
MANUAL

@Ill DIGITAL RESEARC
TM

P.O. Box 579
Pacific Grove,

COPYRIGHT

Copyright 3 1976, 1977, 1978, 1979, and 3982 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of Digital Research, Post Office Box 579, Pacific
Grove. California 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Further, Digital Research reserves the right to revise this publica-
tion and to make changes from time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or changes.

CP/M is a registered trademark of Digital Research. MP/M, MAC, and SID are trade-
marks of Digital Research. Z-80 is a trademark of Zilog, Inc.

First Printing: July 1982

1.1 Introduction . .., 1
1.2 Functional Description . 3

1.2.1 General Command Structure . 3
1.2.2 File References . 3

1 .3 Switching Disks . 5
1.4 Built-in Commands . 6

1.4.1 ERA . 6
1.4.2 DIR 6
1.4.3 REN . 7
1.4.4 SAVE . t3
1.4.5 TYPE .
1.4.6 USER . 8

1.5 Line Editing and Output Control . t:
1.6 Transient Commands . 9

. 1.6.1 STAT 10
1.6.1 ASM . 15
1.6.3 LOAD . I 6

. 1.6.4 Pip 17
1.6.5 ED . 23

. 1.6.6 SYSGEN 24
1.6.7 SUBMIT . 25

. 1.6.8 DUMP 27
. 1.6.9 MOVCPM 27

. 1.7 BDOS Error Messages 29
. 1.8 Operation of CP/M on the MDS .. 30

. 2.1 Introduction to ED 33
. . . . 2.1.1 ED Operation 33

2.1.2 Text Transfer Functions . 35
. . . 2.1.3 Memory Buffer Organization ... 35

2.1.4 Line Numbers and ED Start Up . 36
. 2.1.5 Memory uffer Operation .. 37

. 2.1.6 Cornman Strings 8
2.1.7 Text Search and Alteration . 9

. 2.1.8 Source Libraries 42
2.1.9 Repetitive Command Execution . 42

. 2.2 ED Error Conditions 43
............................. 2.3 Control Characters and Commands $4

3.1 Introduction . 47
3.2 Program Format . 48

. 3.3 Forming the Operand 49
3.3.1 Labels . 50
3.3.2 Numeric Constants . 50
3.3.3 Reserved Words . 50
3.3.4 String Constants . 5 1
3.3.5 Arithmetic and Logical Operators . 52
3.3.6 Precedence of Operators . 52

3.4 Assembler Directives . 53
. 3.4.1 The ORG Directive 54

..................................... 3.4.2 The END Directive 54

. 3.4.3 The EQU Directive 55

. 3.4.4 The SET Directive 55
. 3.4.5 The IF and ENDIF Directives 56

3.4.6 The DB Directive 57
. 3.4.7 The DW Directive 57
...................................... 3.4.8 The DS Directive 57

. 3.5 Operation Codes 58
. 3.5.1 Jumps, Calls, and Returns 58

. 3.5.2 Immediate Operand Instructions 59
. 3.5.3 Increment and Decrement Instructions 60

3.5.4 Data Movement Instructions . 60
3.5.5 Arithmetic Logic Unit Operations . 61

. 3.5.6 ControlInstructions 62
. 3.6 Error Messages 62

. 3.7 A Sample Session 63

..................... 4 CP/M GGING TOOL 69

. 4.1 Introduction 69
4.2 DDT Commands . 71

............................ 4.2.1 The A (Assembly) Command 71
.............................. 4.2.2 The D (Display) Command 72

.................................. 4.2.3 The F (Fill) Command 72

.................................. 4.2.4 The G (Go) Command 72
................................. 4.2.5 The I (Input) Command 73

4.2.6 The L (List) Command 74
4.2.7 The M (Move) Command . 74
4.2.8 The R (Read) Command . 74
4.2.9 The S (Set) Command . 75

.............................. 4.2.10 The T (Trace) Command 75
. 4.2.11 The U (Untrace) Command 76
. 4.2.12 The X (Examinej Command 76

. 4.3 Implementation Notes 77
. 4.4 An Example 78

5 CP/M 2 SYSTEM INTERFACE . 89

... 5.1 Introduction 89
............................. 5.2 Operating System Call Conventions 91
............................. 5.3 A Sample File-to-File Copy Program 110

. 5.4 A Sample File Dump Utility 113
............................... 5.5 A Sample Random Access Program 117

. 5.6 System function Summary 124

6.1 Introduction . 127
6.2 First Level System Regeneration . 128
6.3 Second Level System Generation . 131
6.4 Sample GETSYS and PUTSUS Program . 133
6.5 Diskette Organization . 136
6.6 T i e BlOS Entry Points . 137

le BIOS . 143
6.8 A Sample Cold Start Loader . 143

ocations in Page Zero . 134
arameter Tables . 145

acro Library . 1 4 8
6.12 Sector Blocking and Deblocking . 152

. DS Basic IiO System (BlOSj 153
. A Skeletal CBIOS 175

. A Skeletal CETSUSiPUTSYS Program 187
. The MDS-800 Cold Start Loader for CP/M 2 191

. letal Cold Start Loader 197
. Disk Definition Library 201

. Blocking and Deblocking Algorithms 209
. 219

essages . 235

. 2.1 Overall ED Operation 34
. 2.2 Memory Buffer Organization 34

2.3 Logical Organization of Memory Buffer . 36

CP/M is a munitor control program for microcomputer system development that uses
floppy disks or LVinchester hard disks for backup storage.Using a computer system based
upon Intel's 8080 microcomputer, CP/M provides a general environment for program
construction, storage, and editing, along with assembly and program check-out facilities.
An important feature of CP/M is that it can be easily altered to execute with any
computer configuration that uses an Intel 8080 (or Zilog Z-80) Central Processing Unit
and has at least 20K bytes of main memory with up to 16 diskette drives. A detailed
discussion of the modifications required for any particular hardware environment is
given in Chapter 6 . Although the standard Digital Research version operates on a
single-density Intel MDS 800, several different hardware manufacturers support their
own input-output drivers for CP/M.

The CP/M monitor provides rapid access to programs through a comprehensive file
management package. The file subsystem supports a named file structure, allowing
dynamic allocation of file space as well as sequential and random file access. Using this file
system, a large number of programs can be stored in both source and machine-
executable form.

CP/M 2 is a high-performance, single-console operating system that uses table-driven
techniques to allow field reconfiguration to match a wide variety of disk capacities. All
fundamental file restrictions are removed, maintaining upward compatibility from pre-
*vious versions of release 1. Features of CPi 2 include field specification of one to sixteen
logical drives, each containing up toeight megabytes. Any particular file can reach the full
drive size with the capability of expanding to thirty-two megabytes in future releases.
The directory size can be fieId-configured to contain any reasonable number of entries,
and each file is optionally tagged with readionly and system attributes. Users of CP/M 2
are physically separated by user numbers, with facilities for file copy operations from one
user area to another. Powerful relative-record random access functions are present in
CP/M 2 that provide direct access to any of the 65536 records of an eight-megabyte file.

CP/M also supports a powerful context editor, Intel-compatible assembler, and
debugger subsystems. Optional software includes a powerful Intel-compatible macro
assembler, symbolic debugger, along with various high-level languages. When coupled

with CP/M's Console Command Processor, the resulting facilities equal or excel similar
large computer facilities.

CP/M is logically divided into several distinct parts:

BIOS Basic I i 0 System (hardware-dependent)

BDOS Basic Disk Operating System

CCP Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the diskette drives
and to interface standard peripherals (teletype, CRT, paper tape readeripunch, and
user-defined peripherals). They can be tailored by the user for any particular hardware
environment by "patching" this portion of CP!M. The BDOS provides disk management
by controlling one o r more disk drives containing independent file directories. The BDOS
implements disk allocation strategies that provide fully dynamic file construction while
minimizing head movement across the disk during access. The BDOS has entry points
that include the following primitive operations, which can be programmatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open a file for further operations.

CLOSE Close a file after processing.

RENAME Change the name of a particular Me.

READ Read a record from a particular file.

WRITE Write a record to a particular file.

SELECT Select a particular disk drive for further operations

The CCP provides a symbolic interface between the user's console and the remainder
of the CP/M system. The CCP reads the console device and processes commands, which
include listing the file directory, printing the contents of files, and controlling the
operation of transient programs, such as assemblers, editors, and debuggers. The stand-
ard commands that are available in the CCP are listed in Section 1.2.1.

The last segment of CP/M is the area called the Transient Program Area (TPA). The
TPA holds programs that are loaded from the disk under command of the CCP. During
program editing, for example, the TPA holds the CP/M text editor machinecode and data
areas. Similarly, programs created under CP/M can be checked out by loading and
executing these programs in the TPA.

Any o r all of the CP/M component subsystems can be "overlaid" by an executing
program. That is, once a user's program is loaded into the TPA, the CCP, BDOS, and
BIOS areas can be used as the program's data area. A "bootstrap" loader is programmati-
cally accessible whenever the BIOS portion is not overlaid; thus, the user program need
only branch to the bootstrap loader a t the end of execution and the complete CP/M
monitor is reloaded from disk.

The CP/M operating system is partitioned into distinct modules, including the BIOS
portion that defines the hardware environment in which CP/M is executing. Thus, the
standard system is easily modified to any nonstandard environment by changing the
peripheral drivers to handle the custom system.

escription
The user interacts with CP/M primarily through the CCP, which reads and interprets

commands entered through the console. In general, the CCP addresses one of several
disks that are on-line (the standard system addresses up to sixteen different disk drives).
These disk drives are labeled A through P. A disk is "logged in" if the CCP is currently
addressing the disk. To clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by the symbol ">"indicating
that the CCP is ready for another command. Upon initial start-up, the CP/M system is
brought in from disk A, and the CCP displays the message

CP/M VER m.m

where m.m is the CP/M version number. All CP/M systems are initially set tooperate in a
20K memory space, but can be easily reconfigured to fit any memory size on the host
system (see Section 1.6.9). Following system sign-on, CP/M automatically logs in disk A,
prompts the user with the symbol "A>" (indicating that CP/M is currently addressing
disk "A"), and waits for a command. The commands are implemented at two levels:
built-in commands and transient commands.

1.2.1 General Command Structure

Built-in commands are a part of the CCP program itself, while transient commands
are loaded into the TPA from disk and executed. The built-in commands are

ERA Erase specified files.

DIR List file names in the directory.

REN Rename the specified file.

SAVE Save memory contents in a file.

TYPE Type the contents of a file on the logged disk.

Most of the commands reference a particular file or group of files. The form of a file
reference is specified below.

1.2.2 File References

A file reference identifies a particular file or group of files on a particular disk attached
to CP/M. These file references are either "unambiguous" (ufn) o r "ambiguous" (afn). An
unambiguous file reference uniquely identifies a single file, while an ambiguous file
reference is satisfied by a number of different files.

File references consist of two parts: the primary filename and the filetype. Although
the filetype is optional, it usually is generic; that is, the filetype "ASM," for example, is
used t o denote that the file is an assembly language source file, while the primary
filename distinguishes each particular source file. The two names are separated by a ".",
as shown below:

where filename is the primary filename of eight characters o r less, and typ is the filetype
of no more than three characters. As mentioned above, the name

filename

is also allowed and is equivalent to a filetype consisting of three blanks. The characters
used in specifying an unambiguous file reference cannot contain any of the special
characters

while all alphanumerics and remaining special characters are allowed.
An ambiguous file reference is used for directory search and pattern matching. The

form of an ambiguous file reference is similar to an unambiguous reference, except the
symbol "?" can be interspersed throughout the primary and secondary names. In various
commands throughout CP/M, the "?" symbol matches any character of a file name in the
"?" position. Thus, the ambiguous reference

is satisfied by the unambiguous file names

XYZ.COM

and

X3Z.CAM

Note that the ambiguous reference

is equivalent to the ambiguous file reference

while

filename.*

and

* .~YP

are abbreviations for

filename.???

and

????????.typ

respectively. As an example,

is interpreted by the CCP as a command to list the names of all disk files in the directory,
while

searches only for a file by the name X.U. Similarly, the command

causes a search for all (unambiguous) file names on the disk that satisfy this ambiguous
reference.

The following file names are valid unambiguous file references:

X XY Z GAMMA

X.Y XYZI.COM GAMMA.l

As an added convenience, the programmer can generally specify the disk drive name
along with the file name. In this case, the drive name is given as a letter A through P
followed by a colon (:). The specified drive is then "logged in" before the file operation
occurs. Thus, the following are valid file names with disk name prefixes:

A:X.Y B:XYZ C:GAMMA

P:XYZ.COM 6:X. A?M C:*. ASM

All alphabetic lower case letters in file and drive names are translated to upper case when
they are processed by the CCP.

1.3 Switching Disks
The operator can switch the currently logged disk by typing the disk drive name (A

through P) followed by a colon (:) when the CCP is waiting for console input. Thus, the
sequence of prompts and commands below can occur after the CP/M system is loaded
from disk A:

Built-in Comma
The file and device reference forms described can now be used to fully specify the

structure of the built-in commands. The user should assume the following abbreviations
in the description below:

ufn unambiguous file reference

af n ambiguous file reference

Recall that the CCP always translates lower case characters to upper case characters
internally. Thus, lower case alphabetics are treated as if they are upper case in command
names and file references.

1.4.1 ERA afn

The ERA (erase) command removes files from the currently logged in disk (i.?., the
disk name currently prompted by CP/M preceding the ">"). The files that are erased are
those that satisfy the ambiguous file reference afn. The following examples illustrate the
use of ERA:

ERA X.Y

ERA X.*

ERA *. ASM

ERA X?Y.C?M

ERA *.*

ERA B:*.PRN

The file named X.Y on the currently logged disk is
removed from the disk directory and the space is
returned.

All files with primary name X are removed from the
current disk.

All files with secondary name AS
from the current disk.

All files on the current disk that satisfy the arnbigu-
ous reference X?Y .C?M are deleted.

Erase all files on the current disk (in this case the
CCP prompts the console with the message

ALL FILES (Y/N)?

that requires a Y response before files are actually
removed).

All files on drive B that satisfy the ambiguous refer-
ence ????????.PRN are deleted, independently of
the currently logged disk.

The DIR (directory) command causes the names of all files that satisfy the am
file name afn to be listed at the console device. As a special case, the command

DIR

lists the files on the currently logged disk ithe command "DIR" is equivalent to the
command "DIR *.*"). Valid DIR commands are

DIR X.Y

DIR X?Z.C?M

DIR ??.Y

Similar to other CCP commands, the afn can be preceded by a drive name. The
following DIR commands cause the selected drive to be addressed before the directory
search takes place.

DIR B:

DIR B:X.Y

DIR B:*. A?M

If no files on the selected diskette satisfy the directory request, the message "NO
FILE" is typed at the console.

1 4.3 REN ufnl =ufn2
The REN (rename) command allows the user to change the names of files on disk. The

file satisfying ufn2 is changed to u fn l . The currently logged disk is assumed to contain
the file to rename (ufn2). The user can also type a left-directed arrow instead of the equal
sign if the console supports this graphic character. Examples of the REN command are

REN X.Y=Q.R The file Q.R is changed to X.Y.

REN XYZ.COM=XYZ.XXX The file XYZ.XXX is changed to XYZ.COM.

The operator precedes either ufnl or ufn2 (or both) by an optional drive address. If
ufn l is preceded by a drive name, then ufn2 is assumed to exist on the same drive.
Similarly, if ufn2 is preceded by a drive name, then ufnl is assumed to exist on that drive
as well. The same drive must be specified in both cases if both ufnl and ufn2 are preceded
by drive names. The REN commands below illustrate this format.

REN A:X.ASM=Y.ASM The file Y .ASM is changed to X.ASM on drive
A.

REN B:ZAP.BAS=ZOT.BAS The file ZOT.BAS is changed to ZAP.BAS on
drive B.

REN B:A.ASM=B:A.BAK The file A.BAK is renamed to A.ASM on drive
B.

If ufnl is already present, the REN command wil! respond with the error "FILE
EXISTSf'and not perform the change. If ufn2 does not e x ~ s t on the specified diskette, the
message "NO FILE" is printed at the console.

The SA'v E iornmand places n pages "50-byte blocks? onto dlsk from the TPA and
names ehls Me ufn in the C P / M distributlon system, the TPA starts at lO0H ihexadec-
irnal) which is the second page of memory The SAL'E command must speclfy 2 pages of
memory if the user s program iiccuples the area from 1i;oE-f through 2FFH The machlne
Lode hie can be subsequently loaded and exe~nte i i Examples are

SAVE 3 X.GOM Copies lOOH through 3FFH to X.COR/I,

SAVE 40 Q Copies IOOH through 2SFFH to Q (note that 28 is
the page count in ZSFFH, and that 28H = 2"16+8 =
40 decimal).

SAVE 4 X.V Copies l O O W through 4FFH to X.Y.

The S.4VE command can also specify a disk drive in the uin portion of the command, as
shown below.

Copies 10 pages ilOOH through OAFFH) to the file
.ZOT.COM on drive B.

The TYPE command displays the contents of the ASCII source file ufn on the
currentiy logged disk at the console device. Valid TYPE commands are

TYPE XXX

The TYPE command expands tabs (cft-I characters), assummg tab poslt~ons are set at
everv e ~ g h t h column The ufn can also reference a drwe name

The file X.PRN from drive £3 is displayed.

The USER command allows maintenance of separate files in the same directory and
takes the Corm

where n ~s an integer value 9n the range 3 to 15 O n cold start, the operator 1s automatt-
ged" into user area number 0, which is compatrble w ~ t h standard CP/M 1

directories The operator may Issue the USER command at any tlme to move to another
loglcal area w l t h ~ n the same dlrectory Drlves that are logged-in while addressmg one
user number are automatically ac t~ve when the operator moves to another, a user
number 1s simply a pe f ix that accesses part~cular directory entrles on the active dlsks

The active user number 1s maintained until changed by a subsequent USER command,
or untrl a cold start when user 0 1s agam assumed

1.5 Line Editing an
The CCP allows certain Iine editing functions while typing command lines

ctl-C CP/M system reboot when typed at start of Iine.

ctl-E Physical end of line: carriage is returned, but line is not sent until
the carriage return key is depressed.

ctl-H Backspace one character position.

ctl-J Terminate current input (line feed!.

ctl-M Terminate current input (carriage return)

ctl-R Retype current command line: types a "clean line" following charac-
ter deletion with rubouts.

ctl-U Delete the entire line typed a t the console.

ctl-X Same as ctl-U.

ctl-Z End input from the console (used in PIP and ED)

ru b/del Delete and echo the last character typed at the console.

The control functions ctl-P and ctl-S affect console output.

ctl-P Copy all subsequent console output to the currently assigned List
device (see Section 1.6.1). Output is sent to the list device and the
console device until the next ctl-P is typed.

ctl-S Stop the console output temporarily. Program execution and out-
put continue when the next character is typed at the console (e.g.,
another ctl-S). This feature stops output on high speed consoles,
such as CRT's, in order to view a segment of output before
continuing.

The ctl-key sequences are obtained by depressing the control and letter keys simul-
taneously. Further, CCPcommand lines are generally up to 255 characters in length; they
are not acted upon until the carriage return key is typed.

1.6 Transient Commands
Transient commands are loaded from the currently logged disk and executed in the

TPA. The transient commands for execution under the CCP are below. Additional
functions are easily defined by the user (see Section 1.6.31.

STAT List the number of bytes of storage remaining on the currently
logged disk, provide statistical information about particular files,
and display o r alter device assignment.

ASM Load the CP/M assembler and assemble the specified program from
disk.

LOAD Load the file in Intel "HEX" machine code format and produce a file
in machine executable form that can be loaded into the TPA (this
loaded program becomes a new command under the CCP).

DDT Load the CP/M debugger into TPA and start execution.

ALL I N F O W n O N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9

PIP Load the Peripheral Interchange Program for subsequent disk file
and peripheral transfer operations.

ED Load and execute the CP/M text editor program.

SYSGEN Create a new CP/M system diskette.

SUBMIT Submit a file of commands for batch processing.

DUMP Dump the contents of a file in hex.

MOVCPM Regenerate the CP/M system for a particular memory size.

Transient commands are specified in the same manner as built-in commands, and addi-
tional commands are easily defined by the user. For convenience, the transient command
can be preceded by a drive name that causes the transient to be loaded from the specified
drive into the TPA for execution. Thus, the command

causes CP/M to temporarily "log in" drive B for the source of the STAT transient, and
then return to the original logged disk for subsequent processing.

The basic transient commands are listed in detail below.

1.6.1 STAT

The STAT command provides general statistical information about file storage and
device assignment. It is initiated by typing one of the following forms:

STAT

STAT "command line"

Special forms of the "command line" allow the current device assignment to be examined
and altered. The various command lines that can be specified are shown, with an
explanation of each form to the right.

STAT If the user types an empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

d: RNV, SPACE: nnnK

d: R/O, SPACE: nnnK

for each active drive d:, where RIW indicates the
drive can be read or written, and RiO indicates the
drive is read only (a drive becomes RiO by explicitly
setting it to read only, as shown below, or by inad-
vertently changing diskettes without performing a
warm start). The space remaining on the diskette in
drive d: is given in kilobytes by nnn.

STAT d:

STAT afn

STAT d: afn

STAT d: = R/O

If a drive name is given, then the drive is selected
before the storage is computed. Thus, the com-
mand "STAT B:" could be issued while logged into
drive A, resulting in the message

BYTES REMAINING ON B: nnnK

The command line can also specify a set of files t o be
scanned by STAT. The files that satisfy afn are
listed in alphabetical order, with storage require-
ments for each file under the heading

RECS BYTS EX D:FILENAME.TYP

rrrr bbbK ee d:filename.typ

where rrrr is the number of 128-byte records allo-
cated to the file, bbb is the number of kilobytes
allocated to the file (bbb=rrrrx128j1024), ee is the
number of l6K extensions (ee=bbb/lb), d is the
drive name containing the file (A ... P), filename is
the (up to) eight-character primary filename, and
typ is the (up to) three-character filetype. After
listing the individual files, the storage usage is
summarized.

The drive name can be given ahead of the afn. The
specified drive is first selected, and the form"STAT
afn" is executed.

This form sets the drive given by d to read only,
remaining in effect until the next warm or cold
start takes place. When a disk is read only, the
message

BDOS ERR ON d: READ ONLY

will appear if there is an attempt to write to the
read-only disk d:. CP/M waits until a key is
depressed before performing an automatic warm
start (at which time the disk becomes RiWj.

The STAT command allows control over the physical to logical device assignment (see
the IOBYTE function described in Chapters 5 and 6) . There are four logical pe

r

ipheral
devices that are, at any particular instant, each assigned one of several physical peripheral
devices. The four logical devices are

CON: The system consoIe device (used by CCP for communication with
the operator)

RDR: The paper tape reader device

PUN: The paper tape punch device

LST: The output list device

The actual devices attached to any computer system are driven by subrou-
tines in the BIOS portion of CP/M. Thus, the logical RDR: device, for example, could

actually be a high speed reader, teletype reader, or cassette tape. To allow some flexibility
in device naming and assignment, several physical devices are defined below:

TTY: Teletype device (slow speed console)

CRT: Cathode ray tube device (high speed console)

BAT: Batch processing (console is current RDR:, output goes to current
LST: device)

UCI: User-defined console

PTR: Paper tape reader (high speed reader)

URI: User-defined reader #1

UR2: User-defined reader #2

PTP: Paper tape punch (high speed punch)

UPI: User-defined punch #1

UP2: User-defined punch #2

LPT: Line printer

ULl : User-defined list device #I

It is emphasized that the physical device names may or may not actually correspond to
devices that the names imply. That is, the PTP: device may be implemented as a cassette
write operation if the user wishes. The exact correspondence and driving subroutine is
defined in the BIOS portion of CP/M. In the standard distribution version of CP/M, these
devices correspond to their names on the MDS 800 development system.

The command

STAT VAL:

produces a summary of the available status commands, resulting in the output

Temp R/O Disk d:$R/O

Set Indicator: filename.typ $R/O $R/W $SYS $DlR

Disk Status: DSK: d:DSK

lobyte Assign:

which gives an instant summary of the possible STATcommands and shows the permiss-
ible logical-to-physical device assignments:

CON: = TTY: CRT: BAT: UCI:

RDR: = TTY: PTR: URI: UR2:

PUN: = TTY: PTP: UPI: UP2:

LST: = TTY: CRT: LPT: UL1:

The logical device to the left takes any of the four physical assignments shown to the
right. The current logical to physical mapping is displayed by typing the command

STAT DEV:

producing a list of each logical device to the left and the current corresponding physical
device to the right. For example, the list might appear as

CON: = CRT:

RDR: = UR1:

PUN: = PTP:

LST: = TTY:

The current logical to physical device assignment is changed by typing a STAT command
of the form

STAT Id1 = pd l , Id2 = pd2 , ... , Idn = pdn

where Id1 through Idn are logical device names and pdl through pdn are compatible
physical device names (i.e., Idi and pdi appear on the same line in the "VAL:" command
shown above). Valid STAT commands that change the current logical to physical device
assignments are

STAT CON:=CRT:

STAT PUN: = TTY:, LST:=LPT:, RDR:=TTY:

The command form

STAT d:filename.typ $S

where "d:" is an optional drive name andUfilename.typ" is an unambiguous or ambiguous
file name, produces the output display format

Size Recs Bytes Ext Acc

48 48 6k 1 R/O A:ED.COM

55 55 12k 1 R/O (A:PIP.COM)

65536 128 16k 2 R/W A:X.DAT

where the $5 parameter causes the "Size" field to be displayed. (Without the $5, the Size
field is skipped, but the remaining fields are displayed.) The Size field lists the virtual file
size in records, while the"Recs" field sums the number of virtual records in each extent.
For files constructed sequentially, the Size and Recs fields are identical. The8'Bytes"field
lists the actual number of bytes allocated to the corresponding file. The minimum
allocation unit is determined a t configuration time; thus, the number of bytes corre-
sponds to the record count plus the remaining unused space in the last allocated block for
sequential files. Random access files are given data areas only when written, so the Bytes
field contains the only accurate allocation figure. In the case of random access, the Size
field gives the logical end-of-file record position and the Recs field counts the logical
records of each extent. (Each of these extents, however, may contain unallocated"holes"
even though they are added into the record count.) The "Ext" field counts the number of
physical extents allocated to the file. The Ext count corresponds to the number of
directory entries given to the file. Depending on allocation size, there can be up to 128K
bytes (8 logical extents) directly addressed by a single directory entry. (In a special case,
there are actually 256K bytes that can be directly addressed by a physical extent.)

The Acc field gives the RIO o r RIW file indicator that is changed using the commands
shown. Similarly, the shown about the I'II'.COM filename indicate that it

has the "system" indicator set, so that it will not be listed in DIR commands. The four
command forms

STAT d:filename.typ $RiO

STAT d:fiiename.typ $R/W

STAT d:filename.typ $SYS

STAT d:filename.typ $DIR

set or reset various permanent file indicators. The RiO indicator places the file (or set of
files) in a read-only status until changed by a subsequent STATcommand. The RiO status
is recorded in the directory with the file so that it remains RIO through intervening cold
start operations. The RiW indicator places the file in a permanent readiwrite status. The
SYS indicator attaches the system indicator to the file, while the DIR command removes
the system indicator. The "filename.typV may be ambiguous o r unambiguous, but files
whose attributes are changed are listed at the console when thechange occurs. Thedrive
name denoted by "d:" is optional.

When a file is marked RlO, subsequent attempts to erase o r write into the file result in
a terminal BDOS message

BDOS Err on d: File R/O

The BDOS waits for a console input before performing a subsequent warm start (a
"return" is sufficient). The command form

STAT d:DSK:

lists the drive characteristics of the disk named by "d:" that is in the range A:, B:, ..., P:. The
drive characteristics are listed in the format

d: Drive Characteristics

65536: 128 Byte Record Capacity

8192: Kilobyte Drive Capacity

128: 32 Byte Directory Entries

0: Checked Directory Entries

1024: Records/ Extent

128: Records/ Block

58: Sectors/ Track

2: Reserved Tracks

where "d " 1s the selected drive, followed by the total record capacity (65536 is an
eight-megabyte drive), followed by the total capacity Iisted in ktlobytes The directory
size is hsted next, fot lo~.ed by the "checked" en t r~es The number of checked entries IS

usually ~ d e n t ~ c a l to the directory size for removable media, because this mechantsm is
used to detect changed medla during CP:M operation without an intervening warm start
For hxed media, the number is usually zero, because the media are not changed without at
least a cold or warm start The number of records per extent determines the addressmg
capac~ty ot each directory entry 11024 t ~ m e s 128 bytes, o r 128K tn the previousexample)
The number of records per block shows the basic allocat~on stze (in the example, 1 2 8
recordsiblock t ~ m e s 1 2 8 bytes per record, or 16K bytes per block) The listmg 1s then
followed by the number of physical sectors per track and the number of reserved tracks

For logical drlves that share the same physical dtsk, the number of reserved tracks can be
qurte large because t h ~ mechanism 1s used to sklp lo-er-numbered disk areas allocated to
other logical disks The command form

STAT DSK:

produces a drive iharacter~stics table fur all currently active drives. The final STAT
command form is

STAT USR:

which produces a list of the user numbers that have files on the currently addressed disk.
The display format is

Active User: 0

Active Files: 0 1 3

where the first line lists the currently addressed user number, as set by the last CCP
USER command, followed y a list of user numbers scanned from the current directory.
In this case, the active user number is 0 (default at cold start), with three user numbers
that have active files on the current disk. The operator can subsequently examine the
directories of the other user numbers by logging-in with USER 1 o r USER 3 commands,
foliowed by a DIR command at the CCP level.

executes the CP/M 8080 assembler. The ufn specifies a
source file containing assembly language statements where the filetype is assumed to be
ASM and is not specified. The following ASM commands are valid:

ASM X

The two-pass assembler is automatically executed. Assembly errors that occur during the
second pass are printed a t the console.

The assembler produces a file

where X is the primary name specified in the ASM command. The PRN file contains a
listing of the source program (with imbedded tab characters if present in the source
program), along with the machine code generated for each statement and diagnostic error
messages, if any. The PRN file is listed at the console using the TYPE command, o r sent t o
a peripheral device using PIP (see Section 1.6.4). The user should note that the PRN file
contains the original source program, augmented by miscellaneous assembly information
in the leitmost 16 columns (program addresses and hexadecimal machine code, for
example). The PRN file serves as a backup for the original source file. If the source file is
accidentally removed or destroyed, the PRN file can be edited (see Chapter 2) by rernov-
ing the leftmost 16 characters of each line. This is done by issuing a single editor"macro"
command. The resuiting file is identical to the original source file and can be renamed
(REN) from PRN to AS for subsequent editing and assembly. The file

is also produced, which contains 8060 machine language in Intel "HEX" format suitable
for subsequent loading and execution (see Section f .6.3). For complete details of CP/M's
assembly language program, see Chapter 3.

The source file for assembly is taken from an alternate disk by prefixing the assembiy
language file name by a disk drive name. The command

ASM RALPMA

loads the assembler from t currently logged drive and processes the source program
PRN files are also placed on drive B in this case.

The LOAD com reads the file ufn, which is assumed to contain "HEX" format
achine code, and pro emory image file that can subsequently be executed. The
e name ufn is ass

e specified in the comman . The LOAD command creates a

chine executable code. The file is actually loaded into
iately after the prompt-

lowing the prompting character and looks
tion name is found, the CCP searches the system

ine code is bade into the TPA, and the program executes. Thus, the
AD a hex file once; it can be subsequently executed any number of

e. In this way the user can"inventl'new commands in the
e transient commands as COM files, which are deleted at

The operation takes place on an alternate drive if the file name is

the LOAD progra 'TPA from the currently logged disk and operates

contain valid Intel format
program, for example) that

lo0l-i of the TPA. The addresses in the hex records must be in ascending order;
gaps in unfilled memory regions are filled with zeroes by the LOAD command as the hex
records are read. Thus, LOAD must be used only for creating CP/M standard "COM"
files that operate in the TPA. Programs that occupy regions of memory other than the
TPA are loaded under DDT.

heral interchange Program that implements the basic media
conversion operations necessary to load, print, punch, copy, and combine disk files. The
PIP program is initiated by typing one of the following forms:

(1) PIP

In bath cases PIP is loaded into the TPA and executed. In form (I), PIP reads command
lines directly from the console, prompted with the"*"character, until an empty command
line is typed ii.e., a single carriage return is issued by the operator). Each successive
command line causes some media conversion to take place according to the rules shown
below. Form (2) of the PIP command is equivalent to the first, except that the single
command line given with the PIP command is automatically executed, and PIP terminates
immediately with no further prompting of the console for input command lines. The
form of each command line is

destination = source#l , source

where "destination" is the file or peripheral device to receive the data and"source#I, ...,
source#nU is a series of one or more files or devices that are copied from left to right to the
destination.

hen multiple files are iven in the command line (i.e., n > I), the individual files are
assumed to contain ASC II characters, with an assumed CP/M end-of-file character (ctl-Z)
at the end of each fiie (see the 0 parameter to override this assumption). Lower case
ASCII alphabetics are internally translated to upper case to be consistent with CP/M file
and device name conventions. Finally, the total command line length cannot exceed 255
characters (cti-E can be used to force a physical carriage return for lines that exceed the
console width).

The destination and source elements are unambiguous references to CP/M source
files with or without a preceding disk drive name. That is, any file can be referenced with a
preceding drive name (A: through P:) that defines the particular drive where the file may
be obtained or stored. When the drive name is not included, the currently logged disk is
assumed. The destination file can also appear as one or more of the source files, in which
case the source fiie is not altered until the entire concatenation is complete. If it already
exists, the destination file is removed if the command line is properly formed (it is not
removed if an error condition arises). The following command lines (with explanations to
the rrght) are valid as input to PIP:

Copy to file X from file Y, where X
and Y are unambiguous file names;
Y remains unchanged.

Concatenate files Y and Z and copy
to file X, with Y and Z unchanged.

Create the file X.ASM from the
concatenation of the Y, Z, and FIN
files with type ASM.

.ZOT=B:OLD.ZAP Move a copy of 0LD.ZAP from
drive B to the currently logged
disk; name the file NEW.ZOT.

Concatenate file B.V from drive B
with C.Mf from drive A and D.X.
from the logged disk; create the file
A.U on drive B.

For convenience, PIP allows abbreviated commands for transferring files between
disk drives. The abbreviated forms are

PIP d:=afn

PIP d,:=d,:afn

PIP ufn = d,:

PIP d,:ufn = d,:

The first form copies all files from the currently logged disk that satisfy the afn to the
same files on drive d (d = A . . . P). The secohd form is equivalent to the first, where the'
source for the copy is drive d2 id, = A . . . P). The third form is equivaient to the command
"PIPd, :ufn=d,:ufn" that copies the file given by ufn from drive d2 to the file ufn on drive dl :.
The fourth form is equivalent to the third, where the source disk is explicitly given by d2:.

The source and destination disks must be different in all of these cases. If an afn is
specified, PIP lists each ufn that satisfies the afn as it is being copied. If a file exists by the
same name as the destination file, it is removed on successful completion of the copy and
replaced by the copied file.

The foilowing PIP commands give examples of valid disk-to-disk copy operations:

Copy all files that have the secondary name
"COM" to drive B from the current drive.

Copy all files that have the primary name
"ZAP" to drive A from drive B.

Equivalent to ZAP.ASM=B:ZAP.ASM

Equivalent to B:ZOT.C0M=A:ZOT.COM

Same as B:GAMMA.BAS=GAMMA.BAS

Same as B:GAMMA.BAS=A:GAMMA.BAS

PIP allows reference to physical and logical devices that are attached to the CP/M
system. The device names are the same as given under the STAT command, along with a
number of specially named devices. The logical devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and LST: (list)

while the physical devices are

TTY: iconsole, reader, punch, or list)

CRT: {console, or Iist), UCI: (console)

PTR: (reader), UR1: (reader), UR2: (reader)

PTP: (punch), UP1: (punch), UP2: (punch)

LPT: (List), UL1: (list)

(The "BAT:" physical device is not included, since this assignment is used only to indicate
that the RDR: and LST: devices are used for console inputioutput.)

The RDR, LST, PUN, and CON devices are a11 defined within the BIOS portion of
CP/M, and are easily altered for any particular 110 system. (The current physical device
mapping is defined by IOBYTE; see Chapter 6 for a discussion of this function). The
destination device must be capable of receiving data (i.e., data cannot be sent to the
punch), and the source devices must be capable of generating data (i.e., the LST: d e v m
cannot be read).

The additional device names that can be used in PIP commands are

NUL: Send 40 "nulls" (ASCII 0's) to the device (this can be issued at the
end of punched output).

EOF: Send a CP/M end-of-file (ASCII ctl-Z) to the destination device
(sent automatically a t the end of all ASCII data transfers t
PIP).

INP: Special PIP input source that can be patched into the PIP program:
PIP gets the input data character-by-character by CALLing location
103H, with data returned in location 109H (parity bit must be zero).

OUT: Special PIP output destination that can be patched into the PIP
program: PIP CALLS location 106W with data in register C for each
character to transmit. The user should note that locations l09H
through IFFH of the PIP memory image are not used and can be
replaced by special purpose drivers using DDT (see Chapter 4).

PRN: Same as LST: except that tabs are expanded at every eighthcharac-
ter position, lines are numbered, and page ejects are inserted every
60 lines with an initial eject (same as using PIP options [tSnp]).

File and device names can be interspersed in the PIP commands. In each case, the
specific device is read until end-of-file (ctl-Z for ASCII files, and end-of-data for non-
ASCII disk files). Data from each device or file are concatenated from left to right until
the last data source has been read. The destination device or file is written using the data
from the source files, and an end-of-file character (ctl-Z) is appended to the result for
ASCII files. If the destination is a disk file, a temporary file is created ($$$ secondary
name) that is changed to the actual file name only on successful completion of the copy.
Files with the extension "COM" are always assumed to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on the keyboard
(a return suffices). PIP will respond with the message "ABORTED" to indicate that the
operation has not been completed. If any operation is aborted, or if an error occurs during
processing, PIP removes any pending commands that were set up while using the
SUBMIT command.

PIP performs a special function if the destination is a disk file with type"HEX0 (an Intel
hex-formatted machine code file), and the source is an external peripheral device, such as
a paper tape reader. In this case, the PIP program checks to ensure that the source file
contains a properly formed hex file, with legal hexadecimal values and checksum records.
When an invalid input record is found, PIP reports an error message at the console and
waits for corrective action. It is usually sufficient to open the reader and rerun a section of
the tape (pull the tape back about 20 inches). When the tape is ready for the reread, a
single carriage return is typed at the console, and PIP will attempt another read. If the
tape position cannot be properly read, the user continues the read (by typing a return
following the error message), and enters the record manually with the ED program after
the disk file is constructed. For convenience, PIP allows the end-of-file to be entered from
the console if the source file is an RDR: device. In this case, the PIP program reads the
device and monitors the keyboard. If ctl-Z is typed at the keyboard the read operation is
terminated normally.

Valid PIP commands are

PIP LST: = X.PRN

PIP

(carriage return)

PIP PUN:=NUL:,X.ASM,EOF:,I\IUL:

Copy X.PRK to the LST device and
terminate the PIP program.

Start PIP for a sequence of com-
mands iPIP prompts with "*"j.

Concatenate three AS
copy to the CON device.

Create a HEX file by reading the
CON (until a ctI-Z is typed), fol-
lowed by data from U.HEX and
PTR until a ctl-Z is encountered.

Single carriage return stops PIP.

followed by an end-of-file (ctI-Z j
and 40 more null characters.

The user can also specify one or more PIP parameters, enclosed in left an
brackets, separated by zero or more blanks. Each parameter affects the copy operation,
and the enclosed list of parameters must immediately follow the affected file o
Generally, each parameter can be followed by an o a1 integer value (
Q parameters are exceptions). Valid PIP parameters are

B Block mode transfer: data are buffered IP untii an ASCII x-o
character (ctl-S) is received from the source evice. This allows
transfer of data to a disk file from a continuous reading device, such
as a cassette reader. Upon receipt of the x-off, PIP clears the disk
buffers and returns for more input data. The amount of data that
can be buffered depends on the memory size of the host system (PIP
will issue an error message if the buffers overflow).

Delete characters that extend past column n in the transfer of
to the destination from the character source. This parameter is
generally used to truncate long lines that are sent to a (narrow)
printer or console device.

Echo all transfer operations to the console as they are being
performed.

Filter form feeds from the file. All imbedded form feeds are
removed. The P parameter can be used simultaneousiy to insert
new form feeds.

Get File from user number n (n in the ran

HEX data transfer: all data are ch
format. Nonessential characters be
during the copy operation. The console will be prompted for correc-
tive action in case errors occur.

Ignore ":00" records in the transfer of Intel hex format file (the I
parameter automatically sets the H parameter).

Translate upper case alphabetics to lower case

Add line numbers to each h e transferred to the des:ina;lan, start-
Ing a t one and mcrement~ng by I Lea ing zeroes are sup
and the number is followed by a color If lu'? 1s spedled
zeroes are mcluded and a tab is inserted 1.01iowrng the nil
tab is expanded ~f T 1s set

Object fiie (non-ASCII) transfer: the normal CP:
ignored.

Include page ejects at every n iines i t w i t h a n initial page eject). If n = I
or is excluded altogether, page ejects occur every 60 lines. if the F
parameter is used, form feed suppression takes place before the
new page ejecrs are inserted.

Q S ~ Z Quit copying from the source device or file when the string s
(terminated by ctl-Z) is encountered.

R Read system files.

Sstz Start copying from the source device
by ctl-Z) is encountered. The S and
"abstract" a particular section of a f i as a subroutine^. The
start and quit strings are always mc e copy operation.

If the user selects form (2) of the PIP corn
strings following the S and
the PIP invocation does
translation.

(1) PIP

(2) PIP 'command lin

T n Expand tabs (ctl-I characters) to every nth column dur:ng the
transfer of characters to the destination from the source

U Translate lower case alphabetics to upper case
operation.

V Verify that data have been copied correctly by rereading after the
write operation (the destination must be a disk file).

W Write over RiO files without console interrogation

Z Zero the parity bit on input for each ASC

Valid PIP commands that specify parameters in the fiie t r ansk r are

PIP X.ASM=B:[v] Copy X.ASM from drive to the current
drive and verify that the d
c a p i d .

translate lower case alp

PIP PUN:=X.HEX[i],Y.ZOT[h] First copy X.HEX to the PUN: device and
ignore the trailing ":00" record in X.HEX;
continue the transfer of data by reading
Y.ZQT, which contains HEX records, includ-
ing any ":OO" records it contains.

PIP X.LIB = Y.ASM [sSUBRI:tz qJMP L3tz]
Copy from the file Y.ASM into the file X.LIB.
Start the copy when the string "SUBRI:" has
been found, and quie copying after the string
"JMP L3" is encountered.

PIP PRN:=X.ASM[p50] Send X.ASM to the LST: device with line
numbers, tabs expanded to every eighth
column, and page ejects a t everv 50th line.
The assumed parameter Iist for a PRN file is
nt8p60; p50 overrides the default value.

Under normal operation, PIP will not overwrite a file that is set to a permanent R16)
status. If an attempt is made to overwrite an RlQ file, the prompt

DESTINATION FILE IS R/O, DELETE (Y I N) ?

is issued. If the operator responds with the character "yy" the file is overwritten. Other-
wise, the response

* * NOT DELETED * *

is issued, the file transfer is skipped, and PIP continues with the next operation in
sequence. To avoid the prompt and response in the case of RiO file overwrite, the
command line can include the W parameter

PIP A:=B:*.COM[W]

which copies all nonsystem files to the A drive from the B drive and overwrites any R / O
files in the process. If the operation involves several concatenated files, the
need only be included with the last file in the list, as in the example

PIP A.DAT = B.DAT,F:NEW.DAT,G:OLD.DAT[Wj

Files with the system attribute can be included in PIP transfers if the R parameter is
included; otherwise, system files are not recognized. The command line

PIP ED.COM = B:ED.COM[R]

for example, reads the ED.COM file from the B drive, even if it has been marked as an
RlO and system file. The system file attributes are copied, if present

Downward compatibility with previous versions of CP/M is only maintained if the file
does not exceed one megabyte, no file attributes are set, and the file is created by user O. if
compatibility is required with nonstandard (e.g., "double density") versions of 1.4, it may
be necessary to select 1.4 compatibility mode when constructing the internal disk
parameter block. (See Chapter 6 and refer to Section 4.10, which descri
differences.)

Note: T o copy files into another user area, ated ln that user area
Follow the procedure shown below to make in another user area.

USER 0 Log-in user 0.

DDT PIP.COM (note PIP size s) Load PIP to memory.

GO Return to CCP.

USER 3 Log-in user 3 .

SAVE s PIP.COM

where s is the ~ntegral number of memory "pages" (256-byte segments) occupied by PIP.
The number s can be determined when PIP.COM is loaded under DDT, by referring to
the value under the NEXT display. If, for example, the next available address is IDOO,
then PIP.COM requires 1 C hexadecimal pages tor I times 16 + 1 2 = 28 pages), and the
value of s is 28 in the subsequent save. Once PIP 1s copied in this manner, it can be copied
to another disk belonging to the same user number through normal PIP transfers.

The ED program is the CP /M system context editor that allows creation and alteration
of ASCII files in the CP/M environment. Complete details of operation are given in
Chapter 2. ED allows the operator to create and operate upon source files that are
organized as a sequence of ASCII characters, separated by end-of-line characters (a
carriage-return line-feed sequence). There is no practical restriction on line length (no
single line can exceed the size of the working memory) that is defined by the number of
characters typed between carriage returns. The ED program has a number of commands
for character string searching, replacement, and insertion that are useful in creation and
correction of programs or text files under CPIM. Although the CP/M has a limited
memory work space area (approximately 5000 characters in a 20K CP/M system), the file
size that can be edited is not limited, since data are easily "paged" through this work area.

If it does not exist, ED creates the specified source file and opens the fiie for access. If
the source file does exist (see the A command), the programmer "appends" data for
editing. The appended data can then be displayed, altered, and written from the work area
back to the disk (see the W command). Particular points in the program can be automati-
cally paged and located by context (see the N command), allowing easy access to particular
portions of a large file.

Given that the operator has typed

the ED program creates an intermediate work file with the name

to hold the edited data during the ED run. Upon completion of ED, the X.ASM file
(original file) is renamed to X.BAK, and the edited work file is renamed to X.ASM. Thus,
the X.BAK file contains the original (unedited) file, and the X.ASM file contains the newly
edited file. The operator can always return to the previous version of a file by removing
the most recent version and renaming the previous version. If. the current X.ASM file has
been improperly edited, the sequence of commands below will reclaim the backup file.

DIR X.* a t BAK file is available.

ERA X.ASM Erase most recent version.

REN X.ASM=X.BAK Rename the BAK file to ASM.

The operator can abort the edit at any point (reboot, power failure, ctl-C, or Q command)
without destroying the original file. In this case, the BAK file is not created and the
original file is always intact.

The ED program allows the user to edit the source on one disk and create the backup
file on another disk. This form of the ED command is

ED ufn d:

where ufn is the name of the file to edit on the currently logged disk and d is the name of
an alternate drive. The ED program reads and processes the source file and writes the
new file to drive d using the name ufn. After processing, the original file becomes the
backup file. If the operator is addressing disk A, the following command is valid:

This edits the file X.ASM on drive A, creating the new file X.$$$ on drive B. After a
successful edit, A:X.ASM is renamed to A:X.BAK, and B:X.$$$ is renamed to B:X.ASM.
For convenience the currently logged disk becomes drive B at the end of the edit. The user
should note that if a file named B:X.ASM exists before the editing begins, the message

FILE EXISTS

is printed at the console as a precaution against accidentally destroying a source file. The
operator first erases the existing file and then restarts the edit operation.

Similar to other transient commands, editing can take place on a drive different from
the currently logged disk by preceding the source file name by a drive name. Examples of
valid edit requests are

Edit the file X.ASM on drive A, with new file and
backup on drive A.

Edit the file X.ASM on drive B to the temporary file
X.$$$ on drive A. After editing, change X.ASM on
drive B to X.BAK and change X.$$$ on drive A to
X.ASM.

1.6.6 SYSGEN

The SYSGEN transient command allows generation of an initialized diskette contain-
ing the CP/M operating system. The SYSGEN program prompts the console for com-
mands by interacting as shown.

SYSGEN cr Initiate the SYSGEN program.

SYSGEN VERSION m.m SYSGEN sign-on message.

SOURCE DRIVE NAME
(OR RETURN TO SKIP)

Respond with the drive name (one
of the letters A, B, C, or D) of the
disk containing a CP/M system,
usually A. If a copy of CP/M
already exists in memory due to a
MOVCPM command, type a car-
riage return only. Typing a drive
name d will cause the response:

SOURCE ON d THEN TYPE RETURN Place a diskette containing the
CP/M operating system on drive d
(d is one of A, B, C, or Dl. Answer
by typing a carriage return when
ready.

FUNCTION COMPLETE

DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

DESTINATION ON d
THEN TYPE RETURN

FUNCTION COMPLETE

System is copied to memory. SYS-
GEN will then prompt with:

If a diskette is being initialized,
place the new disk into a drive and
answer with the drive name. Oth-
erwise, type a cr and the system
will reboot from drive A. Typing
drive name d will cause SYSGEN
to prompt with:

Place new diskette into drive d;
type return when ready.

New diskette is initialized in drive
d.

The "DESTINATION" prompt will be repeated until a single carriage return is typed at
the console, so that more than one disk can be initialized.

Upon completion of a successful system generation, the new diskette contains the
operating system and only the built-in commands are available. A factory-fresh, IBM-
compatible diskette appears to CPiM as a diskette with an empty directory; therefore, the
operator must copy the appropriate COM files from an existing CP/M diskette to the
newly constructed diskette using the PIP transient.

The user can copy all files from an existing diskette by typing the PIP command

PIP B: = A: *.* [v]

which copies all files from disk drive A to disk drive B and verifies that each file has been
copied correctly. The name of each file is displayed at the console as the copy operation
proceeds.

The user should note that a SYSGEN does not destroy the files that already exist on a
diskette; it only constructs a new operating system. If a diskette is being used only on
drives B through P and will never be the source of a bootstrap operation on drive A, the
SYSGEN need not take place.

1.6.7 SUBMIT ufn parm#l ... parm#n

The SUBMIT command allows CPiM commands to be batched for automatic process-
ing. The ufn given in the SUBMIT command must be the file name of a file that exists on
the currently logged disk, with an assumed file type of "SUB." The SUB file contains
CP/M prototype commands with possible parameter substitution. The actual parameters
parm#l ... parm#n are substituted into the prototype commands, and, if no errors occur,
the file of substituted commands are processed sequentially by CPIM.

The prototype command file is created using the ED program, with interspersedn$"
parameters of the form

corresponding to the number of actual parameters that will be included when the file is
submitted for execution. When the SUBMIT transient is executed, the actual parameters
parmgl ... parm#n are paired with the formal parameters $1 ... $n in the prototype
commands. If the numbers of formal and actual parameters do not correspond, the

submit function is aborted with an error message at the console. The SUBMIT function
creates a file of substituted commands with the name

on the logged disk. When the system reboots (at the termination of the SUBMIT), this
command file is read by the CCP as a source of input rather than the console. If the
SUBMIT function is performed on any disk other than drive A, the commands are not
processed until the disk is inserted into drive A and the system reboots. The user can
abort command processing at any time by typing a rubout when thecommand is read and
echoed. In this case the $$$.SUB file is removed and the subsequent commands come
from the console. Command processing is also aborted if the CCP detects an error in any
of the commands. Programs that execute under CP/M can abort processing of command
files when error conditions occur by erasing any existing $$$.SUB file.

To introduce dollar signs into a SUBMIT file, the user may type a "$$" which reduces
to a single "$" within the command file. An up-arrow symbo1"~"may precede an
alphabetic character x, which produces a single ctl-x character within the file.

The last command in a SUB file can initiate another SUB file, allowing chained batch
commands.

Suppose the file ASMBL.SUB exists on disk and contains the prototype commands

ASM $1

DIR $I.*

ERA *.BAK

PIP $2:=$1 .PRN

ERA $l.PRN

and the command

SUBMIT ASMBL X PRN

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file, substituting
"X" for all occurrences of $1 and "PRN" for all occurrences of $2. This results in a
$$$.SUB file containing the commands

ASM X

DIR X.*

ERA *.BAK

PIP PRN:=X.PRN

ERA X.PRN

which are executed in sequence by the CCP.
The SUBMIT function can access a SUB file on an alternate drive by preceding the file

name by a drive name. Submitted files are only acted upon when they appear on drive A.
Thus it is possible to create a submitted file on drive B that is executed at a later time when
inserted in drive A.

An additional utility program called XSUB extends the power of the SUBMIT facility
to include line input to programs as well as the console command processor. The XSUB
command is included as the first line of the submit file. When it is executed, XSUB
self-relocates directly below the CCP. All subsequent submit command lines are pro-
cessed by XSUB so that programs that read buffered console input (BDOS function 10)

receive their input directly from the submit file. For example, the file SAVER.SUB can
contain the submit lines

XSUB

DDT

1$1 .COM

R

GO

SAVE 1 $2.COM

with a subsequent SUBMIT command

OSUBMIT SAVER PIP Y

that substitutes X for $1 and Y for $2 in the command stream. The XSUB program loads,
followed by DDT, which is sent to the command lines PIP.COM, R, and GO, thus
returning to the CCP. The final command SAVE 1 Y.COM is processed by the CCP.

The XSUB program remains in memory and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent submit command
streams do not require the XSUB, unless an intervening coid start has occurred. The user
should note that XSUB must be loaded after theoptionalCP/M DESPOOL utility, if both
are to run simultaneously.

1.6.8 DUMP ufn

The DUMP program types the contents of the disk file (ufn) at the console in
hexadecimal form. The file contents are listed sixteen bytes at a time, with the absolute
byte address listed to the left of each line in hexadecimal. Long typeouts can be aborted by
pushing the rubout key during printout. (The source listing of the DUMP program is
given in Chapter 5 as an example of a program written for the CP/M environment.)

1.6.9 MOVCPM

The MOVCPM program allows the user to reconfigure the CP/M system for any
particular memory size. Two optional parameters can be used to indicate the desired size
of the new system and the disposition of the new system at program termination. If the
first parameter is omitted or an ' I * " is given, the MOVCPM program wtli reconfigure the
system to its maximum size, based upon the kilobytes of contiguous RAM in the host
system (starting at 0000I-I). If the second parameter is omitted, the system is executed,
but not permanently recorded; if """ is given, the system is left in memory, ready for a
SYSGEN operation. The MOVCPM program relocates a memory image of CP/M and
places this image in memory in preparation for a system generation operation. The
command forms are

MOVCPM Relocate and execute CP/M for management of the
current memory configuration (memory is exam-
ined for contiguous RAM, starting at 100H). O n

MOVCPM n

MOVCPM * *

MOVCPM n "

completion of the relocation, the new system is
executed but not permanently recorded on the
diskette. The system that is constructed contains a
BIOS for the Intel MDS 800.

Create a relocated CP\M system for management
of an n kilobyte system (n must be in the range of 20
to 641, and execute the system as described.

Construct a relocated memory image for the cur-
rent memory configuration, but leave the memory
image in memory in preparation for a SYSGEN
operation.

Construct a relocated memory image for an n kilo-
byte memory system, and leave the memory image
in preparation for a SYSGEN operation.

The command

MOVCPM * *

for example, constructs a new version of the CP /M system and leaves it in memory, ready
for a SYSGEN operation. The message

READY FOR 'SYSGEN' OR
'SAVE 34 CPMxx.COMi

is printed at the console upon completion, where xx is the current memory size in
kilobytes. The operator can then type

SYSGEN Start the system generation.

SOURCE DRIVE NAME Respond with a carriage return t o skip the
(OR RETURN TO SKIP) CP/M read operation since the system is

already in memory as a result of the previous
MOVCPM operation.

DESTINATION DRIVE NAME Respond with B to write new system to the
(OR RETURN TO REBOOT) diskette in drive B. SYSGEN will prompt

with:

DESTINATION ON B, Ready the fresh diskette on drive B and type a
THEN TYPE RETURN return when ready.

If the user responds with "A" rather than "B" above, the system will be written todrive A
rather than B. SYSGEN will continue to type the prompt

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

until the operator responds with a single carriage return, which stops the SYSGEN
program with a system reboot.

The user can then go through the reboot process with the old or new diskette. Instead
of performing the SYSGEN operation, the user can type

SAVE 34 CPMxx.COM

at the completion of the MOVCPM function, where "xx" is the value indicated in the
SYSGEN message. The CP!M memory image on the currently logged disk is in a form
that can be "patched." This is necessary when operating in a nonstandard environment
where the BfOS must be altered for a particular peripheral device configuration, as
described in Chapter 6.

Valid MOVCPM commands are

MOVCPM 48 Construct a 48K version of CP/M and start
execution.

MOVCPM 48 * Construct a 48K version of CP/M in preparation
for permanent recording; response is

READY FOR 'SYSGE
'SAVE 34 CPM48.C0M9

MOVCPM * * Construct a maximum memory version of CP/M
and start execution.

The newly created system is serialized with the number attached to the original
diskette and is subject to the conditions of the Digital Research Software Licensing
Agreement.

There are three error situations that the Basic Disk Operating System intercepts
during file processing. When one of these conditions is detected, the BDOS prints the
message:

where d is the drive name and "error" is one of the three error messages:

BAD SECTOR

SELECT

READ ONLY

The "BAD SECTOR" message indicates that the dtsk controller electron~cs has
detected an error condition in readmg or wntmg the diskette This condttlon is generally
caused by a maifunct~oning dlsk controller or an extremely worn diskette If the user
ftnds that the CP/M reports t h ~ s error more than once a month, the state of the controller
electron~cs and the condition of the med~a should be checked T h e user can also encounter
t h ~ s condition In reading files generated by a controller produced by a d~fferent manufac-
turer Even though controllers are claimed to be IBM-compatible, one often finds small
differences in recordtng formats The MDS-800 controller, for example, requlres two
bytes of one's following the data CRC byte, which 1s not required in the IBM format As a
result, diskettes enerated by the Intel MDS can be read by almost all other IBM-
compattble systems, whde disk files generated on other manufacturers' equipment will
produce the "BAD SECTOR" message when re by the MDS Recovery from thls
condrtlon 1s accompl~shed by tvping a ctl-C to r ot i the safest course), o r a return,

which ignores the bad sector in the file operation. The user should, however, note that
typing a return may destroy diskette integrity if the operation is a directory write. The
user should be sure to have adequate backups in this case.

The "SELECT" error occurs when there 1s an attempt to address a drive beyond the
range supported by the BIOS. In this case, the value of d in the error message gives the
seiected drive. The system reboots following any input from the console.

The "REtL\D OR'LY" message occurs when there is an attempt to write to adiskette or
file that has been designated as read only in a STAT command or has been set to
read only by the BDOS. The operator should reboot CP/M by using the warm start
procedure (ctl-C) or by performing a cold start whenever the diskettes are changed. If a
changed diskette is to be read but not written, BDOS allows the diskette to be changed
without the warm or cold start, but internally marks the drive as read only. The status of
the drive is subsequently changed to readiwrite if a warm or cold start occurs. O n issuing
this message, CP/M waits for input from the console. An automatic warm start takes
place following any input.

This section gives operating procedures for using CP/M on the Intel MDS microcom-
puter development system. Basic knowledge of the MDS hardware and software systems
is assumed.

CP/M is initiated in essentially the same manner as Intel's ISIS operating system. The
disk drives are labeled O through 3 on the MDS, corresponding to CP/M drives A through
D, respectively. The CP/M system diskette is inserted into drive 0, and the BOOT and
RESET switches are depressed in sequence. The interrupt 2 light should go on at this
point. The space bar is then depressed on the system console, and the light should go out
(if it does not, the user should check connections and baud rates). The BOOT switch is
turned off, and the C sign-on message should appear at the selected console device,
followed by the "A>" system prompt. The user can then issue the various resident and
transient commands.

The CP/M system can be restarted (warm start) at any time by pushing the INT 0
switch on the front panel. The built-in Intel ROM monitor can be initiated by pushing the
INT 7 switch (which generates an RST 71, except when operating under DDT, in which
case the DDT program gets control instead.

Diskettes can be removed from the drives at any time, and the system can be shut
down during operation without affecting data integrity. The user must not remove a
diskette and replace it with another without rebooting the system (cold or warm start)
unless the inserted diskette is "read only."

As a result of hardware hang-ups or malfunctions, CP/M may type the message

d: BAD SECT8

where d is the drive that has a permanent error his error can occur when drive doors are
opened and closed randomly, foilowed by disk operations, or can be caused by a diskette,
drive, or controller failure. The user can optionally elect to ignore the error by typing a
single return a t the console. The error may produce a bad data record, requiring reinitiali-
zation of up to 128 bytes of data. The operator can reboot the CP/M system and try the
operation again.

Termination of a CP/M session requires no special action, except that it is necessary to
remove the diskettes before turning the power off to avoid random transients that often
make their way to the drive electronics.

Factory-fresh, IBM-compatible diskettes should be used rather than diskettes that
have previously been used with any ISIS version. In particular, the iSIS '"FORMAT"
operation produces nonstandard sector numbering throughout the diskette. This non-
standard numbering seriously degrades the performance of CP /M and will operate
noticeably slower than the distribution version. if it becomes necessary to reformat a
diskette (which should not be the case for standard diskettes), a program can be written
under CP/M that causes the MDS 800 controller to reformat with sequential sector
numbering (1-26) on each track.

IBM-compatible 8-inch diskettes in general do not need t o be formatted. However,
S%-inch diskettes will need to be formatted.

2.1 Intro ction to E

ED is the context editor for CP/M, and is used to create and alter CP/M source files.
ED is initiated in CP/M by typing

ED filename

or

ED filename. typ

In general, ED reads segments of the source file given by filename or filename.typ into the
central memory, where the file is manipulated by the operator and subsequently
written back to disk after alterations. If the source file does not exist before editing, it is
created by ED and initialized to empty. The overall operation of ED is shown in Figure 2.1.

2.1 .I ED Operation

ED operates upon the source file, denoted in Figure 2.1 by x.y, and passes all text
through a memory buffer where the text can be viewed or altered (the number of lines
that can be maintained in the memory buffer varies with the line length, but has a total
capacity of about 5000 characters in a 20K CP/M system). Text material that has been
edited is written into a temporary work file under command of the operator. Upon
termination of the edit, the memory buffer is written to the temporary file, followed by
any remaining (unread) text in the source file. The name of the original file is changed
from x.y to x.BAK so that the most recent previously edited source file can be reclaimed if
necessary (see the CP/M commands ERASE and RENAME). The temporary file is then
changed from x.$$$ to x.y, which becomes the resulting edited file.

The memory buffer is logically between the source file and working file as shown in
Figure 2.2.

Figure 2.1 Overall ED Operation

Backup

filenarne.bak

= memory buffer

= disk file

Figure 2.2 Memory Buffer Organization

Source File

11 First Line I 1

I Unprocessed I Next
I Source Append
I Lznes
I I

Memory Buffer Temporary File

First Line

Buffered Processed

I
Free I N e x t \ 1 bee 1

blemory 1 Write [Space I
Space I I I

I I I -------- '--------I

SP = Source Pointer
MP = Memory Pointer
TP = Temporary Pointer

2.1.2 Text Transfer Functions

Given that n is an integer value in the range 0 through 65535, several single letter ED
commands transfer lines of text from the source file through the memory buffer to the
temporary (and eventually final) file. Single letter commands are shown in upper case,
but can be typed in either upper or lower case.

n A Append the next n unprocessed source lines from the source file at
SP to the end of thememory bufferat MP. Increment SPand MPby
n. If upper case translation is set (see the U command) and the A
command is typed in upper case, all input lines will automatically be
translated to upper case.

nW Write the first n lines of the memory buffer to the temporary file
free space. Shift the remaining lines n+S through MP to the top of
the memory buffer. Increment TP by n.

E End the edit. Copy all buffered text to temporary file and copy all
unprocessed source lines to temporary file. Rename files as des-
cribed previously.

H Move to head of new file by performing automatic E command.
Temporary file becomes the new source file, the memory buffer is
emptied, and a new temporary file is created (equivalent to issuing
an E command, followed by a reinvocation of ED using x.y as the file
to edit).

0 Return to original file. The memory buffer is emptied, the tempor-
ary file is deleted, and the SP is returned to position of the source
file. The effects of the previous editing commands are thus
nullified.

Q Quit edit with no file alterations, return to CP/M.

There are a number of special cases to consider. If the integer n is omitted in any ED com-
mand where an integer is allowed, then I is assumed. Thus, the commands A and W
append one line and write one line, respectively. In addition, if a pound sign (#) is given in the
place of n, then the integer 65535 is assumed (the largest value for n that is allowed). Since
most reasonably sized source files can be contained entirely in the memory buffer,
the command #A is often issued at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer to the temporary file.
Two special forms of the A and W commands are provided as a convenience. The
command OA fills the current memory buffer at least half full, while OW writes lines until
the buffer is a t least half empty. An error is issued if the memory buffer size is exceeded.
The operator can then enter any command (such as W) that does not increase memory
requirements. The remainder of any partial line read during the overflow will be brought
into memory on the next successful append.

2.1.3 Memory Buffer Organization

The memory buffer can be considered a sequence of source lines brought in with the A
command from a source file. The memory buffer has an associated (imaginary) character
pointer CP that moves throughout the memory buffer under command of the operator.
The memory buffer appears logically as shown in Figure 2.3 where the dashes represent
characters of the source line of indefinite length, terminated by carriage-return (<cr>)
and line-feed (<lf>) characters, and C P represents the imaginary character pointer. The

user should note that the CP is always located ahead of the first character of the first line,
behind the last character of the last line, or between two characters. The current line CL
is the source line that contains the CP.

Figure 2.3 Logical Organization of Memory Buffer

Memory Buffer

first ---------
line <cr> <If>

current -----------
line CL A

<cr> <If>

last W ---------
line <cr><lf>

2.1.4 Line Numbers and E,

ED produces absolute line number prefixes that can e used to reference a line, or
range of lines. The absolute line number is displayed at the beginni
ED is in "insert mode" (see the I command in Section 2.1.5), where ea
the form

nnnnn:

where nnnnn is an absolute line number in the range of 1 to 65535. If the memory buffer
is empty or if the current line is at the end of the memory buffer, nnnnn appears as 5
blanks.

The user may reference an absolute line number by preceding any command by a
number followed by a colon, in the same format as the line number display. In this case,
the ED program moves the current line reference to the absolute line number, if the line
exists in the current memory buffer. The line denoted by the absolute line number must
be in the memory buffer (see the A command). Thus, the command

is interpreted as "move to absolute 345, and type the Iine." Absolute line nu
produced only during the editing process and are not recorded with the file. In particular,
the line numbers will change following a deleted or expanded section of text.

The user may also reference an absolute Iine number as a backward or forward
distance from the current line by preceding the absolute number by a colon. Thus, the
command

is interpreted as "type from the current line number through the line whose absolute
number is 400." Combining the two line reference forms, the command

for example, is interpreted as "move to absolute line 345, then type through absolute line
400." Absolute line references of this sort can precede any of the standard ED commands.

Line numbering is controlled by the "V" (Verify line numbers) command. Lme num-
bering can be disabled by typing ihe "-i'" command.

If the file to edit does not exist, ED types the message

NEW FILE

The user must enter an "i"command so that text can be inserted into the memory buffer
by typing input lines terminated by carriage-returns. A single ctl-Z character returns ED
to command mode.

egins, the memory buffer is empty. The operator may either append lines
(A command) from the source file or enter the lines directly from the console with the
insert command

ED then accepts any nu ber of input lines, where each line terminates with a <cr> (the
plied automaticaliy), until a control-z (denoted by Iz) is typed by the operator.

The CP is positioned after the last character entered. The sequence

I<cr>

NOW IS THE<cr>

ALL GOOD MEN<cr>

tz

leaves the memory buffer as

NOW IS THE<cr><lO

TIME FOR<cr><lD

ALL GOOD ME

Generally, ED acce ts command letters in u per or lower case. If the command is
upper case, all input values associated with the command are translated to upper case. In
particular, if the "I" command is typed, all input lines are automatically translated
internally to upper case. The Iower case form of the '7'" command is most often used to
allow both upper and Iower case letters to be entered.

Various commands can be issued that manipulate the CP or display source text in the
vicinity of the CP. The commands shown below with a preceding n indicate that an

optional unsigned value can be specified. When preceded by k, the command can be
unsigned, or have an optional preceding plus or minus sign. '4s before, the pound sign (d)
is replaced by 65535. If an integer n is optional, but not supplied, then n = 1 is assumed.
Finally, if a plus sign is optional, but none is specified, then + is assumed.

i B Move CP to beginning of memory buffer if + and to bottom if -.

i rnC Move CP by Irn characters (moving ahead if +I, counting the
<cr><lD as two distinct characters.

f nD Delete n characters ahead of CP if plus and behind CP if minus.

knK Kill (i.e., remove) r n lines of source text using CP as the current
reference. If CP is not a t the beginning of the current line when K is
issued, the characters before CP remain if + is specified, while the
characters after CP remain if - is given in the command.

ir n L If n = O, move CP to the beginning of the current line (if it is not
already there). If n f: O, first move the CP to the beginning of the
current line and then move it to the beginning of the line that is n
lines down (if +) or up (if -1. The C will stop at the top or bottom of
the memory buffer if too large a value of n is specified.

irnT If n = O, type the contents of the current line up to CP. If n = 1, type
the contents of the current line from CP to the end of the line. If
n>I, type the current line along with n - 1 lines that follow, if + is
specified. Similarly, i f n>l and -is given, type the previous n lines up
to the CP. Any key can be depressed to abort long type-outs.

irn Equivalent to irnLT, which moves up or down and types a single
line.

2A.6 Command Strin

Any number of commands can be typed contiguously (up to the capacity of the console
buffer) and are executed only after the <cr> is typed. Thus, the operator may use the
CP/M console line editing operation to manipulate the input command line:

CP/M system reboot when typed at start of line.

Physical end of line: carriage is returned, but line is
no: sent until the carriage return key is depressed.

ctl-H Backspace one character position.

ctl-J Terminate current input (line feed).

ctl-M Terminate current input (carriage returnj.

Retype current command line: types a "clean line"
character deletion with rubouts.

Delete the entire line typed at the console.

Same as ctl-U.

End input from the console (used in PIP and ED).

Delete and echo the last character typed at the
console.

Suppose the memory buffer contains the characters shown in the previous section,
with the CP following the !ast character of the buffer. The command strings shown
below produce the results shown to the right. Use lower case command letters to avoid
automatic translation of strings to upper case.

Command String Effect Resulting Memory Buffer

Motre to beginning NOW IS THE<cr><lf>
of buffer and type TIME FOR<cr><lf>
2 lines: 'ALL GOOD MEN<cr><lf>
'NOW IS THE
TIME FOR'

2. 5COT<cr> Move CP 5 NOW I S THE <cr><lf>
characters and type
the beginning
of the line
'NOW I'

5. I<cr>
TlME TO<cr>
INSERT<cr>
7 z

Move two lines NOW IS THE<cr><lD
down and type TIME FOR<cr><lD
previous line ALL GOOD MEN<cr><lD
'TIME FOR' 6
Move up one line, NOW IS THE<cr><lD
delete 65535 lines
that fo1Iow

Insert two lines NOW IS THE<cr><lD
of text with auto- TlME TO<cr><lD
rnatic translation
to upper case

Move up two lines NOW IS THE<cr><lf>
and type 65535
lines ahead of C P (& ~ d F E Z ~ ~ T A o
'NOW IS THE'

Move down one line NOW IS THE<cr><lf>
and type one line TlME TO<cr><lD
'INSERT' QINSERT<~r><lD

2.1.7 Text Search and Alteration

ED also has a command that locates strings within the memory buffer. The command
takes the form

where s represents the string to match, followed by either a <cr> or ctl-Z, denoted by Iz.
ED starts at the current position of CP and attempts to match the string. The match is
attempted n times, and, if successful, the CP is moved directly after the string. If the n
matches are not successful, the CP is not moved from its initial position. Search strings
can include cti-L, which is replaced by the pair of symbols <cr><lf>.

The following commands iilustrate the use of the F command:

Command String Effect

Move to begin- NOW IS THE<cr><lD
ning and type TIME FOR<cr><iO
entire buffer ALL GOOD MEN<cr><lf>

2. FS T<cr> Find the end of
the string 'S T'

Find the next ' I '
and type to the
CP; then type the
remainder of the
current line:
'ME FOR'

FOR<cr><lO

ALL GOOD MEN<cr><lO

An abbreviated form of the insert command is also allowed, which is often used in
conjunction with the F command to make simple textual changes. The form is

I s tz
or

I s<cr>
where s is the string to insert. If the insertion string is terminated by a Iz, the string is
inserted directly following the CP, and the CP positioned directly after the string. T
action is the same if the command is followed by a <cr> except that a <cr><lf> is
automatically inserted into the text following the string. Consider the following com-
mand sequences as examples of the F and I commands:

Command String Effect
1. BITHIS IS iz<cr> Insert 'THIS IS'

a t the beginning
of the text

TIME FOR<cr><lf>
ALL GOOD MEN<cr><lD

FTIMElz-4DIPLACEiz<cr> Find 'TIME' and THIS IS NOWTHE<cr><If>
2 . delete it; then PLACE FOR<cr><if>

insert 'PLACE'
ALL GOOD MEN<cr><lD

3. 3F0 tz-3D5D1 Find third THIS IS NOWTHE<cr><IO
CHANGEStz<cr> occurrence of ' 0 ' PLACE FOR<cr> <I0

(i.e., the second ' 0 ' ALL CHANGE
in GOOD), delete
previous 3
characters and the
subsequent 5 charac-

Move back 6
characters and PLACE FOR<cr><lT>
insert the line ALL SOURCE<cr><lO

ED also provides a single command that combines the F and I commands to perform
simple string substitutions. The command takes the form

n S sl tz s 2 <cr>
or

n S sl tz s2 Iz

and has exactly the same effect as applying the following command string a total of n
times:

F st tz-kDls2 <cr>
or

F s ~ ~ z - ~ D I s ~ tz

where k is the length of the string. That is, ED searches the memory buffer starting at the
current position of CP and successively substitutes the second string for the first string
until the end of buffer or until the substitution has been performed n times.

As a convenience, a command similar to F is provided by ED, which automatically
appends and writes lines as the search proceeds. The form is

which searches the entire source file for the nth occurrence of the strings (the user should
recalf that F fails if the string cannot be foundin the current buffer). Theoperationof the
N command is precisely the same as F except in the case that the string
cannot be found within the current memory buffer. In this case, the entire memory
content is written (i.e., an automatic #W is issued). Input lines are then read until the
buffer is at Ieast half full or the entire source file is exhausted. The search continues in
this manner until the string has been found n times or until the source file has been
completely transferred to the temporary file.

A final line editing function, called the juxtaposition command, takes the form

with the following action applied n times to the memory buffer: search from the current
CP for the next occurrence of the string s l . If found, insert the string s2, and move CP to
follow s2. Then delete all characters following CP up to (but not including) the string s3,
leaving CP directly after s2. If s3 cannot be found, then no deletion is made. If the current
line is

NOW IS THE TlME<cr><lf>

the command

results in

NOW WHAT <cr 10

(The user should recall that I1 ictl-Li represents the pair <cr><lf> in search and
substitute strings.)

The number of characters allowed by ED in the F, S, N, and J commands is lirnlted to
100 symbols.

2.1.8 Source Libraries

ED also allows the inclusion of source libraries during the editing process with the R
command. The form of this command is

R f i lename tz
or

R f i lename <cr>

where filename is the primary filename of a source file on the disk with an assumed
filetype of 'LIB'. ED reads the specified file, and places the characters into the memory
buffer after CP, in a manner similar to the I command. Thus, if the command

is issued by the operator, ED reads from the file MACRO.LIB until the end-of-file and
automatically inserts the characters into the memory buffer.

ED also includes a "block move" facility implemented through the X (Xfer) command.
The form

transfers the next n lines from the current line to a temporary file called

which is active only during the editing process. In general, the user can reposition the
current line reference to any portion of the source file and transfer Iines to the temporary
file. The transferred lines accumulate one after another in this file and can be retrieved by
simply typing

which is the trivial case of the library read command. In this case, the entire transferred
set of lines is read into the memory buffer. The user should note that the X command does
not remove the transferred lines from the memory buffer, although a K command can be
used directly after the X, and the R command does not empty the transferred LIB file.
That is, given that a set of lines has been transferred with the X command, they can be
reread any number of times back into the source file. The command

is provided, however, to empty the transferred h e file.
The user should note that upon normal completion of the ED program through Q or

E, the temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist
i f lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

2.1.9 Repetitive Command Execution

The macro command M allows the ED user to group ED commands together for
repeated e

v

aluation. The M command takes the form

where CS represents a string of ED commands, not i nch
executes the command string n times if n>l . I
cuted repetitively until an error condition is en
buffer is reached with an F command).

le, the following macro cka
n t buffer, and types each li

or equivalently

O n error conditions, ED prints the message "'BREA
error indicators shown below:

? Unrecognized command.

> Memory buffer full (use one of
remove characters); F, N, or S s

Cannot apply command the number of ti ecified (e.g., in F
command).

0 Cannot open LIB file in R command.

If there is a disk error, CP/M displays the following

BDOS ERR on d: BAD SECTOR

The operator can choose to ignore the error by pressing the return key at the console (in
this case, the memory buffer data should be examined to see if they were incorrectly
read), or the user can reset the system by ctl-C and reclaim the b ckup file if its exists. T
file can be reclaimed by first typing the contents of the AK tile to ensure that it contains
the proper information

TYPE x.BAK

where x is the file being edited. Then remove the primary file

ERA x.y

and rename the BAK file

REN x.y=x.BAK

The file can then be reedited, starting with the previous version.
ED also takes file attributes into account. If the operator attempts to edit a readionly

file, the message

* * FILE IS READfONLY * *

appears at the console. The file can be loaded and examined, but cannot be altered.
Normally the operator simply ends the edit session and uses STAT to change the file
attribute to RlW. If the edited file has the "system" attribute set, the message

'SYSTEM' FILE NOT ACCESSIBLE

is displayed and the edit session is aborted. Again, the STAT program can be used to
change the system attribute, if desired.

2.3 Control Characters and Commands
The following tabulation summarizes the control characters and commands available

in ED:

Control Character

ctl-C

ctl-E

ctl-R

ctl-U

ctl-X

ctl-Z

rub/del

Command

n A

*B

f n C

l tnD

E

n F

H

I

Function

System reboot

Physical <cr><lD (not actually entered in
command)

Backspace

Logical tab (cols 1, 9, 16, ...)

Logical <cr><lD in search and substitute
strings

Repeat line

Line delete

Line delete

String terminator

Character delete

Function

Append lines

Begin or bottom of buffer

Move character positions

Delete characters

End edit and close files (normal end)

Find string

End edit, close and reopen files

Insert characters, use i if both upper and
lower case characters are to be entered

Place strings in juxtaposition

Kill lines

Move downiup lines

Macro definition

Find next occurrence with autoscan

Return to original file

Move and print pages

Quit with no file changes

Read library file

Substitute strings

Type lines

Translate lower to upper case if U, no trans-
lation if -U

Verify line numbers, or show remaining free
character space

A special case of the V command, OV, prints
the memory buffer statistics in the form

where free is the number of free bytes in the
memory buffer (in decimal) and total is the
size of the memory buffer

Write lines

Wait (sleep) for approximately n seconds

Move and type (f nLT).

Because of common typographical errors, ED requires several potentially disastrous
commands to be typed as single letters, rather than in composite commands. The
commands

must be typed as single letter commands.
The commands I, J, M, N, R, and S should be typed as i, j, m, n, r, and s if both upper and

lower case characters are used in the operation, otherwise all characters areconverted to
upper case. When a command is entered in upper case, ED automatically converts the
associated string to upper case, and vice-versa.

The CP/M assembler reads assembly language source files from the diskette and
produces 8080 machine language in Intel hex format. The CP/M assembler is initiated by

typing

ASM filename

or

SM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the name

which contains an 8080 assembly language source file. The first and second forms shown
above differ only in that the second form allows parameters to be passed to the assembler
to control source file access and hex and print file destinations.

In either case, the CP/M assembler loads and prints the message

CP/M ASSEMBLER VER n.n

where n.n is the current version number. In the case of the first command, the assembier
reads the source file with assumed file type ASM and creates two output files

and

filename.PRN

The HEX file contains the machine code corresponding to the original program in Intel
hex format, and the PRN file contains an annotated listing showing generated machine

code, error flags, and source lines. If errors occur during translation, they will be listed in
the PRN file as well as at the console.

The form ASM filename parms can be used to redirect input and output files from
their defaults. In this case, the parms portion of the command is a three-letter group that
specifies the origin of the source file, the destination of the hex file, and the destination of
the print file. The form is

filename.pl p2p3

where p l , p2, and p3 are single letters

P1: A,B, ..., P designates the disk name that contains the source file

p2: A,B, ..., P designates the disk name that will receive the hex file

Z skips the generation of the hex file

p3: A,B, ..., P designates the disk name that will receive the print file

X places the listing at the console

Z skips generation of the print file

Thus, the command

ASM X.AAA

indicates that the source file (X.ASM) is to be taken from disk A and that the hex (X.HEX)
and print (X.PRN) files are also to be created on disk A. This form of the command is
implied if the assembler is run from disk A. That is, given that the operator is currently
addressing disk A, the above command is equivalent to

ASM X

The command

ASM X.ABX

indicates that the source file is to be taken from disk A, the hex file is to be placed on disk
B, and the listing file is to be sent to the console. The command

ASM X.BZZ

takes the source file from disk B and skips the generation of the hex and print files (this
command is useful for fast execution of the assembler to check program syntax).

The source program format is compatible with the Intel 8080 assembler (macros are
not implemented in ASM; see the optional MAC macro assembler). There are certain
extensions in the CP/M assembler that make it somewhat easier to use. These extensions
are described below.

ram Format
An assembly language program acceptable as input to the assembler consists of a

sequence of statements of the form

line# label operation operand ;comment

where any or all of the fields may be present in a particular instance. Each assembly
language statement is terminated with a carriage return and line feed (the line feed is
inserted automatically by the ED program), or with the character !, which is treated as an
end-of-line by the assembler (thus, multiple assembly language statements can be writ-
ten on the same physical line if separated by exclamation mark symbols).

The line# is an optional decimal integer value representing the source program tine
number, and ASM ignores this field if present.

The label field takes the form

identifier

identifier:

and is optional, except where noted in particular statement types. The identifier is a
sequence of alphanumeric characters where the first character is alphabetic. Identifiers
can be freely used by the programmer to label elements such as program steps and
assembler directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar symbol ($1, which can be used
to improve readability of the name. Further, all lower case alphabetics are treated as if
they were upper case. The following are all valid instances of labels

x: yxl : longer$named$data:

The operation field contains either an assembler directive or pseudo-operation, or an
8080 machine operation code. The pseudo-operations and machine operation codes are
described below.

The operand field of the statement, in general, contains an expression formed out of
constants and labels, along with arithmetic and logical operations on these elements.
Again, the complete details of properly formed expressions are given below.

The comment field contains arbitrary characters following the ; symbol until the next
real or logical end-of-line. These characters are read, listed, and otherwise ignored by the
assembler. The CPIMassembler also treats statements that begin withan * in column one
as comment statements, which are listed and ignored in the assembly process.

The assembly language program is formulated as a sequence of statements of the
above form, terminated by an optional END statement. All statements following the
END are ignored by the assembler.

Forming the Operand
To describe the operation codes and pseudo-operations completely, it is necessary first

to present the form of the operand field, since it is used in nearly all statements.
Expressions in the operand field consist of simple operands (labels, constants, and
reserved words), combined in properly formed subexpressions by arithmetic and logical
operators. The expression computation is carried out by the assembler as the assembly
proceeds. Each expression must produce a 16-bit value during the assembly. Further, the
number of significant digits in the result must not exceed the intended use. That is, if an
expression is to be used in a byte move immediate instruction, the most significant 8 bits
of the expression must be zero. The restriction on the expression significance is given
with the individual instructions.

As discussed above, a Iabe is an identifier that occurs on a particular statement. In
general, the label is given a value determined by the type of statement that it precedes. If
the label occurs on a statement that generates machine code or reserves memory space

a MOV instruction o r a DS pseudo-operation), the label is given the value of the
address that it labels. If the label precedes an EQU o r SET, the label is given the

evaluating the operand field. Except for the SET statement, an
fier can label only one statement.

When a label appears in the operand field, its value is substituted by the assembler.
Xis value can then be combined with other operands and operators to form the operand

,. Ion. fieid for a particular instruct'

A numeric constant is a 16-bit value in one of several bases. The base, called the radix
of the constant, is denoted by a trailing radix indicator. The radix indicators are

B binary constant (base 2)

0 octal constant (base 8)

Q octal constant (base 8)

D decimal constant (base 10)

H hexadecimal constant (base 16)

is art alternate radix indicator for octal numbers since the letter 0 is easily confused
with the digit 0. Any numeric constant that does not terminate with a radix indicator is
assumed to be a decimal constant.

.A constant is thus composed as a sequence of digits, followed by an optional radix
indicator, where the digits are in the appropriate range for the radix. That is, binary
constants must be composed of O and I digits, octal constants can contain digits in the
range 0-7, while decimal constants contain decimal digits. Hexadecimal constants contain
decimal digits as well as hexadecimal digits A (IOD), B (11D), C (12D), D (13D), E (14D),
and F (15D). The user should note that the leading digit of a hexadecimalconstant must be
a decimal digit to avoid confusing a hexadecimal constant with an identifier (a leading O
will always suffice). A constant composed in this manner must evaluate to a binary
number that can be contained within a 16-bit counter, otherwise it is truncated on the
right by the assembler. Similar to identifiers, imbedded $ signs are allowed within
constants to improve their readability. Finally, the radix indicator is translated to upper
case if a lower case letter is encountered. The following are all valid instances of numeric
constants

9 234 1234D 1 100B 1 1 1 1 $0000$1111$00008

1234H OFFEH 33770 33$77$22Q

33770 Ofe3h 1234d Offffh

There are several reserved character sequences that have predefined meanings in the

operand field of a statement. The names of 8080 registers are given below. When they are
encountered, they produce the values shown to the right.

(Again, Iower case names have the same values as their upper case equivalents.) Machine
instructions can also be used in the operand field and evaluate to their internal codes. In
the case of instructions that require operands, where the specific operand becomes a part
of the binary bit pattern of the instruction (e.g., MOV A,B), the value of the instruction
(in this case MOV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g., MOV produces 40W).

When the symbol $ occurs in the operand field (not imbedded within identifiers and
numeric constants), its value becomes the address of the next instruction to generate, not
including the instruction contained within the current logical line.

String constants represent sequences of ASCII characters and are represented by
enclosing the characters within apostrophe symbols ('). All strings must be fully con-
tained within the current physical line (thus allowing ! symbols within strings) and must
not exceed 64 characters in length. The apostrophe character itself can be included within
a string by representing it as a double apostrophe (the two keystrokes "),which becomes a
single apostrophe when read by the assembler. In most cases, the string length is
restricted to either one or two characters (the DB pseudo-operation is an exception), in
which case the string becomes an 8- or 16-bit value, respectively. Two character strings
become a 16-bit constant, with the second character as the low order byte, and the first
character as the high order byte.

ue of a character is its corresponding ASCII code. There is no case translation
within strings, and thus both upper and lower case characters can be represented. The
user should note, however, that only graphic (printing) ASCII characters are allowed
within strings.

which represent

,A, PABt tab'
, I 'a"' "" I,"

'Waila Walla Wash.'
'She said "Hello" to me.'
'I said "Hello" to her.'

A AB ab c
a'

Walla Walla Wash.
She said "Hello" to me
I said "Hello" to her

.3.5 Arithmetic and ogical Operato

The operands described above can be combined in normal algebraic notation using any
combination of properly formed operands, operators, and parenthesized expressions.
The operators recognized in the operand field are

a + b

a - b

+ b

- b

a * b

a / b

a MOD b

NOT b

a AND b

a O R b

a XOR b

a SHL b

a SHR b

unsigned arithmetic sum of a and b

unsigned arithmetic difference between a and b

unary plus (produces b)

unary minus (identical to O - b)

unsigned magnitude multiplication of a and b

unsigned magnitude division of a by b

remainder after a 1 b

logical inverse of b (all Os become Is, I s become Os), where b is
considered a 16-bit value

bit-by-bit logical and of a and b

bit-by-bit logical or of a and b

bit-by-bit logical exclusive or of a and b

the value that results from shifting a to the left by an amount b,
with zero fill

the value that results from shifting a to the right by an amount b,
with zero fill.

In each case, a and b represent simple operands (labels, numeric constants, reserved
words, and one or two character strings) or fully enclosed parenthesized subexpressions
such as

10+20 10h+37Q L1/3 (L2t4) SHR 3

('a' and 5fh) + '0' ('Bi+B) OR (PSW+M)

(1 +(2+c)) shr (A-(B+l))

Note that all computations are performed at assembly time as 16-bit unsigned operations.
Thus, -1 is computed as 0-1, which results in the value offffh (i.e., allls). The resulting
expression must fit the operation code in which it is used. For example, if the expression is
used in an AD1 (add immediate) instruction, the high order 8 bits of the expression must
be zero. As a result, the operation AD1 -1 produces an error message (-1 becomes offffh,
which cannot be represented as an 8-bit value), while AD1 (-1) AND OFFH is accepted by
the assembler since the ,4ND operation zeroes the high order bits of the expression.

recedence of Operators

As a convenience to the programmer, ASM assumes that operators have a relative
precedence of application that allows the programmer to write expressions without
nested levels of parentheses. The resulting expression has assumed parentheses that are
defined by the relative precedence. The order of application of operators in unparenthe-
sized expressions is listed below. Operators listed first have highest precedence (they are
applied first in an unparenthesized expression), while operators listed last have lowest

precedence. Operators listed on the same Iine have equal precedence, and are applied
from left to right as they are encountered in an expression

* / MOD SHL SHR

- +

NOT

AND

OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler as the
fully ~arenthesized expressions shown to the right

a * b + c (a * b) + c

a + b * c a + (b * c)

a M O D b * c S H L d ((a MOD b) * c) SHL d

a OR b AND NOT c + d SHL e a OR (b AND (NOT (c + (d SHL e))))

Balanced parenthesized subexpressions can always be used to override the assumed
parentheses; thus, the last expression above could be rewritten to force application of
operators in a different order as

(a OR b) AND (NOT c) + d SHL e

resulting in the assumed parentheses

(a OR b) AND ((NOT c) + (d SHL e)!

An unparenthesized expression is well-formed only if the expression that results from
inserting the assumed parentheses is well-formed.

Assembler Directives
Assembler directives are used to set labels to specific values during the assembly,

perform conditional assembly, define storage areas, and specify starting addresses in the
program. Each assembler directive is denoted by a pseudo-operation that appears in the
operation field of the Iine. The acceptable pseudo-operations are

ORG set the program or data origin

END end program, optional start address

EQU numeric "equate"

SET numeric "set"

IF begin conditional assembly

ENDlF end of conditional assembly

DB define data bytes

DW define data words

DS define data storage area

The individual directives are detailed below.

The ORG statement takes the form

label ORG expression

where "label" is an optional program identifier and expression is a 16-bit expression,
consisting of operands that are defined before the ORG statement. The assembler begins
machine code generation at the location specified in the expression. There can be any
number of ORG statements within a particular program, and there are no checks to
ensure that the programmer is not defining overlapping memory areas. The user should
note that most programs written for the CP/M system begin with an ORG statement of
the form

ORG l0OH

which causes machine code generation to begin a t the base of the CP/M transient
program area. If a label is specified in the ORG statement, the label is given the value of
the expression (this label can then be used in the operand field of other statements to
represent this expression).

The END Directive

The END statemen$ is optional in an assembly language program, but if it is present it
must be the last statement (all subsequent statements are ignored in the assembly). The
two forms of the END directive are

label END

label END expression

where the label is again optional. If the first form is used, the assembly process stops, and
the default starting address of the program is taken as 0000. Otherwise, the expressioil is
evaluated, and becomes the program starting address (this starting address is included in
the last record of the Intel formatted machine code hex file, which results from the
assembly). Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of IOOH (beginning of the transient program
area).

ent is used to set up synonyms for particular numeric values.
The form is

where the label must be present and must not label any other statement. The assembler
evaluates the expression, and assigns this value to the identifier given in the label field.
The identifier is usually a name that describes the value in a more human-oriented
m-anner. Further, this name is used throughout the program to "parameterize" certain

nctions. Suppose ata received from a teletype appear on a particular input port and
ta are sent to th h the next output port in sequence. The series of

equate statements could be used to detine these ports for a particular hardware
environment

TTY BAS EQU 10W ;BASE PORT NUMBER FOR TTY

TTY IN EQU TTYBASE ;TTY DATA IN

TTYOUT EQU TTYBASE+I ;TTY DATA OUT

, the statements that access the teletype could appear as

I TTY I ;READ TTY DATA TO REG-A

...

OUT TTYOUT ;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute I/O ports had been used. Further,
if the hardware environment is redefined to start the teleiype communications ports at
7FH instead of loH, the first statement need only be changed to

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements

e i rective

The SET statement is similar to the EQU, taking the form

label SET expression

except that the label can occur on other SET statements wlthin the program The
expression is evaiuated and becomes the current value associated wlth the label Thus,

C statement defines a label with a single value, while the SET statement defines a
value that is valid from the current SET statement to the point where the labeloccurson
the next SET statement The use of the SET is similar to the EQU statement, but IS used
most often in controlling conditional assembly

34.5 The IF and ENDIF Directives

The IF and ENDIF statements define a range of assembly language statements that are
to be included or excluded during the assembly process. The form is

IF expression

statement#n

ENDlF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF (all operands in the expression must be defined ahead of the IF statement). If the
expression evaluates to a nonzero value, then statementgl through statement#n are
assembled; if the expression evaluates to zero, the statements are listed but not
assembled. Conditional assembly is often used to write a single "generic" program that
includes a number of possible run-time environments, with only a few specific portions of
the program selected for any particular assembly. The following program segments, for
example, might be part of a program that communicates with either a teletype or a CRT
console (but not both) by selecting a particular value for TTY before the assembly begins.

TRUE
FALSE

TTY

TTYBASE
CRTBASE

CONlN
CONOUT

CONlN
CONOUT

EQU
EQU

EQU

EQU
EQU
IF

EQU
EQU
ENDlF

IF

EQU
EQU

ENDlF
...
IN
...
OUT

OFFFFH
NOT TRUE

TRUE

1 OH
20H
TTY

TTYBASE
TTYBASE+l

NOT TTY

CRTBASE
CRTBASE+I

CONlN

CONOUT

;DEFINE VALUE OF TRUE
;DEFINE VALUE OF FALSE

;TRUE IF TTY, FALSE IF CRT

;BASE OF TTY I/O PORTS
;BASE OF CRT I/O PORTS
:ASSEMBLE RELATIVE TO
;TTYBASE
;CONSOLE INPUT
;CONSOLE OUTPUT

;ASSEMBLE RELATIVE TO
;CRTBASE
;CONSOLE INPUT
;CONSOLE OUTPUT

;READ CONSOLE DATA

;WRITE CONSOLE DATA

In this case, the program would assemble for an environment where a teletype is
connected, based a t port 1OI- i . The statement defining TTY could be changed to

TTY EQU FALSE

and, in this case, the program would assemble for a CRT based a t port 20I-I.

3.4.6 The DB Directive

The DB directive allows the programmer to define initialized storage areas in single
precision (byte) format. The statement form is

label DB e#l, e#2, ..., e#n

where e#l through e#n are either expressions that evaluate to 8-bit values (the high
order bit must be zero) or are ASCII strings of length no greater than 64 characters.
There is no practical restriction on the number of expressions included on a single
source line. The expressions are evaluated and placed sequentially into the machine code
file following the last program address generated by the assembler. String characters are
similarly placed into memory starting with the first character and ending with the last
character. Strings of length greater than two characters cannot be used as operands in
more complicated expressions. The user should note that ASCII characters are always
placed in memory with the parity bit reset (0) . Also, there is no translation from lower to
upper case within strings. The optional label can be used to reference the data area
throughout the remainder of the program. Examples of valid DB statements are

data: DB 0,1,2,3,4,5
DB data and Offh,5,377Q,1+2+3+4

sign-on: DB 'please type your namel,cr,lf,O
DB 'AB' SHR 8, 'C', 'DE' AND 7FH

3.4.7 The DW Directive

The DW statement is similar to the DB statement except double precision (two byte)
words of storage are initialized. The form is

label DW e#l, e#2, ..., e#n

where e# l through e#n are expressions that evaluate to 16-bit results. The user should
note that ASCII strings of one or two characters are allowed, but strings longer than two
characters are disallowed. In all cases, the data storage is consistent with the 8080
processor: the least significant byte of the expression is stored first in memory, followed
by the most significant byte. Examples are

doub: DW Offefh,doub+4.signon-$,255+255
DW 'a', 5, 'ab', 'CD', 6 shl 8 or Ilb.

The DS statement is used to reserve an area of uninitialized memory, and takes the
form

label DS expression

where the label is optional. The assembler begins subsequent code generation after the
area reserved by the DS. Thus, the DS statement given above has exactly the same effect
as the statement

label: EQU $;LABEL VALUE IS CUR
ORG $+expression ;MOVE PAST RESERVED AREA

Operation Codes
Assembly language operation codes form the principal part of assembly language

programs and form the operation field of the instruction. In general, ASM accepts all the
standard mnemonics for the Intel 8080 microcomputer, which are given in detail in Intel's
"8080 Assembly Language Programming Manual." Labels are optional on each input line.
The individual operators are listed briefly in the following sections for completeness,
although it is understood that the Intel manuals should be referenced for exact operator
details. In the following tables,

e3 represents a &bit value in the range 0-7 which can be one of the
predefined registers A, B, C, D, E, H, L, M, SP, or PSW.

e8 represents an 8-bit value in the range 0-255.

e l 6 represents a 16-bit value in the range 0-65535.

These expressions can be formed from an arbitrary combination of operands and opera-
tors. In some cases, the operands are restricted to particular values within the allowable
range, such as the PUSH instruction. These cases will be noted as they are encountered.

In the sections that follow, each operation code is listed in its most general form, along
with a specific example, with a short explanation and special restrictions.

f umps, Calls, and Returns

The Jump, Call, and Return instructions allow several different forms that test the
condition flags set in the 8080 microcomputer CPU. The forms are

JMP

JNZ

J Z

JNC

JC

J PO

JPE

JP

JM

CALL

CNZ

JMP L1

JNZ L2

JZ 100H

JNC L1+4

JC L3

JPO $+8

JPE L4

JP GAMMA

JM al

CALL S1

CNZ S2

Jump unconditionally to label

Jump on nonzero condition to label

Jump on zero condition to label

Jump no carry to label

Jump on carry to label

Jump on parity odd to label

Jump on even parity to label

Jump on positive result to label

Jump on minus to label.

Call subroutine unconditionally

Call subroutine on nonzero

cz
CNC

CC

CPO

CPE

CP

CM

RST

RET

RNZ

RZ

RNC

RC

RPO

RPE

RP

RM

CZ 1 OOH

CNC S1+4

CC S3

CPO $+8

CPE S4

CP GAMMA

CM b l $c2

RST 0

Call subroutine o

Call subroutine if no carry set

Call subroutine if carry set

Call subroutine if parity odd

Call subroutine if parity even

Call subroutine if positive result

Call subroutine if minus flag.

Programmed restari, equivale
CALL S"e3, except one byte call.

Return from subroutine

Return if nonzero flag set

Return if zero flag set

Return if no carry

Return if carry flag set

Return if parity is odd

Return if parity is even

Return if positive result

Return if minus flag is set.

3.5.2 Immediate Operand Instructions

Several instructions are available that load single or double precision registers or
single precision memory cells with constant values, along with instructions that perform
immediate arithmetic or logical operations on the accumulator (register A).

MVI e3,e8

ACI e8

SUI e8

SBI e8

XRI e8

MVI B,255 Move immediate data to register
A ,B ,C ,D,E ,H ,L ,o r

AD1 1 Add immediate operand to A with-
out carry

ACI OFFH Add immediate operand to A with
carry

S U I L + 3 Subtract from A without borrow
(carry)

SBl L AND l l B Subtract from A with borrow
(carry)

AN1 $ AND 7FH Logical "and" A with immediate
data

XRl 1111 B "Exclusive or" A with immediate
data

OR1 e8 OR1 L AND 1 +1 Logical "or" A with immediate data

CPI e8

LXI e3,e16

CPI 'a' Compare A with immediate data
(same as SUI except register A not
changed).

LXI B,100H Load extended immediate to regis-
ter pair (e3 must be equivalent to
B,D,H, or SF).

3.5.3 Increment and Decrement Instructions

The 8080 provides instructions for incrementing or decrementing single and double
precision registers. The instructions are

INR e3

DCR e3

INX e3

DCX e3

INR E Single precision increment register
(e3 produces one of A, B, C, D, E,
H, L, M)

DCR A Single precision decrement regis-
ter (e3 produces one of A, B, C, D,
E, H, L, M)

INX SP Double precision increment regis-
ter pair (e3 must be equivalent to
B,D,H, or SP)

DCX B Double precision decrement regis-
ter pair (e3 must be equivalent to
B,D,H, or SP).

3.5.4 Data Movement Instructions

Instructions that move data from memory to the CPU and from CPU to memory are
given below.

MOV 63333

LDAX e3

LHLD el6

SHLD el6

LDA el6

MOV A,B

LDAX B

LHLD L1

SHLD L5+x

LDA Gamma

Move data to leftmost element
from rightmost element (e3 produ-
ces one of A,B,C,D,E,H,L, or M).
MOV M,M is disallowed

Load register A from computed
address (e3 must produce either B
or D)

Store register A to computed
address (e3 must produce either B
or Di

Load HL direct from location e l 6
(double precision load to H and L)

Store HL direct to location e l 6
(double precision store from H and
L to memory)

Load register A from address e l 6

STA e l6

POP e3

PUSH e3

IN e8

OUT e8

XTH L

PCHL

SPHL

XCHG

STA X3-5

POP PSW

PUSH B

IN 0

OUT 255

Store register A into memory at
e l 6

Load register pair from stack, set
SP je3 must produce one of B, D,
H, or PSW)

Store register pair into stack, set
SP (e3 must produce one of B, D,
H, or PSW)

Load register A with data from
port e8

Send data from register A to port
e8

Exchange data from top of stack
with HL

Fill program counter with data
from HL

Fill stack pointer with data from
HL

Exchange DE pair with HL pair

3.5.5 Arithmetic Logic Unit Operations

Instructions that act upon the single precision accumulator to perform arithmetic and
logic operations are

ADD e3

ADC e3

SUB e3

SBB e3

ANA e3

XRA e3

ORA e3

CMP e3

DAA

CMA

ADD B

ADC L

SUB H

SBB 2

ANA 1+1

XRA A

ORA B

CMP H

Add register given by e3 to accum-
ulator without carry (e3 must pro-
duce one of A, B, C, D, E, H, or L)

Add register to A with carry, e3 as
above

Subtract reg e3 from A without
carry, e3 is defined as above

Subtract register e3 from A with
carry, e3 defined as above

Logical "and" reg with A, e3 as
above

"Exclusive or" with A, e3 as above

Logical "or" with A, e3 defined as
above

Compare register with A, e3 as
above

Decimal adjust register A based
upon last arithmetic logic unit
operation

Complement the bits in register A

s-rc
CMC

RLC

R R C

R AL

RAR

DAD e3

Set the carry flag to 1

f omplement the carry flag

Rotate bits left, (re)set carry as a
side effect (high order A bit
becomes carry)

Rotate bits right, (re)set carry as
side effect (low order A bit
becomes carry)

Rotate carryiA register to left

(carry is involved in the rotate)

DAD B Double precision add register pair
e3 to HL (e3 must produce B, D, H,
or SP).

aining instructions categorized as control instructions are

H LT

D I

El

NOP

Halt the SOSO processor

Disable the interrupt system

Enable the interrupt system

No operation.

When errors occur within the assembly language program, they are listed as single
character flags in the leftmost position of the source listing. The line in error is also
echoed at the console so that the source listing need not be examined to determine if
errors are present. The error codes are

D Data error: element in data statement cannot be placed in the
specified data area.

E Expression error: expression is ill-formed and cannot be computed
at assembly time.

L Label error: label cannot appear in this context (may be dupiicate
label).

Not implemented: features that tviI1 appear in future ASM versions
(e.g., macros) are recognized, but flagged in this version.

0 Overflow: expression is too complicated (i.e., too many pending
operators) to be computed and should be simplified.

P Phase error: tabel does not have the same value on two subsequent
passes through the program.

R Register error: the value specified as a register is not compatible
with the operation code.

S Syntax error: statement is not properly formed.

V Value error: operand encountered in expression is improperly
formed.

Several error messages are printed that are due to terminal error conditions:

NO SOURCE FlLE PRESENT

NO DIRECTORY SPACE

SOURCE FlLE NAME ERROR

SOURCE FlLE READ ERROR

OUTPUT FlLE WRITE ERROR

CANNOT CLOSE FlLE

The file specified in the ASM com-
mand does not exist on disk.

The disk directory is full; erase files
that are not needed and retry.

Improperly formed ASM file name
(e.g., it is specified with ? fields).

Source file cannot be read properly
by the assembler; execute a TYPE
to determine the point of error.

Output files cannot be written
properly; most likely cause is a full
disk; erase and retry.

Output file cannot be closed; check
to see if disk is write protected.

The following session shows interaction with the assembler and debugger in the
development of a simple assembly language program. The J arrow represents a carriage
return keystroke.
A>ASM SORT + Assemble SORT.ASM

CP/M ASSEMBLER - VER 1.0

015C Next free address
003H USE FACTOR Percent of table used 00 to f f (hexadecimal)
END OF ASSEMBLY

A>DIR SORT.?

SORT ASM Source file
SORT BAK Backup from last edit
SORT PRN Print file (contains tab characters)

EX Machine code file

START AT THE BEGINNING OF THE TRANSIENT
PROGRAM AREA

Machine code location
01 00-+-' ORG 1 OOH

Generated machine code
01 00 214601&0~~: LXI H,SW ;ADDRESS SWITCH TOGGLE
0103 3601 MVl M,1 ;SET TO 1 FOR FIRST ITERATION
0105 214701 LXI H,I ;ADDRESS INDEX
01 08 3600 MVI M,O ;I = 0

OlOA 7E COMPL:
01 0B FE09
010D D21901

Truncated ;
0119 \

5F16002148 CONT:
01 21 4E792346

COMPARE I WlTH ARRAY SIZE
MOV A,M ;A REGISTER = I
CPI N-1 ;CY SET IF I < (N-1)
JNC CONT ;CONTINUE IF I < = (N-2)

END OF ONE PASS THROUGH DATA
LXI H,SW ;CHECK FOR ZERO SWITCHES
MOV A, M! ORA A! JNZ SORT ;END OF SORT IF SW=O

RST 7 ;GO TO THE DEBUGGER INSTEAD OF REB

CONTINUE THIS PASS
ADDRESSING I, SO LOAD AV(I) INTO REGISTERS

MOV E, A! MVI D, O! LXI H, AV! DAD D! DAD D
MOV C, M! MOV A, C! INX H! MOV B, M
LOW ORDER BYTE IN A AND C, HIGH ORDER BYTE IN B

MOV H AND L TO ADDRESS AV(I+l)
INX H

COMPARE VALUE WlTH REGS CONTAINING AV (I)
SUB M! MOV D, A! MOV A, B! INX H! SBB M ;SUBTRACT

BORROW SET IF AV(I+l) 3 AV(I)
JC lNCl ;SKIP IF IN PROPER ORDER

CHECK FOR EQUAL VALUES
ORA D! JZ INCl ;SKIP IF AV(I) = AV(I+1)
MOV D, M! MOV M, B! DCX H! MOV E, M
MOV M, C! DCX H! MOV M, D! DCX H! MOV M, E

INCREMENT SWITCH COUNT
LXI H.SW! INR M

INCREMENT I
013F 21470134C31NCI: LXI H,I! INR M! JMP COMP

DATA DEFINITION SECTION
0146 00 SW: DB 0 ;RESERVE SPACE FOR SWITCH COUNT
01 47 I : DS 1 ;SPACE FOR INDEX
0148 050064001 EAV: DW 5, 100, 30, 50, 20, 7, 1000, 300, 100, -32767

EQU ($-AV)I2 :ei2 = \ END
;COMPUTE N INSTEAD OF PRE

A>TYPE SORT.HEX Equate value

:07014000470134C30A01006E Machine code in
:1 OOl48OOO5OO64OOl E00320014000700E8032C01 BB
:0401580064000180BE
:0000000000 J
A>DDT SORT.HEXf Start debug run

16K DDT VER 1.0
NEXT PC
015C 0000 Default address (no address on END statement)
-x P,!

P=OOOO 100, Change PC to 100

-UFFFFf Untrace for 65535 steps
Abort with rubout\

COZOMOEOIO A=OO B=0000 D=0000 H=0000 S=0100 P=0100 LXI H,0146*0100
-TlOf Trace 1016 steps

COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H, 0146
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M, 01
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H, 0147
COZOMOEOIO A=O1 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M, 00
COZOMOEOIO A=O1 B=0000 D=0000 H=0147 S=0100 P=OIOA MOV A, M
COZOMOEOIO A=OO B=0000 D=0000 H=0147 S=0100 P=OlOB CPI 09
ClZOMlEOIO A=OO B=0000 D=0000 H=0147 S=0100 P=OlOD JNC 0119
ClZOM1 EOIO A=OO B=0000 D=0000 H=0147 S=0100 P=0110 LXI H, 0146
ClZOMlEOIO A=OO B=0000 D=0000 H=0146 S=0100 P=0113 MOV A, M
ClZOMlEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0114 ORA A
COZOMOEOIO A=O1 B=0000 D=0000 H=0146 S=0100 P=0115 JNZ 0100
COZOMOEOIO A=O1 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H, 0146
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M, 01
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H, 0147
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M, 00
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S=0100 P=OlOA MOV A, M*010B
-AlOD Stopped a t 1 0 ~ ~ ~

OlOD JC 119i Change to a jump on carry
O l l O f

P=OlOB 1 O O i Reset program counter back to beginning of program

-T10+ Trace execution for IOH steps
Altered instruction

COZOMOEOIO A=OO B=0000 D=0000 H=0147 S=0100 P=0100 LXI H,0146
COZOMOEOIO A=OO B=0000 D=0000 H=0146 S=0100 P=0103 MVI M,01
COZOMOEOIO A=OO B=0000 D=0000 H=0146 S=0100 P=0105 LXI H,0147
COZOMOEOIO A=OO B=0000 D=0000 H=0147 S=0100 P=0108 MVI M,OO
COZOMOEOIO A=OO B=0000 D=0000 H=0147 S=0100 P=OlOA MOV A,M
COZOMOEOIO A=OO B=0000 D=0000 H=0147 S=0100 P=010B CPI 09
ClZOMlEOlO A=OO B=0000 D=0000 H=0147 S=0100 P=OlOD JC 0119-
ClZOMlEOIO A=OO B=0000 D=0000 H=0147 S=0100 P=0119 MOV E,A
ClZOMlEOlO A=OO B=0000 D=0000 H=0147 S=0100 P=OllA MVI D,OO

OM1 EOIO A=OO B=OOGO
OMlEGI0 A=OO B=0000
OMIEOIO A=OO B=0000

COZOM1 EOIO A=OO B=0000
COZOMlEOlO A=OO B=0005
COZOMl EOIO A=05 B=0005
COZOMl EOIO A=05 B=0005
-L1 oo+

LXI H,0146
MVI M,Ol
LXI H,0147
MVl M,OO
MOV A,M
CPI 09
JC 0119
LXI H,0146
MOV A,M
ORA A
JNZ 0100

D=0000 H=0147 S=0100 P=OllC LXI H,0148
D=0000 H=0148 S=0100 P=OllF DAD D
D=0000 H=0148 S=0100 P=0120 DAD D
D=0000 H=0148 S=0100 P=0121 MOV C,M
D=0000 H=0148 S=0100 P=0122 MOV A,C
D=0000 H=0148 S=0100 P=1023 INX H
D=0000 H=0149 S=0100 P=0124 MOV B,

Automatic breakpoint YO1 25

List some code
from IOOH

01 19 MOV €,A List more
011A MVI D,OO
01 l C LXI H,0148)

-Abort list with rubout
, I 1 Bf Start program from current PC (0125H) and run in real time to 11BH

*a127 Stopped with an external interrupt 7 from front panel (program was
looping indefinitely)

-T41 Look at looping program in trace mode,
t

COZOMOEOIO A=38 B=0064 D=0006 H=0156 S=0100 P=0127 MOV D,A
COZOMOEOIO A=38 B=0064 D=3806 H=0156 S=0100 P=0128 MOV A,B
COZOMOEOIO A=OO B=0064 D=3806 H=0156 S=0100 P=0129 INX H
COZOMOEOIO A=OO B=0064 D=3806 H=0157 S=0100 P=012A SBB Me012B
-0148

/Data are sorted, but program does not stop.
0148 05 00 07 00 14 00 1E 00
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.D.D.,

- 6 0 f Return to CP/M

A> 01719 SORT. WEXI/ Reload the memory image

16K DDT VER. 1.0
NEXT PC
O15C 0000
-XP

P=0000 100f Set PC to beginning of program

-LIOD+ List bad OPCODE

OlOD JNC0119
/

0110 LXI H,0146
-Abort list with rubout
-AlODr Assemble new OPCODE

OlOD JC 119+

-L100+ List starting section of program

0100 LXI H,0146
0103 MVI M,01
0105 LXI H,0147
0108 MVI M,OO

-Abort list with rubout
-A103+ Change switch initialization to OO

0103 MVI M,O+

-^ C Return to CP/M with ctl-C (GO works as well)

SAVE 1 SORT.COM+ Save 1 page (256 bytes, from lOOH to IffH) on disk in case
there is need to reload later

A>DDT SORT.COM+ Restart DDT with saved memory image

16K DDT VER 1.0
NEXT PC
0200 0100 COM file always starts with address IOOH

-G j Run the program from PC=lOOH

*01 I 8 Programmed stop (RST 7) encountered
-Dl48

/Data properly sorted
. 0148 05 00 07 00 14 00 1E 0 0 . .

0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.D.D..

-GO) Return to CPiM

W E D SORT.ASMi Make changes to original program

*N,O "ZOTTf Find next ",O"
MVI M, 0 ;I = 0

*-$ Up one line in text
LXI H, I ;ADDRESS INDEX

*-IC Up another line
MVI M, 1 ;SET TO 1 FOR FIRST ITERATION

*KTi Kill line and type next line
LX I H, I ;ADDRESS INDEX

*I+ Insert new line
MVI M, 0 ;ZERO SW

*Tt
LX I H, I ;ADDRESS INDEX

*NJNC ̂ ZOTj
JNC*T+
CONT ;CONTINUE IF I <= (N-2)

*-2DIC ̂ ZOLT+
JC CONT ;CONTINUE IF I <= (N-2)

* b Source from disk A
t- HEX to disk A

A>ASM S O R T . A A Z r Skip PRN file

CP/M ASSEMBLER - VER 1.0

015C Next address to assemble
003H USE FACTOR
END OF ASSEMBLY

A>DDT SORT.HEX+ Test program changes

16K DDT VER 1.0
NEXT PC
015C 0000
-G loo$

*0118
-D l48+

/Data sorted
. 0148 05 00 07 00 14 00 1E 00

0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2.0.0.
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00.

-Abort with rubout

-GOi Return to CP/M--program checks OK.

CP/M Dyn 0

Debugging

4.1 Introduction
The DDT program allows dynamic interactive testing and debugging of programs

generated in the CP/M environment. Invoke the debugger with a command of one of the
following forms:

DDT

DDT filename.HEX

DDT filename.COM

where "filename" is the name of the program to be loaded and tested. In both cases, the
DDT program is brought into main memory in place of the Console Command Processor
(the user should refer to Chapter 5 for standard memory organization), and resides
directly below the Basic Disk Operating System portion of CP/M. The BDOS starting
address, located in the address field of the JMP instruction a t location 5H, is altered to
reflect the reduced Transient Program Area size.

The second and third forms of the DDT command perform the same actions as the
first, except there is a subsequent automatic load of the specified HEX or COM file. The
action is identical to the sequence of commands

DDT

1filename.HEX or Ifilename.COM

R

where the I and R commands set up and read the specified program to test. (The user
should see the explanation of the I and R commands below for exact details.)

Upon initiation, DDT prints a sign-on message in the format

DDT VER m.m

where rn.m it; the revision number

Following the sign-on message, DDT prompts the operator with the character "-"and
waits for input commands from the console. The operator can type any of several single
character commands, terminated by a carriage return to execute the command. Each line
of input can be line-edited using the standard CP/M controls

rubout remove the last character typed

ctl-U remove the entire line, ready for retyping

ctl-C system reboot.

Any command can be up to 32 characters in length (an automatic carriage return is
inserted as the 33rd character), where the first character determines the command type

A enter assembly language mnemonics with operands

D display memory in hexadecimal and ASCII

F fill memory with constant data

G begin execution with optional breakpoints

I set up a standard input file control block

L list memory using assembler mnemonics

M move a memory segment from source to destination

R read program for subsequent testing

S substitute memory values

T trace program execution

U untraced program monitoring

X examine and optionally alter the CPU state.

The command character, in some cases, is followed by zero, one, two, o r three hexade-
cimal values, which are separated by commas o r single blank characters. All DDT numeric
output is in hexadecimal form. The commands are not executed until the carriage return
is typed at the end of the command.

At any point in the debug run, the operator can stop execution of DDT by using either
a ctl-C or GO (jmp to location OOOOH), and save the current memory image by using a
SAVE command of the form

SAVE n filename.COM

where n is the number of pages (256 byte blocks) to be saved on disk. The number of blocks
is determined by taking the high order byte of the address in the TPA and converting this
number to decimal. For example, if the highest address in the Transient Program
Area is 1234H, the number of pages is 12H or 18 in decimal. The operator could type a
ctl-C during the debug run, returning to the Console Command Processor level, followed

by

SAVE 18 X.COM

The memory image is saved as X.COM on the diskette and can be directly executed by
typing the name X. If further testing is required, the memory image can be recalled by

typing

DDT X.COM

which reloads the previously saved program from location lOOH through page 18
(23FFH). The CPU state is not a part of the COM file; thus, the program must be
restarted from the beginning to test it properly.

DDT Commands
The individual commands are detailed below. In each case, the operator must wait for

the prompt character (-1 before entering the command. If control is passed to a program
under test and the program has not reached a breakpoint, control can be returned to DDT
by executing a RST 7 from the front panel. In the explanation of each command, the
command letter is shown in some cases with numbers separated by commas, and the
numbers are represented by lower case letters. These numbers are always assumed to be
in a hexadecimal radix and from one to four digits in length (longer numbers will be
automatically truncated on the right).

Many of the commands operate upon a "CPU state" that corresponds to the program
under test. The CPU state holds the registers of the program being debugged and initially
contains zeroes for ail registers and flags except for the program counter (P) and stack
pointer (S), which default to IOOH. The program counter is subsequently set to the
starting address given in the last record of a HEX file if a file of this form is loaded (see the
I and R commands).

4,2.1 The A (Assembly) Command

DDT allows in-line assembly language to be inserted into the current memory image
using the A command, that takes the form

where s is the hexadecimal starting address for the inline assembly. DDT prompts the
console with the address of the next instruction to fill and reads the console, looking for
assembly language mnemonics (see the Intel 8080 Assembly Language Reference Card
for a list of mnemonics), followed by register references and operands in absolute
hexadecimal form. Each successive load address is printed before reading the console. The
A command terminates when the first empty line is input from the console.

Upon completion of assembly language input, the operator can review the memory
segment using the DDT disassembler (see the L command).

The user should note that the assembleridisassembler portion of DDTcan be overlaid
by the transient program being tested, in which case the DDT program responds with an
error condition when the A and L commands are used.

4.2.2 The D (Display) Command

The D command allows the operator to view the contents of memory in hexadecimal
and ASCII formats. The forms are

In the first case, memory is displayed from the current display address (initially IOOH) and
continues for 16 display lines. Each display line takes the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc

where aaaa is the display address in hexadecimal and bb represents data present in
memory starting at aaaa. The ASCII characters starting at aaaa are to the right (repres-
ented by the sequence of c's), where nongraphic characters are printed as a period (.). The
user should note that both upper and lower case alphabetics are displayed, and will
appear as upper case symbols on a console device that supports only upper case. Each
display line gives the values of 16 bytes of data, with the first line truncated so that the
next line begins a t an address that is a multiple of 16.

The second form of the D command is similar to the first, except that the display
address is first set to address s. The third form causes the display to continue from
address s through address f . In all cases, the display address is set to the first address not
displayed in this command, so that a continuing display can be accomplished by issuing
successive D commands with no explicit addresses.

Excessively long displays can be aborted by pushing the return key.

4.2.3 The F (Fill) Command

The F command takes the form

where s is the starting address, f is the final address, andc is a hexadecimal byte constant.
DDT stores the constant c a t address s, increments the value of s and tests against f. If s
exceeds f, the operation terminates, otherwise the operation is repeated. Thus, the fill
command can be used to set a memory block to a specific constant value.

.2A The G (Go) Command

A program is executed using the G command, with up to two optional breakpoint
addresses. The G command takes the forms

G

G s

Gs, b

The first form executes the program at the current value of the program counter in the
current machine state, with no breakpoints set (the only way to regain control In DDTis
through a RST 7 execution). The current program counter can be viewed by typing an X
or XP command. The second form is similar to the first except that the program counter
in the current machine state is set to address s before execution begins. The third form is
the same as the second, except that program execution stops when address b is encoun-
tered (b must be in the area of the program under test). The instruction at location b is not
executed when the breakpoint is encountered. The fourth form is identical to the third,
except that two breakpoints are specified, one at b and the other at c. Encountering either
breakpoint causes execution to stop, and both breakpoints are cleared. The last two forms
take the program counter from the current machine state and set one and two break-
points, respectively.

Execution continues from the starting address in real-time to the next breakpoint.
There is no intervention between the starting address and the break address by DDT. If
the program under test does not reach a breakpoint, control cannot return to DDT
without executing a RST 7 instruction. Upon encountering a breakpoint, DDT stops
execution and types

where d is the stop address. The machine state can be examined at this point using the X
(Examine) command. The operator must specify breakpoints that differ from the pro-
gram counter address at the beginning of the G command. Thus, if the current program
counter is 1234H, then the commands

G,1234

and

G400,400

both produce an immediate breakpoint without executing any instructions.

4.2.5 The I (Input) Command

The I command allows the operator to insert a file name into the default file control
block at 5CH (the file control block created by CP/M for transient programs is placed at
this location; see Chapter 5). The default FCB can be used by the program under test as if
it had been passed by the CP/M Console Processor. The user should note that this file
name is also used by DDT for reading additional HEX and COM files. The form of the I
command is

lfilename

If the second form is used and the filetype is either HEX or COM, subsequent R
commands can be used to read the pure binary or hex format machine code. (Section 4.2.8
gives further details.)

e L (List) Command

The L command is used to list assembly language mnemonics in a particular program
region. The forms are

The first form lists twelve lines of disassembled machine code from the current list
address. The second form sets the list address to s and then lists twelve lines of code. The
last form lists disassembled code from s through address f. In all three cases, the list
address is set to the next unlisted location in preparation for a subsequent L command.
Upon encountering an execution breakpoint, the list address is set to the current value of
the program counter (G and T commands). Again, long typeouts can be aborted using the
return key during the list process.

The M (Move) Command

command allows block movement of program or data areas from one location
to another in memory. The form is

where s is the start address of the move, f is the final address, and d is the destination
address. Data are first removed from s to d, and both addresses are incremented. If s
exceeds f , the move operation stops; otherwise, the move operation is repeated.

The R (Read) Command

The R command is used in conjunction with the I command to read C O M and HEX
files from the diskette into the transient program area in preparation for the debug run.
The forms are

where b is an optional bias address that is added to each program or data address as it is
loaded. The load operation must not overwrite any of the system parameters from OOOH

FW (i.e., the first page of memory). If b is omitted, then b=oooo is assumed.
and requires a previous I command, specifying the name of a HEX or COM
address for each record is obtained from each individual HEX record, while

d load address of IOOH is used for CO files. The user should note that any
R commands can be issued following the I command to reread the program

ssuming the tested program does not destroy the default area a t 5CH. Any
file specified with the filetype "COM" is assumed to contain machine code in pure binary

(created with the LOAD or SAVE command), and all others are assumed to contain
ine code in Intel hex format (produced, for example, with the ASM command.)

Recall that the command

DDT filename.filetype

which initiates the DDT program, is equivalent to the commands

DDT

-1filename.filetype

-R

Whenever the R command is issued, DDT responds with either the error indicator "?"
(file cannot be opened, or a checksum error occurred in a HEX file), or with a load message
taking the form

NEXT PC

nnnn PPPP

where nnnn is the next address following the loaded program and pppp is the assumed
program counter (lO0H for C O M files, or taken from the last record if a HEX file is
specified).

4.2.9 The S (Set) Command

The S command allows memory locations to be examined and optionally altered. The
form of the command is

where s is the hexadecimal starting address for examination and alteration of memory.
DDT responds with a numeric prompt, giving the memory location, along with the data
currently held in memory. I f the operator types a carriage return, the data are not altered.
If a byte value is typed, the value is stored at the prompted address. In either case, DDT
continues to prompt with successive addresses and values until either a period (.) is typed
by the operator o r an invalid input value is detected.

4.2.1 0 The T (Trace) Command

The T command allows selective tracing of program execution for 1 to 65535 program
steps. The forms are

In the first case, the CPU state is displayed and the next program step is executed. The
program terminates immediately, with the termination address displayed as

where hhhh is the next address to execute. The display address (used in the Dcommand)
is set to the value of H and L, and the list address (used in the L command) is set to hhhh.
The CPU state at program termination can then be examined usin

The second form of the T command is similar to the first, except that execut~on is
traced for n steps (n is a hexadecimal value) before a program breakpoint occurs. A
breakpoint can be forced in the trace mode by typing a rubout character. The CPU state is
displayed before each program step is taken in trace mode. The format of the d~splay is the
same as described in the X command.

The user should note that program tracing is discontinued a t the CP/M interface and
resumes after return from CP/M to the program under test. Thus, CP/M functions that
access 1 1 0 devices, such as the diskette drive, run in real-time, avoiding IIO timing
problems. Programs running in trace mode execute approximately 500 times slower than
real-time since DDT gets control after each user instruction is executed. Interrupt
processing routtnes can be traced, but commands that use the breakpoint facility (G, T,
and U) accomplish the break using an RST 7 instruction, which means that the tested
program cannot use this interrupt location. Further, the trace mode always runs the
tested program with interrupts enabled, which may cause problems if asynchronous
interrupts are received during tracing.

The operator should use the return key to get control back t o DDT during trace,
rather than executing an RST 7, to ensure that the trace for current instruction is
completed before interruption.

4.2.1 1 The U (Untrace) Command

The Ucommand is identical to the T command except that intermediate program steps
are not displayed. The untrace mode allows from 1 to 65535 (OFFFFH) steps to be
executed in monitored mode and is used principally to retain control of an executing
program while it reaches steady state conditions. All conditions of the Tcommand apply
to the U command.

4.2.1 2 The X (Examine) Command

The X command allows selective display and alteration of the current CPU state for
the program under test. The forms are

where r is one of the 8080 CPU registers

Carry flag

Zero flag

Minus flag

Even parity flag

Interdigit carry

Accumulator

BC register pair

DE register pair

HL register pair

Stack pointer

Program counter

(0/1)

W 1)

(0/7

(011 1
(Oil)

(0-FF)

(O-FFFF)

(0-FFFF)

(O-FFFF)

(0-FFFF)

JO-FFFF)

In the first case, the CPU register state is displayed in the format

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a double-byte quantity
corresponding to the register pair. The "inst" field contains the disassembled instruction,
which occurs at the location addressed by the CPU state's program counter.

The second form allows display and optional alteration of register values, where r is
one of the registers given above (C, Z, M, E, I, A, B, D, H, S, or P). In each case, the flag or
register value is first displayed at the console. The DDT program then accepts input from
the console. If a carriage return is typed, the flag or register value is not altered. If a value
in the proper range is typed, the flag or register value is altered. The user should note that
BC, DE, and HL are displayed as register pairs. Thus, the operator types the entire
register pair when B, C, or the BC pair is altered.

Implementation Notes
The organization of DDT allows certain nonessential portions to be overlaid to

gain a larger transient program area for debugging large programs. The DDT program
consists of two parts: the DDT nucleus and the assembler/disassembler module. The
DDT nucleus is loaded over the Console Command Processor, and, although loaded with
the DDT nucleus, the assernblerldisassembler is overlayable unless used to assemble or
disassemble.

In particuiar, the BDOS address at location 6H (address field of the JMP instruction at
location 5H) is modified by DDT to address the base location of the DDT nucleus, which,
in turn, contains a JMP instruction to the BDOS. Thus, programs that use this address
field to size memory see the logical end of memory at the base of the DDT nucleus rather
than the base of the BDOS.

The assemblerldisassembler module resides directly below the DDT nucleus in the
transient program area. If the A, L, T, o r X commands are used during the debugging
process, the DDT program again alters the address field a t 6H to include this module,
further reducing the logical end of memory. If a program loads beyond the beginning of
the assemblerldisassembler module, the A and L commands are lost (their use produces a
' I?" in response) and the trace and display (T and X) commands list the "inst" field of the
display in hexadecimal, rather than as a decoded instruction.

An Example
The following example shows an edit, assemble, and debug for a simple program that

reads a set of data values and determines the largest value in the set. The largest value is
taken from the vector and stored into "LARGE" at the termination of the program

D E D SCAN.ASM Create source program;
"f" represents carriage return.

LOOP
LOOP:

NFOUND

; J
; J
VECT:
LEN
LARGE:

t-Z
*BOP f

LOOP:

NFOUND:

78

ORG 1 -0OH ;START OF TRANSIENT
;AREA +

MVI B, LEN ;LENGTH OF VECTOR TO SCAN#
MVI C, 0 ;LARGER-RST VALUE SO FAR#
LXI H, VECT ;BASE OF VECTOR+
MOV A, M ;GET VALUE J
SUB C ;LARGER VALUE IN C?J
JNC NFOUND ;JUMP IF LARGER VALUE NOT

;FOUND#
NEW LARGEST VALUE. STORE IT TO C J
MOV C, A
INX H ;TO NEXT ELEMENTJ
DCR B ;MORE TO SCAN? J
JNZ LOOP ;FOR ANOTHER #

END OF SCAN, STORE C +
MOV A, C ;GET LARGEST VALUE J
STA LARGE J
JMP 0 ;REBOOT J

TEST DATA
DB 2,0,4,3,5,6,1,5
EQU $-VECT ;LENGTH
DS 1 ;LARGEST VALUE ON EXlTJ
END I

ORG 1 OOH ;START OF TRANSIENT AREA
MVI B, LEN ;LENGTH OF VECTOR TO SCAN
MVI C,O ;LARGEST VALUE SO FAR
LXI H,VECT ;BASE OF VECTOR
MOV A,M ;GET VALUE
SUB C ;LARGER VALUE IN C?
JNC NFOUND ;JUMP IF LARGER VALUE NOT

; FOUND
NEW LARGEST VALUE, STORE IT TO C
MOV C,A
INX H ;TO NEXT ELEMENT
DCR B ;MORE TO SCAN?
JNZ LOOP ;FOR ANOTHER
END OF SCAN, STORE C
MOV A,C ;GET LARGEST VALUE
STA LARGE
JMP 0 ;REBOOT

TEST DATA

VECT: D 6 2,0,4,3,5,6,1,5
LEN EQU $-VECT ;LENGTH
LARGE: DS 1 ;LARGEST VALUE ON EXIT

END
*Ei-End of edit

D A S M SCAN J Start Assembler

CP/M ASSEMBLER - VER 1.0

01 22
002H USE FACTOR
END OF ASSEMBLY Assembly complete; lock at program listing

Code address Source program
01 oo---
0100 0608
01 02 OEOO Machine code
0104 211901
0107 7E LOOP:
0108 91
0109 D20D01

OlOC 4F

ORG lOOH ;START OF TRANSIENT AREA
MVI 6,LEN ;LENGTH OF VECTOR TO SCAN
MVI C,O ;LARGEST VALUE SO FAR
LXI H,VECT. ;BASE OF VECTOR
MOV A,M ;GET VALUE
SUB C ;LARGER VALUE IN C?
JNC NFOUND ;JUMP IF LARGER VALUE NOT

;FOUND
NEW LARGEST VALUE, STORE IT TO C
MOV C, A

OlOD 23 NF0UND:INX H ;TO NEXT ELEMENT
OlOE 05 DCR 6 ;MORE TO SCAN?
01OF C20701 JNZ LOOP ;FOR ANOTHER

END OF SCAN, STORE C
0112 79 MOV A, C ;GET LARGEST VALUE
0113 322101 STA LARGE

0116 C30000 JMP 0 ;REBOOT
Code-data listing ;
truncated TEST DATA

01 19 0 2 0 0 0 4 0 3 0 ~ VEcT: DB 2,0.4.3.5,6.1.5
0008 = Value of LEN EQU $-VECT ;LENGTH
0121 equate LARGE: DS 1 ;LARGEST VALUE ON EXIT
01 22 END

A>DDT SCAN.HEX+ Start debugger using hex format machine code

DDT VER 1.0
NEXT PC Next instruction
0121 0000 to execute a t
-X+ Y ~ a s t load address + 1

2
PC=,

COZOMOEOlO A=OO B=0000 D=0000 H=0000 S=0100 P=0000 OUT 7F
-XP J Examine registers before debug run

P=OO00 100 J Change PC to 100

-X # Look a t registers again

COZOMOEOIO A=OO B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,08
-L100+

PC changed.
2 ' Next instruction

01 00
Of 02
0104
0107
01 08
01 09
OlOC
OlOD
O1OE
01 OF
0112

-L J

MVI
MVI
LX I
MOV
SUB
JNC
MOV
INX
DCR
JMZ
MOV

to execute a t PC=100

Disassembled machine
code at IOOH
(see source listing
for comparison)

0113 STA
0116 JMP
01 19 STAX B
011A NOP A little more machine
Ol lB INR B code. Note that pro-
Ol lC INX B gram ends a t location
O l l D DCR B 116 with a JMP to
011E MVI 0000. Remainder of
0120 DCR B listing is assembly of
0121 LXI
0124 LXI H,0200

-A1 I6 + Enter in-line assembly mode to change the JMP to 0000 into a RST 7, which
will cause the program under test to return to DDT if 116H is ever executed.

01 16 RST 7

01 1i'J (Single carriage return stops assemble mode)

-Lf13$ List code a t 113H to check that RST 7 was properly inserted

STA 01 21
RST 07 in place of JMP
NOP
NOP
STAX B
NOP
IN R B
INX B

Look a t registers

COZOMOEOIO A=OO B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,08
-TJ

Execute Program for one stop. Initial CPU state, before is executed

-T J
/ COZOMOEOIO A=OO B=0000 D=0000 H=0000 S=0100 P=0100 MVl B,08*0102

Automatic breakpoint /

Trace one step again {note 0 8 H in B)
COZOMOEOIO A=OO B=0800 D=0000 H=0000 S=0100 P=0102 MVI C,00*0104
-T f

Trace again (Register C is cleared)
COZOMOEOIO A=OO B=0800 D=0000 H=0000 S=0100 P=0104 LXI H,0119*0107
-T3$ Trace three steps
COZOMOEOIO A=OO B=0800 D=0000 H=0119 S=0100 P=0107 MOV A,M
COZOMOEOIO A=02 B=0800 D=0000 H=0119 S=0100 P=0108 SUB C
COZOMOEOll A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JNC 010D*01OD

Display memory starting at 1 1 9 H Automatic breakpoint at lODH
f

00 04 03 05 06 09 . !%grim data Lowercase x \
. . 1 00 22 21 00 02 7E EB 77 13 23 EB OB @ B1 ! W . # . @

. 0130 C2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00 . ')
. 0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
. 0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Data ?re.di:p!ayed
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ??bsc!! ?Yi!l-!?.':.:'
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 p??!ti??.?!.
0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 np.ngrit~l?is.
OIAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 c!v??f!e:s..
OlBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OlCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
-x f

Current CPU state
COZOMOEOIl A=02 B=0800 D=0000 H=0119 S=0100 P=010D INX H
-T5 +

Trace 5 steps from current CPU state
COZOMOEOIl A=02 B=0800 0=0000 H=0119 S=0100 P=OlOD INX H
COZOMOEOIl A=02 B=0800 D=0000 H=OllA S=0100 P=OlOE DCR B
COZOMOEOIl A=02 B=0700 D=0000 H=O11A S=0100 P=010F JNZ 0107
COZOMOEOIl A=02 B=0700 D=0000 H=OllA S=0100 P=0107 MOV A,M
COZOMOEOIl A=OO B=0700 D=0000 H=O11A S=0100 P=0108 SUB C"0109
U5I Automatic breakpoint

Trace without listing intermediate states
f

COZ1 MOEl I1 A=OO B=0700 D=0000 H=O11A S=0100 P=0109 JNC 010D*0108

-x I
JCPU state at end of U5

COZOMOEl I1 A=04 B=0600 D=0000 H=Oll B S=0100 P=0108 SUB C

-Gf Run program from current PC until completion (in real-time)

* a l l 6 breakpoint at 116H, caused by executing RST 7 in machine code.

- x t
CPU state at end of program

COZ1 MOEl I1 A=OO B=0000 D=0000 H=0121 S=0100 P=Oll6 RST 07
-XP+

\ '~xamine and change program counter

P=0116 l O O J

COZIMOElI1 A=OO B=0000 D=0000 Hz0121 S=0100 P=0100 MVI 8,08
-TI OJ

First data element
rrent largest value

Subtract for
Trace 10 (hexadecimal) s

COZl MOEl I1 A=OO B=0800 21 S=0100 P=0100
COZl MOEl I1 A=OO =0121 S=0100 P=0102 MVI C,O
COZl MOEl I1 A=OO H=0121 S=0100 P=0104
COZl MOEl I1 A=OO H=0119 S=0100 P=0107 MOV
COZ1 MOEI I1 A= 000 H=0119 S=0100 P=0108 SUB C
COZOMOEOll A S=0100 P=0109 JNC OlOD
COZOMOEOll A=02 B=0800 D=0000 H=Oll9
COZOMOEOIl A=02 B=0800 D=0000 H=OllA S=0100 P=OlOE
COZOMOEOIl A=02 B=0700 D=0000 H=OllA
COZOMOEOll A=02 B=0700 D=0000 H=OllA
COZOMOEOll A=OO B=0700 D=0000 H=O11A
COZlMOElll A=OO B=0700 D=0000 H=OllA
COZlMOEl I1 A=OO B=0700 D=0000 H=OllA
COZl MOEl I1 A=OO B=0700 D=0000 Hz01 1 B
COZOMOEl ll A=OO B=0600 D=0000 H=OllB
COZOMOEl I1 A=OO B=0600 D=0000 H=O11B
-A1 09/ / Insert a "hot patch" into Program should have moved the

the machine code value from A into C since A>C.
O f O9 JC 'OD/ to change the Since this code was not executed,

JNC to JC it appears that the JNC should
OlOCi have been a JC instruction

-GO+ Stop DDT so that a version of
the patched program can be saved

O S A V E 1 SCAN.COM {Program resides on first
page, so save 1 page.

A>DDT SCAN.COM f
\ ~ e s t a r t DDT with the save memory

DDT VER 1.0 image to continue testing

NEXT PC
0200 01 00
-L100j List some code

MVI B,08
MVI C,OO
LXI H,0119
MOV A,M
SUB C
JC OlOD Previous patch is present in X.COM
MOV C,A
INX H
DCR B
JNZ 0107
MOV A,C

-TI0 J
Trace to see how patched version operates Data is moved from A to C

COZOMOEOIO A=OO B=0000 D=0000 H=0000 =0100 MVI B,08
COZOMOEOIO A=OO B=0800 D=0000 H= P=0102 MVI C,OO
COZOMOEOIO A=OO B=0800 D=0000 H= P=0104 LXI H,0119
COZOMOEOIO A=OO B=0800 D=000 S=0100 P=0107 MOV A,M
COZOMOEOIO A@ B=0800 19 S=0100 P=0108 SUB C
COZOMOEOI 1 A=02 =0800 L =a109 JC 010D
COZOMOEOIl A=02 B 800 0 H=0119 S=0100 P=010C MOV C,A
COZOMOEOIl A=02 B=O D=0000 H=0119 S=0100 P=OlOD INX H
COZOMOEOIl A=02 B=0802 0=0000 H=O11A S=0100 P=OlOE DCR B
COZOMOEOIl A=02 B=0702 D=0000 H=OllA S=0100 P=010F JNZ 0107
COZOMOEOll A=02 B=0702 D=0000 H=OllA S=0100 P=0107 MOV A,M
COZOMOEOIl A=OO B=0702 D=0000 H=OllA S=0100 P=0108 SUB C
ClZOMlEOlO A=FE B=0702 D=0000 H=OllA S=0100 P=0109 JC OlOD
ClZOMlEOlO A=FE B=0702 D=0000 H=OllA S=0100 P=010D INX H
ClZOMlEOIO A=FE B=0702 D=0000 H=O11B S=0100 P=Ol.OE DCR B
ClZOMOE111 A=FE B=0602 D=0000 H=OllB S=0100 P=OlOF JNZ 0107*0107
-X / Breakpoint after 16 steps/

ClZOMOE111 A=FE B=0602 D=0000 H=OllB S=0100 P=0107 MOV A,M
-G,108+ Run from current PC and breakpoint at 108H

*OlO8

-x f
Next data item

ClZOMOE111 A=04 B=0602 D=0000 H=OllB S=0100 P=O

-Ti
Single step for a few cycles

ClZOMOE111 A=04 B=0602 D=0000 H=O11 B S=0100 P=O
-T I

108 SUB C

108 SUB C*0109

COZOMOEOIl A=02 B=0602 D=0000 H=OllB S=0100 P=0109 JC 010D*010C
-x +
COZOMOEOI1 A=02 B=0602 D=0000 H=OllB S=0100 P=OlOC MOV C,A
-G f Run to completion

"0116

-x f

COZlMOE111 A=03 B=0003 D=0000 H=0121 S=0100 P=0116 RST 07
-S121f Look at the value of "LARGE"

01 21 0 3 ~ Wrong value!

0122 OOf

0123 22f

0124 21+

01 25

01 26

01 27

-L100+

01 00
01 02
01 04
01 07
01 08
0109
01 OC
01 OD
Of OE
OlOF
0112

-L f

01 13
0116
01 17
0118
01 19
O l lA
O l l B
O l lC
01lD
O l lE
01 20
-XP+

P=0116

oo+

02 t

~ E I I

MVI
MVI
LX I
MOV
SUB
JC
MOV
INX
DCR
JNZ
MOV

STA
RST
NOP
NOP
STAX
NOP
IN R
INX
DCR
MVI
DCR

End of the S command

100/ Reset the PC

Review the code

- T i
Single step, and watch data values

COZ1MOEIIl A=03 B=0003 D=0000 H=0121 S=0100 P=0100 MVI B,08*0102

-T f

COZ1 MOE111 A=03 B=0803 D=0000 H=0121 S=0100 P=0102 MVI C,00*0104

-T t
Count set "Largest" set

COZ1MOEllf A=03 f3=0800 DO000 H=0121 S=O100 P=0104 LXI H.0119*0107

- T i
J Base address of data set

COZ1MOE111 A=03 f3=0800 D=0000 H=0119 S=0100 P=0107 MOV A,M"0108

-9
J First data item brought to A

COZlMOElIl A=02 B=0800 D=0000 H=0119 S=0100 P=0108 SUB C*0109

-T i

COZOMOEOI 1 A=02 B=0800 D=0000 H=0119 S=0100 P=Ol OC MOV C,A*01 OD

-Ts
J First data item moved to C correctly

COZOMOEOll A=02 B=0802 D=0000 H=0119 S=0100 P=O1OD INX H*OlOE

COZOMOEOIl A=02 B=0802 D=0000 H=OllA S=O

COZOMOEOIl A=02 B=0702 D=0000 H=OlIA S=O
-T+

COZOMOEOIl A=02 B=0702 D=0000 H=OllA S=O -

00 P=010E DCR B"O1OF

00 P=010F JNZ 0107*0107

00 P=0107 MOV A,M"0108

- 1 $

J Second data item brought to A
COZOMOEOll A=OO B=0702 D=0000 H=OllA S=0100 P=0108 SUB C*0109

-Ts
Subtract destroys data value that was loaded!

ClZOMlEOlO A=FE B=0702 D=0000 H=OIlA S=0100 P=0109 JC 010D*010D

- T i

CIZOMlEOIO A=FE B=0702 D=0000 H=O11A S=0100 P=OlOD INX H"010E
-L100 f

0700 MVI
0102 MVI
0104 LXI
0107 MOV
0108 SUB
0109 JC
OlOC MOV
010D INX
010E DCR
010F JNZ
0112 MOV
-A108+

B-08
C,OO
H,Oll9
A'M This should have been a CMP so that register A
C-
01 OD would not be destroyed.

0108 CMP CI Hot patch at lO8H changes SUB to CMP

-GO+ Stop DDT for SAVE

A=. SAVE 1 SCAN.COM Save memory image

O D D T SCAN.COM+ Restart DDT

DDT VER 1.0
NEXT PC
0200 01 00
-XP/

0116 RST 07 1
0117 NOP
0118 NOP

Look at code to see if it was properly loaded

0119 STAX B (long typeout aborted with rubout)

Ol lA NOP I

-G,1 l 6 / Run from lOOH to completion

*Ol l6
-XC t Look at carry (accidental typo)

C l t
-X I, Look at CPU state

ClZlMOE111 A=06 B=0006 D=0000 H=0121 S=0100 P=0116 RST 07
-S121 f Look at *'large"-it appears to be correct.

-GO/ StopDDT

O E D SCAN.ASM / Re-edit the source program, and make both changes

*NSUB+
*OLT/

ctl-Z k SUB C ;LARGER VALUE IN C?
*SSUBIZCMPtZOLTj

CMP C ;LARGER VALUE IN C?
*

JNC NFOUND ;JUMP IF LARGER VALUE NOT FOUND
*SNC tZC tZOLTi

JC NFOUND ;JUMP IF LARGER VALUE NOT FOUND

*E I
Re-assemble, selecting source from disk A

D A S M SCAN.AAZ J -Hex to disk A
Print to Z (selects no print file)

CP/M ASSEMBLER VER 1.0

01 22
002H USE FACTOR
END OF ASSEMBLY

O D D T SCAN.HEX 1 Re-run debugger to check changes

DDT VER 1.0
NEXT PC
0121 0000
-L l l 6 J

0116 JMP 0000 Check to ensure end is still at 116H

OllA NOP
Ol lB INR B

-G100,1161 Go from beginning with breakpoint at end

*0116 Breakpoint reached
-Dl21 J Look at "LARGE"

Correct value computed
0121 @ W - 2 2 21 00 02 7E EB 77 13 23 EB OB 78 B1 . . ' ! . . . W . # . . X .
0130 C2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00 . ' . . .)
0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

- (rubout) Aborts long type-out

GO J Stop DDT, debug session complete.

2 Syste

Introduction
This chapter describes CP/M, release 2 , system organization including the structure

of memory and system entry points. The intention is to provide necessary information
required to write programs that operate under CPiMand that use the peripheral and disk
IIO facilities of the system.

CP/M is logically divided into four parts, called the Basic 110 System (BIOS), the Basic
Disk Operating System (BDOS), the Console Command Processor (CCP), and the
Transient Program Area (TPA). The BIOS is a hardware-dependent module that defines
the exact low level interface with a particular computer system that is necessary for
peripheral device 110. Although a standard BIOS is supplied by Digital Research, explicit
instructions are provided for field reconfiguration of the BIOS to match nearly any
hardware environment (see Chapter 6) . The BIOS and BDOS are logically combined into
a single module with a common entry point and referred to as the FDOS. The CCP is a
distinct program that uses the FDOS to provide a human-oriented interface with the
information that is cataloged on the backup storage device. The TPA is an area of memory
(i.e., the portion that is not used by the FDOS and CCP) where various nonresident
operating system commands and user programs are executed. The lower portion of
memory is reserved for system information and is detailed in later sections. Memory
organization of the CP/M system is shown below.

CBASE: w
(System Parameters I

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and FBASE
vary from version to version and are described fully in Chapter 6. A11 standard CP/M
versions, however, assume BOOT = OOOOH, which is the base of random access memory.
The machine code found at location BOOT performs a system "warm start," which loads
and initializes the programs and variables necessary to return control to the CCP. Thus,
transient programs need only jump to location BOOT to return control to CP/M at the
command level. Further, the standard versions assume TBASE = BOOT+0100H, which is
normally location 0100H. The principal entry point to the FDOS is at location
BOOT+O005H (normally 0005H) where a jump to FBASE is found. The address field at
BOOT+0006H (normally 0006H) contains the value of FBASE and can be used to
determine the size of available memory, assuming that the CCP is being overlayed by a
transient program.

Transient programs are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each prompt. Each
command line takes one of the forms:

command

command filel

command filel file2

where "command" is either a built-in function such as DIR or TYPE or the name of a
transient command or program. If the command is a built-in function of CP/M, it is
executed immediately. Otherwise, the CCP searches the currently addressed disk for a
file by the name

If the file is found, it is assumed to be a memory image of a program that executes in the
TPA and thus implicitly originates at TBASE in memory. The CCP loads the COM file
from the disk into memory starting at TBASE and can extend up to CBASE.

If the command is followed by one or two file specifications, the CCP prepares one or
two file control block (FCB) names in the system parameter area. These optional FCBs are
in the form necessary to access files through the FDOS and are described in the next
section.

The transient program receives control from the CCP and begins execution, using the
I 1 0 facilities of the FDOS. The transient program is "called" from the CCP. Thus, it can

return to the CCP upon completion of its processingorcan jump to BOOT to pass
control back to CP/M. In the first case, the transient program must not use memory
above CBASE, while in the latter case, memory up through FBASE-1 can be used.

The transient program can use the CP/M 110 facilities to communicate with the
operator's console and peripheral devices, including the disk subsystem. The 110 system
is accessed by passing a function number and an information address to CPiM through
the FDOS entry point at BOOT+0005H. In the case of a disk read, for example, the
transient program sends the number corresponding to a disk read, along with the address
of an FCB to the CP/M FDOS. The FDOS, in turn, performs the operation and returns
with either a disk read completion indication or an error number indicating that the disk
read was unsuccessful.

This section provides detailed information for performing direct operating system
calls from user programs. Many of the functions listed below, however, are accessed
more simply through the IiO macro library provided with the MAC macro assembler and
listed in the Digital Research manual entitled, &f24C Macro Assembler: Language Manual and
Applications Guide.

CP/M facilities that are available for access by transient programs fall into two general
categories: simple device IiO and disk file $10. The simple device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character

Write a Sequential Tape Character

Write a List Device Character

Get or Set I/O Status

Print Console Buffer

Read Console Buffer

lnterrogate Console Ready

The FDOS operations that perform disk 110 are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read

Random or Sequential Write

lnterrogate Available Disks

lnterrogate Selected Disk

Set DMA Address

Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished by passing a
function number and information address through the primary point at location
BOOT+OOO5H. In general, the function number is passed in register C with the informa-
tion address in the double byte pair DE. Single byte values are returned in register A, with
double byte values returned in HL (a zero value is returned when the function number is
out of range). For reasons of compatibility, register A = L and register B = H upon return
in all cases. The user should note that the register passing conventions of CP/M agree
with those of Intel's PL/M systems programming language. CP/M functions and their
numbers are listed below

System Reset
Console Input
Console Output
Reader Input
Punch Output
List Output
Direct Console I 1 0
Get 110 Byte
Set I 1 0 Byte
Print String
Read Console Buffer
Get Console Status
Return Version Number
Reset Disk System
Select Disk
Open File
Close File
Search for First
Search for Next

Delete File
Read Sequential
Write Sequential
Make File
Rename File
Return Login Vector
Return Current Disk
Set DMA Address
Get Addri Alloc)
Write Protect Disk
Get RiO Vector
Set File Attributes
Get Addr(Disk Parms)
SetiGet User Code
Read Random
Write Random
Compute File Size
Set Random Record
Reset Drive
Write Random with Zero Fill

(Functions 28 and 32 should be avoided in application programs to maintain upward
compatibility with CP/M.)

Upon entry to a transient program, the CCP leaves the stack pointer set to an
eight-level stack area with the CCP return address pushed onto the stack, leaving seven
levels before overflow occurs. Although this stack is usually not used by a transient
program (i.e., most transients return to the CCP through a jump to location OOOOH), it is
sufficiently large to make CP/M system calls since the FDOS switches to a local stack at
system entry. The assembly language program segment below, for example, reads
characters continuously until an asterisk is encountered, at which time control returns to
the CCP (assuming a standard CP/M system with BOOT = 0000H).

BDOS EQU 00051-1 ;STANDARD CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION

ORG OlOOH ;BASE OF TPA
N EXTC: MVI C,CONIN ;READ NEXT CHARACTER

CALL BDOS ;RETURN CHARACTER IN <A>
CPI I* t ;END OF PROCESSING?
JNZ NEXTC ;LOOP IF NOT
R ET ;RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a logical organization
that allows any articular file to contain any number of records from completely empty to
the full capacity of the drive. Each drive is logically distinct with a disk directory and file
data area. The disk file names are in three parts: the drive select code, the filename
consisting of one to eight nonblankcharacters, and the filetype consisting of zero to three
nonblank characters. The filetype names the generic category of a particular file, while
the filename distinguishes individual files in each category. The filetypes listed below
name a few generic categories that have been established, although they are somewhat
arbitrary.

ASM Assembler Source
PRN Printer Listing
HEX Hex Machine Code
BAS Basic Source File
INT Intermediate Code
COM Command File

PLI PLiI Source File
REL Relocatable Module
TEX TEX Formatter Source
BAK ED Source Backup
SYM SID Symbol File
$$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each "line" of the
source file is followed by a carriage-return line-feed sequence JODH followed by OAH).
Thus one 128-byte CP/M record could contain several lines of source text. The end of an
ASCII file is denoted by a control-Z character (1AH) or a real end-of-file returned by the
CP/M read operation. Control-Z characters embedded within machine code files (e.g.,
COM files) are ignored, however, and the end-of-file condition returned by CPI
to terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65536 records of I28 bytes each,
numbered from 0 through 65535, thus allowing a maximum of 8 megabytes per file.
However, the user should note that although the records may be considered logically
contiguous, they may not be physically contiguous in the disk data area. Internally, all
files are divided into 16K byte segments called logical extents, so that counters are easily
maintained as &bit values. The division into extents is discussed in the paragraphs that
follow; however, they are not particularly significant for the programmer, since each
extent is automatically accessed in both sequential and random access modes.

In the file operations starting with function number 15, DE usually addresses a fde
control block (FCB). Transient programs often use the default file control block area
reserved by CP/M at location BOOT+005CH (normally OO5CH) for simple file opera-
tions. The basic unit of file information is a 128-byte record used for all file operations;
thus, a default location for disk I 1 0 is provided by CP/M at location BOOT+0080H
(normally 0080H), which is the initial default DMA address (see function 26). All direc-
tory operations take place in a reserved area that does not affect write buffers as was the
case in release f , with the exception of Search First and Search Next, where compatibility
is required.

The FCB data area consists of a sequence of 33 bytes for sequential access and
of 36 bytes in the case when the file is accessed randomly. The default FC
located at 005CH can be used for random access files since the three bytes
B00T+007DH are available for this purpose. The CB format is show
following fields:

/dr (f l If2 I/ 4f8 It1 It2 /t3 /ex Is1 Is2 / rc Id0 I/ /Idn jcr /rO j r i jr21
00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

where

d r drive code (0-16)
0 => use default drive for file
I => auto disk select drive A,
2 => auto disk select drive B,
. . .
16=> auto disk select drive P.

contain the file name in ASCII upper case, with
high bit = O

contain the file type in ASCII upper case, with high
bit = O tl', t2', and t3' denote the bit of these
positions,
t I ' = 1 => ReadIOnly file,
t2' = 1 => SYS file, no DIR list

contains the current extent number, normally set
to 00 by the user, but in range 0-31 during file 110

reserved for internal system use

reserved for internal system use, set to zero on call
to OPEN, MAKE, SEARCH

record count for extent "ex," takes on values from
0-127

filled-in by CP/M, reserved for system use

current record to read or write in a sequential file
operation, normally set to zero by user

optional random record number in the range O-
65535, with overflow to r2, rO, r l constitute a 16-
bit value with low byte ro, and high byte r l

Each file being accessed through CP/M must have a corresponding FCB, which
provides the name and allocation information for all subsequent file operations. When
accessing files, it is the programmer's responsibility to fill the lower 16 bytes of the FCB
and initialize the cr field. Normally, bytes 1 through 11 are set to the ASCII character
values for the file name and file type, while all other fields are zero.

FCBs are stored in a directory area of the disk, and are brought into central memory
before the programmer proceeds with file operations (see the OPEN and MAKE func-
tions). The memory copy of the FCB is updated as file operations take place and later
recorded prmanent ly on disk a t the termination of the file operation (see the CLOSE
command).

The CCP constructs the first 16 bytes of two optional FCBs for a transient by
scanning the remainder of the line following the transient name, denoted by file1 and
file2 in the prototype command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed a t location BOOT+005CH and can be used as is for
subsequent file operations. The second FCB occupies the do ... dn portion of the first FCB
and must be moved to another area of memory before use. If, for example, the operator
types

PRQGNAME B:X.ZQT Y.ZAP

the file PROGNAME.COM is loaded into the TPA and the default FCB a t BOOT+005CH
is initialized to drive code 2, file name X, and file type ZOT. The second drive code takes
the default value 0, which is placed at BOOT+006CH, with the file name Y placed into
location BOOT+006DH and file type ZAP located 8 bytes later at BOOT+0075H. All
remaining fields through cr are set to zero. The user should note again that it IS the
programmer's responsibility to move this second file name and type to another area,
usually a separate file control block, before opening the file that begins at BOOT+005CH,
because the open operation will overwrite the second name and type.

If no file names are specified in the original command, the fields beginning at
BOOT+oo5DH and BOOT+006DH contain blanks. In all cases, the CCP translates lower
case alphabetics to upper case to be consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location BOOT+0080H is initial-
ized to the command line tail typed by the operator following the program name. The first
position contains the number of characters, with the characters themselves following the
character count. Given the above command line, the area beginning at BOOT+0080H is
initialized as follows:

where the characters are translated to upper case ASCII with uninitialized memory
following the last valid character. Again, it is the responsibility of the programmer to
extract the information from this buffer before any file operations are performed, unless
the default DMA address is explicitly changed.

Individual functions are described in detail in the pages that follow.

The system reset function returns control to the CP/M operating system at the CCP
level. The CCP reinitializes the disk subsystem by selecting and logging in disk drive A.
This function has exactly the same effect as a jump to location BOOT.

Entry Parameters:
Register C: OlH

I Returned Value:
Register A: ASCII Character

The console input function reads the next console character to register A. Graphic
characters, along with carriage return, line feed, and back space (ctl-HI are echoed to the

console. Tab characters (ctl-I) move the cursor to the next tab stop. A check is made for
startistop scroil jctl-S) and startistop printer echo (ctl-P). The FDOS does not return to
the calling program until a character has been typed, thus suspending execution if a
character is not ready.

unction 2: Consoje Output I
Entry Parameters:

Register C: 02H
Register E: ASCII Character

The ASCII character from register E is sent to the console device. As in function I,
tabs are expanded and checks are made for startistop scroll and printer echo.

Entry Parameters:
Register C: 03H

Returned Value:
Register A: ASCII Character

The Reader Input function reads the next character from the logical reader into
register A (see the IOBYTE definition in Chapter 6) . Control does not return until the
character has been read.

Entry Parameters:
Register C: 04H
Register E: ASCII Character

The Punch Output function sends the character from register E to the logical punch
device.

Entry Parameters:
Register C: 05H
Register E: ASCII Character

The List Output function sends the ASCII character in register E to the logical listing
device.

Function 6: Direct Console I lO

Entry Parameters:
Register C : 06H
Register E: OFFH (input) or

char (output)

Returned Value:
Register A: char or status

Direct console 110 is supported under CP/M for those specialized applications where
basic console input and output are required. Use of this function should, in general, be
avoided since it bypasses all of CP/M's normal control character functions (e.g., control-S
and control-P). Programs that perform direct IIO through the BIOS under previous
releases of CP/M, however, should be changed to use direct 110 under BDOS so that they
can be fully supported under future releases of MPiM and CP/M.

Upon entry to function 6 , register E either contains hexadecimal FF, denoting a
console input request, or an ASCII character. If the input value is FF, function 6 returns
A = 00 if no character is ready, otherwise A contains the next console input character.

If the input value in E is not FF, function 6 assumes that E contains a valid ASCII
character that is sent to the console.

Function 6 must not be used in conjunction with other console IIO functions.

Function 7: Get 110 Byte

Entry Parameters:
Register C: 07I-f

Returned Value:
Register A: I 1 0 Byte Value

The Get 110 Byte function returns the current value of IOBYTE in register A. See
Chapter 6 for IOBYTE definition.

Function 8: Set 110 Byte

Entry Parameters:
Register C: 08H
Register E: CO Byte Value

The Set 110 Byte function changes the IOBYTE value to that given in register E

Entry Parameters:
Register C: 09H
Registers DE: String Address

The Print String function sends the character string stored in memory a t the iocation
given by DE to the console device, until a $ is encountered in the string. Tabs are
expanded as in function 2, and checks are made for startistop scroll and printer echo.

Function 10: Read Console Buffer

Entry Parameters:
Register C: OAH
Registers DE: Buffer Address

Returned Value:
Console Characters in Buffer

The Read Buffer function reads a line of edited console input into a buffer addressed
by registers DE. Console input is terminated when either input buffer overflows or a
carriage return or line feed is typed. The Read Buffer takes the form:

where mx is the maximum number of characters that the buffer will hold (1 to 255) and nc
is the number of characters read (set by FDOS upon return), followed by the characters
read from the console. If nc < mx, then uninitialized positions follow the last character,
denoted by ? ? in the above figure. A number of control functions are recognized during
line editing:

removes and echoes the last character

reboots when at the beginning of line

causes physical end of line

backspaces one character position

(line feed) terminates input line

(return) terminates input line

retypes the current line after new line

removes current line

same as ctl-U.

The user should also note that certain functions that return the carriage to the leftmost
position ie.g., ctl-Xj do so only to the column position where the prompt ended (in earlier

releases, the carriage returned to the extreme left margin). This convention makes
operator data input and line correction more legible.

Function 11: Get Console Status

Entry Parameters:
Register C: OBH

I Returned Value:
Register A: Console Status

The Console Status function checks to see if a character has been typed at the console.
if a character is ready, the value OFFH is returned in register A. Otherwise a OOH value is
returned.

Function 12: Return Version Number

Entry Parameters:
Register C: OCH

I Returned Value:
Registers HL: Version Number

Function 12 provides information that allows version independent programming. A
two-byte value is returned, with H = 00 designating the CP/M release (H = 01 for MPIM),
and L = 00 for all releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in register L,
with subsequent version 2 releases in the hexadecimal range 21,22, through 2F. Using
function 12, for example, the user can write application programs that provide both
sequential and random access functions.

I Function 13: Reset Disk System I
I Entry Parameters:

Register C: ODH I
The Reset Disk Function is used to programmatically restore the file system to a reset

state where all disks are set to readiwrite (see functions 28 and 29), only disk drive A is
selected, and the default DMA address is reset to BOOT+0080H. This function can be
used, for example, by an application program that requires a disk change without a
system reboot.

Function 14: Select Disk I
Entry Parameters:

Register C: CEH
Register E: Selected Disk

The Select Disk function designates the disk drive named in register E as the default
disk for subsequent file operations, with E = O for drive A, 1 for drive B, and so on through
15, corresponding to drive P in a full 16 drive system. The drive is placed in an on-line
status, which activates its directory until the next cold start, warm start, or disk system
reset operation. If the disk medium is changed while it is on-line, the drive automaticaily
goes to a readionly status in a standard CP/M environment (see function 28). FCBs that
specify drive code zero (dr = OOH) automatically reference the currently selected default
drive. Drive code values between 1 and 16, however, ignore the selected default drive and
directly reference drives A through P.

Function 15: Open File

Entry Parameters:
Register C: OFH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Open File operation is used to activate a file that currently exists in the disk
directory for the currently active user number. The FDOS scans the referenced disk
directory for a match in positions 1 through 14 of the FCB referenced by DE (byte s l is
automatically zeroed), where an ASCII question mark 13FH) matches any directory
character in any of these positions. Normally, no question marks are included, and bytes
ex and s2 of the FCB are zero.

If a directory element is matched, the relevant directory information is copied into
bytes do through dn of the FCB, thus allowing access to the files through subsequent read
and write operations. The user should note that an existing file must not be accessed until
a successful open operation is completed. Upon return, the open function returns a
directory code with the value 0 through 3 if the open was successful or oFFH (255
decimal) if the file cannot be found. If question marks occur in the FCB, the first matching
FCB is activated. Note that the current record (cr) must be zeroed by the program if the
file is to be accessed sequentially from the first record.

Function 16: Close FiIe

Entry Parameters:
Register C: 10H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Close File function performs the inverse of the open file function. Given that the
FCB addressed by DE has been previously activated through an open or make function
(see functions 1 5 and 22), the close function permanently records the new FCB in the
referenced disk directory. The FCB matching process for the close is identical to the open
function. The directory code returned for a successful close operation is 0,1,2, or 3, while
a OFFH (255 decimal) is returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write operations have
occurred, however, the close operation is necessary to record the new directory informa-
tion permanently.

Function 17: Search for First

Entry Parameters
Register C: 11H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Search First scans the directory for a match with the file given by the FCB addressed
by DE. The value 255 (hexadecimal FF) is returned if the file is not found; otherwise, 0,1,
2, or 3 is returned indicating the file is present. When the file is found, the current DMA
address is filled with the record containing the directory entry, and the relative starting
position is A * 32 (i.e., rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information can be extracted
from the buffer at this position.

An ASCII question mark 163 decimal, 3F hexadecimal) in any position from f l through
ex matches the corresponding field of any directory entry on the default or auto-selected
disk drive. If the d r field contains an ASCII question mark, the auto disk select function is
disabled and the default disk is searched, with the search function returning any matched
entry, allocated or free, belonging to any user number. This latter function is not
normally used by application programs, but it allows complete flexibility to scan all
current directory values. If the d r field is not a question mark, the s2 byte is automaticaily
zeroed.

18: Search for Next

Entry Parameters:
Register C: 12H

Returned Value:
Register A: Directory Code

The Search Next function is similar to the Search First function, except that the
directory scan continues from the last matched entry. Similar to function 17, function 18
returns the decimal value 255 in A when no more directory items match.'

Function 19: Delete File

Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Delete File function removes files that match the FCB addressed by DE. The
filename and type may contain ambiguous references (i.e., question marks in various
positions), but the drive select code cannot be ambiguous, as in the Search and Search
Next functions.

Function 19 returns a decimal 255 if the referenced file or files cannot be found;
otherwise, a value in the range O to 3 is returned.

Function 20: Read Sequential

Entry Parameters:
Register C: 14H
Registers DE: FCB Address

Given that the FCB addressed by DE has been activated through an open or make
function (numbers 15 and 221, the Rea Sequential function reads the next 128-byte
record from the file into memory a t the current DMA address. The record is read from
position cr of the extent, and the cr field is automatically incremented to the next record
position. If the cr field overflows, the next logical extent is automatically opened and the
cr field is reset to zero in preparation for the next read operation. The value OOH is
returned in the A register if the read operation was successful, while a nonzero value is
returned if no data exist at the next record position (e.g., end-of-file occurs).

Function 21: Write Sequential

Entry Parameters:
Register C: l 5 H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make
function (numbers 15 and 221, the Write Sequential function writes the 128-byte data
record at the current DMA address to the file named by the FCB. The record is placed at
position cr of the file, and the cr field is automatically incremented to the next record
position. If the cr field overflows, the next logical extent is automatically opened and the
cr field is reset to zero in preparation for the next write operation. Write operations can
take place into an existing file, in which case, newly written records overlay those that
already exist in the file. Register A = 00H upon return from a successful write operation,
while a nonzero value indicates an unsuccessful write caused by a full disk.

Function 22: Make File

Entry Parameters:
Register C: 16H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Make File operation is similar to the open file operation except that the FCB must
name a file that does not exist in the currently referenced disk directory (i.e., the one
named explicitly by a nonzero dr code or the default disk if dr is zero). The FDOS creates
the file and initializes both the directory and main memory value to an empty file. The
programmer must ensure that no duplicate file names occur, and a preceding delete
operation is sufficient if there is any possibility of duplication. Upon return, register A = 0,
1, 2, or 3 if the operation was successful andOFFH (255 decimal) if no more directory space
is available. The make function has the side effect of activating the FCB and thus a
subsequent open is not necessary.

Function 23: Rename File

Entry Parameters:
Register C: 17W
Registers DE: FCB Address

The Rename function uses the FCB addressed by DE to change all occurrences of the
file named in the first 16 bytes to the file named in the second 16 bytes. The drive co

at position O is used to select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A is set to a vaiue
between 0 and 3 i f the rename was successful andOFFH (255 decimal) if the first file name
could not be found in the directory scan.

Function 24: Return Log-in Vector

Entry Parameters:
Register C: 18I-I

Returned Value:
Registers HL: Log-in Vector

The log-in vector value returned by CP/M is a 16-bit value in HL, where the least
significant bit of L corresponds to the first drive Aand the high order bit of H corresponds
to the sixteenth drive, labeled P. A O bit indicates that the drive is not on-line, while a 1 bit
marks a drive that is actively on-line as a result of an explicit disk drive selection o r an
implicit drive select caused by a file operation that specified a nonzero d r field. The user
should note that compatibility is maintained with earlier releases, since registers 4 and L
contain the same values upon return.

eturn Current Disk

Entry Parameters:
Register C: 19H

Returned Value:
Register A: Current Disk

Function 25 returns the currently selected default disk number in register A. The disk
numbers range from 0 through 15 corresponding to drives A through P.

Function 26: Set DMA Address

Entry Parameters:
Register C : 1.4H
Registers DE: DMA Address

DMA 1s an acronym for Dlrect Memory Address, which 1s often used In connectton
wtth disk controllers that dlrectly access the memory of the mainframe computer to
transfer data to and from the dlsk subsystem Although many computer systems use
non-DMA access i t e , the data are transferred through programmed IIO operat~ons), the
DMA address has, In CP/M, come to mean the address a t which the 128-byte data record
resides before a disk wrlte and after a disk read. Upon cold start, warm start, or dlsk

system reset, the DMA address is automatically set to BOOT-tO080H. The Set DMA
function, however, can be used to change this default value to address another area of
memory where the data records reside. Thus, the DMA address becomes the value
specified by DE until it is changed by a subsequent Set DMA function, cold start, warm
start, o r disk system reset.

Entry Parameters:
Register C: IBH

Returned Value:
Registers HL: ALLOC Address

An allocation vector is maintained in main memory for each on-line disk drive.
Various system programs use the information provided by the allocation vector to
determine the amount of remaining storage (see the STAT program). Function 27
returns the base address of the allocation vector for the currently selected disk drive.
However, the allocation information may be invalid if the selected disk has been marked
readionly. Although this function is not normally used by application programs, addi-
tional detads of the allocation vector are found in Chapter 6.

Function 28: Write Protect Disk

Entry Parameters:

The disk write protect function provides temporary write protection for the currently
selected disk. Any attempt to write to the dtsk before the next cold or warm start
operation produces the message:

BDOS ERR on d: RiO

Function 29: Get ReadiOnly Vector

Entry Parameters:
Register C: 7DH

Returned Value:
Registers HL: R /O Vector Value

Funct~on 29 returns a b ~ t vector in register pax HL, whxh mdicates d r~ves that have
the temporary read-only blt set As in function 24, the least signtficant bit corresponds to
drlve A, while the most slgniflcant blt corresponds to drtve P The RiO b ~ t is set either by
an explic~t call to functlon 28 or by the automatic software mechanisms w ~ t h t n CP/M that
detect changed drsks

Function 30: Set File Attributes

Entry Parameters:
Register C: IEH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Set File Attributes function allows programmatic manipulation of permanent
indicators attached to files. In particular, the RIO and System attributes (t l ' and t2') can
be set o r reset. The DE pair addresses an unambiguous file name with the appropriate
attributes set or reset. Function 30 searches for a match and changes the matched
directory entry to contain the selected indicators. Indicators f l ' through f4' are not
currently used, but may be useful for applications programs, since they are not involved
in the matching process during file open and close operations. Indicators f5' through f8'
and t3' are reserved for future system expansion.

Function 31: Get ADDR(Disk Parms) I
Entry Parameters:

Register C: IFH

Returned Value:
Registers HL: DPB Address I

The address of the BIOS resident disk parameter block is returned in HL as a result of
this function call. This address can be used for either of two purposes. First, the disk
parameter values can be extracted for display and space computation purposes, or
transient programs can dynamically change the values of current disk parameters when
the disk environment changes, i f required. Normally, application programs will not
require this facility.

Function 32: SetlGet User Code

Entry Parameters:
Register C: 20H
Register E: OFFH (get) or

User Code (set)

Returned Value:
Register A: Current Code o r

(no value)

An application program can change or interrogate the currently active user number
by calling function 32. If register E = OFFH, the value of the current user number is

returned in register A, where the value is in the range of 0 to 15. If register E is not OFFH,
the current user number is changed to the value of E (modulo 16).

Entry Parameters:
eg~s te r C: 21H
egisters DE: FCB Address

Returned Value:
Register A: Return Code

The Read Random function is similar to the sequential file read operation of previous
releases, except that the read operation takes place at a particular record number, selected
by the)+bit value constructed from the 3-byte field following the FCB (byte positions rO
at 33, r1 at 34, and r2 at 35). The user should note that the sequence of 24 bits is stored
with least significant byte first (ro), middle byte next (r l) , and high byte last jr2j. CP/M
does not reference byte 1-2, except in computing the size of a file (function 35). Byte r2
must be zero, however, since a nonzero value indicates overflow past the end of file.

Thus, the rO, r l byte pair is treated as a double-byte, or "word"vaiue, which contains
the record to read. This value ranges from 0 to 65535, providing access to any particular
record of the 8-megabyte file. To process a file using random access, the base extent
(extent 0) must first be opened. Although the base extent may or may not contain any
allocated data, this ensures that the file is properly recorded in the directory and is visible
in DIR requests. The selected record number is then stored in the random record field (ro,

DOS is called to read the record. Upon return from the call, register A either
contains an error code, as listed below, or the value 00, indicating the operation was
successfui. In the latter case, the current DMA address contains the randomly accessed
record. The user shouid note that contrary to the sequential read operation, the record
number is not. advanced. Thus, subsequent random read operations continue to read the
same record.

Upon each random read operation, the logical extent and current record values are
automatically set. Thus, the file can be sequentialiy read or written, starting from the
current randomly accessed position. However, the user should note that, in this case, the
last randomly read record will be reread as one switches from random mode to sequential
read and the last record will be rewritten as one switches to a sequential write operation.
The user can, of course, simpiy advance the random record position following each
random read or write to obtain the effect of a sequential 110 operation.

Error codes returned in register A following a random read are listed below.

0 1 reading unwritten data

02 (not returned in random mode)

03 cannot close current extent

04 seek to unwritten extent

05 (not returned in read mode)

06 seek past physical end of disk

Error codes 01 and 04 occur when a random read operation accesses a data block that
has not been prevmusly wrrtten or an extent that has not been created, w h ~ c h are
equlxalent cond~t ions Error code 33 does not normally occur ilnder proper system

operation If it does, ~ t : can be cleared by simply rereadmg or reopentng extent zero as long
as the disk :s not phys~cally write protected Error code 06 occurs whenever byte r2 1s
nonzero under the chrrent 2 0 release NormalIy, nonLero return codes can be treated as
missing data, wlrh zero return codes rnd~catrng operation complete

Entry Parameters.
Register C: 2
Registers DE: f

eturned Value:
Register '4:

tion is initiated similarly to the Read Random call, except
disk from the current DMA address. Further, if the disk

extent or dara block that is the target of the write has not yet been ailo ted, the allocation
is ~ e r f o r m e d before the write operation continues. om operation, the
random record number is not changed as a result o al extent number
and current record positions of the file control Iock are set to correspond to the random
record that is being written. Again, sequential read or write operations can begin follow-
ing a random write, with the notation thzt the currently addressed record is either read or
rewritten again as the sequential opera on begins. The user can also simply advance the
random record position following eac write to get the effect o i a sequential write
operation. The user should note that, in articular, reading o r writing the last record of an
extent in random mode does not cause an automatic extent switch as it does in se
mode.

The error codes returned by a random write are identical t o the random read opera-
tion with the addition of error code 05, which indicates that a new extent cannot be
created as a result of directorv overflow

Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value:
andorn Record Fieid Set

t ~ n g the slze of a hie, resses an FCB rn random
tes rO, r l , and 1-2 are atns an unambiguous flle

name that is used In the directory scan Upon return, the random record bytes contarn the
"virtual" file size h ~ c h is, in effect, the record address of the record fo1Iowing the end of
the file FoIIowin call to function 35, if the high record byte 1-2 IS 01, the file contatns the
maximum record count 65536 Otherwise, bytes rC and r l constitute a 16-btt value (so 1s
the least signir't~ant byte, as before), whxh is the fde stze

Data can be appended to the end of an existing file by simply calling function 35 to set
the random record position to the end of file and then performing a sequence of random
writes starting at the preset record address.

The virtual size of a file corresponds to the physical size when the file is written
sequentially. If the file was created in random mode and"ho1es"exist in the allocation, the
file may in fact contain fewer records than the size indicates. For example, if only the last
record of an %-megabyte file is written in random mode (i.e., record number 65535), the
virtual size is 65536 records, although only one block of data is actually allocated.

Function 36: Set Rando

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

The Set Random Record function causes the BDOS automatically to produce the
random record position from a file that has been read or written sequentially to a
particular point. The function can be useful in two ways.

First, it is often necessary initially to read and scan a sequential file to extract the
positions of various "key" fields. As each key is encountered, function 36 is cailed to
compute the random record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a table with the key for
later retrieval. After scanning the entire file and tabulating the keys and their record
numbers, the user can move instantly to a particular keyed record by performing a
random read, using the corresponding random record number that was saved earlier. The
scheme is easily generalized for variable record lengths, since the program need only
store the buffer-relative byte position along with the key and record number to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a sequential read or write
over to random read o r write. A file is sequentially accessed t o a particular point in the file,
function 36 is called, which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

Entry Parameters:
Register C: 25H

egisters DE: Drive Vector

Returned Value:
Register A: OOH

The Reset Drive function allows resetting of specified drives. The passed parameter is
a 16 bit vector of drives to be reset; the least significant bit is drive A:.

T o maintain compatibility with MPiM, CP/M returns a zero value.

dele'ief

writef
rnakef

fcb:

copy:

equ 19

cnz finis

eof ile:

finis:

open:

close:

delete

read:

write:

make:

nofile:
nodir:
space:
wrprot:
normal:

dfcb:
dfcbcr

stack:

jmp COPY ; loop until eof

: end of file, close destination
Ixi d,dfcb ; destination
call close : 255 if error
fxi h,wrprot ; ready message
inr a ; 255 becomes 00
cz finis ; shouldn't happen

copy operation complete, end
Ixi d,normal ; ready message

; write message given by de, reboot
mvi c,printf
call bdos ; write message
jmp boot : reboot system

system interface subroutines
(all return directiy from bdos)

rnvi c,openf
jmp bdos

mvi c,closef
jrnp bdos

rnvi c,deletef
jmp bdos

rnvi c,readf
jmp bdos

rnvi c,writef
jmp bdos

mvi c,makef
jrnp bdos

console messages
db 'no source file$'
db 'no directory space$'
db 'out of data space$'
db 'write protected?$"
db 'copy complete$'

data areas
ds 33 ; destination fcb
equ dCcb+32 ; current record

ds 32 ; 16 level stack

end

The user should note that there are several simplifications in t
First, there are no checks for invalid file names that could, for exa
ous references. This situation could be detected by scanning t
starting at location G05CH for ASCII question marks. A check shouid also be made to
ensure that the file names have, in f a c ~ been included ichec Iocations OOJDH and O36DH
for nonblank ASCII characters). Finally, a check sholild be ade to ensure that the soyrce
and destination file names are different. An improvement in speed could
buffering more data on each read operatior,. O n uid, for example, determine the size
of memory by fetching FBASE from location H and using the entire remaining
portion of memory for a data buffer. In this case, the programmer simpiy resets the DMA
address to the next successive 128-byte area before each read. Upon writing to the
destination file, the DMA address is reset to the beginning of the buffer and incremented
by 128 bytes to the end as each record is transferred to the destinztion file.

The fde dump program shown below IS slightly mdre complex t an the sirnpIe cop)
program gwen in the previous section eads an tnpiit file, specifled in
the CCP command line, and dtsplays t orb m hexadecimal format at
the consoie Note that the dump pro stack upon entry, resets the
stack to a Local area, and restores the t u r n ~ n g dlrcctly to the CCP
Thus, the dump program does not perform and warm start a t the end of processing

OOOf =
0014 =

OOOd =
OOOa =

data

cons

openf
readf

fc

buff

c r
I:

fcbrl

fcbrc

fcbcr '

equ 5ch ;file control block
;address

equ 80h ;input disk buffer
;address

esu fcb+32

;file's current reel
;number
:file's record count (0 to
;l28)128)

01 Oa cdc"i1
OlOd Feff
O l O f c21 b01

fcbln

openok:

loop:

nonurn:

equ fcb+33 ;fcb length

set up stack
Ixi h,O
dad sp
entry stack pointer in hl from the ccp
shld oldsp
set sp to local stack area (restored at
finis)
Ixi sp,stktop
read and print successive buffers
call setup ;set up input file
cpi 255 ;255 if file not present
jnz openok ;skip if open is ok

file not there, give error message and
return
ixi d,opnrnsg
call err

;lo return

;save line position

jc finis
;file

rnov b,a
print hex values
check for line fold
mov a,l
ani Ofh ;check low 4 bits
jnz nonurn
print line number
call crlf

rnov a,h
call phex
mov a, i
call phex

inx h ;to next line number

finis:

break:

015c OeOb
Of 5e cd0500
0161 c l d l e l

pchar:

crlf:

pnib:

mvi a,"
call pchar
mov a,b
call phex
jmp gloop

end of dump, return to cco
(note that a jmp to OOOOh reboots)
call crlf
lhld oldsp
sphl
stack pointer contains ccp's stack
location
ret ;to the ccp

subroutines

;check break key (actually any key will
;do)
push h! push d! push b; environment
; saved
mvi c,brkf
cali bdos
pop b! pop d! pop h; environment
restored
ret

;print a character
push h! push d! push b; saved
mvi c,typef
mov e,a
call bdos
pop b! pop d! pop h; restored
ret

mvi a,cr
cali pchar
mvi a,lf
call pchar
ret

;print nibble in reg a
ani Ofh ;low 4 bits
cpi 10
jnc plO
less than or equal to 9
adi '0'
jmp prn

greater or equal to 10
adi 'a' - 10

prn:

phex:

err:

gnb:

go:

setup:

Olc l af

116

call pchar
ret

;print hex char in reg a
pushpsw
rrc
rrc
rrc
rrc
call pnib ;print nibble
POP PSW
call pnib
ret

;print error message
d,e addresses message ending with "$"
mvi c,printf ;print buffer

;function
call bdos
ret

;get next byte
Ida ibp
cpi 80h
jnz go
read another buffer

call diskr
ora a ;zero value if read ok
jz go ;for another byte
end of data, return with carry set for eof
stc
ret

;read the byte at buff+reg a
mov e,a ;Is byte of buffer index
mvi d,O ;double precision

; index to de
inr a ;index=index+l
sta ibp ;back to memory
pointer is incremented
save the current file address
1x1 h,buff
dad d
absolute character address is in hl
mov a,m
byte is in the accumulator
ora a ;reset carry bit
ret

;set up file
open the file for input
xra a ;zero to accum

01 c2 327~00

01 c5 1 1 5 ~ 0 0
01 c8 OeOf
01 ca cd0500

01cd c9

diskr:

signon:
opnmsg

i bp:
oldsp:

stktop:

sta fcbcr ;clear current record

Ixi d,fcb
mvi c,openf
call bdos
255 in accum if open error
ret

;read disk file record
push h! push d! push b
Ixi d,fcb
mvi c,readf
call bdos
pop b! pop d! pop h
ret

fixed message area
db 'file dump version 2.0$'
db cr,lf,'no input file present on

disk$'

variable area
ds 2 ;input buffer pointer
ds 2 ;entry sp valuefrom ccp

stack area
ds 64 :reserve 32 level stack

end

A Sample Random Access Program
This chapter concludes with an extensive example of random access operation. The

program listed below performs the simple function of reading or writing random records
upon command from the terminal. Given that the program has been created, assembled,
and placed into a file labeled RANDOM.COM, the CCP level command

RANDOM X.DAT

starts the test program. The program looks for a file by the name X.DAT (in this
particular case) and, if found, proceeds to prompt the console for input. If not found, the
file is created before the prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return. The input commands
take the form

where n is an integer value in the range 0 to 65535, and W, R, and Q are simple command
characters corresponding to random write, random read, and quit processing, respec-
tively. If the W command is issued, the RANDOM program issues the prompt

type data:.

The operator then responds by typing up to 127 characters, followed by a carriage return.
RAXDOM then writes the character string into the X.DAT file at record n. I f the R
command is issued, RANDOM reads record number n and displays the string value at t
console. If the Q command is issued, the X.DAT file is closed, and the program returns to
the CCP. In the interest of brevity, the only error message is

error, try again.

The program begins with an initialization section where the input file is opene
created, followed by a continuous loop at the label "ready" where the individual com-
mands are interpreted. The default file control block at 005CH and the default buffer at
0080H are used in all disk operations. The utility subroutines then follow, which contain
the principal input line processor, called "readc." This particular program shows the
elements of random access processing, and can be used as the basis for further program
development.

Sample Random Access Program for C

01 00

0000 =
0005 =

0001 =
0002 =
0009 =
OOOa =
oooc =
OOOf =
0010 =
0016 =
0021 =
0022 =

005c =

007d =
007f =

0080 =

OOOd =
OOOa =

0100 31 bcOO

0103 OeOc

reboot
bdos

coninp
conout
pstring
rstring
version
openf
closef
makef
read r
writer

fcb

ran rec
ranovf

buff

C r
If

lOOh

OOOOh
0005 h

1
2

0
12
15
16
22
33
34

005ch

fcb+33
fcb+35

0080 h

Odh
ah

;base of tpa

;return version

;read random
;write rando

;default file control
;block

;carriage aetur
;line feed

Load SP, Set-Up File for Random Access

Ixi sp,stack

version 2.0
mvi c,version

calf bdos
cpi 20h ;version 2.0 or better?
jnc versok
bad version, message and go back
Ixi d, badver
call print
J ~ P reboot

versok:
correct version for random access
mvi c,openf ;open default fcb
Ixi ,fcb
call bdos
inr a ;err 255 becomes zero
j nz ready

cannot open file, so create it
mvi c,makef
Ixi d,fcb
call bdos
inr a ;err 255 becomes zero
jnz ready

cannot create file, directory full
Ixi d,nospace
call print
jmp reboot ;back to ccp

Loop Back to Ready After Each Comman

ready:
file is ready for processing

call readcom ;read next command
shld ranrec ;store input record#
Ixi h,ranovf
mvi m,O ;clear high byte if set
cpi 'UQ' ;quit?
jnz nolq

recessing, close file
c,closel

[xi ,fc
call do
inr a ;err 255 becomes 0
jz error ;error message, retry
.imp reboot ;back to ccp

End of Quit Command, Process Write

notq:
not the quit command, random write?
cpi 'W'
jnz notw

this is a random write, fill buffer until cr
Ixi d,datmsg
call print ;data prompt
mvi c,127 ;up to 127 characters
Ixi h,buff ;destination

rloop: ;read next character to buff
push b ;save counter
push h ;next destination
call getchr ;character to a
POP h ;restore counter
POP b ;restore next to fill
cpi c r ;end of line?
jz erloop
not end, store character
mov m,a
inx h ;next to fill
dcr c ;counter goes down
jnz rloop ;end of buffer?

erloop:
end of read loop, store 00
mvi m,O

write the record to selected record number
mvi c,writer
Ixi d,fcb
call bdos
ora a ;error code zero?
jnz error ;message if not
jmp ready ;for another record

End of Write Command, Process Read

notw:
not a write command, read record?
cpi 'R'
jnz error :skip if not

read random record
mvi c,readr
Ixi d,fcb
call bdos
o ra a ;return code OO?
jnz error

read was successful, write to console

Ola9 c5
Olaa e5
Olab fe20
Olad d4c800
01 bO e l
01 b l c l
01 b2 Od
01 b3 c2a200
01 b6 c33700

Olc2 OeOl
01 c4 cd0500
Olc7 c9

01 c8 Oe02
Olca 5f
0 1 c b cd0500
01 ce c9

Olcf 3eOd
01 d l cdc800
Old4 3eOa
01 d6 cdc800
Old9 c9

call
mvi
Ixi

wloop:
m ov
inx
an i
jz

push
push
cpi
cnc
POP
POP
dcr
j nz
jmp

crlf
c,128
h,buff

a, m
h
7fh
ready

b
h
I I

putchr
h
b
C

wloop
ready

;new line
;max 128 characters
;next to get

;next character
;next to get
;mask parity
;for another command
; if 00
;save counter
;save next to get
;graphic?
;skip output if not

End of Read Command, All Errors End Up Here

error:
Ixi d,errmsg
call print
jmp ready

Utility Subroutines for Console I10

getchr:

putchr:

crlf:

;read next console character to a
mvi c,coninp
call bdos
ret

;write character from a to console
mvi c,conout
mov e,a ;character to send
call bdos ;send character
ret

;send carriage return line feed
mvi a,cr ;carriage return
call putchr
mvi a,lf ;line feed
call putchr
ret

print:

01da d5
01 db cdcfOO
Olde d l
01 df Oe09
Ole1 cd0500
Ole4 c9

Ole5 116b00
Ole8 cddaOO
Oleb OeOa
01 ed 1 l7aOO
OlfO cd0500

Olfb b7

Olfd d630
01 ff feOa
0201 d21300

readcom:

readc:

endrd:

;print the buffer addressed by de until $
push d
call crlf
POP d ;new line
mvi c,pstring
call bdos ;print the string
ret

;read the next command line to the conbuf
Ixi d,prompt
call print ;command?
mvi c,rstring
Ixi d,conbuf
call bdos ;read command line
command line is present, scan it
Ixi h,O ;start with 0000
Ixi d,conlin ;command line
ldax d ;next command

;character
inx d ;to next command

;position
o ra a ;cannot be end of

;command
rz
not zero, numeric?
su i '0'
cpi 10 ;carry if numeric
jnc endrd
add-in next digit
dad h ;*2
m ov c, I
m ov b,h ;bc = value * 2
dad h ; *4
dad h ; *8
dad b ;*2 + *8 = * l o
add I ;+digit
mov La
jnc readc ;for another char
inr h ;overflow
jmp readc ;for another char

end of read, restore value in a
ad i '0' ;command
cpi 'a' ;translate case?
rc
lower case, mask lower case bits
ani 101$1111b
ret

String Data Area for Conso

badver:
d b 'sorry, you need cpim version 2$'

nospace:
d b 'no directory space$'

datmsg:
d b 'type data: $'

errmsg:
d b 'error, try again.$'

prompt:

conbuf: d b
consiz: ds
conlin: ds
conlen equ $-consiz

32 ;16 level stack
stack:

Again, major improvements could be made to this particular
operation. In fact, with some work, this program could evolve
management system. One could, for example, assume a standard r
consisting of arbitrary fields within the record. A program, called CETKEV, could be
developed that first reads a sequential file and extracts a specific field defined by the
operator. For example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract the "LAST-
NAME" field from each record, starting in position 10 and ending at character 20.
GETKEY builds a table in memory consisting of each particular LASTNAME field, along
with its 16-bit record number location within the file. The GETKEY program then sorts
this list and writes a new file, called LASTNAME.KEY, which is an aiphabeticai list of
LASTNAME fields with their corresponding record numbers. (This tist is called an inzwted
index in information retrieval parlance.)

Tf the programmer were to rename the pro ram shown above as
s a sorted key file into memory, the command ii

Y NAMES.BAT LAST

Instead of reading a number, the QUERY program reads an alphanumeric string that is a
particular key to find in the NA ata base. Smce the LASTNAME.
sorted, one can find a particular entry rapidiy by performing a "binary search," similar to
looking up a name in the telephone book. That is, starting at both ends of the 1 ' XIS*, + one
examines the entry halfway in between and, if not matched, splits either the upper half or

the lower halt. for the next search The use1 wdi qu~ckiv reaih the item he or she is loohmg
for and find the correspond~ng record number The user should kerc and &splay this
record a t the consoie just as h a s done ,n the program sho

W ~ t h some more work, the user can aliow a f~xea g r o u p t differs from the
128-byte record shown a b o ~ e This 1s asi-cirnphshed by
number as well as the byte offset mth in the ieiord K group size, one
randomly assesses the record containlng the proper group, ok f i e t to the beg,nnrn
group 1% tthin the relord read seqcrentlali> until the grou 31ze has been exhausted

Finally one can improve QLERY cansiderablb by o w m g boolean expressions,

which compute the set of records that satisfy sel era! .eizf,o:;s"nips such a s a LASTNAME
between HARDY and LAUREL and an A C E lower than Dlspiay ail the records thdt fit
thls description FrnaIiy, li. t he user's hsts are getting t o ernory, he or she
should randomly access key files from the disk as weii

Decimal Hex

0
1 7
2 2
3 3
4 4

el Ii0 Byte
Print String
Read Console Buffer

none

none
none

none

none
A = ASCII char
none

A = 1/0 Byte

none
Console

Characters
in Buffer
= OOlnon zero

none
none
FF if not found

Search For First

A = none
A = Error Code
A = Error Code
A = FF i f no DIR

Search For Next none

Delete File
Read Sequential
Write Sequential
Make File

Rename File

eturn Login Vector none

Return Current Disk none

Set DMA Address
Get ADDR (ALLOC) none

Write Protect Disk
Get Read/only Vector

none
none

E = FCB Address

none
Set File Attributes
Get ADDR (Disk Parms)

Set/Get User Code

Read Random
Write Random
Compute File Size
Set Random Record
Reset Drive
Access Drive
Free Drive
Write Random with Fill

*Note that A = L, and €3 = H upon return.

The standard CP/M system assumes operation on an Intel MDS-800 microcomputer
development system, but is designed so the user can alter a specific set of subroutines that
define the hardware operating environment.

Although standard CP /M 2 is configured for single density flo
alteration features allow adaptation to a wide variety of disk subsystems from single drive
minidisks through high-capacity,"hard disk" systems. To simplify the following adapta-
tion process, it is assumed that CP/M 2 will first be configured for single density floppy
disks where minimal editing and debugging tools are available. If an earlier version of
CP/M is available, the customizing process is eased considerably. In this latter case, the
user may wish to review the system generation process and skip to later sections that
discuss system alteration for nonstandard disk systems.

To achieve device independence, CP /M is separated into three distinct modules:

BlOS basic i/O system, which is environment dependent

BDOS basic disk operating system, which is not dependent upon the hard-
ware configuration

CCP the console command processor, which uses the

ules, only the BIOS is dependent upon t e particular hardware. That is,
tch" the distribution version of CP/M to provide a new BIOS that

ized interface between the remaining CP/M modules and the user's
tem. This document provides a ste -by-step procedure for patching a

new BIOS into CP/M.
All disk-dependent portions of CP/M 2 are placed into a BIOS, a resident "disk parameter

block," which is either hand coded o r produced automatically using the disk definition
macro library provided with 2. The end user need only specify the maximum
number of active disks, the st and ending sector numbers, the data allocation size,
the maximum extent of the logical disk, directory size information, and reserved track
values. The macros use this information to generate the appropriate tables and tab1
references for use during CPIM 2 operation. Deblocking information is provided, whic

aids in assembly or disassembly of sector sizes that are multiples of the fundamental 128
byte data unit, and the system alteration manual includes general purpose subroutines

eblocking information to take advantage of larger sector sizes. Useof these
ether with the table-drive data access algorithms, makes CP/M 2 a

universal data management system.
File expansion is achieved by providing up to 512 logical file extents, where each logical

extent contains 16K bytes of data. CPiM 2 is structured, however, so that as much as
128K bytes of data are addressed by a singIe physical extent (corresponding to a single
directory entry) maintaining compatibility with previous versions while taking advan-
tage of directory space.

I f CP/M is being tailored to a computer system for the first time, the new BIOS
requires some simple software development and testing. The standard BIOS is listed in
Appendix A and can be used as a model for the customized package. A skeletal version of
the BiOS given in Appendix B can serve as the basis for a modified BIOS. In addition to
the BIOS, the user must write a simple memory loader, called GETSYS, that brings the
operating system into memory. To patch the new BIOS into CP/M, the user must write
the reverse of GETSYS, called PUTSYS, which places an altered version of CP/M back
onto the diskette. PUTSYS can be derived from GETSYS by changing the disk read
commands into disk write commands. Sample skeletal GETSYS and PUTSYS programs

d in Section 6.4 and listed in Appendix C. T o make the CP/M system load
Ily, the user must also supply a cold start loader, similar to the one provided

listed in Appendices A and D). A skeletal form of a cold start loader is given in
ode1 for the loader.

eve e
system is given below. Address references in each

ting the hexadecimal radix, and are given for a 20K CP/M
ms, a "bias" is added to each address that is shown with a

"+b" foliowing it, where b is equal to the memory size-2OK. Values for b in various
standard memory sizes are

i t should be noted that the standard distribution version of CP/M is set for operation
. Therefore, the user must first bring up the 20K CP/M
ctuai memory size (the user should see Section 6.3).

The user should:

I . Readsection 6.4 and write a GETSYS program that reads the first two tracks of a
diskette into memory. The program from the diskette must be loaded starting at
location 3380k-i. CETSYS is coded to start at location l O O W (base of the TPAI, as

2. Test the GETSYSprogram y reading a blank diskette mto memory andcheck to
see that the data habe been read properly and that the ishetie has not been altered in
any way by the GETSYS program

GETSY S program usin skette to see if CETSVS
arting at 3380I-1 (the op starts 128 bytes later at

3400H:.

4 Read Sectlon o 4 and write the PLTSYS program Thrs w r ~ t e s memory starting
a t 3380H back onto the first two tracks of the diskette The PUTSYS program should
be Iocared at 2oofi, as shown in Append~r C

5. Test the PLTSYS program using a blank, unmitialized diskette by writing a
portion of memory t o the first two tracks; clear memory and read it back using
GETSYS. Test PUTSYS compieteiy, since this rogram will be used to alter CP/M on
disk.

6. Study Sections 6.5,6.6, and 6.7 along with the distribution version of the BIOS
given in Appendix A and write a si e version that performs a similar function for
the customized envir program given in Appendix B as a model. Call
this new BIOS by the stomized 910s) . Implement only the primitive
disk operations on a simple console inputioutput functions in this
phase.

a t i t properly performs console character
I 1 0 and disk reads and eful to ensure that no d ~ s k wn te operattons occur
durmg read operations t the proper 'track and sectors are addressed on all
reads and writes Fail-u cks may cause destruction of the mitiallzed

system after rt is parched

le in Section 6.5, note that t IOS is placed between
using GETSYS and replace the
tested in step 7. This replaee-

ment is done in memory.

9. Use PUTSVS to place the patched memory image of CP/M onto the first two
tracks of a blank diskette for testing.

se CETSYS to bring e copied memory image from the test diskette back
into memory at 3380F-I and c ck to ensure that it has loaded back properly (clear
memory, if poss before the load!. Upon successful ioad, branch to the cold start
code a t ioration OM. The cold start routine will initialize page zero, then jump to

t location 3.ii.OOa-l, which will call the DOS, which will call the CBIOS. The
e asked by the CC to read sixteen sectors on track 2, and CP/M type

lf ddirctmities are e facrlrtles are availa
and breakpoint the (2

II. Upon completion of step 10, CP/M has prompted the console for a command
isk write operation by typing

(All commands must be foliowed by a carriage return.) CP /M responds with another
prompt (after several disk accesses)

If it does not, debug the disk write functions and retry.

12 , Test the directory command by typing

DIR

!M responds with

13. Test the erase command by typing

ERA X.COM

CP/M responds with the A prompt. This is now an operational system that only
requires a bootstrap loader to function completely.

rite a bootstrap loader that is similar to GETSYS and place it on track 0,
sector 1 using PUTSYS (again using the test diskette, not the distribution diskette).
See Sections 6.5 and 6 8 for more information on the bootstrap operation

15. Retest the new test diskette with the bootstrap loader installed by executing
steps 11, 12, and 13. pon cornpietion of these tests, type a control-C (control and C
keys simultaneously). The system executes a "warm start" that reboots the system,
and types the A prompt.

oint, there is probably a good version of the customized CP/M system
on the test diskette. Use GETSYS to Ioad CPI from the test diskette. Remove the
test diskette, place the distribution diskette (or a legal copy) into the drive, and use
PUTSYS to replace the distribution version with the customized version. The user
should not make this replacement if unsure of the patch because this step destroys the
system that was obtained from Digital Research.

17. Load the modified CP/M system and test it by typing

DIR

CP/M responds with a list of files that are provided on the initialized diskette. One file
is the memory image for the debugger

Note that from now on, it is importaani- always to reboot the CP/M system (ctl-C is
sufficient) when the diskette is removed and replaced by another diskette, unless the
new diskette is to be read only.

18. Load and test the debugger by typing

DDT

ter 4 for operatmg procedures 1

19 Before rnaktng further CBIOS modifications, practice using the editor (see
Chapter 2), and assembler (see Chapter 31 Recode and test the GETSYS, PUTSYS,
and CBiOS programs using ED, ASM, and DDT Code and test a COPY program that
does a sector-to-sector copy from one d~ske t te to another to obtain back-up copies of
the origrnai diskette (Read the CP/M Licensing Agreement specifytng legal responst-
brltties when copying the CI'IM system 1 Place the copyright notice

Copyright 8, 2979
Digital Research

on each copy that is made with the COPY program

20. Modify the CBIOS to include the extra functions for punches, readers, and
sign-on messages, and add the facilities for additional disk drives, if desired. These
changes can be made with the GETSYS and PUTSYS programs or by referring to the
regeneration process in Section 4.3.

The user should now have a good copy of the customized CP/M system. Although the
CBIOS portion of CP/M belongs to the user, the modified version cannot be legally copied
for anyone else's use.

It should be noted that the system remains file-compatible with all other CP/M
systems (assuming media compatibility), which allows transfer of nonproprietary soft-
ware between CP/M users.

eneration
Once the system is running, the user will want to configure CP/M for the desired

memory size. Usually a memory image is first produced with the "MOVCPM" program
(system relocator) and then placed into a named disk file. The disk file can then be loaded,
examined, patched, and replaced using the debugger and the system generation program.
(The user should refer to Chapter I .)

The CBIOS and BOOT are modified using ED and assembled using ASM, producing
files called CBIOS.HEX and BOOT. HEX,which contain the code for CBIOS and BOOT
in Intel hex format.

To get the memory image of CP/M into the TPA configured for the desired memory
size, the user should type the command

MOVCPM xx *

where xx is the memory site in decimal K bytes ie.g., 3 2 for 32K). The response will be

CONSTRUCTING xxK CP/M VERS 2.0

READY FOR "SYSGEN~ OR

"SAVE 34 CPMxx.COMn

An image of CP/M in the TPA is conf~gured for the requested memory stze The memory
image 1s at locatron 0900l-l through 227FH t i e , the BOOT is a t 0900H, the CCP is at
980H, the BDOS starts at I180H, and the BIOS is a t 1F80HJ The user should note that
the memory image has the standard MDS-800 BIOS and BOOTon it It is now necessary
to save the memory image In a frle so that the user can patch the CBlOS and CBOOT into
it

T h e memory image cleated by the ' MOL CPhI" program IS offset by a negative bias so
that it loads mto the free azca of the Ti" aad t h u i does not interfere with the aperat~lon
ot CPIM In higher memoiv 7 hrs rnemorv image can be subsequentlv loaded under D D T
and examined or changed in prepararion for a ne\\ generation of the s t s t e m D D T is
loaded .,\ 8th the rnernorv Image bv tbping

DT CPMxx COM Load DDT, then read the CPM image

D D T shnuid respond with

2300 0100
e DDT prompt)

T h e user can then give the display and d~sassembly commands t o examine portrons of the
memory image between 900H and 227K-i T h e user should note, however, that to fmd
an) particular address within the memory image, one must apply the negative b ~ a s to the
C P / M address to find the actual address Track 00, sector 01, 1s loaded to iocation 900E-I
(the user should flnd the cold start loader a t 900E-i to 97FH), track 00, sector 02, ts loaded
m t o 980M ithls is the base i x t the CP), and so on thr.~ugh t e entire CP/M system load In
a 2i3K system, for example, the C C P r esldes at the CP/M address 3400H, but is placed into
memory a t Q80iii by the SYSGEh program Thus, the negative b ~ a s , denoted by n,
satrshes

Assurnmg that rwos complement arithmetic, n = D580H, which can be checked by

Note that for larger systems, n satisfies

T h e value of n for common CP/M systems is given below.

ias

I f the user wants ti> locate the address 4 ~vi th in the memory Image loaded under D D T in a
20K system, first type

Hx,n Hexadecimal sum and d~fference

and DDT will respond with the value of x+n (sum) and x-n (difference). The first number
printed by DDT is the actual memory address in the image where the data or code are
located. The DDT command

for example, will produce 980H as the sum, which is where the CCP is located in the
memory image under DDT.

The user should type the L command to disassemble portions of the BIOS located at
(4AOOHtb)-n, which, when one uses the H command, produces an actual address of
1F8OH. The disassembly command would thus be

It is now necessary to patch in the CBOOT and CBIOS routines. The BOOT resides at
location 09OOf-f in the memory image. If the actual load address is"n", then to calculate the
bias (m), the user types the command

H900,n Subtract load address from target address.

The second number typed by DDT in response to the command is the desired bias (m). For
example, i f the BOOT executes at 0080I1, the command

will produce

0980 0880 Sum and difference in hex

Therefore, the bias "m" would be 0880f-i. To read-in the BOOT, the user should give the
command

ICBOOT.HEX Input file CBOOT.HEX.

Then

Rm Read CBOOT with a bias of m (=?ooH-n).

The user may now examine the CBOOT with

The user is now ready to replace the CBIOS by examining the area at lF8OH where the
original version of the CBIOS resides and then typing

ICBIOS.HEX Ready the hex file for loading.

The user assumes that the CBIOS is being integrated into a 20K CP/M system and thus
originates a t location 3A00H. To locate the CBIOS properly in the memory image under
DDT, one must apply the negative bias n for a 2OK system when loading the hex file. This
is accomplished by typing

R D580 Read the file with bias D580H.

Upon completion 06 the read, the user should reexamine the area where the CBIOS has
been loaded (use an "LIFBO" command1 to ensure that it was loaded properly. When
satisfied that the change has been made, the user should return from DDT using a
controi-C or, "GO" command.

SYSGEN is used to replace the patched memory image back onto a diskette (the user
should utilize a test diskette until sure of the patch), as shown in the following interaction:

SYSGEN Start the SYSGEN program

SYSGEN VERSlO Sign-on message from SYSGEK

SOURCE DRIVE NAME Respond with a carriage return to skip the
CP,M read operation since the syste
already in memory

DESTINATION DRIVE NAME Respond with "B" to write the new system to
(OR RETURN TO REBOOT) the diskette in drive B

lace a scratch diskette in drive B, then type
HEN TYPE RET return.

NCTION CO
STINATION

The user should place the scratch diskette in en perform a cold start to
bring up the newly configured CP,

The new CP/M system is then tested and th
placed on the diskette, as specified in the Licensing Agreement:

Copyright o, 1979
Digital Research

The foliowing program prow ramework for the G
grams referenced in Sections 6.1 and 6.2.
must be inserted by the user to read and write the specific sectors.

GETSYS PROG D 1 TO MEMORY AT 3380
REGISTER USE

A RATCH REGISTE

L ESS

START: LXI SP,3380H ;SET STACK POI TER TO SCRATCH
;AREA
;SE ESS
;ST

SEC:
EADSEC
,128

DAD
INR
MOV A,C
CPI 27
JC RDS ; c IF SECTOR < 27

RIVE HERE AT END OF T
INR B
MOV A,B

HLT

PUSH
PUSH H

T i f an error occurs
I

POP W
OP B D STERS
ET P M

for reference purposes, w ~ t h an
es that are listed on the Ieki may

registers do not change within the program. The READSEC subroutine is replaced by a
WRITESEC subroutme, which performs the opposite fu tion: data from address WL are
written to the track gwen by register B and sector given register C I t is often useful to
combme GETSYS and PLjTSYS ~nl-o a stngIe prcgram durrng the test and development
phase, as shown In Appendix C

Diskette 0
The sector allocation for the standard distribution version of CP/M is given here for

reference purposes. The first sector (see the table on the following page) contains an
software boot section. Disk controllers are often set up to bring track^, sector I,

into memory at a specific location (often location OOOOH). The program in this sector,
called BOOT, has the responsibility of bringing the remaining sectors into memory
starting at location 34OOHt-b. If the user's controller does not have a built-in sector load,
the program in track 0, sector 1 can be ignored. In this case, load the program from track 0,
sector 2, to location 34OOH+b.

As an example, the Intel MDS-800 hardware cold start loader brings track 0, sector I,
into absolute address 3000H. Upon loading this sector, control transfers to location
3000H, where the bootstrap operation commences by loading the remainder of track 0
and all of track 1 into memory, starting at 3400Ht-b. The user should note that this
bootstrap loader is of little use in a non-MDS environment, although it is useful to
examine it since some of the boot actions will have to be duplicated in the user's cold start
loader.

Track#
00
00

00
00

01

Memory Address
(boot address)

3400H+b
348OH +b
3500H+b
3580H+b
3600H+b
3680H+b
3700H+b
3780H+b
3800H+b
3880H+b
3900H+b
398OH+ b
3AOOH+b
3A8OH+ b
3BOOH+b
3B80H+b
3COOH+b
3C80H+b
3DOOH+b
3D80H+b
3E00H+b
3E80H+b
3FOOH+b
3F80H+b
4OOOH+ b

4100Ht-b
4180Ht-b
42OOH+ b
428OHt- b
43OOH+ b
4380H+b
44OOH + b
4480H+ b

CP/M Module name
Cold Start Loader

CCP

CCP
BDOS

IOS
IOS

(directory and data)

The entry points into the BlOS from the coid s t a ~ t iisader and BDOS are detailed
below Entry to the IOS is th ro~tgh a";urnp .i e,tcr"locateJ a t -2AOOH+ , as shown below
(see Appendices X and B, as we111 The jump ~ e n c e of 17 ;ump
that send program control to the rndwdual tines The B10S
may be empty for certain functions (1 e , the
reconflgurat~on of CPIM, but the en t r~es

The lump vector at 4ADOH+b takes the
addresses are given to the !eft:

4AOOHib JMP BOOT

4A03H+b JMP VVBOOT

4A06H+b JMP CONST

4A09H+b

4AOCH+ JMP CONOUT

4AOFW+b JMP LIST

A12Hcb

4A15

4A18Hib

4A1 BH+b JMP SELDSK

4A l EH*b

4A21 H+b JMP SETSEC

START LOAD

HERE FOR Wa4RM STAXT

CONSOLE CH,4

; READ CONSOLE CHARACTER IN

ITE CONSOLE CHARACTER
T

; WRITE LISTING CHARACTER OUT

, WRITE CHARACTE

SELECTED DISK

; SELECT n r s l c DRIVE

4A24H+b JMP SETDMA ; SET DMA ADDRESS

4A27H+b JMP READ ; READ SELECTED SECTOR

4A2AHi- b JMP WRITE ; WRITE SELECTED SECTOR

4A2DH+b JMP LISTST ; RETURN LIST STATUS

4A30H+b JMP SECTRAN ; SECTOR TRANSLATE
SUBROUTINE

Each jump address corresponds to a particular subroutine that performs the specific
function, as outlined below. There are three major divisions in the jump table: the system
(re)initialization, which results from calls on BOOT and WBOOT; simple character IIO
performed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST; and diskette 110 performed by calls on HOME, SELDSK, SETTRK, SETSEC,
SETDMA, READ, WRITE, and SECTRAN.

All simple character IIO operations are assumed to be performed in ASCII, upper and
lower case, with high order (parity bit) set to zero. An end-of-file condition for an input
device is given by an ASCII controi-z (1AI-I). Peripheral devices are seen by CP/M as
"logical" devices and are assigned to physical devices within the BIOS.

To operate, the BDOS needs only the CONST, CONIN, and CONOUT subroutines
(LIST, PUNCH, and READER may be used by PIP, but not the BDOS). Further, the
LISTST entry is currently used only by DESPOOL, the print spooling utility.
initial version of CBIOS may have empty subroutines for the remaining ASCII devices.

The characteristics of each device are

CONSOLE The principal interactive console that communicates with the
operator, accessed through CONST, CONIN, and CONOUT;
typically, the CONSOLE is a device such as a CRT o r teletype.

LIST The principal listing device, ~f rt exists on the user's system, is
usually a hard-copy devtce, such as a printer o r teletype

PUNCH The principal tape punching device, i f it exists, is normally a
high-speed paper tape punch or teletype.

READER The principal tape reading device, such as a simple optical
reader or teletype.

'4 single peripheral can be assigned as the LIST, PUNCH, and READER device
simultaneously. If no peripheral device is assigned as the LIST, PUNCH, or READER
device, the CBIOS created by the user may give an appropriate error message so that the
system does not "hang" if the device is accessed by PIP o r some other user program.
Alternately, the PUNCH and LIST routines can just simply return, and the READER
routine can return with a I A H (ctl-Z) in register A to indicate immediate end-of-file.

For added flexibility, the user can optionally implement the "IOBYTE" function,
which allows reassignment of physical and logical devices. The IOBYTE function creates
a mapping of logical to physical devices that can be altered during CPI
user should see the STAT command). The definition of the lOBYTE function corres-
ponds to the Intel standard as follows: a single location in memory (currently location
0003H) is maintained, called IOBYTE, which defines the logical to physical device map-
ping that is in effect at a particular time. The mapping is performed by splitting the

distinct fields o caiied the CONSOLE,
fields, as s h o ~ n

most signiiicant least significant

LIST EADER CONSOLE

bits 6, 7 bits 3, 5 bits 2 , 3 bits 0, I

e value in each fwld can be in the range 0-3, defining the assigned source or
anon of each Iog:izi device The vaiues that can be assigned to each fwld are given

tsr device iTTY j

SOLE Input, and the

0 NCH is the teletype
I
2
3

fects only the organizat~on of
they tolerate the existence of
allows access to the physical

devices, and ST AT, *i~hlch allows logical-phys~cal assignments to be made or displayed
apter I' In any case the I
OS is fully implemented a

TE to Increase the kacllities
ed through a sequence of calls on the various d ~ s k access

r tor on 2 particular

~ t e operat~ons to the selected

he track and sector subroutines are always

BOUT gets control from the cold s tar t loader
,stern initialization, including
ich t a n be omitted in the first

BOOT ntroi when a warm start

location 4 blr = current user no; low

(The user should refer to Section s 9 for complete
page zero use 1 ljpon cornpletmn of the inlt~aiiza

to the drive to se

should sample t
evice and return

ready to read and I)OM in r eg~s t r r .A 11- r.c: consoie charac~ers are

The next conscsle character is read Into regrster A, and the
parity bit is set (hi ti to zero If RO console character
rs ready, the user w a i t s bnril a characrer 1s typed before
returning

The user sends e acter from register C t
output device. T
parity bit set to
on a Iine feed or

time interval a t the
nal). The user can F

the console device to react in a strange way (a acontrd-z causes
the Lear Seigler terminal to clear the screen, for example).

The user sends the character horn re
assigned listing device. T e character is in AS
parity bit.

PUNCH The user sends the character from register C to
assigned punch device. The character is :n A S
parity.

READER The user reads the next c
reader device into regist

); an end-of-file condition
control-zil AH).

HOME The user moves th
(initially disk A) to
aflows access to the
stepped until the trac
not support this feat
to SETTRK with a

SELDSK

matically If there is an a

SETTR K

SETSEC

SETDMA

EAD

LISTST

this time or delay the seek until the next reador write actually
occurs. Register BC can take on values in the range 0-76
corresponding to valid track numbers for standard fIo
drives and 0-65535 for nonstandard disk subsystems

C contarns :he sector number (1 through 20
t dlsk accesses on the currently selected drlve

sector number in C IS the same as the number returned from
the SECTRAN entry point The user can choose t o send this
information to the controller a t thts pomt or delay sector
selection until a read or write operation occurs

Xeg~ster BC contains the D A (disk memory access) address
for subsequent read or wrlte operations For example, if B =
OOH and C = 8OH when SETDMA is called, all subsequent read
operations read thetr data Into SOH through OFFH and ail
subsequent wrlte operations get ~r data from 8Oti[thr
OFFH, untd the next cail to SET ccurs The lnlrlal D
address 1s assumed to be 80f-I T troller need not act
support direct rnernor access If , for example, all data

ports, the CBIOS that is con-
yte area startmg at the seiected

emory buffer durtng the su
read o r write operations

as been selected, the trac

and returns the foflowi
in regnster -4:

o no errors occurred

I nonrecoverable error condition occurred

IM responds only to a zero or nonzero value as
the return code That 15, if- the valcle in register A
assumes that the dlsk opera was completed pro
error occurs, however, the O S should attempt
retries to see ~f the error
reporred the BDOS ~ 1 1 1 prt
BAD SECTOR" The operator then has the optlon of typrng
carnage-retun to ignore the error, o r cti-C to abort

The user writes the data C

mand are returned in register 4,
w t k error recovery attempts as described above

The user returns the ready status of the list device used by the
DESPOOL program to improve console response during its
operation The value ao is returned In A i f the list device is not
ready to accept a character and DFFH i f a character can be sent

SECTRA

to the printer. A 00 value should be returned if LIST status is
not implemented.

The user performs logical to physical sector translation to
prove the overall response of CP!

tems are shipped with a "skew factor" of 6 , where six
physical sectors are skipped between each Logical read opera-
tion. This skew factor allows enough time between sectors for

ufi'ers without missing the next
in particular computer systems that use fast proces-

sors, memory, and disk subsystems, the skew factor may be
changed to improve overall response. However, the user
should mtaintair? a single density IBM-compatible version of
CP/M for information transfer into and out of the computer
system, using a skew factor of 6 . in general, SECTRAN
receives a logical secior num relative to zero in BC and a
translate table address in DE. e sector number is used as an
index into the translate table, with the resulting physical
sector number in Hk. or standard systems, the table and
indexing code is provi d in the CBIOS and need not be

The program shown is for a user's first BIOS. The
er can enter it through a front
ert code into the subroutines
ITIO subroutines. Storage is

reserved for user-sup

to print the initial sign-on
es for LIST, PUNCH, and

The program shown in Appendix E can serve as a basis for a cold start loader. The disk
read function must be s
starting at location 0000
storage required for the e user will probably
want to get this loader on use the controller

ad it into memory au ply, the cold start
r can be placed into is case, it will be

necessary to originate the program at a higher address and key in a jump instruction at
system start up that branches to the loader. Subsequent warm starts will not require this
key-in operation, since the entry point %/BOOT gets control thus bringing the system in
from disk automatically. The skeletal cold start loader has minimal error recover, which
may be enhanced in later versions.

FH, contains several segments
e code and data areas are gwen

below for reference

Contains a jump instruction to the warm start entry
4A03Hib. This allows a simple pro-

000H) or manual restart from

IOBYTE, which is optionally
S, as described in Section 6.6.

default drive number (O=A, ..., 15=P).

Contains a jump instruction to the BDOS and serves two

, not currently used; reserved.)

tart 7; contains a jump instruction into the DDT or
rogram when running in debug mode for pro-

oints, but is not otherwise used by

(Not currently used; res

area reserved for scratch by CBIOS, but is not
any purpose in the distribution version of

iNo"iciirrently used; reserved.)

for a. transient pro-

om record position.

ffer (also filled with the com-
ent is loaded under the CCP).

system, but can be
o t required by the

1% strnple 1 1 0 and must be
ormal CP/M iacrlities,
d (the memory move
med beginmng of ail

ent programs,? T to moxie the entire memory
down to location 3 an dress of the memory load If

warm start entry pomt) is
ck into memory with a cold

start sequef re

e particular charactertstics of the disk
hand-coded, as shown In the

ed u s ~ n g the DISKDEF macro
Jescrlbe the elements of rhese

parameter header that

below

each element 1s a word (16-b:t; v lue The meaning of eac arameter Header
element- is

cal translation vector, if used for
e 0000I-l if no sector transla-

ysical and logical sector numbers
identical sector skew factors

iratchpad values for use wrt DOS (initzai value is
urarrnportanli

ad area tor &recto
ess the same scra

is drive. Drives with
e disk parameter

d area used for software check for
ress is different for each DPH.

Address of a scratr ad area used by the BDOS to keep &sic
rrnatlon T h ~ s address IS different for

each DPH

Given n disk drikes, the DPHs are arranged in a table whose first row of 16 bytes
s to drtve 3, with the last row correspondmg ro drrve n-1 The table rhus

appears as

01 1 XLT 01 1 0000 j 0000 : 0000 1 DlRBU P 01; csv 01 ALV 07
(and so on through)

n-l j XLTn-1 100 000 0000 / DlRBUFi BPn-l j CSVn-I%LVn-1 /

where the label DPBASE defines the base address of the D
A responstbiitty of the SELDSK subroutine is to return the base address of the DPH

for the selected drive The following sequence of operations le turns the tabie address,
with a 0000I-1 returned if the selected drive does not exist

......
SELDSK:

The translation vectors (XLT 00 through XLTn-I) are located e1s~ i
and simply corres ond one-for-one &irh the logical sector nu
sector count 1 T e Dtsk Parameter Block (DPB) for each drrve rs

B, which is addressed by one or more DPMs, takes the genera! fo

1 BLM / EXM /
l s b 8b 8b s b l6b 16b 8b 8b 16b ?6b

where each is a byte or word value, as shown by the 8 b o r I b b indicaror

is the total number of sectors per track

BLM is the data allocation block mask 121

EXM is rhe extent mask, determined by :he data block allocation s u e and
the number o f disk blocks.

DSM determines the total storage capactty of rhe disk dnve

DRM determines the total number of directory entries that can be stored
on this drive. (ALO,ALX determine reserved directory blocks.)

KS is the size of the directory check vector

1s the number of reserved tracks at the beginning of the ilogical)
disk.

The vnlues of BSH and BLM determme iimpltcitlyj the data allocatton size BLS, whtch is
not a n entry in the DPB Given that the designer has selected a value for BLS, the values

LM are shown in the tabulatton below

are In decimal. The value of EXM depends upon both the BLS and
her the DSM value is less than 256 or greater than 255 For DSM < 256 the value of

> 255 the value of EXM is given by:

The value of DSM 1s the maxtmum data block number supported by this parttcular
dr:ve, measuied in BLS units The product BLS ttmes (DSM+1) is the total number of
bytes held by the drive and, of: course, must be w t t h ~ n the capactty of the phystcal d ~ s k , not
iountmg the reserved operating system tracks

entry I S the one less than the total number of dtrectory entries that can take
h e The values of ALO and AL1, however, are determtned by DRM The

values ALij and kL1 can together be consrdered a string of 16-btts, as shown below

where postiron 00 corresponds to the high order brt of the byte labeled ALO and 15
corresponds to the low order bit of: the byte labeled ALI Each btt posltion reserves a data
block for niirnber of directory entrtes, thus allowing a total of 16 data blocks to be

assigned fur directory entries (bits are assigned starting a t 00 and filled to the right until
position 15). Each directory entry occupies 32 bytes, resulting in the tabulation below.

LS Directory Entries
102 32 times X b ~ t s
2048 04 times fr bits
4096 128 times ii b ~ f s
8 192 250 times # btts

16384 512 times # btts

Thus, if DRM = 127 (128 directory entries) and BLS = 1024, thereare32 directory entries
per block, requiring 3 reserved blocks, in this case, the 4 high order bits of ALo are set,
resulting in the values XLO = OFOH and ALl = OOH.

The CKS value is determined as follows: if the disk drive media is removable, then
CKS = (DRM+lji4, where DRM is the last directory entry number. If the media are fixed,
then set CKS = if (no directory records are checked in this case).

Finally, the OFF field determines the number of tracks that are skipped at the
beginning of the physical disk. This value is automatically added whenever SETTRK is
called and can be used as a mechanism for skipping reserved operating system tracks or
for partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, several DPHs can address the same DPB if
their drive characteristics are identical. Further, the DPB can be dynamically changed
when a new drive is addressed by simply changing the pointer in the DPH since the BDOS

e DPB values to a local area whenever the SELDSK function is invoked.
Returning back to the DPH for a particular drive, the two address values CSV and

ALV remain. Both addresses reference an area of uninitialized memory following the
BIOS. The areas must be unique for each drive, and the size of each area is determined by
the values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is sufficient to hold the
directory check information for this particular drive. If CKS = (DRM+1)/4, one must
reserve (DRM+1)/4 bytes for directory check use. If CKS = 0, no storage is reserved.

The size of the area addressed by ALV is determined by the maximum number of data
blocks allowed for this particular disk and is computed as (DSM/8)+1.

The CBIOS shown in Appendix IZ demonstrates an instance of these tables for
standard 8-inch single density drives. It may be useful to examine this program and
compare the tabular values with the definitions given above.

A macro library is shown in Appendix F, called DISKDEF, which greatly simplifies the
table construction process. One must have access to the MAC macro assembler, of
course, to use the DISKDEF facility, while the macro library is included with all CP/M 2

i s r r h i i o n disks. d ' , .
IOS disk definition consists of the foilowing sequence of macro statements:

DISKS n
DISMDEF 0 , ...
DISKDEF 1 ,...

e disk as the BlOS)
pecifies the number of
r in the range 1 to 16.
eristics of each logical
P). The DISKS and
the previous section
S, typically directly

KDEF macros, with
he ENDEF (End of
hich are located in

number of directory ltems to check on each directory scan and is used internally todetect
changed disks during system o intervening cold or war
occurred (when this situation utomatically marks the
so that data are not subsequently destroyed).

AS stated in the previous section, the value of cks = dir when the xnediu
changed, as is the case wit a floppy disk subsystem. If the disk is permanent1
the value of cks is typicall 0, since the probability of changing disks without
low. The ofs value determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system space or to simulate
several logical drives on a single large ca ty physical drive. Finally, the 101 parameter is
included when file compatibility with versions of 1.4 that have been modified
for higher density disks. This ter ensures that only 16K is allocated for each
directory record, as was the case for previous versions. Normally, this parameter is not
included.

For convenience and economy of table space, the special form

gives disk i the same characteristics as a previously efined drive j . A stan
single density system, which is compatible with version 1.4, is defined usi
macro invocations:

DISKS 4

DISKDEF
DISKDEF

with all disks having the same parameter values of 26 sectors per track (nu
rough 261, with 6 sectors ski etween each access, 1
ta blocks for a total of 243K- isk capacity, 64 check

operating system tracks.
The DISKS macro generates n DPHs, starting at the DPH table addres

generated by the macro. Each disk header block contains sixteen bytes, a
above, and correspond one-for-one to each of the defined drives. In the four-drive
standard system, for example, t e DISKS macro generates a table of the for

DPBASE EQU $
DPEO: LT0,0000H,0000H,0000H,DIRBUF,
DPEl: H,OOOOH,DIRBUF,
DPE2: H,OOOOH.DIRBUF,

E3:

ere the DPH Iabeis are include for reference purposes to show the beg~nning t
addresses for each drive O through 3 The values contained within the DPI-I are
In detail in the previous section. The check and ailocation vector addresses are generated
by the ENDEF macro in the ram area fol!owing the BIOS code and tabIes.

The user should note that if the skf (skew factor) parameter is omitted (or equal to O),
the translation table is omitted and a OOOoH vahe is inserted in the XLT position of the
DPH for the disk. In a subsequent call to perform the logical to physical translation,
SECTRAR; receives a translation table address of DE = OOOOH and simply returns the
original logical sector from BC in the HL register pair. A translate table is constructed
when the skf parameter is present, and the (nonzero) table address is placed into the

corresponding DPHs. The tabulation shown below, for example, is constructed when the
standard skew factor skf = 6 is specified in the DISKDEF macro call:

Following the ENDEF macro call, a number of uninltiaiized data areas are defined
These data areas need not be a part of the BlOS that is loaded upon cold start, bu t must be

le between the BIOS and the end of merr~orv T e size of the unmitiahzed R A M
area rs determrned by EQU statements generated by the ENDEF macro For a standard
four-dnve svstem, the ENDEF macro might produce

4C72 = BEGDAT EQU $
(data areas)

4080 = ENDDAT EQU $

013C = DATSIZ EQU $-BECDAT

indicates that uninitiaiized RA begins a t location 4C72H, ends at 4D60I-1-I, and
occupies O I K H bytes. The user must ensure that these addresses are free for use after
the system is loaded.

After modification, the user can utilize the STAT program to check drive characteris-
tics, since STAT uses the disk parameter block to decode the drive information. The
STAT command form

decodes the dlsk parameter block for drive d id=& ...,) and displays the values shown
below.

yte record capacity

e directory entries
d directory entries

recordsiextent
recordslblock
sectorsltrack
reserved tracks

Three examples of DtSKDEF macro invocations are shown below with corresponding
STAT parameter values (the last produces a full &megabyte system).

Upon each ca11 to the BIO
that ailows effective sector Is
sector size that is a multiple
general-purpose algorithm t

0 = normal sector write
1 = write to drrectory sector
2

Condition 0 occurs whenever ii- eration is into a previously written area,
such as a random mode record u write is to other than the first sector of
an unailocated block when the write is not into the directory area. Condition I occurs
when a write into t

preread operations c

Disk Parameter Hea
is selected later at

The principal entry points are

operations.

1
2
3
4
5
6 0016 =
7
8
9

10
11
12
13
14 ffff =
15 0000 =
16 0000 =
17
1
19
20
2 1
2 0000 =

23
24
25 1600 =
26
27 1600
28 0000 =
29 0806 =

2

vers

5

true
false
test

bias

bias

patch

cpmb
bdos

rivers for cp/m 2.2
(four drive single density version)

version 2.2 february, 1980

equ 22 ;version 2.2

copyright (c) 1980
digital research
box 579, pacific grove
calilornia, 93950

offffh ;value of "true"
not true ;"falseu

false ;true if test bios

test
;base of ccp in test system

not tesl
0000 h ;generate relocatable cp/m system

patch
$-patch ;base of cpm console processor
806h+cpmb ;basic dos (resident portion)

1600 =
002c =
0002 =
0004 =
0080 =
OOOa =

cpml
nsects
offset
cdisk
buff
retry

eq u $-cpmb ;length (in bytes) of cpm system
eq u cpm1/128 ;number of sectors to load
equ 2 ;number of disk tracks used by cp/m
eq u 0004 h ;address of last logged disk on warm start
eq u 0080 h ;default buffer address
eq u 10 ;max retries on disk i/o before error

perform following functions
boot cold start
wboot warm start (save i/o byte)
(boot and wboot are the same for mds)
const console status

-a = 00 if no character ready
reg-a = f f if character ready

conin console character in (result in reg-a)
conout console character out (char in reg-c)
list list aut (char in reg-c)
punch punch out (char in reg-c)
reader paper tape reader in (result to reg-a)
home move to track 00

dpel: dw
dw

wboot
const
conin
conout
list
punch
reader
home
seldsk
settrk
setsec
setdma
rea
write
listst ;list status
sectran

diskdef ;load the disk definition library
4 ;four disks
$;base of disk parameter blocks
xltO, OOOOh ;translate table
0000h, OQOOh ;scratch area
dirbuf, dpbO
csv0, alvO ;check, alloc vectors
xlt l , OOOOh itranslate table

;translate table

OOfd =
OOfc =

dpbl
alsl
cssl
xlt l

dpb2
als2
css2
xlt2

dpb3
als3
css3
xlt3

,
,

revrt
intc

db
db
db
db
db
db
db
diskdef
eq u
eq u
equ
eq u
diskdef
equ
eq u
equ
equ
diskdef
eq u
eq u
eq u
eQ u

12
18
24
4
10
16
22
1,o

alsO
csso
xltO
2, 0
dpbO
also
csso
xltO
3, 0

alsO
csso
xll0

;equivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table

;equivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table

;equivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table

;interrupt revert port
equ Ofch ;interrupt mask port

0004 =
0006 =
0003 =
0004 =
OOOd =
OOOa =

icon
inte

c i
r i
co
0

lo
csts

base
dstal
rty pe
rbyte

ilow
ihigh

writf
recal
iordy
C r
If

signon:

equ Of3h ;interrupt control port
;enable rst 0 (warm boot), rst 7 (monitor)

;restart rnon80 (boot error)
;console character to r
;reader in to reg-a
;console char from c to console out
;punch char from c to punch device

equ Of8Ofh ;list from c to list device
equ 0f812h ;console status OO/ff to register a

disk ports and commands
ase of disk command io ports
isk status (input)

equ base+l ;result type (input)
equ base+3 ;result byte (input)

equ base+'! ;iopb low address (output)
equ base+2 ;iopb high address (output)

equ 4h ;read function
equ 6h ;write function
equ 3h ;recalibrate drive
equ 4h ;i/o finished mask
equ Odh ;carriage return
equ Oah ;line feed

;signon message: xxk cp/m vers y.y
db cr, If, If
if test
db '32' ;32k example bios
endif

16al 6b2043502f
16ad 322e32
16b0 OdOaOO

16c6 OeOa
16c8 c5

16c9 01 0000
16cc cd bb17
16cf OeOO
16dl cd7d17
16d4 OeOO
16d6 cda717

16db cdac17

if not test
db '00' ;memory size filled by relocator
endif
db 'k cp/m vers '
db vers/lO+'Oi, ',' vers mod 10+'0'
db cr, If, 0

boot: ;print signon message and go to ccp
(note: mds boot initialized iobyte at 0003h)
Ixi sp, buff+%Oh
Ixi h, signon
call prmsg ;print message
xra a ;clear accumulator
sta cdisk ;set initially to disk a
jmp gocpm ;go to cp/m

wboot:; loader on track 0, sector 1, which will be skipped for warm
read cp/m from disk-assuming there is a 12% byte cold start
start

Ixi sp, buff ;using dma-thus 80 thru ff available for stack

mvi c, retry ;max retries

n error retries
rnb ;set dma address to start a

;boot from drive 0

call setsec

16f0 4d
l 6 f l cdbbl7
l6f4 3a6b18
16f7 fel a
16f9 da0517

rdsec:

,

rd l :

gocpm:

read sectors, count nsects to zero
POP b ;lo-error count
mvi b, nsects
;read next sector

ve sector count

terr ;retry if errors s
;increment dma
;sector size

dad d ;incremented dma address in hi
mov b, h
mov c, I ;ready for call to set dma
call setdma
Ida ios ;sector number just read
cpi 26 ;read last sector?
i c rd l
must be sector 26, zero and go to next track
Ida iot ;get track to register a
inr a
mov c, a ;ready for call
call settrk
xra a ;clear sector number
inr a ;to next sector
mov c, a ;ready for call
call setsec
POP b ;recall sector count
dcr b ;done?
jnz rdsec

done with the load, reset default buffer address
;(enter here from cold start boot)
enable rstO and rst7

di
mvi
out
xra
out
rnvi
out
xra
out

a, 12h ;initialize command
revrt
a
intc ;cleared
a, inte ;rstO and rst7 bits on
intc
a
icon ;interrupt control

, set default buffer address to 80h
Ixi b, buff
call setdma

reset monitor entry points
mvi a, jmp
sta 0
Ixi h, wboote
shld 1 ;jump wboot at location 00
sta 5
Ixi h, bdos
shld 6 ;jmp bdos at location 5
if not test
sta 7*8 ;jmp to mon80 (may have changed by ddt)
Ixi h, mon80
shld 7*8+1
endif
leave iobyte set
previously selected disk was b, send parameter to cpm
Ida cdisk ;last logged disk number
mov c, a ;send to ccp to log it in
e i
jmp cpmb

error condition occurred, printmessage and retry
booterr:

;recall counts

jz hooter0
try agai
push
jrnp wbootO

booter0:
otherwise too many retries
Ixi h, boolmsg

jmp rmon80 ;mds hardware monitor

bootrnsg:
db '?boot1, 0

const: console status to reg-a
(exactly the same as mds call)
jrnp csts

conin: ;console character to reg-a
call ci
ani 7fh ;remove parity bit
ret

conout: ;console character from c to console out
jmp co

list: ;list device out
(exactly the same as mds call)
jmp lo

1778 OeOO
177a c3a717

listst:

punch:

reader:

home:

,
seldsk:

;return list status
xra a
ret ;always not ready

;punch device out
(exactly the same as mds call)
jmp PO

;reader character in to reg-a
(exactly the same as mds call)
jmp ri

;move to home position
treat as track 00 seek
mvi c, 0
jmp settrk

Ixi
mov
cpi
rnc

an i
sta
mov
an i
ora
jz
mvi

;select disk given by register c
h, OOOOh ;return 0000 if error
a, c
ndisks ;too large?

;leave hl = 0000

l o b ;OO 00 for drive 0, 1 and 10 10 for drive 2, 3
dbank ;to select drive bank
a, c ;oo, 01, 10, 11
l b ;mds has 0, 1 at 78,2,3 at 88
a ;result OO?
setdrive
a, 00110000b ;selects drive 1 in bank

setdrive:
mov b, a ;save the function

settrk:

setsec:

sectran:

Ixi
rnov
ani
ora
m ov
rnov
mvi
dad
dad
dad
dad
Ixi
dad
ret

h, iof
a, m
11001111b
b
m, a
1, c
h, 0
h
h
h
h

d

;io function

;mask out disk number
;mask in new disk number
;save it in iopb

;hl=disk number
; *2
;*4
; *8
: * I6

;hl=disk header table address

;set track address given by c
Ixi h, iot
rnov m,c
ret

;set sector number given by c
Ixi h, ios
rnov m, c
ret

ate sector bc using table at de
mvi b, 0 ;double precision sector number in bc
xchg ;translate table address to hl
dad b ;translate (sector) address
mov a, m ;translated sector number to a
sta ios
mov I , a ;return sector number in I
ret

setdma:

read:

write:

prmsg:

;set dma address given by regs b, c
mov I, c
mov h , b
shld iod
ret

;read next disk record (assuming disk/trk/ secldma set)
mvi c, readf ;set to read function
call setfunc
call waitio ;perform read function
ret ;may have error set in reg-a

;disk write function
mvi c, writf
call setfunc ;set to write function
call waitio
ret ;may have error set

utility subroutines
;print message at h, I to 0
mov a, m
ora a zero?
rz
more to print
push h
mov c, a
call conout
POP h
inx h
MP prmsg

setfunc:

17f0 OeOa
wailio:

rewait:

set function for next i i o (command in reg-c)
Ixi h, iof ;io function address
mov a, m ;get it to accumulator for masking
ani 11 11 1000b ;remove previous command
ora c ;set to new command
mov m , a ;replaced in iopb
the mds-800 controller requires disk bank bit in sector byte
mask the bit from the current i/o function
ani 001 OOOOOb ;mask the disk select bit
Ixi h, ios ;address the sector select byte
ora m ;select proper disk bank
mov m, a ;set disk select bit onioff
ret

m v i c, retry ;max retries before perm error

start the i/o function and wait for completion
call intype ;in rtype
call inbyte ;clears the controller

Ida
ora
mvi
mvi
j nz
out
mov
out
jmp

dbank ;set bank flags
a ;zero if drive 0, 1 and nz if 2, 3
a, iopb and offh ;low address for iopb
b, iopb shr 8 ;high address for iopb
iodr l ;drive bank I ?
ilow ;low address to controller
a, b
ihigh ;high address
waito ;to wait for complete

;drive bank 1
out ilow+lOh ;88 for drive bank 10

mov a, b
out ihigh+lOh

;wait for completion
;ready?

waito: call instat
ani iordy
j z waito

check io completion ok
call intype ;must be io complete (00) unlinked
00 unlinked i/o complete, 01 linked i/o complete (not used)
io disk status changed 11 (not used)
cpi 10b ;ready status change?
jz wready

must be 00 in the accumulator
ora a
jnz werror ;some other condition, retry

check i/o error bits
call inbyte
ral
jc wready ;unit not ready
rar
ani I l 1 1 l l l O b ;any other errors? (deleted data ok)
jnz werror

read or write is ok, accumulator contains zero
re t

w ready: ;not ready, treat as error for now
call inbyte ;clear result byte
jmp trycount

;return hardware malfunction (crc, track, seek, etc.) werror:

trycount:

intype:

intypl:

the mds controller has returned a bit in each position
of the accumulator, corresponding to the conditions:
0 -deleted data (accepted as ok above)
1 -crc error
2 -seek error
3 -address error (hardware malfunction)
4 -data over/under flow (hardware malfunction)
5 -write protect (treated as not ready)
6 -write error (hardware malfunction)
j -not ready
(accumulator bits are numbered 7 6 5 4 3 2 1 0)

it may be useful to filter out the various conditions,
but we will get a permanent error message if it is not

recoverable. in any case, the not ready condition is
treated as a separated condition for later improvement

register c contains retry count, decrement 'ti1 zero
dcr c
jnz rewait ;for another try

cannot recover from error
mvi a, 1 ;error code
ret

intype, inbyte, instat read drive bank00or 10
Ida dbank
ora a
jnz intypl ;skip to bank 10
in rtY Pe
ret
in rtype+l Oh ;78 for 0, 1 88 for 2, 3
ret

inbyte:

inbytl:

instat:

instal :

dbank:

iopb:

iof:
ion:
iot:
ios:
iod:

Ida
ora
jnz
in
ret
in
ret

Ida
ora
jnz
in
ret
in
ret

dbank
a
inbytl
rbyte

rbyte+lOh

dbank
a
instal
dstat

dstat+l Oh

data areas (must be in ram)
db 0 ;disk bank 00 if drive 0, 1

10 if drive 2, 3
;io parameter block
db 80h ;normal i/o operation
db readf ;io function, initial read
db 1 ;number of sectors to read
db offset ;track number
db 1 ;sector number
dw buff ;io address

define ram areas for bdos operation
endef

57 1
572
573
574
575
576
577
578
579
580
581
582
583

alsl
als2
als3
alvO
alvl
alv2
alv3
base
bdos
begdat
bias
boot
booterO
booterr
bootmsg 175b
buff 0080
cdisk 0004
c i f803
co f809

begdat
dirbuf:
alvO:
csvo:
alvl:
csvl :
alv2:
csv2:
alv3:
csv3:
enddat
datsiz

equ
d s
d s
d s
ds
ds
ds
d s
d s
d s
eq u
equ
end

;directory access buffer

r
a
m
rn

0) P - N O
a b PI. m
w m m 7

(D m a m
N m a -
N m -

N 0 m 7- b 0 N N
m m 0 mm: m P-
9 N m m d

* # * = # # # * # r;lr
- 4 - m o m - a 3 W ~ - (D W O m o ~ o m o o o comcnmco
NNNNCQO) ~ b b b a m a ~ w b m c o m Y-awbCC)
m m m T m m m m m d T T - T - T - ~ m N m N b

##*a=*#* * # * * * * # * * # #
(D P - ~ ~ O ~ N ~ N ~ ~ T ~ ~ ~ ~ (D W O ~ C O ~ ~ ~ ~ O N ~ ~ T ~ ~ ~ ~ (D
~ ~ ~ ~ m m w ~ m ~ a m ~ a a ~ m r n ~ ~ ~ m o 3 C o L Z) C O C O . C - ~ P - (D C O

T T - T - T - T m m r m w ,--7

V ~ T O O U O O O u ~ a m ~ a a , m m m m m m m m m m m o + a ~ a
a c o ~ o o o ~ ~ ~ ~ o m ~ a ~ a ~ ~ - ~ ~ - ~ - m m ~ m ~ ~ - c ~ o o ~ Y - ~ -
P E E ~ Z ~ ~ ~ ~ S Z Z Z Z ~ ? ? ? ? Z ? ? ? Z Z Z ~ Z ~ E P ~ ~

ilow
inbytl
inbyte
instal
instat
intc
inte
intypl
intype
iod
iodrl
iof
ion
iopb
iordy
ios
iot
If
list
listst
lo
mon80
nsects
offset
patch
PO
prmsg
punch
rbyte
rd 1
rdsec
read
reader
readf

0079
1856
184c
1863
1859
OOf c
007e
1849
l83f
186c
180b
1868
I869
1867
0004
186b
186a
OOOa
l76d
1770
f80f
f800
002c
0002
1600
f80c
17d3
1772
007 b
1705
l 6 e l
17cl
1775
0004

recal
retry
revrt
rewait
ri
rmon80
rty pe
sectran
seldsk
setdma
setdrive
setfunc
setsec
settrk
sign on
test
true
trycount
vers
waito
waitio
wboot
wbootO
wboote
werror
wready
write
writf
xltO
x l t l
xlt2
xlt3

0003
OOOa
OOf d
17f2
f806
ffOf
0079
17bl
177d
17bb
1792
17e0
17ac
17a7
169c
0000
ffff
I838
001 6
1810
17f0
l6c3
16c9
1603
I838
1832
17ca
0006
I682
I682
1682
1682

msize

2

bias
CCP
bdos
bios
cdisk
iobyte

nsects

I

wboote:

skeletal cbios for first level of cp/m 2.0 alteration

equ 20 ;cp/m version memory size in kilobytes

"bias" is address offset from 3400h for memory systems
than 16k (referred to as "b" throughout the text)

equ (msize-20)*1024
equ 3400h+bias ;base of ccp
equ ccp+806h ;baseofbdos
equ ccp+1600h ;base of bios
equ 0004h ;current disk number 0=a, . . . , 15=p
equ 0003h ;intel i/o byte

org bios ;origin of this program
equ ($-ccp)/128 ;warm start sector count

jump vector for individual subroutines
jmp boot ;cold start
jmp wboot ;warm start
jmp const ;console status
jmp conin ;console character in
jmp conout ;console character out
jmp list ;list character out
jmp punch ;punch character out
jmp reader ;reader character out
jmp home ;move head to home position

dpbase:

seldsk
settrk
setsec
setdma
read
write
listst
sectran

;select disk
;set track number
;set sector number
;set dma address
;read disk
;write disk
;return list status
;sector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 00
dw trans, OOOOh
dw OOOOh, OOOOh
dw dirbf, dpblk
dw chk00, all00
disk parameter header for disk 01
dw trans, OOOOh
dw OOOOh, OOOOh
dw dirbf, dpblk
dw chk01, all01
disk parameter header for disk 02
dw trans, OOOOh
dw OOOOh, OOOOh
dw dirbf, dpblk
dw chk02, a1102
disk parameter header for disk 03
dw trans, OOOOh
dw OOOOh, OOOOh
dw dirbf, dpblk
dw chk03, all03

sector translate vector

4aa6 31 8000
4aa9 OeOO
4aab cd5a4b
4aae cd544 b

trans:

dpblk:

boot:

wboot:

;disk parameter block, common to all disks
dw 26 ;sectors per track
db 3 ;block shift factor
db 7 ;block mask
db 0 ;null mask
dw 242 ;disk size-I
dw 63 ;directory max
db 192 ;alloc 0
db 0 ;alloc 1
dw 16 ;check size
dw 2 ;track offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initialization
xra a ;zero in the accum
sta iobyte ;clear the iobyte
sta cdisk ;select disk zero
jmp ;initialize and go to cp/m

;simplest case is to read the disk until all sectors loaded
Ixi sp, 80h ;use space below buffer for stack
mvi c, 0 ;select disk 0
call seldsk
call home ;go to track 00

4abl 062c
4ab3 OeOO
4ab5 1602

mvi b, nsects ;b counts # of sectors to load
mvi c, 0 ;c has the current track number
mvi d , 2 ;d has the next sector to read

in by reading track0, sector 2 since sector 1
d start loader, which is skipped in a warm start

Ixi h, ccp ;base of cp/m (initial load point)
laadf: ;load one mare sector

Pus ;save sector count, current track
pus ;save next sector to read
push h ;save dma address
mov c, d ;gel sector address to register c
call setsec ;set sector address from register c
POP b ;recall dma address to b, c
push b ;replace on stack for later recall
call setdm ;set dma address from b, c

drive set to 0, track set, sector set, dma address set
call rea
cpi OOh ;any errors?
jnz wboot ;retry the entire boot if an error occurs

no error, move to next sector
POP h ;recall dma address
lxi , 128 ;dma=dma+128
dad d ;new dma address is in h, 1
POP d ;recall sector address
POP b ;recall number of sectors remaining, and current trk
dcr b ;sectors=sectors-1
jz gocPm ;transfer to cp/m if all have been loaded

more sectors remain to load, check for track change
inr d

4ada 7a
4ad b fel b
4add daba4a

mov a, d ;sector=27?, if so, change tracks
cpi 27
jc load1 ;carry generated if sectorc27

end of current track, go to next track
mvi d, 1 ;begin with first sector of next track
inr c ;track=track+l

save register slate, and change tracks
push b
push d
push h
call settrk ;track address set from register c

POP h
POP d
POP b
jmp load1 ;for another sector

end of load operation, set parameters and go to cp/m
gocpm:

mvi
sta
Ixi
shld

sta
Ixi
shld

Ixi
call

a, Oc3h
0
h, wboote
1

5
h, bdos
6

b, 80h
setdma

;c3 is a jmp instruction
;for jmp to wboot
;wboot entry point
;set address field for jmp at 0

;for jmp to bdos
;bdos entry point
;address field of jump at 5 to bdos

;default dma address is 80h

;enable the interrupt system

Ida cdisk ;get current disk number
mov c, a ;send to the ccp
jmp CCP ;go to cp/m for further processing

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with space reserved
to insert your own code

const: ;console status, return Offh if character ready, OOh if not
d s 10h ;space for status subroutine
mvi a, OOh
re t

conin: ;console character into register a
d s 10h ;space for input routine
ani 7fh ;strip parity bit
ret

conout: ;console character output from register c
mov a, c ;get to accumulator
d s 10h ;space for output routine
ret

list: ;list character from register c
mov a, c ;character to register a
ret ;null subroutine

listst: ;return list status (0 if not ready, 1 if ready)
xra a ;O is always ok to return
re t

punch: ;punch character from register c

reader:

I

home:

4 b54 OeOO

seldsk:

mov a, c ;character to register a
ret ;null subroutine

;read character into register a from reader device
mvi a, l a h ;enter end of file for now (replace later)
ani 7fh ;remember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away for use
in the read and write subroutines

;move to the track 00 position of current drive
translate this call into a settrk call with parameter 00
mvi c, 0
call settrk
re t ;we will move to 00 on first read/wrile

;select disk given by register c
Ixi h, OOOOh ;error return code
mov a,c
sta diskno
cpi 4 ;must be between 0 and 3
rnc ;no carry if 4, 5, . . .
disk number is in the proper range
d s 10 ;space for disk select
compute proper disk parameter header address
Ida diskno
mov I, a ;i=disk number 0, 1,2,3
mvi h,O ;high order zero
dad h :*2

4ba7 eb
4 ba8 09
4ba9 6e
4baa 2600
4 bac c9

4bad 69
4 bae 60
4baf 22ed4c
4bb2

settrk:

setsec:

sectran:

setdrna:

dad h ; *4
dad h ; *8
dad h ; * I6 (size of each header)
Ixi d, dpbase
dad 0 ; hl=..dpbase(diskno*16)
ret

;set track given by register c
rnov a, c
sta track
d s 10h ;space for track select
rel

;set sector given by register c
rnov a, c
sta sector
d s IOh ;space for sector select
ret

;translate the sector given by bc using the
;translate table given by de
xchg ;hl=.trans
dad b ; hl=.t rans(sector)
mow I, rn ;I = trans(sector)
rnvi h, 0 ;hl = trans(sector)
ret ;with value in hl

;set drna address given by registers b and c
rnov I , c ;low order address
rnov h, b ;high order address
shld drnaad ;save the address
d s 10h ;space for setting the drna address

read:

write:

waitio:

track:
sector:
dmaad:

ret

;perform read operation (usually this is similar to write
so we will allow space to set up read command, then use
common code in write)
d s 1Oh ;set up read command
jmp waitio ;to perform the actual i/o

;perform a write operation
d s 10h ;set up write command

;enter here from read and write to perform the actual i/o
operation. return a OOh in register a if the operation completes
properly, and 01 h if an error occurs during the read or write

in this case, we have saved thedisk number in 'diskno' (0, 1)
the track number in 'track' (0-76)

the sector number in 'sector' (1 -26)
the dma address in 'dmaad' (0-65535)

ds 256 ;space reserved for i/o drivers
mvi a, 1 ;error condition
ret ;replaced when filled- in

the remainder of the cbios is reserved uninitialized
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between "begdat" and "enddat").

d s 2 ;two bytes for expansion
ds 2 ;two bytes for expansion
ds 2 ;direct memory address

a l I00
all0
a1102
a1103
bdos

bias
bios
boot
CCP
cdisk
chkO0
chkOl
chk02
chkO3

diskno:

begdat
dirbf:
a1100:
a1101 :
a1102:
a1103:
chk00:
chk0l:
ch k02:
ch kO3:

enddat
datsiz

d s 1 ;disk number 0-15

scratch ram area for bdos use
equ $;beginning of data area
ds 128 ;scratch directory area
ds 31 ;allocation vector 0
ds 31 ;allocation vector 1
ds 31 ;allocation vector 2
ds 31 ;allocation vector 3
d s 16 ;check vector 0
d s 16 ;check vector 1
d s 16 ;check vector 2
d s 16 ;check vector 3

equ $;end of data area
equ $-begdat; ;size of data area
end

conin
conout
const
datsiz
dirbf
diskno
dmaad
dpbase
dpblk
enddat
gocpm
home
iobyte
list
listst
load1
msize
nsects
punch
read
reader
sector
sectran
seldsk
setdma
setsec
settrk
track
trans
waitio
w boo
wboote
write

4 b24
4 b37
4 b l l
013c
4cfO
4cef
4ced
4a33
4a8d
4e2c
4aef
4b54
0003
4b49
4b4b
4aba
001 4
002c
4b4d
4 bc3
4b4f
4ceb
4 ba7
4b5a
4 bad
4b92
4b7d
4ce9
4a73
4 be6
4aa6
4a03
4 bd6

ined getsys and tsys programs from
Sec 6.4

org 0108

; "bias" is the amount to a

bias
CW
bdos
bios

gstart:

rd$trk:

(referred to as "b" t roughout the text)

equ (msize-20)*1024

equ ccp+080G h
equ ccp+1600h

getsys programs tracks 0 and 1 to memory at
3880h + bias

register usage
a (scratch register)
b

,e
h,i
SP set to track address

; start of getsys
Ixi sp,ccp-0080h : convenient place
Ixi h,ccp-008Gh ; set initial load
mvi b,O ; start with track

; read next track

0108 OeOl

01 0a cd0003
01 Od 1 18000
0110 19
0111 Oc
0112 79
01 13 felb
01 15 daOaOl

O l l f fb
0120 76

020acd0004
020d 118000
0210 19
0211 Oc
0212 79
0213 felb
0215 daOa02

mvi c,?
rd$sec:

call read$sec
Ixi d,128
dad d
inr c
rnov a,c
cpi 27
jc rdsec

; each track start

; get the next sector
; offset by one sector
: (hl=hi+128)
; next sector
; fetch sector number
; and see i f last

; arrive here at end of track, move

inr b ; track = track+l
mov a,b ; check for last
cpi 2 ; track = 2 ?
jc rd$trk ; <, do another

; arrive here at end of load, halt for lack of anything
: better

e i
hlt
putsys program, places memory image
starting at
3880h i- bias back to tracks
start this program at the next
org ($+0100h) and OffOOh

put$sys:
Ixi sp,ccp-0080 h
Ixi h,ccp-0080h
mvi b,O

wr$frk:
mvi c, l

wr$sec:
call write$sec
Ixi d,128
dad d
inr c
mov a,c
cpi 27
jc wr$sec

; start of dump
; start with track

; start with sector

; write one sector
; length of each
; <hl>=<hl> + 128
; <c> =<c> + 1
; see if
I past end of track
; no, do another

; arrive here at end of track, move to next track

inr b ; track = track+l
mov a,b ; see if
cpi 2 ; last track
jc wr$trk ; no, do another

done with putsys, haft for lack of anything
better

e i
hit

; user supplied subroutines for sector read and write

move to next page boundary

org ($+0100h) and Off

read$sec:
; read the next sector
; track in ,
: sector in <c>
; dmaaddr in <hi>

push b
push h

; user defined read operation goes here
ds 64

org ($+0100h) and OffOOh ;another
; boundary

; same parameters as read$sec

push b
push h

; user defined write operation goes here
ds 64

; end of getsysiputsys program

end

1
2
3
4
5
6
7 0000 =
8 ffff
9 0000 =

10
11
12
13
14
15 0000 =
16
17 0000 =
18 0806 =
19 1880 =
20 1600 =
2 1 1603 =
22
23 3000
24
25 1880 =
26 0002 =
27 0031 =
28 0019 =
29 0018 =

title mds cold start loader at 3000h'

mds-800 cold start loader for cp/m 2.0

version 2.0 august, 1979

false equ 0
true equ not false
testing equ false if true, then go to mon80 on errors

if
bias equ

endif
i f

bias eq u
endif

cpmb equ
bdos equ
bdose equ
boot equ
rboot equ

testing
03400 h

not testing
0000 h

bias ;base of dos load
806h+bias ;entry to dos for calls
1880h+bias ;end of dos load
1600h-tbias ;cold start entry point
boot+3 ;warm start entry point

org 03000h ;loaded down from hardware boot at 3000H

bdosl equ bdose-cpm b
ntrks equ 2 ;number of tracks to read

;number of sectors in dos
bdoso equ 25 ;number of bdos sectors on track 0
bdosl equ bdoss-bdoso ;number of sectors on track 1

f800 =
ffof =
0078 =
0079 =
007 b =
007f =

0078 =
0079 =
007a =
OOff =
0003 =
0004 =
0100 =

3000 31 0001

3003 db79
3005 d b7 b

3007 dbff
3009 e602
300 b c20730

300e d37f

301 0 0602
301 2 214230

mon80
rmon80
base
rtY Pe
rbyte
reset

dstat
ilow
ihigh
bsw
recal
readf
stack

rstart:

of800h ;inlel monitor base
offofh ;restart location for mon80
078h ;'base1 used by controller
base-+-1 ;result type
baset3 ;result byte
base+7 ;reset controller

base ;disk status port
base+l ;low iopb address
base+2 ;highiopbaddress
offh ;boot switch
3h ;recalibrate selected drive
4h ;disk read function
100h ;use end of boot for stack

sp,stack; ;in case of call to mon80
clear disk status
in rtY Pe
in rbyte
check if boot switch is off

coldstart:
in bsw
ani 02h ;switch on?
jnz coldstart
clear the controller
out reset ;logic cleared

mvi b,ntrks ;number of tracks to read
Ixi h,iopbo

start:

d firsl/next track into cpmb

out ilow

out ihigh
waito: in dstat

ani 4
J 2 waito

, check disk status
in rtY Pe
ani 11b
cpi 2

if testing
cnc rmon80 ;go to monitor if 11 or 10
endif
if not testing
jnc rstart ;retry the load
endif

in rbyte ;i/o complete, check status
, if not ready, then go to mon80

ral
cc rmon80 ;not ready bit set
rar ;restore
ani 1 11 l o b ;overrun/addr err/seek/crc/xxxx

if testing
cnz rmon80 ;go to monitor
endif
if not testing

jnz rstarl ;retry the load
endif

Ixi d,iopbl ;length of iopb
dad d ;addressing next iopb
dcr b ;count down tracks
jnz start

jmp to boot to print initial message, and set up jmps
jmp boot

parameter blocks
iopbo: db 80h ;iocw, no update

db readf ;read function
oso ;# sectors to read on track 0

;track 0
db 2 ;start with sector 2 on track 0
dw pmb ;start at base of bdos

iopbl equ

iopbl: db 80h
db readf
db bdosl ;sectors to read on track 1
db 1 ;track 1
db 1 ;sector 1
dw cmpb+bdos0*128;base of second read

end

base
bdos
bdoso
bdosl
bdose
bdosl
bdoss
bias
boot
bsw
coldstart
cpmb
dstat
false
ihigh
ilow
iopbo
iopbl
iopbl
mon80
ntrks
rboot
rbyte
readf
recal
reset
rmon80
rstart
rty Pe
stack
start
testing
true
waito

0078
0806
001 9
001 8
1880
1880
0031
0000
1600
OOff
3007
0000
0078
0000
007a
0079
3042
3049
0007
fa00
0002
1603
007 b
0004
0003
007f
ffOf
3000
0079
01 00
301 5
0000
ffff
301 b

Appendix E: A Skeletal Cold Start Loader

; this is a sample cold start loader, which, when
; modified
; resides on track 00, sector 01 (the first sector on the
; diskette). we assume that the controller has loaded
; this sector into memory upon system start-up (this
; program can be keyed-in, or can exist in read/only
; memory
; beyond the address space of the cp/m version you are
; running). the cold start loader brings the cp/m system
; into memory at "loadp" (3400h + "bias"). in a 20k
; memory system, the value of "bias" is OOOOh, with
; large
; values for increased memory sizes (see section 2).
; after
; loading the cp/m system, the cold start loader
; branches
; to the "boot" entry point of the bios, which begins at
; "bios" + "bias." the cold start loader is not used un-
; til the system is powered up again, as long as the bios
; is not overwritten. the origin is assumed at OOOOh, an
; must be changed if the controller brings the coldstart
; loader into another area, or if a read/only memory
; area
: is used.

org 0

msize equ 20

; base of ram in
; cp/m

; min mem size in
; k bytes

bias

CCP
bios
biosl
boot
size

sects

cold:

Isect:

equ (msize-20)*1024 ; offset from 20k
; system

equ 3400h+bias ; base of the ccp
equ ccp+1600h ; base of the bios
equ 0300h ; length of the bios
equ bios
equ bios+biosl-ccp ; size of cpim

; system
equ sizei128 ; # of sectors to load

begin the load operation

Ixi b,2 ; b=O, c=sector 2
mvi d,sects ; d=# sectors to

; load
Ixi h,ccp ; base transfer

; address
; load the next sector

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,
into the address given by <hl>

; branch to location "cold" if a read error occurs

user supplied read operation goes
here ...

jmp past$patch ; remove this
; when patched

ds 60h

past$patch:
; go to next sector if load is incomplete

dcr d ; sects=sects-1
jz boot ; head for the bios

more sectors to load

; we aren't using a stack, so use <sp> as scratch
; register

to hold the load address increment

Ixi sp,128

dad sp

; 128 bytes per
; sector
; <hl> = <hl> +
128

0073 Oc
0074 79
0075 felb

007a OeOl
007c 04
007d c30800
0080

inr c
mov a,c
cpi 27

jc lsect

; sector = sector + 1

; last sector of
; track?
; no, go read
; another

; end of track, increment to next track

mvi c,l
inr b
jmp lsect
end

, sector = 1
; track = track + 1
; for another group
; of boot loader

Appendix F: efinition Library

CP/M 2.0 disk re-definition library

Copyright o 1979
Digital Research
Box 579
Pacific Grove, CA
93950

CP/M logical disk drives are defined using the
macros given below, where the sequence of calls
is:

disks n
diskdef parameter-list-0
diskdef parameter-list-1
. . .
diskdef parameter-list-n
endef

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of the ith drive (i=O,l ,..., n-1)

each parameter-list-i takes the form
dn,fsc,lsc,[skf], bls,dks,dir,cks,ofs,[O]

where
d n is the disk number O,l, ..., n-1
fsc is the first sector number (usually 0 or 1)
Isc is the last sector number on a track
skf is optional "skew factor" for sector translate
bls is the data block size (1024,2048, ..., 16384)

32: ;
33: ;
34: ;
35: ;
36: ;
37: ;
38: ;
39: ;
40: ;
41: ;
42: ;
43: ;
44: ;
45: ;
46: ;
47: ;
48: ;
49: ;
50: ;
51: ;
52: ;
53: ;
54: ;
55: ;
56: ;
57: ;
58: ;
59: ;
60: ;
61: ;
62: dskhdr
63: ;;
64: dpe&dn:

dks is the disk size in bls increments (word)
dir is the number of directory elements (word)
cks is the number of dir elements to checksum
ofs is the number of tracks to skip (word)
101 is an optional 0 which forces 16K/directory end

for convenience, the form
dn,dm

defines disk dn as having the same characteristics as
a previously defined disk dm.

a standard four drive CP/M system is defined by
disks 4
diskdef 0,1,26,6,1024,243,64,64,2

dsk set 0
rept 3

dsk set dsk+l
diskdef %dsk,O
endm
endef

the value of "begdat" at the end of assembly defines the
beginning of the uninitialize ram area above the bios,
while the value of "enddat" defines the next location
following the end of the data area. the size of this
area is given by the value of "datsiz" at the end of the
assembly. note that the allocation vector will be quite
large if a large disk sire is defined with a small block
size.

macro dn
define a single disk header list
dw xlt&dn,OOOOh ;translate table

65:
66:
67:
68:
69: ;
70: disks
71: ;;
72: ndisks
73: dpbase
74: ;;
75: dsknxt
76:
77:
78: dsknxt
79:
80:
81: ;
82: dpbhdr
83: dpb&dn
84:
85: ;
86: ddb
87: ;;
88:
89:
90: ;
91: ddw
92: ;;
93:
94:
95: ;
96: gcd
97: ;;
98: ;;

dw 0000 h,OOOO h ;scratch area
dw dirbuf,dpb&dn ;dir buff,parm block
dw csv&dn,alv&dn ;check, alloc vectors
endm

macro nd
define nd disks
set nd ;; for later reference
eq u $;base of disk parameter blocks
generate the nd elements
set 0
rept nd
dskhdr O/odsknxt
set dsknxc+l
en dm
endm

macro dn
equ $
endm

;disk parm block

macro data,comment
define a db statement
db data comment
endm

macro data,comment
define a dw statement
dw data comment
endm

macro m,n
greatest common divisor of m,n
produces value gcdn as result

99: ;;
100: gcdm
101: gcdn
102: gcdr
103:
104: gcdx
105: gcdr
106:
107:
108:
109: gcdm
110: gcdn
111:
112:
113: ;
114: diskdef
115: ;;
116:
117: ;;
118: dpb&dn
119: als&dn
120: css&dn
121 : xlt&dn
122:
123: secmax
124: sectors
125: als&dn
126:
127: als&dn
128:
129: css&dn
130: ;;
131 : blkval

(used in sector translate table generation)
set m ;;variable for m
set n ;;variable for n
set 0 ;;variable for r
rept 65535
set gcdm/gcdn
set gcdm-gcdx*gcdn
if gcdr = 0
exitm
endif
set gcdn
set gcdr
endm
en dm

macro dn,fsc,lsc,skf,bls,dks,dir,cks,ofs,kl6
generate the set statements for later tables
if nu1 Isc
current disk dn same as previous fsc
eq u dpb&fsc ;equivalent parameters
eq IJ als&fsc ;same allocation vector size
eq u css&fsc ;same checksum vector size
eq u xlt&fsc ;same translate table
else
set Isc-(fsc) ;;sectors O...secmax
set secmax+l ;;number of sectors
set (dks)/S ;;size of allocation vector
if ((dks) mod 8) ne 0
set als&dn+l
endif
set (cks)/4 ;;number of checksum elements
generate the block shift value
set bls/128 ;;number of sectors/ block

133: blkmsk

135:
136:
137:
138: ;;
139: blkshf
140: blkmsk
141 : blkval
142:
143: ;;
144: blkval
145: extmsk
146:
147:
148:
149:
150: ;;
151: extmsk
152: blkval
153:
154: ;;
155:
156: extmsk
157:
158: ;;
159:
160: extmsk
161:
162: ;;
163: dirrem
164: dirbks
165: dirblk
166:
167:
168:
169:

set 0 ;;counts right 0's in blkval
set 0 ;;fills with 1's from right
rept 16 ;;once for each bit position
if blkval=l
exitm
endif
otherwise, high order 1 not found yet
set blkshf+l
set (blkmsk shl I) or I
set bl kval/2
endm
generate the extent mask byte
set bls/l024 ;;number of kilobytes/ block
set 0 ;;fill from right with 1's
rept 16
if blkval=l
exitm
endif
otherwise more to shift
set (extmsk shl I) or I
set bl kval/2
endm
may be double byte allocation
if (dks) > 256
set (extmsk shr I)
endif
may be optional (01 in last position
if not nu1 k16
set k16
endif
now generate directory reservation bit vector
set dir ;;# remaining to process
set bW32 ;;number of entries per block
set 0 ;;fill with 1's on each loop
rept 16
if dirrem=O
exitm
endif

170: ;;
171: ;;
172: dirblk
173:
174: dirrem
175:
176: direem
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190: ;;
191:
192: xlt&dn
193:
194:
195: xlt&dn
196:
197: ;;
198: nxtsec
199: nxtbas
200:
201: ;;
202: neltst
203: ;;

not complete, iterate once again
shift right and add 1 high order bit
set (dirblk shr I) or 8000h
if dirrem > dirbks
set dirrem-dirbks
else
set 0
endif
en dm
dpbhdr dn ;;generate equ $
ddw %sectors,<;sec per track>
ddb O/~blkshf,<;block shift>
ddb O/~blkmsk,<;block mask>
ddb %extmsk,<;extnt mask>
ddw %(dks)-1 ,<;disk size-l>
ddw %(dir)-1 ,<;directory max>
ddb %dirblk shr 8,<;aIlocO>
ddb %dirblk and Offh,<;allocl>
ddw %(cks)/4,<;check size>
ddw %ofs,<;offset>
generate the translate table, if requested
if nu1 skf
eq u 0 ;no xlate table
else
if skf = 0
equ 0 ;no xlate table
else
generate the translate table
set 0 ;;next sector to fill
set 0 ;;moves by one on overflow

gcd O/~sectors,skf
gcdn = gcd(sectors,skew)
set sectors/gcdn
neltst is number of elements to generate

204: ;;
205: nelts
206: xlt&dn
207:
208:
209:
210:
21 1 :
21 2:
213: nxtsec
21 4:
215: nxtsec
21 6:
217: nelts
218:
219: nxtbas
220: nxtsec
221: nelts
222:
223:
224:
225:
226:
227: ;
228: defds
229: lab:
230:
231: ;
232: Ids
233:
234:
235: ;
236: endef
237: ;;

before we overlap previous elements
set
equ
rept
if
ddb
else
ddw
endif
set
if
set
endif
set
if
set
set
set
endif
endm
endif
endif
endm

macro
ds
en dm

macro
defds
endm

macro

neltst ;;counter
$;translate table
sectors ;;once for each sector
sectors < 256
%nxtsec+(fsc)

nxtsec+(skf)
nxtsec >= sectors
nxtsec-sectors

nelts-1
nelts = 0
nxtbas+l
nxt bas
neltst

;;end of nu1 fac test
;;end of nu1 bls test

lab,space
space

generate the necessary ram data areas

238: begdat
239: dirbuf:
240: dsknxt

242:
243:
244: dsknxt
245:
246: enddat
247: datsiz
248: ;;
249:

eq u $
ds 128 ;directory access buffer
set 0
rept ndisks ;;once for each disk
Ids alv,O/~dsknxt,als
Ids csv,O/~dsknxt,ccs
set dsknxt+l
endm
equ $
equ $-begdat
db 0 at this point forces hex record
endm

Appendix G: Blocking and Deblocking
Algorithms

smask

@Y
@x

@Y
@x

0800= blksiz
0200 = hstsiz
0014 = hstspt
0004 = hstblk
0050 = cpmspt

sector deblocking algorithms for cp/m 2.0

utility macro to compute sector mask
macro h blk
compute log2(hblk), return @x as result
(2 * * @ x = hblk on return)
set hblk
set 0
count right shifts of @y until = 1
rept 8
if @Y = 1
exitm
endif
@y is not 1, shift right one position
set @y shr 1
set @x + 1
endm
endm

cplm to host disk constants

equ 2048 ;cp/m allocation size
eq u 512 ;host disk sector size
eq u 20 ;host disk sectorsltrk
eq u hstsiz/l28 ;cp/m sects/ host buff
equ hstblk * hstspt ;cp/m sectorsltrack

secmsk

secshf

wrall
wrdir
wrual

d p base

boot:
wboot:

home:

home:
0008 3a6 b01
000 b b7
oooc c2 1 200
OOOf 326a01

homed:
0012 c9

equ hstblk-1 ;sector mask
smask hstblk ;compute sector mask
eq u @ x ;log2(hstblk)

bdos constants on entry to write

;write to allocated
;write to directory
;write to unallocate

the bdos entry points given below show the
code which is relevant to deblocking only.

diskdef macro, or hand coded tables go here
equ $;disk param block base

;enter here on system boot to initialize
xra a
sta hstact
sta unacnt ;clear unailoc count
ret

;home the selected disk

Ida hstwrt
ora a
j nz homed
sta hstact

ret

seldsk:
;select disk
mov
sta
mov
mvi
rept
dad
endm
dad
dad
dad
dad
Ixi

a,c
sekdsk
La
h,O
4
h

;check for pendin

;clear host active flag

settrk:

setsec:

setdma:

sectran:

dad d
ret

;set track given by registers bc
mov h,b
mov 1,c
shld sektrk ;track to seek
ret

;set sector given by register c
mov a,c
sta seksec ;sector to seek
ret

;set dma address given by bc
mov h,b
mov I,c
shld dmaadr
ret

;translate sector number bc
mov h,b
mov I,c
ret

the read entry point takes the place of
the previous bios definition for read.

read:
;read the selected cp/m sector
xra a
sta unacnt
mvi a, 1
sta readop ;read operation
sta rsf lag ;must read data
mvi a,wrual
sta wrtype ;treat as unalloc
jmp rwoper :to perform the read

the write entry point takes the place of
the previous bios definition for write.

write:

004 b af
;write the selected cp/m sector
x ra a ;O to accumulator

004c 327301 sta readop ;not a read operation
004f 79 mov a, c ;write type in c
0050 327401 sta wrtype
0053 fe02 CPl wrual ;write unallocated?
0055 c26fOO jnz chkuna ;check for unalioc

write to unallocated, set parameters
mvi a, blksizll28 ;next unalloc recs
sta unacnt
Ida sekdsk ;disk to seek
sta unadsk ;unadsk = sekdsk
lhld sektrk
shld unatrk ;unatrk = sectrk
Ida seksec
sta unasec ;unasec = seksec

chkuna:
;check for write to unallocated sector

006f 3a6c01 Ida unacnt ;any unalloc remain?
0072 b7 ora a
0073 caaeOO jz alloc ;skip if not

more unallocated records remain
0076 3d dc r a ;unacnt = unacnt-1
0077 326~01 sta unacnt
007a 3a6101 Ida sekdsk ;same disk?
007d 216d01 Ix i h,unadsk
0080 be CmP m ;sekdsk = unadsk?
0081 c2ae00 j nz alloc ;skip if not

disks are the same
Ixi h,unatrk
call sektrkcmp ;sektrk = unatrk?
i nz alloc ;skip if not

tracks are the same
Ida seksec ;same sector?
Ixi h,unasec
CmP m ;seksec = unasec?
jnz alloc ;skip if not

match, move to next sector for future ref
0097 34 inr m ;unasec = unasec+l
0098 7e mov a, m ;end of track?
0099 fe50 cpi cpmspt ;count cp/m sectors
009 b daa700 j c noovf ;skip if no overflow

overflow to next track
009e 3600 mvi m,o ;unasec = o
OOaO 2a6e01 lhld unatrk
OOa3 23 inx h
OOa4 226e01 shld unatrk ;unatrk = unatrk+l

noovf:
;match found, mark as unnecessary read

00a7 af xra a ;O to accumulator

OOab 327201
OOab c3 b600

alloc:

OOae af
OOaf 326~01
00b2 3c
OOb3 327201

rwoper:

00% af
00b7 327101
OOba 3a6401

OOc4 216a01
00c7 7e
OOc8 3601
OOca b7
OOcb caf200

OOce 3a6101
00dl 216501
00d4 be
00d5 c2eb00

00d8 216601
OOdb cd5301
OOde c2eb00

OOel 3a6901
OOe4 216801
00e7 be
OOe8 caOfOl

nomatch:

sta rsf lag ;rsflag = 0
imp rwoper ;to perform the write

;not an unallocated record, requires pre-read
xra a ;O to accum
sta unacnt ;unacnt = 0
inr a ;1 to accum
sta rsflag = 1 ;rsflag = 1

common code for read and write follows

;enter here to perform the read/write
xra a ;zero to accum
sta erflag ;no errors (yet)
Ida seksec ;compute host sector
rept secshf
ora a ;carry = 0
rar ;shift right
endm
ora a ;carry = 0
rar ;shift right
ora a ;carry = 0
rar ;shift right
sta sekhst ;host sector to seek

active host sector?
Ixi h, hstact ;host active flag
mov a, m
mvi m,l ;always becomes 1
ora a ;was it already?
jz filhst ;fill host if not

host buffer active, same as seek buffer?
Ida sekdsk
Ixi h, hstdsk ;same disk?
CmP m ;sekdsk = hstdsk?
j nz nomatch

same disk, same track?
Ixi h, hsttrk
call sektrkcmp ;sektrk = hsttrk?
j nz nomatch

same disk, same track, same buffer?
Ida sekhst
Ixi h, hstsec ;sekhst = hstsec?
cmp m
jz match ;skip if match

OOeb 3a6b01
OOee b7
OOef c45f01

filhst:

00f2 3a6101
OOf5 326501
00f8 2a6201
OOf b 226601
OOfe 3a6901
0101 326801
0104 3a7201
01 07 b7
01 08 c46001
010b af
01 Oc 326b01

match:

rwmove:

;proper disk, but not correct sector
Ida hstwrt ;host written?
ora a
cnz writehst ;clear host buff

:may have to fill the host buffer
Ida sekdsk
sta hstdsk
lhld sektrk
shld hsttrk
Ida sekhst
sta hstsec
Ida rsf lag ;need to read?
ora a
cnz readhst ;yes, if 1
x ra a
sta hstwrt

;copy data to or from buffer
Ida seksec
an i secmsk
mov ha
mvi h,O
rept 7 ;shift left 7
dad h
endm
dad h
dad h
dad h
dad h
dad h
dad h
dad h
hl has relative host buffer address
Ixi d, hstbuf
dad d
xchg
lhld dmaadr
mvi c,128
Ida readop
ora a
j nz rwrnove

write operation, mark and switch direc
mvi a, 1
sta hstwrt ;hstwrt = 1
xchg ;sou rceides-wa

;c initially 128, de is source, hl is dest
ldax d ;source character
inx d
rnov rn,a ;to dest

i nx h
0139 od dcr c ;loop 128 times
013a ~23501 jnz rwmove

data has been moved to/from host buffer
Ida wrtype ;write type

0140 feO1 cp i wrdir ;to directory?
0142 3a7101 Ida erflag ;in case of errors
01 45 c0 rnz ;no further processing

clear host buffer for directory write
ora a ;errors?
rnz ;skip if so
x ra a ;O to accum
sta hstwrt ;buffer written
call writehst
Ida erflag
ret

utility subroutine for 16-bit compare

sektrkcmp:
;hl = .unatrk or .hsttrk, compare with sektrk
xchg
[xi hsektrk
ldax d ;low byte compare
CmP m ;same?
rnz ;return if not
low bytes equal, test high I s
i nx d
i nx h

015c l a ldax d
015d be CmP m ;sets flags
015e c9 ret

writehst performs the physical write to
the host disk, readhst reads the physical
disk.

stdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. write "hstsiz" bytes
;from hstbuf and return error flag in erflag.
;return erflag non-zero if error

015F c9 ret

read fist:
;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. read "hstsiz" bytes

;into hstbuf and return error flag in erflag.
01 60 c9 ret

sekdsk:
sektrk:
seksec:

hstdsk:
hsttrk:
hstsec:

sekhst:
hstact:
hstwrt:

unacnt:
unadsk:
unatrk:
unasec:

erflag:
rsf lag:
reado p:
wrtype:
dmaadr:
hstbuf:

I

,
,

uninitialized ram data areas

1
2
1

1
2
1

1
1
1

1
1
2
1

1
1
1
1
2
hstsiz

;seek disk number
;seek track number
;seek sector number

;host disk number
;host track number
;host sector number

;seek shr secshf
;host active flag
;host written flag

;unalloc rec cnt
;last unalloc disk
;last unalloc track
;last unalloc sector

;error reporting
;read sector flag
;1 if read operation
;write operation type
;last dma address
;host buffer

the endef macro invocation goes here

end

alloc
blksiz
boot
chkuna
cpmspt
dmaadr
dpbase
erflag
filhst
home
homed
hstact
hstblk
hstbuf
hstdsk
hstsec
hstsiz
hstspt
hsttrk
hstwrt
match
nomatch
noovf
read
read hst
readop
rsflag
rwmove
rwoper
secmsk
secshf
sectran
sekdsk
sekhst
seksec
sektrk
sektrkcmp
seldsk
setdma
setsec
settrk
unacnt
unadsk
unasec
unatrk
wboot
wrall
wrdir
write
writehst
WrtY Pe
wrual

OOae
0800
0000
006f
0050
01 75
0000
01 71
00f 2
0008
001 2
01 6a
0004
01 77
01 65
01 68
0200
001 4
01 66
016b
01 Of
OOeb
00a7
0037
01 60
01 73
01 72
01 35
00 b6
0003
0002
0034
01 61
01 69
01 64
01 62
01 53
001 3
002e
0029
0023
01 6c
01 6d
01 70
01 6e
0000
0000
0001
004 b
01 5f
01 74
0002

address: Number representing the location of a byte in memory. Within CP/M there are
two kinds of addresses: logical and physical. A physical address refers to an absolute and
unique location within the computer's memory space. A logical address refers to the
offset o r displacement of a byte in relation to a base location. A standard CP/M program is
loaded at address O1OOH, the base value; the first instruction of a program has a physical
address of 0lOOf-i and a reiative address or offset of OH.

allocation vector (ALV): An allocation vector is maintained in the BIOS for each logged
in disk drive. A vector consists of a string of bits, one for each block on the drive. The bit
corresponding to a particular block is set to one when the block has been allocated and to
zero otherwise. The first two bytes of this vector are initialized with the bytes ALO and
ALI on, thus allocating the directory blocks. CP/M Function 27 returns the allocation
vectar address.

ALO, ALI: Two bytes in the disk parameter block that reserve data blocks for the
directory. These two bytes are copied into the first two bytes of the allocation vector
when a drive is logged in. (See allocation vector.)

ALV: See allocation vector.

ambiguous filename: Filename that contains either of the CP/M wildcard characters, ?
or *, in the primary filename or the filetype, o r both. When you replace characters in a
filename with these wildcard characters, you create an ambiguous filename and can easily
reference more than one CP/M file in a single command line.

American Standard Code for Information Interchange: See ASCII.

applications program: rogram designed to solve a specific problem. Ty
programs are business accounting packages, word processing (editing) programs and
mailing list programs.

archive attribute: File attribute controlled by the high-order bit of the t 3 byte (FCB+l l)
in a directory element. This attribute is set if the file has been archived.

argument: Symbol, usually a letter, indicating a place into which you can substitute a
number, letter o r name to give an appropriate meaning to the formula in question.

e byte sf memory w i t h

wdeo screen or p

that :randates ass

y of G disk or ide made for safekee
disk or file.

uture releases.

cn . Generally, a bit mory represent

asic unit of disk space allocation. Eac
defined in its disk parameter block in t
16K consecutive bytes. Blocks are nu
and has a byte displacement in a file

block mask (BLM j. Byte value ir, the disk parameter
always one less than the number of 128 byte sectors t
** BSH) - 1.

yie parameter In the disk p

** BSW) - 1.

blocking & deblocking algorithm: In some d
than 128 bytes, usually 256, 512,1024 o r 20
than 128 bytes, host sectors must be buffere
must be blocked and deblocked
ing algorithm, between the B1
sector size must be an even multiple of 128 b
blocking and deblocking algorithm allows t
the entire disk consisted only of 128 byte s

lock size in bytes. See bloc

boot: Process of Ioadin
piece of code that is aut
The boot program Ioad

operating system ma
tracks on your system disk
the system tracks i
configured. Finally, t
table so that the syst
a t 900H in the SYS

bootstrap: See

BSH: See block shift.

TREE: General pur

buffer: Area of memory th

s: Commands that permanendly resde In
quickly because they are not accessed from a disk

byte: Unit of memory or disk storag
number between 0 and 255, and rs

CCP: Console Command Processor.The CCP is a module of the CP/M operating system.
It is loaded directly below the BDOS module and interprets and executes commands
typed by the console user. Usually these commands are programs that the CCP loads and
calls. Upon completion, a command program may return control to the CCP if it has not
overwritten it. If it has, the program can reload the CCP into memory by a warm boot
operation initiated by either a jump to zero, BDOS system reset (function O), or a cold
boot. Except for its location in high memory, the CCP works like any other standard
CP/M program; that is, it makes only BDOS function calls for its 110 operations.

CCP base: Lowest address of the CCP module in memory. This term sometimes refers to
the base of the CP /M system in memory, as the CCP is normally the lowest CP/M module
in high memory.

checksum vector (CSV): Contiguous data area in the BIOS, with one byte for each
directory sector to be checked, i.e., CKS bytes. (See CKS.) A checksum vector is initialized
and maintained for each logged in drive. Each directory access by the system results in a
checksum calculation that is compared with the one in the checksum vector. If there is a
discrepancy, the drive is set to read-only status. This feature prevents the user from
inadvertently switching disks without logging in the new disk. If the new disk is not
logged in, it is treated the same as the old one, and data on it may be destroyed if writing is
done.

CKS: Number of directory records to be checked summed on directory accesses. This is a
parameter in the disk parameter block located in the BIOS. If the value of CKS is zero,
then no directory records are checked. CKS is also a parameter in the diskdef macro
library, where it is the actual number of directory elements to bechecked rather than the
number of directory records.

cold boot: See boot. Cold boot also may refer to a jump to the boot entry point: in the
BIOS jump table.

COM: Filetype for a CP/M command file. See command file.

command: CP/M command line. In general, a CP /M command line has three parts: the
command keyword, command tail, and a carriage return. To execute a command, enter a
CP/M command line directly after the CP/M prompt a t the console and press the carriage
return o r enter key.

command file: Executable program file of filetype COM. A command file is a machine
language object module ready to be loaded and executed at the absolute address of O1OOl-I.
To execute a command file, enter its primary filename as the command keyword in a
CP/M command iine.

command keyword: Name that identifies a CPIIM command, usually the primary file-
name of a file of type COM, o r a built-in command. The command keyword precedes the
command tail and the carriage return in the command iine.

command syntax: Statement that defines the correct way to enter a command. The
correct structure generally incIudes the command keyword, the command tail, and a
carriage return. A syntax line usually contains symbols that you should replace with
actual values when you enter the command.

command tail: Part of a command that follows the command keyword in the command
line. The command tail can include a drive specification, a filename and/or fiietype, and
options or parameters. Some commands do not require a command tail.

CON: Mnemonic that represents the CP/M console device (see console). For example, the
CP/M command "PIP CON:=TEST.SUB" displays the file TEST.SUB on the console
device. The explanation of the STAT command tells how to assign the logical device
CON: to various physical devices.

concatenate: Name of the PIP operation that copies two o r more separate files into one
new file in the specified sequence.

concurrency: Execution of two processes o r operations simultaneously.

CONIN: BIOS entry point to a routine that reads a character from the console device.

CONOUT: BIOS entry point to a routine that sends a character to the console device.

console: Primary inputloutput device. The console consists of a listing device, such as a
screen o r teletype, and a keyboard through which the user communicates with the
operating system o r applications program.

Console Command Processor: See CCP.

CONST: BlOS entry point to a routine that returns the status of the console device.

control character: Nonprinting character combination. CP /M interprets some control
characters as simple commands such as line editing functions. T o enter a control charac-
ter, hold down the CONTROL key and strike the specified character key.

Control Program for Microcomputers: See CP/M.

CP/M: Control Program for Microcomputers.An operating system that manages compu-
ter resources and provides a standard systems interface to software written for a large
variety of microprocessor-based computer systems.

CP/M 1.4 compatibility: For a CP/M 2 system to be able to read correctly single density
diskettes produced under a CP/M 1.4 system, the extent mask must be zero and the block
size 1K. This is because under CP/M 2 an FCB may contain more than one extent. The
number of extents that may be contained by an FCB is EXM+I. The issue of CP/M 1.4
compatibility also concerns random file 110. To perform random file 110 underCP/M 1.4,
you must maintain an FCB for each extent of the file. This scheme is upward compatible
with CP/M 2 for files not exceeding 512K bytes, the largest file size supported under
CP/M 1.4. If you wish t o implement random I 1 0 for files larger than 512K bytes under
CP/M 2, you must use the random read and random write functions (BDOS functions 33,
34 and 36). In this case, only one FCB is used, and if CP/M 1.4 compatibility is required,
the program must use the return version number function (BDOS function 12) to
determine which method to employ.

CP/M prompt: Characters that indicate that CP/M is ready to execute your next
command. The CP /M prompt consists of an upper-case letter (A-PJ foilowed by a ">"
character; for example, A>. The letter designates which drive is currently logged in as the
default drive. CP/M will search this drive for the command file specified, unless the
command is a built-in command o r prefaced by a select drive command; for example,
B:STAT.

CP/NET: Digital Research network operating system enabling microcomputers to obtain
access to common resources via a network. CPiNETcon~ists of MP/M masters and CP/M
slaves with a network interface between them.

or Ope-dmracter syrn a r anywhere on the consoie screen The
vstroke a t the console wiii have an effect

: File containing information t at wiii be processed by a program.

efauit: Currently selected dis ser number. Any command that does not
specify ;! disk drive or a user nu er references rke default disk drive and user number.
When Cii/M is first irrvoke the default user number
is 0.

ufker maintained at OObOH in page zero. When the
nitialized to the command tail; that is, any characters

file name are load uffer. The first byte at OOBOH
Ie the command tail itself begins at 0081H.
taining a binary zero value. The I command

r in the same way as the CCP.

ited field in the command tail,
exi field in the command tail.

ecial characters that se arate different items in a com and line; for exam-
e CCP recognizes th

rriage return. Severa

: Parameter in t he dis a t specifies the number of directory
e c i s en the drive.

the default user numbe

irectory operations, usually Located at the end of
ations. DYRBUF also
parameter header at

iris entries for each file on the disk. In response t o

Data structure Each f~Ie on a disk has one or more 32-byte d~rectory
wrth it There are four &rectory elements per &rectory sector

may also be referred to as &rectory FCBs

by the DIR command. Sometimes this term may
refer to a physical directory element

erai device tha t reads and write
err to each drive I?

renced by one or more disk
aracteristics in the fields iis

S: Parameter rn the diskdef acro i~brary specifying the nu

the address of a 128-byte buffer in memory, either the default buffer at O080H in page
zero, o r a user-assigned buffer in the TPA. Similarly, the BDOS calls the BIOS entry
point WRITE to write the record at the current DMA address to the disk.

DN: Parameter in the diskdef macro library specifying the logical drive number

DPB: See disk parameter block.

DPH: See disk parameter header.

DRM: &byte parameter in the disk parameter block at DPB + 7. DRM is one less than the
total number of directory entries allowed for the drive. This value is related to DPB bytes
ALO and ALI, which allocate up to 16 blocks for directory entries.

DSM: &byte parameter of the disk parameter block at DPB + 5. DSM is the maximum
data block number supported by the drive. The product BLS times (DSM+I) is the total
number of bytes held by the drive. This must not exceed the capacity of the physical
less the reserved system tracks.

editor: Utility program that creates and modifies text files. An editor can be used for
creation of documents or. creation of code for computer programs. The CP/M editor is
invoked by typing the command ED next to the system prompt on the console.

EX: Extent number field in an FCB. See extent.

executable: Ready to be run by the computer. Executable code is a series of instructions
that can be carried out by the computer. For example, the computer cannot execute
names and addresses, but it can execute a program that prints all those names and
addresses on mailing labels.

execute a program: Start the processing of executable code.

EXM: See extent mask.

extent: 16K consecutive bytes in a file. Extents are numbered from 0 to 31. O n e extent
may contain 1 ,2 , 4, 8 or 16 blocks. EX is the extent number field of an FCB and is a one
byte field a t FCB + 12, where FCB labels the first byte in the FCB. Depending on the block
size (BLS) and the maximum data block number (DSM), an FCB may contain 1 , 2 , 4 , 8 or
16 extents. The EX field is normally set to 0 by the user but contains the current extent
number during file 110. The term FCB folding describes FCBs containing more than one
extent. In CP /M version 1.4, each FCB contained only one extent. Users attempting to
perform random record 110 and maintain CPiM 1.4 compatibility should be aware of the
impiications of this difference. See CP/M 1.4 compatibility.

extent mask (EXM): A byte parameter in the disk parameter block located at DPB + 3 . The
value of EXM is determined by the block size IBLS) and whether the maximum data block

j exceeds 255. There are EXM + 1 extents per directory FCB.

FCB: See file control block.

file: Collection of characters, instructions, o r data that can be referenced by a unique
identifier. Files are usually stored on various types of media, such as disks, diskettes, or
magnetic tape. A CP/M file is identified by a file specification and resides on disk as a
collection of from zero t o 65,536 records. Each record is 128 bytes and can contain either
binary o r ASCII data. Binary files contain bytes of data that can vary in value from OH to

0FFH. ASCII files contain sequences of character codes delineated by a carriage return-
line feed combination; normally byte values range from OH to 7FH. The directory maps
the file as a series of physical blocks. Although files are defined as a sequence of
consecutive logical records, these records may not reside in consecutive sectors on the
disk. (see also block, directory, extent, record, sector).

file control block (FCB): Structure used for accessing files on disk. Contains the drive,
filename, filetype, and other information describing a file to be accessed or created on the
disk. A file control block consists of 36 consecutive bytes specified by the user for file I10
functions. FCB can also refer to a directory element in the directory portion of the
allocated disk space. These contain the same first 32 bytes of the FCB, but lack the current
record and random record number bytes.

filename: Name assigned t o a file. A filename can include a primary filename of 1-8
characters and a filetype of 0-3 characters. A period separates the primary filename from
the filetype.

file specification: Unique file identifier. A complete CP/M file specification includes a
disk drive specification followed by a colon (d:), a primary filename of 1 to 8 characters, a
period and a filetype of 0 to 3 characters. For example, b:example.tex is a complete CP/M
file specification.

iletype: Extension to a filename. A filetype can be from O to 3 characters and must be
separated from the primary filename by a period. A filetype can tell something about the
ile. Some programs require that files to be processed have specific fi!etypes.

Ioppy disk: Flexible magnetic disk used to store information. Floppy disks come in 5%-

FSC: Parameter in the diskdef macro library specifying the first physical sector number.
This parameter is used to determine SPT and build XLT.

hard disk: Rigid, platter-like, magnetic disk sealed in acontainer. A hard disk stores more
information than a floppy disk.

ware: Physical components of a computer.

hexadecimal notation: Notation for base 16 values using the decimaldigits and letters A,
B, C, D, E & F to represent the 16 digits. Hexadecimal notation is often used to refer to
binary numbers. A binary number can be easily expressed as a hexadecimal value by
taking the bits in groups of 3 starting with the least significant bit, and expressing each
group as a hexadecimal digit, (0-F). Thus the bit value 1011 becomes OBH and 10110101
becomes 085H.

hex file: ASCII-printable representation of a command (machine language) file

at: Absolute output of ASM and MAC for the Intel 8080 is a hex format file,
containing a sequence of absolute records that give a load address and byte values to be
stored, starting a t the load address.

HOME: BIOS entry point which sets the disk head of the currently selected drive to the
track zero position.

host: Physical characteristics of a hard disk drive in a system using the blocking and
deblocking algorithm. The term "host" helps distinguish physical hardware characteris-

tics from CP'M's logtcai characterrstlcs For example, CP, I\/I sectors are always 128 bytes,
although the host sector size may be a multiple of 725 bytes

input: Data going into the computer, usuaIIy from an operator typing at the terminal or
by a program reading from the disk.

inputioutput: See 110.

~nterface Object that allows two Endependent systems to communicate with each other,
as an mterkace between hardware and software in a microcomputer

110: Abbreviation for inputioutput. Usually refers to inputloutput operations or mu-
tines handling the input and output of data in the computer system.

IOBYTE: A one byte field in page zero, currently at location 0003H, that can support a
logical-to-physical device mapping for hO. However, its implementation in your BIOS is
purely optionat and may or may not be supported ina given CPI system. The IOBL'TE is
easily set using the command:

STAT <logical device> = <physical device>

The CP/M logical devices are CO N:, AND LST:; each of ihese can be
assigned to one of four physical devices. The IOBYTE may be initialized by the BOOT
entry point of the BIOS and interpreted by the BlOS 110 entry points CONST, C O N K ,
CONOUT, LIST, PUNCH, and READER. epending on the setting of the IO
different 110 drivers may be selected by the S. For example, setting L
cause LIST output to be directed to a seri rt, while setting LST:=L
output to be directed to a parallel

K: Abbreviation for kilobyte. See kilobyte.

keyword: See command keyword.

kilobyte (K): 1024 bytes or 0400H bytes of memory. This is a standard unit of memory.
For example, the Intel 8080 supports up to 64 of memory address space or 65,536 bytes.
1024 kilobytes equal one megabyte, o r over one million bytes.

linker: Utility program used to combine relocatable object modules into an absolute file
ready for execution. For example, LINK-80 creates either a C O or PRL irk from
relocatable REL files, such as those produce

LIST: A BTOS entry point to a routine that sends a character to the list device, usuaiiy a
printer.

list device: Device such as a printer onto which data can be listed or printed.

LISTST: BIOS entry point to a routine that returns t e ready status of the iist

loader: Utility program that brmgs an absolute program image into memory ready for
execution under the operating system, or a utility used to make such an image. For
example, LOAD prepares an absolute C O M file from the assembler hex file output which
is ready to be executed under CP/M.

logged In. Made known to the operattng system, in reference to drives A drivers logged
in when it 1s selected by the user or an executing process It remains selected or logged In
until you change d ~ s k s In a floppy disk nve or enter ctl-C at the co
BDOS functron 0 is executed.

i: Representation of something that may o r may not be the same in its actual
physical form. For example, a hard disk c occupy one physical drive, yet you can divide

e storage on i t to appear to user as if it were in several different drives.
rent drives are the logical d

ical sector: See sector

ysical sector trans1

LSG: Diskdef macro li arameter specifying the last physicai sector number

ually a printer). The CPI ltst device is an output-only
ST and EKSTST entry p ts of the BIOS. The STAT

command allows assi T: to one of the physical devices: TTY:, CRT:, LPT:, or
ULI:, provided thes TE are implemented in the LIST and LISTST
entry points of yo The CPiNET command NETWORK allows

a list device on a network master. An example of how LST: is used
in a command: ST:=TEST.SUB rints the file TEST.SU on the list device.

ler: Assembler code translator providing macro processing facilities.
ow groups of instruciio s to be stored and substituted in the source

. Definitions and invocations may be nested
arbitrary strings of text to a specific macro

uring expansion.

yte: Qber one million byt?s: 302 kilobytes. See byte, kilobyte.

ip that is the central processing unit (CPLI) of the microcom-
rocessors commonly used in CP/M

emory image of the CP! reated by MOVCPM. This image
laced on the system tracks using
e. This image varies, depending

sence of a one-sector or two-sector boot is less than 128 bytes (one
980Iil, and the BIOS at 1F80H.
H, and the BIOSat 2000H. In a

e as for the CP/M 2

program. A microcomputer operating sys-
inal access with muiii-programming a t each terminal.

The capabll~ty of i ~tratmg and executin more than one program
rams, usuaiiy called recesses, are trme-sh red, each recelvrng a slice
und-robrn" bas15

ble: One half of a yte, usually the hlgh order or low o r e r 4 bits in a byte.

byte parameter in "e e disk parameter block at DPB 13 bytes. This value
e number of reserved system tracks. The dlsk directory begins in the first

sector of track OFF.

ef macro Library ammeter specrfying the number of reserved system tracks.

operating system: Collection of programs that supervises the execution of ot
grams and the management of computer resources. An o
orderly input/output environment between the computer
enables user-written programs to execute safely. An operating syst
use of computer resources for the programs running under it.

option: One of many parameters that can be part of a comman
specify additional conditions for a command's execution.

output: Data that is sent to the console, disk, o r printer.

page: 256 consecutive bytes In memory beginning on a pa
address is a multiple of 256 (XOOW) bytes. In hex notation,
address with a least significant byte of zero.

page relocatable program: See PRL.

page zero: Memory region between 0000f-I and OlOOFI use
parameters. Page zero functions primarily as an int
and the CP/M BDOS module. Note: in non-standa
of the system and represents the first 256 bytes of memory used
user programs running under it.

parameter: Value in the command tail that
command. Technically, a parameter is a requir

peripheral devices: Devices external to the CPU. For
disk drives are common peripheral devices that are not
in conjunction with it.

physical: Characteristic of computer components, generally
exist. In programs, physical components can be represented b

primary filename: First 8 characters o
name that helps the user identify the fi
characters and can include any letter or n
filename follows the optional drive spe

PRL: Page relocatable program. A page relocatable program is store
of type PRL. Page relocatable programs are easily relocated to an
thus are suitable for execution in a non-banked MPiM system.

men exe program: Series of coded instructions that performs specific tasks la"
computer. A program can be written in a processor-s
language that can be implemented on a number o

rompt: Any characters displayed on the video screen to
next appropriate action is. A system prompt is a special
system. See CP/M prompt. The aiphabetic character
applications programs have their own special prompts.

P U N : Logical CP/M punch device. The punch device is an output-only
through the PUNCH entry point of the BIOS. In certain implementation
serial device such as a modem.

: BlOS entry point to a routine that sen

eader device. The reader device is an input-only device accessed
entry point in the BIOS. See PU

oint in the BIOS to a routine that reads 128 bytes from the currently
, and sector into the current D

: Entry point to a routine in the BIOS that reads the next character from the
rx ren r lp assigned reader device.

teribute that can be assigned to a disk file or a disk drive. When
read-only attribute allows you to read from that file but not write to

to a drive, the read-only attribute allows you to read any file on the disk,
u from adding a new file, erasing or changing a file, renaming a file, or
isk. The STAT command can set a file or a drive to read-only. Every file

and drive is either read-only or read-write. The default setting for drives and files is
u t an error in resetting the disk or changing media automatically sets the
-only until the error is corrected. See also RUM.

Attribute that c be assigned to a disk file or a disk drive. The
allows you to re from and write to a specific read-write file or to

in a drive set to read-write. A file or drive can be set to either

ytes in a file. A physical record consists of 128 bytes and is the basic
between the operating system and the application program. A logical
length and is used to represent a unit of information. Two 64 byte
can be stored in one 128-byte physical record. Records are grouped

: Code that may call itself during execution

e called by one process while another is already
, reentrant code may be shared between different users, Reentrant

ust not be self-modifying; that is, they must be pure code and not contain
reentrant procedures can be kept in a separate data area o r placed on

yte call instruction usually used during interrupt sequences and for
here are eight restart locations, RST 0 through RST 7, whose
product of 8 times the restart number.

ernory. This memory can be read but not written and so is suitable for
ed data areas only.

system, a sector 1s always 128 consecutive bytes A sector 1s the basic
n on the disk by the BIOS A sector can be one 128-byte record

he BDOS always reqktests a logical sector number
Iiy translated into a physlcal sector by the BIOS

ector size is larger than 128
bytes These disk sectors are

always referred to as host sectors In CP/
wlth other references to sectors, In w h ~
assumed When the host sector s u e rs la
buffered in memory and the 128 byte CP, ;VI sectors must be
them Thts may be done by adding an addttmnal mod&,
algor~thm, between the BIOS dlsk LO routmes and the actual disk I 0

sectors per track (SPT). 4 two esyte parameter in the disk parameter block a t DP
The BDOS makes calls to the BIOS entr) pomt SECTRAN w;tk logical sector numbers
rangtng between 0 and (SPT - 1) tn reglster BC

SECTRAN: Entry point to a routine in the BIOS that performs logical to physical sector
translation for the BDOS.

SELDSK: Entry point to a routine in the BlOS that sets the current!y selected drive.

SETDMA: Entry point to a routine in the IOS that sets the currently selected D
address. The DMA address is the address of a 128-byte uffer region in memory that is
used to transfer data to and from the disk in subsequentreads and writes.

SETSEC: Entry point to a routine in the at sets the currently selected sector.

SETIRK: Entry point to a routine in the a t sets the currently seiecte

skew factor: Factor that defin hysical sector nurn
Logical sector numbers are us nd range betwee
written in consecutive logical 128-byte sec ouged in data bI
sectors per block is given b) sectors on the disk media are also
numbered consecutively. If t tor size is also 128 bytes, a one-to-one
relationship exists between logical cal sectors. The logical to physica
table (XLT) maps this relationship, and a skew factor is typically used in generating the
table entries. For instance, if the skew factor is 6 , XLT wilt be:

Logical: 0 1 2 3 4 5 6 . . . 25
Physical: I 7 13 19 25 5 l a . . . 22

The skew factor allows time for program processin without missing the next
Otherwise, the system must wait for an entire disk evolution before reading t
logical sector. The skew factor can be varied, depending on hardware s
tion processing overhead. Note that no sector translation is done when the physical
sectors are larger than 128 bytes, as sector deblocking is done in this case. (See also sector,
SKF and XLT)

SKF: A diskdef macro li cifying the skew factor to be used tn building
XLT. If SKF is zero, no translation nerated and the X L T byte in t
ooo0H.

software: Programs that contam able instructions, as tr
which is the actual physical components of a computer.

source file: ASCII text file usually created with an e itor, w h ~ c h is an input file to a
system program such as a language translator o r text formatter.

SP: Stack pointer. See stack.

spooling: Process of accumulating printer output in a file while the printer is busy. The
file is printed when the printer becomes free; a program oes not have to wait for the slow
printing process.

SPT: See sectors per track.

stack Resen ed area of memory where the processor saves the return address when a
call instruction 1s received When a return ~nstructton is encountered, the processor
restores the current address on the stack to the program counter Data such as the
contents of the registers can also be saved on the stack The push instruction places data
on the stack and the pop instruction removes it An item is pushed onto the stack b t
decrementmg the stack pointer (SP) bi 2 and wr~ t ing the item at the SP address Inother
words, the stack grows downmard in memory

syntax: Format for entering a given command.

S: See system attribute.

SYSGEN image: Memory image of the CP!M system created by SYSGEN when a
destination drive is not specified. This is the same as the LVOVCPM image, which can be
read by SYSGEN if a source drive is not specified. See MOVCPM image.

attribute (SYS): File attribute. You can give a file the system attribute by using
the SYS option in the STAT comman or by using the set file attributes function (BDOS
function 12). A file with the SYSattribute is not displayed in response to a DIRcommand.
If you give a file with user number O the SYS attribute, you can read and execute that file
from any user number on the same drive. Use this feature to make your commonly used
programs available under any user number.

system prompt: Symbol displayed by the operating system indicating that the system is
ready to receive input. See prompt, CP/M prompt.

system tracks: Tracks reserved on the disk for the CP/M system. The number of system
tracks is specified by the parameter OFF in the disk parameter block (DPB). The system
tracks for a drive always precede its data tracks. The command SYSGENcopies the CP/M
system from the system tracks to memory, and vice versa. The standard SYSGEN utility
copies 26 sectors from track O and 26 sectors from track I. When the system tracks
contain additional sectors o r tracks to be copied, a customized SYSGEN must be used.

inal: See console.

ransient program area Area in memory where user programs run and store data
a is a region of memory beginning a t O f O O H and extendmg to the base of the
stem In high memory The first module of the CPiM system 1s the CCP, which

y a uier program If so, the TPA 1 extended to the base of the C P J M
CCP is overwritten, the user pro ram must terminate wrth e t h e r a

eset ifunctlon C ! call or a jump to location ze in page zero Tine address of the
DOS is stored in locatmn 0000Pi in page zero, least s~gnlficant byte

first

track: Data on the disk media is accessed by combination of track and sector numbers.
Tracks form concentric rings on the disk; the standard IBM single-density diskettes
have 77 tracks. Each track consists of a fixed number of numbered sectors. Tracks are
numbered from O to one less than the number of tracks on the disk.

upward compatible: Term meaning that a program created for the previously reieased
operating system (or compiler, etc.) runs under the newly released version of the same
operating system.

USER: Term used in CP/M and MP!M systems to distinguish distinct regions of the
directory.

user number: Number assigned to files in the disk directory so that different users need
only deal with their own files and have their "own" directories, even though they are aII
working from the same disk. In CP/M, files can be divided into 16 user groups.

utility: "Tool." Program that enables the user to perform certain operations, such as
copying files, erasing files, and editing files. The utilities are created for the convenience
of programmers and users.

vector: Location in memory. An entry point into the operating system used for making
system calls or interrupt handling.

warm start: Program termination by: a jump to the warm start vector at location OOOOH, a
system reset (BDOS function O), or a ctl-C typed at the keyboard. A warm start
reinitializes the disk subsystem and returns control to the CP/M operating system at the
CCP level. The warm start vector is simply a jump to the WBOOT entry point in "the
BIOS.

WBOOT: Entry point to a routine in the BlOS used when a warm start occurs. A war
start is performed when a user program branches to location OOOOH, when the CPU is
reset from the front panel, or when the user types ctl-C. The CCP and BDOS are reloade
from the system tracks of drive A.

wildcard characters: Special characters that match certain specified items. In CP/
there are two wildcard characters: ? and *. The ? can be substituted for any single
character in a filename, and the * can be substituted for the primary filename or the
filetype, or both. By placing wildcard characters in filenames, the user creates an ambigu-
ous filename and can quickly reference one or more files.

word: 16-bit or two-byte value, such as an address value. Although the Intel 8080 is an
&bit CPU, addresses occupy two bytes and are called word values.

WRITE: Entry point to a routine in the BIOS that writes the record at the currently
selected DMA address to the currently selected drive, track, and sector.

XLT: Logical to physical sector translation table located in the BIOS. SECTRAN uses
XLT to perform logical to physical sector number translation. XLT also refers to the
two-byte address in the disk parameter header at DPBASE + 0. If this parameter is zero,
no sector translation takes place. Otherwise this parameter is the address of the transfa-
tion tabie.

ZERO PAGE: See page zero.

Messages come from several different sources. CP/M displays error messages when
there are errors in calls to the Basic Disk Operating System (BDOS). CP/M also displays
messages when there are errors in command lines. Each utility supplied with CP/M has its
own set of messages. The following lists CP/M messages and utility messages. One might
see messages other than those listed here if one is running an application program. Check
the application program's documentation for explanations of those messages.

Message

?

Meaning

DDT. This message has four possible meanings:
1) DDT does not understand the assembly language instruction.
2) The file cannot be opened.
3) A checksum error occurred in a HEX file.
4) The assembler/disassembler was overlayed.

ABORTED

PIP. You stopped a PIP operation by pressing a key.

ASM Error Messages

D

E

L

N

0
P

R

Data error: data statement element cannot be placed in
specified data area.
Expression error: expression cannot be evaluated during
assembly.
Label error: label cannot appear in this context (might be
duplicate label).
Not implemented: unimplemented features, such as macros,
are trapped.
Overflow: expression is too complex to evaluate.
Phase error: label value changes on two passes through
assembly.
Register error: the value specified as a register is incompatible
with the code.

S Syntax error: improperly formed expression.
U Undefined label: label used does not exist.
V Value error: improperly formed operand encountered in an

expression.

BAD DELIMITER

STAT. Check command line for typing er- ors.

Bad Load

CCP error message, or SAVE error

Bdos Err On d:

Basic Disk Operating System Error on the designated drive: CP/M
replaces d: with the drive specification of the drive where the error
occurred. This message is followed by one of the four p
situations described below.

dos Err On d: Bad Sector

This message appears when CP/M f
the disk is improperly formatted, ~v
when power to the drive is off. Check for one of these situations
and try again. This could also indicate a hardware problem o
worn or improperly formatted disk. Press iC to terminate
program and return to CP/M, or press the return key to ignore the
error.

Bdos Err On d: File R/O

You tried to erase, rename, or set file attributes on a
The file should first be set to Read-Write (
"STAT filespec $RIW."

Bdos Err On d: R/O

Drive has been assigned Read Only status with a STAT command,
or the disk in the drive has been change without being initialized
with a tC. CP/M terminates the current program as soon as you
press any key.

Bdos Err on d: Select

CP/M received a command line specifying a nonexistent drive.
CP/M terminates the current program as soon as you
Press return key or CTRL-C to recover.

reak "x" at c

ED. "x" is one of the symbols esrribed below and c is the command
letter being executed when the error occurred.

Search failure. ED cannot find the string specified in an F, S, or
N command.

? Unrecognized command Ietter c. ED does not recognize the
indicated command letter, or an E, H, Q, or O command is not
alone on its command line.

/M cannot write to t
is write-protecte

IS a fatal error that ter k if the correct
drsk :s in the d r

eader may not be
mplen?eni-ed.

D File r o ~ t a r n s incorre~t
source

Command Buffer Overflow

SUBMIT. The SUBMIT buffer allows up to 2048 characters in the
input file.

Command too long

SUBMIT. A command in the SUBMIT file cannot exceed 125
characters.

CORRECT ERROR, TYPE RETURN OR CTL-Z

PIP. A hex record checksum was encountered during the transfer of
a hex file. The hex file with the checksum error should be corrected,
probably by recreating the hex file.

DESTINATION IS R/O, DELETE (Y/N)?

PIP. The destination file specified in a PIP command already exists
and it is Read Only. If you type Y, the destination file is deleted
before the file copy is done.

Directory full

ED. There is not enough directory space for the file being written to
the destination disk. You can use the OXfilespec command to erase
any unnecessary files on the disk without leaving the editor.

SUBMIT. There is not enough directory space to write the
$$$.SUB file used for processing SUBMITS. Erase some files or
select a new disk and retry.

Disk full

ED. There is not enough disk space for the output file. This error
can occur on the W, E, H, or X commands. If it occurs with X
command, you can repeat the command prefixing the filename with
a different drive.

DlSK READ ERROR- (filespec]

PIP. The input disk file specified in a PIP command cannot be read
properly. This is usually the result of an unexpected end-of-file.
Correct the problem in your file.

DlSK WRITE ERROR- {filespec)

DDT. A disk write operation cannot be successfully performed
during a W command, probably due to a full disk. You should either
erase some unnecessary files or get another disk with more space.

PIP. A disk write operation cannot be successfully performed dur-
ing a PIP command, probably due to a full disk. You should either
erase some unnecessary files or get another disk with more space
and execute PIP again.

SUBMIT. The SUBMIT program cannot write the $$$.SUB file to
the disk. Erase some files, or select a new disk and try again.

ERROR: BAD PARAMETER

PIP. You entered an illegal parameter in a PIPcommand. Retype the
entry correctly.

ERROR: CANNOT OPEN SOURCE, LOAD ADDRESS hhhh

LOAD. Displayed if LOAD cannot find the specified file or if no
filename is specified.

ERROR: CANNOT CLOSE FILE, LOAD ADDRESS hhhh

LOAD. Caused by an error code returned by a BDOS function call.
Disk may be write-protected.

ERROR: CANNOT OPEN SOURCE, LOAD ADDRESS hhhh

LOAD. Cannot find source file. Check disk directory

ERROR: DISK READ, LOAD ADDRESS hhhh

LOAD. Caused by an error code returned by a BDOS function call.

ERROR: DISK WRITE, LOAD ADDRESS hhhh

LOAD. Destination Disk is full.

ERROR: INVERTED LOAD ADDRESS, LOAD ADDRESS hhhh

LOAD. The address of a record was too far from the address of the
previously-processed record. This is an internal limitation of
LOAD, but it can be circumvented. Use DDT to read the hexfile
into memory, then use a SAVE command to store the memory
image file on disk.

ERROR: NO MORE DIRECTORY SPACE, LOAD ADDRESS hhhh

LOAD. Disk directory is full.

Error on line nnn message

SUBMIT. The SUBMIT program dispIays its messages in the for-
mat shown above, where nnn represents the line number of the
SUBMIT file. Refer to the message following the line number.

FILE ERROR

ED. Disk or directory is full, and ED cannot write anything more on
the disk. This is a fatal error, so make sure there is enough space on
the disk to hold a second copy of the file before invoking ED.

FILE EXISTS

You have asked CP/M to create or rename a file using a file specifi-
cation that is already assigned to another file. Either delete the
existing file or use another file specification.

REN. The new name specified is the name of a file that already
exists. You cannot rename a file with the name of an existing file. If
you want to replace an existing file with a newer version of the
same file, either rename or erase the existing file, or use the PIP
utility.

File exists, erase it

ED. The destination filename already exists when you are placing
the destination file on a different disk than the source. Tt should be
erased or another disk selected to receive the output file.

F

rrt file that you

isk Assignme~t

STAT. Might appear if you follow the drive specification with
anything except =R!O.

CP/M received a command line specifying a nonexistent drive, or
the disk in the drive is improperly formatted. CP/M terminates the
current program as soon as you press any key.

IVE NAME (Use

SYSGEN. SYSGEK recognizes only drives A, B, C and D as valid
destinations for system generation.

Invalid File Indicator

STAT. Appears if you do not specify RO, RW, DIR, or SYS.

PIP. The format of your PIP command is illegal. See the description

hhhh

LOAD. FiIe contains incorrect hex digit.

. Specify a value less than 64K or your computer's actual
memory size.

INVALID SEPARATO

Plf . You have placed an invalid character for a separator between
two input filenames.

INVALID USER NUMBER

P. You have specified a user number greater than 15. User
ers are in the range O to 1.5.

c~fied a number greater than fifteen for a user area
ample, if you type USER i8<cr>, the screen displays

O DIRECTORY SPAC

ASM. The disk directory is full. Erase some files t o make room for
PRN and HEX files. The directory can usually hold only 63 fiie-
names.

NO DIRECTORY SPACE- (filespec)

PIP. There is not enough directory space for the output file. You
should either erase some unnecessary files or get another disk with
more directory space and execute PIP again.

NO FILE- {filespec1

DIR, ERA, REN, PIP. CP/M cannot find the specified file, or no
files exist.

ASM. The indicated source or include file cannot be found on the
indicated drive.

DDT. The file specified in an R or E command cannot be found on
the disk.

NO INPUT FlLE PRESENT ON DISK

DUMP. The file you requested does not exist.

No memory

There is not enough (buffer?) memory available for loading the
program specified.

NO SOURCE FlLE ON DISK

SYSGEN. SYSGEN cannot find CP/M either in CPMxx.com form
or on the system tracks of the source disk.

NO SOURCE FlLE PRESENT

ASM. The assembler cannot find the file you specified. Either you
mistyped the filespecification in your command line, o r the file is
not type ASM.

NO SPACE

SAVE. Too many files are already on the disk, or no room is left on
the disk to save the information.

No SUB file present

SUBMIT. For SUBMIT to operate properly, you must create a file
with filetype of SUB. The SUB filecontains usual CPlMcommands.
Use one command per line.

NOT A CHARACTER SOURCE

PIP. The source specified in your PIP command is illegal. You have
probably specified an output device as a source.

*" NOT DELETED **

PIP. PIP did not delete the file, which may have had the RIO
attribute.

NOT FOUND

PIP. PIP cannot find the specified file.

UT FlLE WRITE ERROR

ASM. You specified a write-protected diskette as the destination
for the PRN and HEX files, or the diskette has no space left. Correct
the problem before assembling your program.

SUBMIT. Within the SUBMIT file of type sub, valid parameters are
$0 through $9.

PARAMETER ERROR, TYPE RETURN TO IGNORE

SYSGEN. If you press return, SYSGEN proceeds without process-
ing the invalid parameter.

U l i NOT FOUND

PIP. The string argument to a Q parameter was not found in your
input file.

TYPE. An error occurred when reading the file specified in the type
command. Check the disk and try again. The STAT filespec com-
mand can diagnose trouble.

PIP. Reader operation interrupted.

PIP. PIP cannot process a record longer than 128 bytes.

XSUB. XSUB requires the facilities of CP/M 2.0 or newer version.

uires CP/M 2.0 or newer for operation

PIP. This version of PIP requires the facilities of CP/M 2.0 or newer
version.

START NOT FOUND

PIP. The string argument to an S parameter cannot be found in the
source file.

SYSGEN. SYSGEN cannot use your CP/M source file.

ASM. When you assemble a file, you cannot use the wildcard
characters * and ? in the filename. Only one file can be assembled at
a time.

CE FlLE READ ERROR

ASM. The assembler cannot understand the information in the fife

containing the assembly language program. Portions of another file
might have been written over your assembly language file, or
information was not properly saved on the diskette. Use the TYPE
command to locate the error. Assembly language files contain the
letters, symbols, and numbers that appear on your keyboard. If
your screen displays unrecognizable output or behaves strangely,
you have found where computer instructions have crept into your
file.

SYNCHRONIZATION ERROR

MOVCPM. The MOVCPM utility is being used with the wrong
CP/M system.

"SYSTEM" FILE NOT ACCESSIBLE

You tried to access a file set to SYS with the STAT command.

** TO0 MANY FILES * *

STAT. There is not enough memory for STAT to sort the files
specified, or more than 512 files were specified.

UNEXPECTED END OF HEX FILE-{filespec)

PIP. An end-of-file was encountered prior to a termination hex
record. The hex file without a termination record should be cor-
rected, probably by recreating the hex file.

Unrecognized Destination

PIP. Check command line for valid destination

Use: STAT d:=RO

STAT. An invalid STAT drive command was given. The only valid
drive assignment in STAT is STAT d:=RO.

VERIFY ERROR:-{filespec)

PIP. When copying with the V option, PIP found a difference when
rereading the data just written and comparing it to the data in its
memory buffer. Usually this indicates a failure of either the destina-
tion disk or drive.

WRONG CP/M VERSION (REQUIRES 2.0)

XSUB ACTIVE

SUBMIT. XSUB has been invoked.

XSUB ALREADY PRESENT

SUBMIT. XSUB is already active in memory.

Your input?

If CP/M cannot find the command you specified, it returns the
command name you entered followed by a question mark. Check
that you have typed the command line correctly, or that the com-
mand you requested exists as a .COM file on the default or specified
disk.

Absoiute Ime number 36
Access mode, 1 3
afn iamblguous file reference), 3, 4, 5
A~iacatlon vector, 105

rle reference iafn), 3, 4, 6

Assembler, 15, 47
Assembler, drsassembler module (DDT!, 77
Assembly errors, 02
Assembly language mne omcs in DDT, 71, 74

Assembly language program, 49
Assembly Language statement, 49
Automat~c command processing, 25

Ease, 5C
asic Disk Operating System (BQOSj, 2, 89, 127

Basic 1iO System IBIOS), 2, 89, 127
BDOS [Basic Drsk Operatrng System), 2, 89, 127
Binary constants, 50

IOS (Basic 110 System), 2, 89, 127
10s disk definition, 438

EIOS subroutines, 137
Block move cclmmand, 74
bis parameter, 141,

OOT, 9C, 136, 140
OOT entry point, 140

Breakpoint, 71, 73
Built-in commands, 3

Case translation, 5, a, 20, 21, 37, 39, 44, 45, 51 95

CCP (Console Command Processor), 2, 69, 89, 127
CCP S t a d , 92
Character pomter, 35
CKS parameter, I49
Close Fie function, 40:
Code and data areas, 144
Cold stdrt loader, 136, 140, 143
Combine fries, 17
Command, 3
Ccrnrnand h e , 90
Ccmrnent !3e!d, 49
Compute Fde Size flrnct~on, 138
Cofiditilor flags, 58, 77
Condi+ionai assembly, 56
COVIN 116
fONO!.,T, 141
COI*SOLE, 138
Consok Colrrnand Processor (CCP), 2,69, 89, 127
C o n d e lnpdt function, 05
Console Output function, 96
CGhST, 143
Constart, 5il

Control characters, 44
Control iuncttnns 9

Control-Z character, 93
Copy files, 17
CPU state, 71
cr (carriage return), 39
Create files, 23
Create system disk, 24
Creating COM files, 16
Currently logged disk, 3, 5, 10, 17, 25

Data allocation size, 147
Data block number, 147
DB statement, 57
DDT commands, 70, 133
DDT nucleus, 77
DDT prompt, 70
DDT sign-on message, 69
Decimal constant, 50
Default FCB, 73
Delete File function, 102
DESPOOL, 136
Device assignment, 11
DIR, 6
DIR attribute, 14
dir parameter, 149
Direct console I 1 0 function, 97
Direct Memory Address, 104
Directory, 6
Directory code, 100, 101, 102, 103
Disassembler, 71, 77
Disk attributes, 11
Disk drive name, 5
Disk 110 functions, 99-110
Disk parameter block, 146
Disk parameter header, 145
Disk parameter table, 145
Disk statistics, 10
Disk-to-disk copy, 18
DISKDEF macro, 149
Diskette format, 31
DISKS macro, 150, 186
Display file contents, 8
dks parameter, 149
DMA, 104
DMA address, 93
dn parameter, 149
DPBASE, 146
Drive characteristics, 14
Drive select code, 94
Drive specification, 5
DS statement, 57
DUMP, 27, 113
DW statement, 57

ED, 23, 33-45, 131
ED commands, 38, 44
ED errors, 43
Edlt command h e , 9
8080 CPU regtsters, 76

8080 registers, 51
end-of-file. 19, 93
END statement, 49, 54
ENDEF macro, 150
ENDIF statement, 56
EQU statement, 55

ERA, 6
Erase ides, 6
Error messages, 29, 13, 67, 153
Expression, 19
Extents, I3

FBASE, 89
FCB, 43, 94
FCS format, 93, 94

F30S [operationsi, 89, 91
File attriburei, 1 3
file compatibility, 23
Fde control block (FCB), 93, 44
File expansion, 128
File extent, 9 3
File indicators, 14
File names,. 3
Fiel reference, 3
File statistics, 10, 1 3
Filetype, 93
Find command, 39
fsc parameter, i 4 9

Get ADDR (Allot) function, 105
Get ADCR (Disk Parmsi function, 106
Get Console Status, 99
Get 110 Byte function, 97
Ger ReadiOnly Vector function, 105
GETSYS, 128, 134

iiexadecimal constant, 50
Hex f:les, lo 1 9 20, 47
HOME subroutine, 139, 111

ident~frer, 44, 50
IF statement, 5 6
ImtLahred storage areas, 57
In-line assernblv language, 71
Insert mode, 37
insert string, 40

IOBYTE func t~on , 138,139

J o m p vector, 137
Juxtapos~trnn command, 41

Key fields, I 0 9

Label field, 49

Labels, 48, 49, 58
L~brary read command, 42
Line-editing control characters, 38, 70, 9 8
Line-editing iunctiuns, 9

LIST, 138, 14;
List Output Functior:, 96
LISTST, 142
LOAD, 16
Logged in, 3
Logical devices, 11, 18, 138
Logical extents, 93
LogicaLphysical assignments, 12, 139
Logval to ghysrcai device mappmg, 138
Log:cai to physical sector trdnsiatron, 133, 149
isi parameter, iiS

Machine executable code, 1 6
Macro command, 42
Make FJe function, 103
Mernorv buffer, 33, 34, 35 37
Memory image, 71, 131, 132
blemorv image file, 16
Memory size, 27, 128, 132
MOVCPM, 27, 131, 132
Muit.pIe command processing, 25

Negative bias, 132

10: parameter, 149
Octal constant, 50
ofs parameter, 150
On-line status, 100
Open Fde function, 100
Operand field, 49-51
O p e r a t ~ o n fteld, 49-58
Operators, 52, 53, 5 8
ORG directive, 54

Page zero, 144
Patching the CP/M system, 128
Peripheral devices, 138
Physical devices, 12, 18, 139
Physical file size, 109
Physical to logical device assignment, 12, 139
PIP, 1 7
PIP devices, 1 9
PIP parameters, 20
Print String function, 98
PRN file, 47
Program counter, 71, 73, 76
Program tracing, 75
Prompt, 3
Pseudo-operation, 5 3
PUNCH, 138, 1 4 1
Punch Output Function, 96
PUTSYS, 129, 135

Radix indicators, 50
Random access, 107, 108, 117
Random access flles, 9 3
Random record number, 108
READ, 142
Read Console Buffer function, 98
Read only, 1 4
Readioniy status, 14
Read random er ror codes, 107
Read Random function, 107
READ routine, 139
Read Sequentla1 function, 102
Read~wrrte, 14
READER, 138, 141
Reader Input f u n c t ~ o n , 96
REN, 7
Rename fde function, 104
Reset Disk function, 99
Reset Drive function, 109
Reset state, 99
Return Curren t Disk funct'on, 104
Return Log-in Vector functio

n
, 1 0 4

Return Version h'umber function, 94
RIO, 1 4

RIO attrrbuie, 106
R'O bit, 105
RnW, 14

SA\ E, 7
SAVE command, 70
Search tor First tunctton, 101
Search for next function, 103
Search rtrings, 34
Sector ailocation, 136
SECTRAN, 143
SELDSK, 139, 141, 146
Select Disk functton, 100
Sequential access, 93
Set DMA address function, 104
Set File Attrzbutes function, 106
SetiGet User Code functton, 106
Set IiO Bvte function, 97
Set Random Record functton, 109
SET statement, 55
SETDMA, 142
SETSEC, 142
SETTRK, 141
Simple character 110, 138
Size in records, 13
skf parameter, 144, 150
Source ftles, 93
Stack pointer, 92
STAT, 10, 139, 151
Stop console ouipu*, Q

Strrng subst~tutions, 40
SUBMIT, 25
SYS attribute, 14
SYSGEN, 24, 134
System attribute, 44, 106
System parameters, 140
System (re)mrtiahzation, 138
System Reset functron, 95

Testing and debugging of programs, 69
Text transfer commands, 35
TPA (Transient Program Area!, 2, 89
Trace mode, 76
Transient commands, 3, ?
Transient Program Area (TPA), 2, 89
Translate table, 150
Translation vectors, 146
TYPE, 8

ufn, 3, 6
Unambiguous file reference, 3, 6
Uninttialired memory, 5"
Untrace mode, 76
USER, 8
USER numbers, 8, 15, 106

Verify line numbers command, 37, 45
Version independent programming, 99
Virtual file size, 108

Warm start, 90, 140
WBOOT entry point, 140
WRITE, 143
Write Protect Drsk function, 105
h r i t e randcim error codes, 108

Write Random function, 108
Write Random with Zero Fill function, 110
WRITE routine, 142
Write Sequential function, 103

