102

Function 21: Write Sequential

Entry Parameters:
Register C: 15H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make
function (numbers 15 and 22), the Write Sequential function writes the 128-byte data
record at the current DMA addressto thefile named by the FCB. The record is placed at
position cr of the file, and the cr field is automatically incremented to the next record
position. If the cr field overflows, the next logical extent isautomatically opened and the
cr fieldisreset to zero in preparation for the next write operation. Write operations can
take place into an existing file, in which case, newly written records overlay those that
already exist in thefile. Register A = 00H upon return from asuccessful write operation,
while a nonzero value indicates an unsuccessful write caused by a full disk.

Function 22: Make File

Entry Parameters:
Register C: 16H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code
i i
The Make Fileoperation is similar to the open fileoperation except that the FCB must
name a file that does not exist in the currently referenced disk directory (i.e., the one
named explicitly by a nonzero dr code or the defaultdisk if dr iszero). The FDOScreates
the file and initializes both the directory and main memory value to an empty file. The
programmer must ensure that no duplicate file names occur, and a preceding delete
operation issufficient if thereisany possibility of duplication. Upon return, register A =0,
1, 2, or 3if the operation was successful and 0FFH (255decimal) if no moredirectory space
is available. The make function has the side effect of activating the FCB and thus a

subsequent open is not necessary.

Function 23: Rename File

Entry Parameters:
Register C: 17H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Rename function uses the FCB addressed by DE to change all occurrences of the
file named in thefirst 16 bytesto the file named in the second 16 bytes. Thedrivecode dr

103

at position 0 is used to select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A isset toavalue
between 0 and 3 if the rename wassuccessful and OFFH (255decimal) if thefirst file name
could not be found in the directory scan.

Function 24: Return Log-in Vector

Entry Parameters:
Register C: 18H

Returned Value:
Registers HL: Log-in Vector

The log-in vector value returned by CP/M is a 16-bit value in HL, where the least
significant bit of L correspondstothefirstdrive Aandthehighorder bit of H corresponds
to thesixteenth drive, labeled P. A 0 bitindicatesthat thedriveisnot on-line, whilea1 bit
marks a drive that is actively on-line as a result of an explicit disk drive selection or an
implicit drive select caused by afile operation that specified a nonzerodr field. The user
should note that compatibility is maintained with earlier releases, since registers4 and L
contain the same values upon return.

Function 25: Return Current Disk

Entry Parameters:
Register C: 19H

Returned Value:
Register A: Current Disk

Function 25 returnsthe currently selected default disk number in register A. Thedisk
numbers range from 0 through 15 corresponding to drives A through P.

Function 26: Set DM A Address

Entry Parameters:
Register C: 1AH
Registers DE: DMA Address

DMA 1s an acronym for Direct Memory Address, which i1s often used in connection
with disk controllers that directly access the memory of the mainframe computer to
transfer data to and from the disk subsystem Although many computer systems use
non-DMA access(i e, the dataaretransferred through programmed l/O operations), the
DMA address has, in CP/M, come to mean the address at which the128-byte datarecord
resides before a disk write and after a disk read. Upon cold start, warm start, or disk

104

system reset, the DMA address is automatically set to BOOT+0080H. The Set DMA
function, however, can be used to change this default value to address another area of
memory where the data records reside. Thus, the DMA address becomes the value
specified by DE until it is changed by a subsequent Set DMA function, cold start, warm
start, or disk system reset.

Function 27: Get ADDR(Alloc)

Entry Parameters:
Register C:. 1BH

Returned Value:
Registers HL: ALLOC Address

An allocation vector is maintained in main memory for each on-line disk drive.
Various system programs use the information provided by the allocation vector to
determine the amount of remaining storage (see the STAT program). Function 27
returns the base address of the allocation vector for the currently selected disk drive.
However, the allocation information may beinvalid if the selected disk has been marked
read/only. Although this function is not normally used by application programs, addi-
tional details of the allocation vector are found in Chapter 6.

Function 28: Write Protect Disk

Entry Parameters:
Register C: 1CH

Thedisk write protect function providestemporary write protection for thecurrently
selected disk. Any attempt to write to the disk before the next cold or warm start

operation produces the message:

BDOS ERR on d: R/O

Function 29: Get Read/Only Vector

Entry Parameters:
Register C:. 1DH

Returned Value:
Registers HL: R/O Vector Value

Function 29 returns a bit vector in register pair HL, which indicates drives that have
the temporary read-only bit set Asin function 24, theleast significant bit correspondsto
drive A, whilethe most significant bit correspondstodrive P The R/O bit isset either by
an explicit call to function 28 or by theautomatic softwaremechanismswithin CP/M that

detect changed disks

105

Function 30: Set File Attributes

Entry Parameters:
Register C: 1EH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Set File Attributes function allows programmatic manipulation of permanent
indicators attached to files. In particular, the R/O and System attributes (t1’ and t2’) can
be set or reset. The DE pair addresses an unambiguous file name with the appropriate
attributes set or reset. Function 30 searches for a match and changes the matched
directory entry to contain the selected indicators. Indicators f1” through f4" are not
currently used, but may be useful for applications programs, since they are not involved
in the matching process during file open and close operations. Indicators £5’ through £8’
and t3’ are reserved for future system expansion.

Function 31: Get ADDR(Disk Parms)

Entry Parameters:
Register C: 1FH

Returned Value:
Registers HL: DPB Address

Theaddress of the BIOS resident disk parameter block isreturned in HL asaresult of
this function call. This address can be used for either of two purposes. First, the disk
parameter values can be extracted for display and space computation purposes, or
transient programs can dynamically change the values of current disk parameters when
the disk environment changes, if required. Normally, application programs will not
require this facility.

Function 32: Set/Get User Code

Entry Parameters:
Register C: 20H
Register EE OFFH (get) or
User Code (set)

Returned Value:
Register A: Current Code or
(novalue)

An application program can change or interrogate the currently active user number
by calling function 32. If register E = OFFH, the value of the current user number is

106

returnedin register A, wherethevalueisin therangeof 0to15.If register E isnot 0FFH,
the current user number is changed to the value of E (modulo 16)}.

Function 33: Read Random

Entry Parameters:
Register C: 21H
Registers DE: FCB Address

E Returned Value:
; Register A: Return Code I

The Read Random function issimilar to the sequential file read operation of previous
releases, except that the read operation takes place at a particular record number, selected
by the 24-bit value constructed from the 3-bytefield following the FCB (bytepositions ¢
at 33, r1 at 34, and r2 at 35). The user should note that the sequence of 24 bitsisstored
with least significant byte first (r0), middle byte next (r1}, and high bytelast (r2). CP/M
does not reference byte r2, except in computing the size of afile (function 35). Byte r2
must be zero, however, since a nonzero value indicates overflow past the end of file.

Thus, ther0, r1 byte pair is treated asadouble-byte, or “word” value, which contains
the record to read. This value ranges from 0 to 65535, providing access to any particular
record of the 8-megabyte file. To process a file using random access, the base extent
(extent 0) must first be opened. Although the base extent may or may not contain any
allocated data, thisensuresthat thefileis properly recorded in thedirectory andisvisible
in DIR requests. The selected record number isthen stored in therandom record field (r0,
r1), and the BDOS iscalled toread therecord. Upon return from thecall, register A either
contains an error code, as listed below, or the value 00, indicating the operation was
successful. In the latter case, the current DMA address contains the randomly accessed
record. The user should note that contrary to the sequential read operation, the record
number is not. advanced. Thus, subsequent random read operations continue to read the
same record.

Upon each random read operation, the logical extent and current record values are
automatically set. Thus, the file can be sequentially read or written, starting from the
current randomly accessed position. However, the user should note that, in thiscase, the
last randomly read record will be reread asone switchesfrom random mode tosequential
read and the last record will be rewritten asone switches to asequential writeoperation.
The user can, of course, simpiy advance the random record position following each
random read or write to obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are listed below.

01 reading unwritten data

02 {not returned in random mode)
03 cannot close current extent

04 seek to unwritten extent

05 (not returned in read mode)

06 seek past physical end of disk
Error codes 01 and 04 occur when a random read operation accesses a data block that

has not been previcusly written or an extent that has not been created, which are
equivalent conditions Error code 03 does not normally occur under proper system

107

operation If it does, it can becleared by simply rereading or reopening extent zeroaslong
as the disk s not physically write protected Error code 06 occurs whenever byter2 is
nonzero under the current 2 0 release Normally, nonzero return codes can be treated as
missing data, with zero return codes indicating operation complete

Function 34: Write Random

Entry Parameters.
Register C: 22H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write Random operation isinitiated similarly to the Read Random call, except
that data are written to the disk from the current DMA address. Further, if the disk
extent or data block that isthetarget of thewrite has not yet been allocated, theallocation
isperformed before the write operation continues. As in the Read Random operation, the
random record number is not changed asa result of the write. The logical extent number
and current record positions of thefile control block are set to correspond to the random
record that is being written. Again, sequential read or write operationscan begin follow-
ing arandom write, with the notation that thecurrently addressed record iseither read or
rewritten again as the sequential operation begins. The user can also simply advance the
random record position following each write to get the effect of a sequential write
operation. The user should notethat, in articular, readingor writing thelast record of an
extent in random mode does not cause an automatic extent switch asit doesin sequential
mode.

The error codes returned by a random write are identical to the random read opera-
tion with the addition of error code 05, which indicates that a new extent cannot be
created as a result of directorv overflow

Function 35: Compute File Size

Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value:

Randorn Record Fieid Set
i i

When computing the size of afile, the DE register pair addresses an FCB in random
mode format (bytesr0, r1, and r2 are present). The FCB contains an unambiguous file
name that is used ir: thedirectory scan Upon return, the random record bytes contain the
"virtual" file size, which is, in effect, the record address of therecord following theend of
thefile Following a call tofunction 35, if thehigh record byterz1s 01, thefilecontains the
maximum record count 65536 Otherwise, bytesrC and r| constitute aisé-bit value(ro s
the least significant byte, as before), which is the file size

108

Datacan be appended to theend of an existing file by simply calling function 35 toset
the random record position totheend of fileand then performingasequence of random
writes starting at the preset record address.

The virtual size of a file corresponds to the physical size when the file is written
sequentially. If thefile wascreated in random modeand “holes” exist intheallocation, the
file may in fact contain fewer records than the size indicates. For example, if only the last
record of an 8-megabyte file is written in random modei.e., record number 65535}, the
virtual size is 65536 records, although only one block of data is actually allocated.

Function 36: Set Random Kecord

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

The Set Random Record function causes the BDOS automatically to produce the
random record position from a file that has been read or written sequentially to a
particular point. The function can be useful in two ways.

First, it is often necessary initially to read and scan a sequential file to extract the
positions of various "key" fields. As each key is encountered, function 36 is called to
compute the random record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into atable with the key for
later retrieval. After scanning the entire file and tabulating the keys and their record
numbers, the user can move instantly to a particular keyed record by performing a
random read, using thecorresponding random record number that wassaved earlier. The
scheme is easily generalized for variable record lengths, since the program need only
store the buffer-relative byte position along with the key and record number tofind the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a sequential read or write
over torandom read or write. A fileissequentially accessed toaparticular pointinthefile,
function 36 is called, which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

Function 37: Reset Drive

Entry Parameters:
Register C: 25H
Registers DE. Drive Vector

Returned Value:

Register A: 00H
j

The Reset Drivefunction allows resettingof specifieddrives. The passed parameter is
a 16 bit vector of drives to be reset; the least significant bit isdrive A..
To maintain compatibility with MP/M, CP/M returns a zero value.

109

Function 40: Write Random With Zero Fill

Ertry Parameters:
Register C: 28H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write Random With Zero Fill operation is similar to Function 34, with the
exception that a previously unallocated block is filled with zeros before the data are
written.

5.3 A Sample File-to-File Copy Program

The program shown below provides a relatively simple example of file operations. The
program source file is created as COPY.ASM using the CP/M ED program and then
assembled using ASM or MAC, resulting in a HEX file. The LOAD program is used to
produce a COPY.COM file, which executes directly under the CCP. The program begins
by setting the stack pointer to alocal area and proceeds to move the second name from the
default area at 006CH to a 33-byte file control block calied DFCB. The DFCB is then
prepared for file operations by clearing the current record field. At this point, the source
and destination FCBs are ready for processing, since the SFCB at 005CH is properly set
up by the CCP upon entry to the COPY program. That s, the first name is placed into the
default FCB, with the proper fields zeroed, including the current record field at 007CH.
The program continues by opening the source ftile, deleting any existing destination file,
and creating the destination file. If all this is successful, the program loops at the label
COPY until each record has been read from the source file and placed into the destination
file. Upon completion of the data transfer, the destination file is closed and the program
returns to the CCP command level by jumping to BOOT.

sample file-to-file copy progra
at the ccp level, the command
; Copy ax.y biu.v

copies the file named x.y from drive
a to a file named u.v. on drive b.

0000 = boot equ 0000h : system reboot
0005 = bdos equ 0005h ; bdos entry point
005¢ = fcbl egu 005ch . first file name
005¢c = sfco equ fcbl . source fcb

006¢c = fcb2 equ 006ch ; second file name
0080 = dbuff egu 008Ch . default buffer
0100 = tpa equ 0100h : beginning of tpa
0009 = printf equ 9 . print buffer func#
000f = openf equ 15 ; open file func#
0010 = closef equ 16 . close file func#

110

0013 =
0014 =
0015 =
0016 =

0100
0100 311b02

0103 0ell
0105 116¢00
0108 21dal1
010b 1a
010c 13
010d 77
010e 23

010f 0d
A110 A20KkN1

0113 af
0114 32fal1

0117 115¢00
O1t1a cd6901
O11d 118701
0120 3¢

0121 ¢cc6101

0124 11dal01
0127 ¢cd7301

012a 11dali
012d cd8201
130 119601
0133 3¢

0134 cc6101

0137 115¢00
013a ¢cd7801
013d b7

013e ¢25101

0141 11dal1
0144 ¢cd7d01
0147 118801
0t4da b7

014b c46101

deletef
readf
writef
makef

mfcb:

copy:

equ 18 ; delete file func#
equ 20 ; sequential read
equ 21 ; sequential write
equ 22 ; make file func#

: beginning of tpa
. focal stack

org toa
Ixi sp,stack

move second file name to dfch
mvi ¢,16 c half an fcb

ixi d,fch2 ; source of move
ixi h,dfch ; destination fcb
ldax d : source fcb

inx d ; ready next
mov m,a . dest fcb

inx h ; ready next

dcr ¢ ; count 16..0

jnz micb . foop 16 times

name has been removed, zero cr
Xra & ca=00h
sta dfcber ccurrentrec = 0

source and destination fcb’s ready

ixi d,sfch ; source file

call open ; error if 255

Ixi d,nofile ; ready message
inr a . 255 becomes O
n7 finis cdone if no file

source file open, prep destination

ixi d,dfch . destination

call delete . remove if present
Ixi d,dich ; destination

call make ; create the file

Ixi d,nodir ; ready message

inr a ; 255 becomes O

cz finis ; done if no dir space

source file open, dest file open
copy until end of file on source

ixi dsfch ; source

cali read . read next record
ora a s end of file?

jnz eofile ; SKip write if so

not end of file, write the record

Ixi ddfch ; destination
call write . write record
i d,space ; ready message
ora a ; 00 if write ok
cnz finis cend if so

111

112

014e c33701

0151 11da01
0154 cdbel1
0157 21bb01
015a 3¢

015b ¢cB6101

015e 11ccO1

0161 Ce09
0163 cd0500
0166 ¢30000

0169 0e0f
016b ¢30500

016e 0el10
0170 ¢30500

0173 0el13
0175 ¢30500

0178 Get4
017a ¢30500

017d Oel5
017f ¢30500

0182 Cel6
0184 ¢30500

0187 6ebf20f
0196 6e61209
01a9 6f7574f
01bb 7772685
O1cc 6361700

O1da
O1fa =
01fb

021b

eofile:

finis:

open:

close:

delete

read:

write:

make:

nofile:
nodir:
space:
wrprot:

normal:

dfcb:
dfcbcer

stack:

jmp copy ; loop until eof

: end of file, close destination

Ixi d,dfcb ; destination

call close ;. 255 if error

IXi h,wrprot ; ready message
inr a ; 255 becomes 00
cz finis ; shouldn't happen

copy operation complete, end
Ixi d,normal ; ready message

; write message given by de, reboot

mvi ¢,printf
call bdos ; write message
jmp boot . reboot system

system interface subroutines
(all return directiy from bdos)

rnvi c,openf
jimp bdos

mvi c¢,closef
jrnp bdos

rnvi ¢, deletef
jmp bdos

rnvi c,readf
jmp bdos

mvi c¢,writef
jmp bdos

mvi c¢,makef
jmp bdos

console messages

db 'no source file$'

db 'no directory space$'
db 'out of data space$'
db ‘'write protected?$’
db 'copy complete$’

data areas
ds 33 ; destination fcb
equ dfcb+32 ; current record

ds 32 ;16 level stack

end

The user should notethat there areseveral simplifications in this particular program.
First, there are no checks for invalid file names that could, for example, contain ambigu-
ous references. This situation could be detected by scanning the 32-byte default area
starting at location 605CH for ASCII question marks. A check should also be made to
ensure that thefilenameshave, in fact, been included {check locations 005DH and 006 DH
for nonblank ASCII characters). Finally, acheck should be made to ensure that thesoyrce
and destination file names are different. An improvement in speed could be obtained by
buffering more data on each read operatior. O ne ceuid, for example, determine thesize
of memory by fetching FBASE from location ¢C06H and using the entire remaining
portion of memory for adata buffer.In thiscase, the programmer simply resetsthe DMA
address to the next successive 128-byte area before each read. Upon writing to the
destination file, the DMA address is reset to the beginning o the buffer and incremented
by 128 bytes to the end as each record is transferred to the destination file.

5.4 A Sampile File Dump Utility

The file dump program shown below 1s slightly more complex than the simple copy
program given in the previous section. The dump program readsan input file, specified in
the CCP command line, and displays the content of each recorb:n hexadecimal format at
the console Note that the dump program saves the CCP’s stack upon entry, resets the
stack to a Locd area, and restores the CCP‘s stack before returning directly tothe CCP

Thus, the dump program does not perform and warm start at the end of processing

; DUMP program reads input file and displays hex

data
0100 org 100h
0005 = bdos equ 0005h = ;bdos entry point
0001 = cons equ 1 ;read console
0002 = typef equ 2 type function
0009 = printf equ 9 ;buffer print entry
000b = brif eau 11 :break key function
(true if char
000f = opent equ 15 ;file open
0014 = readf equ 20 ;read function
005¢ = fcb equ 5ch ;filecontrol block
;address
0080 = buff equ 80h ;input disk buffer
;address
non graphic characters
000d = cr equ Odh ;carriage return
000a = H equ Oah Hine feed
, file control block definitions
005¢ = fcbdn equ fcb+0 :disk name
0056d = fcbin egu fcb+1 file name
0065 = fehft equ fchb+9 ;disk fiie type (3
;characters)
0068 = fcbrl eqgu fcb+12 :file's current red
;number
006b = fcbrc eqgu fcb+15 :file's record count (Gto
;1281128)
007c¢ = fcber’ equ fcb+32 current (next) record
cnumber (O

113

114

007d =

0100 210000

0103 39

0104 221502

0107 315702

01Ca cdcit
010d Feff
010f c21b01

0112 111301
0115 cd9c01
0118 ¢35101

011b 3e80
011d 321302

0120 210000
0123 e5
0124 cda201
0127 et
0138 dab101
012b 47
012c 7d
012d e60f
012§ c24401

0132 cd7201

0135 cd5901

0138 of
0139 da5101

013c 7¢
013d cd8f01
0140 7d
0141 cd8fo1

0144 283

fcbin

openok:

gloop:

nonurn:

equ fcb+33 ;fcb length

set up stack

Ixi hO

dad sp

entry stack pointer in hl from the ccp
shld oldsp

set sp to local stack area (restored at
finis)

ixi sp,stktop

read and print successive buffers
call setup ;set up input file

cpi 255 ;255 if file not present
jnz openok ;skip if open is ok

file not there, give error message and
return

ixi d,opnmsg
call err

imp finis ;to return

:open operation ok, set buffer index {o
;end

mvi a,80h

sta ibp ;set buffer pointer to 80h
hi contains next address to print

Ixi h0 ;start with 0600

pushh ;save line position

call gnb

pop h ;recall line position

jc finis ;carry set by gnb if end
file

rnov b,a

print hex values
check for line fold

mov a,|l

ani Ofh ;check icw 4 bits
jnz nonurn

print line number

call crif

check for break key

call break

accum Isb = 1 if character ready

rrc ;into carry

jc finis ;don’t print any more

rnov a,h
call phex
mov a,|
call phex

inx h ;to next line number

0145 3e20
0147 cd6501
014a 78
014b cd8f01
014e ¢c32301

0151 ¢d7201
0154 2a1502
0157 19

0158 ¢9

0159 e5d5¢5

015¢ 0e0b
015e cd0500
0161 cldlel

0164 c9

0165 ebd5c5
0168 0el02
016a 5f
016b cd0500
016e c1dlet
0171 ¢9

0172 3e0d
0174 cd6501
0177 3ela
0179 cds501
017¢c ¢c9

017d e60f
017f fe0a
0181 d28901

0184 ¢630
(0186 c38b01

0189 ¢637

finis:

break:

pchar:

crif:

pnib:

p10:

mvi a,""
call pchar
mov a,b
call phex
jmp gloop

end of dump, return to cco

(note that a jmp to 0000h reboots)
call crif

Ihid oldsp

sphl

stack pointer contains ccp's stack
location

ret ;to the ccp

subroutines

;check break key (actually any key will
;do)

push h! push d! push b; environment
; saved

mvi c¢,brkf

call bdos

pop b! pop d! pop h; environment
restored

ret

;print a character

push h! push d! push b; saved
mvi c,typef

mov e,a

call bdos

pop b! pop d! pop h; restored
ret

mvi a,cr

call pchar
mvi a,lf

call pchar
ret

;print nibble in reg a

ani Ofh ;low 4 bits
cpi 10

jnc p10

less than or equal to 9
adi '0'

jmp prn

greater or equal to 10
adi 'a'-10

115

116

018b ¢d6501
018e ¢9

018f 15

0190 Of
0191 of
0192 Of
0193 of
0194 ¢d7d01
0197 f1
0198 cd7d01
018b ¢c9

019c¢ 0e09

019e ¢d0500
Otal c@

01a2 3a1302
01a5 fe80
01a7 c2b301

Otaa cdceO1
0t1ad b7
Ot1ae cab301
01b1 37
01b2 ¢c8
01b3 5f
01b4 1600
01b6 3¢
01b7 321302
O1ba 218000
01bd 19
Otbe 7e

01bf b7
01c0 c9

01c1 af

prn:

phex:

err:

gnb:

go:

setup:

call pchar
ret

;print hex char in reg a

pushpsw

rrc

rrc

rrc

rrc

call pnib ;print nibble
pop psw

call pnib

ret

;print error message

d,e addresses message ending with “$”

mvi c,printf ;print buffer
;function

call bdos

ret

;get next byte

Ida ibp

cpi 80h

jnz go

read another buffer

call diskr

ora a ;zero value if read ok
jz g0 :for another byte

end of data, return with carry set for eof
stc

ret

;read the byte at buff+reg a

mov e,a :Is byte of buffer index

mvi d,0 ;double precision
;index to de

inr a sindex=index+1

sta ibp ;back to memory

pointer is incremented

save the current file address

Ixi h,buff

dad d

absolute character address is in hi
mov a,m

byte is in the accumulator

ora a ;reset carry bit
ret

;set up file

open the file for input

Xra a ;zero to accum

01c2 327c00 sta fcbcer :.clear current record

01c¢5 115¢00 Ixi d,fcb
01c8 0e0f mvi c,openf
Olca cd0500 call bdos
255 in accum if open error
O1cd c9 ret
diskr: ;read disk file record
O1ce e5d5ch push h! push d! push b
01d1 115¢00 Ixi d,fcb
01d4 Oel4 mvi c¢,readf
01d6 cd0500 call bdos
01d9 cidlet pop b! pop d! pop h
01dc ¢c9 ret
fixed message area
01dd 46494c0 signon: db ‘file dump version 2.0$’
013 0d0adel opnmsg: db crlfno input file present on
disk$'
variable area
0213 ibp: ds 2 ;input buffer pointer
0215 oldsp: ds 2 ;entry sp valuefromccp
stack area
0217 ds 64 ‘reserve 32 level stack
stktop:
0257 end

5.5 A Sample Random Access Program

This chapter concludes with an extensive example of random access operation. The
program listed below performsthe simple function of readingor writing random records
upon command from the terminal. Given that the program has been created, assembled,
and placed into a file labeled RANDOM.COM, the CCP level command

RANDOM X.DAT
starts the test program. The program looks for a file by the name X.DAT (in this

particular case) and, if found, proceeds to prompt the consolefor input. If not found, the
file is created before the prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by acarriage return. Theinput commands
take the form

nW nR Q
where nisan integer valuein the range 0 to 65535, and W, R, and Q aresimple command

characters corresponding to random write, random read, and quit processing, respec-
tively. If the W command is issued, the RANDOM program issues the prompt

117

type data:.

Theoperator then responds by typing upto127 characters, followed by acarriagereturn.
RANDOM then writes the character string into the X.DAT file at record n. If theR
command isissued, RANDOM readsrecord number nand displaysthestringvalueat the
console. If the Qcommand isissued, the X.DAT fileisclosed, and the program returnsto
the CCP. In theinterest of brevity, the only error message is

error, try again.

The program begins with an initialization section where the input file is opened or
created, followed by a continuous loop at the label "ready" where the individua com-
mands are interpreted. The default filecontrol block at 005CH and thedefault buffer at
0080H are used in al disk operations. The utility subroutines then follow, which contain
the principal input line processor, called "readc." This particular program shows the
elements of random access processing, and can be used as the basis for further program
development.

Sample Random Access Program for CP/M 2.0

0100 org 100h ;base of tpa

0000 = reboot equ 0000h ;system reboot

0005 = bdos equ 0005h ;bdos entry point

0001 = coninp equ 1 ;console input function

0002 = conout equ 2 ;console ocutput function

0009 = pstring equ 9 ;print string until '§’

a = rstring equ 10 ;read console buffer

000c¢ = version equ 12 ;return version number

000f = openf equ 15 ;file open function

0010 = closef equ 16 :.close function

0016 = makef equ 22 ;make file function

0021 = readr equ 33 ;read random

0022 = writer equ 34 ;write random

005¢ = fcb equ 005c¢h :default file control
:biock

007d = ranrec equ fcb+33 ;random record position

007f = ranovf equ fcb+35 ;high order (overflow)
byte

0080 = buff egu 0080h ;buffer address

000d = cr s Odh ;carriage return

o0a = If Oah line feed

Load SP, Set-Up File for Random Access

0100 31bc00 Ixi sp,stack
version 2.0
0103 0el0c¢ mvi c,version

118

0105 ¢d0500
0108 fe20
010a d21600

010d 111b00
0110 cddab0
0113 c30000

0116 0e0f
0118 115¢00
011b ¢d0500
O1ie 3c
011f 23700

0122 0el16
0124 115¢00
0127 cd0500
012a 3¢
012b ¢23700

012e 113a00
0131 cddalp
0134 ¢30000

0137 cde500
013a 227d00
013d 21700
0140 3600
0142 fes1
0144 ¢25600

0147 Gel0
0148 115¢00
014¢c cd0500
014f 3¢
0150 ¢cab800
0153 ¢30000

versok:

call bdos

cpi 20h ;version 2.0 or better?
jnc versok

bad version, message and go back

ixi d,badver

call print

jmp reboot

correct version for random access

mvi c,openf ;open default fcb
Ixi d,fcb
call bdos
;err 255 becomes zero

inr a
jnz ready

cannot open file, so create it

mvi c,makef

Ixi d,fcb

call bdos

inr a ;err 255 becomes zero
jnz ready

cannot create file, directory full

ixi d,nospace
call print
jmp reboot ;back to ccp

Loop Back to Ready After Each Command

ready:

file is ready for processing

call readcom ;read next command
shid ranrec ;store input record#
IXi h,ranovf

mvi m,0 :clear high byte if set
cpi Q ;quit?

inz notqg

quit processing, close file

muvi c,closef

Ixi d.f’eb

call bdos

inr a ;err 255 becomes 0
jz error ;error message, retry
jmp reboot ;back to ccp

119

0156 fe57
0158 ¢28900

015b 114d00
015e cdda00
0161 Oe7f

0163 218000

0166 c5
0167 e5
0168 cdc200
016b et
016¢c c1
016d fe0d
016f ca7800

0172 77
0173 23
0174 0d
0175 ¢26600

0178 3600

017a 0e22
017¢ 115¢00
017f ¢d0500
0182 b7
0183 ¢2b900
0186 ¢33700

0189 feb52
018b ¢2b900

018e Qe21
0190 115¢00
0193 ¢d0500
0196 b7
0197 ¢2b800

120

End of Quit Command, Process Write

notq:

rloop:

erloop:

not the quit command, random write?
cpi ‘w
jnz notw

this is a random write, fill buffer until cr

Ixi d,datmsg

call print ;data prompt

mvi c,127 ;up to 127 characters
Ixi h,buff ;destination

;read next character to buff

push b ;save counter

push h ;next destination
call getchr ;character to a

POP h ;restore counter
POP b ;restore next to fill
cpi cr :end of line?

jz erloop

not end, store character

mov m,a

inx h ;next to fill

dcr c ;counter goes down
jnz rloop ;end of buffer?

end of read loop, store 00
mvi m,0

write the record to selected record number

mvi c,writer

IXi d,fcb

call bdos

ora a ;error code zero?
jnz error ;message if not
jmp ready ;for another record

End of Write Command, Process Read

notw:

not a write command, read record?
cpi 'R’
jnz error :skip if not

read random record

mvi c,readr

IXi d,fcb

call bdos

ora a ;return code 007?
jnz error

read was successful, write to console

019a cdcf00
019d 0e80
019f 218000

01a2 7e
01a3 23
Ota4 e67f
01a6 ca3700

01a9 ¢5
Olaa eb5
Olab fe20
Olad d4c¢800
01b0 el
01b1 cl
01b2 Od
01b3 c2a200
01b6 ¢33700

01b9 115900
O1bc cddag0
01bf ¢33700

01c2 0e01
0lc4 ¢d0500
01c7 ¢9

01c8 0e02
Olca 5f
01cb cd0500
O1ce c9

Olcf 3eOd
01d| ¢dc800
Old4 3e0a
01d6 ¢dc800
01d9 ¢c9

wiloop:

End of Read Command, All Errors End Up Here

error:

call crif :new line

mvi c,128 ;max 128 characters

IXi h,buff ;next to get

mov a,m ;next character

inx h ;next to get

ani 7fh ;mask parity

74 ready ;for another command
1if 00

push b ;save counter

push h ;save next to get

cpi C ;graphic?

cnc putchr ;skip output if not

pop h

pop b

der C ;count=count-1

inz wloop

jmp ready

IXi d,errmsg
call print
jmp ready

Utility Subroutines for Console 1O

getchr:

putchr:

crif:

:read next console character to a

mvi c,coninp
call bdos
ret

:write character from a to console

mvi ¢c,conout

mov e,a :character to send
call bdos :send character
ret

;send carriage return line feed
mvi a,cr ;carriage return

call putchr

mvi g, lf ;line feed
call putchr

ret

121

O1da d5
01db cdcf00
Olde d |
01df 0e0Q
O1e1 cd0500
Ole4 c9

01e5 116b00
Ole8 cdda00
Oleb Cela

0O1ed 117a00
01f0 ¢d0500

0113 210000
0116 117c00
0119 1a

01fa 13
Olfb b7
01fc c8

Olfd d630
01ff feDa
0201 d21300

0204 29
0205 4d
0206 44
0207 29
0208 29
0209 09
020a 85
020b 6f
020¢ d2fa00
020f 24
0210 ¢3f900

0213 ¢630
0215 febt
0217 d8

0218 e65f
021a c8

122

print:

readcom:

readc:

endrd:

;print the buffer addressed by de until $

push d

call crif

POP d :new line

mvi ¢,pstring

call bdos ;print the string
ret

:read the next command line to the conbuf

IXi d,prompt

call print ;command?

mvi ¢, rstring

IXi d,conbuf

call bdos ;read command line

command line is present, scan it
Ixi h,0 ;start with 0000

Ixi d,conlin ;command line

Idax d ;next command
:character

inx d ;to next command
;position

ora a ;cannot be end of
;:command

rz
not zero, numeric?

sui o

cpi 10 ;carry if numeric
jnc endrd

add-in next digit

dad h *2

mov c,l

mov b.h :bc = value * 2
dad h 4

dad h '8

dad b 2t 8 =+10
add | ;+digit

mov l.a

jnc readc ;for another char
inr h ;overflow

jmp readc ;for another char

end of read, restore value in a

adi ‘0’ :command

cpi ‘a' ;translate case?
rc

lower case, mask lower case bits
ani 101$1111b

ret

String Data Area for Console Messages

badver:
021b 536179 db 'sorry, you need cp/m verson 2§
nospace;
023a 4e6f29 db 'no directory space$'
datmsg:
0244 547970 db 'type data: $'
errmsgy:
0259 457272 db ‘error, try again.$'
prompt:
N9Ah 4pRRTN db ‘next command? §

Fixed and Variable Data Area

027a 21 conbuf: db conlen ;length of console buffer
027b consiz: ds 1 ;resulting size after read
027¢ conlin: ds 32 ;length 32 buffer
0021 = conlen equ $-consiz
029¢ ds 3R? ;16 levd stack

stack:
02bc end

Again, major improvements could be made to this particular program to enhance its
operation. In fact, with some work, this program could evolve into a simple data base
management system. One could, forexample, assume astandard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called GETKEY, could be
developed that first reads a sequential file and extracts a specific field defined by the
operator. For example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract the “"LAST-
NAME" field from each record, starting in position 10 and ending at character 20.
GETKEY buildsatablein memory consisting of each particular LASTNAME field, along
with its 16-bit record number location within thefile. The GETKEY program then sorts
this list and writes a new file, called LASTNAME.KEY, which is an alphabetical iist of
LASTNAME fields with their corresponding record numbers. (Thislist iscalled an inverted
index in information retrieval parlance.)

If the programmer weretorename the program shown aboveas QUERY and massage
it so that it reads a sorted key file into memory, the command line might appear as

QUERY NAMES.DAT LASTNAME.KEY.

Instead of reading a number, the QUERY program reads an alphanumeric string that isa
particular key to find in the NAMES.IDAT data base. Since the LASTNAME.KEY list is
sorted, one can find a particular entry rapidiy by performinga'binary search," similar to
looking up a name in the telephone book. That is, starting at both ends of thelist, one
examinestheentry halfway in betweenand, if not matched, splitseither the upper half or

123

thelower half for the next search Theuser will quickly reach theitem heor sheislooking
for and find the correspending record number The user should tetch and display this
record at the consoie just as was done in the program shown above.

With some more work, the user can aliow a tixed groupng size that differsfrom the
128-byte record shown above This 1s accomplished by keeping track of the record
number as well as the byte offset within the record Knowing the group size, one
randomly assessesthe record containing the proper group, oftset to the beginning of the
group within the record read sequentially untii the group size has been exhausted

Finaly one can improve QUERY considerably by «llowing boolean expressions,
which computetheset o records that satisfy several relationships such asaLASTNAME
between HARDY and LAUREL and an A CE iower than 45 Display all therecords that fit
this description Finally, it the user's lists are getting too big to fit into memory, heor she
should randomly access key files trom the disk as well

5.6 System Function Summary

FUNCTION FUNCTION INPUT OouUTPUT
NUMBER NAME
Decimal Hex
0 0 System Reset C = Q0H none
1 7 Console Input C = 01H A = ASCII char
2 2 Consoie Output E = ¢char none
3 3 Reader Input A = ASCII char
4 4 Punch Output E = char none
5 5 List Cutput E = char none
6 6 Direct Console I/O C = 06H A = char orstatus
E = OFFH {input) or {(no value)
OFEH (status) or
char {output)
7 7 Get I/O Byte none A = 1/O Byte
Value
8 8 Sel I/O Byte E = 1/0 Byte none
9 9 Print String DE = Buffer Address none
10 A Read Console Buffer DE = Buffer Console
Characters
in Buffer
11 B Get Console Status none A = 00/non zero
12 C Return Version Number none HL: Version
Number
13 D Reset Disk System none none
14 E Select Disk E =Disk Number none
15 F Open File DE = FCB Address FF if not found
16 10 Close File DE = FCB Address FF if not found

124

17

18

19
20
21
22

23

24

25

26
27

28
29

30
31

32

33
34
35
36
37
38
39
40

*Note that A = L, and B = H upon return.

11

12

13
14
15
16

17

18

19

1A
iB

1C
1D

1E
1F

20

21
22
23
24
25
26
27
28

Search For First
Search For Next

Delete File
Read Sequential
Write Sequential
Make File

Rename File
Return Login Vector
Return Current Disk

Set DMA Address
Get ADDR (ALLOC)

Write Protect Disk
Get Read/only Vector

Set File Attributes
Get ADDR (Disk Parms)

Set/Get User Code

Read Random

Write Random
Compute File Size

Set Random Record
Reset Drive

Access Drive

Free Drive

Write Random with Fill

DE = FCB Address
none

DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = FCB Address

DE = FCB Address
none

none

DE = DMA Address
none

none
none

DE = FCB Address
none

E = OFFH for Get

E = 00 to OFH for Set
DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = Drive Vector
not supported

not supported

DE = FCB

A = Directory
Code

A = Directory
Code

A = none

A = Error Code

A = Error Code

A = FF if no DIR
Space

A = FF if not
found

HL = Login
Vector®

A =CurrentDisk
Number

none

HL = ALLOC
Address”

none

HL = R/O
Vector Value”

A=none

HL = DPB
Address

Lear AMiimhaor

A = Error Code
A = Error Code
r0, r1, r2

0, r, v2

A=0

A = Error Code

125

CP/M 2 Alteration

6.1 Introduction

The standard CP/M system assumes operation on an Intel MDS-800 microcomputer
development system, but isdesigned so the user can alter a specific set of subroutines that
define the hardware operating environment.

Although standard CP/M 2 is configured for single density floppy disks, field-
alteration featuresallow adaptation toawide variety of disk subsystemsfromsingledrive
minidisks through high-capacity, “hard disk" systems. T o simplify the following adapta-
tion process, it isassumed that CP/M 2 will first be configured for single density floppy
disks where minimal editing and debugging tools are available. If an earlier version of
CP/M is available, the customizing process is eased considerably. In this latter case, the
user may wish to review the system generation process and skip to later sections that
discuss system alteration for nonstandard disk systems.

To achieve device independence, CP/M is separated into three distinct modules:

BIOS basic IO system, which is environment dependent

BDOS basic disk operating system, which is not dependent upon thehard-
ware configuration

CCP the console command processor, which uses the BDOS

Of these modules, only the BIOS isdependent upon the particular hardware. That is,
the user can “patch” the distribution version of CP/M to provide a new BIOS that
provides a customized interface between the remaining CP/M modules and the user's
own hardware system. Thisdocument provides a step-by-step procedure for patching a
new BIOS into CP/M.

All disk-dependent portions of CP/M 2 are placed intoaBIOS, aresident disk parameter
block," which is either hand coded or produced automatically using the disk definition
macro library provided with CP/M 2. The end user need only specify the maximum
number of active disks, the starting and ending sector numbers, the data allocation size,
the maximum extent of the logical disk, directory size information, and reserved track
values. The macros use this information to generate the appropriate tables and table
references for use during CP/M 2 operation. Deblocking information is provided, which

127

aids in assembly or disassembly of sector sizes that are multiples of the fundamental 128
byte data unit, and the system alteration manual includes general purpose subroutines
that use the deblocking information to take advantage of larger sector sizes. Use of these
subroutines, together with the table-drive data access algorithms, makes CP/M 2 a
universal data management system.

File expansion isachieved by providing upto512logical fileextents, whereeach logical
extent contains 16K bytes of data. CP’/M 2 is structured, however, so that as much as
128K bytes of data are addressed by a single physical extent (corresponding to a single
directory entry) maintaining compatibility with previous versions while taking advan-
tage of directory space.

If CP/M is being tailored to a computer system for the first time, the new BIOS
requires some simple software development and testing. The standard BIOS islisted in
Appendix A and can be used asa model for the customized package. A skeletal version of
the BIOS given in Appendix B can serve as the basis for a modified BIOS. In addition to
the BIOS, the user must write a simple memory loader, called GETSY S, that bringsthe
operating system into memory. To patch the new BIOSinto CP/M,the user must write
the reverse of GETSY S, calied PUTSYS, which places an altered version of CP/M back
onto the diskette. PUTSYS can be derived from GETSY S by changing the disk read
commands into disk write commands. Sample skeletal GETSY Sand PUTSY S programs
are described in Section 6.4 and listed in Appendix C. To make the CP/M system load
automatically, the user must also supply a cold start loader, similar to the one provided
with CP/M (listed in Appendices A and D). A skeletal form of acold start loader isgivenin
Appendix F_which serves as a model for the loader.

6.2 First Level System Regeneration

The procedure to patch the CP/M system isgiven below. Address references in each
step are shown with “H” denoting the hexadecimal radix, and aregiven for a20K CP/M
system. For larger CP/M systems, a"bias" is added to each address that isshown with a
“+b” following it, where b is equal to the memory size—20K. Values for b in various
standard memory sizes are

24K b = 24K - 20K = 4K = 1000H
32K: b = 32K - 20K = 12K = 3000H
40K: b = 40K - 20K = 20K = 5000H
48K: b = 48K - 20K = 28K = 7000H
56K: b = 56K - 20K = 36K = 9000H
62K: b = 62K - 20K = 42K = A800H
B4K: b = 84K - 20K = 44K = BOOOH

It should be rncted that the standard distribution version of CP/M is set for operation
within a 20K memory system. Therefore, the user must first bring up the 20K CP/M
system, then configure it for actual memory size (the user should see Section 6.3).

The user should:
I .Read Section 6.4and writeaGETSY Sprogram that readsthefirst twotracksof a
diskette into memory. The program from the diskette must be loaded starting at

location 3380H. CETSYS is coded to start at location 100H (base of the TPA), as
shown in Appendix C.

128

2. Test the GETSYS program by reading ablank diskette intc memory and check to
see that the data have been read properly and that the diskette has not been altered in
any way by the GETSYS program

3. Run the GETSY S program using an initialized CP/M diskette toseeif CETSVS
loads CPIM starting at 3380H (the operating system actually starts 128 bytes|ater at
3400H}.

4 Read Section o 4 and writethe PUTSYS program This writes memory starting
at 3380H back onto thefirst two tracksof the diskette The PUTSY S program should
be focated at 200H, as shown in Appendix C

5. Test the PUTSYS program using a blank, uninitialized diskette by writing a
portion of memory to the first two tracks; clear memory and read it back using
GETSYS. Test PUTSYS completely, since this program will be used to alter CP/M on
disk.

6. Study Sections 6.5, 6.6, and 6.7 along with thedistribution version of the BIOS
given in Appendix A and write asimple version that performs a similar function for
the customized environment. Use the program given in Appendix B asa model. Call
this new BIOS by the name CBIOS (customized BIOS). Implement only the primitive
disk operations on a single drive and simple console inputioutput functions in this
phase.

7. Test CBIOS completely to ensure that it properly performsconsole character
/O and disk reads and writes. Be careful toensurethat nodisk write operattonsoccur
during read operationsand check that the proper 'track and sectors are addressed on all
readsand writes Failure to make these checks may causedestruction of theinitialized
CP/M system after :t is parched

8. Referring to the table in Section 6.5, note that the BIGS is placed between
locations 4AOOH and 4FFFH. Read the CP/M system using GETSY Sand replace the
RIS segment by the CBIOS developed in step 6 and tested in step 7. This replace-
ment is done in memory.

9. Use PUTSVS to place the patched memory image of CP/M onto thefirst two
tracks of a blank diskette for testing.

10. Use GETSYS to bring the copied memory image from the test diskette back
into memory at 3380H and ch=ck to ensure that it has loaded back properly (clear
memory, if possible, before the load). Upon successful load, branch to the cold start
code at location 4 An0H. The cold start routine will initialize page zero, then jump to
the CCP at location 3400H, which will call the BDOS, which will call the CBIOS. The
CBIOS will be asked by the CCP toread sixteen sectorson track 2, and CP/M will type
“A>", the system prompt.

If difficulties are encountered, use whatever debug facilities areavailable to trace
and breakpoint the CBIOS.

11. Upon completion of step 10, CP/M has prompted the console for acommand
input. Test the disk write operation by typing

SAVE 1 X.COM

129

(All commands must be followed by acarriagereturn.) CP/M responds with another
prompt {after several disk accesses)

A>
If it does not, debug the disk write functions and retry.
12. Test the directory command by typing
DIR
CP/M responds with
A X COM
13. Test the erase command by typing
ERA X.COM

CPiM responds with the A prompt. This is now an operational system that only
requires a bootstrap loader to function completely.

14. Write a bootstrap loader that is similar to GETSY S and place it on track 0,
sector 1 using PUTSYS (again using the test diskette, not the distribution diskette).
See Sections 6.5 and 6 8 for more information on the bootstrap operation

15. Retest the new test diskette with the bootstrap loader installed by executing
steps 11, 12, and 13. Upon cornpietion of these tests, type acontrol-C (control and C
keys simultaneously). The system executes a" warm start" that reboots the system,
and types the A prompt.

16. At this point, thereis probably agood version of the customized CP/M system
on the test diskette. Use GETSYS toicad CP/M from the test diskette. Remove the
test diskette, place the distribution diskette (or a legal copy) into the drive, and use
PUTSYS to replace the distribution version with the customized version. The user
should not make this replacement if unsureof the patch because thisstep destroysthe
system that was obtained from Digital Research.

17. Load the modified CP/M system and test it by typing

DIR

CPiM responds with alist of files that are provided on theinitialized diskette. Onefile
is the memory image for the debugger

DDT.COM
Note that from now on, it is important always to reboot the CP/M system {(ctl-C is
sufficient) when the diskette isremoved and replaced by another diskette, unless the
new diskette is to be read only.
18. Load and test the debugger by typing
DDT

{See Chapter 4 for operating procedures)

130

19 Before making further CBIOS modifications, practice using the editor (see
Chapter 2}, and assembler (see Chapter 3) Recode and test the GETSY S, PUTSYS,
and CBIOS programs using ED, ASM, and DDT Codeand testaCOPY program that
does a sector-to-sector copy from one diskette to another to obtain back-up copies of
the original diskette (ReadtheCP/M Licensing Agreement specifytng legal responsi-
bilities when copying the CP/M system } Place the copyright notice

Copyright @, 1979
Digital Research

on each copy that is made with the COPY program

20. Modify the CBIOS to include the extra functions for punches, readers, and
sign-on messages, and add the facilities for additional disk drives, if desired. These
changes can be made with the GETSY Sand PUTSY S programsor by referring to the
regeneration process in Section 6.3.

The user should now have a good copy of thecustomized CP/M system. Although the
CBIOS portion of CP/M belongsto the user, the modified version cannot be legally copied
for anyone else's use.

It should be noted that the system remains file-compatible with al other CP/M
systems (assuming media compatibility), which allows transfer of nonproprietary soft-
ware between CP/M users.

6.3 Second Level System Generation

Once the system is running, the user will want to configure CP/M for the desired
memory size. Usually a memory image is first produced with the" MOV CPM" program
(system relocator) and then placed into a named disk file. The disk filecan then beloaded,
examined, patched, and replaced using thedebugger and the system generation program.
(The user should refer to Chapter 1.)

The CBIOSand BOOT are modified using ED and assembled using ASM, producing
files called CBIOS.HEX and BOOT. HEX, which contain the code for CBIOSand BOOT
in Intel hex format.

To get the memory image of CP/M into the TPA configured for the desired memory
size, the user should type the command

MOVCPM xx *
where xx is the memory site in decimal K bytes (e.g., 32 for 32K). The response will be

CONSTRUCTING xxK CP/M VERS 2.0

READY FOR “SYSGEN” OR

"SAVE 34 CPMxx.COM”
Animaged CP/Minthe TPA isconfigured for therequested memory size The memory
image 1s at location 0900H through 227FH w1 e, the BOOT is at 0900H, the CCPisat
980H, the BDOS startsat 1180H, and the BIOS1s at 1F80H) The user should note that
the memory image has the standard MD5-800 BIOSand BOOT onit Itisnow necessary

tosave the memory image in afile sothat the user can patch the CBIOS and CBOOT into
it

SAVE 34 CPMxx.COM

131

The memory image cleated by the” MOV CPM” program is offset by a negative biasso
that it loads into the free area of the TPA and thus does not interfere with the operation
ot CPIM in higher memorv This memorv image can be subsequently loaded under DD T
and examined or changed in preparation for a new generation of the system DDT is
loaded with the memorv image bv typing

DDT CPMxx COM Load DDT, then read the CPM image
DDT shouid respond with

NEXT PC

2300 0100
{The DDT prompt)

The user can then give the display and disassembly commandstoexamineportions o the
memory image between 900H and 227FH The user should note, however, that to find
any particular address within the memory image, one must apply the negative bias to the
CP/M address to find the actual address Track 00, sector 01, 1s loaded to location 900H
(theuser should find the cold start loader at $00H to 97FH); track 00, sector 02, 1s loaded
into 980H (this isthe baseot the CCP); and soon through theentire CP/M system load In
a 20K system, for example, the CCPiesidesat the CP/M address3400H, but isplaced into
memory at 980H by the SYSGEN program Thus, the negative bias, denoted by n,
satisties

3400H + n = 980H, or n = 380H - 3400H
Assuming that twos complement arithmetic, n = D580H, which can be checked by
3400H + D580H = 10980H = 0980H (ignoring high-order overflow).
Note that for larger systems, n satisfies
(3400H+b) + n = 980H, or
n = 980H - (3400H + b}, or
n=D58OH -Db

The value of n for common CP/M systems is given below.

Memory Size Bias b Negative Offset n

20K 0000H D580H - 0000H = D580H
24K 1000H D580H - 1000H = C580H
32K 3000H D580H - 3000H = A580H
40K 5000H D580H - 5000H = 8580H
48K 7000H D580H - 7000H = 6580H
86K 9000H D580H - G000H = 4580H
62K AB0OH D580H - AB00H = 2D80H
B4K BRONnH D580H - BO0OOH = 2580H

If the user wants to locate the address x within the memory image loaded under DDTina
20K system, first type

Hx.n Hexadecimal sum and difference

13z

and DDT will respond with the value of x+n (sum)and x-n (difference).Thefirst number
printed by DDT is the actual memory address in the image where the data or code are
located. The DDT command

H3400,D580
for example, will produce 980H as the sum, which is where the CCP is located in the
memory image under DDT.
The user should type the L. command to disassemble portions of the BIOS|ocated at

{4 A00H+b)-n, which, when one uses the H command, produces an actual address of
1F80H. The disassembly command would thus be

L1F80

It is now necessary to patch in the CBOOT and CBIOS routines. The BOOT residesat
location 0900H in the memory image. If theactual load addressis “n”, then tocalculate the
bias (m), the user types the command

H300,n Subtract load address from target address.

The second number typed by DD T in response to thecommand isthe desired bias(m). For
example, if the BOOT executes at 0080H, the command

H900,80
will produce
0980 0880 Sum and difference in hex

Therefore, the bias"m' would be 0880H. To read-in the BOOT, the user should give the
command

ICBOOT.HEX Input file CBOOT.HEX.
Then

Rm Read CBOOT with a bias of m (=900H-n).
The user may now examine the CBOOT with

L9800

The user is now ready to replace the CBIOS by examining the area at 1F80H where the
original version of the CBIOS resides and then typing

ICBIOS.HEX Ready the hex file for loading.
The user assumes that the CBIOS s being integrated into a20K CP/M system and thus
originates at location 4 A00H. Tolocate the CBIOS properly in the memory image under

DDT, one must apply the negative biasnfor azoK system whenloading the hex file. This
is accomplished by typing

RD580 Read the file with bias D580H.

133

Upon completion of the read, the user should reexamine thearea where the CBIOS has
been loaded (use an “L1F80” command) to ensure that it was loaded properly. When
satisfied that the change has been made, the user should return from DDT using a
controi-C or, "GO" command.

SYSGEN is used to replace the patched memory image back onto adiskette (the user
should utilize a test diskette until sure of the patch), asshowninthefollowing interaction:

SYSGEN Start the SYSGEN program

SYSGEN VERSION 2.0 Sign-on message from SYSGEN

SOURCE DRIVE NAME Respond with a carriage return to skip the
(OR RETURN TO SKIP) CP/M read operation since the system is

already in memory

DESTINATION DRIVE NAME Respond with "B" towrite the new systemto
(OR RETURN TO REBOOT) the diskette in drive B

DESTINATION ON B, Place a scratch diskette in drive B, then type
THEN TYPE RETURN return.

FUNCTION COMPLETE
DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

The user should place the scratch diskette in drive A and then perform acold start to
bring up the newly configured CP/M system.

The new CP/M system is then tested and the Digital Research copyright notice is
placed on the diskette, as specified in the Licensing Agreement:

Copyright @, 1979
Digital Research

6.4 Sample GETSYS and PUTSYS Programs

The following program provides a framework for the GETSYS and PUTSYS pro-
grams referenced in Sections 6.1 and 6.2. The READSEC and WRITESEC subroutines
must be inserted by the user to read and write the specific sectors.

GETSYS PROGRAM — READ TRACKS 0 AND 1 TO MEMORY AT 3380H

REGISTER USE

A (SCRATCH REGISTER)
B TRACK COUNT (0, 1)
C SECTOR COUNT (1,2,. . .,26)
NE (SCRATCH REGISTER PAIR)
HL LOAD ADDRESS
SP SET TO STACK ADDRESS

START: LXI SP,3380H 'SET STACK POINTER TO SCRATCH

‘AREA

LXI H, 3380H ‘SET BASE LOAD ADDRESS
MVI B, 0 'START WITH TRACK 0

134

RDTRK: ;READ NEXT TRACK (INITIALLY 0)

MVI Ci JREAD STARTING WITH SECTOR 1
ROSEC: ;READ NEXT SECTOR

CALL READSEC USER-SUPPLIED SUBROUTINE

LxXt D,128 ;MOVE LOAD ADDRESS TO NEXT 1/2

JPAGE

DAD D JHL = HL + 128

iNR C ;SECTOR = SECTOR + 1

MOV AC ;CHECK FOR END OF TRACK

CPI 27

JC RDSEC ;CARRY GENERATED |F SECTOR <27

ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK

5

INR B

MOV AB ;TEST FOR LAST TRACK

CPi 2

JC RDTRK ;CARRY GENERATED IF TRACK < 2

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

; USER-SUPPLIED SUBROUTINE TO READ THE DISK

READSEC:

ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND

ADDRESS TO FILL IN HL

PUSH B ;SAVE B AND C REGISTERS
PUSH H ;SAVE HL REGISTERS

perform disk read at this point, branch to

label START if an error occurs

POP H ;RECOVER HL

POP B ;RECOVER B AND C REGISTERS
RET ‘BACK TO MAIN PROGRAM

END START

This program is assembled and listed in Appendix B for reference purposes, with an
assumed origin of 100H. The hexadecimal operation codes that arelisted on the left may
be useful if the program has to be entered through the panel switches.

The PUTSYS program can be constructed from GETSYS by changing only a few
operations in the GETSYS program given above, as shown in Appendix C. The register
pair HL becomes the dump address (next address to write), and operations upon these
registers do not change within the program. The READSEC subroutine s replaced by a
WRITESEC subroutine, which performsthe opposite function: data from addressHL are
written to the track given by register B and sector given bv register C Itisoftenuseful to
combine GETSYS and PUTSYS into asingle program during the test and devel opment
phase, as shown it Appendix C

135

6.5 Diskette Organization

The sector allocation for the standard distribution version of CP/M isgiven herefor
reference purposes. The first sector (see the table on the following page) contains an
optional software boot section. Disk controllersare oftenset up to bring track 0, sector I,
into memory at a specific location (often location 0000H). The program in this sector,
called BOOT, has the responsibility of bringing the remaining sectors into memory
starting at location 3400H+b. If the user's controller does not have a built-in sector load,
the program intrack 0, sector 1 can beignored. In thiscase, load the program from track 0,
sector 2, to location 3400H+b.

Asan example, the Intel MDS-800 hardware cold start loader brings track 0, sector I,
into absolute address 3000H. Upon loading this sector, control transfers to location
3000H, where the bootstrap operation commences by loading the remainder of track 0
and all of track 1 into memory, starting at 3400H+b. The user should note that this
bootstrap loader is of little use in a non-MDS environment, although it is useful to
examineit since some of the boot actions will have to beduplicated in the user's cold start
loader.

Track# Sector# Page# Memory Address CP/M Module name
00 01 (boot address) Cold Start Loader
00 02 00 3400H+b CCP

03 ' 3480H+b
04 01 3500H+b ’
05 ’ 3580H+b '
06 02 3600H+b ’
07 ' 3680H+b ’
08 03 3700H+b ’
09 ' 3780H+b ’
10 04 3800H+b '
11 ' 3880H+b ’
12 05 3900H+b '
13 ' 3980H+b ’
14 06 3A00H+b ’
15 ' 3A80H+b
16 07 3B0O0H+b
00 17 ' 3B80H+b CCP
00 18 08 3C00H+b BDOS
19 ’ 3C80H+b
20 09 3D00H+b
21 ’ 3D80H+b
22 10 3EOOH+b
23 ' 3E80H+b
24 11 3F00H+b '
25 ' 3F80H+b ’
26 12 4000H+b '
01 01 ' 4080H+b ’
02 13 4100H+b '
03 ’ 4180H+b ’
04 14 4200H+b !
05 ’ 4280H+b '
06 15 4300H+b '
07 ' 4380H+b
08 16 4400H+b !
09 ’ 4480H+b ’

136

01
07

01
01
02-76

10
i1
12
13
14
15
16
17
18
i9
20
21
22
23
24
25
26

01-26

17

18
20
21
22
23
24

25

4500H+b
4580H+b
4600H+Db
4880H+Db
4700H+b
4780H+b
4800H+b
4880H+b
4300H+b
4980H+b BDOS
4A00H+b BIOS
4A80H+b
4B00H+Db
4B80H+b
4CO0H+b
4C80H+b BIOS
Amant BIOS
(directory and data)

6.6 The BIOS Entry Points

The entry points into the BIOS from the cold start loader and BDOS are detailed
below Entry totheBlOSisthrougha”jumpyector”located at 4A00H+b, asshown below
see Appendices A and B, aswell) Thejump vector is a sequence ot 17 jump instructions
that send program control to the individual BIOS subrcutines The BIOS subroutines
may be empty for certain functions (i e , they may contain a single RET operation) during
reconfiguration of CP/M, but the entries must be present in the jump vector.

The;ump vector at 4A00H+b takes the form shown below, where the individual jump
addresses are given to the left:

4A00H+b

4A03H+b
4A06H+b

4A09H+b
4A0CH+b

4A0FH+b
4A12H+D

4A15H+b
4A18H+b

4A1BH+b
4ATEH+Db
4A21H+Db

JMP BOOT ; ARRIVE HERE FROM COLD
START LOAD

JMP WBOOT ; ARRIVE HERE FOR WARM START

JMP CONST ; CHECK FOR CONSOLE CHAR
READY

JMP CONIN ; READ CONSOLE CHARACTER IN

JMP CONOUT ; WRITE CONSOLE CHARACTER
Ot

JMP LIST ; WRITE LISTING CHARACTER OUT

JMP PUNCH , WRITE CHARACTER TO PUNCH
DEVICE

JMP READER ; READ READER DEVICE

JMP HOME : MOVE TO TRACK 00 ON
SELECTED DIsK

JMP SELDSK ; SELECT DISK DRIVE

JMP SETTRK ; SET TRACK NUMBER

JMP SETSEC ; SET SECTOR NUMBER

137

4A24H+D JMP SETDMA ;: SET DMA ADDRESS

4A27H+b JMP READ ; READ SELECTED SECTOR
4A2AH+b JMP WRITE ; WRITE SELECTED SECTOR
4A2DH+b JMP LISTST ; RETURN LIST STATUS
4A30H+b JMP SECTRAN ; SECTOR TRANSLATE
SUBROUTINE

Each jump address corresponds to a particular subroutine that performs the specific
function, asoutlined below. There are three major divisionsin the jump table: the system
(re)initialization, which results from callson BOOT and WBOOT; simple character [/O
performed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST; and diskette I/O performed by calls on HOME, SELDSK, SETTRK, SETSEC,
SETDMA, READ, WRITE, and SECTRAN.

All simple character 1O operations are assumed to be performed in ASCII, upper and
lower case, with high order (parity bit) set to zero. An end-of-file condition for an input
device is given by an ASCII controi-z (1AH). Peripheral devices are seen by CP/M as
"logical" devices and are assigned to physical devices within the BIOS.

To operate, the BDOS needsonly the CONST, CONIN, and CONOUT subroutines
(LIST, PUNCH, and READER may be used by PIP, but not the BDOS). Further, the
LISTST entry iscurrently used only by DESPOOL, the print spooling utility. Thus, the
initial version of CBIOS may have empty subroutines for the remaining ASCII devices.

The characteristics of each device are

CONSOLE The principal interactive console that communicates with the
operator, accessed through CONST, CONIN, and CONOUT;
typically, the CONSOLE isadevicesuchasaCRT or teletype.

LIST The principal listing device, if it existson the user's system, is
usually a hard-copy device, such as a printer or teletype

PUNCH The principal tape punching device, if it exists, is normally a
high-speed paper tape punch or teletype.

READER The principal tape reading device, such as a simple optical
reader or teletype.

A single peripheral can be assigned as the LIST, PUNCH, and READER device
simultaneously. If no peripheral device is assigned as the LIST, PUNCH, or READER
device, the CBIOScreated by the user may give an appropriate error message so that the
system does not "hang" if the device is accessed by PIP or some other user program.
Alternately, the PUNCH and LIST routines can just simply return, and the READER
routine can return with a 1AH (ctl-Z) in register A to indicate immediate end-of-file.

For added flexibility, the user can optionally implement the "IOBYTE" function,
which allows reassignment of physical and logical devices. The IOBY TE function creates
a mapping of logical to physical devices that can be altered during CP/M processing (the
user should see the STAT command). The definition of the IOBYTE function corres-
ponds to the Intel standard as follows: a single location in memory (currently location
0003H) is maintained, called IOBY TE, which defines the logical to physical device map-
ping that is in effect at a particular time. The mapping is performed by splitting the

138

IOBYTE into four distinct fields of two bits each called the CONSOLE, READER,
PUNCH, and LIST fields, as show n below.

most significant least significant
1OBYTE AT 003H LIST PUNCH READER CONSOLE
bits ¢, 7 bits 4, 5 bits 2, 3 bits 0, 1

The value in each field can be in the range 0-3, defining the assigned source or
destination of each logical device The values that can be assignied to each field are given
below

CONSOLE field (bits 0,1}
0 console is assigned to the console printer device (TTY)

1 console is assigned to the CRT device (CRT:)

2 batch mode: use the READER as the CONSOLE input, and the
LIST device as the CONSOLE output (BAT:)

3 user defined console device (UC1:)

READER field (bits 2,3)

0 READER is the teletype device (TTY:)

1 READER is the high speed reader device (PTR:)
2 user defined reader # 1 (URT:)

3 user defined reader # 2 (UR2:)

PUNCH field (bits 4,5)

0 PUNCH is the teletype device (TTY:)
| PUNCH is the high speed punch device (PTP:)
2 user defined punch # 1 (UP1:)
3 user defined punch # 2 (UP2:)
LIST field (bits 6,7)
0 LIST is the teletype device (TTY:)
1 LIST is the CRT device (CRT:)
2 LIST is the line printer device (LPT:)
3 user defined list device (UL1:)

The implementation of the IOBYTE is optional and affects only the organization of
the CBIOCS. No CPIM systems use the IOBYTE (although they tolerate the existence of
the IOBYTE at location 0003H), except for PIP, which allows access to the physical
devices, and ST AT, which allows logical-physical assignments to be made or displayed
(for more information, the user should see Chapter 1) In any case the [OBYTE imple-
mentation should be omitted until the basic CBIOSis fully implemented and tested; then
the user should add the IGBYTE to Increase the facilities

Disk 1/O is always performed through a sequence of calls on the various disk access
subroutines that set up the disk number to access, the track and sector on a particular
disk, and the direct memory access (DMA) address involved in the /O operation. After all
these parameters have been set up, a call is made to the READ or WRITE function to
perform the actual /O operation. There is often a single call to SELDSK to select a disk
drive, followed by a number of read or write operations to the selected disk before
selecting another drive for subsequent operations. Similarly, there may be a single call to
set the DMA address, followed by several calls that read or write from the selected DMA
address before the DMA address is changed. Thetrack and sector subroutinesarealways
called before the READ or WRITE operations are performed.

The READ and WRITE routines should perform several retries (10 is standard) before
reporting the error condition to the BDOS. If the error condition is returned to the
BDOS, it will report the error to the user. The HOME subroutine may or mav not

139

actually perform the track 00 seek, depending upon controller characteristics; the impor-
tant point is that track 00 has been selected for the next operation and is often treated in
exactly the same manner as SETTRK with a parameter of 00.

The exact responsibilities of each entry point subroutine are given below.

BOOT The BOOT entry point gets control from the cold start loader
and is responsible for basic system initialization, including
sending a sign-on message (which tan be omitted in the first
version). If the IOBYTE function is implemented, it must be
set at this point. The varicus system parameters that are set
by the WBOOT entry point must be initialized, and controlis
transferred to the CCP at 3400+b for further processing. Note
that register C must be set to zero to select drive A.

WBOOT The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user program
branches to location 0000H, or when the CPU is reset from
the front panel. The CPIM system must be loaded from the
first two tracks of drive A up to, but not including, the BIOS
{or CBIOS, if the user has completed the patch). System
parameters must be initialized as shown below:

location 01,2 Set to IMP WBOOT for warm
starts (000H: JMP 4A03H+b)

location 3 Set initial value of IOBYTE, if
implemented in the CBIOS

location 4 High nibble = current user no; low
nibble = current drive

location 5,6,7 Set to JMP BDOS, which is the
primary entry point to CP/M for
transient programs. (0005H: [MP
3Ce6H+b)

{The user should refer to Section e 9 for complete details of
page zero use; Upon completion Of the initialization, the
WBOOT program must branch to the CCP at 3400H+b to
{re)start the system. Upon entry to the CCP, register C is set
to thedrivetoselect after system initialization. The WBOOT
routine should read location 4 in memory, verify that it is a
legal drive, and pass it to the CCP in register C.

CONST The user should sample the status of the currently assigned
console device and return OFFH in register A if a character is
ready toread and 00H in register A it noconsole characters are
ready

CONIN The next console character is read into register A, and the
parity bit isset (high order bit)to zero If no console character
1s ready, the user waits until a character s typed before
returning

140

CONOUT

LIST

PUNCH

READER

HOME

SELDSK

SETTRK

The user sends the character from register C to the conscle
output device. The character is in ASCI, with high order
parity bit set to zero. The user may want toinclude a time-out
on aline feed or carriage return, if the console device requires
some time interval at theend of the line (such as a T1 Silent 700
terminal}. The user can filter out control characters that cause
the consoledevice to react in astrange way (a control-z causes
the Lear Seigler terminal to clear the screen, for example).

The user sends the character from register C to the currently
assigned listing device. The character is in ASCI with zero
parity bit.

The user sends thecharacter from register C to the currently
assigned punch device. The character is in ASCI with zero

parity.

The user reads the next character from the currently assigned
reader device into register A with zero parity (high order bit
must be zero); an end-of-file condition is reported by return-
ing ann ASCII control-z(1AH).

The user moves the disk head of the currently selected disk
(initially disk A} to the track 00 position. If the controller
allows access to the track ¢ flag from the drive, the head is
stepped until the track ¢ flag is detected. If the controller does
not support thisfeature, the HOME callis translated into a call
to SETTRK with a parameter of 0.

The user selects the disk drive given by register C for further
operations, where register {_ contains O for drive A, 1 for drive
B, and so on up to 15 for drive P (the standard CP/M distribu-
tion version supports four drives). On each disk select,
SELDSK must returnin HL the base address of a 16-byte area,
called the Disk Parameter Header, described in Section 6.10.
For standard floppy disk drives, the contents of the header and
associated tables do not change; thus, the program segment
included in the sample CBIOS performs this operation auto-
matically If there isan attempt to select a nonexistent drive,
SELDSK returns HL=0000H as an error indicator. Although
SELDSK must return the header address on each call, it is
advisable to postpone the physical disk select operation until
an /O function {(seek, read, or write} is actually performed,
since disk selects often occur without utimately performing
any disk /O, and many controllers will unload the head of the
current disk before selecting the new drive. This would cause
an excessive amount of noise and disk wear. The least signifi-
cant bit of register E is zero if thisis the first occurrence of the
drive select since the last cold or warm start.

Register BC contains the track number for subsequent disk
accesses on the currently selected drive. The sector numberin
BC is the same as the number returned from the SECTRAN
entry point. The user can choose to seek the selected track at

141

142

SETSEC

SETDMA

READ

WRITE

LISTST

this time or delay the seek until the next read or writeactually
occurs. Register BC can take on values in the range 0-76
corresponding to valid track numbers for standard floppy disk
drives and 0-65535 for nonstandard disk subsystems

Register BC contains the sector number (1 through 26} for
subsequent disk accesses on the currently selected drive The
sector number in BC1s the sameasthenumber returned from
the SECTRAN entry point The user can choose to send this
information to the controller at this point or delay sector
selection until a read or write operation occurs

Register BC contains the DMA (disk memory access) address
for subsequent read or write operations For example, if B =
00H and C = 80H when SETDMA is called, all subsequent read
operations read their data into 80H through OFFH and ail
subsequent write operations get their datafrom 80H through
OFFH, until the next call to SETDMA occurs Theinitial DMA
address 1s assumed to be80H The controller need not actuaiiy
support direct memory access If, for example, all data
transfers are through /O ports, the CBIOS that 15 con-
structed will use the 128-byte area starting at the selected
DMA address for the memory buffer during the subsequent
read or write operations

Assuming the drive has been selected, the track has been set,
the sector has been set, and the DMA address has been speci-
fied, the READ subroutine attempts to read one sector based
upon these parameters and returns the following error codes
in register A:

0 no errors occurred

1 nonrecoverable error condition occurred

Currently, CP/M responds only to azeroor nonzero value as
the return code That s, it the value in register A is 0, CP/M
assumes that the disk operation was completed properly. If an
error occurs, however, the CBIOS should attempt at least 10
retries to see if the error is recoverable. When an error is
reported the BDOS will prtnt the message “BDOS ERR ON x:
BAD SECTOR" The operator then has the option of typing
carnage-retun to ignore the error, or cti-C to abort

The user writes the data from the currently selected DMA
address to the currently selected drive, track, and sector. For
floppy disks, the data should be marked as “nondeleted data”
to maintain compatibility with other CP/M systems. The error
codes given in the READ command arereturned in: register 4,
with error recovery attempts as described above

The user returnsthe ready status o thelist device used by the
DESPOOL program tc improve console response during its
operation Thevalue 00 :s returned in A if thelist device isnot
ready to accept acharacter and OFFH it acharacter can besent

to the printer. A 00 valueshould bereturned if LIST statusis
not implemented.

SECTRAN The user performs logical to physical sector translation to
improve the overall response of CP/M. Standard CP/M sys-
tems are shipped with a "skew factor” of 6, where six
physical sectors are skipped between each Logicd read opera-
tion. This skew factor allows enough time between sectorsfor
most programs to load their buffers without missing the next
sectar. in particular computer systems that use fast proces-
sors, memory, and disk subsystems, the skew factor may be
changed to improve overall response. However, the user
should mtaintain a single density IBM-compatible version of
CP/M for information transfer into and out of the computer
system, using a skew factor of 6. In general, SECTRAN
receives a logical sector number relative to zero in BC and a
translate table addressin DE. The sector number is used asan
index into the translate table, with the resulting physical
sector number in HL. For standard systems, the table and
indexing code is provided in the CBIOS and need not be
changed.

6.7 A Sample BIOS

The program shown in Appendix B can serve as a basisfor a user's first BIOS. The
simplest functions are assumed in this BIOS, so that the user can enter it through afront
panel, if absolutely necessary. The user must alter and insert code into the subroutines
for CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage is
reserved for user-supplied code in these regions. The scratch area reserved in page zero
(see section 6.9) for the BIOS isused in this program, so that it could be implemented in
ROM, if desired.

Once operational, this skeletal version can be enhanced to print the initial sign-on
message and perform better error recovery. The subroutines for LIST, PUNCH, and
READER can be filled out and the IOBYTE function can be implemented.

6.8 A Sample Cold Start Loader

The program shownin Appendix E can serveasa basis foracoldstart loader. Thedisk
read function must be supplied by the user, and the program must be loaded somehow
starting at location 0000. Space is reserved for the patch code so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually, the user will probably
want to get this loader onto the first disk sector (track 0, sector 1) and cause the controller
to load it into memory automatically upon system start up. Alternatively, the cold start
loader can be placed into ROM, and above the CP/M system. In this case, it will be
necessary to originate the program at a higher address and key in a jump instruction at
system start up that branches to the loader. Subsequent warm startswill not require this
key-in operation, since theentry point WBOOT getscontrol thus bringing thesystemin
from disk automatically. The skeletal cold start loader has minimal error recover, which
may be enhanced in later versions.

i43

6.9 Reserved Locations in Page Zero

Main memory page zero, between locations 00H and 0FFH, containsseveral segments
of code and data that are used during CP/M processing. Thecodeand dataareasaregiven
below for reference

144

Locations
from to

0000H-0002H

00G3H-C003H

0004H-0004H

00C5H-0007H

0008H-0027H
0030H-0037H

0038H-003AH

003BH-003FH

0040H-004FH

C050H-005BH

005CH-007CH

007DH-007FH

0080H-00FFH

Contents

Contains a jump instruction to the warm start entry
point at location 4A03H+b. This allows a simple pro-
grammed restart (JMP 0000H) or manual restart from
the front panel.

Contains the Intel standard IOBYTE, whichisoptionally
included in the user’s CBIOS, asdescribed in Section6.6.

Current default drive number (0=A,...,15=P).

Containsajump instruction tothe BDOSand servestwo
purposes: JMP 0005H provides the primary entry point
to the BDOS, as described in Chapter 5, and LHLD
0006H brings the address field of the instruction to the
HL register pair. This value is the lowest address in
memory used by CP/M (assuming the CCP is being
overlaid). The DDT program will change the address
field to reflect the reduced memory size in debug mode.

(Interrupt locations 1 through 5 not used.)

{Interrupt location 6, not currently used; reserved.)
Restart 7; contains a jump instruction into the DDT or
SID program when running in debug mode for pro-
grammed breakpoints, but is not otherwise used by
CPIM.

{Not currently used; reserved.}

A 16-byte areareserved for scratch by CBIOS, but isnot
used for any purpose in the distribution version of
CPIM.

{Not currently used; reserved.)

Default file control block produced for a transient pro-
gram by the Console Command Processor.

Optional default random record position.

Default 128-byte disk buffer (also filled with the com-
mand line when a transient is loaded under the CCP).

This information is set up for normal operation under the CP/M system, but can be
overwritten by a transient program if the BDOS facilities are not required by the
transient.

If, for example, a particular program performs only simple I/O and must begin
execution at location 0, it can first be loaded into the TPA, using normal CP/M facilities,
with a small memory move program that gets control when loaded (the memory move
program must get control from location 0100H, which is the assumed beginning of all
transient programs,?'}”’ne move program can then meeeé to move the entire memory
image down teo location 0 and pass control to the starting address of the memory load If
the BIOS is overwritten or if location 0 (containing the warm start entry point) s
overwritten, the operator must bring the CP/M system back into memory with a cold

start sequenre

6.10 Disk Parameter Tables

Tables are included in the BIOS that describe the particular characteristics of thedisk
subsystem used with CP/M. These tables can be either hand-coded, as shown m the
sample CBIOS in Appendix B, or automatically generated using the DISKDEF macro
library, as shown in Appendix F. The purpose here is to describe the elements of rhese
tables.

In general, each disk drive has an associated (16-byte) disk parameter header that
contains information about the disk drive and provides a scratchpad area for certain
BDOS operations. The format of the disk parameter header for each drive is shown

below

Disk Parameter Header
XLT | 0000 | 0000 | 0000 | DIRBUF |DPB | CSV | ALV
16b 16b 16b 15b 16b 16b 16b 16b

where each element s aword (16-bit} value The meaningof each Disk Parameter Header
(DPH) element is

XLT Address of the logical to physical translation vector, if used for
this particular drive, or the value 0000H if no sector transla-
tion takes place (i.e., the physical and logical sector numbers
are the same). Disk drives with identical sector skew factors
share the same translate tables.

00006 Scratchpad values for use within the BDOS (initial value is
unimportant)

DIRBUF Address of a 128-byte scratchpad area tor directory operations
within BDOS. All DPHs address the same scratchpad area.

DPB Address of a disk parameter block for thisdrive. Drives with
identical disk characteristics address the same disk parameter
block.

csv Address of a scratchpad area used for software check for
changed disks. This address is different for each DPH.

ALV Address of ascratchpad area used by the BDOS to keep disk
storage allocation information This address s different for
each DFPH

145

Given n disk drives, the DPHs are arranged in a table whose first row of 16 bytes
corresponds to drive 0, with the last row corresponding ro drive n-1 The table thus

appears as

DPBASE:
00 | XLT 00 | 0000 | 000C | 0000 | DIRBUF| DBP 00, CSV 00| ALV 00/
01 | XLT 01 ' 0000 | 0000 | 0000 | DIRBUFI DBP 01] CSV 01 ALV 01]
{and so on through)
n-1 [XLTn-1 10000 | 0000 0000 | DIRBUF DBPn-1] CSVn~1l ALVn-1]

where the label DPBASE defines the base address of the DPH table

A responsibility of the SELDSK subroutine is to return the base address ot the DPH
for the selected drive The following sequence of operations returns the table address,
with a 00C0OH returned it the selected drive does not exist

NDISKS EQU 4 NUMBER OF DISK DRIVES
SELDSK: 'SELECT DISK GIVEN BY BC
LXI H,0000H :ERROR CODE
MOV AC ‘DRIVE OK?
CPI NDISKS :CY IF SO
RNC ‘RET IF ERROR
:NO ERROR, CONTINUE
MOV L,C "LOW(DISK)
MOV H,B HIGH(DISK)
DAD H 2
DAD H 4
DAD H 8
DAD H 16
LXI D,DPBASE:FIRST DPH
DAD D :DPH(DISK)
RET

The translation vectors (XLT 00 through XLTn-1) arelocated eisewhere in the BIOS,
and simply correspond one-for-one with the logical sector numbers zero through the
sector count 1 The Disk Parameter Block (IDPB) for each drive 1s more complex. A
particular DPB, which is addressed by one or more DPHs, takes the general form

| SPT |BSH |BLM | EXM |DSM | DRM | ALO | ALT | CKS | OFF|
16b 8b &b 8b 16b 16b 8b &b 16b 16b

where each isabyte or word value, as shown by the 8b or 16b indicator below the field

SPT is the total number of sectors per track

BSH is the data allocation block shift factor, determined by the data block
allocation size.

BLM is the data allocation block mask (2{BSH-11).

EXM is the extent mask, determined by the data block allocation s:ze and

the number of disk blocks.

DSM determines the total storage capacity of the disk drive

146

DRM determines the total number of directory entries that can be stored
on this drive. (ALC,AL1 determine reserved directory blocks.)

CcKS 1s the size of the directory check vector
OFF 1s the number of reserved tracks at the beginning of the (logical)
disk.

Thevalues d BSH and BLM determine (implicitly) the data allocation size BLS, which is
not an entry :n the DPB Given that the designer has selected avalue for BLS, the values
of BSH and BLM are shown in the tabulatton below

BLS BSH BLM
1024 3 7
2048 4 15
4096 5 31
8192 6 63
1A RA4 7 127

where all values are in decimal. The value of EXM depends upon both the BLS and
whether the DSM value s less than 256 or greater than 255 For DSM < 256 the val ue of
EXM is given by:
BLS EXM
1024
2048
4096
8192
1R 2R &

AW e O

For D5M > 255 the value of EXM is given by:

BLS EXM
1024 N/A
2048 0
4096 1
8192 3

42304

The value of DSM 1s the maximum data block number supported by this particular
drive, measured in BLS units The product BLS times (DSM+1) is the total number of
bytes held by thedriveand, of:course, must bewithin thecapacity of thephysical disk, not
counting the reserved operating system tracks

The DRM entry 1s theone lessthan thetotal number of directory entriesthat can take
on a 16-bit value The values of AL0 and AL1, however, are determtned by DRM The
values ALO and AL can together be considered a string of 16-bits, as shown below

ALO AL1 |

(R I

06 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte labeled AL0 and 15
corresponds to the low order bit of: the byte labeled AL1 Each bit position reservesadata
block for number of directory entrtes, thus allowing a total of 16 data blocks to be

147

assigned fur directory entries (bits are assigned starting at 00 and filled to the right until
position 15). Each directory entry occupies 32 bytes, resulting in the tabulation below.

BLS Directory Entries
1024 32 times # bits
2048 64 times # bits
4096 128 times # bits
8192 256 times # btts
16384 512 times # bits

Thus, if DRM =127 {128 directory entries) and BLS=1024, there are 32 directory entries
per block, requiring 4 reserved blocks, in this case, the 4 high order bits of ALC are set,
resulting in the values ALO = 0FOH and AL1 = O0H.

The CKS value is determined as follows: if the disk drive media is removable, then
CKS= (DRM+1)/4, where DRM isthelast directory entry number. If the mediaarefixed,
then set CKS = 0 (nodirectory records are checked in this case).

Finaly, the OFF field determines the number of tracks that are skipped at the
beginning of the physical disk. This value is automatically added whenever SETTRK is
called and can be used as a mechanism for skipping reserved operating system tracks or
for partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, several DPHs can address the same DPB if
their drive characteristics are identical. Further, the DPB can be dynamically changed
when anew driveisaddressed by simply changing the pointer inthe DPH sincetheBDOS
copies the DPB values to a local area whenever the SELDSK function is invoked.

Returning back to the DPH for a particular drive, the two address values CSV and
ALV remain. Both addresses reference an area of uninitialized memory following the
BIOS. The areas must be unique for each drive, and thesizeof each areaisdetermined by
the values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is sufficient to hold the
directory check information for this particular drive. If CKS = (DRM+1)/4, one must
reserve (DRM+1)/4 bytes for directory check use. If CKS = 0, no storage is reserved.

Thesize of thearea addressed by ALV isdetermined by the maximum number of data
blocks allowed for this particular disk and is computed as (DSM/8)+1.

The CBIOS shown in Appendix B demonstrates an instance of these tables for
standard 8-inch single density drives. It may be useful to examine this program and
compare the tabular values with the definitions given above.

6.11 The DISKDEF Macro Library

A macrolibrary isshownin Appendix F,called DISKDEF, which greatly simplifiesthe
table construction process. One must have access to the MAC macro assembler, of
course, to use the DISKDEF facility, while the macro library isincluded with all CP/M 2
distribution disks.

A BIOS disk definition consists o the following sequence of macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF 0.
DISKDEF 1.

148

DISKDEF n-1

where the MACLIB statement loads the DISKDEF.LIB file {on the samedisk asthe BIOS)
into MAC’s internal tables. The DISKS macro call follows, which specifiesthe number of
drives to be configured with the user’s system, where n is an integer in therange 1 to 16.
A series of DISKDEF macro calls then follow that define the characteristics Of each logical
disk, 0 through n-1 (corresponding to logical drives A through P). The DISKS and
DISKDEF macros generate the in-line fixed data tables described in the previous section
and thus must be placed in a nonexecutable portion of the BIOS, typically directly
following the BIOS jump vector.

The remaining portion of the BIOS is defined following the DISKDEF macros, with
the ENDEF macro call immediately preceding the END statement. The ENDEF (End of
Diskdef) macro generates the necessary uninitialized RAM areas, which are located in
memory above the BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skfl, bls,dks,dir,cks,ofs,[0]

where
dn is the logical disk number, 0 to n-1.
fsc is the first physical sector number (0 or 1).
isc is the last sector number.
skf is the optional sector skew factor.
bls is the data allocation block size.
dks is the number of blocks on the disk.
dir is the number of directory entries.
cks is the number of “checked” directory entries.
ofs is the track offset to logical track 00.

is an optional 1.4 compatibility flag.

The value dn is the drive number being defined with this DISKDEF macro invocation.
The fsc parameter accounts for differing sector numbering systems and is usually 0 or 1.
The lsc is the last numbered sector on a track. When present, the skf parameter defines
the sector skew factor, which is used to create a sector translation table accodrding to the
skew.

If the number of sectors is less than 256, a single-byte table is created, otherwise each
translation table element occupies two bytes. No translation table is created if the skf
parameter is omitted (or equal to 0). The bls parameter specifies the number of bytes
allocated to each data block, and takes on the values 1024, 2048, 4096, 192, or 16384.
Generally, performance increases with larger data block sizes since there are fewer
directory references and logically connected data records are physically close on the disk.
Further, each directory entry addresses more data and the BIOS-resident ram space is
reduced.

The dks parameter specifies the total disk size in bls units. That is, if the bls = 2048 and
dks = 1000, the total disk capacity is 2,048,000 bytes. If dks is greater than 255, the block
size parameter bls must be greater than 1024. The value of dir is the total number of
directory entries, which may exceed 255, if desired. The cks parameter determines the

149

number of directory items to check on each directory scan and isused internally to detect
changed disks during system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks the disk read/only
so that data are not subsequently destroyed).

As stated in the previous section, the value of cks = dir when the medium is easily
changed, asisthe case with afloppy disk subsystem. If thedisk ispermanently mounted,
the value of cks is typically 0, since the probability of changing diskswithout a restart is
low. The ofs value determines the number of tracks to skip when this particular driveis
addressed, which can be used to reserve additional operating system space or to simulate
several logical driveson asingle large capacity physical drive. Finally, the{o] parameter is
included when file compatibility is required with versions of 1.4 that have been modified
for higher density disks. This parameter ensures that only 16K is allocated for each
directory record, as was the case for previous versions. Normally, this parameter is not
included.

For convenience and economy of table space, the special form

DISKDEF i

givesdisk i the same characteristicsasa previously defined drive . A standard four-drive
single density system, which iscompatible with version 1.4, isdefined using the following
macro invocations:

DISKS 4

DISKDEF 0,1,26,6,1024,243,64,64,2
DISKDEF 1.0

DISKBDEF 2,0

DISKDEF 3,0

ENDEF

with all disks having the same parameter values of 26 sectors per track (numbered 1
through 26), with 6 sectors skipped between each access, 1024 bytes per data block, 243
data blocks for a total of 243K-byte disk capacity, 64 checked directory entries, and two
operating system tracks.

The DISKS macro generates n DPHs, starting at the DPH table address DFBASE
generated by the macro. Each disk header block contains sixteen bytes, as described
above, and correspond one-for-one to each of the defined drives. In the four-drive
standard system, for example, the DISKS macro generates a table of the form:

DPBASE EQUS$

DPEO: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALVO
DPET: DW XLT0,0000H,0000H,0000H,DIRBUF,DPBO,CSV1, ALV
DPEZ2: DW XLT0,0000H,0000H,0000H,DIRBUF,DPBO,CSV2 ALV2
DPES: DW XLT0,0000H nnonH,0000H,DIRBUF,DPB0O,CSV3,ALV3

where the DPH labels are included for reference purposes to show the beginning table
addresses for each drive 0 through 2 The values contained withinthe DPH aredescribed
in detail in the previous section. The check and ailocation vector addresses are generated
by the ENDEF macro in the ram area following the BIOS code and tables.

The user should note that if the skf (skew factor) parameter isomitted (orequal to¢;,
the translation table isomitted and a 0000H value isinserted in the XLT position of the
DPH for the disk. In a subsequent call to perform the logical to physical translation,
SECTRAN receives a translation table address of DE = 0000H and simply returns the
original logical sector from BC in the HL register pair. A translate table is constructed
when the skf parameter is present, and the (nonzero) table address is placed into the

150

corresponding DPHs. The tabulation shown below, for example, isconstructed when the
standard skew factor skf = 6 is specified in the DISKDEF macro call:

XLT0: DB 1,7,13,19,25,5,11,17,23,3,8,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data areas are defined
These data areas need not be a part of the BIOS that isloaded upon cold start, but must be
available between the BIOS and the end ot memorv The size of the uninitialized RAM
area 1s determined by EQU statements generated by the ENDEF macro For astandard
four-drive svstem, the ENDEF macro might produce

4C72 = BEGDAT EQU %
(data areas)
4DBO0 = ENDDAT EQU $
013C = DATSIZ EQU $-BEGDAT

which indicates that uninitiaiized RAM begins at location 4C72H, ends at 4DB0H-1, and
occupies 013CH bytes. The user must ensure that these addresses arefree for use after
the system is loaded.

After modification, the user can utilize the STAT program to check drivecharacteris-
tics, since STAT uses the disk parameter block to decode the drive information. The
STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d=A....,P; and displays the values shown
below.

128-byte record capacity
kilobyte drive capacity
32-byte directory entries
checked directory entries
recordsiextent
recordslblock
sectors/track

reserved tracks

TAOTO0 X"

Three examples of DISKDEF macro invocations are shown below with corresponding
STAT parameter values (thelast produces a full 8-megabyte system).

DISKDEF 0,1,58,,2048,256,128,128,2

r=40986, k=512, d=128, ¢c=128, e=256, b=16, s=58, t=2
DISKDEF 6,1,58,,2048,1024,300,0,2

r=16384, k=2048, d=300, c=0, e=128, b=18, =58, =2
DISKDEF 6,1,58,,16384,512,128,128,2

r=65536, k=8192, d=128, ¢=128, e=1024, b=128, 5=58, {=2

151

6.12 Sector Blocking and Deblocking

Upon each call to the BIOS WRITE entry point, the CP/M BDOS includes information
that ailows effective sector blocking and deblocking where the host disk subsystem has a
sector size that isa multiple of the basic 128-byte unit. The purpose here is to present a
general -purpose algorithm that can be included within the BIOS and that uses the BDOS
information to perform the operations automatically.

On each call to WRITE, the BDOS provides the following information in register C:

0 = normal sector write

1 = write to directory sector

2 = write to the first sector
of 2 new data block

Condition 0 occurs whenever the next write operation isintoapreviously written area,
such as a random mode record update, when the writeisto other than thefirst sector of
an unallocated block . or when thewriteis not into thedirectory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs when the first
record (only) of a newly allocated data block is written. In most cases, application
programs read or write multiple 128-byte sectors in sequence; thus, there is little
overhead involved in either operation when blocking and deblocking records, since
preread operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal form (this file is
included on your CP/M disk). enerally, the algorithms map all CP/M sector read opera-
tions onto the host disk through an intermediate buffer that is the size of the host disk
sector. Throughout the program, values and variables that relate to the CP/M sector
involved in a seek operation are prefixed by sek, while those related to the host disk
system are prefixed by hst. The equate statements beginning on line 29 of Appendix G
define the mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization code starting on
line 57, while the SELDSK entry point must be augmented by the code starting on line 65.
The user should note that although the SELDSK entry point computes and returns the
Disk Parameter Header address, it does not physically select the host disk at this point (it
is selected later at READHST or WRITEHST). Further, SETTRK, SETTRK, and
SETDMA simply store the values, but do not take any other action at this point.
SECTRAN performs a trivial function of returning the physical sector number.

The principal entry points are READ and WRITE, starting on lines 110 and 125,
respectively. These subroutines take the place of your previous READ and WRITE
operations.

The actual physical read or write takes place at either WRITEHST or READHST,
where all values have been prepared: hstdsk is the host disk number, hstirk is the host
track number, and hstsec is the host sector number (which may require translation to a
physical sector number). The user must insert code at this point that performs the full
host sector read or write into or out of the buffer at hstbuf of length hstsiz. All other
mapping functions are performed by the algorithms.

This particular algorithm was tested using an 80-megabyte hard disk unit that was
originally configured for 128-byte sectors, producing approximately 35 megabytes of
formatted storage. When configured for 512-byte host sectors, usable storage increased
to 57 megabytes, with a corresponding 400% improvement in overall response. In this
situation, there is no apparent overhead involved in deblocking sectors, with the advan-
tage that user programs still maintain 128-byte sectors. This is primarily because of the
information provided by the BDOS, which eliminates the necessity for preread
operations.

i52

Appendix A: The MDS Basic I/0O System (BIOS)

1 mds-800 i/o drivers for cp/m 2.2
2 (four drive single density version)
3
4 , version 2.2 february, 1980
5
6 0016 = vers equ 22 ;version 2.2
7
8 copyright (c) 1980
9 digital research
10 box 579, pacific grove
11 , catifornia, 93950
12
13
14 ffff = true equ offffh :value of "true"
15 0000 = false equ not true "false"
16 0000 = test equ false ;true if test bios
17
18 if test
19 bias equ 03400h ;base of ccp in test system
20 endif
21 if not test
22 0000 = bias equ 0000h ;generate relocatable cp/m system
23 endif
24
25 1600 = patch equ 1600h
26
27 1600 org patch
28 0000 = cpmb equ $-patch ;base of cpm console processor

29 0806 = bdos equ 806h+cpmb ;basic dos (resident portion)

PS1

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1600 =
002¢ =
0002 =
0004 =
0080 =
000a =

1600 c3b316

cpml
nsects
offset
cdisk
buff
retry

E]
i

]

equ $-cpmb ;length (in bytes) of cpm system

equ cpmi/128 ;number of sectors to load

equ 2 ;number of disk tracks used by cp/m

equ 0004h ;address of last logged disk on warm start
equ 0080h :default buffer address

equ 10 ;max retries on disk i/o before error

perform following functions
boot cold start
wboot warm start (save i/o byte)
(boot and wboot are the same for mds)
const console status
reg-a = 00 if no character ready
reg-a = ff if character ready

conin console character in (resultinreg-a)
conout console character out (charin reg-c)
list list aut (char in reg-c)

punch punch out (char in reg-c)
reader paper tape reader in (result to reg-a)
home move to track 00

(the following calls set-up the io parameter block for the

mds, which is used to perform subsequent reads and writes)
seldsk select disk given by reg-¢ (0,1, 2...)

settrk set track address (0, . . . 76) for subsequent read/write
setsec set sector address (1, . . ., 26) for subsequent read/write
setdma set subsequent dma address(initially 80h)

{read and write assume previous calls to set up the io parameters)
read read irack/sector to preset dma address
write track/sector from preset dma address

jump vector for individual routines
imp boot

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
o1
92

o3

1603 ¢c3¢c316
1606 c36117
1609 ¢36417
160c ¢36a17
160f c36d17
1612 ¢c37217
1615 ¢37517
1618 c37817
161b ¢37d17
161e ¢3a717
1621 c3ac17
1624 c3bb17
1627 c3c¢117
162a c3cal7
162d c37017
1630 ¢3b117

1633+=
1633+82160000
1637+00000000
163b+6e187316
163f+0d19ee18
1643+82160000
1647+00000000
164b+6e187316
164{+3¢191d19
1653+82160000
1657+00000000
165b+6e187316

1656f+6b194¢19
1663+82160000

R AT~ or W aTataVatalatatal

wboote:

dpbase
dpe0:

dpet:

dpe2:

dpe3:

jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

maclib
disks
equ
dw

dw

dw

dw
dw
dw
dw
dw
dw
dw

dw
dw
dw

wboot

const

conin

conout

list

punch

reader

home

seldsk

settrk

setsec

setdma

read

write

listst list status

sectran

diskdef ;load the disk definition library
4 :four disks

$;base of disk parameter blocks
x1t0, 0000h :translate table
0000h, 0000h :scratch area

dirbuf, dpb0 :dir buff, parm block
csv0, alv0 :check, alloc vectors
xit1, 0000h :translate table
0000h, 0000h ;scratch area

dirbuf, dpb1 :dir buff, parm block
csvt, alvi ;check, alloc vectors
xlt2, 0000h ;translate table
0000h, 0000h :scratch area

dirbuf, dpb2 dir buff, parm block
csve, alv? :check, alioc vectors
xit3, 6000h ;translate table

annnh NNNNH

;scratch area

92

02

i

8

I

L2

gl

6

€

€2

Ll

L

g

g

6l

gl

L

L

a|qe1 a1e|suBiy $
198}}0! 2

8ZIs %oayd! gl
Loojje! 0

goo|lE! 418

xew A1030841p! €9
L-8z1s ysIp! eye
¥Seuw juixa! 0
YSBUW 3O0}q! /
H1ys »o0iq! €
yoedy 1ed oos! 9z
¥o0iq wued ysip: $
198140 ‘¥9 v9 ‘cve ‘POl '9 ‘92 ‘L ‘0
$10308A uled ‘Yng 4p: AR ‘CASO
%00]q O0jje o8yo! ¢qdp ‘ynqip

ap
ap
qp
ap
ap
ap
ap
qp
ap
ap
ap
ap
ap
qap
qp
ap
qp
ap

ap
nbs

Mp
Mp
qp
ap
Mp
Mp
ap
ap
qp
Mp
nbe
jopysip
Mp
Mp

Oux

oqdp

90+1691
Bl+E691
v1+2691
80+ 1691
80+0691
c0+igol
G1+9891
10+p89l
60+9891
£0+4891
L1+B891
L1+6891
q0+8891
G0+.891
61+9891
€1+6891
PO+v89L
L0+£891
10+2891
=+2891
00c0+0891
600L+2.91
00+P/L91L
05+9/.91
00ig+BL91
0024+8/91
00+2291
10+9/91
€0+G491
00BL+E€L91
=+E/91

619.6186+j991
91€/8199+q991

Let
oet
6ct
8¢l
el
9ct
Gt
yel
gct
44
Ll
0ct
611
8t
LiL
gkt
Sit
43
el
¢t
LLL
Ot
601
801
101
901
SOt
Y01
€01
20t
L0}
001
66

86

156

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
162
153
154
165
156
167
158
159
160
161
162
163
164
165

1695+0¢
1696+12
1697+18
1698+04
1699+0a
169a+10
169b+16

1673+=
001f+=
0010+=
1682+=

1673+=
001f+=
0010+=
1682+=

1673+=
001f+=
0010+=
1682+=

00fd =
00fc =

dpbl
als1
csst
xlt1

dpb2

als2
css2
xlt2

dpb3

als3
css3
xit3

revri
intc

db 12

db 18

db 24

db 4

db 10

db 16

db 22

diskdef 1,0

equ dpb0 ;equivalent parameters

equ als0 ;same allocation vector size
equ CSSo ;same checksum vector size
equ xIt0 ;same translate table
diskdef 2,0

equ dpb0 ;equivalent parameters

equ alsO ;same allocation vector size
equ €SSO :same checksum vector size
equ xIt0 ;same translate table
diskdef 3,0

equ dpb0 ;equivalent parameters

equ als0 ;same allocation vector size
equ €SSO :same checksum vector size
equ xIt0 :same translate table

endef occurs at end of assembly

end of controlier—independent code, the remaining subroutines
are tailored to the particular operating environment, and must
be altered for any system which differs from the intel mds.

the following code assumes the mds monitor exists at 0f800h
and uses the i/o subroutines within the monitor

we also assume the mds system has four disk drives
equ Gidn ;interrupt revert port
equ Ofch ;interrupt mask port

851

166
167
168
169
170
171
172
173
174
176
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

< N7

00f3 =
007E =

800 =
ffof =

803 =
806 =
809 =
f80c =

1801 =
fR1D =

0078 =
0078 =
0079 =
007b =

0079 =
007a =

0004 =
0006 =
0003 =
0004 =
000d =
000a =

169¢ 0d0ala

icon
inte

mon80
rmon80
Ci

ri

co

po

lo

csts

base
dstat

rtype
rbyte

ilow
ihigh

readf
writf
recal
iordy
cr

If

signon:

equ Of3h ;interrupt control port

equ 0111$1110b ;enable rst 0 (warm boot), rst 7 (monitor)
mds monitor equates

equ 0f800h ;mds monitor

equ offoth ;restart mon80 (boot error)

equ 0f803h ;console character to reg-a

equ 0f806h ;reader in to reg-a

equ 0f808h ;console char from c to console out
equ 0f80ch ;punch char from c to punch device
equ 0f80fh ;list from c to list device

equ 0f812h ;console status 00/ff to register a

disk ports and commands

equ 78h ;base of disk command io ports
equ base ;disk status (input)

equ base+1 ;result type (input)

equ base+3 ;result byte (input)

equ base+1 ;iopb low address (output)
equ base+2 ;iopb high address (output)
equ 4h ;read function

equ 6h ;write function

equ 3h ;recalibrate drive

equ 4h ;i/o finished mask

equ Odh ;carriage return

equ Oah ;line feed

;signon message: xxk cp/m vers y.y

db cr, If, If

if test

db ‘32 32k example bios

endif

651

200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

~

169f 3030

16al 6b2043502f

16ad 322e32
16b0 0d0a00

16b3 310001
16b6 219¢16
16b9 cdd317
16bc af

16bd 320400
16¢0 c30f17

16¢3 318000

16¢6 Oela
16c8 ¢c5

16¢2 010000
16¢cc cdbbl7
16¢f 0e00
16dl cd7d17
16d4 0eQ0
16d6 cda717
16d9 0e02
16db cdac17

boot:

wboot:;

wboot0:

if not test
db '00' ;memory size filled by relocator
endif

db 'k cp/m vers '
db vers/10+'0’', ', vers mod 10+'0’
db cr, If, 0

;print signon message and go to ccp
(note: mds boot initialized iobyte at 0003h)
ixi sp, buff+80h

Ixi h, signon

call prmsg ;print message

Xra a ;clear accumulator

sta cdisk ;set initially to disk a

jmp gocpm :go to cp/m

loader on track 0, sector 1, which will be skipped for warm
read cp/m from disk—assuming there is a 128 byte cold start
start

Ixi sp, buff ;using dma—thus 80 thru ff available for stack
mvi c, retry ;max retries

push b

;enter here on error retries

Ixi b, cpmb ;set dma address to start af disk system

cail setdma

mvi c, 0 :boot from drive 0

call seldsk

mvi c, 0

call settrk :start with track 0

mvi c. 2 ;start reading sector 2
call setsec

091

234 ;

235 read sectors, count nsects to zero

236 16de c1 pop b :10-error count

237 16df 062c mvi b, nsects

238 rdsec: :read next sector

239 16e1 ¢5 push b :8ave sector count

240 16e2 cdcit1? call read

241 16e5 ¢24917 jnz booterr ;retry if errors occur
242 16e8 2a6¢18 ihid iod :increment dma address
243 16eb 118000 Ixi d. 128 ;sector size

244 16ee 19 dad d ;incremented dma address in hi
245 16ef 44 mov b, h

246 1610 4d mov ¢, | ;ready for call to set dma
247 16f1 cdbb17 call setdma

248 16f4 3a6b18 Ida ios ;sector number just read
249 16f7 fela cpi 26 ;read last sector?

250 1619 da0517 jc rdl

251 , must be sector 26, zero and go to next track
252 16fc 3a6a18 Ida iot ;get track to register a
253 16ff 3¢ inr a

254 1700 4f mov ¢, a ;ready for call

255 1701 ¢cda717 call settrk

256 1704 af xra a :.clear sector number
257 1705 3¢ rdl: inr a ;to next sector

258 1706 4f mov ¢, a ;ready for call

259 1707 cdac17 call setsec

260 170a c1 pop b :recall sector count

261 170b 05 der b :done?

262 170c c2e116 jnz rdsec

263 ,

264 done with the load, reset default buffer address
265 gocpm: ;(enter here from cold start boot)

~ne , enable rst0 and rst7

191

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
201
292
293
294
295
296
297
208
299
300

170f i3
1710 3e12
1712 d3fd
1714 af
1715 d3fc
1717 3e7e
1719 d3fc
171b af
171c d3f3

171e 018000
1721 cdbb17

1724 3ec3

1726 320000
1729 210316
172¢ 220100
172f 320500
1732 210608
1735 220600

1738 323800
173b 210018
173e 223900

1741 3a0400
1744 4f
1745 fb
1746 ¢30000

di

mvi
out
xra
out
mvi
out
Xra
out

a, 12h
revrt
a

intc

a, inte
intc

a

icon

:initialize command

:cleared
;rst0 and rst7 bits on

;interrupt control

set default buffer address to 80h

IXi
call

b, buff
setdma

reset monitor entry points

mvi
sta
IXi
shld
sta
IXi
shld
if

sta
Ixi
shid
endif

leave iobyte set
previously selected disk was b, send parameter to cpm
;last logged disk number

Ida
mov
ei
jmp

a, jmp

0

h, wboote

1
5

h, bdos

6

not test

7*8

h, mon80

7*8+1

cdisk
c, a

cpmb

;jump wboot atlocation 00

;jmp bdos at location 5

;imp to mon80 (may have changed by ddt)

;send to ccptologitin

91

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

1748 ¢t
174a 0d
174b cab217

174e cb
174f c3c916

1752 215b17
1755 ¢dd317
1758 c30fff

175b 316261674

1761 31218

1764 cd03f8
1767 eB7f
1769 c9

176a ¢c30918

176d c307{8

booterr:

booter0:

bootrnsg:

const:

conin:

conout:

list:

error condition occurred, print message and retry

pop b ;recall counts
dcr c

jz booter0

try again

push b

jmp wboot0

otherwise too many retries

Ixi h, bootmsg
call prmsg
jmp rmon80 :mds hardware monitor

db '?boot’, 0

console status to reg-a
(exactly the same as mds call)
jmp csts

;console character to reg-a

call ci

ani 7fh ;remove parity bit
ret

:console character from c to console out
jmp co

;list device out
(exactly the same as mds call)
jmp lo

€91

335

336 listst:

337 ;return list status

338 1770 af xra a

339 1771 ¢9 ret ;always not ready
340

341 punch: ;punch device out

342 (exactly the same as mds call)

343 1772 ¢30cf8 jmp po

344

345 reader: ;reader character in to reg-a

346 (exactly the same as mds call)

347 1775 c306f8 jmp ri

348

349 home: ;move to home position

350 treat as track 00 seek

351 1778 0e00 mvi c, 0

352 177a c3a717 jmp settrk

353 ,

354 seldsk: ;select disk given by register c

355 177d 210000 Ixi h, 0000h ;return 0000 if error
356 1780 79 mov a,c¢

357 1781 fe04 cpi ndisks ;too large?

358 1783 d0 rnc ;leave hi = 0000

359

360 1784 e602 ani 10b (30 00 for drive 0,1 and 10 10 for drive 2, 3
361 1786 326618 sta dbank ;to select drive bank
362 1789 79 mov g C ;00, 01, 10, 11

363 178a 601 ani I b ;mds has 0,1 at 78, 2,3 at 88
364 178¢c b7 ora a ;result 007

365 178d ca9217 jz setdrive

366 1790 3e30 mvi a, 00110000b ;selects drivelin bank
367 setdrive:

368 1792 47 mov b,a ;save the function

¥91

369 1793 216818 IXi h, iof :io function

370 1796 7e rnov. a, m

371 1797 ebcf ani 11001111b ;mask out disk number

372 1799 b0 ora b :mask in new disk number
373 179a 77 mov m,a ;save it in iopb

374 179b 69 rov I, ¢

375 179¢ 2600 mvi h, 0 ;hi=disk number

376 179¢e 29 dad h ;*2

377 179t 29 dad h *4

378 17a0 29 dad h 8

379 17a1 29 dad h *16

380 17a2 113316 IXi d, dpbase

381 17ab 19 dad d :hl=disk header table address
382 17a6 ¢9 ret

383

384

385 settrk: ;set track address given by ¢

386 17a7 216a18 IXi h, iot

387 17aa 71 rnov. m,c

388 17ab c9 ret

389

390 setsec: ;set sector number given by ¢

391 17ac 216b18 IXi h, ios

392 17af 71 rnov. m,c

393 17b0 ¢c9 ret

394 sectran:

395 ;translate sector bc using table at de

396 17b1 0600 mvi b, 0 ;double precision sector number in bc
397 17b3 eb xchg ;translate table address to hl
398 17b4 09 dad b ;translate (sector)address
399 1705 7e mov a m ;translated sector number to a
400 17b6 326b18 sta ios

401 17b8 6f mov |,a ;return sector number in |

402 17ba ¢9 ret

$91

403

404 setdma: ;set dma address given by regs b, ¢

405 17bb 69 mov |, cC

406 17bc 60 mov h,b

407 17bd 226¢18 shid iod

408 17¢0 c9 ret

409

410 read: ;read next disk record (assuming disk/trk/ sec/dma set)
411 17¢c1 0e04 mvi c, readf ;set to read function
412 17¢3 cde017 call setfunc

413 17¢6 cdfo17 call waitio ;perform read function
414 17¢9 c9 ret ;may have error set in reg-a
415 ;

416 :

417 write: ;disk write function

418 17ca 0e06 mvi c, writf

419 17cc cdeO17 call setfunc ;set to write function
420 17cf cdf017 call waitio

421 17d2 ¢9 ret ;may have error set
422

423

424 utility subroutines

425 prmsg: ;print message at h, | to 0

426 17d3 7e mov a m

427 17d4 b7 ora a zero?

428 17d5 c8 rz

429 more to print

430 17d6 e5 push h

431 17d7 4f mov ¢, a

432 17d8 cd6al7 call conout

433 17db et pop h

434 17dc 23 inx h

435 17dd ¢3d317 jmp prmsg

436

437 setfunc:

438 set function for next i/o (command in reg-c)

439 17¢0 216818 IXi h, iof ;io function address

440 17e3 7e mov a, m ;get it to accumulator for masking
441 17e4 618 ani 11111000b ;remove previous command

442 17e6 b1 ora c ;set to new command

443 17e7 77 mov m,a ;replaced in iopb

444 the mds-800 controller requires disk bank bit in sector byte
445 mask the bit from the current i/o function

446 17e8 620 ani 00100000b ;mask the disk select bit
447 17ea 216b18 Ixi h, ios ;address the sector select byte
448 17ed b6 ora m ;select proper disk bank
449 17ee 77 mov. . m,a ;set disk select bit on/off
450 17ef c9 ret

451

452 waitio:

453 1710 OeQa mvi ¢, retry ;max retries before perm error
454 rewait:

455 start the i/o function and wait for completion

456 17f2 ¢d3f18 call intype ;in rtype

457 1715 cd4c18 call inbyte ;clears the controller

458

459 1718 3a6618 Ida dbank ;set bank flags

460 17tb b7 ora a ;zero if drive 0,1 and nz if 2, 3
461 17fc 3e67 mvi a, iopb and offh ;low address for iopb

462 17fe 0618 mvi b, iopb shr 8 ;high address for iopb

463 1800 c20b18 jnz iodrl ;drive bank 1?7

464 1803 d379 out ilow ;low address to controller
465 1805 78 mov a, b

466 1806 d37a out ihigh ;high address

467 1808 ¢31018 jmp waito ;to wait for complete

468 ;

469 iodr1 ;drive bank 1

470 180b d389 out ilow+10h :88 for drive bank 10

491

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

180d 78
180e d38a

1810 cd5918
1813 €604
1815 cat1018

1818 cd3f18

181b fe0?2
181d ca3218

1820 b7
1821 ¢23818

1824 cd4c18
1827 17
1828 da3218
182b 1f
182¢ ebfe
182e ¢c23818

1831 c9

1832 cd4c18
1835 ¢33818

waito:

wready:

werror:

mov ab
out ihigh+10h

call instat ;wait for completion
ani iordy ;ready?
1z waito

check io completion ok

call intype ;must be io complete (00) unlinked
00 unlinked i/o complete, 01 linked i/o complete (not used)
io disk status changed 11 (not used)

cpi 10b ;ready status change?

jz wready

must be 00 in the accumulator
ora a

jnz werror ;some other condition, retry

check i/o error bits

call inbyte

ral

jic wready ;unit not ready

rar

ani 11111110b ;any other errors? (deleted data ok)
jnz werror

read or write is ok, accumulator contains zero
ret

;not ready, treat as error for now
call inbyte ;clear result byte
jmp trycount

;return hardware malfunction (crc, track, seek, etc.)

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

1838 0d
1839 c2f217

183¢ 3e01
183e c9

183f 3a6618
1842 b7
1843 ¢c24918
1846 db79
1848 c9
1849 db89
184b c9

trycount:

s

intype:

intypl:

the mds controller has returned a bit in each position
of the accumulator, corresponding to the conditions:

—deleted data (accepted as ok above)
—cCr¢ error

0
1
2 —seek error

3 —address error (hardware malfunction)

4 —data over/under flow (hardware malfunction)
5 —write protect (treated as not ready)

6 —write error (hardware malfunction)

—not ready
(accumulator bits are numbered 76 54321 0)

-

it may be useful to filter out the various conditions,
but we will get a permanent error messageif it is not
recoverable. in any case, the not ready condition is
treated as a separated condition for later improvement

register ¢ contains retry count, decrement ‘til zero
der c
jnz rewait ;for another try

cannot recover from error
mvi al error code
ret

intype, inbyte, instat read drive bank 00 or 10
Ida dbank

ora a

jnz intypl ;skip to bank 10

in rtype

ret

in rtype+10h ;78 for 0,1 88for 2, 3

ret

691

538
539
540
541
542
543
544
545
546
547
548
549
550
551
562
5583
554
565
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

184¢ 326618
184f b7
1850 ¢c25618
1853 db7b
1855 c9
1856 db8b
1858 ¢9

1859 326618
185¢ b7
185d c26318
1860 db78
1862 c9
1863 db8s
1865 c9

1866 00

1867 80
1868 04
1869 01
186a 02
186b 01
186¢ 8000

inbyte:

inbytl:

instat:

instal:

dbank:
iopb:

iof:
ion:
iot:
ios:
iod:

Ida dbank
ora a

jnz inbytl
in rbyte

ret
in rbyte+10h
ret

Ida dbank
ora a

jnz instal

in dstat

ret

in dstat+10h

ret

data areas (must be in ram)

db 0 ;disk bank 00 if drive 0, 1
10 if drive 2, 3

;io parameter block

db 80h ;normal i/o operation

db readf ;io function, initial read

db 1 :number of sectors to read

db offset ;track number

db 1 ;sector number

dw buff ;io address

define ram areas for bdos operation
endef

041

571
572
573
574
575
576
577
578
579
580
581
582
583

alsl
als2
als3
alvQ
alvl
alv2
alv3
base
bdos
begdat
bias
boot
booter0
booterr
bootmsg
buff
cdisk
ci

co

186e+=
186e+
18ee+
190d+
191d+
193¢+
194c¢+
196b+
197b+
199a+
19aa+=
013c+=
1Qaa

001f
001f
001f
18ee
191d
194c¢
197b
0078
0806
186e
0000
16b3
1752
1749
175b
0080
0004
f803

f809

begdat equ
dirbuf: ds
aiv0: ds
csvO: ds
alvl: ds
csvl: ds
alv2: ds
csve: ds
alv3: ds
csv3: ds
enddat equ
datsiz equ
end
1414
1464
151#
87 5734#
91 575#
95 577#
99 579#
180# 181
29# 287
571# 582
19# 22#
63 207#
305 310#
241 3024
312 316#
344 209
33# 213
172# 325
1744 330

$
128
31
16
31
16
31
16
31
16
$
$-begdat

182 183

221 278
296

;directory access buffer

185

566

186

#HOES

aly

2SS
061 gl ort
ens 8c ¥6
LyS 6ES LS

g0¢

662 9ze 0oe

AN

99

§i¢
#6VC
#99¢

9t

oGS

08e
#0G1
#5v1
#0v1
#101

06

64y

#089
#8.1S
#9.9
#v.1S

A4

961

i)

6¢
#0cE
#6¢E
¥vee

#0981
#991
bL
vic
#S1
#186
#181
#96
#6
#88
#v8
#e8
86
v6
06
98
98
192
#2889
66
G6
L6
L8
#1L1
#261
#Livi
#avi
#261
#0€
#8¢
g9
VAS)
99

e/00
€400
8.1
041
0000
BBO1L
8200
€991
€491
evol
£eol
£eol
€491
€491
€L91
€L91
2081
9981
9€10
EG6L
qg61
oe61
pPo6G1L
cl8}
0100
0100
0100
P0O00
009t
0000
1921
BO/LL
9.1

ybiyi
uod|
auwioy
widoob
ase}
leppue
leisp
godp
Zedp
tedp
oadp
aseqdp
cqdp
zqdp
Lqdp
oqdp
ingap
Nuegp
zisiep
CASD
SASD

L ASD
QASD
5180
£880
25890
1§82
A0
jwdo
quido
1SU0D
Halelilole)
Uiuoo

171

(4§

ilow
inbytl
inbyte
instal
instat
intc
inte
intypl
intype
iod
iodrl
iof
ion
iopb
iordy
ios
iot

If

list
listst
lo
mon80
nsects
offset
patch
po
prmsg
punch
rbyte
rd1
rdsec
read
reader
readf

0079
1856
184c¢
1863
1859
00fc
007e
1849
183f
186¢
180b
1868
1869
1867
0004
186b
186a
000a
176d
1770
{80f
f800
002c
0002
1600
f80c
17d3
1772
007b
1705
16e1
17c1
1775
0004

185#
541
457
549
474
1654
1674
533
456
242
463
369
563#
461
1914
248
252
193#
68
78
1764
1704#
31#
324
25#
1754
211
69
183#
250
2384#
76
70
1884

464
5444
490
552#
547#
271
272
536#
479
407
469#
439

462
475
391
386
196
332#
336#
334
291
237
100
27
343
313
341#
542
257#
262
240
3454
411

470

501 539#

273

531#

566#

562#

5604

400 447

5644
196 205

564
28

425# 435

544

4104

562

565#

€4L

recal
retry
revrt
rewait
ri
rmon80
rtype
sectran
seldsk
setdma
setdrive
setfunc
setsec
settrk
signon
test
true
trycount
vers
waito
waitio
wboot
wboot0
wboote
werror
wready
write
writf
x1t0
xit1
xlt2
xit3

0003
000a
00fd
1712
f806
ffof
0079
17bl
177d
17bb
1792
17e0
17ac
17a7
169¢
0000
ffff
1838
0016
1810
1710
16¢3
16¢9
1603
1838
1832
17ca
0006
1682
1682
1682
1682

100#
35#
1644
454#
173#%
1714
1824
79
72
75
365
412
74
73
1954
164
14#
502
6#
467
413
64
2254
644
487
483
77
1894
84
88
92
96

223
269
524
347
314
534
394#
229
227
367#
419
233
231
210
18
15
521#
204
474+
420
2174
308
284
495
492
417#
418
112#
1434#
1484
1534

453

536

354#
247

437#
259
255
21
204

476
452#

5044
500#

143

279

390#

3562

197

148

4044

385#

200

153

289

=FA

.
OWoO~NMO AWM —

PR DN DR NN wd b d cd ond sk d wd wd
~NO N HWN - O O©O~NOULD WN -

0014 =

0000 =
3400 =
3¢c06 =
4a00 =
0004 =
0003 =

4a00
002c¢ =

4a00 c39c4a
4a03 c3ab4a
4a06 c3114b
4a09 c3244b
4a0c ¢3374b
4a0f c3494b
4a12 ¢c34d4b
4a15 c34f4b
4a18 c3544b

Appendix B: A Skeletal CBIOS

msize

bias
cep
bdos
bios
cdisk
iobyte

nsects

wboote:

skeletal cbios for first level of cp/m 2.0 alteration

equ

20

;cp/m version memory size in kilobytes

"bias" is address offset from 3400h for memory systems
than 16k (referred to as "b" throughout the text)

equ
equ
equ
equ
equ
equ

org
equ

{msize-20)*1024

3400h+bias
ccp+806h
ccp+1600h
0004h
0003h

bios
($-ccp)/128

;base of ccp

;base of bdos

:base of bios

current disk number O=a, ..., 15=p
;intel i/o byte

;origin of this program
;warm start sector count

jump vector for individual subroutines

jmp
imp
imp
imp
jmp
imp
imp
jmp
Jmp

boot
wboot
const
conin
conout
list
punch
reader
home

:cold start

:warm start

:console status

:console character in
:console character out

list character out

;punch character out

:reader character out

;move head to home position

941

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

4a1b c35a4b
4aie c37d4b
4a21 ¢3924b
4a24 c3ad4b
4a27 ¢3¢34b
4a2a c3d64b
4a2d c34b4b
4a30 c3a74b

4a33 734a0000
4a37 00000000
4a3b f04c8d4a
4a3f ec4d704d

4a43 734a0000
4a47 00000000
4a4b f04cBd4a
4a4df fc4dsfad

4a53 734a0000
4a57 00000000
4a5b f04c8d4a
4a5f Oc4eaedd

4a63 734a0000
4a67 00000000
4a6b f04c8d4a
4a6f 1c4ecd4d

dpbase:

jmp seldsk
jmp settrk

jmp setsec
jimp setdma

:select disk

jmp read ;read disk
jimp write ;write disk
jmp listst ;return list status

jmp sectran

fixed data tables for four-drive standard

ibm-compatible 8" disks

disk parameter header for disk 00
dw trans, 0000h

dw 0000h, COOh

dw dirbf, dpblk

dw chk00, ali0o

disk parameter header for disk 01
dw trans, OOOCh

dw 0000h, COOth

dw dirbf, dpblk

dw chk01, ali01

disk parameter header for disk 02
dw trans, OOOCh

dw 0000h, OOCCh

dw dirbf, dpblk

dw chk02, all2

disk parameter header for disk 03
dw trans, OOCCh

dw 0000h, OOOCh

dw dirbf, dpblk

dw chk03, ali03

sector translate vector

:set track number
:set sector number
:set dma address

;sector translate

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

4a73 01070d13
4a77 19050b11
4a7b 1703090f
4a7f 1502080e
4383 141a060c
4a87 1218040a
4a8b 1016

trans:

dpblk:
4a8d 1a00
4a8f 03
4a90 07
4a91 00
4a92 1200
4a94 3100
4a96 c0
4a97 00
4298 1000
4a9a 0200

boot:
4a9c af
4a9d 320300
4aa0 320400
4aa3 c3efda

wboot:
4aa6 318000
4aa9 0e00
4aab cd5a4b
4aae cd544b

db 1,7,13, 19 ;sectors 1, 2, 3, 4

db 25,5, 11,17 ;sectors5,6,7,8

db 23,3,9, 15 ;sectors 9, 10, 11, 12
db 21,2, 8, 14 ;sectors 13, 14, 15, 16
db 20, 26, 6, 12 ;sectors 17, 18, 19, 20
db 18, 24, 4, 10 ;sectors 21, 22, 23, 24
db 16, 22 ;sectors 25, 26

;disk parameter block, common to all disks

dw 26 ;sectors per track
db 3 :block shift factor
db 7 ;:block mask

db 0 ;null mask

dw 242 ;disk size-I|

dw 63 ;directory max
db 192 ;alloc 0

db 0 ;alloc 1

dw 16 :check size

dw 2 ;track offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initialization

xra a ;zero in the accum

sta iobyte ;clear the iobyte

sta cdisk ;select disk zero

imp gocpm ;initialize and go to ¢cp/m

;simplest case is to read the disk until all sectors loaded

Ixi sp, 80h ;use space below buffer for stack
mvi c, 0 ;select disk 0

call seldsk

call home ;go to track 00

95
96
97
98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

PN

4ab1 062c

4ab3 0e00
4abb 1602

4ab7 210034

4aba ¢5
4abb d5
4abc e5
4abd 4a
4abe cd924b
4act c1
4ac2 cb
4ac3 cdaddb

4acb cdc34b
4ac9 feQ0
4ach c2ab4a

4ace el
dacf 118000
4ad? 19
4ad3 di
4ad4 ci
4adb 05
4ad6 caefda

4ad9 14

loadt:

mvi b, nsects ;b counts # of sectorsto load
mvi c, 0 ;¢ has the current track number
mvi d,2 ;d has the next sectorto read

note that we begin by reading track 0, sector 2 since sector 1
contains the cold start loader, which is skipped in a warm start

Ixi h, ccp ;base of ¢p/m (initial load point)
;load one mare sector

push b ;save sector count, current track
push d ;save next sector to read

push h ;save dma address

mov ¢, d ;get sector address to register ¢
call setsec ;set sector address from register ¢
pop b ;recall dma address to b, ¢

push b ;replace on stack for later recall
call setdma ;set dma address from b, ¢

drive set to O, track set, sector set, dma address set

call read
cpi 00h ,any errors?
jnz wboot ;retry the entire boot if an error occurs

no error, move to next sector

pop h :recall dma address

IXi d, 128 ;dma=dma+128

dad d ;new dma addressisin h, |

pop d ;recall sector address

pop b ;recall number of sectors remaining, and current trk
dcr b ;sectors=sectors-1

jz gocpm :transfer to cp/m if all have been loaded

more sectors remain to load, check for track change
inr d

641

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

157
158

159
160

4ada 7a
4adb felb

4add dabada

4ae0 1601
4ae2 Oc

4ae3 c5
4ae4d d5
4aeb5 eb
4aeb cd7d4b
48e9 el
4aea d1
4aeb ct
4aec c3bada

4aef 3ec3

4af1 320000
4af4 21034a
4af7 220100

4afa 320500
4afd 21063c
4b00 220600

4b03 018000
4b06 cdaddb

4b09 fb

gocpm:

mov a, d :sector=27?, if so, change tracks
cpi 27
ic loadl ;carry generated if sector<27

end of current track, go to next track
mvi d 1 ;begin with first sector of next track
inr c track=track+1

save register state, and change tracks

push b

push d

push h

call settrk ;track address set from register ¢
pop h

pop d

pop b

jmp loadl ;for another sector

end of load operation, set parameters andgo to ¢cp/m

mvi a, 0c3h ;¢3 is a jmp instruction

sta 0 ;for jmp to wboot

Ixi h, wboote ;wboot entry point

shid 1 ;set address field for jmp at 0

sta 5 ;for jmp to bdos

ixi h, bdos ;bdos entry point

shid 6 ;address field of jump at 5 to bdos
Ixi b, 80h :default dma addressis 80h

call setdma

ei ;enable the interrupt system

081

161
162
163
164
185
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

4b0a 3a0400
4b0d 4f
4b0e c30034

4b11
4pb21 3e00
4b23 c9

4b24
4b34 eB7f
4b36 c9

4b37 79

4p38
4b48 c9

4b49 79
4bda cY

4b4b af
4bdc c9

const:

conin;

conout:

list:

listst:

punch:

Ida cdisk ;get current disk number
mov ¢, a ;send to the ccp
jmp cep ;g0 to cp/m for further processing

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with space reserved
to insert your own code

;console status, return Offh if character ready, 00h if not

ds 10h ;space for status subroutine
mvi a, 00h
ret

;console character into register a

ds 10h ;space for input routine
ani 7fh ;strip parity bit
ret

;console character output from register ¢

mov ac ;get to accumulator
ds 10h ;space for output routine
ret

;list character from register ¢
mov ac ;character to register a
ret :null subroutine

;return list status (0 if not ready, 1 if ready)
xra a ;0 is always ok toreturn
ret

;punch character from register ¢

181

194
195

196
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

4b4d 79
4bde c8

4b4f 3ela
4b51 e671
4b53 8

4b54 0e00
4b56 cd7d4b
4b59 ¢8

4b5a 210000
4b5d 79
4b5e 32efdc
4b61 fe04
4p63 d0

4b64

4bb6e 3aefdc
4b71 6f
4b72 2600
4b74 29

s

reader:

seldsk:

mov a, C ;character to register a
ret :null subroutine

;read character into register a from reader device

mvi a, lah ;enter end of file for now (replace later)
ani 7fh ;remember to strip parity bit
ret

i/o drivers for the disk follow

for now, we will simply store the parameters away for use
in the read and write subroutines

;move to the track 00 position of current drive

translate this call into a settrk call with parameter 00

mvi c, 0 ;select track O

call settrk

ret ;we will move to 00 on first read/write

;select disk given by register ¢

Ixi h, 6000h ;error return code

mov ac

sta diskno

cpi 4 ;must be betweenOand 3
rnc ;no carry if 4,5, ...

disk number is in the proper range
ds 10 ;space for disk select

compute proper disk parameter header address
Ida diskno

mov |, a ;i=disk numbero, 1,2, 3
mvi h,O ;high order zero
dad h 2

781

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

4b75 29
4b76 29
4p77 29
4b78 11334a
4b7b 19
4b7¢c c9

4b7d 79
4b7e 32e94c
4b81

4b91 ¢c9

4b92 79
4h93 32ebdc
4b96

4bab c9

4ba7 eb
4ba8 09
4ba9 6e
4baa 2600
4bac ¢c9

4bad 69
4bae 60
4baf 22ed4c
4bh2

settrk:

setsec:

sectran:

setdrna:

dad h 4

dad h '8

dad h ;*16 (size of each header)
Ixi d, dpbase

dad 0 ;hi=.dpbase(diskno*16)
ret

;set track given by register ¢

rov a,c

sta track

ds 10h ;space for track select
ret

;set sector given by register ¢

rnov a,c

sta sector

ds 10h ;space for sector select
ret

;translate the sector given by bc using the
;translate table given by de

xchg ;hi=trans

dad b ;hi=.trans(sector)
mov |, m ;| = trans(sector)

rnvi h, 0 :hl = trans(sector)
ret ;with value in hi

;set drna address given by registers b and ¢

rmov |, ¢ ;low order address
rnov h, b ;high order address
shid drnaad :save the address

ds 10h ;Sspace for setting the drna address

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

289
290

4bc2 ¢9

read:
4bc3
4bd3 c3e64b

write:
4bd6

waitio:
4beb
4ceb 3e01
4ce8 c9
4ce9 track:
4ceb sector:
4ced dmaad:

ret

;perform read operation (usually this is similar to write
so we will allow space to set up read command, then use
common code in write)

ds 10h ;set up read command

jmp waitio ;to perform the actual i/o

;perform a write operation
ds 10h ;set up write command

;enter here from read and write to perform the actual i/0
operation. return a 00h in register a if the operation completes

properly, and O1h if an error occurs during the read or write

in this case, we have saved the disk number in 'diskno’ (0, 1)
the track number in 'track' (0-76)
the sector number in 'sector' (1-26)
the dma address in 'dmaad' (0-65535)

ds 256 ;space reserved for i/o drivers
mvi al ;error condition
ret ;replaced when filled- in

the remainder of the cbios is reserved uninitialized
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between "begdat" and "enddat").

ds 2 ;two bytes for expansion
ds 2 ;two bytes for expansion
ds 2 ;direct memory address

P81

201
292
293
294
295
296
297
208
299
300
301
302
303
304
305
306

[sTated

allog
allo1

bdos
begdat
bias
bios
boot
cep
cdisk
chk0Q
chkO1
chk02
chk03

4cef

4cf0 =
4¢f0
4d70
4d8f
4dae
4dcd
4dec
4dfc
4e0c
4elc

4e2c
013c =

A o

4d70
4d8f

4dae
4dcd
3c06
4¢f0

0000
4a00
4a9c¢
3400
0004
4dec
4dfc

4e0c
delc

:disk number 0-15

scratch ram area for bdos use

;beginning of data area
;scratch directory area
;:allocation vector 0
;:allocation vector 1
;:allocation vector 2
;:allocation vector 3
:check vector 0

:check vector 1

;check vector 2

:check vector 3

;end of data area

$-begdat; ;size of data area

diskno: ds 1
begdat equ $
dirbf: ds 128
ali0o: ds 31
alol: ds 31
allo2: ds 31
allo3: ds 31
chk00: ds 16
chk01: ds 16
chk02: ds 16
chk03: ds 16
enddat equ $
datsiz equ
end

43 296#

48 297#

53 298#

58 2994

104 154

2944 306

8# 9
11# 15
19 84#

O# 10 11
124# 87 161
43 300#

48 301#
53 302#
58 303#

16 101 163

S81

conin
conout
const
datsiz
dirbf
diskno
dmaad
dpbase
dpblk
enddat
gocpm
home
iobyte
list
listst
load
msize
nsects
punch
read
reader
sector
sectran
seldsk
setdma
setsec
settrk
track
trans
waitio
wboot
wboote
write

4b24
4b37
4b11

013c¢
4cf0

4cef

4ced
4a33
4a8d
4e2c
4aef

4p54
0003
4b49
4b4b
4aba
0014
002¢
4b4d
4bc3
4p4f

4ceb
4ba7
4b5a
4bad
4b92
4b7d
4ced
4a73
4beb
4aab
4a03
4bd6

22
23
21
306#
42
217
258
40#
42
305#
88
27
13#
24
34
102#
3#
164#
25
32
26
242
35
28
31
30
29
236
40
266
20
20#
33

175#
180#
1704#

47
223
200#
230

47

124
94
86

185#

180#

130

96
1934
113
108#
2894
2464

93
110
107
140
2884

45
271#

90#
150
268#

52

2914#

52

147#
2084

144

262#

2144
158
2404#
211

50

115

57

57

2554

234#

55

2054

69#

61#

Appendix C: A Skeletal GETSYS/PUTSYS Program

0100

0014 =

0000 =
3400 =
3c00 =
4a00 =

0100 318033
0103 218033
0106 0600

msize

: “bias” is

bias
cecp
bdos
bios

gstart:

rd$trk:

combined getsys and putsys programs from
Sec 6.4
Start the programs at the base of the TPA

org 0100h
egu 20 ; size of cp/m in Kbytes
the amount to add to addresses for > 20k

(referred to as "b" throughout the text)

equ (msize-20)"1024
equ 3400h+bias
equ ccp+0800h
equ ccp+1600h

getsys programs tracks 0 and 1 to memory at
3880h + bias

register usage

a (scratch register)

b track count (0...76)

c sector count {1...26)
d,e (scratch register pair)
hi load address

sp set to track address

; start of getsys
Ixi sp,ccp-0080h : convenient place
Ixi h,ccp-0080h ; setinitial ioad
mvi b,0 ; start with track

; read next track

187

0108 0e01

010a ¢d0003
010d 118000
0110 19
0111 Cc
0112 79
0113 felb
0115 dala01

0118 04
011978
011a fe02
011c da0801

Ollf fb
0120 76

0200

0200 318033
0203 218033
0206 0600

0208 0e01

020a ¢d0004
020d 118000
021019
0211 Cc
0212 79
0213 felb
0215 da0a0d2

0218 04
0219 78
021a fe02
021c da0802

o2if b
0220 76

188

rd$sec:

mvi ¢,1 ; each track start

call read$sec ; get the next sector

Ixi d,128 ; offset by one sector
dad d o (hi=hi+128)

inr ¢ ; next sector

rnov a,c ; fetch sector number
cpi 27 ; and see if last

jc rdsec ; <, do one more

;. arrive here at end of track, move to next track

intr b ; track = track+1
mov a,b ; check for last
cpi 2 ;track =27

jc rd$trk ; <, do another

; arrive here at end of load, halt for lack of anything

. better

put$sys:

wrdtrk:

wr$sec:

ei

hlt

putsys program, places memory image
starting at

3880h + bias back to tracks 0 and 1

start this program at the next page boundary
org ($+0100h) and 0ff00h

IXi sp,ccp-0080h ; convenient place
Ixi h,ccp-0080h ; start of dump

mvi bO ; start with track
mvi c¢,1 . start with sector
call write$sec : write one sector
Ixi d,128 ; length of each
dad d ; <hl>=<hi> + 128
inr c o> =lc> + 1
mov a,c ; see |f

cpi 27 ; past end of track
jc wr$sec ; no, do another

; arrive here at end of track, move to next track

inr b ; track = track+1
mov a,b ; see if

cpi 2 ; last track

jc wr$trk ; no, do another

done with putsys, haft for lack of anything
better

ei
hit

0300

0300 ¢5
0301 €5
0302

0342 el
0343 cl
0344 c9

0400

0400 c5
0401 €5
0402

0442 el

0443 cl
0444 c9

0445

; user supplied subroutines for sector read and write
move to next page boundary

org ($+0100h) and Off00h

read$sec:
: read the next sector
;. track in ,
: sector in <¢>
; dmaaddr in <hi>
pushb
pushh
; user defined read operation goes here
ds 64
pop h
pop b
ret

org ($+0100h) and Off00h ;another page
»boundary

write$sec:
; same parameters as read$sec

pushb
pushh

; user defined write operation goes here
ds 64

pop h
pop b
ret
; end of getsys/putsys program

end

i8¢

161

©Coo~NoOOahwWNLPE

Appendix D: The MDS-800 Cold Start Loader for CP/M 2

0000 =
ffff
0000 =

0000 =

0000 =
0806 =
1880 =
1600 =
1603 =

3000

1880 =
0002 =
0031 =
0019 =
0018 =

false
true
testing

bias

bias

cpmb
bdos
bdose
boot
rboot

bdosl
ntrks
bdoss
bdoso
bdosl

title

mds cold start loader at 3000h’

mds-800 cold start loader for cp/m 2.0

version 2.0 august, 1979

equ
equ
equ

if
equ
endif
if
equ
endif
equ
equ
equ
equ
equ

org

equ
equ
equ
equ
equ

0

not false

false if true, then go to mon80 on errors
testing

03400h

not testing

0000h

bias :base of dos load

806h+bias ;entry to dos for calls

1880h+bias :end of dos load

1600h+bias ;cold start entry point

boot+3 ;warm start entry point

03000h :loaded down from hardware boot at 3000H
bdose-cpmb

2 :number of tracks to read
bdosi/128 :number of sectors in dos

25 ;number of bdos sectors on track 0

bdoss-bdoso

:number of sectors ontrack 1

761

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

04

f800 =
ffof =

0078 =
0079 =
007b =
007f =

0078 =
0079 =
007a =
00ff =

0003 =
0004 =
0100 =

3000 310001

3003 db79

3005 db7b

3007 dbff
3009 e602
300b c20730

300e d37f

3010 0602
3012 214230

mon80
rmon80
base
rtype
rbyte
reset

dstat
ilow

ihigh
bsw

recal
readf
stack

rstart:

coldstart:

equ of800h ;intel monitor base
equ offofh ;restart location for mon80
equ 078h ;'base’ used by controller

equ base+1 ;result type
equ baset3 ;result byte
equ base+7 ;reset controller

equ base ;disk status port
equ baset+1 ;low iopb address
equ base+2 ;high iopb address

equ offh ;boot switch

equ 3h :recalibrate selected drive
equ 4h ;disk read function

equ 100h ;use end of boot for stack
Ixi sp,stack; ;in case of call to mon80
clear disk status

in rtype

in rbyte

check if boot switch is off

in bsw

ani 02h ;switch on?

jnz coldstart

clear the controller

out reset ;logic cleared

mvi b,ntrks ;number of tracks to read

Ixi h,iopbo

€61

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

lalal

3015 7d
3016 d379
3018 7¢
3019 d37a
301b db78

301d e604
2AN1F ~at hAN

3022 db79
3024 €603
3026 fe02

3028 d20030

302b db7b

302d 17
302e dcOfff
3031 1f
3032 eble

start:

waito:

read first/next track into cpmb

mov a,l
out ilow
mov a,h
out ihigh
in dstat
ani 4

jz waito

check disk status

in rtype
ani 11b
cpi 2

if testing

cnc rmon80 ;go to monitor if 11 or 10
endif

if not testing

jnc rstart ;retry the load

endif

in rbyte ;i/o complete, check status
if not ready, then go to mon80

ral

cc rmon80 ;not ready bit set

rar ;restore

ani 11110b ;overrun/addr err/seek/crc/xxxx
if testing

cnz rmon80 ;go to monitor

endif

if not testing

Pel

97

98

99
100
101
102
103
104
105
106
107
108
108
110
111
112
113
114
115
116
117
118
119
120
121
122
123

P

3034 ¢20030

3037 110700
303a 19
303b 05
303c ¢21530

303f c30016

3042 80
3043 04
3044 19
3045 00
3046 02
3047 0000
0007 =

3049 80
304a 04
304b 18
304c¢ 01
304d 01
304e 800c

3050

iopbo:

iopbl

iopb1:

jnz
endif

Ixi
dad
dcr
jnz

rstart ;retry the load

d,iopbl ;length of iopb

d ;addressing next iopb
b ;count down tracks
start

jmp to boot to print initial message, and set up jmps

jmp

boot

parameter blocks

db
db
db
db
db
dw
equ

db
db
db
db
db
dw

end

80h ;iocw, no update

readf ;read function

bdoso # sectors toread on track 0
0 itrack O

2 ;start with sector 2 on track 0
cpmb ;start at base of bdos
$-iopbo

80h

readf

bdos1 ;sectors toread ontrack 1

1 itrack 1

1 ;sector 1

cmpb+bdos0*128 ;base of second read

S61

base
bdos
bdoso
bdosl
bdose
bdosl
bdoss
bias
boot
bsw
coldstart
cpmb
dstat
false
ihigh
ilow
iopbo
iopbl
iopbl
mon80
ntrks
rboot
rbyte
readf
recal
reset
rmon80
rstart
rtype
stack
start
testing
true
waito

0078
0806
0019
0018
1880
1880
0031
0000
1600
00ff
3007
0000
0078
0000
007a
0079
3042
3049
0007
800
0002
1603
007b
0004
0003
007f
ffof
3000
0079
0100
3015
0000
ffff
301b

33#
18#
28#
204
19#
264
274#
12#
204
41#
524
174
384
T#
404
39#
61
1194
101
314
264
214
35#
434
424
36#
324
464
344
444
63#
o#
8#
704

34

29
121
25
27
29
15#
21
53
55
25
70

69
67
1114

1174

60

50
112

57
80
83
49
47
104
11

72

35

113

17

108

116

117

86
120

89
97
75

14

36 38 39 40

124

18 19 20

124

94

79 82 93 96

Appendix E A Skeletal Cold Start Loader

; this is a sample cold start loader, which, when

; modified

; resides on track 00, sector 01 (the first sector on the
; diskette). we assume that the controller has loaded
; this sector into memory upon system start-up (this

: program can be keyed-in, or can exist in read/only
; memory

; beyond the address space of the cp/m versionyou are
; running). the cold start loader brings the cp/m system
; into memory at “loadp” {3400h + "bias™). in a 20k

; memory system, the value of "bias" is 0000h, with

; large

; values for increased memory sizes (see section 2).
; after

; loading the cp/m system, the cold start loader
; branches

: to the "boot" entry point of the bios, which begins at
; "bios™ + "bias." the cold start loader is not used un-
; til the system is powered up again, as long as the bios
; is not overwritten. the origin is assumed at 0000h, an
; must be changed if the controller brings the coldstart
; loader into another area, or if a read/only memory

; area
: is used.
0000 org O ; base of ram in
;cp/m
0014 = msize equ 20 ; min mem size in
: kbytes

197

0000 =
3400 =
4a00 =
0300 =
4a00 =
1900 =

0032 =

0000 010200
0003 1632

0005 210034

0008 ¢36b00

000b

006b 15
006¢ cal04a

006f 318000

0072 39

198

bias

cep
bios
biosl
boot
size

sects

cold:

Isect:

equ {msize-20)*1024 ; offset from 20k
; system

equ 3400h+bias ; base of the ccp

equ ccp+1600h ; base of the bios

equ 0300h ; length of the bios

equ bios

equ bios+biosl-cecp ; size of cp/m

; system

equ size/128 ; # of sectorsto load

begin the load operation

Ixi b2 ; b=0, c=sector 2
mvi d,sects ; d=#sectors to
; load
Ixi h,ccp ; base transfer
; address

; load the next sector

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,

into the address given by <hi>

; branch to location "cold" if a read error occurs

user supplied read operation goes
here...

; remove this
; when patched

jmp past$patch

ds 60h
past$patch:
; go to next sector if load is incomplete
der d ; sects=sgects-1
jz boot ; head for the bios

more sectors to load

. we aren't using a stack, so use <(sp> as scratch

; register

to hold the load address increment

Ixi sp,128 ; 128 bytes per
; sector

dad sp y<hl> = <hi> +
128

0073 Cc
0074 79
0075 felb

0077 da0800

007a 0e01
007c 04
007d ¢c30800
0080

inr ¢ ; sector =sector +1
mov a,c
cpi 27 ; last sector of
; track?
jc Isect ; no, go read
; another

; end of track, increment to next track

mvi c,l , sector =1

intr b ; track = track + 1
jmp Isect ; for another group
end . of boot loader

199

1ot

PR R DD R R A RN et b ek ok ik cd ek ok
NPT RO QEXINOO RO

w W
-t D

—h
QOUoNoRRLON S

n

Appendix F: CP/M Disk Definition Library

CP/M 2.0 disk re-definition library

Copyright ® 1979
Digital Research

Box 579

Pacific Grove, CA

93950

CP/M logical disk drives are defined using the
macros given below, where the sequence of calls

IS:

disks n

diskdef parameter-list-0
diskdef parameter-list-1

diskdef parameter-list-n

endef

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of the ith drive (i=0,1,...,n-1)

each parameter-list-i takes the form

where
dn
fsc
Isc
skf
bls

dn,fsc,Isc,[skf],bls,dks,dir,cks,0fs,[0]

is the disk number 0,1,...,n-1

is the first sector number (usually 0 or 1)
is the last sector number on a track

is optional "skew factor" for sector translate
is the data block size (1024,2048,...,16384)

7017

32:;
33:;
34:
35:
36: ;
37:
38:
39:
40:
41.
42:
43:

45:
46:
47.
48: ;
49:
50:
51:
52:
53:
54.
55:
56:
57 ;
58: ;
59: ;
60: ;

61: ;

62:
63:
64:

dskhdr

dpe&dn:

dks is the disk size in bls increments (word)

dir is the number of directory elements (word)

cks is the number of dir elements to checksum

ofs is the number of tracks to skip (word)

[0] is an optional 0 which forces 16K/directory end

for convenience, the form

dn,dm
defines disk dn as having the same characteristics as
a previously defined disk dm.

a standard four drive CP/M system is defined by

disks 4

diskdef 0,1,26,6,1024,243,64,64,2
dsk set 0

rept 3
dsk set dsk+1

diskdef %dsk,0

endm

endef

the value of "begdat" at the end of assembly defines the
beginning of the uninitialize ram area above the bios,
while the value of "enddat" defines the next location
following the end of the data area. the size of this
area is given by the value of "datsiz" at the end of the
assembly. note that the allocation vector will be quite
large if a large disk sire is defined with a small block
size.

macro dn
define a single disk header list
dw xt&dn, 0000 ;translate table

£02

65:
66:
67:
68:

69: ;

70:
71
72:
73:
74
75:
76:
7.
78:
79:
80:

disks

ndisks
dpbase

dsknxt

dsknxt

81: ;

82:
83:
84:
85: ;
86:
87 ;;
88:
89:

dpbhdr
dpb&dn

s

ddb

Q0: ;

91:
92:
93:
94:
95:
96:
97: ;;
98: ;;

dw 0000h,0000h ;scratch area

dw dirbuf,dpb&dn ;dir buff,parm block
dw csvédn,alv&dn :check, alloc vectors
endm

macro nd
define nd disks

set nd ;» for later reference

equ $;base of disk parameter blocks
generate the nd elements

set 0

rept nd

dskhdr %dsknxt

set dsknxc+1

endm

endm

macro dn
equ $;disk parm block
endm

macro data,comment

define a db statement

db data comment
endm

macro data,comment

define a dw statement

dw data comment
endm

macro m,n
greatest common divisor of m,n
produces value gcdn as result

j4\4

99:
100:
101:
102:

écdn1
gcdn
gcdr

103:

104:
105:

gcdx
gcdr

106:
107:
108:

109:
110:

gcdm
gcdn

111;
112:

113:

114:

115:

diskdef

31

116:
117

118:
119:
120:
121:

dpb&dn
als&dn
css&dn
xit&dn

122:

123:
124:
125:

secmax
sectors
als&dn

126:

127:

als&dn

128:

129:
130:

131

css&dn

: ,t’)lkval

(used in sector translate table generation)

set
set
set
rept
set
set

if
exitm
endif
set
set
endm
endm

macro

if
current
equ
equ
equ
equ
else
set
set
set

if

set
endif
set

generate the block shift value

set

m
n

0

65535
gedm/gedn
gcdm-gcdx*gedn
gcdr =0

gcdn
gcdr

;variable for m
;variable for n
;variable for r

dn,fsc,Isc,skf,bls,dks,dir,cks,ofs, k16
generate the set statements for later tables

nul Isc
disk dn
dpbé&fsc
als&fsc
css&fsc
xlt&fsc

Isc-(fsc)

secmax+1

(dks)/8

((dks) mod 8) ne 0
als&dn+1

(cks)/4

bls/128

same as previous fsc
;equivalent parameters
:same allocation vector size
:same checksum vector size
:same translate table

;:sectors 0...secmax

;:number of sectors
::size of allocation vector

;:;number of checksum elements

;;number of sectors/ block

$0¢

132:
133:

blkshf
blkmsk

134:
135:
136:
137:
138: ;;

139:
140:
141:

blkshf
blkmsk
blkval

142:
143: ;

144:
145:

blkval
extmsk

146:
147:
148:
149:

150: ;;
151:
152:

extmsk
bikval

153:

154: ;;

3]

155:

156:

extmsk

157:

158: ;;

159:

160:

extmsk

161:

162: ;
163:
164:

165

dirrem
dirbks

: dirblk

166:
167
168:
169:

set 0 ;;ecounts right 0's in bikval
set 0 ;+fills with I's from right
rept 16 ;;once for each bit position
if blkval=1

exitm

endif

otherwise, high order 1 not found yet

set bikshf+1

set (blkmsk shl 1) or |

set blkval/2

endm

generate the extent mask byte

set bls/1024 ;;number of kilobytes/ block
set 0 ;:fill from right with I's
rept 16

if blkval=1

exitm

endif

otherwise more to shift

set (extmsk shil 1) or |

set blkval/2

endm

may be double byte allocation

if (dks) > 256

set (extmsk shr 1)

endif

may be optional [0] in last position

if not nul k16

set k16

endif

now generate directory reservation bit vector

set dir ;7# remainingto process
set bls/32 ;;number of entries per block
set 0 ;+fill with I's on each loop
rept 16

if dirrem=0

exitm

endif

907

170: ;;

’y

171:

172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184
185:
186:
187:
188:
189:
190: ;;
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:

dirblk
dirrem

direem

X

xlt&dn

x1t&dn

nxtsec
nxtbas

neltst

1y

not complete, iterate once again
shift right and add 1 high order bit

set (dirblk shr 1) or 8000h

if dirrem > dirbks

set dirrem-dirbks

else

set 0

endif

endm

dpbhdr dn ;;generate equ $
ddw %sectors,<;sec per track>

ddb %blkshf,<block shift>

ddb %blkmsk,<;block mask>

ddb Y%extmsk,<;extnt mask>

ddw %(dks)-1,<;disk size-1>

ddw %(dir)-1,<;directory max>>

ddb %dirblk shr 8,<allocO>

ddb %dirblk and 0ffh,<lallocl>

ddw %(cks)/4,<;check size>

ddw %ofs,< offset>

generate the translate table, if requested

if nul skf

equ 0 ;no xlate table
else

if skf =0

equ 0 ;no xlate table
else

generate the translate table

set 0 ;;next sector to fill
set 0 ;;moves by one on overflow
ged %sectors,skf

gcdn = gcd(sectors,skew)

set sectors/gedn

neltst is number of elements to generate

407

204: ;;

205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224
225:
226:

nelts
xlt&dn

nxtsec
nxtsec
nelts

nxtbas

nxtsec
nelts

227: ;

228:

229:
230:

defds
lab:

231:;

232:

233:

234:
235:
236:
237:

Ids

endef

before we overlap previous elements

set
equ
rept
if
ddb
else
ddw
endif
set

if

set
endif
set

if

set
set
set
endif
endm
endif
endif
endm

macro
ds
endm

macro
defds
endm

macro

neltst

$

sectors
sectors < 256
%nxisec+(fsc)

%nxtsect+({fsc)

nxtsec+(skf)
nxtsec >=sectors
nxtsec-sectors

nelts-1
nelts =0
nxtbas+1
nxtbas
neltst

;;end of nul fac test
;;end of nul bls test

lab,space
space

Ib,dn,val
Ib&dn,%val&dn

;;counter

:translate table
;;once for each sector

generate the necessary ram data areas

807

238:
239:
240:
241:
242:
243:
244
245:
246:
247:
248:
249:

begdat
dirbuf:
dsknxt

dsknxt

enddat
datsiz

equ $

ds 128 ;directory access buffer
set 0

rept ndisks ;;once for each disk
Ids alv,%dsknxt,als

Ids csv,%dsknxt,ccs

set dsknxt+1

endm

equ $

equ $-begdat

db 0O at this point forces hex record
endm

e
WO NDO B WN -

W WWMNMMNMADDM NP N R b ol b b omd d od kol
WO G QOO NUDBWUN OO~ B WN =

0800 =
0200 =
0014 =
0004 =
0050 =

Appendix G: Blockingand Deblocking

smask

5]

@y
@x

@y
@x

blksiz
hstsiz
hstspt
hstbik
cpmspt

Algorithms

sector deblocking algorithms for cp/m 2.0

utility macro to compute sector mask
macro hblk

compute log2{hblk), return @x as result
(2 ** @x = hblk on return)

set hblk

set 0

count right shifts of @y until =1
rept 8

if @y =1

exitm

endif

@y is not 1, shift right one position
set @y shr1l

set @x +1

endm

endm

cplm to host disk constants

equ 2048 ;cp/m allocation size
equ 512 :host disk sector size
equ 20 ;host disk sectors/trk
equ hstsiz/128 :cp/m sects/host buff

equ hstblk * hstspt :cp/m sectorsltrack

209

34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
52
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

210

0003 = secmsk
0002 = secshf
0000 = wrall
0001 = wrdir
0002 = wrual
0000 = dpbase

boot:

wboot:
0000 af

0001 326201
0004 326¢01
0007 c9

home:

home:
0008 3a6b01
000b b7
000c¢ ¢21200
000f 326a01
homed:
0012 c9

seldsk:

001379
0014 326101
0017 6f
0018 2600

001a+29
001b+29
001¢+29
001d+29
001e 110000

equ hstbik-1 ;sector mask
smask hstblk ;compute sector mask
equ @x ;log2(hstbik)

bdos constants on entry to write

equ 0 ;write to allocated
equ 1 ;write to directory
equ 2 ;write to unallocated

the bdos entry points given below show the
code which is relevant to deblocking only.

diskdef macro, or hand coded tables go here
equ $;disk param block base

;enter here on system boot to initialize

xra a ;0 to accumulator
sta hstact ;host buffer inactive
sta unacnt :clear unallioc count

ret

;home the selected disk

Ida hstwrt ;check for pending write
ora a

jnz homed

sta hstact ;clear host active flag
ret

;select disk

mov ac ;selected disk number
sta sekdsk ;seek disk number
mov la ;disk number to hi
mvi h,0

rept 4 ;multiply by 16

dad h

endm

dad h

dad h

dad h

dad h

Ixi d,dpbase ;base of parm block

89
90
o1
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

0021 19
0022 c9

settrk:
0023 60
0024 69
0025 226201
0028 c9

setsec:
0029 79
002a 326401
002d ¢c9

setdma:
002e 60
002f 69
0030 227501
0033 c9

sectran:
0034 60
0035 69
0036 c9

read:
0037 af
0038 326¢01
003b 3e01

003d 327301
0040 327201
0043 3e02

0045 327401
0048 ¢3b600

write:

004b af

dad
ret

d ;hi=.dpb{curdsk)

;set track given by registers bc

mov
mov
shid
ret

h,b
l,c

sektrk ;track to seek

;set sector given by register c

mov
sta
ret

a,C

seksec ;sector to seek

;set dma address given by bc

mov
mov
shid
ret

h,b
i,c
dmaadr

translate sector number bc

mov
mov

ret

h,b
l,c

the read entry point takes the place of
the previous bios definition for read.

read the selected cp/m sector

xra
sta
mvi
sta
sta
mvi
sta

jmp

a

unacnt

a1

readop ;read operation
rsflag ;must read data
a,wrual

wrtype ;treat as unalloc
rwoper ‘to perform the read

the write entry point takes the place of
the previous bios definition for write.

:write the selected cp/m sector

Xra

a ;0 to accumulator

211

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

212

004c¢ 327301
004f 79
0050 327401
0053 fe02
0055 c26f00

0058 3e10

005a 326¢01
005d 3a6101
0060 326d01
0063 2a6201
0066 226e01
0069 3a6401
006¢ 327001

chkuna:

006f 3a6¢0t
0072 b7
0073 caael0

0076 3d
0077 32601
007a 3a6101
007d 216d01
0080 be
0081 c2ae00

0084 216e01
0087 ¢cd5301
008a c2ae00

¥

008d 3a6401
0090 217001
0093 be

0094 c2ae00

0097 34
0098 7e
0099 fe50
009b daa700

009e 3600
00a0 2a6e01
00a3 23
00a4 22601

noovf:

00a7 af

sta readop ;not a read operation
mov a,c ;write type in ¢

sta wrtype

cpi wrual ;write unallocated?
jnz chkuna :check for unatioc

write to unallocated, set parameters

mvi a,blksiz/128 :next unalloc recs
sta unacnt

Ida sekdsk :disk to seek

sta unadsk ;unadsk = sekdsk
lthid sektrk

shid unatrk ;unatrk = sectrk
Ida seksec

sta unasec ;unasec = seksec

:check for write to unallocated sector

Ida unacnt ;any unalloc remain?
ora a
74 alioc ;skip if not

more unallocated records remain

dcr a ;unacnt = unacnt-1
sta unacnt

Ida sekdsk ;same disk?

Ixi h,unadsk

cmp m ;sekdsk = unadsk?
jnz alloc ;skip if not

disks are the same

Ixi h,unatrk

call sektrkcmp ;sekirk = unatrk?
inz alloc ;skip if not

tracks are the same

Ida seksec :same sector?

IXi h,unasec

cmp m ;seksec = unasec?
jnz alloc ;skip if not

match, move to next sector for future ref

inr m ;unasec = unasec+1
mov am :end of track?

cpi cpmspt ;count cp/m sectors
ic noovf ;skip if no overflow

overflow to next track

mvi m,o ;unasec = 0

thid unatrk

inx h

shid unatrk :unatrk = unatrk+1

;match found, mark as unnecessary read
xra a :0 to accumulator

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
228

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

e

OC0ab 327201
OO0ab ¢3b600

alloc:

00ae af

OCaf 326¢c01
00b2 3¢
00b3 327201

rwoper:

00b6 af
00b7 327101
00ba 3a6401

00bd+b7
00be+1f
00bf+b7
00cO+1f
0Nt 3260801

00c4 216a0t
00c7 7e
00c¢8 3601
00ca b7
00c¢cb caf200

00ce 3a6101
00d1 216501
00d4 be

00d5 c2eb00

00d8 216601
00db cd5301
00de c2eb00

3

00e1 3a6901
00e4 216801
00e7 be

00e8 calf01

nomatch:

sta rsflag
jmp rwoper

;rsflag =0
;to perform the write

;not an unallocated record, requires pre-read

Xra a ;0 to accum
sta unacnt ;unacnt = 0
inr a ;1 to accum
sta rsflag = 1 ;rsflag = 1

common code for read and write follows

;enter here to perform the read/write

xXra a ;zero to accum

sta erflag ;no errors (yet)

Ida seksec ;compute host sector
rept secshf

ora a ;carry =0

rar ;shift right

endm

ora a ;carry =0

rar ;shift right

ora a ;carry =0

rar ;shift right

sta sekhst :host sector to seek

active host sector?

IXi h,hstact ;host active flag
mov am

mvi m,1 ;always becomes 1
ora a ;was it already?

jz filhst :fill host if not
host buffer active, same as seek buffer?

Ida sekdsk

IXi h,hstdsk :same disk?

cmp m ;sekdsk = hstdsk?
jnz nomatch

same disk, same track?

IXi h,hsttrk
call sektrkcmp :sektrk = hsttrk?
jnz nomatch

same disk, same track, same buffer?

Ida sekhst

Ixi h,hstsec ;sekhst = hstsec?
cmp m

jz match ;skip if match

213

255
256
257
2568
259
260
261

262
263
264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280
281

282
283
284
285
286
287
288
289
290
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

214

00eb 3a6b01
00ee b7
00ef c45f01

filhst:

00f2 3a6101
00f5 326501
0018 2a6201
00fb 226601
00fe 3a6901
0101 326801
0104 3a7201
0107 b7

0108 ¢46001
010b af

010c 326b01

match:

010f 3a6401
0112 e603
0114 6f
0115 2600

0117+29
0118+29
0119+29
011a+29
011b+29
011c+29
011d+29

011e 117701
0121 19
0122 eb
0123 2a7501
0126 0e80
0128 3a7301
012b b7
012¢ ¢23501

s

012f 3e01
0131 326b01
0134 eb

rvmove:

0135 1a
0136 13
0137 77

;proper disk, but not correct sector

Ida hstwrt ;host written?
ora a
cnz writehst :clear host buff

:may have to fill the host buffer

Ida sekdsk

sta hstdsk

Ihld sektrk

shld hsttrk

Ida sekhst

sta hstsec

Ida rsflag ;need to read?
ora a

cnz readhst ;yes, if 1

Xra a ;0 to accum
sta hstwrt ;no pending write

;copy data to or from buffer

Ida seksec ;mask buffer number
ani secmsk ;least signif bits
mov la :ready to shift
mvi h,0 .double count
rept 7 ;shift left 7

dad h

endm

dad h

dad h

dad h

dad h

dad h

dad h

dad h

hi has relative host buffer address

Ixi d,hstbuf

dad d ;hl = host address
xchg ;now in de

thid dmaadr ;get/put ep/m data
mvi c, 128 Jlength of move
Ida readop ;which way?

ora a

inz rwmove ;skip if read

write operation, mark and switch direction

mvi a1

sta hstwrt Jhstwrt = 1

xchg ;source/dest swap

;¢ initially 128, de is source, hl is dest

ldax d ;source character
inx d
mov m,a 1o dest

310
31
312
313
314
315
316
317
318
318
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
338
337
338
338
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
380

G138 23
0139 od
013a c23501

013d 3a7401
0140 fe01
0142 3a7101
0145 c0

0146 b7
0147 ¢0
0148 af
0149 326b01
014c¢ cd5f01
0141 3a7101
0152 ¢9

inx h
der c ;loop 128 times
inz rwmove

data has been moved to/from host buffer

Ida wrtype ;write type

cpi wrdir ;to directory?

Ida erflag ;in case of errors

rnz ;no further processing

clear host buffer for directory write

ora a ;errors?

rnz ;skip if so

Xra a ;0 to accum
sta hstwrt ;buffer written
call writehst

Ida erflag

ret

utility subroutine for 16-bit compare

sektrkemp:

0153 eb
0154 216201
0157 1a
0158 be
0159 ¢c0

0152 13

NiRKk 29

0i5¢ 1a
015d be
015e ¢c9

writehst:

0151 c8

readfist:

;hl = .unatrk or .hsttrk, compare with sektrk
xchg

ixi h,sektrk

idax d ;low byte compare
cmp m ;same?

rnz ;return if not
low bytes equal, test high 1s

inx d

inx h

Idax d

cmp m ;sets flags

ret

writehst performs the physical write to
the host disk, readhst reads the physical
disk.

;histdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. write "hstsiz" bytes
;from hstbuf and return error flag in erflag.
;return erflag non-zero if error

ret

;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. read "hstsiz" bytes

215

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

216

0160 c@

0161
0162
0164

0165
0166
0168

0169
016a
016b

016¢
016d
O16e
0170

0171
0172
0173
0174
0175
0177

0377

sekdsk:
sektrk:
seksec:

hstdsk:
hsttrk:
hstsec:

sekhst:
hstact:
hstwrt:

unacnt:
unadsk:
unatrk:

unasec:

erflag:
rsflag:
readop:
wrtype:
dmaadr:
hstbuf:

;into hstbuf and return error flag in erflag.
ret

uninitialized ram data areas

ds 1 ;seek disk number
ds 2 ;seek track number
ds 1 ;seek sector number
ds 1 ;host disk number
ds 2 ;host track number
ds 1 ;host sector number
ds 1 ;seek shr secshf

ds 1 ;host active flag

ds 1 ;host written flag

ds 1 ;unalloc rec cnt

ds 1 :last unalloc disk

ds 2 :last unalloc track
ds 1 ;last unalloc sector
ds 1 ;error reporting

ds 1 ;read sector flag

ds 1 ;1 if read operation
ds 1 ;write operation type
ds 2 :last dma address
ds hstsiz :host buffer

the endef macro invocation goes here

end

alloc
blksiz
boot
chkuna
cpmspt
dmaadr
dpbase
erflag
fithst
home
homed
hstact
hstblk
hstbuf
hstdsk
hstsec
hstsiz
hstspt
hsttrk

hstwrt
match
nomatch
noovf
read
readhst
readop
rsflag
rwmove
rwoper
secmsk
secshf
sectran
sekdsk
sekhst
seksec
sektrk
sektrkcmp
seldsk
setdma
setsec
settrk
unacnt
unadsk
unasec
unatrk
wboot
wrall
wrdir
write
writehst
wrtype
wrual

00ae
0800
0000
006f

0050
0175
0000
0171

00f2

0008
0012
016a
0004
0177
0165
0168
0200
0014
0166

016b
o1

00eb
00a7
0037
0160
0173
0172
0135
00b6
0003
0002
0034
0161

0169
0164
0162
0153
0013
002e
0029
0023
Ol16¢c
016d
0170
016e
0000
0000
0001
004b
015f

0174
0002

164
20#
57#

148
334

109
55#

218

235
65#
70
61
32#

291

239

250
30#
31#

244

68
252
241
189
1244
270
129
130
298
133

34#

36#
1124

78
228
102

96
176

75#
105#

99¢#

92#

62
154
158
156

58#

434

444
141#
258
132

454

172
151

1604
188
294
88
317
2604
67#
724
71
33
396#
263
267
32
33
265

256
274#
246
1974

3624#
144
200
305#
201
277
220

153
249
157
155
245

127
170
181
175

316

325

146
131

177

3954

326

231
34

3784#
3804
396

379#
272

254+#

296
208
312
215#

169
266
180
264
334#

152
387#
389#
193

355#
315
147

183

3914

383#
35

302

393#
268

238
382#
219
337

162

195

3944

203#

324 3844#

3924

262 374#

276 376#

3754

168 206 386#
3884

217

Appendix H: Glossary

address: Number representing thelocation of a bytein memory. Within CP/M thereare
two kinds of addresses: logical and physical. A physical address refers to an absoluteand
unique location within the computer's memory space. A logical address refers to the
offset or displacement of abyteinrelationtoabaselocation. A standard CP/M programis
loaded at address 0100H, the base value; thefirst instruction of a program hasa physical
address of 0100H and a reiative address or offset of OH.

allocation vector (ALV): An alocation vector is maintained in the BIOSfor each logged
in disk drive. A vector consistsof astring of bits, onefor each block on thedrive. The bit
corresponding toa particular block is set to one when the block has been allocated and to
zero otherwise. The first two bytes of this vector areinitialized with thebytes AL0O and
AL1 on, thusallocating the directory blocks. CP/M Function 27 returns the allocation

vector address.

ALO, AL1: Two bytes in the disk parameter block that reserve data blocks for the
directory. These two bytes are copied into the first two bytes of the allocation vector
when adriveis logged in. (See allocation vector.)

ALV: See allocation vector.

ambiguous filename: Filename that contains either of the CP/M wildcard characters, ?
or *, in the primary filename or the filetype, or both. When you replace charactersin a
filename with these wildcard characters, you create an ambiguousfilename and can easily
reference more than one CP/M file in a single command line.

American Standard Code for Information Interchange: See ASCII.

applications program: Program designed tosolveaspecificproblem. Typical applications
programs are business accounting packages, word processing (editing) programs and
mailing list programs.

archive attribute: File attribute controlled by the high-order bit of thet3 byte (FCB+11}
in a directory element. This attribute is set if the file has been archived.

argument: Symbol, usually a letter, indicating a place into which you can substitute a
number, letter Or name to give an appropriate meaning to the formula in question.

219

ASCH: American Standard Code for Information Interchange. ASCIl is a standard set of
seven-bit numeric character codes used to represent characters in memory. Each charac-
ter requires one byte of memory with the high-order bit usually set to zero. Characters
can be numbers, letters, and symbols An ASCII file can be intelligibly displayed on the
video screen or printed on paper.

assembler: Program that translates assembly language into the binary machine code.
Assembly language is simply a set of mnemonics used to designate the instruction set of
the CPU. {(See ASM in Section 3 of this manual)

back-up: Copy of a disk or file made for safekeeping, or the creation of the duplicate
disk or file.

Basic Disk Operating System:See BDOS.

BDOS: Basic Disk Operating System.The BDOS module of the CP/M operating system
provides an interface for a user program to the operating system. This interface is in the
form of a set of function calls which may be made to the BDOS through calls to location
0005H in page zero. The user program specifies the number of the desired function in
register C. User programs running under CP/M should use BDOS functions for all /O

operations to remain compatible with other CP/M systems and future releases. The
BDOS normally resides in high memory directly below the BIOS.

bias: Address value which when added to the origin address of ycur BIOS module
produces 1F80H, the address of the BIOS module in the MOVCPM image. Thereisalsoa
bias value that when added to the BOOT module origin produces 0900H, the address of
the BOOT module in the MOVCPM image. You must use these bias values with the R
command under DDT or SID when you patch a CP/M system. If you do not, the patched
system may fail to function.

binary: Base 2 numbering system. A binary digit can have one of two values: 0 or 1.
Binary numbers are used in computers because the hardware can most easily exhibit two
states: off and cn. Generally, a bit in memory represents one binary digit.

Basic Input/Output System:See BIOS.

B1OS: Basic Input/Output System. The BIOS is the only hardware-dependent module of
the CP/M system. It provides the BDOS with a set of primitive I/O operations. The BIOS
is an assembly language module usually written by the user, hardware manufacturer or
independent software vendor, and is the key to CP/M’s portability. The BIOS interfaces
the CP/M system to its hardware environment through a standardized jump table at the
front of the BIOS routine and through a set of disk parameter tables which define the disk
environment. Thus, the BIOS provides CP/M with a completely table-driven [/ system.

BIOS base: Lowest address of the BIOS module in memory, that by definition must be
the first entry point in the BIOS jump table.

bit: Switch in memory that can be set to on (1) or off (0). Bits are grouped into bytes, eight
bits to a byte, which is the smallest directly addressable unitin an intel 8080 or Zilog Z-30.
By common convention, the bits in a byte are numbered from right (0 for the low order
bit) to left {7 for the high order bit). Bit values are often represented in hexadecimal
notation by grouping the bits from the low order bit in groups of four. Each group of four
bits can have a value from 0 to 15 and thus can easily be represented by one hexadecimal

digit.

220

BLM: See block mask.

block: Basic unit of disk space allocation. Each disk drive has a fixed block size (BLS)
defined in its disk parameter block in the BIOS. A block can consist of 1K, 2K, 4K, 8K or
16K consecutive bytes. Blocks are numbered relative to zero so that each block is unigue
and has a byte displacement in a file equal to the block number times the block size.

block mask {BLM]j. Bytevalue:n thedisk parameter block at DPB + 3. The block mask s
alwaysone less than the number of 128 bytesectors that are in one block. Note: BLM = (2
** BSH) - 1.

block shift (BSH): Byte parameter in thedisk parameter block at DPB + 2. Values for the
block shift and block mask (BLM) are determined by the block size (BLS). Note: BLM = {2
** BSW) - 1.

blocking & deblocking algorithm: In some disk subsystems the disk sector size is larger
than 128 bytes, usually 256, 512,1024 or 2048 bytes. When the host sector size is larger
than 128 bytes, host sectors must be buffered in memory and the 128 byte CP/M sectors
must be blocked and deblocked by adding an additional module, the blocking and deblock-
ing algorithm, between the BIOS disk I'O routines and the actual disk /. The host
sector size must be an even multiple of 128bytes for the algorithm to work correctly. The
blocking and deblocking algorithm allows the BDOS arnd BIOS to function exactly as if
the entire disk consisted only of 128 byte sectors, as in the standard CP/M installation.

BLS: Block size in bytes. See block.

boot: Process of lcading an operating system into memory. A boot program is 2 small
piece of code that isautomatically executed when you power-up or reset your computer.
The boot program loads the rest of the operating system into memory in a manner similar
to a person pulling himself up by his own bootstraps. This process is sometimes called a
“cold boot” or “cold start.” Bootstrap procedures vary from system to system. The boot
program must be customized for the memory size and hardware environment that the
operating system manages. Typically, the boot resides on the first sector of the system
tracks on your system diskette. When executed, the boot loads the remaining sectors of
the system tracksinto high memory at the location for which the CP/M system has been
configured. Finally, the boot transfers execution to the boot entry point in the BIOS iump
table so that thesystem can initialize itself. In this case, the boot program should be placed
at 900H in the SYSGEN image. Alternatively, the boot program may be located in ROM,

bootstrap: See boot.

BSH: See block shift.

BTREE: General purpose file access method that has become the standard organization
for indexes in large data base systems. BTREE provides near optimum performance over
the full range of file operations, such as insertion, deletion, search, and search next.

buffer: Areaof memory that temporarily stores data during the transfer of information.

built-in commandS. Commands that permanently reside in memory. They respond
quickly because they are not accessed from a disk

byte: Unit of memory or disk storage containing eight bits. A byte can represent a binary

number between ¢ and 255, and s the smaliest unit of memory that can be addressed
directly in 8 bit CPUs such as the Intel 8080 or Zilog Z-80.

221

CCP: Console Command Processor. The CCPisamodule of the CP/M operating system.
It is loaded directly below the BDOS module and interprets and executes commands
typed by the console user. Usually these commandsare programs that the CCPloadsand
calls. Upon completion, acommand program may return control tothe CCPif it has not
overwritten it. If it has, the program can reload the CCPinto memory by a warm boot
operation initiated by either a jump to zero, BDOS system reset (function 0), or a cold
boot. Except for its location in high memory, the CCP works like any other standard
CP/M program; that is, it makes only BDOS function calls for its I/O operations.

CCP base: Lowest address of theCCPmodulein memory. Thisterm sometimesrefersto
the base of the CP/M system in memory,astheCCPisnormally thelowest CP/M module
in high memory.

checksum vector (CSV): Contiguous data area in the BIOS, with one byte for each
directory sector to bechecked, i.e., CKS bytes. (SeeCKS.) A checksum vector isinitialized
and maintained for each logged in drive. Each directory access by the system resultsin a
checksum calculation that is compared with the onein the checksum vector. If thereisa
discrepancy, the drive is set to read-only status. This feature prevents the user from
inadvertently switching disks without logging in the new disk. If the new disk is not
logged in, it istreated the same astheold one, and dataon it may bedestroyedif writingis
done.

CKS: Number of directory records to be checked summed on directory accesses. Thisisa
parameter in the disk parameter block located in the BIOS. If the value of CKSiis zero,
then no directory records are checked. CKS is also a parameter in the diskdef macro
library, whereit is the actual number of directory elementsto bechecked rather than the
number of directory records.

cold boot: See boot. Cold boot also may refer to a jump to the boot entry point: in the
BIOS jump table.

COM: Filetype for a CP/M command file. See command file.

command: CP/M command line. In general, a CP/M command line has three parts: the
command keyword, command tail, and acarriage return. To execute acommand, enter a
CP/M command linedirectly after the CP/M prompt at theconsoleand press thecarriage
return or enter key.

command file: Executable program file of filetype COM. A command file is a machine
language object module ready to beloaded and executed at the absoluteaddressof 0100H.
To execute a command file, enter its primary filename as the command keyword in a
CP/M command iine.

command keyword: Name that identifies a CP/M command, usually the primary file-
name of afileof type COM, or a built-in command. The command keyword precedesthe
command tail and the carriage return in the command iine.

command syntax: Statement that defines the correct way to enter a command. The
correct structure generally includes the command keyword, the command tail, and a
carriage return. A syntax line usually contains symbols that you should replace with
actual values when you enter the command.

command tail: Part of acommand that follows thecommand keyword in the command

line. The command tail can include adrive specification, a filename and/or filetype, and
options or parameters. Some commands do not require a command tail.

222

CON: Mnemonic that representsthe CP/M consoledevice (seeconsole). For example, the
CP/M command "PIP CON:=TEST.SUB” displays the file TEST.SUB on the console
device. The explanation of the STAT command tells how to assign the logical device
CON: to various physical devices.

concatenate: Name of the PIPoperation that copiestwo or more separate filesinto one
new file in the specified sequence.

concurrency: Execution of two processes or operations simultaneously.
CONIN: BIOS entry point to aroutine that reads a character from the console device.
CONOUT: BIOSentry point to a routine that sends a character to the console device.

console: Primary inputloutput device. The console consistsof alisting device, such asa
screen or teletype, and a keyboard through which the user communicates with the
operating system or applications program.

Console Command Processor: See CCP.
CONST: BIOS entry point to a routine that returns the status of the console device.

control character: Nonprinting character combination. CP/M interprets some control
characters as simple commands such asline editing functions. T o enter acontrol charac-
ter, hold down the CONTROL key and strike the specified character key.

Control Program for Microcomputers: See CP/M.

CP/M: Control Program for Microcomputers.An operating system that manages compu-
ter resources and provides a standard systems interface to software written for alarge
variety of microprocessor-based computer systems.

CP/M 1.4 compatibility: For a CP/M 2 system to be able to read correctly single density
diskettes produced under a CP/M 1.4 system, the extent mask must be zero and the block
size 1K. Thisis because under CP/M 2 an FCB may contain more than one extent. The
number of extents that may be contained by an FCB is EXM+1. Theissue of CP/M 1.4
compatibility also concerns random filel/O. To perform random file [/O under CP/M 1.4,
you must maintain an FCB for each extent of thefile. Thisschemeis upward compatible
with CP/M 2 for files not exceeding 512K bytes, the largest file size supported under
CP/M 1.4. If you wish toimplement random I/O for files larger than 512K bytes under
CP/M 2, you must usetherandom read and random write functions (BDOSfunctions 33,
34 and 36).1In this case, only one FCB is used, and if CP/M 1.4 compatibility isrequired,
the program must use the return version number function (BDOS function 12) to
determine which method to employ.

CP/M prompt: Characters that indicate that CP/M is ready to execute your next
command. The CP/M prompt consists of an upper-case letter (A-P} followed by a “>"
character; for example, A>. Theletter designateswhich driveiscurrently loggedin asthe
default drive. CP/M will search this drive for the command file specified, unless the
command is a built-in command or prefaced by a select drive command; for example,
B:STAT.

CP/NET: Digital Research network operating system enabling microcomputers toobtain

access to common resources viaa network. CP/NET consists of MP/M mastersand CP/M
slaves with a network interface between them.

223

CSY: See checksum vector

cursor One-character symbol that can appear anywhere on the console screen The
cursor indicates the position where the next kevstroke at the console will have an effect

data file: File containing information that will be processed by a program.
deblocking: See blocking & deblocking algotithm.

defauit Currently selected disk drive and user number. Any command that does not
specify a disk drive or a user number references the default disk drive and user number.
When CP/Mis first invoked, the default disk drive is drive A, and thedefault user number

is 0.

defauilt buffer: Default 128-byte buffer maintained at 0080H in page zero. When the
CCP loads a COM file, this buffer is initialized tothecommand tail; that is, any characters
typed after the COM file name are loaded into the buffer. The first byte at 0080H
contains the length of the command tail, while the command tail itself beginsat 0081H.
The command tail is terminated by a byte containing abinary zerovalue. Thel command
under DDT and SID initializes this buffer in the same way as the CCP.

default FCB: Two default FCBs are maintained by the CCP at 005CH and 006CH in page
zero. The first default FCB is initialized from the first delimited fieldin thecommand tail,
and the second default FCB is initialized from the nexi field in the command tail.

delimiter: Special characters that separate different itemsin acommand line; for exam-
ple, a colon separates the drive specification from the filename. The CCP recognizes the
following characters as delimiters: . 1 = ; <U> _, blank, and carriage return. Several
CP/M commands also treat the following as delimiter characters: , []() $. Itis advisable to
avoid the use of delimiter characters and lower-case characters in CP/M file names.

DIR: Parameter in the diskdef macro library that specifies the number of directory
elements on the drive.

DIR attribute: File attribute. A file with the DIR attribute can be displayed by a DIR
command. The file can be accessed from the default user number and drive only.

DIRBUF: 128-byte scratchpad area for directory operations, usually located at theend of
the BIOS. DIRBUF is used by the BDOS during its directory operations. DYRBUF al so
refers to the two-byte address of this scratchpad buffer in the disk parameter header at
DPbase + 8 bytes.

directory: Portion of a disk that contains entries for each fileon thedisk. In response to
the DIR command, CP/M displays the filenames stored in the directory. The directory
also contains the locations of the blocks allocated to the files. Each file directory element is
in the form of 2 32-byte FCB, although one file may have several elements, depending on
its size. The maximum number of directory elements supported is specified by the drive’s
disk parameter block value for DRM.

directory element: Datastructure Each file onadisk hasoneor more 32-bytedirectory
elements associated with it There are four directory elements per directory sector
Directory elements may also be referred to as directory FCBs

dirsctory entry: File entry displayed by the DIR command. Sometimes this term may
refer to a physical directory element

disk, diskette: Magnetic media used for mass storage in a computer system. Programs
and data are recorded on the disk in the same way music can be recorded on cassette tape.
The CPiM operating system must be initiaily loaded from disk when the computer is
turned on. Diskette refers to smaller capacity removable floppy diskettes, while disk may
refer to either a diskette, removable cartridge disk or fixed hard disk. Hard disk capacities
range from five to several hundred megabytes of storage.

diskdef macro library: Library of code that when used with MAC (the Digital Research
macro assembler) creates disk definition tables such as the DPB and DPH automatically.

disk drive: Peripheral device that reads and writes information on disk or diskettes.
CPIM assigns a letter to each drive under its control. For example, CP/M may refer to the
drives in a four-drive system as A&, B, C, and D.

disk parameter block (DPB): Data structure referenced by oneor moredisk parameter
headers. The disk parameter block defines disk characteristics in the fieldslisted below:

SPT The total number of sectors per track

BSH The data allocation block shift factor

BLM The data allocation block mask

EXM The extent mask determined by BLS and DSM
DSM The maximum data block number

DRM Maximum number of directory entries—1

AL® Reserves directory blocks

AL1 Reserves directory blocks

CKS8 The number of directory sectors check summed
OFF The number of reserved system tracks

The address of the disk parameter block is located in the disk parameter header at DPbase
+0AH. CP/M Function 31 returns the DPB address. Drives with the same characteristics
may use the same disk parameter header, and thus the same DPB. However, drives with
different characteristics must each have their own disk parameter header and disk
parameter blocks. When the BDOS calls the SELDSK entry point in the BIOS, SELDSK
must return the address of the drive’s disk parameter header in registers HL.

disk parameter header (DPH): Data structure that contains information about the disk
drive and provides a scratchpad area for certain BDOS operations. The disk parameter
header contains six bytes of scratchpad area for the BDOS, and the following five
two-byte parameters:

XLT The sector translation table address
DIRBUF Directory buffer address

DPBE Disk parameter block address

Y Checksum vector address

ALV Allocation vector address

Given n disk drives, the disk parameter headers are arranged in a table whose first row of
16 bytes corresponds to drive 0, with the last row corresponding to drive n-1.

DKS: Parameter in the diskdef macro library specifying the number of data blocks on the
drive.

DMA: Direct memory access. DMA is a method of transferring data from the disk into

memory directly. In a CP/M system, the BDOS calls the BIOS entry point READ toread a
sector from the disk into the currently selected DMA address. The DMA address must be

225

the address of a128-byte bufferin memory, either the default buffer at 0080H in page
zero, or a user-assigned bufferin the TPA. Similarly, the BDOS calls the BIOS entry
point WRITE to write the record at the current DMA address to the disk.

DN: Parameter in the diskdef macro library specifying the logical drive number
DPB: See disk parameter block.
DPH: See disk parameter header.

DRM: 2-byte parameter in thedisk parameter block at DPB + 7. DRM isonelessthan the
total number of directory entries allowed for thedrive. Thisvalueisrelated to DPB bytes
AL0O and AL1, which allocate up to 16 blocks for directory entries.

DSM: 2-byte parameter of the disk parameter block at DPB + 5. DSM is the maximum
data block number supported by the drive. The product BLS times (DSM+1) isthe total
number of bytesheld by thedrive. This must not exceed the capacity of the physical disk
less the reserved system tracks.

editor: Utility program that creates and modifies text files. An editor can be used for
creation of documents or. creation of code for computer programs. The CP/M editor is
invoked by typing the command ED next to the system prompt on the console.

EX: Extent number field in an FCB. See extent.

executable: Ready to berun by thecomputer. Executable code isaseries of instructions
that can be carried out by the computer. For example, the computer cannot execute
names and addresses, but it can execute a program that prints al those names and
addresses on mailing labels.

execute a program: Start the processing of executable code.
EXM: See extent mask.

extent: 16K consecutive bytesin afile. Extents are numbered from 0 to 31. Oneextent
may contain 1, 2, 4, 8 or 16 blocks. EX is the extent number field of an FCB and isaone
bytefield at FCB + 12, where FCB labelsthefirst bytein the FCB. Depending on the block
size (BLS)and the maximum data block number (DSM), an FCB may contain 1, 2, 4, 8 or
16 extents. The EX field is normally set to 0 by the user but contains thecurrent extent
number during file /O. The term FCB folding describes FCBs containing more than one
extent. In CP/M version 1.4, each FCB contained only one extent. Users attempting to
perform random record I/O and maintain CP/M 1.4 compatibility should be aware of the
implications of this difference. See CP/M 1.4 compatibility.

extent mask (EXM): A byteparameterin thedisk parameter block located at DPB + 3. The
value of EXM isdetermined by the block size(BLS) and whether the maximum data block
number (DSM) exceeds 255. There are EXM + 1 extents per directory FCB.

FCB: See file control block.

file: Collection of characters, instructions, or data that can be referenced by a unique
identifier. Files are usually stored on various types of media, such as disks, diskettes, or
magnetic tape. A CP/M file is identified by afile specification and resides on disk as a
collection of from zeroto 65,536 records. Each record is128 bytes and can contain either
binary or ASCII data. Binary files contain bytes of data that can vary invaluefrom oH to

226

OFFH. ASCII files contain sequences of character codes delineated by a carriage return-
line feed combination; normally byte values rangefrom 0H to7FH. Thedirectory maps
the file as a series of physical blocks. Although files are defined as a sequence of
consecutive logical records, these records may not reside in consecutive sectors on the
disk. (see also block, directory, extent, record, sector).

file control block (FCB): Structure used for accessing files on disk. Containsthedrive,
filename, filetype, and other information describing afile to beaccessed or created on the
disk. A file control block consistsof 36 consecutive bytes specified by the user for filel/O
functions. FCB can also refer to a directory element in the directory portion of the
allocated disk space. Thesecontain thesamefirst 32 bytesof the FCB, but lack thecurrent
record and random record number bytes.

filename: Name assigned to a file. A filename can include a primary filename of 1-8
charactersand afiletype of 0-3characters. A period separatesthe primary filenamefrom
the filetype.

file specification: Unique file identifier. A complete CP/M file specification includes a
disk drive specification followed by acolon (d:}, a primary filenameof 1 to8 characters, a
period and afiletype of 0 to 3 characters. For example, b:example.tex isacomplete CP/M
file specification.

filetype: Extension to afilename. A filetype can be from 0 to 3 characters and must be
separated from the primary filename by a period. A filetype can tell something about the
file. Some programs require that files to be processed have specific filetypes.

floppy disk: Flexible magnetic disk used to store information. Floppy disks comein 5%-
and 8-inch diameters.

FSC: Parameter in the diskdef macro library specifying thefirst physical sector number.
This parameter is used to determine SPT and build XLT.

hard disk: Rigid, platter-like, magnetic disk sealed in acontainer. A hard disk storesmore
information than a floppy disk.

hardware: Physical components of a computer.

hexadecimal notation: Notation for base16 values using thedecimaldigits and | etters A,
B, C, D, E & F torepresent the 16 digits. Hexadecimal notation is often used torefer to
binary numbers. A binary number can be easily expressed as a hexadecimal value by
taking the bitsin groups of 4 starting with the least significant bit, and expressing each
group as a hexadecimal digit, {0-F). Thus the bit value 1011 becomes 0BH and 10110101
becomes 0B5H.

hex file: ASCII-printable representation of a command (machine language) file
hex file format: Absolute output of ASM and MAC for the Intel 8080 isahex format file,
containing a sequence of absolute records that give a load address and byte values to be

stored, starting at the load address.

HOME: BIOS entry point which setsthedisk head of thecurrently selected driveto the
track zero position.

host: Physical characteristics of a hard disk drive in a system using the blocking and
deblocking algorithm. The term "host™ helps distinguish physical hardware characteris-

227

ticsfrom CP/M’s logical characteristics For example, CP;M sectorsarealways128 bytes,
although the host sector size may be a multiple ot 128 bytes

input: Data going into the computer, usually from an operator typing at the terminal or
by a program reading from the disk.

input/output: See 110

interface Object that allowstwoindependent systems tocommunicate with each other,
as an interface between hardware and software in a microcomputer

i/O: Abbreviation for inputioutput. Usually refers to input/cutput operations or rou-
tines handling the input and output of data in the computer system.

IOBYTE: A one byte field in page zero, currently at location ¢003H, that can support a
logical-to-physical device mapping for I/O. However, itsimplementation in your BIOSis
purely optional and may or may not be supportedinagiven CP/Msystem. ThelOBYTEis
easily set using the command:

STAT <logical device> = <physical device>

The CP/M logical devices are CON:, RDR:, PUN:, AND LST:; each of these can be
assigned to one of four physical devices. The IOBYTE may be initialized by the BOOT
entry point of the BlIOSand interpreted by the BIOS I/O entry points CONST, CONIN,
CONOUT, LIST, PUNCH, and READER. Depending on the setting of the IOBYTE,
different 1O drivers may be selected by the BIGS. For example, setting LST:=TTY: might
cause LIST output to be directed to a serial port, while setting LST:=LPT: causes LIST
output to be directed to a parallel port.

K: Abbreviation for kilobyte. See kilobyte.
keyword: See command keyword.

kilobyte (K): 1024 bytes or 0400H bytesdf memory. Thisisastandard unit of memory.
For example, the Intel 8080 supports up to 64K of memory address spaceor 65,536 bytes.
1024 kilobytes equal one megabyte, or over one million bytes.

linker: Utility program used to combine relocatable object modulesinto an absolute file
ready for execution. For example, LINK-80 creates either a COM or PRL file from
relocatable REL files, such as those produced by PL/I-80.

LIST: A BIOS entry point to a routine that sendsacharacter to thelist device, usually a
printer.

list device: Device such as a printer onto which data can be listed or printed.

LISTST: BIOS entry point to a routine that returns the ready status of the list device

loader: Utility program that brings an absolute program image into memory ready for
execution under the operating system, or a utility used to make such an image. For
example, LOAD preparesan absolute COM filefrom theassembler hex file output which
is ready to be executed under CP/M.

logged in: Made known to theoperattng system, in reference todrives A driverslogged
in when it 1s selected by the user or an executing process It remains selected or logged in
until you change disks in a floppy disk drive or enter ctl-C at thecommand level, or untila
BDOS function 0 is executed.

228

logical: Representation of something that may or may not be the same in its actual
physical form. For example, a hard disk can occupy one physical drive, yet you can divide
the available storage on it to appear to the user asif it werein several different drives.
These apparent drives are the logical drives.

logical sector: See sector
logical to physical sector translation tabie: See XLT.
LSC: Diskdef macro library parameter specifying the last physical sector number

LST: Logical CP/M list device (usually a printer). The CP; M list device isan output-only
device referenced through the LIST and LISTST entry points of the BIOS. The STAT
command allows assignment of LST: toone of the physical devices: TTY:, CRT:, LPT:, or
UL1:, provided these devices and the IOBYTE areimplemented in the LIST and LISTST
entry points of your CP/M BIOS module. The CP/NET command NETWORK allows
assignment of LST: to alist device on a network master. An example of how LST: isused
in a command: PIP LST:=TEST.SUB prints the file TEST.SUB on the list device.

macro assembler: Assembler code translator providing macro processing facilities.
Macro definitions allow groupsof instruciions to be stored and substituted in the source
program as the macro names are encountered. Definitionsand invocationsmay be nested
and macro parameters can be formed to pas- arbitrary strings of text to aspecific macro
for substitution during expansion.

megabyte: Over one million bytes; 3024 kilobytes. See byte, kilobyte.

microprocessor: Silicon chip that isthe central processing unit (CPU) of the microcom-
puter. The Intel 8080 and the Zilog Z-80 are microprocessors commonly used in CP/M

systems.

MOVCPM image: Memoryimageof theCP/M system created by MOV CPM. Thisimage
may be saved as a disk file using the SAVE command or placed on thesystem tracks using
the SYSGEN command without specifying a source drive. Thisimage varies, depending
on the presence of a one-sector or two-sector boot. If the boot islessthan 128 bytes (one
sector), the boot begins at 0900H, the CP/M system at 0980H, and the BIOSat 1F80H.
Otherwise, the boot is at 0900H, the CP{Msystem at 1000H, and the BIOS at 2000H. Ina
CP/M 1.4 system with a one-sector boot, the addresses are the same as for the CP/M 2
system—except that the BIOS begins at 1E80H instead of 1F80H.

MP/M: Multi-Programming Monitor control program. A microcomputer operating sys-
tem supporting multi-terminal access with multi-programming at each terminal.

multi-programming: The capability of initiating and executing more than one program
at a time. These programs, usually called processes, aretime-shared, each receiving adice
of CPU time on a “round-robin” basis See concurrency

nibble: One half of abyte, usually the high order or low order 4 bits in a byte.

OFF:. Two byte parameter in the disk parameter block at DPB + 13 bytes. This value
specifies the number of reserved system tracks. The disk directory beginsin the first

sector of track OFF.

OFS: Diskdd macro Library parameter specrfyingthe number of reserved system tracks.
See OFF.

229

operating system: Collection of programs that supervises the execution o other pro-
grams and the management of computer resources. An operating system provides an
orderly inputioutput environment between the computer and its peripheral devices. It
enables user-written programs to execute safely. An operating system standardizes the
use of computer resources for the programs running under it.

option: One of many parameters that can be part of a command tail. Use options to
specify additional conditions for a command's execution.

output: Data that is sent to the console, disk, or printer.

page: 256 consecutive bytes in memory beginning on a page boundary, whose base
address is a multiple of 256 (100H) bytes. In hex notation, pages always begin at an
address with a least significant byte of zero.

page relocatable program: See PRL.

page zero: Memory region between 0000H and 0100H used to hold critical system
parameters. Page zero functions primarily as an interface region between user programs
and the CP/M BDOS module. Note: in non-standard systems this region is the base page
of the system and representsthefirst 256 bytesof memory used by the CP/M system and
user programs running under it.

parameter: Value in the command tail that provides additional information for the
command. Technically, a parameter is a required element of a command.

peripheral devices: Devicesexternal to the CPU. For example, terminals, printers, and
disk drives are common peripheral devicesthat are not part of the processor but are used
in conjunction with it.

physical: Characteristic of computer components, generally hardware, that actually
exist. In programs, physical components can be represented by logical components.

primary filename: First 8 characters of a filename. The primary filename is a unigue
name that helps the user identify the file contents. A primary filename contains 1 to 8
characters and can includeany letter or number and some special characters. The primary
filename follows the optional drive specification and precedes the optional filetype.

PRL: Page relocatable program. A page relocatable program is stored on diskette as a file
of type PRL. Page relocatable programs are easily relocated to any page boundary and
thus are suitable for execution in a non-banked MP/M system.

program: Series of coded instructions that performs specific tasks wihen executed by a
computer. A program can be written in a processor-specific language or a high-level
language that can be implemented on a number of different processors.

prompt: Any characters displayed on the video screen to help the user decide what the
next appropriate action is. A system prompt isaspecial prompt displayed by the operating
system. See CP/M prompt. The aiphabetic character indicates the default drive. Some
applications programs have their own special prompts.

PUN: Logical CP/M punch device. The punch device is an output-only device accessed
through the PUNCH entry point of the BIOS. In certainimplementations, PUN: can be a
serial device such as a modem.

PUNCH: BIOS entry point to a routine that sends a character to the punch device.

230

RDR: Logical CP/M reader device. The reader device is an input-only device accessed
through the READER entry point in the BIOS. See PUN:.

READ: Entry point in the BIOS to a routine that reads 128 bytes from the currently
selected drive, track, and sector into the current DMA address.

READER: Entry point to aroutine in the BIOS that reads the next character from the
currently assigned reader device.

read-only (R O) Attribute that can be assigned to a disk file or adisk drive. When
assigned to a file, the read-only attribute allowsyou toread fromthat file but not write to
it. When assigned toadrive, theread-only attribute allows you to read any fileon thedisk,
but prevents you from adding a new file, erasing or changing afile, renaming afile, or
writing on the disk. The STAT command can set afile or adrive toread-only. Every file
and drive is either read-only or read-write. The default setting for drives and files is
read-write, but an error in resetting the disk or changing media automatically sets the
drive to read-only until the error is corrected. See also ROM.

read-write (R W): Attribute that can be assigned to a disk file or a disk drive. The
read-write attribute allows you to read from and write to a specific read-writefile or to
any file on a disk that is in a drive set to read-write. A file or drive can be set to either
read-only or read-write.

record: Group of bytesin afile. A physical record consists of 128 bytesand isthe basic
unit of data transfer between the operating system and theapplication program. A logica
record may vary in length and is used to represent a unit of information. Two 64 byte
“employee” records can be stored in one 128-byte physical record. Records are grouped
together to form a file.

recursive procedure: Code that may cal itself during execution

reentrant procedure: Code that can be called by one process while another is already
executing it. Thus, reentrant code may be shared between different users, Reentrant
procedures must not be self-modifying; that is, they must be pure code and not contain
data. The data for reentrant procedures can be kept in a separate data area or placed on
the stack.

restart {(RST): One-bytecal instruction usually used during interrupt sequencesand for
debugger break pointing. Thereareeight restart locations, RST 0 through RST 7, whose
addresses are given by the product of 8 times the restart number.

RO:. See read-only.

ROM: Read-only memory. Thismemory can beread but not written and soissuitablefor
code and preinitialized data areas only.

BST: See restarh
RW: See read-write.

sector: In a CP/M system, a sector i1s always 128 consecutive bytes A sector is the basic
unit of data read and written on thedisk by the BIOS A sector can beone128-byte record
in a file or a sector of the directory. The BDOS always requests alogica sector number
between 0 and (SPT-1). This is typically translated into a physical sector by the BIOS
entry point SECTRAN. In some disk subsystems, the disk sector sizeislarger than 128
bytes, usually a power of two such as 256, 512, 1024 or 2048 bytes Thesedisk sectorsare

231

always referred to as host sectors in CP/M documentation and should not be confused
with other references to sectors, in which cases the CP/M 128 byte sectors should be
assumed When the host sector size s larger than 128 bytes, host sectors must be
buffered in memory and the 128 byte CP; M sectors must be blocked and deblocked from
them This may be done by adding an additional module, the blocking and deblocking
algorithm, between the BIOS disk [/O routines and the actual disk | O

sectors per track (SPT). 4 two byte parameter in the disk parameter block at DPB + ¢
The BDOS makescalls to the BIOS entry point SECTRAN with logical sector numbers
rangtng between ¢ and (SPT - 1) in register BC

SECTRAN: Entry point toaroutinein the BIOS that performslogical to physical sector
translation for the BDOS.

SELDSK: Entry point to a routine in the BIOS that sets the currently selected drive.

SETDMA: Entry point to a routine in the BIOS that sets the currently selected DMA
address. The DMA address is the address of a 128-byte bufferregion in memory that is
used to transfer data to and from the disk in subsequent reads and writes.

SETSEC: Entry point to aroutine in the BIOS that sets the currently selected sector.
SETTRK: Entry point to a routine in the BIOS that sets the currently selected track.

skew factor: Factor that defines the logical to physical sector number translation in XLT.
Logical sector numbers are used by the BDOS and range between 0 and (§PT-1). Data is
written in consecutive logical 128-byte sectors grouped in data blocks. The number of
sectors per block is given by BLS/128. Physical sectors on the disk media are also
numbered consecutively. If the physical sector size is also 128 bytes, a one-to-one
rel ationship existsbetween logical and physical sectors. Thelogical to physical translation
table (XL T) maps this relationship, and a skew factor is typically used in generating the
table entries. For instance, if the skew factor is 6, XLT wilt be:

4 5 6 25

Logical: 0 1 2
7 25 5 11 . 22

Physical: 1 13 1

0 oW

The skew factor allows time for program processing without missing the next sector.
Otherwise, the system must wait for an entire disk revolution before reading the next
logical sector. The skew factor can be varied, depending on hardware speed and applica-
tion processing overhead. Note that no sector translation is done when the physical
sectorsarelarger than 128 bytes, as sector deblockingisdonein thiscase. (5ee also sector,
SKF and XLT)

SKF: A diskdef macro library parameter specifying the skew factor to be used in building
XLT.If SKFiszero, notranslation table is generated and the XLT bytein the DPH will be
Q000H.

software: Programsthat contain machine-readable instructions, asopposed to hardware,
which is the actual physical components of a computer.

source file: ASCII text file usually created with an editor, which isan input fileto a
system program such as a language translator or text formatter.

SP: Stack pointer. See stack.

232

spooling: Process of accumulating printer outputin afile whilethe printer isbusy. The
fileis printed when the printer becomesfree; a program does not have te wait for the slow
printing process.

SPT: See sectors per track.

stack Reserved areadf memory where the processor saves the return address when a
call instruction 15 received When a return mnstruction is encountered, the processor
restores the current address on the stack to the program counter Data such as the
contents of the registers can also be saved on the stack The push instruction places data
on the stack and the pop instruction removes it An item s pushed onto the stack by
decrementing the stack pointer (SP) by 2 and writing theitem at the SPaddress Inother
words, the stack grows downward in memory

syntax: Format for entering a given command.

SYS: See system attribute.

SYSGEN image: Memory image of the CP/M system created by SYSGEN when a
destination driveis not specified. Thisis the same as the MOVCPM image, which can be
read by SYSGEN if a source drive is not specified. See MOVCPM image.

system attribute (SYS): File attribute. You can give afile the system attribute by using
the SYSoptionin the STAT command or by using the set file attributesfunction (BDOS
function 12). A file with the SYS attribute isnot displayed in response toaDIR command.
If you giveafilewith user number 0 the SYS attribute, you can read and executethat file
from any user number on the samedrive. Use this feature to make your commonly used
programs available under any user number.

system prompt: Symbol displayed by the operating system indicating that the systemis
ready to receive input. See prompt, CP/M prompt.

system tracks: Tracksreserved on thedisk for the CP/M system. The number of system
tracks is specified by the parameter OFF in the disk parameter block (DPB). The system
tracksfor adrive always precede itsdata tracks. Thecommand SYSGEN copies the CP/M
system from the system tracks to memory, and vice versa. The standard SYSGEN utility
copies 26 sectors from track 0 and 26 sectors from track |I. When the system tracks
contain additional sectors or tracks to be copied, a customized SY SGEN must be used.

terminal: See console.

TPA: Transient program area Areain memory where user programsrun and storedata
This areais a region of memory beginning at 6100H and extending to the base of the
CPiM system in high memory The first module of the CP/M system is the CCP, which
may be overwritten by auser program If so,the TPA :s extended to the baseof the CP/M
BDOS module. If the CCPisoverwritten, the user program must terminate with eithera
system reset {function ¢} call or ajump to location zero in page zero The address of the
base of the CP/M BDOS is stored in location C006H 1n page zero, least significant byte
first

track: Data on the disk media is accessed by combination of track and sector humbers.
Tracks form concentric rings on the disk; the standard IBM single-density diskettes
have 77 tracks. Each track consists of a fixed number of humbered sectors. Tracks are
numbered from O to one less than the number of tracks on the disk.

transient program area: See TPA.

233

upward compatible: Term meaning that a program created for the previously released
operating system (or compiler, etc.) runs under the newly released version of the same
operating system.

USER: Term used in CP/M and MFP/M systems to distinguish distinct regions of the
directory.

user number: Number assigned to files in the disk directory so that different users need
only deal with their own filesand have their" own" directories, even though they are all
working from the same disk. In CP/M, files can be divided into 16 user groups.

utility: "Tool." Program that enables the user to perform certain operations, such as
copying files, erasing files, and editing files. The utilitiesarecreated for the convenience
of programmers and users.

vector: Location in memory. An entry point into the operating system used for making
system calls or interrupt handling.

warm start: Program termination by: ajump tothewarm start vector at location 0000H, a
system reset (BDOS function 0), or a ctl-C typed at the keyboard. A warm start
reinitializes the disk subsystem and returnscontrol tothe CP/M operating system at the
CCP level. The warm start vector is simply a jump to the WBOOT entry point in"the
BIOS.

WBOOT: Entry point to aroutine in the BIOS used when awarm start occurs. A warm
start is performed when a user program branches to location 0000H, when the CPU is
reset from thefront panel, or when theuser typesctl-C. TheCCPand BDOS arerelocaded
from the system tracks of drive A.

wildcard characters: Special characters that match certain specified items. In CP/iM
there are two wildcard characters: ? and *. The 7 can be substituted for any single
character in a filename, and the * can be substituted for the primary filename or the
filetype, or both. By placing wildcard charactersinfilenames, the user creates an ambigu-
ous filename and can quickly reference one or more files.

word: 16-bit or two-byte value, such as an address value. Although the Intel 8080 isan
8-bit CPU, addresses occupy two bytes and are called word values.

WRITE: Entry point to a routine in the BIOS that writes the record at the currently
selected DMA address to the currently selected drive, track, and sector.

XLT: Logica to physical sector translation table located in the BIOS. SECTRAN uses
XLT to perform logical to physical sector number translation. XLT also refers to the
two-byte address in the disk parameter header at DPBASE + 0. If this parameter is zero,
no sector translation takes place. Otherwise this parameter isthe address of the transla-
tion tabie.

ZERO PAGE: See page zero.

234

Appendix I: CP/M Messages

Messages come from several different sources. CP/M displays error messages when
there are errorsin callsto the Basic Disk Operating System (BDOS).CP/M also displays
messages when thereare errorsin command lines. Each utility supplied with CP/M hasits
own set of messages. Thefollowing lists CP/M messages and utility messages. One might
see messages other than those listed hereif oneisrunning an application program. Check
the application program's documentation for explanations of those messages.

Message Meaning
?

DDT. This message has four possible meanings:

1) DDT does not understand the assembly language instruction.
2) The file cannot be opened.

3) A checksum error occurred in a HEX file.

4) The assembler/disassembler was overlayed.

ABORTED
PIP. You stopped a PIP operation by pressing a key.

ASM Error Messages

D Data error: data statement element cannot be placed in
specified data area.

E Expression error: expression cannot be evaluated during
assembly.

L Label error: label cannot appear in this context (might be
duplicate label).

N Not implemented: unimplemented features, such as macros,

are trapped.

Overflow: expression is too complex to evaluate.

Phase error: label value changes on two passes through

assembly.

R Register error: the value specified as aregister isincompatible
with the code.

TOo

235

BAD DELIMITER

Bad Load

Bdos Err On d:

<Cw

Syntax error: improperly formed expression.

Undefined label: label used does not exist.

Vaue error: improperly formed operand encountered in an
expression.

STAT. Check command line for typing errors.

CCP error message, or SAVE error message.

Basic Disk Operating System Error on the designated drive: CP/M
replaces d: with the drive specification of thedrivewherethe error
occurred. This messageisfollowed by oneof thefour phrases in the
situations described below.

Bdos Err On d: Bad Sector

Bdos Err On d: File

Bdos Err On d: R/O

This message appears when CP/M finds no disk in the drive, when
the disk is improperly formatted, when the drive latch is open, or
when power to the drive is off. Check for oneof these situations
and try again. This could also indicate a hardware problem or a
worn or improperly formatted disk. Press {C to terminate the
program and return to CP/M, or pressthereturn key toignore the
error.

R/O

You tried to erase, rename, or set fileattributeson aRead-Only file.
The file should first be set to Read-Write (RW) with the command:
"STAT filespec $R/W.”

Drive has been assigned Read Only statuswith aSTAT command,
or thedisk in the drive has been changed without being initialized
with a 1C. CP/M terminates the current program as soon as you
press any key.

Bdos Err on d: Select

Break “x” at ¢

236

CPIM received a command line specifying a nonexistent drive.
CP/M terminates thecurrent program assoon asyou press any key.
Press return key or CTRL-C to recover.

ED."x" isoneof the symbols desrribed below and ¢ isthecommand
letter being executed when the error occurred.

Searchfailure. ED cannot find the string specified inanF, S, or
N command.

? Unrecognized command letter c. ED does not recognize the

indicated command letter, or an E, H, Q, or O command is not
alone on its command line.

O The file specified in an R command cannot be found.

> Buffer full. ED cannot put any more characters in the memory
buffer, or the string specified in an F, N, or S command is too
long.

E Command aborted. A keysiroke at the console aborted
command execution.

1t

Disk or directory full. This error is followed by either the disk
or directory full message. Refer to the recovery procedures
listed under these messages.

CANNOT CLOSE DESTINATION FILE— {filespec}

PIP. An output file cannot be closed. You should take appropriate
action after checking to see if the correct disk is in the drive and that
the disk is not write-protected.

Cannot close, R/C
CANNQOT CLOSE FILES

CP/M cannot write t0 the file. This usually occurs because the disk
18 write-protected.

ASM. An output file cannot be closed. This is a fatal error that
terminates ASM execution. Check to see that the disk is in the
drive, and that the disk is not write-protected.

DDT. The disk file written by a W command cannot be closed. This
1s afatal error that terminates DDT execution. Check if thecorrect
disk 15 1n the drive and that the disk is not write-protected.

SUBMIT. This error can occur during SUBMIT file processing.
Check if the correct system disk is in the A drive and that the disk is
not write-protected. The SUBMIT job can be restarted after
rebooting CPIM.

CANNOT READ
PIP. PIP cannot read the specified source. Reader may not be
implemented.

CANNOT WRITE
PIP. The destination specified in the PIP command is illegal. You

probably specified an input device as a destination.

Checksum error

PIP. A hex record checksum error was encountered. The hex record
that produced the error must be corrected, probably by recreating
the hex file.

CHECKSUM ERROR
LOAD ADDRESS hhhh
ERROR ADDRESS hhhh
BYTES READ:

hhhh:

LOAD File contains incorrect data. Regenerate hex file from the
source

237

Command Buffer Overflow

SUBMIT. The SUBMIT buffer allows up to 2048 charactersin the
input file.

Command too fong

SUBMIT. A command in the SUBMIT file cannot exceed 125
characters.

CORRECT ERROR, TYPE RETURN OR CTL-Z

PIP. A hex record checksum wasencountered during the transfer of
ahex file. The hex filewith the checksum error should becorrected,
probably by recreating the hex file.

DESTINATION IS R/O, DELETE (Y/N)?

PIP. The destination file specified in a PIP command already exists
and it is Read Only. If you type Y, the destination file is deleted
before the file copy is done.

Directory full

ED. Thereis not enough directory spacefor thefilebeing writtento
the destination disk. You can use the OXfilespec command to erase
any unnecessary files on the disk without leaving the editor.

SUBMIT. There is not enough directory space to write the
$$$.SUB file used for processing SUBMITs. Erase some files or
select a new disk and retry.

Disk full

ED. There is not enough disk space for the output file. Thiserror
can occur on the W, E H, or X commands. If it occurs with X
command, you can repeat thecommand prefixing thefilenamewith
adifferent drive.

DISK READ ERROR— (filespec]

PIP. The input disk file specified in a PIP command cannot be read
properly. This is usually the result of an unexpected end-of-file.
Correct the problem in your file.

DISK WRITE ERROR — {filespec)

DDT. A disk write operation cannot be successfully performed
during a W command, probably duetoafull disk.Youshouldeither
erase some unnecessary files or get another disk with more space.

PIP. A disk write operation cannot be successfully performed dur-
ing a PIP command, probably due to afull disk. You should either
erase some unnecessary files or get another disk with more space
and execute PIP again.

SUBMIT. The SUBMIT program cannot write the $$$.SUB fileto
the disk. Erase some files, or select a new disk and try again.
ERROR: BAD PARAMETER

PIP. You entered an illegal parameter in aPIP command. Retypethe
entry correctly.

238

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

CANNOT OPEN SOURCE, LOAD ADDRESS hhhh
LOAD. Displayed if LOAD cannot find the specified file or if no
filename is specified.

CANNOT CLOSE FILE, LOAD ADDRESS hhhh

LOAD. Caused by an error code returned by a BDOSfunction call.
Disk may be write-protected.

CANNOT OPEN SOURCE, LOAD ADDRESS hhhh
LOAD. Cannot find source file. Check disk directory

DISK READ, LOAD ADDRESS hhhh
LOAD. Caused by an error code returned by a BDOSfunction call.

DISK WRITE, LOAD ADDRESS hhhh
LOAD. Destination Disk is full.

INVERTED LOAD ADDRESS, LOAD ADDRESS hhhh

LOAD. Theaddressof arecord was too far from the address of the
previously-processed record. This is an internal limitation of
LOAD, but it can be circumvented. Use DDT to read the hexfile
into memory, then use a SAVE command to store the memory
image file on disk.

NO MORE DIRECTORY SPACE, LOAD ADDRESS hhhh
LOAD. Disk directory is full.

Error on line nnn message

SUBMIT. The SUBMIT program displays its messages in the for-
mat shown above, where nnn represents the line number of the

SUBMIT file. Refer to the message following the line number.

FILE ERROR
ED. Disk or directory isfull, and ED cannot write anything moreon
thedisk. Thisisafatal error, so make surethere isenough spaceon
the disk to hold a second copy of the file before invoking ED.
FILE EXISTS

You have asked CP/M to create or rename afile using afile specifi-
cation that is already assigned to another file. Either delete the
existing file or use another file specification.

REN. The new name specified is the name o a file that already
exists. You cannot rename afile with the name of anexisting file. If
you want to replace an existing file with a newer version of the
same file, either rename or erase the existing file, or use the PIP
utility.

File exists, erase it

ED. The destination filename aready exists when you are placing
the destination file on adifferent disk than the source. It should be
erased or another disk selected to receive the output file.

239

** FILE IS BEAD/ONLY *~

File Not Found

ED. The file specified in the command to invoke ED has the Read
Only attribute. ED can read the file so that the user can examine it,
but ED cannot change a Read Only file.

CP/M cannot find the specified file. Check that you have entered
the correct drive specification or that you have the correct disk in
the drive.

ED. ED cannot find the specified file. Check that you have entered
the correct drive specification or that you have the correct disk in
the drive.

STAT. STAT cannot find the specified file. The message might

appear if you omit the drive specification. Check to see if the correct
disk is in the drive.

FILE NOT FOUND- {filespec}

Filename required

hhhh?7=dd

insufficient memory

invalid Assignment

PIP. An input file that you have specified does not exist.

ED. You typed the ED command without a filename. Reenter the
ED command followed by the name of the file you want to edit or
create.

DDT. The ?7 indicates DDT does not know how to represent the
hexadecimal value dd encountered at address hhhh in 8080 assem-
bly language. dd is not an 8080 machine instruction opcode.

DDT. There is not enough memory to load the file specifiedinan R
or E command.

STAT. You specified an invalid drive or file assignment, or miss-
pelled a device name. This error message might be followed by alist
of the valid file assignments that can follow a filename. If an invalid
drive assignment was attempted the message “Use: d:=RO” is dis-
played, showing the proper syntax for drive assignments.

Invalid control characier

SUBMIT. The only valid control characters in the SUBMIT files of
type SUB are ~ A through ~ Z. Note that in a SUBMIT file the
control character is represented by typing the circumflex,”, not
by pressing the control key.

INVALID DIGIT— {filespec)

240

PIP. An invalid hex digit has been encountered while reading a hex
file. The hex file with the invalid hex digit should be corrected,
probably by recreating the hex file.

invalid Disk Assignment
STAT. Might appear if you follow the drive specification with
anything except =R/O.

INVALID DISK SELECT
CP/M received a command line specifying a nonexistent drive, or
thedisk in thedriveisimproperly formatted. CP/M terminates the
current program as soon as you press any key.

INVALID DRIVE NAME (Use A, B, C, or D)
SYSGEN. SYSGEN recognizes only drives A, B, C and D as valid
destinations for system generation.

Invalid File Indicator
STAT. Appears if you do not specify RO, RW, DIR, or SYS.

INVALID FORMAT

PIP. Theformat of your PIPcommand isillegal. See the description
of the PIP command.

INVALID HEX DIGIT
LOAD ADDRESS hhhh
ERROR ADDRESS hhhh
BYTES READ:

hhhh

LOAD. File contains incorrect hex digit.

INVALID MEMORY SIZE
MOVCPM. Specify avalue less than 64K or your computer's actual
memory size.

INVALID SEPARATOR
PIP. You have placed an invalid character for a separator between
two input filenames.

INVALID USER NUMBER
PiP. You have specified a user number greater than 15. User
numbers arein the range 0 to 15.

n?

USER. You specified a number greater than fifteen for a user area
number. For example, if you type USER 18<cr>, thescreen displays
187

NC DIRECTORY SPACE

ASM. The disk directory is full. Erase some files to make room for
PRN and HEX files. The directory can usually hold only 63 file-
names.

241

NO DIRECTORY SPACE— (filespec)

PIP. There is not enough directory space for the output file. You
should either erase some unnecessary filesor get another disk with
more directory space and execute PIP again.

NO FILE— {filespec}

DIR, ERA, REN, PIP. CP/M cannot find the specified file, or no
files exist.

ASM. The indicated source or include file cannot be found on the
indicated drive.

DDT. Thefile specified in an R or E command cannot be found on
the disk.

NO INPUT FILE PRESENT ON DISK
DUMP. The file you requested does not exist.

No memory
There is not enough (buffer?) memory available for loading the
program specified.

NO SOURCE FILE ON DISK
SYSGEN. SY SGEN cannot find CP/M either in CPMxx.com form
or on the system tracks of the source disk.

NO SOURCE FILE PRESENT
ASM. The assembler cannot find the file you specified. Either you
mistyped the filespecification in your command line, or the file is
not type ASM.

NO SPACE
SAVE. Too many filesarealready on the disk, or no roomisleft on
the disk to save the information.

No SUB file present

SUBMIT. For SUBMIT to operate properly, you must create afile
with filetype of SUB. TheSUB filecontains usual CP/M commands.
Use one command per line.

NOT A CHARACTER SOURCE

PIP. The source specified in your PIPcommand isillegal. You have
probably specified an output device as a source.

** NOT DELETED **

PIP. PIP did not delete the file, which may have had the R/O
attribute.

NOT FOUND
PIP. PIP cannot find the specified file.

242

OUTPUT FILE WRITE ERROR
ASM. You specified a write-protected diskette as the destination
for the PRN and HEX files, or thediskette hasno spaceleft. Correct
the problem before assembling your program.

Parameter error
SUBMIT. Within the SUBMIT file of typesub, valid parametersare
$0 through $9.

PARAMETER ERROR, TYPE RETURN TO IGNORE
SY SGEN. If you pressreturn, SYSGEN proceeds without process-
ing the invalid parameter.

QUIT NOT FOUND
PIP. The string argument to a Q parameter was not found in your
input file.

Read error

TYPE. An error occurred when reading thefilespecified in the type
command. Check the disk and try again. The STAT filespec com-
mand can diagnose trouble.

READER STOPPING

PIP. Reader operation interrupted.

Record Too Long

PIP. PIP cannot process a record longer than 128 bytes.

Requires CP/M 2.0 or later
XSUB. XSUB requires the facilities of CP/M 2.0 or newer version.

Requires CP/M 2.0 or newer for operation

PIP. Thisversion of PIPrequiresthefacilities of CP/M 2.0 or newer
version.

START NOT FOUND

PIP. Thestring argument to an S parameter cannot befound in the
source file.

SOURCE FILE INCOMPLETE
SYSGEN. SYSGEN cannot use your CPiM source file.

SOURCE FILE NAME ERROR

ASM. When you assemble a file, you cannot use the wildcard
characters *and ? in thefilename. Only onefile can beassembled at
a time.

SOURCE FILE READ ERROR

ASM. Theassembler cannot understand theinformation in thefife

243

containing the assembly language program. Portionsof another file
might have been written over your assembly language file, or
information was not properly saved on the diskette. Usethe TYPE
command to locate the error. Assembly language files contain the
letters, symbols, and numbers that appear on your keyboard. If
your screen displays unrecognizable output or behaves strangely,
you have found where computer instructions have crept into your
file.
SYNCHRONIZATION ERROR

MOV CPM. The MOVCPM utility is being used with the wrong
CP/M system.

"SYSTEM" FILE NOT ACCESSIBLE
You tried to access a file set to SYS with the STAT command.

** TOO MANY FILES **

STAT. There is not enough memory for STAT to sort the files
specified, or more than 512 files were specified.

UNEXPECTED END OF HEX FILE —{filespec)

PIP. An end-of-file was encountered prior to a termination hex
record. The hex file without a termination record should be cor-
rected, probably by recreating the hex file.

Unrecognized Destination
PIP. Check command line for valid destination

Use: STAT d:=RO

STAT. Aninvalid STAT drive command wasgiven. Theonly valid
drive assignment in STAT is STAT d:=RO.

VERIFY ERROR: —{filespec)

PIP. When copying with the V option, PIPfound adifference when
rereading the data just written and comparing it to thedatainits
memory buffer. Usually thisindicatesafailureof either thedestina-
tion disk or drive.

WRONG CP/M VERSION (REQUIRES 2.0)

XSUB ACTIVE
SUBMIT. XSUB has been invoked.

XSUB ALREADY PRESENT
SUBMIT. XSUB is already active in memory.

Your input?

If CP/M cannot find the command you specified, it returns the
command name you entered followed by a question mark. Check
that you have typed the command line correctly, or that the com-
mand ycu requested existsasa.COM fileon the default or specified
disk.

244

INDEX

Absolute line number 36

Access mode, 13

afn (ambiguous file reference), 3, 4, &
Allocation vector, 105

Ambiguous file reference (afn), 3, 4, 6
ASM, 15, 47

Assembler, 15, 47

Assembler,disassembler module {DDT), 77
Assembly errors, 62

Assembly language mnemonics in DDT, 71, 74
Assembly language program, 49

Assembly Language statement, 49
Automatic command processing, 25

Ease, 5C

Basic Disk Operating System (BDOS), 2, 89, 127
Basic I/ System (BIOS), 2, 89, 127

BDOS (Basic Disk Operating System), 2, 89, 127
Binary constants, 50

BIOS (Basicl/O System), 2,89, 127

BIOS disk definition, 148

BICGS subroutines, 137

Block move command, 74

bis parameter, 149

BOOT, ¢, 136, 140

BOOT entry point, 140

Breakpoint, 71, 73

Built-in commands, 3

Case translation, 5, a, 20, 21, 37, 39, 44, 45, 51 95
P (Console Command Processor), 2, 69, 89, 127
CCP Stack, 92

Character pointer, 35

CKS parameter, 149

Close File function, 101

Code and data areas, 144

Cold start loader, 136, 140, 143

Combine files, 17

Command, 3

Command line, 90

Comment field, 49

Compute Fiie Size function, 138

Condition flags, 58, 77

Conditional assembly, 56

CONIN 140

CONOUT, 141

CONSOLE, 138

Console Command Processor {CCP}, 2,69, 89, 127
Console Input function, 95

Console Output function, 96

CONST, 140

Constant, 50

Control characters, 44

Control Functions 9

245

Control-Z character, 93

Copy files, 17

CPU state, 71

cr (carriage return), 39

Create files, 23

Create system disk, 24

Creating COM files, 16

Currently logged disk, 3, 5, 10, 17, 25

Data allocation size, 147
Data block number, 147
DB statement, 57

DDT commands, 70, 133
DDT nucleus, 77

DDT prompt, 70

DDT sign-on message, 69
Decimal constant, 50
Default FCB, 73

Delete File function, 102
DESPOOL, 136

Device assignment, 11
DIR, 6

DIR attribute, 14

dir parameter, 149

Direct console [/O function, 97
Direct Memory Address, 104
Directory, 6

Directory code, 100, 101, 102, 103
Disassembler, 71, 77

Disk attributes, 11

Disk drive name, 5

Disk 110 functions, 99-110
Disk parameter block, 146
Disk parameter header, 145
Disk parameter table, 145
Disk statistics, 10
Disk-to-disk copy, 18
DISKDEF macro, 149
Diskette format, 31
DISKS macro, 150, 186
Display file contents, 8
dks parameter, 149

DMA, 104

DMA address, 93

dn parameter, 149
DPBASE, 146

Drive characteristics, 14
Drive select code, 94
Drive specification, 5

DS statement, 57

DUMP, 27,113

DW statement, 57

ED, 23, 33-45, 131

ED commands, 38, 44
ED errors, 43

Edit command line, 9
8080 CPU registers, 76
8080 registers, 51
end-of-file. 19, 93
END statement, 49, 54
ENDEF macro, 150
ENDIF statement, 56
EQU statement, 55

246

ERA, 6

Erase files, &

Error messages, 29, 43, 62, 153
Expression, 49

Extents, 13

FBASE, 89

FCB, 93, 94

FCS format, 93, 94

FDOS {(operations), 89, 91
File attributes, 14

File compatibility, 23

File control block (FCBJ, 93, 94
File expansion, 128

File extent, 93

File indicators, 14

File names,.3

Fid reference, 3

File statistics, 10, 13
Filetype, 93

Find command, 39

fsc parameter, 149

Get ADDR {Allec) function, 105

Cet ADCR(D sk Parms) function, 106
Get Console Status, 99

Get [/O Byte function, 97

Get Read/Only Vector function, 105
GETSYS, 128, 134

Hexadecimal constant, 50
Hex files, lo 19 20, 47
HOME subroutine, 139, 141

identifier, 49, 50

i¥ statement, 56

Initialized storage areas, 57
In-line assembly language, 71
Insert mode, 37

Insert string, 40

IOBYTE function, 138,139

Jump vector, 137
Juxtaposition command, 41

Key fields, 109

Label field, 49

Labels, 48, 49, 58

Library read command, 42

Line-editing control characters, 38, 70, 98
Li ne-edi ting functions, 9

Line numbers, 36

LIST, 138, 141

List Output function, 96

LISTST, 142

LOAD, 16

Logged in, 3

Logical devices, 11, 18, 138

Logical extents, 93

Logical-physical assignments, 12, 139
Logical to physical device mapping, 138
Logical to physical sector translation, 143, 149
{sc parameter, 149

247

Machine executable code, 16
Macro command, 42

Make File function, 103

Mernorv buffer, 33, 34, 35 37
Memory image, 71, 131, 132
Memory image file, 16

Memory size, 27, 128, 132
MOVCPM, 27, 131, 132
Multiple command processing, 25

Negative bias, 132

[0} parameter, 149
Octal constant, 50

ofs parameter, 150
On-line status, 100
Open File function, 100
Operand field, 49-51
Operation field, 49-58
Operators, 52, 53, 58
ORG directive, 54

Page zero, 144

Patching the CP/M system, 128
Peripheral devices, 138

Physical devices, 12, 18, 139
Physical file size, 109

Physical to logical device assignment, 12, 139
PIP, 17

PIP devices, 19

PIP parameters, 20

Print String function, 98

PRN file, 47

Program counter, 71, 73, 76
Program tracing, 75

Prompt, 3

Pseudo-operation, 53

PUNCH, 138, 141

Punch Output Function, 96
PUTSYS, 129, 135

Radix indicators, 50

Random access, 107, 108, 117
Random access files, 93

Random record number, 108
READ, 142

Read Console Buffer function, 98
Read only, 14

Read/only status, 14

Read random error codes, 107
Read Random function, 107

READ routine, 139

Read Sequential function, 102
Read/write, 14

READER, 138, 141

Reader Input function, 96

REN, 7

Rename file function, 104

Reset Disk function, 99

Reset Drive function, 109

Reset state, 92

Return Current Disk functior) 104
Return Log-in Vector functio , 104
Return Version Number function, 9¢
R/O, 14

248

R/Q attribute, 106
RI/O bit, 105
RIW, 14

SAVE 7

SAVE command, 7¢

Search tor First tunctton, 101
Search tor Next function, 102
Search strings, 39

Sector allocation, 136
SECTRAN, 143

SELDSK, 139, 141, 146

Select Disk functton, 100
Sequential access, 93

Set DMA address function, 104
Set File Attributes function, 106
Set/Get User Code functton, 106
Set I/QO Bvte function, 97

Set Random Record functton, 109
SET statement, 55

SETDMA, 142

SETSEC, 142

SETTRK, 141

Simple character 1/O, 138

Size in records, 13

skf parameter, 149, 150

Source files, 93

Stack pointer, 92

STAT, 10, 139, 151

Stop console output, @

Strrng substitutions, 40
SUBMIT, 25

SYS attribute, 14

SYSGEN, 24, 134

System attribute, 44, 106
System parameters, 140
System {(re}initialization, 138
System Reset functron, 95

Testing and debugging of programs, 69
Text transfer commands, 35

TPA (Transient Program Aredl, 2, 89
Trace mode, 76

Transient commands, 3, 9

Transient Program Area (TPA), 2, 89
Translate table, 150

Translation vectors, 146

TYPE, 8

ufn, 3,6

Unambiguousfile reference, 3, 6
Uninitialized memory, 57
Untrace mode, 76

USER, 8

USER numbers, 8, 15, 106

Verify line numbers command, 37, 45
Version independent programming, 99
Virtual file size, 108

Warm start, 90, 140

WBOOT entry point, 140
WRITE, 143

Write Protect Drsk function, 105
Write random error codes, 108

249

Write Random function, 108

Write Random with Zero Fill function, 110
WRITE routine, 142

Write Sequential function, 103

XSOB, 26

250

