)
=
Q
-~
N
-
2
N
S
=
b
&
1y
2
[
S

Doug Tidwell

REILLY"

O

9

XML

O’REILLY"

XSLT

XML documents are especially useful when theyre
transformed into familiar formats, such as web
pages, PDF files, or Java code—and those
conversions require mastery of XSLT. This practical
book not only teaches you how to be productive using XSLT,
it also serves as a handy, dictionary-style reference to all the
features and functions of the language that you'll need on the
job. With XSLT; Second Edition, you will:

* Learn XSLT basics, including simple stylesheets and
methods for setting up transformation engines

* Walk through the many parts of XSLT, particularly the
template-based approach to transformations

* Understand the basics of XPath versions 1.0 and 2.0—
the language used to describe parts of an XML document

* See how XML Schema support works in XSLT 2.0,
including how to define elements and datatypes and use
them in your stylesheets

* Get hundreds of stylesheets, including examples for every
element, function, and operator defined by XSLT and XPath

* Use examples that apply both XSLT 1.0 and 2.0 solutions
to the same problems so you can decide which version is
more appropriate for your project

This new edition includes a complete set of stylesheet
examples for both XSLT 1.0 and 2.0. You also get a thorough
explanation of the relationship between XSLT, XPath, and
other web standards. If you use XSLT, this book is the one
resource you'll want on hand to help you solve problems
quickly and accurately.

www.oreilly.com

US $49.99 CAN $49.99
ISBN: 978-0-596-52721-1

549909
LTI

780596752721

“The best review I received
Jor the first edition of this
book began, ‘I will never
read this book.” This was
actually a positive review,
as the reviewer went on
to explain. “When I have
a problem, I grab this
book off the shelf, go to
the index, and within five
minutes I've found the
answer to my problem.
Then I toss it back on the
shelf.””

—Doug Tidwell,
Jrom the Preface
of this book

Doug Tidwell, a senior
programmer at IBM, has been
working with markup languages
for more than two decades. An
expert who has been involved
with XML since he spoke at the
first SGML/XML conference in
1997, he teaches XML classes
around the world.

- ‘93 Free online edition

Sa fa I‘.Ie for 45 days with

Books Online

purchase of this book.
Details on last page.

XSLT

Other resources from O'Reilly

Related titles

oreilly.com

Soe®
% [4

g\IE i“ ‘REILLY
; NETWORK,

Conferences

O’REILLY N_EJWORK
Safari
Bookshelf.

XSLT Cookbook™ XML Hacks™
XQuery XSLT 1.0 Pocket Reference
Learning XSLT Relax NG
Java & XML Unicode Explained
Schematron XML in a Nutshell
Developing Feeds with RSS Learning XML

and Atom

oreilly.com is more than a complete catalog of O’Reilly books.
You'll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

O’Reilly Media, Inc. brings diverse innovators together to nur-
ture the ideas that spark revolutionary industries. We specialize
in documenting the latest tools and systems, translating the in-
novator’s knowledge into useful skills for those in the trenches.
Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

SECOND EDITION

XSLT

Doug Tidwell

O’REILLY"

Beijing - Cambridge + Farnham - KoIn - Sebastopol - Taipei + Tokyo

XSLT, Second Edition
by Doug Tidwell

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent Indexer: Fred Brown
Production Editor: Sarah Schneider Cover Designer: Karen Montgomery
Proofreader: Mary Brady Interior Designer: David Futato

lllustrator: Robert Romano

Printing History:
June 2008: Second Edition.
August 2001: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. XSLT, the image of a Jabiru, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations uses by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

ISBN: 978-0-596-52721-1
[l
1213384691

http://safari.oreilly.com

To my family—my wonderful wife, Sheri Castle,

and our amagzing daughter, Lily—for their love,

support, and understanding. Nothing I do would
be possible or meaningful without them.

...and a special thanks to our dog, Domino, who

frequently and selflessly pushed his fuzzy head

between my hands and keyboard to protect me
from carpal tunnel syndrome. Good boy!

Table of Conten

ts

Preface ..o Xi
1. GettingStartedociviiiiiiiii i i i i i 1
The Design of XSLT 1
XML Basics 4
Installing XSLT Processors 20
Summary 24
2. TheObligatory HelloWorldExamplecovviiiiiiiiiiiiiiiiiinnnnn 25
Goals of This Chapter 25
Transforming Hello World 25
How a Stylesheet Is Processed 27
Stylesheet Structure 30
Sample Gallery 36
Summary 44
3. XPath: A Syntax for Describing Needles and Haystacks 45
The XPath Data Model 46
Location Paths 55
Attribute Value Templates 66
Datatypes 67
XPath Operators 71
[2.0] Comments in XPath Expressions 102
[2.0] Types of XSLT 2.0 Processors 104
The XPath View of an XML Document 104
Summary 112
4, Creating Outputcovvvniniii it iiiiiriitieineesaeensneensnnns 113
Goals of This Chapter 113
Generating Text 113
Numbering Things 118
Formatting Decimal Numbers 127

vii

[2.0] Formatting Dates and Times
Using <xsl:copy> and <xsl:copy-of>
Dealing with Whitespace

Summary

Branching and Control Elementscccvviiiiiiiiiininnn.n.

Goals of This Chapter

Branching Elements of XSLT

Invoking Templates by Name
Parameters

Variables

Using Recursion to Do Most Anything
A Stylesheet That Emulates a for Loop
Summary

Creating Links and Cross-Referencesccoevvviiiiiiinenninnnn,

Using the XML ID, IDREF, and IDREFS Datatypes
XSLT’s Key Facility

Generating Links in Unstructured Documents
Summary

Sorting and Grouping Elementsc.coiiiiiiiiiiiiiiiiiiinian,

Sorting Data with <xsl:sort>

[2.0] The <xsl:perform-sort> Element
Grouping Nodes

[2.0] New Grouping Syntax in XSLT 2.0
Summary

Combining Documentsccoviiiiiiiiiiiiiii it i

The document() Function

The document() Function and Sorting

Implementing Lookup Tables

Grouping Across Multiple Documents

[2.0] Using XSLT 2.0 to Simplify Things

[2.0] The doc() and doc-available() Functions

[2.0] The collection() Function

[2.0] The unparsed-text() and unparsed-text-available() Functions
Summary

Extending XSLT .. ovriii i i it it

The XSLT Extension Mechanism
[2.0] Creating New Functions with <xsl:function>
Example: Generating Multiple Output Files

130
132
139
144

145
145
145
151
152
167
169
174
179

181
181
194
198
204

205
205
215
219
228
243

245
245
254
254
257
260
269
271
272
275

277
277
279
281

viii |

Table of Contents

Creating Custom Collations 287

Generating Hidden Word Graphics 293
Example: Generating an SVG Pie Chart 303
Writing Extensions in Other Languages 326
Using Extension Functions from the EXSLT Library 330
Accessing a Database with an Extension Element 333
Creating a Photo Album with an Extension Element 339
Summary 360
A, XSLTReferenceoovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie 361
B. XPathReferencecooiiiiiiiiiiiiiiiii, 545
(. XSLT, XPath, and XQuery Function Referenceccovvvvvvniennn.n. 563
D. XMLSchemaOverviewcooviiiiiiiiiiiiiiiiiiiiiniiiiieennnns 8N
E. [2.0]Reqular EXpressionsc.ceeeieueiniueenenerneneneeneneennnns 897
F. XSLTFormattingCodesccvvniriiniiiiiiiiiiiiiiiiiineeneneennnns 919
G. XSLT 2.0 MigrationGuidecoeuiiiiniiiiiiiiiiiiiieiereenannens 925
11117 933
INdeX ..o 943

Table of Contents | ix

Preface

About This Book

The goal of this book is to help you make the most of XSLT, the Extensible Stylesheet
Language for Transformations. It covers both XSLT 1.0 and XSLT 2.0, along with
versions 1.0 and 2.0 of XPath, the XML Path Language. The two languages are designed
to work together: XPath identifies the parts of an XML document that should be trans-
formed, and XSLT says how the transformation should be done.

The first few chapters of the book cover the features of XSLT by solving common
problems using the language. Once you’ve mastered those techniques, the last section
of the book contains a complete set of examples for all the features of XSLT and XPath.
The book is designed as a tutorial for learning the language as you’re getting started.
Once you’re comfortable with XSLT, the book can be used as a dictionary-style refer-
ence for the features and functions of the language.

Where I'm Coming From

Before we begin, it’s only fair that I tell you my biases.

| Believe in Open, Platform-Neutral, Standards-Based Computing

If any part of your business life ties you down to anything closed, proprietary, or
platform-specific, I encourage you to make some changes. This book shows you how
to take charge of your data and move it from one place to another on your terms, and
not your software vendor’s. XML is shifting the balance of power from vendors to
software users. If your tools force you to work in unnatural ways or refuse to let you
have your data when and where you want it, you don’t have to take it anymore.

| Assume You're Busy

The best review I received for the first edition of this book began, “I will never read this
book.” This was actually a positive review, as the reviewer went on to explain. “When

Xi

[have a problem, I grab this book off the shelf, go to the index, and within five minutes
I've found the answer to my problem. Then I toss it back on the shelf.”

That’s exactly the kind of book I've tried to write. There are hundreds of stylesheets in
this book, including examples for every XSLT element, function, and operator defined
by XSLT and XPath. The first chapters of the book are prose that explain how style-
sheets work and what you need to learn to be productive with XSLT. Once you’re
comfortable with that material, you can use the rest of the book as a dictionary-style
reference.

| Don’t Care Which Standards-Compliant Tools You Use

My job as an author and a teacher is to show you how to use standards-compliant tools
to simplify your life. I'm not here to sell you a parser, an XSLT processor, a toaster, or
anything else, so please use whatever tools you like. I encourage you to take a look at
all of the tools out there and find your own preferences. As I wrote this edition of the
book, I used four processors to test the examples:

* Almost all of the examples were tested with Michael Kay’s excellent Saxon XSLT
processor. The open source edition of Saxon supports all of the XSLT 2.0, XPath
2.0 and XQuery 1.0 specs except for the schema-specific functions. As the editor
of the XSLT 2.0 specification, Dr. Kay’s processor is currently the most complete
implementation of XSLT 2.0.

Saxon-B (the basic processor without schema support) is available here: hitp://
saxon.sourceforge.net/. The SourceForge project page is at hitp://sourceforge.net/
projects/saxon. Saxon is available in Java and .NET versions.

There is also a commercial version of Saxon that includes full schema support. For
more information on Saxon-SA, which is the schema-aware version, visit http://
www.saxonica.com/.

* The XSLT engine from Altova XML Spy was also used for all of the XSLT 2.0
examples. The Altova XSLT engine, although not open source, does provide com-
plete schema support in a no-cost product. The license for the Altova engine cur-
rently allows you to redistribute it with your own code. To get the engine and the
license terms, visit http://www.altova.com/altovaxml.html.

* Apache’s Xalan XSLT engine supports almost all of the XSLT 1.0 examples in the
book. (The XSLT 1.0 stylesheets that it doesn’t support are ones that use extensions
written for other processors.) It’s also a forwards-compatible XSLT processor, so
it can work with XSLT 2.0 stylesheets.

The Java version of the processor, Xalan-], is available at http://xml.apache.org/
xalan-j/. There’s also a C++ version at http://xml.apache.org/xalan-c/.

* Microsoft’s .NET framework supports XSLT 1.0, as does the MSXSL utility. One
significant addition to this edition is more focus on the Microsoft platform. In

xii | Preface

http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://sourceforge.net/projects/saxon
http://sourceforge.net/projects/saxon
http://www.saxonica.com/
http://www.saxonica.com/
http://www.altova.com/altovaxml.html
http://xml.apache.org/xalan-j/
http://xml.apache.org/xalan-j/
http://xml.apache.org/xalan-c/

addition to testing all of the XSLT 1.0 samples with the Microsoft tools, there are
also XSLT extensions written in C# and EcmaScript.

The MSXSL XSLT processor is available from the Microsoft XML downloads page,
http://msdn.microsoft.com/XML/XMLDownloads/default.aspx. There is also an
XSLT processor embedded in the .NET framework; it’s part of the
System.Xml.Xsl namespace.

XSLT Is a Tool, Not a Religion

An old adage says that to a person with a hammer, everything looks like a nail. I don’t
claim that XSLT is the solution to every business problem you’ll encounter. Chap-
ter 1 discusses reasons why XML and XSLT were created and the design decisions
behind XSLT, and it tries to identify the kinds of problems XSLT is designed to solve.
All chapters in this book illustrate common scenarios in which XSLT is extremely
powerful and useful.

That being said, if a particular tool does something better than XSLT does, then by all
means, use that other tool. For example, XSLT has functions for sorting and grouping.
If the data you’re transforming comes from a relational database, it’s probably far more
efficient to use the ORDER BY and GROUP BY features of your database instead of sorting
and grouping with XSLT. XSLT is a powerful addition to your tool box, but that doesn’t
mean you should throw out all your other tools.

You Shouldn’t Migrate All of Your Stylesheets Just Because There’s a New
Version of XSLT

Anytime a new version of a language, standard, or software package comes along, de-
ciding when or if to migrate to the new features depends on your application. If you’ve
built a web application in which you use a web browser to process XSLT stylesheets
on the client side, you can’t migrate to XSLT 2.0 until all the major browsers support
XSLT 2.0. That’s going to be a while. On the other hand, if you use XSLT to transform
your data and then send the transformed data to the client, you can use XSLT 2.0 right
away. With very few exceptions, anything that worked in XSLT 1.0 works in XSLT 2.0.
We cover migration in Appendix G.

XSLT 2.0 and XPath 2.0 have many new features that make your stylesheets easier to
write, easier to maintain, and much more powerful. It’s definitely worth your time to
investigate the new features to see how many of them you can use.

How This Book Is Organized

XSLT 2.0 has added significant new features to the language, many of which are related
to the changes in XPath 2.0. The biggest challenge I had as an author was figuring out
how to organize the book. One approach would have been to make this an XSLT 2.0

Preface | xiii

http://msdn.microsoft.com/XML/XMLDownloads/default.aspx

book, writing under the assumption that everyone would migrate to XSLT 2.0 as soon
as possible. I don’t believe that will happen, so I didn’t go that way. Instead, I tried to
cover everything in terms of common tasks, things you’ll probably have to do with
XSLT. If there are new features in XSLT 2.0 that apply to those tasks, I mention them
after explaining the concepts behind the stylesheets. Usually XSLT 2.0 makes your life
much easier, so I begin the discussion by pointing out that if you’re using XSLT 2.0,
you’ve got a simpler option.

As with the first edition, this book has two parts: a series of prose chapters that cover
concepts and tasks, followed by a series of appendixes that form a reference to all of
the elements, functions, operators, and other details you’ll need as you write style-
sheets. Once you’re comfortable with XSLT, you can use the appendixes as a dictionary
of all things related to XSLT and XPath.

The book contains the following chapters:

Chapter 1, Getting Started
Covers the basics of XML and discusses how to install the stylesheet engines used
in this book.

Chapter 2, The Obligatory Hello World Example
Takes a look at an XML-tagged “Hello World” document, then examines style-
sheets that transform it into other things.

Chapter 3, XPath: A Syntax for Describing Needles and Haystacks
Covers the basics of XPath, the language used to describe parts of an XML

document. This chapter includes an in-depth discussion of the many changes
introduced in XPath 2.0.

Chapter 4, Creating Output
Discusses the basics of creating output, including extracting text, copying infor-
mation, and numbering things.

Chapter 5, Branching and Control Elements
Discusses the logic elements of XSLT (<xsl:if> and <xsl:choose>) and how they
work. Also covers the new if operator in XPath 2.0.

Chapter 6, Creating Links and Cross-References
Covers the different ways to build links between elements in XML documents.
Using XPath to describe relationships between related elements is also covered.

Chapter 7, Sorting and Grouping Elements
Goes over the <xsl:sort> element and discusses various ways to sort elements in
an XML document. It also talks about how to do grouping with various XSLT
elements and functions. Grouping is much simpler in XSLT 2.0; the new grouping
features are covered in this chapter as well.

xiv | Preface

Chapter 8, Combining Documents
Discusses the document() function, which allows you to combine several XML
documents, then write a stylesheet that works against the collection of documents.
Related functions from XSLT 2.0 are also featured.

Chapter 9, Extending XSLT
Explains how to write extension elements and extension functions. Although XSLT
and XPath are extremely powerful and flexible, there are still times when you need
to do something that isn’t provided by the language itself.

The last section of the book contains reference information:

Appendix A
An alphabetical listing of all the elements defined by XSLT, with examples for those
elements and how they were designed to be used.

Appendix B
A listing of various aspects of XPath, including datatypes, axes, node types, and
operators.
Appendix C
An alphabetical listing of all the functions defined by XPath and XSLT.
Appendix D
Provides a brief overview of XML Schema. One of the additions to XSLT 2.0 is the
ability to use XML Schemas to define datatypes and validate XML structures
against them.
Appendix E

Covers the syntax and features of the regular expression language used by XPath
2.0 and XSLT 2.0.

Appendix F
Provides a handy listing of all the formatting codes used in XSLT and XPath.

Appendix G
Lists a number of considerations and approaches for migrating to XSLT 2.0.

Glossary
A glossary of terms used in XSLT, XPath, and XML in general.

Conventions Used in This Book

[tems appearing in this book are sometimes given a special appearance to set them apart
from the regular text. Here’s how they look:

Italic
Used for citations of books and articles, commands, email addresses, introduction
of terms, and URLs

Preface | xv

Constant width
Used for literals, constant values, code listings, and XML markup

Constant-width bold
Used to indicate user input

Constant-width italic
Used for replaceable parameter and variable names

W

o This icon represents a tip, suggestion, or general note.
qs
O
MY SN
This icon represents a warning or caution.

[1.0]
This text represents information that applies only to XSLT 1.0 and XPath 1.0.

[2.0]
This text represents information that is new in XSLT 2.0 and XPath 2.0.

[2.0 — Schemal]
This text represents information that applies to schema-aware XSLT 2.0
processors.

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but
you may find that features have changed (or even that we have made mistakes!). Please
let us know about any errors you find, as well as your suggestions for future editions,
by writing to:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

The web site for this book lists examples, errata, and plans for future editions. You can
access this page at:

xvi | Preface

http://www.oreilly.com/catalog/9780596527211

For more information about our books, conferences, software, resource centers, and
the O’Reilly Network, see our web site:

http://lwww.oreilly.com

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Acknowledgments for the Second Edition

[want to thank Jeni Tennison for being the lead reviewer of this edition. Her ability to
see through to the essence of a problem and point out the simplest and most elegant
way to solve it is astounding. I have blisters from smacking my forehead as I read her
review comments, thinking at the time, “Of course! I should have seen that right away.”
Jeni, thank you.

[also benefited from Patricia Walmsley’s excellent review, especially in the appendixes
that cover all the elements and functions in XSLT, XPath, and XQuery. The examples
and terminology in those sections are far more useful and correct as a result.

A big thanks to Michael Kay for providing a copy of Saxon-SA to test the schema ex-
amples in the book. The entire XSLT community owes him an enormous debt for
making the XSLT 2.0 spec robust, readable, and complete, and for writing the Saxon
XSLT engine.

This book was written entirely in DocBook, a very powerful XML vocabulary for pub-
lishing. Two books have been invaluable as I've worked with DocBook. The first is
O’Reilly’s DocBook: The Definitive Guide, written by Norm Walsh and Leonard
Mueller (available online at http://'www.oreilly.com/catalog/docbook/chapter/book/doc
book.html). If you want to know anything about DocBook, this is the place to look.
The open source community also maintains an extremely sophisticated set of XSLT
stylesheets that transform DocBook into a variety of other formats. For help in using
the DocBook XSL, Bob Stayton’s DocBook XSL: The Complete Guide (Sagehill Enter-
prises; available online at http://sagehill.net/book-description.html) was invaluable.
Thanks to all three of these great authors.

Preface | xvii

http://www.oreilly.com/catalog/9780596527211
http://www.oreilly.com
http://safari.oreilly.com
http://www.oreilly.com/catalog/docbook/chapter/book/docbook.html
http://www.oreilly.com/catalog/docbook/chapter/book/docbook.html
http://sagehill.net/book-description.html

[also want to thank the people I've worked with over the last few years. The IBM
developerWorks team is still a great influence on me. I'll always think of myself as part
of the developerWorks family. During my time with IBM’s Developer Skills organiza-
tion, I had the great pleasure of working with an incredibly talented team. That group
is paid to give away as much knowledge as possible, along with free software to pro-
fessors and students around the world. Finally, I want to thank the members of my
current team in IBM’s Software Group Strategy organization. I’'m very happy to be
working again for Dirk Nicol, the father of developerWorks.

I will resist the temptation to name names here in fear of forgetting someone. I hope
all of you know how much you mean to me, and how much I've learned from all of you.

Finally, I want to thank Simon St.Laurent for his guidance on the second edition. Both
of us were nervous about figuring out how to add XSLT 2.0 and XPath 2.0 to this book
without creating a 5,000 page tome. Unfortunately, I also relied on Simon’s patience
as portions of the book took far longer than either of us had hoped. Simon, you’re the
best.

Acknowledgments from the First Edition

First and foremost, I'd like to thank the reviewers of this book. David Marston of Lotus
was the lead reviewer; David, thank you so much for your comments, wisdom, and
knowledge. Along the way, I also got a lot of good feedback and encouragement from
Tony Colle, Slavko Malesvic, Dr. Joe Molitoris, Shane O’Donnell, Andy Piper, Sree-
nivas Ramarao, Mike Riley, and Willie Wheeler. This book is significantly better be-
cause of your comments and other efforts.

I’d also like to thank my teammates at developerWorks for encouraging me to under-
take this project. Taking on an additional full-time job hasn’t been easy, but their ad-
vice, flexibility, and understanding as I've tried to balance my responsibilities has been
invaluable. Even more valuable is the fact that 'm surrounded by some of the most
interesting, creative, and remarkable people I've ever known. You guys rule.

For the times I’ve been at home (in Raleigh, North Carolina), I've depended on my
nutritional advisors at Schiano’s Pizza: “Hey, you want your usual?” (Slight pause.)
“Yeah, that’d be great, thanks.” Nothing’s as comforting as a couple of slices. If you’re
within a day’s drive of Raleigh, I strongly encourage you to visit.

Finally, I'd like to thank the staff at O’Reilly, especially Laurie Petrycki and Simon
St.Laurent. Laurie, thank you for convincing me to take on this project and for sticking
with me when my ability to find the time to write was in doubt. Simon, I’ve enjoyed
reading your books for years; it’s been an honor to work with you. Your guidance,
technical insight, patience, and suggestions were invaluable.

Thanks so much to all of you!

xviii | Preface

CHAPTER1
Getting Started

In this chapter, we review the design rationale behind XSLT and XPath and discuss the
basics of XML. We also talk about other web standards and how they relate to XSLT
and XPath. We conclude the chapter with a brief discussion of how to set up an XSLT
processor on your machine so you can work with the examples throughout the book.

The Design of XSLT

XML went from working group to entrenched buzzword in record time. Its flexibility
as a language for presenting structured data made it the lingua franca for data inter-
change. Early adopters used programming interfaces such as the Document Object
Model (DOM) and the Simple API for XML (SAX) to parse and process XML docu-
ments. As XML became mainstream, however, it was clear that the average web citizen
couldn’t be expected to hack Java, Visual Basic, Perl, or Python code to work with
documents. What was needed was a flexible, powerful, yet relatively simple language
capable of processing XML.

What the world needed was XSLT.

XSLT, the Extensible Stylesheet Language for Transformations, is an official recom-
mendation of the World Wide Web Consortium (W3C). It provides a flexible, powerful
language for transforming XML documents into something else, such as an HTML
document, another XML document, a Portable Document Format (PDF) file, a Scalable
Vector Graphics (SVG) file, a Virtual Reality Modeling Language (VRML) file, Java
code, a flat text file, a JPEG file, or most anything you want. You write an XSLT style-
sheet to define the rules for transforming an XML document, and the XSLT processor
does the work.

The W3C has defined two families of standards for stylesheets. The oldest and simplest
is Cascading Style Sheets (CSS), a mechanism used to define various properties of
markup elements. Although CSS can be used with XML, it is most often used to style
HTML documents. I can use CSS properties to define certain elements to be rendered
in blue, or in 58-point type, or in boldface. That’s all well and good, but there are many
things that CSS can’t do:

* CSS can’t change the order in which elements appear in a document. If you want
to sort certain elements or filter elements based on a certain property, CSS won’t

do the job.

* CSS can’t do computations. If you want to calculate and output a value (maybe
you want to add up the numeric value of all <price> elements in a document), CSS
won’t do the job.

* CSS can’t combine multiple documents. If you want to combine 53 purchase order
documents and print a summary of all items ordered in those purchase orders, CSS
won’t do the job.

Don’t take this section as a criticism of CSS; XSLT and CSS were de-
*t% signed for different purposes. One fairly common use of XSLT is to
generate an HTML document that uses CSS. See “The XPath View of
an XML Document” in Chapter 3 for an example that uses XSLT to

generate CSS classes, and then uses those classes to format the HTML
elements

XSLT was created to be a more powerful, flexible language for transforming documents.
In this book, we go through all the features of XSLT and discuss each of them in terms
of practical examples. Some of XSLT’s design goals specify that:

* An XSLT stylesheet should be an XML document. This means that you can write
a stylesheet that transforms a second stylesheet into another stylesheet. This kind
of recursive thinking is common in XSLT.

* The XSLT language should be based on pattern matching. Most of our stylesheets
consist of rules (called templates in XSLT) used to transform a document. Each rule
says, “When you see part of a document that looks like this, here’s how you convert
it into something else.” This is probably different from any programming you’ve
previously done.

* XSLT should be designed to be free of side effects. In other words, XSLT is designed
to be optimized so that many different stylesheet rules could be applied simulta-
neously. The biggest impact of this is that variables can’t be modified. Once a
variable is bound, you can’t change its value; if variables could be changed, then
processing one stylesheet rule might have side effects that impact other stylesheet
rules. This is almost certainly different from any programming you’ve previously
done.

XSLT s heavily influenced by the design of functional programming languages, such
as Lisp, Scheme, and Haskell. These languages also feature immutable variables.
Instead of defining the templates of XSLT, functional programming languages de-
fine programs as a series of functions, each of which generates a well-defined output
(free from side effects, of course) in response to a well-defined input. The goal is
to execute the instructions of a given XSLT template without affecting the execu-
tion of any other XSLT template.

2 | Chapter1: Getting Started

Instead of looping, XSLT uses iteration and recursion. Given that variables can’t
be changed, how do you do something like a for or do-while loop? XSLT uses two
equivalent techniques: iteration and recursion. Iteration means that you can write
an XSLT template that says, “Get all the things that look like this, and here’s what
[want you to do with each of them.” Although that’s different from a do-while
loop, usually what you do in a procedural language is something like, “Do this
while there are any items left to process.” In that case, iteration does exactly what
you want.

Recursion takes some getting used to. If you must implement something like a
for statement (for i=1 to 10 do, for example), recursion is the way to go. There
are a number of examples of recursion throughout the book; you can flip ahead to
“Using Recursion to Do Most Anything” in Chapter 5 for more information.

Given these design goals, what are XSLT’s strengths? Here are some scenarios:

Your web site needs to deliver information to a variety of devices. You need to
support ordinary desktop browsers, as well as pagers, mobile phones, and other
low-resolution, low-function devices. It would be great if you could create your
information in structured documents, then transform those documents into all the
formats you need.

You need to exchange data with your partners, but all of you use different database
systems. It would be great if you could define a common XML data format, then
transform documents written in that format into the import files you need (SQL
statements, comma-separated values, etc.).

To stay on the cutting edge, your web site gets a complete visual redesign every
few months. Even though things such as server-side includes and CSS can help,
they can’t do everything. It would be great if your data were in a flexible format
that could be transformed into any look and feel, simplifying the redesign process.

You have documents in several different formats. All the documents are machine-
readable, but it’s a hassle to write programs to parse and process all of them. It
would be great if you could combine all of the documents into a single format, then
generate summary documents and reports based on that collection of documents.
It would be even better if the report could contain calculated values, automatically
generated graphics, and formatting for high-quality printing.

Throughout the book, we’ll demonstrate XSLT solutions for problems just like these.
Most chapters focus on particular techniques, such as sorting, grouping, and generating
links between pieces of data, although we’ll start with a gentle introduction to the
basics.

[2.0] The Design of XSLT 2.0

XSLT 2.0 is a major enhancement to the language. XSLT 2.0 uses XPath 2.0, which
itself went through many significant changes. The gap between XSLT 1.0/XPath 1.0

The Design of XSLT | 3

and XSLT 2.0/XPath 2.0 was a little over seven years (November 16, 1999 to January
23,2007). There were two major requirements that led to the monumental amount of
work required to create XSLT 2.0 and XPath 2.0:

Support for XML Schema
XSLT and XPath now support XML Schema, which means nodes and variables can
have datatypes. We can define a value to be of type xs:dateTime, and the XSLT
processor will enforce that requirement. All XSLT 2.0 processors support the basic
XML Schema datatypes. A schema-aware processor also supports custom data-
types. If we have a datatype named purchaseOrder, we can use a schema-aware
processor to work with values of that type.

Integration with XQuery
The initial work for XQuery began in 1998, and version 1.0 became a W3C Rec-
ommendation on January 23, 2007. XQuery 1.0 and XPath 2.0 share a common
data model, functions, and operators. Coordinating the efforts of the XQuery,
XPath, and XSLT working groups must have been a challenge.

The birthing pains of XSLT 2.0 and XPath 2.0 are behind us now, and we have a more
powerful language for transforming documents. We’ll discuss the changes to the lan-
guage as they’re relevant to our discussion of common tasks that you’ll probably want
to do with XSLT. All of the technical details are covered in the appendixes.

XML Basics

Almost everything we do in this book deals with XML documents. XSLT stylesheets
are XML documents themselves, and they’re designed to transform an XML document
into something else. If you don’t have much experience with XML, we’ll review the
basics here. For more information on XML, check out Erik T. Ray’s Learning XML
(O’Reilly, 2001) and Elliotte Rusty Harold and W. Scott Means’s XML in a Nutshell
(O’Reilly, 2001).

XML's Heritage

XML’s heritage is in the Standard Generalized Markup Language (SGML). Created by
Dr. Charles Goldfarb in the 1970s, SGML is widely used in high-end publishing sys-
tems. Unfortunately, SGML’s perceived complexity prevented its widespread adoption
across the industry (SGML also stands for “sounds great, maybe later”). SGML got a
boost when Tim Berners-Lee based HTML on SGML. Overnight, the whole computing
industry was using a markup language to build documents and applications.

The problem with HTML is that its tags were designed for the interaction between
humans and machines. When the Web was invented in the late 1980s, that was just
fine. As the Web moved into all aspects of our lives, HTML was asked to do lots of
strange things. We’ve all built HTML pages with awkward table structures, 1-pixel

4 | Chapter1: Getting Started

GIFs, and other nonsense just to get the page to look right in the browser. XML is
designed to get us out of this rut and back into the world of structured documents.

Whatever its limitations, HTML is the most popular markup language ever created.
Given its popularity, why do we need XML? Consider this extremely informative
HTML element:

<td>12304</td>
What does this fascinating piece of content represent?

* Isit the postal code for Schenectady, New York?
* Is it the number of light bulbs replaced each month in Las Vegas?
* Is it the number of Volkswagens sold in Hong Kong last year?

* Is it the number of tons of steel in the Sydney Harbour Bridge?

The answer: maybe, maybe not. The point of this silly example is that there’s no struc-
ture to this data. Even if we include the entire table, it takes intelligence (real, live
intelligence, the kind between your ears) to make sense of this. If you saw this cell in a
table next to another cell that contained the text “Schenectady,” and the heading above
the table read “Postal Codes for the State of New York,” then as a human being, you
could interpret the contents of this cell correctly. On the other hand, if you wanted to
write a piece of code that took any HTML table and attempted to determine whether
any of the cells in the table contained postal codes, you’d find that difficult, to say the
least.

Most HTML pages have one goal in mind: the appearance of the document. Veterans
of the markup industry know that this is definitely not the way to create content. The
separation of content and presentation is a long-established tenet of the publishing in-
dustry; unfortunately, most HTML pages aren’t even close to approaching this ideal.
An XML document should contain information, marked up with tags that describe
what all the pieces of information are, as well as the relationship between those items.
Presenting the document (also known as rendering) involves rules and decisions sepa-
rate from the document itself. As we work through dozens of sample documents and
applications, you’ll see how delaying the rendering decisions as long as possible has
significant advantages.

Let’s look at another marked-up document. Consider this:

<?xml version="1.0"?>
<postalcodes>
<title>Most-used postal codes in November 2000</title>
<item>
<city>Schenectady</city>
<postalcode>12304</postalcode>
<usage-count>2039</usage-count>
</item>
<item>
<city>Kuala Lumpur</city>
<postalcode>57000</postalcode>

XML Basics | 5

<usage-count>1983</usage-count>
</item>
<item>
<city>London</city>
<postalcode>SW1P 4RG</postalcode>
<usage-count>1722</usage-count>
</item>

</postalcodes>

Although we’re still in the realm of contrived examples, it would be fairly easy to write
a piece of code to find the postal codes in any document that used this set of tags (as
opposed to HTML’s <table>, <tr>, <td>, etc.). Our code would look for the contents
of any <postalcode> elements in the document. (Not to get ahead of ourselves here, but
writing an XSLT stylesheet to do this might take all of 30 minutes, including a 25-
minute nap.) A well-designed XML document identifies each piece of data in the docu-
ment and models the relationships between those pieces of data. This means we can
be confident that we’re processing an XML document correctly.

Again, the key idea here is that we’re separating content from presentation. Our XML
document clearly delineates the pieces of data and puts them into a format we can parse
easily. In this book, we illustrate a number of techniques for transforming this XML
document into a variety of formats. Among other things, we can transform the item
<postalcode>12304</postalcode> into <td>12304</td>.

XML Document Rules

Continuing our trip through the basics of XML, there are several rules you need to keep
in mind when creating XML documents. All stylesheets we develop in this book are
themselves XML documents, so all the rules of XML documents apply to everything
we do. The rules are pretty simple, even though the vast majority of HTML documents
don’t follow them.

Oneimportant point: the XML 1.0 specification makes it clear that when an XML parser
finds an XML document that breaks the rules, the parser is supposed to throw an
exception and stop. The parser is not allowed to guess what the document structure
should actually be. This specification avoids recreating the HTML world, where lots
of ugly documents are still rendered by the average browser.

An XML document must be contained in a single element

The first element in your XML document must contain the entire document. That first
element is called the document element or the root element. If more than one document
element is in the document, the XML parser throws an exception. This XML document
is perfectly legal:

<?xml version="1.0"?>
<greeting>

6 | Chapter1: Getting Started

Hello, World!
</greeting>

To be precise, this document is well-formed. XML documents are described as well-
formed and valid (we’ll define those terms in a minute). This XML document isn’t legal
at all:
<?xml version="1.0"?>
<greeting>
Hello, World!
</greeting>
<greeting>
Hey, Y'all!
</greeting>

There are two root elements in this document, so an XML parser refuses to process it.
Also, be aware that the XML declaration (the <?xml version="1.0"?> part; more on this
later) isn’t an element at all.

All elements must be nested

If you start one element inside another, you have to end it there, too. An HTML browser
is happy to render this document:

I really, <i>really like XML.</i>

But an XML parser will throw an exception when it sees this document. If you want
the same effect, you would need to code this:

I really, <i>really</i><i> like XML.</i>

All attributes must be quoted

You can quote the attributes with either single or double quotes. These two XML tags
are equivalent:

If you need to define an attribute that contains single or double quotes, you can use
one style of quote inside the other. If you need both single and double quotes in an
attribute, use the predefined entities " for double quotes and use 8apos; for single
quotes:

<book title="XSLT, Second Edition" publisher="0'Reilly/">
<book title="XSLT, Second Edition" publisher='O8'reilly"/>

One more note: XML doesn’t allow attributes without values. In other words, HTML
elements such as <ol compact> aren’t valid in XML. To code this element in XML, you’d
have to give the attribute a value, as in <ol compact="compact">. (You have to do things
this way in XHTML as well.)

XML Basics | 7

XML tags are case-sensitive

In HTML, <h1> and <H1> are the same. In XML, they’re not. If you try to end an <h1>
element with </H1>, the parser will throw an exception.

All end tags are required

This is another area where most HTML documents break. Your browser doesn’t care
whether you don’t have a </p> or </br> tag, but your XML parser does.

Empty tags can contain the end marker

In other words, these two XML fragments are identical:

<lily age="13"></1lily>
<lily age="13"/>

Notice that there is nothing, not even whitespace, between the start tag and the end
tag in the first example; that’s what makes this an empty tag.

XML declarations

Some XML documents begin with an XML declaration, which is a line similar to this:

<?xml version="1.0" encoding="IS0-8859-1"?>

If no encoding is specified, the XML parser assumes you’re using UTF-8 or UTF-16.
UTF, the Unicode Transformation Format, is a Unicode standard that uses different
numbers of bytes to represent virtually every character and ideograph from the world’s
languages. Be aware that each parser supports a different set of encodings, so you need
to check your parser’s documentation to find out what your options are.

Document Type Definitions (DTDs) and XML Schemas

All of the rules we’ve discussed so far apply to all XML documents. In addition, you
can use DTDs and Schemas to define other constraints for your XML documents. DTDs
and Schemas are metalanguages that let you define the characteristics of an XML vo-
cabulary. For example, you might want to specify that any XML document describing
a purchase order must begin with a <po> element, and the <po> element in turn contains
a <customer-id> element, one or more <item-ordered> elements, and an <order-date>
element. In addition, each <item-ordered> element must contain a part-number attribute
and a quantity attribute.

Here’s a sample DTD that defines the constraints we just mentioned:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT po (customer-id , item-ordered+ , order-date)>

<!ELEMENT customer-id (#PCDATA)>

8 | Chapter1: Getting Started

<!ELEMENT item-ordered EMPTY>

<IATTLIST item-ordered part-number CDATA #REQUIRED
quantity CDATA #REQUIRED >
<!ELEMENT order-date EMPTY>

<IATTLIST order-date day CDATA #REQUIRED
month CDATA #REQUIRED
year CDATA #REQUIRED >

And here’s an XML Schema that defines the same document type:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="po">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="customer-id"/>
<xsd:element ref="item-ordered" maxOccurs="unbounded"/>
<xsd:element ref="order-date"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="customer-id" type="xsd:string"/>

<xsd:element name="item-ordered">
<xsd:complexType>
<xsd:attribute name="part-number" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[0-9]{5}(-[0-9]{4})?"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="quantity" use="required" type="xsd:integer"/>
</xsd:complexType>
</xsd:element>

<xsd:element name="order-date">
<xsd:complexType>
<xsd:attribute name="day" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:positiveInteger">
<xsd:maxInclusive value="31"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="month" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:positiveInteger">
<xsd:maxInclusive value="12"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>

XML Basics | 9

<xsd:attribute name="year" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:gYear">
<xsd:maxInclusive value="2100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Schemas have two significant advantages over DTDs:

They can define datatypes and other complex structures that are difficult or impossible to

doina DTD
In the previous example, we defined various constraints for the data in our XML
documents. We defined that the day attribute must be an integer between 1 and
31, and the month attribute must be an integer between 1 and 12. We also used a
regular expression to define a part-number attribute as a five-digit number, option-
ally followed by a dash and a four-digit number. None of those things are possible
in a DTD. Schemas are far more powerful than DTDs; see Appendix D for an
overview of schemas and what they can do.

Schemas are themselves XML documents

Since they are XML documents, we can write XSLT stylesheets to manipulate them.
For example, it would be useful to create a graphical representation of an XML
Schema. We could create a hierarchical diagram to indicate which elements could
appear inside other element. XML Schema also provides the <xsd:annotation> and
<xsd:documentation> elements. Those elements let us add as much documentation
as we want inside the schema itself. We could then use a stylesheet to transform
the schema into an HTML document or PDF file, using the relationships between
elements, attributes, datatypes, and other information to generate highly struc-
tured information.

W

The best way to define the <order-date> attribute would be to use the
XML Schema xsd:date datatype:

' <xsd:element name="order-date" type="xsd:date"/>

In the DTD, we separated the date into three parts so it could be sorted
or formatted in different ways. With the xsd:date datatype, the schema
ensures that the date is valid; we can use a variety of functions to sort
or format the date in different ways. (We’ll discuss those functions in
“[2.0] Formatting Dates and Times” in Chapter 4.)

Well-formed versus valid documents

Any XML document that follows the rules described here is said to be well-formed. In
addition, if an XML document references a set of rules that define how the document

10 | Chapter1: Getting Started

is structured (either a DTD or an XML Schema), and it follows all those rules, it is said
to be a valid document.

All valid documents are well-formed; on the other hand, not all well-formed documents
are valid.

W

- Be aware that XML Schema validation can be done partially; XML
"‘:‘ Schema allows us to define parts of the document that should not be
T Glse validated at all. On the other hand, DTD validation fails if any part of

an XML document doesn’t match the DTD.

Tags versus elements

Although many people use the two terms interchangably, a tag is different from an
element. A tag is the text between (and including) the angle brackets (< and »). There
are start tags, end tags, and empty tags. A tag consists of an element name and, if it is
a start tag or an empty tag, some optional attributes. (Unlike other markup languages,
end tags in XML cannot contain attributes.) An element consists of its start and end
tags and everything in between. This might include text, other elements, and com-
ments, as well as other things such as entity references and processing instructions.

Namespaces

A final XML topic we’ll mention here is namespaces. Namespaces are designed to dis-
tinguish between two tags that have the same name. For example, if we have an online
bookstore, we could design an XML vocabulary for books. When we ship an order to
a customer, the postal service requires the customer’s address to be in a certain format.
It’s likely that both vocabularies will define a <title> element. Our <title> element
refers to the title of a book, while the shipping company’s <title> element refers to the
courtesy title of a customer (Mr., Ms., Mrs., etc.). An XML order document refers to
both books and customers, so we’ll use a namespace to distinguish between the two
<title> elements. Namespaces are declared as follows:

<xyz xmlns:books="http://www.myco.com/books"
xmlns:addr="http://www.usps.com/addresses">

In this example, the xmlns:books attribute associates the prefix books with one name-
space, and the xmlns:addr attribute associates the paintings prefix with another name-
space. This means that a title element from the books namespace would be coded as
<books:title>, while a title element from the addr namespace would be referred to as
<addr:title>.

[mention namespaces here primarily because all XSLT elements we use in this book
are prefixed with the xs1 namespace prefix. All stylesheets we write begin like this:
<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

XMLBasics | 11

(Obviously a stylesheet that uses the features of XSLT 2.0 starts with version="2.0".)
This opening associates the xs1 namespace prefix with the string http://www.w3.org/
1999/XSL/Transform. The value of the namespace prefix doesn’t matter; we could start
our stylesheets like this:

<?xml version="1.0"?>

<pdq:stylesheet version="1.0"
xmlns:pdg="http://www.w3.0rg/1999/XSL/Transform">

What matters is the string to which the namespace prefix is mapped. Also keep in mind
that all XSLT stylesheets use namespace prefixes to process the XML elements they
contain. By default, anything that doesn’t use the xsl namespace prefix is not
processed—instead, it’s written to the result tree. We’ll discuss these topics in more
detail as we go through the book.

[2.0] Datatypes

XSLT 2.0 provides support for most of the datatypes defined in XML Schema. XSLT
2.0 also defines new datatypes for durations. For example, we can define an XSLT
variable and specify that its datatype is xs:integer or xs:dateTime. If we’re using a
schema-aware XSLT 2.0 processor, we can define our own datatypes and use those just
like all the datatypes defined by XML Schema and XSLT 2.0. We cover datatypes and
schemas in Chapter 3.

Programming Interfaces for XML: DOM, SAX, and Others

The two most popular APIs used to parse XML documents are the Document Object
Model (DOM) and the Simple API for XML (SAX). DOM is an official recommendation
of the W3C (available at http://www.w3.0rg/TR/REC-DOM-Level-1), while SAX is a de
facto standard created by David Megginson and others on the XML-DEV mailing list
(http://lists.xml.orglarchives). We'll discuss these two APIs briefly here. We won’t use
them much in this book, but learning more about them will give you some insight into
how most XSLT processors work.

W
o See http://'www.saxproject.org/ for the SAX standard. If you’d like to
ﬁ:\ learn more about the XML-DEV mailing list, send email to mailto:xml-
T Qs dev-subscribe@lists.xml.org. You can also check out http:/lists.xml.org/

" archives/xml-dev/ to see the XML-DEV mailing list archives.

DOM

DOM is designed to build a tree view of your document. Remember that all XML
documents must be contained in a single element. That single element then becomes

the root of the tree. The DOM specification defines several language-neutral interfaces,
described here:

12 | Chapter1: Getting Started

http://www.w3.org/TR/REC-DOM-Level-1
http://lists.xml.org/archives
http://www.saxproject.org/
mailto:xml-dev-subscribe@lists.xml.org
mailto:xml-dev-subscribe@lists.xml.org
http://lists.xml.org/archives/xml-dev/
http://lists.xml.org/archives/xml-dev/

Node
This interface is the base datatype of the DOM. Document, Element, Attr, Text,
Comment, and ProcessingInstruction all extend the Node interface.

Document
This object contains the DOM representation of the XML document. Given a
Document object, you can get the root of the tree (the Document element); from the
root, you can move through the tree to find all elements, attributes, text, comments,
processing instructions, etc. in the XML document.

Element
This interface represents an element in an XML document.

Attr
This interface represents an attribute of an element in an XML document.

Text
This interface represents a piece of text from the XML document. Any text in your
XML document becomes a Text node. This means that the text of a DOM object
is a child of the object, not a property of it. The text of an Element is represented
as a Text child of an Element object; the text of an Attr is also represented that way.

Comment
This interface represents a comment in the XML document. A comment begins
with <!-- and ends with -->. The only restriction on its contents is that two con-
secutive hyphens (--) can appear only at the start or end of the comment. Other
than that, a comment can include anything, such as angle brackets (< >), amper-
sands (&), and single or double quotation marks (* ").

ProcessingInstruction
This interface represents a processing instruction in the XML document. Process-
ing instructions look like this:

<?xml-stylesheet href="case-study.xsl" type="text/xsl1"?>

Processing instructions contain processor-specific information. The PI here (PI is
XML jargon—feel free to drop this into casual conversations to impress your
friends) is the standard way to associate an XSLT stylesheet with an XML document
(more on this in a minute).

When you parse an XML document with a DOM parser, it:

* Creates objects (Elements, Attr, Text, Comments) representing the contents of the
document. These objects implement the interfaces defined in the DOM
specification.

* Arranges these objects in a tree. Each Element in the XML document has some
properties (such as the element’s name) and may also have some children.

* Parses the entire document before control returns to your code. This means that
for large documents, there is a long delay while the document is parsed.

XML Basics | 13

DOM view of your document

The structure of your document (as the DOM sees it) is outlined below.

Node types:
Document Element Attr Text Comment Processinglnstruction CDATASection EntityReference

document root:

element: <postalcodes:

element: <title>

text: Most-used postal codes in HNovember 2000

element: <item>

element: <city>

text: Schenectady

element; <postalcodes
text: 34525

element: <usage-count:>

text: 2039

Figure 1-1. DOM tree representation of an XML document

The most significant thing about the DOM is that it is based on a tree view of your
document. An XSLT processor uses a very similar tree view (with some slight differ-
ences, such as the fact that not everything we deal with in XPath and XSLT has the
same root element). Understanding how a DOM parser works makes it easier to un-
derstand how an XSLT processor views your document.

A sample DOM tree. DOM, XSLT, and XPath all use tree structures to represent data from
an XML document. For this reason, it’s important to have at least a casual knowledge
of how DOM builds a tree structure. Our earlier <postalcodes> document is shown as
a DOM tree in Figure 1-1.

If we want to perform tasks such as find different parts of our XML document, sort the
subtrees based on the first character of the text of the <postalcode> element, or select
only the subtrees in which the text of the <usage-count> element has a numeric value
greater than 500, we have to start at the top of the DOM tree and work our way down
through the root element’s descendants. When we write XSLT stylesheets, we also start
at the root of the tree and work our way down.

14 | Chapter1: Getting Started

To be honest, the DOM tree built for our document is more complicated
*t% than our beautiful picture indicates. The whitespace characters in our
document (carriage return/line feed, tabs, spaces, etc.) become Text
nodes. Normally it’s a good idea to remove this whitespace so the DOM

tree won'’t be littered with these useless nodes, but I include them here
to give you a sense of the XML document’s structure.

SAX

The Simple API for XML was developed by David Megginson and others on the XML-
DEV mailing list. It has several important differences from DOM:

* The SAX API is interactive. As a SAX parser processes your document, it sends
events to your code. You don’t have to wait for the parser to finish the entire docu-
ment as you do with the DOM; you get events from the parser immediately. These
events let you know when the parser finds the start of the document, the start of
an element, some text, the end of an element, a processing instruction, the end of
the document, etc.

* SAX s designed to avoid the large memory footprint of DOM. In the SAX world,
you’re told when the parser finds things in the XML document; it’s up to you to
save those things. If you don’t do anything to store the data found by the parser,
it goes into the bit bucket.

* SAXdoesn’t provide the hierarchical view of the document that DOM does. If you
need to know a lot about the structure of an XML document and the context of a
given element, SAX isn’t much help. Each SAX event is stateless; that is, a SAX
event won't tell you, “Here’s some text for the <postalcode> element I mentioned
earlier.” A SAX parser only tells you, “Here’s some text.” If you need to know about
an XML document’s structure, you have to keep track of that information yourself.

The best thing about SAX is that it is interactive. Most of the transformations currently
done with XSLT take place on the server. As of this writing, most XSLT processors are
based on DOM parsers. In the near future, however, we’ll see XSLT processors based
on SAX parsers. This means that the processor can start generating results almost as
soon as the parse of the source document begins, resulting in better throughput and
creating the perception of faster service. Because DOM, XPath, and XSLT all use trees
to represent XML documents, DOM is more relevant to our discussions here. Never-
theless, it’s useful to know how SAX parsers work, especially as SAX-based XSLT
processors begin to rear their speedy little heads.

Other programming interfaces

There are a number of other XML programming interfaces, including JDOM, DOM4],
and StAX. These have two important characteristics:

XML Basics | 15

In-memory versus event-driven
In-memory interfaces, such as DOM, create data structures that represent the XML
document. Event-driven interfaces, such as SAX, receive data from the parser as it
parses the document.

Push versus pull
A push interface pushes data from the parser to the application. When the parser
has some data, it uses a callback interface to push that data to the application. SAX
is an example of a push interface. On the other hand, a pull interface is still event-
driven, but the application tells the parser when it wants the next event. StAX, the
Streaming API for XML, is an example of a pull interface. (StAX is also known as
JSR 173.)

There are two other approaches we’ll mention briefly. In data binding, an XML docu-
ment is transformed into an object. The contents of the original XML document are
represented as the properties of that object. Finally, a new parsing technique called
non-extractive XML processing creates Virtual Token Descriptors that contain the off-
set, length, and other information of XML tokens inside the XML file itself.

The Wikipedia entry http://en.wikipedia.org/wiki/XML#Processing XML _files has
more detail on these approaches as well as links to various tools that implement them.

XSLT Standards

XSLT 1.0 is defined in two documents: the XSLT and XPath specifications. XSLT 2.0
and XPath 2.0, on the other hand, are defined in a set of eight documents. We’ll discuss
all of those specifications briefly in the next section.

XSL transformations (XSLT) version 1.0

The original standard became a recommendation of the W3C on November 16, 1999.
The spec lives here: http://www.w3.0rg/TR/xslt.

XML path language (XPath) version 1.0

XPath 1.0 became a standard on the same day as XSLT 1.0. XPath began as part of
XSLT. If we’re going to write a stylesheet to transform an XML document, we have to
have a syntax for describing different parts of that document. As the development of
XSLT continued, it became obvious that XPath was useful for a variety of applications,
so XPath became a separate standard. You can find the definition of XPath 1.0 at http://
www.w3.org/TR/xpath.

XSL transformations (XSLT) version 2.0

The basic definition of XSLT 2.0 is at http://www.w3.0rg/TR/xslt20/. This document
defines the elements of XSLT 2.0 and a variety of functions and also defines how XSLT
2.0 processes an XML document.

16 | Chapter1: Getting Started

http://en.wikipedia.org/wiki/XML#Processing_XML_files
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt20/

XML path language (XPath) version 2.0

The basic definition of XPath 2.0 is at http://www.w3.0rg/TR/xpath20/. XPath 2.0 is
built on top of several other documents; we’ll list those next.

XQuery 1.0 and XPath 2.0 Data Model (XDM)

This spec defines the way XPath 2.0, XSLT 2.0, and XQuery 1.0 organize data. It defines
the information contained in the input to an XSLT 2.0 or XQuery 1.0 processor. It also
defines all of the legal values for expressions in XPath 2.0, XSLT 2.0, and XQuery 1.0.
You can find the spec at http://www.w3.0rg/TR/xpath-datamodel/.

XQuery 1.0 and XPath 2.0 functions and operators

This spec, also known as F&O, defines all of the functions and data operators available
in XPath 2.0 and XQuery 1.0. For example, the spec defines how an
xs:yearMonthDuration can be divided by an xs:double value. It also defines the
matches() function, which determines if a value matches a regular expression. The spec
is available at http://'www.w3.0rg/TR/xpath-functions/.

XQuery 1.0 and XPath 2.0 formal semantics

The formal semantics spec defines a precise meaning to all of the legal expressions in
XPath 2.0 and XQuery 1.0. The XQuery 1.0 and XPath 2.0 Data Model is used in those
precise definitions. Possibly the least useful spec to XSLT programmers, it’s available
at http://www.w3.0rg/TR/xquery-semantics/.

XSLT 2.0 and XQuery 1.0 serialization

The serialization spec defines how to take an instance of the XQuery 1.0/XPath 2.0
Data Model and serialize it. For the examples in this book, we’ll usually take the results
generated by our XSLT stylesheet and write them to a file; the serialization spec defines
how that process works. The spec is available at hitp://www.w3.0rg/TR/xslt-xquery-
serialization/.

XQuery 1.0: an XML query language

XQuery 1.0 is a separate language that is based on XPath and other query languages.
It is a superset of XPath 2.0. We won’t cover XQuery in any detail in this book, but be
aware that the data model, the functions, and the operators of XPath 2.0 are shared by
XQuery. See http://www.w3.0rg/TR/xquery/ for the complete details.

XML syntax for XQuery 1.0 (XQueryX)

One of the requirements of the XQuery working group was to provide an XML syntax
for the language. XQueryX provides that syntax. It maps the XQuery grammar into
XML tags. As such, it is not particularly easy or convenient for humans, but it can be

XML Basics | 17

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xquery/

very useful for various tools and utilities. The spec is available at http://www.w3.org/
TR/xqueryx.

XML Standards

When we talk about writing stylesheets, we’ll work with two standards: XSLT and
XPath. XSLT defines a set of primitives used to describe a document transformation,
while XPath defines a syntax for describing locations in XML documents. When we
write stylesheets, we’ll use XSLT to tell the processor what to do, and we’ll use XPath
to tell the processor what document to do it to. Both standards are available at the
W3C’s web site; see http://www.w3.org/TR/xslt and http://www.w3.0rg/TR/xpath for
more information.

There are other XML-related standards, of course. We’ll discuss them here briefly, with
a short mention of how (or whether) they relate to our work with XSLT and XPath.

XML 1.0

The foundation upon which everything else is built. See http://www.w3.0rg/TR/REC-
xml.

XML 1.1
You can find the XML 1.1 standard at http://www.w3.org/TR/xml11/.

The Extensible Stylesheet Language (XSL)

Also called the Formatting Objects specification or XSL-FO, this standard deals with
rendering XML elements. Although most people think of rendering as formatting for
a browser or a printed page, researchers use the specification to render XML elements
as Braille or as audio files. (That being said, the main market for this technology is in
producing high-quality printed output.) As of this writing, the latest version of XSL is
1.1. A couple of the examples in this book use formatting objects and the Apache XML
Project’s Formatting Object to PDF translator (FOP) tool; see http://xml.apache.org/
fop for more information on FOP. For more information on XSL, see http:/
www.w3.0rg/TR/xsl.

XML Schemas

In our earlier examples, we had a brief example of an XML Schema. Part 1 of the
specification deals with XML document structures; it contains XML elements that de-
fine what can appear in an XML document. You use these elements to specify which
elements can be nested inside others, how many times each element can appear, the
attributes of those elements, and other features. Part 2 of the specification defines basic
datatypes used in XML Schemas and rules for deriving new datatypes from existing
ones.

18 | Chapter1: Getting Started

http://www.w3.org/TR/xqueryx
http://www.w3.org/TR/xqueryx
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xml11/
http://xml.apache.org/fop
http://xml.apache.org/fop
http://www.w3.org/TR/xsl
http://www.w3.org/TR/xsl

The two specifications are available at http://www.w3.0rg/TR/xmlschema-1 and http://
www.w3.o0rg/TR/xmlschema-2. For a good introduction to XML Schemas, see the XML
Schema Primer, available at http://'www.w3.0rg/TR/xmlschema-0.

RelaxNG

RelaxNG is a simple schema language designed as an alternative to XML Schema. One
significant difference between the two is that RelaxNG avoids the many datatype def-
initions of XML Schema. With RelaxNG, you validate an XML document with datatype
definitions imported from elsewhere (including XML Schema, for example). The home
page of the OASIS RelaxNG committee is here: http://www.oasis-open.org/committees/
relax-ng/. You can find the latest version of the spec as well as a tutorial there.

Schematron

Schematron is an elegant way to validate documents. It has a simple syntax (only six
elements) and uses XPath to specify patterns in XML documents. The most interesting
and most widely used implementation of Schematron is written in XSLT. For more
information, including a link to the latest version of the ISO standard for Schematron,
visit http://www.schematron.com/.

The Simple API for XML (SAX)

The SAX API defines the events and interfaces used to interact with a SAX parser. SAX
and DOM are the most common APIs used to work with XML documents. See http://
www.saxproject.org/ for the complete specification.

Document Object Model (DOM)

The DOM, as we discussed earlier, is a programming API for documents. It defines a
set of interfaces and methods used to view an XML document as a tree structure. XSLT
and XPath use a similar tree view of XML documents. The home of the DOM is http://
www.w3.0rg/DOM/. This page contains links to all of the W3C Recommendations
(Levels 1, 2, and 3) and related documents. The DOM doesn’t affect what we’ll do here,
but it’s useful to have a passing knowledge of it. (The XPath data model is similar to
the DOM.)

Namespaces in XML

As we mentioned earlier, namespaces provide a way to avoid name collisions when two
XML elements have the same name. See http://'www.w3.0rg/TR/REC-xml-names/ for
the version 1.0 spec; version 1.1 is at http://www.w3.0rg/TR/REC-xml-names11/.

Associating stylesheets with XML documents

It’s possible to reference an XSLT stylesheet within an XML document. This specifi-
cation uses processing instructions to define one or more stylesheets that should be

XML Basics | 19

http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xmlschema-0
http://www.oasis-open.org/committees/relax-ng/
http://www.oasis-open.org/committees/relax-ng/
http://www.schematron.com/
http://www.saxproject.org/
http://www.saxproject.org/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names11/

used to transform an XML document. You can define different stylesheets to be used
for different browsers. See http://www.w3.0rg/TR/xml-stylesheet for complete informa-
tion. Here’s the start of an XML document, with two associated stylesheets:

<?xml version="1.0"?>

<?xml-stylesheet href="docbook/html/docbook.xs1" type="text/xsl"?>
<?xml-stylesheet href="docbook/wap/docbook.xs1" type="text/xsl" media="wap"?>

In this example, the first stylesheet is the default because it doesn’t have a media at-
tribute. The second stylesheet will be used when the User-Agent field from the HTTP
header contains the string wap, identifying the requester of a document as a WAP
browser. The advantage of this technique is that you can define several different style-
sheets within a particular document and have each stylesheet generate useful results
for different browser or client types. The disadvantage of this technique is that we’re
effectively putting rendering instructions into our XML document, something we prefer
to avoid.

Scalable Vector Graphics (SVG)

The SVG specification defines an XML vocabulary for vector graphics. Described by
some as “PostScript with angle brackets,” it allows you to define images that can be
scaled to any size or resolution. See http://www.w3.0rg/TR/SVG/ for details.

XML pointer language (XPointer) version 1.0

XPointer provides a way to identify a fragment of a web resource. It uses XPath to
identify fragments. The XPointer Framework is defined at http://www.w3.0rg/TR/xptr-
framework/.

XML linking language (XLink) version 1.0

XLink defines an XML vocabulary for linking to other web resources within an XML
document. It supports the unidirectional links we’re all familiar with in HTML, as well
as more sophisticated links. See http://www.w3.0rg/TR/xlink/.

Installing XSLT Processors

Before we dive in to creating stylesheets, we’ll cover how to install four popular XSLT
processors.

Installing Xalan

In this section, we’ll go over how to install the Xalan XSLT processor. In the next
chapter, we’ll create our first stylesheet and use it to transform an XML document.

The installation process is pretty simple, assuming you already have a Java Runtime
Environment (JRE) installed on your machine. Although very little of the code we look

20 | Chapter1: Getting Started

http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xlink/

atin this book uses Java, the Xalan XSLT processor itself is written in Java. Once you’ve
installed the JRE, go to http://xml.apache.org/xalan-j/ and download the latest stable
build of the code. (If you're feeling brave, feel free to download last night’s build
instead.)

Once the Xalan .zip or .gzip file is downloaded, unpack it and add three files to your
CLASSPATH. The three files include two .jar files for the Xerces parser, and the .jar file
for the Xalan stylesheet engine itself. As of this writing, the .jar files are named xa
lan.jar, xercesImpl.jar, and xml-apis.jar. (There’s a fourth file, bsf.jar, that includes the
Bean Scripting Framework, but we’ll use that for extensions only.)

To make sure Xalan is installed correctly, go to a command prompt and type the fol-
lowing command:

java org.apache.xalan.xslt.Process

This is a Java class, so everything is case-sensitive. You should see an error message like
this:
java org.apache.xalan.xslt.Process
=xslproc options:
-IN inputXMLURL
[-XSL XSLTransformationURL]
[-OUT outputURL]
[-LXCIN compiledStylesheetFileNameIn]
[-LXCOUT compiledStylesheetFileNameOutOut]

If you get this message, you're all set! You’re ready for the next chapter, in which we’ll
build our very first XSLT stylesheet.

Installing Saxon

As of this writing, the most complete open source XSLT 2.0 stylesheet processor is
Saxon. Written by Michael Kay, the editor of the XSLT 2.0 spec, it is available at http://
saxon.sourceforge.net. When you download the file (currently saxonb9-0-0-2j.zip), add
saxon9.jar to your CLASSPATH. There are also nine other files, saxon9-ant.jar, saxon9-
dom.jar, saxon9-dom4j.jar, saxon9-jdom.jar, saxon9-s9api.jar, saxon9-sql.jar, saxon9-
xom.jar, saxon9-xpath.jar, and saxon9-xqj.jar. These .jar files enable additional func-
tions; see the Saxon documentation for more information about them. For most of
what we’ll do in this book, saxon9.jar is all you’ll need.

Once you’ve installed Saxon and updated your classpath, go to a command prompt
and type the following command:

java net.sf.saxon.Transform

You should get a message like this:

No source file name
Saxon 9.0.0.3] from Saxonica
Usage: see http://www.saxonica.com/documentation/using-xsl/commandline.html

Installing XSLT Processors | 21

http://xml.apache.org/xalan-j/
http://saxon.sourceforge.net
http://saxon.sourceforge.net

Options:

-a Use xml-stylesheet PI, not style-doc argument
-c:filename Use compiled stylesheet from file
-cr:classname Use collection URI resolver class

-dtd:on|off Validate using DTD

-expand:on|off Expand defaults defined in schema/DTD
-explain[:filename] Display compiled expression tree

-ext:on|off Allow|Disallow external Java functions
-im:modename Initial mode

-it:template Initial template

-l:on|off Line numbering for source document
-m:classname Use message receiver class

-o:filename Output file or directory

-or:classname Use OutputURIResolver class
-outval:recover|fatal Handling of validation errors on result document
-p:on|off Recognize URI query parameters

-r:classname Use URIResolver class

-repeat:N Repeat N times for performance measurement
-s:filename Initial source document

-sa Schema-aware transformation

The error message will list dozens of options. Most of the time we’ll simply specify the
source XML file and the XSLT stylesheet.

Saxon is also available in a closed source version, Saxon-SA, that provides complete
support for the XML Schema functions defined in XSLT 2.0, XPath 2.0, and XQuery
1.0. All of the examples in this book that use schema-aware functions were tested with
the closed source, commercial version of Saxon.

To install the schema-aware version of Saxon, you need to add saxon9sa.jar to your
CLASSPATH. When you purchase Saxon-SA, you’ll get a saxon-license.lic file; put that file
into the Saxon/bin directory and add that directory to your system PATH. The command
to run the schema-aware version of Saxon is slightly different:

java com.saxonica.Transform

The version number will be different, but everything else should be the same:

No source file name
Saxon-SA 9.0.0.3J from Saxonica
Usage: see http://www.saxonica.com/documentation/using-xsl/commandline.html
Options:
-a Use xml-stylesheet PI, not style-doc argument

Installing the Microsoft XSLT Processor

The most commonly used XSLT processor in the .NET world is the Microsoft XSLT
processor. The best way to find the tools is to visit http://msdn.microsoft.com/xml. As
of this writing (2008), the file you want to download is msxsl.exe. Put this on your
system path, then go to a command prompt and type the following command:

msxsl

22 | Chapter1: Getting Started

http://msdn.microsoft.com/xml

You’ll see a message like this:

Microsoft (R) XSLT Processor Version 4.0
Usage: MSXSL source stylesheet [options] [param=value...] [xmlns:prefix=uri...]

Options:
-? Show this message
-o filename Write output to named file
-m startMode Start the transform in this mode
-XW Strip non-significant whitespace from source and stylesheet

In Chapter 9, we’ll look at C# code that uses the XSLT processor built into the .NET
framework. If we’re just transforming XML documents from the command line,
msxsl.exe is all we’ll need.

Installing the Altova XSLT Engine

As of this writing (early 2008), the only zero-cost XSLT 2.0 processor that provides
schema support is the Altova XSLT engine. This is the XSLT processor at the heart of
Altova’s XMLSpy product. It is currently a Windows-only download available under
a royalty-free license at http://www.altova.com/altovaxml.

To install the engine, download the software (currently a setup file named
altovaxml2008.exe) and run it. At a command prompt, type the following command:

altovaxml

You’ll see a message like this:

AltovaXML Version 2008 sp1

Copyright (c) 1998-2007 Altova GmbH. All rights reserved.
Use of this software is subject to the license agreement at
http://www.altova.com/altovaxmldla.html

Use the xslt1 engine:

/xslt1 <filename> /in <filename> [/param name=value] [/out <filename>]
Use the xslt2 engine:

/xslt2 <filename> /in <filename> [/param name=value] [/out <filename>]
Use the xquery engine:

/xquery <filename> [/in <filename>] [/param name=value] [/out <filename>]

[serialization options]

Use the validator:

/validate <filename> [/schema <filename> | /dtd <filename>]

/wellformed <filename>

Parameters:
/validate, /v <filename> Schema validates the specified XML file
/wellformed, /w <filename> Check if specified XML file is well-formed
/xslt1 <filename> Sets the source for XSLT1 stylesheet
/xslt2 <filename> Sets the source for XSLT2 stylesheet
/xquery, /xq <filename> Sets the source for XQuery expression

Installing XSLT Processors | 23

http://www.altova.com/altovaxml

/in <filename> Sets the source for XML data

Jout <filename> Sets the output file name
If omitted, data is written to stdout
/param <name>=<value> Adds external paramter
Summary

In this chapter, we’ve gone over the basics of XML and talked about DOM and SAX,
two standards that are commonly used by XSLT processors. We also talked about other
technology standards and how to install several stylesheet processors. At this point,
you’ve got everything you need to build and use your first stylesheets, which we’ll do
in the next chapter.

24 | Chapter1: Getting Started

CHAPTER 2
The Obligatory Hello World Example

In future chapters, we’ll spend a lot of time talking about XSLT, XPath, and various
advanced functions used to transform XML documents. First, though, we’ll go through
a short example to illustrate how stylesheets work.

Goals of This Chapter

By the end of this chapter, you should know:

* How to create a basic stylesheet
* How to use a stylesheet to transform an XML document
* How a stylesheet processor uses a stylesheet to transform an XML document

e The structure of an XSLT stylesheet

Transforming Hello World

Continuing the tradition of Hello World examples begun by Brian Kernighan and
Dennis Ritchie in The C Programming Language (Prentice Hall, 1988), we’ll transform
a Hello World XML document.

Our Sample Document

First, we’ll look at our sample document. This simple XML document, courtesy of the
XML 1.0 specification, contains the famous friendly greeting to the world:
<?xml version="1.0"?>
<!-- greeting.xml -->
<greeting>
Hello, World!
</greeting>

What we’d like to do is transform this fascinating document into something we can
view in an ordinary household browser.

25

A Sample Stylesheet

Here’s an XSLT stylesheet that defines how to transform the XML document:

<?xml version="1.0"?>

<!-- greeting.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/">
<xsl:apply-templates select="greeting"/>
</xsl:template>

<xsl:template match="greeting">
<html>
<body>
<h1>
<xsl:value-of select="."/>
</h1>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

We'll talk about these elements and what they do in just a minute. Keep in mind that
the stylesheet is itself an XML document, so we have to follow all of the document rules
we discussed in the previous chapter.

Transforming the XML Document

To transform the XML document using the XSLT stylesheet, run this command if
you’re using Xalan:

java org.apache.xalan.xslt.Process -in greeting.xml -xsl greeting.xsl
-out greeting.html

For Saxon, the command looks like this:

java net.sf.saxon.Transform -o greeting.html greeting.xml greeting.xsl

If you’re using the Schema-aware version of Saxon, the name of the Java class is
different:

java com.saxon.Transform -o greeting.html greeting.xml greeting.xsl

The command for the Altova XSLT engine is:
altovaxml /xsltl greeting.xsl /in greeting.xml /out greeting.html

Finally, if you’re using Microsoft’s MSXSL, type this command:

msxsl greeting.xml greeting.xsl -o greeting.html

26 | Chapter2: The Obligatory Hello World Example

| [} files///C:/projec..id/greeting.html (£ |

Hello, World!

Figure 2-1. HTML version of our Hello World file

This command transforms the document greeting.xml, using the templates found in
the stylesheet greeting.xsl. The results of the transformation are written to the file
greeting.html. Check the output file in your favorite browser to make sure the trans-
formation worked correctly.

W
A

This is one of the few times in this book we’ll cover the syntax of the

command to run a transformation. The exception to this rule will be

%5 when you need to do something more advanced (pass parameters to a

" stylesheet, for example). Typically, all you need to know are the file-
names of the XML, XSL, and output files, and the format of the com-
mand for your stylesheet processor.

Stylesheet Results

The XSLT processor generates these results:

<html>
<body>
<h1>

Hello, World!
</h1>
</body>
</html>

When rendered in a browser, our output document looks like Figure 2-1.

Congratulations! You’ve now used XSLT to transform an XML document.

How a Stylesheet Is Processed

Now that we’re giddy with the excitement of having transformed an XML document,
let’s discuss the stylesheet and how it works. A big part of the XSLT learning curve is
figuring out how stylesheets are processed. To make this clear, we’ll go through the
steps taken by the stylesheet processor to create the HTML document we want.

Parsing the Stylesheet

Before the XSLT processor can process your stylesheet, it has to read it. Conceptually,
it doesn’t matter how the XSLT processor stores the information from your stylesheet.

How a Stylesheet Is Processed | 27

For our purposes, we’ll just assume that the XSLT processor can magically find any-
thing it needs in our stylesheet. (If you really must know, Xalan uses an optimized table
structure to represent the stylesheet; other processors may use that approach or some-
thing else.)

Our stylesheet contains three items: an <xsl:output> element that specifies HTML as
the output format, and two <xsl:template> elements that specify how parts of our XML
document should be transformed.

Parsing the Transformee

Now that the XSLT processor has processed the stylesheet, it needs to read the docu-
ment it’s supposed to transform. The XSLT processor builds a tree view from the XML
source. This tree view is what we’ll keep in mind when we build our stylesheets.

Lather, Rinse, Repeat

Finally, we’re ready to begin the actual work of transforming the XML document. The
XSLT processor may set some properties based on your stylesheet (in the previous
example, it would setits output method to HTML), then it begins processing as follows:

1. Do I have any nodes to process? The nodes to process are represented by the
context. Initially, the context is the root of the XML document, but it changes
throughout the stylesheet. We’ll talk about the context extensively in the next
chapter. (Note: all XSLT processors enjoy being anthropomorphized, so I'll often
refer to them this way.)

While any nodes are in the context, do the following;:

2. Get the next node from the context. Do I have any <xsl:template>s that match it?
(In our example, the next node is the root node, represented in XPath syntax
by /.) There is a template that matches this node—it’s the one that begins
<xsl:template match="/">.

3. If one or more <xsl:template>s match, pick the right one and process it. The right
one is the most specific template. For example, <xsl:template match="/html/body/
h1/p"> is more specific than <xsl:template match="p">. (See the discussion of
<xsl:template> in Appendix A for more information.) If no <xs1:template>s match,
the XSLT processor uses some built-in rules. See the section “Built-in Template
Rules” later in this chapter for more information.

Notice that this is a recursive processing model. We process the current node by finding
the right xsl:template for it. That xsl:template may in turn invoke other
xsl:templates, which invoke xs1:templates as well. This model takes some getting used
to, but it is actually quite elegant once you’re accustomed to it.

28 | Chapter2: The Obligatory Hello World Example

If it helps, you can think of the root template (<xsl:template

match="/">) as themain method in a C, C++, or Java program. No matter

* %is¢ how much code you’ve written, everything starts in main. Similarly, no

" matter how many <xsl:template>s you’ve defined in your stylesheet,
everything starts in <xsl:template match="/">.

Walking Through Our Example

Let’s revisit our example and see how the XSLT processor transforms our document:

1.
2.

The XSLT stylesheet is parsed and converted into a tree structure.

The XML document is also parsed and converted into a tree structure. Don’t worry
too much about what that tree looks like or how it works; for now, just assume
that the XSLT processor knows everything that’s in the XML document and the
XSLT stylesheet. After the first two steps are done, when we describe various things
using XSLT and XPath, the processor knows what we’re talking about.

. The XSLT processor is now at the root of the XML document. This is the original

context.

. There is an xs1:template that matches the document root:

<xsl:template match="/">
<xsl:apply-templates select="greeting"/>
</xsl:template>

A single forward slash (/) is an XSLT pattern (written in XPath) that matches
“document nodes.”

. Now the process begins again inside the xsl:template. Our only instruction here

is to apply whatever xsl:templates might apply to any greeting elements in the
current context. The current context inside this template is defined by the match
attribute of the xsl:template element. This means the XSLT processor is looking
for any greeting elements at the document root.

Because one greeting element is at the document root, the XSLT processor must
deal with it. (If more than one element matches in the current context, the XSLT
processor deals with each one in the order in which they appear in the document;
this is known as document order.) Looking at the greeting element, the
xsl:template that applies to it is the second xsl:template in our stylesheet:

<xsl:template match="greeting">
<html>
<body>
<h1>
<xsl:value-of select="."/>
</h1>
</body>
</html>
</xsl:template>

How a Stylesheet Is Processed | 29

6. Now we’re in the xs1:template for the greeting element. The first three elements
in this xsl:template (<html>, <body>, and <h1>) are HTML elements. Because
they’re not defined with a namespace declaration, the XSLT processor passes those
HTML elements through to the output stream unaltered.

The middle of our xsl:template is an xsl:value-of element. This element writes
the value of something to the output stream. In this case, we’re using the XPath
expression . (a single period) to indicate the current node. The XSLT processor
looks at the current node (the greeting element we’re currently processing) and
outputs its text.

Because our stylesheet is an XML document (we’re really harping on that, aren’t
we?), we have to end the <h1>, <body>, and <html> elements here. At this point,
we’re done with this template, so control returns to the template that invoked us.

7. Now we’re back in the template for the root element. We’ve processed all the
<greeting> elements, so we’re finished with this template.

8. No more elements are in the current context (there is only one root element), so
the XSLT processor is done.

Stylesheet Structure

As the final part of our introduction to XSLT, we’ll look at the contents of the stylesheet
itself. We’ll explain all the things in our stylesheet and discuss other approaches we
could have taken.

The <xsl:stylesheet> Element

The <xsl:stylesheet> element is typically the root element of an XSLT stylesheet:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

First of all, the <xs1:stylesheet> element defines the version of XSLT we’re using, along
with a definition of the xs1 namespace. To be compliant with the XSLT specification,
your stylesheet should always begin with this element, coded exactly as shown here.
Some stylesheet processors, notably Xalan, issue a warning message if your
<xsl:stylesheet> element doesn’t have these two attributes with these two values. For
all examples in this book, we’ll start the stylesheet with this exact element, defining
other namespaces as needed.

The <xsl:output> Element

Next, we specify the output method. The XSLT specification defines three output
methods: xml, html, and text. We're creating an HTML document, so HTML is the
output method we want to use. In addition to these three methods, an XSLT processor

30 | Chapter2: The Obligatory Hello World Example

is free to define its own output methods, so check your XSLT processor’s documenta-
tion to see if you have any other options:”

<xsl:output method="html"/>

Avariety of attributes are used with the different output methods. For example, if you’re
using method="xm1", you can use doctype-public and doctype-system to define the pub-
lic and system identifiers to be used in the the document type declaration. If you’re
using method="xml" or method="html", you can use the indent attribute to control
whether or not the output document is indented. The discussion of the <xs1:output>
element in Appendix A has all the details.

Our First <xsl:template>

Our first template matches "/", the XPath expression for the document’s root element:

<xsl:template match="/">
<xsl:apply-templates select="greeting"/>
</xsl:template>

The <xsl:template> for <greeting> Elements

The second <xsl:template> element processes any <greeting> elements in our XML
source document:
<xsl:template match="greeting">
<html>
<body>
<h1>
<xsl:value-of select="."/>
</h1>
</body>
</html>
</xsl:template>

Built-in Template Rules

Although most stylesheets we’ll develop in this book explicitly define how various XML
elements should be transformed, XSLT defines several built-in template rules thatapply
in the absence of any specific rules. These rules have a lower priority than any other
templates, so they’re always overridden when you define your own templates. The
built-in templates are listed here.

" [2.0] XSLT 2.0 also defines the xhtml output method.

Stylesheet Structure | 31

Built-in template rule for element and document nodes

This template processes the document node and any of its children. This processing
ensures that recursive processing will continue, even if no template is declared for a
given element:

<xsl:template match="*|/">

<xsl:apply-templates/>
</xsl:template>

As an example, given this document:

<?xml version="1.0"?>
x>
<y>
<z/>
</y>
</z>
The built-in template rule for element and document nodes means that we could write
a stylesheet containing only a template with match="z" and the <z> element will still be
processed, even if there are no template rules for the <x> and <y> elements.

Built-in template rule for modes

This template ensures that element and document nodes are processed, regardless of
any mode that might be in effect. (See “Templates a la mode” in Chapter 5 for more
information on the mode attribute.)

n,n

<xsl:template match="*|/" mode="x">
<xsl:apply-templates mode="x"/>
</xsl:template>

Built-in template rule for text and attribute nodes

This template copies the text of all text and attribute nodes to the output tree. Be aware
that you have to actually select the text and attribute nodes for this rule to be invoked:

<xsl:template match="text()|@*">
<xsl:value-of select="."/>
</xsl:template>
Built-in template rule for comment and processing instruction nodes

This template does nothing:

<xsl:template match="comment()|processing-instruction()"/>

Built-in template rule for namespace nodes

This template also does nothing:

<xsl:template match="namespace()"/>

32 | Chapter2: The Obligatory Hello World Example

Top-Level Elements

To this point, we haven’t actually talked about our source document or how we’re
going to transform it. We’re simply setting up some properties for the transform. There
are other elements we can put at the start of our stylesheet. Any element whose parent
is the <xsl:stylesheet> element is called a top-level element. Here is a brief discussion
of the other top-level elements:

<xsl:include> and <xsl:import>

These elements refer to another stylesheet. The other stylesheet and all of its con-
tents are included in the current stylesheet. The main difference between
<xsl:import> and <xsl:include> is that a template, variable, or anything else im-
ported with <xs1:import> has a lower priority than the things in the current style-
sheet. This gives you a mechanism to subclass stylesheets, if you want to think
about this from an object-oriented point of view. You can import another stylesheet
that contains common templates, but any templates in the importing stylesheet will
be used instead of any templates in the imported stylesheet. Another difference is
that <xsl:import> can only appear at the beginning of a stylesheet, while
<xsl:include> can appear anywhere.

<xsl:strip-space> and <xsl:preserve-space>
These elements contain a space-separated list of elements from which white-
space should be removed or preserved in the output. To define these elements
globally, use <xsl:strip-space elements="*"/> or <xsl:preserve-space
elements="*"/>.If we want to specify that whitespace be removed for all elements
except for <greeting> and <salutation> elements, we would add this markup to
our stylesheet:
<xsl:strip-space elements="*"/>

<xsl:preserve-space elements="greeting
salutation"/>

<xsl:key>
This element defines a key, which is similar to defining an index on a database.
We'll talk more about the <xs1:key> element and the key() function in “Branching
Elements of XSLT” in Chapter 5.

<xsl:variable>
This element defines a variable. Any <xsl:variable> that appears as a top-level
element is global to the entire stylesheet. Variables are discussed extensively in
“Variables” in Chapter 5.

<xsl:param>
This element defines a parameter. As with <xsl:variable>, any <xsl:param> that is
a top-level element is global to the entire stylesheet. Parameters are discussed
extensively in “Parameters” in Chapter 5.

Stylesheet Structure | 33

Other stuff
More obscure elements that can appear as top-level elements are <xsl:decimal-
format>, <xsl:namespace-alias>, and <xsl:attribute-set>. All are discussed in
Appendix A.

Other Approaches

One mantra of the Perl community is, “There’s more than one way to do it.” That’s
true with XSLT stylesheets as well. We could have written our stylesheet like this:

<?xml version="1.0"?>

<!-- greeting2.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/">
<html>
<body>
<xsl:apply-templates select="greeting"/>
</body>
</html>
</xsl:template>

<xsl:template match="greeting">
<h1>
<xsl:value-of select="."/>
</h1>
</xsl:template>
</xsl:stylesheet>

In this version, we put the wrapper elements for the HTML document in the template
for the root element. One of the things you should think about as you build your style-
sheets is where to put elements such as <html> and <body>. Let’s say our XML document
looked like this instead:
<?xml version="1.0"?>
<greetings>
<greeting>Hello, World!</greeting>
<greeting>Hey, Y'all!</greeting>
</greetings>
In this case, we would have to put the <html> and <body> elements in the
<xsl:template> for the root element. If they were in the <xsl:template> for the
<greeting> element, the output document would have multiple <html> elements, which
isn’t valid in an HTML document. Our updated stylesheet would look like this:
<?xml version="1.0"?>
<!-- multiple-greetings.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

34 | Chapter2: The Obligatory Hello World Example

<xsl:output method="html"/>

<xsl:template match="/">
<html>
<body>
<xsl:apply-templates select="greetings/greeting"/>
</body>
</html>
</xsl:template>

<xsl:template match="greeting">
<h1>
<xsl:value-of select="."/>
</h1>
</xsl:template>
</xsl:stylesheet>

Notice that we had to modify our XPath expression; what was originally greeting is
now greetings/greeting. As we develop stylesheets, we’ll have to make sure our XPath
expressions match the document structure. When you get unexpected results, or no
results, an incorrect XPath expression is usually the cause.

As a final example, we could also write our stylesheet with only one xs1:template:

<?xml version="1.0"?>

<!-- greeting3.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/">
<html>
<body>
<h1>
<xsl:value-of select="greeting"/>
</h1>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

Although this is the shortest of our sample stylesheets, our examples will tend to feature
a number of short templates, each of which defines a simple transform for a few ele-
ments. This approach makes your stylesheets much easier to understand, maintain,
and reuse. The more transformations you cram into each xsl:template, the more dif-
ficult it is to debug your stylesheets, and the more difficult it is to reuse the templates
elsewhere.

Stylesheet Structure | 35

Sample Gallery

Before we get into more advanced topics, we’ll transform our Hello World document
in other ways. We’ll look through simple stylesheets that convert our small XML docu-
ment into the following things:

* A Scalable Vector Graphics (SVG) file

e A PDF file

* A Java program

* A Virtual Reality Modeling Language (VRML) file

The Hello World SVG File

Our first example will convert our Hello World document into an SVG file:

<?xml version="1.0"?>

<!-- svg-greeting.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:svg="http://www.w3.0rg/2000/svg">

<xsl:template match="/">
<svg:svg width="10cm" height="4cm">
<svg:g>
<svg:defs>
<svg:radialGradient id="MyGradient"
cx="4cm" cy="2cm" r="3cm" fx="4cm" fy="2cm">
<svg:stop offset="0%" style="stop-color:red"/>
<svg:stop offset="50%" style="stop-color:blue"/>
<svg:stop offset="100%" style="stop-color:red"/>
</svg:radialGradient>
</svg:defs>
<svg:rect style="fill:url(#MyGradient); stroke:black"
x="1cm" y="1cm" width="8cm" height="2cm"/>
<svg:text x="5.05cm" y="2.25cm" text-anchor="middle"
style="font-family:Verdana; font-size:24;
font-weight:bold; fill:black">
<xsl:apply-templates select="greeting"/>
</svg:text>
<svg:text x="5cm" y="2.2cm" text-anchor="middle"
style="font-family:Verdana; font-size:24;
font-weight:bold; fill:white">
<xsl:apply-templates select="greeting"/>
</svg:text>
</svg:g>
</svg:svg>
</xsl:template>

36 | Chapter2: The Obligatory Hello World Example

Hello, World!

Figure 2-2. SVG version of our Hello World file

<xsl:template match="greeting">
<xsl:value-of select="."/>
</xsl:template>

</xsl:stylesheet>

As you can see from this stylesheet, most of the code here simply sets up the structure
of the SVG document. This is typical of many stylesheets; once you learn what the
output format should be, you merely extract content from the XML source document
and insert it into the output document at the correct spot. When we transform the
Hello World document with this stylesheet, here are the results:

<?xml version="1.0" encoding="UTF-8"?>
<svg:svg xmlns:svg="http://www.w3.0rg/2000/svg" width="10cm" height="4cm">
<svg:g>
<svg:defs>
<svg:radialGradient id="MyGradient" cx="4cm" cy="2cm" r="3cm"
fx="4cm" fy="2cm">
<svg:stop offset="0%" style="stop-color:red"/>
<svg:stop offset="50%" style="stop-color:blue"/>
<svg:stop offset="100%" style="stop-color:red"/>
</svg:radialGradient>
</svg:defs>
<svg:rect style="fill:url(#MyGradient); stroke:black" x="1cm"
y="1cm" width="8cm" height="2cm"/>
<svg:text x="5.05cm" y="2.25cm" text-anchor="middle"
style="font-family:Verdana; font-size:24; font-weight:bold; fill:black">
Hello, World!
</svg:text>
<svg:text x="5cm" y="2.2cm" text-anchor="middle"
style="font-family:Verdana; font-size:24; font-weight:bold; fill:white">
Hello, World!
</svg:text>
</svg:g>
</svg:svg>

When rendered in an SVG viewer, our Hello World document looks like Figure 2-2.

Sample Gallery | 37

This screen capture was made using the Adobe SVG plug-in inside the Internet Explorer
browser. You can find the plug-in at http://www.adobe.com/svg/. (Note that many
browsers now support SVG natively.)

The Hello World PDF File

To convert the Hello World file into a PDF file, we’ll first convert our XML file into
formatting objects. The Extensible Stylesheet Language for Formatting Objects (XSL-
FO) is an XML vocabulary that describes how content should be rendered. Here is our
stylesheet:

<?xml version="1.0"?>

<!-- fo-greeting.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:fo="http://www.w3.0rg/1999/XSL/Format">

<xsl:output method="xml"/>

<xsl:template match="/">
<fo:root xmlns:fo="http://www.w3.0rg/1999/XSL/Format">
<fo:layout-master-set>
<fo:simple-page-master master-name="standard"
margin-right="75pt" margin-left="75pt"
page-height="11in" page-width="8.5in"
margin-bottom="25pt" margin-top="25pt">
<fo:region-body margin-top="50pt" margin-bottom="50pt"/>
</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-reference="standard">
<fo:flow flow-name="xsl-region-body">
<xsl:apply-templates select="greeting"/>
</fo:flow>
</fo:page-sequence>
</fo:root>
</xsl:template>

<xsl:template match="greeting">
<fo:block line-height="76pt" font-size="72pt" text-align="center">
<xsl:value-of select="."/>
</fo:block>
</xsl:template>

</xsl:stylesheet>

This stylesheet converts our Hello World document into the following XML file:

<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.0rg/1999/XSL/Format">
<fo:layout-master-set>
<fo:simple-page-master master-name="standard" margin-right="75pt"
margin-left="75pt" page-height="11in" page-width="8.5in"
margin-bottom="25pt" margin-top="25pt">

38 | Chapter2: The Obligatory Hello World Example

http://www.adobe.com/svg/

#8 Adobe Acrobat Professional - [greeting. pdf] EJ@|X|
j’__,, File Edit View Document Comments Tools Advanced Window Help ~ | 8

PaESE S AN
T & &

O] W& UG el] oD
O eAHE TEQE

=h

|
4

Signatures \l Bookmarks

Hello, World!

Figure 2-3. PDF version of our Hello World file

<fo:region-body margin-top="50pt" margin-bottom="50pt"/>
</fo:simple-page-master>
</fo:layout-master-set>
<fo:page-sequence master-reference="standard">
<fo:flow flow-name="xsl-region-body">
<fo:block line-height="76pt" font-size="72pt" text-align="center">
Hello, World!
</fo:block>
</fo:flow>
</fo:page-sequence>
</fo:root>

This lengthy set of tags uses formatting objects to describe the size of the page, the
margins, font sizes, line heights, etc., along with the text extracted from our XML source
document. Now that we have the formatting objects, we can use the Apache XML
Project’s FOP tool. After converting the formatting objects to PDF, the PDF file looks
like Figure 2-3.

Here’s the command used to convert our file of formatting objects into a PDF file:

java org.apache.fop.apps.Fop greeting.fo greeting.pdf

The Hello World Java Program

Our last two transformations don’t involve XML vocabularies at all; they use XSLT to
convert the Hello World document into other formats. Next, we’ll transform our XML
source document into the source code for a Java program. When the program is com-
piled and executed, it prints the message from the XML document to the console. Here’s
our stylesheet:

<?xml version="1.0"?>

<!I-- java-greeting.xsl -->

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

Sample Gallery | 39

<xsl:output method="text" encoding="UTF-8"/>

<xsl:template match="/">
<xsl:text>
public class Greeting

{

public static void main(String[] argv)

{
</xsl:text>

<xsl:apply-templates select="greeting"/>
<xsl:text>

}

</xsl:text>
</xsl:template>

<xsl:template match="greeting">
<xsl:text>System.out.println("</xsl:text>
<xsl:value-of select="normalize-space()"/>
<xsl:text>");</xsl:text>

</xsl:template>

</xsl:stylesheet>
(Notice that we used <xsl:output method="text"> to generate text, not markup.) Our
stylesheet produces these results:

public class Greeting

{

public static void main(String[] argv)

{
System.out.println("Hello, World!");

}
}

The class name defined in the XSLT stylesheet (Greeting) must be the name of the
generated file. That means we have to specify the case-sensitive filename when we run
the transformation. Here’s how to do that with Xalan:

java org.apache.xalan.xslt.Process -in greeting.xml -xsl java-greeting.xsl
-out Greeting.java

For Saxon, the syntax is slightly simpler:
java net.sf.saxon.Transform -o Greeting.java greeting.xml java-greeting.xsl
Again, the Schema-aware version of Saxon is slightly different:
java.com.saxonica.Transform -o Greeting.java greeting.xml java-greeting.xsl
Finally, for MSXSL and the Altova XSLT engine, the commands are:

msxsl -o Greeting.java greeting.xml java-greeting.xsl

and:

altovaxml /xsltl java-greeting.xsl /in greeting.xml /out Greeting.java

40 | Chapter2: The Obligatory Hello World Example

When executed, our generated Java program looks like this:

C:\> java Greeting
Hello, World!

Although generating Java code from an XML document may seem strange, it is actually
avery useful technique. The FOP tool from the Apache XML Project does this; it defines
a number of properties in XML, then generates the Java source code to create class
definitions and get and set methods for each of those properties.

The Hello World VRML File

For our final transformation, we’ll create a VRML file from our XML source document.
Here’s the stylesheet that does the trick:

<?xml version="1.0"?>

<!-- vrml-greeting.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>#VRML V2.0 utf8

Shape
{
geometry ElevationGrid
{
xDimension 9
zDimension 9

xSpacing 1

zSpacing 1

height

[
0000000O0O0
0000000O0O0
00000O0O0O0OO0
000000O0O0OO0
000000O0O0O0
000000O0O0O0
000000O0O0O0
000000O0O0O0
000000000

]

colorPerVertex FALSE
color Color

{

color

[
000,111,000,111,000, 111,000, 111,
111,000, 111,000,111,000, 111,000,
000,111,000,111,000, 111,000, 111,
111, 000,111,000,111,000,111, 000,

Sample Gallery | 41

000,111,000,111,000,111,000, 11 1,
111,000, 111,000,111,000,111, 000,
000,111,000,111,000,111,000, 11 1,
111,000,111, 000,111,000,111, 000,
]

}
}
}

Transform

{
translation 4.5 1 4
children

[
Shape

{

geometry Text

{
</xsl:text>

<xsl:apply-templates select="greeting"/>
<xsl:text>
fontStyle FontStyle

{
justify "MIDDLE"
style "BOLD"

NavigationInfo

type ["EXAMINE","ANY"]

Viewpoint
{

position 4 1 10

}
</xsl:text>
</xsl:template>

<xsl:template match="greeting">
<xsl:text>string"</xsl:text>
<xsl:value-of select="normalize-space()"/>
<xsl:text>"</xsl:text>

</xsl:template>

</xsl:stylesheet>

As with our earlier stylesheet, our VRML-generating template is mostly boilerplate,
with content from the XML source document added at the appropriate point. The
<xsl:apply-templates> element is replaced with the value of the <greeting> element.

42 | Chapter2: The Obligatory Hello World Example

Hello, World!

e e

Figure 2-4. One view of the VRML version of our Hello World document

Hello, World!

=

Figure 2-5. Another view of the VRML version of our Hello World document

The VRML code here draws a checkerboard, then draws the text from the XML docu-
ment above it, floating in midair in the center of the document. A couple of views of
the VRML version of our XML document are shown in Figures 2-4 and 2-5.

The screenshots of the VRML world were generated with the Cortona VRML player.
You can download the player at http://www.parallelgraphics.com/cortona.

Although we haven’t discussed any of the specific vocabularies or file formats we’ve
used here, hopefully you understand that you can transform your XML documents into
any useful format you can think of. Through the rest of the book, we’ll cover several
common tasks you can solve with XSLT, all of which build on the basics we’ve discussed
here.

Sample Gallery | 43

http://www.parallelgraphics.com/cortona

Summary

Although our stylesheets here are trivial, they are much simpler than the corresponding
procedural code (written in Visual Basic, C++, Java, etc.) to transform any
<greeting> elements similarly. We’ve gone over the basics of what stylesheets are and
how they work.

As we go through this book, we’ll demonstrate the incredible range of things you can
do in XSLT stylesheets, including:

Using logic, branching, and control statements
Sorting and grouping elements
Linking and cross-referencing elements

Creating master documents that embed other XML documents, then sort, filter,
group, and format the combined documents.

Adding new functions to the XSLT stylesheet processor with XSLT’s extension
mechanism

XSLT has an extremely active user community. To see just how active, visit the XSL-
List site at http://www.mulberrytech.com/xsl/xsl-list/index.html.

Before we dive in to those topics, we need to talk about XPath, the syntax that describes
what parts of an XML document we want to transform into all of these different things.

44 | Chapter2: The Obligatory Hello World Example

http://www.mulberrytech.com/xsl/xsl-list/index.html

CHAPTER 3
XPath: A Syntax for Describing
Needles and Haystacks

XPath is a syntax used to describe parts of an XML document. With XPath, you can
refer to the first <para> element, the quantity attribute of the <part-number> element,
all <first-name> elements that contain the text "Joe", and many other variations. In a
stylesheet, the XSLT patterns in the match and select attributes of various elements use
XPath syntax to indicate how a document should be transformed. In this chapter, we’ll
discuss XPath in all its glory.

XPath is designed to be used inside an attribute in an XML document. The syntax is a
mix of basic programming language expressions (such as $x*6) and Unix-like path ex-
pressions (such as /sonnet/author/last-name). In addition to the basic syntax, XPath
provides a set of useful functions that allow you to find out various things about the
document.

One important point, though: XPath works with the parsed version of your XML
document. That means that some details of the original document aren’t accessible to
you from XPath. For example, entity references are resolved by the XSLT processor
before instructions in our stylesheet are evaluated. CDATA sections are converted to
text as well. That means we have no way of knowing whether a text node in an XPath
tree was in the original XML document as text, as an entity reference, or as part of a
CDATA section. As you get used to thinking about your XML documents in terms of
XPath expressions, this situation won’t be a problem, but it may confuse you at first.

[2.0] XPath has undergone enormous changes for version 2.0. Everything that worked
in XPath 1.0 still works in XPath 2.0, but there are new capabilities and operators that
can greatly simplify your life if you’re using an XSLT 2.0 processor. There are three
major XPath 2.0 topics that we’ll discuss separately in this chapter:

* In XPath 2.0’s view of the world, everything is a sequence. A sequence replaces the
concept of node-sets used in XPath 1.0. The main difference is that a sequence can
contain atomic values (more on those in a minute). Be aware that nodes in the
sequence (a document node, for example) can still have children. When we’re

45

working with parts of a document, it’s common that our sequence is an element
node with children and attributes; that one item sequence works just like the trees
you know and love from XPath 1.0.

e XPath 2.0 supports atomic values. In XPath 1.0, everything from the parsed XML
document was a node, including comments, text, and processing instructions. The
type system was relatively simple; there were strings, numbers, booleans, node-
sets, and something called a result tree fragment. In XPath 2.0, a sequence can
contain nodes from an XML document alongside things such as the xs:integer
value 42 or the xs:date value can be part of a sequence along with the nodes used
in XPath 1.0. Atomic values are defined in the XML Schema spec; an atomic value
isavalue that can’t be broken down into smaller parts. A value of type xs : integer or
xs:date, for example, is an atomic value.

* XPath 2.0 supports all of the built-in datatypes of XML Schema. This means we
can specify that a value must be of a particular datatype, we can create a new value
of a particular datatype, and we can cast a given value to a particular datatype. If
your XSLT 2.0 processor is schema-aware (more on that shortly), you can define
your own datatypes and use them inside XPath along with the XML Schema
datatypes. If your XSLT 2.0 processor is not schema-aware, it still supports a num-
ber of datatypes from XML Schema.

With those three exceptions, we’ll discuss the changes in XPath 2.0 as we cover XPath
in general.

The XPath Data Model

XPath 1.0 views an XML document as a tree of nodes. This tree is very similar to a
Document Object Model (DOM) tree, so if you’re familiar with the DOM, you should
have some understanding of how to build basic XPath expressions. (To be precise, this
is a conceptual tree; an XSLT processor or anything else that implements the XPath
standard doesn’t have to build an actual tree.)

[2.0] XPath 2.0 views everything as a sequence. A sequence can contain all of the nodes
we cover here as well as atomic values. Whenever we’re working with parsed data from
an XML document, the sequences we’re using are most likely nodes from the document
tree, so we won’t have to worry about atomic values. For now, just be aware that the
underlying data model in XPath 2.0 is different; we’ll cover those differences in great
detail later in this chapter.

Node Types
There are seven kinds of nodes in XPath:

* The document node (one per document)

¢ Element nodes

46 | Chapter3: XPath: A Syntax for Describing Needles and Haystacks

¢ Attribute nodes

e Text nodes

¢ Comment nodes

* Processing instruction nodes

* Namespace nodes

We'll talk about all the different node types in terms of the following document:

<?xml version="1.0"?>
<?xml-stylesheet href="sonnet.xsl" type="text/xsl"?>

<IDOCTYPE sonnet [
<!ELEMENT sonnet (auth:author, title, lines)>
<IATTLIST sonnet public-domain CDATA "yes"
type (Shakespearean | Petrarchan) "Shakespearean">
<IELEMENT auth:author (last-name,first-name,nationality,
year-of-birth?,year-of-death?)>
<IELEMENT last-name (#PCDATA)>
<IELEMENT first-name (#PCDATA)>
<IELEMENT nationality (#PCDATA)>
<IELEMENT year-of-birth (#PCDATA)>
<IELEMENT year-of-death (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT lines (line,line,line,line,
line,line,line,line,
line,line,line,line,
line,line)>
<IELEMENT line (#PCDATA)>
1>

<!-- Default sonnet type is Shakespearean, the other allowable -->
<!-- type is "Petrarchan." -->
<sonnet type='Shakespearean'>
<auth:author xmlns:auth="http://www.authors.com/">
<last-name>Shakespeare</last-name>
<first-name>William</first-name>
<nationality>British</nationality>
<year-of-birth>1564</year-of-birth>
<year-of-death>1616</year-of-death>
</auth:author>
<!-- Is there an official title for this sonnet? They're
sometimes named after the first line. -->
<title>Sonnet 130</title>
<lines>
<line>My mistress' eyes are nothing like the sun,</line>
<line>Coral is far more red than her lips red.</line>
<line>If snow be white, why then her breasts are dun,</line>
<line>If hairs be wires, black wires grow on her head.</line>
<line>I have seen roses damasked, red and white,</line>
<line>But no such roses see I in her cheeks.</line>
<line>And in some perfumes is there more delight</line>
<line>Than in the breath that from my mistress reeks.</line>
<line>I love to hear her speak, yet well I know</line>

The XPath Data Model | 47

<line>That music hath a far more pleasing sound.</line>
<line>I grant I never saw a goddess go,</line>

<line>My mistress when she walks, treads on the ground.</line>
<line>And yet, by Heaven, I think my love as rare</line>
<line>As any she belied with false compare.</line>

</lines>
</sonnet>
<!-- The title of Sting's 1987 album "Nothing like the sun" is -->
<!-- from line 1 of this sonnet. -->
The root node

The root node is the XPath node that contains the entire document. In our example,
the root node contains the <sonnet> element; it’s not the <sonnet> element itself. In an
XPath expression, the root node is specified with a single slash (/).

Unlike other nodes, the root node has no parent. It always has at least one child: the
document element. The root node also contains comments or processing instructions
that are outside the document element. In our sample, the two processing instructions
named xml-stylesheet and cocoon-process are both children of the root node, as are
the comments that appear before the <sonnet> tag and the comments that appear after
it. The string value of the root node (returned by <xsl:value-of select="/" />),is the
concatenation of all text nodes of the root node’s descendants, slammed together with-
out any spaces between them.

Element nodes

Every element in the original XML document is represented by an XPath element node.
In the previous document, an element node exists for the <sonnet> element, the
<auth:author> element, the <last-name> element, and so on. An element node’s children
include text nodes, element nodes, comment nodes, and processing instruction nodes
that occur within that element in the original document.

An element node’s string value (returned by <xsl:value-of select="sonnet">, for ex-
ample) is the concatenation of the text of this node and all of its children, in document
order (the order in which they appear in the original document). All entity references
(such as 81t;) and character references (such as ß, the lowercase “sharp S” char-
acter) in the text are resolved automatically. To XPath, those characters show up as <
and B; you can’t access the entity or character references from XPath.

The name of an element node (returned by the XPath name() function) is the element
name and any namespace in effect. In the previous example, the name() of the
<sonnet> element is sonnet. The name() of the <auth:author> element is auth:author.
Given the name of the node, XPath has functions to return the local name of the element
(author) and the URI of the namespace associated with the node (http://
www. authors.com). XPath 2.0 has additional functions to work with qualified names
(XML Schema xs:QName values) directly, including functions to extract a namespace
prefix and the URI associated with it.

48 | Chapter3: XPath: A Syntax for Describing Needles and Haystacks

Attribute nodes

At a minimum, an element node is the parent of one attribute node for each attribute
in the XML source document. In our sample document, the element node correspond-
ing to the <sonnet> element is the parent of an attribute node with a name of type and
a value of Shakespearean. A couple of complications for attribute nodes exist, however:

* Although an element node is the parent of its attribute nodes, those attribute nodes
are not children of their parent. The children of an element are the text, element,
comment, and processing instruction nodes contained in the original element. If
you want a document’s attributes, you must ask for them specifically. That rela-
tionship seems odd at first, but you’ll find that treating an element’s attributes
separately is usually what you want to do.

e If a DTD or schema defines default values for certain attributes, those attributes
don’t have to appear in the XML document. In our example, we declared an at-
tribute named public-domain that has a default value of yes. The actual <sonnet>
element doesn’t have this attribute, so the value of its public-domain attribute is
yes. Similarly, the default value for type is Shakespearean, so a <sonnet> element
without a type attribute uses the default value.

To make this situation even worse, an XML parser isn’t required to read an external
DTD. Ifit doesn’t, then any attribute nodes that represent default values not coded
in the document won’t exist. Fortunately, XSLT has some branching elements
(«<xsl:if> and <xsl:choose>) that can help you deal with these ambiguities; we’ll
discuss those in Chapter 5.

* The XML 1.0 specification defines two attributes (xml:1lang and xml:space) that
work differently. In other words, if the <auth:author> element in our sample docu-
ment contains the attribute xml:lang="en-US", that attribute applies to all elements
contained inside <auth:author>. Even though that attribute might apply to the
<last-name> element, <last-name> won’t have an attribute node named xml:1lang.
Similarly, the xml:space defines whether whitespace in an element should be pre-
served; valid values for this attribute are preserve and default. Whether these at-
tributes are in effect for a given element or not, the only attribute nodes an element
node contains are those tagged in the document and those defined with a default
value in the DTD.

We’ll discuss handling whitespace in “Dealing with Whitespace” in Chapter 4. For
detailed technical information on language codes and whitespace handling, see the
discussions of the XPath lang() function in Appendix C and also the XSLT
<xsl:preserve-space> and <xsl:strip-space> elements in Appendix A.

Text nodes

Text nodes are refreshingly simple; they contain text from an element. If the original
text in the XML document contained entity or character references, they are resolved
before the XPath text node is created. The text node is text, pure and simple. A text

The XPath Data Model | 49

node is required to contain as much text as possible; the next or previous node can’t
be a text node.

You might have noticed that there are no CDATA nodes in this list. If your XML docu-
ment contains text in a CDATA section, you can access the contents of the CDATA
section as a text node. You have no way of knowing if a given text node was originally
a CDATA section. Similarly, all entity references are resolved before anything in your
stylesheet is evaluated, so you have no way of knowing if a given piece of text originally
contained entity references.

Comment nodes

A comment node is also very simple—it has value but no name. Every comment in the
source document (except for comments in the DTD) becomes a comment node. The
value of the comment node is everything inside the comment—everything between
the opening <!-- and the closing -->.

Processing instruction nodes

A processing instruction node has two parts: a name (returned by the name() function)
and a string value. The string value is everything after the name, including whitespace,
but not including the ?> that closes the processing instruction.

Namespace nodes

Namespace nodes are almost never used in XSLT stylesheets; they exist primarily for
the XSLT processor’s benefit. Remember that the declaration of a namespace (such as
xmlns:auth="http://www.authors.net"), even though it looks like an attribute in the
XML source, becomes a namespace node, not an attribute node. Every element in the
scope of a namespace declaration has a namespace node. In our sonnet, for example,
every node in the <auth:author> node has a namespace node.

[2.0] In XPath 2.0, support for namespace nodes is optional.

Node Tests

XPath also has node tests. A node test looks like a function, but is used to match certain
types of nodes. A node test works like a predicate in that it returns only nodes that meet
certain criteria. XPath 1.0 has four node tests:

node()
Matches all nodes. The test node() is true for every kind of node.

text()
Matches text nodes only.

comment ()
Matches comment nodes.

50 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

processing-instruction()
Matches processing instruction nodes. If this node test includes a string, it matches
processing instruction nodes with that name. For example, processing-
instruction('cocoon-process') matches processing instruction nodes that begin
with <?cocoon-process>.

Matches all the nodes along a particular axis (we’ll cover axes shortly). For exam-
ple, child::* matches all the element children of a node, whereas attribute: :*
matches all the attributes of a node.

NCName:*
Matches all the nodes in a particular namespace. In our sonnet, auth:* matches
any element that has the namespace URI http://www.authors.com/.

[2.0] New node tests in XPath 2.0

XPath 2.0 uses all of the node tests from XPath 1.0. It also defines several new node tests:

element()

Matches any element. Using this node test without arguments is similar to
select="*" in XPath 1.0. The difference is that in XPath 2.0, we can use the
element() node test to check the name and datatype of an item. For example,
element (author) matches any elements named <author>. The two-argument ver-
sion of this node test allows us to find elements that match a particular datatype.
The node test element(date-of-birth, xs:gYear) matches all <date-of-birth> el-
ements whose datatype is xs:gYear. (That includes datatypes derived from
xs:gYear.) Finally, we can use a wildcard for the element name to find all of the
elements of a particular datatype. element(*, xs:gYear) matches all elements with
a datatype of xs:gYear.

schema-element (author)
Matches any element named <author> whose datatype matches the datatype of the
<author> element declared in a schema. Unlike all the other node tests defined in
XPath 1.0 and 2.0, it is an error to use this node test without an argument.

attribute()

Matches any attribute. Using this node test without arguments is similar to
select="@*" in XPath 1.0. As with element(), we can use attribute() to check the
name and datatype of an item. The node test attribute(public-domain) matches
any attributes named public-domain, regardless of the datatype. attribute(public-
domain, xs:string) matches only attributes named public-domain with a datatype
of xs:string. Finally, using a wildcard for the attribute name returns all the
attributes that match a particular datatype. For example,
attribute(*, xs:decimal) matches all attributes whose datatype is xs:decimal,
regardless of the name of the attribute.

The XPath Data Model | 51

*:NCName
Matches all the nodes with a particular local name. In our sonnet, *: author matches
the <auth:author> element; it would also match the elements <xyz:author> and
<author>. The match occurs regardless of the namespace URI or whether an ele-
ment has a namespace URI at all.

document-node()
Matches document nodes. The node test document-node(element(sonnet)) match-
es a document node with a single element child (<sonnet>). The document node
can also contain comments or processing instructions, but it can only contain a
single element node.

[2.0] Although item() lookslike a node test, itis used only as a datatype.
For example, the wvariable <xsl:variable name="something"
s as="item()"> defines a variable that can contain a single value. The
" variable can contain any node or atomic type.

[2.0] Sequences and Atomic Values

Working with the XPath 2.0 data model is probably the biggest change in XSLT 2.0.
We’ll mention the changes to the model as we go along, but we’ll discuss three topics
outright: sequences, atomic values, and schema support. We’ll look at sequences and
atomic values now and discuss schema support later in this chapter.

A sequence is, well, a sequence of items. Those items might be nodes from an XML
document, or they might be simple values such as 'June' or 3.14. A sequence has an
order and a length. You can use XPath 2.0 functions to see how many items are in a
sequence, you can retrieve a subset of the items in the sequence, and you can insert or
delete items at a particular point in the sequence. Here is a variable that contains a
sequence:

<!-- sequences1.xsl -->

<xsl:variable name="months" as="xs:string*"
select="("'January', 'February', 'March', 'April’,
'May', 'June', 'July', 'August’,
'September', 'October', 'November',
'December')"/>

There are several things to point out here. First of all, notice that we used the new as
attribute to define the datatype of this variable. The asterisk here means that the variable
can have any number of values. If we defined this variable with the datatype
xs:string, the variable $months could only be a single xs:string. The code here would
cause a fatal error.

The values in the sequence are all atomic values. An atomic value is a simple value, as
opposed to a node. A sequence can contain atomic values, as in our example here; it

52 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

can also use XPath to select nodes from an XML document. Here’s an example that
creates a sequence with atomic values and information from an XML document:

<!-- sequences2.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:variable name="cities" as="xs:string*">
<xsl:sequence select="addressbook/address/city"/>
<xsl:sequence select="("'London', 'Adelaide’, 'Rome')"/>
<xsl:sequence select="("'Jakarta', 'Sao Paulo', 'Timbuktu')"/>
</xsl:variable>
<xsl:text>Our customers live in these cities:
8
</xsl:text>
<xsl:value-of select="$cities" separator="8
"/>
</xsl:template>

</xsl:stylesheet>

Notice that the variable here contains an <xsl:sequence> element to select the <city>
elements, followed by two <xsl:sequence> elements that select three strings each. The
value of the sequence $cities has 12 items when used with the following document:

<!-- names.xml -->
<addressbook>

<address>
<name>
<title>Mr.</title>
<first-name>Chester Hasbrouck</first-name>
<last-name>Frisby</last-name>
</name>
<street>1234 Main Street</street>
<city>Sheboygan</city>
<state>WI</state>
<zip>48392¢</zip>
</address>

<city>Skunk Haven</city>
<city>Winter Harbor</city>
<city>Skunk Haven</city>
<city>Boylston</city>
<city>Lynn</city>
<state>MA</state>
<zip>02930</zip>

</address>
</addressbook>

The XPath Data Model | 53

The output from the stylesheet looks like this:

Our customers live in these cities:

Sheboygan
Skunk Haven
Winter Harbor
Skunk Haven
Boylston
Lynn

London
Adelaide
Rome
Jakarta

Sao Paulo
Timbuktu

The sequence has 12 items: 6 items from the <city> elements in the XML document,
and 6 values from the <xs1:sequence> elements that contain strings. The sequence has
a datatype of xs:string*, which means all of the items in the sequence are converted to
xs:string values. Even though we used the pattern /addressbook/address/city to select
the nodes, the contents of the sequence are strings. If we change the datatype of the
sequence to item()*, things work differently:

<!-- sequences3.xsl -->

<xsl:variable name="cities" as="item()*">
<xsl:sequence select="addressbook/address/city"/>
<xsl:sequence select="("London', 'Adelaide', 'Rome')"/>
<xsl:sequence select="("'Jakarta', 'Sao Paulo', 'Timbuktu')"/>
</xsl:variable>
<xsl:for-each select="$cities">
<xsl:choose>
<xsl:when test=". instance of element()">
<xsl:text> Node: </xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:text>Atomic value: </xsl:text>
</xsl:otherwise>
</xsl:choose>
<xsl:value-of select="."/>
<xsl:text>8#xA;</xsl:text>
</xsl:for-each>

This stylesheet now contains 12 items, 6 of which are element nodes, 6 of which are
strings. Instead of simply writing the value of each item in the sequence, we use the
new instance of operator to see whether an item is an element or an atomic value. The
results look like this:

Our customers live in these cities:
Node: Sheboygan

Node: Skunk Haven
Node: Winter Harbor

54 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

Node: Skunk Haven

Node: Boylston

Node: Lynn
Atomic value: London
Atomic value: Adelaide
Atomic value: Rome
Atomic value: Jakarta
Atomic value: Sao Paulo
Atomic value: Timbuktu

<xsl:variable name="cities" as="xs:string*">
<xsl:sequence
select="(/addressbook/address/city,
('London', 'Adelaide', 'Rome'),
('Jakarta', 'Sao Paulo', 'Timbuktu'))"/>
</xsl:variable>

Location Paths

One of the most common uses of XPath is to create location paths. A location path
describes the location of something in an XML document. The pattern /addressbook/
address/city describes the location of the elements we want to select. We’ll use location
paths as patterns to find parts of the XML document, then we’ll use XPath expressions
to manipulate them. But before we dive in to the wonders of location paths, we need
to discuss the context.

The Context

One of the most important concepts in XPath is the context. Everything we do in XPath
is interpreted with respect to the context. You can think of an XML document as a
hierarchy of directories in a filesystem. In our sonnet example, we could imagine that
sonnet is a directory at the root level of the filesystem. The sonnet directory would, in
turn, contain directories named auth:author, title, and lines. In this example, the
context would be the current directory. If I go to a command line and execute a par-
ticular command (such as dir *.xsl), the results I get vary depending on the current
directory. Similarly, the results of evaluating an XPath expression will probably vary
based on the context.

[1.0] The XPath 1.0 context

Most of the time, we can think of the context as the node in the tree from which any
expression is evaluated. To be completely accurate, the context consists of five things:

* The context node (the “current directory”). The XPath expression is evaluated from
this node.

* Twointegers, the context position and the context size. These integers are important
when we’re processing a group of nodes. For example, we could write an XPath
expression that selects all of the <1i> elements in a given document. The context

Location Paths | 55

size refers to the number of <1i> items selected by that expression, and the context
position refers to the position of the <1i> we’re currently processing.

¢ A set of variables. This set includes names and values of all variables that are cur-
rently in scope.

* A set of all the functions available to XPath expressions. Some of these functions
are defined by the XPath and XSLT standards themselves; others might be exten-
sion functions defined by whomever created the stylesheet. (You’ll read more about
extension functions in Chapter 9.)

* A set of all the namespace declarations currently in scope.

Having said all that, most of the time you can ignore everything but the context node.
To use our command-line analogy one more time, if you’re at a command line, you
have a current directory; you also have (depending on your operating system) a number
of environment variables defined. For most commands, you can focus on the current
directory and ignore the environment variables.

[2.0] The XPath 2.0 context

As you would expect, the context in XPath 2.0 is more complicated. With support for
XML Schema, dates, times, collations, and functions, there are many more things XPath
2.0 has to track.

The specs talk about two things: the static context and the dynamic context. The static
context is the information that’s available before an expression is evaluated. That in-
formation doesn’t change during the evaluation of the expression. The base URI, the
default collation, and the variables, namespaces, and schemas in scope are all part of
the static context. The context item, the context position, and the context size are all
part of the dynamic context. Most of the time we’ll be concerned with the dynamic
context, but we can access all of the parts of the context whenever we need them.

The static context contains:

* Whether the processor is in XPath 1.0 compatibility mode. This is true or false.

* The set of statically known namespaces. Each item in the set is a prefix and a name-
space URL

* The default namespace for elements and types. This is either a namespace URI or
“none.”

* The default namespace for functions. This is either a namespace URI or “none.”

* The set of in-scope schema definitions. These include the schema types, elements,
and attributes that are currently in scope.

* The set of variables that are in scope.

* The static type of the context item.

56 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

The function signatures that are currently in scope. These include the namespace
and arity (number of parameters) of each function, along with the static types of
its parameters and results. Constructor functions are included in this set.

The statically known collations. The format of collations is implementation-
defined.

The default collation.

The base URI.

A set of statically known documents. This refers to the documents available through

the doc() function. See “[2.0] The doc() and doc-available() Functions” in Chap-
ter 8 for more details on the doc() function.

A set of statically known collections. See the description of the [2.0] collection()
function in Appendix C for more information about collections.

The statically known default collection type. The default collection type is
node()* unless an XSLT processor has set it to some other value. Again, see the
description of the [2.0] collection() function in Appendix C for more information
about collections.

The dynamic context contains everything in the static context, plus:

The context item. This is similar to the context node in XPath 1.0, with the differ-
ence that the context item can be an atomic value. In XPath 1.0, you could always
ask for the parent of the context node. If you try that in XPath 2.0, the processor
raises an exception unless the context item is a node.

The context position. This works the same way it did in XPath 1.0; the
position() function returns the context position.

The context size. Again, this works the same way it did in XPath 1.0; the last()
function returns the context size.

The set of variable values that are in scope.
The set of function implementations in scope.

The current dateTime. This value doesn’t change during the execution of an
expression.

The implicit timezone. The new [2.0] implicit-timezone() function (see Appen-
dix C) returns this value.

The set of available documents accessible through the [2.0] doc() function (see
Appendix C).

The set of available collections accessible through the [2.0] collection() function
(see Appendix C).

The default collection returned by calling the [2.0] collection() function without
any arguments.

Location Paths | 57

Simple Location Paths

Now that we’ve talked about what a context is and why it matters, we’ll look at some
location paths. We'll start with a variety of simple paths; as we go along, we’ll look at
more complex location paths that use all the various features of XPath. We already
looked at one of the simplest XSLT patterns:

<xsl:template match="/">

This template selects the root node of the document. We saw another simple XPath
expression in the <xsl:value-of> element:

<xsl:value-of select="."/>

This template selects the context node, represented by a period. To complete our tour
of very simple location paths, we can use the double period (..) to select the parent of
the context node:

<xsl:value-of select=".."/>

All these XPath expressions have one thing in common: they don’t use element names.
As you might have noticed in our Hello World example, you can use element names
to select elements that have a particular name:

<xsl:apply-templates select="greeting"/>

In this example, we select all of the <greeting> elements in the current context and
apply the appropriate template to each of them. Turning to our XML sonnet, we can
create location paths that specify more than one level in the document hierarchy:

<xsl:apply-templates select="lines/line"/>

This example selects all <1ine> elements that are contained in any <lines> elements in
the current context. If the current context doesn’t have any <lines> elements, then this
expression returns an empty node-set. If the current context has plenty of <lines> el-
ements, but none of them contain any <line> elements, this expression also returns an
empty node-set.

Relative and Absolute Expressions

The XPath specification talks about two kinds of XPath expressions, relative and ab-
solute. Our previous example is a relative XPath expression because the nodes it speci-
fies depend on the current context. An absolute XPath expression begins with a slash
(/), which tells the XSLT processor to start at the root of the document, regardless of
the current context. In other words, you can evaluate an absolute XPath expression
from any context node you want, and the results will be the same. Here’s an absolute
XPath expression:

<xsl:apply-templates select="/sonnet/lines/line"/>

The good thing about an absolute expression is that you don’t have to worry about the
context node. Another benefit is that it makes it easy for the XSLT processor to find all

58 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

nodes that match this expression: what we’ve said in this expression is that there must
be a <sonnet> element at the root of the document, that element must contain at least
one <lines> element, and that at least one of those <lines> elements must contain at
least one <line> element. If any of those conditions fail, the XSLT processor can stop
looking through the tree and return an empty node-set.

A disadvantage of using absolute XPath expressions is that it makes your templates
more difficult to reuse. Both of these templates process <line> elements, but the second
one is more difficult to reuse:

<xsl:template match="line">
</>.(;i:temp1ate>

<xsl:template match="/sonnet/lines/line">
</>.(;i:temp1ate>

If the second template has wonderful code for processing <line> elements, but your
document contains <line> elements that don’t match the absolute XSLT pattern, you
can’t reuse that template. (On the other hand, the XSLT processor has less work to do
with the pattern /sonnet/lines/line; we’ve told the processor exactly where to look
for the elements we care about.) In general, you should use absolute expressions only
if you need special processing for a specific case. If <line> elements that match the
pattern /sonnet/lines/line should be processed differently, use the absolute pattern
in the match attribute. If you don’t need to process those <line>s differently, don’t use
the absolute pattern. Keep these things in mind as you design your templates.

Selecting Things Besides Elements with Location Paths

Up until now, we've discussed XPath expressions that used either element names
(/sonnet/lines/1line) or special characters (/ or ..) to select elements from an XML
document. Obviously, XML documents contain things other than elements; we’ll talk
about how to select those other things here.

Selecting attributes

To select an attribute, use the at-sign (@) along with the attribute name. In our sample
sonnet, you can select the type attribute of the <sonnet> element with the XPath ex-
pression /sonnet/@type. If the context node is the <sonnet> element itself, then the
relative XPath expression @type does the same thing.

Selecting the text of an element

To select the text of an element, simply refer to it in your expression. The element
<xsl:value-of select="/sonnet/auth:author/last-name"/> returns Shakespeare for
our sample sonnet. You can also use the string() function, although that’s typically
not necessary.

Location Paths | 59

These XSLT instructions:

<xsl:value-of select="/sonnet/something_else:author/first-name"/>
<xsl:text> </xsl:text>
<xsl:value-of select="/sonnet/something else:author/last-name/string()"/>

generate these results:

William Shakespeare

Be aware that getting the text of an element with children probably doesn’t do what
you want. For example, the element <xsl:value-of select="/sonnet/auth:author"/>
returns the string ShakespeareWilliamBritish15641616. All of the text descendants of
the <auth:author> node are concatenated together. To format these nodes more at-
tractively, you’ll have to deal with them individually.

Finally, there is a text() node test that selects the text node children of the context
item. That being said, you almost never want to use it. Getting the node’s text the way
we illustrated here is the best way to go.

Selecting comments, processing instructions, and namespace nodes

By this point, we’ve covered most of the document components you’re ever likely to
select with an XPath expression. You can use a couple of other XPath node tests to
describe parts of an XML document. The comment() and processing-instruction()
node tests allow you to select comments and processing instructions from the XML
document. Going back to our sample sonnet, the XPath expression /processing-
instruction() returns the two processing instructions (named xml-stylesheet and
cocoon-process). The expression /sonnet/comment() returns the comment node that
begins, “Is there an official title for this sonnet?” (That’s the only comment in the
<sonnet> element itself; the other comments are outside the root element.)

Processing comment nodes in this way can actually be useful. If you’ve entered com-
ments into an XML document, you can use the comment() node test to display your
comments only when you want. Here’s an XSLT template you could use:
<xsl:template match="comment()">

<p><xsl:value-of select="."/></p>

</xsl:template>

Elsewhere in your stylesheet, you could define CSS attributes to print comments in a
large, bold, purple font. To remove all comments from your output document, simply
go to your stylesheet and have the template that handles comments do nothing. (You
could also just remove the template; the default template for comments does nothing.)

XPath has one other kind of node—the rarely used namespace node. To retrieve name-
space nodes, you have to use the namespace axis; we’ll discuss axes in the “Axes” section
later in this chapter. One note about namespace nodes, if you ever have to use them:
when matching namespace nodes, the namespace prefix isn’t important. As an

60 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

example, our sample sonnet used the auth namespace prefix, which maps to the value
http://www.authors.com/. If a stylesheet uses the namespace prefix writers to refer to
the same URL, then the XPath expression /sonnet/writers:* would return the
<auth:author> element. Even though the namespace prefixes are different, the URLs
they refer to are the same. Most likely the only time you’ll care about the namespace
prefix itself is when you’re looking for a particular namespace node. The name of the
namespace node is the prefix. In almost all cases, you’ll use the namespace URI to find
what you’re looking for.

Having said all that, the chances that you’ll ever need to use namespace nodes are pretty
slim.

Using Wildcards

XPath features three wildcards:

The asterisk (*)
Selects all element nodes in the current context. Be aware that the asterisk wildcard
selects element nodes only; attributes, text nodes, comments, or processing in-
structions aren’t included. You can also use a namespace prefix with an asterisk.
In our sample sonnet, the XPath expression auth:* returns all element nodes in the
current context that are associated with the namespace URL http://
www. authors.com/.

[2.0] XPath 2.0 lets us use a wildcard as a namespace prefix. The XPath expression
*:author returns all element nodes in the current context that have a local name of
author, regardless of their namespace. In XPath 2.0, both auth:* and *:author are
legal; in XPath 1.0, looking for *:author causes a fatal error.

W N

As always, searching for a matching namespace is based on the
namespace URL, not the prefix. For example, assume the name-
s space URL http://www.authors.com/ is associated with the prefix
" auth in the XML document and the prefix something_else in our
stylesheet. Looking for something_else:* in the stylesheet returns
all of the elements with the auth prefix in the XML document.

The at-sign and asterisk (@*)

Selects all attribute nodes in the current context. You can use a namespace prefix
with the attribute wildcard. In our sample sonnet, @auth:* returns all attribute
nodes in the current context that are associated with the namespace URL
http://www.authors.com. (There aren’t any attributes associated with the auth
namespace; if we added an element such as <first-name
auth:nickname="Bill">William</first-name>, the auth:nickname would match this
expression.)

Location Paths | 61

[2.0] As with elements, XPath 2.0 lets us use a wildcard for the namespace prefix.
The expressions @auth:* and @*:nickname are both legal in XPath 2.0. In XPath 1.0,
using a wildcard for the namespace prefix is a fatal error.

The node() node test
Selects all nodes in the current context, regardless of type. This includes elements,
text, comments, processing instructions, attributes, and namespace nodes.

In addition to these wildcards, XPath includes the double slash (//), which indicates
that zero or more elements may occur between the slashes. For example, the XPath
expression //line selects all <line> elements, regardless of where they appear in the
document. This is an absolute XPath expression because it begins with a slash. You
can also use the double slash at any point in an XPath expression; the expres-
sion /sonnet/descendant-or-self::node()/1line selects all <1ine> elements that are de-
scendants of the <sonnet> element at the root of the XML document. The expres-
sions /sonnet//line and /sonnet/descendant-or-self::node()/line are equivalent.
(descendant-or-self is an axis; we’ll talk more about those next.)

,—_ The double slash (//) is a very powerful operator, but be aware that it
"*’@ can make your stylesheets incredibly inefficient. If we use the XPath
expression //line, the XSLT processor has to check every node in the
document to see whether there are any <line> elements. The more spe-
cific you can be in your XPath expressions, the less work the XSLT pro-
cessor has to do and the faster your stylesheets will execute. Thinking
back to our filesystem metaphor, if I go to a Windows command prompt
and type dir/s c:*.xsl, the operating system has to look in every sub-
directory for any *xsl files that might be there. However, if I type
dir/s c:\doug\projects\stylesheets*.xsl, the operating system has
far fewer places to look, and the command will execute much faster.

Axes

To this point, we’ve been able to select child elements, attributes, text, comments, and
processing instructions with some fairly simple XPath expressions. Obviously, we
might want to select many other things, such as:

¢ All ancestors of the context node
¢ All descendants of the context node

* All previous siblings or following siblings of the context node (siblings are nodes
that have the same parent)

To select these things, XPath provides a number of axes (plural of axis) that let you
specify various collections of nodes. There are 13 axes in all; we’ll discuss all of them
here, even though most won’t be particularly useful to you. To use an axis in an XPath
expression, type the name of the axis, a double colon (::), and the name of the element
you want to select, if any.

62 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

Before we define all of the axes, though, we need to talk about XPath’s unabbreviated
syntax.

Unabbreviated syntax

To this point, all the XPath expressions we’ve looked at used the XPath abbreviated
syntax. Most of the time, that’s what you’ll use; however, most of the lesser-used axes
can only be specified with the unabbreviated syntax. For example, when we wrote an
XPath expression to select all of the <1line> elements in the current context, we used
the abbreviated syntax:

<xsl:apply-templates select="line"/>

If you really enjoy typing, you can use the unabbreviated syntax to specify that you
want all of the <1line> children of the current context:

<xsl:apply-templates select="child::line"/>

We'll go through all of the axes now, pointing out which ones have an abbreviated
Syntax.

Axis roll call

The following list contains all of the axes defined by the XPath standard, with a brief
description of each:

child axis
Contains the children of the context node. As we’ve already mentioned, the XPath
expression child: :1ines/child: :line is equivalent to lines/line. If an XPath ex-
pression (such as sonnet) doesn’t have an axis specifier, the child axis is used by
default. The children of the context node include all comment, element, processing
instruction, and text nodes. Attribute and namespace nodes are not considered
children of the context node.

parent axis

Contains the parent of the context node, if there is one. (If the context node is the
root node, the parent axis returns an empty node-set.) As a step in an XPath ex-
pression, the parent axis can be abbreviated with the double period (. .); this moves
up to the current node’s parent. If the <first-name> and <last-name> elements are
both children of the <author> element and the context node is the <first-name>
element, the expressions . ./last-name, parent: :author/last-name and parent: : */
last-name are equivalent. If the context node does not have a parent, this axis
returns an empty node-set.

self axis
Contains the context node itself. As a step in an XPath expression, the self axis
can be abbreviated with a single period (.). The expressions ., self::node(), and
self::* are equivalent in XSLT 1.0.

Location Paths | 63

[2.0] In XSLT 2.0, the self axis selects the context item, which might not be a node.
If the context item is an atomic value, the expressions self::node() and self::*
cause the XSLT processor to raise an error. In this case, the only way to access the
self axis is with a period. If the context item is a node, the self axis works just as it
did in XSLT 1.0.

attribute axis
Contains the attributes of the context node. If the context node is not an element
node, this axis is empty. The attribute axis can be abbreviated with the at sign
(@). The expressions attribute: :type and @type are equivalent.

ancestor axis
Contains the parent of the context node, the parent’s parent, etc. The ancestor
axis always contains the root node unless the context node is the root node.

ancestor-or-self axis
Contains the context node, its parent, its parent’s parent, and so on. This axis
always includes the root node.

descendant axis
Contains all children of the context node, all children of all the children of the
context node, and so on. The children are all of the comment, element, processing
instruction, and text nodes beneath the context node. In other words, the
descendant axis does not include attribute or namespace nodes. (As we discussed
earlier, although an attribute node has an element node as a parent, an attribute
node is not considered a child of that element.)

descendant-or-self axis
Contains the context node and all the children of the context node, all the children
of all the children of the context node, all the children of the children of all the
children of the context node, and so on. As always, the children of the context node
include all comment, element, processing instruction, and text nodes; attribute
and namespace nodes are not included.

preceding-sibling axis
Contains all preceding siblings of the context node; in other words, all nodes that
have the same parent as the context node and appear before the context node in
the XML document. If the context node is an attribute node or a namespace node,
the preceding-sibling axis is empty.

following-sibling axis
Contains all the following siblings of the context node; in other words, all nodes
that have the same parent as the context node and appear after the context node
in the XML document. If the context node is an attribute node or a namespace
node, the following-sibling axis is empty.

preceding axis
Contains all nodes that appear before the context node in the document, except
ancestors, attribute nodes, and namespace nodes.

64 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

following axis
Contains all nodes that appear after the context node in the document, except
descendants, attribute nodes, and namespace nodes.

namespace axis
Contains the namespace nodes of the context node. If the context node is not an
element node, this axis is empty.

Predicates

There’s one more aspect of XPath expressions that we haven’t discussed: predicates.
These are filters that restrict the nodes selected by an XPath expression. Each predicate
is evaluated and converted to a Boolean value (either true or false). If the predicate is
true for a given node, that node will be selected; otherwise, it isn’t. Predicates always
appear inside square brackets ([]). Here’s an example:

<xsl:apply-templates select="line[position() = 7]"/>

This expression selects the seventh <line> element in the current context. If there are
six or fewer <line> elements in the current context, this XPath expression returns an
empty node-set. Several things can be part of a predicate; we’ll go through them here.

Numbers in predicates

Instead of using the position() function, we can use a number. For example, the XPath
expression line[7] selects the seventh <line> element in the context node; this means
exactly the same thing as line[position() = 7]. XPath also provides the boolean and
and or operators as well as the union operator (|) to combine predicates. The expression
line[position()=3 and @style] matches all <line> elements that occur third and that
have a style attribute, while line[position()=3 or @style] matches all <line> ele-
ments that either occur third or have a style attribute.

You can use more than one predicate if you like; line[3][@style] or line[@style][3]
are both legal. They aren’t equivalent, however. Predicates are evaluated from left to
right. The XSLT processor handles the first pattern by selecting all of the <1ine> nodes
that appear third in a set of sibling <line> nodes, then selecting all of those nodes that
have a style attribute. For the second pattern, the processor selects all the <1line> ele-
ments that have a style attribute, then selects the third node from that sequence. The
first pattern can match any number of nodes, while the second pattern will never match
more than one. In general, the first predicate filters the nodes, the second predicate
filters the nodes that made it past the first predicate, and then the third predicate filters
the nodes that made it past the second, and so forth.

Functions in predicates

In addition to numbers, we can use XPath and XSLT functions inside predicates. Here
are some examples:

Location Paths | 65

line[last()]
Selects the last <1ine> element in the current context.

line[position() mod 2 = 0]
Selects all even-numbered <1line> elements. (The mod operator returns the remain-
der after a division; the position of any even-numbered element divided by 2 has
a remainder of 0.)

sonnet[@type="Shakespearean"]
Selects all <sonnet> elements that have a type attribute with the value
Shakespearean. Note that double versus single quotes are not significant; this XPath
expression matches either <sonnet type="Shakespearean"> or <sonnet
type="Shakespearean'>.

ancestor: :table[@border="1"]
Selects all <table> ancestors of the current context that have a border attribute with
the value 1.

count(/body/table[@border="1"])
Returns the number of <table> elements with a border attribute equal to 1 that are
children of <body> elements that are children of the root node. Notice that in this
case we're using a predicate as part of the location path.

Attribute Value Templates

Although they’re technically defined in the XSLT specification (in XSLT 1.0 section
7.6.2 and XSLT 2.0 section 5.6), we’ll discuss attribute value templates here. An at-
tribute value template (sometimes abbreviated as AVT) is an XPath expression that is
evaluated, and the result of that evaluation replaces the attribute value template. For
example, we could create an HTML <table> element like this:

<table border="{@size}"/>

In this example, the XPath expression @size is evaluated, and its value, whatever that
happens to be, is inserted into the output tree as the value of the border attribute.
Attribute value templates can be used in any literal result elements in your stylesheet
(for HTML elements and other things that aren’t part of the XSLT namespace, for
example). You can also use attribute value templates in the following XSLT attributes:

* The name and namespace attributes of the <xsl:attribute> element

¢ The name and namespace attributes of the <xsl:element> element

* The format, lang, letter-value, grouping-separator, and grouping-size attributes
of the <xsl:number> element

* The name attribute of the <xsl:processing-instruction> element

* The lang, data-type, order, and case-order attributes of the <xsl:sort> element

[2.0] XSLT 2.0 can use AVTs in several additional places:

66 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

* The regex and flags attributes of the new [2.0] <xs1l:analyze-string> element

* The name, namespace, and separator attributes of the <xsl:attribute> element (just
as in XSLT 1.0)

* The name and namespace attributes of the <xsl:element> element (just as in XSLT
1.0)

* The collation attribute of the new [2.0] <xs1:for-each-group> element
¢ The terminate attribute of the <xsl:message> element
* The name attribute of the [2.0] <xs1:namespace> element

¢ The format, lang, letter-value, ordinal, grouping-separator, and grouping-size
attributes of the <xs1:number> element (ordinal is new in XSLT 2.0; all the others
are unchanged from XSLT 1.0)

* The name attribute of the <xsl:processing-instruction> element

e The format, href, method, byte-order-mark, cdata-section-elements, doctype-
public, doctype-system, encoding, escape-uri-attributes, include-content-type,
indent, media-type, normalization-form, omit-xml-declaration, standalone,
undeclare-prefixes, and output-version attributes of the new [2.0] <xsl:result-
document> element

* The lang, order, collation, stable, case-order, and data-type attributes of the
<xsl:sort> element (collation and stable are new for XSLT 2.0)

* The separator attribute of the <xsl:value-of> element (a new attribute in XSLT
2.0)

Datatypes

One of the major additions to XPath 2.0 is support for the XML Schema datatype
system. The XPath 1.0 and 2.0 data models are so different we’ll discuss them in sep-
arate sections. In general, most statements that worked in XPath 1.0 still work in XSLT
2.0. On the other hand, any XPath 2.0 statement that uses the new datatyping features
won’t work at all in XPath 1.0.

Datatypes in XPath 1.0
In XPath 1.0, an expression returns one of four datatypes:

node-set
Represents a set of nodes. The set can be empty or it can contain any number of
nodes.

boolean
Represents the value true or false. Be aware that the true or false strings have no
special meaning or value in XPath; see “Converting to boolean values” in Chap-
ter 5 for a more detailed discussion of these.

Datatypes | 67

number

Represents a floating-point number. All numbers in XPath and XSLT are imple-
mented as floating-point numbers; the integer (or int) datatype does not exist in
XPath and XSLT. Specifically, all numbers are implemented as IEEE 754 floating-
point numbers, which is the same standard used by the Java float and double
primitive types. In addition to ordinary numbers, there are five special values for
numbers: positive and negative infinity, positive and negative zero, and NaN, the
special symbol for anything that is not a number.

string
Represents zero or more characters, as defined in the XML specification.

These datatypes are usually simple, and with the exception of node-sets, converting
between types is usually straightforward. We won’t discuss these datatypes in any more
detail here; instead, we’ll discuss datatypes and conversions as we need them to do
specific tasks.

Datatypes in XPath 2.0

The XPath 2.0 data model is perhaps the most significant change to writing XSLT
version 2.0 stylesheets. We’ll cover the datatypes supported by XPath 2.0. XPath 2.0
supports all of the basic datatypes defined in XML Schema, and a schema-aware XSLT
2.0 processor lets you create your own datatypes. We’ll start with the basic datatypes;
these are the only datatypes supported by a basic XSLT processor. To support other
datatypes, including datatypes we define (po:purchaseOrder, for example) and derived
types defined in XML Schema (such as xs:nonNegativelInteger), you need a schema-
aware XSLT processor.

We've already looked at using <xsl:variable name="sample" select="'3""
as="xs:integer"/> as a way of creating an xs:integer value. XPath 2.0 also provides
constructor functions, described in the following list. For example,
<xsl:variable name="sample" select="xs:integer(3)"/> creates a new xs:integer val-
ue, whereas <xsl:variable name="birthday" select="xs:date('1995-04-21')"/> cre-
ates a new xs:date value:

xs:string
The xs:string datatype represents a string. Every datatype supported by XPath 2.0
has a string representation. If you want to see how a datatype looks as a string, the
XSLT <xsl:value-of> element will do the trick. You can convert anything to a string
by using the constructor function xs:string(). The constructor is the equivalent
of the Java toString() method that’s inherited by every class.

xs:boolean
As in XSLT 1.0, the string values true and false don’t have any special meaning.
To work with the boolean values themselves, XPath provides the true() and
false() functions; they return the corresponding boolean values. See “Converting

68 | Chapter3: XPath: A Syntax for Describing Needles and Haystacks

to boolean values” in Chapter 5 for a more detailed discussion of these values. You
can also use the xs:boolean() constructor to create boolean values.
xs:boolean(1) creates the value true, while xs:boolean(0) creates the value false.

xs:decimal
XML Schema defines an xs:decimal value as a numeric value consisting of decimal
digits (0 through 8#x39;), beginning with an optional plus or minus sign. An
xs:decimal cannot contain an exponent. The XML Schema spec states that an im-
plementation must support a minimum of 18 decimal digits. The values 42,
8.37284, and -83982.22 are all legal xs:decimal values.

xs:float and xs:double
The xs:float and xs:double datatypes are based on the IEEE single-precision and
double-precision floating-point types, respectively. Unlike xs:decimal, xs:float
and xs:double values can have exponents. There are three special values of
xs:float and xs:double: INF (infinity), -INF (negative infinity), and NaN (not a num-
ber). The values 42, 8.37284, -83982.22, -8.39822e4, INF, and -0 are all valid values
for an xs:float or xs:double.

xs:integer
An integer is a number without a decimal point or digits after it. An integer can
include a plus or minus sign (+ or -) to indicate a negative value; without either,
the integer is assumed to be positive.

xs:duration
An xs:duration represents a span of time. It has six components: year, month, day,
hour, minute, and second. The XML Schema spec states that an implementation
should support at least a four-digit year and a seconds value with at least three
decimal points (millisecond precision). A duration of 1 year, 7 months, 18 days, 4
hours, 27 minutes, and 3.673 seconds is written as P1Y7M18DT4H27M3.673S.

Date and time values
There are three datatypes for dates and times: xs:date, xs:time, and xs:dateTime.
The format of a date is YYYY-MM-DD, as in 1995-04-21 for April 21st, 1995. A time
value is in the format hh:mm:ss.sss, so 17:38:22.183 is the same as 22.183 seconds
past 5:38 p.m.

Both xs:date and xs:time values have an optional time zone indicator, shown by
a plus or minus sign (+ | -) that indicates that the date or time is some number of
hours ahead or behind Coordinated Universal Time (UTC, also known as Green-
wich Mean Time). For example, during the winter (when Daylight Savings Time
is not in effect), the time zone on the East coast of the United States is -05:00. Be
aware that if the XSLT processor normalizes a date or time value, parts of the value
can change. The time value 17:30:22.183-05:00 is the same as the time value
00:30:22.183Z (a date or time value that ends with Z has been normalized to UTC).

Finally, an xs:dateTime value is the combination of an xs:date and an xs:time. The
written representation of an xs:dateTime has a T between the two portions. To
combine our earlier examples, 1995-04-21T17:38:22.183-05:00 is 22.183 seconds

Datatypes | 69

past 5:38 p.m. on April 21st, 1995, five hours behind UTC. That value is equivalent
to 1995-04-22700:38:22.183Z.

Be aware that xs:date, xs:time, and xs:dateTime can have negative values.

Parts of date and time values
XML Schema defines the datatypes xs:gYearMonth, xs:gYear, xs:gMonthDay, gDay,
and gMonth. Examples of these values, in order, are 1995-04 for April, 1995; 1995
for the year 1995; --04-21 for the 21st day of April; ---21 for the 21st day of a
month; and --04 for April.

xs:hexBinary and xs:base64Binary

The xs:hexBinary datatype is a string composed of binary octets. In other words,
it must contain only pairs of hexadecimal digits ([0-9a-fA-F]). The
xs :base64Binary datatype uses base 64 encoding to represent binary data. Itis also
a string. An xs:base64Binary value consists of the 65 characters defined in
RFC2045: [0-9a-zA-Z], the plus sign (+), the forward slash (/), and the equals sign
(=), along with whitespace characters. (The RFC is available at http://www.ietf.org/
rfc/rfc2045.txt.)

xs:anyURI
An xs:anyURI value is any string that forms a valid URI as defined by RFC 2396
(and later updated by RFC2732). The RFCs are available at http://www.ietf.org/rfc/
rfc2396.txt and http://www.ietf.org/rfc/rfc2732.txt.

xs :QName
An xs:QName (qualified name) is an XML name qualified with a namespace prefix.
For example, auth:author is a qualified name. To use an xs:QName in a stylesheet,
the namespace prefix must be in scope.

xs:anyType and xs:anySimpleType
The datatype xs:anyType is considered the base datatype (called the ur-type in the
XML Schema datatypes spec) from which all other datatypes are derived. A value
of xs:anyType can contain any data; it is not constrained in any way.

The xs:anySimpleType datatype is a restricted version of xs:anyType; an
xs:anySimpleType value can be any legal value for any of the primitive datatypes
defined in XML Schema. A primitive datatype is a datatype that is not defined in
terms of another. The xs:float datatype is a primitive datatype, so an xs:float
value would be considered xs :anySimpleType. On the other hand, xs:integer is not
a simple type; it is defined in terms of xs:float.

The following datatypes were added by the XPath 2.0 and XQuery 1.0 Data Model
spec. They are supported along with all of the datatypes defined by XML Schema:

xs:yearMonthDuration and xs:dayTimeDuration
These two types were added to the XML Schema datatypes namespace by the XPath
2.0 and XQuery 1.0 Data Model spec. They represent the two halves of an
xs:duration. An xs:yearMonthDuration is some number of years, months, and days,
whereas an xs:dayTimeDuration is some number of days, hours, minutes, and

70 | Chapter3: XPath: A Syntax for Describing Needles and Haystacks

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt

seconds. Both of these datatypes can have negative values. The duration 12 years
and 2 months is written as P12Y2M. Note that an xs: yearMonthDuration doesn’t have
a days component. The duration 4 days, 7 hours, 47 minutes, and 32.883 seconds
is written as PADT7H47M32.883S.

xs:untyped and xs:untypedAtomic
These datatypes are defined by the XPath 2.0 and XQuery 1.0 Data Model spec. A
node that has not been validated has a dynamic type of xs:untyped, whereas an
atomic value that has not been validated has a dynamic type of xs:untypedAtomic.

xs:anyAtomicType
In XPath 2.0 and XQuery 1.0, all simple types have xs:anyAtomicType as their base
type. For example, xs:integer, xs:boolean, and xs:string are all derived from
xs:anyAtomicType.

XPath Operators

XPath supports a number of operators that make your expressions more powerful.
We'll look at each of them here.

[1.0] The first two sections here cover all of the XPath 1.0 operators except the vertical
bar (|), the union operator. Only the vertical bar is supported in XPath 1.0; the new
union keyword is supported only in XPath 2.0. See the section “[2.0] Set Operators—
except, intersect, and union” later in this chapter for the details of the union operator
(]) and the union keyword.

[2.0] In XPath 2.0, some operators work with dates, times, and durations. For example,
you can add 12 hours to an xs:dayTimeDuration if you want. We cover the operators
and features specific to XPath 2.0 after looking at the features common to XPath 1.0
and 2.0.

Mathematical Operators

The mathematical operators available in XPath are pretty limited. We’ll use two style-
sheets to illustrate how the operators work; the first indicates how an operator works
in XSLT 1.0 and the second indicates how it works in XSLT 2.0. We’ll cover the style-
sheets in detail for the first operator (the plus sign), then simply refer to those examples
throughout this section.

Addition (+)
The plus sign adds two numbers.

[1.0] In an XSLT 1.0 stylesheet, the processor attempts to convert each operand to a
number. The following XPath expressions all work in XPath 1.0:

<?xml version="1.0"?>
<!-- addition-1_0.xs1 -->

XPath Operators | 71

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>Tests of addition in XPath 1.0
</xsl:text>
<xsl:text>
 9 + 3 = </xsl:text>
<xsl:value-of select="9 + 3"/>
<xsl:text>
 9 + 3.8 = </xsl:text>
<xsl:value-of select="9 + 3.8"/>
<xsl:text>
 9 + '4' = </xsl:text>
<xsl:value-of select="9 + '4'"/>
<xsl:text>
 9 + 'Q' = </xsl:text>
<xsl:value-of select="9 + 'Q'"/>
<xsl:text>
 9 + true() = </xsl:text>
<xsl:value-of select="9 + true()"/>
<xsl:text>
 9 + false() = </xsl:text>
<xsl:value-of select="9 + false()"/>

</xsl:template>

</xsl:stylesheet>

Here are the stylesheet results:
Tests of addition in XPath 1.0

3 =12

3.8 = 12.8
'4' = 13
'Q" = NaN
true() = 10
false() = 9

-0 I

+
+
+
+
+
+

O W YW WY Yo

Notice that XSLT 1.0 converts a string (*4") to a number. If the string can’t be converted
to a number ('Q"), the result is NaN, or not a number. The boolean values returned by
the functions true() and false() are converted to the numbers 1 and 0, respectively.

[2.0] XSLT 2.0 is much more strict. The two operands must be compatible datatypes.
Changing the stylesheet to <xsl:stylesheet version="2.0" ...> causes the stylesheet
to fail. The first two operations (9 + 3 and 9 + 3.8) work, but none of the others do.
To fix the problem, we can use the number () function to convert the values to numbers.
The updated stylesheet looks like this:

<?xml version="1.0"?>

<!-- addition-2_0.xsl -->

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >

<xsl:output method="text"/>
<xsl:template match="/">

<xsl:text>Tests of addition in XPath 2.0
</xsl:text>
<xsl:text>
 9 + 3 = </xsl:text>

72 | Chapter3: XPath: A Syntax for Describing Needles and Haystacks

<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:

value-of select="9 + 3"/>

text>
 9 + 3.8 = </xsl:text>

value-of select="9 + 3.8"/>

text>8#xA; 9 + number('4') = </xsl:text>
value-of select="9 + number('4')"/>
text>8#xA; 9 + number('Q') = </xsl:text>
value-of select="9 + number('Q')"/>
text>8#xA; 9 + number(true()) = </xsl:text>
value-of select="9 + number(true())"/>
text>
 9 + number(false()) = </xsl:text>
value-of select="9 + number(false())"/>

</xsl:template>
</xsl:stylesheet>

Now that we explicitly cast each value to a number, the stylesheet generates the same
results as the XSLT 1.0 stylesheet:

Tests of

O O WY Y o

+
+
+
+
+
+

9

3:
3.8 = 12.8
number('4")
number('Q") = NaN

number (true()) = 10
number (false()) = 9

addition in XPath 2.0

12

13

A final option is to add the XSLT 2.0 attribute version="1.0" to any of the <xsl:value-
of> elements. This works in an XSLT 2.0 stylesheet:

<xsl:value-of select="9 + '4

version="1.0"/>

This generates the value 13. The version attribute can be added to any XSLT element
to specify that it should be processed as if it were in an XSLT 1.0 stylesheet.

W N

Q‘
(182

If the values we’re adding are nodes instead of atomic values, the dy-
namic typing from XPath 1.0 works the same way. For example, we can
use this subtraction to find Shakespeare’s age:

<xsl:value-of select="/sonnet/auth:author/year-of-death -
/sonnet/auth:author/year-of-birth"/>

We’re subtracting two nodes here, so both of them are converted to
numbers and subtracted. Trying to do the same thing with two strings
doesn’t work in XSLT 2.0:

<xsl:value-of select="'1616"' - '1564'"/>

[2.0] In XPath 2.0, the plus sign can be used to add combinations of dates, times, and
durations. You can use the plus sign to add the following:

* Two xs:yearMonthDurations

e Two xs:

dayTimeDurations

* An xs:yearMonthDuration to an xs:dateTime

XPath Operators | 73

An xs:dayTimeDuration to an xs:dateTime
An xs:yearMonthDuration to an xs:date
An xs:dayTimeDuration to an xs:date

An xs:dayTimeDuration to an xs:time.

(Notice that you can’t add an xs:yearMonthDuration to an xs:time.)

Here is a stylesheet with examples of all the supported types of addition:

<?xml version="1.0"?>

<!-- addition-datesTimesDurations.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:variable name="yMD1" as="xs:yearMonthDuration"
select="xs:yearMonthDuration('P1Y8M')"/>

<xsl:variable name="yMD2" as="xs:yearMonthDuration
select="xs:yearMonthDuration('P2Y7M")"/>

<xsl:variable name="dTD1" as="xs:dayTimeDuration"
select="xs:dayTimeDuration('P5DT9H23M125")" />

<xsl:variable name="dTD2" as="xs:dayTimeDuration"
select="xs:dayTimeDuration('P3DT16H12M17S")"/>

<xsl:variable name="dT" as="xs:dateTime"
select="xs:dateTime('1995-04-21T00:47:00"')"/>

<xsl:variable name="d" as="xs:date"
select="xs:date('1995-04-21"')"/>

<xsl:variable name="t" as="xs:time"
select="xs:time('17:03:00"')"/>

<xsl:template match="/">
<xsl:text>More tests of addition in XPath 2.0:</xsl:text>

<xsl:text>
8#xA; Two xs:yearMonthDurations:
 </xsl:text>
<xsl:value-of select="($yMp1, '+', $yMD2, '=', $yMD1 + $yMD2)"/>
<xsl:text>
8#xA; Two xs:dayTimeDurations:
 </xsl:text>
<xsl:value-of select="($dTD1, '+', $dTD2, '=', $dTD1 + $dTD2)"/>
<xsl:text>8#xA;8#xA; An xs:yearMonthDuration and an </xsl:text>

<xsl:text>xs:dateTime:
 </xsl:text>
<xsl:value-of select="($dT, '+', $yMD1, '=', $dT + $yMD1)"/>
<xsl:text>8#xA;8#xA; An xs:dayTimeDuration and an </xsl:text>
<xsl:text>xs:dateTime:
 </xsl:text>
<xsl:value-of select="($dT, '+', $dTD1, '=', $dT + $dTD1)"/>

<xsl:text>8#txA;8#xA; An xs:yearMonthDuration and an </xsl:text>

<xsl:text>xs:date:
 </xsl:text>
<xsl:value-of select="($d, '+', $yMD1, '=', $d + $yMD1)"/>
<xsl:text>8#txA;8#xA; An xs:dayTimeDuration and an </xsl:text>
<xsl:text>xs:date:
 </xsl:text>
<xsl:value-of select="($d, '+', $dTD1, '=', $d + $dTD1)"/>
<xsl:text>8#txA;8#xA; An xs:dayTimeDuration and an </xsl:text>
<xsl:text>xs:time:
 </xsl:text>
<xsl:value-of select="($t, '+', $dTD1, '=', $t + $dTD1)"/>

74 | Chapter3: XPath: A Syntax for Describing Needles and Haystacks

</xsl:template>

</xsl:stylesheet>

Here are the results:
More tests of addition in XPath 2.0:

Two xs:yearMonthDurations:
P1Y8M + P2Y7M = P4Y3M

Two xs:dayTimeDurations:
P5DT9H23M12S + P3DT16H12M17S = P9DT1H35M29S

An xs:yearMonthDuration and an xs:dateTime:
1995-04-21T00:47:00 + P1Y8M = 1996-12-21T00:47:00

An xs:dayTimeDuration and an xs:dateTime:
1995-04-21T00:47:00 + P5DT9H23M12S = 1995-04-26T10:10:12

An xs:yearMonthDuration and an xs:date:
1995-04-21 + P1Y8M = 1996-12-21

An xs:dayTimeDuration and an xs:date:
1995-04-21 + P5DT9H23M12S = 1995-04-26

An xs:dayTimeDuration and an xs:time:
17:03:00 + P5DT9H23M12S = 02:26:12

Subtraction (-)

Given two numbers, the minus sign subtracts the second number from the first. Using
subtraction in our sample stylesheets, we get these results:

Tests of XPath subtraction in XSLT 1.0

=6
.8 =5.2
-4 =5

- 'Q" = NaN

- true() = 8
- false() = 9

O W O YW Yo

We get the same results in an XSLT 2.0 stylesheet by casting each of the arguments to
numbers or by using the version attribute.

[2.0] In XPath 2.0, the minus sign can be used to subtract durations from each other
and from xs:date, xs:dateTime, and xs:time values. We can use the minus sign to
subtract:

* One xs:yearMonthDuration from another

* One xs:dayTimeDuration from another

* An xs:yearMonthDuration from an xs:dateTime

* An xs:dayTimeDuration from an xs:dateTime

XPath Operators | 75

* An xs:yearMonthDuration from an xs:date
* An xs:dayTimeDuration from an xs:date
* An xs:dayTimeDuration from an xs:time.
Replacing the plus signs with minus signs in our previous stylesheet gives us these
results:
More tests of subtraction in XPath 2.0:

One xs:yearMonthDuration from another:
P1Y8M - P2Y7M = -P11M

One xs:dayTimeDuration from another:
P5DT9H23M12S - P3DT16H12M17S = P1DT17H10M55S

An xs:yearMonthDuration from an xs:dateTime:
1995-04-21T00:47:00 - P1Y8M = 1993-08-21T00:47:00

An xs:yearMonthDuration from an xs:dateTime:
1995-04-21T00:47:00 - P1Y8M = 1993-08-21T00:47:00

An xs:dayTimeDuration from an xs:dateTime:
1995-04-21T00:47:00 - P5DT9H23M12S = 1995-04-15T15:23:48

An xs:yearMonthDuration from an xs:date:
1995-04-21 - P1Y8M = 1993-08-21

An xs:dayTimeDuration from an xs:date:
1995-04-21 - P5DT9H23M12S = 1995-04-15

An xs:dayTimeDuration from an xs:time:
17:03:00 - P5DT9H23M12S = 07:39:48

Notice that the first subtraction returns the negative value -P11M.

Multiplication (*)

Given two numbers, the multiplication sign multiplies the first number by the second.
Again, using the * operator in our stylesheets gives us these results:

Tests of XPath multiplication in XPath 1.0

3 =27

3.8 = 34.199999999999996
'4' = 36

'Q" = NaN

true() = 9

false() = 0

O W O YW Yo
* X X X X X
-0 I

The results in XPath 2.0 are cleaner; 34.19999. .. is rounded to 34.2:
Tests of XPath multiplication in XPath 2.0

27

o Il

9*3
9 * 3. 34.2

76 | Chapter3: XPath: A Syntax for Describing Needles and Haystacks

number('4') = 36
number('Q") = NaN
number (true()) = 9
number (false()) = 0

*
*
*
*

O O VY

[2.0] In XPath 2.0, you can multiply xs:yearMonthDurations and xs:dayTimeDurations
by numeric values:

<?xml version="1.0"?>

<!-- multiplication-datesTimesDurations.xsl -->

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:variable name="yMD1" as="xs:yearMonthDuration"
select="xs:yearMonthDuration('P1Y8M")"/>

<xsl:variable name="dTD1" as="xs:dayTimeDuration"
select="xs:dayTimeDuration('P24DT08HOOMOOS")" />

<xsl:template match="/">
<xsl:text>More tests of multiplication in XPath 2.0:</xsl:text>
<xsl:text>8#txA;8#xA; A xs:yearMonthDuration multiplied </xsl:text>
<xsl:text>by a number:
 </xsl:text>
<xsl:value-of select="($yMD1, '* 3 =', $yMD1 * 3)"/>
<xsl:text>8#txA;8#xA; A xs:dayTimeDuration multiplied </xsl:text>
<xsl:text>by a number:
 </xsl:text>
<xsl:value-of select="($dTD1, '* 10.5 =', $dTD1 * 10.5)"/>

</xsl:template>

</xsl:stylesheet>

The results look like this:

More tests of multiplication in XPath 2.0:

A xs:yearMonthDuration multiplied by a number:
P1Y8M * 3 = P5Y

A xs:dayTimeDuration multiplied by a number:
P24DT8H * 10.5 = P255DT12H

(Technically, the numeric value should be an xs:double, but XSLT 2.0 converts the
numeric value 3 automatically.)

Division (div)

Given two numbers, the division sign divides the first number by the second. In most
programming languages, the division operator is the slash (/), but XPath uses the slash
as a separator in location paths, so we use the more verbose div operator instead. Using
div in our stylesheets, here are the results for XPath 1.0:

Tests of XPath div in XPath 1.0

9div3=3

XPath Operators | 77

9 div 3.8 = 2.368421052631579
9 div '4' = 2.25

9 div 'Q' = NaN

9 div true() =9

9 div false() = INF

The results for XPath 2.0 are very similar:
Tests of XPath div in XPath 2.0

9 div 3 =3

9 div 3.8 = 2.368421052631578947
9 div number('4') = 2.25

9 div number('Q') = NaN

9 div number(true()) = 9

9 div number(false()) = INF

Notice that the value 9 div false(), equivalent to 9 div 0, returns the value INF (in-
finity). Dividing by zero is not a fatal error, as you might expect.

[2.0] You can also divide durations in four different ways:

* Divide an xs:yearMonthDuration by an xs:double
* Divide one xs:yearMonthDuration by another
* Divide an xs:dayTimeDuration by an xs:double

* Divide one xs:dayTimeDuration by another

We'll use this stylesheet:

<?xml version="1.0"?>

<!-- div-datesTimesDurations.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:variable name="yMD1" as="xs:yearMonthDuration"
select="xs:yearMonthDuration('P1Y8M")"/>
<xsl:variable name="yMD2" as="xs:yearMonthDuration"
select="xs:yearMonthDuration('POY5M")" />
<xsl:variable name="dTD1" as="xs:dayTimeDuration"
select="xs:dayTimeDuration('P24DT08HOOMOOS")" />
<xsl:variable name="dTD2" as="xs:dayTimeDuration"
select="xs:dayTimeDuration("'PODT4HOOM0OS")" />

<xsl:template match="/">
<xsl:text>More tests of division in XPath 2.0:</xsl:text>
<xsl:text>8#xA;8#xA; A xs:yearMonthDuration divided </xsl:text>
<xsl:text>by a number:
 </xsl:text>
<xsl:value-of select="($yMD1, 'div 4 =', $yMD1 div 4)"/>
<xsl:text>8#txA;8#xA; One xs:yearMonthDuration divided </xsl:text>
<xsl:text>by another:
 </xsl:text>
<xsl:value-of select="($yMD1, 'div', $yMD2, '=', $yMD1 div $yMD2)"/>
<xsl:text>8#txA;8#xA; A xs:dayTimeDuration divided </xsl:text>

78 | Chapter3: XPath: A Syntax for Describing Needles and Haystacks

<xsl:text>by a number:&i#xA; </xsl:text>
<xsl:value-of select="($dTD1, 'div 4.5 =', $dTD1 div 4.5)"/>
<xsl:text>
8#xA; One xs:dayTimeDuration divided </xsl:text>
<xsl:text>by another:&i#xA; </xsl:text>
<xsl:value-of select="($dTD1, 'div', $dTD2, '=', $dTD1 div $dTD2)"/>
</xsl:template>
</xsl:stylesheet>

The results look like this:

More tests of division in XPath 2.0:

A xs:yearMonthDuration divided by a number:
P1Y8M div 4 = P5M

One xs:yearMonthDuration divided by another:
P1Y8M div P5M = 4

A xs:dayTimeDuration divided by a number:
P24DT8H div 4.5 = P5DT9H46M40S

One xs:dayTimeDuration divided by another:
P24DT8H div PT4H = 146

[2.0] Integer division (idiv)

XPath 2.0 introduces the idiv operator for integer division. The rules for integer division
in XPath 2.0 are different from the rules you might know from C++ and Java; no
rounding is done if there is any remainder from the division. Changing our earlier div
example to use idiv, we have to remove a couple of error cases:

<?xml version="1.0"?>

<l-- idiv.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>Tests of idiv in XPath 2.08
</xsl:text>
<xsl:text>
 9 idiv 3 = </xsl:text>
<xsl:value-of select="9 idiv 3"/>
<xsl:text>
 9 idiv 3.8 = </xsl:text>
<xsl:value-of select="9 idiv 3.8"/>
<xsl:text>
 9 idiv number('4') = </xsl:text>
<xsl:value-of select="9 idiv number('a')"/>
<!-- Causes a fatal error -->
<!-- <xsl:value-of select="9 idiv number('Q')"/> -->
<xsl:text>8
 9 idiv number(true()) = </xsl:text>
<xsl:value-of select="9 idiv number(true())"/>
<!-- Causes a fatal error -->
<I-- <xsl:value-of select="9 idiv number(false())"/> -->

</xsl:template>

</xsl:stylesheet>

XPath Operators | 79

Compare these results to those for the div operator:
Tests of idiv in XPath 2.0
9 idiv 3 = 3
9 idiv 3.8 = 2

9 idiv number('4') = 2
9 idiv number(true()) =9

As you can see, no rounding is done.

Modulo (mod)

The mod operator returns the remainder of a division. Here are the results for XPath 1.0:
Tests of the mod operator in XPath 1.0
mod

9 3=0

9 mod 3.8 = 1.4000000000000004
9 mod '4' =1

9
9
9

- 00 1

mod 'Q" = NaN
mod true() = 0
mod false() = NaN

The results for XPath 2.0 are very similar:
Tests of the mod operator in XPath 2.0

9mod 3 =0

9 mod 3.8 = 1.4

9 mod number('4') = 1

9 mod number('Q"') = NaN

9 mod number(true()) =0

9 mod number(false()) = NaN

When we use mod to divide by zero, we get the value NaN (not a number). This is the
same result we get when we divide by something that can’t be converted to a number
("Q", for example).

The most common use of the mod operator is to cycle through a set of values. For
example, say we want a stylesheet that generates different background colors for rows
of a table. We want to alternate between white and gray backgrounds. We can use the
mod operator for this:

<xsl:attribute name="bgcolor">
<xsl:choose>
<xsl:when test="position() mod 2 = 1">
<xsl:text>white</xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:text>gray</xsl:text>
</xsl:otherwise>
</xsl:choose>
</xsl:attribute>

80 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

The position of the first item is 1. The remainder of dividing 1 by 2 is 1, so the first row
will have a white background. For every alternate row, the remainder will be 0, which
means the background color will be gray. To alternate between five different values,
you would write tests such as position() mod 5 = 1, position() mod 5 = 2, and so on.

Unary minus (—x)

The unary minus sign returns the negation of its operand. Here is a stylesheet that
illustrates how it works:

<?xml version="1.0"?>

<!-- unary-minus.xsl -->

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >

<xsl:output method="text"/>

<xsl:template match="/">

<xsl:variable name="x" as="xs:integer" select="xs:integer(-10)"/>

<xsl:text>An example of the unary minus </xsl:text>

<xsl:text>operator:
 </xsl:text>

<xsl:value-of select="('$x =', $x, '&#txA; -$x = ', -$x)"/>
</xsl:template>

</xsl:stylesheet>
The results look like this:

An example of the unary minus operator:
$x = -10
-$x = 10

Some details from the Functions and Operators spec: if the argument is an xs: integer or
xs:decimal, the negation of 0 or 0.0 is 0 and 0.0, respectively. If the argument is an
xs:float or xs:double, NaN returns NaN, 0.0EO returns -0.0E0, -0.0EO returns 0.0EO,
INF returns -INF, and -INF returns INF.

Unary plus (+x)

The unary plus operator returns its operand with the sign unchanged. It makes no
change to the operand, but it is included for completeness. Changing the stylesheet we
used for unary minus, we get these results:

An example of the unary plus operator:

$x = -10
+$x = -10

XPath Operators | 81

Boolean Operators

XPath provides several boolean operators. They’re all straightforward (in XPath 1.0,
anyway), so we’ll just list them here.

W N

When you’re working with boolean expressions in XPath, remember
that the values "true' and 'false' are just strings. If you need to use the
boolean values, use the functions true() and false(). Simply using
true in an XPath expression means a node whose name is true, which
is almost certainly not what you want. To emphasize the point, we’ll
refer to the boolean values with their functions.

Ko

As we saw in the section on mathematical operators, converting
true() and false() to numbers returns 1 and 0, respectively. XPath
defines rules for converting different datatypes to boolean values. See
“Converting to boolean values” in Chapter 5 for all the details.

Comparing expressions

There are several operators from XPath 1.0 (and 2.0) that compare expressions. We’ll
look at those here:

= (equal)
Given two expressions, returns true() if the two expressions evaluate to the same
value, and returns false() otherwise.

1= (not equal)
Given two expressions, returns true() if the two expressions do not evaluate to
the same value, and returns false() otherwise.

< or 81t; (less than)
Given two expressions, returns true() if the first expression evaluates to a value
less than the second. Otherwise, it returns false(). The less than operator is usu-
ally escaped with &1t ; so that it doesn’t look like the opening arrow of an XML tag.

<= or 81t;= (less than or equal)
Given two expressions, returns true() if the first expression evaluates to a value
less than or equal to the second. Otherwise, it returns false(). The less than or
equal operator is usually escaped with &1t; = so that it doesn’t look like the start of
an XML element named =.

> or 8gt; (greater than)
Given two expressions, returns true() if the first expression evaluates to a value
greater than the second. Otherwise, it returns false(). The greater than operator
can be escaped with > so that it doesn’t look like the closing arrow of an XML
tag.

82 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

>= or 8gt; = (greater than or equal)
Given two expressions, returns true() if the first expression evaluates to a value
greater than or equal to the second. Otherwise, it returns false(). The greater than
or equal operator can be escaped with 8gt;=.

and
Given two expressions, returns true() if both expressions evaluate to true(). If
either evaluates to false(), then and returns false().

or
Given two expressions, returns true() if either expression evaluates to true(). If
both values evaluate to false(), then or returns false().

For a boolean not operation, XPath provides the not() function. The not keyword
doesn’t exist in XPath. See the not() function in Appendix C for the details.

Many programming languages define specific rules for evaluating boo-
lean operators such as and and or. For example, many languages state
that the first term is evaluated before the second, and that the second
term is not evaluated if the overall result is known after the first term is
evaluated. (If the first term evaluates to false(), the result of an and
expression is false(); if the first term evaluates to true(), the result of
an or expression is true().) XPath does not define these rules, so XSLT
processors are free to implement and and or as they see fit.

[2.0] Comparing atomic values

As we discussed earlier, XPath 2.0 introduces the concept of atomic values. There are
six new operators that allow us to compare values:

eq
Determines whether two values are equal.

ge

Determines whether the first value is greater than or equal to the second.
gt

Determines whether the first value is greater than the second.

le
Determines whether the first value is less or equal to the second.

1t
Determines whether the first value is less than the second.

ne
Determines whether two values are not equal.

The eq and ne operators work on any of the following datatypes:

¢ Numeric values (xs:decimal, xs:double, xs:float, xs:integer)

XPath Operators | 83

* Boolean values

* Durations (xs:duration, xs:yearMonthDuration, xs:dayTimeDuration)

¢ Dates and times (xs:date, xs:time, xs:dateTime)

* Parts of dates (xs:gYear, xs:gYearMonth, xs:gMonth, xs:gMonthDay, xs:gDay)
* QNames (xs:QName)

* Binary data (xs:hexBinary, xs:base64Binary)

¢ Notations (xs:NOTATION)

The ge, gt, le, and 1t operators support fewer datatypes:

e Numeric values (xs:decimal, xs:double, xs:float, xs:integer)
¢ Boolean values
* Durations (xs:duration, xs:yearMonthDuration, xs:dayTimeDuration)

¢ Dates and times (xs:date, xs:time, xs:dateTime)

The operators for comparing values work slightly differently than the general compar-
isons. Value comparisons are stricter because they require the two operands to be the
same type. Given these XML elements:
<brand>
<name>Callebaut</name>

<units>8203</units>
</brand>

the expression brand[1]/units gt 10000 raises an error because we’re comparing an
untyped value and an integer. We need to compare two integers here, so we must either
convert the value of the <units> element to a number or use an XML Schema to identify
the element as an xs:integer. If we use the general comparison operators to compare
the values (brand[1]/units > 10000), it works just fine. To use the value comparison
operators, the expression xs:integer(brand[1]) gt 10000 works as well, although it
requires us to cast the value ourselves.

The general comparison operators (=, !=, <=, >=, < and >) can compare nodes and se-
quences in addition to values, so you’ll probably use them far more often. Just be aware
that XPath 2.0 gives you new comparison operators that work on atomic values; they’re
very useful if you’re working with values instead of nodes or sequences.

[2.0] Comparing sequences

And speaking of comparing sequences, that works differently than you might think.
When comparing a sequence to a value, the XSLT processor compares the value to each
value in the sequence. If the comparison is true for any value in the sequence, the
operation returns true. We’ll use an XML document of chocolate sales for our examples:

84 | Chapter3: XPath: A Syntax for Describing Needles and Haystacks

<?xml version="1.0" encoding="utf-8"?>

<!-- chocolate.xml -->

<report month="8" year="2006">
<title>Chocolate bar sales</title>

<brand>

<name>Lindt</name>

<units>27408</units>

</brand>

<brand>

<name>Callebaut</name>
<units>8203</units>
</brand>

<brand>

<name>Valrhona</name>
<units>22101</units>

</brand>

<brand>

<name>Perugina</name>
<units>14336</units>

</brand>

<brand>

<name>Ghirardelli</name>

<units>19268</units>

</brand>

</report>

Here’s the stylesheet we’ll use to demonstrate comparisons with sequences:

<?xml version="1.0" encoding="utf-8"?>

<!-- compare-sequences.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:template match="/">

<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:

text>8&i#xA; Comparing sequences with values:</xsl:text>

text>8#xA; Sales figures (/report/brand/units):</xsl:text>s
text>
 </xsl:text>

value-of select="/report/brand/units" separator=", "/>

text>&HxA;

text>&dxA;
text>&dxA;
text>8HxA;

text>8HxA;

/report/brand/units 8gt; 27408 : </xsl:text>
value-of select="/report/brand/units &qgt; 27408"/>
/report/brand/units 8gt;= 27408 : </xsl:text>
value-of select="/report/brand/units &qgt;= 27408"/>
/report/brand/units &1t; 8203 : </xsl:text>
value-of select="/report/brand/units &1t; 8203"/>
/report/brand/units &1t;= 8203 : </xsl:text>
value-of select="/report/brand/units &1t;= 8203"/>

/report/brand/units = 22101 : </xsl:text>

value-of select="/report/brand/units = 22101"/>

text>&ixA;

/report/brand/units = 17905 : </xsl:text>

value-of select="/report/brand/units = 17905"/>

text>
 not(/report/brand/units = 17905): </xsl:text>

value-of select="not(/report/brand/units = 17905)"/>

XPath Operators | 85

<xsl:text>8#xA;8#xA; Comparing two sequences:</xsl:text>
<xsl:variable name="testSequencel" as="xs:integer*"

select="(8203, 22101, 27408, 19268, 14336)"/>
<xsl:text>8i#xA; $testSequencel (xs:integer*):8i#xA; </xsl:text>
<xsl:value-of select="¢testSequencel" separator=", "/>
<xsl:text>&i#xA; $testSequencel = /report/brand/units: </xsl:text>
<xsl:value-of select="$testSequence1l = /report/brand/units"/>

<xsl:variable name="testSequence2" as="xs:integer*"

select="(19268, 17, 95, 6, 42)"/>
<xsl:text>8#xA;8#xA; $testSequence2 (xs:integer*):8&ixA; </xsl:text>
<xsl:value-of select="$testSequence2" separator=", "/>
<xsl:text>&i#xA; $testSequence2 = /report/brand/units: </xsl:text>
<xsl:value-of select="$testSequence2 = /report/brand/units"/>
<xsl:text>&i#xA; $testSequence2 < /report/brand/units: </xsl:text>
<xsl:value-of select="$testSequence2 &1t; /report/brand/units"/>
<xsl:text>&i#xA; $testSequence2 > /report/brand/units: </xsl:text>
<xsl:value-of select="$testSequence2 &qgt; /report/brand/units"/>

<xsl:variable name="testSequence3" as="xs:string*"

select="("blue', 'white', '19268')"/>
<xsl:text>8
8ixA; $testSequence3 (xs:string*):8ixA; </xsl:text>
<xsl:value-of select="$testSequence3" separator=", "/>
<xsl:text>8ttxA; $testSequence3 = /report/brand/units: </xsl:text>
<xsl:value-of select="$testSequence3 = /report/brand/units"/>

<xsl:variable name="testSequence4" as="xs:yearMonthDuration*"
select="(xs:yearMonthDuration('P3Y8M"'),

xs:yearMonthDuration('P4Y8M'),
xs:yearMonthDuration('P2Y9M'))"/>

<xsl:text>8#txA;8#xA; $testSequence4 (xs:yearMonthDuration*):</xsl:text>

<xsl:text>
 (</xsl:text>

<xsl:value-of select="$testSequence4" separator=", "/>

<xsl:text>)8#xA; $testSequenceq > </xsl:text>

<xsl:text>xs:yearMonthDuration('P4Y7M'): </xsl:text>

<xsl:value-of select="$testSequence4 > xs:yearMonthDuration('P4Y7M"')"/>

</xsl:template>

</xsl:stylesheet>
The results look like this:

Comparing sequences with values:
Sales figures (/report/brand/units):
27408, 8203, 22101, 14336, 19268

/report/brand/units > 27408 : false
/report/brand/units >= 27408 : true
/report/brand/units < 8203 : false
/report/brand/units <= 8203 : true
/report/brand/units = 22101 : true
/report/brand/units = 17905 : false
not(/report/brand/units = 17905): true

Comparing two sequences:
$testSequencel (xs:integer*):

86 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

(8203, 22101, 27408, 19268, 14336)
$testSequencel = /report/brand/units: true

$testSequence2 (xs:integer*):

(19268, 17, 95, 6, 42)
$testSequence2 = /report/brand/units: true
$testSequence2 < /report/brand/units: true
$testSequence2 > /report/brand/units: true

$testSequence3 (xs:string*):
(blue, white, 19268)
$testSequence3 = /report/brand/units: true

$testSequence4 (xs:yearMonthDuration*):
(P3Y8M, P4YSM, P2Y9M)
$testSequence4 > xs:yearMonthDuration('P4Y7M'): true

In the first set of comparisons, we’re comparing the sequence matched by /report/
brand/units to individual values. The comparison /report/brand/units > 27408 is
false because there are no values in the sequence greater than 27408. When we change
the operator to >=, the comparison is true. For test of equality, if any value in the
sequence matches the value we’re comparing, the result is true. Also notice that we
used the not() function to reverse the result here; the != operator would do the same
thing.

For the next three examples, we’re comparing two sequences. In the first, we’re com-
paring the sequence $testSequencel to the sequence matched by /report/brand/
units. The two sequences have the same five values, although they’re in different orders.
The two sequences are considered equal in this comparison, although only one value
has to match for that to be true. Comparing the sequence from the XML document to
$testSequence2 makes this clear; although the two sequences have only one value in
common, they are considered equal. In addition, comparing $testSequence2 with other
operators, we can see that $testSequence is less than, equal to, and greater than the
sequence matched by /report/brand/units. Thisisn’tintuitive, but that’s how it works.

The difference in the third example is that $testSequences is a sequence of xs:strings.
Because we’re not using an XML Schema, the values from the XML document are
untyped. The XSLT processor automatically converted the values from the document
to xs:integers in the previous two examples, and it converts them to xs:strings here.
The sequence ('blue', 'white', '19268') matches because converting the untyped
value of the parsed <units>19268</units> element to a string creates the value '19268".

The final example here demonstrates comparisons with a sequence of
xs:yearMonthDurations. We create a sequence of three values, and then compare it to
the value xs:yearMonthDuration('P4Y7M'). Because one of the values is greater than 4
years, 7 months, this returns true.

More sophisticated operations on sequences are possible. See the sections “[2.0] Quan-
tified Expressions—some and every” and “[2.0] Set Operators—except, intersect, and
union” later in this chapter.

XPath Operators | 87

[2.0] Conditional Expressions—if, then, and else

One of the less elegant features of XSLT is its if-then-else logic. If I want to test one
condition (a simple if), I use <xsl:if>. If I want to change that to test more than one
condition or add an else case, I have to use <xsl:choose>, <xsl:when>, and
<xsl:otherwise>. (We cover those elements in Chapter 5.) XPath 2.0 gives us the ex-
tremely useful if operator. We can now do if-then-else logic inside the XPath expression
itself.

For comparison, here’s how we do things in XSLT 1.0:

<?xml version="1.0"?>

<I-- if-1 0.xs1 -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:param name="x" select="'10"'"/>
<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>8#xA;An example of if-then-else logic in XSLT 1.0:</xsl:text>
<xsl:text>8#xA;8#xA; If $x is larger than 10, print 'Big', </xsl:text>
<xsl:text>
 otherwise print 'Little'</xsl:text>
<xsl:text>
8itxA; </xsl:text>
<xsl:choose>
<xsl:when test="$x > 10">
<xsl:text>Big</xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:text>Little</xsl:text>
</xsl:otherwise>
</xsl:choose>
<xsl:text>
</xsl:text>
</xsl:template>

</xsl:stylesheet>

We look at the value of $x and write Big if it’s larger than 10; otherwise, we write
Little. Pretty simple stuff, but the <xsl:choose> element takes up 8 lines here. To do
the same thing in XSLT 2.0, it’s much simpler:

<?xml version="1.0"?>

<l-- if-2 0.xs1 -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:param name="x" select="10"/>
<xsl:output method="text"/>

<xsl:template match="/">

<xsl:value-of select="if ($x > 10) then 'Big' else 'Little'"/>

88 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

</xsl:template>
</xsl:stylesheet>

We've accomplished the same result with a single XPath expression.

There are two important details to remember when using the if operator: the expres-
sion we're testing must be enclosed in parentheses, and we always have to use the
else keyword.

[2.0] Iterators Over Sequences—The for Operator

Given XSLT 2.0’s emphasis on sequences, it makes sense that we would have an op-
erator to iterate through all the values of a sequence. Just as the if operator lets you
put the logic of <xsl:choose> into an XPath expression, the for operator gives XPath
expressions the power of <xsl:for-each>. Here is a stylesheet with an example:

<?xml version="1.0"?>

<!-- for.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:variable name="English-months" as="xs:string*"
select="("January', 'February', 'March', 'April’,
'May', 'June', 'July', 'August’,
'September’, 'October', 'November’,
'December')"/>
<xsl:variable name="German-months" as="xs:string*"
select="("Januar', 'Februar', 'Mirz', 'April’,
'Mai', 'Juni', 'Juli', 'August’,
'September’, 'Oktober', 'November’,
'Dezember')"/>

<xsl:template match="/">
<xsl:value-of
select="for $m in ($English-months, $German-months) return
if (starts-with($m, 'J'))
then concat ($m, ' starts with J!
")
else """
separator=""/>
</xsl:template>

</xsl:stylesheet>

[2.0] Quantified Expressions—some and every

XPath 2.0 provides the some and every operators to perform a test against a sequence.
The some operator returns true if the test is true for at least one item in the sequence,

XPath Operators | 89

while every returns false if the test is false for at least one item in the sequence. Here
is an example of the two operators:

<?xml version="1.0"?>

<!-- some-every.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:variable name="English-months" as="xs:string*"
select="("January', 'February', 'March', 'April’,
'May', 'June', 'July', 'August’,
'September', 'October', 'November',
'December')"/>

<xsl:template match="/">
<xsl:text>8#xA;An example of the XPath 2.0 every and </xsl:text>
<xsl:text>some operators:

</xsl:text>
<xsl:text> If ANY month name has a string-length() </xsl:text>
<xsl:text>
 greater than 4, print 'Yes,' otherwise</xsl:text>
<xsl:text>
 print 'No'

 </xsl:text>

<xsl:value-of
select="if (some $m in $English-months satisfies
(string-length($m) > 4)) then 'Yes' else 'No'"/>

<xsl:text>
</xsl:text>

<xsl:text>8#txA;
 If EVERY month name has a string-</xsl:text>
<xsl:text>length()
 greater than 4, print 'Yes,' </xsl:text>
<xsl:text>otherwisedixA; print 'No'
&itxA; </xsl:text>

<xsl:value-of
select="if (every $m in $English-months satisfies
(string-length($m) > 4)) then 'Yes' else 'No'"/>

<xsl:text>
</xsl:text>
</xsl:template>

</xsl:stylesheet>

We have a sequence containing the months of the year in English, and we use some and
every against that sequence. We're testing to see whether each month name has a
string-length() greater than 4. The some expression returns true, while the every ex-
pression returns false. This stylesheet is written to illustrate the new operands; it
doesn’t use anything from an XML document. In a more normal case, we would use
some and every against an XPath expression that selected nodes from an XML docu-
ment. If you replace the variable $English-months with /sonnet/lines/line in the two
preceding expressions, both will evaluate to true, assuming you use the stylesheet to
process sonnet.xml.

90 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

Complications of the some and every Operators

It’s entirely possible that the sequence you’re testing is empty. If your expression is
some $m in /sonnet/lines/words (or anything that returns an empty sequence), the
some operator returns false, while the every operator returns true. This less-than-
intuitive result is defined by the XPath 2.0 and XQuery 1.0 Functions and Operators
specification (Section 3.9, if you want to take a look). These results for empty sequences
make more sense if you think about a simple way to evaluate these operators:

* For the some operator, assume the result is false. As we evaluate the test against
each item in the sequence, if the test is ever true, we stop evaluating the items and
return true. If we get to the end of the sequence and we haven’t found any item
for which the test is true, we’ll return false.

* For the every operator, assume the result is true. As we evaluate the test against
each item in the sequence, if the test is ever false, we stop evaluating the items
and return false. If we get to the end of the sequence and we haven’t found any
item for which the test is false, we’ll return true.

A complication of this rule is that a some or every expression might contain a fatal error
if all of the items in the test sequence were evaluated. The XPath spec does not define
any required behavior here. If an XSLT processor tests items only until it knows the
value of some or every, those errors might never be encountered. Here are two examples
from the XPath spec:

some $x in (1, 2, "cat") satisfies $x * 2 = 4
every $x in (1, 2, "cat") satisfies $x * 2 = 4

If an XSLT processor evaluates the items in the sequence from the first to the last, and
it stops evaluating items as soon as it determines the final result, the fatal error "cat"
* 2 won’t happen. The test is true for the value 2, so some returns true. The test is
false for the value 1, so every returns false.

The XPath specification does not say how a processor must implement some and
every, nor does it specify the order in which items in the sequence are evaluated. A
processor’s internal structures might make it simpler to start at the end of the sequence;
if so, both of these expressions would generate a fatal error. The most ominous impli-
cation of this behavior is that the fatal error might happen intermittently based on the
input data. You can avoid this by using the datatyping operators, which we’ll discuss
soon. (You can also avoid this if your data has been validated before it gets to the XSLT
processor, assuming you trust your data source implicitly....)

[2.0] Range Expressions—The to Operator

To create sequences of integers, XPath 2.0 introduces the to operator. For example,
here is a short stylesheet that creates a sequence of five integers and a reversed sequence
of five integers, then prints the values of the sequences:

<?xml version="1.0"?>
<l-- to.xsl -->

XPath Operators | 91

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:variable name="some-numbers" as="xs:integer*"
select="1 to 5"/>

<xsl:variable name="reversed-numbers" as="xs:integer*"
select="reverse(1 to 5)"/>

<xsl:template match="/">
<xsl:value-of select="¢some-numbers" separator=", "/>
<xsl:text>
</xsl:text>
<xsl:value-of select="¢$reversed-numbers" separator=", "/>
</xsl:template>

</xsl:stylesheet>

The to operator creates only sequences of integers. If the second number is lower than
the first (10 to 1, for example), the result is an empty sequence. If the second number
is the same as the first (such as 10 to 10), the result is a sequence that contains that
single integer.

Be aware that the to operator can be used as part of a larger sequence. For example,
we could create the sequence (1 to 17, 65 to 100). Finally, if you need to create a
sequence of numbers in descending order, you can use the [2.0] reverse() function
(see Appendix C) to reverse the sequence of integers created with the to operator.

The results of this stylesheet look like this:

1, 2,3, 4,5
54, 3,2, 1

[2.0] Constructor Functions

XPath 2.0 introduces the idea of constructor functions, which are similar to constructor
functions in object-oriented languages. As with object-oriented languages, the name of
the constructor function is the name of the datatype. Here’s how to create a value of
type xs:date:

<xsl:variable name="birthday" select="xs:date('1995-04-21"')"/>
This takes the string 1995-04-21 and creates a new value of type xs:date. This can cause

runtime errors, as you would expect. A stylesheet that contains this instruction won’t
run at all:

<xsl:variable name="birthday" select="xs:date('next Tuesday')"/>

92 | Chapter3: XPath: A Syntax for Describing Needles and Haystacks

This is a static error because the stylesheet processor knows this instruction will fail.
On the other hand, we’ll get a runtime error if we send bad data to the xs:date con-
structor while the stylesheet is being processed:

<xsl:variable name="birthday" select="xs:date(@birthday)"/>

This uses the birthday attribute of the current node to create a new xs:date value. If
that attribute contains a value that can be cast as a xs:date, everything is fine; if the
attribute doesn’t contain valid data, we get a runtime error.

[2.0] Datatype Operators—instance of, castable as, cast as, and treat as

As you would expect, a language that supports datatypes and constructors also has
operators to convert a value from one type to another. XPath 2.0 provides four opera-
tors: instance of, castable as, cast as, and treat as. We'll cover those here.

instance of

The instance of operator lets us see whether a value is an instance of a particular
datatype. Here are some examples:

<?xml version="1.0"?>

<!-- instance-of.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>8#txA;Some tests of the "instance of" operator:</xsl:text>

<xsl:text>

 '1995-04-21" instance of xs:date: </xsl:text>
<xsl:value-of select="'1995-04-21" instance of xs:date"/>
<xsl:text>&#txA; xs:date('1995-04-21") instance of xs:date: </xsl:text>
<xsl:value-of select="xs:date('1995-04-21") instance of xs:date"/>
<xsl:text>8#txA;8#xA; 3 instance of xs:integer: </xsl:text>
<xsl:value-of select="3 instance of xs:integer"/>

<xsl:text>8#xA; '3' instance of xs:integer: </xsl:text>
<xsl:value-of select="'3" instance of xs:integer"/>

<xsl:text>&#txA; number('3') instance of xs:integer: </xsl:text>
<xsl:value-of select="number('3"') instance of xs:integer"/>
<xsl:text>8#txA; number('3') instance of xs:double: </xsl:text>
<xsl:value-of select="number('3"') instance of xs:double"/>
<xsl:text>8#txA; xs:integer('3') instance of xs:integer: </xsl:text>
<xsl:value-of select="xs:integer('3"') instance of xs:integer"/>
<xsl:text>8#txA; 'e' instance of xs:integer: </xsl:text>
<xsl:value-of select="'e' instance of xs:integer"/>

</xsl:template>
</xsl:stylesheet>

XPath Operators | 93

The results of the stylesheet are:

Some tests of the "instance of" operator:

'1995-04-21" instance of xs:date: false
xs:date('1995-04-21") instance of xs:date: true

3 instance of xs:integer: true

'3' instance of xs:integer: false
number('3"') instance of xs:integer: false
number('3"') instance of xs:double: true
xs:integer('3') instance of xs:integer: true
'e' instance of xs:integer: false

For the first test, we’re asking whether the string value 1995-04-21 is an instance of
xs:date. This is false; XPath doesn’t automatically try to cast the string as an xs:date.
In the second test, we use the xs:date constructor function to create a new xs:date
value with the string. This test is true.

The last six tests here check the xs:integer datatype. The atomic value 3, as we would
expect, is an xs:integer. The string '3" is not an xs:integer, even though we can cast
it as one (we’ll look at casting next). In addition to casting, another way to convert a
string to a numeric value is to use the number () function. The number () function returns
an xs:double, so instance of xs:integer is false. Using the constructor function

xs:integer() returns an xs:integer, of course. Finally, the value 'e' isn’t an
xs:integer and can’t be cast as one.

cast as

The instance of operator tells us about the datatype of a value; it doesn’t actually
convert the value to the appropriate datatype. There are times when we want to take a
value of a particular datatype and create the equivalent value of another. In other pro-
gramming languages, this is done by casting. XPath 2.0 provides the cast as operator
to do just that. Here are a few examples:

<?xml version="1.0"?>

<l-- cast-as.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>8#xA;Some tests of the "cast as" operator:</xsl:text>

<xsl:text>
8#txA; '1995-04-21' cast as xs:date: </xsl:text>
<xsl:value-of select="'1995-04-21"' cast as xs:date"/>
<xsl:text>8#xA; '3' cast as xs:integer: </xsl:text>
<xsl:value-of select="'3' cast as xs:integer"/>

<xsl:text>8#xA; 3 cast as xs:integer: </xsl:text>
<xsl:value-of select="3 cast as xs:integer"/>

94 | Chapter3: XPath: A Syntax for Describing Needles and Haystacks

<xsl:text>8#xA; 'e' cast as xs:integer: </xsl:text>
<xsl:text>[causes a fatal error if we try it]</xsl:text>

</xsl:template>
</xsl:stylesheet>

In this sample, we cast the string 1995-04-21 to an xs :date. This works without a hitch,
as do the next two tests. The fourth test, '3' cast as xs:integer, fails if we try to
execute it. The stylesheet won’t run at all because this is a static error. Here are the
results:

Some tests of the "cast as" operator:

'1995-04-21"' cast as xs:date: 1995-04-21

'3' cast as xs:integer: 3

3 cast as xs:integer: 3

'e' cast as xs:integer: [causes a fatal error if we try it]

As you’d expect, it’s a dynamic error if we extract a value from an XML source docu-
ment and try to cast it to a datatype that won’t work. If only we had a way to see if cast
as would work before we actually tried it, we could avoid dynamic errors....

castable as

The castable as operator lets us see whether a given cast will work. If it won’t, we can
respond to that gracefully instead of having our stylesheet fail. Here’s how we use
castable as:

<?xml version="1.0"?>

<!-- castable-as.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>8#xA;Some tests of the "castable as" operator:</xsl:text>

<xsl:text>8#xA;8txA; '1995-04-21' castable as xs:date: </xsl:text>
<xsl:value-of select="'1995-04-21"' castable as xs:date"/>
<xsl:text>8#xA; '3' castable as xs:integer: </xsl:text>
<xsl:value-of select="'3" castable as xs:integer"/>

<xsl:text>8#xA; 3 castable as xs:integer: </xsl:text>
<xsl:value-of select="3 castable as xs:integer"/>

<xsl:text>8#xA; 'e' castable as xs:integer: </xsl:text>
<xsl:value-of select="'e' castable as xs:integer"/>

</xsl:template>
</xsl:stylesheet>

With the castable as operator, we can see whether a cast will work before we try it. If
it’s not going to work (we can’t convert e to an xs:integer), we can do something else
in our stylesheet. Here are the results from our stylesheet:

XPath Operators | 95

Some tests of the "castable as" operator:

'1995-04-21"' castable as xs:date: true
'3' castable as xs:integer: true

3 castable as xs:integer: true

'e' castable as xs:integer: false

treatas

There is one more operator XPath gives us: the treat as operator. This one is a little
harder to grasp. To understand why it’s needed, we’ll have to talk about static types
and dynamic types. A static datatype is the type of a value as it is declared. A dynamic
type may be more specific than the static type; more often they’re the same. To take an
example from the XPath 2.0 spec, the static type of a variable could be xs: integer*, yet
its dynamic type could be xs:integer. Here’s an example:

<xsl:variable name="integerSequence" as="xs:integer+" select="(3)"/>

The variable $integerSequence is a sequence of one or more integers. In this instance,
however, $integerSequence is also a single integer. Here’s an example in which we treat
a sequence of integers as a single integer:

<?xml version="1.0"?>

<!-- treat-as.xsl -->

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:variable name="numbers" as="xs:integer*">
<xsl:sequence select="/numbers/number"/>
</xsl:variable>

<xsl:template match="/">
<xsl:variable name="number" as="xs:integer"
select="$numbers treat as xs:integer"/>

<xsl:text>8#xA;An example of the XPath 2.0 treat as </xsl:text>
<xsl:text>operator:
&txA; </xsl:text>

<xsl:text> Treat a sequence of integers as a single integer:</xsl:text>
<xsl:text>8#xA; </xsl:text>

<xsl:value-of select="$number"/>
</xsl:template>

</xsl:stylesheet>

Here we have a variable that consists of a sequence of values of <number> elements in
an XML document. If there is only one number in the sequence, the stylesheet works.
If the sequence isn’t a singleton (it’s empty or has more than one integer), we get a
runtime error. This XML document, for example, doesn’t cause any problems:

96 | Chapter3: XPath: A Syntax for Describing Needles and Haystacks

<?xml version="1.0" encoding="utf-8"?>
<!-- numbers.xml -->
<numbers>
<number>3</number>
</numbers>

Adding more <number> elements (or using a document that doesn’t have any <number>
elements at all) causes a runtime error. The treat as operator tells the XSLT processor
not to worry about the inconsistencies between datatypes (xs:integer* versus
xs:integer), but it puts the burden on us to make sure the dynamic type of the data is
correct. To do that, of course, we can use the cast as and castable as operators.

[2.0] Set Operators—except, intersect, and union

One weakness of XPath 1.0 was the inability to compare sets of nodes. If we selected
two node-sets with two XPath 1.0 expressions, it was difficult to tell which nodes were
in both sets and which were in one set but not the other. XPath 2.0 has two new set
operators, except and intersect. If you enjoy extra typing, XPath 2.0 also adds the
union operator, a synonym for the vertical bar operator (|) in XPath 1.0. (The vertical
bar is still supported in XPath 2.0.)

Be aware that these operators work only on sequences of nodes. If you try to use them
with sequences that contain atomic values, you’ll get an error.

As we discuss these operators, we’ll use this XML document:

<?xml version="1.0" encoding="utf-8"?>
<!-- books.xml -->
<favorite-books>
<booklist>
<book isbn="0596000537"
favorite="Doug Sheri">XSLT</book>
<book isbn="0141439777"
favorite="Doug">Tristram Shandy</book>
<book isbn="0142437298"
favorite="Doug">Herzog</book>
<book isbn="0679762108"
favorite="Doug Sheri">The Sportswriter</book>
<book isbn="0143035479"
favorite="Sheri">The Girls' Guide to Hunting and Fishing</book>
<book isbn="0375724443"
favorite="Sheri">Ava's Man</book>
</booklist>
</favorite-books>

We'll select two sequences in our sample stylesheets: the books I like (the favorite
attribute contains the string Doug) and the books my wife likes (the favorite attribute
contains the string Sheri). We’ll use those two sequences to illustrate the set operators.

XPath Operators | 97

The except, intersect, and union operators compare the nodes them-
selves, not the values of those nodes. If two different nodes have the
W same value, they are still two different nodes. These operators help you
select different nodes, not different values. If you’re curious about the
values of the nodes, the new [2.0] distinct-values() function (see Ap-
pendix C) will probably be useful.

Here is a sample stylesheet for the except operator:

<?xml version="1.0"?>

<!-- except.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:variable name="Dougs-favorites" as="node()*">
<xsl:sequence
select="/favorite-books/booklist
/book[contains(@favorite, 'Doug')]"/>
</xsl:variable>

<xsl:variable name="Sheris-favorites" as="node()*">
<xsl:sequence
select="/favorite-books/booklist
/book[contains (@favorite, 'Sheri')]"/>
</xsl:variable>

<xsl:template match="/">
<xsl:text>
Books Doug likes but Sheri doesn't:</xsl:text>
<xsl:text>8ifxA;8txA; </xsl:text>

<xsl:for-each select="$Dougs-favorites except $Sheris-favorites">
<xsl:sort select="."/>
<xsl:value-of select="."/>
<xsl:text>&#txA; </xsl:text>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

The other sample stylesheets are identical, but they use the intersect and union oper-
ators instead.

except

The except operator returns all of the nodes that are in the first sequence but not in the
second. Given our two sequences, the expression $Dougs-favorites except $Sheris-
favorites generates these results:

Books Doug likes but Sheri doesn't:

98 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

Herzog
Tristram Shandy

intersect

Given two sequences of nodes, intersect returns a sequence containing all of the nodes
in both sequences. All duplicate nodes are removed, each node appears only once. The
intersect operator returns these results:

<!-- intersect.xsl -->

<xsl:for-each select="$Dougs-favorites intersect $Sheris-favorites">

Books we both like:

The Sportswriter
XSLT

union

The union operator returns a node-set containing all nodes in both sets. As with the
intersect operator, all duplicates are removed. Using the union operator gives us these
results:

<!-- union.xsl -->

<xsl:for-each select="$Dougs-favorites union $Sheris-favorites">

All the books we like:

Ava's Man

Herzog

The Girls' Guide to Hunting and Fishing
The Sportswriter

Tristram Shandy

XSLT

As we noted earlier, the vertical bar (]) operator is still supported. Changing the style-
sheet from:

<xsl:for-each select="¢Dougs-favorites union $Sheris-favorites">

to:
<xsl:for-each select="$Dougs-favorites | $Sheris-favorites">
generates the same results.
To emphasize the point that these operators compare nodes, not their values, we could
change the structure of our list of books:

<favorite-books>
<favorites person="Doug">
<book isbn="0679762108">The Sportswriter</book>

XPath Operators | 99

</favorites>
<favorites person="Sheri">
<book isbn="0679762108">The Sportswriter</book>
</favorites>
</favorite-books>

The two <book> elements here have identical values, but they are two different nodes.
The except, intersect, and union operators treat them as such.

[2.0] Node Operators

XPath 2.0 defines three new operators to work with nodes: the is operator, the node-
before operator (<<), and the node-after operator (>>).

The is operator

The is operator compares two nodes to see whether they are the same. This compares
the nodes themselves, not their values. Continuing our example from the previous
section, here’s a stylesheet that illustrates how the operator works:

<?xml version="1.0"?>

<l-- is.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:variable name="Dougs-favorites" as="node()*">
<xsl:sequence
select="/favorite-books/booklist
/book[contains(@favorite, 'Doug')]"/>
</xsl:variable>

<xsl:variable name="Sheris-favorites" as="node()*">
<xsl:sequence
select="/favorite-books/booklist
/book[contains(@favorite, 'Sheri')]"/>
</xsl:variable>

<xsl:template match="/">
<xsl:text>A test of the is operator:</xsl:text>
<xsl:text>
 Comparing the first nodes of </xsl:text>
<xsl:text>the sequences:&itxA;</xsl:text>

<xsl:value-of
select="if (subsequence($Dougs-favorites, 1, 1) is
subsequence($Sheris-favorites, 1, 1))
then ' The first nodes are the same!
 '
else ' The first nodes aren''t the same!
'"/>

<xsl:text> Reversing one sequence and trying it </xsl:text>
<xsl:text>again:&i#xA;</xsl:text>

100 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

<xsl:value-of
select="if (subsequence($Dougs-favorites, 1, 1) is
subsequence(reverse($Sheris-favorites), 1, 1))
then ' The first nodes are the same!
'
else ' The first nodes aren''t the same!
'"/>
</xsl:template>

</xsl:stylesheet>

This stylesheet creates two sequences of nodes, then compares the first nodes of each
sequence. In the first example, the nodes are the same. In the second example, we
reverse the order of one of the sequences, so the nodes are not the same. (Of course, if
each sequence contained only one item, is would still return true.) Here are the results:

A test of the is operator:

Comparing the first nodes of the sequences:
The first nodes are the same!

Reversing one sequence and trying it again:
The first nodes aren't the same!

node-after (>>)

The node-after operator compares two nodes. If the first node occurs after the second,
node-after returns true; otherwise, it returns false. The expression node1l >> nodel
returns false, as you would expect; a node can’t appear after itself. Here’s a sample
stylesheet:

<?xml version="1.0"?>

<!-- node-after.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:variable name="Dougs-favorites" as="node()*">
<xsl:sequence
select="/favorite-books/booklist
/book[contains(@favorite, 'Doug')]"/>
</xsl:variable>

<xsl:template match="/">
<xsl:text>A test of the node-after (>>) operator:</xsl:text>
<xsl:text>8i#txA;
 Comparing nodes from </xsl:text>
<xsl:text>the sequence:8#xA;</xsl:text>

<xsl:value-of
select="if (subsequence($Dougs-favorites, 1, 1) >>
subsequence($Dougs-favorites, 2, 1))
then ' nodel >> node2 = true#xA;'
else ' node1 >> node2 = false
'"/>
<xsl:value-of
select="if (subsequence($Dougs-favorites, 2, 1) >>
subsequence($Dougs-favorites, 1, 1))

XPath Operators | 101

then ' node2 >> nodel = true#xA;'
else ' node2 >> node1 = false#xA;'"/>
<xsl:value-of
select="if (subsequence($Dougs-favorites, 1, 1) >>
subsequence($Dougs-favorites, 1, 1))
then ' nodel >> nodel = trued#xA;'
else ' node1 >> nodel = false
'"/>
</xsl:template>

</xsl:stylesheet>

The nodes in the sequence $Dougs-favorites are in document order, so nodel >>
node2 returns false and node2 >> nodel returns true. In the third example, we compare
the node to itself. A node can’t appear before itself, so node1 >> node1 returns false.
Here are the results:

A test of the node-after (>>) operator:

Comparing nodes from the sequence:
nodel >> node2 = false
node2 >> nodel = true
nodel >> nodel = false

node-before (<<)

The node-before operator compares two nodes and returns true if the first node appears
in the document before the second. Replacing the node-after operator with the node-
before operator in our previous stylesheet gives these results:

A test of the node-before (<<) operator:

Comparing nodes from the sequence:
nodel << node2 = true
node2 << nodel = false
nodel << nodel = false

Although the specs define the node-before operator as <<, we have to
escape the less-than sign inside an XPath expression. The expressions
Ws' in the stylesheet use the node-before operator in the form node1
" &1t;81t; node2.

[2.0] Comments in XPath Expressions

Another addition to the XPath 2.0 syntax is the ability to add comments. Using de-
lightfully happy syntax, a comment begins with (: and ends with :). We’ll use a style-
sheet with a complicated if statement:

<?xml version="1.0"?>

<!-- comments.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

102 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:for-each select="cars/make">

<xsl:text>
 Car: </xsl:text>

<xsl:value-of select="."/>

<xsl:text> - </xsl:text>

<xsl:value-of

select="(: Most of our cars are from North America,
so we look there first :)
if (@geography = 'North America') then

'Domestic car'

(: Next, see if the car is from Europe :)
else if (@geography = 'Europe') then
'Import from Europe'

(: Check for Asia :)
else if (@geography = 'Asia') then
"It's from Asia8quot;

(: If it's anything else, just say
'We don't know' :)

else
'"We don''t know!'"/>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

The stylesheet has three if statements that check the value of the geography attribute
of an element. We've used spacing and comments liberally here to make the code more
legible. In the last comment, you can see that we don’t have to escape quote marks
inside the comment, although we do have to handle them appropriately outside the
comment. For one quote that contains an apostrophe, we wrap the text in double
quotes ("It's from Asiadquot;). For the next quote, we use a doubled apostrophe
('We don''t know!") to display the text.

Here’s the XML document we’ll transform:

<?xml version="1.0"?>

<!-- carlist-geography.xml -->

<cars>
<make geography="Europe">Alfa Romeo</make>
<make geography="Europe">Bentley</make>
<make geography="North America">Chevrolet</make>
<make geography="North America">Dodge</make>
<make geography="North America">GMC</make>
<make geography="Asia">Honda</make>
<make geography="Asia">Isuzu</make>
<make geography="?">Quantum</make>

</cars>

[2.0] Comments in XPath Expressions | 103

The output looks like this:

Car: Alfa Romeo - Import from Europe
Car: Bentley - Import from Europe
Car: Chevrolet - Domestic car

Car: Dodge - Domestic car

Car: GMC - Domestic car

Car: Honda - Import from Asia

Car: Isuzu - Import from Asia

Car: Quantum - We don't know!

These comments work only within an XPath statement; you can’t use them to comment
out parts of your stylesheet. Comments can also be nested. If we wanted to remove the
if statement that checks for European cars, we could comment out that entire section
of the XPath expression:

(: (: Next, see if the car is from Europe :)

else if (@geography = 'Europe') then
"Import from Europe' :)

This comment includes our earlier comment and the if statement. XPath comments
are more convenient than XML comments, which cannot be nested.

[2.0] Types of XSLT 2.0 Processors
The XSLT 2.0 spec defines two types of XSLT 2.0 processors:

Schema-aware processors
A schema-aware XSLT 2.0 processor supports user-defined schemas. In other
words, we can use XML Schema to define our own datatypes and document struc-
tures, then ask the processor to validate values or nodes against that schema.

Basic processors
A basicXSLT 2.0 processor supports only the datatypes defined in the XML Schema
Datatypes spec, with a few extra datatypes added by the XPath 2.0 and XQuery
1.0 Data Model spec. We covered all of those datatypes earlier in this chapter.

For a brief introduction to XML Schema, as well as a short discussion of how schemas
are used in XSLT 2.0 stylesheets, see Appendix D.

The XPath View of an XML Document

Before we leave the subject of XPath, we’ll look at a stylesheet that generates a pictorial
view of a document. The stylesheet has to distinguish between all of the different XPath
node types, including any namespace nodes.

104 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

Output View

Figure 3-1 shows the output of our stylesheet. In this graphical view of the document,
the nested HTML tables illustrate which nodes are contained inside of others, as well
as the sequence in which these nodes occur in the original document. In the section of
the document visible in Figure 3-1, the root of the document contains, in order, two
processing instructions and two comments, followed by the <sonnet> element and two
more comments. The <sonnet> element, in turn, contains two attributes and an
<auth:author> element. The <auth:author> element contains a namespace node and
an element.

Be aware that if you throw a very large XML document at this stylesheet, you’ll get an
HTML file with hundreds, perhaps thousands of tables. It’s possible that your XSLT
processor will run out of memory before it’s finished with the document. For example,
using this stylesheet to process the XML source of the Function Reference appendix
creates an HTML file with more than 17,000 tables.

The Stylesheet

Now we’ll take a look at the stylesheet and how it works. The stylesheet creates a
number of nested tables to illustrate the XPath view of the document. We begin by
writing the basic HTML elements to the output stream, defining some CSS styles and
creating a legend for our nested tree view. Having created the legend for our document,
we select all the different types of nodes and represent them:

<xsl:for-each select="*|comment()|processing-instruction()|text()">
</xsl:for-each>

It’s very important to understand the difference between the XPath document root and
the XML root element. In our XML sonnet, there are processing instructions and com-
ments outside the root element. The document root contains those processing instruc-
tions and comments in addition to the <sonnet> element itself. In a location path, /
represents the document root, while /sonnet represents the root element in our XML
document. (The more general expression /* represents the root element in any
document.)

[2.0] The situation is even more complicated in XPath 2.0, where you have to distin-
guish between a node type (document node, element node, etc.) and the role the node
plays: nodes of any type can be at the root of a document. It’s only in well-formed XML
documents that we can say that the root node is a document node and its only element
child is the document element. All that being said, if you’re transforming XML docu-
ments, this situation will come up very rarely.

The select attribute in the template for the document root doesn’t include attributes
(@*) or namespace nodes (namespace: : *) because those can’t be defined on a document

The XPath View of an XML Document | 105

XPath view of your document

The structure of your document (as XPath sees it) is outlined below.

Node types:
document root element attribute text comment processing instruction _

document root:

processing instruction: <?zml-stvleshest?>

href="sonnet.xzsl" type="text- zsl"

processing instruction: <?cocoon-process?>

type="xzslt"

comment: Default sonnet type is Shakespearean, the other allowahle
comment: tyvpe is "Petrarchan."

element: <sonnet>

attribute name value
type Shakespearean
public-domain yes

element: <auth:author:

element: <last-name>

text: Shakespeare

Figure 3-1. XPath tree view of an XML document

root. If you try to select attributes or namespace nodes at the document root, some
XSLT processors (Saxon, for example) give you a warning message.

The rest of the stylesheet has templates to handle each of the types of nodes. Most of
them print the type of node followed by the content of that node. The only template
with any complexity is the element template. We create a new table row, and then put
a nested table inside the row. When we create the new table row, we use the HTML
title and alt attributes. Whenever the user pauses his mouse over part of the table, a
pop up appears that indicates the ancestry of the element represented in that part of
the table. Here’s how we create the value for the title and alt attributes:
<xsl:variable name="title">
<xsl:for-each select="ancestor-or-self::*">
<xsl:text>/</xsl:text>

<xsl:value-of select="name()"/>
</xsl:for-each>

106 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

element: <auth:author:

element: <last-names:>

text: Shakespeare Jfsonnetfauth:author last-name

Figure 3-2. Pop-up text shows the ancestry of each element

</xsl:variable>
<tr title="{$title}" alt="{$title}">

The ancestor-or-self axis returns all of the ancestors of the current node plus the
current node itself. Even though the ancestor-or-self axis returns nodes that occur
before the current node, the nodes it returns are in document order. In other words,
the first element in the sequence returned by ancestor-or-self axis is the root element.
Figure 3-2 shows how the pop up looks.

For this example, the sequence of nodes returned by ancestor-or-self are the <sonnet>,
<auth:author>, and <last-name> elements, in that order.

The next step in processing an element is to look for attributes and namespace defini-
tions. An element is the only type of node that can contain these. Here’s how we look
for them:

<table border="0" width="100%">
<xsl:if test="count(@*) > 0">
<tr>
<td>
<table width="100%">
<tr class="attribute">
<td width="20%">
attribute name
</td>
<td>
value
</td>
</tr>
<xsl:for-each select="@*">
<tr class="attribute">
<td width="20%">

<xsl:value-of select="name()"/>

</td>
<td>

The XPath View of an XML Document | 107

<xsl:value-of select="."/>

</td>
</tr>
</xsl:for-each>
</table>
</td>
</tr>
</xsl:if>

To illustrate the structure of the document, we create a table for each element. If that
element in turn contains other elements, we put those in separate tables as well. After
creating the table, we check for any attribute nodes (count(@*) > 0). If there are any
attributes, we create a new table to list them.

Once all the attributes have been processed, we look for all the namespace nodes and
list them as well. To do this, we employ the rarely used namespace axis:

<xsl:for-each select="namespace::*">

<xsl:if test="name() != 'xml'">
<xsl:call-template name="namespace-node"/>
</xsl:if>

</xsl:for-each>

We don’t display the xml namespace prefix because it’s always defined
and always associated with the namespace URI http://www.w3.org/XML/
1998/namespace. For a namespace node, the name() function returns the
namespace prefix. The value of a namespace node (<xsl:value-of
select="."/>) is its URL. If we were looking for a namespace node that
could be associated with any prefix, we would test the value of the

namespace node instead. For example, this namespace definintion:

xmlns:sample="http://www.w3c.org/1999/XSL/Transform"

associates the XSLT namespace with the prefix sample. If we wanted to
see whether the XSLT namespace were defined, we would have to use
the value of the namespace node instead of simply looking for the usual
prefix xsl.

Finally, we use <xs1:apply-templates> to process everything contained in the element:

<xsl:apply-templates select="node()"/>

Here’s the complete stylesheet:

<?xml version="1.0" encoding="utf-8"?>

<!--xpath-1_0-tree-diagram.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="html"/>

108 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

<xsl:template match="/">
<html>
<head>
<title>XPath view of your document</title>
<style type="text/css">
<xsl:comment>

.literal { font-family: Courier, monospace; }
.docroot { background-color: #99CCCC; }

.element { background-color: #CCCC99; }
.attribute { background-color: #FFFF99; }
.text { background-color: #FFCC99; }
.comment { background-color: #CCCCFF; }
.pi { background-color: #99FF99; }
.namespace { background-color: #CC99CC; }
.box { border: solid black 3px; }
</xsl:comment>
</style>
</head>

<body style="font-family: sans-serif;">
<h1>XPath view of your document</h1>
<p>
The structure of your document (as XPath sees it)
is outlined below.
</p>
<table cellspacing="5" cellpadding="2" border="0">
<tr>
<td colspan="7">
Node types:
</td>
</tr>
<tr>
<td class="docroot">document root</td>
<td class="element">element</td>
<td class="attribute">attribute</td>
<td class="text">text</td>
<td class="comment">comment</td>
<td class="pi">processing instruction</td>
<td class="namespace">namespace</td>
</tr>
</table>

<table width="100%" class="box" bgcolor="#FFFFFF"
title="document root" alt="document root">
<tr class="docroot">
<td colspan="3">
document root:
</td>
</tr>
<tr>
<td width="15" class="docroot"></td>
<td>
<table width="100%">
<xsl:apply-templates
select="*|comment() |processing-instruction()|text()"/>

The XPath View of an XML Document | 109

</table>
</td>
<td width="15" class="docroot"></td>
</tr>
<tr class="docroot">
<td colspan="3"> </td>
</tr>
</table>
</body>
</html>
</xsl:template>

<xsl:template match="comment()">
<tr>
<td class="comment">
comment:

<xsl:value-of select="."/>

</td>
</tr>
</xsl:template>

<xsl:template match="processing-instruction()">
<tr>
<td class="pi">
processing instruction:

<xsl:text>&1t;?</xsl:text>
<xsl:value-of select="name()"/>
<xsl:text>?8gt;</xsl:text>

<xsl:value-of select="."/>

</td>
</tr>
</xsl:template>

<xsl:template match="text()">
<xsl:if test="string-length(normalize-space(.))">
<tr>
<td class="text" width="100%">
text:

<xsl:value-of select="."/>

</td>
</tr>
</xsl:if>
</xsl:template>

<xsl:template name="namespace-node">
<tr>
<td class="namespace">
namespace:

110 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

<xsl:value-of select="name()"/>

<xsl:value-of select="."/>

</td>
</tr>
</xsl:template>

<xsl:template match="*">
<xsl:variable name="title">
<xsl:for-each select="ancestor-or-self::*">
<xsl:text>/</xsl:text>
<xsl:value-of select="name()"/>
</xsl:for-each>
</xsl:variable>
<tr title="{$title}" alt="{$title}">
<td>
<table class="box" width="100%">
<tr>
<td class="element" colspan="3" valign="top">
element:

<xsl:text>&1t;</xsl:text>
<xsl:value-of select="name()"/>
<xsl:text>8gt;</xsl:text>

</td>
</tr>
<tr>
<td class="element" width="15"> 8 </td>
<td>
<table border="0" width="100%">
<xsl:if test="count(@*) 8gt; 0">
<tr>
<td>
<table width="100%">
<tr class="attribute">
<td width="20%">
attribute name
</td>
<td>
value
</td>
</tr>
<xsl:for-each select="@*">
<tr class="attribute">
<td width="20%">

<xsl:value-of select="name()"/>

</td>
<td>

The XPath View of an XML Document | 111

<xsl:value-of select="."/>

</td>
</tr>
</xsl:for-each>
</table>
</td>
</tr>
</xsl:if>
<xsl:for-each select="namespace::*">
<xsl:if test="name() != 'xml'">
<xsl:call-template name="namespace-node"/>
</xsl:if>
</xsl:for-each>
<xsl:apply-templates select="node()"/>
</table>
</td>
<td bgcolor="#CCCC99" width="15"> </td>
</tr>
<tr>
<td colspan="3" bgcolor="#CCCC99">8#160;</td>
</tr>
</table>
</td>
</tr>
</xsl:template>

</xsl:stylesheet>

Before we leave this example, a couple of other techniques are worth mentioning here.
First, notice that we used CSS to format some of the output. XSLT and CSS aren’t
mutually exclusive; you can use XSLT to generate CSS as part of an HTML page, as we
demonstrated here. Second, we used wildcard expressions such as * and @* to process
all the elements and attributes in our document. Use of these expressions allows us to
apply this stylesheet to any XML document, regardless of the tags it uses. Because we
use these wildcard expressions, we have to use the name() function to get the name of
the element or attribute we’re currently working with. Third, notice that we used con-
ditional logic and the expression count(@*) > 0 to determine whether a given ele-
ment has attributes. We’ll talk more about conditional logic in Chapter 5.

Summary

We’ve covered the basics of XPath. Hopefully, at this point you’re comfortable with
the idea of writing XPath expressions to describe parts of an XML document. As we go
through the following chapters, you’ll see XPath expressions used in a variety of ways,
all of which build on the basics we’ve discussed here. When you’re debugging a style-
sheet, you’ll probably spend most of your time making sure your XPath expressions
select the right data. Very few of the things we’ll do in the rest of the book are possible
without precise XPath expressions.

112 | Chapter3: XPath:A Syntax for Describing Needles and Haystacks

CHAPTER 4

Creating Output

Goals of This Chapter

By the end of this chapter, you should know how to:

Generate text

Number things, including numbering at multiple levels
Format numbers

[2.0] Format dates and times

Use <xsl:copy> and <xsl:copy-of> to copy nodes from the input document to the
output document

Deal with whitespace

Generating Text

The first thing we’ll cover is how to put text in the output. Just putting some text out
there is simple enough, but we’ll look at some more advanced techniques that we’ll
explore throughout the book. We’ll look at two elements in particular: <xs1:text> and
<xsl:value-of>. We’ll use these to create an HTML document that contains a table of
contents for an XML document. Here’s the XML document we’ll use:

<?xml version="1.0"?>
<!-- toc source.xml -->
<article>
<title>Creating output</title>
<body>
<headingi1>Generating text</headingl>
<heading1>Numbering things</heading1>
<heading1>Formatting numbers</heading1>
<heading1>Copying nodes from the input document to the output</heading1>
<heading1>Handling whitespace</heading1>
</body>
</article>

13

Creating Simple Text

There are many times you need to write some text to the output. In the first example
we’ll build in this chapter, we want to create HTML that looks like this:

<h1>Table of Contents</h1>

<h2>Generating text</h2>

<h2>Numbering things</h2>

<h2>Formatting numbers</h2>

<h2>Copying nodes from the input document to the output</h2>

<h2>Handling whitespace</h2>

In this output document, the text of each item in the table is the text of a particular
element in the XML source. The text Table of Contents, however, is the same each
time. To generate this text, we’ll use the <xs1l:text> element. We’ll start our stylesheet
by generating that text:
<xsl:template match="/">
<h1>

<xsl:text>Table of Contents</xsl:text>
</h1>

</xsl:template>

All we did here was insert a string in our output document. To make things even sim-
pler, we could have done this:

<xsl:template match="/">
<h1>Table of Contents</h1>

</xsl:template>

For any non-XSLT element in a stylesheet (<h1>, for example), XSLT’s default behavior
is to simply pass that element to the output. Normally we’ll use <xsl:text> when we
need complete control over whitespace or when we’re creating text output instead of
a marked-up document such as an HTML file.

In these examples, we simply wrote text to our output document; most often we’ll
combine text with values from our source document. For example, we might want to
generate an HTML document that looks like this:

<h1>Table of Contents</h1>

<p>This document contains 5 chapters:</p>

<h2>Generating text</h2>
<h2>Numbering things</h2>

The paragraph we added contains text as well as a value, which is the number of chap-
ters in our source document. To output values such as this or the title of each chapter
we need the <xsl:value-of> element, which we’ll look at in just a minute.

114 | Chapter4: Creating Output

Before we move on to the <xsl:value-of> element, a quick note: if we

were writing Java or C# code to create the output document, we

W wouldn’t put literal text such as Table of Contents in the code itself.

© We’d load that string at runtime from a file of translated strings. That
would let us use the same code to create a table of contents in English,
Japanese, Polish, or whatever language we need. Setting up stylesheets
to do the same thing is complicated, but we’ll discuss how to do just
that later in “The document() Function” in Chapter 8.

Outputting the Value of Something

Creating a simple text string is easy: we just use the <xsl:text> element. However, in
any stylesheet you write, you’ll probably need to output the value of something from
the XML source. That’s what the <xsl:value-of> element is for. In the example style-
sheet we’re building, we want to transform this element in the XML source:

<headingl>Generating text</headingl>

into this HTML element in the output:

<h2>Generating text</h2>

In other words, we want to take every <heading1> element and transform it into an
HTML <h2> element that contains the value of the <heading1> element. Here’s a tem-
plate that does just that:
<xsl:template match="heading1">
<h2>
<xsl:value-of select="."/>
</h2>
</xsl:template>

To generate our earlier paragraph that contains the number of chapters, we’ll use
<xsl:value-of> with the XPath count() function:
<p>
This document contains
<xsl:value-of select="count(/article/body/heading1)"/>
chapters.
</p>

This bit of XSLT creates the following HTML paragraph:

<p>
This document contains
5
chapters.

</p>

An HTML browser normalizes the whitespace before rendering it, as shown in Fig-
ure 4-1.

Generating Text | 115

") Mozilla Firefox

File Edit “iew Go Bookmarks Tools Help

G- -8 08| 113 &[0 Ao

|1 File:/ / fc:/ project...ut/whitespace.html |

This document containg 5 chapters.

Figure 4-1. HTML normalizes whitespace before displaying a document

If we needed more control over the output, we could use <xsl:value-of> and
<xsl:text> together:
<p>
<xsl:text>This document contains </xsl:text>
<xsl:value-of select="count(/article/body/heading1)"/>
<xsl:text> chapters.</xsl:text>
</p>

This generates an HTML paragraph without any extra whitespace:

<p>This document contains 5 chapters.</p>

Notice that we had to put blank spaces inside the <xsl:text> elements so there would
be spaces around the number 5. Finally, a simpler, but far less readable alternative
would be to run all of the text and the <xs1:value-of> element together on a single line:

<p>This document contains <xsl:value-of select="count(/article/body...

HTML browsers typically handle whitespace the way you want; for other types of out-
put, dealing with whitespace is a significant issue. We’ll talk more about whitespace a
little later.

[2.0] Changes to <xsl:value-of> in XSLT 2.0

In XSLT 2.0, <xsl:value-of> has a separator attribute. If the select attribute is a se-
quence of items, those items are output in sequence, with the value of the separator
attribute between them. We’ll look at a couple of examples that use separator here.

First of all, here’s a short XML document that lists different automobile manufacturers
and some of the cars they make:

<?xml version="1.0" encoding="utf-8"?>
<I-- cars.xml -->
<cars>
<manufacturer name="Chevrolet">
<car>Cavalier</car>
<car>Corvette</car>
<car>Impala</car>
<car>Malibu</car>
</manufacturer>

116 | Chapter4: Creating Output

<manufacturer name="Ford">
<car>Pinto</car>
<car>Mustang</car>
<car>Taurus</car>

</manufacturer>

<manufacturer name="Volkswagen">
<car>Beetle</car>
<car>Jetta</car>
<car>Passat</car>
<car>Touraeg</car>

</manufacturer>

</cars>

Our first <xsl:value-of> element uses the separator attribute to list all of the manu-
facturers, separated by commas:

<?xml version="1.0" encoding="utf-8"?>

<!-- value-of 2 0.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:value-of select="cars/manufacturer/@name" separator=", "/>
</xsl:template>

</xsl:stylesheet>

Transforming our XML document with this stylesheet gives us the following results:

Chevrolet, Ford, Volkswagen

The separator attribute is useful in this case because it is inserted after every value
except the last. In XSLT 1.0, we have to do something like this:

<?xml version="1.0" encoding="utf-8"?>

<!-- value-of 1 0.xs1 -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:for-each select="cars/manufacturer/@name">
<xsl:value-of select="."/>
<xsl:if test="not(position()=last())">
<xsl:text>, </xsl:text>
</xsl:if>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

After we output each item, we have to see whether that item is the last; if not, we insert
our separator with <xsl:text>. The <xsl:for-each> and <xsl:if> elements aren’t

Generating Text | 117

necessary in XSLT 2.0; the separator attribute makes it much easier to create the output
we want.

We can use the separator attribute with sequences as well. Here’s an example that uses
a sequence of xs:strings and a sequence created with XPath 2.0’s new to operator:

<?xml version="1.0"?>

<!-- value-of sequences.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:variable name="months" as="xs:string*"
select=""'January', 'February', 'March', 'April’,
'May', 'June', 'July', 'August’,
'September', 'October', 'November', 'December'"/>

<xsl:template match="/">
<xsl:value-of select="1 to 7" separator=", "/>
<xsl:text>
</xsl:text>
<xsl:value-of select="$months" separator="8
"/>
</xsl:template>

</xsl:stylesheet>

This stylesheet generates the following results:

1, 2, 3, 4,5, 6, 7
January
February
March
April

May

June

July
August
September
October
November
December

Numbering Things

XSLT provides the <xsl:number> element to number the parts of a document. (It can
also be used to format a numeric value; more on that later.) In general, <xs1:number>
counts something. We’ll look at a variety of examples here.

To fully illustrate how <xsl:number> works, we’ll need an XML document with some
things to count. We’ll reuse our list of cars from the previous section:

<?xml version="1.0" encoding="utf-8"?>
<!-- cars.xml -->

118 | Chapter4: Creating Output

<cars>
<manufacturer name="Chevrolet">
<car>Cavalier</car>
<car>Corvette</car>
<car>Impala</car>
<car>Malibu</car>
</manufacturer>
<manufacturer name="Ford">
<car>Pinto</car>
<car>Mustang</car>
<car>Taurus</car>
</manufacturer>
<manufacturer name="Volkswagen">
<car>Beetle</car>
<car>Jetta</car>
<car>Passat</car>
<car>Touraeg</car>
</manufacturer>
</cars>

We’ll use <xsl:number> in several different ways to illustrate the various options we
have in numbering things. We’ll start with something simple:

<?xml version="1.0" encoding="utf-8"?>

<!-- number1.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/">
<html>
<head>
<title>Automobile manufacturers and their cars</title>
</head>
<body>
<xsl:for-each select="cars/manufacturer">
<p>
<xsl:number format="1. "/>
<xsl:value-of select="@name"/>
</p>
</xsl:for-each>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

We get this HTML document:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Automobile manufacturers and their cars</title>
</head>
<body>

Numbering Things | 119

<p>1. Chevrolet</p>
<p>2. Ford</p>
<p>3. Volkswagen</p>
</body>
</html>

This is about the simplest example of <xs1:number> that you can write. (You could leave
off the format attribute, but you’d get paragraphs such as <p>1Chevrolet</p>—probably
not what you want.) Changing the stylesheet to use format="a. " generates these
paragraphs:

<p>a. Chevrolet</p>
<p>b. Ford</p>
<p>c. Volkswagen</p>

Here’s what we get with format="i. ":
<p>i. Chevrolet</p>

<p>ii. Ford</p>

<p>iii. Volkswagen</p>

The <xs1:number> element has lots of other attributes and capabilities; we’ll look at the
most common ones here. (See the complete description of the <xs1:number> element in
Appendix A.) Here’s an example that uses the value attribute:

<?xml version="1.0" encoding="utf-8"?>

<!-- number2.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/">
<html>
<head>
<title>Automobile manufacturers and their cars</title>
</head>
<body>
<xsl:for-each select="cars/manufacturer">
<p>
<xsl:text>Cars produced by </xsl:text>
<xsl:value-of select="@name"/>
<xsl:text>: </xsl:text>
<xsl:number value="count(car)" format="01"/>
</p>
</xsl:for-each>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

This stylesheet generates this HTML document:

<html>
<head>

120 | Chapter4: Creating Output

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Automobile manufacturers and their cars</title>

</head>

<body>
<p>Cars produced by Chevrolet: 04</p>
<p>Cars produced by Ford: 03</p>
<p>Cars produced by Volkswagen: 04</p>

</body>

</html>

In this case, we could have used <xsl:value-of select="count(car)"/> to get similar
results, but <xs1:number> lets us format the number as we want.

Using <xs1:number> with the format attribute is a good way to format any value, whether
it comes from the XML source or not. For example, this markup:

<xsl:number value="1965" format="I1"/>
produces the text MCMLXV.

As you’d expect, there are more powerful things we can do. Here’s an example that
uses the level and count attributes:

<?xml version="1.0" encoding="utf-8"?>

<!-- number3.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>Automobile manufacturers and their cars
</xsl:text>
<xsl:for-each select="cars/manufacturer">
<xsl:number count="manufacturer" format="1. "/>
<xsl:value-of select="@name"/>
<xsl:text>&ixA;</xsl:text>
<xsl:for-each select="car">
<xsl:number count="manufacturer|car" level="multiple"
format="1.1. "/>
<xsl:value-of select="."/>
<xsl:text>
</xsl:text>
</xsl:for-each>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

This stylesheet gives us the following text document:

Automobile manufacturers and their cars
1. Chevrolet

1.1. Cavalier

1.2. Corvette

1.3. Impala

1.4. Malibu

2. Ford

2.1. Pinto

Numbering Things | 121

2.2. Mustang

2.3. Taurus
3. Volkswagen
3.1. Beetle
3.2. Jetta
3.3. Passat
3.4. Touraeg

The count attribute tells the XSLT processor what elements to count, and
level="multiple" counts the manufacturers at one level and the cars per manufacturer
at another. Notice that in the second <xsl:for-each< element we used the attribute
count="manufacturer|car", even though we’re looking only at <car> elements. That’s
because the number 3.2 means the second <car> from the third <manufacturer>. If we
don’t include the manufacturers in our count, we won’t get the results we want.

The values for level are single, multiple, and any. The value single, the default, counts
only an item’s siblings, while multiple counts an item along with any of its ancestors
(that’s what we did in the previous example). level="any" counts an item along with
everything that occurred before it in the document, whether it’s an ancestor of the
current item or not. Here’s an example that uses level="any":

<?xml version="1.0" encoding="utf-8"?>

<!-- number4.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>Automobile manufacturers and their cars
</xsl:text>
<xsl:for-each select="cars/manufacturer">
<xsl:number count="manufacturer|car" level="any" format="1. "/>
<xsl:value-of select="@name"/>
<xsl:text>
</xsl:text>
<xsl:for-each select="car">
<xsl:number count="manufacturer|car" level="any" format="1. "/>
<xsl:value-of select="."/>
<xsl:text>8#txA;</xsl:text>
</xsl:for-each>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Here we use an identical <xsl:number> element in both places. We’re counting all of
the <manufacturer> and <car> elements, so we need to use level="any" and
count="manufacturer|car" in both places. Here are the results:

Automobile manufacturers and their cars
Chevrolet

Cavalier

Corvette

Impala

Malibu

v W N R

122 | Chapter4: Creating Output

6. Ford

7. Pinto
8. Mustang
9. Taurus

10. Volkswagen
11. Beetle

12. Jetta

13. Passat

14. Touraeg

Also keep in mind that you can use <xsl:number> at isolated times. Here’s a contrived
example that counts only even-numbered cars from each manufacturer:

<?xml version="1.0" encoding="utf-8"?>

<!-- number5.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>Automobile manufacturers and their cars
</xsl:text>
<xsl:for-each select="cars/manufacturer">
<xsl:value-of select="@name"/>
<xsl:text>8#xA;</xsl:text>
<xsl:for-each select="car">
<xsl:text> </xsl:text>
<xsl:if test="(position() mod 2) = 0">
<xsl:number count="manufacturer|car" level="multiple"
format="1.1. "/>
</xsl:if>
<xsl:value-of select="."/>
<xsl:text>
</xsl:text>
</xsl:for-each>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

To select only even-numbered items, we use the XPath mod operator. If we divide the
position of the current element by 2 and the result is zero, we know we have an even-
numbered item. This stylesheet gives us the following list:

Automobile manufacturers and their cars
Chevrolet
Cavalier
1.2. Corvette
Impala
1.4. Malibu
Ford
Pinto
2.2. Mustang
Taurus
Volkswagen
Beetle
3.2. Jetta

Numbering Things | 123

Passat
3.4. Touraeg

In this example, we used <xs1:number> only for even-numbered cars from each manu-
facturer, and we never used <xs1:number> for the <manufacturer> element at all. Despite
that, the <xs1:number> element calculates the correct value based on the position of the
current item in the source document.

That can lead to some complications, however. If we sort the source document as we
process it, our numbers look a little strange. We’ll add a <xsl:sort> element to our
stylesheet:

<?xml version="1.0" encoding="utf-8"?>

<!-- number6.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>Automobile manufacturers and their cars
</xsl:text>
<xsl:for-each select="cars/manufacturer">
<xsl:value-of select="@name"/>
<xsl:text>
</xsl:text>
<xsl:for-each select="car">
<xsl:sort select="."/>
<xsl:text> </xsl:text>
<xsl:if test="(position() mod 2) = 0">
<xsl:number count="manufacturer|car" level="multiple"
format="1.1. "/>
</xsl:if>
<xsl:value-of select="."/>
<xsl:text>&#txA;</xsl:text>
</xsl:for-each>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

And our results look like this:

Automobile manufacturers and their cars
Chevrolet
Cavalier
1.2. Corvette
Impala
1.4. Malibu
Ford
Mustang
2.1. Pinto
Taurus
Volkswagen
Beetle
3.2. Jetta

124 | Chapter4: Creating Output

Passat
3.4. Touraeg

The number for Pinto isn’t what we expected. That’s because the position() function
is based on the current (sorted) context, while the numbering we’re doing is based on
the original document order. In the sorted order Pinto is the second item, so the test
of our <xsl:if> element is true. When we use <xs1l:number>, however, Pinto is the first
<car> in the source document. The result is the number 2.1 instead of the 2.2 we
expected.

It’s not pretty, but here’s a stylesheet that fixes the problem. We use <xsl:number> to
count <manufacturer> elements; that generates the first part of the number. Next we
use position() to output the position of the sorted element. The stylesheet looks like
this:

<?xml version="1.0" encoding="utf-8"?>

<!-- number7.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>Automobile manufacturers and their cars
</xsl:text>
<xsl:for-each select="cars/manufacturer">
<xsl:value-of select="@name"/>
<xsl:text>
</xsl:text>
<xsl:for-each select="car">
<xsl:sort select="."/>
<xsl:text> </xsl:text>
<xsl:if test="(position() mod 2) = 0">
<xsl:number count="manufacturer" level="multiple"
format="1."/>
<xsl:value-of select="position()"/>
<xsl:text>. </xsl:text>
</xsl:if>
<xsl:value-of select="."/>
<xsl:text>8#txA;</xsl:text>
</xsl:for-each>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

This numbers the Pinto using the sorted order:

Automobile manufacturers and their cars
Chevrolet

Cavalier

1.2. Corvette

Impala

1.4. Malibu
Ford

Mustang

2.2. Pinto

Numbering Things | 125

Taurus
Volkswagen

Beetle

3.2. Jetta

Passat

3.4. Touraeg

We used <xs1:number> to count the position of the current car within the current man-
ufacturer.

[2.0] Changes to <xsl:number> in XSLT 2.0

There are some changes to the <xs1:number> element in XSLT 2.0. First of all, three new
formats have been added: w, W, and Ww. Those formats produce words in the default
language on your machine (there’s also a lang attribute you can use to change the
language). Here’s an example:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="2.0">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>Automobile manufacturers and their cars
</xsl:text>
<xsl:for-each select="cars/manufacturer">
<xsl:value-of select="@name"/>
<xsl:text>
</xsl:text>
<xsl:for-each select="car">
<xsl:text> Car </xsl:text>
<xsl:number count="car" level="single" format="w"/>
<xsl:text>: </xsl:text>
<xsl:value-of select="."/>
<xsl:text>
</xsl:text>
</xsl:for-each>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

This stylesheet produces this text:

Automobile manufacturers and their cars
Chevrolet
Car one: Cavalier
Car two: Corvette
Car three: Impala
Car four: Malibu
Ford
Car one: Pinto
Car two: Mustang
Car three: Taurus
Volkswagen
Car one: Beetle

126 | Chapter4: Creating Output

Car two: Jetta
Car three: Passat
Car four: Touraeg

Using the format W produces the numbers ONE, TWO, THREE, and so forth, while the format
Ww produces One, Two, Three.

Another difference is the addition of the select attribute. Normally <xs1:number> num-
bers the current node; you can use the select attribute to generate the number for
another node.

XSLT 2.0 also adds the ordinal attribute; ordinal="yes" combined with format="1"
generates 1st, 2nd, 3rd, while ordinal="yes" combined with format="Ww" generates
First, Second, Third. The ordinal attribute has many different options that depend on
the lang attribute and the format attribute; as you would expect, each XSLT 2.0 pro-
cessor supports a different set of languages and options for the ordinal attribute. See
your processor’s documentation for information on what capabilities are available.

Finally, XSLT 2.0 signals an error if your <xsl:number> element has incompatible at-
tributes. For example, you can’t have a select attribute and a value attribute. In XSLT
1.0, the extra attributes were ignored.

W N

Appendix F has a complete description of all the formatting codes for
numbers, dates, times, and durations.

Formatting Decimal Numbers

We’ve already seen several ways of formatting decimal numbers using <xs1:number>.
However, if we’re going to work with numbers, we’ll almost certainly have to deal with
decimals. XSLT defines the format-number() function and the <xsl:decimal-format>
element to do just that. We’ll use <xsl:decimal-format> to define a pattern for format-
ting numbers, and then we’ll use format-number() to apply a pattern to a number.

This stylesheet has several examples of <xs1:decimal-format> and format-number():

<?xml version="1.0" encoding="utf-8"?>

<!-- decimal-format.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="text"/>

<l-- This format has no name, so it's assumed to be the default. -->
<xsl:decimal-format decimal-separator="," grouping-separator="."/>

<xsl:decimal-format name="us_default"/>

<xsl:decimal-format name="other options" NaN="[not a number]"

Formatting Decimal Numbers | 127

infinity="unfathomably huge"/>
<xsl:decimal-format name="hash_mark" digit="1"/>

<xsl:template match="/">
<xsl:text>8#xA;Tests of <xsl:decimal-format> and </xsl:text>
<xsl:text>format-number():</xsl:text>
<xsl:text>

 1. format-number(3728493.3882, </xsl:text>
<xsl:text>'#.##H,##') : </xsl:text>
<xsl:value-of
select="format-number(3728493.3882, '#.###,##')"/>

<xsl:text>

 2. format-number(3728493.3882, </xsl:text>
<xslitext>'#,### . 4##', 'us default') : </xsl:text>
<xsl:value-of

select="format-number(3728493.3882, '#,#t#.##', 'us default')"/>

<xsl:text>

 3. format-number(number(1) div 0, '#.#') : </xsl:text>
<xsl:value-of select="format-number(number(1) div o, '#.#')"/>

<xsl:text>

 4. format-number(number(1) div o, '#.#', </xsl:text>
<xsl:text>'other options') : 8#xA; </xsl:text>
<xsl:value-of

select="format-number (number(1) div 0, '#.#', 'other options')"/>

<xsl:text>

 5. format-number(number('blue') * </xsl:text>
<xsl:text>number('orange'), '#') : </xsl:text>
<xsl:value-of

select="format-number (number('blue') * number('orange'), '#')"/>

<xsl:text>
8#xA; 6. format-number(number('blue') * </xsl:text>
<xsl:text>number('orange'), '#', 'other_options') : </xsl:text>
<xsl:text>
 </xsl:text>
<xsl:value-of
select="format-number (number('blue') * number('orange'), '#',
'other_options')"/>

<xsl:text>
&txA; 7. format-number(42, '#!', </xsl:text>
<xsl:text>'hash_mark') : </xsl:text>
<xsl:value-of select="format-number(42, '#!', "hash_mark')"/>
</xsl:template>
</xsl:stylesheet>

When we run this stylesheet against any document, we get this output:

Tests of <xsl:decimal-format> and format-number():
1. format-number(3728493.3882, '#.###, ##') : 3.728.493,39
2. format-number(3728493.3882, '#,#iHf. ##', 'us_default') : 3,728,493.39
3. format-number(number(1) div o, '#.#') : Infinity

4. format-number(number(1) div o, '#.#', 'other_options') :
unfathomably huge

128 | Chapter4: Creating Output

5. format-number(number('blue') * number('orange'), '#') : NaN

6. format-number(number('blue') * number('orange'), '#
[not a number]

, 'other_options') :

7. format-number(42, '#!', "hash_mark') : #42

This is an XSLT 1.0 stylesheet, but changing the version attribute to 2.0 generates the
same results. We’ll discuss each line in the output and point out some differences in
the way XSLT 2.0 processes numbers as we go.

1.

This example formats a number using the default format we defined. Because our
stylesheet has a <xs1:decimal-format> element without a name, this format is used
unless the name of another <xs1:decimal-format> element is used. We defined the
default format to use periods as the thousands separator and a comma as the dec-
imal point. Notice that to get this to work we had to use the period and comma
appropriately in the formatting string. The numeric value itself uses the decimal
point as usual.

. This is the same example as before, only we pass the name of a number format as

the third argument. Notice that the decimal format us_default doesn’t have any
attributes; that means it uses a period as the decimal point and a comma as the
thousands separator.

. This generates the default value for infinity, which is the string Infinity. In XSLT

1.0, the expression 1 div 0 generates the same result.

[2.0] In XSLT 2.0, any value that is an xs:integer or xs:decimal cannot have the
value infinity, so 1 div 0 won’t run at all. Calling the function number (1) converts
1 into the xs:double equivalent, so number(1) div 0 works. (That’s a lot of work
to divide a number by zero, but it does explain some of the details of how math
works in XSLT 2.0.)

. This generates the value for infinity defined in the number format other_options.

The same details apply here as in the previous example; the expression 1 div 0
doesn’t work in XSLT 2.0.

. This generates NaN. In XSLT 1.0, the expression 'blue’ * 'orange' generates the

same result.

[2.0] In XSLT 2.0, the expression 'blue' * 'orange' doesn’t work because the
multiplication symbol requires two numbers. Using the number() function turns
each of the strings into the numeric value NaN. To generate NaN in XSLT 2.0,
number ('NaN') does the trick, as do number('blue'), number('orange'), and
number ('any old string at all').

. This generates [not a number], the value defined in the number format

other_options. (The same restrictions for XSLT 2.0 apply here as well.)

Formatting Decimal Numbers | 129

7. This generates #42. This uses the number format hash_mark, which defines an ex-
clamation point as the digit character in the picture string. This allows us to put
the hash mark into the picture string.

[2.0] Formatting Dates and Times

XSLT 2.0 adds three new formatting functions, format-date(), format-time(), and
format-dateTime(). We'll take xs:date, xs:time, and xs:dateTime values and format
them in some useful way.

You can call each of these functions in two ways. The simplest is to pass the function
avalue and a formatting string. If you need more detail, the second way of calling these
functions requires you to specify a language, a calendar, and a country as well. The
XSLT 2.0 specification lists more than 25 different calendars used around the world,
and there are hundreds of combinations of language and country codes. Look at the
documentation for your XSLT processor to see which calendars, languages, and coun-
tries it supports.

Our first example is pretty simple. We’ll create a stylesheet that uses the XPath func-
tions current-date(), current-time(), and current-dateTime():

<?xml version="1.0" encoding="utf-8"?>

<!-- datetimel.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>8#xA;Tests of date and time formatting:&i#xA;</xsl:text>
<xsl:text>
 The current date is </xsl:text>
<xsl:value-of select="format-date(current-date(),
'[Mo1]/[Do1]/[Yoo01]"')"/>
<xsl:text>
 The current time is </xsl:text>
<xsl:value-of select="format-time(current-time(),
"[Ho1]:[mo1] [z]")"/>
<xsl:text>8#xA; It's currently </xsl:text>
<xsl:value-of select="format-dateTime(current-dateTime(),
"[h1]:[mo1] [P] on [MNn] [D].")"/>
</xsl:template>

</xsl:stylesheet>

This stylesheet produces this text:
Tests of date and time formatting:
The current date is 03/08/2006

The current time is 22:27 GMT-5
It's currently 10:27 p.m. on March 8.

130 | Chapter4: Creating Output

In this stylesheet, Mo1 produces the two-digit month, D01 produces the two-digit day,
and Y0001 produces the four-digit year. Ho1 produces the 2-digit hour in a 24-hour clock,
mo1 produces the 2-digit minutes, z produces the time zone, h1 produces the 1- or 2-
digit hour in a 12-hour clock, and P generates a.m. or p.m. Finally, MNn generates the
capitalized name of the month.

The formatting codes used by the <xs1:number> element can be used in the picture string
for these functions. Here’s another stylesheet that uses more of those formatting codes:

<?xml version="1.0" encoding="utf-8"?>

<!-- datetime2.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>8#txA;More tests of date and time formatting:
</xsl:text>
<xsl:text>&#txA; Today is the </xsl:text>
<xsl:value-of select="format-date(current-date(),
'[Dwo] day of [MNn], [Yoo01]')"/>
<xsl:text>
 Right now is the </xsl:text>
<xsl:value-of select="format-time(current-time(),
'[m10] minute of the [Hwo] hour of the day.')"/>
<xsl:text>8#txA; It's currently </xsl:text>
<xsl:value-of select="format-dateTime(current-dateTime(),
'[ho1]:[mo1] [P] on [FNn] the [Di1o].')"/>
<xsl:text>8#xA; Today is the </xsl:text>
<xsl:value-of select="format-date(current-date(),
'[dwo]")"/>
<xsl:text> day of the year. </xsl:text>
<xsl:text>
 December 25, 1960 in German: </xsl:text>
<xsl:value-of select="format-date(xs:date('1960-12-25"),
'[D] [MNn,3-3] [Yooo1]', 'de',
'AD', 'DE')"/>
</xsl:template>

</xsl:stylesheet>
This stylesheet generates this text:

More tests of date and time formatting:

Today is the eighth day of March, 2006

Right now is the 28th minute of the twenty-second hour of the day.
It's currently 10:28 p.m. on Wednesday the 8th.

Today is the sixty-seventh day of the year.

December 25, 1960 in German: 25 Dez 1960

Here are the explanations for all the formatting codes in this example:

Dwo
The word for the ordinal value of the day

[2.0] Formatting Dates and Times | 131

MNn

The capitalized name of the month
Y0001

The four-digit year
mio

The numeric ordinal of the minute
Hwo

The hour, expressed as an ordinal word
ho1

The 2-digit hour in a 24-hour clock
mo1

The 2-digit minute

The a.m. or p.m. indicator

FNn
The capitalized name of the day of the week

Dio
The numeric ordinal of the day

dwo
The day of the year, expressed as an ordinal word

The numeric day of the month

MNn,3-3
The capitalized name of the month, returned in a string that’s at least three char-
acters long, but no more than three characters long

For the last call to format-date(), we used the five-option version of the function,
passing in the language, calendar and country codes. The formatting codes defined by
XSLT give you a wide range of options for formatting the different components of dates
and times.

Using <xsl:copy> and <xsl:copy-of>

As you transform your XML input document into something else, you’ll often want to
just copy a given element to the output document. XSLT provides two elements that
do this: <xsl:copy> and <xsl:copy-of>. We’ll discuss them here and go through several
stylesheets that use these elements to create output.

132 | Chapter4: Creating Output

A Stylesheet That Reproduces Its Input Document

To start our examples, we’ll look at a stylesheet that generates a document equal to the
input document. (This is sometimes called an identity transform.) The stylesheet s short
and sweet:

<?xml version="1.0"?>

<!-- copy-of.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<xsl:copy-of select="*"/>
</xsl:template>
</xsl:stylesheet>

That’s all we have to do. Our template simply says to start with the document element
of the input document and copy it to the output. <xsl:copy-of> does a deep copy of a
node, so the root node and all of its children are copied to the output. If any of the root
node’s descendants are element nodes with attributes, the attributes are copied as well.
(Remember, an element’s attributes aren’t considered children.)

We'll test our stylesheet against this document:

<?xml version="1.0"?>
<!-- sonnet.xml -->
<sonnet type='Shakespearean'>
<auth:author xmlns:auth="http://www.authors.com/">
<last-name>Shakespeare</last-name>
<first-name>William</first-name>
<nationality>British</nationality>
<year-of-birth>1564</year-of-birth>
<year-of-death>1616</year-of-death>
</auth:author>
<!-- TIs there an official title for this sonnet? They're
sometimes named after the first line. -->
<title>Sonnet 130</title>
<lines>
<line>My mistress' eyes are nothing like the sun,</line>
<line>Coral is far more red than her lips red.</line>
<line>If snow be white, why then her breasts are dun,</line>
<line>If hairs be wires, black wires grow on her head.</line>
<line>I have seen roses damasked, red and white,</line>
<line>But no such roses see I in her cheeks.</line>
<line>And in some perfumes is there more delight</line>
<line>Than in the breath that from my mistress reeks.</line>
<line>I love to hear her speak, yet well I know</line>
<line>That music hath a far more pleasing sound.</line>
<line>I grant I never saw a goddess go,</line>
<line>My mistress when she walks, treads on the ground.</line>
<line>And yet, by Heaven, I think my love as rare</line>
<line>As any she belied with false compare.</line>
</lines>
</sonnet>

Using <xsl:copy> and <xsl:copy-of> | 133

The results look like this:

<?xml version="1.0" encoding="UTF-8"?><!-- sonnet.xml --><sonnet type="Shakespearean">

<auth:author xmlns:auth="http://www.authors.com/">
<last-name>Shakespeare</last-name>
<first-name>William</first-name>
<nationality>British</nationality>
<year-of-birth>1564</year-of-birth>
<year-of-death>1616</year-of-death>

</auth:author>

<!-- Is there an official title for this sonnet? They're

sometimes named after the first line. -->

<title>Sonnet 130</title>

<lines>
<line>My mistress' eyes are nothing like the sun,</line>
<line>Coral is far more red than her lips red.</line>
<line>If snow be white, why then her breasts are dun,</line>
<line>If hairs be wires, black wires grow on her head.</line>
<line>I have seen roses damasked, red and white,</line>
<line>But no such roses see I in her cheeks.</line>
<line>And in some perfumes is there more delight</line>
<line>Than in the breath that from my mistress reeks.</line>
<line>I love to hear her speak, yet well I know</line>
<line>That music hath a far more pleasing sound.</line>
<line>I grant I never saw a goddess go,</line>
<line>My mistress when she walks, treads on the ground.</line>
<line>And yet, by Heaven, I think my love as rare</line>
<line>As any she belied with false compare.</line>

</lines>

</sonnet>

The result document looks almost exactly like the original. The <sonnet> element no
longer begins on a separate line, and the XML declaration now includes encod
ing="UTF-8". Also notice that the single quotes around the type attribute are now double
quotes. These are changes from the text of the original XML document, but semanti-
cally the two are the same. Notice four things in particular that were copied to the
output document:

¢ The comment before the document element
* The type attribute of the <sonnet> element
¢ The comment in the middle of the document

* The namespace declaration on the <auth:author> element

W

- Earlier in our discussion we made a point of talking about the root node
"‘:\ rather than the document element. The root node here contains two
T2 98y things: the comment outside the document element and the document

element itself. Everything in the XML source is a descendant of the root
node; the document element isn’t always the root node’s only child.

134 | Chapter4: Creating Output

We'll look at the <xs1:copy> element next and see how it handles (or doesn’t handle)
our input document.

A Stylesheet That Doesn’t Quite Reproduce Its Input Document

Now we’ll look at a similar stylesheet that uses <xs1:copy> instead. Again, our stylesheet
is very simple:

<?xml version="1.0"?>

<!-- copy1.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<xsl:copy/>
</xsl:template>
</xsl:stylesheet>

You probably noticed that the stylesheet is shorter. Unlike <xsl:copy-of>, the
<xsl:copy> element doesn’t have a select attribute. (It has some other attributes in
XSLT 2.0; it didn’t have any at all in XSLT 1.0.) Here are the results when we use this
stylesheet:

<?xml version="1.0" encoding="UTF-8"?>

Hmmm. It appears that <xsl:copy> didn’t actually copy anything. While that makes
for a small, concise document, it’s probably not what we wanted. (This is the result
you get from Xalan; Saxon doesn’t generate anything at all.) One thing to remember
here is that the document root is not the root element that contains the XML data in
our document. An XML document can contain comments and processing instructions
that are outside the root element; those comments and PIs are part of the XPath docu-
ment root. So, if we want to copy anything, we need to create a template for the root
element. Here’s another attempt at a stylesheet:

<?xml version="1.0"?>

<!-- copy2.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<xsl:apply-templates select="*"/>
</xsl:template>

<xsl:template match="*">
<xsl:copy/>
</xsl:template>
</xsl:stylesheet>

And here are the results we get:

<?xml version="1.0" encoding="UTF-8"?><sonnet/>

Using <xsl:copy> and <xsl:copy-of> | 135

Well, at least we have the <sonnet> element, but we don’t have any of its children. We
also lost the type attribute of the <sonnet> element. Using <xsl:copy> to copy our
document requires using the <xsl:for-each> element to copy all the attributes of each
element we’re copying. Here’s how the latest iteration of our stylesheet looks:

<?xml version="1.0"?>

<!-- copy3.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<xsl:apply-templates select="*"/>
</xsl:template>

<xsl:template match="*">
<xsl:copy>
<xsl:for-each select="@*">
<xsl:copy/>
</xsl:for-each>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>

We used <xsl:for-each> to copy all of the attributes that an element might have. This
stylesheet comes pretty close to duplicating the input document:

<?xml version="1.0" encoding="UTF-8"?><sonnet type="Shakespearean">

<auth:author xmlns:auth="http://www.authors.com/">
<last-name>Shakespeare</last-name>
<first-name>William</first-name>
<nationality>British</nationality>
<year-of-birth>1564</year-of-birth>
<year-of-death>1616</year-of-death>

</auth:author>

<title>Sonnet 130</title>

<lines>
<line>My mistress' eyes are nothing like the sun,</line>
<line>Coral is far more red than her lips red.</line>
<line>If snow be white, why then her breasts are dun,</line>
<line>If hairs be wires, black wires grow on her head.</line>
<line>I have seen roses damasked, red and white,</line>
<line>But no such roses see I in her cheeks.</line>
<line>And in some perfumes is there more delight</line>
<line>Than in the breath that from my mistress reeks.</line>
<line>I love to hear her speak, yet well I know</line>
<line>That music hath a far more pleasing sound.</line>
<line>I grant I never saw a goddess go,</line>
<line>My mistress when she walks, treads on the ground.</line>
<line>And yet, by Heaven, I think my love as rare</line>
<line>As any she belied with false compare.</line>

</lines>

</sonnet>

136 | Chapter4: Creating Output

Even this version of the stylesheet doesn’t copy comments or processing instructions.
Notice that the output has a blank line in place of the comment in the original docu-
ment. If we wanted to handle comments and processing instructions, we’d have to
change the match and select attributes to make sure they were processed.

The point of these examples is that <xsl:copy> forces you do to most of the work your-
self. You have complete control over what exactly gets copied, but that comes at a price.
If you wanted only to copy certain elements, such as all <customer> elements with an
<address> element in which the <province> element has a value of PEI, <xs1:copy> gives
you the control to do that.

Before we go on to more complicated examples that use <xs1:copy>, be
aware that we could use the XPath node() test. This stylesheet:

<?xml version="1.0"?>

<I-- copy-identity.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="node()|@*">
<xsl:copy>
<xsl:apply-templates select="node()|@*"/>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>

accomplishes the same thing as the <xs1:copy-of> stylesheet we looked
at earlier.

For an example that needs that contol, we’ll look a stylesheet that copies only the
<author> information and the title of the sonnet. This stylesheet uses a separate template
to make sure nothing happens to the <lines> element that contains the poem:

<?xml version="1.0"?>

<!-- copy4.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<xsl:apply-templates select="*"/>
</xsl:template>

<xsl:template match="*">
<xsl:copy>
<xsl:for-each select="@*">
<xsl:copy/>
</xsl:for-each>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>

<xsl:template match="lines"/>

Using <xsl:copy> and <xsl:copy-of> | 137

</xsl:stylesheet>

Our template for the <lines> element is empty; because it doesn’t contain anything, it
doesn’t generate any output. That means our output should contain everything except
the <lines> element and its children. The results look like this:

<?xml version="1.0" encoding="UTF-8"?><sonnet type="Shakespearean">

<auth:author xmlns:auth="http://www.authors.com/">
<last-name>Shakespeare</last-name>
<first-name>William</first-name>
<nationality>British</nationality>
<year-of-birth>1564</year-of-birth>
<year-of-death>1616</year-of-death>

</auth:author>

<title>Sonnet 130</title>

</sonnet>

The results contain all of the <auth:author> and <title> information, along with some
extra whitespace. (Feel free to change the stylesheet to delete that whitespace if you
want.) We couldn’t do this with <xs1:copy-of>; <xsl:copy> gives us the control to do
whatwe want. If we added more elements to our <sonnet> schema, this stylesheet would
still copy everything except the <lines> elements and its children.

Our last stylesheet used an empty <xs1:template> for the <lines> element. That means
all other elements, text, and attributes are copied to the output; our stylesheet defines
what should not be copied to the output. Creating a stylesheet that defines what
should be copied is more complex:

<?xml version="1.0"?>

<I-- copy5.xs1 -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:auth="http://www.authors.com/">

<xsl:template match="sonnet">
<xsl:copy>
<xsl:copy-of select="@*"/>
<xsl:apply-templates select="auth:author|title"/>
</xsl:copy>
</xsl:template>

<xsl:template match="*">
<xsl:copy>
<xsl:copy-of select="@*"/>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>

138 | Chapter4: Creating Output

There are a couple of complications here. First of all, to specify that we want to copy
the namespace-qualified element <auth:author>, we have to define that namespace in
the stylesheet. Next, we list the two child elements of the <sonnet> element. Finally, we
create a generic template that copies whatever elements are processed. Using the built-
in template rules, the <auth:author> and <title> elements and all their descendants are
processed with the generic template. We never process the <lines> element, so we get
the results we want:
<?xml version="1.0" encoding="UTF-8"?><sonnet type="Shakespearean"><auth:author
xmlns:auth="http://www.authors.com/">
<last-name>Shakespeare</last-name>
<first-name>William</first-name>
<nationality>British</nationality>
<year-of-birth>1564</year-of-birth>
<year-of-death>1616</year-of-death>
</auth:author><title>Sonnet 130</title></sonnet>

We’ve looked at the two elements XSLT uses for copying: <xsl:copy-of> and
<xsl:copy>. Use <xsl:copy-of> when you want a deep copy of an element, including
its children and its attributes. On the other hand, <xsl:copy> forces you to choose
exactly what gets copied. If you need that control, use <xsl:copy>; otherwise, use
<xsl:copy-of>.

Dealing with Whitespace

One of the challenges of working with any XML document is processing whitespace,
especially when want want to generate output other than HTML. As we noted earlier,
an HTML browser renders both of these paragraphs the same way:
<p>
This document contains

5
chapters.

</p>
<p>This document contains 5 chapters.</p>

If we generated these two paragraphs as text, however, they would appear as differently
in print as they do in the HTML source. We’ll look at several techniques for controlling
whitespace in this section.

Whitespace Basics

Before we begin, it’s worth defining the four characters that the XML spec defines as
whitespace:

¢ The tab character ()

¢ The newline character (
)

Dealing with Whitespace | 139

* The carriage return character (84xD;)

* The space character ()

We'll use this modified version of our car list to illustrate how XML parsers and XSLT
processors work with whitespace:

<?xml version="1.0" encoding="utf-8"?>

<!-- carlist_whitespace.xml -->

<cars>
<manufacturer name=" Chevrolet

">
<car>Cavalier</car>
<car>Corvette</car>
<car>Impala</car>
<car>Monte

Carlo</car>
</manufacturer>
</cars>

From an XML parser’s perspective, there are a number of whitespace-only nodes (nodes
that contain only whitespace characters) in this document. The <cars> element contains
a whitespace-only node with the newline character and the tab or spaces before the
<manufacturer> tag, the node for the <manufacturer> element, and a whitespace-only
node with the newline character after the </manufacturer> tag. Similarly, the
<manufacturer> element contains whitespace-only nodes between the various <car>
elements.

The XML parser doesn’t remove any whitespace-only nodes, so we can always use them
in our stylesheets. Put another way, the data model used by the XSLT processor con-
tains the whitespace-only nodes from the XML source. The one exception to this is in
an XSLT 2.0 processor that validates the XML source against a schema. If the schema
indicates that an element can only contain other elements, any whitespace-only nodes
contained in those elements are removed.

An XSLT processor doesn’t know if the XML parser validated the document or not, so
it assumes any whitespace nodes delievered by the XML parser must be significant.
We'll use our sample stylesheet for the <xs1:copy-of> element to see what we get from
our document. Processing our short list of cars with this stylesheet:

<?xml version="1.0"?>

<!-- copy-of.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<xsl:copy-of select="."/>
</xsl:template>
</xsl:stylesheet>

140 | Chapter4: Creating Output

gives us this XML document:

<?xml version="1.0" encoding="UTF-8"?><!-- carlist whitespace.xml --><cars>
<manufacturer name=" Chevrolet ">
<car>Cavalier</car>
<car>Corvette</car>
<car>Impala</car>
<car>Monte

Carlo</car>
</manufacturer>
</cars>

There’s only one change in the processed version of the document: The newline char-
acters were replaced with spaces in the value of the name attribute of the
<manufacturer> element. All the whitespace nodes were preserved.

Using <xsl:preserve-space> and <xsl:strip-space>

The XSLT spec gives us two ways of dealing with whitespace nodes. We can use the
<xsl:preserve-space> and <xsl:strip-space> nodes to keep or delete whitespace.
Here’s a slightly modified version of our stylesheet:

<?xml version="1.0"?>

<!-- copy-of-whitespace.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:preserve-space elements="manufacturer"/>
<xsl:strip-space elements="cars"/>

<xsl:template match="/">
<xsl:copy-of select="."/>
</xsl:template>
</xsl:stylesheet>

Here’s what we get when we process our list of cars with the modified stylesheet:

<?xml version="1.0" encoding="UTF-8"?><!-- carlist whitespace.xml --><cars>
<manufacturer name=" Chevrolet ">
<car>Cavalier</car>
<car>Corvette</car>
<car>Impala</car>
<car>Monte

Carlo</car>
</manufacturer></cars>

In the result document, the whitespace nodes inside the <cars> element have been
removed, while all the whitespace inside the <manufacturer> element has been

Dealing with Whitespace | 141

preserved. (The complete text of the <manufacturer> element scrolls off the right side
of the page.) You can use <xsl:preserve-space> and <strip-space> with wildcards as
well:

<xsl:preserve-space elements="cars manufacturer"/>
<xsl:strip-space elements="*"/>

This tells the XSLT processor to strip whitespace nodes on all the elements except the
<cars> and <manufacturer> elements. The elements attribute can contain an asterisk or
a space-separated list of element names.

Because whitespace-only nodes are always preserved, there’s no need to
use <xsl:preserve-space elements="*"/>. Using <xsl:strip-
space elements="*"/>as we have here means whitespace-only nodes are
removed by default. We have to specify the mixed content elements in
which whitespace is significant, but removing as many whitespace-only
nodes as possible can make the node tree much smaller for a large docu-
ment with lots of whitespace.

You can also use wildcards for namespace-qualified elements. For example,
elements="auth:*" means all elements in the auth namespace. [2.0] In XSLT 2.0, you
can also use elements="*:car to specify all <car> elements, regardless of their
namespace.

The <xsl:preserve-space> and <strip-space> elements give us control over which
whitespace nodes will be processed by our stylesheet. If we want to copy that white-
space directly to the output document, we can use the <xsl:copy-of> and <xsl:copy>
elements as we discussed earlier.

A final note: the XML spec defines the little-used xml:space attribute. If an element in
the XML source document contains the attribute xml: space="preserve", all whitespace
in that element is preserved, regardless of any <xsl:strip-space> elements our style-
sheet might have.

The normalize-space() function

Another useful technique for controlling whitespace is the normalize-space() function.
In our previous example, we used <xsl:preserve-space> and <xsl:strip-space> to
control whitespace nodes in various elements, but we still have quite a bit of whitespace
in the name attribute and the last <car> in the list. To clean up the whitespace, we can
use the normalize-space() function. It does three things:

* It removes all leading spaces.

* It removes all trailing spaces.

* Tt replaces any group of consecutive whitespace characters with a single space.

We’ll use normalize-space() in this stylesheet:

142 | Chapter4: Creating Output

<?xml version="1.0"?>

<!-- normalize-space.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<xsl:apply-templates />
</xsl:template>

<xsl:template match="*">
<xsl:copy>
<xsl:for-each select="@*">
<xsl:attribute name="{name()}">
<xsl:value-of select="normalize-space()"/>
</xsl:attribute>
</xsl:for-each>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>

<xsl:template match="text()">
<xsl:value-of select="normalize-space()"/>
</xsl:template>

</xsl:stylesheet>

This stylesheet generates these crowded results:

<?xml version="1.0" encoding="UTF-8"?><cars><manufacturer name="Chevr
olet"><car>Cavalier</car><car>Corvette</car><car>Impala</car><car>Mon
te Carlo</car></manufacturer></cars>

This removes all the extraneous whitespace from the name attribute and the <car> ele-
ment; it also effectively removes the whitespace-only text nodes.

A Simple Technique for Adding Whitespace to Text Output

Whenever we generate text output, we usually need to control line breaks. Program-
ming languages have facilities for this; in Java, for example, we can use
System.out.print(), System.out.println(), or even System.out.print("\n\n") to put
line breaks exactly where we need them.

The simplest way to do this in an XSLT stylesheet is to use the character entities for the

newline (
) and tab () characters. We’ve used this technique with the newline

character throughout this chapter. As a further example, here’s a stylesheet that uses

all three character entities in the separator attribute of the <xsl:value-of> element:
<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="2.0">

<xsl:output method="text"/>

<xsl:template match="/">

Dealing with Whitespace | 143

<xsl:text>
Values separated with newlines:8#xA;
</xsl:text>
<xsl:value-of select="1 to 7" separator="
"/>

<xsl:text>8

Values separated with tabs:
8
</xsl:text>
<xsl:value-of select="1 to 7" separator="	"/>

<xsl:text>8

Values separated with spaces:8xA;
</xsl:text>
<xsl:value-of select="1 to 7" separator=" "/>
</xsl:template>

</xsl:stylesheet>

This stylesheet generates these results:

Values separated with newlines:

~Nouvihs WN e

Values separated with tabs:
1 2 3 4 5 6 7
Values separated with spaces:

1234567

Summary

This chapter has covered the various ways you can generate output from your XSLT
stylesheets. You’ll use those basic techniques in every stylesheet you write. The main
challenge as we go forward is learning how to select and organize the elements you
want to process. You might need logic to select elements that have certain properties
or you might need to sort or group elements before you process them. You might need
to use special functions not defined in XSLT or XPath. You might need to write output
to more than one document. Future chapters will address all of those topics.

Whatever your stylesheet does, you’ll ultimately use the output methods in this chapter.

144 | Chapter4: Creating Output

CHAPTER 5
Branching and Control Elements

So far, we’ve done some straightforward transformations and we’ve been able to do
some reasonably sophisticated things. To do truly useful work, though, we’ll need to
use logic in our stylesheets. In this chapter, we’ll discuss the XSLT elements that allow
you to do just that. Although you’ll see several XML elements that look like constructs
from other programming languages, they’re not exactly the same. As we go along, we’ll
discuss what makes XSLT different and how to do common tasks with your stylesheets.

Goals of This Chapter

By the end of this chapter, you should:

* Know the XSLT elements used for branching and control

* Understand the differences between XSLT’s branching elements and similar con-
structs in other programming languages

* Know how to invoke XSLT templates by name and how to pass parameters to them,
if you want

* Know how to use XSLT variables
* Understand how changes in XSLT 2.0 affect the way parameters and variables work

* Understand how to use recursion to get around the “limitations” of XSLT’s
branching and control elements

Branching Elements of XSLT

Three XSLT elements are used for branching: <xsl:if>, <xsl:choose>, and
<xsl:for-each>. The first two are much like the if and case statements you may be
familiar with from other languages, but the for-each element is significantly different
from the for or do-while structures in other languages. We’ll discuss all of them here.

145

The <xsl:if> Element

The <xsl:if> element looks like this:

<xsl:if test="count(zone) > 2">
<xsl:text>Applicable zones: </xsl:text>
<xsl:apply-templates select="zone"/>
</xsl:if>

The <xsl:if> element, surprisingly enough, implements an if statement. The element
has only one attribute: test. If the value of test evaluates to the boolean value true,
then all elements inside the <xs1:if> are processed. If test evaluates to false, then the
contents of the <xs1:if> element are ignored. (If you want to implement an if-then-else
statement, see the section “The <xsl:choose> Element” later in this chapter.)

Notice that we used the character > in the value of the test attribute. If you need to use
the less-than operator (<), you’ll have to use the &1t; entity. The same holds true for
the less-than-or-equal operator (<=).

Converting to boolean values

The <xsl:if> element is pretty simple, but it’s the first time we’ve had to deal with
boolean values. These values will come up later, so we might as well discuss them here.
Attributes such as the test attribute of the <xsl:if> element convert whatever their
values happen to be into a boolean value. If that boolean value is true, the <xsl:if>
element is processed. (The <xs1:when> element, which we’ll discuss in the section “The
<xsl:choose> Element” later in this chapter, has a test attribute as well.)

[1.0] Here’s the rundown of how various datatypes are converted to boolean values:

number
If a number is positive or negative zero, it is false. If a numeric value is NaN (not a
number; if I try to use the string “blue” as a number, the result is NaN), it is false.
If a number has any other value, it is true.

node-set
An empty node-set is false, a nonempty node-set is true.

string
A zero-length string is false; a string whose length is not zero is true.

These rules are defined in Section 4.3 of the XPath 1.0 specification.

[2.0] For XSLT 2.0, things are more complicated. The value returned, as you’d expect,
is an xs:boolean. Here’s how different datatypes are converted to xs:boolean values:

* A singleton of any numeric type is false if its value is zero or NaN (not a number);
everything else is true.

* A singleton of type xs:string, xs:anyURI, xs:untypedAtomic, or any type derived
from them is true if the argument has a length greater than zero.

146 | Chapter5: Branching and Control Elements

* The value of a singleton of type xs:boolean (or of a type derived from xs:boolean)
is simply used as is.

* A sequence whose first item is a node is true.

* An empty sequence is false.

* Converting any other datatype to xs:boolean causes the XSLT processor to raise
an error. For example, an xs:date can’t be converted to true or false.

Boolean examples
Here are some examples that illustrate how boolean values evaluate the test attribute:

<xsl:if test="count(zone) >= 2">
This is a boolean expression because it uses the greater-than-or-equal boolean op-
erator. If the count(') function returns a value greater than or equal to 2, the test
attribute is true. Otherwise, the test attribute is false.

<xsl:if test="$x">
The variable $x is evaluated and converted to a boolean value using the rules we
just covered. The result, of course, depends on the value of $x and how it is con-
verted to a boolean value.

<xsl:if test="true()">
The boolean function true() always returns the boolean value true. Therefore,
this test attribute is always true.

<xsl:if test="true">
This example is a trick. This test attribute is true only if there is at least one
<true> element that’s a child of the context node. The XSLT processor interprets
the value true as an XPath expression that specifies all <true> elements in the cur-

rent context. The strings true and false don’t have any special significance in
XSLT.

<xsl:if test=""true'">
This test attribute is always true. Notice that in this case we used single quotes
inside double quotes to specify that this is a literal string, not an element name.
This test attribute is always true because the string has a length greater than zero,
not because its value happens to be the word “true.”

<xsl:if test="'false'">
Another trick example; this test attribute is always true. As before, we used single
quotes inside double quotes to specify that this is a literal string. Because the string
has a length greater than zero, the test attribute is always true. The value of the
nonempty string, confusing as it is, doesn’t matter.

<xsl:if test="not(3)">
This test attribute is always false. The literal 3 evaluates to true, so its negation
is false. On the other hand, the expressions not(0) and not(-0) are always true.

Branching Elements of XSLT | 147

<xsl:if test="false()">
This test attribute is always false. The boolean function false() always returns
the boolean value false.

<xsl:if test="section/section">
The XPath expression section/section returns a node-set. If the current context
contains one or more <section> elements that contain a <section> element in turn,
the test attribute is true. If no such elements exist in the current context, the
test attribute is false.

The <xsl:choose> Element

The <xsl:choose> element is logically equivalent to an if-then-else statement, although
it has the feel of a case or switch statement in other programming languages. An
<xsl:choose> contains at least one <xsl:when> element (logically equivalent to an
<xsl:if> element), with an optional <xsl:otherwise> element (logically equivalent to
an else in other programming languages). The test attribute of each <xs1:when> ele-
ment is evaluated until the XSLT processor finds one that evaluates to true. When that
happens, the contents of that <xsl:when> element are evaluated. (Unlike a case or
switch element, each <xsl:when> is a separate test.) If none of the <xs1:when> elements
have a test that is true, the contents of the <xs1:otherwise> element (if there is one) are
processed.

<xsl:choose> example

Here’s a sample <xsl:choose> element that sets the background color of the table’s
rows. If the bgcolor attribute is coded on the <table-row> element, the value of that
attribute is used as the color; otherwise, the sample uses the position() function and
the mod operator to cycle the colors between black, green, red, and blue:

<xsl:template match="table-row">
<tr>
<xsl:attribute name="bgcolor">
<xsl:choose>
<xsl:when test="@bgcolor">
<xsl:value-of select="@bgcolor"/>
</xsl:when>
<xsl:when test="position() mod 4 = 0">
<xsl:text>black</xsl:text>
</xsl:when>
<xsl:when test="position() mod 4 = 1">
<xsl:text>green</xsl:text>
</xsl:when>
<xsl:when test="position() mod 4 = 2">
<xsl:text>red</xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:text>blue</xsl:text>
</xsl:otherwise>
</xsl:choose>

148 | Chapter5: Branching and Control Elements

</xsl:attribute>
<xsl:apply-templates select="*"/>
</tr>
</xsl:template>

In this sample, we use <xs1:choose> to generate the value of the bgcolor attribute of the
<tr> element. Our first test is to see whether the bgcolor attribute of the <table-row>
element exists; if it does, we use that value for the background color and the
<xsl:otherwise> and other <xsl:when> elements are ignored. (If the bgcolor attribute is
coded, the XPath expression @bgcolor returns a node-set containing a single attribute
node.)

The next three <xs1:when> elements check the position of the current <table-row> ele-
ment. The use of the mod operator here is the most efficient way to cycle between the
various options. Finally, we use an <xsl:otherwise> element to specify blue as the de-
fault case. If position() mod 4 = 3, the background color will be blue.

There are a couple of minor details to note. In this example, we could replace the
<xsl:otherwise> element with <xsl:when test="position() mod 4 = 3">; that is logi-
cally equivalent to the example as coded previously. For obfuscation bonus points, we
could code the second <xsl:when> element as <xsl:when test="not(position() mod
4)">. (Remember that the boolean negation of zero is true.)

The <xsl:for-each> Element

If you want to process all the nodes that match a certain criteria, you can use the
<xsl:for-each> element. Be aware that this isn’t a traditional for loop; you can’t ask
the XSLT processor to do something like this:

for i = 1 to 10 do
The <xsl:for-each> element lets you select a set of nodes, and then do something with
each of them. Let me mention again that this is not the same as a traditional for loop.

Another important point is that the current node changes with each iteration through
the <xsl:for-each> element. We’ll go through some examples to illustrate this.

W

You can use the XSLT 2.0 to operator to do something similar
(select="1 to 10"). When you’re working with XSLT, it’s better to think
s of <xsl:for-each> as an iterator rather than a traditional for loop.

<xsl:for-each> example

Here’s a sample that selects all <section> elements inside a <tutorial> element and
then uses a second <xsl:for-each> element to select all the <panel> elements inside each
<section> element:

<xsl:template match="tutorial">
<xsl:for-each select="section">

Branching Elements of XSLT | 149

<h1>
<xsl:text>Section </xsl:text>
<xsl:value-of select="position()"/>
<xsl:text>. </xsl:text>
<xsl:value-of select="title"/>
</h1>

<xsl:for-each select="panel">
<1i>
<xsl:value-of select="position()"/>
<xsl:text>. </xsl:text>
<xsl:value-of select="title"/>
</1li>
</xsl:for-each>

</xsl:for-each>
</xsl:template>

Given this XML document:

<tutorial>
<section>
<title>Gene Splicing for Young People</title>
<panel>
<title>Introduction</title>
<d-- 0=
</panel>
<panel>
<title>Discovering the secrets of life and creation</title>
<l-- 00 -
</panel>
<panel>
<title>"I created him for good, but he's turned out evill!"</title>
<l-- 00 -
</panel>
<panel>
<title>When angry mobs storm your castle</title>
<l-- o0 -
</panel>
</section>
</tutorial>

The previous template produces these results:

<h1>Section 1. Gene Splicing for Young People</h1>

<1i>1. Introduction</1li>
2. Discovering the secrets of life and creation</1i>
3. "I created him for good, but he's turned out evill"
4. When angry mobs storm your castle

Each time a select attribute is processed, it is evaluated in terms of the current node.
As the XSLT processor cycles through all the <section> and <panel> elements, each of
them in turn becomes the current node. By using iteration, we’ve generated a table of
contents with a very simple template.

150 | Chapter5: Branching and Control Elements

Invoking Templates by Name

Up to this point, we’ve always used XSLT’s <xs1:apply-templates> element to invoke
other templates. You can think of this as a limited form of polymorphism; a single
instruction is invoked a number of times, and the XSLT processor uses each node in
the node-set to determine which <xsl:template> to invoke. Most of the time, this is
what we want. However, sometimes we want to invoke a particular template. XSLT
allows us to do this with the <xsl:call-template> element.

How It Works
To invoke a template by name, two things have to happen:

* The template you want to invoke has to have a name.

* You use the <xsl:call-template> element to invoke the named template.

Here’s how to do this. Say we have a template named createMasthead that creates the
masthead of a web page. Whenever we create an HTML page for our web site, we want
to invoke the createMasthead template to create the masthead. Here’s what our style-
sheet would look like:

<xsl:template name="createMasthead">

<!-- interesting stuff that generates the masthead goes here -->
</xsl:template>

<xsl:template match="/">
<html>
<head>
<title><xsl:value-of select="title"/></title>
</head>
<body>
<xsl:call-template name="createMasthead"/>

Named templates are extremely useful for defining commonly used markup. For ex-
ample, say you’re using an XSLT stylesheet to create web pages with a particular look
and feel. You can write named templates that create the header, footer, navigation areas,
or other items that define how your web page will look. Every time you need to create
a web page, simply use <xsl:call-template> to invoke those templates and create the
look and feel you want.

Even better, if you put those named templates in a separate stylesheet and import the
stylesheet (with either <xsl:import> or <xsl:include>), you can create a set of style-
sheets that generate the look and feel of the web site you want. If you decide to redesign
your web site, redesign the stylesheets that define the common graphical and layout
elements. Change those stylesheets, regenerate your web site, and voila! You will see
an instantly updated web site.

Invoking Templates by Name | 151

Templates a la mode

The XSLT <xsl:template> element has a mode attribute that lets you process the same
set of nodes several times. For example, we might want to process <h1> elements one
way when we generate a table of contents, and another way when we process the docu-
ment as a whole. We could use the mode attribute to define different templates for
different purposes:

<xsl:template match="h1" mode="build-toc">

<!-- Template to process the <hi> element for table of contents -->
</xsl:template>

<xsl:template match="h1" mode="process-text">
<!-- Template to process the <hi> element along with the rest --»>
<!-- of the document -->
</xsl:template>

We can then start applying templates with the mode attribute:

<xsl:template match="/">
<html>
<body>
<h1>Table of Contents</h1>

<xsl:apply-templates select="h1" mode="build-toc"/>

<xsl:apply-templates select="*" mode="process-text"/>
</body>
</html>
</xsl:template>

This style of coding makes maintenance much easier; if the table of contents isn’t gen-
erated correctly, the templates with mode="build-toc" are the obvious place to start
debugging. (We discuss the mode attribute in more detail in the section “New values for
the mode attribute” later in this chapter.)

Parameters

The XSLT <xsl:param> and <xsl:with-param> elements allow you to pass parameters
to a template. You can pass templates with either the <call-template> element or the
<apply-templates> element; we’ll discuss the details in this section.

Defining a Parameter in a Template

To define a parameter in a template, use the <xsl:param> element. Here’s an example
of a template that defines two parameters:
<xsl:template name="calcuateArea">

<xsl:param name="width"/>
<xsl:param name="height"/>

152 | Chapter5: Branching and Control Elements

<xsl:value-of select="$width * $height"/>
</xsl:template>

Conceptually, thisis a lot like writing code in a traditional programming language, isn’t
it? Our template here defines two parameters, width and height, and outputs their
product.

If you want, you can define a default value for a parameter. There are two ways to define
a default value; the simplest is to use a select attribute on the <xsl:param> element:
<template name="addTableCell">
<xs1:param name="bgColor" select=""'blue'"/>
<xs1:param name="width" select="150"/>
<xsl:param name="content"/>
<td width="{$width}" bgcolor="{$bgColor}">
<xsl:apply-templates select="$content"/>
</td>
</template>

In this example, the default values of the parameters bgColor and width are 'blue’ and
150, respectively. If we invoke this template without specifying values for these param-
eters, the default values are used. Also notice that we generated the values of the
width and bgcolor attributes of the HTML <td> tag with attribute value templates, the
values in curly braces. For more information, see the section “Attribute Value Tem-
plates” in Chapter 3.

One thing to note about this example is that the content parameter doesn’t have a
default value here; we’re assuming that content contains the nodes to be processed and
put inside the table cell. If the value of content is an empty string, calling <xs1:apply-
templates select="$content"/> causes an error. To be on the safe side, we could add
an <xsl:if> element here to create an empty table cell if content is an empty string. As
an exercise for the reader, feel free to make this code more robust....

Notice that in the previous example, we put single quotes around the
%% value blue, but we didn’t do it around the value 150. Without the single

quotes around blue, the XSLT processor assumes we want to select all
the <blue> elements in the current context, which is probably not what
we want. The XSLT processor is clever enough to realize that the value
150 can’t be an XML element name (the XML 1.0 Specification says
element names can’t begin with numbers), so we don’t need the single
quotes around a numeric value.

Try to keep this in mind when you’re using parameters. You’ll probably
forget it at some point, and you’ll probably go nuts trying to figure out
the strange behavior you’re getting from the XSLT processor.

The second way to define a default value for a parameter is to include content inside
the <xsl:param> element:

<template name="addTableCell">
<xsl:param name="bgColor">

Parameters | 153

<xsl:text>blue</xsl:text>

</xs1:param>

<xsl:param name="width">
<xsl:value-of select="7+8"/><xsl:text>0</xsl:text>

</xs1:param>

<xsl:param name="content"/>

<td width="{$width}" bgcolor="{$bgColor}">
<xsl:apply-templates select="$content"/>

</td>

</template>

In this example, we used <xs1:text> and <xsl:value-of> elements to define the default
values of the parameters. Out of sheer perverseness, we defined the value of width as
the concatenation of the numeric expression 7+8, followed by the string “0”. The result
of the numeric expression, 15, is converted to a string, and then that string is concaten-
ated with the string 0 This example produces the string 150, which will be converted
into a number as necessary.

Passing Parameters

If we invoke a template by name, which is similar to calling a subroutine, we’ll need to
pass parameters to those templates. We do this with the <xs1:with-param> element. For
example, let’s say we want to call a template named draw-box, and then pass the pa-
rameters startX, startY, endX, and endY to it. Here’s what we’d do:
<xsl:call-template name="draw-box">

<xsl:with-param name="startX" select="50"/>

<xsl:with-param name="startY" select="50"/>

<xsl:with-param name="endX" select="97"/>

<xsl:with-param name="endY" select="144"/>
</xsl:call-template>

In this sample, we’ve called the template named draw-box with the four parameters we
mentioned earlier. Notice that up until now, <xsl:call-template> has always been an
empty tag; here, though, the parameters are the content of the <xsl:call-template>
element. (If you want, you can do the same thing with <xs1:apply-templates>.)

If we’re going to pass parameters to a template, we have to set up the template so that
it expects the parameters we’re passing. To do this, we’ll use the <xsl:param> element
inside the template. Here are some examples:

<xsl:template name="draw-box">
<xsl:param name="startX"/>
<xsl:param name="startY" select="'0"'"/>
<xsl:param name="endX">
10
</xsl:param>
<xsl:param name="endY">
10
</xsl:param>

</xsl:template>

154 | Chapter5: Branching and Control Elements

A couple of notes about the <xsl:param> element:

* If you define any <xsl:param> elements in a template, they must be the first thing
in the template.

* The <xsl:param> element allows you to define a default value for the parameter. If
the calling template doesn’t supply a value, the default is used instead. The last
three <xs1:param> elements in our previous example define default values.

* The <xsl:param> element has the same content model as <xs1:variable>. With no
content and no select attribute, the default value of the parameter is an empty string
(""). With a select attribute, the default value of the parameter is the value of the
select attribute. If the <xs1:param> element contains content, the default value of
the parameter is the content of the <xs1:param> element.

Global Parameters

XSLT allows you to define parameters whose scope is the entire stylesheet. You can
define default values for these parameters, and you can pass values to those parameters
externally to the stylesheet. Before we talk about how to pass in values for global
parameters, we’ll show you how to create them. Any parameters that are top-level
elements (any <xsl:param> elements whose parent is <xsl:stylesheet>) are global
parameters. Here’s an example:

<?xml version="1.0"?>

<!-- params.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:param name="startX"/>
<xsl:param name="baseColor"/>

<xsl:template match="/">
<xsl:text>8#txA;Global parameters example8dfxA;8#xA;</xsl:text>

<xsl:text>The value of startX is: </xsl:text>
<xsl:value-of select="$startX"/>
<xsl:text>
The value of baseColor is: </xsl:text>
<xsl:value-of select="$baseColor"/>
<xsl:text>
</xsl:text>

</xsl:template>

</xsl:stylesheet>

How you pass values for global parameters depends on the XSLT processor you're
using. We'll go through some examples here for all the usual suspects. Let’s say we
want to pass the numeric value 50 as the value for startX, and the string value
magenta as the default value for baseColor. The following list describes the commands
you’d use to do that:

Parameters | 155

Xalan
To pass global parameters to Xalan, you can define them on the Xalan command
line:

java org.apache.xalan.xslt.Process -in blank.xml -xsl params.xsl
-param startX 50 -param baseColor magenta

(This command should be on a single line.)

Saxon
Saxon supports external parameters like this:

java net.sf.saxon.Transform blank.xml params.xsl startX=50 baseColor=magenta

Microsoft’s XSLT tools
Here’s how you pass external parameters to Microsoft’s XSLT tools:

msxsl blank.xml params.xsl startX=50 baseColor=magenta

Altova
If you’re using the Altova XML engine, you pass external parameters like this:

altovaxml /xsltl params.xsl /in blank.xml /param startX=50 /param
baseColor="magenta’

Notice that we have to put single quotes around the text value magenta.

Using this stylesheet with any XML document and any of the XSLT processors
listed here produces these results:

Global parameters example

The value of startX is: 50
The value of baseColor is: magenta

Setting global parameters in a Java program

If your XSLT engine supports the Transformation API for XML (TrAX), you can embed
the XSLT processor and set global parameters in your code. Here’s an example that
uses TrAX support:

import java.io.File;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.TransformerException;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.stream.StreamResult;

import javax.xml.transform.stream.StreamSource;

public class GlobalParameters
{
public static void parseAndProcess(String sourcelD,
String xslID,
String outputID)

{
try

156 | Chapter5: Branching and Control Elements

{

TransformerFactory tfactory = TransformerFactory.newInstance();

Transformer transformer
= tfactory.newTransformer(new StreamSource(xslID));

// Use the setParameter method to set global parameters
transformer. setParameter("startX", new Integer(50));
transformer.setParameter("baseColor”, "magenta");

transformer.transform(new StreamSource(sourcelD),
new StreamResult(outputID));

catch (TransformerConfigurationException tce)

{

System.err.println("Exception: " + tce);
catch (TransformerException te)
{

System.err.println("Exception: " + te);
}

}

public static void main(String argv[])
throws java.io.IOException,
org.xml.sax.SAXException
{

GlobalParameters gp = new GlobalParameters();
gp.parseAndProcess(argv[0], argv[1], argv[2]);

}

Notice that we used the setParameter method to set global parameters for the
Transformer object before we invoke the transform method. This transformation gen-
erates the following results in output.text:

Global parameters example

The value of startX is: 50
The value of baseColor is: magenta

Setting global parameters in .NET

The .NET framework provides the Xs1tArgumentList object for setting global stylesheet
parameters. As with the Java example, the code is straightforward:

using System;

using System.Collections.Generic;

using System.Text;

using System.Xml;
using System.Xml.Xsl;

namespace com.oreilly.xslt

class XsltGlobalParameters

Parameters | 157

{

static void Main(string[] args)

{
// Create the stylesheet object and the XMLWriter that

// writes the output to a file
XslCompiledTransform stylesheet = new XslCompiledTransform();
XmlTextWriter xWriter =

new XmlTextWriter(args[2], Encoding.UTF8);

// Use an XsltSettings object that allows executing scripts
// (we need this for extensions), then load the stylesheet
XsltSettings settings = new XsltSettings(true, true);
stylesheet.Load(args[1], settings, new XmlUrlResolver());

// We pass global parameters to the stylesheet with an
// XsltArgumentlList object.

XsltArgumentlist arglist = new XsltArgumentlList();
arglist.AddParam("startX", "", 50);
arglist.AddParam("baseColor"”, "", "magenta");

// With everything in place, we call the Transform() method
// to do the work...
stylesheet.Transform(args[0], arglList, xWriter);
}
}
}

We create an Xs1CompiledTransform object, and then use an Xs1tArgumentList object to
set parameters for the stylesheet. Once everything is set, we use the Transform() method
of the Xs1CompiledTransform class. This generates the same results we saw with the Java
code:

Global parameters example

The value of startX is: 50
The value of baseColor is: magenta

[2.0] Important Differences in XSLT 2.0

There are some changes to the way parameters and modes work in XSLT 2.0. We’ll
cover those here. To summarize, the key differences are:

¢ The mode attribute features three new values: #all, #current, and #default.

* If you pass a parameter to a template, and that parameter is not defined in that
template, an XSLT 2.0 processor will give you an error message and stop. In XSLT
1.0, the undefined parameters were simply ignored.

e XSLT 2.0 adds the attribute required="yes" to define that a value must be passed
for a parameter.

* You can specify the datatype and/or the structure of a parameter. If a parameter
must be an xs:date or a sequence of at least one element, you can specify that.

158 | Chapter5: Branching and Control Elements

* XSLT 2.0 defines a new kind of parameter called a tunnel parameter. Tunnel
parameters help you avoid sloppy coding practices that you were often forced into
with XSLT 1.0.

New values for the mode attribute

In XSLT 2.0, there are three new values for the mode attribute:

#all
For <xsl:template>, we can use the value mode="#all". This specifies that a given
template matches all modes. However, if the current mode is "toc", a template
with mode="toc" is invoked instead of a template with mode="#all".

#current
For the <xsl:apply-templates> element, we can use the value mode="#current" to
invoke other templates using the current mode. This effectively uses the current
mode as a parameter.

#default
The <xsl:apply-templates> and <xsl:template> elements can use
mode="#default". The default mode is unnamed.

Another difference in XSLT 2.0: the value of the mode attribute can be a space-separated
list of mode names. In XSLT 1.0, you could only specify one mode at a time.

See the definition of the <xs1:apply-templates> element in Appendix A for a complete
example of these new features.

Undefined parameters are illegal

In XSLT 1.0, you can pass as many parameters to a template as you want. If you pass
two parameters to a template that defines only one parameter, the extra parameter is
simply ignored. You won’t even get a warning or error message from the XSLT pro-
cessor. Here’s an example:

<?xml version="1.0"?>

<!-- parameters-1 0.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:call-template name="test">
<xsl:with-param name="parami" select="'57""/>
<xsl:with-param name="param2" select="'93""/>
</xsl:call-template>
</xsl:template>

<xsl:template name="test">
<xsl:param name="param1"/>
<xsl:text>Value of $parami: </xsl:text>

Parameters | 159

<xsl:value-of select="¢parami"/>
</xsl:template>

</xsl:stylesheet>

In this example, the template for the document root calls a named template, passing it
two parameters. The parameter param2 isn’t defined in the named template. With an
XSLT 1.0 processor, this is not an error. Here’s the output you get from Xalan-J 2.7.0,
which is an XSLT 1.0 processor:

java org.apache.xalan.xslt.Process -xsl parameters-1 0.xsl
Value of $parami: 57

Using the same stylesheet with Saxon 9.0.0.3, which is an XSLT 2.0 processor, gives
these results:
java net.sf.saxon.Transform blank.xml parameters-1 0.xsl

Warning: Running an XSLT 1.0 stylesheet with an XSLT 2.0 processor
Value of $parami: 57

Saxon gives us a warning message that we’re running an XSLT 1.0 stylesheet, but it
ignores the extra parameter as it should when it’s processing a stylesheet in XSLT 1.0

mode. However, if we change the version attribute of the <xsl:stylesheet> tag to look
like this:

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="2.0">

Saxon processes this as an XSLT 2.0 stylesheet:

java net.sf.saxon.Transform blank.xml parameters-2_0.xsl

Error at xsl:call-template on line 9 of file:/C:/parameters-2_0.xsl:
XTSE0680: Parameter param2 is not declared in the called template

Failed to compile stylesheet. 1 error detected.

An XSLT 2.0 stylesheet processor stops the transformation as soon as it finds the un-
defined parameter.

Finally, if we run the XSLT 2.0 stylesheet with Xalan, it ignores the version="2.0"
attribute entirely and processes the stylesheet as you’d expect an XSLT 1.0 processor
to do:

java org.apache.xalan.xslt.Process -xsl parameters-2 0.xsl
Value of $parami: 57

160 | Chapter5: Branching and Control Elements

You might have noticed in the preceding code that when we processed
the stylesheet with Xalan, we specified only our stylesheet. Saxon, on
the other hand, requires that we specify both an XML file and an XSLT
stylesheet. The contents of the file blank.xml are the single empty ele-
ment <blank/>.

An alternative would be to give the template a name (<xsl:template
match="/" name="main">) and invoke it using Saxon’s -it option:

java net.sf.saxon.Transform -it main parameters 1.0.xsl
Warning: Running an XSLT 1.0 stylesheet with an XSLT 2.0 processor
Value of $parami: 57

The -it option lets you specify the named template where the transfor-
mation should begin.

Required parameters

XSLT 2.0 adds a required attribute to the <xsl:param> element. Valid values are yes
and no, as you’d expect. If a parameter is required, the <xsl:param> element must not
have a select attribute.

Here’s an example of a required parameter:

<?xml version="1.0" encoding="utf-8"?>

<!-- required parameters.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:call-template name="date-formatter">
<xsl:with-param name="date" select="current-date()"/>
</xsl:call-template>
</xsl:template>

<xsl:template name="date-formatter">

<xsl:param name="date" required="yes"/>

<xsl:value-of select="format-date($date, '[Mo1]/[Do1]/[Y0001]')"/>
</xsl:template>

</xsl:stylesheet>

In this stylesheet, the date parameter is required; if we try to invoke this template with-
out passing the required parameter, the XSLT processor will refuse to run our style-
sheet. This would be a good place to use XSLT 2.0’s datatyping support (more on this
next); the XSLT processor forces us to use the required parameter, but it doesn’t check
its datatype. If the parameter we pass to the format-date() function is not an
xs:date, the XSLT processor throws an error. (This stylesheet uses the
current-date() function to generate the parameter, so we know we’ll always have the
correct datatype.)

Parameters | 161

Afinal restriction on <xs1:param> is that you can’t use the required and select attributes
on the same parameter. Remember, the select attribute defines a default value in case
a parameter isn’t passed to the template. On the other hand, the required attribute says
that the parameter must be passed to the template.

Datatyping support

The <xsl:param>, <xsl:with-param>, and <xsl:variable> elements have an optional
as attribute that define the datatype and/or structure of a parameter or variable. As an
example, here’s a parameter that must be an xs:date:

<?xml version="1.0" encoding="utf-8"?>

<!-- datatype parameters.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:call-template name="date-formatter">
<xsl:with-param name="date" select="current-date()"/>
</xsl:call-template>
</xsl:template>

<xsl:template name="date-formatter">

<xsl:param name="date" as="xs:date" required="yes"/>

<xsl:value-of select="format-date($date, '[Mo1]/[Do1]/[Y0001]')"/>
</xsl:template>

</xsl:stylesheet>

Typically we’re concerned about the datatype of a parameter, but we
can also define the parameter’s structure. The attribute
W as="element()+" says the parameter must be a sequence of one or more
" element nodes, while as="element(*, xs:date)+" says that the param-
eter must be a sequence of one or more element nodes, each of which
has the datatype xs:date.

In this stylesheet, we’re calling a named template. The <xsl:param> element in the
named template tells the XSLT processor that the parameter is required, and that its
datatype must be the XML Schema date type. When we run this stylesheet with an
XSLT 2.0 processor, we get these results:

java net.sf.saxon.Transform blank.xml datatype parameters.xsl
03/02/2008

The XSLT 2.0 stylesheet engine has taken the value of our parameter and formatted it
according to the picture clause used in the format-date() function.

162 | Chapter5: Branching and Control Elements

If the parameter’s datatype doesn’t match the datatype required by the template, an
error will occur. For example, if we change the stylesheet so that we call the template

with bad data:

<xsl:call-template name="date-formatter">
<xsl:with-param name="date" select=""'blue'"/>
</xsl:call-template>

we’ll get an error:

Error at xsl:with-param on line 11 of file:/C:/datatype parameters.xsl:
XTTE0570: Required item type of value of variable $date is xs:date;
supplied value has item type xs:string

Failed to compile stylesheet. 1 error detected.

The stylesheet engine doesn’t even process the entire stylesheet because the parameter’s
value (the string blue) clearly doesn’t match the required datatype. If we generated the
value of the parameter dynamically and the generated value wasn’t an xs:date, we
would get a runtime error that would stop the transformation.

Tunnel parameters

The use of parameters in XSLT 1.0 can lead to sloppy programming in a couple of ways.
First of all, you don’t have to worry so much about the “signature” of the template
you’re invoking. You can pass the exact number of parameters to the template, none
at all, or twice as many. The XSLT 1.0 processor will probably do what you want, but
if a parameter isn’t set correctly, it can be difficult to figure out where the problem lies.
XSLT 2.0’s requirement that you pass the exact number of parameters makes for much
cleaner code.

The second problem is when you need to pass a parameter that might eventually be
used by another template. As an example, say we have a stylesheet that generates HTML
from DocBook. DocBook features hundreds of elements, so we’ll just look at templates
for a few DocBook elements here. We’ll take a DocBook document and create two
HTML files. Each HTML file will contain the major section headings (sect1/title),
along with all of the code listings in the source document (DocBook
<programlisting> elements). We’ll run this transformation twice, generating normal-
sized text in one document and larger text in the second.

Here’s what our stylesheet looks like without tunnel parameters:

<?xml version="1.0" encoding="utf-8"?>

<!-- normal_parameters.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/">
<xsl:result-document href="regular-type.html" method="html">
<html>
<xsl:apply-templates select="*|text()">

Parameters | 163

<xsl:with-param name="code-font-size" select=""'14"'"/>
</xsl:apply-templates>
</html>
</xsl:result-document>
<xsl:result-document href="larger-type.html" method="html">
<html>
<xsl:apply-templates select="*|text()">
<xsl:with-param name="code-font-size" select="'20"'"/>
</xsl:apply-templates>
</html>
</xsl:result-document>
</xsl:template>

<xsl:template match="chapter">
<xs1:param name="code-font-size"/>
<head>
<title><xsl:value-of select="title"/></title>
</head>
<body>
<xsl:apply-templates select="*[not(name() = 'title')]|text()">
<xs1:with-param name="code-font-size" select="$code-font-size"/>
</xsl:apply-templates>
</body>
</xsl:template>

<xsl:template match="programlisting">
<xsl:param name="code-font-size"/>
<pre>

<xsl:attribute name="style">
<xsl:text>font-family:monospace; font-size:</xsl:text>
<xsl:value-of select="$code-font-size"/>
<xsl:text>;</xsl:text>
</xsl:attribute>
<xsl:apply-templates select="*|text()">
<xsl:with-param name="code-font-size" select="$code-font-size"/>>
</xsl:apply-templates>

</pre>
</xsl:template>

<xsl:template match="sect1/title">
<xsl:param name="code-font-size"/>
<h1>
<xsl:apply-templates select="*|text()">
<xs1:with-param name="code-font-size" select="$code-font-size"/>
</xsl:apply-templates>
</h1>
</xsl:template>

<!-- A useful stylesheet would have dozens more templates here... -->
<xsl:template match="*">
<xsl:param name="code-font-size"/>
<xsl:apply-templates select="*">
<xs1:with-param name="code-font-size" select="$code-font-size"/>

164 | Chapter5: Branching and Control Elements

</xsl:apply-templates>
</xsl:template>

</xsl:stylesheet>

This stylesheet generates the output we want, creating the result documents regular-
type.html and larger-type.html. An excerpt from regular-type.html looks like this:

<h1>Goals of This Chapter</h1>

<h1>Branching Elements of XSLT</hi><pre>

<xsl:if test="count(zone) > 2"8gt;
&1t;xsl:text8gt;Applicable zones: &1t;/xsl:textdgt;
81t;xsl:apply-templates select="zone"/8gt;
81t; /xsl:if8gt;</pre><pre>

&1t;xsl:template match="table-row">
&1t;tr8gt;
<xsl:attribute name="bgcolor">
&1t;xsl:choosedgt;

The file larger-type.html is identical, with the exception that the style attribute con-
tains font-size:20; instead of font-size:14;. However, the stylesheet is messy, and
maintenance will be more difficult than it should be. Notice how many templates have
this structure:

<xsl:template match="whatever">
<xsl:param name="code-font-size"/>

<!-- Do something with the current element, -->
<!-- then process its descendants -->

<xsl:apply-templates select="*|text()">
<!-- Pass the code-font-size parameter, just in case -->
<!-- we need it later -->
<xsl:with-param name="code-font-size" select="$code-font-size"/>
</xsl:apply-templates
</xsl:template>

The problem is that everytime we use <xsl:apply-templates>, we have to pass along
the code-font-size variable just in case a template somewhere down the line needs it.
Any of the elements for which we’ve written templates might have <programlisting>
as a descendant, so we don’t have any choice. To make things even worse, every time
we add a new template to our stylesheet, we have to add the same <xsl:param> and
<xsl:with-param> markup. If we suddenly had three more parameters that we needed
to pass around in this way, our stylesheet would become very convoluted, and every
change to the stylesheet could introduce errors if we don’t remember to make the same
changes to all the affected templates.

And that’s where tunnel parameters come in.

Parameters | 165

Tunnel parameters are similar to dynamically scoped variables in functional program-
ming languages such as Haskell and Scheme. In those languages, a variable may go in
and out of scope as one function invokes another. In XSLT 2.0, when you create a
tunnel parameter, that parameter is passed on to each template that’s directly or
indirectly invoked. As one template invokes another during processing, any template
anywhere can use that tunnel parameter simply by referring to it as a tunnel parameter.
Here’s how the stylesheet looks with tunnel parameters:

<?xml version="1.0" encoding="utf-8"?>

<!-- tunnel_parameters.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/">
<xsl:result-document href="regular-type.html" method="html">
<html>
<xsl:apply-templates select="*|text()">
<xsl:with-param name="code-font-size" select="'14""
tunnel="yes"/>
</xsl:apply-templates>
</html>
</xsl:result-document>
<xsl:result-document href="larger-type.html" method="html">
<html>
<xsl:apply-templates select="*|text()">
<xsl:with-param name="code-font-size" select="'20""
tunnel="yes"/>
</xsl:apply-templates>
</html>
</xsl:result-document>
</xsl:template>

<xsl:template match="chapter">
<head>
<title><xsl:value-of select="title"/></title>
</head>
<body>
<xsl:apply-templates select="*[not(name() = "title')]|text()"/>
</body>
</xsl:template>

<xsl:template match="programlisting">
<xsl:param name="code-font-size" tunnel="yes"/>
<pre>

<xsl:attribute name="style">
<xsl:text>font-family:monospace; font-size:</xsl:text>
<xsl:value-of select="$code-font-size"/>
<xsl:text>;</xsl:text>
</xsl:attribute>
<xsl:apply-templates select="*|text()"/>

166 | Chapter5: Branching and Control Elements

</pre>
</xsl:template>

<xsl:template match="sect1/title">
<h1>
<xsl:apply-templates select="*|text()"/>
</h1>
</xsl:template>

<!-- A useful stylesheet would have dozens more templates here... -->
<xsl:template match="*">

<xsl:apply-templates select="*"/>
</xsl:template>

</xsl:stylesheet>

Notice how tunnel parameters have simplified the code. In the root template, we’re
passing a tunnel parameter as we tell the XSLT processor to transform all of the de-
scendant elements. Fach time a subsequent template invokes another template,
whether through <apply-templates> or <call-template>, the tunnel parameters are si-
lently passed along. The only time we use the parameter is in the only place we need
it: the template for the programlisting element.

A couple of syntax notes: first of all, the <xs1:with-param> element that declares the
parameter must have tunnel="yes" to be a tunnel parameter. Secondly, the template
that wants to use the tunnel parameter must have the tunnel="yes" attribute on the
<xsl:param> element that defines the parameter. If the parameter definition doesn’t
include tunnel="yes", the XSLT processor assumes that the parameter is a new variable
local to that template.

LA
)

It might have occurred to you that we could solve this problem with a
global parameter. That’s true, although there are a couple of disadvan-
& tages to this method. First of all, we would like to limit the number of
" global parameters. Adding a global parameter just so we can use it any-
where we need it isn’t good form.

The second problem is that we can’t change the value of the global pa-
rameter. In our example here, we would have to create two global var-
iables, one for each value we’d like to use in the stylesheet. Using tunnel
parameters lets us set the value of code-font-size each time we want to
process our source document. With tunnel parameters, our stylesheet
is easier to write, easier to debug, and easier to maintain.

Variables

If we use logic to control the flow of our stylesheets, we’ll probably want to store tem-
porary results along the way. In other words, we’ll need to use variables. XSLT provides
the <xsl:variable> element, which allows you to store a value and associate it with a
name.

Variables | 167

The <xsl:variable> element can be used in three ways. The simplest form of the ele-
ment creates a new variable whose value is an empty string (""). Here’s how it looks:

<xsl:variable name="x"/>

This element creates a new variable named x, whose value is an empty string. (Please
hold your applause until the end of the section.)

You can also create a variable by adding a select attribute to the <xsl:variable>
element:

<xsl:variable name="favouriteColour" select="'blue'"/>

In this case, we’ve set the value of the variable to be the string “blue”. Notice that we
put single quotes around the value. These quotes ensure that the literal value blue is
used as the value of the variable. If we had left out the single quotes, this would mean
the value of the variable is the node-set (or sequence) of all the <blue> elements in the
context node, which definitely isn’t what we want here.

Be aware that single quotes around numeric values are significant. The

“5’@ value 35 represents a numeric value (it’s a number in XSLT 1.0, and an
xs:integer in XSLT 2.0), while the value ‘35" represents the string 35.
That might seem like a minor distinction, but it has a major impact on
how your stylesheet works, especially in XSLT 2.0.

The third way to use the <xsl:variable> element is to put content inside it. Here’s a
brief example:

<xsl:variable name="y">
<xsl:choose>
<xsl:when test="$x > 7">
<xsl:text>13</xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:text>15</xsl:text>
</xsl:otherwise>
</xsl:choose>
</xsl:variable>

In this more complicated example, the content of the variable y depends on the test
attribute of the <xsl:when> element. This is the equivalent of this procedural program-
ming construct:
int y;
if (x> 7)
y = 13;
else
y = 15;

168 | Chapter5: Branching and Control Elements

Are These Things Really Variables?

Although these XSLT variables are called variables, they’re not variables in the tradi-
tional sense of procedural programming languages such as C++ or Java. Remember
that earlier we said one goal behind the design of the stylesheet language is to avoid
side effects in execution? Well, one of the most common side effects used in most
procedural languages is changing the value of a variable. If we write our stylesheet so
that the results depend on the varying values of different variables, the stylesheet engine
would be forced to evaluate the templates in a certain order.

XSLT variables are more like variables in the traditional mathematical sense. In math-
ematics, we can define a function called square(x) that returns the value of a number
(represented by x) multiplied by itself. In other words, square(2.5) returns 6. 25. In this
context, we understand that x can be any number; we also understand that the
square function can’t change the value of x.

It takes a while to get used to this concept, but you’ll get there. Trust me on this.

Variable Scope

An <xsl:variable> element is scoped to the element that contains it. If an
<xsl:variable> element is a top-level element (its parent is <xsl:stylesheet>), it is
global, and its value is visible everywhere in the stylesheet. You can also use an
<xsl:variable> element within an <xs1:template> to override the value of a global var-
iable locally.

Using Recursion to Do Most Anything

Writing an XSLT stylesheet is different from programming in other languages. If you
didn’t believe that before, you probably do now. We’ll finish this chapter with a couple
of examples that demonstrate how to use recursion to solve the kinds of problems that
you’re probably used to solving with procedural programming languages. We’ll also
look at some new features of XSLT 2.0 and XPath 2.0 that allow you to avoid recursion
in some situations.

Implementing a String Replace Function

To demonstrate how to use recursion to solve problems, we’ll write a string replace
function. This is sometimes useful when you need to escape certain characters or sub-
strings in your output. The stylesheet we’ll develop here transforms an XML docu-
ment into a set of SQL statements that will be executed at a Windows command
prompt. We have to do several things:

Using Recursion to Do Most Anything | 169

Put a caret () in front of all ampersands (&)
On the Windows NT and Windows 2000 command prompt, the ampersand means
that the current command has ended and another is beginning. For example, this
command creates a new directory called xslt and changes the current directory to
the newly created one:

mkdir xslt & chdir xslt

If we create a SQL statement that contains an ampersand, we’ll need to escape the
ampersand so it’s processed as a literal character, not as an operator. If we insert
the value Jones & Son as the value of the company field in a row of the database,
we need to change it to Jones & Son before we try to run the SQL command.

Put a caret () in front of all vertical bars (|)
The vertical bar is the pipe operator on Windows systems, so we need to escape it
if we want it interpreted as literal text instead of an operator.

Replace any single quote (') with two single quotes (*')
This is a requirement of our database system.

Procedural design

Three functions we could use in our template are concat(), substring-before(), and
substring-after(). To replace an ampersand with a caret and an ampersand, this
would do the trick:

<xsl:value-of select="concat(substring-before(., '8amp;'), '~&',
substring-after(., '&'))"/>

The obvious problem with this step is that it replaces only the first occurrence of the
ampersand. If there are two ampersands, or three, or three hundred, we need to call
this method once for each ampersand in the original string. Because of the way variables
work, we can’t do what we’d do in a procedural language:

private static String strChange(String string, String from, String to)
{

String before =
int index;

nn wn

, after =

index = string.indexOf(from);

while (index >= 0)

{
before = string.substring(o, index);
after = string.substring(index + from.length());
string = before + to + after;

index = string.indexOf(from, index + to.length());

}

return string;

}

170 | Chapter5: Branching and Control Elements

XSLT doesn’t have any simple way to iterate through the characters of the string, so
we’ll use recursion instead.

Recursive design
To implement a string replace function with recursion, we’ll take this approach:

* If the whole string does contain the substring we want to replace, we do the
following;:

1. Return the first part of the whole string—everything before the substring we
want to replace.

2. Return the replacement substring.

3. Return the result of calling our function with the last part of the whole string—
everything after the first occurrence of the substring we want to replace. This
is the recursive part of our design.

* If the whole string does not contain the substring we want to replace, we simply
return the whole string.

If the substring we’re replacing occurs in the whole string, we call the substring replace
function on the last of the string. The key here, as with all recursive functions, is that
we have an exit case, a condition in which we don’t recurse. Eventually we’ll call our
recursive function with a string that doesn’t contain the substring we’re replacing.

Here’s the design in pseudocode:

replaceSubstring(originalString, substring, replacementString)
if (contains(originalString, substring))

return
(substring-before(originalString, substring) +
replacementString +
replaceSubstring(substring-after(originalString, substring),
substring, replacementString));

}

else
return originalString;
}

In the recursive approach, the function calls itself whenever there’s at least one occur-
rence of the substring. Each time the function calls itself, the originalString parameter
is a little smaller, until eventually we’ve processed the complete string. Here’s the com-
plete stylesheet:

<?xml version="1.0"?>

<!-- string replace-1 0.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

Using Recursion to Do Most Anything | 171

<xsl:template match="/">
<xsl:apply-templates select="ul/1i"/>
</xsl:template>

<xsl:template match="1i">
<xsl:variable name="single-quote">
<xsl:text>'</xsl:text>
</xsl:variable>
<xsl:variable name="two-quotes">
<xsl:text>8'8'</xsl:text>
</xsl:variable>

<xsl:variable name="sub1">
<xsl:call-template name="replace-substring">
<xsl:with-param name="original" select="."/>
<xsl:with-param name="substring" select=""&'"/>
<xsl:with-param name="replacement" select=""'"&"'"/>
</xsl:call-template>
</xsl:variable>

<xsl:variable name="sub2">
<xsl:call-template name="replace-substring">
<xsl:with-param name="original" select="$sub1"/>
<xsl:with-param name="substring" select=""'|["'"/>
<xsl:with-param name="replacement" select=""'"|"'"/>
</xsl:call-template>
</xsl:variable>

<xsl:call-template name="replace-substring">
<xsl:with-param name="original" select="$sub2"/>
<xsl:with-param name="substring" select="$single-quote"/>
<xsl:with-param name="replacement" select="$two-quotes"/>
</xsl:call-template>
<xsl:text>
</xsl:text>
</xsl:template>

<xsl:template name="replace-substring">
<xsl:param name="original" />
<xsl:param name="substring" />
<xsl:param name="replacement" />
<xsl:choose>
<xsl:when test="contains($original, $substring)">
<xsl:value-of
select="substring-before($original, $substring)" />
<xsl:value-of select="¢replacement" />
<xsl:call-template name="replace-substring">
<xsl:with-param name="original"
select="substring-after($original, $substring)" />
<xsl:with-param
name="substring" select="$substring" />
<xsl:with-param
name="replacement" select="$replacement" />
</xsl:call-template>
</xsl:when>

172 | Chapter5: Branching and Control Elements

<xsl:otherwise>
<xsl:value-of select="$original" />
</xsl:otherwise>
</xsl:choose>
</xsl:template>

</xsl:stylesheet>

We create the variable $sub1 by replacing all of the ampersands in the original text with
a caret and an ampersand. We create the variable $sub2 by replacing all of the vertical
bars in $sub1 with a caret and a vertical bar. Finally we use $sub2 in our third call to the
replace-substring template. The third call to the template doubles all the single quotes.
Notice that the third call isn’t inside an <xsl:variable> element, so it is written to the
output.

Given this XML input document:

<?xml version="1.0" encoding="utf-8"?>

<!-- testlines.xml -->

<1li>This is a test & I hope it works | fails gracefully
Some techniques are simpler & easier than recursion</1i>
<1li>Will I enjoy next Tuesday's meeting?

Our recursive template returns these results:

This is a test ~& I hope it works ~| fails gracefully
Some techniques are simpler "& easier than recursion
Will I enjoy next Tuesday''s meeting?

This style of programming takes some getting used to, but whatever you want to do
can usually be done. Our example here is a good illustration of the techniques we’ve
discussed in this chapter, including branching statements, variables, invoking tem-
plates by name, and passing parameters.

[2.0] Using the XPath 2.0 replace() Function to Avoid Recursion

Because string manipulation is a common task in transforming documents, XPath 2.0
provides the very useful replace() function. This lets us provide the original string, the
string we want to replace, and the string we want substituted in its place. To review
our earlier example, we want to make three replacements in our text:

* Any ampersand (&) should have a caret added in front of it (*8).

* Any vertical bar (]) should have a caret added in front of it (*]).

* Any single quote (') should be replaced with two single quotes (' ").

Our stylesheet to perform these tasks looks like this:

<?xml version="1.0"?>
<!-- string_replace-2 0.xsl -->
<xsl:stylesheet version="2.0"

Using Recursion to Do Most Anything | 173

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="text"/>

<xsl:template match="/">
<xsl:apply-templates select="ul/1i"/>
</xsl:template>

<xsl:template match="1i">
<xsl:variable name="sub1" select="replace(., '&', '~&')"/>
<xsl:variable name="sub2" select="replace($sub1, "\|"', "~|")"/>
<xsl:value-of select='replace($sub2, "'", "8apos;'")'/>
<xsl:text>
</xsl:text>

</xsl:template>

</xsl:stylesheet>

We get the same results we got from our much longer XSLT 1.0 stylesheet:

This is a test ~& I hope it works ~| fails gracefully
Some techniques are simpler "& easier than recursion
Will I enjoy next Tuesday''s meeting?

This example is far simpler than the recursive technique we used in the XSLT 1.0 style-
sheet. Both of them generate the same results, but the code in the XSLT 2.0 stylesheet
is much easier to understand.

A quick note about the syntax we used to escape all the single quotes in
the XSLT 2.0 stylesheet: our technique was to use the single quote
98 (apostrophe) entity within double quotes. In XPath 2.0, single quotes
" can be escaped by doubling them in an XPath expression, so we also
could have written our call to the replace() function like this:

<xsl:value-of select="replace($sub2, '''", "''"'"’)'/>

This syntax is really confusing, but it works.

A Stylesheet That Emulates a for Loop

Wesstressed earlier that the xs1: for-each elementis nota for loop; it’s merely an iterator
across a group of nodes. However, if you simply must implement a for loop, there’s a
way to do it. (Get ready to use recursion, though.)

Template Design

Our design here is to create a named template that will take some arguments, and then
act as a for loop processor. If you think about a traditional for loop, it has several
properties:

174 | Chapter5: Branching and Control Elements

One or more initialization statements
These statements are processed before the for loop begins. Typically the initiali-
zation statements refer to an index variable that is used to determine whether the
loop should continue.

An increment statement
This statement specifies how the index variable should be updated after each pass
through the loop.

A boolean expression
If the expression is true, the loop continues; if it is ever false, the loop exits.

Let’s take a sample from the world of Java and C++:
for (int i=0; i<length; i++)

In this scintillating example, the initialization statement is i=0, the index variable (the
variable whose value determines whether we’re done or not) is i, the boolean expression
we use to test whether the loop should continue is i<length, and the increment state-
ment is i++.

For our purposes here, we’re going to make several simplifying assumptions. (Feel free,
dear reader, to make the example as complicated as you wish.) Here are the shortcuts
we’ll take:

* Rather than use an initialization statement, we’ll require the caller to set the value
of the local variable i when it invokes our for loop processor. This value is passed
as a parameter, so it can be calculated by an XPath expression.

* Rather than specify an increment statement such as i++, we’ll require the caller to
set the value of the local variable increment. The default value for this variable is
1; it can be any negative or positive integer, however. The value of this variable will
be added to the current value of i after each iteration through our loop.

* Rather than allow any conceivable boolean expression, we’ll require the caller to
pass in two parameters; operator and testValue. The allowable values for the
operator variable are =, < (coded as <), > (coded as 8>), !=, <= (coded as
81t;=), and >= (coded as >=). We're doing things this way because there isn’t a
way to ask the XSLT processor to evaluate a literal (such as i<length) as if it were
part of the stylesheet.

Implementation

We'll define four global parameters for our stylesheet:

<xsl:param name="1i" select="1"/>
<xsl:param name="increment" select="1"/>
<xsl:param name="operator" select="'<=""/>
<xsl:param name="testValue" select="10"/>

A Stylesheet That Emulates a for Loop | 175

The default values defined here correspond to the C++ or Java statement for (i = 1;
i <= 10; i++). Wealso have amatch="/" template that invokes our for loop processor:

<xsl:template match="/">
<xsl:call-template name="for-loop">
<xsl:with-param name="i" select="%$i"/>
<xsl:with-param name="increment" select="$increment"/>
<xsl:with-param name="operator" select="$operator"/>
<xsl:with-param name="testValue" select="$testValue"/>
</xsl:call-template>

</xsl:template>

In the for-loop template, our first task is to determine whether the condition is true.
We do this by calculating a boolean value with several <xsl:when> elements, each of
which looks like the one below:

<xsl:variable name="testPassed">
<xsl:choose>
<xsl:when test="$operator = '!="">
<xsl:if test="$i != $testValue">
<xsl:text>true</xsl:text>
</xsl:if>
</xsl:when>

</xsl:variable>

If the variable $testPassed is true, the for-loop template calls itself again. Before the
<xsl:call-template> instruction, we can put whatever logic we want. For our sample,
we simply write the current value of $i to the output.

The Complete Example

Here’s the complete stylesheet:

<?xml version="1.0"?>

<!-- for-loop.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:param name="i" select="1"/>

<xsl:param name="increment" select="1"/>
<xsl:param name="operator" select="'&1t;=""/>
<xsl:param name="testValue" select="10"/>

<xsl:template match="/">
<xsl:call-template name="for-loop">
<xsl:with-param name="i" select="%$i"/>
<xsl:with-param name="increment" select="$increment"/>
<xsl:with-param name="operator" select="$operator"/>
<xsl:with-param name="testValue" select="$testValue"/>
</xsl:call-template>
</xsl:template>

176 | Chapter5: Branching and Control Elements

<xsl:template name="for-loop">
<xsl:param name="i"/>
<xsl:param name="increment"/>
<xsl:param name="operator"/>
<xsl:param name="testValue"/>

<xsl:variable name="testPassed">
<xsl:choose>
<xsl:when test="$operator = 'I="">
<xsl:if test="¢i != $testValue">
<xsl:text>true</xsl:text>
</xsl:if>
</xsl:when>
<xsl:when test="$operator = '&1t;="">
<xsl:if test="$i <= $testValue">
<xsl:text>true</xsl:text>
</xsl:if>
</xsl:when>
<xsl:when test="$operator = '>="">
<xsl:if test="¢i 8gt;= $testValue">
<xsl:text>true</xsl:text>
</xsl:if>
</xsl:when>
<xsl:when test="$operator = '='">
<xsl:if test="¢i = $testValue">
<xsl:text>true</xsl:text>
</xsl:if>
</xsl:when>
<xsl:when test="$operator = '&1t;'">
<xsl:if test="$i < $testValue">
<xsl:text>true</xsl:text>
</xsl:if>
</xsl:when>
<xsl:when test="$operator = '>'">
<xsl:if test="$i > $testValue">
<xsl:text>true</xsl:text>
</xsl:if>
</xs1l:when>
<xsl:otherwise>
<xsl:message terminate="yes">
<xsl:text>Sorry, the for-loop emulator only </xsl:text>
<xsl:text>handles six operators
</xsl:text>
<xsl:text>(81t; | > | = | <= | 8gt;= | !=). </xsl:text>
<xsl:text>The value </xsl:text>
<xsl:value-of select="t$operator"/>
<xsl:text> is not allowed.
</xsl:text>
</xsl:message>
</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<xsl:if test="$testPassed="true'">
<!-- Put your logic here, whatever it might be. For the purpose -->
<!-- of our example, we’ll just write some text to the output stream. -->

A Stylesheet That Emulates a for Loop | 177

<xsl:text>Value of i=</xsl:text>
<xsl:value-of select="$i"/>
<xsl:text>&ixA;</xsl:text>

<!-- Your logic should end here; don’t change the rest of this -->
<!-- template! -->

<!-- Now for the important part: we increment the index variable and -->
<!-- loop. Notice that we’re passing the incremented value, not -->
<!-- changing the variable itself. -->

<xsl:call-template name="for-loop">
<xsl:with-param name="i" select="%$i + $increment"/>
<xsl:with-param name="increment" select="$increment"/>
<xsl:with-param name="operator" select="$operator"/>
<xsl:with-param name="testValue" select="$testValue"/>

</xsl:call-template>

</xsl:if>
</xsl:template>

</xsl:stylesheet>

Running the stylesheet with the default parameter values creates these exciting results:

Value of i=1
Value of i=2
Value of i=3
Value of i=4
Value of i=5
Value of i=6
Value of i=7
Value of i=8
Value of i=9
Value of i=10

Using the parameters i=10, increment="-1", operator=">=
these results:

and testValue=0, we get

Value of i=10
Value of
Value of
Value of
Value of
Value of
Value of
Value of
Value of
Value of
Value of

e
I

]
O RLP NWARAUI OV 0O

He He He e 'I-Ih He He He He

The quotes around the values of increment and operator are necessary when passing
those values from the command line to the XSLT processor. As a final test, here are the
results for 1=10, increment="-2", operator=">" and testValue=0:

178 | Chapter5: Branching and Control Elements

Value of i=1
Value of i=8
Value of i=6
Value of i=4
Value of i=2

If you want to modify the for loop to do something useful, put your code between these
comments:

<!-- Put your logic here, whatever it might be. For the purpose -->
<!-- of our example, we’ll just write some text to the output stream. -->

<!-- Your logic should end here; don’t change the rest of this -->
<!-- template! -->
Summary

We've covered a lot of ground in this chapter, haven’t we? We’ve gone over all of the
basic elements you need to add logic and branching to your stylesheets. We discussed
some of the similarities between XSLT and other programming languages you might
know; more importantly, we discussed how XSLT is different from most of the code
you’ve probably written. In particular, the use of recursion and the principles of vari-
ables that don’t change takes some getting used to. Despite the learning curve, most of
the common tasks you’ll need to do will be similar to the exercises we’ve gone through
in this chapter. Now that we’ve covered these basic elements, we’ll talk about links and
references, discovering ways to build links between different parts of an XML
document.

Summary | 179

CHAPTER 6
Creating Links and Cross-References

If you’re creating a web site, publishing a book, or processing an XML-based purchase
order, chances are many pieces of information will refer to other things. This chapter
discusses several ways to link XML elements. It reviews three techniques:

* Using the XML ID, IDREF, and IDREFS datatypes

* Doing more advanced linking with the key() function

* Generating links in unstructured documents

Using the XML ID, IDREF, and IDREFS Datatypes

Our first attempt at linking will be with the XPath id() function. This useful function
helps us find the element that has an ID attribute with a particular value.

The Datatypes and How They Work

Three of the basic datatypes that are supported by XML Document Type Definitions
(DTDs) and XML Schemas are ID, IDREF, and IDREFS. The ID and IDREF datatypes work
according to two rules:

* Every attribute of datatype ID must be unique.

* Every value of datatype IDREF must match a value of an attribute of datatype ID
somewhere in the document.

An attribute with a datatype of IDREFS contains one or more space-separated values,
each of which must match a value of an ID elsewhere in the document. The IDREFS
datatype is a list of IDREF values, just as its name implies.

Here is a simple DTD fragment that uses the ID and IDREF datatypes:

<?xml version="1.0"?>

<!-- parts-listi.xml -->

<IDOCTYPE parts-list [

<IELEMENT parts-list (component+, part+)>

181

<!ELEMENT component (name, partref+)>

<IATTLIST component component-id ID #REQUIRED>
<!ELEMENT name (#PCDATA)>

<!ELEMENT partref EMPTY>

<IATTLIST partref refid IDREF #REQUIRED>
<IELEMENT part (name)>

<IATTLIST part part-id ID #REQUIRED>

>

<parts-list>
</parts-list>
Here is the XML Schema definition of the same document type:

<?xml version="1.0" encoding="UTF-8"?>

<!-- parts-list.xsd -->

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element name="parts-list">
<xs:complexType>
<xs:sequence>
<xs:element ref="component" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="part" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="component">
<xs:complexType>
<xs:sequence>
<xs:element ref="name" minOccurs="1" maxOccurs="1"/>
<xs:element ref="partref" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="component-id" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>

<xs:element name="part">
<xs:complexType>
<xs:sequence>
<xs:element ref="name" minOccurs="1" maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="part-id" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>

<xs:element name="name" type="xs:string"/>
<xs:element name="partref">

<xs:complexType>
<xs:attribute name="refid" type="xs:IDREF" use="required"/>

182 | Chapter6: Creating Links and Cross-References

</xs:complexType>
</xs:element>
</xs:schema>

The DTD and the XML Schema here are semantically identical, so we won’t worry
about which of the two we use to validate our XML files. (There are many things you
can express in XML Schema that aren’t possible in DTDs, but in this case the two
documents mean the exact same thing.) Here we’re using the ID and IDREF datatypes.
We’ll take a quick look at the lesser-used IDREFS datatype; for our purposes, we process
IDREFS the same way.

EA)
% We’ll discuss this in more detail later in this chapter, but be aware that
you have to validate the XML document for any attributes to be assigned
" 9la" the ID, IDREF, and IDREFS datatypes. If you can’t wait to read the details,
: you can skip ahead to the section “[2.0] The idref() Function” later in

this chapter.

To sum up how our parts list document works, a valid <parts-list> has one or more
<component> elements, followed by one or more <part> elements. The <component> and
<part> elements are required to have an ID attribute (component-id or part-id, respec-
tively). There’s also a <partref> element with a required attribute of type IDREF; the
value of that attribute, named refid, must match the value of an ID element somewhere
in the parts list.

Our first look at linking parts of a document together will use these nicely structured
documents.

Linking Parts of an XML Document

To illustrate the value of linking, we’ll use a document that defines several
<component> and <part> elements. Each <component> uses some number of <part>s. Be-
cause our XML document contains ID and IDREF values, we can link different parts of
the document together.

Here’s how our document looks:

<?xml version="1.0"?>
<!-- parts-listi.xml -->
<IDOCTYPE parts-list [

>
<parts-list>
<component component-id="C28392-33-TT">
<name>Turnip Twaddler</name>
<partref refid="P81952-26-PK"/>
<partref refid="P86679-52-SP"/>

<partref refid="P81472-68-FD"/>
<partref refid="P88107-39-GT"/>

Using the XML ID, IDREF, and IDREFS Datatypes | 183

</component>

<component component-id="C28772-63-0B">
<name>0live Bruiser</name>
<partref refid="P80228-21-PT"/>
<partref refid="P82387-85-PA"/>
</component>

<part part-id="P80228-21-PT">
<name>Pitter</name>
</part>

<part part-id="P86994-25-RC">
<name>Ribbon Curler</name>
</part>
</parts-list>

Our first task will be to look at each <component> and list the names of the <part>s that
it uses. Each of the refid attributes of each of the <partref> elements refers to the id
attribute of a <part> element.

A Stylesheet That Uses the id() Function

Let’s look at our desired output. What we want is a simple text document that lists all
of the part names for each component, which should look like this:

Here is a test of the id() function:

Turnip Twaddler (component #C28392-33-TT) uses these parts:
Spanner
Feather Duster
Grommet
Paring Knife

Prawn Goader (component #C28813-70-PG) uses these parts:
Paring Knife
Mucilage
Ribbon Curler

Olive Bruiser (component #C28772-63-0B) uses these parts:
Pitter
Patter

The stylesheet to generate these results is pretty straightforward:

<?xml version="1.0"?>

<l-- id1.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">

184 | Chapter6: Creating Links and Cross-References

<xsl:text>
Here is a test of the id() </xsl:text>
<xsl:text>function:
</xsl:text>

<xsl:for-each select="/parts-list/component">
<xsl:text>
 </xsl:text>
<xsl:value-of select="name"/>
<xsl:text> (component #</xsl:text>
<xsl:value-of select="@component-id"/>
<xsl:text>) uses these parts:8#xA; </xsl:text>
<xsl:for-each select="id(partref/@refid)">
<xsl:value-of select="name"/>
<xsl:text>&ixA; </xsl:text>
</xsl:for-each>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

We call the id() function, which returns a node-set/sequence of all the nodes that
match all of the refid attributes of the <partref> elements in each component. Each
item in the node-set is the actual <part> element, so the XPath expression
select="name" returns the name of the part (the text of the <name> child element).

Theid() and idref() functions both have a two-argument version. The
second argument for both functions is a node. That parameter tells the
Wls' XSLT processor to look in the document that contains the node instead
of the document that contains the context item. You probably won’t
need this option, but it’s there.

Before we move on to more complicated examples, we’ll look at a slightly different
XML document, which uses attributes of type IDREFS instead of IDREF. Here’s what it
looks like:

<?xml version="1.0"?>

<!-- parts-list2.xml -->
<IDOCTYPE parts-list [

<IELEMENT parts-list (component+, part+)>
<!ELEMENT component (name, partref)>
<IATTLIST component component-id ID #REQUIRED>
<!ELEMENT name (#PCDATA)>

<IELEMENT partref EMPTY>

<IATTLIST partref refid IDREFS #REQUIRED>
<JELEMENT part (name) >

<IATTLIST part part-id ID #REQUIRED>

>

<parts-list>
<component component-id="C28392-33-TT">
<name>Turnip Twaddler</name>

Using the XML ID, IDREF, and IDREFS Datatypes | 185

<partref
refid="P81952-26-PK P86679-52-SP P81472-68-FD P88107-39-GT"/>
</component>
<component component-id="C28813-70-PG">
<name>Prawn Goader</name>
<partref refid="P81952-26-PK P80499-43-MC P86994-25-RC"/>
</component>

</parts-list>

Even though the structure of this XML document is different, we can use the same
stylesheet against it. We get the same results, even though the datatype of the attribute
has changed. When we call the id() function with an argument such as P81952-
PK P86679-52-SP ..., theid() function treats each space-separated string as a separate
ID. The value of any ID attribute must be a valid XML name, which means it can’t
contain spaces. That’s why this works. (We’ll talk more about valid XML names in a
little while.)

We’ve written a stylesheet that goes from an IDREF to the element that has that particular
ID. Next we’ll write a stylesheet that goes from an ID to all of the references to it. We’ll
list each <part> in our document, and then list all of the <component>s that use it.
The challenge is in the XPath expression; given the ID of a <part>, how do we find all
of the <component>s that have a <partref> element with a refid attribute? Here’s the
stylesheet:

<?xml version="1.0"?>

<I-- id2.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>
Here is a test of the id() </xsl:text>
<xsl:text>function in reverse:
</xsl:text>

<xsl:for-each select="/parts-list/part">
<xsl:text>8#xA; </xsl:text>
<xsl:value-of select="name"/>
<xsl:text> (part #</xsl:text>
<xsl:value-of select="@part-id"/>
<xsl:text>) is used in these products:8
</xsl:text>
<xsl:for-each
select="/parts-1ist/component
[partref/@refid=current()/@part-id]">
<xsl:value-of select="name"/>
<xsl:if test="position() != last()">
<xsl:text>8#xA; </xsl:text>
</xsl:if>
</xsl:for-each>
<xsl:text>&#txA;</xsl:text>
</xsl:for-each>

186 | Chapter6: Creating Links and Cross-References

</xsl:template>
</xsl:stylesheet>

The XPath expression in the <xsl:for-each> is more complicated here; we’ll take a
closer look at it.

/parts-list/component[partref/@refid=current()/@part-id]

The expression returns all of the <component> elements for which the predicate expres-
sion is true. The predicate expression specifies that the component has at least one
<partref> child element whose refid attribute matches the part-id attribute of the
current node.

The predicate is comparing two values, even though it looks like a location path with
three parts. One of the values is partref/@refid, the set of refid attributes from all the
<partref> elements in a given <component>. The other value is current()/@part-id, the
value of the part-id attribute of the current node. Every value inside the predicate refers
to a <component> element; the current() function refers to the current <part> element
we're processing. That <part> element is selected by the first <xs1:for-each> element
in the template.

Here are the results of the stylesheet:

Here is a test of the id() function in reverse:

Pitter (part #P80228-21-PT) is used in these products:
Olive Bruiser

Patter (part #P82387-85-PA) is used in these products:
Olive Bruiser

Spanner (part #P86679-52-SP) is used in these products:
Turnip Twaddler
Clam Teaser
Lemon Snubber

Feather Duster (part #P81472-68-FD) is used in these products:
Turnip Twaddler
Clam Teaser
Cucumber Decorating Kit

Inside the inner <xs1:for-each> element, the XPath expression name returns the name
of the current <component>. We could have written the inner <xs1:for-each> element

like this:

<xsl:for-each
select="/parts-list/component/partref
[@refid=current()/@part-id]">
<xsl:value-of select="../name"/>

This generates the same results, but the expression to select the name of the component
is slightly more complicated. The select attribute of the <xsl:for-each> element re-
turns a node-set of <partref> elements, so we have to use ../name to get the name of

Using the XML D, IDREF, and IDREFS Datatypes | 187

the component. If you find yourself writing lots of complicated expressions inside a
<xsl:for-each> element, you should see whether you can rewrite the <for-each> ele-
ment’s XPath expression to simplify your stylesheet.

[2.0] The idref() Function

In the previous stylesheet, it was tedious to use the id() function in reverse, going from
something with a given ID to the elements that reference it. Because this is a fairly
common task, XSLT 2.0 adds the idref() function. Given an ID, idref() returns all
of the elements that reference it. Here’s a simple stylesheet that works with our parts list:

<?xml version="1.0"?>

<!-- idref.xsl -->

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>
Here is a test of the idref() </xsl:text>
<xsl:text>function:
</xsl:text>

<xsl:for-each select="/parts-list/part">
<xsl:text>
 </xsl:text>
<xsl:value-of select="name"/>
<xsl:text> (part #</xsl:text>
<xsl:value-of select="@part-id"/>
<xsl:text>) is used in these products:8
</xsl:text>
<xsl:value-of select="idref(@part-id)/../../name"
separator="8#xA;"/>
<xsl:text>
</xsl:text>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

In this stylesheet, we can do everything with a single <xsl:value-of> element. Notice
that the idref() function returns the matching attributes; that’s why we use the XPath
expression idref(@part-id)/../../name to get the name of the component. The parent
of the attribute is a <partref> element and its parent is a <component>. The component’s
<name> child is what we want here.

Finally, the new idref() function works with the IDREFS datatype, just like id().

Generating HTML Documents with Links

Before we leave the topic of IDs, we’ll look at a more complicated stylesheet—one that
generates HTML. We want to list all the components and parts in our document, and
we want to create hyperlinks between them. So, we’ll list the components and the parts
they use; each part name will be a link to a description of that part. We’ll do the same

188 | Chapter6: Creating Links and Cross-References

thing when we list each part and the components that use it. Our source document has
changed slightly for the purposes of our next few examples:
<?xml version="1.0"?>

<!-- parts-list3.xml -->
<IDOCTYPE parts-list [

<IELEMENT parts-list (component+, part+, supplier+)>
<IELEMENT component (name, partref+, description)>
<IATTLIST component component-id ID #REQUIRED>
<!ELEMENT name (#PCDATA)>
<IELEMENT partref EMPTY>
<IATTLIST partref refid IDREF #REQUIRED>
<JELEMENT part (name, description)>
<IATTLIST part part-id ID #REQUIRED

supplier CDATA #REQUIRED>
<!ELEMENT description (#PCDATA | partref)*>
<IELEMENT supplier (name)>
<IATTLIST supplier country CDATA #REQUIRED

vendor-id CDATA #REQUIRED>
1>

<parts-list>
<component component-id="C28392-33-TT">
<name>Turnip Twaddler</name>
<partref refid="P81952-26-PK"/>
<partref refid="P86679-52-SP"/>
<partref refid="P81472-68-FD"/>
<partref refid="P88107-39-GT"/>
<description>
If you've got turnips to twaddle, this is the tool for you!
Comes with a <partref refid="P81472-68-FD"/>.
</description>
</component>
<component component-id="C28100-38-CT">
<name>Clam Teaser</name>
<partref refid="P81472-68-FD"/>
<partref refid="P86994-25-RC"/>
<partref refid="P86679-52-SP"/>
<description>
Everyone knows they're proverbially happy, but what to
do with a shy clam? Bring recalcitrant mollusks out of
their shells with this entertaining gadget. Includes a
festive <partref refid="P86994-25-RC"/>.
</description>
</component>

<part part-id="P80228-21-PT" supplier="4839">

Using the XML D, IDREF, and IDREFS Datatypes | 189

<name>Pitter</name>
<description>
Removes pits from olives and cherries in no time at all.
</description>
</part>
<part part-id="P82387-85-PA" supplier="2983">
<name>Patter</name>
<description>
We're not sure what these things do, but people seem
to like 'em.
</description>
</part>

<supplier country="Great Britain" vendor-id="4839">
<name>Acme Products, Inc.</name>

</supplier>

<supplier country="Germany" vendor-id="2983">
<name>Deutschland Excelsior Gmbh</name>

</supplier>

<supplier country="Great Britain" vendor-id="5910">
<name>Unlimited Spanners Ltd.</name>

</supplier>

</parts-list>

There are a couple of differences here. First of all, we’ve added a <description> element
to every <component> and <part>. To complicate things, some of the descriptions contain
a <partref> element. Notice that the <partref> element doesn’t have any text. That
means the name of a given part is defined in one place only; if we change the name of
a part, the part name will automatically be updated every place we use it. Finally, we’ve
added some <supplier> elements and put country and vendor-id attributes on each
part. We'll use those when we talk about keys and key functions.

To generate the HTML document we want, we need to create link points. The de-
scription of every component and part should have an HTML anchor
(), so we can link to those descriptions. Because the parts and compo-
nents have unique IDs already, we’ll use those IDs as the names of the link points. That
means we know how to create a link point for each component and part, and we know
how to link to a given part or component.

Here’s the stylesheet:

<?xml version="1.0"?>

<!-- id-html.xs1 -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html"/>
<xsl:template match="/">

<html>
<head>

190 | Chapter6: Creating Links and Cross-References

<title>Our Catalog</title>

</head>

<body style="font-family: sans-serif;">
<h1>0ur Catalog</h1>
<p>Here's a look at everything in our catalog:</p>
<h2 style="background: #66FF66;">Components</h2>
<xsl:apply-templates select="/parts-list/component"/>
<h2 style="background: #6666FF;">Parts</h2>
<xsl:apply-templates select="/parts-list/part"/>

</body>

</html>
</xsl:template>

<xsl:template match="component">

<h3>
<xsl:value-of select="name"/>
</h3>
<p>
<xsl:apply-templates select="description"/>
</p>
<p>
<xsl:value-of select="name"/>
<xsl:text> uses these parts:</xsl:text>
</p>

<xsl:for-each select="partref">

<xsl:apply-templates select="."/>
</1li>
</xsl:for-each>

</xsl:template>

<xsl:template match="description">
<xsl:apply-templates select="*|text()"/>
</xsl:template>

<xsl:template match="partref">

<xsl:value-of select="id(@refid)/name"/>

</xsl:template>

<xsl:template match="part">

<h3>
<xsl:value-of select="name"/>
</h3>
<p>
<xsl:apply-templates select="description"/>
</p>
<p>
<xsl:value-of select="name"/>
<xsl:text> is used in these components:</xsl:text>

Using the XML ID, IDREF, and IDREFS Datatypes | 191

</p>

<xsl:for-each select="/parts-1ist/component
[partref/@refid=current()/@part-id]">

<xsl:value-of select="name"/>

</1li>
</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

Here’s how we create the link points:

This generates the HTML markup for the first <component>
in the document. Whenever we need to create a link to that component, the markup
is pretty straightforward:

<xsl:value-of select="name"/>

This generates the HTML markup Turnip Twaddler for
any reference to the Turnip Twaddler. If your document uses ID, IDREF, and IDREFS
attributes, creating links with this technique is easy.

Figure 6-1 shows how the HTML document looks.

Limitations of IDs

To this point, we’ve been able to generate cross-references easily. There are some lim-
itations of the ID datatype and the id() function, though:

* If you want to use the ID datatype, you have to declare the attributes that use that
datatype in your DTD or schema. Unfortunately, if your DTD is defined externally
to your XML document, the XML parser isn’t required to read it. If the DTD isn’t
read, then the parser has no idea that a given attribute is of type ID. Similarly, if
you’re using a schema, you have to make sure your XSLT processor validates your
XML document against the schema to ensure that the ID, IDREF, and IDREFS data-
types are used correctly.

* You must define the ID, IDREF, and IDREFS relationship in the XML document. It
would be nice to have the XML document define the data only, with the relation-
ships between parts of the document defined externally (say, in a stylesheet). That
way, if you need to define a new relationship between parts of the document, you
could do it by creating a new stylesheet, and you wouldn’t have to modify your

192 | Chapter6: Creating Links and Cross-References

|| Our Catalog |

Our Catalog

Here's a look at evenything in our catalog:
Components

Turnip Twaddler

If youve qot turnips to twaddle, this is the tool for youl Comes with a Feather Duster.
Turnip Twaddler uses these parts:

+ Paring Knife

+ Spanner

+ Feather Duster
+ Grommet

Prawn Goader
Unruly prawns? YWith this handy tool, you'll have the most well-behaved seafood in town.

Frawn Goader uses these parts:

+ Paring Knife
s hdncilana

Figure 6-1. HTML file with generated hyperlinks

XML document. It becomes unwieldy quickly if you have to change the XML
document structure every time you need to define a new relationship between parts
of the document.

* An element can have at most one attribute of type ID. If you’d like to refer to the
same element in more than one way, you can’t use the id() function.

* Any given ID value can be found on one element at most. If you’d like to refer to
more than one element with a single value, you can’t use the id() function for that,
either.

* Only one set of IDs exists for the entire document. In other words, if you declare
the attributes component-id and part-id to be of type ID, the value of a
component-id must be unique across all the attributes of type ID. It is illegal in this
case for a component-id to be the same as a part-id, even though those attributes
might belong to different elements.

* Ifyou’re usinga DTD, an ID can only be an attribute of an XML element. The only
way you can use the id() function to refer to another element is through its

Using the XML ID, IDREF, and IDREFS Datatypes | 193

attribute of type ID. If you want to find another element based on an attribute that
isn’t an ID, or based on the element’s content or the element’s children, and so on,
the id() function is of no use whatsoever.

e If you're using an XML schema, you can define an element with a datatype of
xs:ID. This means you can use the id() function to find an element. This is an
improvement on the situation, but it does require a schema-aware XSLT parser.

* The value of an ID must be an XML name. In other words, it can’t contain spaces,
it can’t start with a number, and it’s subject to the other restrictions of XML names.
(Section 2.3 of the XML Recommendation defines these restrictions; see http://
www.w3.0rg/TR/REC-xml if you’d like more information.)

To get around all of these limitations, XSLT defines the <xsl:key> element and the
key() function. We’ll discuss them now.

XSLT's Key Facility

Now that we’ve covered the id() function in great detail, we’ll move on to XSLT’s
key() function and the <xsl:key> element. Each <xsl:key> element effectively creates
an index of the document. You can then use that index to find all elements that have
a particular property. Once the key is created, we can use the key() function to retrieve
parts of the document.

For example, if you have a database of (U.S. postal) addresses, you might want to index
that database by the people’s last names, by the states in which they live, by their zip
codes, etc. Each index takes a certain amount of time to build, but it saves processing
time later. (Be aware that it can take a significant amount of memory to create a key,
particularly for very large documents.) If you want to find all the people who live in the
state of Idaho, you can use the index to find all those people directly; you don’t have
to search the entire database.

We'll discuss the details of how the key facility works, and then we’ll compare it to the
id(') function.

Defining a Key with <xsl:key>
You define a key() function with the <xs1:key> element:

<xsl:key name="supplier-by-country" match="supplier" use="@country"/>
<xsl:key name="part-by-supplier" match="part" use="@supplier"/>

The key has three attributes:

name
This attribute is used to refer to this particular key. When you want to find parts
of your XML document, use the name to indicate the key you want to use.

194 | Chapter6: Creating Links and Cross-References

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

match
Containing an XPath expression, this attribute specifies what part of the document
you want to index. In our sample here, we’ve created two keys: one for retrieving
<supplier>s and one for retrieving <part»s.

use
Containing another XPath expression, this attribute is interpreted in the context
of the match attribute. In other words, the first <xsl:key> element here, named
supplier-by-country, creates an index of all the <supplier> elements, and uses the
country attribute to retrieve them. The second <xs1:key> element, named part-by-
supplier, creates an index of all the <part> elements and uses the supplier attribute
to find them.

[2.0] XSLT 2.0 adds a fourth attribute, collation. This allows us to specify a set of rules
for how values are compared. To cite a frequent example from the specs, the German
word for street can be spelled Strasse or StrafSe. Using a German collation for the key
function causes those to words to be the same, despite the fact that they are clearly
different strings.

The XSLT 1.0 specification specifically states that the match and use
attributes can’t contain variables.

Generating Links with the key() Function

In the modified parts list document we looked at a moment ago, we added a
<supplier> to each <part>. We also added a country attribute to the <supplier> element.
If you look at the document structure as defined in the embedded DTD (or the external
schema), you’ll notice that the vendor-id and country attributes of the <supplier> ele-
ment don’t have a datatype of ID, and that the supplier attribute of the <part> element
is not an IDREF.

We want to retrieve all the parts that are provided by a particular country. If we defined
the country attribute to be of type ID, we could only have one supplier from each coun-
try. Clearly that’s an unacceptable limitation on our document.

Now that we’ve created a more flexible XML document, we’ll use the key() function
to process our document. We'll use two keys here. The first retrieves all of the
<supplier> elements that match a given country name. The second retrieves all of the
<part> elements whose supplier attribute matches a given supplier’s ID. Here’s
the stylesheet:

<?xml version="1.0"?>

<I-- key.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

XSLT’s Key Facility | 195

<xsl:output method="html"/>
<xsl:param name="country-name"/>

<xs1:key name="supplier-by-country" match="supplier" use="@country"/>
<xsl:key name="part-by-supplier" match="part" use="@supplier"/>

<xsl:template match="/">
<html>
<head>
<title>
<xsl:text>Parts from </xsl:text>
<xsl:value-of select="$country-name"/>
</title>
</head>
<body style="font-family: sans-serif;">
<h1>
<xsl:text>Parts from </xsl:text>
<xsl:value-of select="$country-name"/>
</h1>
<xsl:choose>
<xsl:when test="key('supplier-by-country', $country-name)">
<xsl:apply-templates select="key('supplier-by-country', $country-name)"/>
</xs1:when>

<xsl:otherwise>
<p>Sorry, we don't get any parts from that country!</p>
</xsl:otherwise>
</xsl:choose>
</body>
</html>
</xsl:template>

<xsl:template match="supplier">
<h2>
<xsl:value-of select="name"/>
</h2>
<p>
<xsl:value-of select="name"/>
<xsl:text> supplies these parts:</xsl:text>

</p>

<xsl:for-each select="key('part-by-supplier', @vendor-id)">
<1i>

<xsl:value-of select="name"/>

<xsl:text>: </xsl:text>
<xsl:apply-templates select="description"/>
</1i>
</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

196 | Chapter6: Creating Links and Cross-References

Our stylesheet takes an external parameter named country-name (defined at the top of
the stylesheet) and returns all of the parts supplied by companies based in that country.
The first time we use the key() function, we see whether there are any values that match
the external parameter:
<xsl:when test="key('country-index', $country-name)">
<xsl:for-each select="key('country-index', $country-name)">
<xsl:apply-templates select="."/>

</xsl:for-each>
</xsl:when>

The key country-index returns all of the <supplier> elements that match the given
$country-name. Assuming there’s at least one, we process it (if there’s not at least one,
the expression evaluates to false). Processing the <supplier> element uses the other
key:

<xsl:for-each select="key('part-index', @vendor-id)">

This returns all of the <part> elements whose supplier attribute matches the
vendor-id attribute of the current <supplier>.

Notice that the attribute we’re using to retrieve matching nodes can contain spaces. If
country were of datatype ID, it could not have the value "Great Britain". This is one
of the advantages of keys. A country-name of "Great Britain" gives us the HTML docu-
ment shown in Figure 6-2.

Advantages of the key() Function

Now that we’ve taken the key() function through its paces, you can see that it has
several advantages:

* Thekey() function is defined in a stylesheet. That means I can define any number
of relationships between parts of an XML document at any time. If I need to define
a new relationship tomorrow, I don’t have to change my XML documents.

* Any number of key() functions can be defined for a given element. In our parts
list example, we could define key() functions for the values of the vendor-id,
part-id, and component-id attributes. We could also create key() functions based
on the text of various elements or their children. If we used IDs instead of the
key() function, we would be limited to a single index based on the value of the
single attribute of the ID datatype.

To sum up the advantages for this point, an element can have more than one
key() defined against it, and that key doesn’t have to be based on an attribute. The
key can be based on the element’s text, the text of child elements, or other
constructs.

* Any number of elements can match a given value. Taking another look at our

example, when we use the key() function to find all the parts from a particular
country, the key() function returns a node-set that can have any number of nodes.

XSLT’s Key Facility | 197

|| Parts from Great Britain |

Parts from Great Britain

Acme Products, Inc.

Acme Products, Inc. supplies these parts:

+ Pitter: Removes pits from olives and cherries in no time at all.
+ Feather Duster: Dust be gonel (Mote: This partis not hypoallergenic.)
+ Mucilage: It's an adhesive, a salad dressing, and so much maore!

Unlimited Spanners Ltd.

Unlimited Spanners Ltd. supplies these parts:

+ Spanner: You can't fix anything without ane.
+ Paring Knife: Every home should have one.
+ Ribbon Curler: Endless hours of fun, even if you're not wrapping a qift.

Figure 6-2. All the parts from our suppliers in Great Britain

If we use an ID instead, legally there can be only one element that matches a given
country.

* The value we use to look up elements in the key function isn’t constrained to be
an XML name. If we use the ID datatype, its value can’t contain spaces, among
other constraints.

Normally you’ll use the two-argument version of the key() function. We pass the name
of the key and the value we’re looking for, and the matching items are returned. There’s
also a three-argument version of the function that lets you limit values returned by the
function to a particular set of nodes. See the description of the key() function in
Appendix C for more information.

Generating Links in Unstructured Documents

Before we leave the topic of linking, we’ll discuss one more useful technique. So far, all
of this chapter’s examples have been structured nicely. When there was a relationship
between two pieces of information, we had an ID and IDREF pair to match them. What
happens if the XML document you’re transforming isn’t written that way? Fortunately,
we can use the key() function and the generate-id() function to create structure where
there isn’t any.

198 | Chapter6: Creating Links and Cross-References

An Unstructured XML Document in Need of Links

For our example here, we’ll take out all of the id and refid attributes that have served
us well so far. This is a contrived example, but it demonstrates how we can use the
key() and generate-id() functions to generate links between parts of our document.

In our new sample document, we’ve stripped out the references that tied things together
so neatly before:

<?xml version="1.0"?>
<!-- parts-list4.xml -->
<parts-list>
<component>
<name>Turnip Twaddler</name>
<partref>Paring Knife</partref>
<partref>Spanner</partref>
<partref>Feather Duster</partref>
<partref>Grommet</partref>
<description>
If you've got turnips to twaddle, this is the tool for you!
Comes with a <partref>Feather Duster</partref>.
</description>
</component>

<part>
<name>Pitter</name>
<description>
Removes pits from olives and cherries in no time at all.
</description>
</part>
<part>
<name>Patter</name>
<description>
We're not sure what these things do, but people seem
to like 'em.
</description>
</part>

</parts-list>

We've removed all of the IDs and IDREFs in the document. For elements such as
<partref> that formerly used attributes to link parts of the document together, we
simply use the text of the item we’re referring to. To generate the cross-references we
created before, we’ll need to do three things:

1. Define two keys for all parts and components. One key lets us get the <part> that
matches a given name, and the other lets us find a <component> with a <partref>
child whose text matches a given name.

2. Generate a new ID for each <component> and <part> we find.

Generating Links in Unstructured Documents | 199

3. For each <component>, use one key to retrieve the <part> nodes that match a par-
ticular name. For each <part>, we use the other key to retrieve the <component>
nodes that refer to the current part. We’ll use generate-id() to create the IDs for us.

We'll go through the relevant parts of the stylesheet. First, we define the two keys we’ll
use:

<xsl:key name="parts-index" match="part/name" use="."/>
<xsl:key name="component-index" match="component" use="partref"/>

The first key returns the <name> element that matches a given part name. Notice that
the match attribute means we’re getting the <name> element; if we want the <part> ele-
ment itself, we would have to use the parent axis on the node returned by the key()
function. (We don’t need to access the <part> element in our stylesheet; that’s why we
set up the key this way.)

The second key returns the <component> element that has a <partref> that matches a
given part name. What we get from the key() function is the <component>, the parent
of both the <partref> element that contains the part name we’re looking for and the
<name> element that we’ll want to insert into our HTML document.

The next step is to create an ID for each <component> and <part>:

<xsl:template match="component">

</xsl:template>

<xsl:template match="part">

</xsl:template>

In both cases, we’re generating an ID based on the text of the <name> child of the given
element. We’re using the names of parts and components throughout our stylesheet,
so basing the IDs on the <name> elements makes things simpler.

Now we need to process all of the <partref>s under a given <component>. Here’s how
that works:

<xsl:for-each select="partref">
<1i>

<xsl:value-of select="."/>

</1i>
</xsl:for-each>

We generate the href attribute of the link by generating an ID of the first match from
the key() function. The parts-index key returns the <name> element that matches a
string; that string in this case is the text value of the current element.

200 | Chapter6: Creating Links and Cross-References

Notice that we used the predicate expression [1] to specify the first
element from the node-set or sequence. This is good practice for XSLT
Ust 1.0, because it makes it clear exactly which node we want. However,
" this is crucial for XSLT 2.0, because it is a fatal error to pass a sequence
with more than one node to the key() function in an XSLT 2.0
stylesheet.

The final task is to create the links from each <part> to all of the <component>s that use
it. Here’s how that code looks:

<xsl:for-each select="key('component-index"', name)">

<xsl:value-of select="name"/>

</1i>
</xsl:for-each>

Remember, the component-index key returns the <component> element. The
<component> is the parent of both the <partref> elements and the <name> element. The
search term we pass to the key is the name of the current part. When we get
the <component> back from the key, we use its <name> child to generate an ID and to
write the name of the component.

Here’s the complete stylesheet:

<?xml version="1.0"?>

<!-- generate-id.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:key name="parts-index" match="part/name" use="."/>
<xsl:key name="component-index" match="component" use="partref"/>

<xsl:template match="/">
<html>
<head>
<title>Our Catalog</title>
</head>
<body style="font-family: sans-serif;">
<h1>0ur Catalog</h1>
<p>Here's a look at everything in our catalog:</p>
<h2 style="background: #66FF66;">Components</h2>
<xsl:apply-templates select="/parts-list/component"/>
<h2 style="background: #6666FF;">Parts</h2>
<xsl:apply-templates select="/parts-list/part"/>
</body>
</html>
</xsl:template>

Generating Links in Unstructured Documents | 201

<xsl:template match="component">

<h3>

<xsl:value-of select="name"/>
</h3>
<p>

<xsl:apply-templates select="description"/>
</p>
<p>

<xsl:value-of select="name"/>

<xsl:text> uses these parts:</xsl:text>
</p>

<xsl:for-each select="partref">

<1li>

<xsl:value-of select="."/>

</1li>

</xsl:for-each>

</xsl:template>

<xsl:template match="description">
<xsl:apply-templates select="*|text()"/>
</xsl:template>

<xsl:template match="component/description/partref">

<xsl:value-of select="."/>

</xsl:template>

<xsl:template match="part">

<h3>
<xsl:value-of select="name"/>
</h3>
<p>
<xsl:apply-templates select="description"/>
</p>
<p>
<xsl:value-of select="name"/>
<xsl:text> is used in these components:</xsl:text>

</p>

<xsl:for-each select="key('component-index"', name)">

<xsl:value-of select="name"/>

</1i>
</xsl:for-each>

202 | Chapter6: Creating Links and Cross-References

</xsl:template>

</xsl:stylesheet>

Looking at the HTML output in a browser, the document looks exactly the same as
our earlier stylesheet. The HTML source code is slightly different, of course:

<h3>Prawn Goader</h3>
<p>
Unruly prawns? With this handy tool, you'll have the most
well-behaved seafood in town.
</p>
<p>Prawn Goader uses these parts:</p>

Paring Knife</1i>
Mucilage</1i>
Ribbon Curler</1i>

All of the names of the anchor points were generated by the XSLT processor. Using a
different XSLT processor will probably generate different values for these IDs, but
they’ll still work. It’s even possible that rerunning a document and stylesheet through
the same processor will generate different values. (We’ll cover all the details of the
generate-id() function in the next section.)

Using the key() and generate-id() functions, we’ve been able to create IDs and ref-
erences automatically. This approach isn’t perfect; we have to make sure the text of the
<partref> element matches the text of the part’s <name> exactly. Despite that,
generate-id() can help you add some structure to your documents.

The generate-id() Function

Before we leave the topic of linking, we’ll go over the details of the generate-id()
function. This function takes a node-set as its argument, and it works as follows:

* For a given transformation, every time generate-id() is invoked against a given
node, it returns the same ID. The ID doesn’t change while you’re doing a given
transformation. If you run the transformation again tomorrow, there’s no guaran-
tee that generate-id() will generate the same ID that it generated today. As long
as the XSLT processor is running, however, generate-id() returns the same ID for
the same node every time.

* If you invoke generate-id() against two different nodes, the two generated IDs
will be different.

* [1.0] Given a node-set, generate-id() returns an ID for the node in the node-set
that occurs first in document order.
[2.0] Tt is a fatal error in XSLT 2.0 to pass a sequence of more than one item to
generate-id().

Generating Links in Unstructured Documents | 203

* If the node-set you pass to the function is empty (you invoke generate-
id(fleeber), and there are no <fleeber> elements in the current context),
generate-id() returns an empty string.

* If no node-set is passed in (you invoke generate-id()), the function generates an
ID for the context node.

W N

The generate-id() function is not required to check whether an ID it
generates duplicates an ID that’s already in the document. In other
Qi words, if your document has an attribute of type ID with a value of
sdk3829a, there’s a possibility that an ID returned by generate-id() will
also be sdk3829a. It’s not likely, but be aware that it could happen.

Summary

In this chapter, we’ve examined several ways to generate links and cross-references
between different parts of a document. If your XML document has a reasonable amount
of structure, you can use the id() and key() functions to define many different rela-
tionships between the parts of a document. Even if your XML document isn’t struc-
tured, you may be able to use key() and generate-id() to create simple references. In
the next chapter, we’ll look at sorting and grouping—two more ways to organize the
information in our XML documents.

204 | Chapter6: Creating Links and Cross-References

CHAPTER 7
Sorting and Grouping Elements

By now, I hope you’re convinced that you can use XSLT to convert big piles of XML
datainto other useful things. Our examples to this point have pretty much gone through
the XML source in what’s referred to as document order. We’d like to go through our
XML documents in a couple of other common ways, though:

* We could sort some or all of the XML elements, then generate output based on the
sorted elements.

* We could group the data, selecting all elements that have some property in com-
mon, then sorting the groups of elements.

We'll give several examples of these operations in this chapter.

Sorting Data with <xsl:sort>

The simplest way to rearrange our XML elements is to use the <xs1:sort> element. This
element temporarily rearranges a collection of elements based on criteria we define in
our stylesheet.

Our First Example

For our first example, we’ll have a set of U.S. postal addresses that we want to sort.
(No chauvinism is intended here; obviously every country has different conventions
for mailing addresses. We just needed a short sample document that can be sorted in
many useful ways.) Here’s our original document:

<?xml version="1.0"?>
<!-- names.xml -->
<addressbook>
<address>
<name>
<title>Mr.</title>
<first-name>Chester Hasbrouck</first-name>
<last-name>Frisby</last-name>
</name>

205

<street>1234 Main Street</street>
<city>Sheboygan</city>
<state>WI</state>
<zip>48392</zip>
</address>
<address>
<name>
<first-name>Mary</first-name>
<last-name>Backstayge</last-name>
</name>
<street>283 First Avenue</street>
<city>Skunk Haven</city>
<state>MA</state>
<zip>02718</zip>
</address>
<address>
<name>
<title>Ms.</title>
<first-name>Natalie</first-name>
<last-name>Attired</last-name>
</name>
<street>707 Breitling Way</street>
<city>Winter Harbor</city>
<state>ME</state>
<zip>00218</zip>
</address>
<address>
<name>
<first-name>Harry</first-name>
<last-name>Backstayge</last-name>
</name>
<street>283 First Avenue</street>
<city>Skunk Haven</city>
<state>MA</state>
<zip>02718</zip>
</address>
<address>
<name>
<first-name>Mary</first-name>
<last-name>McGoon</last-name>
</name>
<street>103 Bryant Street</street>
<city>Boylston</city>
<state>VA</state>
<zip>27318</zip>
</address>
<address>
<name>
<title>Ms.</title>
<first-name>Amanda</first-name>
<last-name>Reckonwith</last-name>
</name>
<street>930-A Chestnut Street</street>
<city>Lynn</city>
<state>MA</state>

206 | Chapter7: Sorting and Grouping Elements

<zip>02930</zip>
</address>
</addressbook>

We’d like to generate a list of these addresses, sorted by <last-name>. We’ll use the
magical <xsl:sort> element to do the work. Our stylesheet looks like this:

<?xml version="1.0"?>

<!-- namesorteri.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:for-each select="addressbook/address">

<xsl:
<xsl:

sort select="name/last-name"/>
if test="name/title">

<xsl:value-of select="name/title"/>
<xsl:text> </xsl:text>
</xsl:if>

<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
<xsl:
stext>, </xsl:text>
<xsl:
<xsl:
:value-of select="zip"/>
<xsl:
<xsl:

<xsl

<xsl

value-of select="name/first-name"/>
text> </xsl:text>

value-of select="name/last-name"/>
text>
</xsl:text>

value-of select="street"/>
text>
</xsl:text>

value-of select="city"/>

value-of select="state"/>
text> </xsl:text>

text>8#xA;</xsl:text>
text>8#xA;</xsl:text>

</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

The heart of

our stylesheet is the <xsl:for-each> and <xsl:sort> elements. The

<xsl:for-each> element selects the items with which we’ll work, and the <xsl:sort>
element rearranges them before we write them out. (Notice that we use <xsl:if> to
determine whether a given customer has a courtesy title.)

Notice that we’re using <xs1:output method="text"/> to generate a text file. (Feel free
to generate an HTML file or something more complicated if you want.) Here are the
results we get from our first attempt at sorting:

Ms. Natalie Attired
707 Breitling Way
Winter Harbor, ME 00218

Mary Backstayge
283 First Avenue
Skunk Haven, MA 02718

Sorting Data with <xsl:sort> | 207

Harry Backstayge
283 First Avenue
Skunk Haven, MA 02718

Mr. Chester Hasbrouck Frisby
1234 Main Street
Sheboygan, WI 48392

Mary McGoon
103 Bryant Street
Boylston, VA 27318

Ms. Amanda Reckonwith
930-A Chestnut Street
Lynn, MA 02930

As you can see from the output, the addresses in our original document were sorted by
last name. All we had to do was add <xsl:sort> to our stylesheet, and all the elements
were magically reordered. If you aren’t convinced that XSLT can increase your pro-
grammer productivity, try writing the Java code and DOM method calls to do the same
thing.

We can improve on our stylesheet by sorting addresses by <first-name> within
<last-name>. In our last example, Mary Backstayge should appear after Harry Back-
stayge. Here’s how we can modify our stylesheet to use more than one sort key:

<?xml version="1.0"?>
<!-- namesorter2.xsl -->

<xsl:template match="/">
<xsl:for-each select="addressbook/address">
<xsl:sort select="name/last-name"/>
<xsl:sort select="name/first-name"/>

We've simply added a second <xsl:sort> element to our stylesheet. This element does
what we want; it sorts the <address> elements by <first-name> within <last-name>.

Now our output is better:

Ms. Natalie Attired
707 Breitling Way
Winter Harbor, ME 00218

Harry Backstayge
283 First Avenue
Skunk Haven, MA 02718

Mary Backstayge
283 First Avenue
Skunk Haven, MA 02718

Mr. Chester Hasbrouck Frisby
1234 Main Street

208 | Chapter7: Sorting and Grouping Elements

Sheboygan, WI 48392

Mary McGoon
103 Bryant Street
Boylston, VA 27318

Ms. Amanda Reckonwith
930-A Chestnut Street
Lynn, MA 02930

The Details on the <xsl:sort> Element

Now that we’ve seen a couple of examples of how <xsl:sort> works, we’ll go over its
syntax, its attributes, and where you can use it.

What's the deal with that syntax?

I’'m so glad you asked that question. One thing the XSLT working group could have
done is something like this:

<xsl:for-each select="addressbook/address" sort-key-1="name/last-name"
sort-key-2="name/first-name"/>

The problem with this approach is that no matter how many sort-key-x attributes you
define, out of sheer perverseness, someone will cry out that they really need the
sort-key-8293 attribute. To avoid this messy issue, the XSLT designers decided to let
you specify the sort keys by using a number of <xsl:sort> elements. The first is the
primary sort key, the second is the secondary sort key, the 8293rd one is the eight-
thousand-two-hundred-and-ninety-third sort key, etc.

Well, that’s why the syntax looks the way it does, but how does it actually work? When
[first saw this syntax:
<xsl:for-each select="addressbook/address">

<xsl:sort select="name/last-name"/>
<xsl:sort select="name/first-name"/>

</xsl:for-each>

I thought it meant that all the nodes were sorted during each iteration through the
<xsl:for-each> element. That seemed incredibly inefficient; if you've sorted all
the nodes, why re-sort them each time through the <xsl:for-each> element? Actually,
the XSLT processor handles all <xsl:sort> elements before it does anything, then it
processes the <xsl:for-each> element as if the <xsl:sort> elements weren’t there.

It’s less efficient, but if it makes you feel better about the syntax, you could write the
stylesheet like this:

<xsl:template match="/">
<xsl:for-each select="addressbook/address">
<xsl:sort select="name/last-name"/>
<xsl:sort select="name/first-name"/>

Sorting Data with <xsl:sort> | 209

<xsl:for-each select="."> <!-- This is slower, but it works -->
<xsl:apply-templates/>
</xsl:for-each>
</xsl:for-each>
</xsl:template>

(Don’t actually do this. I'm only trying to make a point.) This stylesheet generates the
same results as our earlier one.

Another approach is to use the <xsl:sort> element within <xsl:apply-templates>.
Here’s a stylesheet that does that:

<?xml version="1.0"?>

<!-- namesorter3.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:apply-templates select="addressbook/address">
<xsl:sort select="name/last-name"/>
<xsl:sort select="name/first-name"/>
</xsl:apply-templates>
</xsl:template>

<xsl:template match="address">
<xsl:if test="name/title">
<xsl:value-of select="name/title"/>
<xsl:text> </xsl:text>
</xsl:if>
<xsl:value-of select="name/first-name"/>
<xsl:text> </xsl:text>
<xsl:value-of select="name/last-name"/>
<xsl:text>
</xsl:text>
<xsl:value-of select="street"/>
<xsl:text>
</xsl:text>
<xsl:value-of select="city"/>
<xsl:text>, </xsl:text>
<xsl:value-of select="state"/>
<xsl:text> </xsl:text>
<xsl:value-of select="zip"/>
<xsl:text>
</xsl:text>
<xsl:text>8
</xsl:text>
</xsl:template>

</xsl:stylesheet>

Using <xsl:sort> inside <xsl:apply-templates> generates the same results as our pre-
vious stylesheet.

210 | Chapter7: Sorting and Grouping Elements

Attributes

The <xsl:sort> element has several attributes; we’ll discuss the most useful ones here.
The discussion of the <xs1l:sort> element in Appendix A has complete details on all of
the attributes.

select
The select attribute defines the characteristic we’ll use for sorting. Its contents is
an XPath expression, so you can select elements, text, attributes, comments, an-
cestors, etc. As always, the XPath expression defined in select is evaluated in terms
of the element that contains it. In other words, in this example:
<xsl:template match="/">
<xsl:apply-templates select="addressbook/address">
<xsl:sort select="name/last-name"/>
<xsl:sort select="name/first-name"/>

</xsl:apply-templates>
</xsl:template>

In this example, the select attributes of the <xsl:sort> elements are interpreted
from the addressbook/address expression. That means select="name/last-name"
refers to a <last-name> element inside a <name> inside an <address> element that’s
inside an <addressbook> element.

data-type
The data-type attribute can have three values:

* data-type="text"
* data-type="number"

* A data-type="QName" that identifies a particular datatype. How a given datatype
is supported (or if it’s supported at all) is implementation-defined.

The XSLT specification defines the behavior for data-type="text" and data-
type="number". Consider this XML document:

<?xml version="1.0"?>
<!-- numberlist.xml -->
<numberlist>
<number>127</number>
<number>23</number>
<number>10</number>
</numberlist>

We'll sort these values using the default datatype of text (we could specify data-
type="text" to get the same results):

<?xml version="1.0"?>

<!-- sort-datatype-text.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

Sorting Data with <xsl:sort> | 211

<xsl:template match="/">
<xsl:for-each select="numberlist/number">
<xsl:sort select="."/>
<xsl:value-of select="."/>
<xsl:text>&ixA;</xsl:text>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

When we treat the values of these elements as text, here are the results:

10
127
23

We get this result because a text-based sort puts anything that starts with a “1”
before anything that starts with a “2.” If we change the <xsl:sort> element to be
<xsl:sort select="." data-type="number"/>:

<?xml version="1.0"?>
<!-- sort-datatype-numberi.xsl -->

<xsl:template match="/">
<xsl:for-each select="numberlist/number">
<xsl:sort select="." data-type="number"/>

we get these results:

10
27
123

(See sort-datatype-number1.xsl for the complete stylesheet.)

If you use something else here (data-type="floating-point", for example), what
the XSLT processor does is anybody’s guess. The XSLT specification allows for
other values here, but it’s up to the XSLT processor to decide how (or if) it wants
to process those values. Check your processor’s documentation to see whether it
does anything relevant or useful for values other than data-type="text" or data-
type="number".

A final note: if you’re using data-type="number", and any of the values aren’t num-
bers, those nonnumeric values will sort before the numeric values. That means that
if you’re using order="ascending", the nonnumeric values appear first; if you use
order="descending", the nonnumeric values appear last.

<?xml version="1.0"?>

<!-- badnumberlist.xml -->

<numberlist>
<number>127</number>
<number>23</number>
<number>zzz</number>
<number>10</number>

212 | Chapter7: Sorting and Grouping Elements

<number>yyy</number>
</numberlist>

Given this less-than-perfect data, here are the correctly sorted results:

Y4

yyy
10

23
127

Notice that the nonnumeric values were not sorted; they simply appear in the
output document in the order in which they were encountered.

[2.0] The data-type attribute is deprecated in XSLT 2.0. The preferred way of sort-
ing typed data in XSLT 2.0 is to specify the datatype in the select attribute of the
<xsl:sort> element itself. =~ For example, specifying <xsl:sort
select="xs:integer(.)"/> forces all of the items that we’re sorting to be cast as
integers:

<?xml version="1.0"?>

<!-- sort-datatype-number2.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:for-each select="numberlist/number">
<xsl:sort select="xs:integer(.)"/>
<xsl:value-of select="."/>
<xsl:text>8#xA;</xsl:text>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

Be aware that using this XSLT 2.0 stylesheet with badnumberlist.xml causes a run-
time error. Calling xs:integer('zzz') doesn’t work.

order

You can order the sort as order="ascending" or order="descending". The default is
order="ascending".

case-order

This attribute can have two values. case-order="upper-first" means that upper-
case letters sort before lowercase letters, and case-order="lower-first" means that
lowercase letters sort first. The case-order attribute is used only when the
data-type attribute is text. The default value depends on the value of the soon-to-
be-discussed lang attribute.

lang

This attribute defines the language of the sort keys. The valid values for this
attribute are the same as those for the xml:1ang attribute defined in Section 2.12 of

Sorting Data with <xsl:sort> | 213

the XML 1.0 specification. The language codes are those commonly used in Java
programming, Unix locales, and other places where ISO language and country
namings are defined. For example, lang="en" means “English,” lang="en-us"
means “U.S. English,” and lang="en-GB" means “U.K. English.” Without the
lang attribute (it’s rarely used in practice), the XSLT processor determines the de-
fault language from the system environment.

Where can you use <xsl:sort>?

The <xsl:sort> element can appear inside the <xsl:apply-templates> and <xsl:for-
each> elements.

[2.0] In XSLT 2.0, you can also use <xsl:sort> inside the new <xsl:for-each-group>
and <xsl:perform-sort> elements; more on those later in this chapter.

If you use one or more <xs1:sort> elements, they must appear first. If you try something
like this, you’ll get an exception from the XSLT processor:

<xsl:for-each select="addressbook/address">
<xsl:sort select="name/last-name"/>
<xsl:value-of select="name/title"/>
<xsl:sort select="name/first-name"/> <!-- NOT LEGAL! -->

Another Example

We’ve pretty much covered the <xs1l:sort> element at this point. To add another wrin-
kle to our example, we’ll change the stylesheet so the xsl:sort element acts upon a
subset of the addresses, and then sorts that subset. We’ll sort only the addresses from
states that start with the letter M. As you’d expect, we’ll do this magic with an XPath
expression that limits the elements to be sorted:

<?xml version="1.0"?>

<!-- namesorter4.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text" indent="no"/>

<xsl:template match="/">
<xsl:for-each select="addressbook/address[starts-with(state, 'M')]">
<xsl:sort select="name/last-name"/>
<xsl:sort select="name/first-name"/>
<xsl:if test="name/title">
<xsl:value-of select="name/title"/>
<xsl:text> </xsl:text>
</xsl:if>
<xsl:value-of select="name/first-name"/>
<xsl:text> </xsl:text>
<xsl:value-of select="name/last-name"/>
<xsl:text>&ixA;</xsl:text>
<xsl:value-of select="street"/>

214 | Chapter7: Sorting and Grouping Elements

<xsl:text>&ixA;</xsl:text>
<xsl:value-of select="city"/>
<xsl:text>, </xsl:text>
<xsl:value-of select="state"/>
<xsl:text> </xsl:text>
<xsl:value-of select="zip"/>
<xsl:text>&ixA;</xsl:text>
<xsl:text>&ixA;</xsl:text>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

Here are the results—only those addresses from states beginning with the letter M, sor-
ted by first name within last name:
Ms. Natalie Attired

707 Breitling Way
Winter Harbor, ME 00218

Harry Backstayge
283 First Avenue
Skunk Haven, MA 02718

Mary Backstayge
283 First Avenue
Skunk Haven, MA 02718

Ms. Amanda Reckonwith
930-A Chestnut Street
Lynn, MA 02930

Notice that in the xs1:for-each element, we used a predicate in our XPath expression
so that only addresses containing <state> elements whose contents begin with M are
selected. This example starts us on the path to grouping nodes.

We could do some other things here:

* We could generate output that prints all the unique zip codes, along with the
number of addresses that have those zip codes.

* For each unique zip code (or state, or last name, etc.) we could sort on a field and
list all addresses with that zip code.

We’ll discuss these topics in just a moment. Before we move on to the topic of grouping,
we’ll go over the new <xsl:perform-sort> element.

[2.0] The <xsl:perform-sort> Element

As we discussed in Chapter 3, XSLT 2.0 introduces the concept of a sequence, which
isa group of nodes or atomic values. That sequence is typically created during stylesheet
processing, usually as a variable. You can use the <xs1:perform-sort> element to sort
a sequence. Everything we’ve discussed about sorting applies to <xsl:perform-sort>;
we’ll look at some examples here.

[2.0] The <xsl:perform-sort> Element | 215

There are two ways to use <xsl:perform-sort>: you can give it an existing sequence and
use <xsl:perform-sort> to sort that sequence, or you can use <xsl:perform-sort> to
both create the sequence and sort it. For our first example, we’ll create a sequence of
all the <city> elements and use <xs1:perform-sort> to sort it:

<?xml version="1.0"?>

<!-- perform-sorti.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:variable name="sortedCities" as="xs:string*">
<xsl:perform-sort select="addressbook/address/city">
<xsl:sort select="."/>
</xsl:perform-sort>
</xsl:variable>
<xsl:text>Our customers live in these cities:
8
</xsl:text>
<xsl:value-of select="$sortedCities" separator="8
"/>
</xsl:template>

</xsl:stylesheet>

The select attribute of <xsl:perform-sort> defines the sequence to be sorted. When
we use this stylesheet against our address book, here are the results:

Our customers live in these cities:

Boylston

Lynn
Sheboygan
Skunk Haven
Skunk Haven
Winter Harbor

We can also use the new <xsl:sequence> element to create the sequence inside
<xsl:perform-sort>:

<?xml version="1.0"?>

<!-- perform-sort2.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:variable name="sortedCities" as="xs:string*">
<xsl:perform-sort>
<xsl:sort select="."/>
<xsl:sequence select="addressbook/address/city"/>
</xsl:perform-sort>
</xsl:variable>

216 | Chapter7: Sorting and Grouping Elements

<xsl:text>Our customers live in these cities:
8&#HxA;</xsl:text>
<xsl:value-of select="¢sortedCities" separator="
"/>

</xsl:template>

</xsl:stylesheet>

<?xml version="1.0"?>

<!-- perform-sort3.xsl -->
<xsl:stylesheet version="2.0"

xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:variable name="sortedCities" as="xs:string*">

<xsl:perform-sort>
<xsl:sort select=

non

/>

There’s not much point in doing things this way, but this stylesheet produces the same
results. Putting the XPath expression on the <xsl:perform-sort> is much simpler. The
contents of an <xsl:perform-sort> element must start with one or more <xsl:sort>
elements. In our second example, we’re not using the select attribute, so we use an
<xsl:sequence> element to select some data to sort. <xsl:perform-sort> creates the
entire sequence, and then it uses the <xsl:sort> elements inside it to sort the sequence.

If we want to make our customer database look more international, we can add more
<xsl:sequence> elements to select more data:

<xsl:apply-templates select="addressbook/address/city"/>
<xsl:sequence select="("London', 'Adelaide’, 'Rome')"/>
<xsl:sequence select="("'Jakarta', 'Sao Paulo', 'Timbuktu')"/>

</xsl:perform-sort>
</xsl:variable>

<xsl:text>Our customers live in these cities:
8#xA;</xsl:text>
<xsl:value-of select="¢sortedCities" separator="8
"/>

</xsl:template>

</xsl:stylesheet>

Our customers live in these cities:

Adelaide
Boylston
Jakarta
London

Lynn

Rome

Sao Paulo
Sheboygan
Skunk Haven
Skunk Haven
Timbuktu
Winter Harbor

Now we have the impressive results we were hoping for:

[2.0] The <xsl:perform-sort> Element | 217

The point of this example is that you can combine multiple sequences of values and
have <xs1:perform-sort> to sort all of the elements from all of those sequences. In this
example, the first sequence is created with <xs1:apply-templates>; this uses the built-
in stylesheet rules to return the names of the cities. The other two sequences are created
with sequences of string values. The combination of <xsl:perform-sort> and
<xsl:sort> produce a single sorted sequence of all the values.

Another important point about <xs1:perform-sort>: it always returns a sequence. If the
variable sortedCities was defined with a datatype of xs:string (instead of
xs:string*), the stylesheet would raise an error if there were no cities, or if there was
more than one city.

Finally, if we want to remove the duplicate values from the sequence, we can use the
XPath 2.0 function distinct-values():

<?xml version="1.0"?>

<!-- perform-sort4.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:variable name="sortedCities" as="xs:string*">
<xsl:perform-sort>
<xsl:sort select="."/>
<xsl:apply-templates select="addressbook/address/city"/>
<xsl:sequence select="("'London', 'Adelaide', 'Rome')"/>
<xsl:sequence select="("'Jakarta', 'Sao Paulo', 'Timbuktu')"/>
</xsl:perform-sort>
</xsl:variable>
<xsl:text>Our customers live in these cities:
8#xA;</xsl:text>
<xsl:value-of select="distinct-values($sortedCities)"
separator="8
"/>
</xsl:template>

</xsl:stylesheet>

Now our results list the lovely town of Skunk Haven once only:

Our customers live in these cities:

Adelaide
Boylston
Jakarta
London

Lynn

Rome

Sao Paulo
Sheboygan
Skunk Haven
Timbuktu
Winter Harbor

218 | Chapter7: Sorting and Grouping Elements

Notice that we call distinct-values() against the entire sequence after it’s been gen-
erated. If we called distinct-values() on each of the <xsl:sequence> elements, that
would only eliminate duplicate values in each individual sequence.

Grouping Nodes

When grouping nodes, we sort things to get them into a certain order, and then we
group all items that have the same value for the sort key (or keys). We’ll use xs1:sort
for this grouping, and then use variables or functions such as key() or generate-id()
to finish the job.

[2.0] XSLT 2.0 has new elements and functions that make grouping much easier. If
you’re using XSLT 2.0, feel free to skip ahead to the section “[2.0] New Grouping
Syntax in XSLT 2.0” later in this chapter.

Our First Attempt

For our first example, we’ll take our list of addresses and group them. We’ll look for
all unique values of the <zip> element and list the addresses that match each one. We’'ll
sort the list by zip code, then go through the list. If a given item doesn’t match the
previous zip code, we’ll print out a heading; if it does match, we’ll just print out the
address. Here’s our first attempt:

<?xml version="1.0"?>

<!-- namegrouperi.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>Addresses grouped by zip code &i#xA;</xsl:text>
<xsl:for-each select="addressbook/address">

<xsl:sort select="zip"/>

<xsl:if test="zip!=preceding-sibling::address[1]/zip">
<xsl:text>&#txA;Zip code </xsl:text>
<xsl:value-of select="zip"/>
<xsl:text> (</xsl:text>
<xsl:value-of select="city"/>
<xsl:text>, </xsl:text>
<xsl:value-of select="state"/>
<xsl:text>):
</xsl:text>

</xsl:if>

<xsl:if test="name/title">
<xsl:value-of select="name/title"/>
<xsl:text> </xsl:text>

</xsl:if>

<xsl:value-of select="name/first-name"/>

<xsl:text> </xsl:text>

<xsl:value-of select="name/last-name"/>

Grouping Nodes | 219

<xsl:text>&ixA;</xsl:text>
<xsl:value-of select="street"/>
<xsl:text>&ixA;&txA;</xsl:text>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

Our approach in this stylesheet consists of two steps:

1. Sort the addresses by zip code:
<xsl:sort select="zip"/>
2. Foreach address, ifits zip code doesn’t match the previous one, print out a heading,
and then print out the addresses that match it:

<xsl:if test="zip!=preceding-sibling::address[1]/zip">
<xsl:text>8#txA;Zip code </xsl:text>

(Remember that preceding-sibling returns a NodeSet/Sequence, so preceding-
sibling::address[1] represents the first preceding sibling.)

That sounds reasonable, doesn’t it? Let’s take a look at the results:

Addresses grouped by zip code

Zip code 00218 (Winter Harbor, ME):
Ms. Natalie Attired
707 Breitling Way

Zip code 02718 (Skunk Haven, MA):
Mary Backstayge
283 First Avenue

Zip code 02718 (Skunk Haven, MA):
Harry Backstayge
283 First Avenue

Zip code 02930 (Lynn, MA):
Ms. Amanda Reckonwith
930-A Chestnut Street

Zip code 27318 (Boylston, VA):
Mary McGoon
103 Bryant Street

Mr. Chester Hasbrouck Frisby
1234 Main Street

Yes, that certainly seemed like a good approach, but there’s one major problem: it
doesn’t work.

220 | Chapter7: Sorting and Grouping Elements

Looking at our results, there are two things wrong: one of the addresses (Mr. Chester
Hasbrouck Frisby) is incorrectly grouped under the heading for Boylston, Virginia, and
there are two groups for Skunk Haven, Massachusetts. The problem here is that the
axes work with the document order, not the sorted order we’ve created inside the
<xsl:for-each> element.

As straightforward as our logic seemed, we’ll have to find another way.

A Brute-Force Approach

One thing we could do is make the transformation in two passes; we could write an
intermediate stylesheet to sort the names and generate a new XML document, and then
use the stylesheet we’ve already written, because document order and sorted order will
be the same. Here’s how that intermediate stylesheet would look:

<?xml version="1.0"?>

<!-- namegrouper2a.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="xml" indent="no"/>
<xsl:strip-space elements="*"/>

<xsl:template match="/">
<addressbook>
<xsl:for-each select="addressbook/address">
<xsl:sort select="name/zip"/>
<xsl:copy-of select="."/>
</xsl:for-each>
</addressbook>
</xsl:template>
</xsl:stylesheet>

This stylesheet generates a new <addressbook> document that has all of the <address>
elements sorted correctly. We can then run our original stylesheet against the sorted
document and get results that are closer to what we want:

Addresses grouped by zip code

Ms. Natalie Attired
707 Breitling Way

Zip code 02718 (Skunk Haven, MA):
Harry Backstayge
283 First Avenue

Mary Backstayge

283 First Avenue

Zip code 02930 (Lynn, MA):
Ms. Amanda Reckonwith

Grouping Nodes | 221

930-A Chestnut Street

Zip code 27318 (Boylston, VA):
Mary McGoon
103 Bryant Street

Zip code 48392 (Sheboygan, WI):
Mr. Chester Hasbrouck Frisby
1234 Main Street

There’s one more problem here: we don’t have a heading for the first group. Natalie
Attired lives in Winter Harbor, Maine, but there’s no heading for Winter Harbor. The
answer is to change our XPath expression slightly to see whether this is the first
<address> element:

<?xml version="1.0"?>

<!-- namegrouper2b.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text" indent="no"/>

<xsl:template match="/">
<xsl:text>Addresses grouped by zip code
</xsl:text>
<xsl:for-each select="addressbook/address">
<xsl:sort select="zip"/>
<xsl:if test="position() = 1 or
zip!=preceding-sibling: :address[1]/zip">
<xsl:text>&#txA;Zip code </xsl:text>
<xsl:value-of select="zip"/>

If this is the first <address> element, there is no preceding-sibling. Our test condition
always returns false, and the heading for the first address never prints.

Our pair of stylesheets works, but it’s not very elegant. Even worse, it’s really slow
because we have to stop in the middle and write a file out to disk, then read that data
back in. We’ll find a way to group elements in a single stylesheet, but we’ll have to do
it with a different technique.

Grouping with <xsl:variable>

We mentioned earlier that sometimes <xsl:variable> is useful for grouping, so let’s try
that approach. We’ll save the value of the <zip> element each time through the
<xsl:for-each> element and use preceding-sibling in a slightly different way. Here’s
how attempt number three looks:

<?xml version="1.0"?>

<!-- namegrouper3.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

222 | Chapter7: Sorting and Grouping Elements

<xsl:output method="text" indent="no"/>

<xsl:template match="/">
<xsl:text>Addresses sorted by zip code8itxA;</xsl:text>
<xsl:for-each select="addressbook/address">
<xsl:sort select="zip"/>
<xsl:variable name="lastZip" select="zip"/>
<xsl:if test="not(preceding-sibling::address[zip=$lastzip])">
<xsl:text>Zip code </xsl:text>
<xsl:value-of select="zip"/>
<xsl:text>:
</xsl:text>
<xsl:for-each select="/addressbook/address[zip=$lastzip]">
<xsl:sort select="name/last-name"/>
<xsl:sort select="name/first-name"/>
<xsl:if test="name/title">
<xsl:value-of select="name/title"/>
<xsl:text> </xsl:text>
</xsl:if>
<xsl:value-of select="name/first-name"/>
<xsl:text> </xsl:text>
<xsl:value-of select="name/last-name"/>
<xsl:text>
</xsl:text>
<xsl:value-of select="street"/>
<xsl:text>&#HxA;&ttxA;</xsl:text>
</xsl:for-each>
</xsl:if>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

This stylesheet generates what we want:

Addresses sorted by Zip Code
Zip code 00218:

Ms. Natalie Attired

707 Breitling Way

Zip code 02718:
Harry Backstayge
283 First Avenue

Mary Backstayge
283 First Avenue

Zip code 02930:
Ms. Amanda Reckonwith
930-A Chestnut Street

Zip code 27318:
Mary McGoon
103 Bryant Street

Zip code 48392:
Mr. Chester Hasbrouck Frisby
1234 Main Street

Grouping Nodes | 223

So why does this approach work when our first attempt didn’t? The answer is that we
don’t count on the sorted order of the elements to generate the output. The downside
of this approach is that we go through several steps to get the results we want:

1. We sort all the addresses by zip code:
<xsl:sort select="zip"/>

2. We store the current <zip> element’s value in the variable lastZip:
<xsl:variable name="lastZip" select="zip"/>

3. For each <zip> element, we look at all of its preceding siblings to see whether this
is the first time we’ve encountered this particular value (stored in lastzip). If it is,
there won’t be any preceding siblings that match.

<xsl:if test="not(preceding-sibling::address[zip=$lastzip])">

4. If this is the first time we’ve encountered this value in the <zip> element, we go
back and reselect all <address> elements with <zip> children that match this value.
Once we have that group, we sort them by first name within last name and print
each address.

<xsl:for-each select="/addressbook/address[zip=$lastZip]">

<xsl:sort select="name/last-name"/>
<xsl:sort select="name/first-name"/>

So, we’ve found a way to get the results we want, but it’s really inefficient. We sort the
data, then we look at each zip code in sorted order, then see whether we’ve encountered
that value before in document order, and then we reselect all the items that match the
current zip code and resort them before we write them out.

This has reasonable performance when we’re grouping the six elements in our sample
document, but the amount of work the XSLT processor has to do increases exponen-
tially as the number of elements we’re grouping increases. There’s got to be a better
way, right? Actually there is, and we discuss it in the next section. Read on....

The <xsl:key> Approach

In this section, we’ll look at using <xs1:key> to group items in an XML document. This
approach is commonly referred to as the “Muench method,” after Oracle XML Evan-
gelist (and O’Reilly author) Steve Muench, who first suggested this technique. The
Muench method has three steps:

1. Define a key for the property we want to use for grouping.

2. Select all of the nodes we want to group. We’ll do some tricks with the key() and
generate-id() functions to find the unique grouping values.

3. For each unique grouping value, use the key() function to retrieve all nodes that
match it. We can further sort those nodes if we want.

224 | Chapter7: Sorting and Grouping Elements

Well, that’s how the technique works—Ilet’s start building the stylesheet that makes
the magic happen. The first step, creating a key function, is easy. Here’s how it looks:

<xsl:key name="zipcodes" match="address" use="zip"/>

This <xsl:key> element defines a new index called zipcodes. It indexes <address> ele-
ments based on the value of the <zip> element they contain.

Now that we’ve defined our key, we’re ready for the complicated part. We use the
key() and generate-id() functions together. Here’s the syntax, which we’ll discuss
extensively in a minute:
<xsl:for-each select="//address[generate-id(.)=
generate-id(key('zipcodes', zip)[1])]">

OK, let’s start digging through this syntax. We’re selecting all <address> elements in
which the automatically generated id matches the automatically generated id of the
first node returned by the key() function when we ask for all <address> elements that
match the current <zip> element.

Well, that’s clear as crystal, isn’t it? Let me try to explain that again from a slightly
different perspective.

For each <address>, we use the key() function to retrieve all <address>es that have the
same <zip>. We then take the first node from that node-set. Finally, we use the
generate-id() function to generate an id for both nodes. If the two generated ids are
identical, then the two nodes are the same.

Whew. Let me catch my breath.

If this <address> matches the first node returned by the key() function, then we know
we’ve found the first <address> that matches this grouping value. Selecting all of the
first values (remember, our previous predicate ends with [1]) gives us a node-set of
some number of <address> elements, each of which contains one of the unique grouping
values we need.

That’s how the Muench method works. At this point, we’ve got a way to generate a
node-set that contains all of the unique grouping values; now we need to process those
nodes. From this point, we’ll do several things, all of which are comparatively simple:

1. Sort all nodes based on the grouping property. In this example, the property is the
<zip> element. We start by selecting the first occurrence of every unique <zip>
element in the document, and then we sort those <zip> elements. Here’s how it
looks in the stylesheet:

<xsl:for-each
select="//address[generate-id(.)=generate-id(key('zipcodes"', zip)[1])]">
<xsl:sort select="zip"/>

2. The outer <xsl:for-each> element selects all the unique values of the <zip> ele-
ment. Next, we use the key() function to retrieve all <address> elements that match
the current <zip> element:

Grouping Nodes | 225

<xsl:for-each select="key('zipcodes', zip)">

3. The key() function gives us a node-set of all matching <address> elements. For
each group, we sort the group based on the <last-name> and <first-name> elements,
print the heading, and then print each address.

To improve the looks of our output, our final stylesheet will use the techniques we’ve
been building to create an HTML file. Here’s the complete listing:

<?xml version="1.0"?>

<!-- namegrouper4.xsl -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html"/>
<xsl:key name="zipcodes" match="address" use="zip"/>

<xsl:template match="/">
<html>
<head>
<title>Customers grouped by Zip code</title>
</head>
<body style="font-family: sans-serif;">
<table border="1" cellpadding="5">
<xsl:for-each select="//address[generate-id(.)=
generate-id(key('zipcodes', zip)[1])]">
<xsl:sort select="zip"/>
<xsl:for-each select="key('zipcodes', zip)">
<xsl:sort select="name/last-name"/>
<xsl:sort select="name/first-name"/>
<tr>
<xsl:if test="position() = 1">
<td style="background: #66FF66; text-align: center;
vertical-align: middle; font-weight: bold;"
rowspan="{count(key('zipcodes', zip))}">
<xsl:text>Zip code </xsl:text>

<xsl:value-of select="zip"/>

<xsl:value-of select="city"/>
<xsl:text>, </xsl:text>
<xsl:value-of select="state"/>
</td>
</xsl:if>
<td style="text-align: right; vertical-align: middle;">
<xsl:value-of select="name/first-name"/>
<xsl:text> </xsl:text>

<xsl:value-of select="name/last-name"/>

</td>
<td>
<xsl:value-of select="street"/>

226 | Chapter7: Sorting and Grouping Elements

|| Customers grouped by Zip code |

Zip code

00218 Matalie Attired | 707 Breitling Way
Winter Harbor, ME

Zip code Harry Backstayge | 283 First Avenue
02718
Skunk Haven, MA wary Backstayge | 283 First Avenue

Zip code

02930 Amanda Reckonwith | 920-A Chestnut Street
Lynn, MA

Zip code

27318 Mary McGoon | 103 Bryant Street
Boylston, VA

Zip code

48392 Chester Hasbrouck Frisby | 1234 Main Strest
Sheboygan, WI

Figure 7-1. HTML document with grouped items

</td>
</tr>
</xsl:for-each>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

Notice how the two <xs1:for-each> and the various <xsl:sort> elements work togeth-
er. The outer <xsl:for-each> element selects the unique values of the <zip> element
and sorts them; the inner <xsl:for-each> element selects all <address> elements that
match the current <zip> element, and then sorts them by <last-name> and <first-name>.

When we view the generated HTML document in a browser, it looks like Figure 7-1.

The left column contains a table cell for each zip code. That means we need a
rowspan attribute based on the size of the current group. The logic looks like this:

<xsl:if test="position() = 1">
<td valign="center" bgcolor="#999999"

Grouping Nodes | 227

rowspan="{count (key('zipcodes', zip))}">

<xsl:text>Zip code </xsl:text>
<xsl:value-of select="zip"/>

</td>
</xsl:if>

[2.0] New Grouping Syntax in XSLT 2.0

In 2001, the XSL Working Group released a document entitled “XSLT Requirements
Version 2.0.” More than half of the document came under the heading “Must Simplify
Grouping.” (I can’t imagine how the group would have met a requirement named
“Must Make Grouping More Complicated and Confusing.”) We’ll take a look at those
changes in this section.

XSLT 2.0’s grouping functions are built around the <xsl:for-each-group> element.
Within this element, we’ll use the new XSLT functions current-group() and current-
grouping-key() to work with the data we’re grouping. There are four mutually exclu-
sive attributes for the <xs1:for-each-group> element, each of which performs a different
style of grouping;:

group-by
This is the most common type of grouping. We use an XPath expression to define
what identifies a group (all of the <address> elements that have the same <zip»
code, for example), so we can then iterate through each group.

group-adjacent
This approach is useful when you want to build a group containing all the adjacent
nodes that match an XPath expression. As an example, we’ll take all the adjacent
<p> elements in a document, convert each one to an <1i> element, and put
and tags around the entire group.

group-starting-with
The group-starting-with attribute defines an XPath expression that identifies the
start of a group. Once a group starts, every element is added to the group until the
start of another group is found. group-starting-with and group-ending-with are
most often used when adding structure to an HTML document.

group-ending-with
This defines an XPath expression that identifies the end of a group. When using
group-ending-with, <xsl:for-each-group> creates a new group as it begins pro-
cessing nodes. Whenever the end of a group is found, the XSLT processor closes
that group and starts another.

Keep in mind that everything you can do with grouping in XSLT 2.0 is possible in XSLT
1.0—it’s just that the markup you’ll have to write and maintain in XSLT 1.0 is much
more complicated. If you already have a working XSLT 1.0 stylesheet that uses the

228 | Chapter7: Sorting and Grouping Elements

Muench method to do grouping, there’s no reason to change the stylesheet if you don’t
want to.

The Most Common Grouping Style: group-by

As we just mentioned, everything we’ll do with grouping in XSLT 2.0 revolves around
the new <xsl:for-each-group> element. This works much like <xsl:for-each>. In
<xsl:for-each>,in each iteration we process an item in a sequence; with <xs1:for-each-
group>, in each iteration we process a group. Thinking back to our addresses example,
each group represents a unique zip code. When using <xs1:for-each-group>, the first
group would be 00218, the second group would be 02718, and so forth.

To repeat from our discussion of the Muench method, we needed to do three things to
group items in XSLT 1.0:

1. Define a key for the property we want to use for grouping.

2. Select all of the nodes we want to group. We’ll do some tricks with the key(') and
generate-id() functions to find the unique grouping values.

3. For each unique grouping value, use the key() function to retrieve all nodes that
match it. Because the key() function returns a node-set, we can do further sorts
on the set of nodes that match any given grouping value.

With XSLT 2.0, we need to do the same basic things, but we don’t have to get bogged
down with key() and generate-id(). Our tasks are as follows:

1. Define an XPath expression for the property we want to use for grouping. All we
have to do is define the XPath expression—we don’t need a key.

2. Select all of the nodes we want to group. We select all the nodes with an XPath
expression. The XSLT processor takes all the items that match this expression and
groups them using the grouping property we defined.

3. Instead of dealing with each unique value of the property we’re using for grouping,
we use current-group() to deal with each group. The current-group() function
returns a sequence, so we can sort the members of each group however we like. If
we need the value of the grouping key, the current-grouping-key() function does
what we want.

Accomplishing these tasks in XSLT 2.0 is pretty straightforward. We do steps one and
two with the <xsl:for-each-group> element:
<xsl:for-each-group select="//address" group-by="zip">

The elements we’re grouping are all of the <address> elements in the document. The
property we’re using for grouping is the value of the <zip> element.

For the third step, we use current-group() to deal with each group in turn. Here’s the
complete stylesheet:

[2.0] New Grouping Syntax in XSLT2.0 | 229

<?xml version="1.0"?>

<!-- for-each-group_group-by.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html" include-content-type="no"/>

<xsl:template match="/">
<table border="1" cellpadding="5" style="font-family: sans-serif;">
<xsl:for-each-group select="//address” group-by="zip">
<xsl:sort select="current-grouping-key()"/>
<xsl:for-each select="current-group()">
<xsl:sort select="name/last-name"/>
<xsl:sort select="name/first-name"/>
<tr>
<xsl:if test="position() = 1">
<td valign="center" bgcolor="#999999"
rowspan="{count(current-group())}">

<xsl:text>Zip code </xsl:text>
<xsl:value-of select="current-grouping-key()"/>

</td>
</xsl:if>
<td align="right">
<xsl:value-of select="name/first-name"/>
<xsl:text> </xsl:text>
<xsl:value-of select="name/last-name"/>
</td>
<td>
<xsl:value-of select="street"/>
<xsl:text>, </xsl:text>
<xsl:value-of select="city"/>
<xsl:text>, </xsl:text>
<xsl:value-of select="state"/>
<xsl:text> </xsl:text>
<xsl:value-of select="zip"/>
</td>
</tr>
</xsl:for-each>
</xsl:for-each-group>
</table>
</xsl:template>

</xsl:stylesheet>
There are several things worth discussing inside the <xs1:for-each-group> element:

1. First of all, we use <xsl:sort select="current-grouping-key()"/> to put the
groups themselves in order. This <xsl:sort> element sorts the groups based on
their grouping keys. The items inside each group aren’t rearranged at all.

2. Next, we use <xsl:for-each select="current-group"> to iterate through each item
in the current group. (Remember, current-group() returns the sequence of nodes
that make up the current group.)

230 | Chapter7: Sorting and Grouping Elements

3. Within each group, we sort things by <last-name> and <first-name>.

4. The last significant thing we do is create the first column to display the current
grouping key. We get the current value of the grouping key with the current-
grouping-key() function. To calculate the rowspan attribute, we use an attribute
value template with count(current-group()) to get the number of nodes that
match the current grouping key.

Comparing this stylesheet with the Muench method version, most of the code is the
same; after all, we’re building the same HTML document here. However, there are
some differences that make the v2.0 stylesheet simpler to create and maintain:

* It’smuch easier to specify what we’re grouping. In the v2.0 stylesheet, we’re simply
specify the element we’re grouping;:

[2.0] select="//address"

[1.0] select="//address[generate-id(.)=generate-id(key('zipcodes', zip)[1])]">
* It’s much easier to keep up with the current group. In the v2.0 stylesheet, the
current-group() and current-grouping-key() functions let us work with the cur-
rent group and the value we used to create it. In the v1.0 stylesheet, we have to
respecify them each time. Here’s how we process all the elements in the current
group:

[2.0] <xsl:for-each select="current-group()">

[1.0] <xsl:for-each select="key('zipcodes', zip)">

As another example, finding the size of the current group is much simpler. In the
v1.0 stylesheet, we have to redefine what the current group is each time we refer
to it. When we need the number of items in the current group, we have to do the
same thing:

[2.0] rowspan="{count(current-group()}"
[1.0] rowspan="{count(key('zipcodes', zip))}"

It’s conceptually simpler to get the value of the grouping key in the v2.0 stylesheet,
although it’s arguable how much of an advantage that actually is in this example.
(Comparing the two stylesheets, we typed <xsl:value-of select="current-
grouping-key()"/> inv2.0, but only <xsl:value-of select="zip"/>inv1.0.) If the
key value were much more complicated, the advantage of
current-grouping-key() would be greater.

Also keep in mind that if we change the grouping key in a v1.0 stylesheet, we have
to find all the instances of the grouping key and change them. In a v2.0 stylesheet,
the grouping key is defined in one place; we still use current-grouping-key() re-
gardless of the changes to the key. This simplifies maintenance.

* We don’t have to define an <xsl:key> separate from the grouping code. That’s a
minor point, but it does simplify maintenance.

[2.0] New Grouping Syntax in XSLT2.0 | 231

Another Type of Grouping: group-adjacent

With the group-adjacent approach, we’ll create a group based on some number of
elements that are together in the source document. Our example input document is an
HTML document that features groups of paragraphs together:

<?xml version="1.0"?>
<!-- group-adjacent_input.html -->
<html>
<body>
<h2>Steps for grouping in the Muench method</h2>
<p>Define a <code>key</code> for the property we want
to use for grouping.</p>
<p>Select all of the nodes ...</p>
<p>For each unique grouping value, ...</p>
<h2>Steps for grouping in XSLT 2.0</h2>
<p>Define an XPath expression ...</p>
<p>Select all of the nodes we want to group ...</p>
<p>Instead of dealing with each ...</p>
</body>
</html>

This is text from earlier in this chapter, displayed here as HTML. (This book is written
entirely in DocBook, an XML vocabulary with a very well-defined structure.) What we
want to do is convert any sequence of paragraphs into an unordered list (), with
each paragraph converted into a list item (<1i>). We’ll use group-adjacent to do that.
Our stylesheet looks like this:

<?xml version="1.0"?>

<I-- for-each-group_group-adjacent.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html" include-content-type="no"/>

<xsl:template match="/">
<html>
<head>
<title>Grouping with group-adjacent</title>
</head>
<body style="font-family: sans-serif;">
<h1>Grouping with group-adjacent</h1>
<xsl:for-each-group select="html/body/*"
group-adjacent="boolean(self::p)">
<xsl:choose>
<xsl:when test="current-grouping-key()">

<xsl:for-each select="current-group()">
<1li>
<xsl:copy-of select="@*"/>
<xsl:apply-templates select="*|text()"/>
</1i>
</xsl:for-each>

232 | Chapter7: Sorting and Grouping Elements

</xsl:when>
<xsl:otherwise>
<xsl:for-each select="current-group()">
<xsl:apply-templates select="."/>
</xsl:for-each>
</xsl:otherwise>
</xsl:choose>
</xsl:for-each-group>
</body>
</html>
</xsl:template>

<xsl:template match="*">
<xsl:copy>
<xsl:copy-of select="@*"/>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>

When we’re using group-adjacent, the value of the group-adjacent attribute generates
an atomic value for each item in the list. In other words, the grouping key for each item
is defined by the group-adjacent attribute. In the previous example, any <p> element
has a grouping key of true; everything else has a grouping key of false. After we’ve
defined the grouping key for each item, the XSLT 2.0 processor creates the groups.
Each group contains the maximum number of adjacent items with a particular grouping
key. To see the grouping keys, we can add an <xs1:message> to display them. We’ll add
this message:
<xsl:for-each-group select="html/body/*"
group-adjacent="boolean(self::p)">
<xsl:message terminate="no">
<xsl:for-each select="current-group()">
<xsl:text>current-grouping-key() = </xsl:text>
<xsl:value-of select="current-grouping-key()"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:message>

When we run the stylesheet with our sample document, here’s what shows up in the
console:

current-grouping-key() = false
current-grouping-key() = true
current-grouping-key() = true
current-grouping-key() = true

current-grouping-key() = false

true

current-grouping-key()

[2.0] New Grouping Syntax in XSLT2.0 | 233

true
true

current-grouping-key()
current-grouping-key()

For each group, we print out the grouping key for each item in that group. As you’d
expect, we have four groups. The first group contains the <h2> element at the start of
the document, and the second group contains the three adjacent <p> elements that
follow it. The second <h2> is the third group, and the fourth group is the three adjacent
<p> elements at the end. When we run the stylesheet, the generated HTML document
looks like this:

<html>
<head>
<title>Grouping with group-adjacent</title>
</head>
<body>
<h1>Grouping with group-adjacent</h1>
<h2>Steps for grouping in the Muench method</h2>

Define a <code>key</code> for the property we want
to use for grouping.
Select all of the nodes. ...
For each unique grouping value, ...

<h2>Steps for grouping in XSLT 2.0</h2>

Define an XPath expression ...
Select all of the nodes we want to group ...
Instead of dealing with each ...

</body>
</html>

The items are now grouped just the way we want. We’ve converted all of the adjacent
<p> elements and replaced them with an unordered list in which each <p> is now a list
item. Each group contains the maximum number of adjacent <p> elements, so we can
put each group inside a element.

Before we move on to the final two ways of grouping, we’ll look at a more advanced
example. We'll change our source HTML document slightly to add some <p> elements
that should be processed differently. Here’s how our new HTML document looks:

<?xml version="1.0"?>
<!-- group-adjacent_input2.html -->
<html>
<body>
<!-- Here's some sample text from the chapter "Sorting
and Grouping". -->
<h2>Steps for grouping in the Muench method</h2>
<p class="item">Define a <code>key</code> for the property we want
to use for grouping.</p>
<p class="item">Select all of the nodes ...</p>
<p class="note">This can be really complicated.</p>
<p class="note">Many people don't enjoy this method.</p>
<p class="note">XSLT 2.0 attempts to make grouping simpler.</p>

234 | Chapter7: Sorting and Grouping Elements

<p class="item">For each unique grouping value ...</p>
<h2>Steps for grouping in XSLT 2.0</h2>
<p class="item">Define an XPath expression ...</p>
<p class="item">Select all of the nodes ...</p>
<p class="note">This is much easier than it used to be.</p>
<p class="item">Instead of dealing with each ...</p>
</body>
</html>

We now have two classes of <p> elements. Those with class="item" will be processed
just as before. The class="note" elements will be put in an ordered list. To add another
layer of complexity to our example, we’ll number all of the class="note" items se-
quentially throughout the document. In other words, if the first group of adjacent
class="note" elements has three members, we want to start numbering the next group
of class="note" elements at four. Here’s the stylesheet, which we’ll discuss in detail in
just a minute:

<?xml version="1.0"?>

<!-- for-each-group group-adjacent2.xsl -->

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html" include-content-type="no"/>

<xsl:template match="/">
<html>
<head>
<title>Grouping with group-adjacent</title>
</head>
<body style="font-family: sans-serif;">
<h1>Grouping with group-adjacent</h1>
<xsl:for-each-group select="html/body/*"
group-adjacent="if (self::p[@class="item']) then 1
else if (self::p[@class="note']) then 2
else 3">
<xsl:choose>

<!-- group for <p class="item"> -->
<xsl:when test="current-grouping-key() = 1">

<xsl:for-each select="current-group()">

<xsl:copy-of select="@*[not(name()="class')]"/>
<xsl:apply-templates select="*|text()"/>
</1i>
</xsl:for-each>

</xsl:when>

<!-- group for <p class="note"> -->
<xsl:when test="current-grouping-key() = 2">
<xsl:variable name="starting-point">
<xsl:number count="p[@class="note']"
level="any" format="1"/>

[2.0] New Grouping Syntax in XSLT2.0 | 235

</xsl:variable>
<table border="0" cellpadding="5" width="40%">
<tr>
<td width="10%">
<p><xsl:text> </xsl:text></p>
</td>
<td style="background: #CCCCCC;">
<p style="font-weight: bold;">
<xsl:value-of
select="if (count(current-group()) gt 1)
then 'Notes'
else 'Note'"/>
</p>
<ol start="{$starting-point}">
<xsl:for-each select="current-group()">
<1i>
<xsl:copy-of select="@*[not(name()="class')]"/>
<xsl:apply-templates select="*|text()"/>
</1i>
</xsl:for-each>

</td>
</tr>
</table>
</xsl:when>

<!-- group for everything else -->

<xsl:otherwise>
<xsl:for-each select="current-group()">

<xsl:apply-templates select="."/>

</xsl:for-each>

</xsl:otherwise>

</xsl:choose>
</xsl:for-each-group>
</body>
</html>
</xsl:template>

<xsl:template match="*">
<xsl:copy>
<xsl:copy-of select="@*"/>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>

First of all, notice that our group-adjacent attribute is significantly more complicated.

We’re using integer values here instead of true and false because we have more than

two groups. (Remember, the grouping key for group-adjacent can be any atomic value;

it doesn’t have to be true or false.) Here’s the <xsl:for-each-group> element:
group-adjacent="if (self::p[@class="item']) then 1

else if (self::p[@class='note']) then 2
else 3"

236 | Chapter7: Sorting and Grouping Elements

Soany<p class="item"> elementhasa groupingkeyof 1, any <p class="note"> element
has a grouping key of 2, and everything else has a grouping key of 3. Adding an
<xsl:message> to the stylesheet as we did before, we can list the grouping keys:

current-grouping-key()

current-grouping-key() =
current-grouping-key()

current-grouping-key() =
current-grouping-key()
current-grouping-key()

current-grouping-key()
current-grouping-key()

current-grouping-key()

current-grouping-key() =
current-grouping-key()

current-grouping-key() =

current-grouping-key() =

3

2

1

Aside from the fact that we have three groups instead of two, the main complication
here is how we process items in the second group. For the first group of
<p class="note"> elements, we could simply use an ordered list (<01>) element to num-
ber the items in the group. For every other group, we have to determine where to start
numbering. This means we have to find the position of the first <p class="note"> ele-
ment in all of the <p class="note"> elements to see where a particular group starts. If
a group begins with the 38th <p class="note"> element, we need to generate
<ol start="38"> in the HTML output document. <xs1:number> is perfect for this task.

For each group of <p class="note"> elements, we have three tasks:

1. Generate a heading for the notes. If there is more than one item in the current
group, the heading is <h3>Notes</h3>; otherwise, it is <h3>Note</h3>.

2. Generate the start attribute for the element. We use <xsl:number> to count
all of the <p class="note"> elements and tell us the position of the first item in the

group.

3. Process the item itself. This means putting the current paragraph into a list item
(<1i>) element and processing its attributes and children.

Our first step is to generate the heading text. Fortunately, this is pretty simple; we use

XPath 2.0’s if operator:

<p style="font-weight: bold;">

<xsl:value-of

select="if (count(current-group()) gt 1)
then 'Notes'

[2.0] New Grouping Syntax in XSLT2.0 | 237

else 'Note'"/>
</p>
We also use the new XPath gt operator to compare the size of the current group—
count(current-group())—to the number 1. If the current group has more than one
item, the heading text is Notes; otherwise, it is Note.

Now that our first step is complete, we’ll create a variable with the value of the
start attribute:
<xsl:variable name="starting-point">

<xsl:number count="p[@class="note']" level="any" format="1"/>
</xsl:variable>

Notice that we’re using format="1" to create a numeric value. From an XSLT point of
view, we don’t have to worry about the datatype of the value. (There’s no need to add
as="xs:integer" to the <xsl:variable> element.) The HTML renderer treats this value
as a number and uses it accordingly.

The last step is simply to output the new element (using the $starting-point
variable we just initialized) and process the <p> element as before:
<ol start="{$starting-point}">
<xsl:for-each select="current-group()">
<1i>
<xsl:copy-of select="@*[not(name()="class')]"/>
<xsl:apply-templates select="*|text()"/>
</1i>
</xsl:for-each>

We copy all of the attributes of the HTML <p> element except the class attribute.
Having copied the attributes, we use <xsl:apply-templates> to process anything that
might be in the original paragraph. As in our earlier stylesheet, we used an attribute
value template to include the start attribute on the element.

Our generated HTML document looks like Figure 7-2.

Grouping using group-starting-with

The next grouping type we’ll use is group-starting-with. With this attribute, we’ll
specify the node or condition that starts a new group. From that point, every item goes
into the new group until another starting node or condition is found. After that, the
XSLT processor closes the current group and starts a new one.

We'll use this approach to add some structure to another HTML document. In this
case, we want to create a group around every <h1> element. We'll use the file group-
adjacent_input.html from our earlier example.

We'll transform this markup into DocBook, which uses a containment strategy instead
of HTML’s sequential approach. In other words, in HTML a level 1 heading (<h1>)

238 | Chapter7: Sorting and Grouping Elements

| | Grouping with group-adjacent |

Grouping with group-adjacent

Steps for grouping in the Muench method

+ Define a xey for the property we want to use for grouping.
+ Select all of the nodes .

Notes

1. This can be really complicated.
2 Many people don't enjoy this method.
3 XSLT 20 attempts to malke grouping simpler.

+ Foreach unigue grouping value . .

Steps for grouping in XSLT 2.0

+ Define an XPath expression . ..
+ Select all of the nodes .

MNote

4. This is much easier than it used to be.

+ Instead of dealing with each . .

Figure 7-2. HTML document with grouped and sequentially numbered items

stands on its own. We can assume that the first <h1> starts a section and that the next
<h1> ends this section, but there’s no guarantee that an HTML document is structured
that way.

In DocBook, a level 1 heading is part of a section, not a standalone element. The section
starts with a <sect1> tag and contains everything through the </sect1> tag, including
a<title> element that contains the text we’d normally put on the HTML <h1> element.

Here’s how our stylesheet looks:

<?xml version="1.0"?>
<!-- for-each-group_group-starting-with.xsl -->

[2.0] New Grouping Syntax in XSLT2.0 | 239

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">
<chapter>
<title>Grouping in XSLT</title>
<xsl:apply-templates select="html/body"/>
</chapter>
</xsl:template>

<xsl:template match="body">
<xsl:for-each-group select="*" group-starting-with="h1">
<sect1>
<xsl:apply-templates select="current-group()"/>
</sect1>
</xsl:for-each-group>
</xsl:template>

<xsl:template match="h1">
<title>
<xsl:apply-templates/>
</title>
</xsl:template>
<xsl:template match="p">
<para>
<xsl:apply-templates/>
</para>
</xsl:template>

<xsl:template match="*">
<xsl:copy>
<xsl:copy-of select="@*"/>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>

Our well-structured results look like this:

<?xml version="1.0" encoding="UTF-8"?>
<chapter>
<title>Grouping in XSLT</title>
<sect1>
<h2>Steps for grouping in the Muench method</h2>
<para>Define a <code>key</code> for the property we want
to use for grouping.</para>
<para>Select all of the nodes ...</para>
<para>For each unique grouping value, ...</para>
<h2>Steps for grouping in XSLT 2.0</h2>
<para>Define an XPath expression ...</pa