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Abstract. Network latency is a problem for all cloud
services. It can be mitigated by moving computation out
of remote datacenters by rapidly instantiating local ser-
vices near the user. This requires an embedded cloud
platform on which to deploy multiple applications se-
curely and quickly. We present Jitsu, a new Xen tool-
stack that satisfies the demands of secure multi-tenant
isolation on resource-constrained embedded ARM de-
vices. It does this by using unikernels: lightweight,
compact, single address space, memory-safe virtual ma-
chines (VMs) written in a high-level language. Using
fast shared memory channels, Jitsu provides a directory
service that launches unikernels in response to network
traffic and masks boot latency. Our evaluation shows
Jitsu to be a power-efficient and responsive platform for
hosting cloud services in the edge network while preserv-
ing the strong isolation guarantees of a type-1 hypervisor.

1 Introduction

The benefits of cloud hosting are clear: dynamic resource
provisioning, lower capital expenditure, high availabil-
ity, centralised management. Unfortunately, all services
architected and deployed in this way inevitably suffer
the same problem: latency. Physical separation be-
tween remote datacenters where processing occurs and
users of these services, imposes unavoidable minimum
bounds on network latency. Recent developments in aug-
mented reality (e.g., Google Glass [17]) and voice con-
trol (e.g., Apple’s Siri) particularly suffer in this regard.

Concurrent with the move of services to the cloud, we
are now seeing uptake of the “Internet-of-Things” (IoT),
giving rise to our second concern: infegrity. These de-
vices often rely on the network for their operation but
many of the devices we use daily suffer from an unre-
lenting stream of security exploits, including routers [8],
buildings [13] and automobiles [5]. The future success of
IoT platforms being deployed in edge networks depends
on the convenience of secure multi-tenant isolation that
the public cloud utilises.

The widely deployed Xen hypervisor [2] enforces iso-
lation between multiple tenants sharing physical ma-
chines. Xen recently added support for hardware virtual-
ized ARM guests, opening up the possibility of building
an embedded cloud: a system of distributed low-power
devices, deployed near users, able to host applications
delivering real-time services directly via local networks.
There has been a steady increase in ARM boards fea-
turing a favourable energy/price/speed trade-off for con-
structing embedded systems (e.g., the Cubieboard2 has
1GB RAM, a dual-core A20 ARM CPU and costs £ 39).

We present Jitsu, a system for securely managing
multi-tenant networked applications on embedded in-
frastructure. Jitsu re-architects the Xen toolstack to
lower the resource overheads of manipulating virtual ma-
chines (VMs), overcoming current limitations that pre-
vent Xen from becoming an effective platform for build-
ing embedded clouds. Rather than booting conventional
VMs, Jitsu services network requests with low latency
using unikernels [27] as the unit of deployment. These
are small enough to be booted in a few hundred millisec-
onds, a latency that Jitsu further masks through connec-
tion hand-off. The MirageOS unikernels [25] that we
use are also secure enough to survive inexpertly managed
network-facing deployment.

Jitsu uses the virtual hardware abstraction layer pro-
vided by the Xen type-1 hypervisor, adding a new control
toolstack that eliminates bottlenecks in VM management
(Figure 1). Although developed with unikernels in mind,
it preserves sufficient compatibility that many of its ben-
efits apply equally to generic (e.g., Linux or FreeBSD)
VMs targeting either ARM or x86.

The specific contributions of this paper are thus: a de-
scription of how to build efficient, secure unikernels on
the new open-source Xen/ARM (§2); an explanation of
the Jitsu Xen toolstack architecture (§3); a comparison of
it against other application containment techniques (§4);
and finally application deployment scenarios and discus-
sion of the broader lessons learnt (§5).
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Figure 1: Jitsu architecture: external network connec-
tivity is handled solely by memory-safe unikernels con-
nected to general purpose VMs via shared memory.

2 Embedded Unikernels

Building software for embedded systems is typically
more complex than for standard platforms. Embedded
systems are often power-constrained, impose soft real-
time constraints, and are designed around a monolithic
firmware model that forces whole system upgrades rather
than upgrade of constituent packages. To date, general-
purpose hypervisors have not been able to meet these re-
quirements, though microkernels have made inroads [9].

Several approaches to providing application isolation
have received attention recently. As each provides dif-
ferent trade-offs between security and resource usage,
we discuss them in turn (§2.1), motivating our choice of
unikernels as our unit of deployment. We then outline the
new Xen/ARM port that uses the latest ARM v7-A vir-
tualization instructions (§2.2) and provide details of our
implementation of a single-address space ARM uniker-
nel using this new ABI (§2.3).

2.1 Application Containment

Strong isolation of multi-tenant applications is a require-
ment to support the distribution of application and sys-
tem code. This requires both isolation at runtime as well
as compact, lightweight distribution of code and associ-
ated state for booting. We next describe the spectrum of
approaches meeting these goals, depicted in Figure 2.
OS Containers (Figure 2a). FreeBSD Jails [19] and
Linux containers [38] both provide a lightweight mecha-
nism to separate applications and their associated kernel
policies. This is enforced via kernel support for isolated
namespaces for files, processes, user accounts and other
global configuration. Containers put the entire mono-
lithic kernel in the trusted computing base, while still
preventing applications from using certain functionality.
Even the popular Docker container manager does not yet
support isolation of root processes from each other.!

'https://docs.docker.com/articles/security/

Both the total number and ongoing high rate of dis-
covery of vulnerabilities indicate that stronger isolation
is highly desirable (see Table 2). An effective way to
achieve this is to build applications using a library op-
erating system (1ibOS) [10, 24] to run over the smaller
trusted computing base of a simple hypervisor. This has
been explored in two modern strands of work.

Picoprocesses (Figure 2b). Drawbridge [34] demon-
strated that the libOS approach can scale to running
Windows applications with relatively low overhead (just
16MB of working set memory). Each application runs
in its own picoprocess on top of a hypervisor, and this
technique has since been extended to running POSIX ap-
plications as well [15]. Embassies [22] refactors the web
client around this model such that untrusted applications
can run on the user’s computer in low-level native code
containers that communicate externally via the network.

Unikernels (Figure 2¢). Even more specialised appli-
cations can be built by leveraging modern programming
languages to build unikernels [25]. Single-pass compi-
lation of application logic, configuration files and device
drivers results in output of a single-address-space VM
where the standard compiler toolchain has eliminated un-
necessary features. This approach is most beneficial for
single-purpose appliances as opposed to more complex
multi-tenant services (§5).

Unikernel frameworks are gaining traction for many
domain-specific tasks including virtualizing network
functions [29], eliminating I/O overheads [20], build-
ing distributed systems [6] and providing a minimal trust
base to secure existing systems [11, 7]. In Jitsu we use
the open-source MirageOS? written in OCaml, a stati-
cally type-safe language that has a low resource footprint
and good native code compilers for both x86 and ARM.
A particular advantage of using MirageOS when work-
ing with Xen is that all the toolstack libraries involved
are written entirely in OCaml [36], making it easier to
safely manage the flow of data through the system and to
eliminate code that would otherwise add overhead [18].

2.2 ARM Hardware Virtualization

Xen is a widely deployed type-1 hypervisor that isolates
multiple VMs that share hardware resources. It was orig-
inally developed for x86 processors [2], on which it now
provides three execution modes for VMs: paravirtualiza-
tion (PV), where the guest operating system source is di-
rectly modified; hardware emulation (HVM), where spe-
cialised virtualization instructions and paging features
available in modern x86 CPUs obviate the need to mod-
ify guest OS source code; and a hybrid model (PVH) that
enables paravirtualized guests to use these newer hard-
ware features for performance.’

*http://www.openmirage.org
3See Belay et al [4] for an introduction to the newer VT-x features.
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Figure 2: Contrasting approaches to application containment.

The Xen 4.4 release added support for recent ARM
architectures, specifically ARM v7-A and ARM v8-A.
These include extensions that let a hypervisor manage
hardware virtualized guests without the complexity of
full paravirtualization. The Xen/ARM port is markedly
simpler than x86 as it can avoid a range of legacy re-
quirements: e.g., x86 VMs require gemu device emu-
lation, which adds considerably to the trusted comput-
ing base [7]. Simultaneously, Xen/ARM is able to share
a great deal of the mature Xen toolstack with Xen/x86,
including the mechanics for specifying security policies
and VM configurations.

Jitsu can thus target both Xen/ARM and Xen/x86, re-
sulting in a consistent interface that spans a range of de-
ployment environments, from conventional x86 server
hosting environments to the more resource-constrained
embedded environments with which we are particularly
concerned, where ARM CPUs are commonplace.

2.3 Xen/ARM Unikernels

Bringing up MirageOS unikernels on ARM required de-
tailed work mapping the 1libOS model onto the ARM ar-
chitecture. We now describe booting MirageOS uniker-
nels on ARM, their memory management requirements,
and device virtualization support.

Xen Boot Library. The first generation of uniker-
nels such as MirageOS [26, 25] (OCaml), HaLVM [11]
(Haskell) and the GuestVM [32] (Java) were constructed
by forking Mini-OS, a tiny Xen library kernel that ini-
tialises the CPU, displays console messages and allocates
memory pages [39]. Over the years, Mini-OS has been
directly incorporated into many other custom Xen oper-
ating systems, has had semi-POSIX compatibility bolted
on, and has become part of the trusted computing base
for some distributions [7]. This copying of code becomes
a maintenance burden when integrating new features that
get added to Mini-OS. Before porting to ARM, we there-
fore rearranged Mini-OS to be installed as a system li-

brary, suitable for static linking by any unikernel.* Func-
tionality not required for booting was extracted into sep-
arate libraries, e.g., 1ibm functionality is now provided
by OpenLibM (which originates from FreeBSD’s 1ibm).

An important consequence of this is that a 1libc is
no longer required for the core of MirageOS: all 1ibc
functionality is subsumed by pure OCaml libraries in-
cluding networking, storage and unicode handling, with
the exception of the rarely used floating point formatting
code used by printf, for which we extracted code from
the musl 1ibc. Removing this functionality does not
just benefit codesize: these embedded libraries are both
security-critical (they run in the same address space as
the type-safe unikernel code) and difficult to audit (they
target a wide range of esoteric hardware platforms and
thus require careful configuration of many compile-time
options). Our refactoring thus significantly reduced the
size of a unikernel’s trusted computing base as well as
improving portability.

Fast Booting on ARM. We then ported Mini-OS to
boot against the new Xen ARM ABI. This domain build-
ing process is critical to reducing system latency, so
we describe it here briefly. Xen/ARM kernels use the
Linux zImage format to boot into a contiguous mem-
ory area. The Xen domain builder allocates a fresh vir-
tual machine descriptor, assigns RAM to it and loads
the kernel at the offset 0x8000 (32KB). Execution be-
gins with the r2 register pointing to a Flattened Device
Tree (FDT). This is a similar key/value store to the one
supplied by native ARM bootloaders and provides a uni-
fied tree for all further aspects of VM configuration. The
FDT approach is much simpler than x86 booting, where
the demands of supporting multiple modes (paravirtual,
hardware-assisted and hybrids) result in configuration in-
formation being spread across virtualized BIOS, memory
and Xen-specific interfaces.

4Our Mini-OS changes have been released back to Xen and are be-
ing integrated in the upstream distribution that will become Xen 4.6.
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Some assembler code then performs basic boot tasks:

e Configuring the MMU, which handles mapping vir-
tual to physical memory addresses.

e Turning on caching and branch prediction.

e Setting up the exception vector table, defining how
to handle interrupts and deal with various faults
such as reading from an invalid memory address.

e Setting up the stack pointer and jumping into the C
arch_init function for the remainder of execution.

The early C code sets up the virtual logging console
and interrupt controllers. After this, unikernel-specific C
code binds interrupt handlers, memory allocators, time-
keeping and grant tables [42] into the language runtime.
The final step is to jump into the OCaml code section’
and begin executing application logic. The application
links memory-safe OCaml libraries to perform the re-
maining functions of device drivers and network stacks.

Modifying Memory Management. Once the Mi-
rageOS/ARM unikernel has booted, it runs in a sin-
gle address space without context switching. However,
the memory layout under ARM is significantly differ-
ent from that for x86. Under the ARM Virtualization
Extensions, there are two stages to converting a virtual
memory address (used by application code) to a physical
address in RAM, both of which go through translation
tables. The first stage is under the control of the guest
VM, where it maps the virtual address to what the guest
believes is the physical address — the Intermediate Phys-
ical Address (IPA). The second stage, under the control
of Xen, maps the IPA to the real physical address.

MirageOS’ memory needs are very simple compared
with traditional guest OSs. Most memory is provided
directly to the managed OCaml heap which is grown on-
demand. Unikernels will typically also allocate a few
pages for interacting directly with Xen as these must be
page-aligned and static, and so cannot be allocated on the
garbage collected OCaml heap.

Although Xen does not commit to a specific fixed ad-
dress for the IPA, the C code does need to run from a
known location. To resolve this, the assembler boot code
uses the program counter to detect where it is running
and sets up a virtual-to-physical mapping that will make
it appear at the expected location by adding a fixed offset
to each virtual address. The table below shows this for
Xen 4.5 (the latest stable release). The physical address
is always at a fixed offset from the virtual address and
addresses wrap around, so virtual address 0xC0400000
maps back to physical address 0 in this example.

The stack, which grows downwards, is placed at the
start of RAM so that an overflow will trigger a page fault
that can be caught, and can also be grown in size later

5The ocamlopt compiler outputs standalone native code ARM ob-
ject files that are linked with the garbage collector runtime library.

Addresses

Virtual ‘ Physical ‘ Purpose
0x400000 | 0x40000000 | Stack (16 KB)
0x404000 | 0x40004000 | Translation tables (16 KB)
0x408000 | 0x40008000 | Kernel image

in the boot process when all of the RAM is available.
The 16KB translation table is an array of 4-byte entries
each mapping 1MB of the virtual address space, so the
16KB table is able to map the entire 32-bit address space
(4GB). Each entry can either give the physical section
address directly or point to a second-level table mapping
individual 4KB pages; MirageOS implements the former
as this reduces possible delays due to TLB misses.

The kernel code is followed by the data section con-
taining constants and global variables, then the bss sec-
tion with data that is initially zero and thus need not be
stored in the kernel image, and finally the rest of the
RAM under control of the memory allocator.

Device Virtualization. On Xen/x86 it is possible to
add virtual devices by two means: pure PV devices that
operate via a split-device model [42], and emulated hard-
ware devices that use the gemu device emulator to pro-
vide the software model. Xen/ARM does not support the
more complex hardware emulation at all, instead man-
dating (as a new ABI) that VMs support the Xen PV
driver model to attach virtual devices.

MirageOS includes OCaml library implementations of
the Xen PV protocols for networking and storage. The
only modifications required from their x86 versions were
the architecture-dependent memory barrier assembly in-
structions that differ between x86 and ARM, accessed
via the OCaml foreign function interface.

The result of this work is to bring the benefits of Mira-
2eOS unikernels (compact, specialised appliances with-
out excess baggage) to the resource-constrained ARM
platform, providing an alternative to running full Linux
or FreeBSD VMs. While we have described the specifics
of the MirageOS port here, other teams have already
picked up our work for their respective projects and are
adapting it for other runtimes such as Click and Haskell.

3 The Jitsu Toolstack

We turn now to the Jitsu toolstack which supports the
low-latency on-demand launching of the unikernels in re-
sponse to network traffic. Our goal is to ensure that ser-
vices listening on a network endpoint are always avail-
able to respond to traffic, but are otherwise not running
to reduce resource utilisation. Jitsu is the Xen equivalent
of the venerable inetd service on Unix, but instead of
starting a process in response to incoming traffic, it starts
a unikernel that can respond to requests on that IP ad-
dress. While there have been wide-area versions of this
approach in the past [1], we believe this is the first time it
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has been implemented with such low latency in a single
embedded host without sacrificing isolation.

We describe Jitsu in three phases, each of which pro-
gressively reduces end-to-end latency. First, the tradi-
tional Xen toolstack is highly serialised across multi-
ple blocking internal components, leading to large boot
times due to long pauses between actual boot activ-
ity. We thus reduce these boot times by reducing this
blocking behaviour and speeding up various boot com-
ponents (§3.1). Jitsu preserves the existing boot protocol
so that the many millions of existing Xen VM images
will continue to work.

Second, we describe optimisation of the inter-VM
communications protocol via conduits, a Plan9-like ex-
tension to support direct shared memory communication
between named endpoints (§3.2). Conduits eliminate the
need to use local networking to communicate between
Jitsu and unikernels, further driving down latency.

Third, we introduce the Synjitsu directory service that
masks boot latency to external clients by handling the
initial stages of TCP handshake, only to hand-off the
resulting state via a local conduit while the unikernel
service completes booting and attaches to the network
bridge (§3.3).

The net result is that a service VM can “cold boot”
and respond to a TCP client in around 300-350ms, and
an already-booted service can respond to local traffic in
around Sms (§4). In all cases, all network traffic is han-
dled via memory-safe code in an unprivileged Xen VM.

3.1 Optimising Boot Times

Jitsu builds on the existing Xen toolstack by extending
XenStore, a storage space shared between all VMs run-
ning on a physical host [12]. XenStore is a hierarchical,
transactional key-value store where keys describe a path
down a tree, and values store configuration and live sta-
tus information for domains. Each running domain on a
Xen instance has its own subtree, and so communication
between domains can be coordinated via XenStore.

There are several stages to a VM booting that are trig-
gered by XenStore: (i) a domain builder process loads
the guest kernel image and configures it within a Xen
datastructure before launching it; (i7) the new VM boots
and attaches to its virtual devices, most notably a log-
ging console and a network device; (iii) the remote end of
the network and console device rings are attached to the
backends that bridge them; and finally, (iv) the userspace
starts and applications begin serving traffic.

Jitsu’s utility relies on the ability to launch new VMs
very quickly. Using the vanilla Xen toolstack, VM boot
times are far too high for this, typically 3-5 seconds with
high CPU usage for a Linux VM — hardly “just in time”
when trying to start a network service with imperceptible
client delay. Jitsu applies three optimisations to signifi-
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Figure 3: Comparison of different transaction reconcili-
ation implementations during VM start/stop.

cantly reduce this, achieving lowest latency when boot-
ing a specialised unikernel instead of a generic VM.

(/) Domain building. Xen’s domain builder creates
the initial VM kernel image. Most of its work is to ini-
tialise and zero out physical memory pages, thus guests
with less memory are naturally built more quickly. As
unikernels require such small amounts of memory to
boot (8MB is plenty), they have an advantage over mod-
ern Linux distributions which typically require at least
64MB and are often recommended 128MB or more.

(ii) Parallel device attachment. While modern Linux
parallelises much of its boot process, individual devices
still have a serialisation overhead. The console device,
for example, attaches to a dom0 xenconsoled service
that drains the VM output and logs it. More signifi-
cantly, attaching the network driver requires the backend
domain to create a vif device in dom0, and to add it to a
network bridge so that it can receive traffic. This blocks
the VM while a slew of RPCs go back-and-forth between
it and dom0, where hotplug shell scripts are executed.

This can be further sped up by parallelising the entire
device attachment cycle with the domain builder itself.
Jitsu starts the vif creation process before the domain
builder runs, resulting in the two running in parallel. Al-
though we could eliminate this overhead entirely by pre-
creating domains and attaching them to the bridge (mak-
ing VM launch simply a matter of attaching a unikernel
to a domain before unpausing it), we prefer not to pay the
cost of increased memory usage that would result from
the pre-created domains.

(iii) Transaction Deserialisation. As the domain is
built, a series of XenStore operations coordinates the
multiple components involved in booting a VM. Build-
ing just one domain involves many transactional oper-
ations, and it becomes a latency bottleneck if they do
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not parallelise well. There are two XenStore implemen-
tations provided by upstream Xen: the default is a C
implementation with filesystem-based transactions, and
the other an alternative written in OCaml that uses in-
memory transactions with merge functions that reduce
the number of conflicts [12]. We further improved the
OCaml XenStore transaction handling in a Jitsu-specific
fork by providing a custom merge function that handles
common directory roots in parallel transactions.

Figure 3 shows the dramatic differences in VM start
time when doing VM start/stop operations in parallel,
with the OCaml implementations clearly more efficient
than the default demon in C. This is due to the reduced
number of conflicts which otherwise cause the toolstack
to cancel and retry a large set of domain building RPCs.

Figure 4 breaks down the impact of the domain cre-
ation optimisations. The test builds the VM image with
a console and network interface and starts it. As this
measures only VM construction time, not boot time, it
applies to both unikernels and Linux VMs. Memory
usage is a significant factor in domain creation, with a
256MB domain taking a full second to create, and a
16MB domain (suitable for a unikernel) still taking a
significant 650ms. Rewriting the networking hotplug
scripts to use the lightweight dash rather than the de-
fault bash reduces boot time to 300ms, and eliminat-
ing forking by invoking ioctl calls directly rather than
running shell scripts further reduces boot time to 200ms.
The final two optimisations to parallelise vif setup and
asynchronously attach the console give the end result of
120ms to boot on ARM.

Jitsu is fully compatible with x86 as well as ARM, and
so we ran the same tests on a 2.4GHz quad-core AMD
x86_64 server to compare boot times against ARM. The
most optimised VM creation time was just 20ms on x86
— around 6 times faster than the lower powered ARM
board. Although we are focused on embedded deploy-
ments in this paper, it is worth noting that such fast boot
times are possible in situations where power consump-
tion is less of a concern (§4).

3.2 Communication Conduits

Coordinating a set of running unikernels requires some
means to communicate between them. For conventional
VMs, all such communication passes via shared memory
rings to real hardware running in a privileged VM [42].
Device-specific RPC protocols are built over these rings
to provide traditional abstractions such as netfront
(network cards) or blkfront (mass storage).

This is a convenient abstraction when virtualizing ex-
isting OS kernels to run under Xen, as each protocol fits
into the existing device driver framework. However, the
lack of user/kernel space divide in a unikernel means that
it links in device drivers as normal libraries: there is no
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Figure 4: Optimising Xen/ARM domain build times.

need to fit the protocols into any existing abstraction. It
becomes easy to construct custom RPC layers for com-
munication between unikernels, whether instantiated as
VMs on Xen or as Linux processes.

Jitsu provides an abstraction over such a shared-
memory communication protocol called Conduit, which
(i) establishes shared-memory pages for zero-copy com-
munication between peers; (ii) provides a rendezvous fa-
cility for VMs to discover named peers; and (iif) hooks
into higher level name services like DNS. Conduit is de-
signed to be compatible with the vchan library for inter-
VM communication.®

3.2.1 Establishing a fast point-to-point connection

A vchan is a point-to-point link that uses Xen grant ta-
bles to map shared memory pages between two VMs,
using Xen event channels to synchronise access to these
pages. Establishing a vchan between two VMs requires
each side to know its peer’s domain id before the shared
memory connection can be established. This allows
vchan to work early in Xen’s bootcycle before XenStore
is available (e.g., within a disaggregated system [7]). Un-
like previous inter-VM communication proposals [43],
vchan remains simple by not mandating any rendezvous
mechanism across VMs, focusing solely on providing a
fast shared memory datapath.

Modern Linux kernels provide userspace access to
grant mappings (/dev/gntmap) and event channels
(/dev/evtchn), so we implemented the vchan proto-
col in pure OCaml using these devices. This required
fixing several bugs in upstream Linux arising from the
many ways to deadlock the system when interacting be-
tween user and kernel space. The lack of such a divide
in unikernels made implementing this protocol for Mi-

6ychan was introduced by Qubes OS and later upstreamed to Xen;
http://openmirage.org/blog/introducing-vchan
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rageOS far simpler. The resulting code allows unikernel
and Linux VMs on the same host to communicate with-
out the overhead of a local network bridge.

3.2.2 Listening on named endpoints

For convenience, Conduit provides a higher-level ren-
dezvous interface above vchan by using the existing
XenStore metadata store. It extends the XenStore names-
pace in two places: the existing /local/domain tree for
per-VM metadata, and a new /conduit tree for register-
ing endpoint names and tracking established flows. Fig-
ure 5 shows a XenStore fragment with an HTTP client
VM connecting to a HTTP server. When the server VM
boots, it registers a name mapping from its domain id to
/conduit/http_server. It then watches the 1isten
key for any incoming connections.” The client VM sim-
ilarly registers /conduit/http_client when it starts.

The http_client picks a unique port name and at-
tempts to “resolve” the http_server target by writ-
ing the port name to the listen queue for the server
(e.g., /conduit/http_server/listen/connl). The
server VM receives a watch event and reads the
remote domain id and port name from its listen
queue, giving it sufficient information to establish
a vchan. The connection metadata is written into
/local/domain/<domid>/vchan, and contains the
grant table and event channel references through which
both sides obtain their shared memory pages and virtual
interrupts. The server also updates the /f1lows table with
extra metadata such as per-flow statistics that can be read
by management tools.

3.2.3 Access control and transactions

XenStore already has an access control model that al-
lows per-domain access control over keys and their child
nodes. This is a good fit for Conduit except during initial
setup where the client domain must write directly into
the listen directory published by the server. Although
the directory is open for writing from any other VM, new
keys must be restricted to only be readable by the direc-
tory owner and the creator of the key. This is analogous
to setting the setgid and sticky bits in POSIX filesys-
tems. With this extension added to XenStore, domains
cannot observe or interfere with the creation of conduits
that do not concern them, and only XenStore itself is re-
quired for rendezvous.

As XenStore is already a filesystem-like interface, this
protocol is similar to the Plan 9 network model [33], with
a few notable differences: (i) although connection es-
tablishment goes through XenStore, established channels
are zero-copy shared memory endpoints that no longer
require any interaction with XenStore; and (ii) XenStore

7A watch is the XenStore term for registering for notification call-
backs whenever any key or value in a watched subtree is modified.

| domain..................iie. Per-host domain metadata
3
vchan
7
| _comni......... Shared memory endpoints
ring-ref = "8"
event-channel = "4"
domid = "3"
Ll conduit......coiiiiiiiiiiiiiiii Per-host VM metadata
| http_server = "3".............. Single named endpoint
listen.........covvvnnn. Incoming connection queue
| _comn2 = "2v............. Pointer into £lows list
established.........covviiinnt, Active connections
Lhttp,client = "7"
connl = "1"
, http_client = "7"
established
http_server = "7"
connl = "1"
L floWs ...oiiiiiiiiiiiii Per-flow metadata
1 = "(established (metadata...))"
2 = "(connecting (metadata...))"

Figure 5: The XenStore tree layout for coordinating the
establishment of inter-VM shared memory channels.

provides a transactional interface to let batch updates
be committed atomically [12]. This eliminates poten-
tial inconsistencies arising from having state metadata
spread over several keys (such as /conduit/flows/1
and /local/domain/3/vchan in Figure 5).

The Conduit interface enables us to write uniker-
nel code without having to know in advance where the
remote peer is running. In the example above, the
http_server might be a Xen unikernel or a normal
Linux guest VM listening from a userspace Unix binary.
Unikernels also need not trust each other as they act as
a distributed system on a single host [3], communicating
via a bytestream rather than directly sharing pointers into
each other’s address spaces.®

3.3 The Jitsu Directory Service

Our goal is to ensure that unikernels are launched and
halted in real-time in response to network requests. This
role is similar to that performed by inetd on Unix, and is
fulfilled by the Jitsu Directory Service that maps external
DNS [31] requests onto unikernel instances. When the
unikernel for a service has launched, it can serve as many
requests as a single VM can handle — we typically launch
a VM per registered service, not one per TCP connection.

A Jitsu VM is launched at boot time with access to the
external network and handles name resolution, invoked
either by a local unikernel over a conduit, or through
DNS protocol handlers listening on the network bridge.
In the former case, the Jitsu resolver is discovered via a
well-known jitsud Conduit node, while in the latter it

8The J-Kernel [40] and FlowCaml [37] provide a guide as to how
pointer sharing could be safely built into future revisions of MirageOS.
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tive; ® TCP requests are buffered into XenStore until
bridging is setup; and @ the active unikernel replays the
buffered connections before @ directly serving traffic.

is discovered through the usual process in DNS (e.g., re-
solving ns.domain.name). If a name resolution request
is received that maps onto a running unikernel, Jitsu just
returns an appropriate IP address or vchan endpoint.

If the name requested does not correspond to a running
unikernel, Jitsu launches the desired unikernel while si-
multaneously returning an appropriate endpoint (again,
IP address or vchan) against which the client can start
the higher level protocol interaction (e.g., a TCP three-
way handshake). However, while the VM is starting it
will not be ready to respond to network traffic as the net-
work bridging subsystem connects asynchronously. This
opens a race condition where the DNS response has been
sent to the client, but the unikernel is not yet listen-
ing for the TCP SYN packet that will follow (likely very
quickly as the client is typically local). The SYN packet is
dropped, and the client retransmits after 1s — well outside
our low-latency requirement.

3.3.1 Connection proxying via Synjitsu

We could remove this race condition by delaying the ini-
tial DNS response until the unikernel network is fully
established. Instead we take advantage of the high-level
libOS network stack available to us to provide a lower
latency solution: we explicitly handle incoming connec-
tions in a proxy unikernel, and hand off the state to the
full unikernel once it has finished plugging its network
device in. This helps Jitsu to mask any latency associ-
ated with booting the target unikernel, as well as making
it more robust in the face of TCP connections arriving
unexpectedly outside of DNS resolution (e.g., because a
client did not respect the TTL in a DNS response and
attempted to connect to the service directly).

Figure 6 shows the packet flow with the synjitsu
unikernel performing this connection proxying. When a
DNS request comes in, the unikernel boot process starts,

conduit
Lhttp,server = "3"

tepvd.. ..o, Connection state from proxy
1o Received SYN but not responded
i: state = "SYN"
tcb = "(src ...)(port ...)"
2. i Established and buffering packets
state = "SYN_ACK"
tcb = "((port ...)(isn ...))"
packets = "((data ...)(...)0)"

Figure 7: The synjitsu proxy registers embryonic TCP
connections to mask unikernel startup time.

returning a DNS response as soon as the VM resource
allocation is complete (resource exhaustion can thus be
returned in the DNS response as a SERVFAIL to indicate
the client should go elsewhere). As unikernel boot (20ms
on x86, 350ms on ARM) takes longer than the RTT of a
packet on a local network (5ms), it is likely that a TCP
SYN would follow and be lost before the unikernel has
booted, triggering a slow TCP client retransmission.

synjitsu, built using the same OCaml TCP stack as
the booting unikernel, removes this race entirely by lis-
tening on the external network bridge and an internal
conduit for TCP packets destined for a unikernel that is
still booting. When it receives a SYN, it writes entries into
a special area in the conduit XenStore tree for the booting
unikernel. Figure 7 shows two examples; (i) where a SYN
has been received but not responded to, and (ii) where a
SYN_ACK has been sent by the proxy and the TCP data
stream buffered up. When the unikernel finishes boot-
ing and has an active network interface, it signals to
synjitsu thatitis ready for traffic via a two-phase com-
mit in XenStore, ensuring only one of them ever handles
any given packet. The unikernel then reconstructs the
TCP state descriptors based on the recorded state, and
handles subsequent traffic on the bridge directly, with no
further interference from synjitsu.

Splitting state across a dormant kernel and a proxy
is not a new technique [1], but the high-level nature of
the OCaml TCP/IP stack makes implementation a sim-
ple matter of (de)serialising values across XenStore. As
only one of synjitsu or the unikernel ever replies to
a packet, we avoid the complexity and latency increase
from building a distributed network stack [16] within the
host. It is also relatively easy to extend to higher-level
protocols such as SSL/TLS [30], e.g., to perform the 7-
way initial key exchange in one VM before it hands off
the connection to another unikernel that has no access to
the private keys for the remainder of its lifetime.

3.3.2 Service Configuration

Consider a client wishing to access one of a set of low-
traffic websites, such as a set of personal homepages and
photographs. Hosting each of these relatively low traffic
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Figure 8: ICMP RTT showing the datapath latency.

sites in the cloud would be a waste of money, while a
typical small home router or similar is unlikely to have
sufficient resources to keep them all simultaneously live
yet isolated. An ARM device using the Jitsu toolstack
is registered in the public DNS as ns.family.name,
the nameserver for the family.name zone. When a DNS
request comes in for alice.family.name, Jitsu re-
turns the local external IP address configured for Alice’s
unikernel and performs connection proxying while Al-
ice’s unikernel launches. Conventional failover models
are supported — multiple ARM boards could be registered
in the DNS and return SERVFAIL responses if they do not
have resources to serve the traffic.

In our current implementation, the Jitsu services
are statically configured via OCaml code to map their
unikernel with an IP address, protocol and port. We ex-
pose publication of running services via the DNS, as ei-
ther an authoritative server or recursive resolver. More
dynamic configurations, where launched unikernels may
themselves alter the name—address—unikernel mappings
and can publish using, e.g., Dynamic DNS are possible
to build over this lower-level interface.

4 Evaluation

Our tests are conducted on two inexpensive off-the-shelf
ARM boards: a Cubieboard2 (dual-core Allwinner ARM
A20, 1GB RAM, 100Mb Ethernet) and a Cubietruck
(same CPU, 2GB RAM, 1Gb Ethernet) running Xen 4.4
and an Ubuntu 14.04 dom0.° Our evaluation aims to an-
swer the following questions:

e Does the port to the ARM architecture have reason-

able performance, latency and energy efficiency?

e Is launching services in isolated Xen VMs a viable

alternative to other approaches, e.g., containers?

o Is there any benefit in the extra isolation afforded by

a type-1 hypervisor?

Throughput. We have previously carried out a fuller
analysis of unikernel throughput with various proto-
cols [25], so here we are simply verifying that there is
no regression on ARM. As the ARM CPUs are consid-

°SD card images are found at http://blobs.openmirage.org

Power Usage (W, 5V) | Board Model

Idle Spinning | and active components

1.43 2.61 | Cubieboard2

2.10 2.58 | Cubieboard2 +Ethernet
3.36 4.49 | Cubieboard2 +SSD

4.06 4.51 | Cubieboard2 +SSD+Ethernet
1.72 2.86 | Cubietruck

2.58 3.76 | Cubietruck +Ethernet

3.92 5.51 | Cubietruck +SSD

491 6.26 | Cubietruck +SSD+Ethernet
6.84 27.02 | Intel Haswell NUC [35]

Table 1: Power usage of the ARM boards when running
Xen, with reported Intel results for comparison.

erably underpowered compared to x86 CPUs, we built
a HTTP persistent queue service in MirageOS to ensure
that network throughput remains acceptable. The work-
ing set of this service is larger than available RAM, and
so it is served from disk. After some optimisations,”
it served HTTP traffic at a rate of 57.92Mb/s, at which
point it becomes disk bound. An iperf test with check-
sum offloading enabled revealed the same performance
for Linux and MirageOS VMs.

Datapath latency. The imposition of Xen and type-
safety risks introducing additional latency in the network
datapath, and so Jitsu minimises excess bridging (§3.2)
and proxying on the data plane (§3.3.1). Figure 8 plots
ICMP latency when pinging the client’s own external
interface (i.e., the latency of the client stack), the Xen
dom0, a Linux Xen/ARM VM and a type-safe MirageOS
unikernel VM. The latency difference between a Linux
and MirageOS VM is never more than 0.4ms, although
MirageOS does have slightly more variation.

Service Startup Latency. Figure 9a shows the end-
to-end latency of HTTP requests from an external net-
work client. First we measure the time for a “cold start”
when no unikernel was running and so one had to be
started by Jitsu. Early SYN packets are lost and the client
(running Linux) retransmits them, leading to response
times of over a second. We then show the effects of run-
ning synjitsu to proxy connection setup by intercept-
ing SYN packets and handing them over to the unikernel,
and also the effect of the toolstack optimisations to im-
prove VM creation time (§3.1). Finally the latency for
an already-running service is imperceptible as expected.
We do not plot the start time of a full Ubuntu Linux VM,
since it took over 5s with the default distribution image.

We also tested Docker 1.2.0 Linux container startup
triggered from inetd to compare its latency with VMs.
A container’s start latency on a Cubieboard2 is domi-
nated by disk I/O (Figure 9b). When running directly
from a 10MB/s SD card, Docker takes at least 1.1s (na-

10For full details on the profiling, see http://bit.1y/Y3kuun
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Figure 9: HTTP request response times for Jitsu and Docker.

tive Linux) or 1.2s (under Xen) to spawn a new container
in response to a request. To understand the effect of
slow storage on Docker’s start time, we also mounted
Docker’s volumes on an ext4 loopback volume inside
of a tmpfs.!! In this configuration, container start times
remained at 600ms or higher, considerably higher than
Jitsu unikernels. This configuration also generated buffer
IO, ext4 and VFS errors in a significant fraction of tests
resulting in early process termination.

Power Usage. A key facet of our contribution is that
by using ARM-based devices, power consumption is sig-
nificantly reduced, to the extent that they become ac-
ceptable to run 24/7 in a domestic environment. Table 1
shows the power usage of various configurations of our
evaluation boards, measured using a custom power mea-
surement unit we built that intercepts the USB power link
to the boards. We measured each board when idle (just
running Xen and a dom0), spinning in a busy loop and
with Ethernet and an external solid-state drive. The SSD
almost doubled power usage, but the small binary size of
unikernels (around 1MB) means that in many cases we
do not require a lot of space beyond that provided by the
internal MMC flash. We failed to find an equivalent Intel
board in the same price/performance/functionality range
as the Cubieboard, and so we report power usage on the
Intel Haswell NUC [35]. We also powered a Cubieboard
with a USB battery unit that ran for 9 hours while logging
the date every minute.

Security. To evaluate the end-to-end security prop-
erties of the Jitsu design vs a more conventional Linux
embedded system, we looked for critical security bugs
eliminated by use of (7) isolation via a type-1 hypervi-
sor and (ii)) a memory-safe language to build minimal
VM appliances. Table 2 compares a recent representative
selection of CVE vulnerabilities against embedded net-
work devices (top), the Linux kernel (middle), and Xen

"'This rather complex configuration was required as the device-
mapper in Linux 3.16 does not work directly over tmpfs mounts

on ARM (bottom). With Jitsu, the top group would be
entirely eliminated and the middle group largely elimi-
nated, while the bottom group would remain.

The commonest vulnerabilities still arise from proto-
col parsers written in unsafe languages, resulting in re-
mote code execution vulnerabilities across the spectrum
of almost every common protocol found on edge routers.
Jitsu ensures that all traffic parsed on the external net-
work be done so in memory-safe OCaml, mitigating this
class of overflows. Another recent non-buffer-overflow
vulnerability of note is ShellShock, a recent parsing error
in the bash shell (CVE-2014-6271) that permits remote
code execution by manipulating environment variables.
The unikernel design does not include a shell, and our
latency optimisations in Jitsu (§3.1) also eliminate shell
scripts from the security-critical management toolstack.

The middle stream of vulnerabilities that affect the
Linux kernel motivate the use of a type-1 hypervisor like
Xen rather than Linux containers. Only a few bugs that
affect physical device drivers can harm Xen, and even
those can be mitigated in future revisions of Jitsu via
driver domains [7]. The bottom stream of vulnerabili-
ties show the class of errors that have affected Xen/ARM
since its first release, and none of these are exploitable
remotely. Many of these are a result of the relatively im-
mature Xen/ARM port which has seen just one public re-
lease to date. The simplicity of the Xen/ARM codebase
compared to x86 may lend itself to formal specification
and verification in the future [21].

More broadly, by enabling strong isolation inside em-
bedded devices, new distributed system designs leverag-
ing multi-tenancy and low latency are possible. Systems
designed to take advantage of Jitsu’s isolation properties
protect themselves from many passive and active attacks
on wide-area network links by transmitting less data over
those links and using them only for hardened, general-
purpose software distribution.
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CVE Description App Remote Execute DoS Exposure Jitsu
CVE-2011-3992 | SSH overflow v v v v v
CVE-2012-1800 | DCP overflow v v v v v

g CVE-2013-0659 | UDP overflow v v v v v

% CVE-2013-1605 | HTTP overflow v v v v v

7 | CVE-2013-2338 | SSO overflow v v v v v

T | CVE-2013-4977 | RTSP overflow v v v v v

§ CVE-2013-4980 | RTSP overflow v v v v v

2 | CVE-2013-6343 | HTTP overflow v v v v v

S CVE-2014-0355 | HTTP overflow v v 4 v 4
CVE-2014-3936 | HNAP overflow v v v v v
CVE-2014-0077 | KVM overflow v v v
CVE-2014-0100 | IP fragmentation v v
CVE-2014-0155 | KVM IOAPIC v
CVE-2014-0206 | AIO kernel mem v

Z | CVE-2014-1690 | IRC netfilter v v v

E CVE-2014-2309 | IPv6 routing mem v v
CVE-2014-2672 | Atheros WLAN DoS v v v
CVE-2014-2706 | MAC 802.11 race v v v
CVE-2014-5206 | MNT_NS bypass 4
CVE-2014-5207 | MNT_NS remount v v
CVE-2014-2580 | Net disable mutex v v
CVE-2014-2915 | Processor control v v
CVE-2014-2986 | NULL deref in VGIC v v
CVE-2014-3125 | Timer context switch v v
CVE-2014-3714 | Kernel load overflow v v v

£ CVE-2014-3715 | DTB append v v v

» | CVE-2014-3716 | DTB alignment v v
CVE-2014-3717 | Kernel load overflow v v v
CVE-2014-3969 | Vmem privs v v v v
CVE-2014-4021 | Dirty recovery v v
CVE-2014-4022 | Dirty init v v
CVE-2014-5147 | 32-bit traps v v

Table 2: A representative selection of vulnerabilities in three key system components. App indicates an application
vulnerability. Remote indicates remote exploitation potential. Execute indicates arbitrary code execution. DoS
indicates denial of service potential. Exposure indicates data exfiltration potential. Jitsu indicates vulnerabilities that
could affect a Jitsu system (Xen on ARM with a Linux Dom0 for network drivers).

5 Discussion

Jitsu solves the problems of supporting low-latency de-
ployment of code requiring strong isolation to resource-
constrained embedded platforms. Although we focus on
use of MirageOS unikernels in that specific problem do-
main, the techniques embodied within Jitsu have a num-
ber of attendant benefits which we discuss here.
General Jitsu. Although we have focused in this pa-
per on using Jitsu with unikernels, we have not made any
changes to the Xen guest ABI. As a result Jitsu works
as described with legacy VMs (e.g., Linux, FreeBSD)
on both ARM and in traditional x86 datacenter environ-
ments. This contrasts with systems such as ClickOS [28]
which modifies the ABI to achieve very dense, highly
parallel deployments of 10,000s of VMs in an x86_64
datacenter. We anticipate that both of these approaches
will converge in upstream Xen in the future through a re-
vision of the XenStore protocol. The one thing that Jitsu
cannot provide with legacy VMs is guaranteed latency,
due to the inherent boot overheads of such VMs. Tests
on x86 (Figure 4) point to the intriguing possibility of

very fast 20-30ms response times in datacenter environ-
ments as well.

Jitsu can easily be extended to support other VM life-
cycle operations such as live relocation or VM fork-
ing [41, 23] in response to network requests. However,
Jitsu is particularly well-suited to Xen/ARM through its
use of explicit state transfer in synjitsu rather than de-
pending on these hypervisor-level features. Forking or
migrating entire VMSs is more resource intensive than
protocol state transfer, and is not yet fully supported by
Xen/ARM 4.5. Simple TCP connection handover as in
synjitsu is also easily extensible, and we are currently
applying it to a full seven packet SSL/TLS handshake to
support encrypted connections [30].

Finally, as noted previously, use of the Conduit stack
for coordinating communication between VMs is not
limited to unikernels. The basic principle of providing
a name-based resolver to shared memory endpoints that
does not depend on either a network (e.g., TCP/IP) or a
process model (e.g., SysV shmem) can be used to inter-
face conventional VM software stacks with unikernels.
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Modularity. Jitsu both exploits and enables extensive
use of modularity, which is very useful in building re-
liable distributed systems. The first form of modularity
is found the way MirageOS is implemented — a set of
lightweight OCaml libraries fulfilling module type sig-
natures. Type-checking these signatures makes it easy
to ensure that, when picking and choosing the features
to be included in a particular unikernel, the basic sys-
tem requirements are satisfied. As a result, developing
features such as Conduit (§3.2) was far more straightfor-
ward than would have been for a traditional OS: during
development it never crashed the Mini-OS kernel, and al-
most every error was caught and turned into an explicit
condition or a high-level OCaml exception. Similarly,
the synjitsu proxy uses the same OCaml TCP/IP li-
brary as found in the unikernels, simply with very differ-
ent runtime policies.

The new Conduit capability also directly addresses
one of the key criticisms of the MirageOS approach:
lack of multilingual support through the dependence on
OCaml. With Jitsu — specifically the combination of Syn-
jitsu and Conduit’s low latency high throughput inter-
VM communication — it is entirely feasible to launch a
TCP/IP MirageOS unikernel that will proxy incoming
traffic to another unikernel (e.g., in Ruby or PHP) that
need only implement the Conduit protocol and so need
not expose, or even include, a TCP/IP implementation.

Use cases. We envisage Jitsu being useful in a wide
range of situations. For example, where legacy software
that may be difficult to upgrade (e.g., embedded device
firmware) must be run, Jitsu can be used to provide a
very narrow, application specific firewall that can filter
and groom incoming traffic from the public Internet lim-
iting the exposure of the legacy software.

Another useful scenario would be to contain applica-
tion code that would normally run as a cloud service so
that it can be run on a platform, such as the home router,
inside the home. For example, consider the latency-
sensitive applications noted earlier, Google Glass and
Apple’s Siri. By implementing the cloud services that
support these applications as unikernels, they could be
downloaded to run locally on the home router, providing
significantly lower latency for common operations while
still having the full power of the cloud at their disposal.

Yet other application scenarios include those where
the data to be processed by the cloud-hosted service
might be considered particularly personal, such as a fam-
ily’s photos. Photos might be hosted encrypted on the
home router, and then unikernel versions of services such
as Apple’s iPhoto and Google’s Picasa might be instan-
tiated on-demand on the home router and given access
to decryption keys held locally. Access to photos is then
more directly controlled within the home without giving
up all the personal data to the cloud providers [14].

Experimental artefacts. Finally, we wish to encour-
age use of Jitsu by other groups to explore the possibili-
ties inherent in the platform. To that end we have made
available all the code used in this paper:

e MirageOS and Jitsu are hosted on GitHub
(github.com/mirage) with documentation on our
self-hosted website at openmirage.org.

e The Xen/ARM and domO Linux distributions
can be built via scripts at github.com/mirage/
xen-arm-builder; and prebuilt SD Card images
are also available for download there.

e Enquiries can be directed to our Xen.org mailing list
linked from openmirage.org/about/.

6 Conclusions

We have presented Jitsu, a low latency toolstack for
Xen/ARM that uses memory-safe unikernels to serve ap-
plications with significantly greater levels of isolation
and security than currently achieved on modern embed-
ded devices. Jitsu includes optimisations of the toolstack
of Xen, a full-featured widely-deployed modern hyper-
visor that now supports ARM devices, maintaining full
ABI compatibility for existing deployments. Jitsu adds
the convenience of an inetd-like service that leverages
our reduced boot latencies of around 350ms on ARM
and 30ms on x86 to summon VMs in response to net-
work traffic. Our Synjitsu service masks even that latency
by minimally proxying connection setup requests to en-
able instantaneous response for clients while the uniker-
nel boots.

The full source code is available under a BSD license
at openmirage.org, along with documentation and in-
stallation instructions for use with Cubieboards. We wel-
come any patches, success stories and reports of improb-
able stunts conducted using Jitsu.
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