=m Microsoft

Microsoft Excel
VBA and Macros

(Ofﬂce 2021 and Microsoft 365)

Bill Jelen and Tracy Syrstad

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

ll
&G 8 80 B B

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137521524
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137521524
https://plusone.google.com/share?url=http://www.informit.com/title/9780137521524
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137521524
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137521524/Free-Sample-Chapter

o Microsoft

Microsoft Excel VBA and
Macros (Office 2021 and
Microsoft 365)

Bill Jelen
Tracy Syrstad

Microsoft Excel VBA and Macros (Office 2021 and Microsoft 365)

Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2022 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. For information regarding permissions, request forms,
and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions. Nor is any liabil-
ity assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-13-752152-4
ISBN-10: 0-13-752152-9

Library of Congress Control Number: 2022930486
ScoutAutomatedPrintCode

Trademarks

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks”
webpage are trademarks of the Microsoft group of companies. All other marks are
property of their respective owners. Figures 18-1, and 18-2 are © 2022 Spotify AB.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author, the publisher, and Microsoft Corporation shall have neither liability nor respon-
sibility to any person or entity with respect to any loss or damages arising from the
information contained in this book or from the use of the programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

EDITOR-IN-CHIEF

Brett Bartow

EXECUTIVE EDITOR

Loretta Yates

SPONSORING EDITOR

Charvi Arora
DEVELOPMENT EDITOR
Songlin Qiu

MANAGING EDITOR

Sandra Schroeder

SENIOR PROJECT EDITOR

Tracey Croom

COPY EDITOR

Sarah Kearns
INDEXER
Timothy Wright

PROOFREADER
Donna E. Mulder

TECHNICAL EDITOR
Bob Umlas

COVER DESIGNER

Twist Creative, Seattle

COMPOSITOR

codeMantra

http://www.pearson.com/permissions
http://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Pearson’s Commitment to
Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners.
We embrace the many dimensions of diversity, including but not limited to race, ethnicity,
gender, socioeconomic status, ability, age, sexual orientation, and religious or political
beliefs.

Education is a powerful force for equity and change in our world. It has the potential to
deliver opportunities that improve lives and enable economic mobility. As we work with
authors to create content for every product and service, we acknowledge our responsibility
to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve
their potential through learning. As the world’s leading learning company, we have a duty
to help drive change and live up to our purpose to help more people create a better life for
themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:
m Everyone has an equitable and lifelong opportunity to succeed through learning.

m Our educational products and services are inclusive and represent the rich diversity
of learners.

m Oureducational content accurately reflects the histories and experiences of the
learners we serve.

m Our educational content prompts deeper discussions with learners and motivates
them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.

m Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html

This page intentionally left blank

Dedication

For Skipper Geanangel, Patricia Garick, Jim Lantz, Robert Mucci,
Bill & Jean Esposito. Thanks for launching a writing career.

—Bill Jelen

To John. Giraffe.
—Tracy Syrstad

vi

Contents at a Glance

CHAPTER1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER7
CHAPTER 8
CHAPTER 9
CHAPTER 10
CHAPTER 11
CHAPTER 12
CHAPTER 13
CHAPTER 14
CHAPTER 15
CHAPTER 16
CHAPTER 17
CHAPTER 18
CHAPTER 19
CHAPTER 20
CHAPTER 21

CHAPTER 22
CHAPTER 23
CHAPTER 24
CHAPTER 25
CHAPTER 26
CHAPTER 27
CHAPTER 28

Acknowledgments

About the Authors

Introduction

Unleashing the power of Excel with VBA
This sounds like BASIC, so why doesn't it look familiar?
Referring to ranges

Looping and flow control

R1C1-style formulas

Creating and manipulating names in VBA
Event programming

Arrays

Creating classes and collections
Userforms: An introduction

Data mining with Advanced Filter

Using VBA to create pivot tables

Excel power

Sample user-defined functions

Creating charts

Data visualizations and conditional formatting
Dashboarding with sparklines in Excel
Reading from the web using M and VBA
Text file processing

Automating Word

Using Access as a back end to enhance multiuser
access to data

Advanced userform techniques

The Windows Application Programming Interface (API)
Handling errors

Customizing the ribbon to run macros

Creating Excel add-ins

An introduction to creating Office add-ins

What's new in Excel 365 and what’s changed

Index

XXV
XXVii

XXiX

27
53
69
87
97
m
125
133
153
175
21
257
285
313
339
363
385
413
427

447
465
491
501
517
539
549
571
579

Contents

Chapter 1

Acknowledgments XXV
About the AULNOIS XXVii
INtroduction XXX
Unleashing the power of Excel with VBA 1
Barriersto entryo 1
The macro recorder doesntwork!. ...l 2
No one person on the Excel team is focused on the
MACIO FECOTAET. . .ot 2
Visual Basic is not like BASIC.ot 2
Good news: Climbing the learning curveiseasy 3
Great news: Excel with VBA is worth the effort.................... 3
Knowing your tools: The Developertab..........................o.. 3
Understanding which file types allow macros 4
MaCrO SECUNILY ..ottt 6
Adding atrusted location...............coii 6
Using macro settings to enable macros in workbooks outside
trusted locations 7
Using Disable All Macros With Notification....................... 8
Overview of recording, storing, and runningamacro................... 8
Filling out the Record Macro dialogbox 9
RUNNING @MACIO ... e 10
Creating a macro buttonontheribbon......................... 10
Creating a macro button on the Quick Access Toolbar........... 1"
Assigning a macro to a form control, text box, or shape.......... 12
Understandingthe VB Editor............coiiiiiii i, 13
VB Editor settings.ooii 14
The Project EXplorer ... 14
The Properties Window 15

vii

Understanding shortcomings of the macrorecorder 15

Recordingthemacro ... i 17
Examining code in the Programming window 17
Running the macro on another day produces
undesired results 19
Possible solution: Use relative references when recording. 20
Never use AutoSum or Quick Analysis while
recording@amacro.o.iuiiuiuiiiiiiiii i, 24
Four tips for using the macrorecorder.......................... 25
NEXE STOPS .ttt 26

Chapter 2 This sounds like BASIC, so why doesn’t it look

familiar? 27
Understanding the parts of VBA “speech”.........., 28
VBAisnotreallyhard...... ..o i 32

VBA Help files: Using F1to find anything 32
Using Help topics.ouin i 32
Examining recorded macro code: Using the VB Editorand Help 33
Optional parameters.ot 34
Defined constantst 35
Properties can return objects. 38
Using debugging tools to figure out recorded code 38
Stepping throughcode i 38
More debugging options: Breakpoints..................... 40
Backing up or moving forwardincode.......................... 40
Not stepping through each lineofcode..................... ... 141
Querying anything while stepping through code................ Y|
Using a watch to set a breakpoint....................ooiL 43
Using awatchonanobject.......... 44
Object Browser: The ultimate reference.....................oiiit 45
Seven tips for cleaningup recordedcode ...l 45
Tip1: Don'tselectanything...............ooiiii i, 46

Tip 2: Use Ce11s(2,5) because it's more convenient
than Range (B2). ottt e 47
Tip 3: Use more reliable ways to find the lastrow 47
Tip 4: Use variables to avoid hard-coding rows and formulas. 49

viii Contents

Tip 5: Use R1C1T formulas that make your life easier............... 49

Tip 6: Copy and paste in asingle statement 49

Tip 7:UseWith. ..End With to perform multiple actions.......... 50

NeEXt STEPS ..ottt 52
Chapter 3 Referring to ranges 53
TheRange Object o 54
Syntax for specifyingarange. ... 54
Referencing named ranges.ooviiiiiiiiaan. 55
Shortcut for referencingranges ...l 55
Referencing rangesin othersheets i, 55
Referencing a range relative to anotherrange. 56
Using the Ce11s property toselectarange..................oooii... 57
Using the Offset propertytorefertoarange......................... 58
Using the Resize property to change the sizeofarange............... 60
Using the CoTumns and Rows properties to specifyarange.............. 61
Using the Union method to join multipleranges....................... 62

Using the Intersect method to create a new range from

OVErlapPPING rANGES . . .ottt 62
Using the IsEmpty function to check whether a cell isempty........... 62
Using the CurrentRegion property to selectadatarange.............. 63
Using the Areas collection to return a noncontiguousrange............ 66
Referencing tables. 67
NeXt STEPS . ..ot 68

Chapter 4 Looping and flow control 69
For. . .Next lOOPS. ... 69

Using variables in the For statement............................ 72

Variations on the For.Next loop.............ooiiiiiiia.. 72

Exiting a loop early after a conditionismet 73

Nesting one loop inside anotherloop................... 74

DO OO, et e 75

Using the While or Unti1 clauseinDoloops 77

Contents ix

The VBA 100P: FOr EaCh........oviiiii i 79

Objectvariables...........oo 79
Flow control: Using If...Then...Else and Select Case............. 81
Basic flow control: If...Then...Else..........covviueennn... 81
Using Select Case...End Select for multiple conditions 83
NeXt StePS ... 86
Chapter 5 R1C1-style formulas 87
Toggling to R1C1-style referencest 88
Witnessing the miracle of Excel formulas. 89
Entering a formula once and copying 1,000 times 89
The secret: It'snotthatamazing...................oooiiiin.t. 920
Understanding the R1C1 referencestyle.....................ooiiia.. 91
Using R1C1 with relative references ...t 91
Using R1C1 with absolute references.....................oo.. 92
Using R1C1 with mixed references 93
Referring to entire columns or rows with R1C1style.............. 93
Replacing many Al formulas with a single R1C1 formula. 94
Remembering column numbers associated with
columniletters. 95
NEXt STEPS .ottt 96
Chapter 6 Creating and manipulating names in VBA 97
Global versus localnames. 97
AddiNg NAMES. . ..o 98
Deleting names 100
Adding COMMENTES. . ..o 100
TYPES Of NAMES. .o 101
Formulas. 101
SIINGS et 101
NUMbDETS. . 103
Tables. .o 103
USiNg arrays in Names.o.ouitetin e 104
Reserved names. 104
Hiding nameso 106

Contents

Checking for the existenceofaname................. ..., 106

NeXt STEPS . ..ttt 109

Chapter 7 Event programming m
Levelsof events m

USING BVENTS ..ottt e 112

Event parameters. ... 112

Enablingevents 113

Workbook events.o 113
Workbook-level sheetevents. ..., 115

Worksheet eventso 116

Chartevents 118

Embedded charts...... ... 118

Embedded chart and chart sheetevents....................... 119

Application-level events 120

Next steps ... 124

Chapter 8 Arrays 125
Declaringan arayo 125

Declaring a multidimensional array. ...l 126

Filling an array.o 127

Retrieving datafromanarray ..o, 128

Using arrays to speed up code.o.iuiiiiiiii it 129

USiNg dyNamiC arrayso.ouenen et 130

Passing an arrayoii 131

NeXt STEPS .ot 132

Chapter 9 Creating classes and collections 133
Insertingaclassmodule 133

Trapping application and embedded chartevents.................... 134
Applicationevents.o 134

Embedded chartevents................ i 136

Creating a customobject 137

Using acustomobject ... 139

Contents

xii

Using collectionsot
Creatingacollection...........oo i
Creating a collection in a standard module.

Creating a collectioninaclassmodule.........................
Using dictionariesouii i
Using user-defined types to create custom properties................

Nextstepso

Chapter 10 Userforms: An introduction

INPUL DOXES ...
MeESSage bOXES
Creatinga userform oo
Calling and hidingauserform............. ... it

Programming userforms. i
Userform events.oiiuiiii i
Programming controls. ...
Using basic formcontrols i
Using labels, text boxes, and command buttons................
Deciding whether to use list boxes or combo boxes in forms
Using the MultiSelect property ofalistbox...................
Adding option buttonstoa userform................... ...
Adding graphicstoauserformol
Using a spin buttononauserform.............................
Using the Mu1tiPage control to combineforms.................
Verifying fieldentry ...
lllegal Window cloSiNgo vt
Gettingafilename

Next steps ... o

Chapter 11 Data mining with Advanced Filter

Contents

Replacing a loop with AutoFilter.............
Using AutoFilter techniques.................ooiiiiii.t.

Selecting visiblecellsonly........... ... oo i

Advanced Filter—easier in VBAthaninExcel......................... 183

Using the Excel interface to build an advanced filter............ 184
Using Advanced Filter to extract a unique list of values 184
Extracting a unique list of values with the user interface 185
Extracting a unique list of values with VBAcode................ 186
Getting unique combinations of two or more fields............. 190
Using Advanced Filter with criteriarangesco ... 191
Joining multiple criteria withalogical OR...................... 192
Joining two criteriawith alogical AND......................... 193
Other slightly complex criteriaranges 193
The most complex criteria: Replacing the list of values
with a condition created as the result of aformula............ 193
Setting up a condition using computed criteria................. 194
Using Filter In Place in Advanced Filter.......................ooo. 201
Catching no records when using afilterinplace................ 201
Showing all records after running a filterinplace.............. 202
The real workhorse: x1Fi1terCopy with all records rather than
unique records onlyo.oe i 202
Copyingallcolumns 202
Copying a subset of columns and reordering.................. 203
Excel in practice: Turning off a few drop-down menus
inthe AutoFilter...... i 209
NEXE STOPS ..ottt e e 210
Chapter 12 Using VBA to create pivot tables 211
Understanding how pivot tables evolved over various
EXCElVEISIONS ..o 211
Building a pivot table in Excel VBA. 212
Defining the pivotcache.............o il 213
Creating and configuring the pivottable....................... 213
Adding fieldstothedataarea..........................ooo.l. 214
Learning why you cannot move or change part of a
PIVOL FEPOIt . . 217

Determining the size of a finished pivot table to convert the
pivottabletovalues.......... 217

Contents Xiii

Using advanced pivot table features..........l 220

Using multiple valuefieldst 220
Grouping daily dates to months, quarters, oryears............. 221
Changing the calculation to show percentages................ 223
Eliminating blank cells in the Valuesarea...................... 226
Controlling the sort order with AutoSort...................... 226
Replicating the report for every product...................... 226
Filteringadataset. 229
Manually filtering two or more items in a pivot field 229

Using the conceptual filters il 230
Using the searchfilter........... o it 234
Setting up slicers to filter a pivottable 237
Setting up a timeline to filter an Excel pivottable............... 241
Formatting the intersection of values in a pivottable................ 243
Using the Data Model inExcel.......... ..., 244
Adding both tables to the DataModel........................ 244
Creating a relationship between the two tables 245
Defining the pivot cache and building the pivot table.......... 245
Adding model fields to the pivottable........................ 246
Adding numeric fields to the Valuesarea...................... 246
Puttingitalltogether...... i 247
Using other pivot table features.............. 249
Calculated datafields.............coooiiiii i 249
Calculated items. 250
Using ShowDetail tofilterarecordset........................ 250
Changing the layout from the Designtab..................... 250
Settings for the reportlayout............... ... il 251
Suppressing subtotals for multiple row fields.................. 252
Comparing VBA to TypeScript.o 253
NeXt StePS .o 256
Chapter 13 Excel power 257
File operationso 257
Listing filesinadirectory. ... 257
Importing and deletinga CSVfile.................... 260
Reading a text file into memory and parsing 260

xiv Contents

Combining and separating workbooks 261

Separating worksheets into workbooks................ oo 261
Combining workbooks. 262
Copying data to separate worksheets without using Filter 263
Exporting datatoan XMLfilel 264
Placingachartinacellnote.......... ... i, 265
Trackinguser changesuuiuiii i 267
Techniques for VBA Prosovvve ettt 268
Creating an Excel state classmodule.......................... 268
Drilling-down a pivottable.............. 270
Filtering an OLAP pivot table by alist of items.................. 271
Creating a customsortorder.............ccoiiiiiiiiiina... 273
Creating a cell progress indicator............................. 274
Using a protected password box 275
Selecting with SpecialCellso it 277
Resetting atable'sformat.......................oiiiial 278

Using VBA Extensibility to add code to new workbooks. 279
Converting a fixed-width reporttoadataset 280

NeXt STEPS ..ot 284
Chapter 14 Sample user-defined functions 285
Creating user-defined functions. it 285
Building a simple custom function............................ 286
Sharing UDFs. ...t 288
Useful custom Excel functions. ... 288
Checking whether a workbook isopen........................ 288
Checking whether a sheet in an open workbook exists. 289
Counting the number of workbooks in a directory............. 290
RetrievingtheuserID.t 291
Retrieving date and time of lastsave...................... ... 292
Retrieving permanentdateandtime.......................... 292
Validating anemailaddress ..., 293
Summing cells based on interiorcolor 295
Counting uniquevalues.o, 296
Finding the first nonzero-length cellinarange................ 296

Contents XV

xvi

Substituting multiple characters. ...l 297

Retrieving numbers from mixed text.......................... 298
Converting week numberintodate........................... 299
Sorting and concatenating.............o i 300
Sorting numeric and alpha characters 301
Searching for a string withintext 303
Returning the addresses of duplicate maximum values 304
Returning a hyperlinkaddress............. ... it 305
Returning the column letter of acelladdress.................. 305

Using Select..Caseonaworksheet........................... 306
Creating LAMBDA fuNCtions.oiti e 307
Building a simple LAMBDA function 307
Sharing LAMBDA functions.t 308
Useful LAMBDA functions.ot 309

NeXT STOPS .t 31
Chapter 15 Creating charts 313
Using .AddChart2tocreateachartoooiiiiiiin... 314
Understanding chartstyles..........o i 315
Formattingachart. ... 318
Referring to a specificchartl 318
Specifyingacharttitle.............. 319
Applyingachartcolor i 320
Filteringachart. 322

Using SetETement to emulate changes from the plusicon...... 322

Using the Format tab to micromanage formatting options. 327
Changing anobject'sfilll 328
Formatting line settings..............co i 331
Creatingacombochart............o i 331
Creatingmap chartsooiuii 335
Creatingwaterfallcharts............. .. i 336
Exportingachartasagraphic.............ooiii i 337
Considering backward compatibility................. 337
Nextstepso 338

Contents

Chapter 16 Data visualizations and conditional formatting 339

VBA methods and properties for data visualizations................. 340
Adding databarstoarange. ... 342
Adding colorscalestoarangecooiiiiiiiiii 346
Addingiconsetstoarange ... 347
Specifyinganiconset............co i 348
Specifying ranges foreachiconl 350

Using visualization tricks......... ... o oo i 350
Creating an icon set for a subsetofarange..................... 351

Using two colors of data barsinarange 352

Using other conditional formatting methods. 355
Formatting cells that are above or below average 355
Formatting cells in the top 10 or bottom 5 355
Formatting unique or duplicatecells.......................... 356
Formatting cells based on theirvalue......................... 358
Formatting cells that containtext............................. 358
Formatting cells that containdates 359
Formatting cells that contain blanks orerrors 359

Using a formula to determine which cells to format............ 359

Using the new NumberFormat property...............c.coeoen.. 361

NeXt STEPS ..o 362
Chapter 17 Dashboarding with sparklines in Excel 363
Creating sparklines 363
Scaling sparklines. 366
Formatting sparklines. ... 369
Using theme colors 369

Using RGB colors ..o 373
Formatting sparklineelements 374
Formatting win/losscharts. ...t 377
Creatingadashboard......... ... i 378
Observations about sparklines 379
Creating hundreds of individual sparklines in a dashboard. 379

NeXt STEPS . .ttt 383

Contents xvii

Chapter 18 Reading from the web using M and VBA 385

Get credentials for accessingan APl ...l 386
Build a query in Power Query using the M language to retrieve
data from the web for one specificvalue......................... 387
Refreshing the credentials after they expire 390
Building a custom function in Power Query 390
Using the new functioninyourcode.......................... 393
Duplicating an existing query to make a new query............ 393
Querying the list of songsonanalbum 395
Generalizing the queriesusing VBA. it 396
Simplifying the SearchArtist query to a single line of code 396
Simplifying the ArtistAlbums query...................... 396
Simplifying the AlbumTracks query.......... ...t 397
Grouping queries to clean up the querieslist.................. 397
Planning the arrangement of query results on your
dashboardo 398
Using global variables and loopsinM ... 402
Storing global variables in a Settings record in Power Query ... 402
Simple error handling using try with otherwise................ 403
Using Iflogicin M ... o 403
Looping using List.Generate. ... 404
Application.OnTime to periodically analyzedata.................... 406
Using Ready mode for scheduled procedures 407
Specifying a window of time foranupdate.................... 407
Canceling a previously scheduled macro...................... 408
Closing Excel cancels all pending scheduled macros........... 408
Scheduling a macro to run x minutes in the future............. 408
Scheduling averbal reminder 409
Scheduling a macro to run every two minutes. 410
NEXE STOPS .ottt 41
Chapter 19 Text file processing 413
Importing fromtextfiles......... ... i 413
Importing text files with fewer than 1,048,576 rows............. 413
Dealing with text files with more than 1,048,576 rows. 419

xviii Contents

Writing textfiles. ... 424

NeXt STEPS ...t 425
Chapter 20 Automating Word 427
Using early binding to reference a Word object 427
Using late binding to reference a Word object 430
Using the New keyword to reference the Word application 430
Using the CreateObject function to create a new instance
ofanobject 431
Using the GetObject function to reference an existing instance
Of WoOrd . . 431
Using constantvalues.o i 433
Using the Watches window to retrieve the real value
ofaconstant...... 433
Using the Object Browser to retrieve the real value
ofaconstant..... ... 433
Understanding Word'sobjects 435
The Document Object 435
Controlling form fieldsinWord. i 443
NeXt STEPS ..ot 445

Chapter 21 Using Access as a back end to enhance

multiuser access to data 447
ADO Versus DAO . ..o 448
The tools Of ADO . ..ot 450
Adding arecordtoadatabase ... 452
Retrieving records from a database..................ol 453
Updating an existingrecord.o, 455
Deleting records via ADO oniii i 458
Summarizing records via ADO. ... 458
Other utilities via ADOo i 459

Checking for the existence of tables 460
Checking for the existence ofafield 461
Addingatableonthefly......... 461
Adding afieldonthefly....... 462

Contents Xix

SQL Server examplesooeii 463

NeXT STOPS .ot 464
Chapter 22 Advanced userform techniques 465
Using the UserForm toolbar in the design of controls
ONUSEIfOIMS . ..o 465
More userform controls. ... 466
CheckBox CONrolS 466
TabStrip CONtrols 468
RefEditcontrols. 470
ToggleButton CONtrolSo 471
Using a scrollbar as a slider to selectvalues. 472
Controlsand collections ... 473
Modeless userforms 475
Using hyperlinksinuserforms.......... i, 476
Adding controlsatruntime. 477
Resizing the userformonthefly............. 479
Adding a controlonthefly........... 479
Sizingonthefly 479
Adding othercontrols i 480
Addinganimageonthefly ol 480
Puttingitalltogether...... i i 481
Adding helptoauserform............... o 483
Showing acceleratorkeys ... 483
Adding control tiptext..... ... 484
Creatingthetaborder........... i 484
Coloring the active control........... ..., 485
Creating transparentforms i 487
NEXE STEPS - .ottt 489

Chapter 23 The Windows Application Programming

Interface (API) 491
Understanding an APl declaration...............oii... 492
Using an APl declaration.............oiiiiii i 493
Making 32-bit- and 64-bit-compatible API declarations 493

XX Contents

APl functionexamples.o
Retrieving the computernameol
Checking whether an Excel file is open on a network
Retrieving display-resolution information.....................
Customizing the About dialogbox
Disabling the X for closinga userform
Creatingarunningtimer................ ...,

Playing soundst

NeXt STePS ..o

Chapter 24 Handling errors

Genericerrorhandlers.
Handling errors by choosing to ignorethem
Suppressing Excel warnings ...

Encountering errors on purpose.oeeieninaeninann..
Trainingyourclients i
Errors that won't show up in Debugmode

Errors while developing versus errors months later...................
Runtime error 9: Subscript outofrange........................
Runtime error 1004: Method range of object global failed

Theills of protectingcodec... i i
More problems with passwords
Errors caused by differentversions ool

NeXt STEPS .t

Chapter 25 Customizing the ribbon to run macros

Where to add code: The customui folderandfile.....................
Creatingatabandagroup. ...
Adding a controltoaribbon
Accessing thefile structure................co i

Understandingthe RELSfile.......... ... i,

501

501
503

505

506
506
508
509

509
510

510
51
512

513
515
515
516

517
518
519
520
525
525

Contents xXi

Renaming an Excel file and opening a workbook.................... 526

Using imagesonbuttonscoo i 527
Using Microsoft Office iconsonaribbon...................... 527
Adding custom icon images toaribbon............... ... 528

Troubleshooting error messagesc.coviiiiiiiiiiiinniin.. 529
The attribute "Attribute Name" on the element

“customui ribbon” is not defined in the DTD/schema 530
lllegal qualified name character 530
Element “customui Tag Name" is unexpected according

to content model of parent element “customui Tag Name". ... 531
Found a problem with some content 531
Wrong number of arguments or invalid property

ASSIGNMENT. L. oot 532
Invalid file format or file extension............................ 533
Nothing happens.o 533

Otherwaystorunamacro..........oooiuiuiiiinniiiiii e, 533
Using a keyboard shortcuttorunamacro..................... 533
Attaching a macro toa command button..................... 534
Attachingamacrotoashape ... 535
Attaching a macro to an ActiveX control 536
Running a macro from a hyperlink............................ 537

NeXt stePS ..o 537

Chapter 26 Creating Excel add-ins 539

Characteristics of standard add-ins.................. 539

Converting an Excel workbook toanadd-in......................... 540
Using Save As to convertafiletoanadd-in 541
Using the VB Editor to convertafiletoanadd-in.............. 542

Having a clientinstallanadd-in 543

Add-iN SECUNItY . .o 544

Closing add-iNns.o 545

Removing add-ins. 545

Using a hidden workbook as an alternative toanadd-in............. 545

Next steps ... 547

xxii Contents

Chapter 27 An introduction to creating Office add-ins 549

Creating your first Office add-in—HelloWorld...................... 550
Adding interactivity to an Officeadd-in............................. 554
Abasicintroductionto HTMLo i 557
USING 1aGS. « vttt 557
Adding buttons ... 557
Using CSSAiles. ..o 558

Using XML to define an Officeadd-in........................ ... 558
Using JavaScript to add interactivity to an Office add-in............. 559
The structure of afunction............. ... i 560

Curly bracesand spaces.co.vuiiiiiiiiiiiian., 560
Semicolonsand linebreaks oo 560
COMMENTES .« . et e 561
Variables. 561
SHINGS « o 562
ATy S, o 562
JavaScript forloopso 563

How to do an if statementin JavaScript 564

How to do a Select. .Case statementin JavaScript 564

How to use a For each. .next statement in JavaScript.......... 565
Mathematical, logical, and assignment operators.............. 566

Math functionsin JavaScript........... ... i 567
Writing to the content pane or taskpane 569
JavaScript changes for working in an Office add-in............ 569

NeXt StePS ..o 570
Chapter 28 What's new in Excel 365 and what’s changed 571
Office 365 subscription versus Excel 2021 perpetual 571
If it has changed in the front end, it has changed in VBA 571
Theribbon ... oo 572
Single-documentinterface.......... ...t 572
Modern array formulasco i 573
LAMBDA function i 573
Quick Analysistool 573
Charts ... 574

Contents xxiii

XXiv

Contents

Sl 574
[CONS. . 575
3D MOdElS . 575
SMmartArt. ... 575
TYPESCIIPL. . o 576
Learning the new objectsand methods............................. 576
Compatibilitymodeo 576
Using the Version property ... 577
Using the Exce18CompatibilityMode property 577
NEXT STOPS ..ottt 578
INAeX .. 579

Acknowledgments

hanks to Tracy Syrstad for being a great coauthor.

Bob Umlas is the smartest Excel guy | know and is an awesome technical editor.
At Pearson, Loretta Yates is an excellent acquisitions editor. Thanks to the Kughens for
guiding this book through production. | updated this edition in residence at the Kola Mi
Writing Camp. My sincere thanks to the staff there for keeping me on track.

Along the way, I've learned a lot about VBA programming from the awesome com-
munity at the MrExcel.com message board. VoG, Richard Schollar, and Jon von der
Heyden all stand out as having contributed posts that led to ideas in this book. Thanks
to Pam Gensel for Excel macro lesson #1. Mala Singh taught me about creating charts in
VBA. Suat Ozgiir keeps me current on new VBA trends and contributed many ideas to
Chapter 18.

My family was incredibly supportive during this time. Thanks to Mary Ellen Jelen.
—Bill

Thank you to all the moderators at the MrExcel forum who keep the board organized,
despite the best efforts of the spammers. Thank you to Joe4, RoryA, and Petersss for
helping process all the forum'’s contact emails.

Programming is a constant learning experience, and | really appreciate the clients
who have encouraged me to program outside my comfort zone so that my skills and
knowledge have expanded. Thank you to Suat Ozgiir for helping me defeat some truly
insidious programming puzzles.

Final Fantasy XIV has become my second home. I'd like to give a special thank you
to my in-game friends who not only make gaming so much fun, but for also helping
me find the confidence to dive head first into the unknown: War, Chraz, and Shabadoo.
Thank you for sharing your love of gaming with me.

And last, but not least, thanks to Bill Jelen. His site, MrExcel.com, is a place where
thousands come for help. It's also a place where |, and others like me, have an opportu-
nity to learn from and assist others.

—Tracy

XXV

http://MrExcel.com
http://MrExcel.com

This page intentionally left blank

About the Authors

Bill Jelen, Excel MVP and the host of MrExcel.com, has been using
spreadsheets since 1985, and he launched the MrExcel.com website
in 1998. Bill was a regular guest on Call for Help with Leo Laporte and
has produced more than 2,300 episodes of his daily video podcast,
Learn Excel from MrExcel. He is the author of 65 books about Micro-
soft Excel and writes the monthly Excel column for Strategic Finance
magazine. Before founding MrExcel.com, Bill spent 12 years in the trenches—working as
a financial analyst for finance, marketing, accounting, and operations departments of a
$500 million public company. He lives in Merritt Island, Florida, with his wife, Mary Ellen.

Tracy Syrstad is a Microsoft Excel developer and author of ten Excel books. She has
been helping people with Microsoft Office issues since 1997, when she discovered free
online forums where anyone could ask and answer questions. Tracy found out she
enjoyed teaching others new skills, and when she began working as a developer,

she was able to integrate the fun of teaching with one-on-one online desktop sharing
sessions. Tracy lives on an acreage in eastern South Dakota with her husband, two cats,
two horses, and a variety of wild foxes, squirrels, and rabbits.

xXxvii

http://MrExcel.com
http://MrExcel.com
http://MrExcel.com

This page intentionally left blank

Introduction

In this Introduction, you will:

®m Find out what is in this book.

m Have a peek at the future of VBA and Windows versions of Excel.

m Learn about special elements and typographical conventions in this book.
m Find out where to find code files for this book.

s corporate IT departments have found themselves with long backlogs of requests,

Excel users have discovered that they can produce the reports needed to run their
businesses themselves using the macro language Visual Basic for Applications (VBA).
VBA enables you to achieve tremendous efficiencies in your day-to-day use of Excel. VBA
helps you figure out how to import data and produce reports in Excel so that you don't
have to wait for the IT department to help you.

Is TypeScript a threat to VBA?

Your first questions are likely: “Should | invest time in learning VBA? How long will
Microsoft support VBA? Will the new TypeScript language released for Excel Online
replace VBA?"

Your investments in VBA will serve you well until at least 2049.

The last macro language change—from XLM to VBA—happened in 1993. XLM is
still supported in Excel to this day. That was a case where VBA was better than XLM, but
XLM is still supported 28 years later. Microsoft introduced TypeScript for Excel Online in
February 2020. | expect that they will continue to support VBA in the Windows and Mac
versions of Excel for the next 28 years.

In the Excel universe today, there are versions of Excel running in Windows, in MacOS,
on mobile phones powered by Android and iOS, and in modern browsers using Excel
Online. In my world, | use Excel 99% of the time on a Windows computer. There is per-
haps 1% of the time where | will open an Excel workbook on an iPad. But, if you arein a
mobile environment where you are using Excel in a browser, then the TypeScript UDFs
might be appropriate for you.

For an introduction to TypeScript UDFs in Excel, read Suat M. Ozgur's Excel Custom
Functions Straight to the Point (ISBN 978-1-61547-259-8).

XXiX

XXX

However, TypeScript performance is still horrible. If you don't need your macros to
run in Excel Online, the VBA version of your macro will run eight times more quickly than
the TypeScript version. For people who plan to run Excel only on the Mac or Windows
platforms, VBA will be your go-to macro language for another decade.

The threat to Excel VBA is the new Excel Power Query tools found in the Get &
Transform tab of the Data tab in Excel for Windows. If you are writing macros to clean
imported data, you should consider cleaning the data once with Power Query and then
refreshing the query each day. | have a lot of Power Query workflows set up that would
have previously required VBA. For a primer on Power Query, check out Master Your Data
with Excel and Power BI: Leveraging Power Query to Get & Transform Your Task Flow by
Ken Puls and Miguel Escobar (ISBN 978-1-61547-058-7).

What is in this book?

You have taken the right step by purchasing this book. We can help you reduce the
learning curve so that you can write your own VBA macros and put an end to the burden
of generating reports manually.

Reducing the learning curve

This Introduction provides a case study about the power of macros. Chapter 1, “Unleashing
the power of Excel with VBA," introduces the tools and confirms what you probably already
know: The macro recorder does not work reliably. Chapter 2, “This sounds like BASIC, so why
doesn't it look familiar?" helps you understand the crazy syntax of VBA. Chapter 3, “Referring
to ranges,” cracks the code on how to work efficiently with ranges and cells.

Chapter 4, “Looping and flow control,” covers the power of looping using VBA. The
case study in this chapter demonstrates creating a program to produce a department
report and then wrapping that report routine in a loop to produce 46 reports.

Chapter 5, "R1C1-style formulas,” covers, obviously, R1C1-style formulas. Chapter 6,
“Creating and manipulating names in VBA,"” covers names. Chapter 7, "Event program-
ming,” includes some great tricks that use event programming. Chapter 8, "Arrays,” cov-
ers arrays. Chapter 9, "Creating classes and collections,” covers classes and collections.
Chapter 10, "Userforms: An introduction,” introduces custom dialog boxes that you can
use to collect information from a human using Excel.

Excel VBA power

Chapters 11, “Data mining with Advanced Filter,” and 12, "Using VBA to create pivot
tables,” provide an in-depth look at Filter, Advanced Filter, and pivot tables. Report

Introduction

automation tools rely heavily on these concepts. Chapters 13, “Excel power,” and 14,
“Sample user-defined functions,” include dozens of code samples designed to exhibit the
power of Excel VBA and custom functions.

Chapters 15, "Creating charts,” through 20, "Automating Word,” handle charting, data
visualizations, web queries, sparklines, and automating Word.

Techie stuff needed to produce applications

Chapter 21, "Using Access as a back end to enhance multiuser access to data,” handles
reading and writing to Access databases and SQL Server. The techniques for using Access
databases enable you to build an application with the multiuser features of Access while
keeping the friendly front end of Excel.

Chapter 22, "Advanced userform techniques,” shows you how to go further with
userforms. Chapter 23, “The Windows Application Programming Interface (API),” teaches
some tricky ways to achieve tasks using the Windows API. Chapters 24, "Handling errors,”
through 26, “Creating Excel add-ins,” deal with error handling, custom menus, and add-
ins. Chapter 27, "An introduction to creating Office add-ins,” provides a brief introduc-
tion to building your own TypeScript application within Excel. Chapter 28, “What's new in
Excel 365 and what's changed,” summarizes the changes in Excel 365.

Does this book teach Excel?

Microsoft believes that the ordinary Office customer touches only 10% of the features in
Office. We realize that everyone reading this book is above average, and the visitors to
MrExcel.com are a pretty smart audience. Even so, a poll of 8,000 MrExcel.com readers
showed that only 42% of smarter-than-average users are using any 1 of the top 10 power
features in Excel.

Bill regularly presents a Power Excel seminar for accountants. These are hard-core
Excelers who use Excel 30 to 40 hours every week. Even so, two things come out in every
seminar. First, half of the audience gasps when they see how quickly you can do tasks
with a particular feature, such as automatic subtotals or pivot tables. Second, someone in
the audience routinely trumps me. For example, someone asks a question, | answer, and
someone in the second row raises a hand to give a better answer.

The point? Both the authors and the audience of this book know a lot about Excel.
However, we assume that in any given chapter, maybe 58% of the people have not used
pivot tables before and maybe even fewer have used the Top 10 Filter feature of pivot
tables. With this in mind, before we show how to automate something in VBA, we briefly
cover how to do the same task in the Excel interface. This book does not teach you how
to make pivot tables, but it does alert you when you might need to explore a topic and
learn more about it elsewhere.

Introduction

XXXi

http://MrExcel.com
http://MrExcel.com

xxxii

Case study: Monthly accounting reports

This is a true story. Valerie is a business analyst in the accounting department
of a medium-size corporation. Her company recently installed an overbudget
$16 million enterprise resource planning (ERP) system. As the project ground to
a close, there were no resources left in the IT budget to produce the monthly
report that this corporation used to summarize each department.

However, Valerie had been close enough to the implementation to think
of a way to produce the report herself. She understood that she could export
general ledger data from the ERP system to a text file with comma-separated
values. Using Excel, Valerie was able to import the general ledger data from the
ERP system into Excel.

Creating the report was not easy. As in many other companies, there were
exceptions in the data. Valerie knew that certain accounts in one particular
cost center needed to be reclassed as expenses. She knew that other accounts
needed to be excluded from the report entirely. Working carefully in Excel,
Valerie made these adjustments. She created one pivot table to produce the
first summary section of the report. She cut the pivot table results and pasted
them into a blank worksheet. Then she created a new pivot table report for the
second section of the summary. After about three hours, she had imported the
data, produced five pivot tables, arranged them in a summary, and neatly for-
matted the report in color.

Becoming the hero

Valerie handed the report to her manager. The manager had just heard from the

IT department that it would be months before they could get around to produc-

ing "that convoluted report.” When Valerie created the Excel report, she became

the instant hero of the day. In three hours, Valerie had managed to do the impos-
sible. Valerie was on cloud nine after a well-deserved “atta-girl.”

More cheers

The next day, Valerie's manager attended the monthly department meeting.
When the department managers started complaining that they could not get
the report from the ERP system, this manager pulled out his department’s
report and placed it on the table. The other managers were amazed. How was
he able to produce this report? Everyone was relieved to hear that someone
had cracked the code. The company president asked Valerie's manager if he
could have the report produced for each department.

Introduction

Cheers turn to dread

You can probably see what's coming. This particular company had 46 depart-
ments. That means 46 one-page summaries had to be produced once a month.
Each report required importing data from the ERP system, backing out certain
accounts, producing five pivot tables, and then formatting the reports in color.
It had taken Valerie three hours to produce the first report, but after she got
into the swing of things, she could produce the 46 reports in 40 hours. Even
after she reduced her time per report, though, this is horrible. Valerie had a job
to do before she became responsible for spending 40 hours a month produc-
ing these reports in Excel.

VBA to the rescue

Valerie found Bill's company, MrExcel Consulting, and explained her situation.
In the course of about a week, Bill was able to produce a series of macros in
Visual Basic that did all the mundane tasks. For example, the macros imported
the data, backed out certain accounts, made five pivot tables, and applied the
color formatting. From start to finish, the entire 40-hour manual process was
reduced to two button clicks and about 4 minutes.

Right now, either you or someone in your company is probably stuck doing
manual tasks in Excel that can be automated with VBA. We are confident that
we can walk into any company that has 20 or more Excel users and find a case
just as amazing as Valerie’s.

Versions of Excel

This seventh edition of VBA and Macros is designed to work with Microsoft 365 features
released up through August 2021. The previous editions of this book covered code for
Excel 97 through Excel 2019. In 80% of the chapters, the code today is identical to the
code in previous versions.

Differences for Mac users

Although Excel for Windows and Excel for the Mac are similar in terms of user interface,
there are a number of differences when you compare the VBA environment. Certainly,
nothing in Chapter 23 that uses the Windows API will work on the Mac. That said, the
overall concepts discussed in this book apply to the Mac. You can find a general list of
differences as they apply to the Mac at http.//www.mrexcel.com/macvba.html. The VBA

Introduction XXxXiii

http://www.mrexcel.com/macvba.html

Editor for the Mac does not let you design UserForms (Chapter 10). It also has a bug that
makes it difficult to create event handler macros (Chapter 7). Excel throws an error when
you try to select from the drop-downs at the top of the Code window. You have to first
copy and paste an empty event procedure; then the drop-downs will work.

Special elements and typographical conventions

The following typographical conventions are used in this book:

m [talic—Indicates new terms when they are defined, special emphasis, non-English
words or phrases, and letters or words used as words.

m Monospace—Indicates parts of VBA code, such as object or method names.
m Bold monospace—Indicates user input.

In addition to these typographical conventions, there are several special elements.
Each chapter has at least one case study that presents a real-world solution to common
problems. The case study also demonstrates practical applications of topics discussed in
the chapter.

In addition to the case studies, you will see Notes, Tips, and Cautions.
Note Notes provide additional information outside the main thread of the

chapter discussion that might be useful for you to know.

Tip Tips provide quick workarounds and time-saving techniques to help you
work more efficiently.

@)

v Caution Cautions warn about potential pitfalls you might encounter. Pay
attention to the Cautions; they alert you to problems that might otherwise
cause you hours of frustration.

xxxiv Introduction

About the companion content

As a thank-you for buying this book, we have put together a set of 50 Excel workbooks
that demonstrate the concepts included in this book. This set of files includes all the code
from the book, sample data, and additional notes from the authors.

To download the code files, visit this book’s webpage at
MicrosoftPressStore.com/ExcelVBAMacros365/downloads.

Errata, updates, and book support

We've made every effort to ensure the accuracy of this book and its companion
content. Any errors that have been reported since this book was published are listed at

MicrosoftPressStore.com/ExcelVBAMacros365/errata.

If you find an error that is not already listed, you can report it to us through the same
page.
For additional book support and information, please visit

MicrosoftPressStore.com/Support.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

Stay in touch

Let's keep the conversation going! We're on Twitter:
http://twitter.com/MicrosoftPress

http.//twitter.com/MrExcel

Introduction XXXV

http://MicrosoftPressStore.com/ExcelVBAMacros365/downloads
http://MicrosoftPressStore.com/ExcelVBAMacros365/errata
http://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress
http://twitter.com/MrExcel

This page intentionally left blank

Referring to ranges

In this chapter, you will:

Learn how to reference the Range object

Reference ranges in other sheets

Reference a range relative to another range

Use the Ce11s property to select a range

Use the Offset property to refer to a range

Use the Resize property to change the size of a range

Use the Columns and Rows properties to specify a range

Use the Union method to join multiple ranges

Use the Intersect method to create a new range from overlapping ranges
Use the IsEmpty function to check whether a cell is empty

Use the CurrentRegion property to select a data range

Use the SpecialCells property to interact with specific cells in a range
Use the Areas collection to return a noncontiguous range

Learn the syntax used for tables

A range can be a cell, a row, a column, or a grouping of any of these. The Range object is probably the

most frequently used object in Excel VBA; after all, you're manipulating data on a sheet. Although a

range can refer to any grouping of cells on a sheet, it can refer to only one sheet at a time. If you want
to refer to ranges on multiple sheets, you must refer to each sheet separately.

This chapter shows you different ways of referring to ranges, such as specifying a row or column.
You'll also find out how to manipulate cells based on the active cell and how to create a new range

from overlapping ranges.

53

The Range object

54

The following is the Excel object hierarchy:
AppTlication > Workbook > Worksheet > Range

The Range object is a property of the Worksheet object. This means it requires that a sheet be active
or else it must reference a worksheet. Both of the following lines mean the same thing if Worksheets (1)
is the active sheet:

Range("A1")
Worksheets (1) .Range("A1")

There are several ways to refer to a Range object. Range ("A1") is the most identifiable because that is

how the macro recorder refers to it. However, all the following are equivalent when referring to cell D5:

Range("D5")

[D5]

Range("B3") .Range("C3™)

Cells(5,4)

Range("A1").0ffset(4,3)

Range("MyRange") 'assuming that D5 has a Name of MyRange

Which format you use depends on your needs. Keep reading. It will all make sense soon!

Syntax for specifying a range

The Range property has two acceptable syntaxes. To specify a rectangular range in the first syntax,
specify the complete range reference just as you would in a formula in Excel:

Range("A1:B5")

In the alternative syntax, specify the upper-left corner and lower-right corner of the desired rectan-
gular range. In this syntax, the equivalent statement might be this:

Range("A1", "B5")

For either corner, you can substitute a named range, the Ce11s property, or the ActiveCel1 prop-
erty. The following line of code selects the rectangular range from A1 to the active cell:

Range("Al", ActiveCell).Select

The following statement selects from the active cell to five rows below the active cell and two col-
umns to the right:

Range(ActiveCell, ActiveCell.Offset(5, 2)).Select

Referring to ranges

Referencing named ranges

You probably have already used named ranges on your worksheets and in formulas. You can also use
them in VBA.

Use the following code to refer to the range "MyRange" in Sheet1:
Worksheets ("Sheetl") .Range("MyRange")

Notice the name of the range is in quotes—unlike the use of named ranges in formulas on the sheet
itself. If you forget to put the name in quotes, Excel thinks you are referring to a variable in the pro-
gram. One exception is if you use the shortcut syntax discussed in the next section. In that case, quotes
aren't used.

Shortcut for referencing ranges

A shortcut is available when referencing ranges. The shortcut involves using square brackets, as shown
in Table 3-1.

TABLE 3-1 Shortcuts for referencing ranges

Standard Method Shortcut
Range("D5") [D5]
Range("A1:D5") [A1:D5]
Range("Al:D5, G6:I17™) [A1:D5, G6:I17]
Range(""MyRange") [MyRange]

Referencing ranges in other sheets

Switching between sheets by activating the needed sheet slows down your code. To avoid this, refer to
a sheet that is not active by first referencing the Worksheet object:

Worksheets("Sheetl").Range("A1l")
This line of code references Sheet1 of the active workbook even if Sheet? is the active sheet.

To reference a range in another workbook, include the Workbook object, the Worksheet object, and
then the Range object:

Workbooks ("InvoiceData.xIsx").Worksheets("Sheetl").Range("Al")

To use the Range property as an argument within another Range property, identify the range fully each
time. For example, suppose that Sheet1 is your active sheet and you need to total data from Sheet2:

WorksheetFunction.Sum(Worksheets("Sheet2").Range(Range("Al"), _
Range("A7'")))

Referring to ranges 55

This line does not work. Why not? Although Range("A1"), Range("A7") is meant to refer to the
sheet at the beginning of the code line (Sheet2), Excel does not assume that you want to carry the
Worksheet object reference over to these other Range objects; instead, Excel assumes that they refer to
the active sheet, Sheetl. So, what do you do? Well, you could write this:

WorksheetFunction.Sum(Worksheets("Sheet2") .Range(Worksheets("Sheet2"). _
Range("Al"), Worksheets("Sheet2").Range("A7")))

However, not only is this a long line of code, but it is also difficult to read! Thankfully, there is a
simpler way, using With. . .End With:

With Worksheets("Sheet2")
WorksheetFunction.Sum(.Range(.Range("Al1"), .Range("A7")))
End With

Notice now there is a .Range in your code but without the preceding object reference. That's
because With Worksheets("Sheet2") implies that the object of the range is that worksheet. Whenever
Excel sees a period without an object reference directly to the left of it, it looks up the code for the
closest Wi th statement and uses that as the object reference.

Referencing a range relative to another range

56

Typically, the Range object is a property of a worksheet. It is also possible to have Range be the prop-
erty of another range. In this case, the Range property is relative to the original range, which makes for
unintuitive code. Consider this example:

Range("B5") .Range("C3").Select

This code actually selects cell D7. Think about cell C3, which is located two rows below and two
columns to the right of cell Al. The preceding line of code starts at cell B5. If we assume that B5 is
in the A1 position, VBA finds the cell that would be in the C3 position relative to B5. In other words,
VBA finds the cell that is two rows below and two columns to the right of B5, which is D7.

Again, | consider this coding style to be very unintuitive. This line of code mentions two addresses,
and the actual cell selected is neither of these addresses! It seems misleading when you're trying to
read this code.

You might consider using this syntax to refer to a cell relative to the active cell. For example, the
following line of code activates the cell three rows down and four columns to the right of the currently
active cell:

Selection.Range("E4").Select

I mention this syntax only because the macro recorder uses it. Recall that when you recorded a
macro in Chapter 1, “Unleashing the power of Excel with VBA,” with relative references on, the following
line was recorded:

ActiveCell.0ffset(0, 4).Range("Al").Select

Referring to ranges

This line found the cell four columns to the right of the active cell, and from there, it selected the
cell that would correspond to Al. This is not the easiest way to write code, but it is the way the macro
recorder does it.

Although a worksheet is usually the object of the Range property, occasionally, such as during
recording, a range may be the property of a range.

Using the Cel11s property to select a range

The Cel1s property refers to all the cells of the specified Range object, which can be a worksheet or a
range of cells. For example, this line selects all the cells of the active sheet:

Cells.Select
Using the Ce11s property with the Range object might seem redundant:
Range("A1:D5").Cells

This line refers to the original Range object. However, the Ce11s property has an Item property that
makes the Ce11s property very useful. The Item property enables you to refer to a specific cell relative
to the Range object.

The syntax for using the Item property with the Ce11s property is as follows:
Cells.Item(Row,Column)

You must use a numeric value for Row, but you may use the numeric value or string value for Column.
Both of the following lines refer to cell C5:

Cells.Item(5,"C")
Cells.Item(5,3)

Because the Item property is the default property of the Range object, you can shorten these lines as

follows:
Cel1s(5,"C™)
Cel1s(5,3)

The ability to use numeric values for parameters is particularly useful if you need to loop through
rows or columns. The macro recorder usually uses something like Range ("A1") . Select for a single cell
and Range("A1:C5") .Select for a range of cells. If you're learning to code only from the recorder, you
might be tempted to write code like this:

FinalRow = CelTs(Rows.Count, 1).End(x1Up).Row
For i = 1 to FinalRow

Range("A" & i & ":E" & 1i).Font.Bold = True
Next 1

Referring to ranges 57

This little piece of code, which loops through rows and bolds the cells in columns A through E, is
awkward to read and write. But how else can you do it? Like this:

FinalRow = CelTs(Rows.Count, 1).End(x1Up).Row
For i = 1 to FinalRow

Cells(i,"A"™) .Resize(,5).Font.Bold = True
Next 1

Instead of trying to type the range address, the new code uses the Ce11s and Res1ize properties to
find the required cell, based on the active cell. See the "Using the Resize property to change the size of
arange” section later in this chapter for more information on the Resize property.

You can use the Ce11s properties for parameters in the Range property. The following refers to the
range AT:E5:

Range(Cells(1,1),Cell1s(5,5))

This is particularly useful when you need to specify variables with a parameter, as in the previous
looping example.

Using the Offset property to refer to a range

You've already seen a reference to Offset when you recorded a relative reference. 0Offset enables you
to manipulate a cell based on the location of another cell, such as the active cell. Therefore, you do not
need to know the address of the cell you want to manipulate.

The syntax for the Offset property is as follows:
Range.Offset(RowOffset, ColumnOffset)

For example, the following code affects cell F5 from cell Al:
Range("A1l") .0ffset(RowOffset:=4, ColumnOffset:=5)

Or, shorter yet, you can write this:
Range("A1").0ffset(4,5)

The count of the rows and columns starts at AT but does not include Al.

If you need to go over only a row or a column, but not both, you don’t have to enter both the row
and the column parameters. To refer to a cell one column over, use one of these lines:

Range("A1l") .0ffset(ColumnOffset:=1)
Range("A1").0ffset(,1)

58 Referring to ranges

Both of these lines have the same meaning, so the choice is yours. If you use the second line, make
sure to include the comma so Excel knows that the 1 refers to the ColumnOffset argument. Referring to
a cell one row up is similar:

Range("B2") .0ffset(RowOffset:=-1)
Range("B2").0ffset(-1)

Once again, you can choose which one to use. It's a matter of the readability of the code.

Suppose you have a list of produce in column A, with totals next to the produce items in column B. If
you want to find any total equal to zero and place LOW in the cell next to it, do this:

Set Rng = Range("B1:B16").Find(What:="0", LookAt:=x1Whole, _
LookIn:=x1Values)
Rng.0ffset(, 1).Value = "LOW"

When used in a Sub and looping through a data set, it would look like this:

Sub FindLow()
With Range("B1:B16")
Set Rng = .Find(What:="0", LookAt:=x1Whole, LookIn:=x1Values)
If Not Rng Is Nothing Then
firstAddress = Rng.Address
Do
Rng.0ffset(, 1).Value = "LOW"
Set Rng = .FindNext(Rng)
Loop While Not Rng Is Nothing And Rng.Address <> firstAddress
End If
End With
End Sub

The LOw totals are noted by the program, as shown in Figure 3-1.

A B c
1 Apples 45
2 Oranges 12
3 Grapefruit 86
4 Lemons o LOwW

FIGURE 3-1 The code puts "LOW" next to the zeros in the data set.

Note Refer to the section “Object variables” in Chapter 4, “Looping and flow control,” for
more information on the Set statement.

Offsetting isn't only for single cells; you can use it with ranges. You can shift the focus of a range
over in the same way you can shift the active cell. The following line refers to B2:D4 (see Figure 3-2):

Range("A1:C3").0ffset(1,1)

Referring to ranges 59

L R A

FIGURE 3-2 Offsetting the original range A1:C3 by one row and one column references a new range, B2:D4.

Using the Resize property to change the size of a range

The Resize property enables you to change the size of a range based on the location of the active cell.
You can create a new range as needed. This is the syntax for the Resize property:

Range.Resize(RowSize, ColumnSize)
To reference the range B3:D13, use the following:
Range("B3") .Resize(RowSize:=11, ColumnSize:=3)
Here's a simpler way to reference this range:
Range("B3").Resize(11l, 3)

But what if you need to resize by only a row or a column—not both? You don’t have to enter both
the row and the column parameters.

To expand by two columns, use either of the following:
Range("B3") .Resize(ColumnSize:=2)

or
Range("B3").Resize(,2)

Both lines mean the same thing. The choice is yours. If you use the second line, make sure to include
the comma so Excel knows the 2 refers to the CoTumnSize argument. Resizing just the rows is similar.
You can use either of the following:

Range("B3") .Resize(RowSize:=2)
or
Range("B3") .Resize(2)

Once again, the choice is yours. It is a matter of the readability of the code.

60 Referring to ranges

From the list of produce, say that you want to find the zero totals and color the cells of the total and

corresponding produce (see Figure 3-3). Here's what you do:

Set Rng = Range("B1:B16").Find(What:="0", LookAt:=x1Whole, _

LookIn:=x1Values)
Rng.0ffset(, -1).Resize(, 2).Interior.ColorIndex = 15

A B
1 Apples 45
2 Oranges 12
3 Grapefruit]
4 Lemons 26

FIGURE 3-3 You can resize a range to extend the selection.

Notice that the 0ffset property first moves the active cell over to the produce column. When you're
resizing, the upper-left-corner cell must remain the same.

Resizing isn't only for single cells; you can use it to resize an existing range. For example, if you have
a named range but need it and the column next to it, use this:
Range("Produce™) .Resize(,2)

Remember, the number you resize by is the total number of rows/columns you want to include.

Using the Columns and Rows properties to specify a range

The Columns and Rows properties refer to the columns and rows of a specified Range object, which can
be a worksheet or a range of cells. They return a Range object referencing the rows or columns of the

specified object.

You've seen the following line used, but what is it doing?

FinalRow = Cells(Rows.Count, 1).End(x1Up).Row

This line of code finds the last row in a sheet in which column A has a value and places the row
number of that Range object into the variable called FinalRow. This can be useful when you need to
loop through a sheet row by row; you will know exactly how many rows you need to go through.

Note Some properties of columns and rows require contiguous rows and columns in order
to work properly. For example, if you were to use the following line of code, 9 would be the
answer because only the first range would be evaluated:

Range("A1:B9, C10:D19").Rows.Count

However, if the ranges were grouped separately, the answer would be 19. Excel takes the
top-left cell address, Al, and the bottom-right cell address, D19, and counts the rows in the

range A1:D19:

Range("A1:B9", "C10:D19").Rows.Count

Referring to ranges 61

Using the Union method to join multiple ranges

The Union method enables you to join two or more noncontiguous ranges. It creates a temporary
object of the multiple ranges, which enables you to affect them at the same time:

Application.Union(argumentl, argument2, etc.)

The expression Application is not required. The following code joins two named ranges on the
sheet, inserts the =RAND () formula, and bolds them:

Set UnionRange = Union(Range("Rangel™), Range('"Range2"))
With UnionRange

.Formula = "=RAND()"
.Font.Bold = True
End With

Using the Intersect method to create a new range from
overlapping ranges

The Intersect method returns the cells that overlap between two or more ranges. If there is no over-
lap, an error is returned:

Application.Intersect(argumentl, argument2, etc.)

The expression Application is not required. The following code colors the overlapping cells of the
two ranges:

Set IntersectRange = Intersect(Range("Rangel™), Range("Range2"))
IntersectRange.Interior.ColorIndex = 6

Using the IsEmpty function to check whether a cell is empty

The IsEmpty function returns a Boolean value that indicates whether a single cell is empty: True if
empty, and False if not. The cell must truly be empty for the function to return True. If it contains even
just a space that you cannot see, Excel does not consider the cell to be empty:

IsEmpty(Cell)

62 Referring to ranges

Say that you have several groups of data separated by a blank row. You want to make the separa-
tions a little more obvious. The following code goes down the data in column A. When it finds an
empty cell in column A, it colors in the first four cells of that row (see Figure 3-4):

LastRow = Cells(Rows.Count, 1).End(xTUp).Row
For i = 1 To LastRow
If IskEmpty(Cells(i, 1)) Then
Cells(i, 1).Resize(1l, 4).Interior.ColorIndex = 1
End If
Next i

A B c D
Apples Oranges Grapefruit Lemons
45 12 86 15
71% 53% B82% 52%

1
2
3
4
5 | Tomatoes Cabbage Lettuce Green Peppers
6
T
8
9

58 24 - | o
30% 43% 68% 1%
| Potatoes Yams Onions Garlic
10 ¢ 61 26 29
1 18% 19% 22% 82%

FIGURE 3-4 You can make separations more obvious by using colored rows.

Using the CurrentRegion property to select a data range

CurrentRegion returns a Range object that represents a set of contiguous data. As long as the data
is surrounded by one empty row and one empty column, you can select the data set by using
CurrentRegion:

RangeObject.CurrentRegion

The following line selects A1:D3 because this is the contiguous range of cells around cell A1 (see
Figure 3-5):

Range("Al").CurrentRegion.Select

This is useful if you have a data set whose size is in constant flux.

A B C D E
Apples Oranges Grapefruit Lemons

85 93 85 77

6% 36% BO% T7%

Tomatoes Cabbage Lettuce Green Peppers
82 60 60 98

1
Z
3
4
5
6

FIGURE 3-5 You can use CurrentRegion to select a range of contiguous data around the active cell.

Referring to ranges

63

64

Case Study: Using the SpecialCel1s method to select specific cells

Even Excel power users might not have encountered the Go To Special dialog box. If you
press the F5 key in an Excel worksheet, you get the normal Go To dialog box (see Figure 3-6).
In the lower-left corner of this dialog box is a button labeled Special. Click this button to get
to the super-powerful Go To Special dialog box (see Figure 3-7).

A_| B | € | o I E | F | G
Apples Oranges Grapefrult Lemans
a4 54] 73 GoTo H X
1% 2% 3% 4%
Go ta:
| Tomatoes Cabbage Letture Green Peppers ;:"n‘;”
51 17 17 82 Rangs2
1% 9% 18% B4% Range3
Potatoes Yams Onions Garlic
13 46 24 25
6% 63% 1% 43%
| GreenBeans Brocolll Peas Carrats Betershoe
11 19 12 o
76% 36% % 44%
Special.. oK | Cancel

FIGURE 3-6 Although the Go To dialog box doesn't seem useful, click the Special button in the lower-left corner to

sp

ecify what type of cells to select.

In the Excel interface, the Go To Special dialog box enables you to select only cells with
formulas, only blank cells, or only the visible cells. Selecting only visible cells is excellent for
grabbing the visible results of AutoFiltered data. If you already have a range highlighted, only
cells within this range meeting the criteria will be selected. Make sure only one cell is selected
to search the entire sheet.

To simulate the Go To Special dialog box in VBA, use the SpecialCe11s method. This enables
you to act on cells that meet certain criteria, like this:

RangeObject.SpecialCells(Type, Value)

9

10
1
12
13
i
15
16
17
18
19
20

0 n R

A B 1] D E | F | G |
Apples Oranges Grapefruit Lemons 7
44]| 54 99 78 Go To Special b
15% 2% 73% a41% Selent
Tomatoes Cabbage Lettuce Green Peppers () Comments Roy differences
51 17 17 82 L ! Column differences
22% 22% 18% Ba%) Precedents
_) Dependents
Potatoes Yams Onions Garlic & Direct only
2 £a =% 22 ¥ Logieals All Levels
36% 53% 1% 43% T Shagei
Green Beans Brocolli Peas Carrots L) Blanks o 4 PRI ol iy
11 19 12 0 () Current fegion Conaigional formats
76% 36% 2% aa% () Current grray) Data yalidation
(Objects & 4
Same
ok || cancel

FIGURE 3-7 The Go To Special dialog box has many incredibly useful selection tools, such as one for selecting only

th

e formulas on a sheet.

Referring to ranges

The SpecialCells method has two parameters: Type and Value. Type is one of the x1Ce11Type
constants:

x1Ce11TypeATTFormatConditions
x1Ce11TypeAl1Validation
x1Ce11TypeBlanks
x1Ce11TypeComments
x1Ce11TypeConstants
x1Ce11TypeFormulas
x1Ce11TypeLastCell
x1Ce11TypeSameFormatConditions
x1Ce11TypeSameValidation
x1Ce11TypeVisible

Set one of the following optional Value constants if you use x1Ce11TypeConstants Or
x1Ce11TypeFormulas:

x1Errors
x1Logical
x1Numbers
x1TextValues

The following code returns all the ranges that have conditional formatting. It produces an
error if there are no conditional formats and adds a border around each contiguous section it
finds:

Set rngCond = ActiveSheet.Cells.SpecialCells(x1Cel1TypeAllFormatConditions)
If Not rngCond Is Nothing Then

rngCond.BorderAround x1Continuous
End If

Have you ever had someone send you a worksheet without all the labels filled in? Some
people think that the data shown in Figure 3-8 looks tidy. They enter the Region field only once
for each region. This might look aesthetically pleasing, but it's impossible to sort.

- W s

A B c
|Region Product Sales
North ABC 766,469
DEF 776,996
| Xz 832,414
|East ABC 703,255
DEF 891,799
XYZ 897,949

FIGURE 3-8 The blank cells in the Region column make it difficult to sort data sets such as this.

Using the SpecialCells method to select all the blanks in this range is one way to fill the
blank region cells quickly using the region found above them:

Sub Fi11In(Q

On Error Resume Next 'Need this because if there aren't any blank
'cells, the code will error

Range("Al") .CurrentRegion.SpecialCells(x1Cel1TypeBlanks).FormulaR1Cl _
= "=R[-1]C"

Range("Al").CurrentRegion.Value = Range("Al").CurrentRegion.Value

End Sub

Referring to ranges 65

In this code, Range ("A1") .CurrentRegion refers to the contiguous range of data in the report.
The SpecialCells method returns just the blank cells in that range. This particular formula fills
in all the blank cells with a formula that points to the cell above the blank cell. (You can read
more about R1C1-Style Formulas in Chapter 5, “R1C1-style formulas.”) The second line of code is
a fast way to simulate using the Copy and Paste Special Values commands. Figure 3-9 shows the
results.

A B Cc
1 |Region Product Sales
2 |North ABC 766,469
3 |North DEF 776,996
4 |North X¥Z 832,414
5 |East ABC 703,255
6 |East DEF 891,799
7 East X¥zZ 897,949

FIGURE 3-9 After the macro runs, the blank cells in the Region column have been filled with data.

Using the Areas collection to return a noncontiguous range

66

The Areas collection is a collection of noncontiguous ranges within a selection. It consists of individual
Range objects representing contiguous ranges of cells within the selection. If a selection contains only
one area, the Areas collection contains a single Range object that corresponds to that selection.

You might be tempted to loop through the rows in a sheet and check the properties of a cell in a row,
such as its formatting (for example, font or fill) or whether the cell contains a formula or value. Then you
could copy the row and paste it to another section. However, there is an easier way. In Figure 3-10, the
user enters the values below each fruit and vegetable. The percentages are formulas. The following line
of code selects the cells with numeric constants and copies them to another area:

Set NewDestination = ActiveSheet.Range("I1")

For Each Rng In Cells.SpecialCells(x1Cel1TypeConstants, 1).Areas
Rng.Copy Destination:=NewDestination
Set NewDestination = NewDestination.Offset(Rng.Rows.Count)

Next Rng
A = - | (o2 | D E|FiGH] i K L
1 Apples Oranges Grapefruit Lemons a5 12 E6 15
2 45 12 86 15 58 24 a1 o
3 % &5% 78% 45% 10 Bl 16 9
4 a6 B4 e a5
5 Tomatoes Cabbage Lettuce Green Peppers
(] S8 24 n o
T 2% % 70% B5%
8
9 Potatoes Yams Onions Garlic
10 10 61 26 n
" 18% 4% 57% BE%
12
13 GreenBeans Broceoll Peas Carrots
14 46 64 79 a5
15 7% 56% 21% A42%

FIGURE 3-10 The Areas collection makes it easier to manipulate noncontiguous ranges.

Referring to ranges

Referencing tables

A table is a special type of range that offers the convenience of referencing named ranges. However,
tables are not created in the same manner as other ranges. For more information on how to create a
named table, see Chapter 6, “Creating and manipulating names in VBA."

Although you can reference a table by using Worksheets (1) .Range("Tablel"), you have access to

more of the properties and methods that are unique to tables if you use the ListObjects object, like
this:

Worksheets (1) .ListObjects("Tablel™)

This opens the properties and methods of a table, but you can’t use that line to select the table.
To do that, you have to specify the part of the table you want to work with. To select the entire table,
including the header and total rows, specify the Range property:

Worksheets(1).ListObjects("Tablel™) .Range.Select
The table part properties include the following:
m Range-Returns the entire table.
®m DataBodyRange—Returns the data part only.
®m HeaderRowRange—Returns the header row only.
®m TotalRowRange—Returns the total row only.

What | really like about coding with tables is the ease of referencing specific columns of a table.
You don’t have to know how many columns to move in from a starting position or the letter/number
of the column, and you don't have to use a FIND function. Instead, you can use the header name of

the column. For example, to select the data of the Qty column of the table, but not the header or total
rows, do this:

Worksheets (1) .ListObjects("Tablel").ListColumns("Qty")_

.DataBodyRange.Select

Note For more details on coding with tables, check out Excel Tables: A Complete Guide
for Creating, Using, and Automating Lists and Tables by Zack Barresse and Kevin Jones
(ISBN: 9781615470280).

Referring to ranges 67

Next steps

Referencing ranges is an essential part of programming in Excel. Now that you're getting an idea of
how Excel works, it's time to learn about a fundamental component of any programming language:
loops. If you have taken a programming class, you will be familiar with basic loop structures. VBA sup-
ports all the usual loops. Chapter 4 also describes a special loop, For Each. . .Next, which is unique to
object-oriented programming such as VBA.

68 Referring to ranges

Index

Numerics

3D models, 575
24-hour time, 117-118

A

Aladdressing, 87, 89-91, 94-95

above/below average rules, 340, 355. See also conditional
formatting

absolute references, R1C1 addressing and, 92-93
Access
creating a shared database, 449-450
database
adding records to a, 452-453
deleting records via ADO, 458
retrieving records from, 453-455
summarizing records via ADO, 458-459
updating an existing record, 455-458
MDB (multidimensional database) files, 447-448
reading from, 451
tables
adding fields on the fly, 462-463
adding on the fly, 461-462
checking for the existence of, 460
checking for the existence of a field, 461
operations, 451
ACE engine, 447-448
ActiveX controls
minimizing duplicate code, 147-148
running a macro with, 536
AddAboveAverage method, 355
.AddChart2 method, 313, 314-315, 318-319, 337-338
adding
color scales to a range, 346-347
data bars to a range, 342-346
icon sets to a range, 347-350
names, 98-100
add-ins, 539
Excel
characteristics of, 539-540
closing, 545

converting workbooks to, 540-541
creating with VB Editor, 542-543
hidden workbook as an alternative, 545-547
installing, 543-544
removing, 545
saving files as, 541-542
security, 544-545

Office, 549
adding interactivity, 554-557, 559-560
defining, 558-559
Hello World, 550, 551-554
JavaScript and, 569-570
writing to the content or task pane, 569

AddTop10 method, 355
AddUniqueValues method, 356-358
ADOs (ActiveX Data Objects), 448

adding tables on the fly, 461-462

checking for the existence of a field, 461
checking for the existence of a table, 460
connection, 450, 451

cursor, 450-451

deleting records from an Access database, 458
lock type, 451

record set, 450

summarizing records via, 458-459

Advanced Filter, 183

building, 184
criteria ranges and, 191-192, 193
extracting a unique list of values, 185
changing the list range to a single column, 185
copying the customer heading before filtering, 185-186
Filter In Place, 201
catching no records, 201-202
showing all records, 202
formula-based conditions, 194-195
returning above-average records, 200
using in the Excel user interface, 195-196
using with VBA, 196-200
joining multiple criteria
with a logical AND, 193
with a logical OR, 192

579

Advanced Filter

replacing a list of values with a condition created

from a formula, 193-194

retrieving unique combinations of two or more fields,

190
xIFilterCopy, 202
combining multiple techniques, 205-209

copying a subset of columns and reordering,

203-205
copying all columns, 202-203
alpha characters, sorting, 301-303

API (Application Programming Interface), 491. See also

Spotify

declarations, 492
32-bit- and 64-bit-compatible, 493-494
private, 492
using, 493

functions

checking whether an Excel file is openon a
network, 495-496

creating a running timer, 498-499
customizing the About dialog box, 497
disabling the X for closing a user form, 498
playing sounds, 499

retrieving display-resolution information,
496-497

retrieving the computer name, 495
getting credentials for accessing, 386-387
applications, events, 120-124
setting up a class module, 134
trapping, 134-135
Archibald, R., 260
Areas collection, 66
arrays, 125, 145
declaring, 125-126
dynamic, 130-131
filling, 127-128
formulas, 573
JavaScript, 562-563
multidimensional, declaring, 126-127
names and, 104
passing, 131-132
retrieving data from, 128-129
speeding up code with, 129-130
assigning, macros
to a form control, 12-13
to an object, 13
AutoFilter
filtering
by color, 179
by icon, 179-180

580

replacing loops with, 175-178
selecting a dynamic date range, 180181
selecting multiple items, 178-179
selecting using the Search box, 179
turning off drop-down menus, 209-210
AutoSort method, 226
Autosum button, 24-25, 26

backward compatibility, .AddChart2 method,
337-338
Barresse, Z., 263, 278

Excel Tables: A Complete Guide for Creating, Using,
and Automating Lists and Tables, 67

barriers to learning VBA, 2. See also learning VBA
BASIC, 2, 28
binding. See early binding; late binding, 499
blocks, With...End With, 50
bookmarks, 441-442
BookOpen() function, 288-289
borders, chart, 331
breakpoints, 40, 41
backing up or moving forward, 40
querying
by hovering, 42
using a Watches window, 42-43
using the Immediate window, 41-42
setting with watches, 43
Bricklin, D., 87
building
advanced filters, 184
Data Model, 247-249
LAMBDA functions, 307-308
pivot tables, 245-246, 255-256
UDFs (user-defined functions), 286-287
buttons
Autosum, 24-25, 26
command, 160, 161-162
command, running a macro with, 534-535
creating, 557-558
Help, 576
option
adding to a userform, 165-166
events, 166
spin, 168-169
toggle, 471-472
using images on, 527

C

calculated fields, 249-250
calculated items, 250
.Calculation property, 223
calculations, changing to show percentages, 223-225
calling, userforms, 156
canceling a scheduled macro, 408
Case statement, complex expressions in, 84
cell pointer, 20-21, 23
cells
creating a progress indicator, 274-275
duplicate, marking, 356-358
empty, 62-63, 226
formatting, 243-244
based on their value, 358
that contain blanks or errors, 359
that contain dates, 359
that contain text, 358-359
using a formula, 359-361
notes, placing charts in, 265-267
returning the column letter of an address, 305-306
selecting visible only, 181-182
Cells property, referencing ranges with, 57-58
ChartFormat object, 327
charts, 313, 574. See also sparklines
applying a color, 320-321
borders, 331
combo, 331-334
creating
macro recorder and, 318
using .AddChart2 method, 314-315
embedded, events, 118-120
events, 118, 136-137
exporting as a graphic, 337
filtering, 322
formatting, 327-328
line settings, 331
map, creating, 335
placing in a cell note, 265-267
referring to, 318-319
SetElement method, 323-327
sheet events, 119-120
specifying a title, 319-320
styles, 315-318
trendline, formatting, 331
waterfall, creating, 336-337
win/loss, formatting, 377-378
check boxes, 165, 466-468

collection(s)

class modules, 133
application events, trapping, 134135
clsCtlColor, 485-486
collections, creating, 142-144
custom objects
creating, 137-139
using, 139-140
embedded chart events, trapping, 136-137
Excel state, 268-270
inserting, 133-134

minimizing duplicate code for ActiveX labels,
147-148

clauses
Step, 72-73
Until, 77-79
While, 77-79
cleaning up code, 45-52
Close method, 436-437
closing, add-ins, 545
code. See also M; XML
adding to new workbooks, 279-280
breakpoints, 40
cleaning up, 45-52
comments, 18
duplicate, minimizing, 147-148
early binding, referencing a Word object,
427-430
examining, 17-19, 33-34
Help topics, 37
JavaScript, 560-561
late binding, referencing a Word object, 430
picture catalog userform, 481-483
pivot tables
building with a timeline, 243
building with two slicers, 238-240
creating a Data model, 247-249
creating a static summary from, 218-219
generating, 216-217
producing one report per product, 227-229
protecting, 513-514
speeding up with arrays, 129-130
Step Into feature, 38—-40
stepping through, 40-41. See also breakpoints
streamlining, 46
TypeScript, creating a pivot table, 255
VBA, 27
collection(s), 29, 140
Areas, 66
controls and, 473-475

581

collection(s)

582

creating, 140-141
in a class module, 142-144
in a standard module, 141-142
dictionaries and, 145
FormatConditions, 340-341
ColName() function, 305-306
color(s)
adding to fields in a userform, 485-486
applying
to a chart, 320-321

to data bars, 343, 344-345, 352-354

to objects, 329
filtering by, 179
RGB, applying to sparklines, 373-374
scales, 339, 346-347
theme, applying to sparklines, 369-372
Columns property, 61
combining
forms, 169-171
workbooks, 262-263
combo boxes, 162-163, 164-165
combo charts, creating, 331-334
command buttons, 160
events, 161-162
running a macro with, 534-535
comments, 18
HTML, 557
JavaScript, 556, 561
names and, 100
XML, 519
comparing, VBA and TypeScript, 253-255
concatenation, 300-301
conceptual filter, 230-231
conditional formatting, 340-341
above/below average rules, 355
data bars, 352-354
icons sets, 351-352

marking unique or duplicate cells, 356-358

NumberFormat property, 361-362

top/bottom rules, 355-356

using a formula, 359-361
conditions, 81

formula-based

returning above-average records, 200
using in the Excel user interface, 195-196

using with VBA, 196-200
formulas-based, 194-195
configuration, pivot table, 213-214

constants
Help topics, 35
icon sets, 348-349
retrieving the real value of
using the Object Browser, 433-434
using the Watches window, 433
SetElement method, 323-327
values, 433
xIColumnDataType, 416-417
ContainsText() function, 303-304
controls
accelerator keys, 483-484
adding
on the fly, 479
at runtime, 477-478
adding to a ribbon, 520
attributes, 521-525
bug fix when adding to a form, 159
check boxes, 466-468
collections and, 473-475
combo boxes, 162-163, 164-165
command buttons, 160, 161-162
early binding, New keyword, 430-431
frames, 474, 475
graphic, 167
labels, 159, 161-162
list boxes, 162-163
events, 164-165
multicolumn, 486-487
MultiSelect property, 163-164
MultiPage, 169-171, 468
option buttons, 165-166
Proglds, 480
programming, 158159
RefEdit, 470-471
renaming, 159
scrollbars, 472-473
spin buttons, 168-169
tab strips, 468-470
text boxes, 160, 161-162
tip text, adding to userforms, 484
toggle button, 471-472
ConvertWeekDay() function, 299-300
copy and paste, 49. See also xIFilterCopy
Copy method, 49
CopyFromRecordSet method, 453, 455
Count function, 221
COUNTIF function, 360

counting, unique functions, 296
CreateObject function, 431
CreatePivotTable method, 213-214
creating
cell progress indicator, 274-275
charts
combo, 331-334
map, 335
using .AddChart2 method, 314-315
waterfall, 336-337
collections, 140-141
in a class module, 142-144
in a standard module, 141-142
custom objects, 137-139
custom properties, 148-151
dashboards, 378, 379-383
Data Model, 247-249
macro button
on the Quick Access Toolbar, 11-12
on the ribbon, 10-11
new instances of objects, 431
pivot tables in VBA, 212
adding fields to the data area, 214-217
configuration, 213-214
defining the pivot cache, 213
shared Access database, 449-450
sparklines, 363-365, 379-383
UDFs (user-defined functions), 285
userforms, 155-156
criteria
complex ranges, 193
logical AND, 193
logical OR, 192
ranges, 191-192

replacing a list of values with a condition created
from a formula, 193-194

CSS (Cascading Style Sheets), 558
CSV files
importing and deleting, 260
opening, 417-419
CurrentRegion property, selecting ranges with, 63
custom objects
creating, 137-139
using, 139-140
custom properties, creating, 148151

Developer tab

D

DAOs (data access objects), 448
dashboards
creating, 378
creating individual sparklines in, 379-383
placing query results on, 398-401
data bars, 339
adding to a range, 342-346
color, applying, 344-345
using two colors in a range, 352-354
Data Model, 244
creating, 247-249
loading large files to, 423-424
tables
adding, 244-245
creating a relationship between, 245
data sets, converting fixed-width reports to, 280-283
data visualizations, 252-253, 339
above/below average rules, 340
color scales, 339
conditional formatting, 340-341
data bars, 339
highlight cells, 340
icon sets, 340
top/bottom rules, 340
date(s)
converting week number to, 299-300
dynamic filters and, 180-181
grouping to months, quarters, or years, 221-223
of last save, retrieving, 292
retrieving, 292-293
debugging tools
breakpoints, 40, 41
backing up or moving forward, 40
queries and, 41-43
Step Into feature, 38-41
declaring
arrays, 125-127
UDTs (user-defined types), 149
Delete method, 100
deleting, names, 100
delimited files, opening, 417-419
Design tab, changing the layout, 250-251
Developer tab
Add-ins group, 4
Code group, 4

583

Developer tab

584

Controls group, 4
Disable All Macros with Notification setting, 8
displaying, 3-4
macro settings, 7-8
Modify group, 4
Relative References, 21-24
XML group, 4
dialog boxes
Advanced Filter, 184
File Open, 173174
Go To Special, 64, 201
loops and, 182-183
Visible Cells Only option, 181-182
Name Manager, 97
Record Macro, filling out, 9-10

Show Values As tab of the Value Field Settings, 223

dictionaries, 145-146
DIM statement, 79-80
displaying, Developer tab, 3-4
DLLs (Dynamic Link Libraries), 491
Document object, 435-437
Do...loops, 75-77

stopping, 77

While and Until clauses, 77-79
drilling-down a pivot table, 270-271
duplicate

cells, marking, 356-358

code, minimizing, 147-148

values, 340
dynamic arrays, 130-131
dynamic filters, 180-181

E

early binding

New keyword, 430-431

referencing a Word object, 427-430
email, validating an address, 293-295
embedded charts, events, 118-120, 136-137
empty cells, 62-63, 226
enabling, events, 113
End+down arrow shortcut, 47-48
EndKey method, 437
error handling, 501-503

client training and, 509-510

custom ribbon and, 529-533

Debug mode, 510

encountering errors on purpose, 509

On Error GoTo syntax, 505-506

Excel versions and, 515-516
generic, 506

ignoring errors, 506-507
message boxes and, 509
misleading errors, 503-504
page setup, 507-508

Power Query, 403

protecting code and, 513-514
runtime error 9, 511-512
runtime error 1004, 512-513
suppressing Excel warnings, 508

events, 112

application, 120-124
setting up a class module, 134
trapping, 134-135

Change, 267

chart, 118
embedded, 118-120
trapping, 136-137

check box, 467-468

combo box, 164-165

command button, 161-162

enabling, 113

graphic control, 167

label, 161-162

levels of, 111-112

list box, 164-165

MultiPage, 171

option button, 166

parameters, 112113

QueryClose, 172

RefEdit control, 470-471

scrollbar, 473

sheet
chart-level, 119-120
workbook-level, 115-116

spin button, 169

tab strip, 469-470

text box, 161-162

toggle button, 471-472

userform, 157-158

workbook, 113-115

worksheet, 116117

Excel. See also ribbon

add-ins
closing, 553
converting workbooks to, 550-551
creating with VB Editor, 551-552

hidden workbook as an alternative, 554-555

installing, 552
removing, 554
saving files as, 551
security, 553
Compatibility mode, 576
Developer tab
Add-ins group, 4
Code group, 4
Controls group, 4
Disable All Macros with Notification setting, 8
displaying, 3-4
macro settings, 7-8
Modify group, 4
XML group, 4
error handling, 501-503
Help button, 576
Point mode, 185
purchasing, 571
Quick Analysis tool, 573
Ready mode, 407
RELS file, 525-526
single-document interface, 572-573
updates, scheduling, 407
versions, 571
error handling and, 515-516
pivot table evolution, 211-212
xlsm files, 525
Excel8CompatibilityMode property, 577-578
Execute method, 458
Exists method, 146
Exit For statement, 73-74
exporting
charts as a graphic, 337
to an XML file, 264-265
expressions
Case statement and, 84
text, 83
watches and, 42-43
extracting a unique list of values
with the user interface, 185-186
with VBA code, 186-189

F

fields
active, coloring, 485-486
adding on the fly, 462-463
adding to the pivot table data area, 214-217
calculated, 249-250

checking for the existence of via ADOs, 461
form, controlling in Word, 443-444
protected password box, 275-277
file
operations, 257
exporting data to an XML file, 264-265
importing and deleting a CSV file, 260
listing files in a directory, 257-260
reading a text file into memory and parsing,
260-261
types
Xxlsm, 5
macro-supported, 4-5
File Open dialog box, 173-174
Filter In Place, 201
catching no records, 201-202
showing all records, 202
filtering, 229
filters
chart, 322
conceptual, 230-231
manual, 229-230
OLAP pivot table, 271-273
search, 234-236
ShowDetail property and, 250
slicers, 237-241
Timelines, 241-243
types, 232-234
FirstNonZeroLength() function, 296-297
fixed-width reports, converting to a data set, 280-283
flow control. See also loops
conditions, 81
If-Else If-End If construct, 82—-83
If-Then-Else construct, 81
If-Then-Else-End If construct, 82
If-Then-End If construct, 82
Select Case construct, 83-84
For...Each loops, 79
For...Next loops, 69-71
Step clause, 72-73
using variables in the For statement, 72
Format method, 327-328
Format tab, 327-328
Shape Fill drop down, 328-330
FormatConditions collection, 340-341
formatting. See also conditional formatting
cells, 243-244
based on their value, 358
that contain blanks or errors, 359

formatting

585

formatting

that contain dates, 359 referring to entire columns or rows, 93
that contain text, 358-359 relative references, 91-92
using a formula, 359-361 remembering column numbers associated with
charts, 327-328 column letters, 95-96
conditional, 340-341 replacing A1 formulas with, 94-95
line settings, 331 toggling to, 88
resetting on tables, 278-279 frames, 474, 475
sparklines, 369 Frankston, B., 87
elements, 374-377 functions
using RGB colors, 373-374 API
using theme colors, 369-372 checking whether an Excel file is open on a net-
win/loss charts, 377-378 work, 495-496
forms, 160 creating a running timer, 498-499
combining, 169-171 customizing the About dialog box, 497

disabling the X for closing a user form, 498
playing sounds, 499

controls. See also controls
assigning a macro to a, 12-13

bug fix when adding to a form, 159 retrieving display-resolution information, 496-497

combo boxes, 162-163 retrieving the computer name, 495
command buttons, 160 building in Power Query, 390-393
graphic, 167 Count, 221

labels, 159 COUNTIF, 360

CreateObject, 431
GetObject, 431-432
InputBox, 153-154
ISEmpty, 62-63
JavaScript, 560-561
LAMBDA, 307, 573
building, 307-308
sharing, 308
SLUGIFY.PLUS(), 309-310
TOC2HTMLY(), 310-311
MsgBox, 154-155

list boxes, 162-163, 164-165
MultiPage, 169-171
option buttons, 166
programming, 158-159
renaming, 159
spin buttons, 168-169
text boxes, 160
fields, controlling in Word, 443-444
getting a file name, 173-174
illegal window closing, 172
retrieving information from, 160-161

transparent, setting up, 487-488 NOW’.292
verifying field entry, 171 recursive, 290
Formula property, 352-354 RGB, 373-374
SUM, 25

formula-based conditions, 194-195
user-defined, 285, 304-305

BookOpen(), 288-289
building, 286-287
ColName(), 305-306

returning above-average records, 200
using in the Excel user interface, 195-196
using with VBA, 196-200

formulas .
Al addressing, 87, 89-91 ContainsText(), 303-304
array, 573 ConvertWeekDay(), 299-300

creating, 285

DateTime(), 292-293
FirstNonZeroLength(), 296-297
GetAddress(), 305
IsEmailValid(), 293-295
LastSaved(), 292

conditional formatting and, 359-361

controls, combo boxes, 164-165

naming, 101

R1C1addressing, 49, 87, 90, 91
absolute references, 92-93
mixed references, 93

586

MSubstitute(), 297-298
NumUniqueValues(), 296
RetrieveNumbers(), 298-299
sharing, 288
SheetExists(), 289-291
SortConcat(), 300-301
SumColor(), 295
WinUserName(), 291-292
VLOOKUP, 107
XLOOKUP, named ranges and, 107-109

G

GetAddress() function, 305
GetObject function, 431-432
global
names, 97-98
variables, 402
Go To Special dialog box, 64, 201
loops and, 182-183
Visible Cells Only option, 181-182
Gonzalez Ruiz, J. P, 268
gradients, applying to objects, 330
graphic controls, 167
grouping, dates, 221-223

H

Help topics, 32-34
code and, 37
constants, 35
optional parameters, 34-35
properties and, 38
ToolTips and, 42
Hide method, 156-157
hiding
names, 106
userforms, 156157
HomeKey method, 437
HTML, 557
comments, 557
tags, 557
hyperlinks
returning the address, 305
running a macro from, 537
userforms and, 476-477

icon(s), 340, 575
filtering by, 179-180
plus sign, 322-323
Restore Down, 39

sets, adding to a range, 347-348, 351-352

constants, 348-349
specifying an icon set, 348-349
specifying ranges for each icon, 350
Stop Recording, 10
using on the ribbon, 527-529
If statements, nesting, 84-86
If-Else If-End If construct, 82—-83
If-Then-Else construct, 81
If-Then-Else-End If construct, 82
If-Then-End If construct, 82

images, adding to userforms on the fly, 480-481

Immediate window (VB Editor), 35, 41-42
importing
CSV files, 260
text files, 413
input boxes, 153-154
InsertLines method, 280
installing, add-ins, 543-544
Intersect method, 62
IsEmailValid() function, 293-295
IsEmpty function, 62-63

J

JavaScript

adding interactivity to Office add-ins, 559-560

arrays, 562-563

comments, 561

custom functions, 549

For each...next statement, 565-566
functions, 560-561

if statements, 564

for loops, 563

math functions, 567-568
Office add-ins and, 569-570
operators, 566-567

Select Case construct, 564-565
strings, 562

variables, 561

JavaScript

587

Jet engine

Jet engine, 448 exiting early, 73-74
joining, ranges, 62 For...Each, 79
Jones, K., 263 For...Next, 69-71
Excel Tables: A Complete Guide for Creating, Using, Step clause, 72-73
and Automating Lists and Tables, 67 using variables in the For statement, 72
Go To Special dialog box and, 182-183
K JavaScript, 563
M, 402
Kaji, M., 260 If-then logic, 403-404
Kapor, M., 87 List Generate, 404-406
keyboard shortcuts. See shortcut(s) nesting, 7475
keywords replacing with AutoFilter, 175-178
New, 430-431 While..Wend, 79
Preserve, 131 Lotus 1-3, 24, 87
Klann, D., 275
M
L M, 385
labels, 159, 161_.162 global variables, 402
LAMBDA functions, 307, 573 loops, 402

building, 307-308
sharing, 308
SLUGIFY.PLUS(), 309-310
TOC2HTMLY(), 310-311

If-then logic, 403-404
List.Generate, 404-406
searching Spotify for an artist, 388-389
macro button, creating

Lanzq, L.,' 264 on the Quick Access Toolbar, 11-12
late binding, 145, 430 on the ribbon, 10-11
layout
! macro recorder
pivot table, 250-251 absolute references, 19-20
rgport, 251 charts and, 318
Iearnlng VBA, 3 relative references, 20-24
barriers shortcomings of, 15-16
macro recorder, 2 tips for using, 25-26
syntax, 2

. ; . macros. See also code
line settings, trendline, 331

LineFormat object, 331
list boxes, 162-163
events, 164-165
multicolumn, 486-487
MultiSelect property, 163-164
Load method, 156
loading large files to the Data Model, 423-424
local names, 97-98, 104
logical AND, 193
logical OR, 192

assigning
to a form control, 12-13
to an object, 13
attaching
to an ActiveX control, 536
to a shape, 535
canceling, 408
copying to new workbooks, 279-280
passwords and, 515
recording, 8-9

running, 10
loops, 69 from a hyperlink, 537
Do, 75-77 using a keyboard shortcut, 533-534
stopping, 77

scheduling, 407, 408-411

While and Until clauses, 77-79 searching Spotify database for an artist, 400

588

security, 6
adding a trusted location, 6-7
Disable All Macros with Notification setting, 8
enabling outside trusted locations, 7-8
supported file types, 4-5

NumberFormat property

SetElement, 322-327
.SetSourceData, 313
SparklineGroups.Add, 363
SpecialCells, 64-66, 201
selecting with, 277-278

testing, 19, 22-23 TwoColorGradient, 330
manual filter, 229-230 TypeText, 437-438
map charts, creating, 335 Union, 62
matrix, 126 UnselectAll, 474
MDB (multidimensional database) files, 447-448 UserPicture, 329
message boxes, 154155 Miles, T., 261, 262
methods, 28 mixed references, 93
AddAboveAverage, 355 Moala, I., 277
.AddChart2, 313, 318-319 modeless userforms, 475-476
backward compatibility, 337-338 Modify method, 343
creating charts with, 314-315 modules, 15
AddTop10, 355 MSubstitute() function, 297-298
AddUniqueValues, 356-358 multicolumn list boxes, 486-487

AutoFilter, 176177 multidimensional arrays, declaring, 126127

AutoSort, 226 MultiPage control, 169-171, 468
Close, 436-437
Copy, 49 N

CopyFromRecordSet, 453, 455

CreatePivotTable, 213-214 Name Manager dialog box, 97

Delete, 100 named ranges, 55, 107-109
EndKey, 437 names, 97

Execute, 458 adding, 98-100

Exists, 146 checking for the existence of, 106
Format, 327-328 comments, 100

Hide, 156-157 deleting, 100
HomeKey, 437 formula, 101
InsertLines, 280 global, 97-98
Intersect, 62 hiding, 106

Load, 156 local, 97-98, 104
Modify, 343 numbers and, 103
OneColorGradient, 330 reserved, 104-105
OnTime, 406-407 string, 101-103

Open, 436 table, 103-104
parameters, 29-31 types of, 101
.Patterned, 330 using arrays in, 104
PresetGradient, 330 nesting

PresetTextured, 329 If statements, 84-86
PrintOut, 437 loops, 74-75

SaveAs2, 436 New keyword, referencing a Word application, 430-431
Select, 38 noncontiguous ranges, 66
SelectAll, 474 NOW function, 292

NumberFormat property, 361-362

589

numbers

numbers OneColorGradient method, 330
naming, 103 OnTime method, 406-407
retrieving from mixed text, 298-299 Open method, 436
sorting, 301-303 opening

NumFilesInCurDir() function, 290-291 files in a text editor, 550

NumUniqueValues() function, 296 text files

delimited files, 417-419
fixed-width files, 413-417

O operators

Object Browser, 45, 433-434 JavaScript, 566-567

object-oriented programming, 28 xIFilterlcon, 179-181

object(s), 28 option buttons
assigning a macro to an, 13 adding to a userform, 165-166
properties, 31 events, 166

objects, 49. See also class modules; DAOs (data access Ozgur, S. M., 549
objects)

Chart, 318
ChartFormat, 327 P
color, applying, 329 PageFields parameter, 221
creating new instances of, 431 parameters, 29-31
custom event, 112-113
creating, 137-139 PageFields, 221
using, 139-140 parsing, text files, 260-261
gradients, applying, 330 passing an array, 131-132
LineFormat, 331 password box, 275-277
patterns, applying, 330 passwords
properties, 38, 137. See also properties cracking, 514-515
Range, 54 macros and, 515
texture, applying, 329 .Patterned method, 330
variables, 79-81 patterns, applying to objects, 330
watches, 44 picture, filling objects with a, 329
Word, 435 Pieterse, J. K., 491
Document, 435-437 pivot table(s), 211, 574. See also Data Model
Range, 438-441 adding model fields to, 246
referencing via early binding, 427-430 advanced features, 220
referencing via late binding, 430 AutoSort option, 226
Selection, 437-438 building, 245-246

ObjectThemeColor property, 329 calculated fields, 249-250

Office 365, 314 calculated items, 250

Office add-ins, 549, 550 changing the calculation to show percentages, 223-225
adding interactivity, 554-557, 559-560 counting the number of records, 221
defining, 558-559 creating in VBA, 212
Hello World, 550, 551-554 adding fields to the data area, 214-217
JavaScript and, 569-570 configuration, 213-214
writing to the content or task pane, 569 defining the pivot cache, 213

OFFSET property, 177 data visualizations, 252-253

Offset property, referencing ranges with, 58-60 defining, 220-221

OLAP pivot table, filtering by a list of items, 271-273 determining the size of, 217-220

Oliver, N., 257 drilling-down, 270-271

590

R1C1 addressing

evolution over various Excel versions, 211-212 programming languages. See also M

filtering data sets, 229 BASIC, 2, 28

filters M, 385
conceptual, 230-231 object-oriented, 28
manual, 229-230 procedural, 28
search, 234-236 Programming window, VB Editor, 17-19
ShowDetail property and, 250 progress indicator, cell, 274-275
slicers, 237-241 Project Explorer, 14-15
types, 232-234 properties, 31,137

formatting the intersection of values in, 243-244 .Calculation, 223

grouping daily dates to months, quarters, or years, Cells, referencing ranges with, 57-58
221-223 ChartColor, 320-321

layout, 250-251 Columns, 61

OLARP, filtering by a list of items, 271-273 CurrentRegion, selecting ranges with, 63

producing a static summary, 218-220 custom, creating, 148-151

reports, 217 Excel8CompatibilityMode, 577-578
layout, 251 Formula, 352-354
multiple value fields, 220-221 Help topics, 38
replicating for every product, 226-229 MultiSelect, 163-164
suppressing subtotals for multiple row fields, 252 NumberFormat, 361-362

TypeScript and, 255-256 ObjectThemeColor, 329

Values area OFFSET, 177
adding numeric fields, 246-247 Offset, referencing ranges with, 58-60
eliminating blank cells, 226 Priority, 341

Power Pivot, 244. See also pivot table(s) Range(), 47
Power Query. See also M Resize, 6061

Advanced Editor, 387-388 Rows, 61

building a custom function, 390-393 ShowDetail, 250

loading large text files to the Data Model, 423-424 TableRange2, 217-218

M and, 385 Type, 341

queries Version, 577
AlbumTracks, 395, 397 Properties window, VB Editor, 15
ArtistsAlbums, 394-395, 396-397 protected password box, 275-277

duplicating to make a new query, 393-395
error handling, 403

fnGetToken, 392 Q
grouping, 397-398 QueryClose event, 172
placing results on your dashboard, 398-401 querying, in Break mode
SearchArtist, 391, 393, 396 by hovering, 42
refreshing Spotify credentials after they expire, 390 using a Watches window, 42-43
searching Spotify database for an artist, 388-390 using the Immediate window, 41-42
storing global variables in a Settings record, 402-403 Quick Access Toolbar, creating a macro button, 11-12
Preserve keyword, 131 Quick Analysis tool, 24-25, 573
PresetGradient method, 330
PresetTextured method, 329
PrintOut method, 437 R
Priority property, 341 R1C1 addressing, 49, 87, 90, 91
procedural programming, 28 absolute references, 92-93
VBA and, 29 mixed references, 93

591

R1C1 addressing

592

referring to entire columns or rows, 93
relative references, 91-92

remembering column numbers associated with
column letters, 95-96

replacing AT formulas with, 94-95
toggling to, 88

Range object, 54, 438-441
Range() property, 47
ranges, 53

color scales, adding, 346-347
creating from overlapping ranges, 62
data bars
adding, 342-346
using two colors, 352-354
finding the first nonzero-length cell in, 296-297
icon sets, 347-348
specifying, 348-349
specifying for subset of a range, 351-352
VBA constants, 348-349
joining, 62
named, 55, 107-109
noncontiguous, 66
referencing
in other worksheets, 55-56
relative to another range, 56-57
shortcuts, 55
using Cells property, 57-58
using Columns and Rows properties, 61
using the CurrentRegion property, 63
using the Offset property, 58-60
resizing, 60-61
specifying for icons, 350
syntax, 54
tables, 67
worksheets and, 54

reading

from an Access database, 451
text files with more than 1,048, 576 rows, 420-423

Record Macro dialog box, 9-10
recording a macro, 8-9, 17

absolute references, 19-20
Autosum and, 24-25
preparations, 1617
relative references, 20-24
tips, 25-26

records, counting, 221
recursive functions, 290

RefEdit control, 470-471
references

absolute, 19-20, 92-93
array, 104

mixed, 93

relative, 20-24, 91-92

relationships, creating between tables, 245
relative references, 20-24, 91-92

RELS file, 525-526

removing, add-ins, 545

renaming, controls, 159

reports

fixed-width, converting to a data set, 280-283
pivot table, 217

layout, 251

multiple value fields, 220-221

replicating for every product, 226-229

suppressing subtotals for multiple row fields, 252
reserved names, 104-105
resetting, table format, 278-279
Resize property, 60-61

resizing

ranges, 60-61
userforms, 479

Restore Down icon, 39
RetrieveNumbers() function, 298-299
retrieving data

from arrays, 128-129

date and time of last save, 292

file names, 173-174

from forms, 160-161

from mixed text, 298-299
permanent date and time, 292-293
user ID, 291-292

returning

addresses of duplicate maximum values, 304-305
hyperlink address, 305

ReturnMax() function, 304-305
RGB color, applying to sparklines, 373-374
ribbon, 517, 572

adding a control, 520

adding custom icons, 528-529
buttons, using images on, 527
control attributes, 521-525

error handling, 529-533

macro button, creating, 10-11

using Microsoft Office icons, 527-528

Rows property, 61

rules
above/below average, 340
top/bottom, 340

running a macro, 10
with a command button, 534-535
using a keyboard shortcut, 533-534

S

SaveAs2 method, 436
scaling, sparklines, 366—-369
scheduling macros, 407, 408-411
ScrollBar control, 472-473
Search box, AutoFilter and, 179
search filter, 234-236
security, 6

add-in, 544-545

Disable All Macros with Notification setting, 8

trusted locations

adding, 6-7
enabling macros outside trusted locations, 7-8

Select Case construct, 83-84

in JavaScript, 564-565

using on a worksheets, 306
Select method, 38
SelectAll method, 474
selecting, with SpecialCells, 277-278
Selection object, 437-438
SetElement method, 322-327
.SetSourceData method, 313
Shape Fill drop down, 329-330
shared Access database, creating, 449-450
sharing

LAMBDA functions, 308

UDFs (user-defined functions), 288
sheet events

chart, 119-120

workbook-level, 115-116
SheetExists() function, 289-290
shortcut(s)

accelerator keys, 483-484

Ctrl+T, 244

End+down arrow, 47-48

for referencing ranges, 55

running a macro with, 533-534

Show Values As tab of the Value Field Settings dialog box,
223

Sullivan

ShowDetail property, 250
size of pivot tables, determining, 217-220
slicers, 237-243, 574
SLUGIFY.PLUS() function, 309-310
SmartArt, 575
Smith, C., 267
sorting, 300-301
custom, 273-274
numeric and alpha characters, 301-303
SparklineGroups.Add method, 363-365
sparklines, 363
creating, 363-365
dashboards
creating, 378
creating individual sparklines in, 379-383
formatting, 369
elements, 374-377
using RGB colors, 373-374
using theme colors, 369-372
scaling, 366-369
win/loss charts, formatting, 377-378
SpecialCells method, 64-66, 201, 277-278
spin buttons, 168-169
Spotify. See also Power Query
creating a developer account, 386-387
querying the list of songs on an album, 395
Search API, 388-390
searching the database for an artist, 388-389
SQL Server, 463-464. See also Access
standard modules, 141-142. See also class modules
statements
Case, complex expressions in, 84
DIM, 79-80
Exit For, 73-74
For, 72
If, nesting, 84-86
Select Case, 83-84
Step Into feature, 38—-40
Stop Recording icon, 10
streamlining code, 46
strings
JavaScript, 562
naming, 101-103
searching for within text, 303-304
styles, chart, 315-318
substituting, multiple characters, 297-298
subtotals, suppressing for multiple row fields, 252
Sullivan, J., 271

593

SUM function

594

SUM function, 25
SumColor() function, 295

T

tab stops, setting on userforms, 484-485
tab strips, 468-470
tables. See also Access
Access
adding fields on the fly, 462-463
adding on the fly, 461-462
checking for the existence of, 460
checking for the existence of a field, 461
adding to the Data Model, 244-245
creating a relationship between, 245
naming, 103-104
referencing, 67
resetting the format, 278-279
tblTransfer, 449
testing, macros, 19, 22-23
text boxes, 160, 161-162
text files
importing, 413
with more than 1,048, 576 rows, 419-420
reading, 420-423
using Power Query to load, 423-424
opening
delimited files, 417-419
fixed-width files, 413-417
reading into memory and parsing, 260-261
writing, 424-425
Text Import Wizard, 35-37
texture, applying to objects, 329
theme colors, applying to sparklines, 369-372. See also
color(s)
time. See also dates
24-hour, 117-118
of last save, retrieving, 292
retrieving, 292-293
Timelines, 241-243
tip text, adding to userforms, 484
TOC2HTML() function, 310-311
ToggleButton control, 471-472
toolbars, UserForm, 465-466
ToolTips, 42
top/bottom rules, 340, 355-356. See also conditional
formatting

tracking, user changes, 267-268

transparent forms, setting up, 487-488
trapping
application events, 134-135
embedded chart events, 136-137
trendline, formatting, 331
trusted locations, 67
Tufte, E., 363
TwoColorGradient method, 330
Type property, 341
TypeScript, 576
comparing to VBA, 253-255
creating a pivot table, 255-256
TypeText method, 437-438

V)

UDFs (user-defined functions), 285
BookOpen(), 288-290
building, 286-287
ColName(), 305-306
ContainsText(), 303-304
ConvertWeekDay(), 299-300
creating, 285
DateTime(), 292-293
FirstNonZerolLength(), 296-297
GetAddress(), 305
IsEmailValid(), 293-295
JavaScript, 549
LastSaved(), 292
MSubstitute(), 297-298
NumpFilesInCurDir(), 290-291
NumUniqueValues(), 296
RetrieveNumbers(), 298-299
ReturnMax(), 304-305
sharing, 288
SortConcat(), 300-301
SumcColor(), 295
WinUserName(), 291-292

UDTs (user-defined types)
creating custom properties, 148151
declaring, 149

Union method, joining multiple ranges, 62

UnselectAll method, 474
Until clause, 77-79

updates, scheduling, 407
Urtis, T., 265, 270, 274

user ID, retrieving, 291-292
UserForm toolbar, 465-466

userforms, 153. See also controls; forms
accelerator keys, 483-484
adding option buttons, 165-166
calling, 156
check boxes, 466-468
coloring the active field, 485-486
controls
adding at runtime, 477-478
adding on the fly, 479
collections and, 473-475
Proglds, 480
creating, 155156
disabling the X for closing, 498
events, 157-158
graphics, 167
hiding, 156157
hyperlinks, 476-477
illegal window closing, 172
images, adding on the fly, 480-481
input boxes, 153-154
message boxes, 154-155
modeless, 475-476
picture catalog, 481-483
programming, 157
RefEdit control, 470-471
resizing on the fly, 479
scrollbars, 472-473
setting tab stops, 484-485
sizing on the fly, 479
tab strips, 468-470
tip text, adding, 484
transparent, 487-488
verifying field entry, 171
UserPicture method, 329
utilities
combining workbooks, 262-263

converting a fixed-width report to a data set,
280-283

copying data to separate worksheets without using
Filter, 263-264

creating a cell progress indicator, 274-275
creating a custom sort order, 273-274
creating an Excel state class module, 268-270
drilling-down a pivot table, 270-271
exporting data to an XML file, 264-265

filtering an OLAP pivot table by a list of items,
271-273

importing and deleting a CSV file, 260
listing files in a directory, 257-260

VBA

placing a chart in a cell note, 265-267

reading a text file into memory and parsing, 260-261
resetting a table’s format, 278-279

selecting with SpecialCells, 277-278

separating worksheets into workbooks, 261-262
tracking user changes, 267-268

using a protected password box, 275-277

using VBA Extensibility to add code to new work-
books, 279-280

validating, email addresses, 293-295
values

duplicate, minimizing, 340
unique, counting, 296

variables, 49

declaring, 14
global, 402
JavaScript, 561
object, 79-81

For statement, 72
Variant, 128

Variant variables, 128
VB Editor, 13-14. See also Object Browser

Break mode, 38-43. See also breakpoints
converting a file to an add-in, 542-543
Help and, 33-34

Immediate window, 35, 41-42
Programming window, 17-19

Project Explorer, 1415

Properties window, 15

settings, 14

VBA, 31-32

barriers to learning
macro recorder, 2
syntax, 2

charts
applying a color, 320-321
borders, 331
combo, 331-334
filtering, 322
formatting, 327-328
line settings, 331
map, 335
referring to, 318-319
SetElement method, 322-327
specifying a title, 319-320
styles, 315-318

595

VBA

596

trendline, 331
waterfall, 336-337
collections, 29
comparing to TypeScript, 253-255
constants, icon set, 348-349
data bars, 339, 352-354
adding to a range, 342-346
color, applying, 344-345
using two colors in a range, 352-354
data visualizations, 340-341
error handling, 501-503
Extensibility, 279-280
formula-based conditions, 196-200
icon sets, 347-348
creating for a subset of a range, 351-352
specifying ranges for each icon, 350
learning, 3
methods, 28, 29-31
objects, 28, 31
Office 365 and, 314
pivot tables
adding fields to the data area, 214-217
adding model fields to, 246
adding numeric fields to the Values area, 246-247
advanced features, 220
AutoSort option, 226
calculated fields, 249-250
calculated items, 250

changing the calculation to show percentages,
223-225

conceptual filter, 230-231

configuration, 213-214

creating, 212

creating a Data model, 247-249

data visualizations, 252-253

defining, 220-221

defining the pivot cache, 213, 245-246
determining the size of, 217-220

eliminating blank cells in the Values area, 226
filter types, 232-234

filtering, 229

formatting the intersection of values in, 243-244

grouping daily dates to months, quarters, or
years, 221-223

layout, 250-251
manual filter, 229-230
replicating the report for every product, 226-229

reports, 251
search filter, 234-236
ShowDetail property, 250
slicers, 237-241
Timelines, 241-243
procedural programming and, 29
simplifying Power Query queries, 396
AlbumTracks, 397
ArtistsAlbums, 396-397
SearchArtist, 396
syntax, 38
verifying, field entry, 171
Version property, 577
Visual Basic, BASIC and, 2
VLOOKUP function, 107

\W

watches, 42-43

on objects, 44

setting a break point, 43
waterfall charts, creating, 336-337
Wei, J., 273
While clause, 77-79
While.Wend loops, 79

Windows API, 491. See also API (Application Program-
ming Interface)

win/loss charts, formatting, 377-378
WinUserName() function, 291-292
With...End With block, 50
Word
bookmarks, 441-442
constants, retrieving the real value of, 433-434
using the Object Browser, 433-434
using the Watches window, 433
controlling form fields in, 443-444
documents
closing, 436-437
creating, 435-436
opening, 436
printing, 437
saving changes to, 436
templates, 436
objects, 435
Document, 435-437
Range, 438-441
Selection, 437-438

XML

referencing an existing instance of, 431-432 Select Case construct, 306
referencing objects via early binding, 427-430 separating into workbooks, 261-262
referencing objects via late binding, 430 writing, text files, 424-425

workbooks, 2
adding code to, 279-280
checking for existing sheets in, 289-290 X-Y-Z
code, 546-547 x|FilterCopy, 202
combining, 262-263 combining multiple techniques, 205-209
converting to an add-in, 540-541 copying a subset of columns and reordering, 203-205
events, 113-115 copying all columns, 202-203
open, checking for, 288-289 x|Filterlcon operator, 179-181
ribbon, 517-518 XLOOKUP function, named ranges, 107-109
sheet events, 115-116 xlsm file type, 5, 525
themes, 369 XML

worksheets adding a control to a ribbon, 520
copying data to without using Filter, 263-264 creating a tab and a group, 519
events, 116-117 customui folder, 518-519
ranges and, 54, 55-56 defining an Office add-in, 558-559

exporting data to a file, 264-265

597

	Cover
	Title
	Copyright Page
	Dedication
	Contents at a Glance
	Contents
	Acknowledgments
	About the Authors
	Introduction
	Chapter 3 Referring to ranges
	The Range object
	Syntax for specifying a range
	Referencing named ranges
	Shortcut for referencing ranges

	Referencing ranges in other sheets
	Referencing a range relative to another range
	Using the Cells property to select a range
	Using the Offset property to refer to a range
	Using the Resize property to change the size of a range
	Using the Columns and Rows properties to specify a range
	Using the Union method to join multiple ranges
	Using the Intersect method to create a new range from overlapping ranges
	Using the IsEmpty function to check whether a cell is empty
	Using the CurrentRegion property to select a data range
	Using the Areas collection to return a noncontiguous range
	Referencing tables
	Next steps

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

