

XSLT

Other resources from O’Reilly

Related titles XSLT Cookbook

XQuery

Learning XSLT

Java & XML

Schematron

Developing Feeds with RSS
and Atom

XML Hacks

XSLT 1.0 Pocket Reference

Relax NG

Unicode Explained

XML in a Nutshell

Learning XML

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You'll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly Media, Inc. brings diverse innovators together to nur-
ture the ideas that spark revolutionary industries. We specialize
in documenting the latest tools and systems, translating the in-
novator’s knowledge into useful skills for those in the trenches.
Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

SECOND EDITION

XSLT

Doug Tidwell

Tomcat ™

The Definitive Guide

Jason Brittain and Ian F. Darwin

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

main.title Page iii Monday, May 19, 2008 11:21 AM

XSLT, Second Edition
by Doug Tidwell

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Sarah Schneider
Proofreader: Mary Brady

Indexer: Fred Brown
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
June 2008: Second Edition.
August 2001: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. XSLT, the image of a Jabiru, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations uses by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

ISBN: 978-0-596-52721-1

[C]

1213384691

http://safari.oreilly.com

To my family—my wonderful wife, Sheri Castle,
and our amazing daughter, Lily—for their love,
support, and understanding. Nothing I do would

be possible or meaningful without them.

...and a special thanks to our dog, Domino, who
frequently and selflessly pushed his fuzzy head
between my hands and keyboard to protect me

from carpal tunnel syndrome. Good boy!

Table of Contents

Preface . xi

1. Getting Started . 1
The Design of XSLT 1
XML Basics 4
Installing XSLT Processors 20
Summary 24

2. The Obligatory Hello World Example . 25
Goals of This Chapter 25
Transforming Hello World 25
How a Stylesheet Is Processed 27
Stylesheet Structure 30
Sample Gallery 36
Summary 44

3. XPath: A Syntax for Describing Needles and Haystacks . 45
The XPath Data Model 46
Location Paths 55
Attribute Value Templates 66
Datatypes 67
XPath Operators 71
[2.0] Comments in XPath Expressions 102
[2.0] Types of XSLT 2.0 Processors 104
The XPath View of an XML Document 104
Summary 112

4. Creating Output . 113
Goals of This Chapter 113
Generating Text 113
Numbering Things 118
Formatting Decimal Numbers 127

vii

[2.0] Formatting Dates and Times 130
Using <xsl:copy> and <xsl:copy-of> 132
Dealing with Whitespace 139
Summary 144

5. Branching and Control Elements . 145
Goals of This Chapter 145
Branching Elements of XSLT 145
Invoking Templates by Name 151
Parameters 152
Variables 167
Using Recursion to Do Most Anything 169
A Stylesheet That Emulates a for Loop 174
Summary 179

6. Creating Links and Cross-References . 181
Using the XML ID, IDREF, and IDREFS Datatypes 181
XSLT’s Key Facility 194
Generating Links in Unstructured Documents 198
Summary 204

7. Sorting and Grouping Elements . 205
Sorting Data with <xsl:sort> 205
[2.0] The <xsl:perform-sort> Element 215
Grouping Nodes 219
[2.0] New Grouping Syntax in XSLT 2.0 228
Summary 243

8. Combining Documents . 245
The document( ) Function 245
The document( ) Function and Sorting 254
Implementing Lookup Tables 254
Grouping Across Multiple Documents 257
[2.0] Using XSLT 2.0 to Simplify Things 260
[2.0] The doc( ) and doc-available( ) Functions 269
[2.0] The collection( ) Function 271
[2.0] The unparsed-text( ) and unparsed-text-available( ) Functions 272
Summary 275

9. Extending XSLT . 277
The XSLT Extension Mechanism 277
[2.0] Creating New Functions with <xsl:function> 279
Example: Generating Multiple Output Files 281

viii | Table of Contents

Creating Custom Collations 287
Generating Hidden Word Graphics 293
Example: Generating an SVG Pie Chart 303
Writing Extensions in Other Languages 326
Using Extension Functions from the EXSLT Library 330
Accessing a Database with an Extension Element 333
Creating a Photo Album with an Extension Element 339
Summary 360

A. XSLT Reference . 361

B. XPath Reference . 545

C. XSLT, XPath, and XQuery Function Reference . 563

D. XML Schema Overview . 871

E. [2.0] Regular Expressions . 897

F. XSLT Formatting Codes . 919

G. XSLT 2.0 Migration Guide . 925

Glossary . 933

Index . 943

Table of Contents | ix

Preface

About This Book
The goal of this book is to help you make the most of XSLT, the Extensible Stylesheet
Language for Transformations. It covers both XSLT 1.0 and XSLT 2.0, along with
versions 1.0 and 2.0 of XPath, the XML Path Language. The two languages are designed
to work together: XPath identifies the parts of an XML document that should be trans-
formed, and XSLT says how the transformation should be done.

The first few chapters of the book cover the features of XSLT by solving common
problems using the language. Once you’ve mastered those techniques, the last section
of the book contains a complete set of examples for all the features of XSLT and XPath.
The book is designed as a tutorial for learning the language as you’re getting started.
Once you’re comfortable with XSLT, the book can be used as a dictionary-style refer-
ence for the features and functions of the language.

Where I’m Coming From
Before we begin, it’s only fair that I tell you my biases.

I Believe in Open, Platform-Neutral, Standards-Based Computing
If any part of your business life ties you down to anything closed, proprietary, or
platform-specific, I encourage you to make some changes. This book shows you how
to take charge of your data and move it from one place to another on your terms, and
not your software vendor’s. XML is shifting the balance of power from vendors to
software users. If your tools force you to work in unnatural ways or refuse to let you
have your data when and where you want it, you don’t have to take it anymore.

I Assume You’re Busy
The best review I received for the first edition of this book began, “I will never read this
book.” This was actually a positive review, as the reviewer went on to explain. “When

xi

I have a problem, I grab this book off the shelf, go to the index, and within five minutes
I’ve found the answer to my problem. Then I toss it back on the shelf.”

That’s exactly the kind of book I’ve tried to write. There are hundreds of stylesheets in
this book, including examples for every XSLT element, function, and operator defined
by XSLT and XPath. The first chapters of the book are prose that explain how style-
sheets work and what you need to learn to be productive with XSLT. Once you’re
comfortable with that material, you can use the rest of the book as a dictionary-style
reference.

I Don’t Care Which Standards-Compliant Tools You Use
My job as an author and a teacher is to show you how to use standards-compliant tools
to simplify your life. I’m not here to sell you a parser, an XSLT processor, a toaster, or
anything else, so please use whatever tools you like. I encourage you to take a look at
all of the tools out there and find your own preferences. As I wrote this edition of the
book, I used four processors to test the examples:

• Almost all of the examples were tested with Michael Kay’s excellent Saxon XSLT
processor. The open source edition of Saxon supports all of the XSLT 2.0, XPath
2.0 and XQuery 1.0 specs except for the schema-specific functions. As the editor
of the XSLT 2.0 specification, Dr. Kay’s processor is currently the most complete
implementation of XSLT 2.0.

Saxon-B (the basic processor without schema support) is available here: http://
saxon.sourceforge.net/. The SourceForge project page is at http://sourceforge.net/
projects/saxon. Saxon is available in Java and .NET versions.

There is also a commercial version of Saxon that includes full schema support. For
more information on Saxon-SA, which is the schema-aware version, visit http://
www.saxonica.com/.

• The XSLT engine from Altova XML Spy was also used for all of the XSLT 2.0
examples. The Altova XSLT engine, although not open source, does provide com-
plete schema support in a no-cost product. The license for the Altova engine cur-
rently allows you to redistribute it with your own code. To get the engine and the
license terms, visit http://www.altova.com/altovaxml.html.

• Apache’s Xalan XSLT engine supports almost all of the XSLT 1.0 examples in the
book. (The XSLT 1.0 stylesheets that it doesn’t support are ones that use extensions
written for other processors.) It’s also a forwards-compatible XSLT processor, so
it can work with XSLT 2.0 stylesheets.

The Java version of the processor, Xalan-J, is available at http://xml.apache.org/
xalan-j/. There’s also a C++ version at http://xml.apache.org/xalan-c/.

• Microsoft’s .NET framework supports XSLT 1.0, as does the MSXSL utility. One
significant addition to this edition is more focus on the Microsoft platform. In

xii | Preface

http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://sourceforge.net/projects/saxon
http://sourceforge.net/projects/saxon
http://www.saxonica.com/
http://www.saxonica.com/
http://www.altova.com/altovaxml.html
http://xml.apache.org/xalan-j/
http://xml.apache.org/xalan-j/
http://xml.apache.org/xalan-c/

addition to testing all of the XSLT 1.0 samples with the Microsoft tools, there are
also XSLT extensions written in C# and EcmaScript.

The MSXSL XSLT processor is available from the Microsoft XML downloads page,
http://msdn.microsoft.com/XML/XMLDownloads/default.aspx. There is also an
XSLT processor embedded in the .NET framework; it’s part of the
System.Xml.Xsl namespace.

XSLT Is a Tool, Not a Religion
An old adage says that to a person with a hammer, everything looks like a nail. I don’t
claim that XSLT is the solution to every business problem you’ll encounter. Chap-
ter 1 discusses reasons why XML and XSLT were created and the design decisions
behind XSLT, and it tries to identify the kinds of problems XSLT is designed to solve.
All chapters in this book illustrate common scenarios in which XSLT is extremely
powerful and useful.

That being said, if a particular tool does something better than XSLT does, then by all
means, use that other tool. For example, XSLT has functions for sorting and grouping.
If the data you’re transforming comes from a relational database, it’s probably far more
efficient to use the ORDER BY and GROUP BY features of your database instead of sorting
and grouping with XSLT. XSLT is a powerful addition to your tool box, but that doesn’t
mean you should throw out all your other tools.

You Shouldn’t Migrate All of Your Stylesheets Just Because There’s a New
Version of XSLT
Anytime a new version of a language, standard, or software package comes along, de-
ciding when or if to migrate to the new features depends on your application. If you’ve
built a web application in which you use a web browser to process XSLT stylesheets
on the client side, you can’t migrate to XSLT 2.0 until all the major browsers support
XSLT 2.0. That’s going to be a while. On the other hand, if you use XSLT to transform
your data and then send the transformed data to the client, you can use XSLT 2.0 right
away. With very few exceptions, anything that worked in XSLT 1.0 works in XSLT 2.0.
We cover migration in Appendix G.

XSLT 2.0 and XPath 2.0 have many new features that make your stylesheets easier to
write, easier to maintain, and much more powerful. It’s definitely worth your time to
investigate the new features to see how many of them you can use.

How This Book Is Organized
XSLT 2.0 has added significant new features to the language, many of which are related
to the changes in XPath 2.0. The biggest challenge I had as an author was figuring out
how to organize the book. One approach would have been to make this an XSLT 2.0

Preface | xiii

http://msdn.microsoft.com/XML/XMLDownloads/default.aspx

book, writing under the assumption that everyone would migrate to XSLT 2.0 as soon
as possible. I don’t believe that will happen, so I didn’t go that way. Instead, I tried to
cover everything in terms of common tasks, things you’ll probably have to do with
XSLT. If there are new features in XSLT 2.0 that apply to those tasks, I mention them
after explaining the concepts behind the stylesheets. Usually XSLT 2.0 makes your life
much easier, so I begin the discussion by pointing out that if you’re using XSLT 2.0,
you’ve got a simpler option.

As with the first edition, this book has two parts: a series of prose chapters that cover
concepts and tasks, followed by a series of appendixes that form a reference to all of
the elements, functions, operators, and other details you’ll need as you write style-
sheets. Once you’re comfortable with XSLT, you can use the appendixes as a dictionary
of all things related to XSLT and XPath.

The book contains the following chapters:

Chapter 1, Getting Started
Covers the basics of XML and discusses how to install the stylesheet engines used
in this book.

Chapter 2, The Obligatory Hello World Example
Takes a look at an XML-tagged “Hello World” document, then examines style-
sheets that transform it into other things.

Chapter 3, XPath: A Syntax for Describing Needles and Haystacks
Covers the basics of XPath, the language used to describe parts of an XML
document. This chapter includes an in-depth discussion of the many changes
introduced in XPath 2.0.

Chapter 4, Creating Output
Discusses the basics of creating output, including extracting text, copying infor-
mation, and numbering things.

Chapter 5, Branching and Control Elements
Discusses the logic elements of XSLT (<xsl:if> and <xsl:choose>) and how they
work. Also covers the new if operator in XPath 2.0.

Chapter 6, Creating Links and Cross-References
Covers the different ways to build links between elements in XML documents.
Using XPath to describe relationships between related elements is also covered.

Chapter 7, Sorting and Grouping Elements
Goes over the <xsl:sort> element and discusses various ways to sort elements in
an XML document. It also talks about how to do grouping with various XSLT
elements and functions. Grouping is much simpler in XSLT 2.0; the new grouping
features are covered in this chapter as well.

xiv | Preface

Chapter 8, Combining Documents
Discusses the document() function, which allows you to combine several XML
documents, then write a stylesheet that works against the collection of documents.
Related functions from XSLT 2.0 are also featured.

Chapter 9, Extending XSLT
Explains how to write extension elements and extension functions. Although XSLT
and XPath are extremely powerful and flexible, there are still times when you need
to do something that isn’t provided by the language itself.

The last section of the book contains reference information:

Appendix A
An alphabetical listing of all the elements defined by XSLT, with examples for those
elements and how they were designed to be used.

Appendix B
A listing of various aspects of XPath, including datatypes, axes, node types, and
operators.

Appendix C
An alphabetical listing of all the functions defined by XPath and XSLT.

Appendix D
Provides a brief overview of XML Schema. One of the additions to XSLT 2.0 is the
ability to use XML Schemas to define datatypes and validate XML structures
against them.

Appendix E
Covers the syntax and features of the regular expression language used by XPath
2.0 and XSLT 2.0.

Appendix F
Provides a handy listing of all the formatting codes used in XSLT and XPath.

Appendix G
Lists a number of considerations and approaches for migrating to XSLT 2.0.

Glossary
A glossary of terms used in XSLT, XPath, and XML in general.

Conventions Used in This Book
Items appearing in this book are sometimes given a special appearance to set them apart
from the regular text. Here’s how they look:

Italic
Used for citations of books and articles, commands, email addresses, introduction
of terms, and URLs

Preface | xv

Constant width
Used for literals, constant values, code listings, and XML markup

Constant-width bold
Used to indicate user input

Constant-width italic
Used for replaceable parameter and variable names

This icon represents a tip, suggestion, or general note.

This icon represents a warning or caution.

[1.0]
This text represents information that applies only to XSLT 1.0 and XPath 1.0.

[2.0]
This text represents information that is new in XSLT 2.0 and XPath 2.0.

[2.0 – Schema]
This text represents information that applies to schema-aware XSLT 2.0
processors.

How to Contact Us
We have tested and verified the information in this book to the best of our ability, but
you may find that features have changed (or even that we have made mistakes!). Please
let us know about any errors you find, as well as your suggestions for future editions,
by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

The web site for this book lists examples, errata, and plans for future editions. You can
access this page at:

xvi | Preface

http://www.oreilly.com/catalog/9780596527211

For more information about our books, conferences, software, resource centers, and
the O’Reilly Network, see our web site:

http://www.oreilly.com

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Acknowledgments for the Second Edition
I want to thank Jeni Tennison for being the lead reviewer of this edition. Her ability to
see through to the essence of a problem and point out the simplest and most elegant
way to solve it is astounding. I have blisters from smacking my forehead as I read her
review comments, thinking at the time, “Of course! I should have seen that right away.”
Jeni, thank you.

I also benefited from Patricia Walmsley’s excellent review, especially in the appendixes
that cover all the elements and functions in XSLT, XPath, and XQuery. The examples
and terminology in those sections are far more useful and correct as a result.

A big thanks to Michael Kay for providing a copy of Saxon-SA to test the schema ex-
amples in the book. The entire XSLT community owes him an enormous debt for
making the XSLT 2.0 spec robust, readable, and complete, and for writing the Saxon
XSLT engine.

This book was written entirely in DocBook, a very powerful XML vocabulary for pub-
lishing. Two books have been invaluable as I’ve worked with DocBook. The first is
O’Reilly’s DocBook: The Definitive Guide, written by Norm Walsh and Leonard
Mueller (available online at http://www.oreilly.com/catalog/docbook/chapter/book/doc
book.html). If you want to know anything about DocBook, this is the place to look.
The open source community also maintains an extremely sophisticated set of XSLT
stylesheets that transform DocBook into a variety of other formats. For help in using
the DocBook XSL, Bob Stayton’s DocBook XSL: The Complete Guide (Sagehill Enter-
prises; available online at http://sagehill.net/book-description.html) was invaluable.
Thanks to all three of these great authors.

Preface | xvii

http://www.oreilly.com/catalog/9780596527211
http://www.oreilly.com
http://safari.oreilly.com
http://www.oreilly.com/catalog/docbook/chapter/book/docbook.html
http://www.oreilly.com/catalog/docbook/chapter/book/docbook.html
http://sagehill.net/book-description.html

I also want to thank the people I’ve worked with over the last few years. The IBM
developerWorks team is still a great influence on me. I’ll always think of myself as part
of the developerWorks family. During my time with IBM’s Developer Skills organiza-
tion, I had the great pleasure of working with an incredibly talented team. That group
is paid to give away as much knowledge as possible, along with free software to pro-
fessors and students around the world. Finally, I want to thank the members of my
current team in IBM’s Software Group Strategy organization. I’m very happy to be
working again for Dirk Nicol, the father of developerWorks.

I will resist the temptation to name names here in fear of forgetting someone. I hope
all of you know how much you mean to me, and how much I’ve learned from all of you.

Finally, I want to thank Simon St.Laurent for his guidance on the second edition. Both
of us were nervous about figuring out how to add XSLT 2.0 and XPath 2.0 to this book
without creating a 5,000 page tome. Unfortunately, I also relied on Simon’s patience
as portions of the book took far longer than either of us had hoped. Simon, you’re the
best.

Acknowledgments from the First Edition
First and foremost, I’d like to thank the reviewers of this book. David Marston of Lotus
was the lead reviewer; David, thank you so much for your comments, wisdom, and
knowledge. Along the way, I also got a lot of good feedback and encouragement from
Tony Colle, Slavko Malesvic, Dr. Joe Molitoris, Shane O’Donnell, Andy Piper, Sree-
nivas Ramarao, Mike Riley, and Willie Wheeler. This book is significantly better be-
cause of your comments and other efforts.

I’d also like to thank my teammates at developerWorks for encouraging me to under-
take this project. Taking on an additional full-time job hasn’t been easy, but their ad-
vice, flexibility, and understanding as I’ve tried to balance my responsibilities has been
invaluable. Even more valuable is the fact that I’m surrounded by some of the most
interesting, creative, and remarkable people I’ve ever known. You guys rule.

For the times I’ve been at home (in Raleigh, North Carolina), I’ve depended on my
nutritional advisors at Schiano’s Pizza: “Hey, you want your usual?” (Slight pause.)
“Yeah, that’d be great, thanks.” Nothing’s as comforting as a couple of slices. If you’re
within a day’s drive of Raleigh, I strongly encourage you to visit.

Finally, I’d like to thank the staff at O’Reilly, especially Laurie Petrycki and Simon
St.Laurent. Laurie, thank you for convincing me to take on this project and for sticking
with me when my ability to find the time to write was in doubt. Simon, I’ve enjoyed
reading your books for years; it’s been an honor to work with you. Your guidance,
technical insight, patience, and suggestions were invaluable.

Thanks so much to all of you!

xviii | Preface

CHAPTER 1

Getting Started

In this chapter, we review the design rationale behind XSLT and XPath and discuss the
basics of XML. We also talk about other web standards and how they relate to XSLT
and XPath. We conclude the chapter with a brief discussion of how to set up an XSLT
processor on your machine so you can work with the examples throughout the book.

The Design of XSLT
XML went from working group to entrenched buzzword in record time. Its flexibility
as a language for presenting structured data made it the lingua franca for data inter-
change. Early adopters used programming interfaces such as the Document Object
Model (DOM) and the Simple API for XML (SAX) to parse and process XML docu-
ments. As XML became mainstream, however, it was clear that the average web citizen
couldn’t be expected to hack Java, Visual Basic, Perl, or Python code to work with
documents. What was needed was a flexible, powerful, yet relatively simple language
capable of processing XML.

What the world needed was XSLT.

XSLT, the Extensible Stylesheet Language for Transformations, is an official recom-
mendation of the World Wide Web Consortium (W3C). It provides a flexible, powerful
language for transforming XML documents into something else, such as an HTML
document, another XML document, a Portable Document Format (PDF) file, a Scalable
Vector Graphics (SVG) file, a Virtual Reality Modeling Language (VRML) file, Java
code, a flat text file, a JPEG file, or most anything you want. You write an XSLT style-
sheet to define the rules for transforming an XML document, and the XSLT processor
does the work.

The W3C has defined two families of standards for stylesheets. The oldest and simplest
is Cascading Style Sheets (CSS), a mechanism used to define various properties of
markup elements. Although CSS can be used with XML, it is most often used to style
HTML documents. I can use CSS properties to define certain elements to be rendered
in blue, or in 58-point type, or in boldface. That’s all well and good, but there are many
things that CSS can’t do:

1

• CSS can’t change the order in which elements appear in a document. If you want
to sort certain elements or filter elements based on a certain property, CSS won’t
do the job.

• CSS can’t do computations. If you want to calculate and output a value (maybe
you want to add up the numeric value of all <price> elements in a document), CSS
won’t do the job.

• CSS can’t combine multiple documents. If you want to combine 53 purchase order
documents and print a summary of all items ordered in those purchase orders, CSS
won’t do the job.

Don’t take this section as a criticism of CSS; XSLT and CSS were de-
signed for different purposes. One fairly common use of XSLT is to
generate an HTML document that uses CSS. See “The XPath View of
an XML Document” in Chapter 3 for an example that uses XSLT to
generate CSS classes, and then uses those classes to format the HTML
elements

XSLT was created to be a more powerful, flexible language for transforming documents.
In this book, we go through all the features of XSLT and discuss each of them in terms
of practical examples. Some of XSLT’s design goals specify that:

• An XSLT stylesheet should be an XML document. This means that you can write
a stylesheet that transforms a second stylesheet into another stylesheet. This kind
of recursive thinking is common in XSLT.

• The XSLT language should be based on pattern matching. Most of our stylesheets
consist of rules (called templates in XSLT) used to transform a document. Each rule
says, “When you see part of a document that looks like this, here’s how you convert
it into something else.” This is probably different from any programming you’ve
previously done.

• XSLT should be designed to be free of side effects. In other words, XSLT is designed
to be optimized so that many different stylesheet rules could be applied simulta-
neously. The biggest impact of this is that variables can’t be modified. Once a
variable is bound, you can’t change its value; if variables could be changed, then
processing one stylesheet rule might have side effects that impact other stylesheet
rules. This is almost certainly different from any programming you’ve previously
done.

XSLT is heavily influenced by the design of functional programming languages, such
as Lisp, Scheme, and Haskell. These languages also feature immutable variables.
Instead of defining the templates of XSLT, functional programming languages de-
fine programs as a series of functions, each of which generates a well-defined output
(free from side effects, of course) in response to a well-defined input. The goal is
to execute the instructions of a given XSLT template without affecting the execu-
tion of any other XSLT template.

2 | Chapter 1: Getting Started

• Instead of looping, XSLT uses iteration and recursion. Given that variables can’t
be changed, how do you do something like a for or do-while loop? XSLT uses two
equivalent techniques: iteration and recursion. Iteration means that you can write
an XSLT template that says, “Get all the things that look like this, and here’s what
I want you to do with each of them.” Although that’s different from a do-while
loop, usually what you do in a procedural language is something like, “Do this
while there are any items left to process.” In that case, iteration does exactly what
you want.

Recursion takes some getting used to. If you must implement something like a
for statement (for i=1 to 10 do, for example), recursion is the way to go. There
are a number of examples of recursion throughout the book; you can flip ahead to
“Using Recursion to Do Most Anything” in Chapter 5 for more information.

Given these design goals, what are XSLT’s strengths? Here are some scenarios:

• Your web site needs to deliver information to a variety of devices. You need to
support ordinary desktop browsers, as well as pagers, mobile phones, and other
low-resolution, low-function devices. It would be great if you could create your
information in structured documents, then transform those documents into all the
formats you need.

• You need to exchange data with your partners, but all of you use different database
systems. It would be great if you could define a common XML data format, then
transform documents written in that format into the import files you need (SQL
statements, comma-separated values, etc.).

• To stay on the cutting edge, your web site gets a complete visual redesign every
few months. Even though things such as server-side includes and CSS can help,
they can’t do everything. It would be great if your data were in a flexible format
that could be transformed into any look and feel, simplifying the redesign process.

• You have documents in several different formats. All the documents are machine-
readable, but it’s a hassle to write programs to parse and process all of them. It
would be great if you could combine all of the documents into a single format, then
generate summary documents and reports based on that collection of documents.
It would be even better if the report could contain calculated values, automatically
generated graphics, and formatting for high-quality printing.

Throughout the book, we’ll demonstrate XSLT solutions for problems just like these.
Most chapters focus on particular techniques, such as sorting, grouping, and generating
links between pieces of data, although we’ll start with a gentle introduction to the
basics.

[2.0] The Design of XSLT 2.0
XSLT 2.0 is a major enhancement to the language. XSLT 2.0 uses XPath 2.0, which
itself went through many significant changes. The gap between XSLT 1.0/XPath 1.0

The Design of XSLT | 3

and XSLT 2.0/XPath 2.0 was a little over seven years (November 16, 1999 to January
23, 2007). There were two major requirements that led to the monumental amount of
work required to create XSLT 2.0 and XPath 2.0:

Support for XML Schema
XSLT and XPath now support XML Schema, which means nodes and variables can
have datatypes. We can define a value to be of type xs:dateTime, and the XSLT
processor will enforce that requirement. All XSLT 2.0 processors support the basic
XML Schema datatypes. A schema-aware processor also supports custom data-
types. If we have a datatype named purchaseOrder, we can use a schema-aware
processor to work with values of that type.

Integration with XQuery
The initial work for XQuery began in 1998, and version 1.0 became a W3C Rec-
ommendation on January 23, 2007. XQuery 1.0 and XPath 2.0 share a common
data model, functions, and operators. Coordinating the efforts of the XQuery,
XPath, and XSLT working groups must have been a challenge.

The birthing pains of XSLT 2.0 and XPath 2.0 are behind us now, and we have a more
powerful language for transforming documents. We’ll discuss the changes to the lan-
guage as they’re relevant to our discussion of common tasks that you’ll probably want
to do with XSLT. All of the technical details are covered in the appendixes.

XML Basics
Almost everything we do in this book deals with XML documents. XSLT stylesheets
are XML documents themselves, and they’re designed to transform an XML document
into something else. If you don’t have much experience with XML, we’ll review the
basics here. For more information on XML, check out Erik T. Ray’s Learning XML
(O’Reilly, 2001) and Elliotte Rusty Harold and W. Scott Means’s XML in a Nutshell
(O’Reilly, 2001).

XML’s Heritage
XML’s heritage is in the Standard Generalized Markup Language (SGML). Created by
Dr. Charles Goldfarb in the 1970s, SGML is widely used in high-end publishing sys-
tems. Unfortunately, SGML’s perceived complexity prevented its widespread adoption
across the industry (SGML also stands for “sounds great, maybe later”). SGML got a
boost when Tim Berners-Lee based HTML on SGML. Overnight, the whole computing
industry was using a markup language to build documents and applications.

The problem with HTML is that its tags were designed for the interaction between
humans and machines. When the Web was invented in the late 1980s, that was just
fine. As the Web moved into all aspects of our lives, HTML was asked to do lots of
strange things. We’ve all built HTML pages with awkward table structures, 1-pixel

4 | Chapter 1: Getting Started

GIFs, and other nonsense just to get the page to look right in the browser. XML is
designed to get us out of this rut and back into the world of structured documents.

Whatever its limitations, HTML is the most popular markup language ever created.
Given its popularity, why do we need XML? Consider this extremely informative
HTML element:

<td>12304</td>

What does this fascinating piece of content represent?

• Is it the postal code for Schenectady, New York?

• Is it the number of light bulbs replaced each month in Las Vegas?

• Is it the number of Volkswagens sold in Hong Kong last year?

• Is it the number of tons of steel in the Sydney Harbour Bridge?

The answer: maybe, maybe not. The point of this silly example is that there’s no struc-
ture to this data. Even if we include the entire table, it takes intelligence (real, live
intelligence, the kind between your ears) to make sense of this. If you saw this cell in a
table next to another cell that contained the text “Schenectady,” and the heading above
the table read “Postal Codes for the State of New York,” then as a human being, you
could interpret the contents of this cell correctly. On the other hand, if you wanted to
write a piece of code that took any HTML table and attempted to determine whether
any of the cells in the table contained postal codes, you’d find that difficult, to say the
least.

Most HTML pages have one goal in mind: the appearance of the document. Veterans
of the markup industry know that this is definitely not the way to create content. The
separation of content and presentation is a long-established tenet of the publishing in-
dustry; unfortunately, most HTML pages aren’t even close to approaching this ideal.
An XML document should contain information, marked up with tags that describe
what all the pieces of information are, as well as the relationship between those items.
Presenting the document (also known as rendering) involves rules and decisions sepa-
rate from the document itself. As we work through dozens of sample documents and
applications, you’ll see how delaying the rendering decisions as long as possible has
significant advantages.

Let’s look at another marked-up document. Consider this:

<?xml version="1.0"?>
<postalcodes>
 <title>Most-used postal codes in November 2000</title>
 <item>
 <city>Schenectady</city>
 <postalcode>12304</postalcode>
 <usage-count>2039</usage-count>
 </item>
 <item>
 <city>Kuala Lumpur</city>
 <postalcode>57000</postalcode>

XML Basics | 5

 <usage-count>1983</usage-count>
 </item>
 <item>
 <city>London</city>
 <postalcode>SW1P 4RG</postalcode>
 <usage-count>1722</usage-count>
 </item>
 ...
</postalcodes>

Although we’re still in the realm of contrived examples, it would be fairly easy to write
a piece of code to find the postal codes in any document that used this set of tags (as
opposed to HTML’s <table>, <tr>, <td>, etc.). Our code would look for the contents
of any <postalcode> elements in the document. (Not to get ahead of ourselves here, but
writing an XSLT stylesheet to do this might take all of 30 minutes, including a 25-
minute nap.) A well-designed XML document identifies each piece of data in the docu-
ment and models the relationships between those pieces of data. This means we can
be confident that we’re processing an XML document correctly.

Again, the key idea here is that we’re separating content from presentation. Our XML
document clearly delineates the pieces of data and puts them into a format we can parse
easily. In this book, we illustrate a number of techniques for transforming this XML
document into a variety of formats. Among other things, we can transform the item
<postalcode>12304</postalcode> into <td>12304</td>.

XML Document Rules
Continuing our trip through the basics of XML, there are several rules you need to keep
in mind when creating XML documents. All stylesheets we develop in this book are
themselves XML documents, so all the rules of XML documents apply to everything
we do. The rules are pretty simple, even though the vast majority of HTML documents
don’t follow them.

One important point: the XML 1.0 specification makes it clear that when an XML parser
finds an XML document that breaks the rules, the parser is supposed to throw an
exception and stop. The parser is not allowed to guess what the document structure
should actually be. This specification avoids recreating the HTML world, where lots
of ugly documents are still rendered by the average browser.

An XML document must be contained in a single element

The first element in your XML document must contain the entire document. That first
element is called the document element or the root element. If more than one document
element is in the document, the XML parser throws an exception. This XML document
is perfectly legal:

<?xml version="1.0"?>
<greeting>

6 | Chapter 1: Getting Started

 Hello, World!
</greeting>

To be precise, this document is well-formed. XML documents are described as well-
formed and valid (we’ll define those terms in a minute). This XML document isn’t legal
at all:

<?xml version="1.0"?>
<greeting>
 Hello, World!
</greeting>
<greeting>
 Hey, Y'all!
</greeting>

There are two root elements in this document, so an XML parser refuses to process it.
Also, be aware that the XML declaration (the <?xml version="1.0"?> part; more on this
later) isn’t an element at all.

All elements must be nested

If you start one element inside another, you have to end it there, too. An HTML browser
is happy to render this document:

I really, <i>really like XML.</i>

But an XML parser will throw an exception when it sees this document. If you want
the same effect, you would need to code this:

I really, <i>really</i><i> like XML.</i>

All attributes must be quoted

You can quote the attributes with either single or double quotes. These two XML tags
are equivalent:

If you need to define an attribute that contains single or double quotes, you can use
one style of quote inside the other. If you need both single and double quotes in an
attribute, use the predefined entities " for double quotes and use ' for single
quotes:

<book title="XSLT, Second Edition" publisher="O'Reilly/">
<book title="XSLT, Second Edition" publisher='O'reilly"/>

One more note: XML doesn’t allow attributes without values. In other words, HTML
elements such as <ol compact> aren’t valid in XML. To code this element in XML, you’d
have to give the attribute a value, as in <ol compact="compact">. (You have to do things
this way in XHTML as well.)

XML Basics | 7

XML tags are case-sensitive

In HTML, <h1> and <H1> are the same. In XML, they’re not. If you try to end an <h1>
element with </H1>, the parser will throw an exception.

All end tags are required

This is another area where most HTML documents break. Your browser doesn’t care
whether you don’t have a </p> or </br> tag, but your XML parser does.

Empty tags can contain the end marker

In other words, these two XML fragments are identical:

<lily age="13"></lily>

<lily age="13"/>

Notice that there is nothing, not even whitespace, between the start tag and the end
tag in the first example; that’s what makes this an empty tag.

XML declarations

Some XML documents begin with an XML declaration, which is a line similar to this:

<?xml version="1.0" encoding="ISO-8859-1"?>

If no encoding is specified, the XML parser assumes you’re using UTF-8 or UTF-16.
UTF, the Unicode Transformation Format, is a Unicode standard that uses different
numbers of bytes to represent virtually every character and ideograph from the world’s
languages. Be aware that each parser supports a different set of encodings, so you need
to check your parser’s documentation to find out what your options are.

Document Type Definitions (DTDs) and XML Schemas

All of the rules we’ve discussed so far apply to all XML documents. In addition, you
can use DTDs and Schemas to define other constraints for your XML documents. DTDs
and Schemas are metalanguages that let you define the characteristics of an XML vo-
cabulary. For example, you might want to specify that any XML document describing
a purchase order must begin with a <po> element, and the <po> element in turn contains
a <customer-id> element, one or more <item-ordered> elements, and an <order-date>
element. In addition, each <item-ordered> element must contain a part-number attribute
and a quantity attribute.

Here’s a sample DTD that defines the constraints we just mentioned:

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT po (customer-id , item-ordered+ , order-date)>

<!ELEMENT customer-id (#PCDATA)>

8 | Chapter 1: Getting Started

<!ELEMENT item-ordered EMPTY>

<!ATTLIST item-ordered part-number CDATA #REQUIRED
 quantity CDATA #REQUIRED >
<!ELEMENT order-date EMPTY>

<!ATTLIST order-date day CDATA #REQUIRED
 month CDATA #REQUIRED
 year CDATA #REQUIRED >

And here’s an XML Schema that defines the same document type:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="po">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="customer-id"/>
 <xsd:element ref="item-ordered" maxOccurs="unbounded"/>
 <xsd:element ref="order-date"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="customer-id" type="xsd:string"/>

 <xsd:element name="item-ordered">
 <xsd:complexType>
 <xsd:attribute name="part-number" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[0-9]{5}(-[0-9]{4})?"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="quantity" use="required" type="xsd:integer"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="order-date">
 <xsd:complexType>
 <xsd:attribute name="day" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxInclusive value="31"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="month" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxInclusive value="12"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>

XML Basics | 9

 <xsd:attribute name="year" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:gYear">
 <xsd:maxInclusive value="2100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>

Schemas have two significant advantages over DTDs:

They can define datatypes and other complex structures that are difficult or impossible to
do in a DTD

In the previous example, we defined various constraints for the data in our XML
documents. We defined that the day attribute must be an integer between 1 and
31, and the month attribute must be an integer between 1 and 12. We also used a
regular expression to define a part-number attribute as a five-digit number, option-
ally followed by a dash and a four-digit number. None of those things are possible
in a DTD. Schemas are far more powerful than DTDs; see Appendix D for an
overview of schemas and what they can do.

Schemas are themselves XML documents
Since they are XML documents, we can write XSLT stylesheets to manipulate them.
For example, it would be useful to create a graphical representation of an XML
Schema. We could create a hierarchical diagram to indicate which elements could
appear inside other element. XML Schema also provides the <xsd:annotation> and
<xsd:documentation> elements. Those elements let us add as much documentation
as we want inside the schema itself. We could then use a stylesheet to transform
the schema into an HTML document or PDF file, using the relationships between
elements, attributes, datatypes, and other information to generate highly struc-
tured information.

The best way to define the <order-date> attribute would be to use the
XML Schema xsd:date datatype:

 <xsd:element name="order-date" type="xsd:date"/>

In the DTD, we separated the date into three parts so it could be sorted
or formatted in different ways. With the xsd:date datatype, the schema
ensures that the date is valid; we can use a variety of functions to sort
or format the date in different ways. (We’ll discuss those functions in
“[2.0] Formatting Dates and Times” in Chapter 4.)

Well-formed versus valid documents

Any XML document that follows the rules described here is said to be well-formed. In
addition, if an XML document references a set of rules that define how the document

10 | Chapter 1: Getting Started

is structured (either a DTD or an XML Schema), and it follows all those rules, it is said
to be a valid document.

All valid documents are well-formed; on the other hand, not all well-formed documents
are valid.

Be aware that XML Schema validation can be done partially; XML
Schema allows us to define parts of the document that should not be
validated at all. On the other hand, DTD validation fails if any part of
an XML document doesn’t match the DTD.

Tags versus elements

Although many people use the two terms interchangably, a tag is different from an
element. A tag is the text between (and including) the angle brackets (< and >). There
are start tags, end tags, and empty tags. A tag consists of an element name and, if it is
a start tag or an empty tag, some optional attributes. (Unlike other markup languages,
end tags in XML cannot contain attributes.) An element consists of its start and end
tags and everything in between. This might include text, other elements, and com-
ments, as well as other things such as entity references and processing instructions.

Namespaces

A final XML topic we’ll mention here is namespaces. Namespaces are designed to dis-
tinguish between two tags that have the same name. For example, if we have an online
bookstore, we could design an XML vocabulary for books. When we ship an order to
a customer, the postal service requires the customer’s address to be in a certain format.
It’s likely that both vocabularies will define a <title> element. Our <title> element
refers to the title of a book, while the shipping company’s <title> element refers to the
courtesy title of a customer (Mr., Ms., Mrs., etc.). An XML order document refers to
both books and customers, so we’ll use a namespace to distinguish between the two
<title> elements. Namespaces are declared as follows:

<xyz xmlns:books="http://www.myco.com/books"
 xmlns:addr="http://www.usps.com/addresses">

In this example, the xmlns:books attribute associates the prefix books with one name-
space, and the xmlns:addr attribute associates the paintings prefix with another name-
space. This means that a title element from the books namespace would be coded as
<books:title>, while a title element from the addr namespace would be referred to as
<addr:title>.

I mention namespaces here primarily because all XSLT elements we use in this book
are prefixed with the xsl namespace prefix. All stylesheets we write begin like this:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

XML Basics | 11

(Obviously a stylesheet that uses the features of XSLT 2.0 starts with version="2.0".)
This opening associates the xsl namespace prefix with the string http://www.w3.org/
1999/XSL/Transform. The value of the namespace prefix doesn’t matter; we could start
our stylesheets like this:

<?xml version="1.0"?>
<pdq:stylesheet version="1.0"
 xmlns:pdq="http://www.w3.org/1999/XSL/Transform">

What matters is the string to which the namespace prefix is mapped. Also keep in mind
that all XSLT stylesheets use namespace prefixes to process the XML elements they
contain. By default, anything that doesn’t use the xsl namespace prefix is not
processed—instead, it’s written to the result tree. We’ll discuss these topics in more
detail as we go through the book.

[2.0] Datatypes

XSLT 2.0 provides support for most of the datatypes defined in XML Schema. XSLT
2.0 also defines new datatypes for durations. For example, we can define an XSLT
variable and specify that its datatype is xs:integer or xs:dateTime. If we’re using a
schema-aware XSLT 2.0 processor, we can define our own datatypes and use those just
like all the datatypes defined by XML Schema and XSLT 2.0. We cover datatypes and
schemas in Chapter 3.

Programming Interfaces for XML: DOM, SAX, and Others
The two most popular APIs used to parse XML documents are the Document Object
Model (DOM) and the Simple API for XML (SAX). DOM is an official recommendation
of the W3C (available at http://www.w3.org/TR/REC-DOM-Level-1), while SAX is a de
facto standard created by David Megginson and others on the XML-DEV mailing list
(http://lists.xml.org/archives). We’ll discuss these two APIs briefly here. We won’t use
them much in this book, but learning more about them will give you some insight into
how most XSLT processors work.

See http://www.saxproject.org/ for the SAX standard. If you’d like to
learn more about the XML-DEV mailing list, send email to mailto:xml-
dev-subscribe@lists.xml.org. You can also check out http://lists.xml.org/
archives/xml-dev/ to see the XML-DEV mailing list archives.

DOM

DOM is designed to build a tree view of your document. Remember that all XML
documents must be contained in a single element. That single element then becomes
the root of the tree. The DOM specification defines several language-neutral interfaces,
described here:

12 | Chapter 1: Getting Started

http://www.w3.org/TR/REC-DOM-Level-1
http://lists.xml.org/archives
http://www.saxproject.org/
mailto:xml-dev-subscribe@lists.xml.org
mailto:xml-dev-subscribe@lists.xml.org
http://lists.xml.org/archives/xml-dev/
http://lists.xml.org/archives/xml-dev/

Node
This interface is the base datatype of the DOM. Document, Element, Attr, Text,
Comment, and ProcessingInstruction all extend the Node interface.

Document
This object contains the DOM representation of the XML document. Given a
Document object, you can get the root of the tree (the Document element); from the
root, you can move through the tree to find all elements, attributes, text, comments,
processing instructions, etc. in the XML document.

Element
This interface represents an element in an XML document.

Attr
This interface represents an attribute of an element in an XML document.

Text
This interface represents a piece of text from the XML document. Any text in your
XML document becomes a Text node. This means that the text of a DOM object
is a child of the object, not a property of it. The text of an Element is represented
as a Text child of an Element object; the text of an Attr is also represented that way.

Comment
This interface represents a comment in the XML document. A comment begins
with <!-- and ends with -->. The only restriction on its contents is that two con-
secutive hyphens (--) can appear only at the start or end of the comment. Other
than that, a comment can include anything, such as angle brackets (< >), amper-
sands (&), and single or double quotation marks (' ").

ProcessingInstruction
This interface represents a processing instruction in the XML document. Process-
ing instructions look like this:

<?xml-stylesheet href="case-study.xsl" type="text/xsl"?>

Processing instructions contain processor-specific information. The PI here (PI is
XML jargon—feel free to drop this into casual conversations to impress your
friends) is the standard way to associate an XSLT stylesheet with an XML document
(more on this in a minute).

When you parse an XML document with a DOM parser, it:

• Creates objects (Elements, Attr, Text, Comments) representing the contents of the
document. These objects implement the interfaces defined in the DOM
specification.

• Arranges these objects in a tree. Each Element in the XML document has some
properties (such as the element’s name) and may also have some children.

• Parses the entire document before control returns to your code. This means that
for large documents, there is a long delay while the document is parsed.

XML Basics | 13

The most significant thing about the DOM is that it is based on a tree view of your
document. An XSLT processor uses a very similar tree view (with some slight differ-
ences, such as the fact that not everything we deal with in XPath and XSLT has the
same root element). Understanding how a DOM parser works makes it easier to un-
derstand how an XSLT processor views your document.

DOM, XSLT, and XPath all use tree structures to represent data from
an XML document. For this reason, it’s important to have at least a casual knowledge
of how DOM builds a tree structure. Our earlier <postalcodes> document is shown as
a DOM tree in Figure 1-1.

If we want to perform tasks such as find different parts of our XML document, sort the
subtrees based on the first character of the text of the <postalcode> element, or select
only the subtrees in which the text of the <usage-count> element has a numeric value
greater than 500, we have to start at the top of the DOM tree and work our way down
through the root element’s descendants. When we write XSLT stylesheets, we also start
at the root of the tree and work our way down.

A sample DOM tree.

Figure 1-1. DOM tree representation of an XML document

14 | Chapter 1: Getting Started

To be honest, the DOM tree built for our document is more complicated
than our beautiful picture indicates. The whitespace characters in our
document (carriage return/line feed, tabs, spaces, etc.) become Text
nodes. Normally it’s a good idea to remove this whitespace so the DOM
tree won’t be littered with these useless nodes, but I include them here
to give you a sense of the XML document’s structure.

SAX

The Simple API for XML was developed by David Megginson and others on the XML-
DEV mailing list. It has several important differences from DOM:

• The SAX API is interactive. As a SAX parser processes your document, it sends
events to your code. You don’t have to wait for the parser to finish the entire docu-
ment as you do with the DOM; you get events from the parser immediately. These
events let you know when the parser finds the start of the document, the start of
an element, some text, the end of an element, a processing instruction, the end of
the document, etc.

• SAX is designed to avoid the large memory footprint of DOM. In the SAX world,
you’re told when the parser finds things in the XML document; it’s up to you to
save those things. If you don’t do anything to store the data found by the parser,
it goes into the bit bucket.

• SAX doesn’t provide the hierarchical view of the document that DOM does. If you
need to know a lot about the structure of an XML document and the context of a
given element, SAX isn’t much help. Each SAX event is stateless; that is, a SAX
event won’t tell you, “Here’s some text for the <postalcode> element I mentioned
earlier.” A SAX parser only tells you, “Here’s some text.” If you need to know about
an XML document’s structure, you have to keep track of that information yourself.

The best thing about SAX is that it is interactive. Most of the transformations currently
done with XSLT take place on the server. As of this writing, most XSLT processors are
based on DOM parsers. In the near future, however, we’ll see XSLT processors based
on SAX parsers. This means that the processor can start generating results almost as
soon as the parse of the source document begins, resulting in better throughput and
creating the perception of faster service. Because DOM, XPath, and XSLT all use trees
to represent XML documents, DOM is more relevant to our discussions here. Never-
theless, it’s useful to know how SAX parsers work, especially as SAX-based XSLT
processors begin to rear their speedy little heads.

Other programming interfaces

There are a number of other XML programming interfaces, including JDOM, DOM4J,
and StAX. These have two important characteristics:

XML Basics | 15

In-memory versus event-driven
In-memory interfaces, such as DOM, create data structures that represent the XML
document. Event-driven interfaces, such as SAX, receive data from the parser as it
parses the document.

Push versus pull
A push interface pushes data from the parser to the application. When the parser
has some data, it uses a callback interface to push that data to the application. SAX
is an example of a push interface. On the other hand, a pull interface is still event-
driven, but the application tells the parser when it wants the next event. StAX, the
Streaming API for XML, is an example of a pull interface. (StAX is also known as
JSR 173.)

There are two other approaches we’ll mention briefly. In data binding, an XML docu-
ment is transformed into an object. The contents of the original XML document are
represented as the properties of that object. Finally, a new parsing technique called
non-extractive XML processing creates Virtual Token Descriptors that contain the off-
set, length, and other information of XML tokens inside the XML file itself.

The Wikipedia entry http://en.wikipedia.org/wiki/XML#Processing_XML_files has
more detail on these approaches as well as links to various tools that implement them.

XSLT Standards
XSLT 1.0 is defined in two documents: the XSLT and XPath specifications. XSLT 2.0
and XPath 2.0, on the other hand, are defined in a set of eight documents. We’ll discuss
all of those specifications briefly in the next section.

XSL transformations (XSLT) version 1.0

The original standard became a recommendation of the W3C on November 16, 1999.
The spec lives here: http://www.w3.org/TR/xslt.

XML path language (XPath) version 1.0

XPath 1.0 became a standard on the same day as XSLT 1.0. XPath began as part of
XSLT. If we’re going to write a stylesheet to transform an XML document, we have to
have a syntax for describing different parts of that document. As the development of
XSLT continued, it became obvious that XPath was useful for a variety of applications,
so XPath became a separate standard. You can find the definition of XPath 1.0 at http://
www.w3.org/TR/xpath.

XSL transformations (XSLT) version 2.0

The basic definition of XSLT 2.0 is at http://www.w3.org/TR/xslt20/. This document
defines the elements of XSLT 2.0 and a variety of functions and also defines how XSLT
2.0 processes an XML document.

16 | Chapter 1: Getting Started

http://en.wikipedia.org/wiki/XML#Processing_XML_files
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt20/

XML path language (XPath) version 2.0

The basic definition of XPath 2.0 is at http://www.w3.org/TR/xpath20/. XPath 2.0 is
built on top of several other documents; we’ll list those next.

XQuery 1.0 and XPath 2.0 Data Model (XDM)

This spec defines the way XPath 2.0, XSLT 2.0, and XQuery 1.0 organize data. It defines
the information contained in the input to an XSLT 2.0 or XQuery 1.0 processor. It also
defines all of the legal values for expressions in XPath 2.0, XSLT 2.0, and XQuery 1.0.
You can find the spec at http://www.w3.org/TR/xpath-datamodel/.

XQuery 1.0 and XPath 2.0 functions and operators

This spec, also known as F&O, defines all of the functions and data operators available
in XPath 2.0 and XQuery 1.0. For example, the spec defines how an
xs:yearMonthDuration can be divided by an xs:double value. It also defines the
matches() function, which determines if a value matches a regular expression. The spec
is available at http://www.w3.org/TR/xpath-functions/.

XQuery 1.0 and XPath 2.0 formal semantics

The formal semantics spec defines a precise meaning to all of the legal expressions in
XPath 2.0 and XQuery 1.0. The XQuery 1.0 and XPath 2.0 Data Model is used in those
precise definitions. Possibly the least useful spec to XSLT programmers, it’s available
at http://www.w3.org/TR/xquery-semantics/.

XSLT 2.0 and XQuery 1.0 serialization

The serialization spec defines how to take an instance of the XQuery 1.0/XPath 2.0
Data Model and serialize it. For the examples in this book, we’ll usually take the results
generated by our XSLT stylesheet and write them to a file; the serialization spec defines
how that process works. The spec is available at http://www.w3.org/TR/xslt-xquery-
serialization/.

XQuery 1.0: an XML query language

XQuery 1.0 is a separate language that is based on XPath and other query languages.
It is a superset of XPath 2.0. We won’t cover XQuery in any detail in this book, but be
aware that the data model, the functions, and the operators of XPath 2.0 are shared by
XQuery. See http://www.w3.org/TR/xquery/ for the complete details.

XML syntax for XQuery 1.0 (XQueryX)

One of the requirements of the XQuery working group was to provide an XML syntax
for the language. XQueryX provides that syntax. It maps the XQuery grammar into
XML tags. As such, it is not particularly easy or convenient for humans, but it can be

XML Basics | 17

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xquery/

very useful for various tools and utilities. The spec is available at http://www.w3.org/
TR/xqueryx.

XML Standards
When we talk about writing stylesheets, we’ll work with two standards: XSLT and
XPath. XSLT defines a set of primitives used to describe a document transformation,
while XPath defines a syntax for describing locations in XML documents. When we
write stylesheets, we’ll use XSLT to tell the processor what to do, and we’ll use XPath
to tell the processor what document to do it to. Both standards are available at the
W3C’s web site; see http://www.w3.org/TR/xslt and http://www.w3.org/TR/xpath for
more information.

There are other XML-related standards, of course. We’ll discuss them here briefly, with
a short mention of how (or whether) they relate to our work with XSLT and XPath.

XML 1.0

The foundation upon which everything else is built. See http://www.w3.org/TR/REC-
xml.

XML 1.1

You can find the XML 1.1 standard at http://www.w3.org/TR/xml11/.

The Extensible Stylesheet Language (XSL)

Also called the Formatting Objects specification or XSL-FO, this standard deals with
rendering XML elements. Although most people think of rendering as formatting for
a browser or a printed page, researchers use the specification to render XML elements
as Braille or as audio files. (That being said, the main market for this technology is in
producing high-quality printed output.) As of this writing, the latest version of XSL is
1.1. A couple of the examples in this book use formatting objects and the Apache XML
Project’s Formatting Object to PDF translator (FOP) tool; see http://xml.apache.org/
fop for more information on FOP. For more information on XSL, see http://
www.w3.org/TR/xsl.

XML Schemas

In our earlier examples, we had a brief example of an XML Schema. Part 1 of the
specification deals with XML document structures; it contains XML elements that de-
fine what can appear in an XML document. You use these elements to specify which
elements can be nested inside others, how many times each element can appear, the
attributes of those elements, and other features. Part 2 of the specification defines basic
datatypes used in XML Schemas and rules for deriving new datatypes from existing
ones.

18 | Chapter 1: Getting Started

http://www.w3.org/TR/xqueryx
http://www.w3.org/TR/xqueryx
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xml11/
http://xml.apache.org/fop
http://xml.apache.org/fop
http://www.w3.org/TR/xsl
http://www.w3.org/TR/xsl

The two specifications are available at http://www.w3.org/TR/xmlschema-1 and http://
www.w3.org/TR/xmlschema-2. For a good introduction to XML Schemas, see the XML
Schema Primer, available at http://www.w3.org/TR/xmlschema-0.

RelaxNG

RelaxNG is a simple schema language designed as an alternative to XML Schema. One
significant difference between the two is that RelaxNG avoids the many datatype def-
initions of XML Schema. With RelaxNG, you validate an XML document with datatype
definitions imported from elsewhere (including XML Schema, for example). The home
page of the OASIS RelaxNG committee is here: http://www.oasis-open.org/committees/
relax-ng/. You can find the latest version of the spec as well as a tutorial there.

Schematron

Schematron is an elegant way to validate documents. It has a simple syntax (only six
elements) and uses XPath to specify patterns in XML documents. The most interesting
and most widely used implementation of Schematron is written in XSLT. For more
information, including a link to the latest version of the ISO standard for Schematron,
visit http://www.schematron.com/.

The Simple API for XML (SAX)

The SAX API defines the events and interfaces used to interact with a SAX parser. SAX
and DOM are the most common APIs used to work with XML documents. See http://
www.saxproject.org/ for the complete specification.

Document Object Model (DOM)

The DOM, as we discussed earlier, is a programming API for documents. It defines a
set of interfaces and methods used to view an XML document as a tree structure. XSLT
and XPath use a similar tree view of XML documents. The home of the DOM is http://
www.w3.org/DOM/. This page contains links to all of the W3C Recommendations
(Levels 1, 2, and 3) and related documents. The DOM doesn’t affect what we’ll do here,
but it’s useful to have a passing knowledge of it. (The XPath data model is similar to
the DOM.)

Namespaces in XML

As we mentioned earlier, namespaces provide a way to avoid name collisions when two
XML elements have the same name. See http://www.w3.org/TR/REC-xml-names/ for
the version 1.0 spec; version 1.1 is at http://www.w3.org/TR/REC-xml-names11/.

Associating stylesheets with XML documents

It’s possible to reference an XSLT stylesheet within an XML document. This specifi-
cation uses processing instructions to define one or more stylesheets that should be

XML Basics | 19

http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xmlschema-0
http://www.oasis-open.org/committees/relax-ng/
http://www.oasis-open.org/committees/relax-ng/
http://www.schematron.com/
http://www.saxproject.org/
http://www.saxproject.org/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names11/

used to transform an XML document. You can define different stylesheets to be used
for different browsers. See http://www.w3.org/TR/xml-stylesheet for complete informa-
tion. Here’s the start of an XML document, with two associated stylesheets:

<?xml version="1.0"?>
<?xml-stylesheet href="docbook/html/docbook.xsl" type="text/xsl"?>
<?xml-stylesheet href="docbook/wap/docbook.xsl" type="text/xsl" media="wap"?>

In this example, the first stylesheet is the default because it doesn’t have a media at-
tribute. The second stylesheet will be used when the User-Agent field from the HTTP
header contains the string wap, identifying the requester of a document as a WAP
browser. The advantage of this technique is that you can define several different style-
sheets within a particular document and have each stylesheet generate useful results
for different browser or client types. The disadvantage of this technique is that we’re
effectively putting rendering instructions into our XML document, something we prefer
to avoid.

Scalable Vector Graphics (SVG)

The SVG specification defines an XML vocabulary for vector graphics. Described by
some as “PostScript with angle brackets,” it allows you to define images that can be
scaled to any size or resolution. See http://www.w3.org/TR/SVG/ for details.

XML pointer language (XPointer) version 1.0

XPointer provides a way to identify a fragment of a web resource. It uses XPath to
identify fragments. The XPointer Framework is defined at http://www.w3.org/TR/xptr-
framework/.

XML linking language (XLink) version 1.0

XLink defines an XML vocabulary for linking to other web resources within an XML
document. It supports the unidirectional links we’re all familiar with in HTML, as well
as more sophisticated links. See http://www.w3.org/TR/xlink/.

Installing XSLT Processors
Before we dive in to creating stylesheets, we’ll cover how to install four popular XSLT
processors.

Installing Xalan
In this section, we’ll go over how to install the Xalan XSLT processor. In the next
chapter, we’ll create our first stylesheet and use it to transform an XML document.

The installation process is pretty simple, assuming you already have a Java Runtime
Environment (JRE) installed on your machine. Although very little of the code we look

20 | Chapter 1: Getting Started

http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xlink/

at in this book uses Java, the Xalan XSLT processor itself is written in Java. Once you’ve
installed the JRE, go to http://xml.apache.org/xalan-j/ and download the latest stable
build of the code. (If you’re feeling brave, feel free to download last night’s build
instead.)

Once the Xalan .zip or .gzip file is downloaded, unpack it and add three files to your
CLASSPATH. The three files include two .jar files for the Xerces parser, and the .jar file
for the Xalan stylesheet engine itself. As of this writing, the .jar files are named xa
lan.jar, xercesImpl.jar, and xml-apis.jar. (There’s a fourth file, bsf.jar, that includes the
Bean Scripting Framework, but we’ll use that for extensions only.)

To make sure Xalan is installed correctly, go to a command prompt and type the fol-
lowing command:

java org.apache.xalan.xslt.Process

This is a Java class, so everything is case-sensitive. You should see an error message like
this:

java org.apache.xalan.xslt.Process
=xslproc options:
 -IN inputXMLURL
 [-XSL XSLTransformationURL]
 [-OUT outputURL]
 [-LXCIN compiledStylesheetFileNameIn]
 [-LXCOUT compiledStylesheetFileNameOutOut]
...

If you get this message, you’re all set! You’re ready for the next chapter, in which we’ll
build our very first XSLT stylesheet.

Installing Saxon
As of this writing, the most complete open source XSLT 2.0 stylesheet processor is
Saxon. Written by Michael Kay, the editor of the XSLT 2.0 spec, it is available at http://
saxon.sourceforge.net. When you download the file (currently saxonb9-0-0-2j.zip), add
saxon9.jar to your CLASSPATH. There are also nine other files, saxon9-ant.jar, saxon9-
dom.jar, saxon9-dom4j.jar, saxon9-jdom.jar, saxon9-s9api.jar, saxon9-sql.jar, saxon9-
xom.jar, saxon9-xpath.jar, and saxon9-xqj.jar. These .jar files enable additional func-
tions; see the Saxon documentation for more information about them. For most of
what we’ll do in this book, saxon9.jar is all you’ll need.

Once you’ve installed Saxon and updated your classpath, go to a command prompt
and type the following command:

java net.sf.saxon.Transform

You should get a message like this:

No source file name
Saxon 9.0.0.3J from Saxonica
Usage: see http://www.saxonica.com/documentation/using-xsl/commandline.html

Installing XSLT Processors | 21

http://xml.apache.org/xalan-j/
http://saxon.sourceforge.net
http://saxon.sourceforge.net

Options:
 -a Use xml-stylesheet PI, not style-doc argument
 -c:filename Use compiled stylesheet from file
 -cr:classname Use collection URI resolver class
 -dtd:on|off Validate using DTD
 -expand:on|off Expand defaults defined in schema/DTD
 -explain[:filename] Display compiled expression tree
 -ext:on|off Allow|Disallow external Java functions
 -im:modename Initial mode
 -it:template Initial template
 -l:on|off Line numbering for source document
 -m:classname Use message receiver class
 -o:filename Output file or directory
 -or:classname Use OutputURIResolver class
 -outval:recover|fatal Handling of validation errors on result document
 -p:on|off Recognize URI query parameters
 -r:classname Use URIResolver class
 -repeat:N Repeat N times for performance measurement
 -s:filename Initial source document
 -sa Schema-aware transformation
...

The error message will list dozens of options. Most of the time we’ll simply specify the
source XML file and the XSLT stylesheet.

Saxon is also available in a closed source version, Saxon-SA, that provides complete
support for the XML Schema functions defined in XSLT 2.0, XPath 2.0, and XQuery
1.0. All of the examples in this book that use schema-aware functions were tested with
the closed source, commercial version of Saxon.

To install the schema-aware version of Saxon, you need to add saxon9sa.jar to your
CLASSPATH. When you purchase Saxon-SA, you’ll get a saxon-license.lic file; put that file
into the Saxon/bin directory and add that directory to your system PATH. The command
to run the schema-aware version of Saxon is slightly different:

java com.saxonica.Transform

The version number will be different, but everything else should be the same:

No source file name
Saxon-SA 9.0.0.3J from Saxonica
Usage: see http://www.saxonica.com/documentation/using-xsl/commandline.html
Options:
 -a Use xml-stylesheet PI, not style-doc argument
...

Installing the Microsoft XSLT Processor
The most commonly used XSLT processor in the .NET world is the Microsoft XSLT
processor. The best way to find the tools is to visit http://msdn.microsoft.com/xml. As
of this writing (2008), the file you want to download is msxsl.exe. Put this on your
system path, then go to a command prompt and type the following command:

msxsl

22 | Chapter 1: Getting Started

http://msdn.microsoft.com/xml

You’ll see a message like this:

Microsoft (R) XSLT Processor Version 4.0

Usage: MSXSL source stylesheet [options] [param=value...] [xmlns:prefix=uri...]

Options:
 -? Show this message
 -o filename Write output to named file
 -m startMode Start the transform in this mode
 -xw Strip non-significant whitespace from source and stylesheet
...

In Chapter 9, we’ll look at C# code that uses the XSLT processor built into the .NET
framework. If we’re just transforming XML documents from the command line,
msxsl.exe is all we’ll need.

Installing the Altova XSLT Engine
As of this writing (early 2008), the only zero-cost XSLT 2.0 processor that provides
schema support is the Altova XSLT engine. This is the XSLT processor at the heart of
Altova’s XMLSpy product. It is currently a Windows-only download available under
a royalty-free license at http://www.altova.com/altovaxml.

To install the engine, download the software (currently a setup file named
altovaxml2008.exe) and run it. At a command prompt, type the following command:

altovaxml

You’ll see a message like this:

AltovaXML Version 2008 sp1
Copyright (c) 1998-2007 Altova GmbH. All rights reserved.
Use of this software is subject to the license agreement at
http://www.altova.com/altovaxmldla.html

Use the xslt1 engine:
 /xslt1 <filename> /in <filename> [/param name=value] [/out <filename>]
Use the xslt2 engine:
 /xslt2 <filename> /in <filename> [/param name=value] [/out <filename>]
Use the xquery engine:
 /xquery <filename> [/in <filename>] [/param name=value] [/out <filename>]
 [serialization options]
Use the validator:
 /validate <filename> [/schema <filename> | /dtd <filename>]
 /wellformed <filename>

Parameters:
 /validate, /v <filename> Schema validates the specified XML file
 /wellformed, /w <filename> Check if specified XML file is well-formed
 /xslt1 <filename> Sets the source for XSLT1 stylesheet
 /xslt2 <filename> Sets the source for XSLT2 stylesheet
 /xquery, /xq <filename> Sets the source for XQuery expression

Installing XSLT Processors | 23

http://www.altova.com/altovaxml

 /in <filename> Sets the source for XML data
 /out <filename> Sets the output file name
 If omitted, data is written to stdout
 /param <name>=<value> Adds external paramter

Summary
In this chapter, we’ve gone over the basics of XML and talked about DOM and SAX,
two standards that are commonly used by XSLT processors. We also talked about other
technology standards and how to install several stylesheet processors. At this point,
you’ve got everything you need to build and use your first stylesheets, which we’ll do
in the next chapter.

24 | Chapter 1: Getting Started

CHAPTER 2

The Obligatory Hello World Example

In future chapters, we’ll spend a lot of time talking about XSLT, XPath, and various
advanced functions used to transform XML documents. First, though, we’ll go through
a short example to illustrate how stylesheets work.

Goals of This Chapter
By the end of this chapter, you should know:

• How to create a basic stylesheet

• How to use a stylesheet to transform an XML document

• How a stylesheet processor uses a stylesheet to transform an XML document

• The structure of an XSLT stylesheet

Transforming Hello World
Continuing the tradition of Hello World examples begun by Brian Kernighan and
Dennis Ritchie in The C Programming Language (Prentice Hall, 1988), we’ll transform
a Hello World XML document.

Our Sample Document
First, we’ll look at our sample document. This simple XML document, courtesy of the
XML 1.0 specification, contains the famous friendly greeting to the world:

<?xml version="1.0"?>
<!-- greeting.xml -->
<greeting>
 Hello, World!
</greeting>

What we’d like to do is transform this fascinating document into something we can
view in an ordinary household browser.

25

A Sample Stylesheet
Here’s an XSLT stylesheet that defines how to transform the XML document:

<?xml version="1.0"?>
<!-- greeting.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <xsl:apply-templates select="greeting"/>
 </xsl:template>

 <xsl:template match="greeting">
 <html>
 <body>
 <h1>
 <xsl:value-of select="."/>
 </h1>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

We’ll talk about these elements and what they do in just a minute. Keep in mind that
the stylesheet is itself an XML document, so we have to follow all of the document rules
we discussed in the previous chapter.

Transforming the XML Document
To transform the XML document using the XSLT stylesheet, run this command if
you’re using Xalan:

java org.apache.xalan.xslt.Process -in greeting.xml -xsl greeting.xsl
 -out greeting.html

For Saxon, the command looks like this:

java net.sf.saxon.Transform -o greeting.html greeting.xml greeting.xsl

If you’re using the Schema-aware version of Saxon, the name of the Java class is
different:

java com.saxon.Transform -o greeting.html greeting.xml greeting.xsl

The command for the Altova XSLT engine is:

altovaxml /xslt1 greeting.xsl /in greeting.xml /out greeting.html

Finally, if you’re using Microsoft’s MSXSL, type this command:

msxsl greeting.xml greeting.xsl -o greeting.html

26 | Chapter 2: The Obligatory Hello World Example

This command transforms the document greeting.xml, using the templates found in
the stylesheet greeting.xsl. The results of the transformation are written to the file
greeting.html. Check the output file in your favorite browser to make sure the trans-
formation worked correctly.

This is one of the few times in this book we’ll cover the syntax of the
command to run a transformation. The exception to this rule will be
when you need to do something more advanced (pass parameters to a
stylesheet, for example). Typically, all you need to know are the file-
names of the XML, XSL, and output files, and the format of the com-
mand for your stylesheet processor.

Stylesheet Results
The XSLT processor generates these results:

<html>
<body>
<h1>
 Hello, World!
</h1>
</body>
</html>

When rendered in a browser, our output document looks like Figure 2-1.

Congratulations! You’ve now used XSLT to transform an XML document.

How a Stylesheet Is Processed
Now that we’re giddy with the excitement of having transformed an XML document,
let’s discuss the stylesheet and how it works. A big part of the XSLT learning curve is
figuring out how stylesheets are processed. To make this clear, we’ll go through the
steps taken by the stylesheet processor to create the HTML document we want.

Parsing the Stylesheet
Before the XSLT processor can process your stylesheet, it has to read it. Conceptually,
it doesn’t matter how the XSLT processor stores the information from your stylesheet.

Figure 2-1. HTML version of our Hello World file

How a Stylesheet Is Processed | 27

For our purposes, we’ll just assume that the XSLT processor can magically find any-
thing it needs in our stylesheet. (If you really must know, Xalan uses an optimized table
structure to represent the stylesheet; other processors may use that approach or some-
thing else.)

Our stylesheet contains three items: an <xsl:output> element that specifies HTML as
the output format, and two <xsl:template> elements that specify how parts of our XML
document should be transformed.

Parsing the Transformee
Now that the XSLT processor has processed the stylesheet, it needs to read the docu-
ment it’s supposed to transform. The XSLT processor builds a tree view from the XML
source. This tree view is what we’ll keep in mind when we build our stylesheets.

Lather, Rinse, Repeat
Finally, we’re ready to begin the actual work of transforming the XML document. The
XSLT processor may set some properties based on your stylesheet (in the previous
example, it would set its output method to HTML), then it begins processing as follows:

1. Do I have any nodes to process? The nodes to process are represented by the
context. Initially, the context is the root of the XML document, but it changes
throughout the stylesheet. We’ll talk about the context extensively in the next
chapter. (Note: all XSLT processors enjoy being anthropomorphized, so I’ll often
refer to them this way.)

While any nodes are in the context, do the following:

2. Get the next node from the context. Do I have any <xsl:template>s that match it?
(In our example, the next node is the root node, represented in XPath syntax
by /.) There is a template that matches this node—it’s the one that begins
<xsl:template match="/">.

3. If one or more <xsl:template>s match, pick the right one and process it. The right
one is the most specific template. For example, <xsl:template match="/html/body/
h1/p"> is more specific than <xsl:template match="p">. (See the discussion of
<xsl:template> in Appendix A for more information.) If no <xsl:template>s match,
the XSLT processor uses some built-in rules. See the section “Built-in Template
Rules” later in this chapter for more information.

Notice that this is a recursive processing model. We process the current node by finding
the right xsl:template for it. That xsl:template may in turn invoke other
xsl:templates, which invoke xsl:templates as well. This model takes some getting used
to, but it is actually quite elegant once you’re accustomed to it.

28 | Chapter 2: The Obligatory Hello World Example

If it helps, you can think of the root template (<xsl:template
match="/">) as the main method in a C, C++, or Java program. No matter
how much code you’ve written, everything starts in main. Similarly, no
matter how many <xsl:template>s you’ve defined in your stylesheet,
everything starts in <xsl:template match="/">.

Walking Through Our Example
Let’s revisit our example and see how the XSLT processor transforms our document:

1. The XSLT stylesheet is parsed and converted into a tree structure.

2. The XML document is also parsed and converted into a tree structure. Don’t worry
too much about what that tree looks like or how it works; for now, just assume
that the XSLT processor knows everything that’s in the XML document and the
XSLT stylesheet. After the first two steps are done, when we describe various things
using XSLT and XPath, the processor knows what we’re talking about.

3. The XSLT processor is now at the root of the XML document. This is the original
context.

4. There is an xsl:template that matches the document root:

<xsl:template match="/">
 <xsl:apply-templates select="greeting"/>
</xsl:template>

A single forward slash (/) is an XSLT pattern (written in XPath) that matches
“document nodes.”

5. Now the process begins again inside the xsl:template. Our only instruction here
is to apply whatever xsl:templates might apply to any greeting elements in the
current context. The current context inside this template is defined by the match
attribute of the xsl:template element. This means the XSLT processor is looking
for any greeting elements at the document root.

Because one greeting element is at the document root, the XSLT processor must
deal with it. (If more than one element matches in the current context, the XSLT
processor deals with each one in the order in which they appear in the document;
this is known as document order.) Looking at the greeting element, the
xsl:template that applies to it is the second xsl:template in our stylesheet:

<xsl:template match="greeting">
 <html>
 <body>
 <h1>
 <xsl:value-of select="."/>
 </h1>
 </body>
 </html>
</xsl:template>

How a Stylesheet Is Processed | 29

6. Now we’re in the xsl:template for the greeting element. The first three elements
in this xsl:template (<html>, <body>, and <h1>) are HTML elements. Because
they’re not defined with a namespace declaration, the XSLT processor passes those
HTML elements through to the output stream unaltered.

The middle of our xsl:template is an xsl:value-of element. This element writes
the value of something to the output stream. In this case, we’re using the XPath
expression . (a single period) to indicate the current node. The XSLT processor
looks at the current node (the greeting element we’re currently processing) and
outputs its text.

Because our stylesheet is an XML document (we’re really harping on that, aren’t
we?), we have to end the <h1>, <body>, and <html> elements here. At this point,
we’re done with this template, so control returns to the template that invoked us.

7. Now we’re back in the template for the root element. We’ve processed all the
<greeting> elements, so we’re finished with this template.

8. No more elements are in the current context (there is only one root element), so
the XSLT processor is done.

Stylesheet Structure
As the final part of our introduction to XSLT, we’ll look at the contents of the stylesheet
itself. We’ll explain all the things in our stylesheet and discuss other approaches we
could have taken.

The <xsl:stylesheet> Element
The <xsl:stylesheet> element is typically the root element of an XSLT stylesheet:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

First of all, the <xsl:stylesheet> element defines the version of XSLT we’re using, along
with a definition of the xsl namespace. To be compliant with the XSLT specification,
your stylesheet should always begin with this element, coded exactly as shown here.
Some stylesheet processors, notably Xalan, issue a warning message if your
<xsl:stylesheet> element doesn’t have these two attributes with these two values. For
all examples in this book, we’ll start the stylesheet with this exact element, defining
other namespaces as needed.

The <xsl:output> Element
Next, we specify the output method. The XSLT specification defines three output
methods: xml, html, and text. We’re creating an HTML document, so HTML is the
output method we want to use. In addition to these three methods, an XSLT processor

30 | Chapter 2: The Obligatory Hello World Example

is free to define its own output methods, so check your XSLT processor’s documenta-
tion to see if you have any other options:*

<xsl:output method="html"/>

A variety of attributes are used with the different output methods. For example, if you’re
using method="xml", you can use doctype-public and doctype-system to define the pub-
lic and system identifiers to be used in the the document type declaration. If you’re
using method="xml" or method="html", you can use the indent attribute to control
whether or not the output document is indented. The discussion of the <xsl:output>
element in Appendix A has all the details.

Our First <xsl:template>
Our first template matches "/", the XPath expression for the document’s root element:

<xsl:template match="/">
 <xsl:apply-templates select="greeting"/>
</xsl:template>

The <xsl:template> for <greeting> Elements
The second <xsl:template> element processes any <greeting> elements in our XML
source document:

<xsl:template match="greeting">
 <html>
 <body>
 <h1>
 <xsl:value-of select="."/>
 </h1>
 </body>
 </html>
</xsl:template>

Built-in Template Rules
Although most stylesheets we’ll develop in this book explicitly define how various XML
elements should be transformed, XSLT defines several built-in template rules that apply
in the absence of any specific rules. These rules have a lower priority than any other
templates, so they’re always overridden when you define your own templates. The
built-in templates are listed here.

* [2.0] XSLT 2.0 also defines the xhtml output method.

Stylesheet Structure | 31

Built-in template rule for element and document nodes

This template processes the document node and any of its children. This processing
ensures that recursive processing will continue, even if no template is declared for a
given element:

<xsl:template match="*|/">
 <xsl:apply-templates/>
</xsl:template>

As an example, given this document:

<?xml version="1.0"?>
<x>
 <y>
 <z/>
 </y>
</z>

The built-in template rule for element and document nodes means that we could write
a stylesheet containing only a template with match="z" and the <z> element will still be
processed, even if there are no template rules for the <x> and <y> elements.

Built-in template rule for modes

This template ensures that element and document nodes are processed, regardless of
any mode that might be in effect. (See “Templates à la mode” in Chapter 5 for more
information on the mode attribute.)

<xsl:template match="*|/" mode="x">
 <xsl:apply-templates mode="x"/>
</xsl:template>

Built-in template rule for text and attribute nodes

This template copies the text of all text and attribute nodes to the output tree. Be aware
that you have to actually select the text and attribute nodes for this rule to be invoked:

<xsl:template match="text()|@*">
 <xsl:value-of select="."/>
</xsl:template>

Built-in template rule for comment and processing instruction nodes

This template does nothing:

<xsl:template match="comment()|processing-instruction()"/>

Built-in template rule for namespace nodes

This template also does nothing:

<xsl:template match="namespace()"/>

32 | Chapter 2: The Obligatory Hello World Example

Top-Level Elements
To this point, we haven’t actually talked about our source document or how we’re
going to transform it. We’re simply setting up some properties for the transform. There
are other elements we can put at the start of our stylesheet. Any element whose parent
is the <xsl:stylesheet> element is called a top-level element. Here is a brief discussion
of the other top-level elements:

<xsl:include> and <xsl:import>
These elements refer to another stylesheet. The other stylesheet and all of its con-
tents are included in the current stylesheet. The main difference between
<xsl:import> and <xsl:include> is that a template, variable, or anything else im-
ported with <xsl:import> has a lower priority than the things in the current style-
sheet. This gives you a mechanism to subclass stylesheets, if you want to think
about this from an object-oriented point of view. You can import another stylesheet
that contains common templates, but any templates in the importing stylesheet will
be used instead of any templates in the imported stylesheet. Another difference is
that <xsl:import> can only appear at the beginning of a stylesheet, while
<xsl:include> can appear anywhere.

<xsl:strip-space> and <xsl:preserve-space>
These elements contain a space-separated list of elements from which white-
space should be removed or preserved in the output. To define these elements
globally, use <xsl:strip-space elements="*"/> or <xsl:preserve-space
elements="*"/>. If we want to specify that whitespace be removed for all elements
except for <greeting> and <salutation> elements, we would add this markup to
our stylesheet:

<xsl:strip-space elements="*"/>
<xsl:preserve-space elements="greeting
 salutation"/>

<xsl:key>
This element defines a key, which is similar to defining an index on a database.
We’ll talk more about the <xsl:key> element and the key() function in “Branching
Elements of XSLT” in Chapter 5.

<xsl:variable>
This element defines a variable. Any <xsl:variable> that appears as a top-level
element is global to the entire stylesheet. Variables are discussed extensively in
“Variables” in Chapter 5.

<xsl:param>
This element defines a parameter. As with <xsl:variable>, any <xsl:param> that is
a top-level element is global to the entire stylesheet. Parameters are discussed
extensively in “Parameters” in Chapter 5.

Stylesheet Structure | 33

Other stuff
More obscure elements that can appear as top-level elements are <xsl:decimal-
format>, <xsl:namespace-alias>, and <xsl:attribute-set>. All are discussed in
Appendix A.

Other Approaches
One mantra of the Perl community is, “There’s more than one way to do it.” That’s
true with XSLT stylesheets as well. We could have written our stylesheet like this:

<?xml version="1.0"?>
<!-- greeting2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <body>
 <xsl:apply-templates select="greeting"/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="greeting">
 <h1>
 <xsl:value-of select="."/>
 </h1>
 </xsl:template>
</xsl:stylesheet>

In this version, we put the wrapper elements for the HTML document in the template
for the root element. One of the things you should think about as you build your style-
sheets is where to put elements such as <html> and <body>. Let’s say our XML document
looked like this instead:

<?xml version="1.0"?>
<greetings>
 <greeting>Hello, World!</greeting>
 <greeting>Hey, Y'all!</greeting>
</greetings>

In this case, we would have to put the <html> and <body> elements in the
<xsl:template> for the root element. If they were in the <xsl:template> for the
<greeting> element, the output document would have multiple <html> elements, which
isn’t valid in an HTML document. Our updated stylesheet would look like this:

<?xml version="1.0"?>
<!-- multiple-greetings.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

34 | Chapter 2: The Obligatory Hello World Example

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <body>
 <xsl:apply-templates select="greetings/greeting"/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="greeting">
 <h1>
 <xsl:value-of select="."/>
 </h1>
 </xsl:template>
</xsl:stylesheet>

Notice that we had to modify our XPath expression; what was originally greeting is
now greetings/greeting. As we develop stylesheets, we’ll have to make sure our XPath
expressions match the document structure. When you get unexpected results, or no
results, an incorrect XPath expression is usually the cause.

As a final example, we could also write our stylesheet with only one xsl:template:

<?xml version="1.0"?>
<!-- greeting3.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <body>
 <h1>
 <xsl:value-of select="greeting"/>
 </h1>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Although this is the shortest of our sample stylesheets, our examples will tend to feature
a number of short templates, each of which defines a simple transform for a few ele-
ments. This approach makes your stylesheets much easier to understand, maintain,
and reuse. The more transformations you cram into each xsl:template, the more dif-
ficult it is to debug your stylesheets, and the more difficult it is to reuse the templates
elsewhere.

Stylesheet Structure | 35

Sample Gallery
Before we get into more advanced topics, we’ll transform our Hello World document
in other ways. We’ll look through simple stylesheets that convert our small XML docu-
ment into the following things:

• A Scalable Vector Graphics (SVG) file

• A PDF file

• A Java program

• A Virtual Reality Modeling Language (VRML) file

The Hello World SVG File
Our first example will convert our Hello World document into an SVG file:

<?xml version="1.0"?>
<!-- svg-greeting.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:svg="http://www.w3.org/2000/svg">

 <xsl:template match="/">
 <svg:svg width="10cm" height="4cm">
 <svg:g>
 <svg:defs>
 <svg:radialGradient id="MyGradient"
 cx="4cm" cy="2cm" r="3cm" fx="4cm" fy="2cm">
 <svg:stop offset="0%" style="stop-color:red"/>
 <svg:stop offset="50%" style="stop-color:blue"/>
 <svg:stop offset="100%" style="stop-color:red"/>
 </svg:radialGradient>
 </svg:defs>
 <svg:rect style="fill:url(#MyGradient); stroke:black"
 x="1cm" y="1cm" width="8cm" height="2cm"/>
 <svg:text x="5.05cm" y="2.25cm" text-anchor="middle"
 style="font-family:Verdana; font-size:24;
 font-weight:bold; fill:black">
 <xsl:apply-templates select="greeting"/>
 </svg:text>
 <svg:text x="5cm" y="2.2cm" text-anchor="middle"
 style="font-family:Verdana; font-size:24;
 font-weight:bold; fill:white">
 <xsl:apply-templates select="greeting"/>
 </svg:text>
 </svg:g>
 </svg:svg>
 </xsl:template>

36 | Chapter 2: The Obligatory Hello World Example

 <xsl:template match="greeting">
 <xsl:value-of select="."/>
 </xsl:template>

</xsl:stylesheet>

As you can see from this stylesheet, most of the code here simply sets up the structure
of the SVG document. This is typical of many stylesheets; once you learn what the
output format should be, you merely extract content from the XML source document
and insert it into the output document at the correct spot. When we transform the
Hello World document with this stylesheet, here are the results:

<?xml version="1.0" encoding="UTF-8"?>
<svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="10cm" height="4cm">
 <svg:g>
 <svg:defs>
 <svg:radialGradient id="MyGradient" cx="4cm" cy="2cm" r="3cm"
 fx="4cm" fy="2cm">
 <svg:stop offset="0%" style="stop-color:red"/>
 <svg:stop offset="50%" style="stop-color:blue"/>
 <svg:stop offset="100%" style="stop-color:red"/>
 </svg:radialGradient>
 </svg:defs>
 <svg:rect style="fill:url(#MyGradient); stroke:black" x="1cm"
 y="1cm" width="8cm" height="2cm"/>
 <svg:text x="5.05cm" y="2.25cm" text-anchor="middle"
 style="font-family:Verdana; font-size:24; font-weight:bold; fill:black">
 Hello, World!
 </svg:text>
 <svg:text x="5cm" y="2.2cm" text-anchor="middle"
 style="font-family:Verdana; font-size:24; font-weight:bold; fill:white">
 Hello, World!
 </svg:text>
 </svg:g>
</svg:svg>

When rendered in an SVG viewer, our Hello World document looks like Figure 2-2.

Figure 2-2. SVG version of our Hello World file

Sample Gallery | 37

This screen capture was made using the Adobe SVG plug-in inside the Internet Explorer
browser. You can find the plug-in at http://www.adobe.com/svg/. (Note that many
browsers now support SVG natively.)

The Hello World PDF File
To convert the Hello World file into a PDF file, we’ll first convert our XML file into
formatting objects. The Extensible Stylesheet Language for Formatting Objects (XSL-
FO) is an XML vocabulary that describes how content should be rendered. Here is our
stylesheet:

<?xml version="1.0"?>
<!-- fo-greeting.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <xsl:output method="xml"/>

 <xsl:template match="/">
 <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <fo:simple-page-master master-name="standard"
 margin-right="75pt" margin-left="75pt"
 page-height="11in" page-width="8.5in"
 margin-bottom="25pt" margin-top="25pt">
 <fo:region-body margin-top="50pt" margin-bottom="50pt"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="standard">
 <fo:flow flow-name="xsl-region-body">
 <xsl:apply-templates select="greeting"/>
 </fo:flow>
 </fo:page-sequence>
 </fo:root>
 </xsl:template>

 <xsl:template match="greeting">
 <fo:block line-height="76pt" font-size="72pt" text-align="center">
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

</xsl:stylesheet>

This stylesheet converts our Hello World document into the following XML file:

<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <fo:simple-page-master master-name="standard" margin-right="75pt"
 margin-left="75pt" page-height="11in" page-width="8.5in"
 margin-bottom="25pt" margin-top="25pt">

38 | Chapter 2: The Obligatory Hello World Example

http://www.adobe.com/svg/

 <fo:region-body margin-top="50pt" margin-bottom="50pt"/>
 </fo:simple-page-master>
 </fo:layout-master-set>
 <fo:page-sequence master-reference="standard">
 <fo:flow flow-name="xsl-region-body">
 <fo:block line-height="76pt" font-size="72pt" text-align="center">
 Hello, World!
 </fo:block>
 </fo:flow>
 </fo:page-sequence>
</fo:root>

This lengthy set of tags uses formatting objects to describe the size of the page, the
margins, font sizes, line heights, etc., along with the text extracted from our XML source
document. Now that we have the formatting objects, we can use the Apache XML
Project’s FOP tool. After converting the formatting objects to PDF, the PDF file looks
like Figure 2-3.

Here’s the command used to convert our file of formatting objects into a PDF file:

java org.apache.fop.apps.Fop greeting.fo greeting.pdf

The Hello World Java Program
Our last two transformations don’t involve XML vocabularies at all; they use XSLT to
convert the Hello World document into other formats. Next, we’ll transform our XML
source document into the source code for a Java program. When the program is com-
piled and executed, it prints the message from the XML document to the console. Here’s
our stylesheet:

<?xml version="1.0"?>
<!-- java-greeting.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

Figure 2-3. PDF version of our Hello World file

Sample Gallery | 39

 <xsl:output method="text" encoding="UTF-8"/>

 <xsl:template match="/">
 <xsl:text>
public class Greeting
{
 public static void main(String[] argv)
 {
 </xsl:text>
 <xsl:apply-templates select="greeting"/>
 <xsl:text>
 }
}
 </xsl:text>
 </xsl:template>

 <xsl:template match="greeting">
 <xsl:text>System.out.println("</xsl:text>
 <xsl:value-of select="normalize-space()"/>
 <xsl:text>");</xsl:text>
 </xsl:template>

</xsl:stylesheet>

(Notice that we used <xsl:output method="text"> to generate text, not markup.) Our
stylesheet produces these results:

public class Greeting
{
 public static void main(String[] argv)
 {
 System.out.println("Hello, World!");
 }
}

The class name defined in the XSLT stylesheet (Greeting) must be the name of the
generated file. That means we have to specify the case-sensitive filename when we run
the transformation. Here’s how to do that with Xalan:

java org.apache.xalan.xslt.Process -in greeting.xml -xsl java-greeting.xsl
 -out Greeting.java

For Saxon, the syntax is slightly simpler:

java net.sf.saxon.Transform -o Greeting.java greeting.xml java-greeting.xsl

Again, the Schema-aware version of Saxon is slightly different:

java.com.saxonica.Transform -o Greeting.java greeting.xml java-greeting.xsl

Finally, for MSXSL and the Altova XSLT engine, the commands are:

msxsl -o Greeting.java greeting.xml java-greeting.xsl

and:

altovaxml /xslt1 java-greeting.xsl /in greeting.xml /out Greeting.java

40 | Chapter 2: The Obligatory Hello World Example

When executed, our generated Java program looks like this:

C:\> java Greeting
Hello, World!

Although generating Java code from an XML document may seem strange, it is actually
a very useful technique. The FOP tool from the Apache XML Project does this; it defines
a number of properties in XML, then generates the Java source code to create class
definitions and get and set methods for each of those properties.

The Hello World VRML File
For our final transformation, we’ll create a VRML file from our XML source document.
Here’s the stylesheet that does the trick:

<?xml version="1.0"?>
<!-- vrml-greeting.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>#VRML V2.0 utf8

Shape
{
 geometry ElevationGrid
 {
 xDimension 9
 zDimension 9
 xSpacing 1
 zSpacing 1
 height
 [
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
]
 colorPerVertex FALSE
 color Color
 {
 color
 [
 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1,
 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0,
 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1,
 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0,

Sample Gallery | 41

 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1,
 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0,
 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1,
 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0, 1 1 1, 0 0 0,
]
 }
 }
}

Transform
{
 translation 4.5 1 4
 children
 [
 Shape
 {
 geometry Text
 {
 </xsl:text>
 <xsl:apply-templates select="greeting"/>
 <xsl:text>
 fontStyle FontStyle
 {
 justify "MIDDLE"
 style "BOLD"
 }
 }
 }
]
}

NavigationInfo
{
 type ["EXAMINE","ANY"]
}

Viewpoint
{
 position 4 1 10
}
 </xsl:text>
 </xsl:template>

 <xsl:template match="greeting">
 <xsl:text>string"</xsl:text>
 <xsl:value-of select="normalize-space()"/>
 <xsl:text>"</xsl:text>
 </xsl:template>

</xsl:stylesheet>

As with our earlier stylesheet, our VRML-generating template is mostly boilerplate,
with content from the XML source document added at the appropriate point. The
<xsl:apply-templates> element is replaced with the value of the <greeting> element.

42 | Chapter 2: The Obligatory Hello World Example

The VRML code here draws a checkerboard, then draws the text from the XML docu-
ment above it, floating in midair in the center of the document. A couple of views of
the VRML version of our XML document are shown in Figures 2-4 and 2-5.

The screenshots of the VRML world were generated with the Cortona VRML player.
You can download the player at http://www.parallelgraphics.com/cortona.

Although we haven’t discussed any of the specific vocabularies or file formats we’ve
used here, hopefully you understand that you can transform your XML documents into
any useful format you can think of. Through the rest of the book, we’ll cover several
common tasks you can solve with XSLT, all of which build on the basics we’ve discussed
here.

Figure 2-4. One view of the VRML version of our Hello World document

Figure 2-5. Another view of the VRML version of our Hello World document

Sample Gallery | 43

http://www.parallelgraphics.com/cortona

Summary
Although our stylesheets here are trivial, they are much simpler than the corresponding
procedural code (written in Visual Basic, C++, Java, etc.) to transform any
<greeting> elements similarly. We’ve gone over the basics of what stylesheets are and
how they work.

As we go through this book, we’ll demonstrate the incredible range of things you can
do in XSLT stylesheets, including:

• Using logic, branching, and control statements

• Sorting and grouping elements

• Linking and cross-referencing elements

• Creating master documents that embed other XML documents, then sort, filter,
group, and format the combined documents.

• Adding new functions to the XSLT stylesheet processor with XSLT’s extension
mechanism

XSLT has an extremely active user community. To see just how active, visit the XSL-
List site at http://www.mulberrytech.com/xsl/xsl-list/index.html.

Before we dive in to those topics, we need to talk about XPath, the syntax that describes
what parts of an XML document we want to transform into all of these different things.

44 | Chapter 2: The Obligatory Hello World Example

http://www.mulberrytech.com/xsl/xsl-list/index.html

CHAPTER 3

XPath: A Syntax for Describing
Needles and Haystacks

XPath is a syntax used to describe parts of an XML document. With XPath, you can
refer to the first <para> element, the quantity attribute of the <part-number> element,
all <first-name> elements that contain the text "Joe", and many other variations. In a
stylesheet, the XSLT patterns in the match and select attributes of various elements use
XPath syntax to indicate how a document should be transformed. In this chapter, we’ll
discuss XPath in all its glory.

XPath is designed to be used inside an attribute in an XML document. The syntax is a
mix of basic programming language expressions (such as $x*6) and Unix-like path ex-
pressions (such as /sonnet/author/last-name). In addition to the basic syntax, XPath
provides a set of useful functions that allow you to find out various things about the
document.

One important point, though: XPath works with the parsed version of your XML
document. That means that some details of the original document aren’t accessible to
you from XPath. For example, entity references are resolved by the XSLT processor
before instructions in our stylesheet are evaluated. CDATA sections are converted to
text as well. That means we have no way of knowing whether a text node in an XPath
tree was in the original XML document as text, as an entity reference, or as part of a
CDATA section. As you get used to thinking about your XML documents in terms of
XPath expressions, this situation won’t be a problem, but it may confuse you at first.

[2.0] XPath has undergone enormous changes for version 2.0. Everything that worked
in XPath 1.0 still works in XPath 2.0, but there are new capabilities and operators that
can greatly simplify your life if you’re using an XSLT 2.0 processor. There are three
major XPath 2.0 topics that we’ll discuss separately in this chapter:

• In XPath 2.0’s view of the world, everything is a sequence. A sequence replaces the
concept of node-sets used in XPath 1.0. The main difference is that a sequence can
contain atomic values (more on those in a minute). Be aware that nodes in the
sequence (a document node, for example) can still have children. When we’re

45

working with parts of a document, it’s common that our sequence is an element
node with children and attributes; that one item sequence works just like the trees
you know and love from XPath 1.0.

• XPath 2.0 supports atomic values. In XPath 1.0, everything from the parsed XML
document was a node, including comments, text, and processing instructions. The
type system was relatively simple; there were strings, numbers, booleans, node-
sets, and something called a result tree fragment. In XPath 2.0, a sequence can
contain nodes from an XML document alongside things such as the xs:integer
value 42 or the xs:date value can be part of a sequence along with the nodes used
in XPath 1.0. Atomic values are defined in the XML Schema spec; an atomic value
is a value that can’t be broken down into smaller parts. A value of type xs:integer or
xs:date, for example, is an atomic value.

• XPath 2.0 supports all of the built-in datatypes of XML Schema. This means we
can specify that a value must be of a particular datatype, we can create a new value
of a particular datatype, and we can cast a given value to a particular datatype. If
your XSLT 2.0 processor is schema-aware (more on that shortly), you can define
your own datatypes and use them inside XPath along with the XML Schema
datatypes. If your XSLT 2.0 processor is not schema-aware, it still supports a num-
ber of datatypes from XML Schema.

With those three exceptions, we’ll discuss the changes in XPath 2.0 as we cover XPath
in general.

The XPath Data Model
XPath 1.0 views an XML document as a tree of nodes. This tree is very similar to a
Document Object Model (DOM) tree, so if you’re familiar with the DOM, you should
have some understanding of how to build basic XPath expressions. (To be precise, this
is a conceptual tree; an XSLT processor or anything else that implements the XPath
standard doesn’t have to build an actual tree.)

[2.0] XPath 2.0 views everything as a sequence. A sequence can contain all of the nodes
we cover here as well as atomic values. Whenever we’re working with parsed data from
an XML document, the sequences we’re using are most likely nodes from the document
tree, so we won’t have to worry about atomic values. For now, just be aware that the
underlying data model in XPath 2.0 is different; we’ll cover those differences in great
detail later in this chapter.

Node Types
There are seven kinds of nodes in XPath:

• The document node (one per document)

• Element nodes

46 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

• Attribute nodes

• Text nodes

• Comment nodes

• Processing instruction nodes

• Namespace nodes

We’ll talk about all the different node types in terms of the following document:

<?xml version="1.0"?>
<?xml-stylesheet href="sonnet.xsl" type="text/xsl"?>

<!DOCTYPE sonnet [
 <!ELEMENT sonnet (auth:author, title, lines)>
 <!ATTLIST sonnet public-domain CDATA "yes"
 type (Shakespearean | Petrarchan) "Shakespearean">
 <!ELEMENT auth:author (last-name,first-name,nationality,
 year-of-birth?,year-of-death?)>
 <!ELEMENT last-name (#PCDATA)>
 <!ELEMENT first-name (#PCDATA)>
 <!ELEMENT nationality (#PCDATA)>
 <!ELEMENT year-of-birth (#PCDATA)>
 <!ELEMENT year-of-death (#PCDATA)>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT lines (line,line,line,line,
 line,line,line,line,
 line,line,line,line,
 line,line)>
 <!ELEMENT line (#PCDATA)>
]>

<!-- Default sonnet type is Shakespearean, the other allowable -->
<!-- type is "Petrarchan." -->
<sonnet type='Shakespearean'>
 <auth:author xmlns:auth="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </auth:author>
 <!-- Is there an official title for this sonnet? They're
 sometimes named after the first line. -->
 <title>Sonnet 130</title>
 <lines>
 <line>My mistress' eyes are nothing like the sun,</line>
 <line>Coral is far more red than her lips red.</line>
 <line>If snow be white, why then her breasts are dun,</line>
 <line>If hairs be wires, black wires grow on her head.</line>
 <line>I have seen roses damasked, red and white,</line>
 <line>But no such roses see I in her cheeks.</line>
 <line>And in some perfumes is there more delight</line>
 <line>Than in the breath that from my mistress reeks.</line>
 <line>I love to hear her speak, yet well I know</line>

The XPath Data Model | 47

 <line>That music hath a far more pleasing sound.</line>
 <line>I grant I never saw a goddess go,</line>
 <line>My mistress when she walks, treads on the ground.</line>
 <line>And yet, by Heaven, I think my love as rare</line>
 <line>As any she belied with false compare.</line>
 </lines>
</sonnet>
<!-- The title of Sting's 1987 album "Nothing like the sun" is -->
<!-- from line 1 of this sonnet. -->

The root node

The root node is the XPath node that contains the entire document. In our example,
the root node contains the <sonnet> element; it’s not the <sonnet> element itself. In an
XPath expression, the root node is specified with a single slash (/).

Unlike other nodes, the root node has no parent. It always has at least one child: the
document element. The root node also contains comments or processing instructions
that are outside the document element. In our sample, the two processing instructions
named xml-stylesheet and cocoon-process are both children of the root node, as are
the comments that appear before the <sonnet> tag and the comments that appear after
it. The string value of the root node (returned by <xsl:value-of select="/" />), is the
concatenation of all text nodes of the root node’s descendants, slammed together with-
out any spaces between them.

Element nodes

Every element in the original XML document is represented by an XPath element node.
In the previous document, an element node exists for the <sonnet> element, the
<auth:author> element, the <last-name> element, and so on. An element node’s children
include text nodes, element nodes, comment nodes, and processing instruction nodes
that occur within that element in the original document.

An element node’s string value (returned by <xsl:value-of select="sonnet">, for ex-
ample) is the concatenation of the text of this node and all of its children, in document
order (the order in which they appear in the original document). All entity references
(such as <) and character references (such as ß, the lowercase “sharp S” char-
acter) in the text are resolved automatically. To XPath, those characters show up as <
and ß; you can’t access the entity or character references from XPath.

The name of an element node (returned by the XPath name() function) is the element
name and any namespace in effect. In the previous example, the name() of the
<sonnet> element is sonnet. The name() of the <auth:author> element is auth:author.
Given the name of the node, XPath has functions to return the local name of the element
(author) and the URI of the namespace associated with the node (http://
www.authors.com). XPath 2.0 has additional functions to work with qualified names
(XML Schema xs:QName values) directly, including functions to extract a namespace
prefix and the URI associated with it.

48 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

Attribute nodes

At a minimum, an element node is the parent of one attribute node for each attribute
in the XML source document. In our sample document, the element node correspond-
ing to the <sonnet> element is the parent of an attribute node with a name of type and
a value of Shakespearean. A couple of complications for attribute nodes exist, however:

• Although an element node is the parent of its attribute nodes, those attribute nodes
are not children of their parent. The children of an element are the text, element,
comment, and processing instruction nodes contained in the original element. If
you want a document’s attributes, you must ask for them specifically. That rela-
tionship seems odd at first, but you’ll find that treating an element’s attributes
separately is usually what you want to do.

• If a DTD or schema defines default values for certain attributes, those attributes
don’t have to appear in the XML document. In our example, we declared an at-
tribute named public-domain that has a default value of yes. The actual <sonnet>
element doesn’t have this attribute, so the value of its public-domain attribute is
yes. Similarly, the default value for type is Shakespearean, so a <sonnet> element
without a type attribute uses the default value.

To make this situation even worse, an XML parser isn’t required to read an external
DTD. If it doesn’t, then any attribute nodes that represent default values not coded
in the document won’t exist. Fortunately, XSLT has some branching elements
(<xsl:if> and <xsl:choose>) that can help you deal with these ambiguities; we’ll
discuss those in Chapter 5.

• The XML 1.0 specification defines two attributes (xml:lang and xml:space) that
work differently. In other words, if the <auth:author> element in our sample docu-
ment contains the attribute xml:lang="en-US", that attribute applies to all elements
contained inside <auth:author>. Even though that attribute might apply to the
<last-name> element, <last-name> won’t have an attribute node named xml:lang.
Similarly, the xml:space defines whether whitespace in an element should be pre-
served; valid values for this attribute are preserve and default. Whether these at-
tributes are in effect for a given element or not, the only attribute nodes an element
node contains are those tagged in the document and those defined with a default
value in the DTD.

We’ll discuss handling whitespace in “Dealing with Whitespace” in Chapter 4. For
detailed technical information on language codes and whitespace handling, see the
discussions of the XPath lang() function in Appendix C and also the XSLT
<xsl:preserve-space> and <xsl:strip-space> elements in Appendix A.

Text nodes

Text nodes are refreshingly simple; they contain text from an element. If the original
text in the XML document contained entity or character references, they are resolved
before the XPath text node is created. The text node is text, pure and simple. A text

The XPath Data Model | 49

node is required to contain as much text as possible; the next or previous node can’t
be a text node.

You might have noticed that there are no CDATA nodes in this list. If your XML docu-
ment contains text in a CDATA section, you can access the contents of the CDATA
section as a text node. You have no way of knowing if a given text node was originally
a CDATA section. Similarly, all entity references are resolved before anything in your
stylesheet is evaluated, so you have no way of knowing if a given piece of text originally
contained entity references.

Comment nodes

A comment node is also very simple—it has value but no name. Every comment in the
source document (except for comments in the DTD) becomes a comment node. The
value of the comment node is everything inside the comment—everything between
the opening <!-- and the closing -->.

Processing instruction nodes

A processing instruction node has two parts: a name (returned by the name() function)
and a string value. The string value is everything after the name, including whitespace,
but not including the ?> that closes the processing instruction.

Namespace nodes

Namespace nodes are almost never used in XSLT stylesheets; they exist primarily for
the XSLT processor’s benefit. Remember that the declaration of a namespace (such as
xmlns:auth="http://www.authors.net"), even though it looks like an attribute in the
XML source, becomes a namespace node, not an attribute node. Every element in the
scope of a namespace declaration has a namespace node. In our sonnet, for example,
every node in the <auth:author> node has a namespace node.

[2.0] In XPath 2.0, support for namespace nodes is optional.

Node Tests
XPath also has node tests. A node test looks like a function, but is used to match certain
types of nodes. A node test works like a predicate in that it returns only nodes that meet
certain criteria. XPath 1.0 has four node tests:

node()
Matches all nodes. The test node() is true for every kind of node.

text()
Matches text nodes only.

comment()
Matches comment nodes.

50 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

processing-instruction()
Matches processing instruction nodes. If this node test includes a string, it matches
processing instruction nodes with that name. For example, processing-
instruction('cocoon-process') matches processing instruction nodes that begin
with <?cocoon-process>.

*
Matches all the nodes along a particular axis (we’ll cover axes shortly). For exam-
ple, child::* matches all the element children of a node, whereas attribute::*
matches all the attributes of a node.

NCName:*
Matches all the nodes in a particular namespace. In our sonnet, auth:* matches
any element that has the namespace URI http://www.authors.com/.

[2.0] New node tests in XPath 2.0

XPath 2.0 uses all of the node tests from XPath 1.0. It also defines several new node tests:

element()
Matches any element. Using this node test without arguments is similar to
select="*" in XPath 1.0. The difference is that in XPath 2.0, we can use the
element() node test to check the name and datatype of an item. For example,
element(author) matches any elements named <author>. The two-argument ver-
sion of this node test allows us to find elements that match a particular datatype.
The node test element(date-of-birth, xs:gYear) matches all <date-of-birth> el-
ements whose datatype is xs:gYear. (That includes datatypes derived from
xs:gYear.) Finally, we can use a wildcard for the element name to find all of the
elements of a particular datatype. element(*, xs:gYear) matches all elements with
a datatype of xs:gYear.

schema-element(author)
Matches any element named <author> whose datatype matches the datatype of the
<author> element declared in a schema. Unlike all the other node tests defined in
XPath 1.0 and 2.0, it is an error to use this node test without an argument.

attribute()
Matches any attribute. Using this node test without arguments is similar to
select="@*" in XPath 1.0. As with element(), we can use attribute() to check the
name and datatype of an item. The node test attribute(public-domain) matches
any attributes named public-domain, regardless of the datatype. attribute(public-
domain, xs:string) matches only attributes named public-domain with a datatype
of xs:string. Finally, using a wildcard for the attribute name returns all the
attributes that match a particular datatype. For example,
attribute(*, xs:decimal) matches all attributes whose datatype is xs:decimal,
regardless of the name of the attribute.

The XPath Data Model | 51

*:NCName
Matches all the nodes with a particular local name. In our sonnet, *:author matches
the <auth:author> element; it would also match the elements <xyz:author> and
<author>. The match occurs regardless of the namespace URI or whether an ele-
ment has a namespace URI at all.

document-node()
Matches document nodes. The node test document-node(element(sonnet)) match-
es a document node with a single element child (<sonnet>). The document node
can also contain comments or processing instructions, but it can only contain a
single element node.

[2.0] Although item() looks like a node test, it is used only as a datatype.
For example, the variable <xsl:variable name="something"
as="item()"> defines a variable that can contain a single value. The
variable can contain any node or atomic type.

[2.0] Sequences and Atomic Values
Working with the XPath 2.0 data model is probably the biggest change in XSLT 2.0.
We’ll mention the changes to the model as we go along, but we’ll discuss three topics
outright: sequences, atomic values, and schema support. We’ll look at sequences and
atomic values now and discuss schema support later in this chapter.

A sequence is, well, a sequence of items. Those items might be nodes from an XML
document, or they might be simple values such as 'June' or 3.14. A sequence has an
order and a length. You can use XPath 2.0 functions to see how many items are in a
sequence, you can retrieve a subset of the items in the sequence, and you can insert or
delete items at a particular point in the sequence. Here is a variable that contains a
sequence:

<!-- sequences1.xsl -->
...
<xsl:variable name="months" as="xs:string*"
 select="('January', 'February', 'March', 'April',
 'May', 'June', 'July', 'August',
 'September', 'October', 'November',
 'December')"/>

There are several things to point out here. First of all, notice that we used the new as
attribute to define the datatype of this variable. The asterisk here means that the variable
can have any number of values. If we defined this variable with the datatype
xs:string, the variable $months could only be a single xs:string. The code here would
cause a fatal error.

The values in the sequence are all atomic values. An atomic value is a simple value, as
opposed to a node. A sequence can contain atomic values, as in our example here; it

52 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

can also use XPath to select nodes from an XML document. Here’s an example that
creates a sequence with atomic values and information from an XML document:

<!-- sequences2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="cities" as="xs:string*">
 <xsl:sequence select="addressbook/address/city"/>
 <xsl:sequence select="('London', 'Adelaide', 'Rome')"/>
 <xsl:sequence select="('Jakarta', 'Sao Paulo', 'Timbuktu')"/>
 </xsl:variable>
 <xsl:text>Our customers live in these cities:

</xsl:text>
 <xsl:value-of select="$cities" separator="
"/>
 </xsl:template>

</xsl:stylesheet>

Notice that the variable here contains an <xsl:sequence> element to select the <city>
elements, followed by two <xsl:sequence> elements that select three strings each. The
value of the sequence $cities has 12 items when used with the following document:

<!-- names.xml -->
<addressbook>

 <address>
 <name>
 <title>Mr.</title>
 <first-name>Chester Hasbrouck</first-name>
 <last-name>Frisby</last-name>
 </name>
 <street>1234 Main Street</street>
 <city>Sheboygan</city>
 <state>WI</state>
 <zip>48392</zip>
 </address>
...
 <city>Skunk Haven</city>
...
 <city>Winter Harbor</city>
...
 <city>Skunk Haven</city>
...
 <city>Boylston</city>
...
 <city>Lynn</city>
 <state>MA</state>
 <zip>02930</zip>
 </address>
</addressbook>

The XPath Data Model | 53

The output from the stylesheet looks like this:

Our customers live in these cities:

Sheboygan
Skunk Haven
Winter Harbor
Skunk Haven
Boylston
Lynn
London
Adelaide
Rome
Jakarta
Sao Paulo
Timbuktu

The sequence has 12 items: 6 items from the <city> elements in the XML document,
and 6 values from the <xsl:sequence> elements that contain strings. The sequence has
a datatype of xs:string*, which means all of the items in the sequence are converted to
xs:string values. Even though we used the pattern /addressbook/address/city to select
the nodes, the contents of the sequence are strings. If we change the datatype of the
sequence to item()*, things work differently:

<!-- sequences3.xsl -->
...
 <xsl:variable name="cities" as="item()*">
 <xsl:sequence select="addressbook/address/city"/>
 <xsl:sequence select="('London', 'Adelaide', 'Rome')"/>
 <xsl:sequence select="('Jakarta', 'Sao Paulo', 'Timbuktu')"/>
 </xsl:variable>
 <xsl:for-each select="$cities">
 <xsl:choose>
 <xsl:when test=". instance of element()">
 <xsl:text> Node: </xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>Atomic value: </xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
...

This stylesheet now contains 12 items, 6 of which are element nodes, 6 of which are
strings. Instead of simply writing the value of each item in the sequence, we use the
new instance of operator to see whether an item is an element or an atomic value. The
results look like this:

Our customers live in these cities:

 Node: Sheboygan
 Node: Skunk Haven
 Node: Winter Harbor

54 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

 Node: Skunk Haven
 Node: Boylston
 Node: Lynn
Atomic value: London
Atomic value: Adelaide
Atomic value: Rome
Atomic value: Jakarta
Atomic value: Sao Paulo
Atomic value: Timbuktu

<xsl:variable name="cities" as="xs:string*">
 <xsl:sequence
 select="(/addressbook/address/city,
 ('London', 'Adelaide', 'Rome'),
 ('Jakarta', 'Sao Paulo', 'Timbuktu'))"/>
</xsl:variable>

Location Paths
One of the most common uses of XPath is to create location paths. A location path
describes the location of something in an XML document. The pattern /addressbook/
address/city describes the location of the elements we want to select. We’ll use location
paths as patterns to find parts of the XML document, then we’ll use XPath expressions
to manipulate them. But before we dive in to the wonders of location paths, we need
to discuss the context.

The Context
One of the most important concepts in XPath is the context. Everything we do in XPath
is interpreted with respect to the context. You can think of an XML document as a
hierarchy of directories in a filesystem. In our sonnet example, we could imagine that
sonnet is a directory at the root level of the filesystem. The sonnet directory would, in
turn, contain directories named auth:author, title, and lines. In this example, the
context would be the current directory. If I go to a command line and execute a par-
ticular command (such as dir *.xsl), the results I get vary depending on the current
directory. Similarly, the results of evaluating an XPath expression will probably vary
based on the context.

[1.0] The XPath 1.0 context

Most of the time, we can think of the context as the node in the tree from which any
expression is evaluated. To be completely accurate, the context consists of five things:

• The context node (the “current directory”). The XPath expression is evaluated from
this node.

• Two integers, the context position and the context size. These integers are important
when we’re processing a group of nodes. For example, we could write an XPath
expression that selects all of the elements in a given document. The context

Location Paths | 55

size refers to the number of items selected by that expression, and the context
position refers to the position of the we’re currently processing.

• A set of variables. This set includes names and values of all variables that are cur-
rently in scope.

• A set of all the functions available to XPath expressions. Some of these functions
are defined by the XPath and XSLT standards themselves; others might be exten-
sion functions defined by whomever created the stylesheet. (You’ll read more about
extension functions in Chapter 9.)

• A set of all the namespace declarations currently in scope.

Having said all that, most of the time you can ignore everything but the context node.
To use our command-line analogy one more time, if you’re at a command line, you
have a current directory; you also have (depending on your operating system) a number
of environment variables defined. For most commands, you can focus on the current
directory and ignore the environment variables.

[2.0] The XPath 2.0 context

As you would expect, the context in XPath 2.0 is more complicated. With support for
XML Schema, dates, times, collations, and functions, there are many more things XPath
2.0 has to track.

The specs talk about two things: the static context and the dynamic context. The static
context is the information that’s available before an expression is evaluated. That in-
formation doesn’t change during the evaluation of the expression. The base URI, the
default collation, and the variables, namespaces, and schemas in scope are all part of
the static context. The context item, the context position, and the context size are all
part of the dynamic context. Most of the time we’ll be concerned with the dynamic
context, but we can access all of the parts of the context whenever we need them.

The static context contains:

• Whether the processor is in XPath 1.0 compatibility mode. This is true or false.

• The set of statically known namespaces. Each item in the set is a prefix and a name-
space URI.

• The default namespace for elements and types. This is either a namespace URI or
“none.”

• The default namespace for functions. This is either a namespace URI or “none.”

• The set of in-scope schema definitions. These include the schema types, elements,
and attributes that are currently in scope.

• The set of variables that are in scope.

• The static type of the context item.

56 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

• The function signatures that are currently in scope. These include the namespace
and arity (number of parameters) of each function, along with the static types of
its parameters and results. Constructor functions are included in this set.

• The statically known collations. The format of collations is implementation-
defined.

• The default collation.

• The base URI.

• A set of statically known documents. This refers to the documents available through
the doc() function. See “[2.0] The doc( ) and doc-available( ) Functions” in Chap-
ter 8 for more details on the doc() function.

• A set of statically known collections. See the description of the [2.0] collection()
function in Appendix C for more information about collections.

• The statically known default collection type. The default collection type is
node()* unless an XSLT processor has set it to some other value. Again, see the
description of the [2.0] collection() function in Appendix C for more information
about collections.

The dynamic context contains everything in the static context, plus:

• The context item. This is similar to the context node in XPath 1.0, with the differ-
ence that the context item can be an atomic value. In XPath 1.0, you could always
ask for the parent of the context node. If you try that in XPath 2.0, the processor
raises an exception unless the context item is a node.

• The context position. This works the same way it did in XPath 1.0; the
position() function returns the context position.

• The context size. Again, this works the same way it did in XPath 1.0; the last()
function returns the context size.

• The set of variable values that are in scope.

• The set of function implementations in scope.

• The current dateTime. This value doesn’t change during the execution of an
expression.

• The implicit timezone. The new [2.0] implicit-timezone() function (see Appen-
dix C) returns this value.

• The set of available documents accessible through the [2.0] doc() function (see
Appendix C).

• The set of available collections accessible through the [2.0] collection() function
(see Appendix C).

• The default collection returned by calling the [2.0] collection() function without
any arguments.

Location Paths | 57

Simple Location Paths
Now that we’ve talked about what a context is and why it matters, we’ll look at some
location paths. We’ll start with a variety of simple paths; as we go along, we’ll look at
more complex location paths that use all the various features of XPath. We already
looked at one of the simplest XSLT patterns:

<xsl:template match="/">

This template selects the root node of the document. We saw another simple XPath
expression in the <xsl:value-of> element:

<xsl:value-of select="."/>

This template selects the context node, represented by a period. To complete our tour
of very simple location paths, we can use the double period (..) to select the parent of
the context node:

<xsl:value-of select=".."/>

All these XPath expressions have one thing in common: they don’t use element names.
As you might have noticed in our Hello World example, you can use element names
to select elements that have a particular name:

<xsl:apply-templates select="greeting"/>

In this example, we select all of the <greeting> elements in the current context and
apply the appropriate template to each of them. Turning to our XML sonnet, we can
create location paths that specify more than one level in the document hierarchy:

<xsl:apply-templates select="lines/line"/>

This example selects all <line> elements that are contained in any <lines> elements in
the current context. If the current context doesn’t have any <lines> elements, then this
expression returns an empty node-set. If the current context has plenty of <lines> el-
ements, but none of them contain any <line> elements, this expression also returns an
empty node-set.

Relative and Absolute Expressions
The XPath specification talks about two kinds of XPath expressions, relative and ab-
solute. Our previous example is a relative XPath expression because the nodes it speci-
fies depend on the current context. An absolute XPath expression begins with a slash
(/), which tells the XSLT processor to start at the root of the document, regardless of
the current context. In other words, you can evaluate an absolute XPath expression
from any context node you want, and the results will be the same. Here’s an absolute
XPath expression:

<xsl:apply-templates select="/sonnet/lines/line"/>

The good thing about an absolute expression is that you don’t have to worry about the
context node. Another benefit is that it makes it easy for the XSLT processor to find all

58 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

nodes that match this expression: what we’ve said in this expression is that there must
be a <sonnet> element at the root of the document, that element must contain at least
one <lines> element, and that at least one of those <lines> elements must contain at
least one <line> element. If any of those conditions fail, the XSLT processor can stop
looking through the tree and return an empty node-set.

A disadvantage of using absolute XPath expressions is that it makes your templates
more difficult to reuse. Both of these templates process <line> elements, but the second
one is more difficult to reuse:

<xsl:template match="line">
 ...
</xsl:template>

<xsl:template match="/sonnet/lines/line">
 ...
</xsl:template>

If the second template has wonderful code for processing <line> elements, but your
document contains <line> elements that don’t match the absolute XSLT pattern, you
can’t reuse that template. (On the other hand, the XSLT processor has less work to do
with the pattern /sonnet/lines/line; we’ve told the processor exactly where to look
for the elements we care about.) In general, you should use absolute expressions only
if you need special processing for a specific case. If <line> elements that match the
pattern /sonnet/lines/line should be processed differently, use the absolute pattern
in the match attribute. If you don’t need to process those <line>s differently, don’t use
the absolute pattern. Keep these things in mind as you design your templates.

Selecting Things Besides Elements with Location Paths
Up until now, we’ve discussed XPath expressions that used either element names
(/sonnet/lines/line) or special characters (/ or ..) to select elements from an XML
document. Obviously, XML documents contain things other than elements; we’ll talk
about how to select those other things here.

Selecting attributes

To select an attribute, use the at-sign (@) along with the attribute name. In our sample
sonnet, you can select the type attribute of the <sonnet> element with the XPath ex-
pression /sonnet/@type. If the context node is the <sonnet> element itself, then the
relative XPath expression @type does the same thing.

Selecting the text of an element

To select the text of an element, simply refer to it in your expression. The element
<xsl:value-of select="/sonnet/auth:author/last-name"/> returns Shakespeare for
our sample sonnet. You can also use the string() function, although that’s typically
not necessary.

Location Paths | 59

These XSLT instructions:

<xsl:value-of select="/sonnet/something_else:author/first-name"/>
<xsl:text> </xsl:text>
<xsl:value-of select="/sonnet/something_else:author/last-name/string()"/>

generate these results:

William Shakespeare

Be aware that getting the text of an element with children probably doesn’t do what
you want. For example, the element <xsl:value-of select="/sonnet/auth:author"/>
returns the string ShakespeareWilliamBritish15641616. All of the text descendants of
the <auth:author> node are concatenated together. To format these nodes more at-
tractively, you’ll have to deal with them individually.

Finally, there is a text() node test that selects the text node children of the context
item. That being said, you almost never want to use it. Getting the node’s text the way
we illustrated here is the best way to go.

Selecting comments, processing instructions, and namespace nodes

By this point, we’ve covered most of the document components you’re ever likely to
select with an XPath expression. You can use a couple of other XPath node tests to
describe parts of an XML document. The comment() and processing-instruction()
node tests allow you to select comments and processing instructions from the XML
document. Going back to our sample sonnet, the XPath expression /processing-
instruction() returns the two processing instructions (named xml-stylesheet and
cocoon-process). The expression /sonnet/comment() returns the comment node that
begins, “Is there an official title for this sonnet?” (That’s the only comment in the
<sonnet> element itself; the other comments are outside the root element.)

Processing comment nodes in this way can actually be useful. If you’ve entered com-
ments into an XML document, you can use the comment() node test to display your
comments only when you want. Here’s an XSLT template you could use:

<xsl:template match="comment()">

 <p><xsl:value-of select="."/></p>

</xsl:template>

Elsewhere in your stylesheet, you could define CSS attributes to print comments in a
large, bold, purple font. To remove all comments from your output document, simply
go to your stylesheet and have the template that handles comments do nothing. (You
could also just remove the template; the default template for comments does nothing.)

XPath has one other kind of node—the rarely used namespace node. To retrieve name-
space nodes, you have to use the namespace axis; we’ll discuss axes in the “Axes” section
later in this chapter. One note about namespace nodes, if you ever have to use them:
when matching namespace nodes, the namespace prefix isn’t important. As an

60 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

example, our sample sonnet used the auth namespace prefix, which maps to the value
http://www.authors.com/. If a stylesheet uses the namespace prefix writers to refer to
the same URL, then the XPath expression /sonnet/writers:* would return the
<auth:author> element. Even though the namespace prefixes are different, the URLs
they refer to are the same. Most likely the only time you’ll care about the namespace
prefix itself is when you’re looking for a particular namespace node. The name of the
namespace node is the prefix. In almost all cases, you’ll use the namespace URI to find
what you’re looking for.

Having said all that, the chances that you’ll ever need to use namespace nodes are pretty
slim.

Using Wildcards
XPath features three wildcards:

The asterisk (*)
Selects all element nodes in the current context. Be aware that the asterisk wildcard
selects element nodes only; attributes, text nodes, comments, or processing in-
structions aren’t included. You can also use a namespace prefix with an asterisk.
In our sample sonnet, the XPath expression auth:* returns all element nodes in the
current context that are associated with the namespace URL http://
www.authors.com/.

[2.0] XPath 2.0 lets us use a wildcard as a namespace prefix. The XPath expression
*:author returns all element nodes in the current context that have a local name of
author, regardless of their namespace. In XPath 2.0, both auth:* and *:author are
legal; in XPath 1.0, looking for *:author causes a fatal error.

As always, searching for a matching namespace is based on the
namespace URL, not the prefix. For example, assume the name-
space URL http://www.authors.com/ is associated with the prefix
auth in the XML document and the prefix something_else in our
stylesheet. Looking for something_else:* in the stylesheet returns
all of the elements with the auth prefix in the XML document.

The at-sign and asterisk (@*)
Selects all attribute nodes in the current context. You can use a namespace prefix
with the attribute wildcard. In our sample sonnet, @auth:* returns all attribute
nodes in the current context that are associated with the namespace URL
http://www.authors.com. (There aren’t any attributes associated with the auth
namespace; if we added an element such as <first-name
auth:nickname="Bill">William</first-name>, the auth:nickname would match this
expression.)

Location Paths | 61

[2.0] As with elements, XPath 2.0 lets us use a wildcard for the namespace prefix.
The expressions @auth:* and @*:nickname are both legal in XPath 2.0. In XPath 1.0,
using a wildcard for the namespace prefix is a fatal error.

The node() node test
Selects all nodes in the current context, regardless of type. This includes elements,
text, comments, processing instructions, attributes, and namespace nodes.

In addition to these wildcards, XPath includes the double slash (//), which indicates
that zero or more elements may occur between the slashes. For example, the XPath
expression //line selects all <line> elements, regardless of where they appear in the
document. This is an absolute XPath expression because it begins with a slash. You
can also use the double slash at any point in an XPath expression; the expres-
sion /sonnet/descendant-or-self::node()/line selects all <line> elements that are de-
scendants of the <sonnet> element at the root of the XML document. The expres-
sions /sonnet//line and /sonnet/descendant-or-self::node()/line are equivalent.
(descendant-or-self is an axis; we’ll talk more about those next.)

The double slash (//) is a very powerful operator, but be aware that it
can make your stylesheets incredibly inefficient. If we use the XPath
expression //line, the XSLT processor has to check every node in the
document to see whether there are any <line> elements. The more spe-
cific you can be in your XPath expressions, the less work the XSLT pro-
cessor has to do and the faster your stylesheets will execute. Thinking
back to our filesystem metaphor, if I go to a Windows command prompt
and type dir/s c:*.xsl, the operating system has to look in every sub-
directory for any *.xsl files that might be there. However, if I type
dir/s c:\doug\projects\stylesheets*.xsl, the operating system has
far fewer places to look, and the command will execute much faster.

Axes
To this point, we’ve been able to select child elements, attributes, text, comments, and
processing instructions with some fairly simple XPath expressions. Obviously, we
might want to select many other things, such as:

• All ancestors of the context node

• All descendants of the context node

• All previous siblings or following siblings of the context node (siblings are nodes
that have the same parent)

To select these things, XPath provides a number of axes (plural of axis) that let you
specify various collections of nodes. There are 13 axes in all; we’ll discuss all of them
here, even though most won’t be particularly useful to you. To use an axis in an XPath
expression, type the name of the axis, a double colon (::), and the name of the element
you want to select, if any.

62 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

Before we define all of the axes, though, we need to talk about XPath’s unabbreviated
syntax.

Unabbreviated syntax

To this point, all the XPath expressions we’ve looked at used the XPath abbreviated
syntax. Most of the time, that’s what you’ll use; however, most of the lesser-used axes
can only be specified with the unabbreviated syntax. For example, when we wrote an
XPath expression to select all of the <line> elements in the current context, we used
the abbreviated syntax:

<xsl:apply-templates select="line"/>

If you really enjoy typing, you can use the unabbreviated syntax to specify that you
want all of the <line> children of the current context:

<xsl:apply-templates select="child::line"/>

We’ll go through all of the axes now, pointing out which ones have an abbreviated
syntax.

Axis roll call

The following list contains all of the axes defined by the XPath standard, with a brief
description of each:

child axis
Contains the children of the context node. As we’ve already mentioned, the XPath
expression child::lines/child::line is equivalent to lines/line. If an XPath ex-
pression (such as sonnet) doesn’t have an axis specifier, the child axis is used by
default. The children of the context node include all comment, element, processing
instruction, and text nodes. Attribute and namespace nodes are not considered
children of the context node.

parent axis
Contains the parent of the context node, if there is one. (If the context node is the
root node, the parent axis returns an empty node-set.) As a step in an XPath ex-
pression, the parent axis can be abbreviated with the double period (..); this moves
up to the current node’s parent. If the <first-name> and <last-name> elements are
both children of the <author> element and the context node is the <first-name>
element, the expressions ../last-name, parent::author/last-name and parent::*/
last-name are equivalent. If the context node does not have a parent, this axis
returns an empty node-set.

self axis
Contains the context node itself. As a step in an XPath expression, the self axis
can be abbreviated with a single period (.). The expressions ., self::node(), and
self::* are equivalent in XSLT 1.0.

Location Paths | 63

[2.0] In XSLT 2.0, the self axis selects the context item, which might not be a node.
If the context item is an atomic value, the expressions self::node() and self::*
cause the XSLT processor to raise an error. In this case, the only way to access the
self axis is with a period. If the context item is a node, the self axis works just as it
did in XSLT 1.0.

attribute axis
Contains the attributes of the context node. If the context node is not an element
node, this axis is empty. The attribute axis can be abbreviated with the at sign
(@). The expressions attribute::type and @type are equivalent.

ancestor axis
Contains the parent of the context node, the parent’s parent, etc. The ancestor
axis always contains the root node unless the context node is the root node.

ancestor-or-self axis
Contains the context node, its parent, its parent’s parent, and so on. This axis
always includes the root node.

descendant axis
Contains all children of the context node, all children of all the children of the
context node, and so on. The children are all of the comment, element, processing
instruction, and text nodes beneath the context node. In other words, the
descendant axis does not include attribute or namespace nodes. (As we discussed
earlier, although an attribute node has an element node as a parent, an attribute
node is not considered a child of that element.)

descendant-or-self axis
Contains the context node and all the children of the context node, all the children
of all the children of the context node, all the children of the children of all the
children of the context node, and so on. As always, the children of the context node
include all comment, element, processing instruction, and text nodes; attribute
and namespace nodes are not included.

preceding-sibling axis
Contains all preceding siblings of the context node; in other words, all nodes that
have the same parent as the context node and appear before the context node in
the XML document. If the context node is an attribute node or a namespace node,
the preceding-sibling axis is empty.

following-sibling axis
Contains all the following siblings of the context node; in other words, all nodes
that have the same parent as the context node and appear after the context node
in the XML document. If the context node is an attribute node or a namespace
node, the following-sibling axis is empty.

preceding axis
Contains all nodes that appear before the context node in the document, except
ancestors, attribute nodes, and namespace nodes.

64 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

following axis
Contains all nodes that appear after the context node in the document, except
descendants, attribute nodes, and namespace nodes.

namespace axis
Contains the namespace nodes of the context node. If the context node is not an
element node, this axis is empty.

Predicates
There’s one more aspect of XPath expressions that we haven’t discussed: predicates.
These are filters that restrict the nodes selected by an XPath expression. Each predicate
is evaluated and converted to a Boolean value (either true or false). If the predicate is
true for a given node, that node will be selected; otherwise, it isn’t. Predicates always
appear inside square brackets ([]). Here’s an example:

<xsl:apply-templates select="line[position() = 7]"/>

This expression selects the seventh <line> element in the current context. If there are
six or fewer <line> elements in the current context, this XPath expression returns an
empty node-set. Several things can be part of a predicate; we’ll go through them here.

Numbers in predicates

Instead of using the position() function, we can use a number. For example, the XPath
expression line[7] selects the seventh <line> element in the context node; this means
exactly the same thing as line[position() = 7]. XPath also provides the boolean and
and or operators as well as the union operator (|) to combine predicates. The expression
line[position()=3 and @style] matches all <line> elements that occur third and that
have a style attribute, while line[position()=3 or @style] matches all <line> ele-
ments that either occur third or have a style attribute.

You can use more than one predicate if you like; line[3][@style] or line[@style][3]
are both legal. They aren’t equivalent, however. Predicates are evaluated from left to
right. The XSLT processor handles the first pattern by selecting all of the <line> nodes
that appear third in a set of sibling <line> nodes, then selecting all of those nodes that
have a style attribute. For the second pattern, the processor selects all the <line> ele-
ments that have a style attribute, then selects the third node from that sequence. The
first pattern can match any number of nodes, while the second pattern will never match
more than one. In general, the first predicate filters the nodes, the second predicate
filters the nodes that made it past the first predicate, and then the third predicate filters
the nodes that made it past the second, and so forth.

Functions in predicates

In addition to numbers, we can use XPath and XSLT functions inside predicates. Here
are some examples:

Location Paths | 65

line[last()]
Selects the last <line> element in the current context.

line[position() mod 2 = 0]
Selects all even-numbered <line> elements. (The mod operator returns the remain-
der after a division; the position of any even-numbered element divided by 2 has
a remainder of 0.)

sonnet[@type="Shakespearean"]
Selects all <sonnet> elements that have a type attribute with the value
Shakespearean. Note that double versus single quotes are not significant; this XPath
expression matches either <sonnet type="Shakespearean"> or <sonnet
type='Shakespearean'>.

ancestor::table[@border="1"]
Selects all <table> ancestors of the current context that have a border attribute with
the value 1.

count(/body/table[@border="1"])
Returns the number of <table> elements with a border attribute equal to 1 that are
children of <body> elements that are children of the root node. Notice that in this
case we’re using a predicate as part of the location path.

Attribute Value Templates
Although they’re technically defined in the XSLT specification (in XSLT 1.0 section
7.6.2 and XSLT 2.0 section 5.6), we’ll discuss attribute value templates here. An at-
tribute value template (sometimes abbreviated as AVT) is an XPath expression that is
evaluated, and the result of that evaluation replaces the attribute value template. For
example, we could create an HTML <table> element like this:

<table border="{@size}"/>

In this example, the XPath expression @size is evaluated, and its value, whatever that
happens to be, is inserted into the output tree as the value of the border attribute.
Attribute value templates can be used in any literal result elements in your stylesheet
(for HTML elements and other things that aren’t part of the XSLT namespace, for
example). You can also use attribute value templates in the following XSLT attributes:

• The name and namespace attributes of the <xsl:attribute> element

• The name and namespace attributes of the <xsl:element> element

• The format, lang, letter-value, grouping-separator, and grouping-size attributes
of the <xsl:number> element

• The name attribute of the <xsl:processing-instruction> element

• The lang, data-type, order, and case-order attributes of the <xsl:sort> element

[2.0] XSLT 2.0 can use AVTs in several additional places:

66 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

• The regex and flags attributes of the new [2.0] <xsl:analyze-string> element

• The name, namespace, and separator attributes of the <xsl:attribute> element (just
as in XSLT 1.0)

• The name and namespace attributes of the <xsl:element> element (just as in XSLT
1.0)

• The collation attribute of the new [2.0] <xsl:for-each-group> element

• The terminate attribute of the <xsl:message> element

• The name attribute of the [2.0] <xsl:namespace> element

• The format, lang, letter-value, ordinal, grouping-separator, and grouping-size
attributes of the <xsl:number> element (ordinal is new in XSLT 2.0; all the others
are unchanged from XSLT 1.0)

• The name attribute of the <xsl:processing-instruction> element

• The format, href, method, byte-order-mark, cdata-section-elements, doctype-
public, doctype-system, encoding, escape-uri-attributes, include-content-type,
indent, media-type, normalization-form, omit-xml-declaration, standalone,
undeclare-prefixes, and output-version attributes of the new [2.0] <xsl:result-
document> element

• The lang, order, collation, stable, case-order, and data-type attributes of the
<xsl:sort> element (collation and stable are new for XSLT 2.0)

• The separator attribute of the <xsl:value-of> element (a new attribute in XSLT
2.0)

Datatypes
One of the major additions to XPath 2.0 is support for the XML Schema datatype
system. The XPath 1.0 and 2.0 data models are so different we’ll discuss them in sep-
arate sections. In general, most statements that worked in XPath 1.0 still work in XSLT
2.0. On the other hand, any XPath 2.0 statement that uses the new datatyping features
won’t work at all in XPath 1.0.

Datatypes in XPath 1.0
In XPath 1.0, an expression returns one of four datatypes:

node-set
Represents a set of nodes. The set can be empty or it can contain any number of
nodes.

boolean
Represents the value true or false. Be aware that the true or false strings have no
special meaning or value in XPath; see “Converting to boolean values” in Chap-
ter 5 for a more detailed discussion of these.

Datatypes | 67

number
Represents a floating-point number. All numbers in XPath and XSLT are imple-
mented as floating-point numbers; the integer (or int) datatype does not exist in
XPath and XSLT. Specifically, all numbers are implemented as IEEE 754 floating-
point numbers, which is the same standard used by the Java float and double
primitive types. In addition to ordinary numbers, there are five special values for
numbers: positive and negative infinity, positive and negative zero, and NaN, the
special symbol for anything that is not a number.

string
Represents zero or more characters, as defined in the XML specification.

These datatypes are usually simple, and with the exception of node-sets, converting
between types is usually straightforward. We won’t discuss these datatypes in any more
detail here; instead, we’ll discuss datatypes and conversions as we need them to do
specific tasks.

Datatypes in XPath 2.0
The XPath 2.0 data model is perhaps the most significant change to writing XSLT
version 2.0 stylesheets. We’ll cover the datatypes supported by XPath 2.0. XPath 2.0
supports all of the basic datatypes defined in XML Schema, and a schema-aware XSLT
2.0 processor lets you create your own datatypes. We’ll start with the basic datatypes;
these are the only datatypes supported by a basic XSLT processor. To support other
datatypes, including datatypes we define (po:purchaseOrder, for example) and derived
types defined in XML Schema (such as xs:nonNegativeInteger), you need a schema-
aware XSLT processor.

We’ve already looked at using <xsl:variable name="sample" select="'3'"
as="xs:integer"/> as a way of creating an xs:integer value. XPath 2.0 also provides
constructor functions, described in the following list. For example,
<xsl:variable name="sample" select="xs:integer(3)"/> creates a new xs:integer val-
ue, whereas <xsl:variable name="birthday" select="xs:date('1995-04-21')"/> cre-
ates a new xs:date value:

xs:string
The xs:string datatype represents a string. Every datatype supported by XPath 2.0
has a string representation. If you want to see how a datatype looks as a string, the
XSLT <xsl:value-of> element will do the trick. You can convert anything to a string
by using the constructor function xs:string(). The constructor is the equivalent
of the Java toString() method that’s inherited by every class.

xs:boolean
As in XSLT 1.0, the string values true and false don’t have any special meaning.
To work with the boolean values themselves, XPath provides the true() and
false() functions; they return the corresponding boolean values. See “Converting

68 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

to boolean values” in Chapter 5 for a more detailed discussion of these values. You
can also use the xs:boolean() constructor to create boolean values.
xs:boolean(1) creates the value true, while xs:boolean(0) creates the value false.

xs:decimal
XML Schema defines an xs:decimal value as a numeric value consisting of decimal
digits (0 through 9), beginning with an optional plus or minus sign. An
xs:decimal cannot contain an exponent. The XML Schema spec states that an im-
plementation must support a minimum of 18 decimal digits. The values 42,
8.37284, and –83982.22 are all legal xs:decimal values.

xs:float and xs:double
The xs:float and xs:double datatypes are based on the IEEE single-precision and
double-precision floating-point types, respectively. Unlike xs:decimal, xs:float
and xs:double values can have exponents. There are three special values of
xs:float and xs:double: INF (infinity), –INF (negative infinity), and NaN (not a num-
ber). The values 42, 8.37284, –83982.22, –8.39822e4, INF, and –0 are all valid values
for an xs:float or xs:double.

xs:integer
An integer is a number without a decimal point or digits after it. An integer can
include a plus or minus sign (+ or –) to indicate a negative value; without either,
the integer is assumed to be positive.

xs:duration
An xs:duration represents a span of time. It has six components: year, month, day,
hour, minute, and second. The XML Schema spec states that an implementation
should support at least a four-digit year and a seconds value with at least three
decimal points (millisecond precision). A duration of 1 year, 7 months, 18 days, 4
hours, 27 minutes, and 3.673 seconds is written as P1Y7M18DT4H27M3.673S.

Date and time values
There are three datatypes for dates and times: xs:date, xs:time, and xs:dateTime.
The format of a date is YYYY-MM-DD, as in 1995-04-21 for April 21st, 1995. A time
value is in the format hh:mm:ss.sss, so 17:38:22.183 is the same as 22.183 seconds
past 5:38 p.m.

Both xs:date and xs:time values have an optional time zone indicator, shown by
a plus or minus sign (+ | –) that indicates that the date or time is some number of
hours ahead or behind Coordinated Universal Time (UTC, also known as Green-
wich Mean Time). For example, during the winter (when Daylight Savings Time
is not in effect), the time zone on the East coast of the United States is -05:00. Be
aware that if the XSLT processor normalizes a date or time value, parts of the value
can change. The time value 17:30:22.183-05:00 is the same as the time value
00:30:22.183Z (a date or time value that ends with Z has been normalized to UTC).

Finally, an xs:dateTime value is the combination of an xs:date and an xs:time. The
written representation of an xs:dateTime has a T between the two portions. To
combine our earlier examples, 1995-04-21T17:38:22.183-05:00 is 22.183 seconds

Datatypes | 69

past 5:38 p.m. on April 21st, 1995, five hours behind UTC. That value is equivalent
to 1995-04-22T00:38:22.183Z.

Be aware that xs:date, xs:time, and xs:dateTime can have negative values.

Parts of date and time values
XML Schema defines the datatypes xs:gYearMonth, xs:gYear, xs:gMonthDay, gDay,
and gMonth. Examples of these values, in order, are 1995-04 for April, 1995; 1995
for the year 1995; --04-21 for the 21st day of April; ---21 for the 21st day of a
month; and --04 for April.

xs:hexBinary and xs:base64Binary
The xs:hexBinary datatype is a string composed of binary octets. In other words,
it must contain only pairs of hexadecimal digits ([0-9a-fA-F]). The
xs:base64Binary datatype uses base 64 encoding to represent binary data. It is also
a string. An xs:base64Binary value consists of the 65 characters defined in
RFC2045: [0-9a-zA-Z], the plus sign (+), the forward slash (/), and the equals sign
(=), along with whitespace characters. (The RFC is available at http://www.ietf.org/
rfc/rfc2045.txt.)

xs:anyURI
An xs:anyURI value is any string that forms a valid URI as defined by RFC 2396
(and later updated by RFC2732). The RFCs are available at http://www.ietf.org/rfc/
rfc2396.txt and http://www.ietf.org/rfc/rfc2732.txt.

xs:QName
An xs:QName (qualified name) is an XML name qualified with a namespace prefix.
For example, auth:author is a qualified name. To use an xs:QName in a stylesheet,
the namespace prefix must be in scope.

xs:anyType and xs:anySimpleType
The datatype xs:anyType is considered the base datatype (called the ur-type in the
XML Schema datatypes spec) from which all other datatypes are derived. A value
of xs:anyType can contain any data; it is not constrained in any way.

The xs:anySimpleType datatype is a restricted version of xs:anyType; an
xs:anySimpleType value can be any legal value for any of the primitive datatypes
defined in XML Schema. A primitive datatype is a datatype that is not defined in
terms of another. The xs:float datatype is a primitive datatype, so an xs:float
value would be considered xs:anySimpleType. On the other hand, xs:integer is not
a simple type; it is defined in terms of xs:float.

The following datatypes were added by the XPath 2.0 and XQuery 1.0 Data Model
spec. They are supported along with all of the datatypes defined by XML Schema:

xs:yearMonthDuration and xs:dayTimeDuration
These two types were added to the XML Schema datatypes namespace by the XPath
2.0 and XQuery 1.0 Data Model spec. They represent the two halves of an
xs:duration. An xs:yearMonthDuration is some number of years, months, and days,
whereas an xs:dayTimeDuration is some number of days, hours, minutes, and

70 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt

seconds. Both of these datatypes can have negative values. The duration 12 years
and 2 months is written as P12Y2M. Note that an xs:yearMonthDuration doesn’t have
a days component. The duration 4 days, 7 hours, 47 minutes, and 32.883 seconds
is written as P4DT7H47M32.883S.

xs:untyped and xs:untypedAtomic
These datatypes are defined by the XPath 2.0 and XQuery 1.0 Data Model spec. A
node that has not been validated has a dynamic type of xs:untyped, whereas an
atomic value that has not been validated has a dynamic type of xs:untypedAtomic.

xs:anyAtomicType
In XPath 2.0 and XQuery 1.0, all simple types have xs:anyAtomicType as their base
type. For example, xs:integer, xs:boolean, and xs:string are all derived from
xs:anyAtomicType.

XPath Operators
XPath supports a number of operators that make your expressions more powerful.
We’ll look at each of them here.

[1.0] The first two sections here cover all of the XPath 1.0 operators except the vertical
bar (|), the union operator. Only the vertical bar is supported in XPath 1.0; the new
union keyword is supported only in XPath 2.0. See the section “[2.0] Set Operators—
except, intersect, and union” later in this chapter for the details of the union operator
(|) and the union keyword.

[2.0] In XPath 2.0, some operators work with dates, times, and durations. For example,
you can add 12 hours to an xs:dayTimeDuration if you want. We cover the operators
and features specific to XPath 2.0 after looking at the features common to XPath 1.0
and 2.0.

Mathematical Operators
The mathematical operators available in XPath are pretty limited. We’ll use two style-
sheets to illustrate how the operators work; the first indicates how an operator works
in XSLT 1.0 and the second indicates how it works in XSLT 2.0. We’ll cover the style-
sheets in detail for the first operator (the plus sign), then simply refer to those examples
throughout this section.

Addition (+)

The plus sign adds two numbers.

[1.0] In an XSLT 1.0 stylesheet, the processor attempts to convert each operand to a
number. The following XPath expressions all work in XPath 1.0:

<?xml version="1.0"?>
<!-- addition-1_0.xsl -->

XPath Operators | 71

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Tests of addition in XPath 1.0
</xsl:text>
 <xsl:text>
 9 + 3 = </xsl:text>
 <xsl:value-of select="9 + 3"/>
 <xsl:text>
 9 + 3.8 = </xsl:text>
 <xsl:value-of select="9 + 3.8"/>
 <xsl:text>
 9 + '4' = </xsl:text>
 <xsl:value-of select="9 + '4'"/>
 <xsl:text>
 9 + 'Q' = </xsl:text>
 <xsl:value-of select="9 + 'Q'"/>
 <xsl:text>
 9 + true() = </xsl:text>
 <xsl:value-of select="9 + true()"/>
 <xsl:text>
 9 + false() = </xsl:text>
 <xsl:value-of select="9 + false()"/>
 </xsl:template>
</xsl:stylesheet>

Here are the stylesheet results:

Tests of addition in XPath 1.0

 9 + 3 = 12
 9 + 3.8 = 12.8
 9 + '4' = 13
 9 + 'Q' = NaN
 9 + true() = 10
 9 + false() = 9

Notice that XSLT 1.0 converts a string ('4') to a number. If the string can’t be converted
to a number ('Q'), the result is NaN, or not a number. The boolean values returned by
the functions true() and false() are converted to the numbers 1 and 0, respectively.

[2.0] XSLT 2.0 is much more strict. The two operands must be compatible datatypes.
Changing the stylesheet to <xsl:stylesheet version="2.0" ...> causes the stylesheet
to fail. The first two operations (9 + 3 and 9 + 3.8) work, but none of the others do.
To fix the problem, we can use the number() function to convert the values to numbers.
The updated stylesheet looks like this:

<?xml version="1.0"?>
<!-- addition-2_0.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Tests of addition in XPath 2.0
</xsl:text>
 <xsl:text>
 9 + 3 = </xsl:text>

72 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

 <xsl:value-of select="9 + 3"/>
 <xsl:text>
 9 + 3.8 = </xsl:text>
 <xsl:value-of select="9 + 3.8"/>
 <xsl:text>
 9 + number('4') = </xsl:text>
 <xsl:value-of select="9 + number('4')"/>
 <xsl:text>
 9 + number('Q') = </xsl:text>
 <xsl:value-of select="9 + number('Q')"/>
 <xsl:text>
 9 + number(true()) = </xsl:text>
 <xsl:value-of select="9 + number(true())"/>
 <xsl:text>
 9 + number(false()) = </xsl:text>
 <xsl:value-of select="9 + number(false())"/>
 </xsl:template>
</xsl:stylesheet>

Now that we explicitly cast each value to a number, the stylesheet generates the same
results as the XSLT 1.0 stylesheet:

Tests of addition in XPath 2.0

 9 + 3 = 12
 9 + 3.8 = 12.8
 9 + number('4') = 13
 9 + number('Q') = NaN
 9 + number(true()) = 10
 9 + number(false()) = 9

A final option is to add the XSLT 2.0 attribute version="1.0" to any of the <xsl:value-
of> elements. This works in an XSLT 2.0 stylesheet:

<xsl:value-of select="9 + '4'" version="1.0"/>

This generates the value 13. The version attribute can be added to any XSLT element
to specify that it should be processed as if it were in an XSLT 1.0 stylesheet.

If the values we’re adding are nodes instead of atomic values, the dy-
namic typing from XPath 1.0 works the same way. For example, we can
use this subtraction to find Shakespeare’s age:

<xsl:value-of select="/sonnet/auth:author/year-of-death -
 /sonnet/auth:author/year-of-birth"/>

We’re subtracting two nodes here, so both of them are converted to
numbers and subtracted. Trying to do the same thing with two strings
doesn’t work in XSLT 2.0:

<xsl:value-of select="'1616' - '1564'"/>

[2.0] In XPath 2.0, the plus sign can be used to add combinations of dates, times, and
durations. You can use the plus sign to add the following:

• Two xs:yearMonthDurations

• Two xs:dayTimeDurations

• An xs:yearMonthDuration to an xs:dateTime

XPath Operators | 73

• An xs:dayTimeDuration to an xs:dateTime

• An xs:yearMonthDuration to an xs:date

• An xs:dayTimeDuration to an xs:date

• An xs:dayTimeDuration to an xs:time.

(Notice that you can’t add an xs:yearMonthDuration to an xs:time.)

Here is a stylesheet with examples of all the supported types of addition:

<?xml version="1.0"?>
<!-- addition-datesTimesDurations.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:variable name="yMD1" as="xs:yearMonthDuration"
 select="xs:yearMonthDuration('P1Y8M')"/>
 <xsl:variable name="yMD2" as="xs:yearMonthDuration"
 select="xs:yearMonthDuration('P2Y7M')"/>
 <xsl:variable name="dTD1" as="xs:dayTimeDuration"
 select="xs:dayTimeDuration('P5DT9H23M12S')"/>
 <xsl:variable name="dTD2" as="xs:dayTimeDuration"
 select="xs:dayTimeDuration('P3DT16H12M17S')"/>
 <xsl:variable name="dT" as="xs:dateTime"
 select="xs:dateTime('1995-04-21T00:47:00')"/>
 <xsl:variable name="d" as="xs:date"
 select="xs:date('1995-04-21')"/>
 <xsl:variable name="t" as="xs:time"
 select="xs:time('17:03:00')"/>

 <xsl:template match="/">
 <xsl:text>More tests of addition in XPath 2.0:</xsl:text>
 <xsl:text>

 Two xs:yearMonthDurations:
 </xsl:text>
 <xsl:value-of select="($yMD1, '+', $yMD2, '=', $yMD1 + $yMD2)"/>
 <xsl:text>

 Two xs:dayTimeDurations:
 </xsl:text>
 <xsl:value-of select="($dTD1, '+', $dTD2, '=', $dTD1 + $dTD2)"/>
 <xsl:text>

 An xs:yearMonthDuration and an </xsl:text>
 <xsl:text>xs:dateTime:
 </xsl:text>
 <xsl:value-of select="($dT, '+', $yMD1, '=', $dT + $yMD1)"/>
 <xsl:text>

 An xs:dayTimeDuration and an </xsl:text>
 <xsl:text>xs:dateTime:
 </xsl:text>
 <xsl:value-of select="($dT, '+', $dTD1, '=', $dT + $dTD1)"/>
 <xsl:text>

 An xs:yearMonthDuration and an </xsl:text>
 <xsl:text>xs:date:
 </xsl:text>
 <xsl:value-of select="($d, '+', $yMD1, '=', $d + $yMD1)"/>
 <xsl:text>

 An xs:dayTimeDuration and an </xsl:text>
 <xsl:text>xs:date:
 </xsl:text>
 <xsl:value-of select="($d, '+', $dTD1, '=', $d + $dTD1)"/>
 <xsl:text>

 An xs:dayTimeDuration and an </xsl:text>
 <xsl:text>xs:time:
 </xsl:text>
 <xsl:value-of select="($t, '+', $dTD1, '=', $t + $dTD1)"/>

74 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

 </xsl:template>
</xsl:stylesheet>

Here are the results:

More tests of addition in XPath 2.0:

 Two xs:yearMonthDurations:
 P1Y8M + P2Y7M = P4Y3M

 Two xs:dayTimeDurations:
 P5DT9H23M12S + P3DT16H12M17S = P9DT1H35M29S

 An xs:yearMonthDuration and an xs:dateTime:
 1995-04-21T00:47:00 + P1Y8M = 1996-12-21T00:47:00

 An xs:dayTimeDuration and an xs:dateTime:
 1995-04-21T00:47:00 + P5DT9H23M12S = 1995-04-26T10:10:12

 An xs:yearMonthDuration and an xs:date:
 1995-04-21 + P1Y8M = 1996-12-21

 An xs:dayTimeDuration and an xs:date:
 1995-04-21 + P5DT9H23M12S = 1995-04-26

 An xs:dayTimeDuration and an xs:time:
 17:03:00 + P5DT9H23M12S = 02:26:12

Subtraction (–)

Given two numbers, the minus sign subtracts the second number from the first. Using
subtraction in our sample stylesheets, we get these results:

Tests of XPath subtraction in XSLT 1.0

 9 - 3 = 6
 9 - 3.8 = 5.2
 9 - '4' = 5
 9 - 'Q' = NaN
 9 - true() = 8
 9 - false() = 9

We get the same results in an XSLT 2.0 stylesheet by casting each of the arguments to
numbers or by using the version attribute.

[2.0] In XPath 2.0, the minus sign can be used to subtract durations from each other
and from xs:date, xs:dateTime, and xs:time values. We can use the minus sign to
subtract:

• One xs:yearMonthDuration from another

• One xs:dayTimeDuration from another

• An xs:yearMonthDuration from an xs:dateTime

• An xs:dayTimeDuration from an xs:dateTime

XPath Operators | 75

• An xs:yearMonthDuration from an xs:date

• An xs:dayTimeDuration from an xs:date

• An xs:dayTimeDuration from an xs:time.

Replacing the plus signs with minus signs in our previous stylesheet gives us these
results:

More tests of subtraction in XPath 2.0:

 One xs:yearMonthDuration from another:
 P1Y8M - P2Y7M = -P11M

 One xs:dayTimeDuration from another:
 P5DT9H23M12S - P3DT16H12M17S = P1DT17H10M55S

 An xs:yearMonthDuration from an xs:dateTime:
 1995-04-21T00:47:00 - P1Y8M = 1993-08-21T00:47:00

 An xs:yearMonthDuration from an xs:dateTime:
 1995-04-21T00:47:00 - P1Y8M = 1993-08-21T00:47:00

 An xs:dayTimeDuration from an xs:dateTime:
 1995-04-21T00:47:00 - P5DT9H23M12S = 1995-04-15T15:23:48

 An xs:yearMonthDuration from an xs:date:
 1995-04-21 - P1Y8M = 1993-08-21

 An xs:dayTimeDuration from an xs:date:
 1995-04-21 - P5DT9H23M12S = 1995-04-15

 An xs:dayTimeDuration from an xs:time:
 17:03:00 - P5DT9H23M12S = 07:39:48

Notice that the first subtraction returns the negative value –P11M.

Multiplication (*)

Given two numbers, the multiplication sign multiplies the first number by the second.
Again, using the * operator in our stylesheets gives us these results:

Tests of XPath multiplication in XPath 1.0

 9 * 3 = 27
 9 * 3.8 = 34.199999999999996
 9 * '4' = 36
 9 * 'Q' = NaN
 9 * true() = 9
 9 * false() = 0

The results in XPath 2.0 are cleaner; 34.19999... is rounded to 34.2:

Tests of XPath multiplication in XPath 2.0

 9 * 3 = 27
 9 * 3.8 = 34.2

76 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

 9 * number('4') = 36
 9 * number('Q') = NaN
 9 * number(true()) = 9
 9 * number(false()) = 0

[2.0] In XPath 2.0, you can multiply xs:yearMonthDurations and xs:dayTimeDurations
by numeric values:

<?xml version="1.0"?>
<!-- multiplication-datesTimesDurations.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:variable name="yMD1" as="xs:yearMonthDuration"
 select="xs:yearMonthDuration('P1Y8M')"/>
 <xsl:variable name="dTD1" as="xs:dayTimeDuration"
 select="xs:dayTimeDuration('P24DT08H00M00S')"/>

 <xsl:template match="/">
 <xsl:text>More tests of multiplication in XPath 2.0:</xsl:text>
 <xsl:text>

 A xs:yearMonthDuration multiplied </xsl:text>
 <xsl:text>by a number:
 </xsl:text>
 <xsl:value-of select="($yMD1, '* 3 =', $yMD1 * 3)"/>
 <xsl:text>

 A xs:dayTimeDuration multiplied </xsl:text>
 <xsl:text>by a number:
 </xsl:text>
 <xsl:value-of select="($dTD1, '* 10.5 =', $dTD1 * 10.5)"/>
 </xsl:template>
</xsl:stylesheet>

The results look like this:

More tests of multiplication in XPath 2.0:

 A xs:yearMonthDuration multiplied by a number:
 P1Y8M * 3 = P5Y

 A xs:dayTimeDuration multiplied by a number:
 P24DT8H * 10.5 = P255DT12H

(Technically, the numeric value should be an xs:double, but XSLT 2.0 converts the
numeric value 3 automatically.)

Division (div)

Given two numbers, the division sign divides the first number by the second. In most
programming languages, the division operator is the slash (/), but XPath uses the slash
as a separator in location paths, so we use the more verbose div operator instead. Using
div in our stylesheets, here are the results for XPath 1.0:

Tests of XPath div in XPath 1.0

 9 div 3 = 3

XPath Operators | 77

 9 div 3.8 = 2.368421052631579
 9 div '4' = 2.25
 9 div 'Q' = NaN
 9 div true() = 9
 9 div false() = INF

The results for XPath 2.0 are very similar:

Tests of XPath div in XPath 2.0

 9 div 3 = 3
 9 div 3.8 = 2.368421052631578947
 9 div number('4') = 2.25
 9 div number('Q') = NaN
 9 div number(true()) = 9
 9 div number(false()) = INF

Notice that the value 9 div false(), equivalent to 9 div 0, returns the value INF (in-
finity). Dividing by zero is not a fatal error, as you might expect.

[2.0] You can also divide durations in four different ways:

• Divide an xs:yearMonthDuration by an xs:double

• Divide one xs:yearMonthDuration by another

• Divide an xs:dayTimeDuration by an xs:double

• Divide one xs:dayTimeDuration by another

We’ll use this stylesheet:

<?xml version="1.0"?>
<!-- div-datesTimesDurations.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:variable name="yMD1" as="xs:yearMonthDuration"
 select="xs:yearMonthDuration('P1Y8M')"/>
 <xsl:variable name="yMD2" as="xs:yearMonthDuration"
 select="xs:yearMonthDuration('P0Y5M')"/>
 <xsl:variable name="dTD1" as="xs:dayTimeDuration"
 select="xs:dayTimeDuration('P24DT08H00M00S')"/>
 <xsl:variable name="dTD2" as="xs:dayTimeDuration"
 select="xs:dayTimeDuration('P0DT4H00M00S')"/>

 <xsl:template match="/">
 <xsl:text>More tests of division in XPath 2.0:</xsl:text>
 <xsl:text>

 A xs:yearMonthDuration divided </xsl:text>
 <xsl:text>by a number:
 </xsl:text>
 <xsl:value-of select="($yMD1, 'div 4 =', $yMD1 div 4)"/>
 <xsl:text>

 One xs:yearMonthDuration divided </xsl:text>
 <xsl:text>by another:
 </xsl:text>
 <xsl:value-of select="($yMD1, 'div', $yMD2, '=', $yMD1 div $yMD2)"/>
 <xsl:text>

 A xs:dayTimeDuration divided </xsl:text>

78 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

 <xsl:text>by a number:
 </xsl:text>
 <xsl:value-of select="($dTD1, 'div 4.5 =', $dTD1 div 4.5)"/>
 <xsl:text>

 One xs:dayTimeDuration divided </xsl:text>
 <xsl:text>by another:
 </xsl:text>
 <xsl:value-of select="($dTD1, 'div', $dTD2, '=', $dTD1 div $dTD2)"/>
 </xsl:template>
</xsl:stylesheet>

The results look like this:

More tests of division in XPath 2.0:

 A xs:yearMonthDuration divided by a number:
 P1Y8M div 4 = P5M

 One xs:yearMonthDuration divided by another:
 P1Y8M div P5M = 4

 A xs:dayTimeDuration divided by a number:
 P24DT8H div 4.5 = P5DT9H46M40S

 One xs:dayTimeDuration divided by another:
 P24DT8H div PT4H = 146

[2.0] Integer division (idiv)

XPath 2.0 introduces the idiv operator for integer division. The rules for integer division
in XPath 2.0 are different from the rules you might know from C++ and Java; no
rounding is done if there is any remainder from the division. Changing our earlier div
example to use idiv, we have to remove a couple of error cases:

<?xml version="1.0"?>
<!-- idiv.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Tests of idiv in XPath 2.0
</xsl:text>
 <xsl:text>
 9 idiv 3 = </xsl:text>
 <xsl:value-of select="9 idiv 3"/>
 <xsl:text>
 9 idiv 3.8 = </xsl:text>
 <xsl:value-of select="9 idiv 3.8"/>
 <xsl:text>
 9 idiv number('4') = </xsl:text>
 <xsl:value-of select="9 idiv number('4')"/>
 <!-- Causes a fatal error -->
 <!-- <xsl:value-of select="9 idiv number('Q')"/> -->
 <xsl:text>
 9 idiv number(true()) = </xsl:text>
 <xsl:value-of select="9 idiv number(true())"/>
 <!-- Causes a fatal error -->
 <!-- <xsl:value-of select="9 idiv number(false())"/> -->
 </xsl:template>
</xsl:stylesheet>

XPath Operators | 79

Compare these results to those for the div operator:

Tests of idiv in XPath 2.0

 9 idiv 3 = 3
 9 idiv 3.8 = 2
 9 idiv number('4') = 2
 9 idiv number(true()) = 9

As you can see, no rounding is done.

Modulo (mod)

The mod operator returns the remainder of a division. Here are the results for XPath 1.0:

Tests of the mod operator in XPath 1.0

 9 mod 3 = 0
 9 mod 3.8 = 1.4000000000000004
 9 mod '4' = 1
 9 mod 'Q' = NaN
 9 mod true() = 0
 9 mod false() = NaN

The results for XPath 2.0 are very similar:

Tests of the mod operator in XPath 2.0

 9 mod 3 = 0
 9 mod 3.8 = 1.4
 9 mod number('4') = 1
 9 mod number('Q') = NaN
 9 mod number(true()) = 0
 9 mod number(false()) = NaN

When we use mod to divide by zero, we get the value NaN (not a number). This is the
same result we get when we divide by something that can’t be converted to a number
('Q', for example).

The most common use of the mod operator is to cycle through a set of values. For
example, say we want a stylesheet that generates different background colors for rows
of a table. We want to alternate between white and gray backgrounds. We can use the
mod operator for this:

<xsl:attribute name="bgcolor">
 <xsl:choose>
 <xsl:when test="position() mod 2 = 1">
 <xsl:text>white</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>gray</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
</xsl:attribute>

80 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

The position of the first item is 1. The remainder of dividing 1 by 2 is 1, so the first row
will have a white background. For every alternate row, the remainder will be 0, which
means the background color will be gray. To alternate between five different values,
you would write tests such as position() mod 5 = 1, position() mod 5 = 2, and so on.

Unary minus (–x)

The unary minus sign returns the negation of its operand. Here is a stylesheet that
illustrates how it works:

<?xml version="1.0"?>
<!-- unary-minus.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="x" as="xs:integer" select="xs:integer(-10)"/>

 <xsl:text>An example of the unary minus </xsl:text>
 <xsl:text>operator:
 </xsl:text>
 <xsl:value-of select="('$x =', $x, '
 -$x = ', -$x)"/>
 </xsl:template>

</xsl:stylesheet>

The results look like this:

An example of the unary minus operator:
 $x = -10
 -$x = 10

Some details from the Functions and Operators spec: if the argument is an xs:integer or
xs:decimal, the negation of 0 or 0.0 is 0 and 0.0, respectively. If the argument is an
xs:float or xs:double, NaN returns NaN, 0.0E0 returns –0.0E0, –0.0E0 returns 0.0E0,
INF returns –INF, and –INF returns INF.

Unary plus (+x)

The unary plus operator returns its operand with the sign unchanged. It makes no
change to the operand, but it is included for completeness. Changing the stylesheet we
used for unary minus, we get these results:

An example of the unary plus operator:
 $x = -10
 +$x = -10

XPath Operators | 81

Boolean Operators
XPath provides several boolean operators. They’re all straightforward (in XPath 1.0,
anyway), so we’ll just list them here.

When you’re working with boolean expressions in XPath, remember
that the values 'true' and 'false' are just strings. If you need to use the
boolean values, use the functions true() and false(). Simply using
true in an XPath expression means a node whose name is true, which
is almost certainly not what you want. To emphasize the point, we’ll
refer to the boolean values with their functions.

As we saw in the section on mathematical operators, converting
true() and false() to numbers returns 1 and 0, respectively. XPath
defines rules for converting different datatypes to boolean values. See
“Converting to boolean values” in Chapter 5 for all the details.

Comparing expressions

There are several operators from XPath 1.0 (and 2.0) that compare expressions. We’ll
look at those here:

= (equal)
Given two expressions, returns true() if the two expressions evaluate to the same
value, and returns false() otherwise.

!= (not equal)
Given two expressions, returns true() if the two expressions do not evaluate to
the same value, and returns false() otherwise.

< or < (less than)
Given two expressions, returns true() if the first expression evaluates to a value
less than the second. Otherwise, it returns false(). The less than operator is usu-
ally escaped with < so that it doesn’t look like the opening arrow of an XML tag.

<= or <= (less than or equal)
Given two expressions, returns true() if the first expression evaluates to a value
less than or equal to the second. Otherwise, it returns false(). The less than or
equal operator is usually escaped with <= so that it doesn’t look like the start of
an XML element named =.

> or > (greater than)
Given two expressions, returns true() if the first expression evaluates to a value
greater than the second. Otherwise, it returns false(). The greater than operator
can be escaped with > so that it doesn’t look like the closing arrow of an XML
tag.

82 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

>= or >= (greater than or equal)
Given two expressions, returns true() if the first expression evaluates to a value
greater than or equal to the second. Otherwise, it returns false(). The greater than
or equal operator can be escaped with >=.

and
Given two expressions, returns true() if both expressions evaluate to true(). If
either evaluates to false(), then and returns false().

or
Given two expressions, returns true() if either expression evaluates to true(). If
both values evaluate to false(), then or returns false().

For a boolean not operation, XPath provides the not() function. The not keyword
doesn’t exist in XPath. See the not() function in Appendix C for the details.

Many programming languages define specific rules for evaluating boo-
lean operators such as and and or. For example, many languages state
that the first term is evaluated before the second, and that the second
term is not evaluated if the overall result is known after the first term is
evaluated. (If the first term evaluates to false(), the result of an and
expression is false(); if the first term evaluates to true(), the result of
an or expression is true().) XPath does not define these rules, so XSLT
processors are free to implement and and or as they see fit.

[2.0] Comparing atomic values

As we discussed earlier, XPath 2.0 introduces the concept of atomic values. There are
six new operators that allow us to compare values:

eq
Determines whether two values are equal.

ge
Determines whether the first value is greater than or equal to the second.

gt
Determines whether the first value is greater than the second.

le
Determines whether the first value is less or equal to the second.

lt
Determines whether the first value is less than the second.

ne
Determines whether two values are not equal.

The eq and ne operators work on any of the following datatypes:

• Numeric values (xs:decimal, xs:double, xs:float, xs:integer)

XPath Operators | 83

• Boolean values

• Durations (xs:duration, xs:yearMonthDuration, xs:dayTimeDuration)

• Dates and times (xs:date, xs:time, xs:dateTime)

• Parts of dates (xs:gYear, xs:gYearMonth, xs:gMonth, xs:gMonthDay, xs:gDay)

• QNames (xs:QName)

• Binary data (xs:hexBinary, xs:base64Binary)

• Notations (xs:NOTATION)

The ge, gt, le, and lt operators support fewer datatypes:

• Numeric values (xs:decimal, xs:double, xs:float, xs:integer)

• Boolean values

• Durations (xs:duration, xs:yearMonthDuration, xs:dayTimeDuration)

• Dates and times (xs:date, xs:time, xs:dateTime)

The operators for comparing values work slightly differently than the general compar-
isons. Value comparisons are stricter because they require the two operands to be the
same type. Given these XML elements:

...
<brand>
 <name>Callebaut</name>
 <units>8203</units>
</brand>
...

the expression brand[1]/units gt 10000 raises an error because we’re comparing an
untyped value and an integer. We need to compare two integers here, so we must either
convert the value of the <units> element to a number or use an XML Schema to identify
the element as an xs:integer. If we use the general comparison operators to compare
the values (brand[1]/units > 10000), it works just fine. To use the value comparison
operators, the expression xs:integer(brand[1]) gt 10000 works as well, although it
requires us to cast the value ourselves.

The general comparison operators (=, !=, <=, >=, < and >) can compare nodes and se-
quences in addition to values, so you’ll probably use them far more often. Just be aware
that XPath 2.0 gives you new comparison operators that work on atomic values; they’re
very useful if you’re working with values instead of nodes or sequences.

[2.0] Comparing sequences

And speaking of comparing sequences, that works differently than you might think.
When comparing a sequence to a value, the XSLT processor compares the value to each
value in the sequence. If the comparison is true for any value in the sequence, the
operation returns true. We’ll use an XML document of chocolate sales for our examples:

84 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

Here’s the stylesheet we’ll use to demonstrate comparisons with sequences:

<?xml version="1.0" encoding="utf-8"?>
<!-- compare-sequences.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Comparing sequences with values:</xsl:text>
 <xsl:text>
 Sales figures (/report/brand/units):</xsl:text>s
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="/report/brand/units" separator=", "/>
 <xsl:text>

 /report/brand/units > 27408 : </xsl:text>
 <xsl:value-of select="/report/brand/units > 27408"/>
 <xsl:text>
 /report/brand/units >= 27408 : </xsl:text>
 <xsl:value-of select="/report/brand/units >= 27408"/>
 <xsl:text>
 /report/brand/units < 8203 : </xsl:text>
 <xsl:value-of select="/report/brand/units < 8203"/>
 <xsl:text>
 /report/brand/units <= 8203 : </xsl:text>
 <xsl:value-of select="/report/brand/units <= 8203"/>
 <xsl:text>
 /report/brand/units = 22101 : </xsl:text>
 <xsl:value-of select="/report/brand/units = 22101"/>
 <xsl:text>
 /report/brand/units = 17905 : </xsl:text>
 <xsl:value-of select="/report/brand/units = 17905"/>
 <xsl:text>
 not(/report/brand/units = 17905): </xsl:text>
 <xsl:value-of select="not(/report/brand/units = 17905)"/>

XPath Operators | 85

 <xsl:text>

Comparing two sequences:</xsl:text>
 <xsl:variable name="testSequence1" as="xs:integer*"
 select="(8203, 22101, 27408, 19268, 14336)"/>
 <xsl:text>
 $testSequence1 (xs:integer*):
 </xsl:text>
 <xsl:value-of select="$testSequence1" separator=", "/>
 <xsl:text>
 $testSequence1 = /report/brand/units: </xsl:text>
 <xsl:value-of select="$testSequence1 = /report/brand/units"/>

 <xsl:variable name="testSequence2" as="xs:integer*"
 select="(19268, 17, 95, 6, 42)"/>
 <xsl:text>

 $testSequence2 (xs:integer*):
 </xsl:text>
 <xsl:value-of select="$testSequence2" separator=", "/>
 <xsl:text>
 $testSequence2 = /report/brand/units: </xsl:text>
 <xsl:value-of select="$testSequence2 = /report/brand/units"/>
 <xsl:text>
 $testSequence2 < /report/brand/units: </xsl:text>
 <xsl:value-of select="$testSequence2 < /report/brand/units"/>
 <xsl:text>
 $testSequence2 > /report/brand/units: </xsl:text>
 <xsl:value-of select="$testSequence2 > /report/brand/units"/>

 <xsl:variable name="testSequence3" as="xs:string*"
 select="('blue', 'white', '19268')"/>
 <xsl:text>

 $testSequence3 (xs:string*):
 </xsl:text>
 <xsl:value-of select="$testSequence3" separator=", "/>
 <xsl:text>
 $testSequence3 = /report/brand/units: </xsl:text>
 <xsl:value-of select="$testSequence3 = /report/brand/units"/>

 <xsl:variable name="testSequence4" as="xs:yearMonthDuration*"
 select="(xs:yearMonthDuration('P3Y8M'),
 xs:yearMonthDuration('P4Y8M'),
 xs:yearMonthDuration('P2Y9M'))"/>
 <xsl:text>

 $testSequence4 (xs:yearMonthDuration*):</xsl:text>
 <xsl:text>
 (</xsl:text>
 <xsl:value-of select="$testSequence4" separator=", "/>
 <xsl:text>)
 $testSequence4 > </xsl:text>
 <xsl:text>xs:yearMonthDuration('P4Y7M'): </xsl:text>
 <xsl:value-of select="$testSequence4 > xs:yearMonthDuration('P4Y7M')"/>
 </xsl:template>

</xsl:stylesheet>

The results look like this:

Comparing sequences with values:
 Sales figures (/report/brand/units):
 27408, 8203, 22101, 14336, 19268

 /report/brand/units > 27408 : false
 /report/brand/units >= 27408 : true
 /report/brand/units < 8203 : false
 /report/brand/units <= 8203 : true
 /report/brand/units = 22101 : true
 /report/brand/units = 17905 : false
 not(/report/brand/units = 17905): true

Comparing two sequences:
 $testSequence1 (xs:integer*):

86 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

 (8203, 22101, 27408, 19268, 14336)
 $testSequence1 = /report/brand/units: true

 $testSequence2 (xs:integer*):
 (19268, 17, 95, 6, 42)
 $testSequence2 = /report/brand/units: true
 $testSequence2 < /report/brand/units: true
 $testSequence2 > /report/brand/units: true

 $testSequence3 (xs:string*):
 (blue, white, 19268)
 $testSequence3 = /report/brand/units: true

 $testSequence4 (xs:yearMonthDuration*):
 (P3Y8M, P4Y8M, P2Y9M)
 $testSequence4 > xs:yearMonthDuration('P4Y7M'): true

In the first set of comparisons, we’re comparing the sequence matched by /report/
brand/units to individual values. The comparison /report/brand/units > 27408 is
false because there are no values in the sequence greater than 27408. When we change
the operator to >=, the comparison is true. For test of equality, if any value in the
sequence matches the value we’re comparing, the result is true. Also notice that we
used the not() function to reverse the result here; the != operator would do the same
thing.

For the next three examples, we’re comparing two sequences. In the first, we’re com-
paring the sequence $testSequence1 to the sequence matched by /report/brand/
units. The two sequences have the same five values, although they’re in different orders.
The two sequences are considered equal in this comparison, although only one value
has to match for that to be true. Comparing the sequence from the XML document to
$testSequence2 makes this clear; although the two sequences have only one value in
common, they are considered equal. In addition, comparing $testSequence2 with other
operators, we can see that $testSequence is less than, equal to, and greater than the
sequence matched by /report/brand/units. This isn’t intuitive, but that’s how it works.

The difference in the third example is that $testSequence3 is a sequence of xs:strings.
Because we’re not using an XML Schema, the values from the XML document are
untyped. The XSLT processor automatically converted the values from the document
to xs:integers in the previous two examples, and it converts them to xs:strings here.
The sequence ('blue', 'white', '19268') matches because converting the untyped
value of the parsed <units>19268</units> element to a string creates the value '19268'.

The final example here demonstrates comparisons with a sequence of
xs:yearMonthDurations. We create a sequence of three values, and then compare it to
the value xs:yearMonthDuration('P4Y7M'). Because one of the values is greater than 4
years, 7 months, this returns true.

More sophisticated operations on sequences are possible. See the sections “[2.0] Quan-
tified Expressions—some and every” and “[2.0] Set Operators—except, intersect, and
union” later in this chapter.

XPath Operators | 87

[2.0] Conditional Expressions—if, then, and else
One of the less elegant features of XSLT is its if-then-else logic. If I want to test one
condition (a simple if), I use <xsl:if>. If I want to change that to test more than one
condition or add an else case, I have to use <xsl:choose>, <xsl:when>, and
<xsl:otherwise>. (We cover those elements in Chapter 5.) XPath 2.0 gives us the ex-
tremely useful if operator. We can now do if-then-else logic inside the XPath expression
itself.

For comparison, here’s how we do things in XSLT 1.0:

<?xml version="1.0"?>
<!-- if-1_0.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:param name="x" select="'10'"/>

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
An example of if-then-else logic in XSLT 1.0:</xsl:text>
 <xsl:text>

 If $x is larger than 10, print 'Big', </xsl:text>
 <xsl:text>
 otherwise print 'Little'</xsl:text>
 <xsl:text>

 </xsl:text>
 <xsl:choose>
 <xsl:when test="$x > 10">
 <xsl:text>Big</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>Little</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

We look at the value of $x and write Big if it’s larger than 10; otherwise, we write
Little. Pretty simple stuff, but the <xsl:choose> element takes up 8 lines here. To do
the same thing in XSLT 2.0, it’s much simpler:

<?xml version="1.0"?>
<!-- if-2_0.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:param name="x" select="10"/>

 <xsl:output method="text"/>

 <xsl:template match="/">
 ...
 <xsl:value-of select="if ($x > 10) then 'Big' else 'Little'"/>

88 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

 ...
 </xsl:template>

</xsl:stylesheet>

We’ve accomplished the same result with a single XPath expression.

There are two important details to remember when using the if operator: the expres-
sion we’re testing must be enclosed in parentheses, and we always have to use the
else keyword.

[2.0] Iterators Over Sequences—The for Operator
Given XSLT 2.0’s emphasis on sequences, it makes sense that we would have an op-
erator to iterate through all the values of a sequence. Just as the if operator lets you
put the logic of <xsl:choose> into an XPath expression, the for operator gives XPath
expressions the power of <xsl:for-each>. Here is a stylesheet with an example:

<?xml version="1.0"?>
<!-- for.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:variable name="English-months" as="xs:string*"
 select="('January', 'February', 'March', 'April',
 'May', 'June', 'July', 'August',
 'September', 'October', 'November',
 'December')"/>
 <xsl:variable name="German-months" as="xs:string*"
 select="('Januar', 'Februar', 'März', 'April',
 'Mai', 'Juni', 'Juli', 'August',
 'September', 'Oktober', 'November',
 'Dezember')"/>

 <xsl:template match="/">
 <xsl:value-of
 select="for $m in ($English-months, $German-months) return
 if (starts-with($m, 'J'))
 then concat ($m, ' starts with J!
')
 else ''"
 separator=""/>
 </xsl:template>

</xsl:stylesheet>

[2.0] Quantified Expressions—some and every
XPath 2.0 provides the some and every operators to perform a test against a sequence.
The some operator returns true if the test is true for at least one item in the sequence,

XPath Operators | 89

while every returns false if the test is false for at least one item in the sequence. Here
is an example of the two operators:

<?xml version="1.0"?>
<!-- some-every.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:variable name="English-months" as="xs:string*"
 select="('January', 'February', 'March', 'April',
 'May', 'June', 'July', 'August',
 'September', 'October', 'November',
 'December')"/>

 <xsl:template match="/">
 <xsl:text>
An example of the XPath 2.0 every and </xsl:text>
 <xsl:text>some operators:

</xsl:text>
 <xsl:text> If ANY month name has a string-length() </xsl:text>
 <xsl:text>
 greater than 4, print 'Yes,' otherwise</xsl:text>
 <xsl:text>
 print 'No'

 </xsl:text>

 <xsl:value-of
 select="if (some $m in $English-months satisfies
 (string-length($m) > 4)) then 'Yes' else 'No'"/>

 <xsl:text>
</xsl:text>
 <xsl:text>

 If EVERY month name has a string-</xsl:text>
 <xsl:text>length()
 greater than 4, print 'Yes,' </xsl:text>
 <xsl:text>otherwise
 print 'No'

 </xsl:text>

 <xsl:value-of
 select="if (every $m in $English-months satisfies
 (string-length($m) > 4)) then 'Yes' else 'No'"/>

 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

We have a sequence containing the months of the year in English, and we use some and
every against that sequence. We’re testing to see whether each month name has a
string-length() greater than 4. The some expression returns true, while the every ex-
pression returns false. This stylesheet is written to illustrate the new operands; it
doesn’t use anything from an XML document. In a more normal case, we would use
some and every against an XPath expression that selected nodes from an XML docu-
ment. If you replace the variable $English-months with /sonnet/lines/line in the two
preceding expressions, both will evaluate to true, assuming you use the stylesheet to
process sonnet.xml.

90 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

Complications of the some and every Operators
It’s entirely possible that the sequence you’re testing is empty. If your expression is
some $m in /sonnet/lines/words (or anything that returns an empty sequence), the
some operator returns false, while the every operator returns true. This less-than-
intuitive result is defined by the XPath 2.0 and XQuery 1.0 Functions and Operators
specification (Section 3.9, if you want to take a look). These results for empty sequences
make more sense if you think about a simple way to evaluate these operators:

• For the some operator, assume the result is false. As we evaluate the test against
each item in the sequence, if the test is ever true, we stop evaluating the items and
return true. If we get to the end of the sequence and we haven’t found any item
for which the test is true, we’ll return false.

• For the every operator, assume the result is true. As we evaluate the test against
each item in the sequence, if the test is ever false, we stop evaluating the items
and return false. If we get to the end of the sequence and we haven’t found any
item for which the test is false, we’ll return true.

A complication of this rule is that a some or every expression might contain a fatal error
if all of the items in the test sequence were evaluated. The XPath spec does not define
any required behavior here. If an XSLT processor tests items only until it knows the
value of some or every, those errors might never be encountered. Here are two examples
from the XPath spec:

some $x in (1, 2, "cat") satisfies $x * 2 = 4
every $x in (1, 2, "cat") satisfies $x * 2 = 4

If an XSLT processor evaluates the items in the sequence from the first to the last, and
it stops evaluating items as soon as it determines the final result, the fatal error "cat"
* 2 won’t happen. The test is true for the value 2, so some returns true. The test is
false for the value 1, so every returns false.

The XPath specification does not say how a processor must implement some and
every, nor does it specify the order in which items in the sequence are evaluated. A
processor’s internal structures might make it simpler to start at the end of the sequence;
if so, both of these expressions would generate a fatal error. The most ominous impli-
cation of this behavior is that the fatal error might happen intermittently based on the
input data. You can avoid this by using the datatyping operators, which we’ll discuss
soon. (You can also avoid this if your data has been validated before it gets to the XSLT
processor, assuming you trust your data source implicitly....)

[2.0] Range Expressions—The to Operator
To create sequences of integers, XPath 2.0 introduces the to operator. For example,
here is a short stylesheet that creates a sequence of five integers and a reversed sequence
of five integers, then prints the values of the sequences:

<?xml version="1.0"?>
<!-- to.xsl -->

XPath Operators | 91

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:variable name="some-numbers" as="xs:integer*"
 select="1 to 5"/>

 <xsl:variable name="reversed-numbers" as="xs:integer*"
 select="reverse(1 to 5)"/>

 <xsl:template match="/">
 <xsl:value-of select="$some-numbers" separator=", "/>
 <xsl:text>
</xsl:text>
 <xsl:value-of select="$reversed-numbers" separator=", "/>
 </xsl:template>

</xsl:stylesheet>

The to operator creates only sequences of integers. If the second number is lower than
the first (10 to 1, for example), the result is an empty sequence. If the second number
is the same as the first (such as 10 to 10), the result is a sequence that contains that
single integer.

Be aware that the to operator can be used as part of a larger sequence. For example,
we could create the sequence (1 to 17, 65 to 100). Finally, if you need to create a
sequence of numbers in descending order, you can use the [2.0] reverse() function
(see Appendix C) to reverse the sequence of integers created with the to operator.

The results of this stylesheet look like this:

1, 2, 3, 4, 5
5, 4, 3, 2, 1

[2.0] Constructor Functions
XPath 2.0 introduces the idea of constructor functions, which are similar to constructor
functions in object-oriented languages. As with object-oriented languages, the name of
the constructor function is the name of the datatype. Here’s how to create a value of
type xs:date:

<xsl:variable name="birthday" select="xs:date('1995-04-21')"/>

This takes the string 1995-04-21 and creates a new value of type xs:date. This can cause
runtime errors, as you would expect. A stylesheet that contains this instruction won’t
run at all:

<xsl:variable name="birthday" select="xs:date('next Tuesday')"/>

92 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

This is a static error because the stylesheet processor knows this instruction will fail.
On the other hand, we’ll get a runtime error if we send bad data to the xs:date con-
structor while the stylesheet is being processed:

<xsl:variable name="birthday" select="xs:date(@birthday)"/>

This uses the birthday attribute of the current node to create a new xs:date value. If
that attribute contains a value that can be cast as a xs:date, everything is fine; if the
attribute doesn’t contain valid data, we get a runtime error.

[2.0] Datatype Operators—instance of, castable as, cast as, and treat as
As you would expect, a language that supports datatypes and constructors also has
operators to convert a value from one type to another. XPath 2.0 provides four opera-
tors: instance of, castable as, cast as, and treat as. We’ll cover those here.

instance of

The instance of operator lets us see whether a value is an instance of a particular
datatype. Here are some examples:

<?xml version="1.0"?>
<!-- instance-of.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Some tests of the "instance of" operator:</xsl:text>

 <xsl:text>

 '1995-04-21' instance of xs:date: </xsl:text>
 <xsl:value-of select="'1995-04-21' instance of xs:date"/>
 <xsl:text>
 xs:date('1995-04-21') instance of xs:date: </xsl:text>
 <xsl:value-of select="xs:date('1995-04-21') instance of xs:date"/>
 <xsl:text>

 3 instance of xs:integer: </xsl:text>
 <xsl:value-of select="3 instance of xs:integer"/>
 <xsl:text>
 '3' instance of xs:integer: </xsl:text>
 <xsl:value-of select="'3' instance of xs:integer"/>
 <xsl:text>
 number('3') instance of xs:integer: </xsl:text>
 <xsl:value-of select="number('3') instance of xs:integer"/>
 <xsl:text>
 number('3') instance of xs:double: </xsl:text>
 <xsl:value-of select="number('3') instance of xs:double"/>
 <xsl:text>
 xs:integer('3') instance of xs:integer: </xsl:text>
 <xsl:value-of select="xs:integer('3') instance of xs:integer"/>
 <xsl:text>
 'e' instance of xs:integer: </xsl:text>
 <xsl:value-of select="'e' instance of xs:integer"/>

 </xsl:template>
</xsl:stylesheet>

XPath Operators | 93

The results of the stylesheet are:

Some tests of the "instance of" operator:

 '1995-04-21' instance of xs:date: false
 xs:date('1995-04-21') instance of xs:date: true

 3 instance of xs:integer: true
 '3' instance of xs:integer: false
 number('3') instance of xs:integer: false
 number('3') instance of xs:double: true
 xs:integer('3') instance of xs:integer: true
 'e' instance of xs:integer: false

For the first test, we’re asking whether the string value 1995-04-21 is an instance of
xs:date. This is false; XPath doesn’t automatically try to cast the string as an xs:date.
In the second test, we use the xs:date constructor function to create a new xs:date
value with the string. This test is true.

The last six tests here check the xs:integer datatype. The atomic value 3, as we would
expect, is an xs:integer. The string '3' is not an xs:integer, even though we can cast
it as one (we’ll look at casting next). In addition to casting, another way to convert a
string to a numeric value is to use the number() function. The number() function returns
an xs:double, so instance of xs:integer is false. Using the constructor function
xs:integer() returns an xs:integer, of course. Finally, the value 'e' isn’t an
xs:integer and can’t be cast as one.

cast as

The instance of operator tells us about the datatype of a value; it doesn’t actually
convert the value to the appropriate datatype. There are times when we want to take a
value of a particular datatype and create the equivalent value of another. In other pro-
gramming languages, this is done by casting. XPath 2.0 provides the cast as operator
to do just that. Here are a few examples:

<?xml version="1.0"?>
<!-- cast-as.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Some tests of the "cast as" operator:</xsl:text>

 <xsl:text>

 '1995-04-21' cast as xs:date: </xsl:text>
 <xsl:value-of select="'1995-04-21' cast as xs:date"/>
 <xsl:text>
 '3' cast as xs:integer: </xsl:text>
 <xsl:value-of select="'3' cast as xs:integer"/>
 <xsl:text>
 3 cast as xs:integer: </xsl:text>
 <xsl:value-of select="3 cast as xs:integer"/>

94 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

 <xsl:text>
 'e' cast as xs:integer: </xsl:text>
 <xsl:text>[causes a fatal error if we try it]</xsl:text>

 </xsl:template>
</xsl:stylesheet>

In this sample, we cast the string 1995-04-21 to an xs:date. This works without a hitch,
as do the next two tests. The fourth test, '3' cast as xs:integer, fails if we try to
execute it. The stylesheet won’t run at all because this is a static error. Here are the
results:

Some tests of the "cast as" operator:

 '1995-04-21' cast as xs:date: 1995-04-21
 '3' cast as xs:integer: 3
 3 cast as xs:integer: 3
 'e' cast as xs:integer: [causes a fatal error if we try it]

As you’d expect, it’s a dynamic error if we extract a value from an XML source docu-
ment and try to cast it to a datatype that won’t work. If only we had a way to see if cast
as would work before we actually tried it, we could avoid dynamic errors....

castable as

The castable as operator lets us see whether a given cast will work. If it won’t, we can
respond to that gracefully instead of having our stylesheet fail. Here’s how we use
castable as:

<?xml version="1.0"?>
<!-- castable-as.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Some tests of the "castable as" operator:</xsl:text>

 <xsl:text>

 '1995-04-21' castable as xs:date: </xsl:text>
 <xsl:value-of select="'1995-04-21' castable as xs:date"/>
 <xsl:text>
 '3' castable as xs:integer: </xsl:text>
 <xsl:value-of select="'3' castable as xs:integer"/>
 <xsl:text>
 3 castable as xs:integer: </xsl:text>
 <xsl:value-of select="3 castable as xs:integer"/>
 <xsl:text>
 'e' castable as xs:integer: </xsl:text>
 <xsl:value-of select="'e' castable as xs:integer"/>

 </xsl:template>
</xsl:stylesheet>

With the castable as operator, we can see whether a cast will work before we try it. If
it’s not going to work (we can’t convert e to an xs:integer), we can do something else
in our stylesheet. Here are the results from our stylesheet:

XPath Operators | 95

Some tests of the "castable as" operator:

 '1995-04-21' castable as xs:date: true
 '3' castable as xs:integer: true
 3 castable as xs:integer: true
 'e' castable as xs:integer: false

treat as

There is one more operator XPath gives us: the treat as operator. This one is a little
harder to grasp. To understand why it’s needed, we’ll have to talk about static types
and dynamic types. A static datatype is the type of a value as it is declared. A dynamic
type may be more specific than the static type; more often they’re the same. To take an
example from the XPath 2.0 spec, the static type of a variable could be xs:integer*, yet
its dynamic type could be xs:integer. Here’s an example:

<xsl:variable name="integerSequence" as="xs:integer+" select="(3)"/>

The variable $integerSequence is a sequence of one or more integers. In this instance,
however, $integerSequence is also a single integer. Here’s an example in which we treat
a sequence of integers as a single integer:

<?xml version="1.0"?>
<!-- treat-as.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:variable name="numbers" as="xs:integer*">
 <xsl:sequence select="/numbers/number"/>
 </xsl:variable>

 <xsl:template match="/">
 <xsl:variable name="number" as="xs:integer"
 select="$numbers treat as xs:integer"/>

 <xsl:text>
An example of the XPath 2.0 treat as </xsl:text>
 <xsl:text>operator:

</xsl:text>
 <xsl:text> Treat a sequence of integers as a single integer:</xsl:text>
 <xsl:text>
 </xsl:text>

 <xsl:value-of select="$number"/>
 </xsl:template>

</xsl:stylesheet>

Here we have a variable that consists of a sequence of values of <number> elements in
an XML document. If there is only one number in the sequence, the stylesheet works.
If the sequence isn’t a singleton (it’s empty or has more than one integer), we get a
runtime error. This XML document, for example, doesn’t cause any problems:

96 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

<?xml version="1.0" encoding="utf-8"?>
<!-- numbers.xml -->
<numbers>
 <number>3</number>
</numbers>

Adding more <number> elements (or using a document that doesn’t have any <number>
elements at all) causes a runtime error. The treat as operator tells the XSLT processor
not to worry about the inconsistencies between datatypes (xs:integer* versus
xs:integer), but it puts the burden on us to make sure the dynamic type of the data is
correct. To do that, of course, we can use the cast as and castable as operators.

[2.0] Set Operators—except, intersect, and union
One weakness of XPath 1.0 was the inability to compare sets of nodes. If we selected
two node-sets with two XPath 1.0 expressions, it was difficult to tell which nodes were
in both sets and which were in one set but not the other. XPath 2.0 has two new set
operators, except and intersect. If you enjoy extra typing, XPath 2.0 also adds the
union operator, a synonym for the vertical bar operator (|) in XPath 1.0. (The vertical
bar is still supported in XPath 2.0.)

Be aware that these operators work only on sequences of nodes. If you try to use them
with sequences that contain atomic values, you’ll get an error.

As we discuss these operators, we’ll use this XML document:

<?xml version="1.0" encoding="utf-8"?>
<!-- books.xml -->
<favorite-books>
 <booklist>
 <book isbn="0596000537"
 favorite="Doug Sheri">XSLT</book>
 <book isbn="0141439777"
 favorite="Doug">Tristram Shandy</book>
 <book isbn="0142437298"
 favorite="Doug">Herzog</book>
 <book isbn="0679762108"
 favorite="Doug Sheri">The Sportswriter</book>
 <book isbn="0143035479"
 favorite="Sheri">The Girls' Guide to Hunting and Fishing</book>
 <book isbn="0375724443"
 favorite="Sheri">Ava's Man</book>
 </booklist>
</favorite-books>

We’ll select two sequences in our sample stylesheets: the books I like (the favorite
attribute contains the string Doug) and the books my wife likes (the favorite attribute
contains the string Sheri). We’ll use those two sequences to illustrate the set operators.

XPath Operators | 97

The except, intersect, and union operators compare the nodes them-
selves, not the values of those nodes. If two different nodes have the
same value, they are still two different nodes. These operators help you
select different nodes, not different values. If you’re curious about the
values of the nodes, the new [2.0] distinct-values() function (see Ap-
pendix C) will probably be useful.

Here is a sample stylesheet for the except operator:

<?xml version="1.0"?>
<!-- except.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:variable name="Dougs-favorites" as="node()*">
 <xsl:sequence
 select="/favorite-books/booklist
 /book[contains(@favorite, 'Doug')]"/>
 </xsl:variable>

 <xsl:variable name="Sheris-favorites" as="node()*">
 <xsl:sequence
 select="/favorite-books/booklist
 /book[contains(@favorite, 'Sheri')]"/>
 </xsl:variable>

 <xsl:template match="/">
 <xsl:text>
Books Doug likes but Sheri doesn't:</xsl:text>
 <xsl:text>

 </xsl:text>

 <xsl:for-each select="$Dougs-favorites except $Sheris-favorites">
 <xsl:sort select="."/>
 <xsl:value-of select="."/>
 <xsl:text>
 </xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

The other sample stylesheets are identical, but they use the intersect and union oper-
ators instead.

except

The except operator returns all of the nodes that are in the first sequence but not in the
second. Given our two sequences, the expression $Dougs-favorites except $Sheris-
favorites generates these results:

Books Doug likes but Sheri doesn't:

98 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

 Herzog
 Tristram Shandy

intersect

Given two sequences of nodes, intersect returns a sequence containing all of the nodes
in both sequences. All duplicate nodes are removed; each node appears only once. The
intersect operator returns these results:

<!-- intersect.xsl -->
...
 <xsl:for-each select="$Dougs-favorites intersect $Sheris-favorites">
...

Books we both like:

 The Sportswriter
 XSLT

union

The union operator returns a node-set containing all nodes in both sets. As with the
intersect operator, all duplicates are removed. Using the union operator gives us these
results:

<!-- union.xsl -->
...
 <xsl:for-each select="$Dougs-favorites union $Sheris-favorites">
...

All the books we like:

 Ava's Man
 Herzog
 The Girls' Guide to Hunting and Fishing
 The Sportswriter
 Tristram Shandy
 XSLT

As we noted earlier, the vertical bar (|) operator is still supported. Changing the style-
sheet from:

<xsl:for-each select="$Dougs-favorites union $Sheris-favorites">

to:

<xsl:for-each select="$Dougs-favorites | $Sheris-favorites">

generates the same results.

To emphasize the point that these operators compare nodes, not their values, we could
change the structure of our list of books:

<favorite-books>
 <favorites person="Doug">
 <book isbn="0679762108">The Sportswriter</book>

XPath Operators | 99

 </favorites>
 <favorites person="Sheri">
 <book isbn="0679762108">The Sportswriter</book>
 </favorites>
</favorite-books>

The two <book> elements here have identical values, but they are two different nodes.
The except, intersect, and union operators treat them as such.

[2.0] Node Operators
XPath 2.0 defines three new operators to work with nodes: the is operator, the node-
before operator (<<), and the node-after operator (>>).

The is operator

The is operator compares two nodes to see whether they are the same. This compares
the nodes themselves, not their values. Continuing our example from the previous
section, here’s a stylesheet that illustrates how the operator works:

<?xml version="1.0"?>
<!-- is.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:variable name="Dougs-favorites" as="node()*">
 <xsl:sequence
 select="/favorite-books/booklist
 /book[contains(@favorite, 'Doug')]"/>
 </xsl:variable>

 <xsl:variable name="Sheris-favorites" as="node()*">
 <xsl:sequence
 select="/favorite-books/booklist
 /book[contains(@favorite, 'Sheri')]"/>
 </xsl:variable>

 <xsl:template match="/">
 <xsl:text>A test of the is operator:</xsl:text>
 <xsl:text>
 Comparing the first nodes of </xsl:text>
 <xsl:text>the sequences:
</xsl:text>

 <xsl:value-of
 select="if (subsequence($Dougs-favorites, 1, 1) is
 subsequence($Sheris-favorites, 1, 1))
 then ' The first nodes are the same!
'
 else ' The first nodes aren''t the same!
'"/>

 <xsl:text> Reversing one sequence and trying it </xsl:text>
 <xsl:text>again:
</xsl:text>

100 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

 <xsl:value-of
 select="if (subsequence($Dougs-favorites, 1, 1) is
 subsequence(reverse($Sheris-favorites), 1, 1))
 then ' The first nodes are the same!
'
 else ' The first nodes aren''t the same!
'"/>
 </xsl:template>

</xsl:stylesheet>

This stylesheet creates two sequences of nodes, then compares the first nodes of each
sequence. In the first example, the nodes are the same. In the second example, we
reverse the order of one of the sequences, so the nodes are not the same. (Of course, if
each sequence contained only one item, is would still return true.) Here are the results:

A test of the is operator:

 Comparing the first nodes of the sequences:
 The first nodes are the same!
 Reversing one sequence and trying it again:
 The first nodes aren't the same!

node-after (>>)

The node-after operator compares two nodes. If the first node occurs after the second,
node-after returns true; otherwise, it returns false. The expression node1 >> node1
returns false, as you would expect; a node can’t appear after itself. Here’s a sample
stylesheet:

<?xml version="1.0"?>
<!-- node-after.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:variable name="Dougs-favorites" as="node()*">
 <xsl:sequence
 select="/favorite-books/booklist
 /book[contains(@favorite, 'Doug')]"/>
 </xsl:variable>

 <xsl:template match="/">
 <xsl:text>A test of the node-after (>>) operator:</xsl:text>
 <xsl:text>

 Comparing nodes from </xsl:text>
 <xsl:text>the sequence:
</xsl:text>

 <xsl:value-of
 select="if (subsequence($Dougs-favorites, 1, 1) >>
 subsequence($Dougs-favorites, 2, 1))
 then ' node1 >> node2 = true
'
 else ' node1 >> node2 = false
'"/>
 <xsl:value-of
 select="if (subsequence($Dougs-favorites, 2, 1) >>
 subsequence($Dougs-favorites, 1, 1))

XPath Operators | 101

 then ' node2 >> node1 = true
'
 else ' node2 >> node1 = false
'"/>
 <xsl:value-of
 select="if (subsequence($Dougs-favorites, 1, 1) >>
 subsequence($Dougs-favorites, 1, 1))
 then ' node1 >> node1 = true
'
 else ' node1 >> node1 = false
'"/>
 </xsl:template>

</xsl:stylesheet>

The nodes in the sequence $Dougs-favorites are in document order, so node1 >>
node2 returns false and node2 >> node1 returns true. In the third example, we compare
the node to itself. A node can’t appear before itself, so node1 >> node1 returns false.
Here are the results:

A test of the node-after (>>) operator:

 Comparing nodes from the sequence:
 node1 >> node2 = false
 node2 >> node1 = true
 node1 >> node1 = false

node-before (<<)

The node-before operator compares two nodes and returns true if the first node appears
in the document before the second. Replacing the node-after operator with the node-
before operator in our previous stylesheet gives these results:

A test of the node-before (<<) operator:

 Comparing nodes from the sequence:
 node1 << node2 = true
 node2 << node1 = false
 node1 << node1 = false

Although the specs define the node-before operator as <<, we have to
escape the less-than sign inside an XPath expression. The expressions
in the stylesheet use the node-before operator in the form node1
<< node2.

[2.0] Comments in XPath Expressions
Another addition to the XPath 2.0 syntax is the ability to add comments. Using de-
lightfully happy syntax, a comment begins with (: and ends with :). We’ll use a style-
sheet with a complicated if statement:

<?xml version="1.0"?>
<!-- comments.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

102 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:for-each select="cars/make">
 <xsl:text>
 Car: </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text> - </xsl:text>
 <xsl:value-of
 select="(: Most of our cars are from North America,
 so we look there first :)
 if (@geography = 'North America') then
 'Domestic car'

 (: Next, see if the car is from Europe :)
 else if (@geography = 'Europe') then
 'Import from Europe'

 (: Check for Asia :)
 else if (@geography = 'Asia') then
 "It's from Asia"

 (: If it's anything else, just say
 'We don't know' :)
 else
 'We don''t know!'"/>

 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

The stylesheet has three if statements that check the value of the geography attribute
of an element. We’ve used spacing and comments liberally here to make the code more
legible. In the last comment, you can see that we don’t have to escape quote marks
inside the comment, although we do have to handle them appropriately outside the
comment. For one quote that contains an apostrophe, we wrap the text in double
quotes ("It's from Asia"). For the next quote, we use a doubled apostrophe
('We don''t know!') to display the text.

Here’s the XML document we’ll transform:

<?xml version="1.0"?>
<!-- carlist-geography.xml -->
<cars>
 <make geography="Europe">Alfa Romeo</make>
 <make geography="Europe">Bentley</make>
 <make geography="North America">Chevrolet</make>
 <make geography="North America">Dodge</make>
 <make geography="North America">GMC</make>
 <make geography="Asia">Honda</make>
 <make geography="Asia">Isuzu</make>
 <make geography="?">Quantum</make>
</cars>

[2.0] Comments in XPath Expressions | 103

The output looks like this:

 Car: Alfa Romeo - Import from Europe
 Car: Bentley - Import from Europe
 Car: Chevrolet - Domestic car
 Car: Dodge - Domestic car
 Car: GMC - Domestic car
 Car: Honda - Import from Asia
 Car: Isuzu - Import from Asia
 Car: Quantum - We don't know!

These comments work only within an XPath statement; you can’t use them to comment
out parts of your stylesheet. Comments can also be nested. If we wanted to remove the
if statement that checks for European cars, we could comment out that entire section
of the XPath expression:

(: (: Next, see if the car is from Europe :)

else if (@geography = 'Europe') then
 'Import from Europe' :)

This comment includes our earlier comment and the if statement. XPath comments
are more convenient than XML comments, which cannot be nested.

[2.0] Types of XSLT 2.0 Processors
The XSLT 2.0 spec defines two types of XSLT 2.0 processors:

Schema-aware processors
A schema-aware XSLT 2.0 processor supports user-defined schemas. In other
words, we can use XML Schema to define our own datatypes and document struc-
tures, then ask the processor to validate values or nodes against that schema.

Basic processors
A basic XSLT 2.0 processor supports only the datatypes defined in the XML Schema
Datatypes spec, with a few extra datatypes added by the XPath 2.0 and XQuery
1.0 Data Model spec. We covered all of those datatypes earlier in this chapter.

For a brief introduction to XML Schema, as well as a short discussion of how schemas
are used in XSLT 2.0 stylesheets, see Appendix D.

The XPath View of an XML Document
Before we leave the subject of XPath, we’ll look at a stylesheet that generates a pictorial
view of a document. The stylesheet has to distinguish between all of the different XPath
node types, including any namespace nodes.

104 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

Output View
Figure 3-1 shows the output of our stylesheet. In this graphical view of the document,
the nested HTML tables illustrate which nodes are contained inside of others, as well
as the sequence in which these nodes occur in the original document. In the section of
the document visible in Figure 3-1, the root of the document contains, in order, two
processing instructions and two comments, followed by the <sonnet> element and two
more comments. The <sonnet> element, in turn, contains two attributes and an
<auth:author> element. The <auth:author> element contains a namespace node and
an element.

Be aware that if you throw a very large XML document at this stylesheet, you’ll get an
HTML file with hundreds, perhaps thousands of tables. It’s possible that your XSLT
processor will run out of memory before it’s finished with the document. For example,
using this stylesheet to process the XML source of the Function Reference appendix
creates an HTML file with more than 17,000 tables.

The Stylesheet
Now we’ll take a look at the stylesheet and how it works. The stylesheet creates a
number of nested tables to illustrate the XPath view of the document. We begin by
writing the basic HTML elements to the output stream, defining some CSS styles and
creating a legend for our nested tree view. Having created the legend for our document,
we select all the different types of nodes and represent them:

<xsl:for-each select="*|comment()|processing-instruction()|text()">
 ...
</xsl:for-each>

It’s very important to understand the difference between the XPath document root and
the XML root element. In our XML sonnet, there are processing instructions and com-
ments outside the root element. The document root contains those processing instruc-
tions and comments in addition to the <sonnet> element itself. In a location path, /
represents the document root, while /sonnet represents the root element in our XML
document. (The more general expression /* represents the root element in any
document.)

[2.0] The situation is even more complicated in XPath 2.0, where you have to distin-
guish between a node type (document node, element node, etc.) and the role the node
plays: nodes of any type can be at the root of a document. It’s only in well-formed XML
documents that we can say that the root node is a document node and its only element
child is the document element. All that being said, if you’re transforming XML docu-
ments, this situation will come up very rarely.

The select attribute in the template for the document root doesn’t include attributes
(@*) or namespace nodes (namespace::*) because those can’t be defined on a document

The XPath View of an XML Document | 105

root. If you try to select attributes or namespace nodes at the document root, some
XSLT processors (Saxon, for example) give you a warning message.

The rest of the stylesheet has templates to handle each of the types of nodes. Most of
them print the type of node followed by the content of that node. The only template
with any complexity is the element template. We create a new table row, and then put
a nested table inside the row. When we create the new table row, we use the HTML
title and alt attributes. Whenever the user pauses his mouse over part of the table, a
pop up appears that indicates the ancestry of the element represented in that part of
the table. Here’s how we create the value for the title and alt attributes:

 <xsl:variable name="title">
 <xsl:for-each select="ancestor-or-self::*">
 <xsl:text>/</xsl:text>
 <xsl:value-of select="name()"/>
 </xsl:for-each>

Figure 3-1. XPath tree view of an XML document

106 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

 </xsl:variable>
 <tr title="{$title}" alt="{$title}">

The ancestor-or-self axis returns all of the ancestors of the current node plus the
current node itself. Even though the ancestor-or-self axis returns nodes that occur
before the current node, the nodes it returns are in document order. In other words,
the first element in the sequence returned by ancestor-or-self axis is the root element.
Figure 3-2 shows how the pop up looks.

For this example, the sequence of nodes returned by ancestor-or-self are the <sonnet>,
<auth:author>, and <last-name> elements, in that order.

The next step in processing an element is to look for attributes and namespace defini-
tions. An element is the only type of node that can contain these. Here’s how we look
for them:

 <table border="0" width="100%">
 <xsl:if test="count(@*) > 0">
 <tr>
 <td>
 <table width="100%">
 <tr class="attribute">
 <td width="20%">
 attribute name
 </td>
 <td>
 value
 </td>
 </tr>
 <xsl:for-each select="@*">
 <tr class="attribute">
 <td width="20%">

 <xsl:value-of select="name()"/>

 </td>
 <td>

Figure 3-2. Pop-up text shows the ancestry of each element

The XPath View of an XML Document | 107

 <xsl:value-of select="."/>

 </td>
 </tr>
 </xsl:for-each>
 </table>
 </td>
 </tr>
 </xsl:if>
 ...

To illustrate the structure of the document, we create a table for each element. If that
element in turn contains other elements, we put those in separate tables as well. After
creating the table, we check for any attribute nodes (count(@*) > 0). If there are any
attributes, we create a new table to list them.

Once all the attributes have been processed, we look for all the namespace nodes and
list them as well. To do this, we employ the rarely used namespace axis:

 <xsl:for-each select="namespace::*">
 <xsl:if test="name() != 'xml'">
 <xsl:call-template name="namespace-node"/>
 </xsl:if>
 </xsl:for-each>

We don’t display the xml namespace prefix because it’s always defined
and always associated with the namespace URI http://www.w3.org/XML/
1998/namespace. For a namespace node, the name() function returns the
namespace prefix. The value of a namespace node (<xsl:value-of
select="."/>) is its URI. If we were looking for a namespace node that
could be associated with any prefix, we would test the value of the
namespace node instead. For example, this namespace definintion:

 xmlns:sample="http://www.w3c.org/1999/XSL/Transform"

associates the XSLT namespace with the prefix sample. If we wanted to
see whether the XSLT namespace were defined, we would have to use
the value of the namespace node instead of simply looking for the usual
prefix xsl.

Finally, we use <xsl:apply-templates> to process everything contained in the element:

 <xsl:apply-templates select="node()"/>

Here’s the complete stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!--xpath-1_0-tree-diagram.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="html"/>

108 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

 <xsl:template match="/">
 <html>
 <head>
 <title>XPath view of your document</title>
 <style type="text/css">
 <xsl:comment>
 .literal { font-family: Courier, monospace; }
 .docroot { background-color: #99CCCC; }
 .element { background-color: #CCCC99; }
 .attribute { background-color: #FFFF99; }
 .text { background-color: #FFCC99; }
 .comment { background-color: #CCCCFF; }
 .pi { background-color: #99FF99; }
 .namespace { background-color: #CC99CC; }
 .box { border: solid black 3px; }
 </xsl:comment>
 </style>
 </head>
 <body style="font-family: sans-serif;">
 <h1>XPath view of your document</h1>
 <p>
 The structure of your document (as XPath sees it)
 is outlined below.
 </p>
 <table cellspacing="5" cellpadding="2" border="0">
 <tr>
 <td colspan="7">
 Node types:
 </td>
 </tr>
 <tr>
 <td class="docroot">document root</td>
 <td class="element">element</td>
 <td class="attribute">attribute</td>
 <td class="text">text</td>
 <td class="comment">comment</td>
 <td class="pi">processing instruction</td>
 <td class="namespace">namespace</td>
 </tr>
 </table>

 <table width="100%" class="box" bgcolor="#FFFFFF"
 title="document root" alt="document root">
 <tr class="docroot">
 <td colspan="3">
 document root:
 </td>
 </tr>
 <tr>
 <td width="15" class="docroot"></td>
 <td>
 <table width="100%">
 <xsl:apply-templates
 select="*|comment()|processing-instruction()|text()"/>

The XPath View of an XML Document | 109

 </table>
 </td>
 <td width="15" class="docroot"></td>
 </tr>
 <tr class="docroot">
 <td colspan="3"> </td>
 </tr>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="comment()">
 <tr>
 <td class="comment">
 comment:

 <xsl:value-of select="."/>

 </td>
 </tr>
 </xsl:template>

 <xsl:template match="processing-instruction()">
 <tr>
 <td class="pi">
 processing instruction:

 <xsl:text><?</xsl:text>
 <xsl:value-of select="name()"/>
 <xsl:text>?></xsl:text>

 <xsl:value-of select="."/>

 </td>
 </tr>
 </xsl:template>

 <xsl:template match="text()">
 <xsl:if test="string-length(normalize-space(.))">
 <tr>
 <td class="text" width="100%">
 text:

 <xsl:value-of select="."/>

 </td>
 </tr>
 </xsl:if>
 </xsl:template>

 <xsl:template name="namespace-node">
 <tr>
 <td class="namespace">
 namespace:

110 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

 <xsl:value-of select="name()"/>

 <xsl:value-of select="."/>

 </td>
 </tr>
 </xsl:template>

 <xsl:template match="*">
 <xsl:variable name="title">
 <xsl:for-each select="ancestor-or-self::*">
 <xsl:text>/</xsl:text>
 <xsl:value-of select="name()"/>
 </xsl:for-each>
 </xsl:variable>
 <tr title="{$title}" alt="{$title}">
 <td>
 <table class="box" width="100%">
 <tr>
 <td class="element" colspan="3" valign="top">
 element:

 <xsl:text><</xsl:text>
 <xsl:value-of select="name()"/>
 <xsl:text>></xsl:text>

 </td>
 </tr>
 <tr>
 <td class="element" width="15"> </td>
 <td>
 <table border="0" width="100%">
 <xsl:if test="count(@*) > 0">
 <tr>
 <td>
 <table width="100%">
 <tr class="attribute">
 <td width="20%">
 attribute name
 </td>
 <td>
 value
 </td>
 </tr>
 <xsl:for-each select="@*">
 <tr class="attribute">
 <td width="20%">

 <xsl:value-of select="name()"/>

 </td>
 <td>

The XPath View of an XML Document | 111

 <xsl:value-of select="."/>

 </td>
 </tr>
 </xsl:for-each>
 </table>
 </td>
 </tr>
 </xsl:if>
 <xsl:for-each select="namespace::*">
 <xsl:if test="name() != 'xml'">
 <xsl:call-template name="namespace-node"/>
 </xsl:if>
 </xsl:for-each>
 <xsl:apply-templates select="node()"/>
 </table>
 </td>
 <td bgcolor="#CCCC99" width="15"> </td>
 </tr>
 <tr>
 <td colspan="3" bgcolor="#CCCC99"> </td>
 </tr>
 </table>
 </td>
 </tr>
 </xsl:template>

</xsl:stylesheet>

Before we leave this example, a couple of other techniques are worth mentioning here.
First, notice that we used CSS to format some of the output. XSLT and CSS aren’t
mutually exclusive; you can use XSLT to generate CSS as part of an HTML page, as we
demonstrated here. Second, we used wildcard expressions such as * and @* to process
all the elements and attributes in our document. Use of these expressions allows us to
apply this stylesheet to any XML document, regardless of the tags it uses. Because we
use these wildcard expressions, we have to use the name() function to get the name of
the element or attribute we’re currently working with. Third, notice that we used con-
ditional logic and the expression count(@*) > 0 to determine whether a given ele-
ment has attributes. We’ll talk more about conditional logic in Chapter 5.

Summary
We’ve covered the basics of XPath. Hopefully, at this point you’re comfortable with
the idea of writing XPath expressions to describe parts of an XML document. As we go
through the following chapters, you’ll see XPath expressions used in a variety of ways,
all of which build on the basics we’ve discussed here. When you’re debugging a style-
sheet, you’ll probably spend most of your time making sure your XPath expressions
select the right data. Very few of the things we’ll do in the rest of the book are possible
without precise XPath expressions.

112 | Chapter 3: XPath: A Syntax for Describing Needles and Haystacks

CHAPTER 4

Creating Output

Goals of This Chapter
By the end of this chapter, you should know how to:

• Generate text

• Number things, including numbering at multiple levels

• Format numbers

• [2.0] Format dates and times

• Use <xsl:copy> and <xsl:copy-of> to copy nodes from the input document to the
output document

• Deal with whitespace

Generating Text
The first thing we’ll cover is how to put text in the output. Just putting some text out
there is simple enough, but we’ll look at some more advanced techniques that we’ll
explore throughout the book. We’ll look at two elements in particular: <xsl:text> and
<xsl:value-of>. We’ll use these to create an HTML document that contains a table of
contents for an XML document. Here’s the XML document we’ll use:

<?xml version="1.0"?>
<!-- toc_source.xml -->
<article>
 <title>Creating output</title>
 <body>
 <heading1>Generating text</heading1>
 <heading1>Numbering things</heading1>
 <heading1>Formatting numbers</heading1>
 <heading1>Copying nodes from the input document to the output</heading1>
 <heading1>Handling whitespace</heading1>
 </body>
</article>

113

Creating Simple Text
There are many times you need to write some text to the output. In the first example
we’ll build in this chapter, we want to create HTML that looks like this:

<h1>Table of Contents</h1>
<h2>Generating text</h2>
<h2>Numbering things</h2>
<h2>Formatting numbers</h2>
<h2>Copying nodes from the input document to the output</h2>
<h2>Handling whitespace</h2>

In this output document, the text of each item in the table is the text of a particular
element in the XML source. The text Table of Contents, however, is the same each
time. To generate this text, we’ll use the <xsl:text> element. We’ll start our stylesheet
by generating that text:

<xsl:template match="/">
 <h1>
 <xsl:text>Table of Contents</xsl:text>
 </h1>
 ...
</xsl:template>

All we did here was insert a string in our output document. To make things even sim-
pler, we could have done this:

<xsl:template match="/">
 <h1>Table of Contents</h1>
 ...
</xsl:template>

For any non-XSLT element in a stylesheet (<h1>, for example), XSLT’s default behavior
is to simply pass that element to the output. Normally we’ll use <xsl:text> when we
need complete control over whitespace or when we’re creating text output instead of
a marked-up document such as an HTML file.

In these examples, we simply wrote text to our output document; most often we’ll
combine text with values from our source document. For example, we might want to
generate an HTML document that looks like this:

<h1>Table of Contents</h1>
<p>This document contains 5 chapters:</p>
<h2>Generating text</h2>
<h2>Numbering things</h2>
...

The paragraph we added contains text as well as a value, which is the number of chap-
ters in our source document. To output values such as this or the title of each chapter
we need the <xsl:value-of> element, which we’ll look at in just a minute.

114 | Chapter 4: Creating Output

Before we move on to the <xsl:value-of> element, a quick note: if we
were writing Java or C# code to create the output document, we
wouldn’t put literal text such as Table of Contents in the code itself.
We’d load that string at runtime from a file of translated strings. That
would let us use the same code to create a table of contents in English,
Japanese, Polish, or whatever language we need. Setting up stylesheets
to do the same thing is complicated, but we’ll discuss how to do just
that later in “The document( ) Function” in Chapter 8.

Outputting the Value of Something
Creating a simple text string is easy: we just use the <xsl:text> element. However, in
any stylesheet you write, you’ll probably need to output the value of something from
the XML source. That’s what the <xsl:value-of> element is for. In the example style-
sheet we’re building, we want to transform this element in the XML source:

<heading1>Generating text</heading1>

into this HTML element in the output:

<h2>Generating text</h2>

In other words, we want to take every <heading1> element and transform it into an
HTML <h2> element that contains the value of the <heading1> element. Here’s a tem-
plate that does just that:

<xsl:template match="heading1">
 <h2>
 <xsl:value-of select="."/>
 </h2>
</xsl:template>

To generate our earlier paragraph that contains the number of chapters, we’ll use
<xsl:value-of> with the XPath count() function:

<p>
 This document contains
 <xsl:value-of select="count(/article/body/heading1)"/>
 chapters.
</p>

This bit of XSLT creates the following HTML paragraph:

<p>
 This document contains
 5
 chapters.

</p>

An HTML browser normalizes the whitespace before rendering it, as shown in Fig-
ure 4-1.

Generating Text | 115

If we needed more control over the output, we could use <xsl:value-of> and
<xsl:text> together:

<p>
 <xsl:text>This document contains </xsl:text>
 <xsl:value-of select="count(/article/body/heading1)"/>
 <xsl:text> chapters.</xsl:text>
</p>

This generates an HTML paragraph without any extra whitespace:

<p>This document contains 5 chapters.</p>

Notice that we had to put blank spaces inside the <xsl:text> elements so there would
be spaces around the number 5. Finally, a simpler, but far less readable alternative
would be to run all of the text and the <xsl:value-of> element together on a single line:

<p>This document contains <xsl:value-of select="count(/article/body...

HTML browsers typically handle whitespace the way you want; for other types of out-
put, dealing with whitespace is a significant issue. We’ll talk more about whitespace a
little later.

[2.0] Changes to <xsl:value-of> in XSLT 2.0
In XSLT 2.0, <xsl:value-of> has a separator attribute. If the select attribute is a se-
quence of items, those items are output in sequence, with the value of the separator
attribute between them. We’ll look at a couple of examples that use separator here.

First of all, here’s a short XML document that lists different automobile manufacturers
and some of the cars they make:

<?xml version="1.0" encoding="utf-8"?>
<!-- cars.xml -->
<cars>
 <manufacturer name="Chevrolet">
 <car>Cavalier</car>
 <car>Corvette</car>
 <car>Impala</car>
 <car>Malibu</car>
 </manufacturer>

Figure 4-1. HTML normalizes whitespace before displaying a document

116 | Chapter 4: Creating Output

 <manufacturer name="Ford">
 <car>Pinto</car>
 <car>Mustang</car>
 <car>Taurus</car>
 </manufacturer>
 <manufacturer name="Volkswagen">
 <car>Beetle</car>
 <car>Jetta</car>
 <car>Passat</car>
 <car>Touraeg</car>
 </manufacturer>
</cars>

Our first <xsl:value-of> element uses the separator attribute to list all of the manu-
facturers, separated by commas:

<?xml version="1.0" encoding="utf-8"?>
<!-- value-of_2_0.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:value-of select="cars/manufacturer/@name" separator=", "/>
 </xsl:template>

</xsl:stylesheet>

Transforming our XML document with this stylesheet gives us the following results:

Chevrolet, Ford, Volkswagen

The separator attribute is useful in this case because it is inserted after every value
except the last. In XSLT 1.0, we have to do something like this:

<?xml version="1.0" encoding="utf-8"?>
<!-- value-of_1_0.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:for-each select="cars/manufacturer/@name">
 <xsl:value-of select="."/>
 <xsl:if test="not(position()=last())">
 <xsl:text>, </xsl:text>
 </xsl:if>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

After we output each item, we have to see whether that item is the last; if not, we insert
our separator with <xsl:text>. The <xsl:for-each> and <xsl:if> elements aren’t

Generating Text | 117

necessary in XSLT 2.0; the separator attribute makes it much easier to create the output
we want.

We can use the separator attribute with sequences as well. Here’s an example that uses
a sequence of xs:strings and a sequence created with XPath 2.0’s new to operator:

<?xml version="1.0"?>
<!-- value-of_sequences.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:variable name="months" as="xs:string*"
 select="'January', 'February', 'March', 'April',
 'May', 'June', 'July', 'August',
 'September', 'October', 'November', 'December'"/>

 <xsl:template match="/">
 <xsl:value-of select="1 to 7" separator=", "/>
 <xsl:text>
</xsl:text>
 <xsl:value-of select="$months" separator="
"/>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates the following results:

1, 2, 3, 4, 5, 6, 7
January
February
March
April
May
June
July
August
September
October
November
December

Numbering Things
XSLT provides the <xsl:number> element to number the parts of a document. (It can
also be used to format a numeric value; more on that later.) In general, <xsl:number>
counts something. We’ll look at a variety of examples here.

To fully illustrate how <xsl:number> works, we’ll need an XML document with some
things to count. We’ll reuse our list of cars from the previous section:

<?xml version="1.0" encoding="utf-8"?>
<!-- cars.xml -->

118 | Chapter 4: Creating Output

<cars>
 <manufacturer name="Chevrolet">
 <car>Cavalier</car>
 <car>Corvette</car>
 <car>Impala</car>
 <car>Malibu</car>
 </manufacturer>
 <manufacturer name="Ford">
 <car>Pinto</car>
 <car>Mustang</car>
 <car>Taurus</car>
 </manufacturer>
 <manufacturer name="Volkswagen">
 <car>Beetle</car>
 <car>Jetta</car>
 <car>Passat</car>
 <car>Touraeg</car>
 </manufacturer>
</cars>

We’ll use <xsl:number> in several different ways to illustrate the various options we
have in numbering things. We’ll start with something simple:

<?xml version="1.0" encoding="utf-8"?>
<!-- number1.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Automobile manufacturers and their cars</title>
 </head>
 <body>
 <xsl:for-each select="cars/manufacturer">
 <p>
 <xsl:number format="1. "/>
 <xsl:value-of select="@name"/>
 </p>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

We get this HTML document:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Automobile manufacturers and their cars</title>
 </head>
 <body>

Numbering Things | 119

 <p>1. Chevrolet</p>
 <p>2. Ford</p>
 <p>3. Volkswagen</p>
 </body>
</html>

This is about the simplest example of <xsl:number> that you can write. (You could leave
off the format attribute, but you’d get paragraphs such as <p>1Chevrolet</p>—probably
not what you want.) Changing the stylesheet to use format="a. " generates these
paragraphs:

 <p>a. Chevrolet</p>
 <p>b. Ford</p>
 <p>c. Volkswagen</p>

Here’s what we get with format="i. ":

 <p>i. Chevrolet</p>
 <p>ii. Ford</p>
 <p>iii. Volkswagen</p>

The <xsl:number> element has lots of other attributes and capabilities; we’ll look at the
most common ones here. (See the complete description of the <xsl:number> element in
Appendix A.) Here’s an example that uses the value attribute:

<?xml version="1.0" encoding="utf-8"?>
<!-- number2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Automobile manufacturers and their cars</title>
 </head>
 <body>
 <xsl:for-each select="cars/manufacturer">
 <p>
 <xsl:text>Cars produced by </xsl:text>
 <xsl:value-of select="@name"/>
 <xsl:text>: </xsl:text>
 <xsl:number value="count(car)" format="01"/>
 </p>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates this HTML document:

<html>
 <head>

120 | Chapter 4: Creating Output

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Automobile manufacturers and their cars</title>
 </head>
 <body>
 <p>Cars produced by Chevrolet: 04</p>
 <p>Cars produced by Ford: 03</p>
 <p>Cars produced by Volkswagen: 04</p>
 </body>
</html>

In this case, we could have used <xsl:value-of select="count(car)"/> to get similar
results, but <xsl:number> lets us format the number as we want.

Using <xsl:number> with the format attribute is a good way to format any value, whether
it comes from the XML source or not. For example, this markup:

<xsl:number value="1965" format="I"/>

produces the text MCMLXV.

As you’d expect, there are more powerful things we can do. Here’s an example that
uses the level and count attributes:

<?xml version="1.0" encoding="utf-8"?>
<!-- number3.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Automobile manufacturers and their cars
</xsl:text>
 <xsl:for-each select="cars/manufacturer">
 <xsl:number count="manufacturer" format="1. "/>
 <xsl:value-of select="@name"/>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="car">
 <xsl:number count="manufacturer|car" level="multiple"
 format="1.1. "/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

This stylesheet gives us the following text document:

Automobile manufacturers and their cars
1. Chevrolet
1.1. Cavalier
1.2. Corvette
1.3. Impala
1.4. Malibu
2. Ford
2.1. Pinto

Numbering Things | 121

2.2. Mustang
2.3. Taurus
3. Volkswagen
3.1. Beetle
3.2. Jetta
3.3. Passat
3.4. Touraeg

The count attribute tells the XSLT processor what elements to count, and
level="multiple" counts the manufacturers at one level and the cars per manufacturer
at another. Notice that in the second <xsl:for-each< element we used the attribute
count="manufacturer|car", even though we’re looking only at <car> elements. That’s
because the number 3.2 means the second <car> from the third <manufacturer>. If we
don’t include the manufacturers in our count, we won’t get the results we want.

The values for level are single, multiple, and any. The value single, the default, counts
only an item’s siblings, while multiple counts an item along with any of its ancestors
(that’s what we did in the previous example). level="any" counts an item along with
everything that occurred before it in the document, whether it’s an ancestor of the
current item or not. Here’s an example that uses level="any":

<?xml version="1.0" encoding="utf-8"?>
<!-- number4.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Automobile manufacturers and their cars
</xsl:text>
 <xsl:for-each select="cars/manufacturer">
 <xsl:number count="manufacturer|car" level="any" format="1. "/>
 <xsl:value-of select="@name"/>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="car">
 <xsl:number count="manufacturer|car" level="any" format="1. "/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Here we use an identical <xsl:number> element in both places. We’re counting all of
the <manufacturer> and <car> elements, so we need to use level="any" and
count="manufacturer|car" in both places. Here are the results:

Automobile manufacturers and their cars
1. Chevrolet
2. Cavalier
3. Corvette
4. Impala
5. Malibu

122 | Chapter 4: Creating Output

6. Ford
7. Pinto
8. Mustang
9. Taurus
10. Volkswagen
11. Beetle
12. Jetta
13. Passat
14. Touraeg

Also keep in mind that you can use <xsl:number> at isolated times. Here’s a contrived
example that counts only even-numbered cars from each manufacturer:

<?xml version="1.0" encoding="utf-8"?>
<!-- number5.xsl -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Automobile manufacturers and their cars
</xsl:text>
 <xsl:for-each select="cars/manufacturer">
 <xsl:value-of select="@name"/>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="car">
 <xsl:text> </xsl:text>
 <xsl:if test="(position() mod 2) = 0">
 <xsl:number count="manufacturer|car" level="multiple"
 format="1.1. "/>
 </xsl:if>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

To select only even-numbered items, we use the XPath mod operator. If we divide the
position of the current element by 2 and the result is zero, we know we have an even-
numbered item. This stylesheet gives us the following list:

Automobile manufacturers and their cars
Chevrolet
 Cavalier
 1.2. Corvette
 Impala
 1.4. Malibu
Ford
 Pinto
 2.2. Mustang
 Taurus
Volkswagen
 Beetle
 3.2. Jetta

Numbering Things | 123

 Passat
 3.4. Touraeg

In this example, we used <xsl:number> only for even-numbered cars from each manu-
facturer, and we never used <xsl:number> for the <manufacturer> element at all. Despite
that, the <xsl:number> element calculates the correct value based on the position of the
current item in the source document.

That can lead to some complications, however. If we sort the source document as we
process it, our numbers look a little strange. We’ll add a <xsl:sort> element to our
stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!-- number6.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Automobile manufacturers and their cars
</xsl:text>
 <xsl:for-each select="cars/manufacturer">
 <xsl:value-of select="@name"/>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="car">
 <xsl:sort select="."/>
 <xsl:text> </xsl:text>
 <xsl:if test="(position() mod 2) = 0">
 <xsl:number count="manufacturer|car" level="multiple"
 format="1.1. "/>
 </xsl:if>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

And our results look like this:

Automobile manufacturers and their cars
Chevrolet
 Cavalier
 1.2. Corvette
 Impala
 1.4. Malibu
Ford
 Mustang
 2.1. Pinto
 Taurus
Volkswagen
 Beetle
 3.2. Jetta

124 | Chapter 4: Creating Output

 Passat
 3.4. Touraeg

The number for Pinto isn’t what we expected. That’s because the position() function
is based on the current (sorted) context, while the numbering we’re doing is based on
the original document order. In the sorted order Pinto is the second item, so the test
of our <xsl:if> element is true. When we use <xsl:number>, however, Pinto is the first
<car> in the source document. The result is the number 2.1 instead of the 2.2 we
expected.

It’s not pretty, but here’s a stylesheet that fixes the problem. We use <xsl:number> to
count <manufacturer> elements; that generates the first part of the number. Next we
use position() to output the position of the sorted element. The stylesheet looks like
this:

<?xml version="1.0" encoding="utf-8"?>
<!-- number7.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Automobile manufacturers and their cars
</xsl:text>
 <xsl:for-each select="cars/manufacturer">
 <xsl:value-of select="@name"/>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="car">
 <xsl:sort select="."/>
 <xsl:text> </xsl:text>
 <xsl:if test="(position() mod 2) = 0">
 <xsl:number count="manufacturer" level="multiple"
 format="1."/>
 <xsl:value-of select="position()"/>
 <xsl:text>. </xsl:text>
 </xsl:if>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

This numbers the Pinto using the sorted order:

Automobile manufacturers and their cars
Chevrolet
 Cavalier
 1.2. Corvette
 Impala
 1.4. Malibu
Ford
 Mustang
 2.2. Pinto

Numbering Things | 125

 Taurus
Volkswagen
 Beetle
 3.2. Jetta
 Passat
 3.4. Touraeg

We used <xsl:number> to count the position of the current car within the current man-
ufacturer.

[2.0] Changes to <xsl:number> in XSLT 2.0
There are some changes to the <xsl:number> element in XSLT 2.0. First of all, three new
formats have been added: w, W, and Ww. Those formats produce words in the default
language on your machine (there’s also a lang attribute you can use to change the
language). Here’s an example:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Automobile manufacturers and their cars
</xsl:text>
 <xsl:for-each select="cars/manufacturer">
 <xsl:value-of select="@name"/>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="car">
 <xsl:text> Car </xsl:text>
 <xsl:number count="car" level="single" format="w"/>
 <xsl:text>: </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

This stylesheet produces this text:

Automobile manufacturers and their cars
Chevrolet
 Car one: Cavalier
 Car two: Corvette
 Car three: Impala
 Car four: Malibu
Ford
 Car one: Pinto
 Car two: Mustang
 Car three: Taurus
Volkswagen
 Car one: Beetle

126 | Chapter 4: Creating Output

 Car two: Jetta
 Car three: Passat
 Car four: Touraeg

Using the format W produces the numbers ONE, TWO, THREE, and so forth, while the format
Ww produces One, Two, Three.

Another difference is the addition of the select attribute. Normally <xsl:number> num-
bers the current node; you can use the select attribute to generate the number for
another node.

XSLT 2.0 also adds the ordinal attribute; ordinal="yes" combined with format="1"
generates 1st, 2nd, 3rd, while ordinal="yes" combined with format="Ww" generates
First, Second, Third. The ordinal attribute has many different options that depend on
the lang attribute and the format attribute; as you would expect, each XSLT 2.0 pro-
cessor supports a different set of languages and options for the ordinal attribute. See
your processor’s documentation for information on what capabilities are available.

Finally, XSLT 2.0 signals an error if your <xsl:number> element has incompatible at-
tributes. For example, you can’t have a select attribute and a value attribute. In XSLT
1.0, the extra attributes were ignored.

Appendix F has a complete description of all the formatting codes for
numbers, dates, times, and durations.

Formatting Decimal Numbers
We’ve already seen several ways of formatting decimal numbers using <xsl:number>.
However, if we’re going to work with numbers, we’ll almost certainly have to deal with
decimals. XSLT defines the format-number() function and the <xsl:decimal-format>
element to do just that. We’ll use <xsl:decimal-format> to define a pattern for format-
ting numbers, and then we’ll use format-number() to apply a pattern to a number.

This stylesheet has several examples of <xsl:decimal-format> and format-number():

<?xml version="1.0" encoding="utf-8"?>
<!-- decimal-format.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <!-- This format has no name, so it's assumed to be the default. -->
 <xsl:decimal-format decimal-separator="," grouping-separator="."/>

 <xsl:decimal-format name="us_default"/>

 <xsl:decimal-format name="other_options" NaN="[not a number]"

Formatting Decimal Numbers | 127

 infinity="unfathomably huge"/>

 <xsl:decimal-format name="hash_mark" digit="!"/>

 <xsl:template match="/">
 <xsl:text>
Tests of <xsl:decimal-format> and </xsl:text>
 <xsl:text>format-number():</xsl:text>
 <xsl:text>

 1. format-number(3728493.3882, </xsl:text>
 <xsl:text>'#.###,##') : </xsl:text>
 <xsl:value-of
 select="format-number(3728493.3882, '#.###,##')"/>

 <xsl:text>

 2. format-number(3728493.3882, </xsl:text>
 <xsl:text>'#,###.##', 'us_default') : </xsl:text>
 <xsl:value-of
 select="format-number(3728493.3882, '#,###.##', 'us_default')"/>

 <xsl:text>

 3. format-number(number(1) div 0, '#.#') : </xsl:text>
 <xsl:value-of select="format-number(number(1) div 0, '#.#')"/>

 <xsl:text>

 4. format-number(number(1) div 0, '#.#', </xsl:text>
 <xsl:text>'other_options') :
 </xsl:text>
 <xsl:value-of
 select="format-number(number(1) div 0, '#.#', 'other_options')"/>

 <xsl:text>

 5. format-number(number('blue') * </xsl:text>
 <xsl:text>number('orange'), '#') : </xsl:text>
 <xsl:value-of
 select="format-number(number('blue') * number('orange'), '#')"/>

 <xsl:text>

 6. format-number(number('blue') * </xsl:text>
 <xsl:text>number('orange'), '#', 'other_options') : </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of
 select="format-number(number('blue') * number('orange'), '#',
 'other_options')"/>

 <xsl:text>

 7. format-number(42, '#!', </xsl:text>
 <xsl:text>'hash_mark') : </xsl:text>
 <xsl:value-of select="format-number(42, '#!', 'hash_mark')"/>
 </xsl:template>

</xsl:stylesheet>

When we run this stylesheet against any document, we get this output:

Tests of <xsl:decimal-format> and format-number():

 1. format-number(3728493.3882, '#.###,##') : 3.728.493,39

 2. format-number(3728493.3882, '#,###.##', 'us_default') : 3,728,493.39

 3. format-number(number(1) div 0, '#.#') : Infinity

 4. format-number(number(1) div 0, '#.#', 'other_options') :
 unfathomably huge

128 | Chapter 4: Creating Output

 5. format-number(number('blue') * number('orange'), '#') : NaN

 6. format-number(number('blue') * number('orange'), '#', 'other_options') :
 [not a number]

 7. format-number(42, '#!', 'hash_mark') : #42

This is an XSLT 1.0 stylesheet, but changing the version attribute to 2.0 generates the
same results. We’ll discuss each line in the output and point out some differences in
the way XSLT 2.0 processes numbers as we go.

1. This example formats a number using the default format we defined. Because our
stylesheet has a <xsl:decimal-format> element without a name, this format is used
unless the name of another <xsl:decimal-format> element is used. We defined the
default format to use periods as the thousands separator and a comma as the dec-
imal point. Notice that to get this to work we had to use the period and comma
appropriately in the formatting string. The numeric value itself uses the decimal
point as usual.

2. This is the same example as before, only we pass the name of a number format as
the third argument. Notice that the decimal format us_default doesn’t have any
attributes; that means it uses a period as the decimal point and a comma as the
thousands separator.

3. This generates the default value for infinity, which is the string Infinity. In XSLT
1.0, the expression 1 div 0 generates the same result.

[2.0] In XSLT 2.0, any value that is an xs:integer or xs:decimal cannot have the
value infinity, so 1 div 0 won’t run at all. Calling the function number(1) converts
1 into the xs:double equivalent, so number(1) div 0 works. (That’s a lot of work
to divide a number by zero, but it does explain some of the details of how math
works in XSLT 2.0.)

4. This generates the value for infinity defined in the number format other_options.
The same details apply here as in the previous example; the expression 1 div 0
doesn’t work in XSLT 2.0.

5. This generates NaN. In XSLT 1.0, the expression 'blue' * 'orange' generates the
same result.

[2.0] In XSLT 2.0, the expression 'blue' * 'orange' doesn’t work because the
multiplication symbol requires two numbers. Using the number() function turns
each of the strings into the numeric value NaN. To generate NaN in XSLT 2.0,
number('NaN') does the trick, as do number('blue'), number('orange'), and
number('any old string at all').

6. This generates [not a number], the value defined in the number format
other_options. (The same restrictions for XSLT 2.0 apply here as well.)

Formatting Decimal Numbers | 129

7. This generates #42. This uses the number format hash_mark, which defines an ex-
clamation point as the digit character in the picture string. This allows us to put
the hash mark into the picture string.

[2.0] Formatting Dates and Times
XSLT 2.0 adds three new formatting functions, format-date(), format-time(), and
format-dateTime(). We’ll take xs:date, xs:time, and xs:dateTime values and format
them in some useful way.

You can call each of these functions in two ways. The simplest is to pass the function
a value and a formatting string. If you need more detail, the second way of calling these
functions requires you to specify a language, a calendar, and a country as well. The
XSLT 2.0 specification lists more than 25 different calendars used around the world,
and there are hundreds of combinations of language and country codes. Look at the
documentation for your XSLT processor to see which calendars, languages, and coun-
tries it supports.

Our first example is pretty simple. We’ll create a stylesheet that uses the XPath func-
tions current-date(), current-time(), and current-dateTime():

<?xml version="1.0" encoding="utf-8"?>
<!-- datetime1.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of date and time formatting:
</xsl:text>
 <xsl:text>
 The current date is </xsl:text>
 <xsl:value-of select="format-date(current-date(),
 '[M01]/[D01]/[Y0001]')"/>
 <xsl:text>
 The current time is </xsl:text>
 <xsl:value-of select="format-time(current-time(),
 '[H01]:[m01] [z]')"/>
 <xsl:text>
 It's currently </xsl:text>
 <xsl:value-of select="format-dateTime(current-dateTime(),
 '[h1]:[m01] [P] on [MNn] [D].')"/>
 </xsl:template>

</xsl:stylesheet>

This stylesheet produces this text:

Tests of date and time formatting:

 The current date is 03/08/2006
 The current time is 22:27 GMT-5
 It's currently 10:27 p.m. on March 8.

130 | Chapter 4: Creating Output

In this stylesheet, M01 produces the two-digit month, D01 produces the two-digit day,
and Y0001 produces the four-digit year. H01 produces the 2-digit hour in a 24-hour clock,
m01 produces the 2-digit minutes, z produces the time zone, h1 produces the 1- or 2-
digit hour in a 12-hour clock, and P generates a.m. or p.m. Finally, MNn generates the
capitalized name of the month.

The formatting codes used by the <xsl:number> element can be used in the picture string
for these functions. Here’s another stylesheet that uses more of those formatting codes:

<?xml version="1.0" encoding="utf-8"?>
<!-- datetime2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
More tests of date and time formatting:
</xsl:text>
 <xsl:text>
 Today is the </xsl:text>
 <xsl:value-of select="format-date(current-date(),
 '[Dwo] day of [MNn], [Y0001]')"/>
 <xsl:text>
 Right now is the </xsl:text>
 <xsl:value-of select="format-time(current-time(),
 '[m1o] minute of the [Hwo] hour of the day.')"/>
 <xsl:text>
 It's currently </xsl:text>
 <xsl:value-of select="format-dateTime(current-dateTime(),
 '[h01]:[m01] [P] on [FNn] the [D1o].')"/>
 <xsl:text>
 Today is the </xsl:text>
 <xsl:value-of select="format-date(current-date(),
 '[dwo]')"/>
 <xsl:text> day of the year. </xsl:text>
 <xsl:text>
 December 25, 1960 in German: </xsl:text>
 <xsl:value-of select="format-date(xs:date('1960-12-25'),
 '[D] [MNn,3-3] [Y0001]', 'de',
 'AD', 'DE')"/>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates this text:

More tests of date and time formatting:

 Today is the eighth day of March, 2006
 Right now is the 28th minute of the twenty-second hour of the day.
 It's currently 10:28 p.m. on Wednesday the 8th.
 Today is the sixty-seventh day of the year.
 December 25, 1960 in German: 25 Dez 1960

Here are the explanations for all the formatting codes in this example:

Dwo
The word for the ordinal value of the day

[2.0] Formatting Dates and Times | 131

MNn
The capitalized name of the month

Y0001
The four-digit year

m1o
The numeric ordinal of the minute

Hwo
The hour, expressed as an ordinal word

h01
The 2-digit hour in a 24-hour clock

m01
The 2-digit minute

P
The a.m. or p.m. indicator

FNn
The capitalized name of the day of the week

D1o
The numeric ordinal of the day

dwo
The day of the year, expressed as an ordinal word

D
The numeric day of the month

MNn,3-3
The capitalized name of the month, returned in a string that’s at least three char-
acters long, but no more than three characters long

For the last call to format-date(), we used the five-option version of the function,
passing in the language, calendar and country codes. The formatting codes defined by
XSLT give you a wide range of options for formatting the different components of dates
and times.

Using <xsl:copy> and <xsl:copy-of>
As you transform your XML input document into something else, you’ll often want to
just copy a given element to the output document. XSLT provides two elements that
do this: <xsl:copy> and <xsl:copy-of>. We’ll discuss them here and go through several
stylesheets that use these elements to create output.

132 | Chapter 4: Creating Output

A Stylesheet That Reproduces Its Input Document
To start our examples, we’ll look at a stylesheet that generates a document equal to the
input document. (This is sometimes called an identity transform.) The stylesheet is short
and sweet:

<?xml version="1.0"?>
<!-- copy-of.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <xsl:copy-of select="*"/>
 </xsl:template>
</xsl:stylesheet>

That’s all we have to do. Our template simply says to start with the document element
of the input document and copy it to the output. <xsl:copy-of> does a deep copy of a
node, so the root node and all of its children are copied to the output. If any of the root
node’s descendants are element nodes with attributes, the attributes are copied as well.
(Remember, an element’s attributes aren’t considered children.)

We’ll test our stylesheet against this document:

<?xml version="1.0"?>
<!-- sonnet.xml -->
<sonnet type='Shakespearean'>
 <auth:author xmlns:auth="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </auth:author>
 <!-- Is there an official title for this sonnet? They're
 sometimes named after the first line. -->
 <title>Sonnet 130</title>
 <lines>
 <line>My mistress' eyes are nothing like the sun,</line>
 <line>Coral is far more red than her lips red.</line>
 <line>If snow be white, why then her breasts are dun,</line>
 <line>If hairs be wires, black wires grow on her head.</line>
 <line>I have seen roses damasked, red and white,</line>
 <line>But no such roses see I in her cheeks.</line>
 <line>And in some perfumes is there more delight</line>
 <line>Than in the breath that from my mistress reeks.</line>
 <line>I love to hear her speak, yet well I know</line>
 <line>That music hath a far more pleasing sound.</line>
 <line>I grant I never saw a goddess go,</line>
 <line>My mistress when she walks, treads on the ground.</line>
 <line>And yet, by Heaven, I think my love as rare</line>
 <line>As any she belied with false compare.</line>
 </lines>
</sonnet>

Using <xsl:copy> and <xsl:copy-of> | 133

The results look like this:

<?xml version="1.0" encoding="UTF-8"?><!-- sonnet.xml --><sonnet type="Shakespearean">
 <auth:author xmlns:auth="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </auth:author>
 <!-- Is there an official title for this sonnet? They're
 sometimes named after the first line. -->
 <title>Sonnet 130</title>
 <lines>
 <line>My mistress' eyes are nothing like the sun,</line>
 <line>Coral is far more red than her lips red.</line>
 <line>If snow be white, why then her breasts are dun,</line>
 <line>If hairs be wires, black wires grow on her head.</line>
 <line>I have seen roses damasked, red and white,</line>
 <line>But no such roses see I in her cheeks.</line>
 <line>And in some perfumes is there more delight</line>
 <line>Than in the breath that from my mistress reeks.</line>
 <line>I love to hear her speak, yet well I know</line>
 <line>That music hath a far more pleasing sound.</line>
 <line>I grant I never saw a goddess go,</line>
 <line>My mistress when she walks, treads on the ground.</line>
 <line>And yet, by Heaven, I think my love as rare</line>
 <line>As any she belied with false compare.</line>
 </lines>
</sonnet>

The result document looks almost exactly like the original. The <sonnet> element no
longer begins on a separate line, and the XML declaration now includes encod
ing="UTF-8". Also notice that the single quotes around the type attribute are now double
quotes. These are changes from the text of the original XML document, but semanti-
cally the two are the same. Notice four things in particular that were copied to the
output document:

• The comment before the document element

• The type attribute of the <sonnet> element

• The comment in the middle of the document

• The namespace declaration on the <auth:author> element

Earlier in our discussion we made a point of talking about the root node
rather than the document element. The root node here contains two
things: the comment outside the document element and the document
element itself. Everything in the XML source is a descendant of the root
node; the document element isn’t always the root node’s only child.

134 | Chapter 4: Creating Output

We’ll look at the <xsl:copy> element next and see how it handles (or doesn’t handle)
our input document.

A Stylesheet That Doesn’t Quite Reproduce Its Input Document
Now we’ll look at a similar stylesheet that uses <xsl:copy> instead. Again, our stylesheet
is very simple:

<?xml version="1.0"?>
<!-- copy1.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <xsl:copy/>
 </xsl:template>
</xsl:stylesheet>

You probably noticed that the stylesheet is shorter. Unlike <xsl:copy-of>, the
<xsl:copy> element doesn’t have a select attribute. (It has some other attributes in
XSLT 2.0; it didn’t have any at all in XSLT 1.0.) Here are the results when we use this
stylesheet:

<?xml version="1.0" encoding="UTF-8"?>

Hmmm. It appears that <xsl:copy> didn’t actually copy anything. While that makes
for a small, concise document, it’s probably not what we wanted. (This is the result
you get from Xalan; Saxon doesn’t generate anything at all.) One thing to remember
here is that the document root is not the root element that contains the XML data in
our document. An XML document can contain comments and processing instructions
that are outside the root element; those comments and PIs are part of the XPath docu-
ment root. So, if we want to copy anything, we need to create a template for the root
element. Here’s another attempt at a stylesheet:

<?xml version="1.0"?>
<!-- copy2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <xsl:apply-templates select="*"/>
 </xsl:template>

 <xsl:template match="*">
 <xsl:copy/>
 </xsl:template>
</xsl:stylesheet>

And here are the results we get:

<?xml version="1.0" encoding="UTF-8"?><sonnet/>

Using <xsl:copy> and <xsl:copy-of> | 135

Well, at least we have the <sonnet> element, but we don’t have any of its children. We
also lost the type attribute of the <sonnet> element. Using <xsl:copy> to copy our
document requires using the <xsl:for-each> element to copy all the attributes of each
element we’re copying. Here’s how the latest iteration of our stylesheet looks:

<?xml version="1.0"?>
<!-- copy3.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <xsl:apply-templates select="*"/>
 </xsl:template>

 <xsl:template match="*">
 <xsl:copy>
 <xsl:for-each select="@*">
 <xsl:copy/>
 </xsl:for-each>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>

We used <xsl:for-each> to copy all of the attributes that an element might have. This
stylesheet comes pretty close to duplicating the input document:

<?xml version="1.0" encoding="UTF-8"?><sonnet type="Shakespearean">
 <auth:author xmlns:auth="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </auth:author>

 <title>Sonnet 130</title>
 <lines>
 <line>My mistress' eyes are nothing like the sun,</line>
 <line>Coral is far more red than her lips red.</line>
 <line>If snow be white, why then her breasts are dun,</line>
 <line>If hairs be wires, black wires grow on her head.</line>
 <line>I have seen roses damasked, red and white,</line>
 <line>But no such roses see I in her cheeks.</line>
 <line>And in some perfumes is there more delight</line>
 <line>Than in the breath that from my mistress reeks.</line>
 <line>I love to hear her speak, yet well I know</line>
 <line>That music hath a far more pleasing sound.</line>
 <line>I grant I never saw a goddess go,</line>
 <line>My mistress when she walks, treads on the ground.</line>
 <line>And yet, by Heaven, I think my love as rare</line>
 <line>As any she belied with false compare.</line>
 </lines>
</sonnet>

136 | Chapter 4: Creating Output

Even this version of the stylesheet doesn’t copy comments or processing instructions.
Notice that the output has a blank line in place of the comment in the original docu-
ment. If we wanted to handle comments and processing instructions, we’d have to
change the match and select attributes to make sure they were processed.

The point of these examples is that <xsl:copy> forces you do to most of the work your-
self. You have complete control over what exactly gets copied, but that comes at a price.
If you wanted only to copy certain elements, such as all <customer> elements with an
<address> element in which the <province> element has a value of PEI, <xsl:copy> gives
you the control to do that.

Before we go on to more complicated examples that use <xsl:copy>, be
aware that we could use the XPath node() test. This stylesheet:

<?xml version="1.0"?>
<!-- copy-identity.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="node()|@*">
 <xsl:copy>
 <xsl:apply-templates select="node()|@*"/>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>

accomplishes the same thing as the <xsl:copy-of> stylesheet we looked
at earlier.

For an example that needs that contol, we’ll look a stylesheet that copies only the
<author> information and the title of the sonnet. This stylesheet uses a separate template
to make sure nothing happens to the <lines> element that contains the poem:

<?xml version="1.0"?>
<!-- copy4.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <xsl:apply-templates select="*"/>
 </xsl:template>

 <xsl:template match="*">
 <xsl:copy>
 <xsl:for-each select="@*">
 <xsl:copy/>
 </xsl:for-each>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="lines"/>

Using <xsl:copy> and <xsl:copy-of> | 137

</xsl:stylesheet>

Our template for the <lines> element is empty; because it doesn’t contain anything, it
doesn’t generate any output. That means our output should contain everything except
the <lines> element and its children. The results look like this:

<?xml version="1.0" encoding="UTF-8"?><sonnet type="Shakespearean">
 <auth:author xmlns:auth="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </auth:author>

 <title>Sonnet 130</title>

</sonnet>

The results contain all of the <auth:author> and <title> information, along with some
extra whitespace. (Feel free to change the stylesheet to delete that whitespace if you
want.) We couldn’t do this with <xsl:copy-of>; <xsl:copy> gives us the control to do
what we want. If we added more elements to our <sonnet> schema, this stylesheet would
still copy everything except the <lines> elements and its children.

Our last stylesheet used an empty <xsl:template> for the <lines> element. That means
all other elements, text, and attributes are copied to the output; our stylesheet defines
what should not be copied to the output. Creating a stylesheet that defines what
should be copied is more complex:

<?xml version="1.0"?>
<!-- copy5.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:auth="http://www.authors.com/">

 <xsl:template match="sonnet">
 <xsl:copy>
 <xsl:copy-of select="@*"/>
 <xsl:apply-templates select="auth:author|title"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="*">
 <xsl:copy>
 <xsl:copy-of select="@*"/>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

138 | Chapter 4: Creating Output

There are a couple of complications here. First of all, to specify that we want to copy
the namespace-qualified element <auth:author>, we have to define that namespace in
the stylesheet. Next, we list the two child elements of the <sonnet> element. Finally, we
create a generic template that copies whatever elements are processed. Using the built-
in template rules, the <auth:author> and <title> elements and all their descendants are
processed with the generic template. We never process the <lines> element, so we get
the results we want:

<?xml version="1.0" encoding="UTF-8"?><sonnet type="Shakespearean"><auth:author
xmlns:auth="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </auth:author><title>Sonnet 130</title></sonnet>

We’ve looked at the two elements XSLT uses for copying: <xsl:copy-of> and
<xsl:copy>. Use <xsl:copy-of> when you want a deep copy of an element, including
its children and its attributes. On the other hand, <xsl:copy> forces you to choose
exactly what gets copied. If you need that control, use <xsl:copy>; otherwise, use
<xsl:copy-of>.

Dealing with Whitespace
One of the challenges of working with any XML document is processing whitespace,
especially when want want to generate output other than HTML. As we noted earlier,
an HTML browser renders both of these paragraphs the same way:

<p>
 This document contains
 5
 chapters.

</p>
<p>This document contains 5 chapters.</p>

If we generated these two paragraphs as text, however, they would appear as differently
in print as they do in the HTML source. We’ll look at several techniques for controlling
whitespace in this section.

Whitespace Basics
Before we begin, it’s worth defining the four characters that the XML spec defines as
whitespace:

• The tab character ()

• The newline character (
)

Dealing with Whitespace | 139

• The carriage return character ()

• The space character ()

We’ll use this modified version of our car list to illustrate how XML parsers and XSLT
processors work with whitespace:

<?xml version="1.0" encoding="utf-8"?>
<!-- carlist_whitespace.xml -->
<cars>
 <manufacturer name=" Chevrolet

">
 <car>Cavalier</car>
 <car>Corvette</car>
 <car>Impala</car>
 <car>Monte

Carlo</car>
 </manufacturer>
</cars>

From an XML parser’s perspective, there are a number of whitespace-only nodes (nodes
that contain only whitespace characters) in this document. The <cars> element contains
a whitespace-only node with the newline character and the tab or spaces before the
<manufacturer> tag, the node for the <manufacturer> element, and a whitespace-only
node with the newline character after the </manufacturer> tag. Similarly, the
<manufacturer> element contains whitespace-only nodes between the various <car>
elements.

The XML parser doesn’t remove any whitespace-only nodes, so we can always use them
in our stylesheets. Put another way, the data model used by the XSLT processor con-
tains the whitespace-only nodes from the XML source. The one exception to this is in
an XSLT 2.0 processor that validates the XML source against a schema. If the schema
indicates that an element can only contain other elements, any whitespace-only nodes
contained in those elements are removed.

An XSLT processor doesn’t know if the XML parser validated the document or not, so
it assumes any whitespace nodes delievered by the XML parser must be significant.
We’ll use our sample stylesheet for the <xsl:copy-of> element to see what we get from
our document. Processing our short list of cars with this stylesheet:

<?xml version="1.0"?>
<!-- copy-of.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <xsl:copy-of select="."/>
 </xsl:template>
</xsl:stylesheet>

140 | Chapter 4: Creating Output

gives us this XML document:

<?xml version="1.0" encoding="UTF-8"?><!-- carlist_whitespace.xml --><cars>
 <manufacturer name=" Chevrolet ">
 <car>Cavalier</car>
 <car>Corvette</car>
 <car>Impala</car>
 <car>Monte

Carlo</car>
 </manufacturer>
</cars>

There’s only one change in the processed version of the document: The newline char-
acters were replaced with spaces in the value of the name attribute of the
<manufacturer> element. All the whitespace nodes were preserved.

Using <xsl:preserve-space> and <xsl:strip-space>
The XSLT spec gives us two ways of dealing with whitespace nodes. We can use the
<xsl:preserve-space> and <xsl:strip-space> nodes to keep or delete whitespace.
Here’s a slightly modified version of our stylesheet:

<?xml version="1.0"?>
<!-- copy-of-whitespace.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:preserve-space elements="manufacturer"/>
 <xsl:strip-space elements="cars"/>

 <xsl:template match="/">
 <xsl:copy-of select="."/>
 </xsl:template>
</xsl:stylesheet>

Here’s what we get when we process our list of cars with the modified stylesheet:

<?xml version="1.0" encoding="UTF-8"?><!-- carlist_whitespace.xml --><cars>
 <manufacturer name=" Chevrolet ">
 <car>Cavalier</car>
 <car>Corvette</car>
 <car>Impala</car>
 <car>Monte

Carlo</car>
 </manufacturer></cars>

In the result document, the whitespace nodes inside the <cars> element have been
removed, while all the whitespace inside the <manufacturer> element has been

Dealing with Whitespace | 141

preserved. (The complete text of the <manufacturer> element scrolls off the right side
of the page.) You can use <xsl:preserve-space> and <strip-space> with wildcards as
well:

<xsl:preserve-space elements="cars manufacturer"/>
<xsl:strip-space elements="*"/>

This tells the XSLT processor to strip whitespace nodes on all the elements except the
<cars> and <manufacturer> elements. The elements attribute can contain an asterisk or
a space-separated list of element names.

Because whitespace-only nodes are always preserved, there’s no need to
use <xsl:preserve-space elements="*"/>. Using <xsl:strip-
space elements="*"/> as we have here means whitespace-only nodes are
removed by default. We have to specify the mixed content elements in
which whitespace is significant, but removing as many whitespace-only
nodes as possible can make the node tree much smaller for a large docu-
ment with lots of whitespace.

You can also use wildcards for namespace-qualified elements. For example,
elements="auth:*" means all elements in the auth namespace. [2.0] In XSLT 2.0, you
can also use elements="*:car to specify all <car> elements, regardless of their
namespace.

The <xsl:preserve-space> and <strip-space> elements give us control over which
whitespace nodes will be processed by our stylesheet. If we want to copy that white-
space directly to the output document, we can use the <xsl:copy-of> and <xsl:copy>
elements as we discussed earlier.

A final note: the XML spec defines the little-used xml:space attribute. If an element in
the XML source document contains the attribute xml:space="preserve", all whitespace
in that element is preserved, regardless of any <xsl:strip-space> elements our style-
sheet might have.

The normalize-space() function
Another useful technique for controlling whitespace is the normalize-space() function.
In our previous example, we used <xsl:preserve-space> and <xsl:strip-space> to
control whitespace nodes in various elements, but we still have quite a bit of whitespace
in the name attribute and the last <car> in the list. To clean up the whitespace, we can
use the normalize-space() function. It does three things:

• It removes all leading spaces.

• It removes all trailing spaces.

• It replaces any group of consecutive whitespace characters with a single space.

We’ll use normalize-space() in this stylesheet:

142 | Chapter 4: Creating Output

<?xml version="1.0"?>
<!-- normalize-space.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <xsl:apply-templates />
 </xsl:template>

 <xsl:template match="*">
 <xsl:copy>
 <xsl:for-each select="@*">
 <xsl:attribute name="{name()}">
 <xsl:value-of select="normalize-space()"/>
 </xsl:attribute>
 </xsl:for-each>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="text()">
 <xsl:value-of select="normalize-space()"/>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates these crowded results:

<?xml version="1.0" encoding="UTF-8"?><cars><manufacturer name="Chevr
olet"><car>Cavalier</car><car>Corvette</car><car>Impala</car><car>Mon
te Carlo</car></manufacturer></cars>

This removes all the extraneous whitespace from the name attribute and the <car> ele-
ment; it also effectively removes the whitespace-only text nodes.

A Simple Technique for Adding Whitespace to Text Output
Whenever we generate text output, we usually need to control line breaks. Program-
ming languages have facilities for this; in Java, for example, we can use
System.out.print(), System.out.println(), or even System.out.print("\n\n") to put
line breaks exactly where we need them.

The simplest way to do this in an XSLT stylesheet is to use the character entities for the
newline (
) and tab () characters. We’ve used this technique with the newline
character throughout this chapter. As a further example, here’s a stylesheet that uses
all three character entities in the separator attribute of the <xsl:value-of> element:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0">

 <xsl:output method="text"/>

 <xsl:template match="/">

Dealing with Whitespace | 143

 <xsl:text>
Values separated with newlines:

</xsl:text>
 <xsl:value-of select="1 to 7" separator="
"/>

 <xsl:text>

Values separated with tabs:

</xsl:text>
 <xsl:value-of select="1 to 7" separator="	"/>

 <xsl:text>

Values separated with spaces:

</xsl:text>
 <xsl:value-of select="1 to 7" separator=" "/>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates these results:

Values separated with newlines:

1
2
3
4
5
6
7

Values separated with tabs:

1 2 3 4 5 6 7

Values separated with spaces:

1 2 3 4 5 6 7

Summary
This chapter has covered the various ways you can generate output from your XSLT
stylesheets. You’ll use those basic techniques in every stylesheet you write. The main
challenge as we go forward is learning how to select and organize the elements you
want to process. You might need logic to select elements that have certain properties
or you might need to sort or group elements before you process them. You might need
to use special functions not defined in XSLT or XPath. You might need to write output
to more than one document. Future chapters will address all of those topics.

Whatever your stylesheet does, you’ll ultimately use the output methods in this chapter.

144 | Chapter 4: Creating Output

CHAPTER 5

Branching and Control Elements

So far, we’ve done some straightforward transformations and we’ve been able to do
some reasonably sophisticated things. To do truly useful work, though, we’ll need to
use logic in our stylesheets. In this chapter, we’ll discuss the XSLT elements that allow
you to do just that. Although you’ll see several XML elements that look like constructs
from other programming languages, they’re not exactly the same. As we go along, we’ll
discuss what makes XSLT different and how to do common tasks with your stylesheets.

Goals of This Chapter
By the end of this chapter, you should:

• Know the XSLT elements used for branching and control

• Understand the differences between XSLT’s branching elements and similar con-
structs in other programming languages

• Know how to invoke XSLT templates by name and how to pass parameters to them,
if you want

• Know how to use XSLT variables

• Understand how changes in XSLT 2.0 affect the way parameters and variables work

• Understand how to use recursion to get around the “limitations” of XSLT’s
branching and control elements

Branching Elements of XSLT
Three XSLT elements are used for branching: <xsl:if>, <xsl:choose>, and
<xsl:for-each>. The first two are much like the if and case statements you may be
familiar with from other languages, but the for-each element is significantly different
from the for or do-while structures in other languages. We’ll discuss all of them here.

145

The <xsl:if> Element
The <xsl:if> element looks like this:

<xsl:if test="count(zone) > 2">
 <xsl:text>Applicable zones: </xsl:text>
 <xsl:apply-templates select="zone"/>
</xsl:if>

The <xsl:if> element, surprisingly enough, implements an if statement. The element
has only one attribute: test. If the value of test evaluates to the boolean value true,
then all elements inside the <xsl:if> are processed. If test evaluates to false, then the
contents of the <xsl:if> element are ignored. (If you want to implement an if-then-else
statement, see the section “The <xsl:choose> Element” later in this chapter.)

Notice that we used the character > in the value of the test attribute. If you need to use
the less-than operator (<), you’ll have to use the < entity. The same holds true for
the less-than-or-equal operator (<=).

Converting to boolean values

The <xsl:if> element is pretty simple, but it’s the first time we’ve had to deal with
boolean values. These values will come up later, so we might as well discuss them here.
Attributes such as the test attribute of the <xsl:if> element convert whatever their
values happen to be into a boolean value. If that boolean value is true, the <xsl:if>
element is processed. (The <xsl:when> element, which we’ll discuss in the section “The
<xsl:choose> Element” later in this chapter, has a test attribute as well.)

[1.0] Here’s the rundown of how various datatypes are converted to boolean values:

number
If a number is positive or negative zero, it is false. If a numeric value is NaN (not a
number; if I try to use the string “blue” as a number, the result is NaN), it is false.
If a number has any other value, it is true.

node-set
An empty node-set is false, a nonempty node-set is true.

string
A zero-length string is false; a string whose length is not zero is true.

These rules are defined in Section 4.3 of the XPath 1.0 specification.

[2.0] For XSLT 2.0, things are more complicated. The value returned, as you’d expect,
is an xs:boolean. Here’s how different datatypes are converted to xs:boolean values:

• A singleton of any numeric type is false if its value is zero or NaN (not a number);
everything else is true.

• A singleton of type xs:string, xs:anyURI, xs:untypedAtomic, or any type derived
from them is true if the argument has a length greater than zero.

146 | Chapter 5: Branching and Control Elements

• The value of a singleton of type xs:boolean (or of a type derived from xs:boolean)
is simply used as is.

• A sequence whose first item is a node is true.

• An empty sequence is false.

• Converting any other datatype to xs:boolean causes the XSLT processor to raise
an error. For example, an xs:date can’t be converted to true or false.

Boolean examples

Here are some examples that illustrate how boolean values evaluate the test attribute:

<xsl:if test="count(zone) >= 2">
This is a boolean expression because it uses the greater-than-or-equal boolean op-
erator. If the count() function returns a value greater than or equal to 2, the test
attribute is true. Otherwise, the test attribute is false.

<xsl:if test="$x">
The variable $x is evaluated and converted to a boolean value using the rules we
just covered. The result, of course, depends on the value of $x and how it is con-
verted to a boolean value.

<xsl:if test="true()">
The boolean function true() always returns the boolean value true. Therefore,
this test attribute is always true.

<xsl:if test="true">
This example is a trick. This test attribute is true only if there is at least one
<true> element that’s a child of the context node. The XSLT processor interprets
the value true as an XPath expression that specifies all <true> elements in the cur-
rent context. The strings true and false don’t have any special significance in
XSLT.

<xsl:if test="'true'">
This test attribute is always true. Notice that in this case we used single quotes
inside double quotes to specify that this is a literal string, not an element name.
This test attribute is always true because the string has a length greater than zero,
not because its value happens to be the word “true.”

<xsl:if test="'false'">
Another trick example; this test attribute is always true. As before, we used single
quotes inside double quotes to specify that this is a literal string. Because the string
has a length greater than zero, the test attribute is always true. The value of the
nonempty string, confusing as it is, doesn’t matter.

<xsl:if test="not(3)">
This test attribute is always false. The literal 3 evaluates to true, so its negation
is false. On the other hand, the expressions not(0) and not(-0) are always true.

Branching Elements of XSLT | 147

<xsl:if test="false()">
This test attribute is always false. The boolean function false() always returns
the boolean value false.

<xsl:if test="section/section">
The XPath expression section/section returns a node-set. If the current context
contains one or more <section> elements that contain a <section> element in turn,
the test attribute is true. If no such elements exist in the current context, the
test attribute is false.

The <xsl:choose> Element
The <xsl:choose> element is logically equivalent to an if-then-else statement, although
it has the feel of a case or switch statement in other programming languages. An
<xsl:choose> contains at least one <xsl:when> element (logically equivalent to an
<xsl:if> element), with an optional <xsl:otherwise> element (logically equivalent to
an else in other programming languages). The test attribute of each <xsl:when> ele-
ment is evaluated until the XSLT processor finds one that evaluates to true. When that
happens, the contents of that <xsl:when> element are evaluated. (Unlike a case or
switch element, each <xsl:when> is a separate test.) If none of the <xsl:when> elements
have a test that is true, the contents of the <xsl:otherwise> element (if there is one) are
processed.

<xsl:choose> example

Here’s a sample <xsl:choose> element that sets the background color of the table’s
rows. If the bgcolor attribute is coded on the <table-row> element, the value of that
attribute is used as the color; otherwise, the sample uses the position() function and
the mod operator to cycle the colors between black, green, red, and blue:

<xsl:template match="table-row">
 <tr>
 <xsl:attribute name="bgcolor">
 <xsl:choose>
 <xsl:when test="@bgcolor">
 <xsl:value-of select="@bgcolor"/>
 </xsl:when>
 <xsl:when test="position() mod 4 = 0">
 <xsl:text>black</xsl:text>
 </xsl:when>
 <xsl:when test="position() mod 4 = 1">
 <xsl:text>green</xsl:text>
 </xsl:when>
 <xsl:when test="position() mod 4 = 2">
 <xsl:text>red</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>blue</xsl:text>
 </xsl:otherwise>
 </xsl:choose>

148 | Chapter 5: Branching and Control Elements

 </xsl:attribute>
 <xsl:apply-templates select="*"/>
 </tr>
</xsl:template>

In this sample, we use <xsl:choose> to generate the value of the bgcolor attribute of the
<tr> element. Our first test is to see whether the bgcolor attribute of the <table-row>
element exists; if it does, we use that value for the background color and the
<xsl:otherwise> and other <xsl:when> elements are ignored. (If the bgcolor attribute is
coded, the XPath expression @bgcolor returns a node-set containing a single attribute
node.)

The next three <xsl:when> elements check the position of the current <table-row> ele-
ment. The use of the mod operator here is the most efficient way to cycle between the
various options. Finally, we use an <xsl:otherwise> element to specify blue as the de-
fault case. If position() mod 4 = 3, the background color will be blue.

There are a couple of minor details to note. In this example, we could replace the
<xsl:otherwise> element with <xsl:when test="position() mod 4 = 3">; that is logi-
cally equivalent to the example as coded previously. For obfuscation bonus points, we
could code the second <xsl:when> element as <xsl:when test="not(position() mod
4)">. (Remember that the boolean negation of zero is true.)

The <xsl:for-each> Element
If you want to process all the nodes that match a certain criteria, you can use the
<xsl:for-each> element. Be aware that this isn’t a traditional for loop; you can’t ask
the XSLT processor to do something like this:

for i = 1 to 10 do

The <xsl:for-each> element lets you select a set of nodes, and then do something with
each of them. Let me mention again that this is not the same as a traditional for loop.
Another important point is that the current node changes with each iteration through
the <xsl:for-each> element. We’ll go through some examples to illustrate this.

You can use the XSLT 2.0 to operator to do something similar
(select="1 to 10"). When you’re working with XSLT, it’s better to think
of <xsl:for-each> as an iterator rather than a traditional for loop.

<xsl:for-each> example

Here’s a sample that selects all <section> elements inside a <tutorial> element and
then uses a second <xsl:for-each> element to select all the <panel> elements inside each
<section> element:

<xsl:template match="tutorial">
 <xsl:for-each select="section">

Branching Elements of XSLT | 149

 <h1>
 <xsl:text>Section </xsl:text>
 <xsl:value-of select="position()"/>
 <xsl:text>. </xsl:text>
 <xsl:value-of select="title"/>
 </h1>

 <xsl:for-each select="panel">

 <xsl:value-of select="position()"/>
 <xsl:text>. </xsl:text>
 <xsl:value-of select="title"/>

 </xsl:for-each>

 </xsl:for-each>
</xsl:template>

Given this XML document:

<tutorial>
 <section>
 <title>Gene Splicing for Young People</title>
 <panel>
 <title>Introduction</title>
 <!-- ... -->
 </panel>
 <panel>
 <title>Discovering the secrets of life and creation</title>
 <!-- ... -->
 </panel>
 <panel>
 <title>"I created him for good, but he's turned out evil!"</title>
 <!-- ... -->
 </panel>
 <panel>
 <title>When angry mobs storm your castle</title>
 <!-- ... -->
 </panel>
 </section>
</tutorial>

The previous template produces these results:

<h1>Section 1. Gene Splicing for Young People</h1>

 1. Introduction
 2. Discovering the secrets of life and creation
 3. "I created him for good, but he's turned out evil!"
 4. When angry mobs storm your castle

Each time a select attribute is processed, it is evaluated in terms of the current node.
As the XSLT processor cycles through all the <section> and <panel> elements, each of
them in turn becomes the current node. By using iteration, we’ve generated a table of
contents with a very simple template.

150 | Chapter 5: Branching and Control Elements

Invoking Templates by Name
Up to this point, we’ve always used XSLT’s <xsl:apply-templates> element to invoke
other templates. You can think of this as a limited form of polymorphism; a single
instruction is invoked a number of times, and the XSLT processor uses each node in
the node-set to determine which <xsl:template> to invoke. Most of the time, this is
what we want. However, sometimes we want to invoke a particular template. XSLT
allows us to do this with the <xsl:call-template> element.

How It Works
To invoke a template by name, two things have to happen:

• The template you want to invoke has to have a name.

• You use the <xsl:call-template> element to invoke the named template.

Here’s how to do this. Say we have a template named createMasthead that creates the
masthead of a web page. Whenever we create an HTML page for our web site, we want
to invoke the createMasthead template to create the masthead. Here’s what our style-
sheet would look like:

<xsl:template name="createMasthead">
 <!-- interesting stuff that generates the masthead goes here -->
</xsl:template>
...
<xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="title"/></title>
 </head>
 <body>
 <xsl:call-template name="createMasthead"/>
...

Named templates are extremely useful for defining commonly used markup. For ex-
ample, say you’re using an XSLT stylesheet to create web pages with a particular look
and feel. You can write named templates that create the header, footer, navigation areas,
or other items that define how your web page will look. Every time you need to create
a web page, simply use <xsl:call-template> to invoke those templates and create the
look and feel you want.

Even better, if you put those named templates in a separate stylesheet and import the
stylesheet (with either <xsl:import> or <xsl:include>), you can create a set of style-
sheets that generate the look and feel of the web site you want. If you decide to redesign
your web site, redesign the stylesheets that define the common graphical and layout
elements. Change those stylesheets, regenerate your web site, and voila! You will see
an instantly updated web site.

Invoking Templates by Name | 151

Templates à la mode
The XSLT <xsl:template> element has a mode attribute that lets you process the same
set of nodes several times. For example, we might want to process <h1> elements one
way when we generate a table of contents, and another way when we process the docu-
ment as a whole. We could use the mode attribute to define different templates for
different purposes:

<xsl:template match="h1" mode="build-toc">
 <!-- Template to process the <h1> element for table of contents -->
</xsl:template>

<xsl:template match="h1" mode="process-text">
 <!-- Template to process the <h1> element along with the rest -->
 <!-- of the document -->
</xsl:template>

We can then start applying templates with the mode attribute:

<xsl:template match="/">
 <html>
 <body>
 <h1>Table of Contents</h1>

 <xsl:apply-templates select="h1" mode="build-toc"/>

 <xsl:apply-templates select="*" mode="process-text"/>
 </body>
 </html>
</xsl:template>

This style of coding makes maintenance much easier; if the table of contents isn’t gen-
erated correctly, the templates with mode="build-toc" are the obvious place to start
debugging. (We discuss the mode attribute in more detail in the section “New values for
the mode attribute” later in this chapter.)

Parameters
The XSLT <xsl:param> and <xsl:with-param> elements allow you to pass parameters
to a template. You can pass templates with either the <call-template> element or the
<apply-templates> element; we’ll discuss the details in this section.

Defining a Parameter in a Template
To define a parameter in a template, use the <xsl:param> element. Here’s an example
of a template that defines two parameters:

<xsl:template name="calcuateArea">
 <xsl:param name="width"/>
 <xsl:param name="height"/>

152 | Chapter 5: Branching and Control Elements

 <xsl:value-of select="$width * $height"/>
</xsl:template>

Conceptually, this is a lot like writing code in a traditional programming language, isn’t
it? Our template here defines two parameters, width and height, and outputs their
product.

If you want, you can define a default value for a parameter. There are two ways to define
a default value; the simplest is to use a select attribute on the <xsl:param> element:

<template name="addTableCell">
 <xsl:param name="bgColor" select="'blue'"/>
 <xsl:param name="width" select="150"/>
 <xsl:param name="content"/>
 <td width="{$width}" bgcolor="{$bgColor}">
 <xsl:apply-templates select="$content"/>
 </td>
</template>

In this example, the default values of the parameters bgColor and width are 'blue' and
150, respectively. If we invoke this template without specifying values for these param-
eters, the default values are used. Also notice that we generated the values of the
width and bgcolor attributes of the HTML <td> tag with attribute value templates, the
values in curly braces. For more information, see the section “Attribute Value Tem-
plates” in Chapter 3.

One thing to note about this example is that the content parameter doesn’t have a
default value here; we’re assuming that content contains the nodes to be processed and
put inside the table cell. If the value of content is an empty string, calling <xsl:apply-
templates select="$content"/> causes an error. To be on the safe side, we could add
an <xsl:if> element here to create an empty table cell if content is an empty string. As
an exercise for the reader, feel free to make this code more robust....

Notice that in the previous example, we put single quotes around the
value blue, but we didn’t do it around the value 150. Without the single
quotes around blue, the XSLT processor assumes we want to select all
the <blue> elements in the current context, which is probably not what
we want. The XSLT processor is clever enough to realize that the value
150 can’t be an XML element name (the XML 1.0 Specification says
element names can’t begin with numbers), so we don’t need the single
quotes around a numeric value.

Try to keep this in mind when you’re using parameters. You’ll probably
forget it at some point, and you’ll probably go nuts trying to figure out
the strange behavior you’re getting from the XSLT processor.

The second way to define a default value for a parameter is to include content inside
the <xsl:param> element:

<template name="addTableCell">
 <xsl:param name="bgColor">

Parameters | 153

 <xsl:text>blue</xsl:text>
 </xsl:param>
 <xsl:param name="width">
 <xsl:value-of select="7+8"/><xsl:text>0</xsl:text>
 </xsl:param>
 <xsl:param name="content"/>
 <td width="{$width}" bgcolor="{$bgColor}">
 <xsl:apply-templates select="$content"/>
 </td>
</template>

In this example, we used <xsl:text> and <xsl:value-of> elements to define the default
values of the parameters. Out of sheer perverseness, we defined the value of width as
the concatenation of the numeric expression 7+8, followed by the string “0”. The result
of the numeric expression, 15, is converted to a string, and then that string is concaten-
ated with the string 0 This example produces the string 150, which will be converted
into a number as necessary.

Passing Parameters
If we invoke a template by name, which is similar to calling a subroutine, we’ll need to
pass parameters to those templates. We do this with the <xsl:with-param> element. For
example, let’s say we want to call a template named draw-box, and then pass the pa-
rameters startX, startY, endX, and endY to it. Here’s what we’d do:

<xsl:call-template name="draw-box">
 <xsl:with-param name="startX" select="50"/>
 <xsl:with-param name="startY" select="50"/>
 <xsl:with-param name="endX" select="97"/>
 <xsl:with-param name="endY" select="144"/>
</xsl:call-template>

In this sample, we’ve called the template named draw-box with the four parameters we
mentioned earlier. Notice that up until now, <xsl:call-template> has always been an
empty tag; here, though, the parameters are the content of the <xsl:call-template>
element. (If you want, you can do the same thing with <xsl:apply-templates>.)

If we’re going to pass parameters to a template, we have to set up the template so that
it expects the parameters we’re passing. To do this, we’ll use the <xsl:param> element
inside the template. Here are some examples:

<xsl:template name="draw-box">
 <xsl:param name="startX"/>
 <xsl:param name="startY" select="'0'"/>
 <xsl:param name="endX">
 10
 </xsl:param>
 <xsl:param name="endY">
 10
 </xsl:param>
 ...
</xsl:template>

154 | Chapter 5: Branching and Control Elements

A couple of notes about the <xsl:param> element:

• If you define any <xsl:param> elements in a template, they must be the first thing
in the template.

• The <xsl:param> element allows you to define a default value for the parameter. If
the calling template doesn’t supply a value, the default is used instead. The last
three <xsl:param> elements in our previous example define default values.

• The <xsl:param> element has the same content model as <xsl:variable>. With no
content and no select attribute, the default value of the parameter is an empty string
(""). With a select attribute, the default value of the parameter is the value of the
select attribute. If the <xsl:param> element contains content, the default value of
the parameter is the content of the <xsl:param> element.

Global Parameters
XSLT allows you to define parameters whose scope is the entire stylesheet. You can
define default values for these parameters, and you can pass values to those parameters
externally to the stylesheet. Before we talk about how to pass in values for global
parameters, we’ll show you how to create them. Any parameters that are top-level
elements (any <xsl:param> elements whose parent is <xsl:stylesheet>) are global
parameters. Here’s an example:

<?xml version="1.0"?>
<!-- params.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:param name="startX"/>
 <xsl:param name="baseColor"/>

 <xsl:template match="/">
 <xsl:text>
Global parameters example

</xsl:text>

 <xsl:text>The value of startX is: </xsl:text>
 <xsl:value-of select="$startX"/>
 <xsl:text>
The value of baseColor is: </xsl:text>
 <xsl:value-of select="$baseColor"/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

How you pass values for global parameters depends on the XSLT processor you’re
using. We’ll go through some examples here for all the usual suspects. Let’s say we
want to pass the numeric value 50 as the value for startX, and the string value
magenta as the default value for baseColor. The following list describes the commands
you’d use to do that:

Parameters | 155

Xalan
To pass global parameters to Xalan, you can define them on the Xalan command
line:

java org.apache.xalan.xslt.Process -in blank.xml -xsl params.xsl
 -param startX 50 -param baseColor magenta

(This command should be on a single line.)

Saxon
Saxon supports external parameters like this:

java net.sf.saxon.Transform blank.xml params.xsl startX=50 baseColor=magenta

Microsoft’s XSLT tools
Here’s how you pass external parameters to Microsoft’s XSLT tools:

msxsl blank.xml params.xsl startX=50 baseColor=magenta

Altova
If you’re using the Altova XML engine, you pass external parameters like this:

altovaxml /xslt1 params.xsl /in blank.xml /param startX=50 /param
baseColor='magenta'

Notice that we have to put single quotes around the text value magenta.

Using this stylesheet with any XML document and any of the XSLT processors
listed here produces these results:

Global parameters example

The value of startX is: 50
The value of baseColor is: magenta

Setting global parameters in a Java program

If your XSLT engine supports the Transformation API for XML (TrAX), you can embed
the XSLT processor and set global parameters in your code. Here’s an example that
uses TrAX support:

import java.io.File;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

public class GlobalParameters
{
 public static void parseAndProcess(String sourceID,
 String xslID,
 String outputID)
 {
 try

156 | Chapter 5: Branching and Control Elements

 {
 TransformerFactory tfactory = TransformerFactory.newInstance();

 Transformer transformer
 = tfactory.newTransformer(new StreamSource(xslID));

 // Use the setParameter method to set global parameters
 transformer.setParameter("startX", new Integer(50));
 transformer.setParameter("baseColor", "magenta");

 transformer.transform(new StreamSource(sourceID),
 new StreamResult(outputID));
 }
 catch (TransformerConfigurationException tce)
 {
 System.err.println("Exception: " + tce);
 }
 catch (TransformerException te)
 {
 System.err.println("Exception: " + te);
 }
 }

 public static void main(String argv[])
 throws java.io.IOException,
 org.xml.sax.SAXException
 {
 GlobalParameters gp = new GlobalParameters();
 gp.parseAndProcess(argv[0], argv[1], argv[2]);
 }
}

Notice that we used the setParameter method to set global parameters for the
Transformer object before we invoke the transform method. This transformation gen-
erates the following results in output.text:

Global parameters example

The value of startX is: 50
The value of baseColor is: magenta

Setting global parameters in .NET

The .NET framework provides the XsltArgumentList object for setting global stylesheet
parameters. As with the Java example, the code is straightforward:

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using System.Xml.Xsl;

namespace com.oreilly.xslt
{
 class XsltGlobalParameters

Parameters | 157

 {
 static void Main(string[] args)
 {
 // Create the stylesheet object and the XMLWriter that
 // writes the output to a file
 XslCompiledTransform stylesheet = new XslCompiledTransform();
 XmlTextWriter xWriter =
 new XmlTextWriter(args[2], Encoding.UTF8);

 // Use an XsltSettings object that allows executing scripts
 // (we need this for extensions), then load the stylesheet
 XsltSettings settings = new XsltSettings(true, true);
 stylesheet.Load(args[1], settings, new XmlUrlResolver());

 // We pass global parameters to the stylesheet with an
 // XsltArgumentList object.
 XsltArgumentList argList = new XsltArgumentList();
 argList.AddParam("startX", "", 50);
 argList.AddParam("baseColor", "", "magenta");

 // With everything in place, we call the Transform() method
 // to do the work...
 stylesheet.Transform(args[0], argList, xWriter);
 }
 }
}

We create an XslCompiledTransform object, and then use an XsltArgumentList object to
set parameters for the stylesheet. Once everything is set, we use the Transform() method
of the XslCompiledTransform class. This generates the same results we saw with the Java
code:

Global parameters example

The value of startX is: 50
The value of baseColor is: magenta

[2.0] Important Differences in XSLT 2.0
There are some changes to the way parameters and modes work in XSLT 2.0. We’ll
cover those here. To summarize, the key differences are:

• The mode attribute features three new values: #all, #current, and #default.

• If you pass a parameter to a template, and that parameter is not defined in that
template, an XSLT 2.0 processor will give you an error message and stop. In XSLT
1.0, the undefined parameters were simply ignored.

• XSLT 2.0 adds the attribute required="yes" to define that a value must be passed
for a parameter.

• You can specify the datatype and/or the structure of a parameter. If a parameter
must be an xs:date or a sequence of at least one element, you can specify that.

158 | Chapter 5: Branching and Control Elements

• XSLT 2.0 defines a new kind of parameter called a tunnel parameter. Tunnel
parameters help you avoid sloppy coding practices that you were often forced into
with XSLT 1.0.

New values for the mode attribute

In XSLT 2.0, there are three new values for the mode attribute:

#all
For <xsl:template>, we can use the value mode="#all". This specifies that a given
template matches all modes. However, if the current mode is "toc", a template
with mode="toc" is invoked instead of a template with mode="#all".

#current
For the <xsl:apply-templates> element, we can use the value mode="#current" to
invoke other templates using the current mode. This effectively uses the current
mode as a parameter.

#default
The <xsl:apply-templates> and <xsl:template> elements can use
mode="#default". The default mode is unnamed.

Another difference in XSLT 2.0: the value of the mode attribute can be a space-separated
list of mode names. In XSLT 1.0, you could only specify one mode at a time.

See the definition of the <xsl:apply-templates> element in Appendix A for a complete
example of these new features.

Undefined parameters are illegal

In XSLT 1.0, you can pass as many parameters to a template as you want. If you pass
two parameters to a template that defines only one parameter, the extra parameter is
simply ignored. You won’t even get a warning or error message from the XSLT pro-
cessor. Here’s an example:

<?xml version="1.0"?>
<!-- parameters-1_0.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:call-template name="test">
 <xsl:with-param name="param1" select="'57'"/>
 <xsl:with-param name="param2" select="'93'"/>
 </xsl:call-template>
 </xsl:template>

 <xsl:template name="test">
 <xsl:param name="param1"/>
 <xsl:text>Value of $param1: </xsl:text>

Parameters | 159

 <xsl:value-of select="$param1"/>
 </xsl:template>

</xsl:stylesheet>

In this example, the template for the document root calls a named template, passing it
two parameters. The parameter param2 isn’t defined in the named template. With an
XSLT 1.0 processor, this is not an error. Here’s the output you get from Xalan-J 2.7.0,
which is an XSLT 1.0 processor:

java org.apache.xalan.xslt.Process -xsl parameters-1_0.xsl
Value of $param1: 57

Using the same stylesheet with Saxon 9.0.0.3, which is an XSLT 2.0 processor, gives
these results:

java net.sf.saxon.Transform blank.xml parameters-1_0.xsl
Warning: Running an XSLT 1.0 stylesheet with an XSLT 2.0 processor
Value of $param1: 57

Saxon gives us a warning message that we’re running an XSLT 1.0 stylesheet, but it
ignores the extra parameter as it should when it’s processing a stylesheet in XSLT 1.0
mode. However, if we change the version attribute of the <xsl:stylesheet> tag to look
like this:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0">

Saxon processes this as an XSLT 2.0 stylesheet:

java net.sf.saxon.Transform blank.xml parameters-2_0.xsl
Error at xsl:call-template on line 9 of file:/C:/parameters-2_0.xsl:
 XTSE0680: Parameter param2 is not declared in the called template
Failed to compile stylesheet. 1 error detected.

An XSLT 2.0 stylesheet processor stops the transformation as soon as it finds the un-
defined parameter.

Finally, if we run the XSLT 2.0 stylesheet with Xalan, it ignores the version="2.0"
attribute entirely and processes the stylesheet as you’d expect an XSLT 1.0 processor
to do:

java org.apache.xalan.xslt.Process -xsl parameters-2_0.xsl
Value of $param1: 57

160 | Chapter 5: Branching and Control Elements

You might have noticed in the preceding code that when we processed
the stylesheet with Xalan, we specified only our stylesheet. Saxon, on
the other hand, requires that we specify both an XML file and an XSLT
stylesheet. The contents of the file blank.xml are the single empty ele-
ment <blank/>.

An alternative would be to give the template a name (<xsl:template
match="/" name="main">) and invoke it using Saxon’s -it option:

java net.sf.saxon.Transform -it main parameters_1.0.xsl
Warning: Running an XSLT 1.0 stylesheet with an XSLT 2.0 processor
Value of $param1: 57

The -it option lets you specify the named template where the transfor-
mation should begin.

Required parameters

XSLT 2.0 adds a required attribute to the <xsl:param> element. Valid values are yes
and no, as you’d expect. If a parameter is required, the <xsl:param> element must not
have a select attribute.

Here’s an example of a required parameter:

<?xml version="1.0" encoding="utf-8"?>
<!-- required_parameters.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:call-template name="date-formatter">
 <xsl:with-param name="date" select="current-date()"/>
 </xsl:call-template>
 </xsl:template>

 <xsl:template name="date-formatter">
 <xsl:param name="date" required="yes"/>
 <xsl:value-of select="format-date($date, '[M01]/[D01]/[Y0001]')"/>
 </xsl:template>

</xsl:stylesheet>

In this stylesheet, the date parameter is required; if we try to invoke this template with-
out passing the required parameter, the XSLT processor will refuse to run our style-
sheet. This would be a good place to use XSLT 2.0’s datatyping support (more on this
next); the XSLT processor forces us to use the required parameter, but it doesn’t check
its datatype. If the parameter we pass to the format-date() function is not an
xs:date, the XSLT processor throws an error. (This stylesheet uses the
current-date() function to generate the parameter, so we know we’ll always have the
correct datatype.)

Parameters | 161

A final restriction on <xsl:param> is that you can’t use the required and select attributes
on the same parameter. Remember, the select attribute defines a default value in case
a parameter isn’t passed to the template. On the other hand, the required attribute says
that the parameter must be passed to the template.

Datatyping support

The <xsl:param>, <xsl:with-param>, and <xsl:variable> elements have an optional
as attribute that define the datatype and/or structure of a parameter or variable. As an
example, here’s a parameter that must be an xs:date:

<?xml version="1.0" encoding="utf-8"?>
<!-- datatype_parameters.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:call-template name="date-formatter">
 <xsl:with-param name="date" select="current-date()"/>
 </xsl:call-template>
 </xsl:template>

 <xsl:template name="date-formatter">
 <xsl:param name="date" as="xs:date" required="yes"/>
 <xsl:value-of select="format-date($date, '[M01]/[D01]/[Y0001]')"/>
 </xsl:template>

</xsl:stylesheet>

Typically we’re concerned about the datatype of a parameter, but we
can also define the parameter’s structure. The attribute
as="element()+" says the parameter must be a sequence of one or more
element nodes, while as="element(*, xs:date)+" says that the param-
eter must be a sequence of one or more element nodes, each of which
has the datatype xs:date.

In this stylesheet, we’re calling a named template. The <xsl:param> element in the
named template tells the XSLT processor that the parameter is required, and that its
datatype must be the XML Schema date type. When we run this stylesheet with an
XSLT 2.0 processor, we get these results:

java net.sf.saxon.Transform blank.xml datatype_parameters.xsl
03/02/2008

The XSLT 2.0 stylesheet engine has taken the value of our parameter and formatted it
according to the picture clause used in the format-date() function.

162 | Chapter 5: Branching and Control Elements

If the parameter’s datatype doesn’t match the datatype required by the template, an
error will occur. For example, if we change the stylesheet so that we call the template
with bad data:

<xsl:call-template name="date-formatter">
 <xsl:with-param name="date" select="'blue'"/>
</xsl:call-template>

we’ll get an error:

Error at xsl:with-param on line 11 of file:/C:/datatype_parameters.xsl:
 XTTE0570: Required item type of value of variable $date is xs:date;
 supplied value has item type xs:string
Failed to compile stylesheet. 1 error detected.

The stylesheet engine doesn’t even process the entire stylesheet because the parameter’s
value (the string blue) clearly doesn’t match the required datatype. If we generated the
value of the parameter dynamically and the generated value wasn’t an xs:date, we
would get a runtime error that would stop the transformation.

Tunnel parameters

The use of parameters in XSLT 1.0 can lead to sloppy programming in a couple of ways.
First of all, you don’t have to worry so much about the “signature” of the template
you’re invoking. You can pass the exact number of parameters to the template, none
at all, or twice as many. The XSLT 1.0 processor will probably do what you want, but
if a parameter isn’t set correctly, it can be difficult to figure out where the problem lies.
XSLT 2.0’s requirement that you pass the exact number of parameters makes for much
cleaner code.

The second problem is when you need to pass a parameter that might eventually be
used by another template. As an example, say we have a stylesheet that generates HTML
from DocBook. DocBook features hundreds of elements, so we’ll just look at templates
for a few DocBook elements here. We’ll take a DocBook document and create two
HTML files. Each HTML file will contain the major section headings (sect1/title),
along with all of the code listings in the source document (DocBook
<programlisting> elements). We’ll run this transformation twice, generating normal-
sized text in one document and larger text in the second.

Here’s what our stylesheet looks like without tunnel parameters:

<?xml version="1.0" encoding="utf-8"?>
<!-- normal_parameters.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <xsl:result-document href="regular-type.html" method="html">
 <html>
 <xsl:apply-templates select="*|text()">

Parameters | 163

 <xsl:with-param name="code-font-size" select="'14'"/>
 </xsl:apply-templates>
 </html>
 </xsl:result-document>
 <xsl:result-document href="larger-type.html" method="html">
 <html>
 <xsl:apply-templates select="*|text()">
 <xsl:with-param name="code-font-size" select="'20'"/>
 </xsl:apply-templates>
 </html>
 </xsl:result-document>
 </xsl:template>

 <xsl:template match="chapter">
 <xsl:param name="code-font-size"/>
 <head>
 <title><xsl:value-of select="title"/></title>
 </head>
 <body>
 <xsl:apply-templates select="*[not(name() = 'title')]|text()">
 <xsl:with-param name="code-font-size" select="$code-font-size"/>
 </xsl:apply-templates>
 </body>
 </xsl:template>

 <xsl:template match="programlisting">
 <xsl:param name="code-font-size"/>
 <pre>

 <xsl:attribute name="style">
 <xsl:text>font-family:monospace; font-size:</xsl:text>
 <xsl:value-of select="$code-font-size"/>
 <xsl:text>;</xsl:text>
 </xsl:attribute>
 <xsl:apply-templates select="*|text()">
 <xsl:with-param name="code-font-size" select="$code-font-size"/>>
 </xsl:apply-templates>

 </pre>
 </xsl:template>

 <xsl:template match="sect1/title">
 <xsl:param name="code-font-size"/>
 <h1>
 <xsl:apply-templates select="*|text()">
 <xsl:with-param name="code-font-size" select="$code-font-size"/>
 </xsl:apply-templates>
 </h1>
 </xsl:template>

 <!-- A useful stylesheet would have dozens more templates here... -->
 <xsl:template match="*">
 <xsl:param name="code-font-size"/>
 <xsl:apply-templates select="*">
 <xsl:with-param name="code-font-size" select="$code-font-size"/>

164 | Chapter 5: Branching and Control Elements

 </xsl:apply-templates>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates the output we want, creating the result documents regular-
type.html and larger-type.html. An excerpt from regular-type.html looks like this:

 <h1>Goals of This Chapter</h1>

 <h1>Branching Elements of XSLT</h1><pre>

<xsl:if test="count(zone) > 2">
 <xsl:text>Applicable zones: </xsl:text>
 <xsl:apply-templates select="zone"/>
</xsl:if></pre><pre>

<xsl:template match="table-row">
 <tr>
 <xsl:attribute name="bgcolor">
 <xsl:choose>

The file larger-type.html is identical, with the exception that the style attribute con-
tains font-size:20; instead of font-size:14;. However, the stylesheet is messy, and
maintenance will be more difficult than it should be. Notice how many templates have
this structure:

<xsl:template match="whatever">
 <xsl:param name="code-font-size"/>

 <!-- Do something with the current element, -->
 <!-- then process its descendants -->

 <xsl:apply-templates select="*|text()">
 <!-- Pass the code-font-size parameter, just in case -->
 <!-- we need it later -->
 <xsl:with-param name="code-font-size" select="$code-font-size"/>
 </xsl:apply-templates
</xsl:template>

The problem is that everytime we use <xsl:apply-templates>, we have to pass along
the code-font-size variable just in case a template somewhere down the line needs it.
Any of the elements for which we’ve written templates might have <programlisting>
as a descendant, so we don’t have any choice. To make things even worse, every time
we add a new template to our stylesheet, we have to add the same <xsl:param> and
<xsl:with-param> markup. If we suddenly had three more parameters that we needed
to pass around in this way, our stylesheet would become very convoluted, and every
change to the stylesheet could introduce errors if we don’t remember to make the same
changes to all the affected templates.

And that’s where tunnel parameters come in.

Parameters | 165

Tunnel parameters are similar to dynamically scoped variables in functional program-
ming languages such as Haskell and Scheme. In those languages, a variable may go in
and out of scope as one function invokes another. In XSLT 2.0, when you create a
tunnel parameter, that parameter is passed on to each template that’s directly or
indirectly invoked. As one template invokes another during processing, any template
anywhere can use that tunnel parameter simply by referring to it as a tunnel parameter.
Here’s how the stylesheet looks with tunnel parameters:

<?xml version="1.0" encoding="utf-8"?>
<!-- tunnel_parameters.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <xsl:result-document href="regular-type.html" method="html">
 <html>
 <xsl:apply-templates select="*|text()">
 <xsl:with-param name="code-font-size" select="'14'"
 tunnel="yes"/>
 </xsl:apply-templates>
 </html>
 </xsl:result-document>
 <xsl:result-document href="larger-type.html" method="html">
 <html>
 <xsl:apply-templates select="*|text()">
 <xsl:with-param name="code-font-size" select="'20'"
 tunnel="yes"/>
 </xsl:apply-templates>
 </html>
 </xsl:result-document>
 </xsl:template>

 <xsl:template match="chapter">
 <head>
 <title><xsl:value-of select="title"/></title>
 </head>
 <body>
 <xsl:apply-templates select="*[not(name() = 'title')]|text()"/>
 </body>
 </xsl:template>

 <xsl:template match="programlisting">
 <xsl:param name="code-font-size" tunnel="yes"/>
 <pre>

 <xsl:attribute name="style">
 <xsl:text>font-family:monospace; font-size:</xsl:text>
 <xsl:value-of select="$code-font-size"/>
 <xsl:text>;</xsl:text>
 </xsl:attribute>
 <xsl:apply-templates select="*|text()"/>

166 | Chapter 5: Branching and Control Elements

 </pre>
 </xsl:template>

 <xsl:template match="sect1/title">
 <h1>
 <xsl:apply-templates select="*|text()"/>
 </h1>
 </xsl:template>

 <!-- A useful stylesheet would have dozens more templates here... -->
 <xsl:template match="*">
 <xsl:apply-templates select="*"/>
 </xsl:template>

</xsl:stylesheet>

Notice how tunnel parameters have simplified the code. In the root template, we’re
passing a tunnel parameter as we tell the XSLT processor to transform all of the de-
scendant elements. Each time a subsequent template invokes another template,
whether through <apply-templates> or <call-template>, the tunnel parameters are si-
lently passed along. The only time we use the parameter is in the only place we need
it: the template for the programlisting element.

A couple of syntax notes: first of all, the <xsl:with-param> element that declares the
parameter must have tunnel="yes" to be a tunnel parameter. Secondly, the template
that wants to use the tunnel parameter must have the tunnel="yes" attribute on the
<xsl:param> element that defines the parameter. If the parameter definition doesn’t
include tunnel="yes", the XSLT processor assumes that the parameter is a new variable
local to that template.

It might have occurred to you that we could solve this problem with a
global parameter. That’s true, although there are a couple of disadvan-
tages to this method. First of all, we would like to limit the number of
global parameters. Adding a global parameter just so we can use it any-
where we need it isn’t good form.

The second problem is that we can’t change the value of the global pa-
rameter. In our example here, we would have to create two global var-
iables, one for each value we’d like to use in the stylesheet. Using tunnel
parameters lets us set the value of code-font-size each time we want to
process our source document. With tunnel parameters, our stylesheet
is easier to write, easier to debug, and easier to maintain.

Variables
If we use logic to control the flow of our stylesheets, we’ll probably want to store tem-
porary results along the way. In other words, we’ll need to use variables. XSLT provides
the <xsl:variable> element, which allows you to store a value and associate it with a
name.

Variables | 167

The <xsl:variable> element can be used in three ways. The simplest form of the ele-
ment creates a new variable whose value is an empty string (""). Here’s how it looks:

<xsl:variable name="x"/>

This element creates a new variable named x, whose value is an empty string. (Please
hold your applause until the end of the section.)

You can also create a variable by adding a select attribute to the <xsl:variable>
element:

<xsl:variable name="favouriteColour" select="'blue'"/>

In this case, we’ve set the value of the variable to be the string “blue”. Notice that we
put single quotes around the value. These quotes ensure that the literal value blue is
used as the value of the variable. If we had left out the single quotes, this would mean
the value of the variable is the node-set (or sequence) of all the <blue> elements in the
context node, which definitely isn’t what we want here.

Be aware that single quotes around numeric values are significant. The
value 35 represents a numeric value (it’s a number in XSLT 1.0, and an
xs:integer in XSLT 2.0), while the value '35' represents the string 35.
That might seem like a minor distinction, but it has a major impact on
how your stylesheet works, especially in XSLT 2.0.

The third way to use the <xsl:variable> element is to put content inside it. Here’s a
brief example:

<xsl:variable name="y">
 <xsl:choose>
 <xsl:when test="$x > 7">
 <xsl:text>13</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>15</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
</xsl:variable>

In this more complicated example, the content of the variable y depends on the test
attribute of the <xsl:when> element. This is the equivalent of this procedural program-
ming construct:

int y;
if (x > 7)
 y = 13;
else
 y = 15;

168 | Chapter 5: Branching and Control Elements

Are These Things Really Variables?
Although these XSLT variables are called variables, they’re not variables in the tradi-
tional sense of procedural programming languages such as C++ or Java. Remember
that earlier we said one goal behind the design of the stylesheet language is to avoid
side effects in execution? Well, one of the most common side effects used in most
procedural languages is changing the value of a variable. If we write our stylesheet so
that the results depend on the varying values of different variables, the stylesheet engine
would be forced to evaluate the templates in a certain order.

XSLT variables are more like variables in the traditional mathematical sense. In math-
ematics, we can define a function called square(x) that returns the value of a number
(represented by x) multiplied by itself. In other words, square(2.5) returns 6.25. In this
context, we understand that x can be any number; we also understand that the
square function can’t change the value of x.

It takes a while to get used to this concept, but you’ll get there. Trust me on this.

Variable Scope
An <xsl:variable> element is scoped to the element that contains it. If an
<xsl:variable> element is a top-level element (its parent is <xsl:stylesheet>), it is
global, and its value is visible everywhere in the stylesheet. You can also use an
<xsl:variable> element within an <xsl:template> to override the value of a global var-
iable locally.

Using Recursion to Do Most Anything
Writing an XSLT stylesheet is different from programming in other languages. If you
didn’t believe that before, you probably do now. We’ll finish this chapter with a couple
of examples that demonstrate how to use recursion to solve the kinds of problems that
you’re probably used to solving with procedural programming languages. We’ll also
look at some new features of XSLT 2.0 and XPath 2.0 that allow you to avoid recursion
in some situations.

Implementing a String Replace Function
To demonstrate how to use recursion to solve problems, we’ll write a string replace
function. This is sometimes useful when you need to escape certain characters or sub-
strings in your output. The stylesheet we’ll develop here transforms an XML docu-
ment into a set of SQL statements that will be executed at a Windows command
prompt. We have to do several things:

Using Recursion to Do Most Anything | 169

Put a caret (^) in front of all ampersands (&)
On the Windows NT and Windows 2000 command prompt, the ampersand means
that the current command has ended and another is beginning. For example, this
command creates a new directory called xslt and changes the current directory to
the newly created one:

mkdir xslt & chdir xslt

If we create a SQL statement that contains an ampersand, we’ll need to escape the
ampersand so it’s processed as a literal character, not as an operator. If we insert
the value Jones & Son as the value of the company field in a row of the database,
we need to change it to Jones ^& Son before we try to run the SQL command.

Put a caret (^) in front of all vertical bars (|)
The vertical bar is the pipe operator on Windows systems, so we need to escape it
if we want it interpreted as literal text instead of an operator.

Replace any single quote (') with two single quotes ('')
This is a requirement of our database system.

Procedural design

Three functions we could use in our template are concat(), substring-before(), and
substring-after(). To replace an ampersand with a caret and an ampersand, this
would do the trick:

<xsl:value-of select="concat(substring-before(., '&'), '^&',
 substring-after(., '&'))"/>

The obvious problem with this step is that it replaces only the first occurrence of the
ampersand. If there are two ampersands, or three, or three hundred, we need to call
this method once for each ampersand in the original string. Because of the way variables
work, we can’t do what we’d do in a procedural language:

private static String strChange(String string, String from, String to)
{
 String before = "", after = "";
 int index;

 index = string.indexOf(from);
 while (index >= 0)
 {
 before = string.substring(0, index);
 after = string.substring(index + from.length());
 string = before + to + after;

 index = string.indexOf(from, index + to.length());
 }

 return string;
}

170 | Chapter 5: Branching and Control Elements

XSLT doesn’t have any simple way to iterate through the characters of the string, so
we’ll use recursion instead.

Recursive design

To implement a string replace function with recursion, we’ll take this approach:

• If the whole string does contain the substring we want to replace, we do the
following:

1. Return the first part of the whole string—everything before the substring we
want to replace.

2. Return the replacement substring.

3. Return the result of calling our function with the last part of the whole string—
everything after the first occurrence of the substring we want to replace. This
is the recursive part of our design.

• If the whole string does not contain the substring we want to replace, we simply
return the whole string.

If the substring we’re replacing occurs in the whole string, we call the substring replace
function on the last of the string. The key here, as with all recursive functions, is that
we have an exit case, a condition in which we don’t recurse. Eventually we’ll call our
recursive function with a string that doesn’t contain the substring we’re replacing.

Here’s the design in pseudocode:

replaceSubstring(originalString, substring, replacementString)
{
 if (contains(originalString, substring))
 {
 return
 (substring-before(originalString, substring) +
 replacementString +
 replaceSubstring(substring-after(originalString, substring),
 substring, replacementString));
 }
 else
 return originalString;
}

In the recursive approach, the function calls itself whenever there’s at least one occur-
rence of the substring. Each time the function calls itself, the originalString parameter
is a little smaller, until eventually we’ve processed the complete string. Here’s the com-
plete stylesheet:

<?xml version="1.0"?>
<!-- string_replace-1_0.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

Using Recursion to Do Most Anything | 171

 <xsl:template match="/">
 <xsl:apply-templates select="ul/li"/>
 </xsl:template>

 <xsl:template match="li">
 <xsl:variable name="single-quote">
 <xsl:text>'</xsl:text>
 </xsl:variable>
 <xsl:variable name="two-quotes">
 <xsl:text>''</xsl:text>
 </xsl:variable>

 <xsl:variable name="sub1">
 <xsl:call-template name="replace-substring">
 <xsl:with-param name="original" select="."/>
 <xsl:with-param name="substring" select="'&'"/>
 <xsl:with-param name="replacement" select="'^&'"/>
 </xsl:call-template>
 </xsl:variable>

 <xsl:variable name="sub2">
 <xsl:call-template name="replace-substring">
 <xsl:with-param name="original" select="$sub1"/>
 <xsl:with-param name="substring" select="'|'"/>
 <xsl:with-param name="replacement" select="'^|'"/>
 </xsl:call-template>
 </xsl:variable>

 <xsl:call-template name="replace-substring">
 <xsl:with-param name="original" select="$sub2"/>
 <xsl:with-param name="substring" select="$single-quote"/>
 <xsl:with-param name="replacement" select="$two-quotes"/>
 </xsl:call-template>
 <xsl:text>
</xsl:text>
 </xsl:template>

 <xsl:template name="replace-substring">
 <xsl:param name="original" />
 <xsl:param name="substring" />
 <xsl:param name="replacement" />
 <xsl:choose>
 <xsl:when test="contains($original, $substring)">
 <xsl:value-of
 select="substring-before($original, $substring)" />
 <xsl:value-of select="$replacement" />
 <xsl:call-template name="replace-substring">
 <xsl:with-param name="original"
 select="substring-after($original, $substring)" />
 <xsl:with-param
 name="substring" select="$substring" />
 <xsl:with-param
 name="replacement" select="$replacement" />
 </xsl:call-template>
 </xsl:when>

172 | Chapter 5: Branching and Control Elements

 <xsl:otherwise>
 <xsl:value-of select="$original" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

</xsl:stylesheet>

We create the variable $sub1 by replacing all of the ampersands in the original text with
a caret and an ampersand. We create the variable $sub2 by replacing all of the vertical
bars in $sub1 with a caret and a vertical bar. Finally we use $sub2 in our third call to the
replace-substring template. The third call to the template doubles all the single quotes.
Notice that the third call isn’t inside an <xsl:variable> element, so it is written to the
output.

Given this XML input document:

<?xml version="1.0" encoding="utf-8"?>
<!-- testlines.xml -->

 This is a test & I hope it works | fails gracefully
 Some techniques are simpler & easier than recursion
 Will I enjoy next Tuesday's meeting?

Our recursive template returns these results:

This is a test ^& I hope it works ^| fails gracefully
Some techniques are simpler ^& easier than recursion
Will I enjoy next Tuesday''s meeting?

This style of programming takes some getting used to, but whatever you want to do
can usually be done. Our example here is a good illustration of the techniques we’ve
discussed in this chapter, including branching statements, variables, invoking tem-
plates by name, and passing parameters.

[2.0] Using the XPath 2.0 replace() Function to Avoid Recursion
Because string manipulation is a common task in transforming documents, XPath 2.0
provides the very useful replace() function. This lets us provide the original string, the
string we want to replace, and the string we want substituted in its place. To review
our earlier example, we want to make three replacements in our text:

• Any ampersand (&) should have a caret added in front of it (^&).

• Any vertical bar (|) should have a caret added in front of it (^|).

• Any single quote (') should be replaced with two single quotes ('').

Our stylesheet to perform these tasks looks like this:

<?xml version="1.0"?>
<!-- string_replace-2_0.xsl -->
<xsl:stylesheet version="2.0"

Using Recursion to Do Most Anything | 173

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:apply-templates select="ul/li"/>
 </xsl:template>

 <xsl:template match="li">
 <xsl:variable name="sub1" select="replace(., '&', '^&')"/>
 <xsl:variable name="sub2" select="replace($sub1, '\|', '^|')"/>
 <xsl:value-of select='replace($sub2, "'", "''")'/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

We get the same results we got from our much longer XSLT 1.0 stylesheet:

This is a test ^& I hope it works ^| fails gracefully
Some techniques are simpler ^& easier than recursion
Will I enjoy next Tuesday''s meeting?

This example is far simpler than the recursive technique we used in the XSLT 1.0 style-
sheet. Both of them generate the same results, but the code in the XSLT 2.0 stylesheet
is much easier to understand.

A quick note about the syntax we used to escape all the single quotes in
the XSLT 2.0 stylesheet: our technique was to use the single quote
(apostrophe) entity within double quotes. In XPath 2.0, single quotes
can be escaped by doubling them in an XPath expression, so we also
could have written our call to the replace() function like this:

 <xsl:value-of select="replace($sub2, '''', '''''')"/>

This syntax is really confusing, but it works.

A Stylesheet That Emulates a for Loop
We stressed earlier that the xsl:for-each element is not a for loop; it’s merely an iterator
across a group of nodes. However, if you simply must implement a for loop, there’s a
way to do it. (Get ready to use recursion, though.)

Template Design
Our design here is to create a named template that will take some arguments, and then
act as a for loop processor. If you think about a traditional for loop, it has several
properties:

174 | Chapter 5: Branching and Control Elements

One or more initialization statements
These statements are processed before the for loop begins. Typically the initiali-
zation statements refer to an index variable that is used to determine whether the
loop should continue.

An increment statement
This statement specifies how the index variable should be updated after each pass
through the loop.

A boolean expression
If the expression is true, the loop continues; if it is ever false, the loop exits.

Let’s take a sample from the world of Java and C++:

for (int i=0; i<length; i++)

In this scintillating example, the initialization statement is i=0, the index variable (the
variable whose value determines whether we’re done or not) is i, the boolean expression
we use to test whether the loop should continue is i<length, and the increment state-
ment is i++.

For our purposes here, we’re going to make several simplifying assumptions. (Feel free,
dear reader, to make the example as complicated as you wish.) Here are the shortcuts
we’ll take:

• Rather than use an initialization statement, we’ll require the caller to set the value
of the local variable i when it invokes our for loop processor. This value is passed
as a parameter, so it can be calculated by an XPath expression.

• Rather than specify an increment statement such as i++, we’ll require the caller to
set the value of the local variable increment. The default value for this variable is
1; it can be any negative or positive integer, however. The value of this variable will
be added to the current value of i after each iteration through our loop.

• Rather than allow any conceivable boolean expression, we’ll require the caller to
pass in two parameters; operator and testValue. The allowable values for the
operator variable are =, < (coded as <), > (coded as >), !=, <= (coded as
<=), and >= (coded as >=). We’re doing things this way because there isn’t a
way to ask the XSLT processor to evaluate a literal (such as i<length) as if it were
part of the stylesheet.

Implementation
We’ll define four global parameters for our stylesheet:

<xsl:param name="i" select="1"/>
<xsl:param name="increment" select="1"/>
<xsl:param name="operator" select="'<='"/>
<xsl:param name="testValue" select="10"/>

A Stylesheet That Emulates a for Loop | 175

The default values defined here correspond to the C++ or Java statement for (i = 1;
i <= 10; i++). We also have a match="/" template that invokes our for loop processor:

<xsl:template match="/">
 <xsl:call-template name="for-loop">
 <xsl:with-param name="i" select="$i"/>
 <xsl:with-param name="increment" select="$increment"/>
 <xsl:with-param name="operator" select="$operator"/>
 <xsl:with-param name="testValue" select="$testValue"/>
 </xsl:call-template>
</xsl:template>

In the for-loop template, our first task is to determine whether the condition is true.
We do this by calculating a boolean value with several <xsl:when> elements, each of
which looks like the one below:

 <xsl:variable name="testPassed">
 <xsl:choose>
 <xsl:when test="$operator = '!='">
 <xsl:if test="$i != $testValue">
 <xsl:text>true</xsl:text>
 </xsl:if>
 </xsl:when>
 ...
 </xsl:variable>

If the variable $testPassed is true, the for-loop template calls itself again. Before the
<xsl:call-template> instruction, we can put whatever logic we want. For our sample,
we simply write the current value of $i to the output.

The Complete Example
Here’s the complete stylesheet:

<?xml version="1.0"?>
<!-- for-loop.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:param name="i" select="1"/>
 <xsl:param name="increment" select="1"/>
 <xsl:param name="operator" select="'<='"/>
 <xsl:param name="testValue" select="10"/>

 <xsl:template match="/">
 <xsl:call-template name="for-loop">
 <xsl:with-param name="i" select="$i"/>
 <xsl:with-param name="increment" select="$increment"/>
 <xsl:with-param name="operator" select="$operator"/>
 <xsl:with-param name="testValue" select="$testValue"/>
 </xsl:call-template>
 </xsl:template>

176 | Chapter 5: Branching and Control Elements

 <xsl:template name="for-loop">
 <xsl:param name="i"/>
 <xsl:param name="increment"/>
 <xsl:param name="operator"/>
 <xsl:param name="testValue"/>

 <xsl:variable name="testPassed">
 <xsl:choose>
 <xsl:when test="$operator = '!='">
 <xsl:if test="$i != $testValue">
 <xsl:text>true</xsl:text>
 </xsl:if>
 </xsl:when>
 <xsl:when test="$operator = '<='">
 <xsl:if test="$i <= $testValue">
 <xsl:text>true</xsl:text>
 </xsl:if>
 </xsl:when>
 <xsl:when test="$operator = '>='">
 <xsl:if test="$i >= $testValue">
 <xsl:text>true</xsl:text>
 </xsl:if>
 </xsl:when>
 <xsl:when test="$operator = '='">
 <xsl:if test="$i = $testValue">
 <xsl:text>true</xsl:text>
 </xsl:if>
 </xsl:when>
 <xsl:when test="$operator = '<'">
 <xsl:if test="$i < $testValue">
 <xsl:text>true</xsl:text>
 </xsl:if>
 </xsl:when>
 <xsl:when test="$operator = '>'">
 <xsl:if test="$i > $testValue">
 <xsl:text>true</xsl:text>
 </xsl:if>
 </xsl:when>
 <xsl:otherwise>
 <xsl:message terminate="yes">
 <xsl:text>Sorry, the for-loop emulator only </xsl:text>
 <xsl:text>handles six operators
</xsl:text>
 <xsl:text>(< | > | = | <= | >= | !=). </xsl:text>
 <xsl:text>The value </xsl:text>
 <xsl:value-of select="$operator"/>
 <xsl:text> is not allowed.
</xsl:text>
 </xsl:message>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

 <xsl:if test="$testPassed='true'">
 <!-- Put your logic here, whatever it might be. For the purpose -->
 <!-- of our example, we’ll just write some text to the output stream. -->

A Stylesheet That Emulates a for Loop | 177

 <xsl:text>Value of i=</xsl:text>
 <xsl:value-of select="$i"/>
 <xsl:text>
</xsl:text>

 <!-- Your logic should end here; don’t change the rest of this -->
 <!-- template! -->

 <!-- Now for the important part: we increment the index variable and -->
 <!-- loop. Notice that we’re passing the incremented value, not -->
 <!-- changing the variable itself. -->

 <xsl:call-template name="for-loop">
 <xsl:with-param name="i" select="$i + $increment"/>
 <xsl:with-param name="increment" select="$increment"/>
 <xsl:with-param name="operator" select="$operator"/>
 <xsl:with-param name="testValue" select="$testValue"/>
 </xsl:call-template>
 </xsl:if>
 </xsl:template>

</xsl:stylesheet>

Running the stylesheet with the default parameter values creates these exciting results:

Value of i=1
Value of i=2
Value of i=3
Value of i=4
Value of i=5
Value of i=6
Value of i=7
Value of i=8
Value of i=9
Value of i=10

Using the parameters i=10, increment="-1", operator=">=" and testValue=0, we get
these results:

Value of i=10
Value of i=9
Value of i=8
Value of i=7
Value of i=6
Value of i=5
Value of i=4
Value of i=3
Value of i=2
Value of i=1
Value of i=0

The quotes around the values of increment and operator are necessary when passing
those values from the command line to the XSLT processor. As a final test, here are the
results for i=10, increment="-2", operator=">" and testValue=0:

178 | Chapter 5: Branching and Control Elements

Value of i=10
Value of i=8
Value of i=6
Value of i=4
Value of i=2

If you want to modify the for loop to do something useful, put your code between these
comments:

<!-- Put your logic here, whatever it might be. For the purpose -->
<!-- of our example, we’ll just write some text to the output stream. -->

<!-- Your logic should end here; don’t change the rest of this -->
<!-- template! -->

Summary
We’ve covered a lot of ground in this chapter, haven’t we? We’ve gone over all of the
basic elements you need to add logic and branching to your stylesheets. We discussed
some of the similarities between XSLT and other programming languages you might
know; more importantly, we discussed how XSLT is different from most of the code
you’ve probably written. In particular, the use of recursion and the principles of vari-
ables that don’t change takes some getting used to. Despite the learning curve, most of
the common tasks you’ll need to do will be similar to the exercises we’ve gone through
in this chapter. Now that we’ve covered these basic elements, we’ll talk about links and
references, discovering ways to build links between different parts of an XML
document.

Summary | 179

CHAPTER 6

Creating Links and Cross-References

If you’re creating a web site, publishing a book, or processing an XML-based purchase
order, chances are many pieces of information will refer to other things. This chapter
discusses several ways to link XML elements. It reviews three techniques:

• Using the XML ID, IDREF, and IDREFS datatypes

• Doing more advanced linking with the key() function

• Generating links in unstructured documents

Using the XML ID, IDREF, and IDREFS Datatypes
Our first attempt at linking will be with the XPath id() function. This useful function
helps us find the element that has an ID attribute with a particular value.

The Datatypes and How They Work
Three of the basic datatypes that are supported by XML Document Type Definitions
(DTDs) and XML Schemas are ID, IDREF, and IDREFS. The ID and IDREF datatypes work
according to two rules:

• Every attribute of datatype ID must be unique.

• Every value of datatype IDREF must match a value of an attribute of datatype ID
somewhere in the document.

An attribute with a datatype of IDREFS contains one or more space-separated values,
each of which must match a value of an ID elsewhere in the document. The IDREFS
datatype is a list of IDREF values, just as its name implies.

Here is a simple DTD fragment that uses the ID and IDREF datatypes:

<?xml version="1.0"?>
<!-- parts-list1.xml -->
<!DOCTYPE parts-list [
<!ELEMENT parts-list (component+, part+)>

181

<!ELEMENT component (name, partref+)>
<!ATTLIST component component-id ID #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT partref EMPTY>
<!ATTLIST partref refid IDREF #REQUIRED>

<!ELEMENT part (name)>
<!ATTLIST part part-id ID #REQUIRED>
]>

<parts-list>
...
</parts-list>

Here is the XML Schema definition of the same document type:

<?xml version="1.0" encoding="UTF-8"?>
<!-- parts-list.xsd -->
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="parts-list">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="component" minOccurs="1" maxOccurs="unbounded"/>
 <xs:element ref="part" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="component">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="partref" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="component-id" type="xs:ID" use="required"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="part">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="part-id" type="xs:ID" use="required"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="partref">
 <xs:complexType>
 <xs:attribute name="refid" type="xs:IDREF" use="required"/>

182 | Chapter 6: Creating Links and Cross-References

 </xs:complexType>
 </xs:element>
</xs:schema>

The DTD and the XML Schema here are semantically identical, so we won’t worry
about which of the two we use to validate our XML files. (There are many things you
can express in XML Schema that aren’t possible in DTDs, but in this case the two
documents mean the exact same thing.) Here we’re using the ID and IDREF datatypes.
We’ll take a quick look at the lesser-used IDREFS datatype; for our purposes, we process
IDREFS the same way.

We’ll discuss this in more detail later in this chapter, but be aware that
you have to validate the XML document for any attributes to be assigned
the ID, IDREF, and IDREFS datatypes. If you can’t wait to read the details,
you can skip ahead to the section “[2.0] The idref( ) Function” later in
this chapter.

To sum up how our parts list document works, a valid <parts-list> has one or more
<component> elements, followed by one or more <part> elements. The <component> and
<part> elements are required to have an ID attribute (component-id or part-id, respec-
tively). There’s also a <partref> element with a required attribute of type IDREF; the
value of that attribute, named refid, must match the value of an ID element somewhere
in the parts list.

Our first look at linking parts of a document together will use these nicely structured
documents.

Linking Parts of an XML Document
To illustrate the value of linking, we’ll use a document that defines several
<component> and <part> elements. Each <component> uses some number of <part>s. Be-
cause our XML document contains ID and IDREF values, we can link different parts of
the document together.

Here’s how our document looks:

<?xml version="1.0"?>
<!-- parts-list1.xml -->
<!DOCTYPE parts-list [
...
]>

<parts-list>
 <component component-id="C28392-33-TT">
 <name>Turnip Twaddler</name>
 <partref refid="P81952-26-PK"/>
 <partref refid="P86679-52-SP"/>
 <partref refid="P81472-68-FD"/>
 <partref refid="P88107-39-GT"/>

Using the XML ID, IDREF, and IDREFS Datatypes | 183

 </component>
...
 <component component-id="C28772-63-OB">
 <name>Olive Bruiser</name>
 <partref refid="P80228-21-PT"/>
 <partref refid="P82387-85-PA"/>
 </component>

 <part part-id="P80228-21-PT">
 <name>Pitter</name>
 </part>
...
 <part part-id="P86994-25-RC">
 <name>Ribbon Curler</name>
 </part>
</parts-list>

Our first task will be to look at each <component> and list the names of the <part>s that
it uses. Each of the refid attributes of each of the <partref> elements refers to the id
attribute of a <part> element.

A Stylesheet That Uses the id() Function
Let’s look at our desired output. What we want is a simple text document that lists all
of the part names for each component, which should look like this:

Here is a test of the id() function:

 Turnip Twaddler (component #C28392-33-TT) uses these parts:
 Spanner
 Feather Duster
 Grommet
 Paring Knife

 Prawn Goader (component #C28813-70-PG) uses these parts:
 Paring Knife
 Mucilage
 Ribbon Curler

...

 Olive Bruiser (component #C28772-63-OB) uses these parts:
 Pitter
 Patter

The stylesheet to generate these results is pretty straightforward:

<?xml version="1.0"?>
<!-- id1.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">

184 | Chapter 6: Creating Links and Cross-References

 <xsl:text>
Here is a test of the id() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:for-each select="/parts-list/component">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text> (component #</xsl:text>
 <xsl:value-of select="@component-id"/>
 <xsl:text>) uses these parts:
 </xsl:text>
 <xsl:for-each select="id(partref/@refid)">
 <xsl:value-of select="name"/>
 <xsl:text>
 </xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

We call the id() function, which returns a node-set/sequence of all the nodes that
match all of the refid attributes of the <partref> elements in each component. Each
item in the node-set is the actual <part> element, so the XPath expression
select="name" returns the name of the part (the text of the <name> child element).

The id() and idref() functions both have a two-argument version. The
second argument for both functions is a node. That parameter tells the
XSLT processor to look in the document that contains the node instead
of the document that contains the context item. You probably won’t
need this option, but it’s there.

Before we move on to more complicated examples, we’ll look at a slightly different
XML document, which uses attributes of type IDREFS instead of IDREF. Here’s what it
looks like:

<?xml version="1.0"?>
<!-- parts-list2.xml -->
<!DOCTYPE parts-list [
<!ELEMENT parts-list (component+, part+)>

<!ELEMENT component (name, partref)>
<!ATTLIST component component-id ID #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT partref EMPTY>
<!ATTLIST partref refid IDREFS #REQUIRED>

<!ELEMENT part (name) >
<!ATTLIST part part-id ID #REQUIRED>
]>

<parts-list>
 <component component-id="C28392-33-TT">
 <name>Turnip Twaddler</name>

Using the XML ID, IDREF, and IDREFS Datatypes | 185

 <partref
 refid="P81952-26-PK P86679-52-SP P81472-68-FD P88107-39-GT"/>
 </component>
 <component component-id="C28813-70-PG">
 <name>Prawn Goader</name>
 <partref refid="P81952-26-PK P80499-43-MC P86994-25-RC"/>
 </component>
...
</parts-list>

Even though the structure of this XML document is different, we can use the same
stylesheet against it. We get the same results, even though the datatype of the attribute
has changed. When we call the id() function with an argument such as P81952-
PK P86679-52-SP ..., the id() function treats each space-separated string as a separate
ID. The value of any ID attribute must be a valid XML name, which means it can’t
contain spaces. That’s why this works. (We’ll talk more about valid XML names in a
little while.)

We’ve written a stylesheet that goes from an IDREF to the element that has that particular
ID. Next we’ll write a stylesheet that goes from an ID to all of the references to it. We’ll
list each <part> in our document, and then list all of the <component>s that use it.
The challenge is in the XPath expression; given the ID of a <part>, how do we find all
of the <component>s that have a <partref> element with a refid attribute? Here’s the
stylesheet:

<?xml version="1.0"?>
<!-- id2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Here is a test of the id() </xsl:text>
 <xsl:text>function in reverse:
</xsl:text>

 <xsl:for-each select="/parts-list/part">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text> (part #</xsl:text>
 <xsl:value-of select="@part-id"/>
 <xsl:text>) is used in these products:
</xsl:text>
 <xsl:for-each
 select="/parts-list/component
 [partref/@refid=current()/@part-id]">
 <xsl:value-of select="name"/>
 <xsl:if test="position() != last()">
 <xsl:text>
 </xsl:text>
 </xsl:if>
 </xsl:for-each>
 <xsl:text>
</xsl:text>
 </xsl:for-each>

186 | Chapter 6: Creating Links and Cross-References

 </xsl:template>
</xsl:stylesheet>

The XPath expression in the <xsl:for-each> is more complicated here; we’ll take a
closer look at it.

/parts-list/component[partref/@refid=current()/@part-id]

The expression returns all of the <component> elements for which the predicate expres-
sion is true. The predicate expression specifies that the component has at least one
<partref> child element whose refid attribute matches the part-id attribute of the
current node.

The predicate is comparing two values, even though it looks like a location path with
three parts. One of the values is partref/@refid, the set of refid attributes from all the
<partref> elements in a given <component>. The other value is current()/@part-id, the
value of the part-id attribute of the current node. Every value inside the predicate refers
to a <component> element; the current() function refers to the current <part> element
we’re processing. That <part> element is selected by the first <xsl:for-each> element
in the template.

Here are the results of the stylesheet:

Here is a test of the id() function in reverse:

 Pitter (part #P80228-21-PT) is used in these products:
 Olive Bruiser

 Patter (part #P82387-85-PA) is used in these products:
 Olive Bruiser

 Spanner (part #P86679-52-SP) is used in these products:
 Turnip Twaddler
 Clam Teaser
 Lemon Snubber

 Feather Duster (part #P81472-68-FD) is used in these products:
 Turnip Twaddler
 Clam Teaser
 Cucumber Decorating Kit
...

Inside the inner <xsl:for-each> element, the XPath expression name returns the name
of the current <component>. We could have written the inner <xsl:for-each> element
like this:

 <xsl:for-each
 select="/parts-list/component/partref
 [@refid=current()/@part-id]">
 <xsl:value-of select="../name"/>

This generates the same results, but the expression to select the name of the component
is slightly more complicated. The select attribute of the <xsl:for-each> element re-
turns a node-set of <partref> elements, so we have to use ../name to get the name of

Using the XML ID, IDREF, and IDREFS Datatypes | 187

the component. If you find yourself writing lots of complicated expressions inside a
<xsl:for-each> element, you should see whether you can rewrite the <for-each> ele-
ment’s XPath expression to simplify your stylesheet.

[2.0] The idref() Function
In the previous stylesheet, it was tedious to use the id() function in reverse, going from
something with a given ID to the elements that reference it. Because this is a fairly
common task, XSLT 2.0 adds the idref() function. Given an ID, idref() returns all
of the elements that reference it. Here’s a simple stylesheet that works with our parts list:

<?xml version="1.0"?>
<!-- idref.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Here is a test of the idref() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:for-each select="/parts-list/part">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text> (part #</xsl:text>
 <xsl:value-of select="@part-id"/>
 <xsl:text>) is used in these products:
</xsl:text>
 <xsl:value-of select="idref(@part-id)/../../name"
 separator="
"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

In this stylesheet, we can do everything with a single <xsl:value-of> element. Notice
that the idref() function returns the matching attributes; that’s why we use the XPath
expression idref(@part-id)/../../name to get the name of the component. The parent
of the attribute is a <partref> element and its parent is a <component>. The component’s
<name> child is what we want here.

Finally, the new idref() function works with the IDREFS datatype, just like id().

Generating HTML Documents with Links
Before we leave the topic of IDs, we’ll look at a more complicated stylesheet—one that
generates HTML. We want to list all the components and parts in our document, and
we want to create hyperlinks between them. So, we’ll list the components and the parts
they use; each part name will be a link to a description of that part. We’ll do the same

188 | Chapter 6: Creating Links and Cross-References

thing when we list each part and the components that use it. Our source document has
changed slightly for the purposes of our next few examples:

<?xml version="1.0"?>
<!-- parts-list3.xml -->
<!DOCTYPE parts-list [
<!ELEMENT parts-list (component+, part+, supplier+)>

<!ELEMENT component (name, partref+, description)>
<!ATTLIST component component-id ID #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT partref EMPTY>
<!ATTLIST partref refid IDREF #REQUIRED>

<!ELEMENT part (name, description)>
<!ATTLIST part part-id ID #REQUIRED
 supplier CDATA #REQUIRED>

<!ELEMENT description (#PCDATA|partref)*>

<!ELEMENT supplier (name)>
<!ATTLIST supplier country CDATA #REQUIRED
 vendor-id CDATA #REQUIRED>
]>

<parts-list>
 <component component-id="C28392-33-TT">
 <name>Turnip Twaddler</name>
 <partref refid="P81952-26-PK"/>
 <partref refid="P86679-52-SP"/>
 <partref refid="P81472-68-FD"/>
 <partref refid="P88107-39-GT"/>
 <description>
 If you've got turnips to twaddle, this is the tool for you!
 Comes with a <partref refid="P81472-68-FD"/>.
 </description>
 </component>
 <component component-id="C28100-38-CT">
 <name>Clam Teaser</name>
 <partref refid="P81472-68-FD"/>
 <partref refid="P86994-25-RC"/>
 <partref refid="P86679-52-SP"/>
 <description>
 Everyone knows they're proverbially happy, but what to
 do with a shy clam? Bring recalcitrant mollusks out of
 their shells with this entertaining gadget. Includes a
 festive <partref refid="P86994-25-RC"/>.
 </description>
 </component>

...

 <part part-id="P80228-21-PT" supplier="4839">

Using the XML ID, IDREF, and IDREFS Datatypes | 189

 <name>Pitter</name>
 <description>
 Removes pits from olives and cherries in no time at all.
 </description>
 </part>
 <part part-id="P82387-85-PA" supplier="2983">
 <name>Patter</name>
 <description>
 We're not sure what these things do, but people seem
 to like 'em.
 </description>
 </part>

...

 <supplier country="Great Britain" vendor-id="4839">
 <name>Acme Products, Inc.</name>
 </supplier>
 <supplier country="Germany" vendor-id="2983">
 <name>Deutschland Excelsior Gmbh</name>
 </supplier>
 <supplier country="Great Britain" vendor-id="5910">
 <name>Unlimited Spanners Ltd.</name>
 </supplier>
</parts-list>

There are a couple of differences here. First of all, we’ve added a <description> element
to every <component> and <part>. To complicate things, some of the descriptions contain
a <partref> element. Notice that the <partref> element doesn’t have any text. That
means the name of a given part is defined in one place only; if we change the name of
a part, the part name will automatically be updated every place we use it. Finally, we’ve
added some <supplier> elements and put country and vendor-id attributes on each
part. We’ll use those when we talk about keys and key functions.

To generate the HTML document we want, we need to create link points. The de-
scription of every component and part should have an HTML anchor
(), so we can link to those descriptions. Because the parts and compo-
nents have unique IDs already, we’ll use those IDs as the names of the link points. That
means we know how to create a link point for each component and part, and we know
how to link to a given part or component.

Here’s the stylesheet:

<?xml version="1.0"?>
<!-- id-html.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>

190 | Chapter 6: Creating Links and Cross-References

 <title>Our Catalog</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Our Catalog</h1>
 <p>Here's a look at everything in our catalog:</p>
 <h2 style="background: #66FF66;">Components</h2>
 <xsl:apply-templates select="/parts-list/component"/>
 <h2 style="background: #6666FF;">Parts</h2>
 <xsl:apply-templates select="/parts-list/part"/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="component">

 <h3>
 <xsl:value-of select="name"/>
 </h3>
 <p>
 <xsl:apply-templates select="description"/>
 </p>
 <p>
 <xsl:value-of select="name"/>
 <xsl:text> uses these parts:</xsl:text>
 </p>

 <xsl:for-each select="partref">

 <xsl:apply-templates select="."/>

 </xsl:for-each>

 </xsl:template>

 <xsl:template match="description">
 <xsl:apply-templates select="*|text()"/>
 </xsl:template>

 <xsl:template match="partref">

 <xsl:value-of select="id(@refid)/name"/>

 </xsl:template>

 <xsl:template match="part">

 <h3>
 <xsl:value-of select="name"/>
 </h3>
 <p>
 <xsl:apply-templates select="description"/>
 </p>
 <p>
 <xsl:value-of select="name"/>
 <xsl:text> is used in these components:</xsl:text>

Using the XML ID, IDREF, and IDREFS Datatypes | 191

 </p>

 <xsl:for-each select="/parts-list/component
 [partref/@refid=current()/@part-id]">

 <xsl:value-of select="name"/>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

Here’s how we create the link points:

This generates the HTML markup for the first <component>
in the document. Whenever we need to create a link to that component, the markup
is pretty straightforward:

 <xsl:value-of select="name"/>

This generates the HTML markup Turnip Twaddler for
any reference to the Turnip Twaddler. If your document uses ID, IDREF, and IDREFS
attributes, creating links with this technique is easy.

Figure 6-1 shows how the HTML document looks.

Limitations of IDs
To this point, we’ve been able to generate cross-references easily. There are some lim-
itations of the ID datatype and the id() function, though:

• If you want to use the ID datatype, you have to declare the attributes that use that
datatype in your DTD or schema. Unfortunately, if your DTD is defined externally
to your XML document, the XML parser isn’t required to read it. If the DTD isn’t
read, then the parser has no idea that a given attribute is of type ID. Similarly, if
you’re using a schema, you have to make sure your XSLT processor validates your
XML document against the schema to ensure that the ID, IDREF, and IDREFS data-
types are used correctly.

• You must define the ID, IDREF, and IDREFS relationship in the XML document. It
would be nice to have the XML document define the data only, with the relation-
ships between parts of the document defined externally (say, in a stylesheet). That
way, if you need to define a new relationship between parts of the document, you
could do it by creating a new stylesheet, and you wouldn’t have to modify your

192 | Chapter 6: Creating Links and Cross-References

XML document. It becomes unwieldy quickly if you have to change the XML
document structure every time you need to define a new relationship between parts
of the document.

• An element can have at most one attribute of type ID. If you’d like to refer to the
same element in more than one way, you can’t use the id() function.

• Any given ID value can be found on one element at most. If you’d like to refer to
more than one element with a single value, you can’t use the id() function for that,
either.

• Only one set of IDs exists for the entire document. In other words, if you declare
the attributes component-id and part-id to be of type ID, the value of a
component-id must be unique across all the attributes of type ID. It is illegal in this
case for a component-id to be the same as a part-id, even though those attributes
might belong to different elements.

• If you’re using a DTD, an ID can only be an attribute of an XML element. The only
way you can use the id() function to refer to another element is through its

Figure 6-1. HTML file with generated hyperlinks

Using the XML ID, IDREF, and IDREFS Datatypes | 193

attribute of type ID. If you want to find another element based on an attribute that
isn’t an ID, or based on the element’s content or the element’s children, and so on,
the id() function is of no use whatsoever.

• If you’re using an XML schema, you can define an element with a datatype of
xs:ID. This means you can use the id() function to find an element. This is an
improvement on the situation, but it does require a schema-aware XSLT parser.

• The value of an ID must be an XML name. In other words, it can’t contain spaces,
it can’t start with a number, and it’s subject to the other restrictions of XML names.
(Section 2.3 of the XML Recommendation defines these restrictions; see http://
www.w3.org/TR/REC-xml if you’d like more information.)

To get around all of these limitations, XSLT defines the <xsl:key> element and the
key() function. We’ll discuss them now.

XSLT’s Key Facility
Now that we’ve covered the id() function in great detail, we’ll move on to XSLT’s
key() function and the <xsl:key> element. Each <xsl:key> element effectively creates
an index of the document. You can then use that index to find all elements that have
a particular property. Once the key is created, we can use the key() function to retrieve
parts of the document.

For example, if you have a database of (U.S. postal) addresses, you might want to index
that database by the people’s last names, by the states in which they live, by their zip
codes, etc. Each index takes a certain amount of time to build, but it saves processing
time later. (Be aware that it can take a significant amount of memory to create a key,
particularly for very large documents.) If you want to find all the people who live in the
state of Idaho, you can use the index to find all those people directly; you don’t have
to search the entire database.

We’ll discuss the details of how the key facility works, and then we’ll compare it to the
id() function.

Defining a Key with <xsl:key>
You define a key() function with the <xsl:key> element:

<xsl:key name="supplier-by-country" match="supplier" use="@country"/>
<xsl:key name="part-by-supplier" match="part" use="@supplier"/>

The key has three attributes:

name
This attribute is used to refer to this particular key. When you want to find parts
of your XML document, use the name to indicate the key you want to use.

194 | Chapter 6: Creating Links and Cross-References

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

match
Containing an XPath expression, this attribute specifies what part of the document
you want to index. In our sample here, we’ve created two keys: one for retrieving
<supplier>s and one for retrieving <part>s.

use
Containing another XPath expression, this attribute is interpreted in the context
of the match attribute. In other words, the first <xsl:key> element here, named
supplier-by-country, creates an index of all the <supplier> elements, and uses the
country attribute to retrieve them. The second <xsl:key> element, named part-by-
supplier, creates an index of all the <part> elements and uses the supplier attribute
to find them.

[2.0] XSLT 2.0 adds a fourth attribute, collation. This allows us to specify a set of rules
for how values are compared. To cite a frequent example from the specs, the German
word for street can be spelled Strasse or Straße. Using a German collation for the key
function causes those to words to be the same, despite the fact that they are clearly
different strings.

The XSLT 1.0 specification specifically states that the match and use
attributes can’t contain variables.

Generating Links with the key() Function
In the modified parts list document we looked at a moment ago, we added a
<supplier> to each <part>. We also added a country attribute to the <supplier> element.
If you look at the document structure as defined in the embedded DTD (or the external
schema), you’ll notice that the vendor-id and country attributes of the <supplier> ele-
ment don’t have a datatype of ID, and that the supplier attribute of the <part> element
is not an IDREF.

We want to retrieve all the parts that are provided by a particular country. If we defined
the country attribute to be of type ID, we could only have one supplier from each coun-
try. Clearly that’s an unacceptable limitation on our document.

Now that we’ve created a more flexible XML document, we’ll use the key() function
to process our document. We’ll use two keys here. The first retrieves all of the
<supplier> elements that match a given country name. The second retrieves all of the
<part> elements whose supplier attribute matches a given supplier’s ID. Here’s
the stylesheet:

<?xml version="1.0"?>
<!-- key.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

XSLT’s Key Facility | 195

 <xsl:output method="html"/>

 <xsl:param name="country-name"/>

 <xsl:key name="supplier-by-country" match="supplier" use="@country"/>
 <xsl:key name="part-by-supplier" match="part" use="@supplier"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>
 <xsl:text>Parts from </xsl:text>
 <xsl:value-of select="$country-name"/>
 </title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>
 <xsl:text>Parts from </xsl:text>
 <xsl:value-of select="$country-name"/>
 </h1>
 <xsl:choose>
 <xsl:when test="key('supplier-by-country', $country-name)">
 <xsl:apply-templates select="key('supplier-by-country', $country-name)"/>
 </xsl:when>

 <xsl:otherwise>
 <p>Sorry, we don't get any parts from that country!</p>
 </xsl:otherwise>
 </xsl:choose>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="supplier">
 <h2>
 <xsl:value-of select="name"/>
 </h2>
 <p>
 <xsl:value-of select="name"/>
 <xsl:text> supplies these parts:</xsl:text>
 </p>

 <xsl:for-each select="key('part-by-supplier', @vendor-id)">

 <xsl:value-of select="name"/>

 <xsl:text>: </xsl:text>
 <xsl:apply-templates select="description"/>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

196 | Chapter 6: Creating Links and Cross-References

Our stylesheet takes an external parameter named country-name (defined at the top of
the stylesheet) and returns all of the parts supplied by companies based in that country.
The first time we use the key() function, we see whether there are any values that match
the external parameter:

<xsl:when test="key('country-index', $country-name)">
 <xsl:for-each select="key('country-index', $country-name)">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
</xsl:when>

The key country-index returns all of the <supplier> elements that match the given
$country-name. Assuming there’s at least one, we process it (if there’s not at least one,
the expression evaluates to false). Processing the <supplier> element uses the other
key:

<xsl:for-each select="key('part-index', @vendor-id)">

This returns all of the <part> elements whose supplier attribute matches the
vendor-id attribute of the current <supplier>.

Notice that the attribute we’re using to retrieve matching nodes can contain spaces. If
country were of datatype ID, it could not have the value "Great Britain". This is one
of the advantages of keys. A country-name of "Great Britain" gives us the HTML docu-
ment shown in Figure 6-2.

Advantages of the key() Function
Now that we’ve taken the key() function through its paces, you can see that it has
several advantages:

• The key() function is defined in a stylesheet. That means I can define any number
of relationships between parts of an XML document at any time. If I need to define
a new relationship tomorrow, I don’t have to change my XML documents.

• Any number of key() functions can be defined for a given element. In our parts
list example, we could define key() functions for the values of the vendor-id,
part-id, and component-id attributes. We could also create key() functions based
on the text of various elements or their children. If we used IDs instead of the
key() function, we would be limited to a single index based on the value of the
single attribute of the ID datatype.

To sum up the advantages for this point, an element can have more than one
key() defined against it, and that key doesn’t have to be based on an attribute. The
key can be based on the element’s text, the text of child elements, or other
constructs.

• Any number of elements can match a given value. Taking another look at our
example, when we use the key() function to find all the parts from a particular
country, the key() function returns a node-set that can have any number of nodes.

XSLT’s Key Facility | 197

If we use an ID instead, legally there can be only one element that matches a given
country.

• The value we use to look up elements in the key function isn’t constrained to be
an XML name. If we use the ID datatype, its value can’t contain spaces, among
other constraints.

Normally you’ll use the two-argument version of the key() function. We pass the name
of the key and the value we’re looking for, and the matching items are returned. There’s
also a three-argument version of the function that lets you limit values returned by the
function to a particular set of nodes. See the description of the key() function in
Appendix C for more information.

Generating Links in Unstructured Documents
Before we leave the topic of linking, we’ll discuss one more useful technique. So far, all
of this chapter’s examples have been structured nicely. When there was a relationship
between two pieces of information, we had an ID and IDREF pair to match them. What
happens if the XML document you’re transforming isn’t written that way? Fortunately,
we can use the key() function and the generate-id() function to create structure where
there isn’t any.

Figure 6-2. All the parts from our suppliers in Great Britain

198 | Chapter 6: Creating Links and Cross-References

An Unstructured XML Document in Need of Links
For our example here, we’ll take out all of the id and refid attributes that have served
us well so far. This is a contrived example, but it demonstrates how we can use the
key() and generate-id() functions to generate links between parts of our document.

In our new sample document, we’ve stripped out the references that tied things together
so neatly before:

<?xml version="1.0"?>
<!-- parts-list4.xml -->
<parts-list>
 <component>
 <name>Turnip Twaddler</name>
 <partref>Paring Knife</partref>
 <partref>Spanner</partref>
 <partref>Feather Duster</partref>
 <partref>Grommet</partref>
 <description>
 If you've got turnips to twaddle, this is the tool for you!
 Comes with a <partref>Feather Duster</partref>.
 </description>
 </component>

...

 <part>
 <name>Pitter</name>
 <description>
 Removes pits from olives and cherries in no time at all.
 </description>
 </part>
 <part>
 <name>Patter</name>
 <description>
 We're not sure what these things do, but people seem
 to like 'em.
 </description>
 </part>
...
</parts-list>

We’ve removed all of the IDs and IDREFs in the document. For elements such as
<partref> that formerly used attributes to link parts of the document together, we
simply use the text of the item we’re referring to. To generate the cross-references we
created before, we’ll need to do three things:

1. Define two keys for all parts and components. One key lets us get the <part> that
matches a given name, and the other lets us find a <component> with a <partref>
child whose text matches a given name.

2. Generate a new ID for each <component> and <part> we find.

Generating Links in Unstructured Documents | 199

3. For each <component>, use one key to retrieve the <part> nodes that match a par-
ticular name. For each <part>, we use the other key to retrieve the <component>
nodes that refer to the current part. We’ll use generate-id() to create the IDs for us.

We’ll go through the relevant parts of the stylesheet. First, we define the two keys we’ll
use:

<xsl:key name="parts-index" match="part/name" use="."/>
<xsl:key name="component-index" match="component" use="partref"/>

The first key returns the <name> element that matches a given part name. Notice that
the match attribute means we’re getting the <name> element; if we want the <part> ele-
ment itself, we would have to use the parent axis on the node returned by the key()
function. (We don’t need to access the <part> element in our stylesheet; that’s why we
set up the key this way.)

The second key returns the <component> element that has a <partref> that matches a
given part name. What we get from the key() function is the <component>, the parent
of both the <partref> element that contains the part name we’re looking for and the
<name> element that we’ll want to insert into our HTML document.

The next step is to create an ID for each <component> and <part>:

<xsl:template match="component">

...
</xsl:template>
...
<xsl:template match="part">

...
</xsl:template>

In both cases, we’re generating an ID based on the text of the <name> child of the given
element. We’re using the names of parts and components throughout our stylesheet,
so basing the IDs on the <name> elements makes things simpler.

Now we need to process all of the <partref>s under a given <component>. Here’s how
that works:

 <xsl:for-each select="partref">

 <xsl:value-of select="."/>

 </xsl:for-each>

We generate the href attribute of the link by generating an ID of the first match from
the key() function. The parts-index key returns the <name> element that matches a
string; that string in this case is the text value of the current element.

200 | Chapter 6: Creating Links and Cross-References

Notice that we used the predicate expression [1] to specify the first
element from the node-set or sequence. This is good practice for XSLT
1.0, because it makes it clear exactly which node we want. However,
this is crucial for XSLT 2.0, because it is a fatal error to pass a sequence
with more than one node to the key() function in an XSLT 2.0
stylesheet.

The final task is to create the links from each <part> to all of the <component>s that use
it. Here’s how that code looks:

 <xsl:for-each select="key('component-index', name)">

 <xsl:value-of select="name"/>

 </xsl:for-each>

Remember, the component-index key returns the <component> element. The
<component> is the parent of both the <partref> elements and the <name> element. The
search term we pass to the key is the name of the current part. When we get
the <component> back from the key, we use its <name> child to generate an ID and to
write the name of the component.

Here’s the complete stylesheet:

<?xml version="1.0"?>
<!-- generate-id.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:key name="parts-index" match="part/name" use="."/>
 <xsl:key name="component-index" match="component" use="partref"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Our Catalog</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Our Catalog</h1>
 <p>Here's a look at everything in our catalog:</p>
 <h2 style="background: #66FF66;">Components</h2>
 <xsl:apply-templates select="/parts-list/component"/>
 <h2 style="background: #6666FF;">Parts</h2>
 <xsl:apply-templates select="/parts-list/part"/>
 </body>
 </html>
 </xsl:template>

Generating Links in Unstructured Documents | 201

 <xsl:template match="component">

 <h3>
 <xsl:value-of select="name"/>
 </h3>
 <p>
 <xsl:apply-templates select="description"/>
 </p>
 <p>
 <xsl:value-of select="name"/>
 <xsl:text> uses these parts:</xsl:text>
 </p>

 <xsl:for-each select="partref">

 <xsl:value-of select="."/>

 </xsl:for-each>

 </xsl:template>

 <xsl:template match="description">
 <xsl:apply-templates select="*|text()"/>
 </xsl:template>

 <xsl:template match="component/description/partref">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="part">

 <h3>
 <xsl:value-of select="name"/>
 </h3>
 <p>
 <xsl:apply-templates select="description"/>
 </p>
 <p>
 <xsl:value-of select="name"/>
 <xsl:text> is used in these components:</xsl:text>
 </p>

 <xsl:for-each select="key('component-index', name)">

 <xsl:value-of select="name"/>

 </xsl:for-each>

202 | Chapter 6: Creating Links and Cross-References

 </xsl:template>

</xsl:stylesheet>

Looking at the HTML output in a browser, the document looks exactly the same as
our earlier stylesheet. The HTML source code is slightly different, of course:

<h3>Prawn Goader</h3>
<p>
 Unruly prawns? With this handy tool, you'll have the most
 well-behaved seafood in town.
</p>
<p>Prawn Goader uses these parts:</p>

 Paring Knife
 Mucilage
 Ribbon Curler

All of the names of the anchor points were generated by the XSLT processor. Using a
different XSLT processor will probably generate different values for these IDs, but
they’ll still work. It’s even possible that rerunning a document and stylesheet through
the same processor will generate different values. (We’ll cover all the details of the
generate-id() function in the next section.)

Using the key() and generate-id() functions, we’ve been able to create IDs and ref-
erences automatically. This approach isn’t perfect; we have to make sure the text of the
<partref> element matches the text of the part’s <name> exactly. Despite that,
generate-id() can help you add some structure to your documents.

The generate-id() Function
Before we leave the topic of linking, we’ll go over the details of the generate-id()
function. This function takes a node-set as its argument, and it works as follows:

• For a given transformation, every time generate-id() is invoked against a given
node, it returns the same ID. The ID doesn’t change while you’re doing a given
transformation. If you run the transformation again tomorrow, there’s no guaran-
tee that generate-id() will generate the same ID that it generated today. As long
as the XSLT processor is running, however, generate-id() returns the same ID for
the same node every time.

• If you invoke generate-id() against two different nodes, the two generated IDs
will be different.

• [1.0] Given a node-set, generate-id() returns an ID for the node in the node-set
that occurs first in document order.

[2.0] It is a fatal error in XSLT 2.0 to pass a sequence of more than one item to
generate-id().

Generating Links in Unstructured Documents | 203

• If the node-set you pass to the function is empty (you invoke generate-
id(fleeber), and there are no <fleeber> elements in the current context),
generate-id() returns an empty string.

• If no node-set is passed in (you invoke generate-id()), the function generates an
ID for the context node.

The generate-id() function is not required to check whether an ID it
generates duplicates an ID that’s already in the document. In other
words, if your document has an attribute of type ID with a value of
sdk3829a, there’s a possibility that an ID returned by generate-id() will
also be sdk3829a. It’s not likely, but be aware that it could happen.

Summary
In this chapter, we’ve examined several ways to generate links and cross-references
between different parts of a document. If your XML document has a reasonable amount
of structure, you can use the id() and key() functions to define many different rela-
tionships between the parts of a document. Even if your XML document isn’t struc-
tured, you may be able to use key() and generate-id() to create simple references. In
the next chapter, we’ll look at sorting and grouping—two more ways to organize the
information in our XML documents.

204 | Chapter 6: Creating Links and Cross-References

CHAPTER 7

Sorting and Grouping Elements

By now, I hope you’re convinced that you can use XSLT to convert big piles of XML
data into other useful things. Our examples to this point have pretty much gone through
the XML source in what’s referred to as document order. We’d like to go through our
XML documents in a couple of other common ways, though:

• We could sort some or all of the XML elements, then generate output based on the
sorted elements.

• We could group the data, selecting all elements that have some property in com-
mon, then sorting the groups of elements.

We’ll give several examples of these operations in this chapter.

Sorting Data with <xsl:sort>
The simplest way to rearrange our XML elements is to use the <xsl:sort> element. This
element temporarily rearranges a collection of elements based on criteria we define in
our stylesheet.

Our First Example
For our first example, we’ll have a set of U.S. postal addresses that we want to sort.
(No chauvinism is intended here; obviously every country has different conventions
for mailing addresses. We just needed a short sample document that can be sorted in
many useful ways.) Here’s our original document:

<?xml version="1.0"?>
<!-- names.xml -->
<addressbook>
 <address>
 <name>
 <title>Mr.</title>
 <first-name>Chester Hasbrouck</first-name>
 <last-name>Frisby</last-name>
 </name>

205

 <street>1234 Main Street</street>
 <city>Sheboygan</city>
 <state>WI</state>
 <zip>48392</zip>
 </address>
 <address>
 <name>
 <first-name>Mary</first-name>
 <last-name>Backstayge</last-name>
 </name>
 <street>283 First Avenue</street>
 <city>Skunk Haven</city>
 <state>MA</state>
 <zip>02718</zip>
 </address>
 <address>
 <name>
 <title>Ms.</title>
 <first-name>Natalie</first-name>
 <last-name>Attired</last-name>
 </name>
 <street>707 Breitling Way</street>
 <city>Winter Harbor</city>
 <state>ME</state>
 <zip>00218</zip>
 </address>
 <address>
 <name>
 <first-name>Harry</first-name>
 <last-name>Backstayge</last-name>
 </name>
 <street>283 First Avenue</street>
 <city>Skunk Haven</city>
 <state>MA</state>
 <zip>02718</zip>
 </address>
 <address>
 <name>
 <first-name>Mary</first-name>
 <last-name>McGoon</last-name>
 </name>
 <street>103 Bryant Street</street>
 <city>Boylston</city>
 <state>VA</state>
 <zip>27318</zip>
 </address>
 <address>
 <name>
 <title>Ms.</title>
 <first-name>Amanda</first-name>
 <last-name>Reckonwith</last-name>
 </name>
 <street>930-A Chestnut Street</street>
 <city>Lynn</city>
 <state>MA</state>

206 | Chapter 7: Sorting and Grouping Elements

 <zip>02930</zip>
 </address>
</addressbook>

We’d like to generate a list of these addresses, sorted by <last-name>. We’ll use the
magical <xsl:sort> element to do the work. Our stylesheet looks like this:

<?xml version="1.0"?>
<!-- namesorter1.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:for-each select="addressbook/address">
 <xsl:sort select="name/last-name"/>
 <xsl:if test="name/title">
 <xsl:value-of select="name/title"/>
 <xsl:text> </xsl:text>
 </xsl:if>
 <xsl:value-of select="name/first-name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="name/last-name"/>
 <xsl:text>
</xsl:text>
 <xsl:value-of select="street"/>
 <xsl:text>
</xsl:text>
 <xsl:value-of select="city"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="state"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="zip"/>
 <xsl:text>
</xsl:text>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

The heart of our stylesheet is the <xsl:for-each> and <xsl:sort> elements. The
<xsl:for-each> element selects the items with which we’ll work, and the <xsl:sort>
element rearranges them before we write them out. (Notice that we use <xsl:if> to
determine whether a given customer has a courtesy title.)

Notice that we’re using <xsl:output method="text"/> to generate a text file. (Feel free
to generate an HTML file or something more complicated if you want.) Here are the
results we get from our first attempt at sorting:

Ms. Natalie Attired
707 Breitling Way
Winter Harbor, ME 00218

Mary Backstayge
283 First Avenue
Skunk Haven, MA 02718

Sorting Data with <xsl:sort> | 207

Harry Backstayge
283 First Avenue
Skunk Haven, MA 02718

Mr. Chester Hasbrouck Frisby
1234 Main Street
Sheboygan, WI 48392

Mary McGoon
103 Bryant Street
Boylston, VA 27318

Ms. Amanda Reckonwith
930-A Chestnut Street
Lynn, MA 02930

As you can see from the output, the addresses in our original document were sorted by
last name. All we had to do was add <xsl:sort> to our stylesheet, and all the elements
were magically reordered. If you aren’t convinced that XSLT can increase your pro-
grammer productivity, try writing the Java code and DOM method calls to do the same
thing.

We can improve on our stylesheet by sorting addresses by <first-name> within
<last-name>. In our last example, Mary Backstayge should appear after Harry Back-
stayge. Here’s how we can modify our stylesheet to use more than one sort key:

<?xml version="1.0"?>
<!-- namesorter2.xsl -->
...
<xsl:template match="/">
 <xsl:for-each select="addressbook/address">
 <xsl:sort select="name/last-name"/>
 <xsl:sort select="name/first-name"/>
 ...

We’ve simply added a second <xsl:sort> element to our stylesheet. This element does
what we want; it sorts the <address> elements by <first-name> within <last-name>.

Now our output is better:

Ms. Natalie Attired
707 Breitling Way
Winter Harbor, ME 00218

Harry Backstayge
283 First Avenue
Skunk Haven, MA 02718

Mary Backstayge
283 First Avenue
Skunk Haven, MA 02718

Mr. Chester Hasbrouck Frisby
1234 Main Street

208 | Chapter 7: Sorting and Grouping Elements

Sheboygan, WI 48392

Mary McGoon
103 Bryant Street
Boylston, VA 27318

Ms. Amanda Reckonwith
930-A Chestnut Street
Lynn, MA 02930

The Details on the <xsl:sort> Element
Now that we’ve seen a couple of examples of how <xsl:sort> works, we’ll go over its
syntax, its attributes, and where you can use it.

What’s the deal with that syntax?

I’m so glad you asked that question. One thing the XSLT working group could have
done is something like this:

<xsl:for-each select="addressbook/address" sort-key-1="name/last-name"
 sort-key-2="name/first-name"/>

The problem with this approach is that no matter how many sort-key-x attributes you
define, out of sheer perverseness, someone will cry out that they really need the
sort-key-8293 attribute. To avoid this messy issue, the XSLT designers decided to let
you specify the sort keys by using a number of <xsl:sort> elements. The first is the
primary sort key, the second is the secondary sort key, the 8293rd one is the eight-
thousand-two-hundred-and-ninety-third sort key, etc.

Well, that’s why the syntax looks the way it does, but how does it actually work? When
I first saw this syntax:

<xsl:for-each select="addressbook/address">
 <xsl:sort select="name/last-name"/>
 <xsl:sort select="name/first-name"/>
 ...
</xsl:for-each>

I thought it meant that all the nodes were sorted during each iteration through the
<xsl:for-each> element. That seemed incredibly inefficient; if you’ve sorted all
the nodes, why re-sort them each time through the <xsl:for-each> element? Actually,
the XSLT processor handles all <xsl:sort> elements before it does anything, then it
processes the <xsl:for-each> element as if the <xsl:sort> elements weren’t there.

It’s less efficient, but if it makes you feel better about the syntax, you could write the
stylesheet like this:

<xsl:template match="/">
 <xsl:for-each select="addressbook/address">
 <xsl:sort select="name/last-name"/>
 <xsl:sort select="name/first-name"/>

Sorting Data with <xsl:sort> | 209

 <xsl:for-each select="."> <!-- This is slower, but it works -->
 <xsl:apply-templates/>
 </xsl:for-each>
 </xsl:for-each>
</xsl:template>

(Don’t actually do this. I’m only trying to make a point.) This stylesheet generates the
same results as our earlier one.

Another approach is to use the <xsl:sort> element within <xsl:apply-templates>.
Here’s a stylesheet that does that:

<?xml version="1.0"?>
<!-- namesorter3.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:apply-templates select="addressbook/address">
 <xsl:sort select="name/last-name"/>
 <xsl:sort select="name/first-name"/>
 </xsl:apply-templates>
 </xsl:template>

 <xsl:template match="address">
 <xsl:if test="name/title">
 <xsl:value-of select="name/title"/>
 <xsl:text> </xsl:text>
 </xsl:if>
 <xsl:value-of select="name/first-name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="name/last-name"/>
 <xsl:text>
</xsl:text>
 <xsl:value-of select="street"/>
 <xsl:text>
</xsl:text>
 <xsl:value-of select="city"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="state"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="zip"/>
 <xsl:text>
</xsl:text>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Using <xsl:sort> inside <xsl:apply-templates> generates the same results as our pre-
vious stylesheet.

210 | Chapter 7: Sorting and Grouping Elements

Attributes

The <xsl:sort> element has several attributes; we’ll discuss the most useful ones here.
The discussion of the <xsl:sort> element in Appendix A has complete details on all of
the attributes.

select
The select attribute defines the characteristic we’ll use for sorting. Its contents is
an XPath expression, so you can select elements, text, attributes, comments, an-
cestors, etc. As always, the XPath expression defined in select is evaluated in terms
of the element that contains it. In other words, in this example:

<xsl:template match="/">
 <xsl:apply-templates select="addressbook/address">
 <xsl:sort select="name/last-name"/>
 <xsl:sort select="name/first-name"/>
 </xsl:apply-templates>
</xsl:template>

In this example, the select attributes of the <xsl:sort> elements are interpreted
from the addressbook/address expression. That means select="name/last-name"
refers to a <last-name> element inside a <name> inside an <address> element that’s
inside an <addressbook> element.

data-type
The data-type attribute can have three values:

• data-type="text"

• data-type="number"

• A data-type="QName" that identifies a particular datatype. How a given datatype
is supported (or if it’s supported at all) is implementation-defined.

The XSLT specification defines the behavior for data-type="text" and data-
type="number". Consider this XML document:

<?xml version="1.0"?>
<!-- numberlist.xml -->
<numberlist>
 <number>127</number>
 <number>23</number>
 <number>10</number>
</numberlist>

We’ll sort these values using the default datatype of text (we could specify data-
type="text" to get the same results):

<?xml version="1.0"?>
<!-- sort-datatype-text.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

Sorting Data with <xsl:sort> | 211

 <xsl:template match="/">
 <xsl:for-each select="numberlist/number">
 <xsl:sort select="."/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

When we treat the values of these elements as text, here are the results:

10
127
23

We get this result because a text-based sort puts anything that starts with a “1”
before anything that starts with a “2.” If we change the <xsl:sort> element to be
<xsl:sort select="." data-type="number"/>:

<?xml version="1.0"?>
<!-- sort-datatype-number1.xsl -->
...
 <xsl:template match="/">
 <xsl:for-each select="numberlist/number">
 <xsl:sort select="." data-type="number"/>
 ...

we get these results:

10
27
123

(See sort-datatype-number1.xsl for the complete stylesheet.)

If you use something else here (data-type="floating-point", for example), what
the XSLT processor does is anybody’s guess. The XSLT specification allows for
other values here, but it’s up to the XSLT processor to decide how (or if) it wants
to process those values. Check your processor’s documentation to see whether it
does anything relevant or useful for values other than data-type="text" or data-
type="number".

A final note: if you’re using data-type="number", and any of the values aren’t num-
bers, those nonnumeric values will sort before the numeric values. That means that
if you’re using order="ascending", the nonnumeric values appear first; if you use
order="descending", the nonnumeric values appear last.

<?xml version="1.0"?>
<!-- badnumberlist.xml -->
<numberlist>
 <number>127</number>
 <number>23</number>
 <number>zzz</number>
 <number>10</number>

212 | Chapter 7: Sorting and Grouping Elements

 <number>yyy</number>
</numberlist>

Given this less-than-perfect data, here are the correctly sorted results:

zzz
yyy
10
23
127

Notice that the nonnumeric values were not sorted; they simply appear in the
output document in the order in which they were encountered.

[2.0] The data-type attribute is deprecated in XSLT 2.0. The preferred way of sort-
ing typed data in XSLT 2.0 is to specify the datatype in the select attribute of the
<xsl:sort> element itself. For example, specifying <xsl:sort
select="xs:integer(.)"/> forces all of the items that we’re sorting to be cast as
integers:

<?xml version="1.0"?>
<!-- sort-datatype-number2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:for-each select="numberlist/number">
 <xsl:sort select="xs:integer(.)"/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

Be aware that using this XSLT 2.0 stylesheet with badnumberlist.xml causes a run-
time error. Calling xs:integer('zzz') doesn’t work.

order
You can order the sort as order="ascending" or order="descending". The default is
order="ascending".

case-order
This attribute can have two values. case-order="upper-first" means that upper-
case letters sort before lowercase letters, and case-order="lower-first" means that
lowercase letters sort first. The case-order attribute is used only when the
data-type attribute is text. The default value depends on the value of the soon-to-
be-discussed lang attribute.

lang
This attribute defines the language of the sort keys. The valid values for this
attribute are the same as those for the xml:lang attribute defined in Section 2.12 of

Sorting Data with <xsl:sort> | 213

the XML 1.0 specification. The language codes are those commonly used in Java
programming, Unix locales, and other places where ISO language and country
namings are defined. For example, lang="en" means “English,” lang="en-US"
means “U.S. English,” and lang="en-GB" means “U.K. English.” Without the
lang attribute (it’s rarely used in practice), the XSLT processor determines the de-
fault language from the system environment.

Where can you use <xsl:sort>?

The <xsl:sort> element can appear inside the <xsl:apply-templates> and <xsl:for-
each> elements.

[2.0] In XSLT 2.0, you can also use <xsl:sort> inside the new <xsl:for-each-group>
and <xsl:perform-sort> elements; more on those later in this chapter.

If you use one or more <xsl:sort> elements, they must appear first. If you try something
like this, you’ll get an exception from the XSLT processor:

<xsl:for-each select="addressbook/address">
 <xsl:sort select="name/last-name"/>
 <xsl:value-of select="name/title"/>
 <xsl:sort select="name/first-name"/> <!-- NOT LEGAL! -->
 ...

Another Example
We’ve pretty much covered the <xsl:sort> element at this point. To add another wrin-
kle to our example, we’ll change the stylesheet so the xsl:sort element acts upon a
subset of the addresses, and then sorts that subset. We’ll sort only the addresses from
states that start with the letter M. As you’d expect, we’ll do this magic with an XPath
expression that limits the elements to be sorted:

<?xml version="1.0"?>
<!-- namesorter4.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text" indent="no"/>

 <xsl:template match="/">
 <xsl:for-each select="addressbook/address[starts-with(state, 'M')]">
 <xsl:sort select="name/last-name"/>
 <xsl:sort select="name/first-name"/>
 <xsl:if test="name/title">
 <xsl:value-of select="name/title"/>
 <xsl:text> </xsl:text>
 </xsl:if>
 <xsl:value-of select="name/first-name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="name/last-name"/>
 <xsl:text>
</xsl:text>
 <xsl:value-of select="street"/>

214 | Chapter 7: Sorting and Grouping Elements

 <xsl:text>
</xsl:text>
 <xsl:value-of select="city"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="state"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="zip"/>
 <xsl:text>
</xsl:text>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

Here are the results—only those addresses from states beginning with the letter M, sor-
ted by first name within last name:

Ms. Natalie Attired
707 Breitling Way
Winter Harbor, ME 00218

Harry Backstayge
283 First Avenue
Skunk Haven, MA 02718

Mary Backstayge
283 First Avenue
Skunk Haven, MA 02718

Ms. Amanda Reckonwith
930-A Chestnut Street
Lynn, MA 02930

Notice that in the xsl:for-each element, we used a predicate in our XPath expression
so that only addresses containing <state> elements whose contents begin with M are
selected. This example starts us on the path to grouping nodes.

We could do some other things here:

• We could generate output that prints all the unique zip codes, along with the
number of addresses that have those zip codes.

• For each unique zip code (or state, or last name, etc.) we could sort on a field and
list all addresses with that zip code.

We’ll discuss these topics in just a moment. Before we move on to the topic of grouping,
we’ll go over the new <xsl:perform-sort> element.

[2.0] The <xsl:perform-sort> Element
As we discussed in Chapter 3, XSLT 2.0 introduces the concept of a sequence, which
is a group of nodes or atomic values. That sequence is typically created during stylesheet
processing, usually as a variable. You can use the <xsl:perform-sort> element to sort
a sequence. Everything we’ve discussed about sorting applies to <xsl:perform-sort>;
we’ll look at some examples here.

[2.0] The <xsl:perform-sort> Element | 215

There are two ways to use <xsl:perform-sort>: you can give it an existing sequence and
use <xsl:perform-sort> to sort that sequence, or you can use <xsl:perform-sort> to
both create the sequence and sort it. For our first example, we’ll create a sequence of
all the <city> elements and use <xsl:perform-sort> to sort it:

<?xml version="1.0"?>
<!-- perform-sort1.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="sortedCities" as="xs:string*">
 <xsl:perform-sort select="addressbook/address/city">
 <xsl:sort select="."/>
 </xsl:perform-sort>
 </xsl:variable>
 <xsl:text>Our customers live in these cities:

</xsl:text>
 <xsl:value-of select="$sortedCities" separator="
"/>
 </xsl:template>

</xsl:stylesheet>

The select attribute of <xsl:perform-sort> defines the sequence to be sorted. When
we use this stylesheet against our address book, here are the results:

Our customers live in these cities:

Boylston
Lynn
Sheboygan
Skunk Haven
Skunk Haven
Winter Harbor

We can also use the new <xsl:sequence> element to create the sequence inside
<xsl:perform-sort>:

<?xml version="1.0"?>
<!-- perform-sort2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="sortedCities" as="xs:string*">
 <xsl:perform-sort>
 <xsl:sort select="."/>
 <xsl:sequence select="addressbook/address/city"/>
 </xsl:perform-sort>
 </xsl:variable>

216 | Chapter 7: Sorting and Grouping Elements

 <xsl:text>Our customers live in these cities:

</xsl:text>
 <xsl:value-of select="$sortedCities" separator="
"/>
 </xsl:template>

</xsl:stylesheet>

There’s not much point in doing things this way, but this stylesheet produces the same
results. Putting the XPath expression on the <xsl:perform-sort> is much simpler. The
contents of an <xsl:perform-sort> element must start with one or more <xsl:sort>
elements. In our second example, we’re not using the select attribute, so we use an
<xsl:sequence> element to select some data to sort. <xsl:perform-sort> creates the
entire sequence, and then it uses the <xsl:sort> elements inside it to sort the sequence.

If we want to make our customer database look more international, we can add more
<xsl:sequence> elements to select more data:

<?xml version="1.0"?>
<!-- perform-sort3.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="sortedCities" as="xs:string*">
 <xsl:perform-sort>
 <xsl:sort select="."/>
 <xsl:apply-templates select="addressbook/address/city"/>
 <xsl:sequence select="('London', 'Adelaide', 'Rome')"/>
 <xsl:sequence select="('Jakarta', 'Sao Paulo', 'Timbuktu')"/>
 </xsl:perform-sort>
 </xsl:variable>
 <xsl:text>Our customers live in these cities:

</xsl:text>
 <xsl:value-of select="$sortedCities" separator="
"/>
 </xsl:template>

</xsl:stylesheet>

Now we have the impressive results we were hoping for:

Our customers live in these cities:

Adelaide
Boylston
Jakarta
London
Lynn
Rome
Sao Paulo
Sheboygan
Skunk Haven
Skunk Haven
Timbuktu
Winter Harbor

[2.0] The <xsl:perform-sort> Element | 217

The point of this example is that you can combine multiple sequences of values and
have <xsl:perform-sort> to sort all of the elements from all of those sequences. In this
example, the first sequence is created with <xsl:apply-templates>; this uses the built-
in stylesheet rules to return the names of the cities. The other two sequences are created
with sequences of string values. The combination of <xsl:perform-sort> and
<xsl:sort> produce a single sorted sequence of all the values.

Another important point about <xsl:perform-sort>: it always returns a sequence. If the
variable sortedCities was defined with a datatype of xs:string (instead of
xs:string*), the stylesheet would raise an error if there were no cities, or if there was
more than one city.

Finally, if we want to remove the duplicate values from the sequence, we can use the
XPath 2.0 function distinct-values():

<?xml version="1.0"?>
<!-- perform-sort4.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="sortedCities" as="xs:string*">
 <xsl:perform-sort>
 <xsl:sort select="."/>
 <xsl:apply-templates select="addressbook/address/city"/>
 <xsl:sequence select="('London', 'Adelaide', 'Rome')"/>
 <xsl:sequence select="('Jakarta', 'Sao Paulo', 'Timbuktu')"/>
 </xsl:perform-sort>
 </xsl:variable>
 <xsl:text>Our customers live in these cities:

</xsl:text>
 <xsl:value-of select="distinct-values($sortedCities)"
 separator="
"/>
 </xsl:template>

</xsl:stylesheet>

Now our results list the lovely town of Skunk Haven once only:

Our customers live in these cities:

Adelaide
Boylston
Jakarta
London
Lynn
Rome
Sao Paulo
Sheboygan
Skunk Haven
Timbuktu
Winter Harbor

218 | Chapter 7: Sorting and Grouping Elements

Notice that we call distinct-values() against the entire sequence after it’s been gen-
erated. If we called distinct-values() on each of the <xsl:sequence> elements, that
would only eliminate duplicate values in each individual sequence.

Grouping Nodes
When grouping nodes, we sort things to get them into a certain order, and then we
group all items that have the same value for the sort key (or keys). We’ll use xsl:sort
for this grouping, and then use variables or functions such as key() or generate-id()
to finish the job.

[2.0] XSLT 2.0 has new elements and functions that make grouping much easier. If
you’re using XSLT 2.0, feel free to skip ahead to the section “[2.0] New Grouping
Syntax in XSLT 2.0” later in this chapter.

Our First Attempt
For our first example, we’ll take our list of addresses and group them. We’ll look for
all unique values of the <zip> element and list the addresses that match each one. We’ll
sort the list by zip code, then go through the list. If a given item doesn’t match the
previous zip code, we’ll print out a heading; if it does match, we’ll just print out the
address. Here’s our first attempt:

<?xml version="1.0"?>
<!-- namegrouper1.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Addresses grouped by zip code
</xsl:text>
 <xsl:for-each select="addressbook/address">
 <xsl:sort select="zip"/>
 <xsl:if test="zip!=preceding-sibling::address[1]/zip">
 <xsl:text>
Zip code </xsl:text>
 <xsl:value-of select="zip"/>
 <xsl:text> (</xsl:text>
 <xsl:value-of select="city"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="state"/>
 <xsl:text>):
</xsl:text>
 </xsl:if>
 <xsl:if test="name/title">
 <xsl:value-of select="name/title"/>
 <xsl:text> </xsl:text>
 </xsl:if>
 <xsl:value-of select="name/first-name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="name/last-name"/>

Grouping Nodes | 219

 <xsl:text>
</xsl:text>
 <xsl:value-of select="street"/>
 <xsl:text>

</xsl:text>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

Our approach in this stylesheet consists of two steps:

1. Sort the addresses by zip code:

<xsl:sort select="zip"/>

2. For each address, if its zip code doesn’t match the previous one, print out a heading,
and then print out the addresses that match it:

<xsl:if test="zip!=preceding-sibling::address[1]/zip">
 <xsl:text>
Zip code </xsl:text>
...

(Remember that preceding-sibling returns a NodeSet/Sequence, so preceding-
sibling::address[1] represents the first preceding sibling.)

That sounds reasonable, doesn’t it? Let’s take a look at the results:

Addresses grouped by zip code

Zip code 00218 (Winter Harbor, ME):
Ms. Natalie Attired
707 Breitling Way

Zip code 02718 (Skunk Haven, MA):
Mary Backstayge
283 First Avenue

Zip code 02718 (Skunk Haven, MA):
Harry Backstayge
283 First Avenue

Zip code 02930 (Lynn, MA):
Ms. Amanda Reckonwith
930-A Chestnut Street

Zip code 27318 (Boylston, VA):
Mary McGoon
103 Bryant Street

Mr. Chester Hasbrouck Frisby
1234 Main Street

Yes, that certainly seemed like a good approach, but there’s one major problem: it
doesn’t work.

220 | Chapter 7: Sorting and Grouping Elements

Looking at our results, there are two things wrong: one of the addresses (Mr. Chester
Hasbrouck Frisby) is incorrectly grouped under the heading for Boylston, Virginia, and
there are two groups for Skunk Haven, Massachusetts. The problem here is that the
axes work with the document order, not the sorted order we’ve created inside the
<xsl:for-each> element.

As straightforward as our logic seemed, we’ll have to find another way.

A Brute-Force Approach
One thing we could do is make the transformation in two passes; we could write an
intermediate stylesheet to sort the names and generate a new XML document, and then
use the stylesheet we’ve already written, because document order and sorted order will
be the same. Here’s how that intermediate stylesheet would look:

<?xml version="1.0"?>
<!-- namegrouper2a.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" indent="no"/>

 <xsl:strip-space elements="*"/>

 <xsl:template match="/">
 <addressbook>
 <xsl:for-each select="addressbook/address">
 <xsl:sort select="name/zip"/>
 <xsl:copy-of select="."/>
 </xsl:for-each>
 </addressbook>
 </xsl:template>
</xsl:stylesheet>

This stylesheet generates a new <addressbook> document that has all of the <address>
elements sorted correctly. We can then run our original stylesheet against the sorted
document and get results that are closer to what we want:

Addresses grouped by zip code
Ms. Natalie Attired
707 Breitling Way

Zip code 02718 (Skunk Haven, MA):
Harry Backstayge
283 First Avenue

Mary Backstayge
283 First Avenue

Zip code 02930 (Lynn, MA):
Ms. Amanda Reckonwith

Grouping Nodes | 221

930-A Chestnut Street

Zip code 27318 (Boylston, VA):
Mary McGoon
103 Bryant Street

Zip code 48392 (Sheboygan, WI):
Mr. Chester Hasbrouck Frisby
1234 Main Street

There’s one more problem here: we don’t have a heading for the first group. Natalie
Attired lives in Winter Harbor, Maine, but there’s no heading for Winter Harbor. The
answer is to change our XPath expression slightly to see whether this is the first
<address> element:

<?xml version="1.0"?>
<!-- namegrouper2b.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text" indent="no"/>

 <xsl:template match="/">
 <xsl:text>Addresses grouped by zip code
</xsl:text>
 <xsl:for-each select="addressbook/address">
 <xsl:sort select="zip"/>
 <xsl:if test="position() = 1 or
 zip!=preceding-sibling::address[1]/zip">
 <xsl:text>
Zip code </xsl:text>
 <xsl:value-of select="zip"/>
...

If this is the first <address> element, there is no preceding-sibling. Our test condition
always returns false, and the heading for the first address never prints.

Our pair of stylesheets works, but it’s not very elegant. Even worse, it’s really slow
because we have to stop in the middle and write a file out to disk, then read that data
back in. We’ll find a way to group elements in a single stylesheet, but we’ll have to do
it with a different technique.

Grouping with <xsl:variable>
We mentioned earlier that sometimes <xsl:variable> is useful for grouping, so let’s try
that approach. We’ll save the value of the <zip> element each time through the
<xsl:for-each> element and use preceding-sibling in a slightly different way. Here’s
how attempt number three looks:

<?xml version="1.0"?>
<!-- namegrouper3.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

222 | Chapter 7: Sorting and Grouping Elements

 <xsl:output method="text" indent="no"/>

 <xsl:template match="/">
 <xsl:text>Addresses sorted by zip code
</xsl:text>
 <xsl:for-each select="addressbook/address">
 <xsl:sort select="zip"/>
 <xsl:variable name="lastZip" select="zip"/>
 <xsl:if test="not(preceding-sibling::address[zip=$lastZip])">
 <xsl:text>Zip code </xsl:text>
 <xsl:value-of select="zip"/>
 <xsl:text>:
</xsl:text>
 <xsl:for-each select="/addressbook/address[zip=$lastZip]">
 <xsl:sort select="name/last-name"/>
 <xsl:sort select="name/first-name"/>
 <xsl:if test="name/title">
 <xsl:value-of select="name/title"/>
 <xsl:text> </xsl:text>
 </xsl:if>
 <xsl:value-of select="name/first-name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="name/last-name"/>
 <xsl:text>
</xsl:text>
 <xsl:value-of select="street"/>
 <xsl:text>

</xsl:text>
 </xsl:for-each>
 </xsl:if>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

This stylesheet generates what we want:

Addresses sorted by Zip Code
Zip code 00218:
Ms. Natalie Attired
707 Breitling Way

Zip code 02718:
Harry Backstayge
283 First Avenue

Mary Backstayge
283 First Avenue

Zip code 02930:
Ms. Amanda Reckonwith
930-A Chestnut Street

Zip code 27318:
Mary McGoon
103 Bryant Street

Zip code 48392:
Mr. Chester Hasbrouck Frisby
1234 Main Street

Grouping Nodes | 223

So why does this approach work when our first attempt didn’t? The answer is that we
don’t count on the sorted order of the elements to generate the output. The downside
of this approach is that we go through several steps to get the results we want:

1. We sort all the addresses by zip code:

<xsl:sort select="zip"/>

2. We store the current <zip> element’s value in the variable lastZip:

<xsl:variable name="lastZip" select="zip"/>

3. For each <zip> element, we look at all of its preceding siblings to see whether this
is the first time we’ve encountered this particular value (stored in lastZip). If it is,
there won’t be any preceding siblings that match.

<xsl:if test="not(preceding-sibling::address[zip=$lastZip])">

4. If this is the first time we’ve encountered this value in the <zip> element, we go
back and reselect all <address> elements with <zip> children that match this value.
Once we have that group, we sort them by first name within last name and print
each address.

<xsl:for-each select="/addressbook/address[zip=$lastZip]">
 <xsl:sort select="name/last-name"/>
 <xsl:sort select="name/first-name"/>

So, we’ve found a way to get the results we want, but it’s really inefficient. We sort the
data, then we look at each zip code in sorted order, then see whether we’ve encountered
that value before in document order, and then we reselect all the items that match the
current zip code and resort them before we write them out.

This has reasonable performance when we’re grouping the six elements in our sample
document, but the amount of work the XSLT processor has to do increases exponen-
tially as the number of elements we’re grouping increases. There’s got to be a better
way, right? Actually there is, and we discuss it in the next section. Read on....

The <xsl:key> Approach
In this section, we’ll look at using <xsl:key> to group items in an XML document. This
approach is commonly referred to as the “Muench method,” after Oracle XML Evan-
gelist (and O’Reilly author) Steve Muench, who first suggested this technique. The
Muench method has three steps:

1. Define a key for the property we want to use for grouping.

2. Select all of the nodes we want to group. We’ll do some tricks with the key() and
generate-id() functions to find the unique grouping values.

3. For each unique grouping value, use the key() function to retrieve all nodes that
match it. We can further sort those nodes if we want.

224 | Chapter 7: Sorting and Grouping Elements

Well, that’s how the technique works—let’s start building the stylesheet that makes
the magic happen. The first step, creating a key function, is easy. Here’s how it looks:

<xsl:key name="zipcodes" match="address" use="zip"/>

This <xsl:key> element defines a new index called zipcodes. It indexes <address> ele-
ments based on the value of the <zip> element they contain.

Now that we’ve defined our key, we’re ready for the complicated part. We use the
key() and generate-id() functions together. Here’s the syntax, which we’ll discuss
extensively in a minute:

<xsl:for-each select="//address[generate-id(.)=
 generate-id(key('zipcodes', zip)[1])]">

OK, let’s start digging through this syntax. We’re selecting all <address> elements in
which the automatically generated id matches the automatically generated id of the
first node returned by the key() function when we ask for all <address> elements that
match the current <zip> element.

Well, that’s clear as crystal, isn’t it? Let me try to explain that again from a slightly
different perspective.

For each <address>, we use the key() function to retrieve all <address>es that have the
same <zip>. We then take the first node from that node-set. Finally, we use the
generate-id() function to generate an id for both nodes. If the two generated ids are
identical, then the two nodes are the same.

Whew. Let me catch my breath.

If this <address> matches the first node returned by the key() function, then we know
we’ve found the first <address> that matches this grouping value. Selecting all of the
first values (remember, our previous predicate ends with [1]) gives us a node-set of
some number of <address> elements, each of which contains one of the unique grouping
values we need.

That’s how the Muench method works. At this point, we’ve got a way to generate a
node-set that contains all of the unique grouping values; now we need to process those
nodes. From this point, we’ll do several things, all of which are comparatively simple:

1. Sort all nodes based on the grouping property. In this example, the property is the
<zip> element. We start by selecting the first occurrence of every unique <zip>
element in the document, and then we sort those <zip> elements. Here’s how it
looks in the stylesheet:

<xsl:for-each
 select="//address[generate-id(.)=generate-id(key('zipcodes', zip)[1])]">
 <xsl:sort select="zip"/>

2. The outer <xsl:for-each> element selects all the unique values of the <zip> ele-
ment. Next, we use the key() function to retrieve all <address> elements that match
the current <zip> element:

Grouping Nodes | 225

<xsl:for-each select="key('zipcodes', zip)">

3. The key() function gives us a node-set of all matching <address> elements. For
each group, we sort the group based on the <last-name> and <first-name> elements,
print the heading, and then print each address.

To improve the looks of our output, our final stylesheet will use the techniques we’ve
been building to create an HTML file. Here’s the complete listing:

<?xml version="1.0"?>
<!-- namegrouper4.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:key name="zipcodes" match="address" use="zip"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Customers grouped by Zip code</title>
 </head>
 <body style="font-family: sans-serif;">
 <table border="1" cellpadding="5">
 <xsl:for-each select="//address[generate-id(.)=
 generate-id(key('zipcodes', zip)[1])]">
 <xsl:sort select="zip"/>
 <xsl:for-each select="key('zipcodes', zip)">
 <xsl:sort select="name/last-name"/>
 <xsl:sort select="name/first-name"/>
 <tr>
 <xsl:if test="position() = 1">
 <td style="background: #66FF66; text-align: center;
 vertical-align: middle; font-weight: bold;"
 rowspan="{count(key('zipcodes', zip))}">
 <xsl:text>Zip code </xsl:text>

 <xsl:value-of select="zip"/>

 <xsl:value-of select="city"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="state"/>
 </td>
 </xsl:if>
 <td style="text-align: right; vertical-align: middle;">
 <xsl:value-of select="name/first-name"/>
 <xsl:text> </xsl:text>

 <xsl:value-of select="name/last-name"/>

 </td>
 <td>
 <xsl:value-of select="street"/>

226 | Chapter 7: Sorting and Grouping Elements

 </td>
 </tr>
 </xsl:for-each>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

Notice how the two <xsl:for-each> and the various <xsl:sort> elements work togeth-
er. The outer <xsl:for-each> element selects the unique values of the <zip> element
and sorts them; the inner <xsl:for-each> element selects all <address> elements that
match the current <zip> element, and then sorts them by <last-name> and <first-name>.

When we view the generated HTML document in a browser, it looks like Figure 7-1.

The left column contains a table cell for each zip code. That means we need a
rowspan attribute based on the size of the current group. The logic looks like this:

<xsl:if test="position() = 1">
 <td valign="center" bgcolor="#999999"

Figure 7-1. HTML document with grouped items

Grouping Nodes | 227

 rowspan="{count(key('zipcodes', zip))}">

 <xsl:text>Zip code </xsl:text>
 <xsl:value-of select="zip"/>

 </td>
</xsl:if>

[2.0] New Grouping Syntax in XSLT 2.0
In 2001, the XSL Working Group released a document entitled “XSLT Requirements
Version 2.0.” More than half of the document came under the heading “Must Simplify
Grouping.” (I can’t imagine how the group would have met a requirement named
“Must Make Grouping More Complicated and Confusing.”) We’ll take a look at those
changes in this section.

XSLT 2.0’s grouping functions are built around the <xsl:for-each-group> element.
Within this element, we’ll use the new XSLT functions current-group() and current-
grouping-key() to work with the data we’re grouping. There are four mutually exclu-
sive attributes for the <xsl:for-each-group> element, each of which performs a different
style of grouping:

group-by
This is the most common type of grouping. We use an XPath expression to define
what identifies a group (all of the <address> elements that have the same <zip>
code, for example), so we can then iterate through each group.

group-adjacent
This approach is useful when you want to build a group containing all the adjacent
nodes that match an XPath expression. As an example, we’ll take all the adjacent
<p> elements in a document, convert each one to an element, and put
and tags around the entire group.

group-starting-with
The group-starting-with attribute defines an XPath expression that identifies the
start of a group. Once a group starts, every element is added to the group until the
start of another group is found. group-starting-with and group-ending-with are
most often used when adding structure to an HTML document.

group-ending-with
This defines an XPath expression that identifies the end of a group. When using
group-ending-with, <xsl:for-each-group> creates a new group as it begins pro-
cessing nodes. Whenever the end of a group is found, the XSLT processor closes
that group and starts another.

Keep in mind that everything you can do with grouping in XSLT 2.0 is possible in XSLT
1.0—it’s just that the markup you’ll have to write and maintain in XSLT 1.0 is much
more complicated. If you already have a working XSLT 1.0 stylesheet that uses the

228 | Chapter 7: Sorting and Grouping Elements

Muench method to do grouping, there’s no reason to change the stylesheet if you don’t
want to.

The Most Common Grouping Style: group-by
As we just mentioned, everything we’ll do with grouping in XSLT 2.0 revolves around
the new <xsl:for-each-group> element. This works much like <xsl:for-each>. In
<xsl:for-each>, in each iteration we process an item in a sequence; with <xsl:for-each-
group>, in each iteration we process a group. Thinking back to our addresses example,
each group represents a unique zip code. When using <xsl:for-each-group>, the first
group would be 00218, the second group would be 02718, and so forth.

To repeat from our discussion of the Muench method, we needed to do three things to
group items in XSLT 1.0:

1. Define a key for the property we want to use for grouping.

2. Select all of the nodes we want to group. We’ll do some tricks with the key() and
generate-id() functions to find the unique grouping values.

3. For each unique grouping value, use the key() function to retrieve all nodes that
match it. Because the key() function returns a node-set, we can do further sorts
on the set of nodes that match any given grouping value.

With XSLT 2.0, we need to do the same basic things, but we don’t have to get bogged
down with key() and generate-id(). Our tasks are as follows:

1. Define an XPath expression for the property we want to use for grouping. All we
have to do is define the XPath expression—we don’t need a key.

2. Select all of the nodes we want to group. We select all the nodes with an XPath
expression. The XSLT processor takes all the items that match this expression and
groups them using the grouping property we defined.

3. Instead of dealing with each unique value of the property we’re using for grouping,
we use current-group() to deal with each group. The current-group() function
returns a sequence, so we can sort the members of each group however we like. If
we need the value of the grouping key, the current-grouping-key() function does
what we want.

Accomplishing these tasks in XSLT 2.0 is pretty straightforward. We do steps one and
two with the <xsl:for-each-group> element:

<xsl:for-each-group select="//address" group-by="zip">

The elements we’re grouping are all of the <address> elements in the document. The
property we’re using for grouping is the value of the <zip> element.

For the third step, we use current-group() to deal with each group in turn. Here’s the
complete stylesheet:

[2.0] New Grouping Syntax in XSLT 2.0 | 229

<?xml version="1.0"?>
<!-- for-each-group_group-by.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" include-content-type="no"/>

 <xsl:template match="/">
 <table border="1" cellpadding="5" style="font-family: sans-serif;">
 <xsl:for-each-group select="//address” group-by="zip">
 <xsl:sort select="current-grouping-key()"/>
 <xsl:for-each select="current-group()">
 <xsl:sort select="name/last-name"/>
 <xsl:sort select="name/first-name"/>
 <tr>
 <xsl:if test="position() = 1">
 <td valign="center" bgcolor="#999999"
 rowspan="{count(current-group())}">

 <xsl:text>Zip code </xsl:text>
 <xsl:value-of select="current-grouping-key()"/>

 </td>
 </xsl:if>
 <td align="right">
 <xsl:value-of select="name/first-name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="name/last-name"/>
 </td>
 <td>
 <xsl:value-of select="street"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="city"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="state"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="zip"/>
 </td>
 </tr>
 </xsl:for-each>
 </xsl:for-each-group>
 </table>
 </xsl:template>

</xsl:stylesheet>

There are several things worth discussing inside the <xsl:for-each-group> element:

1. First of all, we use <xsl:sort select="current-grouping-key()"/> to put the
groups themselves in order. This <xsl:sort> element sorts the groups based on
their grouping keys. The items inside each group aren’t rearranged at all.

2. Next, we use <xsl:for-each select="current-group"> to iterate through each item
in the current group. (Remember, current-group() returns the sequence of nodes
that make up the current group.)

230 | Chapter 7: Sorting and Grouping Elements

3. Within each group, we sort things by <last-name> and <first-name>.

4. The last significant thing we do is create the first column to display the current
grouping key. We get the current value of the grouping key with the current-
grouping-key() function. To calculate the rowspan attribute, we use an attribute
value template with count(current-group()) to get the number of nodes that
match the current grouping key.

Comparing this stylesheet with the Muench method version, most of the code is the
same; after all, we’re building the same HTML document here. However, there are
some differences that make the v2.0 stylesheet simpler to create and maintain:

• It’s much easier to specify what we’re grouping. In the v2.0 stylesheet, we’re simply
specify the element we’re grouping:

[2.0] select="//address"

[1.0] select="//address[generate-id(.)=generate-id(key('zipcodes', zip)[1])]">

• It’s much easier to keep up with the current group. In the v2.0 stylesheet, the
current-group() and current-grouping-key() functions let us work with the cur-
rent group and the value we used to create it. In the v1.0 stylesheet, we have to
respecify them each time. Here’s how we process all the elements in the current
group:

[2.0] <xsl:for-each select="current-group()">

[1.0] <xsl:for-each select="key('zipcodes', zip)">

As another example, finding the size of the current group is much simpler. In the
v1.0 stylesheet, we have to redefine what the current group is each time we refer
to it. When we need the number of items in the current group, we have to do the
same thing:

[2.0] rowspan="{count(current-group()}"

[1.0] rowspan="{count(key('zipcodes', zip))}"

It’s conceptually simpler to get the value of the grouping key in the v2.0 stylesheet,
although it’s arguable how much of an advantage that actually is in this example.
(Comparing the two stylesheets, we typed <xsl:value-of select="current-
grouping-key()"/> in v2.0, but only <xsl:value-of select="zip"/> in v1.0.) If the
key value were much more complicated, the advantage of
current-grouping-key() would be greater.

Also keep in mind that if we change the grouping key in a v1.0 stylesheet, we have
to find all the instances of the grouping key and change them. In a v2.0 stylesheet,
the grouping key is defined in one place; we still use current-grouping-key() re-
gardless of the changes to the key. This simplifies maintenance.

• We don’t have to define an <xsl:key> separate from the grouping code. That’s a
minor point, but it does simplify maintenance.

[2.0] New Grouping Syntax in XSLT 2.0 | 231

Another Type of Grouping: group-adjacent
With the group-adjacent approach, we’ll create a group based on some number of
elements that are together in the source document. Our example input document is an
HTML document that features groups of paragraphs together:

<?xml version="1.0"?>
<!-- group-adjacent_input.html -->
<html>
 <body>
 <h2>Steps for grouping in the Muench method</h2>
 <p>Define a <code>key</code> for the property we want
 to use for grouping.</p>
 <p>Select all of the nodes ...</p>
 <p>For each unique grouping value, ...</p>
 <h2>Steps for grouping in XSLT 2.0</h2>
 <p>Define an XPath expression ...</p>
 <p>Select all of the nodes we want to group ...</p>
 <p>Instead of dealing with each ...</p>
 </body>
</html>

This is text from earlier in this chapter, displayed here as HTML. (This book is written
entirely in DocBook, an XML vocabulary with a very well-defined structure.) What we
want to do is convert any sequence of paragraphs into an unordered list (), with
each paragraph converted into a list item (). We’ll use group-adjacent to do that.
Our stylesheet looks like this:

<?xml version="1.0"?>
<!-- for-each-group_group-adjacent.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" include-content-type="no"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Grouping with group-adjacent</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Grouping with group-adjacent</h1>
 <xsl:for-each-group select="html/body/*"
 group-adjacent="boolean(self::p)">
 <xsl:choose>
 <xsl:when test="current-grouping-key()">

 <xsl:for-each select="current-group()">

 <xsl:copy-of select="@*"/>
 <xsl:apply-templates select="*|text()"/>

 </xsl:for-each>

232 | Chapter 7: Sorting and Grouping Elements

 </xsl:when>
 <xsl:otherwise>
 <xsl:for-each select="current-group()">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each-group>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="*">
 <xsl:copy>
 <xsl:copy-of select="@*"/>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

When we’re using group-adjacent, the value of the group-adjacent attribute generates
an atomic value for each item in the list. In other words, the grouping key for each item
is defined by the group-adjacent attribute. In the previous example, any <p> element
has a grouping key of true; everything else has a grouping key of false. After we’ve
defined the grouping key for each item, the XSLT 2.0 processor creates the groups.
Each group contains the maximum number of adjacent items with a particular grouping
key. To see the grouping keys, we can add an <xsl:message> to display them. We’ll add
this message:

<xsl:for-each-group select="html/body/*"
 group-adjacent="boolean(self::p)">
 <xsl:message terminate="no">
 <xsl:for-each select="current-group()">
 <xsl:text>current-grouping-key() = </xsl:text>
 <xsl:value-of select="current-grouping-key()"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:message>
 ...

When we run the stylesheet with our sample document, here’s what shows up in the
console:

current-grouping-key() = false

current-grouping-key() = true
current-grouping-key() = true
current-grouping-key() = true

current-grouping-key() = false

current-grouping-key() = true

[2.0] New Grouping Syntax in XSLT 2.0 | 233

current-grouping-key() = true
current-grouping-key() = true

For each group, we print out the grouping key for each item in that group. As you’d
expect, we have four groups. The first group contains the <h2> element at the start of
the document, and the second group contains the three adjacent <p> elements that
follow it. The second <h2> is the third group, and the fourth group is the three adjacent
<p> elements at the end. When we run the stylesheet, the generated HTML document
looks like this:

<html>
 <head>
 <title>Grouping with group-adjacent</title>
 </head>
 <body>
 <h1>Grouping with group-adjacent</h1>
 <h2>Steps for grouping in the Muench method</h2>

 Define a <code>key</code> for the property we want
 to use for grouping.
 Select all of the nodes. ...
 For each unique grouping value, ...

 <h2>Steps for grouping in XSLT 2.0</h2>

 Define an XPath expression ...
 Select all of the nodes we want to group ...
 Instead of dealing with each ...

 </body>
</html>

The items are now grouped just the way we want. We’ve converted all of the adjacent
<p> elements and replaced them with an unordered list in which each <p> is now a list
item. Each group contains the maximum number of adjacent <p> elements, so we can
put each group inside a element.

Before we move on to the final two ways of grouping, we’ll look at a more advanced
example. We’ll change our source HTML document slightly to add some <p> elements
that should be processed differently. Here’s how our new HTML document looks:

<?xml version="1.0"?>
<!-- group-adjacent_input2.html -->
<html>
 <body>
 <!-- Here's some sample text from the chapter "Sorting
 and Grouping". -->
 <h2>Steps for grouping in the Muench method</h2>
 <p class="item">Define a <code>key</code> for the property we want
 to use for grouping.</p>
 <p class="item">Select all of the nodes ...</p>
 <p class="note">This can be really complicated.</p>
 <p class="note">Many people don't enjoy this method.</p>
 <p class="note">XSLT 2.0 attempts to make grouping simpler.</p>

234 | Chapter 7: Sorting and Grouping Elements

 <p class="item">For each unique grouping value ...</p>
 <h2>Steps for grouping in XSLT 2.0</h2>
 <p class="item">Define an XPath expression ...</p>
 <p class="item">Select all of the nodes ...</p>
 <p class="note">This is much easier than it used to be.</p>
 <p class="item">Instead of dealing with each ...</p>
 </body>
</html>

We now have two classes of <p> elements. Those with class="item" will be processed
just as before. The class="note" elements will be put in an ordered list. To add another
layer of complexity to our example, we’ll number all of the class="note" items se-
quentially throughout the document. In other words, if the first group of adjacent
class="note" elements has three members, we want to start numbering the next group
of class="note" elements at four. Here’s the stylesheet, which we’ll discuss in detail in
just a minute:

<?xml version="1.0"?>
<!-- for-each-group_group-adjacent2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" include-content-type="no"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Grouping with group-adjacent</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Grouping with group-adjacent</h1>
 <xsl:for-each-group select="html/body/*"
 group-adjacent="if (self::p[@class='item']) then 1
 else if (self::p[@class='note']) then 2
 else 3">
 <xsl:choose>

 <!-- group for <p class="item"> -->
 <xsl:when test="current-grouping-key() = 1">

 <xsl:for-each select="current-group()">

 <xsl:copy-of select="@*[not(name()='class')]"/>
 <xsl:apply-templates select="*|text()"/>

 </xsl:for-each>

 </xsl:when>

 <!-- group for <p class="note"> -->
 <xsl:when test="current-grouping-key() = 2">
 <xsl:variable name="starting-point">
 <xsl:number count="p[@class='note']"
 level="any" format="1"/>

[2.0] New Grouping Syntax in XSLT 2.0 | 235

 </xsl:variable>
 <table border="0" cellpadding="5" width="40%">
 <tr>
 <td width="10%">
 <p><xsl:text> </xsl:text></p>
 </td>
 <td style="background: #CCCCCC;">
 <p style="font-weight: bold;">
 <xsl:value-of
 select="if (count(current-group()) gt 1)
 then 'Notes'
 else 'Note'"/>
 </p>
 <ol start="{$starting-point}">
 <xsl:for-each select="current-group()">

 <xsl:copy-of select="@*[not(name()='class')]"/>
 <xsl:apply-templates select="*|text()"/>

 </xsl:for-each>

 </td>
 </tr>
 </table>
 </xsl:when>

 <!-- group for everything else -->
 <xsl:otherwise>
 <xsl:for-each select="current-group()">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each-group>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="*">
 <xsl:copy>
 <xsl:copy-of select="@*"/>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

First of all, notice that our group-adjacent attribute is significantly more complicated.
We’re using integer values here instead of true and false because we have more than
two groups. (Remember, the grouping key for group-adjacent can be any atomic value;
it doesn’t have to be true or false.) Here’s the <xsl:for-each-group> element:

group-adjacent="if (self::p[@class='item']) then 1
 else if (self::p[@class='note']) then 2
 else 3"

236 | Chapter 7: Sorting and Grouping Elements

So any <p class="item"> element has a grouping key of 1, any <p class="note"> element
has a grouping key of 2, and everything else has a grouping key of 3. Adding an
<xsl:message> to the stylesheet as we did before, we can list the grouping keys:

current-grouping-key() = 3

current-grouping-key() = 1
current-grouping-key() = 1

current-grouping-key() = 2
current-grouping-key() = 2
current-grouping-key() = 2

current-grouping-key() = 1
current-grouping-key() = 1

current-grouping-key() = 3

current-grouping-key() = 1
current-grouping-key() = 1

current-grouping-key() = 2

current-grouping-key() = 1

Aside from the fact that we have three groups instead of two, the main complication
here is how we process items in the second group. For the first group of
<p class="note"> elements, we could simply use an ordered list () element to num-
ber the items in the group. For every other group, we have to determine where to start
numbering. This means we have to find the position of the first <p class="note"> ele-
ment in all of the <p class="note"> elements to see where a particular group starts. If
a group begins with the 38th <p class="note"> element, we need to generate
<ol start="38"> in the HTML output document. <xsl:number> is perfect for this task.

For each group of <p class="note"> elements, we have three tasks:

1. Generate a heading for the notes. If there is more than one item in the current
group, the heading is <h3>Notes</h3>; otherwise, it is <h3>Note</h3>.

2. Generate the start attribute for the element. We use <xsl:number> to count
all of the <p class="note"> elements and tell us the position of the first item in the
group.

3. Process the item itself. This means putting the current paragraph into a list item
() element and processing its attributes and children.

Our first step is to generate the heading text. Fortunately, this is pretty simple; we use
XPath 2.0’s if operator:

<p style="font-weight: bold;">
 <xsl:value-of
 select="if (count(current-group()) gt 1)
 then 'Notes'

[2.0] New Grouping Syntax in XSLT 2.0 | 237

 else 'Note'"/>
</p>

We also use the new XPath gt operator to compare the size of the current group—
count(current-group())—to the number 1. If the current group has more than one
item, the heading text is Notes; otherwise, it is Note.

Now that our first step is complete, we’ll create a variable with the value of the
start attribute:

<xsl:variable name="starting-point">
 <xsl:number count="p[@class='note']" level="any" format="1"/>
</xsl:variable>

Notice that we’re using format="1" to create a numeric value. From an XSLT point of
view, we don’t have to worry about the datatype of the value. (There’s no need to add
as="xs:integer" to the <xsl:variable> element.) The HTML renderer treats this value
as a number and uses it accordingly.

The last step is simply to output the new element (using the $starting-point
variable we just initialized) and process the <p> element as before:

<ol start="{$starting-point}">
 <xsl:for-each select="current-group()">

 <xsl:copy-of select="@*[not(name()='class')]"/>
 <xsl:apply-templates select="*|text()"/>

 </xsl:for-each>

We copy all of the attributes of the HTML <p> element except the class attribute.
Having copied the attributes, we use <xsl:apply-templates> to process anything that
might be in the original paragraph. As in our earlier stylesheet, we used an attribute
value template to include the start attribute on the element.

Our generated HTML document looks like Figure 7-2.

Grouping using group-starting-with
The next grouping type we’ll use is group-starting-with. With this attribute, we’ll
specify the node or condition that starts a new group. From that point, every item goes
into the new group until another starting node or condition is found. After that, the
XSLT processor closes the current group and starts a new one.

We’ll use this approach to add some structure to another HTML document. In this
case, we want to create a group around every <h1> element. We’ll use the file group-
adjacent_input.html from our earlier example.

We’ll transform this markup into DocBook, which uses a containment strategy instead
of HTML’s sequential approach. In other words, in HTML a level 1 heading (<h1>)

238 | Chapter 7: Sorting and Grouping Elements

stands on its own. We can assume that the first <h1> starts a section and that the next
<h1> ends this section, but there’s no guarantee that an HTML document is structured
that way.

In DocBook, a level 1 heading is part of a section, not a standalone element. The section
starts with a <sect1> tag and contains everything through the </sect1> tag, including
a <title> element that contains the text we’d normally put on the HTML <h1> element.

Here’s how our stylesheet looks:

<?xml version="1.0"?>
<!-- for-each-group_group-starting-with.xsl -->

Figure 7-2. HTML document with grouped and sequentially numbered items

[2.0] New Grouping Syntax in XSLT 2.0 | 239

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">
 <chapter>
 <title>Grouping in XSLT</title>
 <xsl:apply-templates select="html/body"/>
 </chapter>
 </xsl:template>

 <xsl:template match="body">
 <xsl:for-each-group select="*" group-starting-with="h1">
 <sect1>
 <xsl:apply-templates select="current-group()"/>
 </sect1>
 </xsl:for-each-group>
 </xsl:template>

 <xsl:template match="h1">
 <title>
 <xsl:apply-templates/>
 </title>
 </xsl:template>

 <xsl:template match="p">
 <para>
 <xsl:apply-templates/>
 </para>
 </xsl:template>

 <xsl:template match="*">
 <xsl:copy>
 <xsl:copy-of select="@*"/>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

Our well-structured results look like this:

<?xml version="1.0" encoding="UTF-8"?>
<chapter>
 <title>Grouping in XSLT</title>
 <sect1>
 <h2>Steps for grouping in the Muench method</h2>
 <para>Define a <code>key</code> for the property we want
 to use for grouping.</para>
 <para>Select all of the nodes ...</para>
 <para>For each unique grouping value, ...</para>
 <h2>Steps for grouping in XSLT 2.0</h2>
 <para>Define an XPath expression ...</para>
 <para>Select all of the nodes we want to group ...</para>
 <para>Instead of dealing with each ...</para>

240 | Chapter 7: Sorting and Grouping Elements

 </sect1>
</chapter>

In the generated DocBook code, each <h1> becomes the start of a <sect1> element. The
text of the <h1> becomes the <title> of the section, each HTML <p> element becomes
a DocBook <para> element, and everything else is copied as is to the output.

Grouping Using group-ending-with
The last grouping style is group-ending-with. This is similar to group-starting-with,
only we’re specifying the condition that ends each group. We’ll use this technique to
insert items into a three-column HTML table. Each row in the table is created from a
group; each group will have no more than three members. We handle the special case
of a row with less than three members (count(current-group()) lt 3) by using a sim-
plified version of our list of cars:

<?xml version="1.0"?>
<!-- carlist.xml -->
<cars>
 <make>Alfa Romeo</make>
 <make>Bentley</make>
 <make>Chevrolet</make>
 <make>Dodge</make>
 <make>Eagle</make>
 <make>Ford</make>
 <make>GMC</make>
 <make>Honda</make>
 <make>Isuzu</make>
 <model>Javelin</model>
 <model>K-Car</model>
 <make>Lincoln</make>
 <make>Mercedes</make>
 <make>Nash</make>
 <make>Opel</make>
 <make>Pontiac</make>
 <model>Quantum</model>
 <model>Rambler</model>
 <make>Studebaker</make>
</cars>

There are 19 cars in our list, so the final group should have only one item in it. Here’s
the stylesheet:

<?xml version="1.0"?>
<!-- for-each-group_group-ending-with.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" include-content-type="no"/>

 <xsl:template match="/">
 <html>
 <head>

[2.0] New Grouping Syntax in XSLT 2.0 | 241

 <title>Car Makes and Models</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Car Makes and Models</h1>
 <p>Here are the car makes and models in
 our input document.</p>
 <table border="1" cellpadding="5">
 <xsl:apply-templates select="cars"/>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="cars">
 <xsl:for-each-group select="make|model"
 group-ending-with="*[position() mod 3 = 0]">
 <tr>
 <xsl:apply-templates select="current-group()"/>
 <xsl:if test="count(current-group()) lt 3">
 <td style="background: #CCCCCC;"
 colspan="{3 - count(current-group())}">
 </td>
 </xsl:if>
 </tr>
 </xsl:for-each-group>
 </xsl:template>

 <xsl:template match="make">
 <td style="font-weight: bold;">
 <xsl:apply-templates/>
 </td>
 </xsl:template>

 <xsl:template match="model">
 <td style="font-style: italic; font-weight: bold;">
 <xsl:apply-templates/>
 </td>
 </xsl:template>

</xsl:stylesheet>

Figure 7-3 displays our results.

The grouping key depends on the position of each element. In our input document, all
of the items we’re grouping (the <make> and <model> elements) are at the same level of
the document, so the position() function tells us what we need to know. The
position() returns the position of an item within a sequence. In other words, the ele-
ment <xsl:for-each-group select="make|model" group-by="*[position() mod 3 =
0]"> creates a sequence containing all <make> and <model> elements. Calling
position() returns an item’s position in that sequence.

That covers all of the new grouping options in XSLT 2.0. As we said before, all of the
things we did here can be done in XSLT 1.0, but the XSLT 2.0 syntax makes it much
easier to create and maintain stylesheets that do complicated grouping.

242 | Chapter 7: Sorting and Grouping Elements

Summary
In this chapter, we’ve gone over all of the common techniques used for sorting and
grouping elements, including the new features available in XSLT 2.0. Regardless of the
kinds of stylesheets you’ll need to write in your XML projects, you’ll probably use these
techniques in everything you do. Now that we’ve covered how to sort and group ele-
ments, the next chapter will talk about how to work with multiple documents; that
topic builds on what we’ve covered here.

Figure 7-3. HTML document with items grouped into columns

Summary | 243

CHAPTER 8

Combining Documents

One of XSLT’s most powerful features is the document() function, which lets you com-
bine documents. You can use parts of a document (specified with XPath expressions,
of course) to identify other documents. You can then open those documents and per-
form stylesheet functions on the combination of those documents. In this chapter, we’ll
cover the document() function in all its glory.

[2.0] XSLT 2.0 and XPath 2.0 provide three new functions for combining documents:
doc(), collection(), and unparsed-text(). The doc() function, defined by XPath 2.0,
is similar to the document() function, though less powerful. The collection() function,
also defined by XPath 2.0, allows us to add collections of nodes provided by an XSLT
processor. The kinds of nodes provided can vary from one processor to the next. Finally,
the unparsed-text() function lets us add raw text to the data we’re processing in our
stylesheet. When combined with features such as tokenization and regular expressions,
unparsed-text() gives us many new ways of manipulating data. We’ll look at these
new functions at the end of this chapter.

The document() Function
A common task in writing stylesheets is combining data from different documents.
We’ll start by using the document() function to parse and process multiple XML docu-
ments. We’ll start our discussion with XML-tagged purchase orders that look like this:

<?xml version="1.0"?>
<!-- po38295.xml -->
<purchase-order id="38295">
 <date year="2001" month="9" day="8"/>
 <customer id="4738" level="Basic">
 <address type="business">
 <name>
 <title>Ms.</title>
 <first-name>Amanda</first-name>
 <last-name>Reckonwith</last-name>
 </name>
 <street>930-A Chestnut Street</street>

245

 <city>Lynn</city>
 <state>MA</state>
 <zip>02930</zip>
 </address>
 <address type="ship-to"/>
 </customer>
 <items>
 <item part-no="23813-03-CDK">
 <name>Cucumber Decorating Kit</name>
 <qty>1</qty>
 <price>29.95</price>
 </item>
 </items>
</purchase-order>

If we had a few dozen documents like this, we might want to view the collection of
purchase orders in a number of ways. We could view them sorted (or even grouped)
by customer, by part number, by the amount of the total order, by the state to which
they were shipped, etc. One way to do this would be to write code that worked directly
with the Document Object Model. We could parse each document, retrieve its DOM
tree, and then use DOM functions to order and group the various DOM trees, display
certain parts of the DOM trees, etc. Because this is an XSLT book, though, you probably
won’t be surprised to learn that XSLT provides a function to handle most of the heavy
lifting for us.

We’ll start with a simple example that uses the document() function. We’ll assume that
we have several purchase orders and that we want to combine them into a single report
document. One thing we can do is create a master document that references all the
purchase orders we want to include in the report. Here’s what that master document
might look like:

<?xml version="1.0"?>
<!-- polist.xml -->
<report>
 <title>Selected Purchase Orders</title>
 <po filename="po38292.xml"/>
 <po filename="po38293.xml"/>
 <po filename="po38294.xml"/>
 <po filename="po38295.xml"/>
</report>

We’ll fill in the details of our stylesheet as we go along, but the first several stylesheets
we’ll create will use the document() function to open multiple input files. Once we’ve
opened those files, we can use the templates in our stylesheet to transform their
contents.

For our first stylesheet, we’ll use the filename attribute as the argument to the
document() function. The simplest thing we can do is open each purchase order, then
write its details to the output stream. The key to our stylesheet is this call to the
document() function:

246 | Chapter 8: Combining Documents

<xsl:for-each select="/report/po">
 <xsl:apply-templates
 select="document(@filename)/purchase-order"/>
</xsl:for-each>

When we process our master document with this stylesheet, the results look like Fig-
ure 8-1.

The most notable thing about our results is that we’ve been able to generate a document
that contains the contents of several other documents. To keep our example short,
we’ve only combined four purchase orders, but there’s no limit (beyond the physical
limits of our machine) to the number of documents we could combine. Best of all, we
didn’t have to modify any of the individual purchase orders to generate our report.

Here’s the complete stylesheet:

<?xml version="1.0"?>
<!-- masterdox1.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="/report/title"/></title>
 </head>
 <body style="font-family: sans-serif;">

Figure 8-1. Document generated from multiple input files

The document() Function | 247

 <h1>Selected Purchase Orders - Unsorted</h1>
 <xsl:for-each select="/report/po">
 <xsl:apply-templates
 select="document(@filename)/purchase-order"/>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="purchase-order">
 <h2>
 <xsl:value-of
 select="customer/address[@type='business']/name/title"/>
 <xsl:text> </xsl:text>
 <xsl:value-of
 select="customer/address[@type='business']/name/first-name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of
 select="customer/address[@type='business']/name/last-name"/>
 <xsl:text> - </xsl:text>
 <xsl:value-of
 select="customer/address[@type='business']/city"/>
 <xsl:text>, </xsl:text>

 <xsl:value-of
 select="customer/address[@type='business']/state"/>

 </h2>
 <p>
 <xsl:text>Ordered on </xsl:text>
 <xsl:value-of select="date/@month"/>
 <xsl:text>/</xsl:text>
 <xsl:value-of select="date/@day"/>
 <xsl:text>/</xsl:text>
 <xsl:value-of select="date/@year"/>
 <xsl:text>:</xsl:text>
 </p>
 <table width="80%" border="0">
 <tr style="background: #66FF66;">
 <th>Item</th>
 <th>Quantity</th>
 <th>Price Each</th>
 <th>Total</th>
 </tr>
 <xsl:for-each select="items/item">
 <tr>
 <xsl:attribute name="style">
 <xsl:text>background: </xsl:text>
 <xsl:choose>
 <xsl:when test="position() mod 2">
 <xsl:text>#CCCCFF</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>#66FF66</xsl:text>
 </xsl:otherwise>

248 | Chapter 8: Combining Documents

 </xsl:choose>
 <xsl:text>;</xsl:text>
 </xsl:attribute>
 <td width="40%">

 <xsl:value-of select="name"/>

 <xsl:text> (part #</xsl:text>
 <xsl:value-of select="@part-no"/>
 <xsl:text>)</xsl:text>
 </td>
 <td style="text-align: center;" width="20%">
 <xsl:value-of select="qty"/>
 </td>
 <td style="text-align: right;" width="20%">
 <xsl:value-of select="price"/>
 </td>
 <td style="text-align: right;" width="20%">
 <xsl:choose>
 <xsl:when test="position()=1">
 <xsl:value-of
 select="format-number(price * qty, '$#,###.00')"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of
 select="format-number(price * qty, '#,###.00')"/>
 </xsl:otherwise>
 </xsl:choose>
 </td>
 </tr>
 </xsl:for-each>
 <tr style="font-weight: bold;">
 <td colspan="3" style="text-align: right;">
 Total:
 </td>
 <td style="text-align: right; color: white; background: black;">
 <xsl:variable name="orderTotal">
 <xsl:call-template name="sumItems">
 <xsl:with-param name="items" select="items/item" />
 </xsl:call-template>
 </xsl:variable>
 <xsl:value-of
 select="format-number($orderTotal, '$#,###.00')"/>
 </td>
 </tr>
 </table>
 </xsl:template>

 <xsl:template name="sumItems">
 <xsl:param name="items" />
 <xsl:param name="runningTotal" select="0" />
 <xsl:choose>
 <xsl:when test="$items">
 <xsl:variable name="firstItemSubtotal"
 select="$items[1]/qty * $items[1]/price" />

The document() Function | 249

 <xsl:call-template name="sumItems">
 <xsl:with-param name="items" select="$items[position() > 1]" />
 <xsl:with-param name="runningTotal"
 select="$runningTotal + $firstItemSubtotal" />
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$runningTotal" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

</xsl:stylesheet>

An Aside: Doing Math with Recursion
While we’re here, we’ll also mention the recursive technique we used to calculate the
total for each purchase order. At first glance, this seems like a perfect opportunity to
use the sum() function. We want to add the total of the price of each item multiplied
by its quantity. We could try to invoke the sum() function like this:

<xsl:value-of select="sum(item/qty*item/price)"/>

Unfortunately, the sum() function simply takes the node-set passed to it, converts each
item in the node-set to a number, and then returns the sum of all of those numbers.
The expression item/qty*item/price, while a perfectly valid XPath expression, isn’t a
valid node-set. With that in mind, we have to create a recursive <xsl:template> to do
the work for us. There are a couple of techniques worth mentioning here; we’ll go
through them in the order we used them in our stylesheet.

[2.0] If you’re using an XSLT 2.0 processor, you can use new functions of XPath 2.0 to
avoid recursion altogether. XSLT 2.0 makes this stylesheet much simpler and shorter;
we discuss all the details in the last section of this chapter. If you’re using an XSLT 2.0
processor and you don’t really care how recursion works, feel free to skip ahead.

Recursive design

First, we pass the set of all <items> elements to our recursive template:

<xsl:variable name="orderTotal">
 <xsl:call-template name="sumItems">
 <xsl:with-param name="items" select="items/item" />
 </xsl:call-template>
</xsl:variable>

Our recursive template is named sumItems; the value it returns becomes the value of
the variable $orderTotal. Within the recursive template, we use two parameters. One
is the variable containing all of the <item> elements; the other is the total of all items
we’ve processed so far. The first time we call the template, of course, this value is zero.
(We gave the parameter a default value so we don’t have to worry about it when we
call the template for the first time.) Here are the two parameters to our template:

250 | Chapter 8: Combining Documents

<xsl:template name="sumItems">
 <xsl:param name="items" />
 <xsl:param name="runningTotal" select="0" />

The body of our recursive template is an <xsl:choose> element. If the $items variable
contains at least one node, we calculate the total for the current item (the price of the
item multiplied by the quantity):

<xsl:when test="$items">
 <xsl:variable name="firstItemSubtotal"
 select="$items[1]/qty * $items[1]/price" />

Thinking back to how variables are converted to boolean values, a node-set (or se-
quence, if we’re in XSLT 2.0) that starts with at least one node is true. Notice also that
we’re calculating the subtotal for the first item ($items[1]) only. Now that we’ve cal-
culated the value of the current item, our template calls itself:

<xsl:call-template name="sumItems">
 <xsl:with-param name="items" select="$items[position() > 1]" />
 <xsl:with-param name="runningTotal"
 select="$runningTotal + $firstItemSubtotal" />
</xsl:call-template>

Notice that the $items parameter passed to the next invocation of the template contains
everything after the first item (position() > 1). The parameter $runningTotal is the
previous value of the parameter plus the total for the current item.

The template calls itself until eventually the parameter $items is empty. That means
the attribute test="$items" returns false, so the <xsl:otherwise> branch of the
<xsl:choose> element is taken. That branch uses <xsl:value-of> to output the final
value. (All other invocations of the sumItems template don’t output anything.)

Here’s the complete recursive template:

<xsl:template name="sumItems">
 <xsl:param name="items" />
 <xsl:param name="runningTotal" select="0" />
 <xsl:choose>
 <xsl:when test="$items">
 <xsl:variable name="firstItemSubtotal"
 select="$items[1]/qty * $items[1]/price" />
 <xsl:call-template name="sumItems">
 <xsl:with-param name="items" select="$items[position() > 1]" />
 <xsl:with-param name="runningTotal"
 select="$runningTotal + $firstItemSubtotal" />
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$runningTotal" />
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

Recursion is a common technique in XSLT 1.0 stylesheets. XSLT 2.0 eliminates the
need for recursion in many cases (more on that in a minute), but recursion is sometimes

The document() Function | 251

the only way to solve problems in XSLT. Knowing how to use this technique will serve
you well.

Using format-number() to control output

The final nicety in our stylesheet is that we use the XSLT format-number() function to
display the total for the current purchase order. We’ve already discussed how we set
the value of the variable $orderTotal to be the output of the template named
sumItems; once the variable is set, we use format-number to display it with a currency
sign, commas, and two decimal places:

<xsl:value-of select="format-number($order-total, '$#,###.00')"/>

Base URIs and the document() Function
In our previous stylesheet, we used the document() function to select some number of
nodes from the original source document (our list of purchase orders), and then open
those files. There are a number of ways to invoke the document() function; we’ll discuss
them briefly here.

The most common way to use the document() function is as we just did. We use an
XPath expression to describe a node-set; the document() function takes each node in
the node-set, converts it to a string, and then uses that string as a URI. So, when we
passed a node-set containing the filename attributes in the list of purchase orders, each
one is used as a URI. If those URIs are relative references (i.e., they don’t begin with a
protocol such as http), the XSLT processor needs a base URI. If the argument is a node,
the base URI of the node is used to resolve the relative reference. If the argument is a
string, as it is here, the base URI of the stylesheet is used.

Every node in the XPath source tree is associated with a base URI. When using the
document() function, the base URI is important for resolving references to various re-
sources specified with relative links.

252 | Chapter 8: Combining Documents

Here I’ll offer more detail about base URIs than you’re ever likely to
need: If a given node is an element or processing instruction node, and
that node occurs in an external entity, then the base URI for that node
is the base URI of the external entity. If an element or processing in-
struction node does not occur in an external entity, then its base URI is
the base URI of the document in which it appears. The base URI of a
document node is the base URI of the document itself, and the base URI
of an attribute, comment, namespace, or text node is the base URI of
that node’s parent.

To set the base URI of a node in an XML source document, use the
xml:base attribute. If a given node doesn’t have a base URI, the XSLT
processor looks at the node’s ancestors (the node’s parent, then the
node’s parent’s parent, and so forth) until it finds an xml:base attrib-
ute. If neither a node nor its ancestors have a xml:base attribute, the base
URI of the stylesheet is used. See the definition of the base-uri() func-
tion for more information on base URIs.

If the document() function has two arguments, the second must be a node-set. The first
argument is processed as just described. The second argument is used to set the base
URI. The base URI of the first node in the node-set (or sequence, in XSLT 2.0) is the
base URI. The two-argument form of the document() function isn’t used often, but it’s
there if you need it.

In our example, we’re using strings without any particular protocol (we’re using
po38293.xml instead of http://.../po38293.xml). You can also pass a URL to the
document() function. If we wanted to open a particular resource, we could simply pass
the name of the resource:

document('http://www.ibm.com/developerworks/news/dw_dwtp.rss')

This action would open this particular resource and process it. Be aware that XSLT
processors are required to either signal an error and halt or return an empty node-set
if a resource can’t be found. XSLT processors also don’t have to support any particular
protocols (http, ftp, etc.); you have to check the documentation of your XSLT pro-
cessor to see what protocols are supported.

Finally, a special case occurs when you pass an empty string to the document() function.
As we’ve discussed the various combinations of arguments that can be passed to the
function, we’ve gone over the rules for resolving URIs. When we call document(''), the
XSLT processor parses the current stylesheet and returns a single node—the root node
of the stylesheet itself. This technique is very useful for processing lookup tables in a
stylesheet, which we’ll discuss later in this chapter.

The document() Function | 253

The document() Function and Sorting
Up to now, we’ve written a simple XML document that contains references to other
XML documents, then we created a stylesheet that combines all those referenced XML
documents into a single output document. That’s all well and good, but we’ll probably
want to do more advanced things. For example, it might be useful to generate a docu-
ment that lists all items ordered across all purchase orders. It might also be useful to
sort all the purchase orders by the state to which they were shipped or by the last name
of the customer. We’ll go through some of these scenarios to illustrate the design chal-
lenges we face when generating documents from multiple input files.

Our first challenge will be to generate a listing of all purchase orders and sort them by
state, then by city within state. This isn’t terribly difficult; we’ll simply use the
<xsl:sort> element in conjunction with the document() function. Here’s the heart of
our new stylesheet:

<?xml version="1.0"?>
<!-- masterdox2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
...
<xsl:apply-templates
 select="document(/report/po/@filename)/purchase-order">
 <xsl:sort select="customer/address/state"/>
 <xsl:sort select="customer/address/city"/>
</xsl:apply-templates>

Here we’re selecting all of the <purchase-order> elements and sorting them by the values
of their <state> and <city> elements. Figure 8-2 shows our output document, sorted
by the value of the <state> element (the state abbreviation) in each purchase order.

Notice that we’re sorting purchase orders by the state abbreviation, not the actual state
name; we’ll address that in our next example.

Implementing Lookup Tables
We mentioned earlier that calling the document() function with an empty string enabled
us to access the nodes in the stylesheet itself. We can use this behavior to implement a
lookup table. As an example, we’ll create a lookup table that associates an abbreviation
such as ME with the state name Maine. We can then use the value from the lookup table
as the sort key. More attentive readers might have noticed in our previous example that
although the abbreviation MA does indeed sort before the abbreviation ME, a sorted list
of the state names themselves would put Maine (abbreviation ME) before
Massachusetts (abbreviation MA).

First, we’ll create our lookup table. We’ll use the fact that a stylesheet can have any
element as a top-level element, provided that element is namespace-qualified to

254 | Chapter 8: Combining Documents

distinguish it from the xsl: namespace reserved for stylesheets. Here’s the namespace
prefix definition and part of the lookup table that uses it:

<?xml version="1.0"?>
<!-- masterdox3.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:states="http://www.usps.com/ncsc/lookups/abbreviations.html"
 exclude-result-prefixes="states">

 <states:name abbrev="AL">Alabama</states:name>
 <states:name abbrev="AK">Alaska</states:name>
 <states:name abbrev="AS">American Samoa</states:name>
 <!-- Many state names deleted for brevity -->
 <states:name abbrev="WV">West Virginia</states:name>
 <states:name abbrev="WI">Wisconsin</states:name>
 <states:name abbrev="WY">Wyoming</states:name>

(The namespace mapped to the states prefix is the URL for the official list of state
abbreviations from the United States Postal Service, although it could be any string.)

To look up values in our table, we’ll use the document() function to return the root
node of our stylesheet, then we’ll look for a <states:name> element with a abbrev at-
tribute that matches the value of the current <state> element in the purchase order
we’re currently processing. Here’s the somewhat convoluted syntax that performs this
magic:

<body style="font-family: sans-serif;">
 <h1>

Figure 8-2. Purchase orders sorted by state abbreviation

Implementing Lookup Tables | 255

 Selected Purchase Orders - Sorted by state
 <span style="font-style: italic;
 text-decoration: underline;">name
 </h1>
 <xsl:for-each
 select="document(/report/po/@filename)/purchase-order
 /customer/address/state">
 <xsl:sort
 select="document('')/*/states:name[@abbrev=current()]"/>
 <xsl:sort select="../city"/>
 <xsl:apply-templates select="ancestor::purchase-order"/>
 </xsl:for-each>
</body>

Notice that we use the document() function twice; once to open the document referred
to by the filename attribute, and once to open the stylesheet itself. We also need to
discuss the XPath expression in the select attribute of the <xsl:sort> element. There
are four significant parts to this expression:

document('')
Returns the root node of the current stylesheet.

/*/
Indicates that what follows must be a top-level element of the stylesheet. This
syntax starts at the root of the document and has a single element. For our current
stylesheet, we could have written the XPath expression like this:

 select="document('')/xsl:stylesheet/
 states:name[@abbrev=current()]"

Because the root element of a stylesheet can be either <xsl:stylesheet> or
<xsl:transform>, it’s better to use the asterisk.

states:name
We’re looking for a name element in the states: namespace.

[@abbrev=current()]
Means that the abbrev attribute of the current <states:name> element has the same
value as the current node. We have to use the XSLT current() function here be-
cause we want the current node, not the context node. Inside the predicate ex-
pression, the current node is the <state> element that we’re processing, whereas
the context node is the <states:name> element that contains the abbrev attribute
that we evaluate.

Notice that the <xsl:stylesheet> element contains the exclude-result-prefixes at-
tribute to ensure the output document doesn’t declare the states: prefix. We use only
elements in this namespace to implement the lookup table; we certainly don’t need to
have the states: namespace defined in the HTML output document.

As with any stylesheet, we can write our XPath expressions in different manners. Here
is one way to access the lookup table:

256 | Chapter 8: Combining Documents

<xsl:for-each
 select="document(/report/po/@filename)/purchase-order
 /customer/address/state">
 <xsl:sort
 select="document('')/*/states:name[@abbrev=current()]"/>
 <xsl:sort select="../city"/>
 <xsl:apply-templates select="ancestor::purchase-order"/>
</xsl:for-each>

And here’s another:

<xsl:for-each
 select="document(/report/po/@filename)/purchase-order">
 <xsl:sort
 select="document('')/*/states:name
 [@abbrev=current()/customer/address/state]"/>
 <xsl:sort select="customer/address/city"/>
 <xsl:apply-templates select="."/>
</xsl:for-each>

Both of these listings do the same thing, but they specify parts of the document in
different ways. The first example creates a <xsl:for-each> for all of the <state> ele-
ments; the second uses the <purchase-order> elements. In each case, the remaining
XPath expressions are written from a different position in the node tree. Given a
<state> element, the related <city> element is at ../city, and we have to use the
ancestor axis to process the <purchase-order>. If we base our <xsl:for-each> on the
<purchase-order> element, we specify the <city> element with customer/address/
city. In the second example, specifying the <purchase-order> is done with a dot.

Both of the samples are similarly complex, but you should always be on the lookout
for simpler ways to write your XPath expressions. If every XPath expression inside an
<xsl:for-each> or <xsl:template> element is very complex, you might be able to change
the outermost expression and simplify your stylesheet.

Figure 8-3 shows the output from the stylesheet with a lookup table.

Notice that now the purchase orders have been sorted by the actual name of the state
referenced in the address, not by the state’s abbreviation. Lookup tables are an ex-
tremely useful side effect of the way the document('') function works. You could place
a lookup table in another file and use the document() function to load that information
from the other file, but the technique we’ve employed here is the most common way
to implement lookup tables.

Grouping Across Multiple Documents
Our final task will be to group our collection of purchase orders. We’ll create a new
listing that groups all the purchase orders by the state to which they were shipped.
We’ll use the grouping technique we used earlier in Chapter 7.

Grouping Across Multiple Documents | 257

We’ll define an XSLT key() for all of the <state> values in our set of purchase orders.
We’ll also create a variable that stores all of these orders. By reading all of the purchase
orders into a variable, we won’t have to call the document() function every time we
need to access a particular purchase order. With those two structures in place, we’ll be
ready to do grouping just as we did in the last chapter.

To get things started, here’s how we define the key():

<xsl:key name="po-key" match="purchase-order"
 use="customer/address/state"/>

And here’s how we load all of the purchase order documents into a variable:

<xsl:variable name="purchase-orders"
 select="document(/report/po/@filename)/purchase-order"/>

Now that we have a variable that contains all of the nodes from all of the purchase
orders, we’re ready to process them. We’ll go through these steps:

1. Start an <xsl:for-each> element to process all of the nodes in the variable
$purchase-orders.

2. Sort the purchase orders by state name. As with our previous stylesheet, this means
using the document('') function to retrieve the state name that matches the abbre-
viation in the purchase order.

3. Save the value of the current <state> in a variable.

Figure 8-3. Purchase orders sorted by state name

258 | Chapter 8: Combining Documents

4. Use the key() function to save into a variable all of the purchase orders from the
current state.

5. If this is the first time we’ve seen this particular state (we’ll use generate-id() here),
use <xsl:apply-templates> to process all the purchase orders that match the cur-
rent state. When we call <xsl:apply-templates>, we’ll sort all the purchase orders
for that state by city before we process them.

Here’s the significant portion of the stylesheet; the template for processing the
<purchase-order> element is unchanged from our previous stylesheets:

<?xml version="1.0"?>
<!-- masterdox4.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:states="http://www.usps.com/ncsc/lookups/abbreviations.html"
 exclude-result-prefixes="states">

...

<xsl:for-each select="$purchase-orders">
 <xsl:sort
 select="document('')/*/states:name
 [@abbrev=current()/customer/address/state]"/>
 <xsl:variable name="currentState"
 select="customer/address/state"/>
 <xsl:variable name="currentStatePOs"
 select="$purchase-orders/key('po-key', $currentState)"/>
 <xsl:if
 test="generate-id() = generate-id($currentStatePOs[1])">
 <h2 style="color: white; background: black;">
 Purchase Orders from
 <xsl:value-of
 select="document('')/*/states:name
 [@abbrev=$currentState]"/>
 </h2>
 <xsl:apply-templates select="$currentStatePOs">
 <xsl:sort select="customer/address/city"/>
 </xsl:apply-templates>
 </xsl:if>
</xsl:for-each>

Notice that we used the key() function to retrieve all of the <purchase-order>s that are
from the current state. All of those orders are stored in a variable. To determine whether
we’re seeing a purchase order for the first time, we generate an ID for the current order
(generate-id()) and compare that to the generated ID for the first item in the set of
purchase orders for the current state (generate-id($currentStatePOs[1])). If the two
generated IDs are the same, we know that we’re seeing a state name for the first time.

The result of our hard work looks like Figure 8-4.

Grouping Across Multiple Documents | 259

[2.0] Using XSLT 2.0 to Simplify Things
We’ve mentioned several times in this chapter that XSLT 2.0 has capabilities that can
greatly simplify our stylesheet. We’ll look at those techniques in this section.

The XSLT 1.0 stylesheet we’ve developed here has several areas ripe for improvement:

• We have to use the XSLT 1.0 grouping technique. We can avoid this clumsiness
by using XSLT 2.0’s <xsl:for-each-group> to do the grouping for us. The XSLT
processor does the work of finding all of the unique state values, simplifying our
lives significantly.

• We have to use recursion to calculate the total of each purchase order. We can use
new features of XPath 2.0 to calculate the total in one simple expression.

• Although the document('') technique we used works, it’s a convoluted way of
doing things. We can replace it with an XSLT function that takes a state abbrevi-
ation as input and returns the full name of that state. This gives us a much simpler
syntax. Calling getStateName() is much easier to understand and maintain than
document('')/*/states:name[@abbrev=$next-state].

• It’s a minor point, but we have to use an <xsl:choose> element in a couple of places.
We can use the if operator defined in the XPath 2.0 and XQuery 1.0 Functions
and Operators spec to simplify the stylesheet. Instead of <xsl:choose>,
<xsl:when>, and <xsl:otherwise>, we’ll use if, then, and else.

Figure 8-4. Purchase orders grouped by state name

260 | Chapter 8: Combining Documents

• Another minor point is that the date of each purchase order is stored in the XML
source as a set of three attributes. We can use XSLT 2.0’s support for XML Schema
datatypes to create an xs:date, and then use the power of the format-date() func-
tion to format the date more elegantly.

With these things in mind, we’ll start simplifying our stylesheet.

Grouping by Distinct Values
One problem in our final XSLT 1.0 stylesheet is that we have to find all the distinct
state values in all the purchase orders. We use the Muench method to do this, but the
code is more difficult to write and maintain. To simplify things, we can use <xsl:for-
each-group> to do everything at once. When using the group-by attribute, <xsl:for-
each-group> automatically finds all of the unique values of the <state> element. Here’s
a fragment of the code:

<xsl:for-each-group
 select="document(/report/po/@filename)/purchase-order"
 group-by="customer/address/state">
 <xsl:sort
 select="states:getStateName(current-grouping-key())"/>

The <xsl:for-each-group> element groups all of the <purchase-order> elements by the
value of their <state> elements. The <xsl:sort> sorts the groups by the actual state
names: current-grouping-key() returns the value of the current <state> element, and
states:getStateName() is an XSLT function (we’ll discuss this in the later section,
“Implementing Lookup Tables with <xsl:function>”).

Comparing this stylesheet to our final XSLT 1.0 stylesheet, we’ve used these two ele-
ments to replace roughly 15 lines of code. Even better, the new code is much simpler
and easier to maintain.

Because <xsl:for-each-group> finds all of the unique values of
<state> for us, we don’t have to worry about finding them ourselves. If
we did need to find the set of unique values, XPath 2.0 and XQuery 1.0
provide the distinct-values() function. Here’s how we would get a list
of unique states with XSLT 2.0:

<xsl:variable name="list-of-unique-states" as="xs:string*">
 <xsl:perform-sort>
 <xsl:sort select="states:getStateName(.)"/>
 <xsl:sequence
 select="distinct-values(document(/report/po/@filename)
 /purchase-order/customer/address/state)"/>

[2.0] Using XSLT 2.0 to Simplify Things | 261

 </xsl:perform-sort>
</xsl:variable>

We create a variable of type xs:string*. That means our variable will
be a sequence of strings, each of which is a unique state abbreviation.
Next we use the new <xsl:perform-sort> element to sort our unique
values by state name, not abbreviation. Inside <xsl:perform-sort>, we
have the <xsl:sort> element, which sorts all of the values by state name,
and the <xsl:sequence> element, which selects the distinct values of all
the <state> elements. (We’re using the states:getStateName()
function.)

It’s great that XSLT 2.0 gives us this powerful yet simple technique; it’s
even better that <xsl:for-each-group> simplifies things so we don’t have
to use it here at all.

Doing Math Without Recursion
Our original stylesheet had to use recursion to calculate the total of each purchase order.
We passed all of the <item> elements to a recursive template, which returned the total
for the purchase order after processing all of the <item>s. In XSLT 2.0, we can use a
simple XPath expression to do all that work for us. Here’s the single line of code:

<xsl:value-of
 select="format-number(sum(items/item/(qty * price)),
 '$#,###.00')"/>

That’s it. XPath 2.0’s support for mathematical expressions inside path expressions
makes this ridiculously easy. We replaced maybe 20 lines of code with just 1.

Implementing Lookup Tables with <xsl:function>
Using document('') to implement lookup tables is a workable approach, but we can
simplify things with an XSLT function. With a function, we can invoke
getStateName() to resolve a state abbreviation to a state name; that’s much simpler
than invoking document('')/*/states:name[@abbrev=current()] or something similar.
Here’s how our function looks:

<xsl:function name="states:getStateName" as="xs:string">
 <xsl:param name="abbr" as="xs:string"/>
 <xsl:variable name="abbreviations" as="xs:string*"
 select="'AL', 'AK', 'AS', 'AZ', 'AR', 'CA', 'CO', 'CT',
<!-- state abbreviations removed for brevity -->
 'WV', 'WI', 'WY'"/>
 <xsl:variable name="stateNames" as="xs:string*"
 select="'Alabama', 'Alaska', 'American Samoa','Arizona',
<!-- state names removed for brevity -->
 'West Virginia', 'Wisconsin', 'Wyoming'"/>
 <xsl:variable name="index"
 select="if (count(index-of($abbreviations, $abbr)) gt 0)
 then subsequence(index-of($abbreviations, $abbr), 1, 1)
 else 0"/>

262 | Chapter 8: Combining Documents

 <xsl:value-of
 select="if ($index gt 0)
 then string(subsequence($stateNames, $index, 1))
 else ''"/>
</xsl:function>

Our function takes a single string, a state abbreviation, as a parameter, and it returns
a single string. It uses two variables to store our data; $abbreviations is a sequence of
all state abbreviations, and $stateNames is a sequence of all state names. The positions
of items in the two sequences match each other. If the abbreviation passed to the func-
tion matches the fifth item in the $abbreviations sequence, the name of the state is the
fifth item in the $stateNames sequence.

To calculate the position of the matching abbreviation, we use the XPath 2.0 and
XQuery 1.0 index-of() function. This returns a sequence of xs:integers, each of which
represents the index of a match. We use the count() function to count the number of
items in the sequence returned by index-of(). If the abbreviation passed to the function
matches something in the $abbreviations sequence, the size of the sequence will be
greater than zero (actually, we know the size will be either one or zero). To get the index
of the matching item, we have to use the new subsequence() function to retrieve the
first item in the sequence. If none of the abbreviations match the parameter, the index
is zero.

Having calculated the index of the matching abbreviation, we return the appropriate
state name. If the value of $index is greater than zero, we use subsequence() to return
the appropriate item from the $stateNames sequence. If the $index is zero (we get a state
abbreviation we’ve never heard of), we return an empty string.

Notice that we simplify our code here by using the XPath 2.0 and XQuery 1.0 if op-
erator. We could do this with <xsl:choose>, <xsl:when>, and <xsl:otherwise>, but if
is much simpler. Also notice that we used the gt comparison operator; we can do that
because we’re comparing two atomic values here. We could have used > or > with
the same results.

Now that we have our function defined, states:getStateName('AL') returns Alabama.
We can use this greatly simplified syntax wherever we need it. This puts all of the logic
for resolving state abbreviations into one place in the stylesheet, instead of forcing us
to use document('') with the appropriate XPath expression wherever we need it.

Using if Instead of <xsl:choose>
Although the XSLT elements <xsl:if>, <xsl:choose>, <xsl:when>, and
<xsl:otherwise> provide the same function as the if-then-else functions of most pro-
gramming languages, they’re much more verbose. We can use the XPath 2.0 and
XQuery 1.0 if operator to simplify things.

[2.0] Using XSLT 2.0 to Simplify Things | 263

Our XSLT 1.0 stylesheet uses <xsl:choose> in two places: to choose the background
color of table rows, and to change the decimal format for currency amounts in the first
row of each purchase order. Here’s the first <xsl:choose>:

<tr>
 <xsl:attribute name="style">
 <xsl:text>background: </xsl:text>
 <xsl:choose>
 <xsl:when test="position() mod 2">
 <xsl:text>#CCCCFF</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>#66FF66</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:text>;</xsl:text>
 </xsl:attribute>

We create an attribute named style. If this is an odd-numbered row (position() mod
2 is 1, which evaluates to true), we set the background color to #CCCCFF; otherwise, we
set it to #66FF66. In our XSLT 2.0 stylesheet, we can replace those elements with this
attribute value template:

<tr style="{if (position() mod 2)
 then 'background: #CCCCFF;'
 else 'background: #66FF66;'}">

The other place we use <xsl:choose> is to choose a decimal format. Here’s how we do
it in XSLT 2.0:

<xsl:value-of
 select="if (position() = 1)
 then format-number(price * qty, '$#,###.00')
 else format-number(price * qty, '#,###.00')"/>

In both cases, we’ve replaced several elements with a single if statement inside an
attribute.

Using the format-date() Function
Our last enhancement is to use the new format-date() function to format the date of
the purchase order. This is an addition to the function of our XSLT 1.0 stylesheet;
everything else we’ve done here has duplicated XSLT 1.0 function in a much simpler
way. The date of each purchase order is stored as three attributes named year, month,
and day. We’ll use the values of those three attributes to create a new xs:date value,
then we’ll use format-date() to format the value.

To create a new xs:date value, we need a string in the format yyyy-mm-dd.
xs:date('2006-10-10') is a valid call to the xs:date constructor. To complicate things,
the month and day values must have two digits. In other words, xs:date('2006-9-8')
raises an error. Our purchase orders don’t necessarily have two-digit month and day

264 | Chapter 8: Combining Documents

values, so we’ll have to write code to add a leading zero if either value is less than 10.
Here’s how we do this:

<xsl:variable name="monthValue" as="xs:string"
 select="if (date/@month < 10)
 then concat('0', date/@month)
 else date/@month"/>
<xsl:variable name="dayValue" as="xs:string"
 select="if (date/@day < 10)
 then concat('0', date/@day)
 else date/@day"/>

We compare the value of the attributes to 10; if they’re smaller, we add the string '0'
to the value. (Notice that the two variables we’re creating here are of datatype
xs:string.) In this code, we have to use the < operator because we’re comparing a
node to a number. If we want to use the lt operator, we’d have to code if (number(date/
@day) lt 10).

Once we’ve normalized the month and day values, we can create our xs:date value and
format it. Here’s the rest of the code:

<xsl:variable name="orderDate" as="xs:date"
 select="xs:date(concat(date/@year, '-',
 $monthValue, '-', $dayValue))"/>
<xsl:value-of
 select="format-date($orderDate, '[FNn], [MNn] [D1], [Y]')"/>

The date-formatting codes here format the date 2006-10-10 as Tuesday, October 10,
2006. To do this in XSLT 1.0, we would have to create a lookup table to convert month
numbers to their text equivalents. We would also need a lookup table for the names of
the days of the week, although we’d have to write an extension function to figure out
that the 10th of October, 2006 occurred on a Tuesday.

The Complete XSLT 2.0 Solution
Here’s how our final stylesheet looks in XSLT 2.0:

<?xml version="1.0"?>
<!-- masterdox5.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:states="http://www.usps.com/ncsc/lookups/abbreviations.html"
 exclude-result-prefixes="xs states">

 <xsl:variable name="purchase-orders"
 select="document(/report/po/@filename)/purchase-order"/>

 <xsl:function name="states:getStateName" as="xs:string">
 <xsl:param name="abbr" as="xs:string"/>
 <xsl:variable name="abbreviations" as="xs:string*"
 select="'AL', 'AK', 'AS', 'AZ', 'AR', 'CA', 'CO', 'CT',
 <!-- state abbreviations removed for brevity -->

[2.0] Using XSLT 2.0 to Simplify Things | 265

 'WV', 'WI', 'WY'"/>
 <xsl:variable name="stateNames" as="xs:string*"
 select="'Alabama', 'Alaska', 'American Samoa','Arizona',
 <!-- state names removed for brevity -->
 'West Virginia', 'Wisconsin', 'Wyoming'"/>
 <xsl:variable name="index"
 select="if (count(index-of($abbreviations, $abbr)) gt 0)
 then subsequence(index-of($abbreviations, $abbr), 1, 1)
 else 0"/>
 <xsl:value-of
 select="if ($index gt 0)
 then string(subsequence($stateNames, $index, 1))
 else ''"/>
 </xsl:function>

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="/report/title"/></title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>
 Selected Purchase Orders -
 <span style="font-style: italic;
 text-decoration: underline;">Grouped
 by state name
 </h1>
 <xsl:for-each-group
 select="$purchase-orders" group-by="customer/address/state">
 <xsl:sort
 select="states:getStateName(current-grouping-key())"/>
 <h2 style="color: white; background: black;">
 Purchase Orders from
 <xsl:value-of
 select="states:getStateName(current-grouping-key())"/>
 </h2>
 <xsl:for-each select="current-group()">
 <xsl:sort select="customer/address/city"/>
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </xsl:for-each-group>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="purchase-order">
 <h3>
 <xsl:value-of
 select="customer/address[@type='business']/name/title"/>
 <xsl:text> </xsl:text>
 <xsl:value-of
 select="customer/address[@type='business']/name/first-name"/>
 <xsl:text> </xsl:text>

266 | Chapter 8: Combining Documents

 <xsl:value-of
 select="customer/address[@type='business']/name/last-name"/>
 <xsl:text> - </xsl:text>
 <xsl:value-of
 select="customer/address[@type='business']/city"/>
 <xsl:text>, </xsl:text>

 <xsl:value-of
 select="customer/address[@type='business']/state"/>

 </h3>
 <p>
 <xsl:text>Ordered on </xsl:text>
 <xsl:variable name="monthValue" as="xs:string"
 select="if (date/@month < 10)
 then concat('0', date/@month)
 else date/@month"/>
 <xsl:variable name="dayValue" as="xs:string"
 select="if (date/@day < 10)
 then concat('0', date/@day)
 else date/@day"/>
 <xsl:variable name="orderDate" as="xs:date"
 select="xs:date(concat(date/@year, '-',
 $monthValue, '-', $dayValue))"/>
 <xsl:value-of
 select="format-date($orderDate, '[FNn], [MNn] [D1], [Y]')"/>
 <xsl:text>:</xsl:text>
 </p>
 <table width="80%" border="0">
 <tr style="background: #66FF66;">
 <th>Item</th>
 <th>Quantity</th>
 <th>Price Each</th>
 <th>Total</th>
 </tr>
 <xsl:for-each select="items/item">
 <tr style="{if ((position() mod 2) = 1)
 then 'background: #CCCCFF;'
 else 'background: #66FF66;'}">
 <td width="40%">

 <xsl:value-of select="name"/>

 <xsl:text> (part #</xsl:text>
 <xsl:value-of select="@part-no"/>
 <xsl:text>)</xsl:text>
 </td>
 <td style="text-align: center;" width="20%">
 <xsl:value-of select="qty"/>
 </td>
 <td style="text-align: right;" width="20%">
 <xsl:value-of select="price"/>
 </td>
 <td style="text-align: right;" width="20%">
 <xsl:value-of

[2.0] Using XSLT 2.0 to Simplify Things | 267

 select="if (position() = 1)
 then format-number(price * qty, '$#,###.00')
 else format-number(price * qty, '#,###.00')"/>
 </td>
 </tr>
 </xsl:for-each>
 <tr style="font-weight: bold;">
 <td colspan="3" style="text-align: right;">
 Total for this order:
 </td>
 <td align="right" style="color: white; background: black;">
 <xsl:value-of
 select="format-number(sum(items/item/(qty * price)),
 '$#,###.00')"/>
 </td>
 </tr>
 </table>
 </xsl:template>

</xsl:stylesheet>

The results of our stylesheet are as shown in Figure 8-5.

Notice that the dates are formatted differently than they were in the XSLT 1.0 version;
with that exception, the output is identical, even though the stylesheet is much shorter.

Figure 8-5. Purchase orders grouped by state name—XSLT 2.0 version

268 | Chapter 8: Combining Documents

[2.0] The doc() and doc-available() Functions
XSLT 2.0 provides a new function, doc(), that is very similar to the document() func-
tion, but that is simpler in a couple of ways. First of all, the document() function can
take a node-set or sequence as its first argument, whereas doc() takes a single string.
In our earlier stylesheets, we created a variable containing all of the nodes from all of
the documents referenced in our list of purchase orders:

<xsl:variable name="purchase-orders"
 select="document(/report/po/@filename)/purchase-order"/>

This returns a sequence of purchase-order nodes, each of which has the structure de-
fined in the purchase order. We can use the variable $purchase-orders in an <xsl:for-
each> or <xsl:for-each-group> element. A stylesheet that contains this markup raises
an error if there is more than one <po> element in the source document:

<!-- This doesn't work with our sample document -->
<xsl:variable name="purchase-orders"
 select="doc(/report/po/@filename)/purchase-order"/>

If we want to use the doc() function, there are several things we could do. We could
specify a particular <po> element:

<xsl:variable name="purchase-orders"
 select="doc(/report/po[2]/@filename)/purchase-order"/>

A more practical solution would be to put the doc() function into an <xsl:for-each>
element:

<xsl:for-each select="/report/po">
 <xsl:variable name="purchase-orders"
 select="doc(@filename)/purchase-order"/>
</xsl:for-each>

We could also change our input document so that it has only a single <po> element;
although that’s hardly a worthwhile solution, the doc() function would in fact work.

To contrast the two functions, the doc() function returns the document node of a single
XML document, while the document() function can return a set of nodes from multiple
documents. In most cases, you’ll want to use the more flexible document() function
instead.

Second, we mentioned that the document() function has an optional second argument
to set a base URI for resolving relative URLs. The doc() function doesn’t have this op-
tion; the base URI is always the base URI of the stylesheet.

The final difference between doc() and document() is that the document() function
supports fragment identifiers in the URL, whereas the doc() function does not. If your
processor uses fragment identifiers, the document() function can return specific nodes
in a document rather than simply returning the document node.

<!-- This is legal: -->
<xsl:variable name="mainContent"

[2.0] The doc() and doc-available() Functions | 269

 select="document('http://www.ibm.com/developerworks/index.html#main')"/>

<!-- This is not: -->
<xsl:variable name="mainContent"
 select="doc('http://www.ibm.com/developerworks/index.html#main')"/>

Here’s a small excerpt of our first stylesheet (masterdox1.xsl), rewritten to use doc()
instead of document():

<?xml version="1.0"?>
<!-- doc.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="/report/title"/></title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Selected Purchase Orders - Unsorted</h1>
 <xsl:for-each select="/report/po">
 <xsl:apply-templates
 select="doc(@filename)/purchase-order"/>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>
...

We’ve structured our stylesheet so that each filename attribute is passed to the doc()
function as a single string. This gives us the same results as the original stylesheet;
rewriting this chapter’s more complicated stylesheets to use doc() instead of
document() would be more difficult.

As a companion to the doc() function, XPath 2.0 and XQuery 1.0 provide the doc-
available() function. This returns true if a given URL is available; it returns false
otherwise. Here’s a simple stylesheet that uses this function:

<?xml version="1.0"?>
<!-- doc-available.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the doc-available() function:
</xsl:text>

 <xsl:text>
 doc-available('polist.xml') = </xsl:text>
 <xsl:value-of select="doc-available('polist.xml')"/>

 <xsl:text>

 doc-available('polist2.xml') = </xsl:text>

270 | Chapter 8: Combining Documents

 <xsl:value-of select="doc-available('polist2.xml')"/>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates these results:

Tests of the doc-available() function:

 doc-available('polist.xml') = true

 doc-available('polist2.xml') = false

You can use the doc-available() function to see whether opening a particular URL
would raise an error. If doc-available() returns true, it’s safe to use the doc() function
to open the requested URL.

Be aware that the argument to doc-available() has the same restrictions
as the argument to doc(). If you pass an argument to doc-available()
that isn’t legal for doc() (the aforementioned expression doc(/report/
po/@filename)/purchase-order, for example), doc-available() returns
false.

To sum it up, if doc-available() returns true, then document() will
work; on the other hand, if doc-available() returns false, it’s possible
that document() will still work. XSLT 2.0 doesn’t have a document-
available() function.

[2.0] The collection() Function
The collection() function takes a string as its argument and returns a collection of
nodes. Defined as part of the XPath 2.0 spec, it gives us the ability to use a URI to
retrieve a collection of documents. How those documents are stored (or whether they’re
really documents at all) is implementation-dependent. In particular, the spec mentions
accessing data in a relational database as a possible implementation of the
collection() function. The fact that the string passed to the function can be generated
and can contain parameters makes collection() very flexible.

We’ll look at a short example here. Here’s the document we’ll pass to the
collection() function:

<?xml version="1.0"?>
<!-- polist.xml -->
<collection>
 <doc href="po38292.xml"/>
 <doc href="po38293.xml"/>
 <doc href="po38294.xml"/>
 <doc href="po38295.xml"/>
</collection>

[2.0] The collection() Function | 271

This is very similar to the list of purchase orders we worked with earlier in this chapter.
The stylesheet that invokes the collection() function looks like this:

<?xml version="1.0"?>
<!-- collection.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the collection() function:</xsl:text>

 <xsl:variable name="docPile" as="node()*"
 select="collection('polist.xml')"/>

 <xsl:text>

 The customers in the </xsl:text>
 <xsl:text>collection are:
 </xsl:text>
 <xsl:for-each select="$docPile/purchase-order/customer">
 <xsl:sort select="address/name/last-name"/>
 <xsl:value-of
 select="address/name/title,
 address/name/first-name,
 address/name/last-name"
 separator=" "/>
 <xsl:text>
 </xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

The stylesheet extracts the nodes from the collection() function and stores them in
the variable $docPile. Once we have the nodes from the collection, we sort all of the
customers in all of those purchase orders by last name, and then write them out. The
results look like this:

A test of the collection() function:

 The customers in the collection are:
 Ms. Natalie Attired
 Mrs. Mary Backstayge
 Mr. Chester Hasbrouck Frisby
 Ms. Amanda Reckonwith

See the definition of the [2.0] collection() function in Appendix C for a more complete
discussion.

[2.0] The unparsed-text() and unparsed-text-available()
Functions
The last new function for combining documents is the unparsed-text() function. This
lets you read in text from a URL. That text is not parsed, letting you read in text

272 | Chapter 8: Combining Documents

documents, comma-separated values, or even HTML documents that aren’t well-
formed XML. What’s more, you can combine unparsed-text() with other new features
such as the tokenize() function or the <xsl:analyze-string> element to process that
text and transform it in a useful way.

As an example, we’ll read in a file of comma-separated values and output them as an
HTML table of addresses. Here’s the comma-separated file, unparsed-text.csv:

Mr.,Chester Hasbrouck,Frisby,1234 Main Street,Sheboygan,WI,48392
Ms.,Natalie,Attired,707 Breitling Way,Winter Harbor,ME,00218
Ms.,Amanda,Reckonwith,930-A Chestnut Street,Lynn,MA,02930
Mrs.,Mary,Backstayge,283 First Avenue,Skunk Haven,MA,02718

We’ll go through three simple steps to process this data. First, we’ll use the
tokenize() function to get each line of the file. Next, we’ll use tokenize() to get each
comma-separated value. Finally, we’ll take each value and transform it appropriately.
Using the comma-separated file we’ve listed here, the third comma-separated value in
each line is the customer’s last name, the seventh value is the zip code, and so forth.

To process the file one line at a time, we’ll use this technique, courtesy of the XSLT 2.0
spec:

<xsl:for-each
 select="tokenize(unparsed-text('addresses.csv'), '\r?\n')">

The <xsl:for-each> element processes the file one line at a time, while the regular
expression \r?\n matches a line end. (As the spec points out, unparsed-text() doesn’t
normalize line endings, so we have to allow for an optional carriage return, indicated
by \r?.)

Within <xsl:for-each>, we tokenize each line. This is easy because we’re simply looking
for the values between the commas. The tokenize() function returns a sequence, so
we put that sequence into a variable:

<xsl:variable name="tokens" select="tokenize(., ',')"/>

Before we process the comma-separated values, we use the count() function to make
sure the tokenizer found anything. If the CSV file contains a blank line, the number of
tokens for that line will be zero; we’ll want to ignore that line and move on to the next
one. The rest of the stylesheet uses the subsequence() function to retrieve the particular
values we want.

Here’s the complete stylesheet that processes the CSV file:

<?xml version="1.0"?>
<!-- unparsed-text.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>

[2.0] The unparsed-text() and unparsed-text-available() Functions | 273

 <head>
 <title>Customer Addresses</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Customer Addresses</h1>
 <table width="60%" border="0">
 <tr style="background: #66FF66;">
 <th>Name</th>
 <th>Street</th>
 <th>City</th>
 <th>State</th>
 <th>Zip</th>
 </tr>
 <xsl:for-each
 select="tokenize(unparsed-text('addresses.csv'), '\r?\n')">
 <xsl:variable name="tokens" select="tokenize(., ',')"/>
 <xsl:if test="count($tokens)">
 <tr style="{if (position() mod 2)
 then 'background: #CCCCFF;'
 else 'background: #66FF66;'}">
 <td width="40%">
 <xsl:value-of
 select="subsequence($tokens, 1, 2)" separator=" "/>
 <xsl:text> </xsl:text>

 <xsl:value-of select="subsequence($tokens, 3, 1)"/>

 </td>
 <td width="20%">
 <xsl:value-of select="subsequence($tokens, 4, 1)"/>
 </td>
 <td width="20%">
 <xsl:value-of select="subsequence($tokens, 5, 1)"/>
 </td>
 <td width="10%" style="text-align: center;">
 <xsl:value-of select="subsequence($tokens, 6, 1)"/>
 </td>
 <td width="10%" style="text-align: center;">
 <xsl:value-of select="subsequence($tokens, 7, 1)"/>
 </td>
 </tr>
 </xsl:if>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

The results look like Figure 8-6.

Notice that we selected the first two tokens (the customer’s courtesy title and first name)
as a sequence, and then wrote them out with the attribute separator=" ". If a customer

274 | Chapter 8: Combining Documents

doesn’t have a courtesy title, our stylesheet doesn’t insert an unnecessary space before
the customer’s first name.

The unparsed-text() function has an optional second argument to specify the encoding
of the document located at the URL. For example, if the file addresses.csv used the
UTF-16 encoding, we would use unparsed-text('addresses.csv', 'utf-16') to read
the file.

You can use the unparsed-text() function to import an XML or HTML file without
parsing it. See the definition of the unparsed-text() function for more examples.

Analogous to the doc-available() function is the new unparsed-text-available()
function. It returns true if the unparsed text located at a given URL is available; it
returns false otherwise.

Summary
This chapter completes our tour of the XSLT and XPath functions that work with
multiple documents. These powerful functions allow us to generate an output docu-
ment containing elements from many different input documents. In our examples here,
we generated several views of those input documents, but many more combinations
might be useful. The biggest benefit of these functions is that they allows us to define
views of multiple documents that are separate from those documents themselves. As
we need to define other views, we don’t have to change our input documents.

We also looked at using the new unparsed-text() function to read non-XML data and
add it to our result documents. The functions we’ve discussed here can save you a
tremendous amount of development time in generating reports and other summarizing
documents.

Figure 8-6. HTML document generated from a file of comma-separated values

Summary | 275

CHAPTER 9

Extending XSLT

To this point, we’ve spent a lot of time learning how to use the built-in features of XSLT
and XPath to get things done. We’ve also talked about the somewhat unusual pro-
cessing model that makes life challenging for programmers from the world of proce-
dural languages (a.k.a. Earth). But what do you do if you still can’t do everything with
XSLT and XPath?

In this chapter, we’ll discuss the XSLT extension mechanism that allows you to add
new functions and elements to the language. The XSLT standard doesn’t define all of
the details about how these things should work, so there are some differences between
processors. The good news is that if you write an extension function or element that
works with your favorite processor, another vendor can’t do something sinister to pre-
vent your functions or elements from working. The less good news is that if you decide
to change XSLT processors, you’ll probably have to change your code.

Along the way, we’ll also discuss the EXSLT project, whose goals are to provide a
common library of extension functions that work across different XSLT processors.

The examples in this chapter are written for the Java-based Saxon and Xalan processors,
and for the .NET framework (using C#). We’ll discuss how to write stylesheets that
can work with multiple processors, and we’ll briefly look at the differences between
the various APIs supported by those processors. In addition, the Xalan-J processor
supports Apache’s Bean Scripting Framework (BSF), which means we can write ex-
tensions in Jython (also known as JPython), JavaScript, Jacl, and any other language
supported by the BSF.

The XSLT Extension Mechanism
The XSLT standard defines two kinds of extensions: extension elements and extension
functions. The spec also defines fallback processing, a way for stylesheets to respond
gracefully when extension elements and functions aren’t available. (Fallback processing
also applies when we ask an XSLT 1.0 processor to process an XSLT 2.0 stylesheet.)
We’ll talk about these items briefly, and then we’ll move on to some examples that
illustrate the full range of extensions and fallback processing.

277

Keep in mind that the XSLT specs define how the extension mechanism should work;
they do not define how it should be implemented. As we’ll see throughout this chapter,
different XSLT processors implement extensions in different ways. For example, a Java-
based XSLT processor might use a Java class to implement an extension function or
extension element, while a .NET XSLT processor might use a .NET class to do the same
thing. How those classes are specified varies from one processor to the next.

Extension Elements
An extension element is an element that should be processed by a piece of code external
to the XSLT processor. The implementation details vary from one XSLT processor to
the next, as you’d expect. We’ll discuss how an extension element can access the XPath
representation of our XML source document, how (or if) it can process attribute value
templates, how it can generate output, and how (or if) it can move through the XPath
tree to manipulate the source document. We’ll demonstrate various APIs to do all of
these things; the APIs, of course, vary quite a bit between processors. Finally, although
XSLT processors typically provide an extension writer with access to the XML source,
the standard doesn’t define a set of functions or access methods that must be supported.

Extension Functions
As you might guess, an extension function is defined in a piece of code accessed from
the XSLT stylesheet. In some cases, that function is written in a scripting language in
the stylesheet itself. In those instances, the scripting code is contained in an XML ele-
ment that is not in the XSLT namespace. In other cases, the function is in a separate
file that is loaded by the XSLT processor at runtime. The code for the function might
be written in a scripting language or it might be written in a compiled language.

Regardless of how the extension function is written or accessed, you can pass values
to the function and the function can return a result. That result can be any of the
datatypes supported by XPath. In addition, XSLT processors are free to allow extension
functions to return other datatypes, although those other datatypes must be handled
by some other function that does return one of XPath’s datatypes.

Fallback Processing
The final part of XSLT’s extension mechanism uses the <xsl:fallback> element. This
element is processed whenever an XSLT processor doesn’t support the surrounding
element. For example, the <xsl:result-document> element is new in XSLT 2.0. We can
put an <xsl:fallback> element inside <xsl:result-document>. If we pass the stylesheet
to an XSLT 1.0 processor, it won’t support the <xsl:result-document> element. The
XSLT 1.0 processor will look inside the <xsl:result-document> for an <xsl:fallback>
element; if it finds one, it will process the contents of <xsl:fallback>. As we’ll see a
little later in this chapter, <xsl:fallback> can itself contain an <xsl:fallback>

278 | Chapter 9: Extending XSLT

element. The <xsl:fallback> element gives the XSLT processor a chance to respond
gracefully when it can’t perform the requested task.

Namespaces for Extensions
XSLT extension elements and extension functions must have a namespace prefix dif-
ferent from the XSLT namespace prefix. For example, here’s the start of a stylesheet
that declares several namespace prefixes:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns:xalan-java="http://xml.apache.org/xslt/java"
 xmlns:saxon-java="java:java.lang.Math"
 extension-element-prefixes="xalan-java saxon-java">

By default, the XSLT processor copies all of the non-XSLT namespaces to the output
document. That means the svg, xalan-java, and saxon-java namespaces will be defined
in the output. In this example, we’re generating an SVG document using extensions
associated with the xalan-java and saxon-java namespaces. We don’t need our exten-
sion namespaces defined in the output document, so we use the extension-element-
prefixes attribute to make sure they aren’t in the generated document. The svg
namespace, on the other hand, will appear in the output document, which is exactly
what we want.

[2.0] Creating New Functions with <xsl:function>
XSLT 2.0 adds the <xsl:function> element. This lets you define your own functions in
the stylesheet itself. This is the simplest extension that we’ll examine in this chapter;
the extension itself is in the same file and same syntax as the stylesheet, and the standard
is very clear on how the function is defined and invoked. We’ll use a simple stylesheet
that creates a table in which the background color of each cell cycles through four
different colors. Given the position of the current item, our function will return one of
the four values.

To define a function, there are several things we have to do: define a (non-XSLT)
namespace for the function, name the function, define what datatype it returns, and
define the name and datatype of any parameters the function has. Defining a namespace
is simple enough, although we need to remember to put our namespace prefix in the
exclude-result-prefixes attribute of <xsl:stylesheet>. We’ll call our function
getBackgroundColor, and it will return an xs:string naming the background color of
each table cell. Finally, the input to our function is an xs:integer of the position of the
current item. The function looks like this:

<xsl:function name="sample:getBackgroundColor" as="xs:string">
 <xsl:param name="pos" as="xs:integer"/>

[2.0] Creating New Functions with <xsl:function> | 279

 <xsl:value-of select="$colors[($pos mod count($colors)) + 1]"/>
</xsl:function>

The function is in the sample namespace, it returns a string, and it takes an integer as
its only parameter. It references the variable $colors to retrieve a color name. Rather
than use an XML document for input, we’ll create a sequence of numbers and put each
one in a table cell. Here’s the stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!-- simple-function.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:sample="http://www.oreilly.com/catalog/xslt"
 exclude-result-prefixes="xs sample">

 <xsl:output method="html" include-content-type="no"/>

 <xsl:variable name="colors" as="xs:string *"
 select="('green', 'grey', 'blue', 'red')"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>A table with different background colors</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1 style="font-size: 28;">
 A table with different background colors:
 </h1>
 <table border="3" cellpadding="5" cellspacing="5" width="50%">
 <tr>
 <xsl:for-each select="1 to 12">
 <td style="font-size: 48; color: black;
 font-weight: bold; text-align: center;"
 bgcolor="{sample:getBackgroundColor(position())}">
 <xsl:value-of select="."/>
 </td>
 </xsl:for-each>
 </tr>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:function name="sample:getBackgroundColor" as="xs:string">
 <xsl:param name="pos" as="xs:integer"/>
 <xsl:value-of select="$colors[($pos mod count($colors)) + 1]"/>
 </xsl:function>

</xsl:stylesheet>

In this example, we use the XPath 2.0 to operator to create a sequence of values, and
then we invoke the getBackgroundColor function to set the background color of each
table cell. Figure 9-1 shows how the results look in a browser.

280 | Chapter 9: Extending XSLT

To do the equivalent of this in XSLT 1.0, we would have to use logic like this:

<xsl:choose>
 <xsl:when test="position() mod 4 = 0">
 <!-- background color is xxx -->
 </xsl:when>
 <xsl:when test="position() mod 4 = 1">
 <!-- background color is xxx -->
 </xsl:when>
 ...
</xsl:choose>

This code is more verbose and is also less maintainable. If we change the number of
colors in the sequence, we would have to change the XSLT 1.0 code. Our XSLT 2.0
function, on the other hand, uses the length of the sequence as part of its calculations,
so we could add as many colors to the list as we’d like without changing the function
code.

Example: Generating Multiple Output Files
The whole point of extensions is to allow you to add new capabilities to the XSLT
processor. One of the most common needs is the ability to generate multiple output
documents. As we saw earlier, the document() function allows you to have multiple
input documents—but XSLT 1.0 doesn’t give us any way to create these. Saxon’s sup-
port for XSLT 2.0 includes the <xsl:result-document> element, which lets us generate
multiple output documents. Although Xalan doesn’t support XSLT 2.0, it does support
an extension element (<redirect:write>) that does the same thing. We’ll look at a
stylesheet that uses <xsl:fallback> to generate useful results regardless of the processor
we’re using. If we’re using Saxon or Xalan, we’ll get multiple output documents that
are hyperlinked together; if we’re using any other processor, we’ll get a single HTML
file that contains the same information.

Here’s the source document we’ll use:

<?xml version="1.0"?>
<!-- chapters.xml -->
<book>
 <title>XSLT Topics</title>
 <chapter>

Figure 9-1. Results generated with <xsl:function>

Example: Generating Multiple Output Files | 281

 <title>XPath</title>
 <para>If this chapter had any text, it would appear here.</para>
 </chapter>
 <chapter>
 <title>Stylesheet Basics</title>
 <para>If this chapter had any text, it would appear here.</para>
 </chapter>
...
 <chapter>
 <title>Combining XML Documents</title>
 <para>If this chapter had any text, it would appear here.</para>
 </chapter>
</book>

In addition to the <xsl:fallback> element, our stylesheet also uses the element-
available() function to determine what elements are available. If we can’t generate
multiple output documents (i.e., the elements we need aren’t available), we create a
single HTML file. If the elements are available, we first create a single HTML file with
hyperlinks to the individual HTML files that we’ll create later in the stylesheet. When
we create the individual files, we’ll use the <xsl:result-document> and
<redirect:write> elements with <xsl:fallback> to handle with XSLT processors that
don’t support those elements.

Let’s go through the relevant parts of this example. To begin with, our
<xsl:stylesheet> element defines the redirect namespace prefix and tells the XSLT
engine that the prefix will be used to refer to an extension element:

<?xml version="1.0" encoding="utf-8"?>
<!-- multiple-output-files.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:redirect="org.apache.xalan.xslt.extensions.Redirect"
 extension-element-prefixes="redirect">

The extension-element-prefixes attribute tells the XSLT processor that any element
or function name with the redirect namespace prefix should be handled by an exten-
sion. When the processor encounters something from this namespace, it loads a piece
of code and tells it to handle the request from the stylesheet. If we don’t tell the XSLT
processor that redirect is an extension element prefix, Xalan-J throws an error.

The syntax of everything we’ve done so far is according to the standard, although there’s
a fair amount of latitude in what the XSLT engines do with the information we’ve
defined. For example, when defining the redirect namespace, Xalan uses the value as
a Java classname. In other words, Xalan attempts to load the class
org.apache.xalan.xslt.extensions.Redirect when it encounters an extension element
or function defined with this namespace.

In the first part of our stylesheet, we use the element-available() function to see
whether the XSLT processor supports the XSLT 2.0 element <result-document>. In the
second part, we tell the processor what to do, and we include <xsl:fallback> ele-
ments in case the processor doesn’t support XSLT 2.0.

282 | Chapter 9: Extending XSLT

The first part of the stylesheet looks like this:

<xsl:choose>
 <xsl:when test="element-available('xsl:result-document')">
 <-- Create an external link and a list item for each <chapter> -->
 </xsl:when>
 <xsl:when test="element-available('redirect:write')">
 <-- Create an external link and a list item for each <chapter> -->
 </xsl:when>
 <xsl:otherwise>
 <-- Create an internal link and a list item for each <chapter> -->
 </xsl:otherwise>
</xsl:choose>

For the first two branches, we generate a link of the form ,
where n is the position of the current chapter. For the last branch, we generate a link
of the form . If the processor can generate multiple output files,
we’ll generate a link to that separate file; otherwise, we’ll create a link to a section of
the current document.

The second part of the stylesheet looks like this:

<xsl:result-document method="html"
 include-content-type="no"
 href="{concat('chapter', position(), '.html')}">
 <-- Create a separate HTML file for each <chapter> -->
 <xsl:fallback>
 <redirect:write select="concat('chapter', position(), '.html')">
 <-- Create a separate HTML file for each <chapter> -->
 <xsl:fallback>
 <-- Create a named anchor, an <h1> and a paragraph >
 </xsl:fallback>
 </redirect:write>
 </xsl:fallback>
</xsl:result-document>

We ask the XSLT processor to use the <xsl:result-document> element. If we’re not
using an XSLT 2.0 processor, this won’t work, so the processor tries to use the
<xsl:fallback> element. If we’re using Xalan-J, the <redirect:write> element is sup-
ported; if not, the processor uses the last <xsl:fallback> element.

If our XSLT processor can generate multiple output files, the HTML document appears
as in Figure 9-2.

Clicking on any of the links here takes us to one of the generated files. Each separate
file looks as shown in Figure 9-3.

If the XSLT processor can’t generate multiple output files, we get a single file that
contains all of the text of all of the chapters. The document starts with a set of links to
each section in the document, as shown in Figure 9-4.

Here’s the complete stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!-- multiple-output-files.xsl -->

Example: Generating Multiple Output Files | 283

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:redirect="org.apache.xalan.xslt.extensions.Redirect"
 extension-element-prefixes="redirect">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <xsl:comment>
 <xsl:text>Results generated by </xsl:text>
 <xsl:value-of select="system-property('xsl:vendor')"/>
 </xsl:comment>
 <title><xsl:value-of select="book/title"/></title>
 </head>
 <body style="font-family: sans-serif;">
 <h1><xsl:value-of select="book/title"/></h1>
 <p>Here are some interesting XSLT topics:</p>

Figure 9-2. HTML file with links to multiple output files

Figure 9-3. An individual HTML output file

284 | Chapter 9: Extending XSLT

 <xsl:choose>
 <xsl:when test="element-available('xsl:result-document')">
 <xsl:apply-templates select="book/chapter" mode="separate-files"/>
 </xsl:when>
 <xsl:when test="element-available('redirect:write')">
 <xsl:apply-templates select="book/chapter" mode="separate-files"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:for-each select="book/chapter">

 <xsl:value-of select="title"/>

 </xsl:for-each>
 </xsl:otherwise>
 </xsl:choose>

 <xsl:for-each select="book/chapter">
 <xsl:result-document method="html"
 include-content-type="no"
 href="{concat('chapter', position(), ".html')}">
 <xsl:apply-templates select="." mode="create-html-file"/>

 <xsl:fallback>
 <redirect:write
 select="concat('chapter', position(), ".html')">
 <xsl:apply-templates select="." mode="create-html-file"/>

 <xsl:fallback>

Figure 9-4. A single HTML output file that contains all the text of all the chapters

Example: Generating Multiple Output Files | 285

 <h1>
 <xsl:value-of select="title"/>
 </h1>
 <xsl:apply-templates select="*[position() > 1]"/>
 </xsl:fallback>
 </redirect:write>
 </xsl:fallback>
 </xsl:result-document>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="chapter" mode="separate-files">

 <xsl:value-of select="title"/>

 </xsl:template>

 <xsl:template match="chapter" mode="create-html-file">
 <html>
 <head>
 <title><xsl:value-of select="title"/></title>
 </head>
 <body style="font-family: sans-serif;">
 <h1><xsl:value-of select="title"/></h1>
 <xsl:apply-templates select="*[position() > 1]"/>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

Notice that the stylesheet is a version 2.0 stylesheet. Telling an XSLT
1.0 processor that a stylesheet is an XSLT 2.0 stylesheet causes it to
process the stylesheet in forwards-compatible mode. This means that it
will ignore certain things that are errors in XSLT 1.0, and that it will go
to the <xsl:fallback> element if it finds an element in the XSLT name-
space that it doesn’t recognize.

If you change the stylesheet to version="1.0", Xalan (or MSXSL or
whatever XSLT 1.0 processor you’re using) raises a fatal error because
the <xsl:result-document> element isn’t defined in XSLT 1.0 either. If
you’re using anything from XSLT 2.0, be sure your <xsl:stylesheet>
element clearly says so with the attribute version="2.0".

In this relatively simple example, we’ve broken a single XML document into multiple
HTML files, we’ve generated useful filenames for all of them, and we’ve automatically
built hyperlinks to the different HTML files. For now, we’ve simply discussed how to
use an extension; we’ll talk about how to write your own extension next.

286 | Chapter 9: Extending XSLT

Creating Custom Collations
The XSLT 2.0 spec uses collations in several places. A collation defines how characters
are sorted and compared. English doesn’t have any accented characters or character
sequences that sort as separate letters, so that’s not an issue if all your documents are
in English. Even if English is your native language, it’s likely you’ll need to work with
documents written in other languages. In that case, characters such as the Spanish ch
(considered a separate letter, the letter che) or accented characters such as the German
umlaut-u, which can be written as ü or ue, become important in sorting and comparing
words.

As with extension functions, the XSLT 2.0 spec defines attributes that can be used to
indicate where custom collations can be used, but it doesn’t define how to identify a
particular piece of code that does the work. Because Saxon has taken the lead in im-
plementing these functions, we’ll focus on accessing custom collations in Saxon here.
We’ll look at two of these collations. The first sorts Spanish words so that ch sorts as
a separate letter between c and d. The second collation compares German words so
that Müller and Mueller are considered identical.

Your author is in no way a speaker of Spanish or German, so please
pardon any incorrect statements about the languages themselves. The
point here is to illustrate how to create extensions that implement cus-
tom collations and then use those extensions for sorting and comparing
text in your stylesheets.

The traditional Spanish collation, the one we’ll implement here, treats
ch, ll, and ñ as separate letters that sort after c, l, and n respectively.
However, much of the Spanish speaking world now uses the modern
Spanish collation, defined by the Association of Spanish Language Aca-
demies (La Asociación de Academias de Lingua Española). The modern
Spanish collation doesn’t treat ch or ll as special characters; they sort
as they would in English. The letter ñ still sorts after the letter n.

There are three collations for sorting German: DIN-1, DIN-2, and Aus-
trian. (The DIN standards are defined by the standards body Deutsches
Institut Für Normung.) The collation used varies from one country to
the next. Typically DIN-1 is used for sorting words, although in
Switzerland, it’s also used for sorting names. DIN-2, the collation algo-
rithm we’ll implement here, is used for sorting names in Germany. Aus-
tria uses the Austrian collation, although it seems to be disappearing in
favor of the DIN-2 rules. The main complication for the DIN-2 algo-
rithm that we’ll implement here is that ä is equal to ae, ö is equal to oe,
ß is equal to ss, and ü is equal to ue. Our code has to realize that two
characters in one word can be equivalent to one character in another
word.

I believe the code samples here are correct implementations of the
traditional Spanish and DIN-2 collation algorithms.

Creating Custom Collations | 287

Using a Custom Collation for Sorting
To get started, we’ll sort a short list of words:

<?xml version="1.0"?>
<!-- words.xml -->
<wordlist>
 <word>campo</word>
 <word>luna</word>
 <word>ciudad</word>
 <word>llaves</word>
 <word>chihuahua</word>
 <word>arroz</word>
 <word>limonada</word>
</wordlist>

This document contains Spanish words that are sorted differently than they would be
in English. We’ll write a stylesheet that uses two <xsl:template>s to illustrate how our
extension function works. Here’s the stylesheet:

<?xml version="1.0"?>
<!-- custom-collation1.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Test of sorting with custom collations:

</xsl:text>
 <xsl:variable name="items" as="xs:string*" select="wordlist/word"/>
 <xsl:text>Word list in original order:

</xsl:text>
 <xsl:value-of select="$items" separator="
"/>
 <xsl:text>
</xsl:text>
 <xsl:call-template name="ascending-alpha-sort">
 <xsl:with-param name="items" select="$items"/>
 </xsl:call-template>
 <xsl:call-template name="spanish-alpha-sort">
 <xsl:with-param name="items" select="$items"/>
 </xsl:call-template>
 </xsl:template>

 <xsl:template name="ascending-alpha-sort">
 <xsl:param name="items"/>
 <xsl:text>
Ascending text sort:
</xsl:text>
 <xsl:for-each select="$items">
 <xsl:sort/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

 <xsl:template name="spanish-alpha-sort">
 <xsl:param name="items"/>
 <xsl:text>
Spanish alpha sort:
</xsl:text>

288 | Chapter 9: Extending XSLT

 <xsl:for-each select="$items">
 <xsl:sort
 collation="{concat('http://saxon.sf.net/collation?',
 'class=com.oreilly.xslt.SpanishCollation;')}"/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

We have to use an attribute value template as the value of the
collation attribute because we used the concat function to keep the
code listing within the page. If we had coded this in a single line
(collation="http://saxon.sf.net....), the curly braces would not be
necessary. If you aren’t worried about how your stylesheets look when
printed out, simply put everything as a long string and avoid concat and
the curly braces altogether.

We use Saxon’s scheme for identifying the class that performs the custom collation.
(We used concat() to combine the two halves of the string so the listing fits on the
page; normally you’d have the 70-character attribute value as a single string.) Saxon
requires a particular URL, followed by a question mark and the keyword class=.
Whatever follows class= is used as the name of the Java class. If that class can’t be
found or loaded, you’ll get a fatal error. Here’s the code for the extension that imple-
ments the custom collation:

/**
 * SpanishCollation.java
 */

package com.oreilly.xslt;

import java.text.ParseException;
import java.text.RuleBasedCollator;

public class SpanishCollation extends RuleBasedCollator
{
 public SpanishCollation() throws ParseException
 {
 super(traditionalSpanishRules);
 }

 private static String smallnTilde = new String("\u00F1");
 private static String capitalNTilde = new String("\u00D1");

 private static String traditionalSpanishRules =
 ("< a,A < b,B < c,C < ch, cH, Ch, CH " +
 "< d,D < e,E < f,F < g,G < h,H < i,I " +
 "< j,J < k,K < l,L < ll, lL, Ll, LL " +
 "< m,M < n,N " +

Creating Custom Collations | 289

 "< " + smallnTilde + "," + capitalNTilde + " " +
 "< o,O < p,P < q,Q < r,R < s,S < t,T " +
 "< u,U < v,V < w,W < x,X < y,Y < z,Z");
}

The string traditionalSpanishRules contains the rules for character comparisons. No-
tice that it defines special cases for ch, ll, Ñ, and ñ. To create a custom collation, all we
have to implement is the string that defines the collation rules, then pass that to the
constructor of the RuleBasedCollator class. See the JDK documentation for all the de-
tails of the java.text.RuleBasedCollator class.

When we run the stylesheet against our document, it lists the words as they appear in
the document, and then it calls two templates that sort the words. The first uses the
default collation, so the words are sorted according to the rules of English. (English is
the default collation on my machine; your machine might be different.) The second
template invokes our Java class to do the comparisons between characters. The results
are different for the two templates:

Test of sorting with custom collations:

Word list in original order:

campo
luna
ciudad
llaves
chihuahua
arroz
limonada

Ascending text sort:
arroz
campo
chihuahua
ciudad
limonada
llaves
luna

Spanish alpha sort:
arroz
campo
ciudad
chihuahua
limonada
luna
llaves

As you can see, sorting the word list with the SpanishCollation class gives us different
results. Chihuahua sorts after ciudad, and llaves sorts after luna.

290 | Chapter 9: Extending XSLT

Using a Custom Collation for Comparing Text
The other way of using custom collations is in comparing text. Obviously comparing
strings is part of sorting, but the new compare() function in XQuery 1.0 and XPath
2.0 lets you compare two strings. To use an example from the XSLT 2.0 spec, the
German word for street can be spelled Straße or Strasse. A simple character comparison
defines sees these as two different strings; we’ll use a collation function that recognizes
the two words as being equal.

Here’s the complete code:

/**
 * GermanCollation.java
 */

package com.oreilly.xslt;

import java.text.ParseException;
import java.text.RuleBasedCollator;

public class GermanCollation extends RuleBasedCollator
{
 public GermanCollation() throws ParseException
 {
 super(traditionalGermanRules);
 }

 private static String sharpS = new String("\u00DF");
 private static String uppercaseUmlautA = new String("\u00C4");
 private static String lowercaseUmlautA = new String("\u00E4");
 private static String uppercaseUmlautO = new String("\u00D6");
 private static String lowercaseUmlautO = new String("\u00F6");
 private static String uppercaseUmlautU = new String("\u00DC");
 private static String lowercaseUmlautU = new String("\u00FC");

 private static String traditionalGermanRules =
 ("< a,A " +
 "<" + lowercaseUmlautA + "=ae " +
 "<" + uppercaseUmlautA + "=AE " +
 "< b,B < c,C < d,D < e,E < f,F " +
 "< g,G < h,H < i,I < j,J < k,K " +
 "< l,L < m,M < n,N < o,O " +
 "<" + lowercaseUmlautO + "=oe " +
 "<" + uppercaseUmlautO + "=OE " +
 "< p,P < q,Q < r,R < s,S " +
 "< ss=” + sharpS +
 "< t,T < u,U " +
 "<" + lowercaseUmlautU + "=ue " +
 "<" + uppercaseUmlautU + "=UE " +
 "< v,V < w,W < x,X < y,Y < z,Z");
}

In the code, we define that certain strings are equal. There are seven special rules that
are defined in our class; each of them is defined with an equals sign in the

Creating Custom Collations | 291

traditionalGermanRules string. (In the SpanishCollation class, we used a greater-than
sign to indicate the sorting order.) Here is a stylesheet that compares two spellings of
the German word for street:

<?xml version="1.0"?>
<!-- custom-collation2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="string1" select="'Straße'"/>
 <xsl:variable name="string2" select="'Strasse'"/>

 <xsl:text>
Here is a test of the compare() </xsl:text>
 <xsl:text>function, using
</xsl:text>
 <xsl:text> an extension function to compare German </xsl:text>
 <xsl:text>characters:

</xsl:text>

 <xsl:text> compare('</xsl:text>
 <xsl:value-of select="$string1"/>
 <xsl:text>', '</xsl:text>
 <xsl:value-of select="$string2"/>
 <xsl:text>') = </xsl:text>
 <xsl:value-of select="compare($string1, $string2)"/>
 <xsl:text>
</xsl:text>

 <xsl:text> compare('</xsl:text>
 <xsl:value-of select="$string1"/>
 <xsl:text>', '</xsl:text>
 <xsl:value-of select="$string2"/>
 <xsl:text>', [German collation]) = </xsl:text>
 <xsl:value-of
 select="compare($string1, $string2,
 concat('http://saxon.sf.net/collation?',
 'class=com.oreilly.xslt.GermanCollation;'))"/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here is a test of the compare() function, using
 an extension function to compare German characters:

 compare('Straße', 'Strasse') = 1
 compare('Straße', 'Strasse', [German collation]) = 0

In the compare() function, a value of 1 means the first string sorts after the second, a
value of -1 means the first string sorts before the second, and a value of 0 means the
two strings are equal. In our results here, using the German collation indicates that

292 | Chapter 9: Extending XSLT

Straße and Strasse are identical, even though they’re clearly two different sequences of
characters.

Generating Hidden Word Graphics
A frequent abuse of the Web is scripts that attempt to create dozens of email accounts
or buy hundreds of concert tickets by parsing HTML forms and responding to them.
To counteract this, many web sites now feature hidden word graphics that contain a
word along with visual noise (in our case, lines drawn through the text) so that only a
human can read the word. This ensures that only a human can use the form. We’ll look
at an XSLT extension function that, given a word, generates a hidden word graphic and
a web page.

Given a secret word, our extension function creates a graphic containing that word and
an HTML form that displays the graphic and asks the user to type the word hidden in
the graphic. (Obviously, a complete solution would generate the server-side code,
transient cookies, and other things to process the form, but that’s beyond what we’ll
cover here. Our focus is on how to create the XSLT extension that creates the graphic.)

Our stylesheet looks like this:

<?xml version="1.0"?>
<!-- hidden-word-test.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:saxon="java:com.oreilly.xslt.HiddenWord"
 xmlns:xalan="xalan://com.oreilly.xslt.HiddenWord"
 xmlns:ora="http://www.oreilly.com/xslt"
 extension-element-prefixes="saxon xalan ora">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>
 Test of hidden word generator
 </title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Test of hidden word generator</h1>
 <xsl:comment>
 This <form> doesn't have a method or action
 attribute; a real form would, of course...
 </xsl:comment>
 <xsl:variable name="createGraphic">
 <xsl:choose>
 <xsl:when test="function-available('saxon:createJPEG')">
 <xsl:value-of select="saxon:createJPEG('hidden.jpg',
 'giraffe', 48, 200, 100)"/>
 </xsl:when>

Generating Hidden Word Graphics | 293

 <xsl:when test="function-available('xalan:createJPEG')">
 <xsl:value-of select="xalan:createJPEG('hidden.jpg',
 'monkey', 48, 200, 100)"/>
 </xsl:when>
 <xsl:when test="function-available('ora:createJPEG')">
 <xsl:value-of select="ora:createJPEG('hidden.jpg',
 'okapi', 48, 200, 100)"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="1"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <form align="center">
 <p>Enter the word hidden in the graphic below:</p>
 <xsl:choose>
 <xsl:when test="number($createGraphic)">
 <p style="font-style: italic; font-size: 150%;">
 <xsl:text>Sorry, the image function isn't available.</xsl:text>
 </p>
 </xsl:when>
 <xsl:otherwise>
 <p>

 </p>
 </xsl:otherwise>
 </xsl:choose>
 <p>
 <input type="text" name="hiddenWord" size="20" maxlength="20"/>
 </p>
 <p>
 <input type="submit" value="Submit"/>
 </p>
 </form>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

Our stylesheet uses the function-available() function to check for each version of the
extension function. If we’re running the Saxon processor, the first <xsl:when> returns
true, the second branch is true if we’re running Xalan, and the third <xsl:when> is
true if we’re running the .NET processor. That assumes, of course, that the appropriate
libraries are accessible. If the Java runtime can’t find the class, function-available()
returns false.

Notice that the <xsl:choose> element is inside a <xsl:variable>. Our extension func-
tion returns 0 if the function is available and it works correctly. If none of the functions
are avilable, the value of our variable is 1; the functions themselves can return a nonzero
return code if something goes wrong.

294 | Chapter 9: Extending XSLT

Putting this code inside a variable lets the extension functions return a value that isn’t
written to the output document. At the bottom of the stylesheet, the test
number($createGraphic) converts the value returned by the extension function to a
number. If the value isn’t zero, we print an error message. Otherwise, we generate the
form that contains the generated graphic.

Java Version
The two Java-based processors use the same code; the stylesheet simply uses the Saxon
and Xalan conventions to identify the extension class. The extension function takes as
its input the secret word, the name of the created JPEG file, the font size for the text,
and the width and height of the JPEG file. Given those parameters, the code chooses a
font at random and creates a blank canvas of the requested size. The Java code then
checks to make sure the selected font exists (because Java runs on so many non-
Windows platforms, we need to make sure). Once the font is set, we measure the
dimensions of the secret word written in the font at the requested font size. If the word
is too wide to fit into the graphic, we reduce the font size by 2 points until the word
fits inside the canvas.

Once the font and font size are set, we draw the word on the canvas and finish by
drawing random lines over the text. When we’ve drawn everything on the canvas, a
couple of lines of Java code write the canvas out to a JPEG file. The last few lines of
code here handle any exceptions that might occur. Here’s the complete listing:

/*
 * HiddenWord.java
 */

package com.oreilly.xslt;

import java.awt.BasicStroke;
import java.awt.Color;
import java.awt.Font;
import java.awt.FontMetrics;
import java.awt.Graphics2D;
import java.awt.GraphicsEnvironment;
import java.awt.Rectangle;
import java.awt.font.LineMetrics;
import java.awt.image.BufferedImage;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.Random;

import com.sun.image.codec.jpeg.ImageFormatException;
import com.sun.image.codec.jpeg.JPEGCodec;
import com.sun.image.codec.jpeg.JPEGImageEncoder;

// This class creates a JPEG that contains a hidden word.
public class HiddenWord

Generating Hidden Word Graphics | 295

{
 // Three fonts likely to installed on any system...
 // If you want to generate hidden words in a non-Latin language,
 // you’ll need to change the font names.
 public static String[] fontNames = {"Arial", "Times", "Verdana"};

 // createJPEG() is the name of the extension function.
 public static int createJPEG(String secretWord,
 String outputFilename,
 Double dFontSize,
 Double dWidth,
 Double dHeight)
 throws IOException, FileNotFoundException,
 ImageFormatException, Exception
 {
 int rc = 0;

 try
 {
 int fontSize = dFontSize.intValue();
 int width = dWidth.intValue();
 int height = dHeight.intValue();

 // Create a new BufferedImage. We’ll use it as a canvas;
 // we draw the hidden word and the lines that obscure it
 // onto the canvas, then write it out to a JPEG file.
 BufferedImage bi =
 new BufferedImage(width, height,
 BufferedImage.TYPE_3BYTE_BGR);

 Random r = new Random();
 String fontName = fontNames[r.nextInt(fontNames.length)];

 // Fill the new graphic with a white background
 Graphics2D g = bi.createGraphics();
 g.setColor(Color.WHITE);
 g.fill(new Rectangle(0, 0, width, height));
 g.setColor(Color.BLACK);

 int fontStyle = Font.BOLD;
 int textWidth = 0;
 int textHeight = 0;

 // Now we have to load the font. There’s a chance the
 // font we selected isn’t available, so we look through
 // the list of fonts until we find the one we’re looking for.
 // If the font we want isn’t available, we use Arial.
 // This is much more complicated than the .NET version,
 // where we assume the fonts are installed on every Windows
 // system.
 GraphicsEnvironment ge = GraphicsEnvironment.
 getLocalGraphicsEnvironment();
 Font allFonts[] = ge.getAllFonts();
 Font chosenFont = new Font("Arial", fontStyle, fontSize);
 g.setFont(chosenFont);

296 | Chapter 9: Extending XSLT

 FontMetrics fm = g.getFontMetrics();

 boolean fontNotFound = true;
 int j = 0;
 while (fontNotFound && (j < allFonts.length))
 {
 if (allFonts[j].getFontName().contains(fontName))
 {
 chosenFont = allFonts[j].deriveFont(fontStyle, fontSize);
 if (!chosenFont.getFontName().equalsIgnoreCase(fontName))
 {
 fontStyle = Font.PLAIN;
 chosenFont = allFonts[j].deriveFont(fontStyle, fontSize);
 }
 g.setFont(chosenFont);
 fm = g.getFontMetrics();

 // We look at the width and height of the word as drawn in
 // the current font. If it’s too big to fit into the graphic
 // canvas, we reduce the font size and try it again.
 textWidth = fm.stringWidth(secretWord);
 while (textWidth > width && fontSize > 2)
 {
 fontSize -= 2;
 chosenFont = allFonts[j].deriveFont(fontStyle, fontSize);
 g.setFont(chosenFont);
 fm = g.getFontMetrics();
 textWidth = fm.stringWidth(secretWord);
 }
 if (fontSize < 1)
 chosenFont = allFonts[j].deriveFont(fontStyle, 12);

 g.setFont(chosenFont);
 fontNotFound = false;
 }
 else
 j++;
 }

 // Now we draw the string onto the canvas. We use the dimensions of
 // the canvas itself and the dimensions of the string to center the
 // text in the graphic.
 fm = g.getFontMetrics(chosenFont);
 LineMetrics lm =
 chosenFont.getLineMetrics(secretWord, g.getFontRenderContext());
 textHeight = (int)lm.getAscent();
 textWidth = fm.stringWidth(secretWord);
 g.drawString(secretWord, (width - textWidth) / 2,
 textHeight + 30);

 // Now we’ll draw some lines at random to obscure the text.
 g.setStroke(new BasicStroke((float)2.0));

 for (int i = 0; i < width / 30; i++)
 g.drawLine(0, r.nextInt(height), width, r.nextInt(height));

Generating Hidden Word Graphics | 297

 int numLines = java.lang.Math.max(height, width) / 30;
 for (int i = 0; i < numLines; i++)
 {
 int nextX = r.nextInt(width);
 g.drawLine(nextX, 0, nextX, height);
 int nextY = r.nextInt(height);
 g.drawLine(0, nextY, width, nextY);
 }

 for (int i = 0; i < height / 20; i++)
 g.drawLine(r.nextInt(width), 0, r.nextInt(width), height);

 // We’ve drawn everything on the canvas that we wanted, so we’ll
 // write the contents of the canvas out to a JPEG file.
 FileOutputStream fos = new FileOutputStream(outputFilename);
 JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(fos);
 encoder.encode(bi);
 fos.flush();
 fos.close();
 }
 catch (FileNotFoundException fnfe)
 {
 rc = 4;
 System.err.println(fnfe);
 }
 catch (IOException ioe)
 {
 rc = 8;
 System.err.println(ioe);
 }
 catch (Exception e)
 {
 rc = 12;
 System.err.println(e);
 }

 return rc;
 }
}

The generated HTML form looks like Figure 9-5.

To illustrate how text sizing works, Figure 9-6 shows a hidden word graphic with a
much longer word.

As you can see, the font size has been reduced so that the word fits inside the graphic.

.NET Version
The .NET version works similarly, although we need two C# files to use the extension.
The first creates the XslCompiledTransform object and associates the extension function
with it. The second file actually implements the extension, creating the hidden word
graphic.

298 | Chapter 9: Extending XSLT

Here’s the first C# file, which sets up the transformation object:

/*
 * Main.cs
 */

using System;
using System.Text;

Figure 9-5. The HTML form with a hidden word graphic

Figure 9-6. The HTML form with a longer hidden word

Generating Hidden Word Graphics | 299

using System.Xml;
using System.Xml.Xsl;

namespace com.oreilly.xslt
{
 class MainClass
 {
 static void Main(string[] args)
 {
 if (args.Length < 3)
 {
 System.Console.WriteLine("\nUsage: HiddenWordExample xml-file " +
 "xsl-file output-file");
 System.Console.WriteLine("\n Example: HiddenWordExample " +
 "blank.xml hidden-word-test.xsl results.html");
 }
 else
 {
 // Create the stylesheet object and the XMLWriter that
 // writes the output to a file
 XslCompiledTransform stylesheet = new XslCompiledTransform();
 XmlTextWriter xWriter =
 new XmlTextWriter(args[2], Encoding.UTF8);

 // Use an XsltSettings object that allows executing scripts
 // (we need this for extensions), then load the stylesheet
 XsltSettings settings = new XsltSettings(true, true);
 stylesheet.Load(args[1], settings, new XmlUrlResolver());

 // Create an extension object
 HiddenWord hw = new HiddenWord();

 // We set up the extension function with an XsltArgumentList object.
 XsltArgumentList argList = new XsltArgumentList();
 argList.AddExtensionObject("http://www.oreilly.com/xslt", hw);

 // With everything in place, we call the Transform() method
 // to do the work...
 stylesheet.Transform(args[0], argList, xWriter);
 }
 }
 }
}

The C# file that creates the XslCompiledTransform has to define the object that imple-
ments the extension function (an instance of the HiddenWord class) and associate it with
a namespace (http://www.oreilly.com/xslt). The namespace defined in the C# code
must match the namespace defined in the stylesheet. When this code is built as
an .exe file, it takes three arguments: the names of the input XML, the stylesheet, and
the result files. If the user doesn’t provide at least three arguments, we print an error
message to avoid an IndexOutOfRange exception.

300 | Chapter 9: Extending XSLT

Now that we’ve set up the transformation, here’s the actual code for the extension
object. Although the methods and system objects are different from the Java version,
the flow of the code is the same:

/*
 * HiddenWord.cs
 */

using System;
using System.Text;
using System.Xml;
using System.Xml.Xsl;
using System.Drawing;

// This class creates a JPEG that contains a hidden word.

namespace com.oreilly.xslt
{
 class HiddenWord
 {
 // Three fonts likely to be installed on a Windows system...
 // If you want to generate hidden words in a non-Latin language,
 // you’ll need to change the font names.
 private static String[] fontNames = { "Arial", "Times", "Verdana" };

 // createJPEG() is the name of the extension function.
 public int createJPEG(String outputFilename,
 String secretWord, Double dFontSize,
 Double dWidth, Double dHeight)
 {
 int rc = 0;

 int fontSize = (int)dFontSize;
 int width = (int)dWidth;
 int height = (int)dHeight;

 Random r = new Random();

 String fontName = fontNames[r.Next(fontNames.Length)];

 // Create a new Bitmap. We’ll draw our text and graphics
 // onto the Bitmap, then write it out to a JPEG file.
 Bitmap pic = new Bitmap(width, height);
 Graphics context = Graphics.FromImage(pic);

 // First, fill the graphic with a white background
 SolidBrush brush = new SolidBrush(Color.White);
 context.FillRectangle(brush, 0, 0, width, height);

 // Load the randomly chosen font
 Font currentFont = new Font(fontName, fontSize, FontStyle.Bold);

 // Get the size of the word in the current font. If it’s too big
 // for the word to fit into the graphic, reduce the font size
 // until it fits.

Generating Hidden Word Graphics | 301

 SizeF textSize = context.MeasureString(secretWord, currentFont);
 float textWidth = textSize.Width;

 while (textWidth > width && fontSize > 2)
 {
 fontSize -= 2;
 currentFont = new Font(fontName, fontSize, FontStyle.Bold);
 textSize = context.MeasureString(secretWord, currentFont);
 textWidth = textSize.Width;
 }
 if (fontSize < 1)
 currentFont = new Font(fontName, 12, FontStyle.Bold);

 float textHeight = textSize.Height;
 brush.Color = Color.Black;

 // Now draw the string onto the bitmap. We center the text
 // by using the dimensions of the bitmap and the dimensions
 // of the string as drawn in the current font.
 context.DrawString(secretWord, currentFont, brush,
 (width - textWidth) / 2, (height - textHeight) / 2);

 // Now we draw some lines on the bitmap. We generate the start
 // and endpoints of the lines at random.
 Pen pen = new Pen(Color.Black, (float)3);
 for (int i = 0; i < width / 30; i++)
 context.DrawLine(pen, 0, r.Next(height), width, r.Next(width));

 int numLines = Math.Max(height, width) / 30;
 for (int i = 0; i < numLines; i++)
 {
 int nextX = r.Next(width);
 context.DrawLine(pen, nextX, 0, nextX, height);
 int nextY = r.Next(height);
 context.DrawLine(pen, 0, nextY, width, nextY);
 }

 for (int i = 0; i < height / 20; i++)
 context.DrawLine(pen, r.Next(width), 0, r.Next(width), height);

 // Now we’ve drawn everything on the bitmap, so we write it out
 // to a file, using the JPEG format
 pic.Save(outputFilename, System.Drawing.Imaging.ImageFormat.Jpeg);

 return rc;
 }
 }
}

As you can see, the C# code follows the same basic pattern as the Java code. We create
a new canvas, reduce the font size until the given word fits inside the graphic, and then
draw the text and the lines that obfuscate it and write it out to a JPEG file.

In this example, we demonstrated how to create JPEG graphics from text inside a
stylesheet. We could have selected a secret word as a global parameter to the stylesheet,

302 | Chapter 9: Extending XSLT

or we could have selected something from an XML input document. As we mentioned,
a complete solution would generate the server-side code to validate the word typed in
by the user. Another thing to keep in mind is that the fonts we used here won’t work
for secret words written in non-Latin languages (Russian, Japanese, Greek, Chinese,
Korean, and so forth). You could change the font names inside the code, or you could
modify the stylesheet and the extension function to pass the font name as an argument
from the stylesheet.

Example: Generating an SVG Pie Chart
As we outlined the functions and operators available in XPath and XSLT, you probably
noticed that the mathematical functions at your disposal are rather limited, even in
XSLT 2.0. In this example, we’ll write an extension that provides a variety of trigono-
metric functions. We’ll do this in several ways:

• We’ll use the extension mechanisms in Xalan and Saxon to call static methods in
the java.lang.Math class.

• We’ll use the trigonometric functions in the EXSLT math library (more on EXSLT
later).

• We’ll use the Bean Scripting Framework, an interesting piece of code from the
Apache Jakarta project that lets us write extension functions in a variety of scripting
languages, including JRuby, JavaScript, Jython, and Jacl.

• We’ll use classes from the .NET library to extend the Microsoft XSLT processor.

We’ll start this section by building the stylesheet once, and then we’ll discuss what’s
different in each iteration. Our scenario is that we want to generate a Scalable Vector
Graphics (SVG) pie chart from an XML document. This document contains the sales
figures for different stores of a company; we need to calculate the dimensions of the
various slices of the pie graph for our SVG document. Here’s the XML source we’ll be
working with:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate-sales.xml -->
<report month="8" year="2006">
 <caption>
 <heading>Chocolate bar sales</heading>
 <subheading>(units)</subheading>
 </caption>
 <store>
 <name>Carrboro</name>
 <brand name="Lindt">27408</brand>
 <brand name="Callebaut">8203</brand>
 <brand name="Valrhona">22101</brand>
 <brand name="Perugina">14336</brand>
 <brand name="Ghirardelli">19268</brand>
 </store>
 <store>

Example: Generating an SVG Pie Chart | 303

 <name>Chapel Hill</name>
 <brand name="Lindt">28503</brand>
 <brand name="Valrhona">7287</brand>
 <brand name="Perugina">12077</brand>
 <brand name="Ghirardelli">8392</brand>
 <brand name="Callebaut">17294</brand>
 </store>

...

 </store>
</report>

Our goal is to create an SVG file that looks like Figure 9-7.

To make our pie chart really useful, we’ll take advantage of the scripting support avail-
able in the Adobe SVG Viewer. We’ll generate the graphics of the chart, as well as
EcmaScript functions to display additional detail. For example, moving the mouse over
a slice of the pie shows the details for a particular store, as shown in Figure 9-8.

We’ll take advantage of SVG’s functions for line joins and other details that let our
chart look as professional as possible. For example, we can zoom in on the graph, and
the shapes and lines and text still look sharp, as shown in Figure 9-9.

The EcmaScript code we generate here is compatible with the Adobe
SVG Viewer only; currently, Firefox displays the SVG pie chart, but it
doesn’t support any of the interactivity provided by the EcmaScript
code.

XPath’s limited math functions won’t allow us to calculate the dimensions of the var-
ious arcs that make up the pie chart, so we’ll use extension functions to solve this

Figure 9-7. Our SVG pie chart

304 | Chapter 9: Extending XSLT

problem. Fortunately for us, Java provides all the basic trigonometric functions we need
in the java.lang.Math class. Even better, Xalan and Saxon make it easy for us to load
this class and execute the static methods we need (sin(), cos() and toRadians()). For
the .NET case, we’ll add a CDATA section containing EcmaScript code that the .NET
XSLT processor can interpret.

EcmaScript is the name for the version of JavaScript standardized by the
European Computer Manufacturers Association. We’ll use the term
“EcmaScript” here because the examples in the SVG spec use <script
type="text/ecmascript"> (although most people use the terms “Ecma-
Script” and “JavaScript” interchangeably).

Figure 9-8. SVG chart changes in response to mouse events

Figure 9-9. The pie chart scales to any resolution

Example: Generating an SVG Pie Chart | 305

We’ll go over the relevant details as they appear in the stylesheet. First, we have to
declare our namespace prefixes, just as we did when we used an extension element:

<?xml version="1.0"?>
<!-- piechart.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 extension-element-prefixes="xalan-java saxon-java msxsl ora months"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns:xalan-java="http://xml.apache.org/xslt/java"
 xmlns:saxon-java="java:java.lang.Math"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"
 xmlns:ora="http://www.oreilly.com/xslt"
 xmlns:months="http://www.oreilly.com/xslt/months">

We associated the xalan-java namespace prefix with the string http://xml.apache.org/
xslt/java; Xalan uses this string to load Java classes and use their static methods. For
Saxon support, we associated the saxon-java prefix with java:java.lang.Math. Notice
that the two processors use different methods to load Java classes. The XSLT spec
doesn’t define any rules for how the namespace URIs are used to identify code that
should be loaded by the processor, so each processor is likely to be different.

We also defined the msxsl and ora namespaces. The msxsl namespace lets us add
EcmaScript directly to the stylesheet; we’ll use the ora namespace to access that code.
Finally, we define the months namespace. The stylesheet will contain a number of
<months:month> elements, each of which defines the English name of a month of the
year.

Next we define the output method and a couple of global variables:

<xsl:output method="xml"/>

<xsl:variable name="totalSales" select="sum(//brand)"/>
<xsl:variable name="stores" select="count(/report/store)"/>

Because SVG is an XML vocabulary, our output method is xml. The variable
$totalSales is the total of all sales of all brands of chocolate in all stores, while the
variable $stores is the number of stores in the report. We could recalculate these values
every time we need them, but it’s simpler to store them in global variables.

Next we define the match="/" template. This defines the <svg> element that contains
our entire SVG document. Here’s what the start of the template looks like:

<svg:svg width="450" height="300" version="1.1"
 baseProfile="full"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:ev="http://www.w3.org/2001/xml-events">

We’re defining the dimensions of the SVG graphic and the version of SVG we’re using,
along with some namespaces the SVG interpreter needs. Now it’s time to generate the
EcmaScript functions that make our pie chart interactive. The original display of the
pie chart shows the slices of the pie and a legend. Each slice of the pie is in a different

306 | Chapter 9: Extending XSLT

color, and the legend identifies the store associated with each piece of the pie and the
total sales at each store. In addition, a pie slice for the first store in the XML source
document is detached from the rest of the pie chart (this is sometimes called an “ex-
ploded” slice).

The EcmaScript code uses two state variables. The first is a boolean variable
(detailsViewOn) that indicates whether the legend area is displaying the default legend
or the detailed sales numbers for a particular store. The second is an integer
(currentStore) that represents the number of the store whose detailed sales figures are
currently displayed. The way the pie chart responds to mouse events is determined by
the values of these two variables.

Here’s what the EcmaScript functions do:

• When the user moves the mouse over a particular slice of the pie:

— If the legend area of the chart is not permanently displaying the details for a
particular store (detailsViewOn = false), the legend is replaced with the detailed
sales numbers for the store associated with that slice of the pie.

— If the legend area of the chart is permanently displaying the details for a partic-
ular store (detailsViewOn = true), nothing happens.

• When the user moves the mouse out of a particular slice of the pie:

— If the legend area of the chart is not permanently displaying the details for a
particular store (detailsViewOn = false), then the detailed sales numbers for
the store associated with the slice of pie are replaced with the default legend.

— If the legend area of the chart is permanently displaying the details for a partic-
ular store (detailsViewOff = true), nothing happens.

• When the user clicks on a particular slice of the pie:

— If the legend area of the chart is not permanently displaying the details for a
particular store (detailsViewOn = false), display the detailed sales numbers in
place of the default legend, set detailsViewOn = true and set the value of the
current store (currentStore = x, where x is the number of the current store).

— If the legend area of the chart is permanently displaying the details for a partic-
ular store (detailsViewOn = true) and the store number corresponding to the
clicked-upon slice is the same as the current store, then set detailsViewOn =
false and set the value of the current store to 0.

— If the legend area of the chart is permanently displaying the details for a partic-
ular store (detailsViewOn = true), but the store number corresponding to the
clicked-upon slice is not the same as the current slice, set the value of the current
store to the new value and replace the legend area with the detailed sales num-
bers for the new current store.

To sum up the behavior of the pie chart, the user can mouse over a slice of the pie to
see detailed sales figures for a particular store. The user can click on a slice of pie to see

Example: Generating an SVG Pie Chart | 307

the details for that store permanently. Once the details for a particular store are dis-
played permanently, the user can click on another slice of the pie to see that store’s
details permanently, or they can click on the current store to return to the original
display. (I hope that’s clear; it’s easy to figure out how the code works by interacting
with it.)

We’ll define three functions (mouse_over(), mouse_out(), and click()) that handle the
mouse events we care about. Here they are:

 <svg:script type="text/ecmascript">
 <xsl:text disable-output-escaping="yes">

 detailsViewOn = false;
 currentStore = 0;

 function mouse_over(selectedItem, totalItems)
 {
 if (!detailsViewOn || selectedItem == currentStore)
 {
 for (i = 1; totalItems >= i; i++)
 {
 obj = svgDocument.getElementById("details" + i);
 obj.setAttributeNS(null, "visibility", "hidden");
 obj = svgDocument.getElementById("legend" + i);
 obj.setAttributeNS(null, "visibility", "hidden");
 }

 obj = svgDocument.getElementById("details" + selectedItem);
 obj.setAttributeNS(null, "visibility", "visible");
 }
 }

 function mouse_out(totalItems)
 {
 if (!detailsViewOn)
 {
 for (i = 1; totalItems >= i; i++)
 {
 obj = svgDocument.getElementById("details" + i);
 obj.setAttributeNS(null, "visibility", "hidden");
 obj = svgDocument.getElementById("legend" + i);
 obj.setAttributeNS(null, "visibility", "visible");
 }
 }
 }

 function click(selectedItem, totalItems)
 {
 if (selectedItem != currentStore)
 {
 currentStore = selectedItem;
 mouse_over(selectedItem, totalItems);
 detailsViewOn = true;
 }

308 | Chapter 9: Extending XSLT

 else
 {
 obj = svgDocument.getElementById("details" + selectedItem);
 if (obj.getAttributeNS(null, "visibility") == "visible")
 {
 detailsViewOn = false;
 currentStore = 0;
 }
 else
 {
 currentStore = selectedItem;
 mouse_over(selectedItem, totalItems);
 detailsViewOn = true;
 }
 }
 }
 // </xsl:text></svg:script>
 <xsl:text>
</xsl:text>

Notice that we used disable-output-escaping so we don’t have to worry about greater-
than or less-than signs tripping up the XML parser.

If you’re writing script code in an HTML file, you should write it inside
a comment, allowing browsers that don’t support scripting to safely
ignore the code. The end of the script code should look like this:

...
 else
 {
 currentItem = selectedItem;
 mouse_over(selectedItem, totalItems);
 detailsViewOn = true;
 }
 }
 }
 // -->

The double slash at the end of the script is a comment, which tells the
scripting engine to ignore the --> at the end of the <xsl:comment> ele-
ment. Without this slash, some processors attempt to process the end
of the comment and issue an error message; after all, the -- looks like
the decrement operator. Keep this in mind when you’re generating script
code with your stylesheets; if you don’t, you’ll have trouble tracking
down the occasional errors that occur in some browsers.

One more thing to note about generating EcmaScript code: in some cases you may want
to put the code in a separate file. SVG allows you to put the EcmaScript code in a
separate file and reference it from the SVG. (We did this in the first edition of this book.)
Given the current state of the Adobe SVG Viewer, it’s much simpler to put the Ecma-
Script code in the same file.

Now that we’ve created the EcmaScript code we need, we create the title and subtitle
for the pie chart:

Example: Generating an SVG Pie Chart | 309

<!-- Generate the title and subtitle. We draw the title and -->
<!-- subtitle on the chart, and we set the <svg:title> element -->
<!-- in the SVG document itself. -->
<xsl:variable name="titleText">
 <xsl:value-of select="/report/caption/heading"/>
 <xsl:text> - </xsl:text>
 <xsl:choose>
 <xsl:when test="function-available('math:cos')">
 <xsl:variable name="dateString">
 <xsl:text>--</xsl:text>
 <xsl:if test="string-length(/report/@month) = 1">
 <xsl:text>0</xsl:text>
 </xsl:if>
 <xsl:value-of select="/report/@month"/>
 <xsl:text>--</xsl:text>
 </xsl:variable>
 <xsl:value-of
 select="dates-and-times:month-name($dateString)"/>
 <xsl:text> </xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="/report/@month"/>
 <xsl:text>/</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:value-of select="/report/@year"/>
</xsl:variable>

<svg:title>
 <xsl:value-of select="$titleText"/>
</svg:title>
<svg:text font-size="24px" text-anchor="start"
 font-weight="bold" x="10" y="40">
 <xsl:value-of select="$titleText"/>
</svg:text>
<svg:text font-size="14px" text-anchor="middle" y="60" x="225">
 <xsl:value-of select="/report/caption/subheading"/>
</svg:text>

Notice that we draw the text on the SVG canvas and also create an <svg:title> element
for the SVG document. When the SVG document is rendered in a browser, this is treated
as the title for the document. It’s analogous to the HTML <title> element.

Now we’re finally ready to process the <store> elements. Each <store> element contains
the sales details for a particular store. We’ll process each of these elements three ways:

1. First we create the pie slice. We’ll look at the details in a minute, but our primary
task here is to calculate the dimensions of the slice and to add the appropriate
onmouseover, onmouseout, and onclick attributes. We do this in the <xsl:template
match="store" mode="pie"> template.

2. Next we create this store’s entry in the legend. The legend has a colored square
filled with the color for the current store, its name, and its total sales. The legend

310 | Chapter 9: Extending XSLT

entry for each store is drawn 20 pixels below the previous store’s entry. We do this
in the <xsl:template match="store" mode="legend"> template.

3. Finally we create the detailed sales figures for the current store. The details view
includes the name of the store, the sales of each brand at that store, and the current
store’s sales as a percentage of the total sales. Everything in the details view is drawn
with the attribute visibility="hidden". The details for a particular store are hidden
until a particular mouse event occurs. This is done in the <xsl:template
match="store" mode="details"> template.

We’ll go through these steps in detail now:

1. First of all, we need to draw the pie slice. This is done with an <svg:path> element.
We’ll use the trigonometry functions to calculate the angles of the edges of the pie
slices, and we’ll use SVG to draw a smooth arc between the outer endpoints of the
edges. SVG also handles the details of joining the lines and filling the slice with a
particular color.

2. For each slice of the pie, we calculate certain values and pass them as parameters
to the mode="pie" template. First, we determine the color of the slice and the total
sales for this particular store. We use the position() function and the mod operator
to calculate the color, and we use the sum() function to calculate the sales for this
store.

3. If this is the first slice of the pie, we’ll explode it. That means that the first slice will
be offset from the rest of the pie. We will set the variable $explode as follows:

<xsl:variable name="explode" select="position()=1"/>

4. The last value we calculate is the total sales of all previous stores. When we draw
each slice of the pie, we rotate the coordinate axis a certain number of degrees. The
amount of the rotation depends on how much of the total sales have been drawn
so far. In other words, if we’ve drawn exactly 50% of the total sales, we’ll rotate
the axis 180 degrees (50% of 360). Rotating the axis simplifies the trigonometry
we have to do. To calculate our total sales, we use the preceding-sibling axis:

<xsl:with-param name="runningTotal"
 select="sum(preceding-sibling::store/brand)"/>

5. Once we’ve calculated all the variables we need, we invoke the template:

 <xsl:apply-templates select="." mode="pie">
 <xsl:with-param name="color" select="$color"/>
 <xsl:with-param name="storeSales" select="$storeSales"/>
 <xsl:with-param name="totalSales" select="$totalSales"/>
 <xsl:with-param name="runningTotal"
 select="sum(preceding-sibling::store/brand)"/>
 <xsl:with-param name="stores" select="$stores"/>
 <xsl:with-param name="explode" select="$explode"/>
 </xsl:apply-templates>

6. Inside the template itself, our first step is to calculate the angle in radians of the
current slice of the pie. This is the first time we use one of our extension functions:

Example: Generating an SVG Pie Chart | 311

<xsl:variable name="currentAngle">
 <xsl:choose>
 <xsl:when
 test="function-available('xalan-java:java.lang.Math.toRadians')">
 <xsl:value-of
 select="xalan-java:java.lang.Math.toRadians(
 ($storeSales div $totalSales) * 360.0)"/>
 </xsl:when>
 <xsl:when
 test="function-available('saxon-java:toRadians')">
 <xsl:value-of
 select="saxon-java:toRadians(
 ($storeSales div $totalSales) * 360.0)"/>
 </xsl:when>
 <xsl:when test="function-available('ora:cos')">
 <xsl:value-of
 select="($storeSales div $totalSales) *
 6.283185307179586476925286766559"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:message terminate="yes">
 <xsl:text>Sorry, this stylesheet can't generate any </xsl:text>
 <xsl:text>useful results
 without trigonometric </xsl:text>
 <xsl:text>functions available. </xsl:text>
 </xsl:message>
 </xsl:otherwise>
 </xsl:choose>
</xsl:variable>

In calculating the value of the variable, we use the XSLT function-available()
function. If we’re processing this stylesheet with Xalan, the functions in the xalan-
java namespace will be available. If we’re using Saxon, the functions in the saxon-
java namespace will be available. If we’re using the .NET processor, the functions
in the ora namespace will be available. If none of these functions are available, we
terminate the processor. We can’t generate a pie chart without trigonometric func-
tions, so we exit.

The $currentAngle variable stores the angle in radians of the current pie slice. In
other words, if the current store has 25% of the total sales for the company, we
convert 90 degrees into radians and use that value to draw the slice of the pie. (We
have to use radians because that’s what the Java cos() and sin() functions re-
quire.) We’ll use this value later with the cos() and sin() functions.

7. Now we’re finally ready to draw the pie slice. We’ll do this with an SVG <path>
element. Here’s what one looks like; we’ll discuss what the attributes mean in a
minute:

<svg:path
 fill="blue"
 stroke="black"
 stroke-width="2px"
 fillrule="evenodd"
 stroke-linejoin="bevel"

312 | Chapter 9: Extending XSLT

 onmouseout="mouse_out(5);"
 onmouseover="mouse_over(3, 5);"
 onclick="click(3, 5);"
 transform="translate(100,160) rotate(-219.65188868902763)"
 d="M 80 0 A 80 80 0 0 0 34.3848056509693 -72.23354581041326 L 0 0 Z "/>

This intimidating element was generated by this equally intimidating stylesheet
fragment:

<svg:path fill="{$color}" stroke="black" stroke-width="2px"
 fillrule="evenodd" stroke-linejoin="bevel">
 <xsl:attribute name="onmouseout">
 <xsl:text>mouse_out(</xsl:text>
 <xsl:value-of select="$stores"/>
 <xsl:text>);</xsl:text>
 </xsl:attribute>
 <xsl:attribute name="transform">
 <xsl:choose>
 <xsl:when test="$explode">
 <xsl:text>translate(</xsl:text>
 <xsl:choose>
 <xsl:when
 test="function-available('xalan-java:java.lang.Math.cos')">
 <xsl:value-of
 select="(xalan-java:java.lang.Math.cos(
 $currentAngle div 2) * 20) + 100"/>
 <xsl:text>,</xsl:text>
 <xsl:value-of
 select="(xalan-java:java.lang.Math.sin($currentAngle div 2)
 * -20) + 160"/>
 </xsl:when>
 <xsl:when
 test="function-available('saxon-java:cos')">
 <xsl:value-of
 select="(saxon-java:cos($currentAngle div 2) * 20) + 100"/>
 <xsl:text>,</xsl:text>
 <xsl:value-of
 select="(saxon-java:sin($currentAngle div 2) * -20) + 160"/>
 </xsl:when>
 <xsl:when test="function-available('ora:cos')">
 <xsl:value-of
 select="(ora:cos($currentAngle div 2) * 20) + 100"/>
 <xsl:text>,</xsl:text>
 <xsl:value-of
 select="(ora:sin($currentAngle div 2) * -20) + 160"/>
 </xsl:when>
 </xsl:choose>
 <xsl:text>) </xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>translate(100,160) </xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:text> rotate(</xsl:text>
 <xsl:value-of select="-1 * (($runningTotal div $totalSales) * 360.0)"/>
 <xsl:text>)</xsl:text>

Example: Generating an SVG Pie Chart | 313

 </xsl:attribute>
 <xsl:attribute name="onmouseover">
 <xsl:text>mouse_over(</xsl:text>
 <xsl:value-of select="$position"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="$stores"/>
 <xsl:text>);</xsl:text>
 </xsl:attribute>
 <xsl:attribute name="onclick">
 <xsl:text>click(</xsl:text>
 <xsl:value-of select="$position"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="$stores"/>
 <xsl:text>);</xsl:text>
 </xsl:attribute>
 <xsl:attribute name="d">
 <xsl:text>M 80 0 A 80 80 0 </xsl:text>
 <xsl:choose>
 <xsl:when test="$currentAngle > 3.14">
 <xsl:text>1 </xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>0 </xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:text>0 </xsl:text>
 <xsl:choose>
 <xsl:when test="function-available('xalan-java:java.lang.Math.cos')">
 <xsl:value-of
 select="xalan-java:java.lang.Math.cos($currentAngle) * 80"/>
 <xsl:text> </xsl:text>
 <xsl:value-of
 select="xalan-java:java.lang.Math.sin($currentAngle) * -80"/>
 </xsl:when>
 <xsl:when test="function-available('saxon-java:cos')">
 <xsl:value-of select="saxon-java:cos($currentAngle) * 80"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="saxon-java:sin($currentAngle) * -80"/>
 </xsl:when>
 <xsl:when test="function-available('ora:cos')">
 <xsl:value-of
 select="ora:cos($currentAngle) * 80"/>
 <xsl:text> </xsl:text>
 <xsl:value-of
 select="ora:sin($currentAngle) * -80"/>
 </xsl:when>
 </xsl:choose>
 <xsl:text> L 0 0 Z </xsl:text>
 </xsl:attribute>
</svg:path>

We’ll cover the attributes of the SVG element in order. The fill attribute defines
what color to use when filling the path. stroke defines the color of the line used to
draw the path, and stroke-width defines the width of that line. fillrule and
stroke-linejoin define details of how a path is filled and how lines are joined.

314 | Chapter 9: Extending XSLT

Next we generate the calls to our script functions. If this is the third slice (out of
five) of the pie, calls to the script functions look like this:

 onmouseout="mouse_out(5);"
 onmouseover="mouse_over(3, 5);"
 onclick="click(3, 5);"

The mouse_out function takes as its argument the number of slices of pie. It makes
all of the details view elements hidden, and it makes the legend elements visible.
(Those elements have ids of legend1, details1, and so forth.) mouse_over takes the
value of the current slice of pie (the one that has the mouse over it) and the number
of slices of pie. The click function also takes the value of the current slice of pie
and the number of slices.

The real work begins with the transform attribute. It contains two operators,
translate and rotate. What we’re doing with the transform attribute is changing
the position of the point (0,0) and the direction of the X and Y axes. We’ll move
and rotate the origin so the first side of the slice of the pie is along the X axis. (Trust
me, it simplifies the math.)

That brings us to the gloriously cryptic d attribute. This attribute contains a number
of drawing commands; in our previous example, we move the current point to
(80,0) (M stands for move), and then we draw an elliptical arc (A stands for arc)
with various properties. Finally, we draw a line (L stands for line) from the current
point (the end of our arc) to the origin, and then we use the Z command, which
closes the path by drawing a line from wherever we are to wherever we started.

If you really must know what the properties of the A command are, they are the
two radii of the ellipse, the degrees by which the x-axis should be rotated, two
parameters called the large-arc-flag and the sweep-flag that determine how the arc
is drawn, and the x- and y-coordinates of the end of the arc. In our example here,
the two radii of the ellipse are the same (we want the pie to be round, not elliptical).
Next is the x-axis rotation, which is 0. After that is the large-arc-flag, which is 1 if
this particular slice of the pie is greater than 180 degrees: it’s 0 otherwise. The
sweep-flag is 0, and the last two parameters, the x- and y-coordinates of the end
point, are calculated. See the SVG specification for more details on the path and
shape elements.

8. Our next task is to draw all of the legends. We’ll create a separate legend for each
slice of the pie. Initially, all of the separate legends will be invisible
(<g style="visibility:hidden">, in SVG parlance); as we mouse over the various
slices of the pie, different legends will become visible or invisible.

When we apply our template, we pass in several parameters, including the color
of the box in the legend entry and the y-coordinate offset where the legend entry
should be drawn. We call this template once for each <store> element, ensuring
that our legend identifies each slice of the pie, regardless of how many slices there
are. For each slice, we draw a box filled with the appropriate color and write the
name of the store next to it. We increment the y-coordinate by 20 pixels for each

Example: Generating an SVG Pie Chart | 315

item in the legend. To enable the EcmaScript functions we mentioned earlier, we
give each item in the legend an ID: legend1 for the first slice, legend2 for the second,
and so on.

Here’s the template:

<xsl:template match="store" mode="legend">
 <xsl:param name="color" select="'red'"/>
 <xsl:param name="storeSales" select="'0'"/>
 <xsl:param name="y-legend-offset" select="'0'"/>
 <xsl:param name="position" select="'1'"/>

 <svg:g id="legend{$position}">

 <svg:text font-size="12px" text-anchor="start" x="240">
 <xsl:attribute name="y">
 <xsl:value-of select="$y-legend-offset"/>
 </xsl:attribute>
 <xsl:value-of select="name"/>
 <xsl:text>: </xsl:text>
 <xsl:value-of select="format-number($storeSales, '#,###.#')"/>
 </svg:text>

 <svg:path stroke="black" stroke-width="2px" fill="{$color}">
 <xsl:attribute name="d">
 <xsl:text>M 220 </xsl:text>
 <xsl:value-of select="$y-legend-offset - 10"/>
 <xsl:text> L 220 </xsl:text>
 <xsl:value-of select="$y-legend-offset"/>
 <xsl:text> L 230 </xsl:text>
 <xsl:value-of select="$y-legend-offset"/>
 <xsl:text> L 230 </xsl:text>
 <xsl:value-of select="$y-legend-offset - 10"/>
 <xsl:text> Z</xsl:text>
 </xsl:attribute>
 </svg:path>
 </svg:g>
</xsl:template>

An individual legend appears as in Figure 9-10.

A final note: we use the SVG group element (<svg:g>) here to group several items.
Each group contains some text, and the colored box that indicates which slice of
the pie represents each store in the company. By putting these into a group and
giving that group a name, we can set the visibility property of the group and
make everything it contains visible or invisible.

Figure 9-10. An item in the legend

316 | Chapter 9: Extending XSLT

9. Our final task is to draw the details for each store of the company. The name of
the store and this store’s percentage of the total sales are drawn in the same color
as its slice of the pie. For each brand sold by this store, we list the brand and its
sales. (See Figure 9-11 to see exactly how this looks.) As we did with the template
for drawing the legend, we put several items together in an SVG group. Here’s the
template:

<xsl:template match="store" mode="details">
 <xsl:param name="color"/>
 <xsl:param name="y-legend-offset"/>
 <xsl:param name="storeSales"/>
 <xsl:param name="totalSales"/>

 <svg:g visibility="hidden" id="details{$position}">
 <svg:text font-size="16px" font-weight="bold" text-anchor="start"
 fill="black" x="220.5" y="{$y-legend-offset + .5}">
 <xsl:value-of select="name"/><xsl:text> Sales:</xsl:text>
 </svg:text>
 <svg:text font-size="16px" font-weight="bold" text-anchor="start"
 fill="{$color}" x="220" y="{$y-legend-offset}">
 <xsl:value-of select="name"/><xsl:text> Sales:</xsl:text>
 </svg:text>
 <xsl:for-each select="brand">
 <svg:text font-size="12px" text-anchor="start" x="220"
 y="{$y-legend-offset + (position() * 20)}">
 <xsl:value-of select="@name"/>
 <xsl:text>: </xsl:text>
 <xsl:value-of select="format-number(., '#,###.#')"/>
 </svg:text>
 </xsl:for-each>
 <svg:text font-size="14px" font-weight="bold" text-anchor="start"
 fill="black" x="220.5"
 y="{$y-legend-offset + 20.5 + (count(brand) * 20)}">
 <xsl:value-of
 select="format-number($storeSales div $totalSales, '##%')"/>
 <xsl:text> of total</xsl:text>
 </svg:text>
 <svg:text font-size="14px" font-weight="bold" text-anchor="start"
 fill="{$color}" x="220"
 y="{$y-legend-offset + 20 + (count(brand) * 20)}">
 <xsl:value-of
 select="format-number($storeSales div $totalSales, '##%')"/>
 </svg:text>
 </svg:g>
</xsl:template>

Notice that we draw this item to be invisible (visibility="hidden"); we’ll use our
JavaScript effects to make the various legends and details visible or hidden. In our
stylesheet, we draw the title of the current store using the same color we used for
the slice of the pie, followed by the sales figures for each product sold in this store
and the percentage of total sales. The details for each brand are drawn 20 pixels
below the previous one, and the final line that indicates the percentage of sales
delivered by this particular store is written 20 pixels below the final brand.

Example: Generating an SVG Pie Chart | 317

The sales details for a particular store appear as in Figure 9-11.

One subtle detail to note: we draw the name of the store and its percentage of sales
twice, once in black and then once in the store’s color. The black is .5 pixels down
and to the right of the colored text in the foreground, which gives the display a nice
shading effect.

Here’s the complete stylesheet:

<?xml version="1.0"?>
<!-- piechart.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 extension-element-prefixes="xalan-java saxon-java msxsl ora months"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns:xalan-java="http://xml.apache.org/xslt/java"
 xmlns:saxon-java="java:java.lang.Math"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"
 xmlns:ora="http://www.oreilly.com/xslt"
 xmlns:months="http://www.oreilly.com/xslt/months">

 <months:month sequence="1">January</months:month>
 <months:month sequence="2">February</months:month>
 <months:month sequence="3">March</months:month>
 <months:month sequence="4">April</months:month>
 <months:month sequence="5">May</months:month>
 <months:month sequence="6">June</months:month>
 <months:month sequence="7">July</months:month>
 <months:month sequence="8">August</months:month>
 <months:month sequence="9">September</months:month>
 <months:month sequence="10">October</months:month>
 <months:month sequence="11">November</months:month>
 <months:month sequence="12">December</months:month>

 <msxsl:script implements-prefix="ora" language="C#">
 <![CDATA[
 public double cos(double d)
 {
 return Math.Round(Math.Cos(d), 4);
 }

 public double sin(double d)

Figure 9-11. Sales details for a particular store

318 | Chapter 9: Extending XSLT

 {
 return Math.Round(Math.Sin(d), 4);
 }
]]>
 </msxsl:script>

 <xsl:output method="xml"/>

 <xsl:variable name="totalSales" select="sum(//brand)"/>
 <xsl:variable name="stores" select="count(/sales/store)"/>

 <xsl:template match="/">
 <svg:svg width="450" height="300" version="1.1"
 baseProfile="full"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:ev="http://www.w3.org/2001/xml-events">
 <xsl:comment>
 ECMAScript to handle mouse events
 </xsl:comment>

 <!-- Our generated SVG file has three functions: -->
 <!-- - mouse_over normally displays the details for a store -->
 <!-- in place of the legend. -->
 <!-- - mouse_out normally restores the legend when the mouse -->
 <!-- leaves a slice of the pie. -->
 <!-- - click handles a mouse click on a given slice of pie. -->
 <!-- If this is the first time we’ve clicked on this slice, -->
 <!-- this slice becomes the current item, and its sales -->
 <!-- details are displayed until the user clicks on another -->
 <!-- slice of pie. -->
 <!-- If this is the second time we’ve clicked on this slice, -->
 <!-- the details view is switched off and the normal mouse -->
 <!-- behavior returns. -->

 <svg:script type="text/ecmascript">
 <xsl:text disable-output-escaping="yes">

 detailsViewOn = false;
 currentItem = 0;

 function mouse_over(selectedItem, totalItems)
 {
 if (!detailsViewOn || selectedItem == currentItem)
 {
 for (i = 1; totalItems >= i; i++)
 {
 obj = svgDocument.getElementById("details" + i);
 obj.setAttributeNS(null, "visibility", "hidden");
 obj = svgDocument.getElementById("legend" + i);
 obj.setAttributeNS(null, "visibility", "hidden");
 }

 obj = svgDocument.getElementById("details" + selectedItem);
 obj.setAttributeNS(null, "visibility", "visible");

Example: Generating an SVG Pie Chart | 319

 }
 }

 function mouse_out(totalItems)
 {
 if (!detailsViewOn)
 {
 for (i = 1; totalItems >= i; i++)
 {
 obj = svgDocument.getElementById("details" + i);
 obj.setAttributeNS(null, "visibility", "hidden");
 obj = svgDocument.getElementById("legend" + i);
 obj.setAttributeNS(null, "visibility", "visible");
 }
 }
 }

 function click(selectedItem, totalItems)
 {
 if (selectedItem != currentItem)
 {
 currentItem = selectedItem;
 mouse_over(selectedItem, totalItems);
 detailsViewOn = true;
 }
 else
 {
 obj = svgDocument.getElementById("details" + selectedItem);
 if (obj.getAttributeNS(null, "visibility") == "visible")
 {
 detailsViewOn = false;
 currentItem = 0;
 }
 else
 {
 currentItem = selectedItem;
 mouse_over(selectedItem, totalItems);
 detailsViewOn = true;
 }
 }
 }
 // </xsl:text></svg:script>
 <xsl:text>
</xsl:text>

 <!-- Generate the title and subtitle. We draw the title and -->
 <!-- subtitle on the chart, and we set the <svg:title> element -->
 <!-- in the SVG document itself. -->
 <xsl:variable name="titleText">
 <xsl:value-of select="/report/caption/heading"/>
 <xsl:text> - </xsl:text>
 <xsl:value-of
 select="document('')/*/months:month
 [@sequence=current()/report/@month]"/>
 <xsl:text> </xsl:text>

320 | Chapter 9: Extending XSLT

 <xsl:value-of select="/report/@year"/>
 </xsl:variable>

 <svg:title>
 <xsl:value-of select="$titleText"/>
 </svg:title>
 <svg:text font-size="24px" text-anchor="start"
 font-weight="bold" x="10" y="40">
 <xsl:value-of select="$titleText"/>
 </svg:text>
 <svg:text font-size="14px" text-anchor="middle" y="60" x="225">
 <xsl:value-of select="/report/caption/subheading"/>
 </svg:text>

 <xsl:variable name="totalSales" select="sum(//brand)"/>
 <xsl:variable name="stores" select="count(/report/store)"/>

 <xsl:for-each select="/report/store">
 <xsl:variable name="storeSales" select="sum(brand)"/>
 <xsl:variable name="color">
 <xsl:choose>
 <xsl:when test="(position() mod 6) = 1">
 <xsl:text>red</xsl:text>
 </xsl:when>
 <xsl:when test="(position() mod 6) = 2">
 <xsl:text>orange</xsl:text>
 </xsl:when>
 <xsl:when test="(position() mod 6) = 3">
 <xsl:text>purple</xsl:text>
 </xsl:when>
 <xsl:when test="(position() mod 6) = 4">
 <xsl:text>blue</xsl:text>
 </xsl:when>
 <xsl:when test="(position() mod 6) = 5">
 <xsl:text>green</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>gray</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:variable name="explode" select="position()=1"/>

 <!-- Create the pie slice for each store -->
 <xsl:apply-templates select=".">
 <xsl:with-param name="color" select="$color"/>
 <xsl:with-param name="storeSales" select="$storeSales"/>
 <xsl:with-param name="totalSales" select="$totalSales"/>
 <xsl:with-param name="runningTotal"
 select="sum(preceding-sibling::store/brand)"/>
 <xsl:with-param name="stores" select="$stores"/>
 <xsl:with-param name="explode" select="$explode"/>
 <xsl:with-param name="position" select="position()"/>
 </xsl:apply-templates>

Example: Generating an SVG Pie Chart | 321

 <!-- Create the legend entry for each store -->
 <xsl:apply-templates select="." mode="legend">
 <xsl:with-param name="color" select="$color"/>
 <xsl:with-param name="storeSales" select="$storeSales"/>
 <xsl:with-param name="y-legend-offset"
 select="90 + (position() * 20)"/>
 <xsl:with-param name="position" select="position()"/>
 </xsl:apply-templates>

 <!-- Create the (initially hidden) sales details for -->
 <!-- each store -->
 <xsl:apply-templates select="." mode="details">
 <xsl:with-param name="color" select="$color"/>
 <xsl:with-param name="position" select="position()"/>
 <xsl:with-param name="y-legend-offset" select="110"/>
 <xsl:with-param name="storeSales" select="$storeSales"/>
 <xsl:with-param name="totalSales" select="$totalSales"/>
 </xsl:apply-templates>

 </xsl:for-each>
 </svg:svg>
 </xsl:template>

 <!-- For each store, create the pie slice (<svg:path>) and the -->
 <!-- onmouseover(), onmouseout(), and onclick() event handlers. -->
 <xsl:template match="store">
 <xsl:param name="color" select="'red'"/>
 <xsl:param name="runningTotal" select="'0'"/>
 <xsl:param name="totalSales" select="'0'"/>
 <xsl:param name="storeSales" select="'0'"/>
 <xsl:param name="stores" select="'5'"/>
 <xsl:param name="explode"/>
 <xsl:param name="position" select="'1'"/>

 <xsl:variable name="currentAngle">
 <xsl:choose>
 <xsl:when
 test="function-available('xalan-java:java.lang.Math.toRadians')">
 <xsl:value-of
 select="xalan-java:java.lang.Math.toRadians(
 ($storeSales div $totalSales) * 360.0)"/>
 </xsl:when>
 <xsl:when
 test="function-available('saxon-java:toRadians')">
 <xsl:value-of
 select="saxon-java:toRadians(
 ($storeSales div $totalSales) * 360.0)"/>
 </xsl:when>
 <xsl:when test="function-available('ora:cos')">
 <xsl:value-of
 select="($storeSales div $totalSales) *
 6.283185307179586476925286766559"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:message terminate="yes">

322 | Chapter 9: Extending XSLT

 <xsl:text>Sorry, this stylesheet can't generate any </xsl:text>
 <xsl:text>useful results
 without trigonometric </xsl:text>
 <xsl:text>functions available. </xsl:text>
 </xsl:message>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

 <svg:path fill="{$color}" stroke="black" stroke-width="2px"
 fillrule="evenodd" stroke-linejoin="bevel">
 <xsl:attribute name="onmouseout">
 <xsl:text>mouse_out(</xsl:text>
 <xsl:value-of select="$stores"/>
 <xsl:text>);</xsl:text>
 </xsl:attribute>
 <xsl:attribute name="transform">
 <xsl:choose>
 <xsl:when test="$explode">
 <xsl:text>translate(</xsl:text>
 <xsl:choose>
 <xsl:when
 test="function-available('xalan-java:java.lang.Math.cos')">
 <xsl:value-of
 select="(xalan-java:java.lang.Math.cos(
 $currentAngle div 2) * 20) + 100"/>
 <xsl:text>,</xsl:text>
 <xsl:value-of
 select="(xalan-java:java.lang.Math.sin($currentAngle div 2)
 * -20) + 160"/>
 </xsl:when>
 <xsl:when
 test="function-available('saxon-java:cos')">
 <xsl:value-of
 select="(saxon-java:cos($currentAngle div 2) * 20) + 100"/>
 <xsl:text>,</xsl:text>
 <xsl:value-of
 select="(saxon-java:sin($currentAngle div 2) * -20) + 160"/>
 </xsl:when>
 <xsl:when test="function-available('ora:cos')">
 <xsl:value-of
 select="(ora:cos($currentAngle div 2) * 20) + 100"/>
 <xsl:text>,</xsl:text>
 <xsl:value-of
 select="(ora:sin($currentAngle div 2) * -20) + 160"/>
 </xsl:when>
 </xsl:choose>
 <xsl:text>) </xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>translate(100,160) </xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:text> rotate(</xsl:text>
 <xsl:value-of select="-1 * (($runningTotal div $totalSales) * 360.0)"/>

Example: Generating an SVG Pie Chart | 323

 <xsl:text>)</xsl:text>
 </xsl:attribute>
 <xsl:attribute name="onmouseover">
 <xsl:text>mouse_over(</xsl:text>
 <xsl:value-of select="$position"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="$stores"/>
 <xsl:text>);</xsl:text>
 </xsl:attribute>
 <xsl:attribute name="onclick">
 <xsl:text>click(</xsl:text>
 <xsl:value-of select="$position"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="$stores"/>
 <xsl:text>);</xsl:text>
 </xsl:attribute>
 <xsl:attribute name="d">
 <xsl:text>M 80 0 A 80 80 0 </xsl:text>
 <xsl:choose>
 <xsl:when test="$currentAngle > 3.14">
 <xsl:text>1 </xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>0 </xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:text>0 </xsl:text>
 <xsl:choose>
 <xsl:when test="function-available('xalan-java:java.lang.Math.cos')">
 <xsl:value-of
 select="xalan-java:java.lang.Math.cos($currentAngle) * 80"/>
 <xsl:text> </xsl:text>
 <xsl:value-of
 select="xalan-java:java.lang.Math.sin($currentAngle) * -80"/>
 </xsl:when>
 <xsl:when test="function-available('saxon-java:cos')">
 <xsl:value-of select="saxon-java:cos($currentAngle) * 80"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="saxon-java:sin($currentAngle) * -80"/>
 </xsl:when>
 <xsl:when test="function-available('ora:cos')">
 <xsl:value-of
 select="ora:cos($currentAngle) * 80"/>
 <xsl:text> </xsl:text>
 <xsl:value-of
 select="ora:sin($currentAngle) * -80"/>
 </xsl:when>
 </xsl:choose>
 <xsl:text> L 0 0 Z </xsl:text>
 </xsl:attribute>
 </svg:path>
 </xsl:template>

 <!-- For each store, create an entry in the legend -->
 <xsl:template match="store" mode="legend">

324 | Chapter 9: Extending XSLT

 <xsl:param name="color" select="'red'"/>
 <xsl:param name="storeSales" select="'0'"/>
 <xsl:param name="y-legend-offset" select="'0'"/>
 <xsl:param name="position" select="'1'"/>

 <svg:g id="legend{$position}">

 <svg:text font-size="12px" text-anchor="start" x="240">
 <xsl:attribute name="y">
 <xsl:value-of select="$y-legend-offset"/>
 </xsl:attribute>
 <xsl:value-of select="name"/>
 <xsl:text>: </xsl:text>
 <xsl:value-of select="format-number($storeSales, '#,###.#')"/>
 </svg:text>

 <svg:path stroke="black" stroke-width="2px" fill="{$color}">
 <xsl:attribute name="d">
 <xsl:text>M 220 </xsl:text>
 <xsl:value-of select="$y-legend-offset - 10"/>
 <xsl:text> L 220 </xsl:text>
 <xsl:value-of select="$y-legend-offset"/>
 <xsl:text> L 230 </xsl:text>
 <xsl:value-of select="$y-legend-offset"/>
 <xsl:text> L 230 </xsl:text>
 <xsl:value-of select="$y-legend-offset - 10"/>
 <xsl:text> Z</xsl:text>
 </xsl:attribute>
 </svg:path>
 </svg:g>
 </xsl:template>

 <!-- For each store, create the hidden list of sales details -->
 <xsl:template match="store" mode="details">
 <xsl:param name="color" select="black"/>
 <xsl:param name="position" select="'0'"/>
 <xsl:param name="y-legend-offset"/>
 <xsl:param name="storeSales"/>
 <xsl:param name="totalSales"/>

 <svg:g visibility="hidden" id="details{$position}">
 <svg:text font-size="16px" font-weight="bold" text-anchor="start"
 fill="black" x="220.5">
 <xsl:attribute name="y">
 <xsl:value-of select="$y-legend-offset + .5"/>
 </xsl:attribute>
 <xsl:value-of select="name"/><xsl:text> Sales:</xsl:text>
 </svg:text>
 <svg:text font-size="16px" font-weight="bold" text-anchor="start"
 fill="{$color}" x="220">
 <xsl:attribute name="y">
 <xsl:value-of select="$y-legend-offset"/>
 </xsl:attribute>
 <xsl:value-of select="name"/><xsl:text> Sales:</xsl:text>
 </svg:text>

Example: Generating an SVG Pie Chart | 325

 <xsl:for-each select="brand">
 <svg:text font-size="12px" text-anchor="start" x="220">
 <xsl:attribute name="y">
 <xsl:value-of select="$y-legend-offset + (position() * 20)"/>
 </xsl:attribute>
 <xsl:value-of select="@name"/>
 <xsl:text>: </xsl:text>
 <xsl:value-of select="format-number(., '#,###.#')"/>
 </svg:text>
 </xsl:for-each>
 <svg:text font-size="14px" font-weight="bold" text-anchor="start"
 fill="black" x="220.5"
 y="{$y-legend-offset + 20.5 + (count(brand) * 20)}">
 <xsl:value-of select="format-number($storeSales div $totalSales, '##%')"/>
 <xsl:text> of total</xsl:text>
 </svg:text>
 <svg:text font-size="14px" font-weight="bold" text-anchor="start"
 fill="{$color}" x="220"
 y="{$y-legend-offset + 20 + (count(brand) * 20)}">
 <xsl:value-of select="format-number($storeSales div $totalSales, '##%')"/>

 </svg:text>
 </svg:g>
 </xsl:template>

</xsl:stylesheet>

In this example, we’ve used XSLT extension functions to add new capabilities to the
XSLT processor. We needed a couple of simple trigonometric functions, and Saxon
and Xalan’s ability to use existing Java classes made adding new capabilities simple.
You can use this technique to invoke static methods of Java classes anywhere you need
them. Best of all, we didn’t have to write any Java code to make this happen.

Writing Extensions in Other Languages
One of the nice features of Xalan-J’s extension mechanism is that it supports the Bean
Scripting Framework (BSF), an open source library from the Apache Software Foun-
dation that allows you to execute code written in a variety of scripting languages. We’ll
take the SVG stylesheet we just discussed and implement it again, writing the extension
functions in a variety of other languages. For our first example, we’ll look at all the
details of defining and invoking BSF extension functions; for the subsequent examples,
we’ll simply highlight the differences.

The Bean Scripting Framework supports many languages, including JRuby, Jython,
Groovy, Jacl, NetRexx, PerlScript, Tcl, and VBScript. If you’re using a Microsoft plat-
form, BSF also supports Windows Script Technologies, so you may have even more
choices if you’re running some flavor of Windows.

Using the BSF requires two files on your CLASSPATH—bsf.jar, which is available at http://
jakarta.apache.org/bsf/index.html, and commons-logging-1.1.jar, which is available at

326 | Chapter 9: Extending XSLT

http://jakarta.apache.org/bsf/index.html
http://jakarta.apache.org/bsf/index.html

http://jakarta.apache.org/commons/logging/—in addition to the JAR files for the lan-
guage you’re using. We’ll point out those requirements as we go. Also be aware that
system requirements can change; earlier versions of the BSF did not require the logging
component.

Jython
We’ll start our tour of BSF-supported languages with Jython, an implementation of
Python written in Java. As you would expect, we must do several things to identify our
extension code to Xalan. We’ll cover them, and then look at the source of the extension
functions. First we need to define the namespace prefixes we’ll use:

<!-- piechart-jython.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns:months="http://www.oreilly.com/xslt/months"
 xmlns:lxslt="http://xml.apache.org/xslt"
 xmlns:jython-extension="http://www.jython.org"
 extension-element-prefixes="jython-extension"
 exclude-result-prefixes="lxslt">

We’re generating SVG markup, so we need to define the svg namespace. The months
namespace is for the <months> elements we use for a document('') lookup table (for
variety’s sake, we’ll avoid using the EXSLT extensions here). For the last two name-
spaces, lxslt is the namespace Xalan uses to invoke the Bean Scripting Framework,
and jython-extension is the prefix we use to identify the extension functions written
in Jython.

In this example, we associated the jython-extension namespace prefix
with the URI http://www.jython.org, which is the home page for the
Jython project. The URI could be anything. The crucial identifier for the
BSF is the name of the language, as we’ll see in just a minute.

Our code goes in a <lxslt:component> element:

 <lxslt:component prefix="jython-extension"
 functions="cos sin">
 <lxslt:script lang="jython">
import math

def cos(d):
 return math.cos(d)

def sin(d):
 return math.sin(d)
 </lxslt:script>
 </lxslt:component>

Writing Extensions in Other Languages | 327

http://jakarta.apache.org/commons/logging/

The prefix attribute of the <lxslt:component> element associates the code with a
namespace prefix, while the functions attribute lists the extension functions provided
by this code. The <lxslt:script> element contains the actual code. The lang attribute
of the <lxslt:script> element is case-sensitive and must match the name of a language
known to the implementation of the Bean Scripting Framework you’re using. Changing
the lang attribute to Jython causes a fatal error.

Now that we’ve packaged and labeled our Jython code correctly, all we have to do is
invoke it:

<xsl:value-of
 select="(jython-extension:cos(number($currentAngle div 2)) * 20) + 100"/>

Other than the jython-extension extension before the function call, the rest of our
stylesheet is exactly the same. The cos() and sin() functions are part of the Python
math library, so all we have to do was invoke them.

To use these extension functions, your CLASSPATH must contain jython.jar, available at
http://www.jython.org, in addition to bsf.jar and commons-logging-1.1.jar.

We’ll move on to other languages now, looking at the script and the CLASSPATH setup
for each.

JRuby
JRuby is an implementation of the popular Ruby language written in Java. We define
the namespace prefix jruby-extension and associate it with the URI
http://jruby.codehaus.org. Here’s the JRuby code:

<?xml version="1.0"?>
<!-- piechart-jruby.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns:months="http://www.oreilly.com/xslt/months"
 xmlns:lxslt="http://xml.apache.org/xslt"
 xmlns:jruby-extension="http://jruby.codehaus.org"
 extension-element-prefixes="jruby-extension"
 exclude-result-prefixes="lxslt">
...
 <lxslt:component prefix="jruby-extension"
 functions="cos sin">
 <lxslt:script lang="ruby">
 def cos(d)
 Math::cos(d)
 end

 def sin(d)
 Math::sin(d)
 end
 </lxslt:script>
 </lxslt:component>

328 | Chapter 9: Extending XSLT

http://www.jython.org

To use these extension functions, your CLASSPATH must contain jruby.jar, available at
http://jruby.codehaus.org, in addition to bsf.jar and commons-logging-1.1.jar.

The magic lang attribute value here is ruby. Using JRuby, jruby, or
Ruby, all of which are reasonable choices, causes a runtime error.

JavaScript
We’ll use Mozilla’s Rhino JavaScript engine to illustrate JavaScript support. We define
the namespace prefix javascript-extension and associate it with the URI http://
www.mozilla.org/rhino. The JavaScript code looks like this:

<?xml version="1.0"?>
<!-- piechart-javascript.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns:months="http://www.oreilly.com/xslt/months"
 xmlns:lxslt="http://xml.apache.org/xslt"
 xmlns:javascript-extension="http://www.mozilla.org/rhino"
 extension-element-prefixes="javascript-extension"
 exclude-result-prefixes="lxslt">
...
 <lxslt:component prefix="javascript-extension"
 functions="cos sin">
 <lxslt:script lang="javascript">
 function cos(d)
 {
 return Math.cos(d);
 }

 function sin(d)
 {
 return Math.sin(d);
 }
 </lxslt:script>
 </lxslt:component>

To use these extension functions, your CLASSPATH must contain js.jar, available at http://
www.mozilla.org/rhino, in addition to bsf.jar and commons-logging-1.1.jar.

Jacl
Jacl is a Tcl (Tool Command Language) interpreter written entirely in Java. We define
the namespace prefix jacl-extension and associate it with the URI http://
tcljava.sourceforge.net. The code is straightforward:

<?xml version="1.0"?>
<!-- piechart-jacl.xsl -->

Writing Extensions in Other Languages | 329

http://jruby.codehaus.org
http://www.mozilla.org/rhino
http://www.mozilla.org/rhino

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns:months="http://www.oreilly.com/xslt/months"
 xmlns:lxslt="http://xml.apache.org/xslt"
 xmlns:jacl-extension="http://tcljava.sourceforge.net"
 extension-element-prefixes="jacl-extension"
 exclude-result-prefixes="lxslt">
...
 <lxslt:component prefix="jacl-extension"
 functions="cos sin">
 <lxslt:script lang="jacl">
 proc cos {d} {expr cos($d)}
 proc sin {d} {expr sin($d)}
 </lxslt:script>
 </lxslt:component>

To use these extension functions, your CLASSPATH must contain jacl.jar and tclja
va.jar, available at http://tcljava.sourceforge.net, in addition to bsf.jar and commons-
logging-1.1.jar.

Using Extension Functions from the EXSLT Library
Earlier we mentioned the EXSLT project, an effort to define a common set of XSLT
extension functions. For our next example, we’ll use functions from the EXSLT library.
Both Saxon and Xalan have EXSLT support built in, so it’s very easy to use extensions
from the EXSLT library.

Although a number of XSLT processors support EXSLT, be aware that
EXSLT is implemented inconsistently between processors. Not all pro-
cessors support all functions, and not all functions have the same sig-
nature or results.

EXSLT provides eight categories of functions:

Common
Common functions for data typing and for working with node-sets. These are in
the http://exslt.org/common namespace.

Dates and times
Functions for manipulating dates and times. These are in the http://exslt.org/
dates-and-times namespace.

Dynamic
Functions to dynamically evaluate XPath expressions. These are in the http://
exslt.org/dynamic namespace.

330 | Chapter 9: Extending XSLT

http://tcljava.sourceforge.net

Functions
Extension elements and functions that allow you to define your own functions.
These are in the http://exslt.org/functions namespace.

Math
Functions for trigonometry, exponentiation, logarithms, and other miscellaneous
mathematical functions. These are in the http://exslt.org/math namespace.

Random
A single function (random-sequence()) that generates a sequence of random values
between 0 and 1. It is in the http://exslt.org/random namespace.

Regular expressions
Functions that work with regular expressions. These are in the http://exslt.org/
regular-expressions namespace.

Sets
Functions to calculate the difference and intersection between sets. These are in
the http://exslt.org/sets namespace.

Strings
Functions for manipulating strings. These are in the http://exslt.org/strings
namespace.

Many of the EXSLT functions and elements have been added as part of the language
for XSLT 2.0. The EXSLT effort represents the most requested features missing in XSLT
1.0, so it’s not surprising that EXSLT would have a strong impact on the design and
features of XSLT 2.0.

You should also be aware that just because an XSLT processor supports EXSLT, it
might not support all of the functions defined at http://exslt.org. There are also minor
differences between the implementations, so beware.

We’ll use EXSLT for three things: the cos() and sin() functions we used earlier, and
the month-name() function to get the name of the current month. Using month-name()
means we won’t have to have the <months:month> elements we’ve used until now.

To keep this discussion short, we’ll only look at the parts of the EXSLT stylesheet that
are different from our original pie chart stylesheet. First of all, the <xsl:stylesheet>
element has different namespace declarations, as you’d expect:

<?xml version="1.0"?>
<!-- piechart-exslt.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns:math="http://exslt.org/math"
 xmlns:dates-and-times="http://exslt.org/dates-and-times"
 extension-element-prefixes="dates-and-times math">

Using Extension Functions from the EXSLT Library | 331

In our example, we’re testing the availability of the math and date/time extension
functions from EXSLT. The EXSLT functions are in two different namespaces, so we
define the dates-and-times and math prefixes in addition to the ones we used earlier.

Using the month-name() function takes some work. Here’s how we use it:

<xsl:choose>
 <xsl:when test="function-available('math:cos')">
 <xsl:variable name="dateString">
 <xsl:text>--</xsl:text>
 <xsl:if test="string-length(/report/@month) = 1">
 <xsl:text>0</xsl:text>
 </xsl:if>
 <xsl:value-of select="/report/@month"/>
 <xsl:text>--</xsl:text>
 </xsl:variable>
 <xsl:value-of
 select="dates-and-times:month-name($dateString)"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="/report/@year"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="/report/@month"/>
 <xsl:text>/</xsl:text>
 <xsl:value-of select="/report/@year"/>
 </xsl:otherwise>
</xsl:choose>

If the dates-and-times:month-name() function is available, we use it to get the name of
the month of the report. To get the name of the month, the implementations of the
month-name() function that ship with Xalan and Saxon require a string in the format
--MM--. (That’s the only format that works with both processors, at any rate. Each
processor might work with other formats, but we’ll keep our stylesheet simple by using
one format for both processors.) We create a variable named $dateString that matches
this format; if the value of the month attribute of the <report> element is one character
long, we’ll put a zero in front of it. If the EXSLT functions are available, month-
name('--08--') returns August. If the functions aren’t available, the stylesheet uses the
month attribute directly and creates a heading such as 8/2006.

Notice that the function-available() call tests for the math:cos function. Calling
function-available('dates-and-times:month-name') in Xalan-J 2.7.0 currently returns
false, even though the function is available. Testing for the EXSLT function
math:cos does return true, so that’s what we use here; all that really matters is support
for EXSLT.

Another difference is that EXSLT doesn’t define a toRadians() function, so we have to
define that ourselves. Here’s the difference between the EXLST version and the Saxon
extension version:

<xsl:when test="function-available('math:cos')">
 <xsl:value-of
 select="($storeSales div $totalSales) *

332 | Chapter 9: Extending XSLT

 6.283185307179586476925286766559"/>
</xsl:when>
<xsl:when
 test="function-available('saxon-java:toRadians')">
 <xsl:value-of
 select="saxon-java:toRadians(
 ($storeSales div $totalSales) * 360.0)"/>
</xsl:when>

The rest of the stylesheet is basically the same. Here’s how we generate the two coor-
dinates for the SVG translate() function, for example:

<xsl:when test="function-available('math:cos')">
 <xsl:value-of
 select="(math:cos($currentAngle div 2) * 20) + 100"/>
 <xsl:text>,</xsl:text>
 <xsl:value-of
 select="(math:sin($currentAngle div 2) * -20) + 160"/>
</xsl:when>

Accessing a Database with an Extension Element
The first edition of this book included an extension element that accessed an SQL
database. Since that time, the Saxon and Xalan processors have added extension libra-
ries that do this for us. We’ll look at how to use those extensions here.

Our example here uses the open source Apache Derby database, available at http://
db.apache.org/derby/. Here are the Derby commands and SQL statements that create
and populate the database:

connect 'jdbc:derby://localhost:1527/books;create=true';
create schema doug;
set schema doug;
create table compbks (ISBN varchar(10) primary key, title varchar(50),
 author varchar(50), pages int, price double, publisher varchar(50));
insert into compbks values ('0596527217', 'XSLT', 'Doug Tidwell',
 800, 49.95, 'O''Reilly');
insert into compbks values ('0974152129', 'DocBook XSL: The Complete Guide',
 'Bob Strayton', 560, 49.95, 'Sagehill Enterprises');
insert into compbks values ('1565925807', 'DocBook: The Definitive Guide',
 'Norman Walsh and Leonard Muellner', 652, 39.95, 'O''Reilly');
insert into compbks values ('0596009747', 'XSLT Cookbook', 'Sal Mangano',
 751, 49.95, 'O''Reilly');
insert into compbks values ('0596003277', 'Learning XSLT',
 'Michael Fitzgerald', 352, 34.95, 'O''Reilly');

We create a database named books and a table named compbks, then we insert five rows
into the table.

Accessing a Database with an Extension Element | 333

http://db.apache.org/derby/
http://db.apache.org/derby/

Saxon’s SQL support requires a username that must match the database
schema; that’s why we create the database schema doug and associate it
with the database. It also requires a password value, which must be at
least one character; we’ll look at those details in just a minute.

Accessing a Database in Saxon
The Saxon XSLT processor provides a set of extension elements that provide SQL
functions. There are extension elements to connect and disconnect from a database, to
run a database query, and to do updates, inserts, and deletes on database tables. To
keep our example simple, we’ll use <sql:connection> element to connect to a database,
then we’ll use <sql:query> to select items from the database and <sql:close> to close
the connection.

Here’s the complete stylesheet:

<?xml version="1.0"?>
<!-- saxon-sql.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:sql="java:/net.sf.saxon.sql.SQLElementFactory"
 xmlns:saxon="http://saxon.sf.net/"
 extension-element-prefixes="saxon sql">

 <xsl:output method="html"/>

 <xsl:template match="/">

 <!-- Create the JDBC connection -->
 <xsl:variable name="connection"
 as="java:java.sql.Connection"
 xmlns:java="http://saxon.sf.net/java-type">
 <sql:connect database="jdbc:derby://localhost:1527/books"
 driver="org.apache.derby.jdbc.ClientDriver"
 user="doug"
 password="x"/>
 </xsl:variable>

 <!-- Run the query -->
 <xsl:variable name="queryResults">
 <sql:query connection="$connection” table="compbks"
 column="*" row-tag="tr" column-tag="td"/>
 </xsl:variable>

 <html>
 <head>
 <title>Computer books in our database</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Computer books in our database</h1>
 <p>Here are the
 <xsl:value-of select="count($queryResults/tr)"/>

334 | Chapter 9: Extending XSLT

 computer books we have in stock:</p>
 <table border="1" cellpadding="5">
 <tr>
 <th>ISBN</th>
 <th>Title</th>
 <th>Author</th>
 <th>Pages</th>
 <th>List price</th>
 <th>Publisher</th>
 </tr>
 <xsl:copy-of select="$queryResults"/>
 </table>
 </body>
 </html>

 <!-- Close the connection -->
 <sql:close connection="$connection"/>
 </xsl:template>

</xsl:stylesheet>

We use the Saxon extension elements in three places. First, we create the database
connection with the <sql:connect> element. We have to specify the URL of the data-
base, the Java JDBC driver we use to access the database, and a username and password.
Note that both the username and password must be at least one character long. Even
if your database isn’t password protected (the Derby database we use here isn’t), you
still have to provide a username and password. To complicate things further, the user-
name must match the name of the database schema. That’s why we created the database
schema doug when we created the Derby database.

The second extension element we use is <sql:query>. This is where we actually run the
query and get the result set. The variable $queryResults contains a tree of elements
representing the result set. In our example here, we specify the name of the database
table, the columns to return (our example here means select *, although we could be
more specific if we wanted), and the elements used for the rows and columns in the
results. We’re generating an HTML table here, so we use tr and td.

After using the <sql:query> element, the variable $queryResults contains a tree of ele-
ments that represent the results of the database query. We use the count() function to
indicate how many books were found in the query, then we create our table. We use
the HTML <table>, <tr>, and <th> elements to set up the table, then we copy the
$queryResults variable to the output.

Once the HTML table is built, we use the <sql:close> element to close the database
connection.

The results of our stylesheet appear as in Figure 9-12.

Accessing a Database with an Extension Element | 335

Be sure your CLASSPATH contains the classes for the Saxon SQL ex-
tension package and the JDBC driver classes; otherwise, your stylesheets
won’t work.

Saxon’s SQL extension elements are built on JDBC, so they’re extremely flexible. For
example, to use this stylesheet with DB2, the only thing we have to change is the at-
tributes of the <sql:connect> element:

<?xml version="1.0"?>
<!-- saxon-sql2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:sql="java:/net.sf.saxon.sql.SQLElementFactory"
 xmlns:saxon="http://saxon.sf.net/"
 extension-element-prefixes="saxon sql">

 ...

 <!-- Create the JDBC connection -->
 <xsl:variable name="connection"
 as="java:java.sql.Connection"
 xmlns:java="http://saxon.sf.net/java-type">
 <sql:connect database="jdbc:db2:books"
 driver="COM.ibm.db2.jdbc.app.DB2Driver"
 user="Skippy"
 password="xxxxxxxx"/>
 </xsl:variable>

 ...

</xsl:stylesheet>

The DB2 version of the database is password-protected, so we have to provide a user-
name and password that are defined on the system. We changed one element, and now

Figure 9-12. An HTML table built with Saxon’s SQL extension elements

336 | Chapter 9: Extending XSLT

our stylesheet is accessing a completely different data source. As with any database, we
have to know the JDBC driver class and the URL format for the database, but that’s
the only change between the two stylesheets. The results of the new stylesheet, though,
are exactly the same.

Be aware that the name of the JDBC driver class is case-sensitive. If you
ask for the class com.ibm.db2... instead of COM.ibm.db2..., you’ll get a
runtime error.

Accessing a Database in Xalan
Xalan provides a set of extension functions that give us access to any JDBC data
source. The extension functions we’ll use are sql:new() to create a new database con-
nection, sql:query() to execute a query, and sql:close() to close the connection. In
addition, we’ll use the function sql:disableStreamingMode() to get around a “feature”
of the Xalan SQL library.

Here’s the stylesheet:

<?xml version="1.0"?>
<!-- xalan-sql.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:sql="org.apache.xalan.lib.sql.XConnection"
 extension-element-prefixes="sql">

 <xsl:output method="html"/>

 <xsl:template match="/">

 <!-- Create the JDBC connection -->
 <xsl:variable name="books"
 select="sql:new('org.apache.derby.jdbc.ClientDriver',
 'jdbc:derby://localhost:1527/books')"/>

 <!-- Workaround for a bug in Xalan’s SQL extension? -->
 <xsl:variable name="streaming"
 select="sql:disableStreamingMode($books)"/>

 <!-- Run the query -->
 <xsl:variable name="queryResults"
 select="sql:query($books, 'select * from doug.compbks')"/>

 <html>
 <head>
 <title>Computer books in our database</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Computer books in our database</h1>
 <p>Here are the
 <xsl:value-of select="count($queryResults/sql/row-set/row)"/>

Accessing a Database with an Extension Element | 337

 computer books we have in stock:</p>
 <table border="1" cellpadding="5">
 <tr>
 <xsl:for-each select="$queryResults/sql/metadata/column-header">
 <th>
 <xsl:value-of select="@column-label"/>
 </th>
 </xsl:for-each>
 </tr>
 <xsl:apply-templates select="$queryResults/sql/row-set/row"/>
 </table>
 </body>
 </html>

 <!-- Close the connection -->
 <xsl:value-of select="sql:close($books)"/>
 </xsl:template>

 <xsl:template match="row">
 <tr>
 <xsl:apply-templates select="col"/>
 </tr>
 </xsl:template>

 <xsl:template match="col">
 <td>
 <xsl:value-of select="text()"/>
 </td>
 </xsl:template>

</xsl:stylesheet>

We start by creating a variable named $books that represents the connection to the
database. Notice that the Xalan SQL library doesn’t require us to provide a username
and password; we simply specify the JDBC driver class name and the database URL.
The sql:disableStreamingMode($books) call lets us access all of the results in the result
set. Without this, the result set never has more than one result. Xalan-J 2.7.0 works
this way, it’s possible that future versions of the Xalan SQL library will work more
sensibly.

Notice that the Xalan library gives us access to the information provided by the Java
ResultSetMetaData class. In this case, we’re using the column headers defined in our
database, defined in the XPath hierarchy sql/metadata/column-header. Each column
header is displayed in a <th> element inside the table. The Saxon SQL library doesn’t
provide this information, although it would be simple to extend the source code to do
so.

Also notice that Xalan gives us more flexibility in the query statement. We could add
an ORDER BY or GROUP BY clause to the statement if we want. The table name is specified
differently here as well. Notice that we’re asking for the table doug.compbks, which refers
to the table named compbks that’s in the doug database schema. If we simply ask for the

338 | Chapter 9: Extending XSLT

table compbks, the JDBC driver tells us that table doesn’t exist. (Remember, we had to
add the doug schema so the Saxon stylesheet would work.)

Once we’ve generated the headings for the columns in the table, it’s time to process
everything in the result set. The rows and columns from the result set are returned in
a <row-set> element; each row is in a <row> element inside the <row-set>, and each
column is in a <col> inside a <row>. The templates we define for the <row> and <col>
elements are straightforward. The results are exactly the same as those for the style-
sheets that used the Saxon SQL extensions.

To complete this short tour of the Xalan SQL extensions, we’ll look at a second style-
sheet that accesses a DB2 database. The differences, as you’d expect, are slight:

<?xml version="1.0"?>
<!-- xalan-sql2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:sql="org.apache.xalan.lib.sql.XConnection"
 extension-element-prefixes="sql">

 ...

 <!-- Create the JDBC connection -->
 <xsl:variable name="books"
 select="sql:new('COM.ibm.db2.jdbc.app.DB2Driver',
 'jdbc:db2:books', 'Skippy', 'xxxxxxxx')"/>

 ...

 <!-- Run the query -->
 <xsl:variable name="queryResults"
 select="sql:query($books, 'select * from compbks')"/>

 ...

</xsl:stylesheet>

We have to specify a different JDBC driver class and a database URL in a different
format. This version of the sql:new() function accepts a username and password as
two of its parameters. The other difference here is that we don’t specify a database
schema name for the database table. The default database schema in DB2 is the name
of the user who created the database, so we can simply ask for the table compbks. If the
table was created under another database schema, we would have to include the schema
name here.

Creating a Photo Album with an Extension Element
As a final example, we’ll create an extension element that generates an HTML table
that displays all of the photographs in a given directory. The extension element takes
three parameters: the directory, how many images are displayed on each row of the

Creating a Photo Album with an Extension Element | 339

table, and whether the filename should be displayed under the photograph. The gen-
erated table displays a reduced version of each photograph; each small photo is a link
to the actual file. The generated file looks like Figure 9-13.

We’ll look at three versions of this extension here. The first two are written in Java,
one version for Xalan and one version for Saxon. These two processors use different
mechanisms to access the code; they also have different mechanisms to return the tree
of HTML elements back to the stylesheet. The third version is written in C# for
the .NET platform. The .NET version is written as an extension function rather than
an element, although it still returns the tree of HTML elements we need. The HTML
generated by the three implementations is the same.

All of the versions of our extension use this XML source file:

<?xml version="1.0"?>
<!-- photo-album.xml -->
<photo-album
 directory="c:\photos"
 imagesPerRow="5"
 includeFilenames="yes"/>

The XML source contains the three parameters we need for our extension: the directory
that contains the images, the number of images per row, and whether to include the

Figure 9-13. A photo album generated by an extension element

340 | Chapter 9: Extending XSLT

filenames in the table. As we’ll see, the extension code varies widely in the three ex-
amples, but the input data and the HTML output is the same.

The overall flow of the code is the same in all three extensions:

1. Get the attributes from the extension element. In some cases, we’ll do that in the
stylesheet; in others, the extension element will be able to get its own parameters.

2. See whether the requested directory exists. If it doesn’t, create a table that includes
a message such as “Directory doesn’t exist.”

3. Assuming the directory exists, see whether there are any images inside it. If it
doesn’t exist, create a table that includes a message such as “Directory doesn’t
contain any images.”

4. Assuming the directory exists and contains some images, create a table with
 elements that reference those images.

Xalan Java Version
We’ll start with the Xalan Java version of the extension. The return type of the extension
element is org.w3c.dom.Element. To start with, we’ll look at the XSLT stylesheet that
controls everything:

<?xml version="1.0"?>
<!-- xalan-photo-album.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xpa="xalan://com.oreilly.xslt.xalan.XalanPhotoAlbumExtension"
 extension-element-prefixes="xpa">

 <xsl:output method="html"/>

 <xsl:template match="photo-album">
 <html>
 <head>
 <title>Photo album extension element test</title>
 </head>
 <body style="font-family: sans-serif;">
 <xsl:choose>
 <xsl:when test="element-available('xpa:XalanPhotoAlbum')">
 <h1>Xalan photo album extension element test</h1>
 <xpa:XalanPhotoAlbum/>
 </xsl:when>
 <xsl:otherwise>
 <p>
 <i>[Sorry, the photo album function is not available.]</i>
 </p>
 </xsl:otherwise>
 </xsl:choose>
 </body>
 </html>
 </xsl:template>

Creating a Photo Album with an Extension Element | 341

</xsl:stylesheet>

Here’s the code for the extension element:

/*
 * XalanPhotoAlbumExtension.java
 * Created on Nov 28, 2006 by Doug Tidwell
 */

package com.oreilly.xslt.xalan;

import java.io.File;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.apache.xalan.extensions.XSLProcessorContext;
import org.apache.xalan.templates.ElemExtensionCall;
import org.w3c.dom.Document;
import org.w3c.dom.Element;

//This class creates a photo album with all of the images in a
//given directory.
public class XalanPhotoAlbumExtension
{
 // XalanPhotoAlbum is the name of the extension element. Notice that
 // it returns an Element node; that node is inserted into the output tree.
 public static Element XalanPhotoAlbum(XSLProcessorContext context,
 ElemExtensionCall elem)
 throws ParserConfigurationException
 {
 Element contextNode = (Element) context.getContextNode();

 // For parameters, we get the name of the directory, the number of
 // images per row, and whether the names of the files should be displayed.

 int imagesPerRowValue;
 try
 {
 imagesPerRowValue =
 Integer.parseInt(contextNode.getAttribute("imagesPerRow"));
 }
 catch (NumberFormatException nfe)
 {
 imagesPerRowValue = 5;
 }

 String directoryName = contextNode.getAttribute("directory");

 boolean includeFilenamesFlag =
 (contextNode.getAttribute("includeFilenames").
 equalsIgnoreCase("yes"));

 // We’re building a DOM tree, so we create a Document and some

342 | Chapter 9: Extending XSLT

 // elements beforehand. We’ll return a <table> element that
 // contains the images or an error message if something goes wrong.
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.newDocument();

 Element a = null, br = null, img = null, span = null,
 table = null, td = null, tr = null;

 table = doc.createElement("table");
 table.setAttribute("border", "3");
 table.setAttribute("cellpadding", "5");

 File dir = new File(directoryName);

 // Return an error message if the directory doesn’t exist
 if (!dir.exists())
 {
 tr = doc.createElement("tr");

 td = doc.createElement("td");
 td.setAttribute("style", "font-weight:bold; font-size: 150%");

 td.appendChild(doc.createTextNode("The directory "));

 span = doc.createElement("span");
 span.setAttribute("style", "font-family: monospace;");
 span.appendChild(doc.createTextNode(directoryName));
 td.appendChild(span);

 td.appendChild(doc.createTextNode(" does not exist!"));
 tr.appendChild(td);
 table.appendChild(tr);
 }
 else
 {
 // Use the filename filter to find the images
 String[] graphicsFiles = dir.list(new GraphicsFilenameFilter());
 int numFiles = 0;
 if (graphicsFiles != null)
 numFiles = graphicsFiles.length;

 // Return an error message if the directory doesn’t contain
 // any images
 if (numFiles == 0)
 {
 tr = doc.createElement("tr");

 td = doc.createElement("td");
 td.setAttribute("style", "font-weight:bold; font-size: 150%");

 td.appendChild(doc.createTextNode("The directory "));

 span = doc.createElement("span");
 span.setAttribute("style", "font-family: monospace;");

Creating a Photo Album with an Extension Element | 343

 span.appendChild(doc.createTextNode(directoryName));
 td.appendChild(span);

 td.appendChild(doc.createTextNode(" doesn't contain any images!"));
 tr.appendChild(td);
 table.appendChild(tr);
 }

 // We’ve got images, so let’s process ’em...
 else
 {
 tr = doc.createElement("tr");

 td = doc.createElement("td");
 td.setAttribute("colspan", String.valueOf(imagesPerRowValue));
 td.setAttribute("style",
 "font-weight:bold; background: #CCCCCC; " +
 "font-size: 150%");
 td.appendChild(doc.createTextNode("Photos from "));

 span = doc.createElement("span");
 span.setAttribute("style", "font-family: monospace;");
 span.appendChild(doc.createTextNode(directoryName + ":"));
 td.appendChild(span);

 tr.appendChild(td);
 table.appendChild(tr);

 int filesProcessed = 0;
 boolean emptyColumnNotCreated = true;

 while (filesProcessed < numFiles)
 {
 tr = doc.createElement("tr");
 for (int i = 0; i < imagesPerRowValue; i++)
 {
 if (filesProcessed < numFiles)
 {
 td = doc.createElement("td");
 td.setAttribute("style", "text-align: center;");

 String qualifiedFilename = "file:\\\\" +
 directoryName + File.separatorChar +
 graphicsFiles[filesProcessed];

 a = doc.createElement("a");
 a.setAttribute("href", qualifiedFilename);

 img = doc.createElement("img");
 img.setAttribute("src", qualifiedFilename);
 img.setAttribute("width", "100px");
 img.setAttribute("height", "130px");
 img.setAttribute("border", "0");
 a.appendChild(img);

344 | Chapter 9: Extending XSLT

 td.appendChild(a);

 if (includeFilenamesFlag)
 {
 br = doc.createElement("br");
 td.appendChild(br);

 span = doc.createElement("span");
 span.setAttribute("style", "font-family: monospace;");
 span.appendChild(doc.createTextNode
 (graphicsFiles[filesProcessed]));
 td.appendChild(span);
 }
 tr.appendChild(td);
 filesProcessed++;
 }
 // we’ve listed all the files, so create an empty column
 else if (emptyColumnNotCreated)
 {
 td = doc.createElement("td");
 td.setAttribute("colspan",
 String.valueOf(imagesPerRowValue - i));
 td.setAttribute("bgcolor", "#CCCCCC");
 tr.appendChild(td);
 emptyColumnNotCreated = false;
 }
 }
 table.appendChild(tr);
 }
 }
 }
 return table;
 }
}

Notice that the extension element receives two arguments from Xalan:
org.apache.xalan.extensions.XSLTProcessorContext and org.apache.xalan.tem
plates.ElemExtensionCall. We use the XSLTProcessorContext to access the
<photo-album> element in the XML source document. Xalan and Saxon provide similar
context objects to extension elements and functions, although they have different
structures, methods, and capabilities.

If you’ve written Java code to manipulate the Document Object Model (DOM), you’ll
recognize the techniques at work here. We create a DOM element named table, then
a DOM element named tr, then some DOM elements named td, then we put text or
img elements inside them, and so forth. It’s tedious, as DOM code typically is, but it’s
straightforward.

When we create a td element, for example, we create an a element, and then we set its
attributes. Next, we create an img element and set the img element’s attributes. When
the img element is complete, we add it to the a element, then we add the a element to
the td element. If the XML source specified that we should include the filenames in the

Creating a Photo Album with an Extension Element | 345

HTML table, we create a text node that contains the filename and add it to the td
element. When the td element is complete, we add it to the tr element; when the tr is
complete, we add it to the table element. At the end of the code, the table element is
complete, so we return that element to the XSLT processor. The processor then uses
that element and all of its children in the output document.

To simplify the Java code, we use a Java FilenameFilter that selects only the files we
want. The extension element invoked this class with this line of Java code:

String[] graphicsFiles = dir.list(new GraphicsFilenameFilter());

If it’s not a graphical file, we don’t want to put it into the album. Here’s the code for
the filter:

/*
 * GraphicsFilenameFilter.java
 * Created on Nov 28, 2006 by Doug Tidwell
 */

package com.oreilly.xslt.xalan;
// The filename filter for Saxon is identical except for the package
// name (com.oreilly.xslt.saxon)

import java.io.File;
import java.io.FilenameFilter;

public class GraphicsFilenameFilter implements FilenameFilter
{

 public boolean accept(File dir, String name)
 {
 String lcName = name.toLowerCase();
 if (lcName.endsWith(".jpg") ||
 lcName.endsWith(".jpeg") ||
 lcName.endsWith(".png") ||
 lcName.endsWith(".gif") ||
 lcName.endsWith(".bmp"))
 return true;
 else
 return false;
 }

}

If the filename extension is .jpg, .jpeg, .png, .gif or .bmp, it will pass the filter. Any
file that doesn’t pass the filter doesn’t appear in our list of filenames. We use the file-
name filter when we create the list of files we have to process:

String[] graphicsFiles = dir.list(new GraphicsFilenameFilter());

346 | Chapter 9: Extending XSLT

We’re assuming that any file with the appropriate extension is actually
an image. More ambitious readers are welcome to add code that actually
opens each file to verify that it is an image. Another useful feature would
be to check the dimensions of the images and create a thumbnail that
preserves the aspect ratio. Finally, JPEG files can contain metadata
about the date and time that the picture was taken; displaying that in-
formation in the HTML output would be a nice touch as well.

Saxon Java Version
The Saxon extension element is considerably more complicated than the Xalan version.
We have to create a class that implements the net.sf.saxon.style.ExtensionElement
Factory interface. That class is responsible for processing the attributes of the
<SaxonPhotoAlbum> element, including processing any attribute value templates that are
in the element. Here’s the short file that performs this step:

/*
 * PhotoAlbumElementFactory.java
 * Created on Nov 28, 2006 by Doug Tidwell
 */

package com.oreilly.xslt.saxon;

import net.sf.saxon.style.ExtensionElementFactory;

public class PhotoAlbumElementFactory
 implements ExtensionElementFactory
{
 public Class getExtensionClass(String elementName)
 {
 if (elementName.equals("SaxonPhotoAlbum"))
 return SaxonPhotoAlbum.class;
 return null;
 }
}

Notice that the code returns the class object for the SaxonPhotoAlbum class. Saxon uses
that object to actually create a SaxonPhotoAlbum object that processes the element in the
stylesheet:

/*
 * SaxonPhotoAlbum.java
 * Created on Nov 28, 2006 by Doug Tidwell
 */

package com.oreilly.xslt.saxon;

import java.io.File;

import net.sf.saxon.event.Receiver;
import net.sf.saxon.event.ReceiverOptions;
import net.sf.saxon.expr.Expression;

Creating a Photo Album with an Extension Element | 347

import net.sf.saxon.expr.SimpleExpression;
import net.sf.saxon.expr.XPathContext;
import net.sf.saxon.instruct.Executable;
import net.sf.saxon.om.NamePool;
import net.sf.saxon.style.ExtensionInstruction;
import net.sf.saxon.style.StandardNames;
import net.sf.saxon.trans.XPathException;

public class SaxonPhotoAlbum
 extends ExtensionInstruction
{
 Expression directory;
 Expression imagesPerRow;
 Expression includeFilenames;

 @Override
 public void prepareAttributes() throws XPathException
 {
 String directoryAttr = attributeList.getValue("", "directory");
 if (directoryAttr == null)
 {
 compileError("The directory attribute is required.", "");
 directoryAttr = "";
 }
 directory = makeAttributeValueTemplate(directoryAttr);

 String imagesPerRowAttr =
 attributeList.getValue("", "imagesPerRow");
 if (imagesPerRowAttr == null)
 imagesPerRowAttr = "5";
 imagesPerRow = makeAttributeValueTemplate(imagesPerRowAttr);

 String includeFilenamesAttr =
 attributeList.getValue("", "includeFilenames");
 if (includeFilenamesAttr == null)
 includeFilenamesAttr = "no";
 includeFilenames = makeAttributeValueTemplate(includeFilenamesAttr);
 }

 @Override
 public Expression compile(Executable arg0) throws XPathException
 {
 SaxonPhotoAlbumInstruction spa =
 new SaxonPhotoAlbumInstruction(directory,
 imagesPerRow,
 includeFilenames);
 return spa;
 }

 private static class SaxonPhotoAlbumInstruction
 extends SimpleExpression {

 private static final long serialVersionUID = 1184239671886575198L;
 public static final int DIRECTORY = 0;
 public static final int IMAGES_PER_ROW = 1;

348 | Chapter 9: Extending XSLT

 public static final int INCLUDE_FILENAMES = 2;

 public SaxonPhotoAlbumInstruction(Expression directory,
 Expression imagesPerRow, Expression includeFilenames)
 {
 Expression[] subs = {directory, imagesPerRow, includeFilenames};
 setArguments(subs);
 }

 /**
 * A subclass must provide one of the methods evaluateItem(),
 * iterate(), or process(). This method indicates which of
 * the three is provided.
 */

 public int getImplementationMethod()
 {
 return Expression.PROCESS_METHOD;
 }

 public String getExpressionType()
 {
 return "spa:SaxonPhotoAlbum";
 }

 public void process(XPathContext context) throws XPathException
 {
 String directoryName =
 arguments[DIRECTORY].evaluateAsString(context);

 int imagesPerRowValue = 5;
 try
 {
 imagesPerRowValue =
 Integer.parseInt(arguments[IMAGES_PER_ROW].
 evaluateAsString(context));
 }
 catch (NumberFormatException nfe)
 {
 imagesPerRowValue = 5;
 }
 if (!(imagesPerRowValue > 0))
 {
 imagesPerRowValue = 5;
 }

 boolean includeFilenamesFlag =
 arguments[INCLUDE_FILENAMES].evaluateAsString(context)
 .equals("yes");

 NamePool pool = context.getController().getNamePool();
 int anchorCode = pool.allocate("", "", "a");
 int borderCode = pool.allocate("", "", "border");
 int brCode = pool.allocate("", "", "br");
 int cellpaddingCode = pool.allocate("", "", "cellpadding");

Creating a Photo Album with an Extension Element | 349

 int colspanCode = pool.allocate("", "", "colspan");
 int heightCode = pool.allocate("", "", "height");
 int hrefCode = pool.allocate("", "", "href");
 int imgCode = pool.allocate("", "", "img");
 int spanCode = pool.allocate("", "", "span");
 int srcCode = pool.allocate("", "", "src");
 int styleCode = pool.allocate("", "", "style");
 int tableCode = pool.allocate("", "", "table");
 int colCode = pool.allocate("", "", "td");
 int rowCode = pool.allocate("", "", "tr");
 int widthCode = pool.allocate("", "", "width");

 Receiver out = context.getReceiver();

 // start <table>
 out.startElement(tableCode, StandardNames.XDT_UNTYPED, locationId, 0);
 out.attribute(borderCode, StandardNames.XDT_UNTYPED,
 "3", locationId, 0);
 out.attribute(cellpaddingCode, StandardNames.XDT_UNTYPED,
 "5", locationId, 0);

 String[] graphicsFiles;
 int numFiles = 0;

 File dir = new File(directoryName);

 // Return an error message if the directory doesn't exist
 if (!dir.exists())
 {
 // start <tr>
 out.startElement(rowCode, StandardNames.XDT_UNTYPED, locationId, 0);

 // start <td>
 out.startElement(colCode, StandardNames.XDT_UNTYPED, locationId, 0);
 out.attribute(styleCode, StandardNames.XDT_UNTYPED,
 "font-weight: bold; font-size: 150%;", locationId, 0);
 out.characters("The directory ", locationId, 0);

 // start
 out.startElement(spanCode, StandardNames.XDT_UNTYPED, locationId, 0);
 out.attribute(styleCode, StandardNames.XDT_UNTYPED,
 "font-family: monospace;", locationId, 0);
 out.characters(directoryName, locationId, 0);
 out.endElement(); // end

 out.characters(" does not exist!", locationId, 0);
 out.endElement(); // end <td>

 out.endElement(); // end <tr>
 }
 else
 {
 // Use the filename filter to find the images
 graphicsFiles = dir.list(new GraphicsFilenameFilter());
 if (graphicsFiles != null)

350 | Chapter 9: Extending XSLT

 numFiles = graphicsFiles.length;

 // Return an error message if the directory doesn't contain
 // any images
 if (numFiles == 0)
 {
 // start <tr>
 out.startElement(rowCode, StandardNames.XDT_UNTYPED, locationId, 0);
 // start <td>
 out.startElement(colCode, StandardNames.XDT_UNTYPED, locationId, 0);
 out.attribute(styleCode, StandardNames.XDT_UNTYPED,
 "font-weight: bold; background: #CCCCCC; " +
 "font-size: 150%;",
 locationId, 0);
 out.characters("The directory ", locationId, 0);
 // start
 out.startElement(spanCode, StandardNames.XDT_UNTYPED, locationId, 0);
 out.attribute(styleCode, StandardNames.XDT_UNTYPED,
 "font-family: monospace;", locationId, 0);
 out.characters(directoryName, locationId, 0);
 out.endElement(); // end
 out.characters(" doesn't contain any images!", locationId, 0);

 out.endElement(); // end <td>

 out.endElement(); // end <tr>
 }

 // We've got images, so let's process 'em...
 else
 {
 // start <tr>
 out.startElement(rowCode, StandardNames.XDT_UNTYPED, locationId, 0);

 // start <td>
 out.startElement(colCode, StandardNames.XDT_UNTYPED, locationId, 0);
 out.attribute(colspanCode, StandardNames.XDT_UNTYPED, String
 .valueOf(imagesPerRowValue), locationId, 0);
 out.attribute(styleCode, StandardNames.XDT_UNTYPED,
 "font-weight: bold; background: #CCCCCC; "
 + "font-size: 150%;", locationId, 0);
 out.characters("Photos from ", locationId, 0);

 // start
 out.startElement(spanCode, StandardNames.XDT_UNTYPED, locationId, 0);
 out.attribute(styleCode, StandardNames.XDT_UNTYPED,
 "font-family: monospace;", locationId, 0);
 out.characters(directoryName + ":", locationId, 0);
 out.endElement(); // end

 out.endElement(); // end <td>

 out.endElement(); // end <tr>
 }

Creating a Photo Album with an Extension Element | 351

 int filesProcessed = 0;
 boolean emptyColumnNotCreated = true;

 while (filesProcessed < numFiles)
 {
 // start <tr>
 out.startElement(rowCode, StandardNames.XDT_UNTYPED, locationId, 0);

 for (int i = 0; i < imagesPerRowValue; i++)
 {
 if (filesProcessed < numFiles)
 {
 // start <td>
 out.startElement(colCode, StandardNames.XDT_UNTYPED, locationId,
 0);
 out.attribute(styleCode, StandardNames.XDT_UNTYPED,
 "text-align: center;", locationId, 0);

 String qualifiedFilename = "file:\\\\" + directoryName
 + File.separatorChar + graphicsFiles[filesProcessed];

 // start <a>
 out.startElement(anchorCode, StandardNames.XDT_UNTYPED,
 locationId, 0);
 out.attribute(hrefCode, StandardNames.XDT_UNTYPED,
 qualifiedFilename, locationId, 0);

 // start
 out.startElement(imgCode, StandardNames.XDT_UNTYPED, locationId,
 0);
 out.attribute(widthCode, StandardNames.XDT_UNTYPED, "100px",
 locationId, 0);
 out.attribute(heightCode, StandardNames.XDT_UNTYPED, "130px",
 locationId, 0);
 out.attribute(srcCode, StandardNames.XDT_UNTYPED,
 qualifiedFilename, locationId, 0);
 out.attribute(borderCode, StandardNames.XDT_UNTYPED, "0",
 locationId, 0);
 out.endElement(); // end

 out.endElement(); // end <a>

 if (includeFilenamesFlag)
 {
 // start

 out.startElement(brCode, StandardNames.XDT_UNTYPED, locationId,
 0);
 out.endElement(); // end

 // start
 out.startElement(spanCode, StandardNames.XDT_UNTYPED,
 locationId, 0);
 out.attribute(styleCode, StandardNames.XDT_UNTYPED,
 "font-family: monospace;", locationId, 0);
 out.characters(graphicsFiles[filesProcessed], locationId, 0);

352 | Chapter 9: Extending XSLT

 out.endElement(); // end
 }
 out.endElement(); // end <td>
 filesProcessed++;
 }
 // We've listed all the files, so create an empty column
 else if (emptyColumnNotCreated)
 {
 // start <td>
 out.startElement(colCode, StandardNames.XDT_UNTYPED, locationId,
 0);
 out.attribute(styleCode, StandardNames.XDT_UNTYPED,
 "background: #CCCCCC;", locationId, 0);
 out.attribute(colspanCode, StandardNames.XDT_UNTYPED,
 String.valueOf(imagesPerRowValue - i),
 locationId, 0);
 out.characters(" ", locationId,
 ReceiverOptions.DISABLE_ESCAPING);
 out.endElement(); // end <td>
 emptyColumnNotCreated = false;
 }
 }
 out.endElement(); // end <tr>
 }
 }
 out.endElement(); // end <table>
 }
 }
}

As with the Xalan extension, Saxon provides us with a context object—in this case, a
Saxon net.sf.saxon.expr.XPathContext. The Saxon extension works similarly to the
Xalan extension, creating elements and attributes and returning them as a tree struc-
ture. There are differences, though; to start, we need to define a Saxon NamePool:

NamePool pool = context.getController().getNamePool();
int anchorCode = pool.allocate("", "", "a");
int borderCode = pool.allocate("", "", "border");
int brCode = pool.allocate("", "", "br");
int cellpaddingCode = pool.allocate("", "", "cellpadding");
...

We’re defining the names of the elements and attributes we’re going to create. Next,
we use the out object to create the various elements of the table. The out object is a
Saxon net.sf.saxon.event.Receiver object that we retrieve from the XPathContext. We
use out to create the elements, attributes, and text nodes. The four methods we use
from the Receiver class are startElement(), attribute(), characters(), and
endElement(). Notice that the endElement() method doesn’t take any parameters; it
simply ends whatever element is being created. The code is commented to indicate
whenever an element is started or ended.

As we mentioned with the Xalan version of this extension, we use a FilenameFilter to
select only the image files.

Creating a Photo Album with an Extension Element | 353

.NET Version
The .NET version of the photo album is slightly different. We’ll implement the exten-
sion as an extension function, not as an extension element. We’ll do this to show an
alternate technique for creating nodes in the output tree.

Our extension function creates a DOM tree that contains all of the HTML elements
needed for the output tree. The Xalan and Saxon versions of this extension element
replace the extension element in the stylesheet with the appropriate generated nodes.
In the .NET environment, our extension function returns a DOM tree that is added to
the result tree.

Here’s the code for the extension function. It follows the same basic procedure as the
other versions of the extension: use system functions to get the list of files and then
create the DOM elements for the HTML table:

/*
 * PhotoAlbum.cs
 * Created on Nov 28, 2006 by Doug Tidwell
 */

using System;
using System.IO;
using System.Text;
using System.Xml;

// This class creates a photo album with all of the images in a
// given directory.
namespace com.oreilly.xslt
{
 class PhotoAlbum
 {
 // getPhotoListing is the name of the extension function. Notice
 // that it returns an XMLNode; that node is inserted into the
 // output tree.
 public XmlNode getPhotoListing(String dirName,
 String imgPerRow,
 String incFilenames)
 {
 // For parameters, we get the name of the directory, the number
 // of images per row, and whether the names of the files should
 // be displayed.
 int imagesPerRow = int.Parse(imgPerRow);
 Boolean includeFilenames = (incFilenames.Equals("yes"));

 // We’re building a DOM tree, effectively, so we create some
 // elements beforehand.
 XmlElement anchorEl, breaklineEl, imageEl, spanEl,
 tableEl, tableDataEl, tableRowEl;
 XmlNode textNode;

 XmlDocument doc = new XmlDocument();
 XmlDocumentFragment df = doc.CreateDocumentFragment();
 tableEl = doc.CreateElement("table");

354 | Chapter 9: Extending XSLT

 tableEl.SetAttribute("border", "3");
 tableEl.SetAttribute("cellpadding", "5");

 Boolean directoryExists = true;

 System.Collections.ArrayList allGraphicsFiles =
 new System.Collections.ArrayList();

 // We add all of the JPEG, PNG, GIF and BMP files in the
 // specified directory. Windows isn’t case-sensitive, so
 // the code is slightly simpler than the Java version.
 try
 {
 allGraphicsFiles.InsertRange(allGraphicsFiles.Count,
 System.IO.Directory.GetFiles(dirName, "*.jpg"));
 allGraphicsFiles.InsertRange(allGraphicsFiles.Count,
 System.IO.Directory.GetFiles(dirName, "*.jpeg"));
 allGraphicsFiles.InsertRange(allGraphicsFiles.Count,
 System.IO.Directory.GetFiles(dirName, "*.png"));
 allGraphicsFiles.InsertRange(allGraphicsFiles.Count,
 System.IO.Directory.GetFiles(dirName, "*.gif"));
 allGraphicsFiles.InsertRange(allGraphicsFiles.Count,
 System.IO.Directory.GetFiles(dirName, "*.bmp"));
 }

 // Return an error message if the directory doesn’t exist
 catch (System.IO.DirectoryNotFoundException dnfe)
 {
 directoryExists = false;
 tableRowEl = doc.CreateElement("tr");
 tableDataEl = doc.CreateElement("td");
 tableDataEl.SetAttribute("style", "font-weight: bold; " +
 "font-size: 150%;");
 textNode = doc.CreateTextNode("The directory ");
 tableDataEl.AppendChild(textNode);
 spanEl = doc.CreateElement("span");
 spanEl.SetAttribute("style", "font-family: monospace;");
 spanEl.AppendChild(doc.CreateTextNode(dirName));
 tableDataEl.AppendChild(spanEl);
 textNode = doc.CreateTextNode(" doesn't exist!");
 tableDataEl.AppendChild(textNode);
 tableRowEl.AppendChild(tableDataEl);
 tableEl.AppendChild(tableRowEl);
 df.AppendChild(tableEl);
 }

 int numFiles = allGraphicsFiles.Count;

 if (directoryExists)
 {
 // Return an error message if the directory doesn’t contain
 // any images
 if (numFiles == 0)
 {
 tableRowEl = doc.CreateElement("tr");

Creating a Photo Album with an Extension Element | 355

 tableDataEl = doc.CreateElement("td");
 tableDataEl.SetAttribute("style", "font-weight: bold; " +
 "font-size: 150%;");
 textNode = doc.CreateTextNode("The directory ");
 tableDataEl.AppendChild(textNode);
 spanEl = doc.CreateElement("span");
 spanEl.SetAttribute("style", "font-family: monospace;");
 spanEl.AppendChild(doc.CreateTextNode(dirName));
 tableDataEl.AppendChild(spanEl);
 textNode =
 doc.CreateTextNode(" doesn't contain any images!");
 tableDataEl.AppendChild(textNode);
 tableRowEl.AppendChild(tableDataEl);
 tableEl.AppendChild(tableRowEl);
 df.AppendChild(tableEl);
 }

 // We’ve got some images, so let’s process ’em...
 else
 {
 // First we create a table row for the header.
 tableRowEl = doc.CreateElement("tr");
 tableDataEl = doc.CreateElement("td");
 tableDataEl.SetAttribute("colspan", imgPerRow);
 tableDataEl.SetAttribute("style", "font-weight: bold; " +
 "background: #CCCCCC; font-size: 150%;");
 tableDataEl.AppendChild(doc.CreateTextNode("Photos from "));
 spanEl = doc.CreateElement("span");
 spanEl.SetAttribute("style", "font-family: monospace;");
 spanEl.AppendChild(doc.CreateTextNode(dirName + ":"));
 tableDataEl.AppendChild(spanEl);
 tableRowEl.AppendChild(tableDataEl);
 tableEl.AppendChild(tableRowEl);

 // Now we process all of the files. The emptyColumnNotCreated
 // flag tells us whether the blank cell has been created.
 // If there are five images per row and there are 47 images,
 // the last row will contain a blank cell with a colspan of 3.
 // We only create that blank cell once.
 int filesProcessed = 0;
 Boolean emptyColumnNotCreated = true;

 // We look through all of the files
 while (filesProcessed < numFiles)
 {
 tableRowEl = doc.CreateElement("tr");

 // Process the next {imagesPerRow} images
 for (int i = 0; i < imagesPerRow; i++)
 {
 if (filesProcessed < numFiles)
 {
 tableDataEl = doc.CreateElement("td");
 tableDataEl.SetAttribute("style", "text-align: center;");
 String qualifiedFilename = "file:\\\\" +

356 | Chapter 9: Extending XSLT

 allGraphicsFiles[filesProcessed];
 anchorEl = doc.CreateElement("a");
 imageEl = doc.CreateElement("img");
 imageEl.SetAttribute("src", qualifiedFilename);
 imageEl.SetAttribute("width", "100px");
 imageEl.SetAttribute("height", "130px");
 imageEl.SetAttribute("border", "0");
 anchorEl.AppendChild(imageEl);
 tableDataEl.AppendChild(anchorEl);

 if (includeFilenames)
 {
 breaklineEl = doc.CreateElement("br");
 tableDataEl.AppendChild(breaklineEl);

 // We use FileInfo to get the filename without the path.
 FileInfo fi =
 new FileInfo((String)allGraphicsFiles[filesProcessed]);
 spanEl = doc.CreateElement("span");
 spanEl.SetAttribute("style", "font-family: monospace;");
 spanEl.AppendChild(doc.CreateTextNode(fi.Name));
 tableDataEl.AppendChild(spanEl);
 }
 tableRowEl.AppendChild(tableDataEl);
 filesProcessed++;
 }

 // If we’ve processed all of the files and we haven’t
 // created the empty column, we’ll do that now.
 else if (emptyColumnNotCreated)
 {
 tableDataEl = doc.CreateElement("td");
 Int32 colspan = (imagesPerRow - i);
 tableDataEl.SetAttribute("colspan", colspan.ToString());
 tableDataEl.SetAttribute("style", "background: #CCCCCC;");
 tableRowEl.AppendChild(tableDataEl);
 emptyColumnNotCreated = false;
 }
 }

 // Throughout this code, we create elements and append them to
 // the appropriate parent element.
 tableEl.AppendChild(tableRowEl);
 }
 df.AppendChild(tableEl);
 }
 }

 // Once we’ve finished, we have a node-set that contains all of the
 // HTML elements we need. That is returned to the caller, which
 // then inserts those nodes into the output stream.
 return df;
 }
 }
}

Creating a Photo Album with an Extension Element | 357

The DOM code is more similar to the Xalan extension than to the Saxon one. We’re
using .NET classes, but the overall flow of the code is similar to the two Java extensions.
We collect the filenames, create a table, create a cell for each graphic, and then return
the table element. In this case, we return a .NET XmlDocumentFragment.

Now that we have our extension function defined, we need a stylesheet that invokes it.
As we’ve seen before, we need to define a namespace for the extension:

<?xml version="1.0" encoding="utf-8" ?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:ora="http://www.oreilly.com/xslt"
 extension-element-prefixes="ora">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Photo album extension function test</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>
 <xsl:text>.Net Photo album extension function test</xsl:text>
 </h1>
 <xsl:variable name="album"
 select="ora:getPhotoListing(/photo-album/@directory,
 /photo-album/@imagesPerRow,
 /photo-album/@includeFilenames)"/>
 <xsl:copy-of select="$album"/>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

Because our .NET implementation is an extension function, we assign its value to a
variable. Once the variable (a result tree fragment) is created, we use <xsl:copy-of> to
copy everything in the variable to the output tree.

As with our earlier .NET examples, we need a C# file that creates an
XslCompiledTransformation object. We also create a PhotoAlbum object and associate it
with the namespace prefix defined in our stylesheet. The final step is to create an
XsltArgumentList that ties everything together. Here’s the code:

/*
 * Main.cs
 * Created Nov 22, 2006 by Doug Tidwell
 */

using System;
using System.Text;
using System.Xml;
using System.Xml.Xsl;

358 | Chapter 9: Extending XSLT

namespace com.oreilly.xslt
{
 class MainClass
 {
 static void Main(string[] args)
 {
 // Create the stylesheet object and the XMLWriter that
 // writes the output to a file
 XslCompiledTransform stylesheet = new XslCompiledTransform();
 XmlTextWriter xWriter =
 new XmlTextWriter(args[2], Encoding.UTF8);

 // Use an XsltSettings object that allows executing scripts
 // (we need this for extensions), then load the stylesheet
 XsltSettings settings = new XsltSettings(true, true);
 stylesheet.Load(args[1], settings, new XmlUrlResolver());

 // Create an extension object
 PhotoAlbum pa = new PhotoAlbum();

 // We add the PhotoAlbum object as an extension object to the
 // XsltArgumentList.
 XsltArgumentList argList = new XsltArgumentList();
 argList.AddExtensionObject("http://www.oreilly.com/xslt", pa);

 // With everything in place, we call the Transform() method
 // to do the work...
 stylesheet.Transform(args[0], argList, xWriter);
 }
 }
}

Notice that the namespace defined in the stylesheet, http://www.oreilly.com/xslt, is
the same namespace we use in the XsltArgumentList we create in the C# code. If these
two don’t match, the .NET XSLT processor won’t be able to find the extension class.

When everything works together, the results appear as in Figure 9-14.

Most digital cameras produce JPEG files that contain EXIF (Exchange-
able Image Format) tags. Those tags contain information such as the
model of camera used to take the picture, the date and time of the pic-
ture, and other aspects. If you’d like to delve into all the details of an
EXIF-tagged JPEG file, see the EXIF Tag Parsing Library here: http://
sourceforge.net/projects/libexif. Enhancing the extension so that those
details appear in the table (or are displayed in a small window when you
move the mouse over the picture) would be a nice addition to the code.

Creating a Photo Album with an Extension Element | 359

http://sourceforge.net/projects/libexif
http://sourceforge.net/projects/libexif

Summary
In this chapter, we’ve run the gamut of extension functions and extension elements,
demonstrating how to add sophisticated processing power to our stylesheets. We’ve
generated many output files from a stylesheet, created JPEGs dynamically, created in-
teractive graphics, interacted with databases, and generated HTML files created with
data retrieved from the filesytem.

In terms of XSLT itself, we’ve created both extension elements and extension functions,
and we’ve returned simple values as well as trees of DOM objects. Most importantly,
we’ve demonstrated how to access the XML source document and the extension code
in a variety of ways, using different platforms, languages, and XSLT processors. If you
master these techniques, there’s practically nothing you can’t do in your stylesheets.

Figure 9-14. A photo album generated by a .NET extension function

360 | Chapter 9: Extending XSLT

APPENDIX A

XSLT Reference

This chapter is a complete reference to all the elements defined in the XSLT specifica-
tion. To keep the examples simple, most of them generate plain text instead of XML,
HTML, or XHTML. That allows us to focus on the XSLT itself instead generating CSS
properties, HTML tables, or other details. Where an XML, HTML, or XHTML example
is more instructive, we’ll use it of course, but most stylesheets are as simple as possible.

[2.0] Attributes common to all XSLT elements
There are six standard attributes that can be used on any XSLT element; we’ll define them
here rather than redefine them for every XSLT element. While these attributes can be used
on any XSLT element, they are normally used on elements such as <xsl:stylesheet> and
<xsl:template>.

Attributes

version
Defines the version of XSLT used to process this element. This is useful when you
want a particular XSLT element to be processed using the rules of a particular
version of the standard. For example, <xsl:value-of select="1 div 0"/> works
differently in XSLT 1.0 and 2.0. XSLT 2.0 treats this as a fatal error, while XSLT
1.0 returns Infinity. Using <xsl:value-of version="1.0" ...> ensures that ver-
sion 1.0 processing is used.

Although the <xsl:output> element has a version attribute, it
specifies the value of the version attribute in the output. For ex-
ample, <xsl:output method="xml" version="1.1"> creates a result
document with an XML declaration of <?xml
version="1.1" ...?>.

exclude-result-prefixes
Lists the prefixes of namespaces that should not be copied to the output. Typically
used on the <xsl:stylesheet> element only.

361

extension-element-prefixes
Defines the namespace prefixes that identify extension elements. The XSLT pro-
cessor uses these namespaces to identify code that provides additional processing.
Typically used on the <xsl:stylesheet> element only.

xpath-default-namespace
Defines the default namespace used in XPath expressions and patterns. If you’re
transforming a document that uses a default namespace (http://
www.oreilly.com, for example), you must namespace-qualify the names of any
elements in that document. Defining xpath-default-namespace="http://
www.oreilly.com" tells XPath to use this namespace as the default for element and
type names in XPath expressions. If the documents you’re transforming use dif-
ferent default namespaces in different parts of the document, you can use this
attribute to change the default XPath namespace. This is typically used on the
<xsl:stylesheet> element only.

default-collation
A series of space-separated URIs that define the default collation sequence. The
default collation sequence is used by <xsl:key> and <xsl:for-each-group>, but it
does not affect the collation used by <xsl:sort>. The way collation sequences are
defined varies from one XSLT processor to another, so check your processor’s
documentation for information on defining a collation sequence.

use-when
Defines a statement involving a system-property that must be true for this XSLT
element to be processed. As an example, using the function system-
property('xsl:is-schema-aware') lets you determine whether the XSLT processor
is schema-aware.

[2.0] <xsl:analyze-string>
Allows you to compare a string and a regular expression.

Changes in XSLT 2.0
<xsl:analyze-string> is new to XSLT 2.0.

Category
Instruction.

Required Attributes

select
An XPath expression that defines the string to be analyzed. The expression is con-
verted to a string if necessary.

362 | Appendix A: XSLT Reference

regex
The regular expression. Regular expressions commonly use curly braces ({ and }),
which XSLT interprets as the start and end of an attribute value template. For this
reason, any curly braces in a regular expression must be doubled. For example, the
regular expression "[0-9]{{5}}" matches a five-digit number, while "[0-9]{5}"
matches a one-digit number followed by the number 5.

It is a fatal error if the regular expression matches a zero-length
string. See Appendix E for more details.

Optional Attribute

flags
The flags attribute modifies how the regular expression is processed. There are
four different flags:

s
Regular expressions are evaluated in what the specs refer to as “dot-all”
mode. When this flag is used, the dot operator (.) matches any character.
Under normal processing (without the s flag), the dot operator matches any
character except the newline character (#xA). This flag is useful when you want
to match strings that might include a newline character.

m
Regular expressions are evaulated in multiline mode. By default, the meta-
character (^) matches the start of the entire string, while $ matches the end of
the entire string. In multiline mode, ^ matches the start of any line within the
string and $ matches the end of any line within the string.

i
Regular expressions are evaluated in case-insensitive mode. The regular ex-
pression "a" matches both "a" and "A".

Note that Unicode issues can complicate this greatly. For example, the XQuery
1.0 and XPath 2.0 Functions and Operators spec gives the example of the
Unicode sign for degrees Kelvin (K), which is the letter "K". The com-
bination of regex="k" and flags="i" matches the Kelvin sign as well as the
letters "k" (k) and "K" (K).

Other Unicode characters don’t convert to letters. For example, the Unicode
symbol for the Roman numeral I (Ⅰ) looks like the letter I, but does
not convert to that. Fortunately, these complications are beyond the scope of
this book.

[2.0] <xsl:analyze-string> | 363

x
All whitespace characters (#x9, #xA, #xD, and #x20) are removed from the regular
expression before any comparison is done. In other words, with the x flag, the
regular expressions "John Smith" and "JohnSmith" are the same. This flag is
useful when you want to break a long regular expression into multiple lines to
make it easier to read.

The flags can be combined in any order. The attributes flags="xis" and
flags="six" work exactly the same way.

Content
<xsl:analyze-string> can contain a single, optional <xsl:matching-substring> element
and/or a single, optional <xsl:non-matching-substring> element. If both
<xsl:matching-substring> and <xsl:non-matching-substring> are included, the
<xsl:matching-substring> element must appear first. In other words, all three of these
<xsl:analyze-string> elements are valid:

<xsl:analyze-string select="." regex="a">
 <xsl:matching-substring>...</xsl:matching-substring>
</xsl:analyze-string>

<xsl:analyze-string select="." regex="a">
 <xsl:non-matching-substring>...</xsl:non-matching-substring>
</xsl:analyze-string>

<xsl:analyze-string select="." regex="a">
 <xsl:matching-substring>...</xsl:matching-substring>
 <xsl:non-matching-substring>...</xsl:non-matching-substring>
</xsl:analyze-string>

The <xsl:analyze-string> element can also contain any number of <xsl:fallback> elements.
If your XSLT 1.0 processor supports forwards-compatible mode, <xsl:fallback> lets you
define how the processor should respond when the <xsl:analyze-string> element is not sup-
ported. You could have a stylesheet structured like this:

<xsl:analyze-string...>
 <xsl:matching-substring>...</xsl:matching-substring>
 <xsl:fallback>
 <!-- Instructions for a 1.0 processor -->
 </xsl:fallback>
</xsl:analyze-string>

A forwards-compatible XSLT 1.0 processor will see the <xsl:analyze-string> element, which
it cannot process. Whenever the processor finds an unsupported element in the xsl: name-
space, it looks inside that element for an <xsl:fallback> element. If it finds one, the processor
attempts to process whatever is inside <xsl:fallback>.

Appears in
<xsl:analyze-string> appears inside a template.

364 | Appendix A: XSLT Reference

Defined in
XSLT section 15, “Regular Expressions.”

Regular expressions in XSLT 2.0, XPath 2.0, and XQuery 1.0 are based on the syntax defined
in the XML Schema standard; see Appendix F, “Regular Expressions,” in XML Schema Part
2: Datatypes for the complete syntax. The XQuery 1.0 and XPath 2.0 Functions and Operators
spec defines extensions to the XML Schema regular expression syntax in section 7.6, “String
Functions that Use Pattern Matching.”

Example
Here is an example of <xsl:analyze-string> that uses a regular expression to convert U.S.
and Canadian telephone numbers of the form 999-999-9999 to the form +1 (999) 999-9999:

<?xml version="1.0" encoding="utf-8"?>
<!-- analyze-string1.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:for-each select="phonelist/phonenumber">
 <xsl:analyze-string select="."
 regex="([0-9]{{3}})-(\p{{Nd}}{{3}})-([0-9]{{4}})">
 <xsl:matching-substring>
 <xsl:text>
+1 (</xsl:text>
 <xsl:value-of select="regex-group(1)"/>
 <xsl:text>) </xsl:text>
 <xsl:value-of select="regex-group(2)"/>
 <xsl:text>-</xsl:text>
 <xsl:value-of select="regex-group(3)"/>
 </xsl:matching-substring>
 <xsl:non-matching-substring>
 <xsl:text>
 Unrecognized phone number: </xsl:text>
 <xsl:value-of select="."/>
 </xsl:non-matching-substring>
 </xsl:analyze-string>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Our stylesheet uses the regular expression ([0-9]{{3}})-(\p{{Nd}}{{3}})-([0-9]{{4}}). This
creates three regex-groups; each group is enclosed in a set of parentheses. The code
\p{{Nd}} uses the named character group Nd to refer to numeric digits. See Appendix E for a
list of named character groups.

When we use this stylesheet with this list of phone numbers:

<?xml version="1.0" encoding="utf-8"?>
<!-- phonelist.xml -->
<phonelist>
 <phonenumber>919-555-1212</phonenumber>
 <phonenumber>(919) 555-1212</phonenumber>

[2.0] <xsl:analyze-string> | 365

 <phonenumber>212.555.1212</phonenumber>
 <phonenumber>617-555-1212</phonenumber>
 <phonenumber>+86 555-1212</phonenumber>
</phonelist>

we get these results:

+1 (919) 555-1212
 Unrecognized phone number: (919) 555-1212
 Unrecognized phone number: 212.555.1212
+1 (617) 555-1212
 Unrecognized phone number: +86 555-1212

When our regular expression matches, regex-group(1) represents the area code, regex-
group(2) represents the exchange, and regex-group(3) represents the last four digits of the
phone number.

If you need to retrieve all of the string that matched the regular expression, regex-group(0)
does the trick. (Using a dot "." does the same thing.) In the previous example, using regex-
group(0) for the first phone number returns 919-555-1212.

In some circles, it’s fashionable to use periods instead of dashes to separate the sections of a
phone number. To handle this, we could change our regular expression to match both periods
and dashes:

<xsl:analyze-string select="."
 regex="([0-9]{{3}})(-|\.)([0-9]{{3}})(-|\.)([0-9]{{4}})">

We replaced the dashes in the original expression with (-|.). This expression matches the
third <phonenumber> element in addition to the first and fourth, but the output doesn’t look
right:

+1 (919) --555
 Unrecognized phone number: (919) 555-1212
+1 (212) .-555
+1 (617) --555
 Unrecognized phone number: +86 555-1212

The problem is that we’ve created two more groups in the regular expression. We need to
change our stylesheet to use regex-group(1), regex-group(3), and regex-group(5):

<?xml version="1.0" encoding="utf-8"?>
<!-- analyze-string2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:for-each select="phonelist/phonenumber">
 <xsl:analyze-string select="."
 regex="([0-9]{{3}})(-|\.)([0-9]{{3}})(-|\.)([0-9]{{4}})">
 <xsl:matching-substring>
 <xsl:text>
+1 (</xsl:text>
 <xsl:value-of select="regex-group(1)"/>
 <xsl:text>) </xsl:text>
 <xsl:value-of select="regex-group(3)"/>

366 | Appendix A: XSLT Reference

 <xsl:text>-</xsl:text>
 <xsl:value-of select="regex-group(5)"/>
 </xsl:matching-substring>
 <xsl:non-matching-substring>
 <xsl:text>
 Unrecognized phone number: </xsl:text>
 <xsl:value-of select="."/>
 </xsl:non-matching-substring>
 </xsl:analyze-string>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Now our updated stylesheet gives us the correct results:

+1 (919) 555-1212
 Unrecognized phone number: (919) 555-1212
+1 (212) 555-1212
+1 (617) 555-1212
 Unrecognized phone number: +86 555-1212

In our discussion of the i flag, we mentioned the example of the Kelvin sign (#x212A;) as a
special Unicode character that matches the letter K. Here’s a stylesheet to test that, if you’d like:

<?xml version="1.0" encoding="utf-8"?>
<!-- analyze-string3.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:analyze-string select="'K'"
 regex="k" flags="i">
 <xsl:matching-substring>
 <xsl:text>It matches!</xsl:text>
 </xsl:matching-substring>
 <xsl:non-matching-substring>
 <xsl:text>It doesn't match!</xsl:text>
 </xsl:non-matching-substring>
 </xsl:analyze-string>
 </xsl:template>

</xsl:stylesheet>

For a final example, we’ll illustrate what happens with an incorrectly written regular expres-
sion. We stated earlier that any curly braces ({ and }) must be doubled. The regular expression
[0-9]{{5}} matches a five-digit number, while the incorrectly written expression [0-9]{5}
matches a two-digit number ending in 5. (The attribute value template {5} evaluates to the
string 5.) Here’s the stylesheet we’ll use:

<?xml version="1.0" encoding="utf-8"?>
<!-- analyze-string4.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

[2.0] <xsl:analyze-string> | 367

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Test of an incorrectly written regex:

</xsl:text>
 <xsl:call-template name="bad-regex">
 <xsl:with-param name="test-value" select="'37174'"/>
 </xsl:call-template>
 <xsl:call-template name="bad-regex">
 <xsl:with-param name="test-value" select="'95'"/>
 </xsl:call-template>
 </xsl:template>

 <xsl:template name="bad-regex">
 <xsl:param name="test-value" required="yes"/>
 <xsl:value-of select="$test-value"/>
 <xsl:analyze-string select="$test-value" regex="[0-9]{5}">
 <xsl:matching-substring>
 <xsl:text> matches!
</xsl:text>
 </xsl:matching-substring>
 <xsl:non-matching-substring>
 <xsl:text> doesn't match!
</xsl:text>
 </xsl:non-matching-substring>
 </xsl:analyze-string>
 </xsl:template>

</xsl:stylesheet>

Running this stylesheet against any XML document generates these results:

Test of an incorrectly written regex:

37174 doesn't match!
95 matches!

The value 95 matches the poorly written expression, whereas the expected 37174 doesn’t.

See Also
Appendix E provides complete details on the way regular expressions work in XPath 2.0. Also
see the definitions of the following elements and functions: [2.0] matches(), [2.0] <xsl:match
ing-substring>, [2.0] <xsl:non-matching-substring>, [2.0] regex-group(), [2.0] replace(),
and [2.0] tokenize().

<xsl:apply-imports>
Allows you to apply to the current node a template imported from another stylesheet.

Category
Instruction.

Required Attributes
None.

368 | Appendix A: XSLT Reference

Optional Attributes
None.

Content
[1.0] None. <xsl:apply-imports> is an empty element.

[2.0] In XSLT 2.0, <xsl:apply-imports> can contain zero or more <xsl:with-param> elements
to pass parameters to an imported template. If you pass extra parameters to an imported
template, they are ignored. However, if you don’t pass a required parameter to an imported
template, the XSLT processor throws an error.

Appears in
<xsl:apply-imports> appears inside a template.

Defined in
[1.0] XSLT section 5.6, “Overriding Template Rules.”

[2.0] XSLT section 6.7, “Overriding Template Rules.”

Example
Here is a short XML file we’ll use to illustrate <xsl:apply-imports>:

<?xml version="1.0" encoding="utf-8"?>
<!-- codelisting.xml -->
<chapter>
 <title>Some really great code</title>
 <para>Here is one of my favorite code listings:</para>
 <programlisting>
public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}
 </programlisting>
 <para>I wrote that code all by myself!</para>
</chapter>

Our main stylesheet has template rules for the four DocBook elements (<chapter>, <title>,
<para>, and <programlisting>) in our sample document:

<?xml version="1.0"?>
<!-- apply-imports.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:import href="imported.xsl"/>

 <xsl:preserve-space elements="programlisting"/>

 <xsl:output method="html"/>

<xsl:apply-imports> | 369

 <xsl:template match="chapter">
 <html>
 <head>
 <title>
 <xsl:value-of select="title"/>
 </title>
 </head>
 <body>
 <xsl:apply-templates select="*"/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="title">
 <h1>
 <xsl:value-of select="."/>
 </h1>
 </xsl:template>

 <xsl:template match="para">
 <p>
 <xsl:apply-templates select="*|text()"/>
 </p>
 </xsl:template>

 <xsl:template match="programlisting">
 <div style="font-size: 125%; font-weight:bold;
 font-family: monospace;">
 <xsl:apply-imports />
 </div>
 </xsl:template>

</xsl:stylesheet>

Here’s the stylesheet we’ll import:

<?xml version="1.0"?>
<!-- imported.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="programlisting">
 <pre>
 <xsl:value-of select="."/>
 </pre>
 </xsl:template>

</xsl:stylesheet>

Our imported stylesheet puts <pre> tags around any <programlisting> it finds. The main
stylesheet puts the <programlisting> inside a <div> that changes the font properties. When
we process the XML document with the main stylesheet, we get these results:

<!-- codelisting.html -->
<html>

370 | Appendix A: XSLT Reference

 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Some really great code</title>
 </head>
 <body>
 <h1>Some really great code</h1>
 <p>Here is one of my favorite code listings:</p>
 <div style="font-size: 125%; font-weight:bold;
 font-family: monospace;"><pre>
public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}
 </pre></div>
 <p>I wrote that all by myself!</p>
 </body>
</html>

The HTML output contains a <div> element created by the main stylesheet and a <pre>
element created by the imported stylesheet (see Figure A-1). If you replace
<xsl:apply-imports /> with <xsl:value-of select="."/>, the code listing will be run together
on a single line.

See Also
The description of the [2.0] <xsl:next-match> element.

Figure A-1. HTML generated using a template imported from another stylesheet

<xsl:apply-imports> | 371

<xsl:apply-templates>
Instructs the XSLT processor to apply the appropriate templates to a node-set or sequence.

Category
Instruction.

Required Attributes
None.

Optional Attributes

select
Contains an XPath expression that selects the nodes to which templates should be
applied. Valid values include * to select all the element children of the current node.
Without this attribute, <xsl:apply-templates> selects all of the children of the cur-
rent node, including text, processing instructions, and comments. The instructions
<xsl:apply-templates /> and <xsl:apply-templates select="node()"/> are
equivalent.

mode
Defines a processing mode, which is a convenient syntax that lets you write specific
templates for specific purposes. For example, you could write an <xsl:template>
with mode="toc" to process a node for the table of contents of a document, and
write other <xsl:template>s with mode="print", mode="online", mode="index", etc.
to process the same information for different purposes.

[2.0] In XSLT 2.0, there are two special values for the mode attribute when used
with the <xsl:apply-templates> element:

#default
Matches the default mode

#current
Matches the current mode

Content
The <xsl:apply-templates> element can contain any number of <xsl:sort> and <xsl:with-
param> elements. In many cases, <xsl:apply-templates> is an empty element.

Appears in
<xsl:apply-templates> appears inside a template.

Defined in
[1.0] XSLT section 5.4, “Applying Template Rules.”

[2.0] XSLT section 6.3, “Applying Template Rules.”

372 | Appendix A: XSLT Reference

Example
Here is a stylesheet that processes the same nodes in three different ways. We invoke each
template with a mode attribute. We’ll use our list of cars as our sample document:

<?xml version="1.0" encoding="utf-8"?>
<!-- cars.xml -->
<cars>
 <manufacturer name="Chevrolet">
 <car>Cavalier</car>
 <car>Corvette</car>
 <car>Impala</car>
 <car>Malibu</car>
 </manufacturer>
 <manufacturer name="Ford">
 <car>Pinto</car>
 <car>Mustang</car>
 <car>Taurus</car>
 </manufacturer>
 <manufacturer name="Volkswagen">
 <car>Beetle</car>
 <car>Jetta</car>
 <car>Passat</car>
 <car>Touraeg</car>
 </manufacturer>
</cars>

Here’s our stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!-- apply-templates1.xsl -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Using the mode attribute</title>
 </head>
 <body style="font-family: sans-serif;">
 <table style="text-align: center;" border="1">
 <tr style="font-weight: bold; font-size: 150%;">
 <td width="30%">Default mode</td>
 <td width="30%">Blue mode</td>
 <td width="30%">Red mode</td>
 </tr>
 <tr>
 <td>
 <p>
 <xsl:apply-templates
 select="/cars/manufacturer"/>
 </p>
 </td>
 <td>

<xsl:apply-templates> | 373

 <p>
 <xsl:apply-templates mode="blue"
 select="/cars/manufacturer"/>
 </p>
 </td>
 <td>
 <p>
 <xsl:apply-templates mode="red"
 select="/cars/manufacturer"/>
 </p>
 </td>
 </tr>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="manufacturer">
 <div style="color: green; font-style: italic; font-size: 125%;">
 <xsl:apply-templates select="car"/>
 </div>
 </xsl:template>

 <xsl:template match="manufacturer" mode="blue">
 <div style="color: blue; font-weight: bold;">
 <xsl:apply-templates select="car"/>
 </div>
 </xsl:template>

 <xsl:template match="manufacturer" mode="red">
 <div style="color: red; font-family: monospace; font-weight: bold;
 font-size: 150%;">
 <xsl:apply-templates select="car"/>
 </div>
 </xsl:template>

 <xsl:template match="car">
 <xsl:value-of select="."/>

 </xsl:template>

</xsl:stylesheet>

Our stylesheet generates an HTML document that looks like Figure A-2.

The first template doesn’t have a mode attribute, so it is the default template.

[2.0] Next we’ll take a look at the new features of the mode attribute in XSLT 2.0. This stylesheet
uses the #default, #current, and #all values of the mode attribute:

<?xml version="1.0" encoding="utf-8"?>
<!-- apply-templates2.xsl -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0">

 <xsl:output method="html"/>

374 | Appendix A: XSLT Reference

 <xsl:template match="/">
 <html>
 <head>
 <title>Using the mode attribute</title>
 </head>
 <body style="font-family: sans-serif;">
 <table style="text-align: center;" border="1">
 <tr style="font-weight: bold; font-size: 150%;">
 <td width="30%">Default mode</td>
 <td width="30%">Blue mode</td>
 <td width="30%">Red mode</td>
 </tr>
 <tr>
 <td>
 <p>
 <xsl:apply-templates mode="#default"
 select="/cars/manufacturer"/>
 </p>
 </td>
 <td>
 <p>
 <xsl:apply-templates mode="blue"
 select="/cars/manufacturer"/>
 </p>
 </td>
 <td>
 <p>
 <xsl:apply-templates mode="red"

Figure A-2. HTML generated using templates with different modes

<xsl:apply-templates> | 375

 select="/cars/manufacturer"/>
 </p>
 </td>
 </tr>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="manufacturer">
 <div style="color: green; font-style: italic; font-size: 125%">
 <xsl:apply-templates select="car" mode="#current"/>
 </div>
 </xsl:template>

 <xsl:template match="manufacturer" mode="blue red">
 <div style="color: blue; font-weight: bold;">
 <xsl:apply-templates select="car" mode="#current"/>
 </div>
 </xsl:template>

 <xsl:template match="car" mode="#all">
 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="car" mode="red" priority="1">
 <div style="color: red; font-size: 125%; font-family: serif;">
 <xsl:value-of select="."/>

 </div>
 </xsl:template>

</xsl:stylesheet>

In XSLT 2.0, the mode attribute on <xsl:apply-templates> can have the new values #current
or #default. The mode attribute on <xsl:template> can have the new values #all or
#default. Our sample stylesheet uses all of the new values:

• In the match="/" template, we use <xsl:apply-templates> with the modes #default,
blue, and red. The only difference between the three <xsl:apply-template>
elements is the mode.

• The first match="manufacturer" template doesn’t have a mode attribute, so it applies
to the default mode. When we use <xsl:apply-templates mode="#default" ...>,
this template is the one that gets invoked.

• The second match="manufacturer" template has a mode of blue red. This template
is invoked whenever the mode is blue or red.

• Both of the match="manufacturer" templates use <xsl:apply-templates
mode="#current" ...> to process the <car> elements. The current mode is effectively
passed as a parameter to the XSLT processor, telling it which template to apply.

376 | Appendix A: XSLT Reference

• The first match="car" template is defined with mode="#all", so it is the default tem-
plate invoked by both of the <xsl:apply-templates mode="#current" ...>
elements.

• The final match="car" template is defined with mode="red". To make sure it is a
better match than the mode="#all" template, we add the attribute priority="1".
Without this, Saxon displays an “Ambiguous rule match” warning, even though
it invokes the mode="red" template when the red mode is in effect. The Altova XML
engine doesn’t issue any warnings—it simply invokes the template with
mode="red".

Starting with the match="/" template, our stylesheet called a variety of templates with
three different modes to generate the output document. The three modes formatted
the same information in three different ways. This stylesheet produces the same HTML
document as the previous stylesheet.

See Also
The description of the <xsl:template> element.

<xsl:attribute>
Allows you to create an attribute in the output document. Using the <xsl:attribute> in-
struction allows you to determine the name or content of an attribute at runtime. You can
build the attribute’s name or value from parts of the input document, hardcoded text, values
returned by functions, global variables, and any other value you can access from your style-
sheet. You can also use <xsl:if> to determine whether the attribute should be created at all.

Category
Instruction.

Required Attribute

name
The name attribute defines the name of the attribute created by the
<xsl:attribute> element. (No matter how you try to say this, talking about the
attributes of the <xsl:attribute> element is confusing, isn’t it?)

Optional Attributes

namespace
The namespace attribute defines the namespace URI that should be used for this
attribute in the output document. You don’t have control over the namespace
prefix used; the only thing you specify with the namespace attribute is the name-
space’s URI.

<xsl:attribute> | 377

[2.0] select
An XPath expression that defines the content of this attribute. If the
<xsl:attribute> element has a select attribute, the element must be empty.

[2.0] separator
Defines the characters that separate multiple values generated by the
<xsl:attribute> instruction. If <xsl:attribute> has a select attribute, the default
value is a single space (#x20). Without a select attribute, the default value is a zero-
length string (""). The separator attribute overrides the default value whether
select is used or not.

[2.0 – Schema] type
Defines the datatype of this attribute. The datatype can be any of the built-in
datatypes, or it can be a datatype defined in a schema if you have a schema-aware
XSLT 2.0 processor.

The type and validation attributes are mutually exclusive.

[2.0 – Schema] validation
Defines how the value of the new attribute will be validated. The validation at-
tribute has four values: strict, lax, preserve, or strip. Because we’re creating an
attribute, as opposed to an element or a result document, some of the details of
the validation attribute don’t apply.

The values strip and preserve have no effect. These two values define whether the
type annotation of the attribute should be stripped from or preserved in the gen-
erated attribute. For an attribute, no validation is done, and the type annotation
of the attribute is xs:untypedAtomic.

validation="strict" means that the XSLT processor looks in all the declared sche-
mas for a global attribute declaration (<xs:attribute>) with the same name as this
attribute. It is a fatal error if the processor can’t find a matching <xs:attribute>.
Assuming the processor finds the declaration of the attribute, it validates the gen-
erated value against the attribute’s declaration.

The final value, validation="lax", works just like validation="strict", except that
no error occurs if the processor can’t find the declaration of the attribute in any
declared schemas. In that case, the type annotation of the attribute is
xs:untypedAtomic.

The validation and type attributes are mutually exclusive.

Content
You can build the contents of an attribute with any elements that generate a [1.0] node-set or
a [2.0] sequence. The <xsl:choose>, <xsl:text>, <xsl:value-of>, and [2.0] <xsl:sequence>
elements all fit this description.

Appears in
<xsl:attribute> appears inside a template.

378 | Appendix A: XSLT Reference

Defined in
[1.0] XSLT section 7.1.3, “Creating Attributes with xsl:attribute.”

[2.0] XSLT section 11.3, “Creating Attribute Nodes Using xsl:attribute.”

Example
For this example, we want to create an HTML table from the following XML document:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

We’ll create a table that has each <listitem> in a separate row in the right column of the table,
and a single cell with rowspan equal to the number of <listitem> elements in the XML docu-
ment on the left. Clearly we can’t hardcode a value for the rowspan attribute because the
number of <listitem>s can change. This stylesheet uses <xsl:attribute> to do what we want:

<?xml version="1.0"?>
<!-- attribute1.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="list/title"/></title>
 </head>
 <body style="font-family: sans-serif;">
 <xsl:apply-templates select="list"/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="list">
 <table border="1" cellpadding="5" cellspacing="5">
 <tr>
 <td style="background: black; color: white;
 font-weight: bold; font-size: 125%;"
 width="100" align="right">
 <xsl:if test="count(listitem) > 1">
 <xsl:attribute name="rowspan">
 <xsl:value-of select="count(listitem)"/>
 </xsl:attribute>

<xsl:attribute> | 379

 </xsl:if>
 <xsl:value-of select="title"/>
 </td>
 <td>
 <xsl:value-of select="listitem[1]"/>
 </td>
 </tr>
 <xsl:for-each select="listitem[position() > 1]">
 <tr>
 <td>
 <xsl:value-of select="."/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </xsl:template>

</xsl:stylesheet>

Here is the generated HTML document:

<!-- attribute.html -->
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Albums I've bought recently:</title>
 </head>
 <body style="font-family: sans-serif;">
 <table border="1" cellpadding="5" cellspacing="5">
 <tr>
 <td style="background: black; color: white;
 font-weight: bold; font-size: 125%;"
 width="100" align="right" rowspan="7">
 Albums I've bought recently:</td>
 <td>The Sacred Art of Dub</td>
 </tr>
 <tr>
 <td>Only the Poor Man Feel It</td>
 </tr>
 ...
 </table>
 </body>
</html>

Notice that the <td> element had several attributes hardcoded on it; those attributes are com-
bined with the attribute we created with <xsl:attribute>. You can have as many
<xsl:attribute> elements as you want, but all the <xsl:attribute> elements must appear
before anything else in the template. Figure A-3 shows how our generated HTML document
looks.

Be aware that in this instance, we could have used an attribute-value template. You could
generate the value of the rowspan attribute like this:

<td bgcolor="black" rowspan="{count(listitem)}"
 width="100" align="right">

380 | Appendix A: XSLT Reference

The expression in curly braces ({}) is evaluated and replaced with whatever its value happens
to be. In this case, count(listitem) returns the number 7, which becomes the value of the
rowspan attribute. The one difference here is that the rowspan is generated when there is only
one <listitem> element.

[2.0] Next we’ll look at a brief example that illustrates the new select and separator attrib-
utes. This short stylesheet uses an XPath 2.0 range expression (a "to" expression) to assign a
sequence of values to the example attribute:

<?xml version="1.0" encoding="utf-8"?>
<!-- attribute2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" omit-xml-declaration="yes"/>

 <xsl:template match="/">
 <sampledoc>
 <xsl:attribute name="example" select="1 to 7" separator=", "/>
 </sampledoc>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates the following very short document:

<sampledoc example="1, 2, 3, 4, 5, 6, 7"/>

The XSLT 2.0 separator attribute means you don’t have to write logic like this:

<xsl:for-each>
 <xsl:value-of select="."/>
 <xsl:if test="position() != last()">
 <xsl:text>, </xsl:text>
 </xsl:if>
</xsl:for-each>

Figure A-3. Document with generated attributes

<xsl:attribute> | 381

[2.0 – Schema] For a final example, we’ll use the schema-aware attributes of
<xsl:attribute>. Our stylesheet contains an imported schema that defines a new datatype;
we’ll use <xsl:attribute> to create attributes of that datatype. Here’s the stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!-- attribute3.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:zip="http://www.oreilly.com/xslt/zip"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs">

 <xsl:output method="xml" indent="yes"/>

 <xsl:import-schema namespace="http://www.oreilly.com/xslt/zip">
 <xsd:schema
 xmlns="http://www.oreilly.com/xslt/zip"
 targetNamespace="http://www.oreilly.com/xslt/zip"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:simpleType name="zipcode">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[0-9]{5}(-[0-9]{4})?"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
 </xsl:import-schema>

 <xsl:template match="/">
 <postcodes>
 <xsl:for-each select="postcodes/postcode">
 <postcode>
 <xsl:choose>
 <xsl:when test=". castable as zip:zipcode">
 <xsl:attribute name="zip:zip" type="zip:zipcode">
 <xsl:value-of select=". cast as zip:zipcode"/>
 </xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="other" type="xs:string">
 <xsl:value-of select="."/>
 </xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 </postcode>
 </xsl:for-each>
 </postcodes>
 </xsl:template>

</xsl:stylesheet>

We’ll use this stylesheet to process this document:

<?xml version="1.0" encoding="utf-8"?>
<!-- postcodes.xml -->
<postcodes>

382 | Appendix A: XSLT Reference

 <postcode>3S8 E0X</postcode>
 <postcode>37174</postcode>
 <postcode>NSW 3829</postcode>
 <postcode>27516</postcode>
</postcodes>

The stylesheet uses the XPath castable as operator to determine whether a value from the
source document can be cast as a zip:zipcode value. If the value can be cast, we create a new
attribute with the datatype zip:zipcode. Here are the results:

<?xml version="1.0" encoding="UTF-8"?>
<postcodes xmlns:zip="http://www.oreilly.com/xslt/zip">
 <postcode other="3S8 E0X"/>
 <postcode zip:zip="37174"/>
 <postcode other="NSW 3829"/>
 <postcode zip:zip="27516"/>
</postcodes>

Two of the generated attributes are namespace-qualified and contain values of the appropriate
datatype.

<xsl:attribute-set>
Allows you to define a group of attributes for the output. You can then reference the entire
attribute set with its name, rather than create all attributes individually.

Category
Top-level element.

Required Attribute

name
Defines the name of this attribute set.

Optional Attribute

use-attribute-sets
Lists one or more attribute sets that should be used by this attribute set. If you
specify more than one set, separate their names with whitespace characters. You
can use this attribute to embed other <xsl:attribute-set>s in this one, but be
aware that an <xsl:attribute-set> that directly or indirectly embeds itself results
in an error. In other words, if attribute set A embeds attribute set B, and attribute
set B embeds attribute set C, and attribute set C embeds attribute set A, the XSLT
processor signals an error.

Content
One or more <xsl:attribute> elements.

<xsl:attribute-set> | 383

Appears in
<xsl:attribute-set> is a top-level element and can only appear as a child of
<xsl:stylesheet>.

Defined in
[1.0] XSLT section 7.1.4, “Named Attribute Sets.”

[2.0] XSLT section 10.2, “Named Attribute Sets.”

Example
We’ll use a stylesheet with three <xsl:attribute-set>s. The first set defines a style attribute
with some CSS properties, the second defines a couple of HTML <table> attributes and uses
the first set, while the third defines a traditional HTML element and a CSS style attribute.

<?xml version="1.0"?>
<!-- attribute-set.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:attribute-set name="bold-table">
 <xsl:attribute name="style">
 font-weight: bold;
 </xsl:attribute>
 </xsl:attribute-set>

 <xsl:attribute-set name="spacious-table"
 use-attribute-sets="bold-table">
 <xsl:attribute name="cellpadding">8</xsl:attribute>
 <xsl:attribute name="cellspacing">8</xsl:attribute>
 </xsl:attribute-set>

 <xsl:attribute-set name="reverse-table">
 <xsl:attribute name="bgcolor">black</xsl:attribute>
 <xsl:attribute name="style">color: white;</xsl:attribute>
 </xsl:attribute-set>

 <xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="/list/title"/></title>
 </head>
 <body style="font-family: sans-serif;">
 <xsl:apply-templates select="*"/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="list">
 <h1><xsl:value-of select="title"/></h1>
 <table xsl:use-attribute-sets="spacious-table" border="2">
 <xsl:for-each select="listitem">

384 | Appendix A: XSLT Reference

 <tr>
 <td xsl:use-attribute-sets="reverse-table">
 <xsl:value-of select="."/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 <h1>Here's the same table with different attribute sets:</h1>
 <table border="2" xsl:use-attribute-sets="bold-table">
 <xsl:for-each select="listitem">
 <tr>
 <td>
 <xsl:value-of select="."/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </xsl:template>

</xsl:stylesheet>

Notice that you have to namespace-qualify the xsl:use-attribute-sets attribute so that the
XSLT processor will handle it. If you just use use-attribute-sets, the XSLT processor copies
that attribute to the HTML output without processing it at all.

Our stylesheet creates two tables from a list of items, using a different set of named attribute
sets each time. We’ll apply our stylesheet to one of our usual XML documents:

<?xml version="1.0"?>
<!-- albums.xml -->
<list>
 <title>A few of my favorite albums</title>
 <listitem>A Love Supreme</listitem>
 <listitem>Beat Crazy</listitem>
 <listitem>You Could Have it So Much Better</listitem>
 <listitem>Kind of Blue</listitem>
 <listitem>London Calling</listitem>
 <listitem>Remain in Light</listitem>
 <listitem>The Joshua Tree</listitem>
 <listitem>The Indestructible Beat of Soweto</listitem>
</list>

Our stylesheet produces this HTML:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Albums I've bought recently:</title>
 </head>
 <body>
 <h1>Albums I've bought recently:</h1>
 <table style="font-weight: bold; font-family: sans-serif;"
 cellpadding="8" cellspacing="8" border="2">
 <tr>
 <td bgcolor="black" style="color: white;">The Sacred Art of Dub</td>
 </tr>

<xsl:attribute-set> | 385

 ...
 <tr>
 <td bgcolor="black" style="color: white;">The Birth of the Cool</td>
 </tr>
 </table>
 <h1>Here's the same table with different attribute sets:</h1>
 <table style="font-weight: bold; font-family: sans-serif;" border="2">
 <tr>
 <td>The Sacred Art of Dub</td>
 </tr>
 ...
 <tr>
 <td>The Birth of the Cool</td>
 </tr>
 </table>
 </body>
</html>

The two tables look like Figure A-4.

Figure A-4. Tables created with two different attribute sets

386 | Appendix A: XSLT Reference

Be aware that any attribute coded on an element takes precedence over an attribute added to
that element by xsl:use-attribute-sets. For example, if we have this element:

<table cellpadding="3" xsl:use-attribute-sets="spacious-table" ...>

The cellpadding attribute in the spacious-table attribute set does not apply. The XSLT pro-
cessor generates this <table> element:

<table cellpadding="3" cellspacing="8" ...>

<xsl:call-template>
Invokes a particular template by name. If you have output that you need to generate often,
you can put the markup that creates that output into a named template and invoke that
template whenever you want.

Category
Instruction.

Required Attribute

name
The name of the template you’re invoking.

Optional Attributes
None.

Content
This element can contain any number of optional <xsl:with-param> elements.

Appears in
<xsl:call-template> appears inside a template.

Defined in
[1.0] XSLT section 6, “Named Templates.”

[2.0] XSLT section 10.1, “Named Templates.”

Example
Invoking named templates with <xsl:call-template> is a great way to create modular style-
sheets. We’ll use named templates to format our document of chocolate sales:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>

<xsl:call-template> | 387

 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

Here is our stylesheet with named templates:

<?xml version="1.0"?>
<!-- call-template.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="report">
 <html>
 <head>
 <xsl:call-template name="report-title">
 <xsl:with-param name="in-heading" select="true()"/>
 <xsl:with-param name="title" select="title"/>
 </xsl:call-template>
 </head>
 <body>
 <xsl:call-template name="insert-header"/>
 <xsl:call-template name="report-title">
 <xsl:with-param name="in-heading" select="false()"/>
 <xsl:with-param name="title" select="title"/>
 </xsl:call-template>
 <table cellpadding="5">
 <xsl:call-template name="table-heading"/>
 <xsl:apply-templates select="brand"/>
 </table>
 <xsl:call-template name="insert-footer"/>
 </body>
 </html>
 </xsl:template>

 <xsl:template name="insert-header">
 <p style="font-size: 75%; font-style: italic;">
 This confidential report is the property of DougCo, Inc.
 </p>
 <hr/>

388 | Appendix A: XSLT Reference

 </xsl:template>

 <xsl:template name="report-title">
 <xsl:param name="in-heading"/>
 <xsl:param name="title"/>
 <xsl:choose>
 <xsl:when test="$in-heading">
 <title><xsl:value-of select="$title"/></title>
 </xsl:when>
 <xsl:otherwise>
 <h1><xsl:value-of select="$title"/></h1>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

 <xsl:template name="table-heading">
 <tr>
 <td style="background: black; color: white; font-weight: bold;">
 Brand</td>
 <td style="background: black; color: white; font-weight: bold;">
 Sales</td>
 </tr>
 </xsl:template>

 <xsl:template name="insert-footer">
 <hr/>
 <p style="font-size: 75%; font-style: italic;">
 © Copyright 2008, DougCo, Inc.
 </p>
 </xsl:template>

 <xsl:template match="brand">
 <tr>
 <td><xsl:value-of select="name"/></td>
 <td><xsl:value-of select="units"/></td>
 </tr>
 </xsl:template>

</xsl:stylesheet>

Our stylesheet uses four different named templates. The templates insert-header, table-
heading, and insert-footer make it easy to insert commonly used markup into the output.
In practice, templates such as this would be imported from another stylesheet. If dozens of
reports, web pages, or other documents used the same header and footer, we could store that
markup in one place and add it wherever we needed with a simple <xsl:call-template>
instruction.

The other named template, insert-title, uses two parameters. The first parameter tells the
named template whether we’re in the <head> section of the HTML document; the second
parameter is the name of the report title. Depending on the value of in-heading, the template
generates a <title> element or a <h1> element.

Here is the HTML file generated by the stylesheet:

<xsl:call-template> | 389

<html>
 <head>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Chocolate bar sales</title>
 </head>
 <body>
 <p style="font-size: 75%; font-style: italic;">
 This confidential report is the property of DougCo, Inc.
 </p>
 <hr>
 <h1>Chocolate bar sales</h1>
 <table cellpadding="5">
 <tr>
 <td style="background: black; color: white; font-weight: bold;">
 Brand
 </td>
 <td style="background: black; color: white; font-weight: bold;">
 Sales
 </td>
 </tr>
 <tr>
 <td>Lindt</td><td>27408</td>
 </tr>
 <tr>
 <td>Callebaut</td><td>8203</td>
 </tr>
 <tr>
 <td>Valrhona</td><td>22101</td>
 </tr>
 <tr>
 <td>Perugina</td><td>14336</td>
 </tr>
 <tr>
 <td>Ghirardelli</td><td>19268</td>
 </tr>
 </table>
 <hr>
 <p style="font-size: 75%; font-style: italic;">
 © Copyright 2007, DougCo, Inc.
 </p>
 </body>
</html>

The results look like Figure A-5.

[2.0] In XSLT 2.0, there are changes to the rules for passing parameters to templates:

• In XSLT 1.0, you could pass as many parameters as you wanted to a template; any
extra parameters (parameters not defined in the called template) were ignored. In
XSLT 2.0, this is a fatal error.

• In XSLT 2.0, the <xsl:param> element has a required attribute. It is a fatal error to
call a template without passing values for all of the required parameters.

• XSLT 2.0 introduces the concept of tunnel parameters. See the section “Tunnel
parameters” in Chapter 5 for more information on tunnel parameters.

390 | Appendix A: XSLT Reference

[2.0] <xsl:character-map>
Defines a set of characters, each of which should be replaced by a string of characters. This
allows you to put nonstandard characters in the values of elements and attributes. An
<xsl:character-map> works much like an XML <!ENTITY> declaration. Use a <xsl:character-
map> in place of the disable-output-escaping attributes of <xsl:text> and <xsl:value-of>
defined in XSLT 1.0. (Using the disable-output-escaping attribute is deprecated in XSLT 2.0.)

Category
Declaration.

Required Attribute

name
The name of this character map.

Optional Attribute

use-character-maps
The space-separated names of any character maps included in this character map.
As you would expect, it is a fatal error if a character map includes itself, directly or
indirectly. It is also a fatal error if a character map attempts to include a character
map that does not exist.

Figure A-5. HTML document generated with named templates

[2.0] <xsl:character-map> | 391

Content
Zero or more <xsl:output-character> elements.

Appears in
<xsl:character-map> appears as a child of the <xsl:stylesheet> element.

Defined in
XSLT section 20, “Serialization.”

Example
We’ll define a simple example that has a couple of useful functions. First of all, we’ll create a
character mapping that replaces tab characters () with two spaces; tab characters are
often displayed as eight characters wide, which can cause problems when displaying indented
code listings. We’ll also create a couple of graphics that should be displayed in place of certain
characters. Here’s the XML source we’ll use:

<?xml version="1.0" encoding="utf-8"?>
<!-- special-characters.xml -->
<char-test>
 <tabs>public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }
}</tabs>
 <special-char>➀</special-char>
 <special-char>➁</special-char>
</char-test>

Our stylesheet replaces the tab characters with two spaces, and it replaces the first two char-
acters with graphics. (The Unicode characters ➀ through ➉ are the circled
numbers 1 through 10 in a sans-serif fonti.e., ➀ through ➉.) Here’s the stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!-- character-map1.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" use-character-maps="sample"/>

 <xsl:character-map name="sample" use-character-maps="circles">
 <xsl:output-character character="	" string=" "/>
 </xsl:character-map>

 <xsl:character-map name="circles">
 <xsl:output-character character="➀"
 string="<img src='images/circle1.gif'
 width='28' height='28'/>"/>
 <xsl:output-character character="➁"
 string="<img src='images/circle2.gif'
 width='28' height='28'/>"/>
 </xsl:character-map>

392 | Appendix A: XSLT Reference

 <xsl:template match="char-test">
 <html>
 <head>
 <title>A test of some special characters</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>A test of some special characters</h1>
 <xsl:apply-templates select="*"/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="tabs">
 <pre style="font-size: 150%; font-weight: bold;">
 <xsl:value-of select="."/>
 </pre>
 </xsl:template>

 <xsl:template match="special-char">
 <p style="font-size: 200%;">
 <xsl:text>Here's a special character: </xsl:text>
 <xsl:value-of select="."/>
 </p>
 </xsl:template>

</xsl:stylesheet>

Notice that our stylesheet simply outputs the value of the <tabs> or <special-char> elements.
The <xsl:output> element and its use-character-maps="sample" attribute take care of trans-
forming the characters for us. The <xsl:character-map> named sample defines a single re-
placement, and it also uses <xsl:character-map name="circles">. The combination of defin-
ing a character map and referencing it on the <xsl:output> element makes everything happen.

Also notice that the substitutions in the circles character map replace a character with HTML
markup—an element. The HTML document looks like this:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>A test of some special characters</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>A test of some special characters</h1>
 <pre style="font-size: 150%;
 font-weight: bold;">public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }
}</pre><p style="font-size: 200%;">
 Here's a special character:
 </p>
 <p style="font-size: 200%;">
 Here's a special character:
 </p>

[2.0] <xsl:character-map> | 393

 </body>
</html>

When displayed in a browser, the circled numbers appear, as shown in Figure A-6.

Another common use of <xsl:character-map> is to convert a newline character (
) to a
carriage return and line feed (
), but that’s not a visually compelling demo. If you
need to do that, the <xsl:output-character> element looks like this:

<xsl:output-character character="
" string="
"/>

Finally, the XSLT 2.0 spec mentions creating Java Server Pages (JSPs) as an example. JSPs use
angle brackets in a way that is not valid XML or HTML. We can define a character map that
looks like this:

<?xml version="1.0" encoding="utf-8"?>
<!-- character-map2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" use-character-maps="jsp"/>

 <xsl:character-map name="jsp">
 <xsl:output-character character="«" string="<%="/>
 <xsl:output-character character="»" string="%>"/>
 </xsl:character-map>

 <xsl:template match="jsp-test">
 <html>
 <head>
 <title>A test of some special characters</title>

Figure A-6. HTML generated with character maps

394 | Appendix A: XSLT Reference

 </head>
 <body style="font-family: sans-serif;">
 <h1>Generating a .jsp page</h1>
 <p>Here's the value of a JSP function:
 <xsl:apply-templates select="text()"/>
 </p>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

Using this XML input file:

<?xml version="1.0" encoding="utf-8"?>
<!-- jsp-test.xml -->
<jsp-test>« new java.util.Date() »</jsp-test>

generates these results:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>A test of some special characters</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Generating a .jsp page</h1>
 <p>Here's the value of a JSP function:
 <%= new java.util.Date() %>
 </p>
 </body>
</html>

<xsl:choose>
The <xsl:choose> element is XSLT’s construct for if-then-else processing.

Category
Instruction.

Required Attributes
None.

Optional Attributes
None.

Content
Contains one or more <xsl:when> elements. It can also contain a single <xsl:otherwise>
element. If it is present, the <xsl:otherwise> element must be the last element inside
<xsl:choose>.

<xsl:choose> | 395

Appears in
<xsl:choose> appears inside a template.

Defined in
[1.0] XSLT section 9.2, “Conditional Processing with xsl:choose.”

[2.0] XSLT section 8.2, “Conditional Processing with xsl:choose.”

Example
Here’s an example that uses <xsl:choose> to select the background color for the rows of an
HTML table. We cycle among four different values, using <xsl:choose> to determine the value
of the style attribute in the generated HTML document. Here’s the XML document we’ll use:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

And here’s our stylesheet:

<?xml version="1.0"?>
<!-- choose.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>
 <xsl:value-of select="list/title"/>
 </title>
 </head>
 <body style="font-family: sans-serif; color: white;">
 <h1 style="color: black;">
 <xsl:value-of select="list/title"/>
 </h1>
 <table border="1" cellpadding="5"
 style="font-weight: bold;">
 <xsl:for-each select="list/listitem">
 <tr>
 <td>
 <xsl:attribute name="style">
 <xsl:choose>
 <xsl:when test="position() mod 4 = 0">

396 | Appendix A: XSLT Reference

 <xsl:text>background: yellow; color: black;</xsl:text>
 </xsl:when>
 <xsl:when test="position() mod 4 = 1">
 <xsl:text>background: blue;</xsl:text>
 </xsl:when>
 <xsl:when test="position() mod 4 = 2">
 <xsl:text>background: white; color: black;</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>background: black;</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:attribute>
 <xsl:value-of select="."/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

We use <xsl:choose> to generate the style attribute of each generated <td> element. Here’s
the generated HTML document, which cycles through the various background colors:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Albums I've bought recently:</title>
 </head>
 <body style="font-family: sans-serif; color: white;">
 <h1 style="color: black;">Albums I've bought recently:</h1>
 <table border="1" cellpadding="5" style="font-weight: bold;">
 <tr>
 <td style="background: blue;">The Sacred Art of Dub</td>
 </tr>
 ...
 <tr>
 <td style="background: black;">The Birth of the Cool</td>
 </tr>
 </table>
 </body>
</html>

When rendered, our HTML document looks like Figure A-7.

<xsl:comment>
Allows you to create a comment in the output document. Comments are sometimes used to
add legal notices, disclaimers, or information about when the output document was created.

<xsl:comment> | 397

Another useful application of the <xsl:comment> element is generating CSS definitions or
JavaScript code in an HTML document.

Category
Instruction.

Required Attributes
None.

Optional Attribute

[2.0] select
An XPath expression that generates content for the comment. If this attribute is
not present, the contents of the <xsl:comment> element are used instead. If the
select attribute is not present and the <xsl:comment> element is empty, an empty
comment is generated. It is a fatal error for an <xsl:comment> element to have a
select attribute and contain content.

Content
A [1.0] node-set or [2.0] sequence constructor.

Appears in
<xsl:comment> appears in a template.

Defined in
[1.0] XSLT section 7.4, “Creating Comments.”

Figure A-7. Using <xsl:choose> to cycle among background colors

398 | Appendix A: XSLT Reference

[2.0] XSLT section 11.8, “Creating Comments.”

Example
Here’s a stylesheet that generates a comment to define CSS styles in an HTML document:

<?xml version="1.0"?>
<!-- comment.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>XSLT and CSS Demo</title>
 <style>
 <xsl:comment>
 p.big {font-size: 125%; font-weight: bold;}
 p.odd {color: purple; font-weight: bold;}
 p.even {color: blue; font-style: italic; font-weight: bold;}
 </xsl:comment>
 </style>
 </head>
 <body style="font-family: sans-serif;">
 <xsl:apply-templates select="list/title"/>
 <xsl:apply-templates select="list/listitem"/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="title">
 <p class="big"><xsl:value-of select="."/></p>
 </xsl:template>

 <xsl:template match="listitem">
 <xsl:choose>
 <xsl:when test="position() mod 2">
 <p class="odd"><xsl:value-of select="."/></p>
 </xsl:when>
 <xsl:otherwise>
 <p class="even"><xsl:value-of select="."/></p>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

</xsl:stylesheet>

This stylesheet creates three CSS styles inside an HTML comment. We’ll apply the stylesheet
to this document:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>

<xsl:comment> | 399

 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

The stylesheet applies one CSS style to the <title> element and alternates between two CSS
styles for the <listitem>s. Here’s the generated HTML:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>XSLT and CSS Demo</title><style>
 <!--
 p.big {font-size: 125%; font-weight: bold;}
 p.odd {color: purple; font-weight: bold;}
 p.even {color: blue; font-style: italic; font-weight: bold;}
 --></style></head>
 <body style="font-family: sans-serif;">
 <p class="big">Albums I've bought recently:</p>
 <p class="odd">The Sacred Art of Dub</p>
 <p class="even">Only the Poor Man Feel It</p>
 <p class="odd">Excitable Boy</p>
 <p class="even">Aki Special</p>
 <p class="odd">Combat Rock</p>
 <p class="even">Talking Timbuktu</p>
 <p class="odd">The Birth of the Cool</p>
 </body>
</html>

When rendered, the document looks like Figure A-8.

Figure A-8. A document with CSS properties defined in comment nodes

400 | Appendix A: XSLT Reference

[2.0] To use the select attribute added in XSLT 2.0, we could add this <xsl:comment> element
to our stylesheet:

<xsl:comment select="concat('The second album is ', list/listitem[2])"/>

This generates the following comment in the HTML output:

<!--The second album is Only the Poor Man Feel It-->

If you’re using <xsl:comment> to generate JavaScript code, end your code
with a JavaScript comment, like this:

<SCRIPT type="text/javascript">
<xsl:comment> // Hide this code from older browsers
 function iOver(image)
 {
 if (browser="N3") document[image].src=eval(image + "over.src");
 }
 // </xsl:comment>
</SCRIPT>

Putting the two slashes in the last line creates a JavaScript comment.
That means the JavaScript interpreter ignores the --> that appears at the
end of the comment.

<xsl:copy>
By default, <xsl:copy> makes a shallow copy of a node. The <xsl:copy> instruction copies
only the current node and its namespace nodes; attribute or child nodes are not copied.
<xsl:copy> gives you fine-grained control over the copying process, but it requires you to do
more work. You can use <xsl:copy> to copy any kind of node, including comment or attribute
nfodes.

Category
Instruction.

Required Attributes
None.

Optional Attributes

use-attribute-sets
Lists one or more attribute sets that should be used by this element. If you specify
more than one attribute set, separate their names with whitespace characters. See
the description of the <xsl:attribute-set> element for more information.

[2.0] copy-namespaces
Defines whether namespaces should be copied. This applies only when copying an
element node. Allowed values are yes (the default) and no.

<xsl:copy> | 401

[2.0] inherit-namespaces
Defines whether this element and its children inherit the current namespace nodes.
Valid values are yes (the default) and no.

[2.0 – Schema] type
Defines the datatype of the copied element. The datatype can be any of the built-
in datatypes, or it can be a datatype defined in a schema if you have a schema-aware
XSLT 2.0 processor.

The type and validation attributes are mutually exclusive.

[2.0 – Schema] validation
Defines how the value of the copied node will be validated. The validation attrib-
ute has four values: strict, lax, preserve, or strip.

validation="strict" means that the XSLT processor looks in all the declared sche-
mas for an attribute or element declaration (<xs:attribute> or <xs:element>) with
the same name as the copied node. It is a fatal error if the processor can’t find a
matching declaration. Assuming the processor finds the declaration of the node,
it validates the copied node’s value against its declaration.

validation="lax" works just like validation="strict", except that no error occurs
if the processor can’t find the declaration of the copied node in any of the declared
schemas. In that case, the type annotation of the element is xs:untyped.

The effects of validation="preserve" depend on the kind of node being copied. If
the copied node is an attribute, its type annotation is preserved. For element nodes,
the copied node will have the type annotation of xs:anyType. The type annotations
of any nodes contained by the copied element are preserved. No schema validation
is done.

validation="strip" replaces the type annotation of the copied attribute and ele-
ment nodes with xs:untypedAtomic and xs:untyped, respectively. Any attribute and
element nodes contained in the copied node have their type annotations replaced
with xs:untypedAtomic and xs:untyped as well.

The validation and type attributes are mutually exclusive.

Content
An XSLT template.

Appears in
<xsl:copy> appears in a template.

Defined in
[1.0] XSLT section 7.5, “Copying.”

[2.0] XSLT section 11.9.1, “Shallow Copying.”

402 | Appendix A: XSLT Reference

Example
We’ll demonstrate <xsl:copy> with an example that copies an element to the result tree. Our
first stylesheet simply copies the document element:

<?xml version="1.0"?>
<!-- copy1.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml"/>

 <xsl:template match="*">
 <xsl:copy/>
 </xsl:template>

</xsl:stylesheet>

We’ll test our stylesheet with the following XML document:

<?xml version="1.0" encoding="utf-8"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

We don’t do anything to copy any of the children or attributes of the document element, so
our results are very short:

<?xml version="1.0" encoding="UTF-8"?><list/>

To get more results, we need to copy the children of each element. Here is our stylesheet:

<?xml version="1.0"?>
<!-- copy2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml"/>

 <xsl:template match="*">
 <xsl:copy>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

<xsl:copy> | 403

<?xml version="1.0" encoding="UTF-8"?><list>
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem>Aki Special</listitem>
 <listitem>Combat Rock</listitem>
 <listitem>Talking Timbuktu</listitem>
 <listitem>The Birth of the Cool</listitem>
</list>

Although we have more results, we still don’t have any attributes in the result document. The
<xsl:copy> does a shallow copy, which gives you complete control over the output (unlike
<xsl:copy-of>). The downside of having this control is that you must explicitly specify any
child nodes or attribute nodes you want to copy. (Because attribute nodes aren’t considered
children of their parent element, we would have to specifically select and copy them.) This
stylesheet doesn’t copy comment nodes or processing instructions either; we would have to
add more markup to handle them.

Compare this example to the example for the <xsl:copy-of> element.

The <xsl:copy> instruction is also useful inside a template that matches more than one ele-
ment. We’ll use our document of chocolate sales figures:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

Our stylesheet uses <xsl:copy> to copy just the <brand> and <name> elements:

<?xml version="1.0"?>
<!-- copy3.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

404 | Appendix A: XSLT Reference

 <xsl:output method="xml"/>

 <xsl:template match="report">
 <brands>
 <xsl:apply-templates select="brand"/>
 </brands>
 </xsl:template>

 <xsl:template match="brand|name|units">
 <xsl:copy>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

The stylesheet creates a new <brands> element, and then copies all of the <brand> elements
and their children. Here are the results:

<?xml version="1.0" encoding="UTF-8"?><report><brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand><brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand><brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand><brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand><brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand></report>

Notice that the text nodes of the selected elements are processed by the default stylesheet
rule, which copies the text to the output.

<xsl:copy-of>
Creates a deep copy of a node.

Category
Instruction.

Required Attribute

select
Contains an XPath expression that defines the nodes to be copied to the output
document.

<xsl:copy-of> | 405

Optional Attributes

[2.0] copy-namespaces
Defines whether namespaces should be copied. This applies only when copying an
element node. Allowed values are yes (the default) and no.

[2.0 – Schema] type
Defines the datatype of the copied node. The datatype can be any of the built-in
datatypes, or it can be a datatype defined in a schema if you have a schema-aware
XSLT 2.0 processor.

The type and validation attributes are mutually exclusive.

[2.0 – Schema] validation
Defines how the value of the copied node will be validated. The validation attrib-
ute has four values: strict, lax, preserve, or strip.

validation="strict" means that the XSLT processor looks in all the declared sche-
mas for a node declaration (<xs:attribute> or <xs:element>) with the same name
as this node. It is a fatal error if the processor can’t find a matching declaration.
Assuming the processor finds the declaration of the attribute or element node, it
validates the generated value against its declaration in the schema.

validation="lax" works just like validation="strict", except that no error occurs
if the processor can’t find the declaration of the node in any of the declared sche-
mas. In that case, the type annotation of a copied attribute or element is
xs:untypedAtomic or xs:untyped, respectively.

The value validation="preserve" means that all the copied nodes will have their
type annotations preserved.

Finally, validation="strip" removes all of the type annotations from all of the
copied nodes. The copied attribute nodes will have a type annotation of
xs:untypedAtomic and the copied element nodes will have a type annotation of
xs:untyped.

The validation and type attributes are mutually exclusive.

Content
None. <xsl:copy-of> is an empty element.

Appears in
<xsl:copy-of> appears inside a template.

Defined in
[1.0] XSLT section 11.3, “Using Values of Variables and Parameters with xsl:copy-of.”

[2.0] XSLT section 11.9.2, “Deep Copy.”

406 | Appendix A: XSLT Reference

Example
We’ll demonstrate <xsl:copy-of> with a simple stylesheet that copies the input document to
the result tree. Here is our stylesheet:

<?xml version="1.0"?>
<!-- copy-of.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml"/>

 <xsl:template match="/">
 <xsl:copy-of select="."/>
 </xsl:template>

</xsl:stylesheet>

We’ll test our stylesheet with the following document:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

When we transform the XML document, the results are strikingly similar to the input
document:

<?xml version="1.0" encoding="UTF-8"?><!-- albums.xml --><list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

The only differences between the two documents is that some whitespace has been removed
and the stylesheet engine has added an encoding to the XML declaration. Semantically the
two documents are identical. Compare this to the example for the <xsl:copy> element.

Be aware that this element works somewhat differently for XSLT 1.0 and 2.0:

[1.0]:

• If the select attribute identifies a result-tree fragment, the complete fragment is
copied to the result tree.

<xsl:copy-of> | 407

• If select identifies a node-set, all nodes in the node-set are copied to the result tree
in document order. Unlike <xsl:copy>, the node is copied in its entirety, including
any namespace nodes, attribute nodes, and child nodes.

• If the select attribute identifies something other than a result-tree fragment or a
node-set, it is converted to a string and inserted into the result tree.

[2.0]:

• If the select attribute identifies an element, that element and all of its descendants
and attributes are copied to the output. By default, the element’s namespace nodes
are copied as well, although that can be changed with the copy-namespaces
attribute.

• If the select attribute points to a document node, that document node and all of
its descendants are copied to the output.

• All other types of nodes (attribute, namespace, text, comment, or processing in-
struction nodes) are copied to the output.

• Finally, atomic values are appended to the result sequence.

<xsl:decimal-format>
Defines a number format to be used when writing numeric values to the output document. If
the <decimal-format> does not have a name, it is assumed to be the default number format used
for all calls to the format-number() function. On the other hand, if a number format is named,
it can be referenced from the format-number() function.

Category
Top-level element.

Required Attributes
None.

Optional Attributes

name
Gives a name to this format.

decimal-separator
Defines the character (usually either a period or comma) used as the decimal point.
This character is used both in the format string and in the output. The default value
is the period character (.).

grouping-separator
Defines the character (usually either a period or comma) used as the thousands
separator. This character is used both in the format string and in the output. The
default value is the comma (,).

408 | Appendix A: XSLT Reference

infinity
Defines the string used to represent infinity. Be aware that XSLT’s number facilities
support both positive and negative infinity. This string is used only in the output.
The default value is the string "Infinity".

minus-sign
Defines the character used as the minus sign. This character is used only in the
output. The default value is the hyphen character (-, -).

NaN
Defines the string displayed when the value to be formatted is not a number. This
string is used only in the output; the default value is the string "NaN".

percent
Defines the character used as the percent sign. This character is used both in the
format string and in the output. The default value is the percent sign (%).

per-mille
Defines the character used as the per-mille sign. This character is used both in the
format string and in the output. The default value is the Unicode per-mille character
(‰, ‰).

zero-digit
Defines the character used for the digit zero. This character is used both in the
format string and in the output. The default is the digit zero (0).

digit
Defines the character used in the format string to stand for a digit. The default is
the number sign character (#).

pattern-separator
Defines the character used to separate the positive and negative subpatterns in a
pattern. The default value is the semicolon (;). This character is used only in the
format string.

Content
None. <xsl:decimal-format> is an empty element.

Appears in
<xsl:decimal-format> is a top-level element and can appear only as a child of
<xsl:stylesheet>.

Defined in
[1.0] XSLT section 12.3, “Number Formatting.”

[2.0] XSLT section 16.4.1, “Defining a Decimal Format.”

Example
Here is a stylesheet that defines two <decimal-format>s:

<xsl:decimal-format> | 409

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!-- decimal-format.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

f <xsl:decimal-format name="f1"
 decimal-separator=":"
 grouping-separator="/"/>

 <xsl:decimal-format name="f2"
 infinity="Really, really big"
 NaN="[not a number]"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the <decimal-format> element:</xsl:text>

 <xsl:text>

 format-number(1528.3, '#/###:00', 'f1')=</xsl:text>
 <xsl:value-of select="format-number(1528.3, '#/###:00;-#/###:00', 'f1')"/>
 <xsl:text>
 format-number(1 div 0, '###,###.00', 'f2')=</xsl:text>
 <xsl:value-of select="format-number(1 div 0, '###,###.00', 'f2')"/>
 <xsl:text>
 format-number(blue div orange, '#.##', 'f2')=</xsl:text>
 <xsl:value-of select="format-number(blue div orange, '#.##', 'f2')"/>
 <xsl:text>

***************************************</xsl:text>
 <xsl:text>
Sales report for </xsl:text>
 <xsl:value-of select="/report/@month"/>
 <xsl:text>/</xsl:text>
 <xsl:value-of select="/report/@year"/>
 <xsl:text>

</xsl:text>
 <xsl:variable name="totalSales" select="sum(/report/brand/units)"/>
 <xsl:for-each select="report/brand">
 <xsl:value-of select="name"/>
 <xsl:text>:
 </xsl:text>
 <xsl:value-of select="format-number(units, '##,###')"/>
 <xsl:text> bars sold, </xsl:text>
 <xsl:value-of select="format-number(units div $totalSales, '##%')"/>
 <xsl:text> of all sales.</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 <xsl:text>Total sales: </xsl:text>
 <xsl:value-of select="format-number($totalSales, '##,###')"/>
 <xsl:text> bars.
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

We’ll use this stylesheet against the following document:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>

410 | Appendix A: XSLT Reference

 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

When we use an XSLT 1.0 processor with this document and stylesheet, the results are as
follows:

Tests of the <decimal-format> element:

 format-number(1528.3, '#/###:00', 'f1')=1/528:30
 format-number(1 div 0, '###,###.00', 'f2')=Really, really big
 format-number(blue div orange, '#.##', 'f2')=[not a number]

Sales report for 8/2006

Lindt:
 27,408 bars sold, 30% of all sales.

Callebaut:
 8,203 bars sold, 9% of all sales.

Valrhona:
 22,101 bars sold, 24% of all sales.

Perugina:
 14,336 bars sold, 16% of all sales.

Ghirardelli:
 19,268 bars sold, 21% of all sales.

Total sales: 91,316 bars.

[2.0] As we’ve seen numerous times, XSLT 2.0 is more strict in the things it will accept. A
stylesheet with 1 div 0 will not run. If you need to use the XSLT 1.0 behavior in an XSLT 2.0
stylesheet, remember that you can use the version attribute on any XSLT 2.0 element:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!-- decimal-format2.xsl -->

<xsl:decimal-format> | 411

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
...
 <xsl:text>
 format-number(1 div 0, '###,###.00', 'f2')=</xsl:text>
 <xsl:value-of version="1.0”
 select="format-number(1 div 0, '###,###.00', 'f2')"/>
...
</xsl:stylesheet>

Here we’ve changed the version attribute of the <xsl:stylesheet> element to 2.0, but added
version="1.0" to the <xsl:value-of> element later in the stylesheet. This gives us the XSLT
1.0 behavior for this one element, which means we’ll get the value Really, really big when
we divide by zero. If we use the default XSLT 2.0 behavior, the stylesheet throws an exception
and no useful output is generated.

In XSLT 2.0, be aware that dividing an xs:double by zero returns
Infinity, while dividing an xs:integer or xs:decimal by zero is a run-
time error. If we change the stylesheet to read xs:double(1) div
xs:double(0), the stylesheet would run without errors, generating the
same results (Infinity) as an XSLT 1.0 stylesheet that uses 1 div 0.

See “[2.0] Attributes common to all XSLT elements” earlier in this appendix for more infor-
mation about the version attribute and other attributes that can be added to any XSLT
element.

[2.0] <xsl:document>
Allows you to create a new document node. This element is useful for validating the document
node against a schema. The document node created by <xsl:document> is not meant to be
serialized (written to disk); if that’s what you want to do, use <xsl:result-document> instead.

Category
Instruction.

Required Attributes
None.

Optional Attributes

[2.0 – Schema] type
Defines the datatype of the root element node created by this element. To validate
a document node, it must have as its children a single element node, no text nodes
and zero or more comment and processing instruction nodes. If the document node
doesn’t have this structure, the XSLT processor throws an error.

The type and validation attributes are mutually exclusive.

412 | Appendix A: XSLT Reference

[2.0 – Schema] validation
Defines how the value of the new element will be validated. The validation at-
tribute has four values: strict, lax, preserve, or strip. To validate a document
node with strict or lax, the document node must have as its children a single
element node, no text nodes, and zero or more comment and processing instruction
nodes. If the document node doesn’t have this structure, the XSLT processor
throws an error if you use strict or lax.

validation="strict" means that the XSLT processor looks in all the declared sche-
mas for an element declaration (<xs:element>) with the same name as the single
element node that is a child of this document node. It is a fatal error if the processor
can’t find a matching <xs:element>. Assuming the processor finds the declaration
of the element node, it validates the generated value against the element’s
declaration.

validation="lax" works just like validation="strict", except that no error occurs
if the processor can’t find the declaration of the element in any of the declared
schemas. In that case, the type annotation of the element is xs:untyped.

The value validation="preserve" means the type annotations of the single element
node and all its children and attributes will be preserved without changes. No
schema validation is done.

Finally, validation="strip" sets the type annotation of the single element node to
xs:untyped. All of the elements children and attributes have their type annotations
set to xs:untyped for elements and to xs:untypedAtomic for attributes. No schema
validation is done.

The validation and type attributes are mutually exclusive.

Content
A sequence constructor.

Appears in
<xsl:document> appears inside a template.

Defined in
[2.0] XSLT section 11.5, “Creating Document Nodes.”

Example
We’ll create a document node and give it some content. The node will be a <name> element,
as defined in our purchase order schema:

<?xml version="1.0" encoding="UTF-8"?>
<!-- po.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

[2.0] <xsl:document> | 413

 <xs:element name="purchase-order">
 ...
 </xs:element>

 ...

 <xs:element name="name">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="title"
 minOccurs="0" maxOccurs="1"/>
 <xs:element ref="first-name"
 minOccurs="1" maxOccurs="1"/>
 <xs:element ref="last-name"
 minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="title" type="xs:string"/>
 <xs:element name="first-name" type="xs:string"/>
 <xs:element name="last-name" type="xs:string"/>

</xs:schema>

Here is our stylesheet:

<?xml version="1.0"?>
<!-- document.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.oreilly.com/xslt"
 xmlns:po="http://www.oreilly.com/xslt">

 <xsl:output method="xml" indent="yes"/>

 <xsl:import-schema namespace="http://www.oreilly.com/xslt"
 schema-location="po.xsd" />

 <xsl:template match="/">
 <xsl:document validation="lax">
 <xsl:element name="name">
 <xsl:element name="title">
 <xsl:text>Mr.</xsl:text>
 </xsl:element>
 <xsl:element name="first-name">
 <xsl:text>Kent Lyle</xsl:text>
 </xsl:element>
 <xsl:element name="last-name">
 <xsl:text>Birdley</xsl:text>
 </xsl:element>
 </xsl:element>
 </xsl:document>
 </xsl:template>

414 | Appendix A: XSLT Reference

</xsl:stylesheet>

We’re using validation="lax" here. That means the XSLT processor will validate the docu-
ment node that contains the <name> element if it can find an XML schema that defines the
<name> element. If we take out the <xsl:import-schema> element, the <xsl:document> element
still works. If we take out the <xsl:import-schema> element and change the <xsl:document>
to validation="strict", the stylesheet fails because it can’t find a declaration for <name>.

Here are the results of the stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<name xmlns="http://www.oreilly.com/xslt">
 <title>Mr.</title>
 <first-name>Kent Lyle</first-name>
 <last-name>Birdley</last-name>
</name>

In this case, we’ve simply written the contents of the <xsl:document> element to the output.
A more common use of <xsl:document> is to store the document node in a variable, and then
use that validated variable elsewhere in the stylesheet.

Note that we can use the <xsl:document> element to create a document node that is not well-
formed. Here’s a sample stylesheet that does just that:

<?xml version="1.0"?>
<!-- document2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:variable name="ill-formed" as="node()*">
 <xsl:document>
 <xsl:element name="title">
 <xsl:text>Mr.</xsl:text>
 </xsl:element>
 <xsl:element name="first-name">
 <xsl:text>Kent Lyle</xsl:text>
 </xsl:element>
 <xsl:element name="last-name">
 <xsl:text>Birdley</xsl:text>
 </xsl:element>
 </xsl:document>
 </xsl:variable>

 <xsl:template match="/">
 <xsl:text>
A document node that isn't well formed:</xsl:text>
 <xsl:text>

 Is this a document node? </xsl:text>
 <xsl:value-of select="if ($ill-formed instance of document-node())
 then 'Yes!'
 else 'No!'"/>
 <xsl:text>
 Number of child elements: </xsl:text>
 <xsl:value-of select="count($ill-formed/*)"/>

 <xsl:result-document method="xml" href="ill-formed.xml">

[2.0] <xsl:document> | 415

 <xsl:copy-of select="$ill-formed"/>
 </xsl:result-document>
 </xsl:template>

</xsl:stylesheet>

This stylesheet creates a variable named $ill-formed that has three elements at the root of the
document. We use the document-node() node test to make sure this is, in fact, a document
node, and then we print the number of children that the document node has:

A document node that isn't well formed:

 Is this a document node? Yes!
 Number of child elements: 3

Finally we use the <xsl:result-document> element to write our illegal markup to a file. The
file ill-formed.xml looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<title>Mr.</title>
<first-name>Kent Lyle</first-name>
<last-name>Birdley</last-name>

Typically a document node has a single child that represents the document element; in this
case, we’ve sidestepped the XML parser to create markup that isn’t legal. Although this sit-
uation is uncommon, be aware that a stylesheet might generate a document node that has
more than one child.

<xsl:element>
Allows you to create an element in the output document. It works similarly to the
<xsl:attribute> element.

Category
Instruction.

Required Attribute

name
Defines the name of this element. A value of name="Fred" produces a <Fred> element
in the output document.

Optional Attributes

namespace
Defines the namespace used for this element.

use-attribute-sets
Lists one or more attribute sets that should be used by this element. If you specify
more than one attribute set, separate their names with whitespace characters.

416 | Appendix A: XSLT Reference

[2.0] inherit-namespaces
Defines whether this element and its children inherit the current namespace nodes.
Valid values are yes (the default) and no.

[2.0 – Schema] type
Defines the datatype of this element. The datatype can be any of the built-in
datatypes or it can be a datatype defined in a schema if you have a schema-aware
XSLT 2.0 processor.

The type and validation attributes are mutually exclusive.

[2.0 – Schema] validation
Defines how the value of the new element will be validated. The validation at-
tribute has four values: strict, lax, preserve, or strip.

validation="strict" means that the XSLT processor looks in all the declared sche-
mas for an element declaration (<xs:element>) with the same name as this element.
If the processor can’t find a matching <xs:element>, it is a fatal error. Assuming the
processor finds the declaration of the element, it validates the generated element’s
value against its declaration.

validation="lax" works just like validation="strict", except that no error occurs
if the processor can’t find the declaration of the element in any of the declared
schemas. In that case, the type annotation of the element is xs:untyped.

The value validation="preserve" means the created element will have a type an-
notation of xs:anyType, and the type annotations of any nodes that the new element
contains will be preserved without any changes. No schema validation is done.

Finally, validation="strip" creates a new element of type xs:anyType, and any
nodes the new element contains will have their type annotations replaced with
xs:untyped for elements and with xs:untypedAtomic for attributes. No schema val-
idation is done.

The validation and type attributes are mutually exclusive.

Content
An XSLT template.

Appears in
<xsl:element> appears inside a template.

Defined in
[1.0] XSLT section 7.1.2, “Creating Elements with xsl:element.”

[2.0] XSLT section 11.2, “Creating Element Nodes using xsl:element.”

Example
We’ll use a generic stylesheet that copies the input document to the result tree, with one
exception: all attributes in the original documents are converted to child elements in the result

<xsl:element> | 417

tree. The name of the new element will be the name of the attribute, and its text will be the
value of the attribute. Because we don’t know the name of the attribute until we process the
XML source document, we must use the <xsl:element> element to create the result tree. Here’s
how our stylesheet looks:

<?xml version="1.0"?>
<!-- element.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml"/>

 <xsl:template match="*">
 <xsl:element name="{name()}">
 <xsl:for-each select="@*">
 <xsl:element name="{name()}">
 <xsl:value-of select="."/>
 </xsl:element>
 </xsl:for-each>
 <xsl:apply-templates select="*|text()"/>
 </xsl:element>
 </xsl:template>

</xsl:stylesheet>

This stylesheet uses the <xsl:element> element in two places: first to create a new element
with the same name as the original element, and second to create a new element with the
same name as each attribute. We’ll apply the stylesheet to this document:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

Our results look like this:

<?xml version="1.0" encoding="UTF-8"?><list><xml:lang>en</xml:lang>
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem><xml:lang>sw</xml:lang>Aki Special</listitem>
 <listitem><xml:lang>en-gb</xml:lang>Combat Rock</listitem>
 <listitem><xml:lang>zu</xml:lang>Talking Timbuktu</listitem>
 <listitem><xml:lang>jz</xml:lang>The Birth of the Cool</listitem>
</list>

418 | Appendix A: XSLT Reference

The <xsl:element> element created all the elements in the output document, including the
<xml:lang> elements created from the xml:lang attributes.

[2.0 – Schema] Now we’ll look at an example that uses XSLT 2.0’s schema features. We’ll use
the validation attribute of <xsl:element> to make sure the element we create is valid according
to our purchase order schema. We’ll start with an XML file that contains similar data to our
purchase order format:

<?xml version="1.0" encoding="utf-8"?>
<!-- create-po.xml -->
<po order-num="38292">
 <customer id="4738" standing="Platinum">
 <address>
 <name>
 <courtesy>Mr.</courtesy>
 <given-name>Chester Hasbrouck</given-name>
 <surname>Frisby</surname>
 </name>
 <street>1234 Main Street</street>
 <city>Sheboygan</city>
 <state>WI</state>
 <zip>48392</zip>
 </address>
 </customer>
 <line-items>
 <line-item>
 <partnum>28392-33-TT</partnum>
 <partname>Turnip Twaddler</partname>
 <quantity>3</quantity>
 <price>9.95</price>
 </line-item>
 <line-item>
 <partnum>28100-38-CT</partnum>
 <partname>Clam Teaser</partname>
 <quantity>7</quantity>
 <price>39.95</price>
 </line-item>
 </line-items>
</po>

We’ll use <xsl:element> to create a new purchase order using the data in this document. We
also have to generate a <date> element as the first child of <purchase-order>. Here’s the
stylesheet:

<?xml version="1.0"?>
<!-- element2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.oreilly.com/xslt"
 xmlns:po="http://www.oreilly.com/xslt"
 exclude-result-prefixes="xs po">

 <xsl:import-schema namespace="http://www.oreilly.com/xslt"
 schema-location="po.xsd" />

<xsl:element> | 419

 <xsl:output method="xml" indent="yes"/>

 <xsl:variable name="now" as="xs:date" select="current-date()"/>

 <xsl:template match="po">
 <xsl:element name="purchase-order" validation="strict">
 <xsl:attribute name="id" select="@order-num"/>
 <date>
 <xsl:attribute name="year" select="year-from-date($now)"/>
 <xsl:attribute name="month" select="month-from-date($now)"/>
 <xsl:attribute name="day" select="day-from-date($now)"/>
 </date>
 <customer>
 <xsl:attribute name="id" select="customer/@id"/>
 <xsl:attribute name="level" select="customer/@standing"/>
 <xsl:apply-templates select="customer/address"/>
 </customer>
 <xsl:apply-templates select="line-items"/>
 </xsl:element>
 </xsl:template>

 <xsl:template match="address">
 <address>
 <xsl:attribute name="type" select="'business'"/>
 <xsl:apply-templates select="name"/>
 <street>
 <xsl:value-of select="street"/>
 </street>
 <city>
 <xsl:value-of select="city"/>
 </city>
 <state>
 <xsl:value-of select="state"/>
 </state>
 <zip>
 <xsl:value-of select="zip"/>
 </zip>
 </address>
 </xsl:template>

 <xsl:template match="line-items">
 <items>
 <xsl:for-each select="line-item">
 <item>
 <xsl:attribute name="part-no" select="partnum"/>
 <partname>
 <xsl:value-of select="partname"/>
 </partname>
 <qty>
 <xsl:value-of select="quantity"/>
 </qty>
 <price>
 <xsl:value-of select="price"/>
 </price>

420 | Appendix A: XSLT Reference

 </item>
 </xsl:for-each>
 </items>
 </xsl:template>

 <xsl:template match="name">
 <name>
 <xsl:if test="courtesy">
 <title>
 <xsl:value-of select="courtesy"/>
 </title>
 </xsl:if>
 <first-name>
 <xsl:value-of select="given-name"/>
 </first-name>
 <last-name>
 <xsl:value-of select="surname"/>
 </last-name>
 </name>
 </xsl:template>

</xsl:stylesheet>

This stylesheet uses <xsl:element> and <xsl:attribute> to build a purchase order from
scratch. The validation="strict" attribute means the generated <purchase-order> element
must be a valid purchase order when compared to the schema in po.xsd. If the stylesheet
attempts to add anything to the generated <purchase-order> that violates the purchase order
schema, the stylesheet engine throws an exception and stops. The stylesheet generates this
XML:

<?xml version="1.0" encoding="UTF-8"?>
<purchase-order xmlns="http://www.oreilly.com/xslt" id="38292">
 <date year="2008" month="3" day="2"/>
 <customer id="4738" level="Platinum">
 <address type="business">
 <name>
 <title>Mr.</title>
 <first-name>Chester Hasbrouck</first-name>
 <last-name>Frisby</last-name>
 </name>
 <street>1234 Main Street</street>
 <city>Sheboygan</city>
 <state>WI</state>
 <zip>48392</zip>
 </address>
 </customer>
 <items>
 <item part-no="28392-33-TT">
 <partname>Turnip Twaddler</partname>
 <qty>3</qty>
 <price>9.95</price>
 </item>
 <item part-no="28100-38-CT">
 <partname>Clam Teaser</partname>
 <qty>7</qty>

<xsl:element> | 421

 <price>39.95</price>
 </item>
 </items>
</purchase-order>

Notice that the generated document uses the default namespace of http://www.oreilly.com/
xslt. This is the namespace associated with the imported schema; the fact that it is declared
as the default namespace in the stylesheet means it is copied to the output element. Also notice
that the stylesheet uses exclude-result-prefixes to keep the po and xs prefixes out of the
generated document. The default namespace of the generated purchase order is http://
www.oreilly.com/xslt, as it should be.

We create the <date> element with the current-date() function. To see what happens when
validation fails, take out the <date> element. You’ll see an error message like this:

XTTE1510: In content of element <purchase-order>: The content model does
 not allow element <customer> to appear here. Expected:
 {http://www.oreilly.com/xslt}date (See
 http://www.w3.org/TR/xmlschema-1/#cvc-complex-type clause 2.4)
Transformation failed: Run-time errors were reported

In this case, the <purchase-order> element isn’t generated because it isn’t valid without the
<date> element in the right place.

<xsl:fallback>
Defines a template that should be used when an XSLT processor finds an instruction in the
stylesheet that it can’t process. Fallback processing can be triggered by an extension element
that relies on code that can’t be found. It is also invoked when an XSLT 1.0 processor working
in forward processing mode encounters an XSLT 2.0 element.

Category
Instruction.

Required Attributes
None.

Optional Attributes
None.

Content
An XSLT template.

Appears in
<xsl:fallback> appears inside a template.

Defined in
[1.0] XSLT section 15, “Fallback.”

422 | Appendix A: XSLT Reference

[2.0] XSLT section 18, “Extensibility and Fallback.”

Example
Here is a stylesheet that uses <xsl:fallback> to terminate the transformation if an extension
element can’t be found:

<?xml version="1.0"?>
<!-- fallback.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:db="xalan://DatabaseExtension"
 extension-element-prefixes="db">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="report/title"/></title>
 </head>
 <body>
 <h1><xsl:value-of select="report/title"/></h1>
 <xsl:for-each select="report/section">
 <h2><xsl:value-of select="title"/></h2>
 <xsl:for-each select="dbaccess">
 <db:accessDatabase>
 <xsl:fallback>
 <p>Sorry, the database library is not available!</p>
 </xsl:fallback>
 </db:accessDatabase>
 </xsl:for-each>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

We’ll use this stylesheet against this XML document:

<?xml version="1.0"?>
<!-- use-db.xml -->
<report>
 <title>HR employee listing</title>
 <section>
 <title>Employees by department</title>
 <dbaccess driver="COM.ibm.db2.jdbc.app.DB2Driver"
 database="jdbc:db2:sample" tablename="employee" where="*"
 fieldnames='workdept as "Department", lastname as "Last Name",
 firstnme as "First Name"'
 order-by="workdept" group-by="workdept, lastname, firstnme"/>
 </section>
</report>

<xsl:fallback> | 423

When we use this stylesheet to transform a document, the <xsl:fallback> element is pro-
cessed if the extension element can’t be found. If the element isn’t available, you’ll get these
results:

<html>
 <head>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>HR employee listing</title>
 </head>
 <body>
 <h1>HR employee listing</h1>
 <h2>Employees by department</h2>
 <p>Sorry, the database library is not available!</p>
 </body>
</html>

In this case, the extension element is <dbaccess>. This example was originally written for the
Xalan processor; in Xalan, the value of an extension element prefix’s URI is a Java class name.
If, for whatever reason, the class DatabaseExtension can’t be loaded, the <xsl:fallback> ele-
ment is processed instead.

Note that the <xsl:fallback> element is processed only when the extension element can’t be
found; if the code that implements that extension element is found, but fails, that error must
be handled some other way. Also be aware that the gracefulness of stylesheet termination will
vary from one XSLT processor to the next.

<xsl:for-each>
XSLT’s iteration operator. This element has a select attribute that selects some nodes from
the current context. The contents of the <xsl:for-each> element are then evaluated using each
of the selected nodes. ([2.0] In XSLT 2.0, the select attribute selects items, which can include
atomic values as well as nodes.)

Category
Instruction.

Required Attribute

select
Contains an XPath expression that selects nodes from the current context.

Optional Attributes
None.

Content
<xsl:for-each> contains a template that is evaluated against each of the selected nodes. The
<xsl:for-each> element can contain one or more <xsl:sort> elements to order the selected
nodes before they are processed. All <xsl:sort> elements must appear first, before the tem-
plate begins.

424 | Appendix A: XSLT Reference

Appears in
<xsl:for-each> appears inside a template.

Defined in
[1.0] XSLT section 8, “Repetition.”

[2.0] XSLT section 7, “Repetition.”

Example
We’ll demonstrate the <xsl:for-each> element with the following stylesheet:

<?xml version="1.0"?>
<!-- for-each.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Here is a moderately long list:
</xsl:text>
 <xsl:variable name="listitems" select="list/listitem"/>
 <xsl:call-template name="processListitems">
 <xsl:with-param name="items" select="$listitems"/>
 </xsl:call-template>
 </xsl:template>

 <xsl:template name="processListitems">
 <xsl:param name="items"/>
 <xsl:for-each select="$items">
 <xsl:value-of select="position()"/>
 <xsl:text>. </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

In this stylesheet, we use an <xsl:param> named items to illustrate the <xsl:for-each> element.
The items parameter contains some number of <listitem> elements from the XML source
document; the <xsl:for-each> element iterates through all those elements and processes each
one. We’ll use our stylesheet with the following XML document:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>

<xsl:for-each> | 425

 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

When we run the transformation, here are the results:

Here is a moderately long list:
1. The Sacred Art of Dub
2. Only the Poor Man Feel It
3. Excitable Boy
4. Aki Special
5. Combat Rock
6. Talking Timbuktu
7. The Birth of the Cool

The <xsl:for-each> element iterated through all the <listitem> elements from the XML
source document and processed each one.

[2.0] <xsl:for-each-group>
Takes the items in a sequence and puts them into groups. There are four different ways of
defining groups, each of which are explained in detail below. The grouping is done based on
a common value or by a pattern that the first or last item in the group must match. Be aware
that it is possible for an item in the original sequence to be put into more than one group.

Category
Instruction.

Required Attribute

select
An XPath expression that determines the items to be grouped.

Optional Attributes

group-by
Defines a common value that all items in a group must share. For example, group-
by="state" creates a group for each unique value of the <state> element. All items
in a given group will have the same value for <state>.

group-adjacent
Defines an expression that is evaluated for every item in the sequence. If the value
of that expression for the current item is the same as the value of that expression
for the previous item, then the current item is put into the same group as the pre-
vious item. If not, the current item becomes the first item in a new group.

group-starting-with
Defines a pattern that indicates the start of a new group. When an item matching
that pattern is found, a new group is started, and all subsequent items are put into
the same group until another item that matches the pattern is found.

426 | Appendix A: XSLT Reference

group-ending-with
Defines a pattern that indicates the end of the current group. When an item match-
ing that pattern is found, the current group is closed. The next item in the sequence
is put into a new group.

Keep in mind that group-by, group-adjacent, group-starting-with, and group-ending-with are
mutually exclusive.

collation
Defines the collation sequence used to compare grouping keys. The way collation
sequences are defined can vary from one XSLT processor to another, so check your
processor’s documentation for the details.

The collation attribute can only be used with group-by or group-adjacent. It is an
error to use it with group-starting-with or group-ending-with.

Content
Zero or more <xsl:sort> elements and a sequence constructor.

Appears in
Any sequence constructor.

Defined in
XSLT section 14, “Grouping.”

Example
We’ll look at four examples here to illustrate the four types of grouping. We’ll start with
group-by, the most common type of grouping. We’ll use a simplified list of customer
addresses:

<?xml version="1.0"?>
<!-- simplified-names.xml -->
<addressbook>
 <address>
 <first-name>Chester Hasbrouck</first-name>
 <last-name>Frisby</last-name>
 <city>Sheboygan</city>
 <state>WI</state>
 </address>
 <address>
 <first-name>Mary</first-name>
 <last-name>Backstayge</last-name>
 <city>Skunk Haven</city>
 <state>MA</state>
 </address>
 <address>
 <first-name>Natalie</first-name>
 <last-name>Attired</last-name>
 <city>Winter Harbor</city>
 <state>ME</state>

[2.0] <xsl:for-each-group> | 427

 </address>
 <address>
 <first-name>Harry</first-name>
 <last-name>Backstayge</last-name>
 <city>Skunk Haven</city>
 <state>MA</state>
 </address>
 <address>
 <first-name>Mary</first-name>
 <last-name>McGoon</last-name>
 <city>Boylston</city>
 <state>VA</state>
 </address>
 <address>
 <first-name>Amanda</first-name>
 <last-name>Reckonwith</last-name>
 <city>Lynn</city>
 <state>MA</state>
 </address>
</addressbook>

We’ll use group-by to group these addresses by state. Here’s the stylesheet:

<?xml version="1.0"?>
<!-- for-each-group1.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Customers grouped by state

</xsl:text>
 <xsl:for-each-group select="/addressbook/address” group-by="state">
 <xsl:sort select="state"/>
 <xsl:text> State = </xsl:text>
 <xsl:value-of select="current-grouping-key()"/>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="current-group()">
 <xsl:text>	</xsl:text>
 <xsl:value-of select="(first-name, last-name)"
 separator=" "/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="city"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:for-each-group>
 </xsl:template>

</xsl:stylesheet>

Our stylesheet generates these results:

Customers grouped by state

 State = MA
 Mary Backstayge, Skunk Haven
 Harry Backstayge, Skunk Haven

428 | Appendix A: XSLT Reference

 Amanda Reckonwith, Lynn
 State = ME
 Natalie Attired, Winter Harbor
 State = VA
 Mary McGoon, Boylston
 State = WI
 Chester Hasbrouck Frisby, Sheboygan

The <xsl:sort> element after <xsl:for-each-group> sorts the groups themselves. For each
group a heading is printed, and then the contents of each group are handled by <xsl:for-each
select="current-group()">. If we take out the <xsl:sort> element to order the groups, our
output is different. Our customers are still grouped correctly, but the groups are in a different
order:

Customers grouped by state

 State = WI
 Chester Hasbrouck Frisby, Sheboygan
 State = MA
 Mary Backstayge, Skunk Haven
 Harry Backstayge, Skunk Haven
 Amanda Reckonwith, Lynn
 State = ME
 Natalie Attired, Winter Harbor
 State = VA
 Mary McGoon, Boylston

Because we didn’t sort the groups, they appear in the order in which each state first appeared.

For group-adjacent, we define an expression that returns a value for each item in the sequence.
To keep our example simple, we’ll use group-adjacent to return true() or false(). Within
the sequence, all adjacent items that have the same value are put into the same group. We’re
looking for groups of adjacent <p> elements in an HTML document; we’ll convert them to
 elements in which each <p> element is transformed into a list item. Here’s the HTML
source:

<?xml version="1.0"?>
<!-- grouping-input.html -->
<html>
 <body>
 <!-- Here's some sample text from the chapter "Sorting
 and Grouping". -->
 <h1>Steps for grouping in the Muench method</h1>
 <p>Define a <code>key</code> for the property we want
 to use for grouping.</p>
 <p>Select all of the nodes ...</p>
 <p>For each unique grouping value, ...</p>
 <h1>Steps for grouping in XSLT 2.0</h1>
 <p>Define an XPath expression ...</p>
 <p>Select all of the nodes we want to group ...</p>
 <p>Instead of dealing with each ...</p>
 </body>
</html>

We’ll use this stylesheet to do the grouping:

[2.0] <xsl:for-each-group> | 429

<?xml version="1.0"?>
<!-- for-each-group2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" include-content-type="no"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Grouping with group-adjacent</title>
 </head>
 <body>
 <xsl:for-each-group select="html/body/*"
 group-adjacent="boolean(self::p)">
 <xsl:choose>
 <xsl:when test="current-grouping-key()">

 <xsl:for-each select="current-group()">
 <xsl:apply-templates select="*|text()"/>
 </xsl:for-each>

 </xsl:when>
 <xsl:otherwise>
 <xsl:apply-templates select="current-group()" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each-group>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="*">
 <xsl:copy>
 <xsl:for-each select="@*">
 <xsl:copy/>
 </xsl:for-each>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

Our stylesheet yields these results:

<html>
 <head>
 <title>Grouping with group-adjacent</title>
 </head>
 <body>
 <h1>Steps for grouping in the Muench method</h1>

 Define a <code>key</code> for the property we want
 to use for grouping.

 Select all of the nodes ...

430 | Appendix A: XSLT Reference

 For each unique grouping value, ...

 <h1>Steps for grouping in XSLT 2.0</h1>

 Define an XPath expression ...
 Select all of the nodes we want to group ...
 Instead of dealing with each ...

 </body>
</html>

The group-adjacent attribute is an XPath expression that returns a value. In this case, any
<p> element returns true(), while everything else returns false(). The value of group-
adjacent can be a much more complicated expression. See the discussion of “Another Type
of Grouping: group-adjacent” in Chapter 6 for more detail.

Our third grouping example uses group-starting-with. In this example, we’ll use each <h1>
element as the start of a section. Each <h1> element will start a group; everything up until the
next <h1> element will be in the same group. We’ll create a DocBook output document in
which the <h1>, and everything that follows it is in a <sect1> element. (We’ll reuse our HTML
document from the group-adjacent example.) Here’s our group-starting-with stylesheet:

<?xml version="1.0"?>
<!-- for-each-group3.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">
 <chapter>
 <title>Grouping in XSLT</title>
 <xsl:apply-templates select="html/body"/>
 </chapter>
 </xsl:template>

 <xsl:template match="body">
 <xsl:for-each-group select="*” group-starting-with="h1">
 <sect1>
 <xsl:apply-templates select="current-group()"/>
 </sect1>
 </xsl:for-each-group>
 </xsl:template>

 <xsl:template match="h1">
 <title>
 <xsl:apply-templates/>
 </title>
 </xsl:template>

 <xsl:template match="p">
 <para>
 <xsl:apply-templates/>
 </para>
 </xsl:template>

[2.0] <xsl:for-each-group> | 431

 <xsl:template match="*">
 <xsl:copy>
 <xsl:for-each select="@*">
 <xsl:copy/>
 </xsl:for-each>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

Our stylesheet generates a DocBook document in which each <h1> and everything following
it is now a <sect1> element:

<?xml version="1.0" encoding="UTF-8"?>
<chapter>
 <title>Grouping in XSLT</title>
 <sect1>
 <title>Steps for grouping in the Muench method</title>
 <para>Define a <code>key</code> for the property we want
 to use for grouping.</para>
 <para>Select all of the nodes ...</para>
 <para>For each unique grouping value, ...</para>
 </sect1>
 <sect1>
 <title>Steps for grouping in XSLT 2.0</title>
 <para>Define an XPath expression ...</para>
 <para>Select all of the nodes we want to group ...</para>
 <para>Instead of dealing with each ...</para>
 </sect1>
</chapter>

The text of the HTML <h1> becomes a DocBook <title> element, and each HTML <p> element
becomes a DocBook <para> element.

Our final example is for group-ending-with. In this example, we’ll take a list of elements and
put them into three columns. The ending condition is each third element (position()
mod 3 = 0). We’ll use this list of cars:

<?xml version="1.0"?>
<!-- carlist.xml -->
<cars>
 <make>Alfa Romeo</make>
 <make>Bentley</make>
 <make>Chevrolet</make>
 <make>Dodge</make>
 <make>Eagle</make>
 <make>Ford</make>
 <make>GMC</make>
 <make>Honda</make>
 <make>Isuzu</make>
 <model>Javelin</model>
 <model>K-Car</model>
 <make>Lincoln</make>
 <make>Mercedes</make>

432 | Appendix A: XSLT Reference

 <make>Nash</make>
 <make>Opel</make>
 <make>Pontiac</make>
 <model>Quantum</model>
 <model>Rambler</model>
 <make>Studebaker</make>
</cars>

Here’s our stylesheet:

<?xml version="1.0"?>
<!-- for-each-group4.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Car Makes and Models</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Car Makes and Models</h1>
 <p>Here are the car makes and models in
 our input document.</p>
 <table border="1" cellpadding="5">
 <xsl:apply-templates select="cars"/>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="cars">
 <xsl:for-each-group select="make|model"
 group-ending-with="*[position() mod 3 = 0]">
 <tr>
 <xsl:choose>
 <xsl:when test="count(current-group()) = 3">
 <xsl:for-each select="current-group()">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </xsl:when>
 <xsl:when test="count(current-group()) = 2">
 <xsl:apply-templates select="current-group()[1]"/>
 <xsl:apply-templates select="current-group()[2]"/>
 <td bgcolor="#CCCCCC">

 </td>
 </xsl:when>
 <xsl:otherwise>
 <xsl:apply-templates select="current-group()[1]"/>
 <td bgcolor="#CCCCCC" colspan="2">

[2.0] <xsl:for-each-group> | 433

 </td>
 </xsl:otherwise>
 </xsl:choose>
 </tr>
 </xsl:for-each-group>
 </xsl:template>

 <xsl:template match="make">
 <td style="font-weight: bold;">
 <xsl:apply-templates/>
 </td>
 </xsl:template>

 <xsl:template match="model">
 <td style="font-style: italic; font-weight: bold;">
 <xsl:apply-templates/>
 </td>
 </xsl:template>

</xsl:stylesheet>

Our results look like this:

<html>
 <head>
 <title>Car Makes and Models</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Car Makes and Models</h1>
 <p>Here are the car makes and models in
 our input document.
 </p>
 <table border="1" cellpadding="5">
 <tr>
 <td style="font-weight: bold;">Alfa Romeo</td>
 <td style="font-weight: bold;">Bentley</td>
 <td style="font-weight: bold;">Chevrolet</td>
 </tr>
 ...
 <tr>
 <td style="font-weight: bold;">Studebaker</td>
 <td bgcolor="#CCCCCC" colspan="2"></td>
 </tr>
 </table>
 </body>
</html>

The elements in the list of cars have been written to our HTML table in groups of three. Notice
that the last group has only one element, so that row of the table features a cell with the last
element followed by a blank, gray cell with colspan="2". The document appears as shown in
Figure A-9.

434 | Appendix A: XSLT Reference

[2.0] <xsl:function>
Defines a function that can be used in XPath expressions in the stylesheet.

Category
Declaration.

Required Attribute

name
The name of the stylesheet function.

Optional Attributes

as
Defines the datatype returned by this function.

override
Defines whether this function should override another function with the same
name and the same number of arguments that is provided by the processor outside
the scope of the stylesheet. override="yes", the default value, means this function
will be used (it overrides the other function); override="no" means the other func-
tion will be used.

Figure A-9. Items grouped with group-ending-with

[2.0] <xsl:function> | 435

Content
Any number of <xsl:param> elements, followed by a sequence constructor. The created
sequence is returned by the function.

Defined in
XSLT section 10.3, “Stylesheet Functions.”

Example
This stylesheet uses three <xsl:function>s to return the background color, font size, and style
of various HTML elements. Putting the logic into a function means we can access the function
from an attribute value template. Here’s the stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!-- function.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:sample="http://www.oreilly.com/catalog/xslt"
 exclude-result-prefixes="xs sample">

 <xsl:output method="html" include-content-type="no"/>

 <xsl:variable name="colors" as="xs:string *"
 select="('yellow', 'white', 'blue')"/>

 <xsl:variable name="fontSizes" as="xs:integer *"
 select="(18, 24, 36)"/>

 <xsl:variable name="styles" as="xs:string *"
 select="('color: black;', 'color: black;',
 'color: white; font-weight: bold;')"/>

 <xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="/list/title"/></title>
 </head>
 <body style="font-family: sans-serif;">
 <h1 style="font-size: 48;"><xsl:value-of select="/list/title"/></h1>
 <table border="3" cellpadding="5" cellspacing="5" width="50%">
 <tr>
 <xsl:for-each select="/list/listitem">
 <td style="font-size: {sample:getFontSize(position())};
 {sample:getStyle(position())}"
 bgcolor="{sample:getColor(position())}">
 <xsl:value-of select="."/>
 </td>
 </xsl:for-each>
 </tr>
 </table>
 </body>
 </html>
 </xsl:template>

436 | Appendix A: XSLT Reference

 <xsl:function name="sample:getColor" as="xs:string">
 <xsl:param name="pos” as="xs:integer"/>
 <xsl:value-of select="$colors[($pos mod count($colors)) + 1]"/>
 </xsl:function>

 <xsl:function name="sample:getStyle" as="xs:string">
 <xsl:param name="pos” as="xs:integer"/>
 <xsl:value-of select="$styles[($pos mod count($styles)) + 1]"/>
 </xsl:function>

 <xsl:function name="sample:getFontSize" as="xs:integer">
 <xsl:param name="pos" as="xs:integer"/>
 <xsl:value-of select="$fontSizes[($pos mod count($fontSizes)) + 1]"/>
 </xsl:function>

</xsl:stylesheet>

Our functions work with the variables colors and fontSizes. These are defined as sequences
of strings and integers, respectively. We call the getColor() and getFontSize() functions with
the position of the current node; the functions use the mod operator to determine the item in
the sequence that should be returned.

Notice that we add 1 to the index of the item returned by our functions. The first item in a
sequence is at position one, not zero. Also, to make the code easier to maintain, we use the
count() function to determine the second operand for the mod operator. If we add more colors
or font sizes to our sequences, we won’t have to change our function definitions to match the
new size.

We’ll use this stylesheet to transform our list of albums:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

The generated HTML document looks like this:

<html>
 <head>
 <title>Albums I've bought recently:</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1 style="font-size: 48;">Albums I've bought recently:</h1>
 <table border="3" cellpadding="5" cellspacing="5" width="50%">
 <tr>
 <td style="font-size: 24;
 color: black;" bgcolor="white">The Sacred Art of Dub</td>

[2.0] <xsl:function> | 437

 <td style="font-size: 36;
 color: white; font-weight: bold;" bgcolor="blue">
 Only the Poor Man Feel It</td>
 <td style="font-size: 18;
 color: black;" bgcolor="yellow">Excitable Boy</td>
 <td style="font-size: 24;
 color: black;" bgcolor="white">Aki Special</td>
 <td style="font-size: 36;
 color: white; font-weight: bold;" bgcolor="blue">Combat Rock</td>
 <td style="font-size: 18;
 color: black;" bgcolor="yellow">Talking Timbuktu</td>
 <td style="font-size: 24;
 color: black;" bgcolor="white">The Birth of the Cool</td>
 </tr>
 </table>
 </body>
</html>

The values for the bgcolor and style attributes are generated by the XSLT functions we de-
fined. When viewed in a browser, the output document appears as shown in Figure A-10.

XSLT functions can make your stylesheets much simpler and easier to maintain. In our XSLT
2.0 stylesheet, we used this markup to create the bgcolor attribute:

bgcolor="{sample:getColor(position())}"

Here’s how you do the same thing in XSLT 1.0:

<xsl:attribute name="bgcolor">
 <xsl:choose>
 <xsl:when test="position() mod 3 = 0">
 <xsl:text>yellow</xsl:text>
 </xsl:when>
 <xsl:when test="position() mod 3 = 1">
 <xsl:text>white</xsl:text>
 </xsl:when>

Figure A-10. An HTML table generated with the help of XSLT functions

438 | Appendix A: XSLT Reference

 <xsl:otherwise>
 <xsl:text>blue</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
</xsl:attribute>

<xsl:if>
Implements an if statement. It contains a test attribute and an XSLT template. If the test
attribute evaluates to the boolean value true, the XSLT template is processed. This element
implements an if statement only; if you need an if-then-else statement, use the
<xsl:choose> element with a single <xsl:when> and a single <xsl:otherwise>.

Category
Instruction.

Required Attribute

test
Contains a boolean expression. If it evaluates to the boolean value true, then the
XSLT template inside the <xsl:if> element is processed.

Optional Attributes
None.

Content
An XSLT template.

Appears in
<xsl:if> appears inside a template.

Defined in
[1.0] XSLT section 9.1, “Conditional Processing with xsl:if.”

[2.0] XSLT section 8.1, “Conditional Processing with xsl:if.”

Example
We’ll illustrate the <xsl:if> element with the following stylesheet:

<?xml version="1.0"?>
<!-- if.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
</xsl:text>

<xsl:if> | 439

 <xsl:text>Here are the odd-numbered items from the list:</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="list/listitem">
 <xsl:if test="(position() mod 2) = 1">
 <xsl:number format="1. "/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:if>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

This stylesheet uses the <xsl:if> element to see whether a given <listitem>’s position is an
odd number. If it is, we write it to the result tree. We’ll test our stylesheet with this XML
document:

<?xml version="1.0"?>
<!-- albums.xml -->
<list>
 <title>A few of my favorite albums</title>
 <listitem>A Love Supreme</listitem>
 <listitem>Beat Crazy</listitem>
 <listitem>You Could Have it So Much Better</listitem>
 <listitem>Kind of Blue</listitem>
 <listitem>London Calling</listitem>
 <listitem>Remain in Light</listitem>
 <listitem>The Joshua Tree</listitem>
 <listitem>The Indestructible Beat of Soweto</listitem>
</list>

When we run this transformation, here are the results:

Here are the odd-numbered items from the list:
1. A Love Supreme
3. You Could Have it So Much Better
5. London Calling
7. The Joshua Tree

<xsl:import>
Allows you to import the templates found in another XSLT stylesheet. Unlike
<xsl:include>, all templates imported with <xsl:import> have a lower priority than those in
the including stylesheet. Another difference between <xsl:include> and <xsl:import> is that
<xsl:include> can appear anywhere in a stylesheet, whereas <xsl:import> can appear only at
the beginning.

Category
Top-level element.

440 | Appendix A: XSLT Reference

Required Attribute

href
Defines the URI of the imported stylesheet.

Optional Attributes
None.

Content
None. <xsl:import> is an empty element.

Appears in
<xsl:import> is a top-level element and can appear only as a child of <xsl:stylesheet>.

Defined in
[1.0] XSLT section 2.6.2, “Stylesheet Import.”

[2.0] XSLT section 3.10.3, “Stylesheet Import.”

Example
Here is a simple stylesheet that we’ll import:

<?xml version="1.0"?>
<!-- listitem.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
</xsl:text>
 <xsl:apply-templates select="list/title"/>
 <xsl:apply-templates select="list/listitem"/>
 </xsl:template>

 <xsl:template match="title">
 <xsl:value-of select="."/>
 <xsl:text>: </xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:text>
</xsl:text>
 </xsl:template>

 <xsl:template match="listitem">
 <xsl:text>HERE IS LISTITEM NUMBER </xsl:text>
 <xsl:value-of select="position()"/>
 <xsl:text>: </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

<xsl:import> | 441

To illustrate how <xsl:import> works, we’ll test this stylesheet with this document:

<?xml version="1.0"?>
<!-- albums.xml -->
<list>
 <title>A few of my favorite albums</title>
 <listitem>A Love Supreme</listitem>
 <listitem>Beat Crazy</listitem>
 <listitem>You Could Have it So Much Better</listitem>
 <listitem>Kind of Blue</listitem>
 <listitem>London Calling</listitem>
 <listitem>Remain in Light</listitem>
 <listitem>The Joshua Tree</listitem>
 <listitem>The Indestructible Beat of Soweto</listitem>
</list>

When we process our XML source document with this stylesheet, here are the results:

A few of my favorite albums:

HERE IS LISTITEM NUMBER 1: A Love Supreme
HERE IS LISTITEM NUMBER 2: Beat Crazy
HERE IS LISTITEM NUMBER 3: You Could Have it So Much Better
HERE IS LISTITEM NUMBER 4: Kind of Blue
HERE IS LISTITEM NUMBER 5: London Calling
HERE IS LISTITEM NUMBER 6: Remain in Light
HERE IS LISTITEM NUMBER 7: The Joshua Tree
HERE IS LISTITEM NUMBER 8: The Indestructible Beat of Soweto

Now we’ll use <xsl:import> to import our first stylesheet into a second one:

<?xml version="1.0"?>
<!-- import.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:import href="listitem.xsl"/>

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
</xsl:text>
 <xsl:apply-templates select="list/title"/>
 <xsl:apply-templates select="list/listitem"/>
 </xsl:template>

 <xsl:template match="listitem">
 <xsl:value-of select="position()"/>
 <xsl:text>. </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Here are the results created by our second stylesheet:

442 | Appendix A: XSLT Reference

A few of my favorite albums:

1. A Love Supreme
2. Beat Crazy
3. You Could Have it So Much Better
4. Kind of Blue
5. London Calling
6. Remain in Light
7. The Joshua Tree
8. The Indestructible Beat of Soweto

Notice that both stylesheets had a template with match="listitem". The template in the im-
ported stylesheet has a lower priority, so it is not used. Only the imported stylesheet has a
template with match="title", so the imported template is used for the <title> element.

See Also
The descriptions of the <xsl:include>, <xsl:apply-imports>, and [2.0] <xsl:next-match>
elements.

[2.0 – Schema] <xsl:import-schema>
Allows you to import an XML Schema. The schema is imported and processed before any
input documents are processed. This allows you to define datatypes and validation rules
before the XSLT processor begins to transform the input document. This element is only sup-
ported by schema-aware XSLT 2.0 processors.

Category
Top-level element.

Required Attributes
None.

Optional Attributes

namespace
The namespace used by the imported schema. Any templates or XPath functions
can use this namespace to indicate that an element or value is defined by that
schema.

schema-location
A URI reference to the schema document. If a stylesheet imports and uses a schema,
it is a fatal error if the schema can’t be found. An XSLT processor is allowed to
ignore the error if you import a schema but never use it.

The <xsl:import-schema> element can include the <xs:schema> element itself. It is
a fatal error if an <xsl:import-schema> element contains a <xs:schema> and has a
schema-location attribute.

[2.0 – Schema] <xsl:import-schema> | 443

Content
None of the elements from the XSLT namespace can appear inside <xsl:import-schema>. If
<xsl:import-schema> has any contents, it will likely be an <xs:schema> element that in turn
defines datatypes and elements. Again, it is an error for an <xsl:import-schema> element to
contain content and have a schema-location attribute.

Appears in
<xsl:import-schema> is a top-level element and can only appear as a child of
<xsl:stylesheet>.

Defined in
[2.0] XSLT section 3.14, “Importing Schema Components.”

Example
We’ll illustrate <xsl:import-schema> with the purchase order schema that we’ve used several
times throughout the book. Here’s a valid purchase order:

<?xml version="1.0"?>
<!-- good-po.xml -->
<purchase-order id="38292"
 xmlns="http://www.oreilly.com/xslt">
 <date year="2001" month="6" day="19"/>
 <customer id="4738" level="Platinum">
 <address type="business">
 <name>
 <title>Mr.</title>
 <first-name>Chester Hasbrouck</first-name>
 <last-name>Frisby</last-name>
 </name>
 <street>1234 Main Street</street>
 <city>Sheboygan</city>
 <state>WI</state>
 <zip>48392</zip>
 </address>
 </customer>
 <items>
 <item part-no="28392-33-TT">
 <partname>Turnip Twaddler</partname>
 <qty>3</qty>
 <price>9.95</price>
 </item>
 <item part-no="28100-38-CT">
 <partname>Clam Teaser</partname>
 <qty>7</qty>
 <price>39.95</price>
 </item>
 </items>
</purchase-order>

444 | Appendix A: XSLT Reference

Now we’ll use <xsl:import-schema> to read the schema file and the XML document, and then
see whether the XML document is an instance of the <po:purchase-order> element defined in
the schema:

<?xml version="1.0"?>
<!-- import-schema.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:po="http://www.oreilly.com/xslt">

 <xsl:import-schema namespace="http://www.oreilly.com/xslt"
 schema-location="po.xsd” />

 <xsl:output method="text"/>

 <xsl:template match="schema-element(po:purchase-order)">
 <xsl:text>
This is a test of the <xsl:import-</xsl:text>
 <xsl:text>schema> element.

</xsl:text>
 <xsl:text>Here are all the items in this purchase </xsl:text>
 <xsl:text>order:
</xsl:text>
 <xsl:for-each select="po:items/po:item">
 <xsl:text> * </xsl:text>
 <xsl:value-of select="po:partname"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Notice that in addition to importing the schema, we use the schema-element node test in the
match attribute. That means the template only matches validated <po:purchase-order>
elements. Here are the results:

This is a test of the <xsl:import-schema> element.

Here are all the items in this purchase order:
 * Turnip Twaddler
 * Clam Teaser

In the schema itself, the targetNamespace attribute and the default namespace (xmlns=) match
the namespace attribute of the <xsl:import-schema> element in the stylesheet. In order to refer
to the elements in the purchase order, we associate the prefix po with that namespace. When-
ever we want to refer to elements in the purchase order namespace, we use the prefix
(po:purchase-order, for example). If the namespace URIs don’t match, the stylesheet won’t
work.

Here’s an alternate version of the stylesheet, in which the <xsl:import-schema> element con-
tains the schema itself. It generates the same results as the previous version:

<?xml version="1.0"?>
<!-- import-schema2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:po="http://www.oreilly.com/xslt"

[2.0 – Schema] <xsl:import-schema> | 445

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:import-schema namespace="http://www.oreilly.com/xslt">
 <xs:schema
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="purchase-order">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="date"
 minOccurs="1" maxOccurs="1"/>
 <xs:element ref="customer”
 minOccurs="1" maxOccurs="1"/>
 <xs:element ref="items"
 minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string"/>
 </xs:complexType>
 </xs:element>

 ...

 </xs:schema>
 </xsl:import-schema>

 <xsl:output method="text"/>

 <xsl:template match="schema-element(po:purchase-order)">
 <xsl:text>
This is a test of the <xsl:import-</xsl:text>
 <xsl:text>schema> element.

</xsl:text>
 <xsl:text>Here are all the items in this purchase </xsl:text>
 <xsl:text>order:
</xsl:text>
 <xsl:for-each select="po:items/po:item">
 <xsl:text> * </xsl:text>
 <xsl:value-of select="po:partname"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

<xsl:include>
Allows you to include another XSLT stylesheet. This element allows you to put common
transformations in a separate stylesheet, then include the templates from that stylesheet at
any time. Unlike <xsl:import>, all templates included with <xsl:include> have the same pri-
ority as those in the including stylesheet. Another difference is that <xsl:include> can appear
anywhere in a stylesheet, whereas <xsl:import> must appear at the beginning.

Category
Top-level element.

446 | Appendix A: XSLT Reference

Required Attribute

href
The URI of the included stylesheet.

Optional Attributes
None.

Content
None. <xsl:include> is an empty element.

Appears in
<xsl:include> is a top-level element and can appear only as a child of <xsl:stylesheet>.

Defined in
[1.0] XSLT section 2.6.1, “Stylesheet Inclusion.”

[2.0] XSLT section 3.10.2, “Stylesheet Inclusion.”

Example
The <xsl:include> element is a good way to break your stylesheets into smaller pieces; those
smaller pieces are often easier to reuse. Here’s a short stylesheet that includes another:

<?xml version="1.0"?>
<!-- include.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:include href="include-stylesheet.xsl"/>

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:value-of select="/report/title"/>
 <xsl:text>

</xsl:text>
 <xsl:for-each select="report/brand">
 <xsl:text> </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text>: </xsl:text>
 <xsl:value-of select="format-number(units, '##,###')"/>
 <xsl:text> bars sold. </xsl:text>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 <xsl:text>
Total sales: </xsl:text>
 <xsl:value-of
 select="format-number(sum(/report/brand/units), '##,###')"/>
 <xsl:text> bars.

</xsl:text>
 <xsl:value-of select="$copyright"/>
 </xsl:template>

</xsl:stylesheet>

<xsl:include> | 447

And here is the stylesheet that it includes:

<?xml version="1.0"?>
<!-- included-stylesheet.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:variable name="copyright">
 <xsl:text>(C) Copyright 2007 DougCo Incorporated.</xsl:text>
 </xsl:variable>

</xsl:stylesheet>

The included stylesheet defines a variable, $copyright, that has some commonly used text.
We might have dozens of stylesheets that have a copyright notice; we can use this included
stylesheet to make sure all of our generated documents include this notice. When we need to
change the notice (on the first of January, example), we change it in one place. This technique
is also very useful for defining sets of CSS properties that can be replaced or swapped out with
very little effort.

Here are the results of our stylesheet:

Chocolate bar sales

 Lindt - 27,408 bars sold.
 Callebaut - 8,203 bars sold.
 Valrhona - 22,101 bars sold.
 Perugina - 14,336 bars sold.
 Ghirardelli - 19,268 bars sold.

Total sales: 91,316 bars.

(C) Copyright 2007 DougCo Incorporated.

The variable $copyright contains the text as defined in the included stylesheet.

<xsl:key>
Defines an index against the current document. The element is defined with three attributes:
a name, which names this index; a match, an XPath expression that describes the nodes to be
indexed; and a use attribute, an XPath expression that defines the property used to create the
index. Much like database indexes can improve the performance of a database application,
keys can improve the performance of a stylesheet.

Category
Top-level element.

Required Attributes

name
Defines a name for this key.

448 | Appendix A: XSLT Reference

match
Represents an XPath expression that defines the nodes to be indexed by this key.

use
Represents an XPath expression that defines the property of the indexed nodes that
will be used to retrieve nodes from the index.

[2.0] In XSLT 2.0, this attribute is optional. The <xsl:key> element can contain a
sequence constructor that creates or selects the nodes to be indexed.

Optional Attributes

[1.0] None
In XSLT 1.0, <xsl:key> doesn’t have any optional attributes.

[2.0] collation
The collation attribute defines the collation sequence used to determine whether
two key values are equal.

Content

[1.0] None
In XSLT 1.0, the <xsl:key> element is empty.

[2.0] A sequence constructor
In XSLT 2.0, the <xsl:key> element can contain any sequence constructor. It is an
error if a <xsl:key> element has both content and a use attribute.

Appears in
<xsl:key> is a top-level element and can only appear as a child of <xsl:stylesheet>.

Defined in
[1.0] XSLT section 12.2, “Keys.”

[2.0] XSLT section 16.3, “Keys.”

Example
For an example, we’ll use our simplified list of customers:

<?xml version="1.0"?>
<!-- simplified-names.xml -->
<addressbook>
 <address>
 <first-name>Chester Hasbrouck</first-name>
 <last-name>Frisby</last-name>
 <city>Sheboygan</city>
 <state>WI</state>
 </address>
 <address>
 <first-name>Mary</first-name>
 <last-name>Backstayge</last-name>
 <city>Skunk Haven</city>

<xsl:key> | 449

 <state>MA</state>
 </address>
 <address>
 <first-name>Natalie</first-name>
 <last-name>Attired</last-name>
 <city>Winter Harbor</city>
 <state>ME</state>
 </address>
 <address>
 <first-name>Harry</first-name>
 <last-name>Backstayge</last-name>
 <city>Skunk Haven</city>
 <state>MA</state>
 </address>
 <address>
 <first-name>Mary</first-name>
 <last-name>McGoon</last-name>
 <city>Boylston</city>
 <state>VA</state>
 </address>
 <address>
 <first-name>Amanda</first-name>
 <last-name>Reckonwith</last-name>
 <city>Lynn</city>
 <state>MA</state>
 </address>
</addressbook>

Here is a stylesheet that defines a <xsl:key> against our list of customers:

<?xml version="1.0"?>
<!-- key.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:param name="searchState"/>

 <xsl:key name="customersByState" match="address" use="state"/>

 <xsl:template match="/">
 <xsl:text>All customers in </xsl:text>
 <xsl:value-of select="$searchState"/>
 <xsl:text>

</xsl:text>
 <xsl:for-each select="key('customersByState', $searchState)">
 <xsl:value-of select="first-name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="last-name"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="city"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

450 | Appendix A: XSLT Reference

We define our key with a name of customersByState, we use the key to index all of the
<address> elements in our document, and we use the value of the <state> element as the index
property. Here’s how our stylesheet responds when we invoke the XSLT processor with the
input parameter state=MA:

All customers in MA

Mary Backstayge, Skunk Haven
Harry Backstayge, Skunk Haven
Amanda Reckonwith, Lynn

Asking for all the customers in Wisconsin (state=WI) uses our <xsl:key> to retrieve different
values:

All customers in WI

Chester Hasbrouck Frisby, Sheboygan

Finally, it’s not an error if the key doesn’t find any values. Here’s a list of all our customers
in Hawaii:

All customers in HI

[2.0] <xsl:matching-substring>
Defines what to do when a string matches a regular expression. The regular expression is
defined on the regex attribute of the <xsl:analyze-string> element that contains the
<xsl:matching-substring> element.

Category
Instruction (this is effectively part of the <xsl:analyze-string> element).

Required Attributes
None.

Optional Attributes
None.

Content
A sequence constructor.

Appears in
The <xsl:analyze-string> element.

Defined in
XSLT section 15, “Regular Expressions.”

[2.0] <xsl:matching-substring> | 451

Example
Here is an example of <xsl:analyze-string> that uses a regular expression to convert U.S.
and Canadian telephone numbers of the form 999-999-9999 to the form +1 (999) 999-9999:

<?xml version="1.0" encoding="utf-8"?>
<!-- analyze-string1.xsl -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:for-each select="phonelist/phonenumber">
 <xsl:analyze-string select="."
 regex="([0-9]{{3}})-([0-9]{{3}})-([0-9]{{4}})">
 <xsl:matching-substring>
 <xsl:text>
+1 (</xsl:text>
 <xsl:value-of select="regex-group(1)"/>
 <xsl:text>) </xsl:text>
 <xsl:value-of select="regex-group(2)"/>
 <xsl:text>-</xsl:text>
 <xsl:value-of select="regex-group(3)"/>
 </xsl:matching-substring>
 </xsl:analyze-string>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Our stylesheet uses the regular expression ([0-9]{{3}})-([0-9]{{3}})-([0-9]{{4}}), which
creates three regex-groups. (Each set of parentheses represents a regex-group.) When we use
this stylesheet with this list of phone numbers:

<?xml version="1.0" encoding="utf-8"?>
<!-- phonelist.xml -->
<phonelist>
 <phonenumber>919-555-1212</phonenumber>
 <phonenumber>(919) 555-1212</phonenumber>
 <phonenumber>212.555.1212</phonenumber>
 <phonenumber>617-555-1212</phonenumber>
 <phonenumber>+86 555-1212</phonenumber>
</phonelist>

we get these results:

+1 (919) 555-1212
+1 (617) 555-1212

Of the five phone numbers in our input document, only two matched the regular expression.
This example of <xsl:analyze-string> contains only an <xsl:matching-substring> element;
<xsl:analyze-string> can also contain an <xsl:non-matching-substring> element.

See Also
The [2.0] <xsl:analyze-string> and [2.0] <xsl:analyze-string> elements.

452 | Appendix A: XSLT Reference

<xsl:message>
Sends a message. How the message is sent can vary from one XSLT processor to the next, but
it’s typically written to the standard output device. This element is useful for debugging
stylesheets.

Category
Instruction.

Required Attributes
None.

Optional Attributes

terminate
If this attribute has the value yes, the XSLT processor stops execution after issuing
this message. The default value for this attribute is no; if the <xsl:message> doesn’t
terminate the processor, the message is sent and processing continues.

[2.0] In XSLT 2.0, the value of the terminate attribute can be an attribute value
template, allowing its value to be calculated at runtime.

[2.0] select
An XPath expression that defines the content of this message.

Content
An XSLT template.

Appears in
<xsl:message> appears inside a template.

Defined in
[1.0] XSLT section 13, “Messages.”

[2.0] XSLT section 17, “Messages.”

Example
Here’s a stylesheet that uses the <xsl:message> element to trace the transformation of an XML
document. We’ll use our list of recently purchased albums again:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>

<xsl:message> | 453

 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

We’ll list all of the purchased albums in an HTML table, with the background color of each
row cycling through various colors. Our stylesheet uses <xsl:message> elements to indicate
the background color of each row in the table:

<?xml version="1.0"?>
<!-- message.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>
 <xsl:value-of select="list/title"/>
 </title>
 </head>
 <body style="font-family: sans-serif; color: white;">
 <h1 style="color: black;">
 <xsl:value-of select="list/title"/>
 </h1>
 <table border="1" cellpadding="5"
 style="font-weight: bold;">
 <xsl:for-each select="list/listitem">
 <tr>
 <td>
 <xsl:attribute name="style">
 <xsl:choose>
 <xsl:when test="position() mod 4 = 0">
 <xsl:text>background: yellow; color: black;</xsl:text>
 <xsl:message terminate="no">
 <xsl:text>Background color is yellow</xsl:text>
 </xsl:message>
 </xsl:when>
 <xsl:when test="position() mod 4 = 1">
 <xsl:text>background: blue;</xsl:text>
 <xsl:message terminate="no">
 <xsl:text>Background color is blue</xsl:text>
 </xsl:message>
 </xsl:when>
 <xsl:when test="position() mod 4 = 2">
 <xsl:text>background: white; color: black;</xsl:text>
 <xsl:message terminate="no">
 <xsl:text>Background color is white</xsl:text>
 </xsl:message>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>background: black;</xsl:text>
 <xsl:message terminate="no">
 <xsl:text>Background color is black</xsl:text>
 </xsl:message>

454 | Appendix A: XSLT Reference

 </xsl:otherwise>
 </xsl:choose>
 </xsl:attribute>
 <xsl:value-of select="."/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

Note that the XSLT specification doesn’t define how the message is issued. When we use this
stylesheet with Saxon 8.8J, we get these results:

Background color is blue
Background color is white
Background color is black
Background color is yellow
Background color is blue
Background color is white
Background color is black

Running this stylesheet with Xalan gives us the same messages, along with information about
which line in the stylesheet generated those messages:

file:///c:/message.xsl; Line #34; Column #51; Background color is blue
file:///c:/message.xsl; Line #40; Column #51; Background color is white
file:///c:/message.xsl; Line #46; Column #51; Background color is black
file:///c:/message.xsl; Line #28; Column #51; Background color is yellow
file:///c:/message.xsl; Line #34; Column #51; Background color is blue
file:///c:/message.xsl; Line #40; Column #51; Background color is white
file:///c:/message.xsl; Line #46; Column #51; Background color is black

[2.0] <xsl:namespace>
Allows you to create a namespace node in the result tree.

Category
Instruction.

Required Attribute

name
The namespace prefix.

Optional Attribute

select
An XPath expression that defines the value of the namespace itself. If you don’t
use the select attribute, the <xsl:namespace> element must contain content.

[2.0] <xsl:namespace> | 455

Content
The <xsl:namespace> element must have content or a select attribute; it is an error if it has
both or neither. It is also an error if the <xsl:namespace> element evaluates to a zero-length
string.

Appears in
<xsl:namespace> appears inside a template.

Defined in
[2.0] XSLT section 11.7, “Creating Namespace Nodes.”

Example
Courtesy of the XSLT 2.0 spec, here is a stylesheet with a literal result element that contains
an <xsl:namespace> element:

<?xml version="1.0"?>
<!-- namespace.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">
 <data xsi:type="xs:integer"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <xsl:namespace name="xs"
 select="'http://www.w3.org/2001/XMLSchema'"/>
 <xsl:text>42</xsl:text>
 </data>
 </xsl:template>

</xsl:stylesheet>

Notice that the value of the select attribute is in single quotes inside double quotes; without
the single quotes, this would select any <http://www.w3.org/2001/XMLSchema> elements, caus-
ing an error.

The results of this stylesheet look like this:

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xsi:type="xs:integer">42</data>

We could have written the stylesheet without the select attribute, putting the value of the
namespace inside the <xsl:namespace> element:

<?xml version="1.0"?>
<!-- namespace2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

456 | Appendix A: XSLT Reference

 <xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">
 <data xsi:type="xs:integer"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <xsl:namespace name="xs">
 <xsl:text>http://www.w3.org/2001/XMLSchema</xsl:text>
 </xsl:namespace>
 <xsl:text>42</xsl:text>
 </data>
 </xsl:template>

</xsl:stylesheet>

Finally, we could generate the same results with a stylesheet that doesn’t use
<xsl:namespace> at all:

<?xml version="1.0"?>
<!-- namespace3.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">
 <data xsi:type="xs:integer"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xsl:text>42</xsl:text>
 </data>
 </xsl:template>

</xsl:stylesheet>

The only time you’re likely to use <xsl:namespace> is when you’re creating a new element with
<xsl:element> and you want to define a namespace on the new element, particularly if that
namespace is used in content. (If that namespace is used in the names of elements or attributes,
it would be copied to the result element automatically.)

<xsl:namespace-alias>
Allows you to define an alias for a namespace when using the namespace directly would
complicate processing. This seldom-used element is the simplest way to write a stylesheet
that generates another stylesheet.

Category
Top-level element.

<xsl:namespace-alias> | 457

Required Attributes

result-prefix
Defines the prefix for the namespace referred to by the alias. This prefix must be
declared in the stylesheet, regardless of whether any elements in the stylesheet use
it.

stylesheet-prefix
Defines the prefix used in the stylesheet to refer to the namespace.

[2.0] In XSLT 2.0, you can use the value #default for either the result-prefix or stylesheet-
prefix attributes. As you would expect, it is an error if there is no default namespace. (A
default namespace is defined with xmlns=.)

Optional Attributes
None.

Content
None. <xsl:namespace-alias> is an empty element.

Appears in
<xsl:namespace-alias> is a top-level element and can appear only as a child of <xsl:style
sheet>.

Defined in
[1.0] XSLT section 7.1.1, “Literal Result Elements.”

[2.0] XSLT section 11.1.4, “Namespace Aliasing.”

Example
As we mentioned before, this element is normally used to create an XSLT stylesheet that
generates another stylesheet. Use <xsl:namespace-alias> when you want the output to con-
tain an element or attribute that would normally be handled by the XSLT processor.

Our sample here creates a stylesheet that generates another stylesheet that copies any input
document to the output. Here’s our original stylesheet that uses <xsl:namespace-alias>:

<?xml version="1.0"?>
<!-- namespace-alias.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xslout="[anything but the XSL namespace]">

 <xsl:output method="xml" indent="yes"/>

 <xsl:namespace-alias stylesheet-prefix="xslout"
 result-prefix="xsl"/>

 <xsl:template match="/">
 <xslout:stylesheet version="1.0">

458 | Appendix A: XSLT Reference

 <xslout:output method="xml"/>
 <xslout:template match="/">
 <xslout:copy-of select="."/>
 </xslout:template>
 </xslout:stylesheet>
 </xsl:template>

</xsl:stylesheet>

When we run this stylesheet with any XML document at all, we get a new stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:output method="xml"/>
 <xsl:template match="/">
 <xsl:copy-of select="."/>
 </xsl:template>
</xsl:stylesheet>

In our original stylesheet, we use <xsl:namespace-alias> to make sure the XSLT processor
doesn’t treat the XSLT elements we want to copy to the output stylesheet as instructions.
Notice that when we define the namespace we’ll be using as the alias, that namespace can-
not be the same as the XSLT namespace. If it is, the XSLT processor will process our
<xslout: elements as XSLT elements, defeating the purpose of using <xsl:namespace-alias>.

In the generated stylesheet, notice that the namespace value is the namespace associated with
the result-prefix defined in the <xsl:namespace-alias> element. Be aware that the actual
prefix in the generated stylesheet might not be xsl as it is here. Saxon generates a prefix of
xsl, while Xalan uses the prefix xslout that we used in our original stylesheet. Regardless of
the prefix, the generated stylesheet works the same.

[2.0] To illustrate using the default namespace with <xsl:namespace-alias>, we’ll look at two
stylesheets, one of which uses result-prefix="#default" and one of which uses stylesheet-
prefix="#default". Here is the first stylesheet:

<?xml version="1.0"?>
<!-- namespace-alias-2.xsl -->
<stylesheet version="1.0"
 xmlns="http://www.w3.org/1999/XSL/Transform"
 xmlns:xslout="[anything but the XSL namespace]">

 <output method="xml" indent="yes"/>

 <namespace-alias stylesheet-prefix="xslout"
 result-prefix="#default"/>

 <template match="/">
 <xslout:stylesheet version="1.0">
 <xslout:output method="xml"/>
 <xslout:template match="/">
 <xslout:copy-of select="."/>
 </xslout:template>
 </xslout:stylesheet>
 </template>

<xsl:namespace-alias> | 459

</stylesheet>

The output from this stylesheet looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<stylesheet xmlns="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <output method="xml"/>
 <template match="/">
 <copy-of select="."/>
 </template>
</stylesheet>

The original stylesheet and the generated stylesheet work because all of the XSLT elements
are in the default namespace, http://www.w3.org/1999/XSL/Transform.

Here is the second stylesheet:

<?xml version="1.0"?>
<!-- namespace-alias-3.xsl -->
<xsl:stylesheet version="1.0"
 xmlns="[anything but the XSL namespace]"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" indent="yes"/>

 <xsl:namespace-alias stylesheet-prefix="#default"
 result-prefix="xsl"/>

 <xsl:template match="/">
 <stylesheet version="1.0">
 <output method="xml"/>
 <template match="/">
 <copy-of select="."/>
 </template>
 </stylesheet>
 </xsl:template>

</xsl:stylesheet>

The output from this stylesheet looks more typical:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:output method="xml"/>
 <xsl:template match="/">
 <xsl:copy-of select="."/>
 </xsl:template>
</xsl:stylesheet>

[2.0] <xsl:next-match>
Tells the XSLT processor to select a template that is the next lowest in priority than the current
template. This works similarly to <xsl:apply-imports>, although <xsl:next-match> works
with all templates, including those in the main stylesheet and in any stylesheets included or

460 | Appendix A: XSLT Reference

imported. Using <xsl:next-match> allows you to set up templates that work like overridden
methods in object-oriented languages; using <xsl:next-match> is conceptually the same as
calling super() in a Java program.

Category
Instruction.

Required Attributes
None.

Optional Attributes
None.

Content
Any number of <xsl:with-param> and <xsl:fallback> elements.

Appears in
<xsl:next-match> appears inside a template.

Defined in
[2.0] XSLT section 6.7, “Overriding Template Rules.”

Example
For our example, we’ll create some templates to process this HTML document:

<!-- element-discussion.html -->
<html>
 <head>
 <title>Interesting new XSLT elements</title>
 </head>
 <body>
 <h1>Interesting new XSLT elements</h1>
 <p>XSLT 2.0 has lots of interesting new elements.
 We'll mention a couple of them here. </p>
 <h1>The <code><xsl:next-match></code> element</h1>
 <p>One of the most interesting new elements in XSLT 2.0
 is <code><xsl:next-match></code>. </p>
 <h1>The <code><xsl:perform-sort></code> element</h1>
 <p>Don't forget about <code><xsl:perform-sort></code>,
 though. It's very interesting as well.</p>
 </body>
</html>

Our example document has HTML <code> elements. Some of them are inside <h1> elements,
others are inside <p> elements. To illustrate how <xsl:next-match> works, we’ll create two
different templates to process the <code> elements. The basic template puts the text of the
element into a monospaced font; the overriding template changes the color of the <code>
element if it occurs inside an <h1> element. Here’s the stylesheet:

[2.0] <xsl:next-match> | 461

<?xml version="1.0"?>
<!-- next-match.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="html">
 <html>
 <head>
 <title>
 <xsl:value-of select="head/title"/>
 </title>
 </head>
 <body style="font-family: sans-serif;">
 <xsl:apply-templates select="body/*"/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="h1/code">

 <xsl:next-match/>

 </xsl:template>

 <xsl:template match="code">

 <xsl:apply-templates select="*|text()"/>

 </xsl:template>

 <xsl:template match="h1">
 <h1>
 <xsl:apply-templates select="*|text()"/>
 </h1>
 </xsl:template>

 <xsl:template match="p">
 <p>
 <xsl:apply-templates select="*|text()"/>
 </p>
 </xsl:template>

</xsl:stylesheet>

The key to using <xsl:next-match> is that the templates involved have different priorities. In
our example here, the different priorities are set by the default XSLT precedence rules. A more
specific rule always has precedence over a less specific one, so the highest priority rule for a
<code> element inside an <h1> element is the match="h1/code" template. Using <xsl:next-
match> inside that template invokes the next template in priority order—the template with
match="code".

The way our stylesheet is written, the default behavior of processing a <code> element is to
create a element that uses a monospaced font. The more specific (and therefore higher

462 | Appendix A: XSLT Reference

priority) template creates a element that sets the font color to red. If we want to use a
different font for all <code> elements, we would only have to change the match="code" template
that sets the font-family property. Here are the results of our stylesheet:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Interesting new XSLT elements</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Interesting new XSLT elements</h1>
 <p>XSLT 2.0 has lots of interesting new elements.
 We'll mention a couple of them here.
 </p>
 <h1>The

 <xsl:next-match>
 element
 </h1>
 <p>One of the most interesting new elements in XSLT 2.0
 is
 <xsl:next-match>.
 </p>
 <h1>The

 <xsl:perform-sort>
 element
 </h1>
 <p>Don't forget about
 <xsl:perform-sort>,
 though. It's very interesting as well.
 </p>
 </body>
</html>

The output looks like Figure A-11.

[2.0] <xsl:non-matching-substring>
Defines what to do when a string doesn’t match a regular expression. The regular expression
is defined on the regex attribute of the <xsl:analyze-string> element that contains the
<xsl:non-matching-substring> element.

Category
Instruction (this is effectively part of the <xsl:analyze-string> element).

Required Attributes
None.

[2.0] <xsl:non-matching-substring> | 463

Optional Attributes
None.

Content
A sequence constructor.

Appears in
The <xsl:analyze-string> element.

Defined in
XSLT section 15, “Regular Expressions.”

Example
Here is an example of <xsl:analyze-string> that uses a regular expression to convert U.S.
and Canadian telephone numbers of the form 999-999-9999 to the form +1 (999) 999-9999:

<?xml version="1.0" encoding="utf-8"?>
<!-- non-matching-substring.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:for-each select="phonelist/phonenumber">
 <xsl:analyze-string select="."

Figure A-11. HTML generated with <xsl:next-match>

464 | Appendix A: XSLT Reference

 regex="([0-9]{{3}})-([0-9]{{3}})-([0-9]{{4}})">
 <xsl:non-matching-substring>
 <xsl:text>
 Unrecognized phone number: </xsl:text>
 <xsl:value-of select="."/>
 </xsl:non-matching-substring>
 </xsl:analyze-string>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Our stylesheet uses the regular expression ([0-9]{{3}})-([0-9]{{3}})-([0-9]{{4}}). When
we use this stylesheet with this list of phone numbers:

<?xml version="1.0" encoding="utf-8"?>
<!-- phonelist.xml -->
<phonelist>
 <phonenumber>919-555-1212</phonenumber>
 <phonenumber>(919) 555-1212</phonenumber>
 <phonenumber>212.555.1212</phonenumber>
 <phonenumber>617-555-1212</phonenumber>
 <phonenumber>+86 555-1212</phonenumber>
</phonelist>

we get these results:

 Unrecognized phone number: (919) 555-1212
 Unrecognized phone number: 212.555.1212
 Unrecognized phone number: +86 555-1212

This example of <xsl:analyze-string> contains only an <xsl:non-matching-substring> ele-
ment; <xsl:analyze-string> can also contain an <xsl:matching-substring> element.

See Also
The [2.0] <xsl:analyze-string> element and the [2.0] <xsl:matching-substring> element.

<xsl:number>
Displays a number. It is most often used to number parts of a document, although it can also
be used to format a numeric value.

Category
Instruction.

Required Attributes
None.

<xsl:number> | 465

Optional Attributes

count
The count attribute is an XPath pattern that defines what should be counted. If the
count attribute isn’t specified, it counts nodes with the same name as the current
node.

level
This attribute defines what levels of the source tree should be considered when
numbering elements. The three valid values for this attribute are single,
multiple, and any:

single
Counts items at one level only. The XSLT processor goes to the first node in
the ancestor-or-self axis that matches the count attribute, and then counts
that node plus all its preceding siblings that also match the count attribute.
This is the default value.

multiple
Counts items at multiple levels. The XSLT processor looks at all the ancestors
of the current node and at the current node itself, and then it selects all nodes
that match the count attribute.

any
Includes all of the current node’s ancestors (as level="multiple" does) as well
as all elements in the preceding axis.

In all of these cases, if the from attribute is used, the only ancestors that are exam-
ined are descendants of the nearest ancestor that matches the from attribute. In
other words, with from="h1", the only nodes considered for counting are those that
appear under the nearest <h1> attribute.

from
The from attribute is an XPath pattern that defines where counting starts. For ex-
ample, from="h1" means that counting should begin at the previous <h1> element.

value
An expression that is converted to a number. Using this attribute is a quick way to
format a number; the element <xsl:number value="7" format="i:"/> returns the
string "vii:".

If the value attribute is specified, none of the count, level, from, or select attributes
may be used.

format
The format attribute defines the format of the generated number:

format="1"
Formats a sequence of numbers as 1 2 3 4 5 6 7 8 9 10 11

466 | Appendix A: XSLT Reference

format="01"
Formats a sequence of numbers as 01 02 03 04 ... 09 10 11 ... 99 100
101

format="a"
Formats a sequence of numbers as a b c d e f ... x y z aa ab ac

format="A"
Formats a sequence of numbers as A B C D E F ... X Y Z AA AB AC

format="i"
Formats a sequence of numbers as i ii iii iv v vi vii viii ix x

format="I"
Formats a sequence of numbers as I II III IV V VI VII VIII IX X

[2.0] format="w"
Formats a sequence of numbers as words. When used with ordinal="yes" and
lang="en", it formats a sequence of numbers as first second third
fourth If ordinal="yes" is not specified, it formats a sequence of numbers
as one two three four If a given format, ordinal, and lang combination
is not supported, the XSLT processor is required to format the numbers as 1
2 3 4 5 ... as a last resort.

[2.0] format="Ww"
Formats a sequence of numbers as words. When used with ordinal="yes" and
lang="en", it formats a sequence of numbers as First Second Third
Fourth If ordinal="yes" is not specified, it formats a sequence of numbers
as One Two Three Four If a given format, ordinal, and lang combination
is not supported, the XSLT processor is required to format the numbers as 1
2 3 4 5 ... as a last resort.

format="anything else"
How this works depends on the XSLT processor you’re using. The XSLT spec-
ification lists several other numbering schemes (format="�E51;" for Thai
numbering, for example); check your XSLT processor’s documentation to see
which formats it supports. If the XSLT processor doesn’t support the num-
bering scheme you requested, the XSLT spec requires that it use format="1" as
the default.

[2.0] lang
The lang attribute defines the language whose alphabet should be used. Different
XSLT processors support different language values, so check the documentation
of your favorite XSLT processor for more information.

letter-value
This attribute has the value alphabetic or traditional. There are a number of
languages in which two letter-based numbering schemes are used; one assigns nu-
meric values in alphabetic sequence, while the other uses a tradition native to that

<xsl:number> | 467

language. (Roman numerals—a letter-based numbering scheme that doesn’t use
an alphabetic order—are one example.) The default for this attribute is alphabetic.

grouping-separator
This attribute is the character that should be used between groups of digits in a
generated number. The default is the comma (,).

grouping-size
This attribute defines the number of digits that appear in each group; the default
is 3.

[2.0] ordinal
Defines that ordinal numbers should be used; valid values are yes and no. The
ordinal, format, and lang attributes work together. For example, ordinal="yes",
format="1", and lang="en" produces the sequence 1st 2nd 3rd 4th. With
format="w" the sequence is first second third fourth. format="Ww" produces First
Second Third Fourth. If the combination of ordinal, format, and lang is not sup-
ported, the XSLT processor is required to generate cardinal numbers (1 2 3 4)
instead. See the documentation for your XSLT processor to find out which lan-
guage and format combinations it supports for the ordinal attribute.

[2.0] select
Selects a node to be numbered. This allows you to select a node other than the
context node.

Content
None. <xsl:number> is an empty element.

Appears in
<xsl:number> appears inside a template.

Defined in
[1.0] XSLT section 7.7, “Numbering.”

[2.0] XSLT section 12, “Numbering.”

Example
To fully illustrate how <xsl:number> works, we’ll need an XML document with many things
to count. Here’s the document we’ll use:

<?xml version="1.0"?>
<!-- items-to-number.xml -->
<book>
 <chapter><title>Alfa Romeo</title>
 <sect1><title>Bentley</title></sect1>
 <sect1><title>Chevrolet</title>
 <sect2><title>Dodge</title>
 <sect3><title>Eagle</title></sect3>
 </sect2>
 </sect1>

468 | Appendix A: XSLT Reference

 </chapter>
 <chapter><title>Ford</title>
 <sect1><title>GMC</title>
 <sect2><title>Honda</title>
 <sect3><title>Isuzu</title></sect3>
 <sect3><title>Javelin</title></sect3>
 <sect3><title>K-Car</title></sect3>
 <sect3><title>Lincoln</title></sect3>
 </sect2>
 <sect2><title>Mercedes</title></sect2>
 <sect2><title>Nash</title>
 <sect3><title>Opel</title></sect3>
 <sect3><title>Pontiac</title></sect3>
 </sect2>
 <sect2><title>Quantum</title>
 <sect3><title>Rambler</title></sect3>
 <sect3><title>Studebaker</title></sect3>
 </sect2>
 </sect1>
 <sect1><title>Toyota</title></sect1>
 </chapter>
</book>

We’ll use <xsl:number> in several different ways to illustrate the various options we have in
numbering things. We’ll look at several short stylesheets and their results. Here’s the first one:

<?xml version="1.0"?>
<!-- number1.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="book">
 <xsl:for-each select="chapter|.//sect1|.//sect2|.//sect3">
 <xsl:number level="multiple" count="chapter|sect1|sect2|sect3"
 format="1.1.1.1. "/>
 <xsl:value-of select="title"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Here are our results:

1. Alfa Romeo
1.1. Bentley
1.2. Chevrolet
1.2.1. Dodge
1.2.1.1. Eagle
2. Ford
2.1. GMC
2.1.1. Honda
2.1.1.1. Isuzu
2.1.1.2. Javelin
2.1.1.3. K-Car

<xsl:number> | 469

2.1.1.4. Lincoln
2.1.2. Mercedes
2.1.3. Nash
2.1.3.1. Opel
2.1.3.2. Pontiac
2.1.4. Quantum
2.1.4.1. Rambler
2.1.4.2. Studebaker
2.2. Toyota

Here we use level="multiple" to count the <chapter>, <sect1>, <sect2>, and <sect3> elements.
Numbering these at multiple levels gives us a dotted decimal number for each element. We
can look at the number next to Studebaker and know that it is the second <sect3> element
inside the fourth <sect2> element inside the first <sect1> element inside the second
<chapter> element.

In the stylesheet, we use <xsl:for-each> to select the items we want to list, and we use
<xsl:number> to number them. As we’ll see in a minute, we don’t have to select all the items
in the <xsl:for-each> for them to be numbered correctly. If we wrote an XPath expression
that selected just the <sect3> element with <title>Studebaker</title>, the output would be
2.1.4.2 Studebaker, just as it is earlier.

Our next stylesheet uses level="any" to count all of the <chapter>, <sect1>, <sect2>, and
<sect3> elements in order. The stylesheet looks like this:

<?xml version="1.0"?>
<!-- number2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="book">
 <xsl:for-each select="chapter|.//sect1|.//sect2|.//sect3">
 <xsl:number level="any" count="chapter|sect1|sect2|sect3"
 format="1. "/>
 <xsl:value-of select="title"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

The results are straightforward:

1. Alfa Romeo
2. Bentley
3. Chevrolet
4. Dodge
5. Eagle
6. Ford
7. GMC
8. Honda
9. Isuzu
10. Javelin
11. K-Car

470 | Appendix A: XSLT Reference

12. Lincoln
13. Mercedes
14. Nash
15. Opel
16. Pontiac
17. Quantum
18. Rambler
19. Studebaker
20. Toyota

Stylesheet number3.xsl uses level="single" to count the elements at each level. This means
that the fourth <sect3> element inside a given <sect2> element will be numbered with a 4 (or
iv or D or whatever the appropriate value would be). Notice that the number used for each
element is the same as the last number beside each element in Test 1.

<?xml version="1.0"?>
<!-- number3.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="book">
 <xsl:for-each select="chapter|.//sect1|.//sect2|.//sect3">
 <xsl:number level="single" count="chapter|sect1|sect2|sect3"
 format="1.1.1.1. "/>
 <xsl:value-of select="title"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

These results are less useful, but here they are:

1. Alfa Romeo
1. Bentley
2. Chevrolet
1. Dodge
1. Eagle
2. Ford
1. GMC
1. Honda
1. Isuzu
2. Javelin
3. K-Car
4. Lincoln
2. Mercedes
3. Nash
1. Opel
2. Pontiac
4. Quantum
1. Rambler
2. Studebaker
2. Toyota

<xsl:number> | 471

Stylesheet number4.xsl does a couple of things differently: first, it uses the uppercase-alpha
and lowercase-roman numbering styles. Second, it counts elements at multiple levels (for the
<chapter>, <sect1>, and <sect2> elements), but we process only the <sect2> elements. Even
though we output only the title text for the <sect2> elements, we can still generate the ap-
propriate multilevel numbers:

<?xml version="1.0"?>
<!-- number4.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="book">
 <xsl:for-each select=".//sect2">
 <xsl:number level="multiple" count="chapter|sect1|sect2"
 format="I-A-i: "/>
 <xsl:value-of select="title"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Because we’re numbering only the <sect2> elements, our output is much shorter:

I-B-i: Dodge
II-A-i: Honda
II-A-ii: Mercedes
II-A-iii: Nash
II-A-iv: Quantum

As we mentioned before, the elements we selected with the <xsl:for-each> element are num-
bered correctly, even though we don’t reference the elements around them.

number5.xsl generates numbers similarly to number4.xsl, except that it uses the from attribute.
We generate numbers for <sect3> elements in four stages. First, we count the <chapter> an-
cestors, starting at the first <book> ancestor; then we count the <sect1> ancestors, starting at
the first <chapter> ancestor, etc.:

<?xml version="1.0"?>
<!-- number5.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="book">
 <xsl:for-each select=".//sect3">
 <xsl:number level="any" from="book" count="chapter" format="1."/>
 <xsl:number level="any" from="chapter" count="sect1" format="1."/>
 <xsl:number level="any" from="sect1" count="sect2" format="1."/>
 <xsl:number level="any" from="sect2" count="sect3" format="1. "/>
 <xsl:value-of select="title"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>

472 | Appendix A: XSLT Reference

 </xsl:template>

</xsl:stylesheet>

Our results are similar to those for number4.xsl:

1.2.1.1. Eagle
2.1.1.1. Isuzu
2.1.1.2. Javelin
2.1.1.3. K-Car
2.1.1.4. Lincoln
2.1.3.1. Opel
2.1.3.2. Pontiac
2.1.4.1. Rambler
2.1.4.2. Studebaker

For stylesheet number6.xsl we start counting at 1000. We use the grouping-separator attribute
here as well:

<?xml version="1.0"?>
<!-- number6.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="book">
 <xsl:for-each select="chapter|.//sect1|.//sect2|.//sect3">
 <xsl:variable name="value1">
 <xsl:number level="any" count="chapter|sect1|sect2|sect3"/>
 </xsl:variable>
 <xsl:number value="$value1 + 999"
 grouping-separator="," grouping-size="3"/>
 <xsl:text>. </xsl:text>
 <xsl:value-of select="title"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

To start counting at 1000, we use a variable to store the number generated by <xsl:number>.
Next we use <xsl:number> again to output that value plus 999. The output looks like this:

1,000. Alfa Romeo
1,001. Bentley
1,002. Chevrolet
1,003. Dodge
1,004. Eagle
1,005. Ford
1,006. GMC
1,007. Honda
1,008. Isuzu
1,009. Javelin
1,010. K-Car
1,011. Lincoln
1,012. Mercedes

<xsl:number> | 473

1,013. Nash
1,014. Opel
1,015. Pontiac
1,016. Quantum
1,017. Rambler
1,018. Studebaker
1,019. Toyota

In stylesheet number7.xsl, we number items from the first and second <sect1> elements
(<sect1> elements whose position() is less than 3) in the second <chapter> element:

<?xml version="1.0"?>
<!-- number7.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="book">
 <xsl:for-each select="chapter[2]/sect1[position() < 3]">
 <xsl:for-each select="chapter|.//sect1|.//sect2|.//sect3">
 <xsl:number level="multiple" count="chapter|sect1|sect2|sect3"
 format="1.1.1.1. "/>
 <xsl:value-of select="title"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

The results look like this:

2.1.1. Honda
2.1.1.1. Isuzu
2.1.1.2. Javelin
2.1.1.3. K-Car
2.1.1.4. Lincoln
2.1.2. Mercedes
2.1.3. Nash
2.1.3.1. Opel
2.1.3.2. Pontiac
2.1.4. Quantum
2.1.4.1. Rambler
2.1.4.2. Studebaker

This style of numbering is useful for a partial table of contents.

[2.0] Now we’ll look at some of the new features added in XSLT 2.0. To keep the output
short, we’ll only count the <sect2> elements as we did in stylesheet number4.xsl. First, we’ll
use the ordinal attribute:

<?xml version="1.0"?>
<!-- number8.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

474 | Appendix A: XSLT Reference

 <xsl:output method="text"/>

 <xsl:template match="book">
 <xsl:for-each select=".//sect2">
 <xsl:number level="any" count="chapter|sect1|sect2|sect3"
 format="Ww - " ordinal="yes"/>
 <xsl:value-of select="title"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

The wordy output looks like this:

Fourth - Dodge
Eighth - Honda
Thirteenth - Mercedes
Fourteenth - Nash
Seventeenth - Quantum

Now we’ll use the combination of format and lang:

<?xml version="1.0"?>
<!-- number9.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="book">
 <xsl:for-each select=".//sect2">
 <xsl:number level="any" count="chapter|sect1|sect2|sect3"
 format="w - " lang="de"/>
 <xsl:value-of select="title"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Using this stylesheet with Saxon, our cardinal numbers appear in German:

vier - Dodge
acht - Honda
dreizehn - Mercedes
vierzehn - Nash
siebzehn - Quantum

If we request a combination of format, ordinal, and lang that the XSLT processor doesn’t
support, the processor reverts to its default behavior. We’ll use number10.xsl to see what
Saxon does when we ask for cardinal numbers in Polish:

<?xml version="1.0"?>
<!-- number10.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:number> | 475

 <xsl:output method="text"/>

 <xsl:template match="book">
 <xsl:for-each select=".//sect2">
 <xsl:number level="any" count="chapter|sect1|sect2|sect3"
 format="w - " lang="pl"/>
 <xsl:value-of select="title"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Saxon doesn’t support Polish, so we get our numbers in English:

four - Dodge
eight - Honda
thirteen - Mercedes
fourteen - Nash
seventeen - Quantum

For our last example, we’ll use format="๑" (Thai numbering) and ordinal="yes":

<?xml version="1.0"?>
<!-- number11.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="book">
 <html>
 <head>
 <title>Thai numbering</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Thai numbering</h1>
 <p style="font-size: 150%">
 <xsl:for-each select=".//sect2">
 <xsl:number level="any" count="sect2"
 format="๑ "/>
 <xsl:value-of select="title"/>

 </xsl:for-each>
 </p>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates an HTML document that counts all of the <sect2> elements and
uses Thai numbering:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

476 | Appendix A: XSLT Reference

 <title>Thai numbering</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Thai numbering</h1>
 <p style="font-size: 150%">๑ Dodge

 ๒ Honda
๓ Mercedes

 ๔ Nash
๕ Quantum
</p>
 </body>
</html>

When formatted in a browser, the document appears as in Figure A-12.

<xsl:otherwise>
Defines the else or default case in an <xsl:choose> element. This element always appears
inside an <xsl:choose> element, and it must always appear last.

Category
Subinstruction (<xsl:otherwise> always appears as part of an <xsl:choose> element).

Required Attributes
None.

Optional Attributes
None.

Content
A template.

Figure A-12. A list with Thai numbering

<xsl:otherwise> | 477

Appears in
The <xsl:choose> element.

Defined in
[1.0] XSLT section 9.2, “Conditional Processing with xsl:choose.”

[2.0] XSLT section 8.2, “Conditional Processing with xsl:choose.”

Example
Here’s an example that uses <xsl:choose> to select the background and foreground colors for
the rows of an HTML table. We cycle among four different values, using <xsl:otherwise> to
determine the default value of the style attribute in the generated HTML document. Here’s
the XML document we’ll use:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en_GB">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

And here’s our stylesheet:

<?xml version="1.0"?>
<!-- otherwise.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>
 <xsl:value-of select="list/title"/>
 </title>
 </head>
 <body style="font-family: sans-serif; color: white;">
 <h1 style="color: black;">
 <xsl:value-of select="list/title"/>
 </h1>
 <table border="1" cellpadding="5"
 style="font-weight: bold;">
 <xsl:for-each select="list/listitem">
 <tr>
 <td>
 <xsl:attribute name="style">
 <xsl:choose>

478 | Appendix A: XSLT Reference

 <xsl:when test="position() mod 4 = 0">
 <xsl:text>background: yellow; color: black;</xsl:text>
 </xsl:when>
 <xsl:when test="position() mod 4 = 1">
 <xsl:text>background: blue;</xsl:text>
 </xsl:when>
 <xsl:when test="position() mod 4 = 2">
 <xsl:text>background: white; color: black;</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>background: black;</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:attribute>
 <xsl:value-of select="."/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

Here’s the generated HTML document, which cycles through the various background and
foreground colors:

<html>
 <head>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Albums I've bought recently:</title>
 </head>
 <body style="font-family: sans-serif; color: white;">
 <h1 style="color: black;">Albums I've bought recently:</h1>
 <table border="1" cellpadding="5" style="font-weight: bold;">
 <tr>
 <td style="background: blue;">The Sacred Art of Dub</td>
 </tr>
 <tr>
 <td style="background: white; color: black;">Only the Poor Man Feel It</td>
 </tr>
 <tr>
 <td style="background: black;">Excitable Boy</td>
 </tr>
 <tr>
 <td style="background: yellow; color: black;">Aki Special</td>
 </tr>
 ...
 </table>
 </body>
</html>

When rendered, our HTML document looks like Figure A-13.

<xsl:otherwise> | 479

Notice that every fourth row has a style of "background:black;". That value is generated by
the <xsl:otherwise> element.

<xsl:output>
Defines the characteristics of an output document.

Category
Top-level element.

Required Attributes
None.

Optional Attributes

method
Typically has one of four values: xml, html, xhtml, or text. This value indicates the
type of document that is generated. An XSLT processor can add other values to
this list; how those values affect the generated document is determined by the XSLT
processor. The default value is xml unless the root element of the output document
is <html>.

[1.0] In XSLT 1.0, there are only three output methods defined in the standard:
xml, html, and text. [2.0] In XSLT 2.0, xhtml has been added as an output method
that must be supported by an XSLT processor. Individual processors are still free
to add other values as well. To simplify our discussion here, we’ll discuss xhtml as

Figure A-13. Using <xsl:when> and <xsl:otherwise> to cycle among background colors

480 | Appendix A: XSLT Reference

one of the standard output types without constantly reminding you that it’s not
available in XSLT 1.0.

version
Defines the version of the XML, HTML, or XHTML output document. This at-
tribute is ignored with method="text".

The version attribute of the <xsl:output> element works differ-
ently from the version attribute that is legal on every XSLT element
in XSLT 2.0. See “[2.0] Attributes common to all XSLT elements”
earlier in this appendix for more details.

encoding
Defines the value of the encoding specified in the XML declaration in the output
document. This attribute is ignored with method="text".

omit-xml-declaration
Defines whether the XML declaration is omitted in the output document. Allow-
able values are yes and no; the default is no. This attribute is used only with
method="xml" and method="xhtml".

standalone
Defines the value of the standalone attribute of the XML declaration in the output
document. Valid values are yes and no. This attribute is used only with
method="xml" and method="xhtml".

[2.0] In XSLT 2.0, the value omit is also allowed. Coding standalone="omit" means
the output document will not have a value for standalone.

doctype-public
Defines the value of the PUBLIC attribute of the DOCTYPE declaration in the output
document. This attribute defines the public identifier of the output document’s
DTD. This attribute is ignored with method="text".

doctype-system
Defines the value of the SYSTEM attribute of the DOCTYPE declaration in the output
document. It defines the system identifier of the output document’s DTD. This
attribute is ignored with method="text".

cdata-section-elements
Lists the elements whose content should be written as CDATA sections in the output
document. All restrictions and escaping conventions of CDATA sections are handled
by the XSLT processor. If you need to list more than one element, separate the
element names with one or more whitespace characters. This attribute is used only
with method="xml" and method="xhtml".

indent
Specifies whether the tags in the output document should be indented. Allowable
values are yes and no. This attribute is used only with method="xml",

<xsl:output> | 481

method="html", or method="xhtml", and the XSLT processor is not required to honor
it. The default value is yes for method="html" and method="xhtml", and no for
method="xml".

media-type
Defines the MIME type of the output document. The default value is text/xml for
method="xml", text/html for method="html" and method="xhtml", and text/plain for
method="text".

[2.0] name
Names this output specification. The new [2.0] <xsl:result-document> element
can use its format attribute to refer to this name. If your stylesheet uses <xsl:result-
document> to create multiple output documents, you can define an output specifi-
cation with the name attribute and use it wherever you need it.

[2.0] byte-order-mark
Defines whether or not a byte-order mark is written to the output. Valid values are
yes and no. The default is yes if the encoding is UTF-16, but the default for UTF-8
varies from one XSLT processor to the next. The default is no for every other
encoding.

[2.0] escape-uri-attributes
Defines whether HTML and XHTML attributes with URI values should have spe-
cial characters replaced with their hex equivalents. For example, if a URI contains
spaces, the escaped value of the URI replaces each spaces with %20.

[2.0] include-content-type
Defines whether the content type should be written to the output document. Valid
values are yes and no; the default is yes. As an example, if include-content-type is
used for method="html", the element <meta http-equiv="Content-Type"
content="text/html; charset=UTF-8"> is added to the <head> element of the HTML
document.

[2.0] normalization-form
Defines how Unicode characters should be normalized. Valid values are NFC, NFD,
NFKC, NFKD, fully-normalized, and none. XSLT processors are free to support other
values as well; see your processor’s documentation to find out whether it supports
any other normalization forms.

[2.0] undeclare-prefixes
Defines whether the output document should include namespace undeclarations
(an undeclaration associates a namespace prefix with an empty string, as in
xmlns:doug=""). Valid values are yes and no, and this attribute has meaning only
with method="xml" and when the version attribute is 1.1 or higher. See section 20
of the XSLT 2.0 specification for the complete details on this obscure attribute.

[2.0] use-character-maps
Defines a space-separated list of named character maps (created with the [2.0]
<xsl:character-map> that should be used when creating the output document).

482 | Appendix A: XSLT Reference

Content
None. <xsl:output> is an empty element.

Appears in
<xsl:output> is a top-level element and can only appear as a child of <xsl:stylesheet>.

Defined in
[1.0] XSLT section 16, “Output.”

[2.0] XSLT section 20, “Serialization.”

Example
To illustrate the four output methods defined in the XSLT specification, we’ll create four
stylesheets, each of which uses one of the four methods. We’ll use the following XML docu-
ment in all four examples:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

We’ll now look at our stylesheets and the results produced by each. First, let’s look at the
method="xml" stylesheet:

<?xml version="1.0"?>
<!-- output1.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" indent="yes" encoding="ISO-8859-1"/>

 <xsl:template match="/">
 <catalog>
 <xsl:for-each select="/list/listitem">
 <album>
 <xsl:apply-templates/>
 </album>
 </xsl:for-each>
 </catalog>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates the following results:

<xsl:output> | 483

<?xml version="1.0" encoding="ISO-8859-1"?>
<catalog>
 <album>The Sacred Art of Dub</album>
 <album>Only the Poor Man Feel It</album>
 <album>Excitable Boy</album>
 <album>Aki Special</album>
 <album>Combat Rock</album>
 <album>Talking Timbuktu</album>
 <album>The Birth of the Cool</album>
</catalog>

The output document has the encoding we specified in our stylesheet, and the output docu-
ment has been indented. (Specifying indent="no" generates an XML document that’s unread-
able, although well-formed.)

Now let’s look at the HTML version:

<?xml version="1.0"?>
<!-- output2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" encoding="ISO-8859-1"/>

 <xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="/list/title"/></title>
 </head>
 <body>
 <h1><xsl:value-of select="/list/title"/></h1>
 <p>
 <xsl:for-each select="/list/listitem">
 <xsl:number format="1. "/>
 <xsl:value-of select="."/>

 </xsl:for-each>
 </p>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

Here is the HTML document generated by this stylesheet:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
 <title>Albums I've bought recently:</title>
 </head>
 <body>
 <h1>Albums I've bought recently:</h1>
 <p>1. The Sacred Art of Dub
2. Only the Poor Man
Feel It
3. Excitable Boy
4. Aki Special
5.
Combat Rock
6. Talking Timbuktu
7. The Birth of the

484 | Appendix A: XSLT Reference

Cool
</p>
 </body>
</html>

(We added line breaks to make the listing legible.) Notice that the XSLT processor has auto-
matically inserted a <META> element in the <head> of our HTML document. The
 elements
are old-fashioned
 tags. Even though this style of XSLT output results in a document that
is not well-formed XML (or XHTML), the document works with existing HTML browsers.

To generate valid XHTML, we’ll use method="xhtml":

<?xml version="1.0"?>
<!-- output3.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output
 method="xhtml"
 encoding="ISO-8859-3"
 doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
 doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"/>

 <xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="/list/title"/></title>
 </head>
 <body>
 <h1><xsl:value-of select="/list/title"/></h1>
 <p>
 <xsl:for-each select="/list/listitem">
 <xsl:number format="1. "/>
 <xsl:value-of select="."/>

 </xsl:for-each>
 </p>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

Our results look like this:

<?xml version="1.0" encoding="ISO-8859-3"?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org
/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
 <head>
 <title>Albums I've bought recently:</title>
 </head>
 <body>
 <h1>Albums I've bought recently:</h1>
 <p>1. The Sacred Art of Dub

</br>2. Only the Poor Man Feel It

<xsl:output> | 485

</br>3. Excitable Boy

</br>4. Aki Special

</br>5. Combat Rock

</br>6. Talking Timbuktu

</br>7. The Birth of the Cool

</br>
 </p>
 </body>
</html>

(We added a line break in the DOCTYPE declaration; originally it appeared on a single long line.)
Our
 elements are well-formed XML now.

Our final stylesheet uses method="text":

<?xml version="1.0"?>
<!-- output4.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"
 encoding="ISO-8859-3"
 indent="yes"
 omit-xml-declaration="no"
 standalone="yes"
 doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
 doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"/>

 <xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="/list/title"/></title>
 </head>
 <body>
 <h1><xsl:value-of select="/list/title"/></h1>
 <p>
 <xsl:for-each select="/list/listitem">
 <xsl:number format="1. "/>
 <xsl:value-of select="."/>

 </xsl:for-each>
 </p>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

Here are the results, such as they are, from this stylesheet:

Albums I've bought recently:Albums I've bought recently:1. The Sacred
Art of Dub2. Only the Poor Man Feel It3. Excitable Boy4. Aki Special5.
Combat Rock6. Talking Timbuktu7. The Birth of the Cool

(As before, we inserted line breaks so the document would fit on the page.) These results are
basically worthless. Why weren’t our carefully coded HTML elements and all the information
we put on the <xsl:output> element written to the text document? The reason is that the

486 | Appendix A: XSLT Reference

method="text" outputs only text nodes to the result tree, and it ignores most of the attributes
of <xsl:output>. Even though we requested that various HTML elements be generated along
the way, they’re ignored because we specified method="text".

[2.0] <xsl:output-character>
Defines a symbol and a string that should replace it. This is similar to an XML <!ENTITY>
declaration.

Category
Declaration (this is effectively part of the <xsl:character-map> element).

Required Attributes

character
The character to be replaced.

string
The string that replaces the character.

Optional Attributes
None.

Content
None. <xsl:output-character> is an empty element.

Appears in
The <xsl:character-map> element.

Defined in
XSLT section 20, “Serialization.”

Example
We’ll repeat a small section of our example from the description of the <xsl:character-
map> element. Here is a stylesheet that replaces two circled number characters (Unicode code
points ૜ and ૝) with graphics:

<?xml version="1.0" encoding="utf-8"?>
<!-- character-map2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" use-character-maps="circles"/>

 <xsl:character-map name="circles">
 <xsl:output-character character="➀"
 string="<img src='images/circle1.gif'

[2.0] <xsl:output-character> | 487

 width='28' height='28'/>"/>
 <xsl:output-character character="➁"
 string="<img src='images/circle2.gif'
 width='28' height='28'/>"/>
 </xsl:character-map>

 <xsl:template match="char-test">
 <html>
 <head>
 <title>A test of some special characters</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>A test of some special characters</h1>
 <xsl:apply-templates select="*"/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="special-char">
 <p style="font-size: 200%;">
 <xsl:text>Here's a special character: </xsl:text>
 <xsl:value-of select="."/>
 </p>
 </xsl:template>

</xsl:stylesheet>

We’ll transform this tabbed code listing:

<?xml version="1.0" encoding="utf-8"?>
<!-- special-characters2.xml -->
<char-test>
 <special-char>➀</special-char>
 <special-char>➁</special-char>
</char-test>

Our result document has replaced the circled numbers with graphics:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>A test of some special characters</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>A test of some special characters</h1>
 <p style="font-size: 200%;">Here's a special character:
 </p>
 <p style="font-size: 200%;">Here's a special character:
 </p>
 </body>
</html>

This is a useful way of replacing characters that aren’t displayable on every browser. Our
HTML document appears as in Figure A-14.

488 | Appendix A: XSLT Reference

<xsl:param>
Defines the name and value of a parameter to be used in a stylesheet. This element can appear
as a top-level element or inside the <xsl:template> element. If the <xsl:param> appears as a
top-level element, it is a global parameter, visible to all areas of the stylesheet. The default
value of the parameter can be defined in one of two ways: specified in the select attribute or
defined inside the <xsl:param> element itself. [2.0] In XSLT 2.0, <xsl:param> can also appear
inside the new <xsl:function> element.

Category
Instruction.

Required Attribute

name
Defines the name of this parameter.

Optional Attributes

select
Contains an XPath expression that defines the value of this parameter.

[2.0 – Schema] as
Defines the datatype of this parameter. The datatype can be any of the built-in
types or, if you have a schema-aware XSLT processor, a datatype defined in an
XML Schema. For example, as="xs:integer" specifies a parameter that is a single
integer, and as="xs:string*" specifies a parameter that is a sequence of zero or
more strings. With a schema-aware XSLT processor, as="schema-
element(po:purchase-order)" means that the parameter must be a valid
po:purchase-order.

Figure A-14. HTML document generated with character maps

<xsl:param> | 489

[2.0] required
Defines whether this parameter is required. Valid values are yes and no. If this is a
parameter for an <xsl:function>, this attribute must not be defined. For stylesheet
and template parameters, the default value is that the parameter is optional
(required="no").

It is a static error if an <xsl:param> element has a required attribute and a default
value. Required parameters cannot have a select attribute, and they must be
empty.

It is also a static error to use the required attribute on a parameter defined in an
<xsl:function> element.

[2.0] tunnel
Defines whether this is a tunnel parameter. Valid values are yes and no, with no
being the default. (For an in-depth discussion of tunnel parameters, see “Tunnel
parameters” in Chapter 5.)

Content
If the select attribute is used, <xsl:param> must be empty. Otherwise, it contains an XSLT
template.

[2.0] In XSLT 2.0, this rule is enforced much more strictly. It is a static error if a nonempty
<xsl:param> element has a select attribute.

Appears in
<xsl:stylesheet> and <xsl:template>. If an <xsl:param> appears as a child of <xsl:style
sheet>, then it is a global parameter visible throughout the stylesheet. XSLT doesn’t define
the way global parameters are passed to the XSLT processor, so check the documentation for
your processor to see how this is done. (See “Global Parameters” in Chapter 5 for an overview
of how to pass parameters to the most popular XSLT processors.)

[2.0] In XSLT 2.0, <xsl:param> can also appear in the new <xsl:function> element.

Defined in
[1.0] XSLT section 11, “Variables and Parameters.”

[2.0] XSLT section 9, “Variables and Parameters.”

Example
This stylesheet that defines several <xsl:param> elements, both global and local. Notice that
one of the parameters is a node-set; parameters can be of any XPath or XSLT datatype. Here’s
the stylesheet:

<?xml version="1.0"?>
<!-- param.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

490 | Appendix A: XSLT Reference

 <xsl:param name="favoriteNumber" select="23"/>
 <xsl:param name="favoriteColor"/>

 <xsl:template match="/">
 <xsl:text>
</xsl:text>
 <xsl:value-of select="list/title"/>
 <xsl:text>
</xsl:text>
 <xsl:variable name="listitems" select="list/listitem"/>
 <xsl:call-template name="processListItems">
 <xsl:with-param name="items" select="$listitems"/>
 <xsl:with-param name="color" select="'yellow'"/>
 <xsl:with-param name="number" select="$favoriteNumber"/>
 </xsl:call-template>
 </xsl:template>

 <xsl:template name="processListItems">
 <xsl:param name="items"/>
 <xsl:param name="color" select="'blue'"/>

 <xsl:for-each select="$items">
 <xsl:value-of select="position()"/>
 <xsl:text>. </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>

 <xsl:text>
</xsl:text>

 <xsl:text>Your favorite color is </xsl:text>
 <xsl:value-of select="$favoriteColor"/>
 <xsl:text>.</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:text>The color passed to this template is </xsl:text>
 <xsl:value-of select="$color"/>
 <xsl:text>.</xsl:text>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

We’ll use this stylesheet to transform the following document:

<?xml version="1.0"?>
<!-- albums.xml -->
<list>
 <title>A few of my favorite albums</title>
 <listitem>A Love Supreme</listitem>
 <listitem>Beat Crazy</listitem>
 <listitem>You Could Have it So Much Better</listitem>
 <listitem>Kind of Blue</listitem>
 <listitem>London Calling</listitem>
 <listitem>Remain in Light</listitem>
 <listitem>The Joshua Tree</listitem>

<xsl:param> | 491

 <listitem>The Indestructible Beat of Soweto</listitem>
</list>

Here are the results:

A few of my favorite albums
1. A Love Supreme
2. Beat Crazy
3. You Could Have it So Much Better
4. Kind of Blue
5. London Calling
6. Remain in Light
7. The Joshua Tree
8. The Indestructible Beat of Soweto

Your favorite color is purple.
The color passed to this template is yellow.

Notice that when we call the template processListItems, we passed in three parameters, only
two of which are defined inside the template. In XSLT 1.0, the undefined parameters are
simply ignored; in XSLT 2.0, this is a fatal error. If we change the stylesheet to <xsl:stylesheet
version="2.0" ..., the stylesheet won’t run at all. Also notice that the parameter $items is a
node-set, so we can use the parameter in an <xsl:for-each> element.

To generate the previous results, we passed the value purple to the XSLT processor. If you’re
using Saxon, the command line looks like this:

java net.sf.saxon.Transform albums.xml param.xsl favoriteColor=purple

With Xalan-J, the value is passed like this:

java org.apache.xalan.xslt.Process -in albums.xml -xsl param.xsl
 -param favoriteColor purple

(The command should be entered on a single line.) See “Global Parameters” in Chapter 5 for
a more complete discussion of global parameters and how they can be set for various XSLT
processors.

As a further example, here’s an XSLT 2.0 stylesheet that uses required parameters, including
a required global parameter that must be specified when the stylesheet is invoked:

<?xml version="1.0"?>
<!-- param2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:param name="favoriteNumber"
 required="yes" as="xs:integer"/>

 <xsl:template match="/">
 <xsl:text>
</xsl:text>
 <xsl:value-of select="list/title"/>
 <xsl:text>
</xsl:text>
 <xsl:variable name="listitems" select="list/listitem"/>

492 | Appendix A: XSLT Reference

 <xsl:call-template name="processListItems">
 <xsl:with-param name="items" select="$listitems"/>
 </xsl:call-template>
 </xsl:template>

 <xsl:template name="processListItems">
 <xsl:param name="items" required="yes"/>

 <xsl:for-each select="$items">
 <xsl:value-of select="position()"/>
 <xsl:text>. </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>

 <xsl:text>
</xsl:text>

 <xsl:text>Your favorite number is </xsl:text>
 <xsl:value-of select="$favoriteNumber"/>
 <xsl:text>.</xsl:text>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

This generates results similar to our earlier stylesheet, but the required parameter is enforced.
We’ll look at four invocations of this stylesheet with Saxon. For the first, we won’t supply the
required parameter at all:

C:\>java net.sf.saxon.Transform albums.xml param2.xsl
Error
 XTDE0050: No value supplied for required parameter favoriteNumber
Transformation failed: Run-time errors were reported

Next we’ll specify a value for the required parameter, but that value isn’t an integer:

C:\>java net.sf.saxon.Transform albums.xml param2.xsl favoriteNumber=yellow
Validation error
 FORG0001: Cannot convert string "yellow" to an integer
Transformation failed: Run-time errors were reported

Now we’ll supply a valid number, but we mistype the variable name. Variables in XSLT are
case-sensitive, so favoritenumber and favoriteNumber are two different variables.

C:\>java net.sf.saxon.Transform albums.xml param2.xsl favoritenumber=23
Error
 XTDE0050: No value supplied for required parameter favoriteNumber
Transformation failed: Run-time errors were reported

Finally, we provide the required parameter with a valid value, and everything works:

C:\>java net.sf.saxon.Transform albums.xml param2.xsl favoriteNumber=23

Albums I've bought recently:
1. The Sacred Art of Dub
2. Only the Poor Man Feel It
3. Excitable Boy

<xsl:param> | 493

4. Aki Special
5. Combat Rock
6. Talking Timbuktu
7. The Birth of the Cool

Your favorite number is 23.

[2.0] <xsl:perform-sort>
Sorts a sequence. The sequence to be sorted can be defined with the select attribute, or it can
be constructed inside the <xsl:perform-sort> element itself.

Category
Instruction

Required Attributes
None.

Optional Attribute

select
An XPath expression that defines the items to be sorted. If the select attribute is
present, the <xsl:perform-sort> element can only contain <xsl:sort> and
<xsl:fallback> elements. In other words, with a select attribute, the
<xsl:perform-sort> element is not allowed to construct a sequence of items be-
cause the select attribute has already specified one.

Content
<xsl:perform-sort> contains one or more <xsl:sort> elements, along with any number of
<xsl:fallback> elements. If the select attribute is not defined, <xsl:perform-sort> can con-
tain a sequence constructor. If there is no select attribute and the <xsl:perform-sort> element
doesn’t create a sequence, the result is an empty sequence.

Appears in
Any XSLT element whose content model is a sequence constructor or any literal result
element.

Defined in
XSLT section 13.2, “Creating a Sorted Sequence.”

Example
We’ll start with an <xsl:perform-sort> element that uses a select attribute to produce a sorted
sequence. Here is our stylesheet:

<?xml version="1.0"?>
<!-- perform-sort4.xsl -->

494 | Appendix A: XSLT Reference

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:variable name="vendorsInOrder" as="xs:string*">
 <xsl:perform-sort select="/report/brand/name">
 <xsl:sort select="."/>
 </xsl:perform-sort>
 </xsl:variable>

 <xsl:template match="/">
 <xsl:text>We sell these brands of chocolate:

</xsl:text>
 <xsl:value-of select="$vendorsInOrder" separator="
"/>
 </xsl:template>

</xsl:stylesheet>

We’ll use this stylesheet to process our document of chocolate bar sales:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

Here are our results:

We sell these brands of chocolate:

Callebaut
Ghirardelli
Lindt
Perugina
Valrhona

[2.0] <xsl:perform-sort> | 495

The select attribute of our <xsl:perform-sort> element creates a sequence of all of the
<name> elements in our input document. The names of those elements are sorted and returned
as a sequence, which is then stored in the variable vendorsInOrder. Be aware that
<xsl:perform-sort> returns a sequence of zero or one or more items.

The <xsl:sort> elements can be arbitrarily complex. In this example, the sequence we’re
creating is still based on the brand names, but the sort order is determined by the sales of each
brand:

<?xml version="1.0"?>
<!-- perform-sort5.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:variable name="vendorsInOrder" as="xs:string*">
 <xsl:perform-sort select="/report/brand/name">
 <xsl:sort select="../units"
 data-type="number" order="descending"/>
 </xsl:perform-sort>
 </xsl:variable>

 <xsl:template match="/">
 <xsl:text>Here are our best-selling brands:

</xsl:text>
 <xsl:value-of select="$vendorsInOrder" separator="
"/>
 </xsl:template>

</xsl:stylesheet>

Now our results are different:

Here are our best-selling brands:

Lindt
Valrhona
Ghirardelli
Perugina
Callebaut

We’re still using the select attribute to define the items in our sequence, but we’re sorting
them with a more complicated key. For an example of an <xsl:perform-sort> element that
doesn’t use the select attribute, we’ll use <xsl:sequence> to select nodes instead:

<?xml version="1.0"?>
<!-- perform-sort6.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:variable name="vendorsInOrder" as="xs:string*">
 <xsl:perform-sort>
 <xsl:sort select="../units"

496 | Appendix A: XSLT Reference

 data-type="number" order="descending"/>
 <xsl:sequence select="/report/brand/name"/>
 </xsl:perform-sort>
 </xsl:variable>

 <xsl:template match="/">
 <xsl:text>Here are our best-selling brands:

</xsl:text>
 <xsl:value-of select="$vendorsInOrder" separator="
"/>
 </xsl:template>

</xsl:stylesheet>

This gives the same results as before, although the syntax looks strange. Within <xsl:perform-
sort>, one or more <xsl:sort> elements must appear first. Those elements define the sort key
for the sequence of items created inside the <xsl:perform-sort> element itself. We could
generate a more complicated sequence if we want:

<?xml version="1.0"?>
<!-- perform-sort7.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:variable name="vendorsInOrder" as="xs:string*">
 <xsl:perform-sort>
 <xsl:sort select="."
 data-type="number" order="descending"/>
 <xsl:sequence select="/report/brand/units"/>
 <xsl:sequence select="('3829', '28852', '18831')"/>
 </xsl:perform-sort>
 </xsl:variable>

 <xsl:template match="/">
 <xsl:text>Here are our sales figures:

</xsl:text>
 <xsl:value-of select="$vendorsInOrder" separator="
"/>
 </xsl:template>

</xsl:stylesheet>

We’ve added some bogus sales data to make our figures look better. The results here show
that we added extra values to the sequence before it was sorted:

Here are our sales figures:

28852
27408
22101
19268
18831
14336
8203
3829

[2.0] <xsl:perform-sort> | 497

These are sorted in reverse order because we used the attribute order="descending" on the
<xsl:sort> element.

<xsl:preserve-space>
Defines the source document elements for which whitespace should be preserved.

Category
Top-level element.

Required Attribute

elements
Contains a space-separated list of source document elements for which nonsigni-
ficant whitespace should be preserved. Nonsignificant whitespace typically means
text nodes that contain nothing but whitespace; whitespace that appears in and
around text is always preserved. The elements attribute can also contain the value
*, which means whitespace should be preserved in all elements not specified in a
<xsl:strip-space> element. (Although <xsl:preserve-space elements="*"/> is le-
gal, there’s no need to ever use this. XSLT preserves whitespace text nodes by
default.) It is also valid to specify elements="po:*" to specify all elements in the
po namespace.

[2.0] In XSLT 2.0, the elements attribute can use wildcards for the namespace
prefix. For example, the value elements="*:title" refers to all <title> elements,
regardless of their namespaces. As with XSLT 1.0, the value elements="dc:*" refers
to all elements in the dc namespace.

The XML spec defines the seldom used attribute xml:space. The
xml:space attribute can have the values preserve or default. If
xml:space="preserve" applies to a given element in the XML
source, all whitespace is preserved, regardless of any
<xsl:preserve-space> or <xsl:strip-space> elements.

Optional Attributes
None.

Content
None. <xsl:preserve-space> is an empty element.

Appears in
<xsl:preserve-space> is a top-level element and can only appear as a child of <xsl:style
sheet>.

498 | Appendix A: XSLT Reference

Defined in
[1.0] XSLT section 3.4, “Whitespace Stripping.”

[2.0] XSLT section 4.4, “Stripping Whitespace from a Source Tree.”

Example
We’ll illustrate how <preserve-space> works with the following stylesheet:

<?xml version="1.0"?>
<!-- preserve-space.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:strip-space elements="*"/>
 <xsl:preserve-space elements="listing"/>

 <xsl:template match="/">
 <xsl:text>
</xsl:text>
 <xsl:value-of select="/code-sample/title"/>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="/code-sample/listing">
 <xsl:value-of select="."/>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

We’ll use this stylesheet to process the following document:

<?xml version="1.0" encoding="utf-8"?>
<!-- whitespace.xml -->
<code-sample>
 <title>Conditional variable initialization:</title>
 <listing>
 <type>int</type><var> y</var><endstmt>;</endstmt>
 <type>int</type><var> x</var><endstmt>;</endstmt>

 <var>y</var> <op>=</op> <const>23</const><endstmt>;</endstmt>

 <block>
 <keyword>if</keyword> (<var>y</var> <comp>></comp> <const>10</const>)
 <var>x</var> <op>=</op> <const>5</const><endstmt>;</endstmt>
 <keyword>else </keyword>
 <keyword>if</keyword> (<var>y</var> <comp>></comp> <const>5</const>)
 <var>x</var> <op>=</op> <const>3</const><endstmt>;</endstmt>
 <keyword>else </keyword>
 <var>x</var> <op>=</op> <const>1</const><endstmt>;</endstmt>
 </block>
 </listing>
</code-sample>

When we process this document with our stylesheet, we get these results:

<xsl:preserve-space> | 499

Conditional variable initialization:

 int y;
 int x;

 y = 23;

 if (y>10)
 x=5;else if (y>5)
 x=3;else x=1;

The <xsl:strip-space> element strips the whitespace off all the elements in the document, so
we use <xsl:preserve-space> to preserve whitespace inside the <listing> element. Notice
that the whitespace inside the <block> element was stripped. The <xsl:preserve-space> ele-
ment is useful when you need to exclude an element from whitespace stripping; by default,
no whitespace is stripped from any nodes. Compare this example to the one for the <strip-
space> element.

<xsl:processing-instruction>
Creates a processing instruction in the output document.

Category
Instruction.

Required Attribute

name
Defines the name (also known as the target) of this processing instruction.

Optional Attribute

[2.0] select
Defines an expression that creates the data for the processing instruction. If the
select attribute is used, the <xsl:processing-instruction> must be empty.

Content
An XSLT template. The contents of the template become the data of the processing
instruction.

Appears in
<xsl:processing-instruction> appears inside a template.

Defined in
[1.0] XSLT section 7.3, “Creating Processing Instructions.”

[2.0] XSLT section 11.6, “Creating Processing Instructions.”

500 | Appendix A: XSLT Reference

Example
We’ll demonstrate a stylesheet that adds a processing instruction to an XML document. The
processing instruction will associate the stylesheet docbook.xsl with this XML document. Here
is our stylesheet:

<?xml version="1.0"?>
<!-- processing-instruction.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml"/>

 <xsl:template match="/">
 <xsl:processing-instruction name="xml-stylesheet">href="docbook/
html/docbook.xsl" type="text/xsl"</xsl:processing-instruction>
 <xsl:copy-of select="."/>
 </xsl:template>

</xsl:stylesheet>

(The <xsl:processing-instruction> element should all be on one line.) This stylesheet simply
uses the <xsl:copy-of> element to copy the input document to the result tree, adding a pro-
cessing instruction along the way. We’ll use our stylesheet with this XML document:

<?xml version="1.0"?>
<!-- greeting.xml -->
<greeting>
 Hello, World!
</greeting>

When we run this transformation, here are the results:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="docbook/html/docbook.xsl" type="text/xsl"?>
<greeting>
 Hello, World!
</greeting>

Note that the contents of a processing instruction are text. Even though the processing in-
struction we just generated looks like it contains two attributes, you can’t create the processing
instruction like this:

<?xml version="1.0"?>
<!-- processing-instruction-doesnt-work.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml"/>

 <xsl:template match="/">
 <xsl:processing-instruction name="xml-stylesheet">

 <!-- This doesn’t work! You can’t put <xsl:attribute>
 elements inside a <xsl:processing-instruction> element. -->

 <xsl:attribute name="href">
 <xsl:text>docbook/html/docbook.xsl</xsl:text>

<xsl:processing-instruction> | 501

 </xsl:attribute>
 <xsl:attribute name="type">
 <xsl:text>text/xsl</xsl:text>
 </xsl:attribute>
 </xsl:processing-instruction>
 <xsl:copy-of select="."/>
 </xsl:template>

</xsl:stylesheet>

If you try this, Xalan throws an exception. Saxon doesn’t throw an exception, but it doesn’t
generate a valid processing instruction, either.

[2.0] <xsl:result-document>
Creates a final result tree. Typically a result tree is written to a file, although an XSLT 2.0
processor is not required to be able to do so. The <xsl:result-document> instruction is useful
for generating multiple files from a single stylesheet. It also makes it possible to generate the
name of the output file at runtime.

Category
Instruction.

Required Attributes
None.

Optional Attributes

format
Refers to an output specification defined on a named <xsl:output> element. You
can define properties such as an output method or a character encoding, then reuse
those output specifications by referencing the name attribute of the appropriate
<xsl:output> element.

href
Defines the URI of this result document. Typically this is used to define a filename
for the result document, although an XSLT processor is free to use this URI any
way it chooses.

[2.0 – Schema] type
Defines the datatype of the document element. The datatype can be any of the
built-in datatypes, or it can be a datatype defined in a schema if you have a schema-
aware XSLT 2.0 processor.

The type and validation attributes are mutually exclusive.

[2.0 – Schema] validation
Defines how the new document element will be validated. The validation attribute
has four values: strict, lax, preserve, or strip.

502 | Appendix A: XSLT Reference

validation="strict" means that the XSLT processor looks in all the declared sche-
mas for an element declaration (<xs:element>) with the same name as the document
element. It is a fatal error if the processor can’t find a matching <xs:element>.
Assuming the processor finds the declaration of the element, it validates the new
document against the document element’s declaration.

validation="lax" works just like validation="strict", except that no error occurs
if the processor can’t find the declaration of the element in any of the in-scope
schemas. In that case, the type annotation of the document element is xs:untyped.

The value validation="preserve" means the created element will have a type an-
notation of xs:anyType, and the type annotations of any nodes the new document
element contains will be retained without changes. No schema validation is done.

Finally, validation="strip" means that the new document element will have a type
annotation of xs:anyType.

The validation and type attributes are mutually exclusive.

method
Defines the output method for this result tree. Valid values are xml, html, xhtml,
and text. XSLT processors are free to support other methods as well; check your
processors documentation to see whether it supports any other output methods.

byte-order-mark
Defines whether or not a byte-order mark is written to the output. Valid values are
yes and no. The default is yes if the encoding is UTF-16, but the default for UTF-8 can
vary from one XSLT processor to the next. The default is no for every other
encoding.

cdata-section-elements
Lists the elements that should be written as CDATA sections in the output document.
All restrictions and escaping conventions of CDATA sections are handled by the XSLT
processor. If you need to list more than one element, separate the element names
with one or more whitespace characters. This attribute is used only with
method="xml" and method="xhtml".

doctype-public
Defines the value of the PUBLIC attribute of the DOCTYPE declaration in the output
document. This attribute defines the public identifier of the output document’s
DTD. This attribute is ignored with method="text".

doctype-system
Defines the value of the SYSTEM attribute of the DOCTYPE declaration in the output
document. It defines the system identifier of the output document’s DTD. This
attribute is ignored with method="text".

encoding
Defines the value of the encoding attribute of the XML declaration in the output
document. This attribute is ignored with method="text".

[2.0] <xsl:result-document> | 503

escape-uri-attributes
Defines whether HTML and XHTML attributes with URI values should have spe-
cial characters replaced with their hex equivalents. For example, if a URI contains
spaces, the escaped value of the URI replaces each space with %20.

include-content-type
Defines whether the content type should be written to the output document. Valid
values are yes and no; the default is yes. As an example, if include-content-type is
used for method="html", the element <meta http-equiv="Content-Type"
content="text/html; charset=UTF-8"> is added to the <head> element of the HTML
document.

indent
Defines whether or not elements in the result tree should be indented. Valid values
are yes and no. This attribute is ignored for method="text".

media-type
Defines the MIME type of the output document. The default value is text/xml for
method="xml", text/html for method="html" and method="xhtml", and text/plain for
method="text".

normalization-form
Valid values are NFC, NFD, NFKC, NFKD, fully-normalized, and none. XSLT processors
are free to support other values as well; see your processor’s documentation to find
out whether it supports any other normalization forms.

omit-xml-declaration
Defines whether or not the result tree should include an XML declaration. Valid
values are yes and no; the default is no.

standalone
Defines whether or not the XML declaration should include standalone. Valid val-
ues are yes (the declaration includes standalone="yes"), no (the declaration in-
cludes standalone="no"), and ([2.0]) omit (the declaration does not contain
standalone at all).

undeclare-prefixes
Defines whether the output document should include namespace undeclarations
(an undeclaration associates a namespace prefix with an empty string, as in
xmlns:doug=""). Valid values are yes and no. See section 20 of the XSLT 2.0 speci-
fication for the complete details on this obscure attribute.

use-character-maps
Defines a space-separated list of named character maps that should be used when
creating the output document.

output-version
Overrides the version attribute on the <xsl:output> element.

504 | Appendix A: XSLT Reference

Content
A sequence constructor.

Appears in
An <xsl:template>.

Defined in
XSLT section 19.1, “Creating Final Result Trees.”

Example
We’ll illustrate the power of <xsl:result-document> with this small DocBook document:

<?xml version="1.0"?>
<!-- chapters.xml -->
<book>
 <title>XSLT Topics</title>
 <chapter>
 <title>XPath</title>
 <para>If this chapter had any text, it would appear here.</para>
 </chapter>
 <chapter>
 <title>Stylesheet Basics</title>
 <para>If this chapter had any text, it would appear here.</para>
 </chapter>
 <chapter>
 <title>Branching and Control Elements</title>
 <para>If this chapter had any text, it would appear here.</para>
 </chapter>
 <chapter>
 <title>Functions</title>
 <para>If this chapter had any text, it would appear here.</para>
 </chapter>
 <chapter>
 <title>Creating Links and Cross-References</title>
 <para>If this chapter had any text, it would appear here.</para>
 </chapter>
 <chapter>
 <title>Sorting and Grouping Elements</title>
 <para>If this chapter had any text, it would appear here.</para>
 </chapter>
 <chapter>
 <title>Combining XML Documents</title>
 <para>If this chapter had any text, it would appear here.</para>
 </chapter>
</book>

We’ll use a stylesheet to create several documents. First of all, we’ll create a single HTML file
that lists all of the titles of the chapters defined here. Each chapter title will be a link to a
separate HTML file created with <xsl:result-document>. We’ll use <xsl:result-document> to
create a separate HTML file from each <chapter> element. Here’s the stylesheet:

[2.0] <xsl:result-document> | 505

<?xml version="1.0" encoding="utf-8"?>
<!-- result-document.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" include-content-type="no"/>

 <xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="book/title"/></title>
 </head>
 <body>
 <h1><xsl:value-of select="book/title"/></h1>
 <p>Here are some interesting XSLT topics:</p>

 <xsl:for-each select="book/chapter">

 <xsl:value-of select="title"/>

 </xsl:for-each>

 <xsl:for-each select="book/chapter">
 <xsl:result-document method="html"
 include-content-type="no"
 href="{concat('chapter', position(), '.html')}">
 <html>
 <head>
 <title><xsl:value-of select="title"/></title>
 </head>
 <body>
 <h1><xsl:value-of select="title"/></h1>
 <xsl:apply-templates select="*[position() > 1]"/>
 </body>
 </html>
 </xsl:result-document>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="para">
 <p><xsl:apply-templates select="*|text()"/></p>
 </xsl:template>

</xsl:stylesheet>

Our stylesheet begins by creating the main HTML document. It uses <xsl:for-each
select="book/chapter"> to create a list item and link for each <chapter> in the original docu-
ment. It then uses another <xsl:for-each> element that uses <xsl:result-document> to create
a new document for each <chapter>.

506 | Appendix A: XSLT Reference

Notice that in the stylesheet we use the attribute value template {concat('chapter',
position(), '.html')} to create filenames and links. We could have required an identifying
attribute on each <chapter> element, but it’s simpler to use this naming convention to create
the files and links. The fourth <chapter> is in the file chapter4.html. The main HTML file looks
like this:

<html>
 <head>
 <title>XSLT Topics</title>
 </head>
 <body>
 <h1>XSLT Topics</h1>
 <p>Here are some interesting XSLT topics:</p>

 XPath
 Stylesheet Basics
 Branching and Control Elements
 Functions
 Creating Links and Cross-References
 Sorting and Grouping Elements
 Combining XML Documents

 </body>
</html>

Each individual HTML file looks something like this:

<html>
 <head>
 <title>XPath</title>
 </head>
 <body>
 <h1>XPath</h1>
 <p>If this chapter had any text, it would appear here.</p>
 </body>
</html>

In a browser, the main HTML file appears as in Figure A-15.

Clicking on one of the links takes us to one of the individual documents created by
<xsl:result-document>, as shown in Figure A-16.

The <xsl:result-document> element officially replaces a common extension element from
most XSLT 1.0 processors. Performing this task with an XSLT 1.0 processor required calls to
a processor-specific extension element that created multiple output files. See the example
“The document( ) Function and Sorting” in Chapter 9 for a complete discussion of the most
common XSLT 1.0 mechanisms.

[2.0] <xsl:result-document> | 507

[2.0] <xsl:sequence>
Creates a sequence of nodes and/or atomic values.

Category
Instruction.

Required Attribute

select
An XPath expression that determines the content of the sequence.

Optional Attributes
None.

Figure A-15. An HTML file that links to documents created by <xsl:result-document>

Figure A-16. One of the documents created by <xsl:result-document>

508 | Appendix A: XSLT Reference

Content
Zero or more <xsl:fallback> elements. The <xsl:fallback> element specifies processing that
should take place in the case of an element that the XSLT processor doesn’t support. They
are most commonly written for XSLT 1.0 processors operating in forwards-compatible mode.

Appears in
A template.

Defined in
XSLT section 11.10, “Constructing Sequences.”

Example
We’ll use a simple example here that creates a sequence inside an <xsl:variable>. Here’s the
stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!-- sequence.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="sales" as="xs:integer*">
 <xsl:for-each select="/report/brand/units">
 <xsl:if test=". > 10000">
 <xsl:sequence select="."/>
 </xsl:if>
 </xsl:for-each>
 </xsl:variable>

 <xsl:value-of select="/report/title"/>
 <xsl:text>

Sales figures: </xsl:text>
 <xsl:value-of select="$sales" separator=", "/>
 <xsl:text>

Sequence total: 	</xsl:text>
 <xsl:value-of select="format-number(sum($sales), '$#,###.00')"/>
 <xsl:text>
Sequence average:	</xsl:text>
 <xsl:value-of select="format-number(avg($sales), '$#,###.00')"/>
 </xsl:template>

</xsl:stylesheet>

Inside the <xsl:for-each> element, each <xsl:sequence> creates a one-node sequence. The
value of the variable is the sequence of xs:integers created from all the items (nodes and
atoms) generated by the <xsl:sequence> elements. (In other words, everything selected by a
<xsl:sequence> is cast to an xs:integer before it becomes part of the variable.) We’ll run this
stylesheet against our report of chocolate sales:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">

[2.0] <xsl:sequence> | 509

 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

Our stylesheet creates a sequence of all the <units> elements larger than 10000. It gives these
results:

Chocolate bar sales

Sales figures: 27408, 22101, 14336, 19268

Sequence total: $83,113.00
Sequence average: $20,778.25

Remember that a sequence can have any combination of nodes and atomic values. If we’d
like to make our sales figures look better, we could change the declaration of the variable to
add more items to the sequence:

<!-- sequence2.xsl -->
...
<xsl:variable name="sales" as="xs:integer*">
 <xsl:for-each select="/report/brand/units">
 <xsl:if test=". > 10000">
 <xsl:sequence select="."/>
 </xsl:if>
 </xsl:for-each>
 <xsl:sequence select="(80000, 75000, 65000)"/>
</xsl:variable>
...

Our calculations now include the extra numbers, so our sales figures look much better:

Chocolate bar sales

Sales figures: 27408, 22101, 14336, 19268, 80000, 75000, 65000

Sequence total: $303,113.00
Sequence average: $43,301.86

510 | Appendix A: XSLT Reference

Remember, the variable that contains the sequence is of type xs:integer*, so all of the selected
nodes and atomic values are cast to xs:integers before they become part of the variable.

<xsl:sort>
Defines a sort key for the current context. The first <xsl:sort> defines the primary sort key,
the second <xsl:sort> defines the secondary sort key, etc. You can have as many
<xsl:sort> elements as you need.

Category
Subinstruction.

Required Attributes
None.

Optional Attributes

select
Determines the nodes to be sorted. You can also omit the select attribute and use
the contents of the <xsl:sort> element to define the nodes to be sorted.

lang
A string that defines the language used by the sort. The language codes are defined
in RFC1766, available at http://www.ietf.org/rfc/rfc1766.txt. Not all processors
support all languages, so check your XSLT processor’s documentation.

data-type
An attribute that defines the type of the items to be sorted. Allowable values are
number and text; the default is text. An XSLT processor has the option of sup-
porting other values as well. Sorting the values 32 10 120 with data-type="text"
returns 10 120 32, while data-type="number" returns 10 32 120.

[2.0] In XSLT 2.0, you can specify a QName that represents some other datatype.
How (or if) that value is processed can vary from one XSLT processor to another.

order
An attribute that defines the order of the sort. Allowable values are ascending and
descending.

case-order
An attribute that defines the order in which upper- and lowercase letters are sorted.
Allowable values are upper-first and lower-first.

[2.0] collation
The collation order used by this sort. For example, in Spanish, the single letter ll
sorts after the two letters lz, so English collating rules don’t sort Spanish words
correctly.

<xsl:sort> | 511

http://www.ietf.org/rfc/rfc1766.txt

This value is a URI; how that URI is used to specify a particular language value
varies from one XSLT processor to the next. Keep in mind that if an XSLT 2.0
processor does not support the collation order you requested, the processor uses
its default collation.

[2.0] stable
Valid values are yes and no; the default is yes. Only the first <xsl:sort> element
can have a stable attribute. If stable="yes", any elements with the same sort value
stay in their original order in the document. For example, if we sort these elements:

<statelist>
 <title>U.S. Road trips I've made recently</title>
 <state year="2006" month="4">California</state>
 <state year="2005" month="12">Texas</state>
 <state year="2006" month="2">Washington</state>
 <state year="2006" month="3">California</state>
</statelist>

and if we sort by the year attribute and the value of the <state> element (the
month attribute is ignored), the first and last elements here have the same sort value.
With stable="yes", the two trips to California will stay in their original document
order. If you go out of your way to code stable="no", the XSLT processor is not
required to keep the nodes in their original order.

Content
[1.0] None.

[2.0] In XSLT 2.0, you can use the content of the <xsl:sort> element to define the nodes to
be sorted. As you would expect, it is a fatal error to have both a select attribute and content
inside <xsl:sort>. If neither is specified, it defaults to the current context node, which is
equivalent to select="."

Appears in
<xsl:apply-templates> and <xsl:for-each>.

[2.0] In XSLT 2.0, <xsl:sort> can appear in the new <xsl:for-each-group> and <xsl:perform-
sort> elements as well.

Defined in
[1.0] XSLT section 10, “Sorting.”

[2.0] XSLT section 13, “Sorting.”

Example
We’ll illustrate <xsl:sort> with this stylesheet:

<?xml version="1.0"?>
<!-- sort.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

512 | Appendix A: XSLT Reference

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
</xsl:text>
 <xsl:call-template name="ascending-alpha-sort">
 <xsl:with-param name="items" select="/sample/textlist/listitem"/>
 </xsl:call-template>
 <xsl:call-template name="ascending-alpha-sort">
 <xsl:with-param name="items" select="/sample/numericlist/listitem"/>
 </xsl:call-template>
 <xsl:call-template name="ascending-numeric-sort">
 <xsl:with-param name="items" select="/sample/numericlist/listitem"/>
 </xsl:call-template>
 <xsl:call-template name="descending-alpha-sort">
 <xsl:with-param name="items" select="/sample/textlist/listitem"/>
 </xsl:call-template>
 <xsl:call-template name="category-sort">
 <xsl:with-param name="items" select="/sample/textlist/listitem"/>
 </xsl:call-template>
 </xsl:template>

 <xsl:template name="ascending-alpha-sort">
 <xsl:param name="items"/>
 <xsl:text>Ascending text sort:</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="$items">
 <xsl:sort select="."/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 <xsl:text>
</xsl:text>
 </xsl:template>

 <xsl:template name="descending-alpha-sort">
 <xsl:param name="items"/>
 <xsl:text>Descending text sort:</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="$items">
 <xsl:sort select="." order="descending"/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 <xsl:text>
</xsl:text>
 </xsl:template>

 <xsl:template name="ascending-numeric-sort">
 <xsl:param name="items"/>
 <xsl:text>Ascending numeric sort:</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="$items">
 <xsl:sort select="." data-type="number"/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>

<xsl:sort> | 513

 <xsl:text>
</xsl:text>
 </xsl:template>

 <xsl:template name="category-sort">
 <xsl:param name="items"/>
 <xsl:text>Ascending category sort:</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="$items">
 <xsl:sort select="@category"/>
 <xsl:sort select="."/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Our stylesheet defines four named templates, each of which sorts <listitem>s in a different
order or with a different data-type. Notice that the fourth template, category-sort, sorts by
an attribute first, then by the value of the current item. We’ll use this stylesheet against this
document:

<?xml version="1.0"?>
<!-- items-to-sort.xml -->
<sample>
 <numericlist>
 <listitem>1</listitem>
 <listitem>3</listitem>
 <listitem>23</listitem>
 <listitem>120</listitem>
 <listitem>2</listitem>
 </numericlist>
 <textlist>
 <listitem category="number">3</listitem>
 <listitem category="fruit">apple</listitem>
 <listitem category="fruit">orange</listitem>
 <listitem category="foreign-fruit">dragonfruit</listitem>
 <listitem category="foreign-fruit">carambola</listitem>
 </textlist>
 <datelist>
 <listitem>2006-12-25</listitem>
 <listitem>1995-04-21</listitem>
 <listitem>1965-06-19</listitem>
 <listitem>2007-01-01</listitem>
 </datelist>
 <spanishlist>
 <listitem>campo</listitem>
 <listitem>luna</listitem>
 <listitem>ciudad</listitem>
 <listitem>llaves</listitem>
 <listitem>chihuahua</listitem>
 <listitem>arroz</listitem>
 <listitem>limonada</listitem>

514 | Appendix A: XSLT Reference

 </spanishlist>
</sample>

Here are the results:

Ascending text sort:
3
apple
carambola
dragonfruit
orange

Ascending text sort:
1
120
2
23
3

Ascending numeric sort:
1
2
3
23
120

Descending text sort:
orange
dragonfruit
carambola
apple
3

Ascending category sort:
carambola
dragonfruit
apple
orange
3

Notice that the data-type="numeric" attribute causes data to be sorted in numeric order.

[2.0] To illustrate some of the new features of XSLT 2.0, we’ll sort this data with another
stylesheet. One template casts the children of <datelist> into xs:date values, and then sorts
those values. Another template uses a custom collation to sort the children of
<spanishlist> using a custom collation. Here’s the stylesheet:

<?xml version="1.0"?>
<!-- sort2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

<xsl:sort> | 515

 <xsl:text>
</xsl:text>
 <xsl:variable name="date-sequence" as="xs:date*">
 <xsl:for-each select="/sample/datelist/listitem">
 <xsl:value-of select="xs:date(.)"/>
 </xsl:for-each>
 </xsl:variable>
 <xsl:call-template name="ascending-date-sort">
 <xsl:with-param name="items" select="$date-sequence"/>
 </xsl:call-template>
 <xsl:call-template name="spanish-alpha-sort">
 <xsl:with-param name="items" select="/sample/spanishlist/listitem"/>
 </xsl:call-template>
 <xsl:call-template name="ascending-alpha-sort">
 <xsl:with-param name="items" select="/sample/spanishlist/listitem"/>
 </xsl:call-template>
 </xsl:template>

 <xsl:template name="ascending-date-sort">
 <xsl:param name="items" as="xs:date*"/>
 <xsl:text>Ascending date sort:</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="$items">
 <xsl:sort/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 <xsl:text>
</xsl:text>
 </xsl:template>

 <xsl:template name="ascending-alpha-sort">
 <xsl:param name="items"/>
 <xsl:text>Ascending text sort:</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="$items">
 <xsl:sort/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 <xsl:text>
</xsl:text>
 </xsl:template>

 <xsl:template name="spanish-alpha-sort">
 <xsl:param name="items"/>
 <xsl:text>Spanish alpha sort:</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="$items">
 <xsl:sort
 collation="{concat('http://saxon.sf.net/collation?',
 'class=com.oreilly.xslt.SpanishCollation;')}"/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 <xsl:text>
</xsl:text>
 </xsl:template>

516 | Appendix A: XSLT Reference

</xsl:stylesheet>

The results look like this:

Ascending date sort:
1965-06-19
1995-04-21
2006-12-25
2007-01-01

Spanish alpha sort:
arroz
campo
ciudad
chihuahua
limonada
luna
llaves

Ascending text sort:
arroz
campo
chihuahua
ciudad
limonada
llaves
luna

The dates are sorted as xs:date values, even though those results are the same as a text sort.
For the Spanish collation, we specify the Java class that compares strings to determine the
sort order. The way the Java class is specified here is specific to the Saxon XSLT 2.0 processor.
Check the documentation of your XSLT processor to see how (or if) it supports custom
collations.

See Chapter 9 for a discussion of “Creating Custom Collations.”

<xsl:strip-space>
Defines the source-document elements for which nonsignificant whitespace should be
removed.

Category
Top-level element.

Required Attribute

elements
Contains a space-separated list of element names or node tests for which non-
significant whitespace should be removed. Nonsignificant whitespace typically
means text nodes that contain nothing but whitespace; whitespace that appears in
and around text is always preserved. The elements attribute can also contain the

<xsl:strip-space> | 517

value *, which means whitespace should be removed from all elements not speci-
fied in an <xsl:preserve-space> element. The value elements="auth:*" is also legal;
this specifies all elements in the auth namespace.

[2.0] In XSLT 2.0, the elements attribute can also use wildcards for the namespace
prefix. For example, the value *:title refers to all <title> elements, regardless of
their namespaces.

The XML spec defines the seldom used attribute xml:space. The
xml:space attribute can have the values preserve or default. If
xml:space="preserve" applies to a given element in the XML
source, all whitespace is preserved, regardless of any
<xsl:preserve-space> or <xsl:strip-space> elements.

Optional Attributes
None.

Content
None. <xsl:strip-space> is an empty element.

Appears in
<xsl:strip-space> is a top-level element and can only appear as a child of <xsl:stylesheet>.

Defined in
[1.0] XSLT section 3.4, “Whitespace Stripping.”

[2.0] XSLT section 4.4, “Stripping Whitespace from a Source Tree.”

Example
We’ll illustrate the <xsl:strip-space> element with the following stylesheet:

<?xml version="1.0"?>
<!-- strip-space.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:strip-space elements="*"/>

 <xsl:template match="/">
 <xsl:text>
</xsl:text>
 <xsl:value-of select="/code-sample/title"/>
 <xsl:text>
</xsl:text>
 <xsl:for-each select="/code-sample/listing">
 <xsl:value-of select="."/>
 </xsl:for-each>
 </xsl:template>

518 | Appendix A: XSLT Reference

</xsl:stylesheet>

We’ll use this stylesheet to process the following document:

<?xml version="1.0" encoding="utf-8"?>
<!-- whitespace.xml -->
<code-sample>
 <title>Conditional variable initialization:</title>
 <listing>
 <type>int</type><var> y</var><endstmt>;</endstmt>
 <type>int</type><var> x</var><endstmt>;</endstmt>

 <var>y</var> <op>=</op> <const>23</const><endstmt>;</endstmt>

 <block>
 <keyword>if</keyword> (<var>y</var> <comp>></comp> <const>10</const>)
 <var>x</var> <op>=</op> <const>5</const><endstmt>;</endstmt>
 <keyword>else </keyword>
 <keyword>if</keyword> (<var>y</var> <comp>></comp> <const>5</const>)
 <var>x</var> <op>=</op> <const>3</const><endstmt>;</endstmt>
 <keyword>else </keyword>
 <var>x</var> <op>=</op> <const>1</const><endstmt>;</endstmt>
 </block>
 </listing>
</code-sample>

Here are the results:

Conditional variable initialization:
int y;int x;y=23;if (y>10)
 x=5;else if (y>5)
 x=3;else x=1;

Notice that all the extra whitespace from all the elements has been removed. This includes
the space between the various elements contained inside <listing>, such as <keyword>,
<const>, and <var>. Wherever the <listing> element has nonwhitespace characters between
elements (a semicolon or parenthesis, for example), that text node and all the whitespace it
contains are preserved. Those text nodes are the reason why some whitespace appears in our
results. If we went to the extreme of putting every character inside an element, all of the text
inside the <listing> element would run together.

Compare this to the example for <xsl:preserve-space>.

<xsl:stylesheet>
The root element of an XSLT stylesheet. It is identical to the <xsl:transform> element, which
was included in the XSLT specification for historical purposes.

Category
Contains the entire stylesheet.

<xsl:stylesheet> | 519

Required Attributes

version
Indicates the version of XSLT that the stylesheet requires. For XSLT version 1.0,
its value should always be 1.0. As later versions of the XSLT specification are de-
fined, the required values for the version attribute will be defined along with them.

[2.0] In XSLT version 2.0, this value should be 2.0. The XSLT 2.0 spec defines
stricter rules for handling the version attribute than the XSLT 1.0 spec. To avoid
complications, you should use the values 1.0 and 2.0.

XSLT 2.0 also allows you to specify the version attribute on any XSLT element. If
you want to use version 1.0 processing for a given portion of your stylesheet, you
can define version="1.0" for that portion of the stylesheet. For example, the
<xsl:decimal-format> element works differently in XSLT 2.0, so you could use
<xsl:decimal-format version="1.0"> to process the element according to the rules
of XSLT 1.0.

xmlns:xsl
Defines the URI for the XSL namespace. For both XSLT version 1.0 and XSLT
version 2.0, this attribute’s value must be http://www.w3.org/1999/XSL/
Transform. (Although this is a namespace declaration, not an attribute, it is re-
quired. Your stylesheet won’t work without it.)

Optional Attributes

id
Defines an ID for this stylesheet.

extension-element-prefixes
Defines any namespace prefixes used to invoke extension elements. Multiple
namespace prefixes are separated by whitespace.

exclude-result-prefixes
Defines namespace prefixes whose declarations should not be sent to the output
document. Multiple namespace prefixes are separated by whitespace.

[2.0] xpath-default-namespace
Defines the default namespace used by XPath functions and operators. If you’re
transforming a document that uses a default namespace (http://
www.oreilly.com, for example), you must normally namespace-qualify the names
of any elements in your XPath expressions. Defining xpath-default-
namespace="http://www.oreilly.com" tells XPath to use this namespace as the de-
fault. By using this on any element in your stylesheet, you can have different default
XPath namespaces in different sections of your stylesheet.

[2.0] default-validation
Defines the default value for the validation attribute of the <xsl:document>,
<xsl:element>, <xsl:attribute>, <xsl:copy>, <xsl:copy-of>, and <xsl:result-

520 | Appendix A: XSLT Reference

document> elements. Allowed values for this attribute are preserve and strip. If this
attribute is not coded, the default value is strip.

[2.0] default-collation
A series of space-separated URIs that define the default collation sequence. This
sequence is used by <xsl:key> and <xsl:for-each-group>, but it does not affect the
collation used by <xsl:sort>. The way collation sequences are defined varies from
one XSLT processor to another, so check your processor’s documentation for in-
formation on defining a collation sequence.

[2.0] input-type-annotations
Defines whether datatype information should be preserved in the output. Valid
values for this attribute are preserve, strip, and unspecified; the default value is
unspecified.

Content
This element contains the entire stylesheet. The following elements can be children of
<xsl:stylesheet>:

<xsl:attribute-set>
[2.0] [2.0] <xsl:character-map>
<xsl:decimal-format>
[2.0] [2.0] <xsl:function>
<xsl:import>
[2.0] [2.0 – Schema] <xsl:import-schema>
<xsl:include>
<xsl:key>
<xsl:namespace-alias>
<xsl:output>
<xsl:param>
<xsl:preserve-space>
<xsl:strip-space>
<xsl:template>
<xsl:variable>

Appears in
None. <xsl:stylesheet> is the root element of the stylesheet.

Defined in
[1.0] XSLT section 2.2, “Stylesheet Element.”

[2.0] XSLT section 3.6, “Stylesheet Element.”

Example
For a simple example, we’ll use the Hello World document from the XML 1.0 specification:

<xsl:stylesheet> | 521

<?xml version="1.0"?>
<greeting>
 Hello, World!
</greeting>

We’ll transform our document with this stylesheet:

<?xml version="1.0"?>
<!-- stylesheet.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <xsl:apply-templates select="greeting"/>
 </xsl:template>

 <xsl:template match="greeting">
 <html>
 <body>
 <h1>
 <xsl:value-of select="."/>
 </h1>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

When we transform our document with this stylesheet, here are the results:

<html>
<body>
<h1>
 Hello, World!
</h1>
</body>
</html>

[2.0] XSLT 2.0 added the xpath-default-namespace attribute to simplify working with docu-
ments that have a default namespace. Here’s a modified version of our chocolate sales docu-
ment that uses a default namespace:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate-default-namespace.xml -->
<report month="8" year="2006"
 xmlns="http://www.oreilly.com">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>

522 | Appendix A: XSLT Reference

 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

Here’s a simple stylesheet to list the sales figures for each brand:

<?xml version="1.0"?>
<!-- stylesheet2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Here are this month's sales figures:

</xsl:text>
 <xsl:for-each select="/report/brand">
 <xsl:value-of select="name"/>
 <xsl:text>	</xsl:text>
 <xsl:value-of select="units"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

And here are our disappointing results:

Here are this month's sales figures:

We don’t get any results because we don’t specify the namespace of our element names in
our XPath expressions. If we add xpath-default-namespace to the <xsl:stylesheet> element:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xpath-default-namespace="http://www.oreilly.com">

we get the results we want:

Here are this month's sales figures:

Lindt 27408
Callebaut 8203
Valrhona 22101
Perugina 14336
Ghirardelli 19268

<xsl:stylesheet> | 523

<xsl:template>
Defines an output template. Templates that begin <xsl:template match="x" define a trans-
formation for a given element. Templates that begin <xsl:template name="x" define a set of
output elements that are processed whenever the template is invoked by name. All
<xsl:template> elements must have either the match or the name attribute defined. Although
not common, it is also possible to create <xsl:template> elements that have both a match and
a name.

Category
Top-level element.

Required Attributes
None; however, an <xsl:template> must contain a match attribute, a name attribute, or both.

Optional Attributes

match
A pattern that defines the elements for which this template should be invoked. For
example, <xsl:template match="xyz"> defines a template for processing <xyz>
elements.

name
An attribute that names this template. Named templates are invoked with the
<xsl:call-template> element.

mode
An attribute that defines a mode for this template. A mode is a convenient syntax
that allows you to write specific templates for specific purposes. For example, we
could write an <xsl:template> with mode="toc" to process a node for the table of
contents of a document, and we could write other <xsl:template>s with
mode="print", mode="online", mode="index", etc. to process the same information
for different purposes.

[2.0] In XSLT 2.0, the mode attribute can use the value #default to indicate that this
template applies to the default mode, or use #all to indicate that this template
applies to all modes. XSLT 2.0 also allows you to specify multiple mode names
separated by whitespace. It is an error if you use the mode attribute on a template
that doesn’t have a match attribute.

priority
An attribute that assigns a numeric priority to this template. The value can be any
numeric value except Infinity. If the XSLT processor cannot determine which
template to use (in other words, more than one template has the same default
priority), the priority attribute allows you to define a tiebreaker. Keep in mind
that you can simply use the priority attribute to raise the priority of a given
template.

524 | Appendix A: XSLT Reference

[2.0] In XSLT 2.0, it is an error if you use the priority attribute on a named
template.

[2.0] as
Defines the datatype of the result of the template. If this attribute is omitted, the
template can return any datatype.

Content
An XSLT template.

Appears in
<xsl:template> is a top-level element and can only appear as a child of <xsl:stylesheet>.

Defined in
[1.0] XSLT section 5.3, “Defining Template Rules.”

[2.0] XSLT section 6.1, “Defining Template Rules.”

Example
We’ll use the Hello World document from the XML 1.0 specification for our example:

<?xml version="1.0"?>
<greeting>
 Hello, World!
</greeting>

We’ll transform our document with this stylesheet:

<?xml version="1.0"?>
<!-- stylesheet.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <xsl:apply-templates select="greeting"/>
 </xsl:template>

 <xsl:template match="greeting">
 <html>
 <body>
 <h1>
 <xsl:value-of select="."/>
 </h1>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

This simple stylesheet has two templates, one of which matches the root node (or document
node in XSLT 2.0), and one of which matches the <greeting> element (match="greeting").

<xsl:template> | 525

<html>
<body>
<h1>
 Hello, World!
</h1>
</body>
</html>

<xsl:text>
Allows you to write literal text to the output document. The main benefit of the <xsl:text>
element is that it gives you complete control over whitespace in the output.

Category
Instruction.

Required Attributes
None.

Optional Attribute

disable-output-escaping
Defines whether special characters are escaped when they are written to the output
document. For example, if the literal text contains the character >, it is normally
written to the output document as >. If you code disable-output-
escaping="yes", the character > is written instead. Note that If you’re using
<xsl:output method="text">, this attribute is ignored because output escaping is
not done for the text output method.

[2.0] In XSLT 2.0, this attribute is deprecated. Instead you should use the new [2.0]
<xsl:character-map> element.

Content
Literal text and entity references (
, for example). These are known collectively as
PCDATA, or parsed character data.

Appears in
<xsl:text> appears inside a template.

Defined in
[1.0] XSLT section 7.2, “Creating Text.”

[2.0] XSLT section 11.4.2, “Creating Text Nodes Using xsl:text.”

526 | Appendix A: XSLT Reference

Example
This sample stylesheet generates text with <xsl:text>. We intermingle <xsl:text> and
<xsl:value-of> elements to create a coherent sentence. In this case, we simply generate a text
document, but this technique works equally well to create the text of an HTML or XML
element. Here is the stylesheet:

<?xml version="1.0"?>
<!-- text.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Test of <xsl:text></title>
 </head>
 <body style="font-family: sans-serif;">
 <!-- disable-output-escaping="no" by default -->
 <h1>Test of <xsl:text></h1>
 <p>
 <xsl:text>Your document contains </xsl:text>
 <xsl:value-of select="count(//*)"/>
 <xsl:text> elements and </xsl:text>
 <xsl:value-of select="count(//@*)"/>
 <xsl:text> attributes. </xsl:text>
 </p>
 <p>
 <xsl:text
 disable-output-escaping="yes"><Have a great day!></xsl:text>
 </p>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

Given this XML document:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

Our stylesheet produces this HTML document:

<xsl:text> | 527

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Test of <xsl:text></title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Test of <xsl:text></h1>
 <p>Your document contains 9 elements and 5 attributes. </p>
 <p><Have a great day!></p>
 </body>
</html>

If you view this document in a browser, the browser ignores the unknown <Have> element in
the second paragraph. Using the disable-output-escaping attribute lets you generate text that
is not valid (or even well-formed) HTML, XML, or XHTML, and it should be used as a last
resort in an XSLT 1.0 stylesheet.

<xsl:transform>
This is a synonym for <xsl:stylesheet>. It was included in the XSLT 1.0 spec for historical
purposes. Its attributes, content, and all other properties are the same as those for <xsl:style
sheet>. See the “<xsl:stylesheet>” section for more information.

Category
Instruction.

<xsl:value-of>
Calculates the value of an XPath expression, converts that value to a text node and then writes
the value to the result tree.

Category
Instruction.

Required Attribute

select
The XPath expression that is evaluated and written to the output.

[2.0] In XSLT 2.0, this attribute is optional. The <xsl:value-of> element must have
either a select attribute or it must contain content. It is an error if it contains neither
or both.

Optional Attributes

disable-output-escaping
An attribute that defines whether special characters are escaped when written to
the output document. For example, if the literal text contains the character >, it is

528 | Appendix A: XSLT Reference

normally written to the output document as >. If you code disable-output-
escaping="yes", the character > is written instead. The XSLT processor uses this
attribute only if you use the html or xml output methods. If you use <xsl:output
method="text">, the attribute is ignored becasue output escaping is not done for
the text output method. See the “<xsl:text>” section for a more thorough dis-
cussion of the disable-output-escaping attribute.

[2.0] In XSLT 2.0, this attribute is deprecated. You should use a character map
instead; see the discussion of the [2.0] <xsl:character-map> element for more
information.

[2.0] separator
Defines the characters that separate multiple values generated by the select
attribute. The default value is a single space (#x20). The value of the separator
attribute appears after all of the values except the last.

Be aware that in XSLT 1.0, <xsl:value-of> selects the first item in a
node-set and discards all the others. In XSLT 2.0, all of the nodes are
output with the separator between them.

Content
None. <xsl:value-of> is an empty element.

[2.0] In XSLT 2.0, <xsl:value-of> can contain content; that content is evaluated and written
to the output.

Appears in
<xsl:value-of> appears inside a template.

Defined in
[1.0] XSLT section 7.6.1, “Generating Text with xsl:value-of.”

[2.0] XSLT section 11.4.3, “Generating Text with xsl:value-of.”

Example
We’ll use the <xsl:value-of> element to generate some text. Here is our stylesheet:

<?xml version="1.0"?>
<!-- value-of.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Your document contains </xsl:text>
 <xsl:value-of select="count(//*)"/>
 <xsl:text> elements and </xsl:text>

<xsl:value-of> | 529

 <xsl:value-of select="count(//@*)"/>
 <xsl:text> attributes.
Have a great day!</xsl:text>
 </xsl:template>

</xsl:stylesheet>

We’ll use this XML document as input:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

Here are the results:

Your document contains 9 elements and 5 attributes.
Have a great day!

[2.0] Before we leave the <xsl:value-of> element, we’ll look at its new capabilities. Here’s a
short stylesheet that uses a nonempty <xsl:value-of> and the separator attribute:

<?xml version="1.0"?>
<!-- value-of2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:value-of>
 <xsl:text>Here is a list of the </xsl:text>
 <xsl:value-of select="count(//*)"/>
 <xsl:text> elements in your document:

</xsl:text>
 </xsl:value-of>
 <xsl:value-of select="//*/name()" separator="
"/>
 </xsl:template>

</xsl:stylesheet>

Processing albums.xml with our new stylesheet generates these results:

Here is a list of the 9 elements in your document:

list
title
listitem
listitem
listitem
listitem
listitem

530 | Appendix A: XSLT Reference

listitem
listitem

The first paragraph is generated by an <xsl:value-of> element that contains three elements,
one of which is another <xsl:value-of> element. The rest of the document is generated by a
single <xsl:value-of> statement that uses the handy separator attribute. If we wanted to do
the same thing in XSLT 1.0, we would have to replace the following line:

<xsl:value-of select="//*/name()" separator="
"/>

with this more complicated markup:

<xsl:for-each select="//*">
 <xsl:value-of select="name()"/>
 <xsl:if test="position() != last()">
 <xsl:text>
</xsl:text>
 </xsl:if>
</xsl:for-each>

<xsl:variable>
Defines a variable. If <xsl:variable> occurs as a top-level element, it is a global variable that
is accessible throughout the stylesheet. Otherwise, the variable is local and exists only in the
element that contains the <xsl:variable>. The value of the variable can be defined in one of
two ways: specified in the select attribute or defined in an XSLT template inside the
<xsl:variable> element itself. If neither method is used, the value of the variable is an empty
string.

Category
Either a top-level element or an instruction.

Required Attribute

name
An attribute that names this variable.

Optional Attributes

select
An XPath expression that defines the value of this variable.

[2.0 – Schema] as
The datatype of the variable. For example, <xsl:variable
name="age" as="xs:integer" select="11"/> defines a new variable of type
xs:integer. It is an error if the supplied value can’t be converted to the specified
type; using the attribute select="'really, really old'" here would cause an error.
If you’re using a schema-aware XSLT processor, you can use your own datatypes.

<xsl:variable> | 531

Content
The <xsl:variable> element can be empty or it can contain an XSLT template. It is a fatal
error if it contains both content and a select attribute.

Appears in
<xsl:stylesheet> as a top-level element or in a template.

Defined in
[1.0] XSLT section 11, “Variables and Parameters.”

[2.0] XSLT section 9, “Variables and Parameters.”

Example
Here is a stylesheet that defines a number of variables:

<?xml version="1.0"?>
<!-- variable.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:variable name="favoriteNumber" select="23"/>
 <xsl:variable name="favoriteColor" select="'blue'"/>
 <xsl:variable name="complicatedVariable">
 <xsl:choose>
 <xsl:when test="count(//listitem) > 10">
 <xsl:text>really long list</xsl:text>
 </xsl:when>
 <xsl:when test="count(//listitem) > 5">
 <xsl:text>moderately long list</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>fairly short list</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

 <xsl:template match="/">
 <xsl:text>Hello! Your favorite number is </xsl:text>
 <xsl:value-of select="$favoriteNumber"/>
 <xsl:text>.
Your favorite color is </xsl:text>
 <xsl:value-of select="$favoriteColor"/>
 <xsl:text>.

Here is a </xsl:text>
 <xsl:value-of select="$complicatedVariable"/>
 <xsl:text>:
</xsl:text>
 <xsl:variable name="listitems” select="list/listitem"/>
 <xsl:call-template name="processListItems">
 <xsl:with-param name="items" select="$listitems"/>
 </xsl:call-template>
 </xsl:template>

532 | Appendix A: XSLT Reference

 <xsl:template name="processListItems">
 <xsl:param name="items"/>
 <xsl:variable name="favoriteColor">
 <xsl:text>chartreuse</xsl:text>
 </xsl:variable>

 <xsl:text> (Your favorite color is now </xsl:text>
 <xsl:value-of select="$favoriteColor"/>
 <xsl:text>.)
</xsl:text>
 <xsl:for-each select="$items">
 <xsl:value-of select="position()"/>
 <xsl:text>. </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

We’ll use our stylesheet to transform the following document:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

Here are the results of our transformation:

Hello! Your favorite number is 23.
Your favorite color is blue.

Here is a moderately long list:
 (Your favorite color is now chartreuse.)
1. The Sacred Art of Dub
2. Only the Poor Man Feel It
3. Excitable Boy
4. Aki Special
5. Combat Rock
6. Talking Timbuktu
7. The Birth of the Cool

In XSLT 1.0, having two variables at the same level with the same name
is an error. It’s also an error to define an <xsl:variable> and an
<xsl:param> with the same name at the same level. Neither of these
conditions is an error in XSLT 2.0.

<xsl:variable> | 533

Several things are worth mentioning in our stylesheet. First, notice that when we defined
values for the first two variables (favoriteNumber and favoriteColor), we had to quote the
string blue, but didn’t have to quote 23. If we don’t quote blue, the XSLT processor assumes
we mean the node-set (or sequence) of all the <blue> elements in the context node. That’s
obviously not what we want.

Be aware that single quotes around numeric values are significant. The
value 35 represents a numeric value (it’s a number in XSLT 1.0 and an
xs:integer in XSLT 2.0), while the value '35' represents the string 35.
That might seem like a minor distinction, but it has a major impact on
how your stylesheet works, especially in XSLT 2.0.

Also notice that we have two variables named favoriteColor. One is a global variable because
its parent is the <xsl:stylesheet> element; the other is a local variable because it is defined
in a <xsl:template>. When we access favoriteColor in the match="/" template, it has one
value; when we access it inside the name="processListItems" template, it has another.

Using an <xsl:choose> element to initialize an <xsl:variable> is a common technique. This
technique is the equivalent of this procedural programming construct:

String complicatedVariable;

if (count(listitems) > 10)
 complicatedVariable = "really long list";
else if (count(listitems)) > 5)
 complicatedVariable = "moderately long list";
else
 complicatedVariable = "fairly short list";

Notice that a variable can be any of the XPath or XSLT variable types, including a [1.0] node-
set or [2.0] sequence. When we call the processListItems template, the parameter we pass to
it is a variable containing the node-set of all the <listitem> elements in our document. Inside
the processListItems template, our variable (which is now technically a parameter) can be
used inside an <xsl:for-each> element.

[2.0] For a final example, we’ll use the as attribute to show how datatyping works. Here is a
simple stylesheet:

<?xml version="1.0"?>
<!-- variable2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:variable name="numberOne" as="xs:integer" select="23"/>
 <xsl:variable name="numberTwo" as="xs:double" select="2.718281828459"/>
 <xsl:variable name="numberThree" as="xs:float" select="$numberTwo"/>
 <xsl:variable name="numberFour" as="xs:integer"
 select="xs:integer($numberTwo)"/>
 <xsl:variable name="dateValue" as="xs:date" select="xs:date('1995-04-21')"/>
 <xsl:variable name="whatever" as="xs:integer” select="xs:integer(42)"/>

534 | Appendix A: XSLT Reference

 <xsl:template match="/">
 <xsl:call-template name="bob">
 <xsl:with-param name="whatever" select="xs:integer(8)"/>
 </xsl:call-template>
 <xsl:text>
whatever	</xsl:text>
 <xsl:value-of select="$whatever"/>
 <xsl:text>
</xsl:text>
 </xsl:template>

 <xsl:template name="bob">
 <xsl:param name="whatever" as="xs:integer"/>
 <xsl:variable name="whatever" as="xs:integer" select="xs:integer(4)"/>
 <xsl:variable name="whatever" as="xs:integer" select="xs:integer(98)"/>
 <xsl:text>Hello! The values of your variables are:
</xsl:text>
 <xsl:text>
numberOne	</xsl:text>
 <xsl:value-of select="$numberOne"/>
 <xsl:text>
numberTwo	</xsl:text>
 <xsl:value-of select="$numberTwo"/>
 <xsl:text>
numberThree	</xsl:text>
 <xsl:value-of select="$numberThree"/>
 <xsl:text>
numberFour	</xsl:text>
 <xsl:value-of select="$numberFour"/>
 <xsl:text>
dateValue	</xsl:text>
 <xsl:value-of select="$dateValue"/>
 <xsl:text>
whatever	</xsl:text>
 <xsl:value-of select="$whatever"/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

When we run this stylesheet, here are the results:

Hello! The values of your variables are:

numberOne 23
numberTwo 2.718281828459
numberThree 2.7182817
numberFour 2
dateValue 1995-04-21
whatever 98

whatever 42

Notice that we had to use the xs:date constructor to create a valid date, and that we lost
several digits of accuracy when we copied the double value of numberTwo to the float value of
numberThree. We also had to use the xs:integer constructor to cast the double value of
numberTwo to the integer required by numberFour.

The <xsl:variable> elements here are all initialized with literal values, so if you change them
to something that’s not valid (assigning 'blue' to the xs:integer value $numberOne, for exam-
ple), the stylesheet won’t run at all. If the values of the variables are set while the stylesheet
is running, you’ll get a fatal error if your stylesheet tries to set a variable with the wrong kind
of data.

<xsl:variable> | 535

The variable $whatever is used several times in this stylesheet. Because variables and param-
eters can shadow each other in XSLT 2.0, the value of $whatever is the last value defined in
the current context. Within the named template, the value of $whatever is 98, the last value
assigned to that name. The fact that $whatever was previously assigned the values 4 (as a local
variable), 8 (as a parameter), and 42 (as a global variable) doesn’t matter. When the stylesheet
returns to the calling template, the value of $whatever is now 42. The parameter passed to our
named template and the local variables inside the named template are no longer in scope.

A complication of variables in XSLT 2.0: if you create a variable con-
taining nodes and specify the datatype with the as attribute, the variable
works as you would expect. However, if you don’t use the as attribute,
the variable is a new document node whose children are the nodes in
the variable. Section 9.4 of the XSLT 2.0 spec discusses this in more
detail. In general, it’s best to use the as attribute.

<xsl:when>
Defines one branch of an <xsl:choose> element; <xsl:choose> is equivalent to an if-then-else
statement.

Category
Subinstruction (<xsl:when> always appears as a child of an <xsl:choose> element).

Required Attribute

test
Contains a boolean expression that is evaluated. If the expression evaluates to
true, the contents of the <xsl:when> element are processed; otherwise, the contents
of <xsl:when> are ignored. When evaluating an <xsl:choose> element, the XSLT
processor examines each <xsl:when> until it finds one whose test attribute evalu-
ates to true. That <xsl:when> element is processed and all subsequent <xsl:when>
elements are ignored. Within an <xsl:choose> element, at most one <xsl:when>
element will be processed.

Optional Attributes
None.

Content
An XSLT template.

Appears in
The <xsl:choose> element only.

536 | Appendix A: XSLT Reference

Defined in
[1.0] XSLT section 9.2, “Conditional Processing with xsl:choose.”

[2.0] XSLT section 8.2, “Conditional Processing with xsl:choose.”

Example
Here’s an example that uses <xsl:choose> to select the background color for the rows of an
HTML table. We cycle among four different values, using <xsl:when> to determine the value
of the style attribute in the generated HTML document. Here’s the XML document we’ll use:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en_GB">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

And here’s our stylesheet:

<?xml version="1.0"?>
<!-- when.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>
 <xsl:value-of select="list/title"/>
 </title>
 </head>
 <body style="font-family: sans-serif; color: white;">
 <h1 style="color: black;">
 <xsl:value-of select="list/title"/>
 </h1>
 <table border="1" cellpadding="5"
 style="font-weight: bold;">
 <xsl:for-each select="list/listitem">
 <tr>
 <td>
 <xsl:attribute name="style">
 <xsl:choose>
 <xsl:when test="position() mod 4 = 0">
 <xsl:text>background: yellow; color: black;</xsl:text>
 </xsl:when>
 <xsl:when test="position() mod 4 = 1">
 <xsl:text>background: blue;</xsl:text>

<xsl:when> | 537

 </xsl:when>
 <xsl:when test="position() mod 4 = 2">
 <xsl:text>background: white; color: black;</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>background: black;</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:attribute>
 <xsl:value-of select="."/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

Here’s the generated HTML document, which cycles through the various background colors:

<html>
 <head>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Albums I've bought recently:</title>
 </head>
 <body style="font-family: sans-serif; color: white;">
 <h1 style="color: black;">Albums I've bought recently:</h1>
 <table border="1" cellpadding="5" style="font-weight: bold;">
 <tr>
 <td style="background: blue;">The Sacred Art of Dub</td>
 </tr>
 <tr>
 <td style="background: white; color: black;">Only the Poor Man Feel It</td>
 </tr>
 <tr>
 <td style="background: black;">Excitable Boy</td>
 </tr>
 <tr>
 <td style="background: yellow; color: black;">Aki Special</td>
 </tr>
 ...
 </table>
 </body>
</html>

The table cells with styles of "background: yellow; color: black;", "background: blue;", and
"background: white; color: black;" are generated by <xsl:when> elements, while "back
ground: black;" is generated by the <xsl:otherwise> element.

When rendered, our HTML document looks like Figure A-17.

538 | Appendix A: XSLT Reference

<xsl:with-param>
Defines a parameter to be passed to a template. When the template is invoked, values can be
passed in for the parameter.

Category
Subinstruction; <xsl:with-param> always appears inside the <xsl:apply-templates> or
<xsl:call-template> element.

[2.0] In XSLT 2.0, it can also appear inside the new <xsl:apply-imports> and <xsl:next-
match> elements.

Description
<xsl:with-param> defines a parameter to be passed to a template. When a template is invoked,
values can be passed in for its parameters. The value of a parameter can be defined in one of
three ways:

• If the <xsl:with-param> element is empty and does not contain a select attribute,
then no value is passed to the template.

• If the <xsl:with-param> element is empty and has a select attribute, the value of
the parameter is the value of the select attribute.

• If the <xsl:with-param> element is not empty, the value of the parameter is the
result of processing its contents.

If no value is passed to the template (<xsl:with-param name="x"/>), then the default
value of the parameter, if any, is used instead. The default value of the parameter is

Figure A-17. Generating different background colors with <xsl:when>

<xsl:with-param> | 539

defined on the <xsl:param> element inside the <xsl:template> itself; see the description
of the <xsl:param> element for more details.

Required Attribute

name
Names this parameter.

Optional Attributes

select
An XPath expression that defines the value of this parameter. It is a fatal error if
<xsl:with-param> has a select attribute and contains content.

[2.0 – Schema] as
Defines the datatype of this parameter. The datatype can be any of the built-in
datatypes, or, if you have a schema-aware XSLT 2.0 processor, it can be a datatype
defined in a schema.

[2.0] tunnel
Defines whether this is a tunnel parameter. Valid values are yes and no, with no
being the default.

Content
The <xsl:with-param> element can be empty or it can contain an XSLT template. It is a fatal
error if <xsl:with-param> contains content and has a select attribute.

Appears in
<xsl:apply-templates>, <xsl:call-template>, [2.0] <xsl:apply-imports>, and [2.0]
<xsl:next-match>.

Defined in
[1.0] XSLT section 11.6, “Passing Parameters to Templates.”

[2.0] XSLT section 10.1.1, “Passing Parameters to Templates.”

Example
Here is a stylesheet with a number of parameters. Notice that some parameters are global and
defined outside the stylesheet:

<?xml version="1.0"?>
<!-- with-param.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:param name="favoriteNumber" select="23"/>
 <xsl:param name="favoriteColor"/>

540 | Appendix A: XSLT Reference

 <xsl:template match="/">
 <xsl:text>
</xsl:text>
 <xsl:value-of select="list/title"/>
 <xsl:text>
</xsl:text>
 <xsl:variable name="listitems" select="list/listitem"/>
 <xsl:call-template name="processListItems">
 <xsl:with-param name="items" select="$listitems"/>
 <xsl:with-param name="color" select="'yellow'"/>
 <xsl:with-param name="number" select="$favoriteNumber"/>
 </xsl:call-template>
 </xsl:template>

 <xsl:template name="processListItems">
 <xsl:param name="items"/>
 <xsl:param name="color" select="'blue'"/>

 <xsl:for-each select="$items">
 <xsl:value-of select="position()"/>
 <xsl:text>. </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>

 <xsl:text>
</xsl:text>

 <xsl:text>Your favorite color is </xsl:text>
 <xsl:value-of select="$favoriteColor"/>
 <xsl:text>.</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:text>The color passed to this template is </xsl:text>
 <xsl:value-of select="$color"/>
 <xsl:text>.</xsl:text>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

We’ll use this stylesheet to transform this document:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

Our stylesheet contains two global parameters (favoriteNumber and favoriteColor), and it
defines a default value for favoriteNumber. The stylesheet also passes a parameter from the
match="/" template to the name="processListItems" template; that parameter contains a node-
set. Here are the results of the transformation:

<xsl:with-param> | 541

Albums I've bought recently:
1. The Sacred Art of Dub
2. Only the Poor Man Feel It
3. Excitable Boy
4. Aki Special
5. Combat Rock
6. Talking Timbuktu
7. The Birth of the Cool

Your favorite color is orange.
The color passed to this template is yellow.

Notice that when we call the template processListItems, we pass in three parameters, only
two of which are defined inside the template. In XSLT 1.0, the undefined parameters are
simply ignored; in XSLT 2.0, this is a fatal error. If we change the stylesheet to <xsl:stylesheet
version="2.0" ..., the stylesheet won’t run at all. Also notice that the parameter $items is a
node-set, so we can use the parameter in an <xsl:for-each> element.

To generate these results with Saxon, we use this command:

java net.sf.saxon.Transform albums.xml with-param.xsl favoriteColor=orange

To generate these results with Xalan, we use this command:

java org.apache.xalan.xslt.Process -in albums.xml -xsl with-param.xsl
 -param favoriteColor orange

(The command should be entered on a single line.) See “Global Parameters” in Chapter 5 for
a complete discussion of global parameters and how you define them for various XSLT
processors.

[2.0 – Schema] We’ll wrap up with an example of <xsl:with-param> that uses schema support.
We’ll use a parameter whose datatype must be zipcode. Here’s the XML Schema that defines
the datatype:

<?xml version="1.0" encoding="UTF-8"?>
<!-- zip.xsd -->
<xsd:schema
 xmlns="http://www.oreilly.com/xslt/zip"
 targetNamespace="http://www.oreilly.com/xslt/zip"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:simpleType name="zipcode">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[0-9]{5}(-[0-9]{4})?"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

Here’s the stylesheet that looks for a valid zipcode:

<?xml version="1.0"?>
<!-- with-param2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:zip="http://www.oreilly.com/xslt/zip"
 xmlns="http://www.oreilly.com/xslt/zip"

542 | Appendix A: XSLT Reference

 xmlns:po="http://www.oreilly.com/xslt">

 <xsl:import-schema namespace="http://www.oreilly.com/xslt/zip"
 schema-location="zip.xsd" />

 <xsl:import-schema namespace="http://www.oreilly.com/xslt"
 schema-location="po.xsd" />

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:choose>
 <xsl:when
 test="/po:purchase-order/po:customer/po:address/po:zip
 castable as zip:zipcode">
 <xsl:call-template name="postalCode">
 <xsl:with-param name="zip" as="zip:zipcode"
 select="/po:purchase-order/po:customer/po:address/po:zip"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>The <zip> element isn't valid!
</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

 <xsl:template name="postalCode">
 <xsl:param name="zip" as="zip:zipcode"/>
 <xsl:text>The value </xsl:text>
 <xsl:value-of select="$zip"/>
 <xsl:text> is a valid Zip code!
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

When we use this template against a valid <po:purchase-order> whose <zip> element can be
cast as a zip:zipcode value, we use <xsl:with-param> to pass a parameter of type
zip:zipcode. We’ll use this purchase order again:

<?xml version="1.0"?>
<!-- good-po.xml -->
<purchase-order id="38292" xmlns="http://www.oreilly.com/xslt">
 <date year="2001" month="6" day="19"/>
 <customer id="4738" level="Platinum">
 <address type="business">
 ...
 <zip>48392</zip>
 </address>
 </customer>
 <items>
 ...
 </items>
</purchase-order>

<xsl:with-param> | 543

The less-than-exciting results look like this:

The value 48392 is a valid Zip code!

Notice that we imported two schemas, one for the zip:zipcode datatype and one for the
<po:purchase-order> element, although these could have been in the same file. If the elements
in the purchase order are in a namespace, we would have to use the po: prefix on all the
elements in the purchase order or else use xpath-default-namespace. Our stylesheet uses the
XPath castable as operator to verify that the value of the <po:zip> element can be cast as a
zip:zipcode value. That means we use the <xsl:with-param> and <xsl:param> elements only
if the data is valid. If it is, we create the parameter, knowing that the as attributes will be
satisfied.

One final point: the as attribute can only contain sequence types. Specifically, the as attribute
can’t refer to complex types declared in an XML Schema. We could rewrite our purchase
order schema to have a purchase-order complex type. To use it on the as attribute, we would
have to code as="element(*, po:purchase-order)".

544 | Appendix A: XSLT Reference

APPENDIX B

XPath Reference

This appendix contains reference information from the XPath specification, including
node types, axes, operators, and datatypes.

XPath Node Types
There are seven types of nodes in XPath. (They’re called node kinds in XPath 2.0.) We’ll
stick to the reference material here; for more information on the different node types,
see our earlier discussion of “The XPath Data Model” in Chapter 3.

The Root Node
The root node is the root of the tree. Unlike all other nodes, it does not have a parent.
Its children are the root element for the document, as are any comments or processing
instructions that appear outside the document element. The root node does not have
an expanded name. It is known as the document node in XPath 2.0.

Element Nodes
Each element in the original XML document is represented by an element node. The
expanded name of the element is its local name, combined with any namespace that is
in effect for the element. You can access the different parts of the element name with
the name(), local-name(), and namespace-uri() functions. Here is an element from an
XML document:

<xyz:report xmlns:xyz="http://www.xyz.com/">

The values of the three functions for this element node are:

name()
xyz:report

local-name()
report

545

namespace-uri()
http://www.xyz.com/

Attribute Nodes
Attributes of elements in the XML document become XPath attribute nodes. An at-
tribute has an expanded name, just as an element node has. The attribute nodes of a
given element node are the attributes explicitly coded on the XML element and any
attributes defined with default values in the DTD.

Taking a different approach from the Document Object Model, an element node is the
parent of its attributes, although the attributes are not the children of the element. In
other words, selecting all the children of an element node does not select any attribute
nodes that the element node might have.

Text Nodes
Text nodes simply contain text from an element. If the original text in the XML docu-
ment contained character or entity references, they are resolved before the XPath text
node is created. Similarly, any existing CDATA sections appear as text nodes. You have
no way of knowing if a given portion of a text node was originally a character or entity
reference or a CDATA section.

Comment Nodes
A comment node is also very simple; it contains some text. Every comment in the source
document (except for any comments in the DTD) becomes a comment node. The text
of the comment node (returned with <xsl:value-of select=".">) contains everything
inside the comment except the opening <!-- and the closing -->.

Processing-Instruction Nodes
A processing-instruction node has two parts: a name (returned by the name() function)
and a string value. The string value is everything after the name, including the white-
space, but not including the ?> that closes the processing instruction.

Namespace Nodes
Namespace nodes are almost never used in XSLT stylesheets; they exist primarily for
the XSLT processor’s benefit. One thing to keep in mind is that the declaration of a
namespace (such as xmlns:auth="http://www.authors.net"), even though it looks like
an attribute in the XML source, becomes a namespace node and not an attribute node.
Namespace nodes exist for both the namespace prefixes that are defined and any default
namespaces.

546 | Appendix B: XPath Reference

XPath Node Tests
XPath defines several node tests that can be used to select nodes from the source tree.
These node tests allow you to select nodes that can’t be selected any other way. (Al-
though they look and work like functions, they are technically node tests.) The node
tests are described here:

text()
Selects all the text-node children of the context node.

comment()
Selects all the comment-node children of the context node.

processing-instruction()
Selects all the processing-instruction children of the context node. Unlike the other
node tests defined here, processing-instruction() can have an optional argument;
processing-instruction('xml-stylesheet') selects all processing instructions
with a name of xml-stylesheet.

node()
Returns all nodes, regardless of type. Using this node test selects all element nodes,
attribute nodes, processing-instruction nodes, etc. (Be aware that using node() on
the child axis does not return any attribute nodes, because attributes are not con-
sidered child nodes.)

[2.0] attribute()
Returns any attribute. When used with an attribute name (attribute(public-
domain)), it returns all attributes with the specified name. When used with an at-
tribute name and a datatype (attribute(public-domain, xs:boolean)), it returns
all attributes with that specified name and datatype. Finally, when used with a
wildcard for the attribute name (attribute(*, xs:boolean)), it returns all attributes
with the specified datatype.

[2.0] element()
Returns any element. When used with an element name (element(author)), it re-
turns all elements with the specified name. When used with an element name and
a datatype (element(year-of-birth, xs:gYear)), it returns all elements with that
specified name and datatype. Finally, when used with a wildcard for the element
name (element(*, xs:gYear)), it returns all elements with the specified datatype.

[2.0] schema-element(name)
Given the name of an element globally declared in an XML Schema, returns the
elements with the same name and the same datatype as the schema-defined ele-
ment. It also returns all the elements in the specified element’s substitution group.
Appendix D discusses “Substitution Groups” in more detail.

[2.0] document-node()
Matches document nodes. The node test can include a name; the test document-
node(element(sonnet)) returns a document node whose root element is <sonnet>.

XPath Node Tests | 547

[2.0] Although item() looks like a node test, it is only used as a
datatype. For example, the variable <xsl:variable
name="something" as="item()"> defines a variable that can contain a
single value. The variable can contain any node or atomic type.

XPath Axes
The XPath specification defines 13 different axes; each axis contains various nodes.
The nodes that are in a given axis depend on the context node. All 13 axes, excerpted
from our more involved discussion in “The XPath Data Model” in Chapter 3, are listed
here.

child axis
Contains the children of the context node. As we’ve already mentioned, the XPath
expressions child::lines/child::line and lines/line are equivalent. If an XPath
expression (such as sonnet) doesn’t have an axis specifier, the child axis is used by
default.

parent axis
Contains the parent of the context node, if there is one. (If the context node is the
root node, the parent axis returns an empty node-set.) As a step in an XPath ex-
pression, the parent axis can be abbreviated with the double period (..); this moves
up to the current node’s parent. If the <first-name> and <last-name> elements are
both children of the <author> element, and the context node is the <first-name>
element, the expressions ../last-name, parent::author/last-name and
parent::*/last-name are equivalent. If the context node does not have a parent,
this axis returns an empty node-set.

self axis
Contains the context node itself. As a step in an XPath expression, the self axis
can be abbreviated with a single period (.). The expressions ., self::node(), and
self::* are equivalent in XSLT 1.0.

[2.0] In XSLT 2.0, the self axis selects the context item, which might not be a node.
If the context item is an atomic value, the expressions self::node() and self::*
cause the XSLT processor to raise an error. In this case, the only way to access the
self axis is with a period. If the context item is a node, the self axis works just as
it did in XSLT 1.0.

attribute axis
Contains the attributes of the context node. If the context node is not an element
node, this axis is empty. The attribute axis can be abbreviated with the at sign
(@). The expressions attribute::type and @type are equivalent.

548 | Appendix B: XPath Reference

ancestor axis
Contains the parent of the context node, the parent’s parent, and so on. The
ancestor axis always contains the root node, unless the context node is the root
node.

ancestor-or-self axis
Contains the context node, its parent, its parent’s parent, and so on. This axis
always includes the root node.

descendant axis
Contains all children of the context node, all children of all the children of the
context node, and so on. Be aware that the descendant axis does not include any
attribute or namespace nodes. (As we discussed earlier, an attribute node has an
element node as its parent, even though the attribute node is not considered a child
of its parent.)

descendant-or-self axis
Contains the context node and all children of the context node, all children of all
the children of the context node, and so on.

preceding-sibling axis
Contains all of the preceding siblings of the context node—in other words, all
nodes that have the same parent as the context node and appear before the context
node in the XML document. If the context node is an attribute node or a namespace
node, the preceding-sibling axis is empty.

following-sibling axis
Contains all of the following siblings of the context node—in other words, all nodes
that have the same parent as the context node and appear after the context node
in the XML document. If the context node is an attribute node or a namespace
node, the following-sibling axis is empty.

preceding axis
Contains all nodes that appear before the context node in the document, except
any ancestors, attribute nodes, and namespace nodes.

following axis
Contains all nodes that appear after the context node in the document, except any
descendants, attribute nodes, and namespace nodes.

namespace axis
Contains the namespace nodes of the context node. If the context node is not an
element node, this axis is empty.

[2.0] The namespace axis is deprecated in XPath 2.0.

The five axes ancestor, descendant, following, preceding, and self partition everything
in the XML document (with the exception of any attribute or namespace nodes). Any
node in the XPath tree appears in one of these five axes, and the five axes do not overlap.

XPath Axes | 549

The XPath Context
The context in an XPath expression consists of several things:

Context node
The node currently being evaluated. [2.0] If the context item is a node, the context
node is the same as the context item. If the context item is an atomic value, the
context node is undefined.

[2.0] Context item
The item currently being evaluated. This is the equivalent of the context node in
XPath 1.0; the name reflects the fact that the context can be focused on an atomic
value instead of a node.

Context position
A nonzero positive integer that indicates the position of the context node within
the set of context nodes. The XPath function position() returns the context
position.

Context size
A nonzero positive integer that indicates the number of nodes in the current con-
text. The XPath function last() returns the context size.

Variable bindings
A set of variables that are in scope for the current context. Each one is represented
by a variable name and an object that represents its value.

Functions
A set of functions visible to the current context. Each function is represented by a
mapping between a function name and the actual code to be invoked. Each func-
tion takes zero or more arguments and returns a single result. XPath defines a
number of core functions that are always available; XSLT defines additional
functions that go beyond those defined in the XPath specification. Any extension
functions defined in the stylesheet are visible as well.

Namespace declarations
The set of namespace declarations visible to the current context. Each one consists
of a namespace prefix and the URI with which it is associated.

[2.0] Default namespace
The default namespace is defined by the xpath-default-namespace attribute. If no
such attribute exists on any elements that enclose the context item, the default
namespace is null, regardless of any default namespace declarations
(xmlns="...") in the stylesheet.

[2.0] Documents and collections
The XPath 2.0 context also includes information about available documents, avail-
able collections, and the default collection. The functions doc(),
doc-available(), and collection() functions work with documents and collec-

550 | Appendix B: XPath Reference

tions of nodes. See the discussions of the [2.0] doc() function, the [2.0] doc-
available() function, and the [2.0] collection() function for more details.

[2.0] Miscellaneous information
Given the added complexity of XPath 2.0 and XSLT 2.0, there are a number of
other things stored in the context. Many of them apply only in certain situations
(the current group is meaningful only when we’re grouping data, for example), so
they’re listed briefly here:

• The current template rule.

• The current template mode.

• The current group and current grouping key.

• The current captured substrings (used within <xsl:analyze-string>).

• The output state, which indicates whether output is being written to a result
tree or a data structure. For example, within an <xsl:variable> element, the
output state is to a data structure.

• The implicit timezone.

• The set of named keys, used by the key() function.

• The set of named decimal formats, used by the format-number() function.

• The values of all the system properties, used by the system-property() function.

• The set of available elements, used by the element-available() function.

• The set of all known collations.

• The default collation.

• The base URI of the containing element. This is returned by the XPath
base-uri() function.

• The set of in-scope schema definitions.

XPath 1.0 Datatypes
XPath 1.0 and XSLT 1.0 define five datatypes, described in the list that follows. The
result tree fragment type is defined by XSLT 1.0 and is specific to transformations;
the other four are defined by XPath and are generic to any technology that uses XPath.
The four XPath datatypes are tersely defined in section 1 of the XPath specification;
section 11.1 of the XSLT specification defines result tree fragments.

node-set
A set of nodes. The set can be empty or it can contain any number of nodes.

[2.0] In XSLT 2.0, the node-set has been replaced by the sequence.

XPath 1.0 Datatypes | 551

boolean
The value true or false. Be aware that the strings true and false have no special
meaning or value in XPath. If you need to use the boolean values themselves, use
the functions true() and false().

number
A floating-point number. All numbers in XPath and XSLT 1.0 are implemented as
floating-point numbers; the integer or int datatype does not exist in XPath and
XSLT 1.0. To be specific, all numbers are implemented as IEEE 754 floating-point
numbers, the same standard used by the Java float and double primitive types. In
addition to ordinary numbers, there are five special values for numbers: positive
and negative infinity, positive and negative zero, and NaN, the special symbol for
anything that is not a number.

string
Zero or more characters, as defined in the XML specification.

result tree fragment
A temporary tree. You can create one with an <xsl:variable> element that uses
content (instead of the select attribute) to initialize its value. A result tree fragment
can be copied to the result tree with the <xsl:copy-of> element. It may also be
converted to a string with the <xsl:value-of> element.

[2.0] In XSLT 2.0, the result tree fragment datatype no longer exists. There is no
difference between a tree constructed from an input document and a tree con-
structed using a variable.

[2.0] XPath 2.0 Datatypes
XML Schema defines 19 primitive datatypes, and five others (xs:anyAtomicType,
xs:untyped, xs:untypedAtomic, xs:dayTimeDuration, and xs:yearMonthDuration) were
added to the XML Schema namespace by the XQuery 1.0 and XPath 2.0 Data Model
spec. We’ll review those briefly here.

XPath 1.0 used the node-set datatype as its basic data structure; XPath 2.0 uses se-
quences. Like a node-set, a sequence can contain the node types we covered earlier in
this appendix, but it can also contain atomic values of the types listed here.

Here are the 24 datatypes:

xs:anyAtomicType
The base type for all primitive atomic types, such as xs:integer or xs:string. This
datatype was added by XQuery 1.0 and XPath 2.0.

xs:anyURI
A Uniform Resource Identifier. The value can be absolute or relative, and it can
also have a fragment reference identifier. The value should follow the rules for URI
syntax as defined in RFC 2396 and amended in RFC 2732.

552 | Appendix B: XPath Reference

xs:base64Binary
Arbitrary binary data represented using the Base64 alphabet defined in RFC 2045.
Legal characters are the basic alpha characters and digits [a-zA-Z0-9], along with
the plus sign (+), the forward slash (/), and the equals sign (=). An
xs:base64Binary value can also contain any number of whitespace characters.

xs:boolean
The value true or false. In XSLT and XPath, the strings "true" and "false" have
no special meaning. To generate boolean values, use the functions true() and
false() instead.

xs:date
A date with four components: year, month, day, and an optional timezone. The
format of a complete xs:date value is 1995-04-21-05:00, where 1995 is the year,
04 is the month, 21 is the day, and -05:00 is the timezone. An optional minus sign
can appear before the year, indicating a date before the current era.

Be aware that the values for month and day must be two digits long, and the value
for the year must be at least four digits long. The value 1995-4-21 is illegal. The
seconds can be specified to any number of decimal places.

xs:dateTime
A date and time with seven components: year, month, day, hours, minutes, sec-
onds, and an optional timezone. The format of a complete xs:dateTime value is
1995-04-21T00:05:32.6-05:00, where 1995 is the year, 04 is the month, 21 is the day,
00 is the hours, 05 is the minutes, 32.6 is the seconds, and -05:00 is the timezone.
An optional minus sign can appear before the year, indicating a date and time
before the current era.

Be aware that the values for month, day, hours, minutes and seconds must be two
digits long, and the value for the year must be at least four digits long. The value
1995-4-21T00:5:32.6 is illegal. The seconds can be specified to any number of dec-
imal places.

xs:dayTimeDuration
A new datatype defined by XQuery 1.0 and XPath 2.0. It is derived from
xs:duration and can only contain the days, hours, minutes, and seconds compo-
nents of an xs:duration. For example, P2DT4H32M12.83S is a duration of 2 days, 4
hours, 32 minutes, and 12.83 seconds.

xs:decimal
A sequence of digits with a decimal point. An xs:decimal is allowed to have a
leading sign (– or +). In addition, if there is no fractional portion of the number,
the decimal point can be omitted. Sample xs:decimal values are 210,
12678967.543233, -1.23, and +100000.00.

xs:double
A number based on the IEEE double-precision 64-bit floating-point type. Like
xs:decimal, xs:double values can have a leading sign (– or +). If there is no fractional

[2.0] XPath 2.0 Datatypes | 553

portion of the number, the decimal point can be omitted. An xs:double can also
have an exponent, represented by E or e, followed by the exponent. The exponent
must be an integer.

There are three special values for xs:double: INF, -INF, and NaN. They represent
positive infinity, negative infinity, and not a number. Sample xs:double values are
-1E4, 1267.43233E12, 12.78e-2, 12, -0, 0, and INF.

xs:duration
An xs:duration is a six-dimensional period of time, with the six dimensions of
years, months, days, hours, minutes and seconds. The string P2Y3M2DT7H52M23.8S
is a duration of 2 years, 3 months, 2 days, 7 hours, 52 minutes, and 23.8 seconds.
The P character is always required. The T character separates the date portion from
the time portion and can be omitted if none of the time components are specified.
In other words, P2Y3M is a duration of 2 years and 3 months. If any component of
the duration is zero, it may be omitted, although at least one portion of the duration
must be specified. For example, PT2H is a duration of 2 hours, as is P0Y0M0DT2H0M0S.

xs:float
A number based on the IEEE single-precision 32-bit floating-point type. Like
xs:decimal, xs:float values can have a leading sign (– or +). If there is no fractional
portion of the number, the decimal point can be omitted. xs:float can also have
an exponent, represented by E or e, followed by the exponent. The exponent must
be an integer.

There are three special values for xs:float: INF, -INF, and NaN. They represent pos-
itive infinity, negative infinity, and not a number. Sample xs:float values are -1E4,
1267.43233E12, 12.78e-2, 12, -0, 0, and INF.

xs:gDay
A specific day. It is specified as three dashes followed by the two-digit day, such as
---21. A timezone is allowed.

xs:gMonth
A specific month. It is specified as two dashes followed by the two-digit month,
such as --04. A timezone is allowed.

xs:gMonthDay
A specific day in a specific month. An xs:gMonthDay is specified as two dashes, the
two-digit month, a dash, and the two-digit day, such as --04-21. A timezone is
allowed.

xs:gYear
A specific year. It is specified as number with at least four digits, such as 1995. The
year can have a leading minus sign, and a timezone is allowed.

xs:gYearMonth
A specific month in a specific year. It is specified in the format 1995-04. The year
value must be at least four digits and can have a leading minus sign. The month
value must be two digits. A timezone is allowed.

554 | Appendix B: XPath Reference

xs:hexBinary
Arbitrary hex-encoded binary data. Each binary octet in the original data is repre-
sented as two hexadecimal digits ([a-fA-F0-9]).

xs:NOTATION
This rarely used datatype represents the NOTATION attribute type defined in the XML
specification.

xs:QName
Consists of a namespace name (sometimes defined with a namespace prefix) and
a local name.

xs:string
A sequence of characters.

xs:time
A time with four components: hours, minutes, seconds, and an optional timezone.
The format of a complete xs:time value is 00:05:32.6-05:00, where 00 is the hours,
05 is the minutes, 32.6 is the seconds, and -05:00 is the timezone.

Be aware that the values for hours, minutes, and seconds must be two digits long.
The seconds can be specified to any number of decimal places.

xs:untyped
The datatype of an element that has not been validated. If an element is validated
in skip mode, that element’s type is xs:untyped as well. This datatype was added
by XQuery 1.0 and XPath 2.0.

xs:untypedAtomic
An untyped atomic value. Text that has not been assigned a more specific type is
considered xs:untypedAtomic, as is any attribute validated in skip mode. Text from
an input document that did not have a schema is xs:untypedAtomic, for example.
This datatype was added by XQuery 1.0 and XPath 2.0.

xs:yearMonthDuration
A new datatype defined by XQuery 1.0 and XPath 2.0. It is derived from
xs:duration and can contain only the year and month components of an
xs:duration. For example, P2Y3M is a duration of two years and three months.

Be aware that you do not have to have a schema-aware XSLT 2.0 pro-
cessor to use these basic datatypes. You can use the cast as, castable
as, and instance of operators with all of these datatypes. What you
can’t do without a schema-aware XSLT processor is define your own
datatypes in a schema, and then use those datatypes with these
operators.

[2.0] XPath 2.0 Datatypes | 555

Operators and Keywords
Here is the complete list of operators and keywords in XPath:

!= (not equal)
Compares its two operands and returns true if the first operand is not equal to the
second. (Complete details on how comparisons work are in the section “Boolean
Operators” in Chapter 3.)

()
Contains a parenthesized expression. In addition to using parentheses in mathe-
matical expressions, parentheses are required around test conditions in the if
operator.

* (occurrence indicator)
Represents zero or more of an item.

* (multiplication)
Multiplies its two operands together. In XPath 1.0, the two operands must be
numbers or values that can be converted to numbers.

[2.0] In XPath 2.0, we can multiply xs:yearMonthDurations and
xs:dayTimeDurations by numeric values. Valid combinations are:

• xs:yearMonthDuration * xs:double

• xs:dayTimeDuration * xs:double

+ (occurrence indicator)
Represents zero or one of an item.

+ (addition)
Adds its two operands. In XPath 1.0, the two operands must be numbers or values
that can be converted to numbers.

[2.0] In XPath 2.0, we can add dates, times, and durations in addition to numeric
values. Valid combinations are:

• xs:yearMonthDuration + xs:yearMonthDuration

• xs:dayTimeDuration + xs:dayTimeDuration

• xs:dateTime + xs:yearMonthDuration

• xs:dateTime + xs:dayTimeDuration

• xs:date + xs:yearMonthDuration

• xs:date + xs:dayTimeDuration

• xs:time + xs:dayTimeDuration

+ (unary plus)
Returns its operand with the sign unchanged. This operator doesn’t change its
operand at all.

556 | Appendix B: XPath Reference

[2.0], (sequence operator)
The comma operator concatenates items into a sequence. For example, using
select="((1, 2, 3), (4, 5), 6)" creates the new sequence (1, 2, 3, 4, 5, 6).

– (unary minus)
Returns the negation of its operand.

– (subtraction)
Subtracts its second operand from the first. In XPath 1.0, the two operands must
be numbers or values that can be converted to numbers.

[2.0] In XPath 2.0, we can subtract dates, times, and durations in addition to nu-
meric values. Valid combinations are:

• xs:yearMonthDuration - xs:yearMonthDuration

• xs:dayTimeDuration - xs:dayTimeDuration

• xs:dateTime - xs:yearMonthDuration

• xs:dateTime - xs:dayTimeDuration

• xs:date - xs:yearMonthDuration

• xs:date - xs:dayTimeDuration

• xs:time - xs:dayTimeDuration

/ (location step)
Represents a step in an location path.

// (location step)
Represents zero or more levels in a location path.

< (less than)
Compares its two operands and returns true if the first operand is less than the
second. (Complete details on how comparisons work are in the section “Boolean
Operators” in Chapter 3.)

[2.0]<< (node-before)
Compares two nodes and returns true if the first node appears before the second
in the source document. Returns false otherwise, including the case in which the
two nodes are the same. Because an attribute in XSLT can’t contain a left bracket,
this operator must be coded <<.

<= (less than or equal to)
Compares its two operands and returns true if the first operand is less than or equal
to the second. (Complete details on how comparisons work are in the section
“Boolean Operators” in Chapter 3.)

= (equal to)
Compares its two operands and returns true if the first operand is equal to the
second. (Complete details on how comparisons work are in the section “Boolean
Operators” in Chapter 3.)

Operators and Keywords | 557

> (greater than)
Compares its two operands and returns true if the first operand is greater than the
second. (Complete details on how comparisons work are in the section “Boolean
Operators” in Chapter 3.)

[2.0] >> (node-after)
Compares two nodes and returns true if the first node appears after the second in
the source document. Returns false otherwise, including the case in which the two
nodes are the same.

>= (greater than or equal to)
Compares its two operands and returns true if the first operand is greater than or
equal to the second. (Complete details on how comparisons work are in the section
“Boolean Operators” in Chapter 3.)

? (occurrence indicator)
Represents zero or one of an item.

[]
Contains a predicate in an XPath expression.

| (union)
Compares two node-sets and returns a node-set containing all of the nodes from
both node-sets. [2.0] In XPath 2.0, the vertical bar is identical to the union operator.

and
Given two expressions, returns true if both are true. Returns false if either is false.

[2.0] cast as
Casts a value to another type. Be aware that cast as causes a fatal error if the value
can’t be cast to the new type. For example, "'Lily' cast as xs:integer" causes a
fatal error. To check whether cast as will work, use the castable as operator first.

[2.0] castable as
Determines whether a value can be cast as another value type. The expression "'3'
castable as xs:integer" is true. As you’d expect,
"'Lily' castable as xs:integer" is false. Unlike the cast as operator, castable
as doesn’t actually cast the value. It simply lets us know whether the cast will work.

div (division)
Divides its first operand by the second. In XPath 1.0, the two operands must be
numbers or values that can be converted to numbers.

[2.0] In XPath 2.0, we can divide durations:

• xs:yearMonthDuration div xs:double

• xs:yearMonthDuration div xs:yearMonthDuration

• xs:dayTimeDuration div xs:double

• xs:dayTimeDuration div xs:dayTimeDuration

558 | Appendix B: XPath Reference

[2.0] eq (equal to)
Compares two atomic values and returns true if the two values are equal. The eq
operator can be used to compare the following datatypes:

• Numeric values (xs:decimal, xs:double, xs:float, xs:integer)

• String values

• Boolean values

• Durations (xs:duration, xs:yearMonthDuration, xs:dayTimeDuration)

• Dates and times (xs:date, xs:time, xs:dateTime)

• Parts of dates (xs:gYear, xs:gYearMonth, xs:gMonth, xs:gMonthDay, xs:gDay)

• QNames (xs:QName)

• Binary data (xs:hexBinary, xs:base64Binary)

• Notations (xs:NOTATION)

[2.0] every
Given a sequence and a test condition, returns true if every item in the sequence
satisfies the condition. The operator is written as every $x in $sequence satisfies
[test condition for $x].

[2.0] except
Compares two sequences of nodes and returns a sequence containing the nodes
that appear in the first sequence but not the second. All duplicate nodes are re-
moved. The except operator compares the nodes themselves, not their values.

[2.0] for
This operator is an iterator across a sequence. The operator, written as for $x in
$sequence return ..., iterates through all the values in $sequence. For each itera-
tion through the sequence, the value $x represents the current value.

[2.0] ge (greater than or equal to)
Compares two atomic values and returns true if the first value is greater than or
equal to the second. The ge operator can be used to compare the following data-
types:

• Numeric values (xs:decimal, xs:double, xs:float, xs:integer)

• String values

• Boolean values

• Durations (xs:yearMonthDuration and xs:dayTimeDuration, but not xs:duration)

• Dates and times (xs:date, xs:time, xs:dateTime)

[2.0] gt (greater than)
Compares two atomic values and returns true if the first value is greater than the
second. The gt operator can be used to compare the following datatypes:

• Numeric values (xs:decimal, xs:double, xs:float, xs:integer)

• String values

Operators and Keywords | 559

• Boolean values

• Durations (xs:yearMonthDuration and xs:dayTimeDuration, but not xs:duration)

• Dates and times (xs:date, xs:time, xs:dateTime)

[2.0] idiv (integer division)
Divides its first operand by the second. Any remainder is discarded, and the integer
portion is returned.

[2.0] if
Evaluates an expression, then performs one action or another depending on wheth-
er the expression evaluated to true or false. The expression must be (in paren-
theses), and there must be a then and an else.

[2.0] instance of
Determines whether an argument is an instance of a particular datatype. The ex-
pression "3 instance of xs:integer" is true; "'j' instance of xs:integer" is
false.

[2.0] intersect
Compares two sequences of nodes and returns a sequence containing the nodes
that appear in both sequences. All duplicate nodes are removed. The intersect
operator compares the nodes themselves, not their values.

[2.0] is
Compares two nodes and returns true if they are the same node. If two different
nodes have the same values, node1 is node2 returns false. The is operator com-
pares the nodes, not their values.

[2.0] le (less than or equal to)
Compares two atomic values and returns true if the first value is less than or equal
to the second. The le operator can be used to compare the following datatypes:

• Numeric values (xs:decimal, xs:double, xs:float, xs:integer)

• String values

• Boolean values

• Durations (xs:yearMonthDuration and xs:dayTimeDuration, but not xs:duration)

• Dates and times (xs:date, xs:time, xs:dateTime)

[2.0] lt (less than)
Compares two atomic values and returns true if the first value is less than the
second. The lt operator can be used to compare the following datatypes:

• Numeric values (xs:decimal, xs:double, xs:float, xs:integer)

• String values

• Boolean values

• Durations (xs:yearMonthDuration and xs:dayTimeDuration, but not xs:duration)

• Dates and times (xs:date, xs:time, xs:dateTime)

560 | Appendix B: XPath Reference

mod (modulus)
Divides its first operand by the second and returns the remainder.

[2.0] ne (not equal to)
Compares two atomic values and returns true if the two values are not equal. The
ne operator can be used to compare the following datatypes:

• Numeric values (xs:decimal, xs:double, xs:float, xs:integer)

• Boolean values

• String values

• Durations (xs:duration, xs:yearMonthDuration, xs:dayTimeDuration)

• Dates and times (xs:date, xs:time, xs:dateTime)

• Parts of dates (xs:gYear, xs:gYearMonth, xs:gMonth, xs:gMonthDay, xs:gDay)

• QNames (xs:QName)

• Binary data (xs:hexBinary, xs:base64Binary)

• Notations (xs:NOTATION)

or
Given two expressions, returns true if either or both are true. Returns false if both
are false.

[2.0] some
Given a sequence and a test condition, returns true if at least one item in the se-
quence satisfies the condition. The operator is written some $x in $sequence sat
isfies [test condition for $x].

[2.0] to (range)
Creates a sequence of integers. The expression 1 to 10 creates a sequence of 10
integers, ordered 1, 2, 3....

[2.0] treat as
Disables XPath 2.0’s static type checking. If $a is of type xs:integer* and a function
needs a parameter of type xs:integer, we can use the expression $a treat as
xs:integer to get around the static type checking. At runtime, if $a is a sequence
of one xs:integer, treat as works without any errors. On the other hand, if $a is
anything else, including an empty sequence, a runtime error occurs.

[2.0] union
Compares two sequences of nodes and returns a sequence containing all of the
nodes from both sequences. All duplicate nodes are removed. The union operator
compares the nodes themselves, not their values.

Operators and Keywords | 561

Operator Precedence—XPath 1.0
Here is the precedence of operators in XPath 1.0, arranged from lowest to highest:

• or

• and

• =, !=, <, <=, >, >=

• + (addition), – (subtraction)

• * (multiplication), div, mod

• |

• – (unary minus), + (unary plus)

• /, //

• [], (), { }

[2.0] Operator Precedence—XQuery 1.0 and XPath 2.0
Here is the precedence of operators in XQuery 1.0 and XPath 2.0, arranged from lowest
to highest:

• , (comma)

• for, some, every, if

• or

• and

• eq, ne, lt, le, gt, ge, =, !=, <, <=, >, >=, is, <<, >>

• to

• + (addition), – (subtraction)

• * (multiplication), div, idiv, mod

• union, |

• intersect, except

• instance of

• treat as

• castable as

• cast as

• – (unary minus), + (unary plus)

• ?, * (occurrence indicator), + (occurrence indicator)

• /, //

• [], (), { }

562 | Appendix B: XPath Reference

APPENDIX C

XSLT, XPath, and XQuery
Function Reference

This section lists all functions defined by XSLT 1.0 and 2.0, XPath 1.0 and 2.0, and
XQuery 1.0.

Kinds of Functions
Including the new functions added by XSLT 2.0 and XPath 2.0, there are now more
than 100 useful functions. The following presents a categorized list of them.

Accessor Functions
XPath 2.0 provides accessor functions to expose certain properties of items, sequences,
and documents:

• [2.0] base-uri()

• [2.0] data()

• [2.0] document-uri()

• [2.0 – Schema] nilled()

• [2.0] node-name()

• string()

Boolean Functions
These functions work with Boolean values:

• false()

• not()

• true()

563

Constructor Functions
There are two functions for creating xs:dateTime and xs:QName values:

• [2.0] dateTime()

• [2.0] QName()

Context Functions
The XPath context has a number of properties. These functions allow us to access those
properties:

• [2.0] collection()

• current()

• [2.0] current-date()

• [2.0] current-dateTime()

• [2.0] current-time()

• [2.0] default-collation()

• element-available()

• function-available()

• [2.0] implicit-timezone()

• last()

• position()

• [2.0] static-base-uri()

• [2.0] type-available()

The functions element-available(), function-available(), and [2.0]
type-available() are actually defined in XSLT 2.0.

Cross-Referencing and Grouping Functions
These functions help you resolve unique identifiers and references between elements
and attributes:

• [2.0] current-group()

• [2.0] current-grouping-key()

• generate-id()

• id()

564 | Appendix C: XSLT, XPath, and XQuery Function Reference

• [2.0] idref()

• key()

Date, Time, and Duration Functions
These functions let you work with date, time and duration values. These are the XML
Schema types xs:date, xs:dateTime, xs:dayTimeDuration, xs:duration, xs:time, and
xs:yearMonthDuration:

• [2.0] adjust-date-to-timezone()

• [2.0] adjust-dateTime-to-timezone()

• [2.0] adjust-time-to-timezone()

• [2.0] day-from-date()

• [2.0] day-from-dateTime()

• [2.0] days-from-duration()

• [2.0] format-date()

• [2.0] format-dateTime()

• [2.0] format-time()

• [2.0] hours-from-dateTime()

• [2.0] hours-from-duration()

• [2.0] hours-from-time()

• [2.0] minutes-from-dateTime()

• [2.0] minutes-from-duration()

• [2.0] minutes-from-time()

• [2.0] month-from-date()

• [2.0] month-from-dateTime()

• [2.0] months-from-duration()

• [2.0] seconds-from-dateTime()

• [2.0] seconds-from-duration()

• [2.0] seconds-from-time()

• [2.0] timezone-from-date()

• [2.0] timezone-from-dateTime()

• [2.0] timezone-from-time()

• [2.0] year-from-date()

• [2.0] year-from-dateTime()

• [2.0] years-from-duration()

Kinds of Functions | 565

The [2.0] format-date(), [2.0] format-dateTime(), and [2.0] format-
time() functions are defined in XSLT 2.0.

Node Functions
These functions perform operations on nodes:

• lang()

• local-name()

• name()

• namespace-uri()

• number()

• [2.0] root()

Numeric Functions
These functions work with numeric values. Some of them work with a single number,
while others work with node-sets or sequences:

• [2.0] abs()

• [2.0] avg()

• ceiling()

• floor()

• format-number()

• [2.0] max()

• [2.0] min()

• round()

• [2.0] round-half-to-even()

• sum()

QName Functions
These functions work with QNames (the XML Schema datatype xs:QName):

• [2.0] in-scope-prefixes()

• [2.0] local-name-from-QName()

• [2.0] namespace-uri-for-prefix()

• [2.0] namespace-uri-from-QName()

• [2.0] prefix-from-QName()

566 | Appendix C: XSLT, XPath, and XQuery Function Reference

• [2.0] QName()

• [2.0] resolve-QName()

Regular Expression Functions
These functions are part of the regular expression support in XSLT 2.0 and XPath 2.0:

• [2.0] matches()

• [2.0] regex-group()

• [2.0] replace()

• [2.0] tokenize()

Sequence or Node-Set Functions
These functions work with [1.0] node-sets or [2.0] sequences:

• [2.0] avg()

• boolean()

• count()

• [2.0] deep-equal()

• [2.0] distinct-values()

• [2.0] doc-available()

• [2.0] doc()

• [2.0] empty()

• [2.0] exactly-one()

• [2.0] exists()

• [2.0] index-of()

• [2.0] insert-before()

• [2.0] max()

• [2.0] min()

• [2.0] one-or-more()

• [2.0] remove()

• [2.0] reverse()

• [2.0] subsequence()

• sum()

• [2.0] unordered()

• [2.0] zero-or-one()

Kinds of Functions | 567

String Functions
These functions help you manipulate strings:

• [2.0] codepoint-equal()

• [2.0] codepoints-to-string()

• [2.0] compare()

• concat()

• contains()

• [2.0] encode-for-uri()

• [2.0] ends-with()

• [2.0] escape-html-uri()

• [2.0] iri-to-uri()

• [2.0] lower-case()

• [2.0] matches()

• normalize-space()

• [2.0] normalize-unicode()

• [2.0] replace()

• starts-with()

• [2.0] string-join()

• string-length()

• [2.0] string-to-codepoints()

• substring-after()

• substring-before()

• substring()

• [2.0] tokenize()

• translate()

• [2.0] upper-case()

Miscellaneous Functions
Here are functions that don’t fit under any other category:

• [2.0] collection()

• [2.0] doc-available()

• [2.0] doc()

• document()

• [2.0] error()

568 | Appendix C: XSLT, XPath, and XQuery Function Reference

• [2.0] resolve-uri()

• system-property()

• [2.0] trace()

• [2.0] unparsed-entity-public-id()

• unparsed-entity-uri()

• [2.0] unparsed-text-available()

• [2.0] unparsed-text()

Collation Functions
There are several functions that allow you to specify a collation function that compares
or sorts text based on the conventions of specific languages. (All of these have been
listed previously as string or sequence functions. This subset contains all the functions
that work with collations.)

• [2.0] compare()

• contains()

• [2.0] deep-equal()

• [2.0] distinct-values()

• [2.0] index-of()

• substring-after()

• substring-before()

[2.0] abs()
Returns the absolute value of a numeric argument.

Syntax
numeric? abs(numeric?)

Input
A numeric value.

Output
The absolute value of the given numeric value.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 6.4, “Functions on Numeric
Values.”

[2.0] abs( ) | 569

Example
Here’s a short stylesheet that tests the abs() function:

<?xml version="1.0"?>
<!-- abs.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Here are some tests of the abs() function:
</xsl:text>
 <xsl:text>
 abs(7) = </xsl:text>
 <xsl:value-of select="abs(7)"/>
 <xsl:text>
 abs(-7) = </xsl:text>
 <xsl:value-of select="abs(-7)"/>
 <xsl:text>
 abs(0) = </xsl:text>
 <xsl:value-of select="abs(0)"/>
 <xsl:text>
 abs(-0) = </xsl:text>
 <xsl:value-of select="abs(-0)"/>

 <!-- An XSLT 2.0 processor won’t run this example at all. -->
 <!-- <xsl:value-of select="abs('x')"/> -->

 <xsl:variable name="testSequence" as="xs:integer*" select="1 to 10"/>
 <xsl:text>
 $testSequence = </xsl:text>
 <xsl:value-of select="$testSequence" separator=", "/>
 <xsl:text>
 abs(count($testSequence)) = </xsl:text>
 <xsl:value-of select="abs(count($testSequence))"/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here are some tests of the abs() function:

 abs(7) = 7
 abs(-7) = 7
 abs(0) = 0
 abs(-0) = 0
 $testSequence = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
 abs(count($testSequence)) = 10

The last call to abs() uses the count() function to create a numeric value. As we mentioned
in a comment in the stylesheet, any attempt to pass a nonnumeric value to the abs() function
is a static error. You can uncomment the line <xsl:value-of select="abs('x')/> and try it
yourself if you like.

[2.0] adjust-date-to-timezone()
Adjusts an xs:date value to a particular timezone.

570 | Appendix C: XSLT, XPath, and XQuery Function Reference

Syntax
xs:date? adjust-date-to-timezone(xs:date?)
xs:date? adjust-date-to-timezone(xs:date?, $timezone as xs:dayTimeDuration)

Input
An optional xs:date value and an optional xs:dayTimeDuration. If no xs:date is provided, the
empty sequence is returned. If an xs:dayTimeDuration is provided, the date is adjusted to the
timezone it contains; otherwise, the XSLT processor uses the default timezone as returned by
[2.0] implicit-timezone(). Finally, if the timezone provided by the xs:dayTimeDuration is the
empty sequence, the function returns the date with the timezone information removed.

Output
An xs:date value adjusted to the appropriate timezone.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.7, “Timezone Adjustment
Functions on Dates and Time Values.”

Example
Here’s a stylesheet that uses the adjust-date-to-timezone() in several ways:

<?xml version="1.0"?>
<!-- adjust-date-to-timezone.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="gmt" select="xs:dayTimeDuration('PT0H')"/>
 <xsl:variable name="est" select="xs:dayTimeDuration('-PT5H')"/>
 <xsl:variable name="cst" select="xs:dayTimeDuration('-PT6H')"/>
 <xsl:variable name="minusTen" select="xs:dayTimeDuration('-PT10H')"/>

 <xsl:variable name="LilysBirthday" as="xs:date"
 select="xs:date('1995-04-21')"/>
 <xsl:variable name="format"
 select="'[FNn], [MNn] [D1], [Y0001]'"/>

 <xsl:text>
Here are some tests of the </xsl:text>
 <xsl:text>adjust-date-to-timezone() function:
</xsl:text>

 <xsl:text>
 My daughter was born on 	</xsl:text>
 <xsl:value-of
 select="format-date($LilysBirthday, $format)"/>
 <xsl:text>
 adjusted to GMT: 		</xsl:text>
 <xsl:value-of
 select="format-date(
 adjust-date-to-timezone($LilysBirthday, $gmt),
 $format)"/>

[2.0] adjust-date-to-timezone( ) | 571

 <xsl:text>
 adjusted to EST: 		</xsl:text>
 <xsl:value-of
 select="format-date
 (adjust-date-to-timezone($LilysBirthday, $est),
 $format)"/>

 <xsl:text>
 adjusted to CST: 		</xsl:text>
 <xsl:value-of
 select="format-date
 (adjust-date-to-timezone($LilysBirthday, $cst),
 $format)"/>

 <xsl:text>

 </xsl:text>
 <xsl:text>The current date in the default timezone is: </xsl:text>
 <xsl:text>
				</xsl:text>
 <xsl:value-of
 select="format-date(
 adjust-date-to-timezone(current-date()),
 $format)"/>

 <xsl:text>
 adjusted to GMT: 		</xsl:text>
 <xsl:value-of
 select="format-date
 (adjust-date-to-timezone(current-date(), $gmt),
 $format)"/>

 <xsl:text>
 adjusted to GMT-10: 	</xsl:text>
 <xsl:value-of
 select="format-date(
 adjust-date-to-timezone(current-date(), $minusTen),
 $format)"/>
 </xsl:template>

</xsl:stylesheet>

Here are the results from this stylesheet:

Here are some tests of the adjust-date-to-timezone() function:

 My daughter was born on Friday, April 21, 1995
 adjusted to GMT: Friday, April 21, 1995
 adjusted to EST: Friday, April 21, 1995
 adjusted to CST: Friday, April 21, 1995

 The current date in the default timezone is:
 Thursday, November 16, 2007
 adjusted to GMT: Thursday, November 16, 2007
 adjusted to GMT-10: Wednesday, November 15, 2007

Notice that we used the format-date() function to print the xs:date values.

See Also
The definitions of the [2.0] adjust-dateTime-to-timezone(), [2.0] adjust-time-to-
timezone(), and [2.0] format-date() functions.

572 | Appendix C: XSLT, XPath, and XQuery Function Reference

[2.0] adjust-dateTime-to-timezone()
Adjusts an xs:dateTime value to a particular timezone.

Syntax
xs:dateTime? adjust-dateTime-to-timezone(xs:dateTime?)
xs:dateTime? adjust-dateTime-to-timezone(xs:dateTime?,
 $timezone as xs:dayTimeDuration?)

Inputs
An optional xs:dateTime value and an optional xs:dayTimeDuration. If no xs:dateTime is pro-
vided, the empty sequence is returned. If an xs:dayTimeDuration is supplied, the
xs:dateTime value is adjusted to the timezone it contains. Otherwise, adjust-dateTime-
to-timezone() adjusts the xs:dateTime value to the default timezone as returned by [2.0]
implicit-timezone(). Finally, if the timezone provided is the empty sequence, the function
returns the xs:dateTime with the timezone information removed.

Output
The given xs:dateTime value adjusted to the appropriate timezone.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.7, “Timezone Adjustment
Functions on Dates and Time Values.”

Example
This stylesheet uses adjust-dateTime-to-timezone() in several different ways. The default
timezone here is GMT -4, representing Eastern Daylight Time (EDT).

<?xml version="1.0"?>
<!-- adjust-datetime-to-timezone.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="gmt" select="xs:dayTimeDuration('PT0H')"/>
 <xsl:variable name="est" select="xs:dayTimeDuration('-PT5H')"/>
 <xsl:variable name="cst" select="xs:dayTimeDuration('-PT6H')"/>
 <xsl:variable name="minusTen" select="xs:dayTimeDuration('-PT10H')"/>

 <xsl:variable name="LilysBirthday" as="xs:dateTime"
 select="xs:dateTime('1995-04-21T00:43:00-05:00')"/>
 <xsl:variable name="format"
 select="'[FNn], [MNn] [D1], [Y0001], at [h1]:[m01]:[s01]'"/>

 <xsl:text>
Here are some tests of the </xsl:text>
 <xsl:text>adjust-dateTime-to-timezone() function:
</xsl:text>

[2.0] adjust-dateTime-to-timezone( ) | 573

 <xsl:text>
 My daughter was born on 	</xsl:text>
 <xsl:value-of
 select="format-dateTime($LilysBirthday, $format)"/>
 <xsl:text>
 adjusted to GMT: 		</xsl:text>
 <xsl:value-of
 select="format-dateTime(
 adjust-dateTime-to-timezone($LilysBirthday, $gmt),
 $format)"/>

 <xsl:text>
 adjusted to EST: 		</xsl:text>
 <xsl:value-of
 select="format-dateTime
 (adjust-dateTime-to-timezone($LilysBirthday, $est),
 $format)"/>

 <xsl:text>
 adjusted to CST: 		</xsl:text>
 <xsl:value-of
 select="format-dateTime
 (adjust-dateTime-to-timezone($LilysBirthday, $cst),
 $format)"/>

 <xsl:text>

 </xsl:text>
 <xsl:text>The current time in the default timezone is: </xsl:text>
 <xsl:text>
 				</xsl:text>
 <xsl:value-of
 select="format-dateTime(
 adjust-dateTime-to-timezone(current-dateTime()),
 $format)"/>

 <xsl:text>
 adjusted to GMT: 		</xsl:text>
 <xsl:value-of
 select="format-dateTime
 (adjust-dateTime-to-timezone(current-dateTime(), $gmt),
 $format)"/>

 <xsl:text>
 adjusted to GMT-10: 	</xsl:text>
 <xsl:value-of
 select="format-dateTime(
 adjust-dateTime-to-timezone(current-dateTime(), $minusTen),
 $format)"/>
 </xsl:template>

</xsl:stylesheet>

Here are the results of our stylesheet:

Here are some tests of the adjust-dateTime-to-timezone() function:

 My daughter was born on Friday, April 21, 1995, at 12:43:00
 adjusted to GMT: Friday, April 21, 1995, at 5:43:00
 adjusted to EST: Friday, April 21, 1995, at 12:43:00
 adjusted to CST: Thursday, April 20, 1995, at 11:43:00

 The current time in the default timezone is:
 Thursday, November 16, 2006, at 3:34:29

574 | Appendix C: XSLT, XPath, and XQuery Function Reference

 adjusted to GMT: Thursday, November 16, 2006, at 8:34:29
 adjusted to GMT-10: Wednesday, November 15, 2006, at 10:34:29

The default timezone is considered part of the context; you can invoke the function implicit-
timezone() to get the default. See the definition of the [2.0] implicit-timezone() function for
more information. Also notice that we used the format-dateTime() function to format the
xs:dateTime values.

See Also
The definitions of the [2.0] adjust-date-to-timezone(), [2.0] adjust-time-to-timezone(),
and [2.0] format-dateTime() functions.

[2.0] adjust-time-to-timezone()
Adjusts an xs:time value to a particular timezone.

Syntax
xs:time? adjust-time-to-timezone(xs:time?)
xs:time? adjust-time-to-timezone(xs:time?, $timezone as xs:dayTimeDuration?)

Input
An optional xs:time value and an optional xs:dayTimeDuration. If no xs:date is provided, the
empty sequence is returned. If an xs:dayTimeDuration is provided, the xs:time value is adjusted
to the timezone contained in the xs:dayTimeDuration; otherwise, the XSLT processor uses the
default timezone as returned by [2.0] implicit-timezone(). Finally, if the timezone provided
by the xs:dayTimeDuration is the empty sequence, the function returns the xs:time with the
timezone information removed.

Output
The given xs:time value adjusted to the appropriate timezone.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.7, “Timezone Adjustment
Functions on Dates and Time Values.”

Example
The following stylesheet tests the adjust-time-to-timezone() function:

<?xml version="1.0"?>
<!-- adjust-time-to-timezone.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

[2.0] adjust-time-to-timezone( ) | 575

 <xsl:variable name="gmt" select="xs:dayTimeDuration('PT0H')"/>
 <xsl:variable name="est" select="xs:dayTimeDuration('-PT5H')"/>
 <xsl:variable name="cst" select="xs:dayTimeDuration('-PT6H')"/>
 <xsl:variable name="minusTen" select="xs:dayTimeDuration('-PT10H')"/>

 <xsl:variable name="LilysBirthday" as="xs:time"
 select="xs:time('00:43:00-05:00')"/>
 <xsl:variable name="format"
 select="'[h1]:[m01]:[s01] [P]'"/>

 <xsl:text>
Here are some tests of the </xsl:text>
 <xsl:text>adjust-time-to-timezone() function:
</xsl:text>

 <xsl:text>
 My daughter was born at 	</xsl:text>
 <xsl:value-of
 select="format-time($LilysBirthday, $format)"/>
 <xsl:text>
 adjusted to GMT: 		</xsl:text>
 <xsl:value-of
 select="format-time(
 adjust-time-to-timezone($LilysBirthday, $gmt),
 $format)"/>

 <xsl:text>
 adjusted to EST: 		</xsl:text>
 <xsl:value-of
 select="format-time
 (adjust-time-to-timezone($LilysBirthday, $est),
 $format)"/>

 <xsl:text>
 adjusted to CST: 		</xsl:text>
 <xsl:value-of
 select="format-time
 (adjust-time-to-timezone($LilysBirthday, $cst),
 $format)"/>

 <xsl:text>

 </xsl:text>
 <xsl:text>The current time in the default timezone is: </xsl:text>
 <xsl:text>
 				</xsl:text>
 <xsl:value-of
 select="format-time(
 adjust-time-to-timezone(current-time()),
 $format)"/>

 <xsl:text>
 adjusted to GMT: 		</xsl:text>
 <xsl:value-of
 select="format-time
 (adjust-time-to-timezone(current-time(), $gmt),
 $format)"/>

 <xsl:text>
 adjusted to GMT-10: 	</xsl:text>
 <xsl:value-of
 select="format-time(
 adjust-time-to-timezone(current-time(), $minusTen),
 $format)"/>
 </xsl:template>

576 | Appendix C: XSLT, XPath, and XQuery Function Reference

</xsl:stylesheet>

Here are the stylesheet results:

Here are some tests of the adjust-time-to-timezone() function:

 My daughter was born at 12:43:00 a.m.
 adjusted to GMT: 5:43:00 a.m.
 adjusted to EST: 12:43:00 a.m.
 adjusted to CST: 11:43:00 p.m.

 The current time in the default timezone is:
 3:35:44 a.m.
 adjusted to GMT: 8:35:44 a.m.
 adjusted to GMT-10: 10:35:44 p.m.

Notice that we used the format-time() function to print the xs:time values.

See Also
The definitions of the [2.0] adjust-date-to-timezone(), [2.0] adjust-dateTime-to-
timezone(), and [2.0] format-time() functions.

[2.0] avg()
Given a sequence, returns the average value of the items in the sequence.

Syntax
xs:anyAtomicType? avg(xs:anyAtomicType*)

Input
A sequence of values.

Output
The average of the given sequence. You can calculate averages for six different datatypes:
xs:integer, xs:double, xs:decimal, xs:float, xs:yearMonthDuration, and
xs:dayTimeDuration.

Given a sequence of numeric values, the XSLT processor returns the average of those numbers,
converting datatypes as necessary. Given a sequence of durations, the XSLT processor returns
the average of those durations.

The avg() function assumes you’ll send it a sequence containing sensible data; if not, the
XSLT processor throws an error. Asking for the average of the sequence (42, 57, 'blue')
returns an error, as you’d expect.

Some notes about how the avg() function works:

[2.0] avg( ) | 577

• To calculate the average of a sequence of durations, all the values must be
xs:dayTimeDurations or xs:yearMonthDurations. You can’t mix the two types of
durations; if you do, the XSLT processor throws an error.

• If all the items in the sequence are of type xs:untypedAtomic, the XSLT processor
attempts to cast each value to xs:double. If any item in the sequence can’t be con-
verted to an xs:double, the XSLT processor throws an error.

• Finally, if you pass the avg() function the empty sequence, the function returns
the empty sequence. Although you’re not giving the function any useful data in
this case, the XSLT processor doesn’t throw an error.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.4, “Aggregate Functions.”

Example
Here’s a stylesheet that calculates the averages of several sequences:

<?xml version="1.0"?>
<!-- avg.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="seq1" select="(3, 5, 18)"/>
 <xsl:variable name="seq2" select="(3, 5, 48.273, 2.9e3)"/>

 <xsl:variable name="value1" as="xs:integer" select="42"/>
 <xsl:variable name="value2" as="xs:double" select="2718.28E-3"/>
 <xsl:variable name="value3" as="xs:float" select="98.6"/>
 <xsl:variable name="value4" as="xs:decimal" select="2.54"/>
 <xsl:variable name="seq3"
 select="($value1, $value2, $value3, $value4)"/>

 <xsl:variable name="seq4"
 select="(xs:yearMonthDuration('P3Y8M'),
 xs:yearMonthDuration('P4Y2M'),
 xs:yearMonthDuration('P6Y4M'))"/>
 <xsl:variable name="seq5"
 select="(xs:dayTimeDuration('P2DT4H23M12.2S'),
 xs:dayTimeDuration('P3DT8H17M'),
 xs:dayTimeDuration('P3D'))"/>

 <xsl:text>
Here are some tests of the avg() function:
</xsl:text>

 <xsl:text>
 avg(</xsl:text>
 <xsl:value-of select="$seq1" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="format-number(avg($seq1), '#.###')"/>

578 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text>

 avg(</xsl:text>
 <xsl:value-of select="$seq2" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="format-number(avg($seq2), '#.###')"/>

 <xsl:text>

 avg(</xsl:text>
 <xsl:value-of select="$seq3" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="format-number(avg($seq3), '#.###')"/>

 <xsl:text>

 avg(</xsl:text>
 <xsl:value-of select="$seq4" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="avg($seq4)"/>

 <xsl:text>

 In text, the average of</xsl:text>
 <xsl:for-each select="$seq4">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="years-from-duration(.)"/>
 <xsl:text> years and </xsl:text>
 <xsl:value-of select="months-from-duration(.)"/>
 <xsl:text> months (</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>)</xsl:text>
 </xsl:for-each>

 <xsl:text>
 is </xsl:text>
 <xsl:value-of select="years-from-duration(avg($seq4))"/>
 <xsl:text> years and </xsl:text>
 <xsl:value-of select="months-from-duration(avg($seq4))"/>
 <xsl:text> months (</xsl:text>
 <xsl:value-of select="avg($seq4)"/>
 <xsl:text>).</xsl:text>

 <xsl:text>

 avg(</xsl:text>
 <xsl:value-of select="$seq5" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:variable name="avg5” select="avg($seq5)"/>
 <xsl:value-of select="$avg5"/>

 <xsl:text>

 In text, the average of</xsl:text>
 <xsl:for-each select="$seq5">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="days-from-duration(.)"/>
 <xsl:text> days, </xsl:text>
 <xsl:value-of select="hours-from-duration(.)"/>
 <xsl:text> hours, </xsl:text>
 <xsl:value-of select="minutes-from-duration(.)"/>
 <xsl:text> minutes and </xsl:text>
 <xsl:value-of
 select="format-number(seconds-from-duration(.), '#.##')"/>
 <xsl:text> seconds (</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>)</xsl:text>
 </xsl:for-each>

[2.0] avg( ) | 579

 <xsl:text>
 is </xsl:text>
 <xsl:value-of select="days-from-duration($avg5)"/>
 <xsl:text> days, </xsl:text>
 <xsl:value-of select="hours-from-duration($avg5)"/>
 <xsl:text> hours, </xsl:text>
 <xsl:value-of select="minutes-from-duration($avg5)"/>
 <xsl:text> minutes and </xsl:text>
 <xsl:value-of
 select="format-number(seconds-from-duration($avg5), '#.##')"/>
 <xsl:text> seconds.</xsl:text>

 </xsl:template>

</xsl:stylesheet>

Here are the results from this stylesheet:

Here are some tests of the avg() function:

 avg(3, 5, 18) = 8.667

 avg(3, 5, 48.273, 2900) = 739.068

 avg(42, 2.71828, 98.6, 2.54) = 36.465

 avg(P3Y8M, P4Y2M, P6Y4M) = P4Y9M

 In text, the average of
 3 years and 8 months (P3Y8M)
 4 years and 2 months (P4Y2M)
 6 years and 4 months (P6Y4M)
 is 4 years and 9 months (P4Y9M).

 avg(P2DT4H23M12.2S, P3DT8H17M, P3D) = P2DT20H13M24.066666S

 In text, the average of
 2 days, 4 hours, 23 minutes and 12.2 seconds (P2DT4H23M12.2S)
 3 days, 8 hours, 17 minutes and 0 seconds (P3DT8H17M)
 3 days, 0 hours, 0 minutes and 0 seconds (P3D)
 is 2 days, 20 hours, 13 minutes and 24.07 seconds.

The stylesheet demonstrates five different types of sequences. The first is all integers, and the
second is a sequence of numbers. All the values in the first two sequences can be converted
to numbers, so the results are what we expect. The third sequence features four numeric
values, each of which is a different numeric type (xs:integer, xs:decimal, xs:float, and
xs:double). The last two sequences are made up of the two types of durations. The stylesheet
also uses functions such as years-from-duration(), and format-number() to format the data.

The sequence (3, 5, '18') won’t work because one of the items in the sequence is a string.
Although the string '18' could obviously be converted to a number with the number() func-
tion, the avg() function puts the burden on us to make sure all the literal values in the sequence
are numbers or durations. However, if the sequence contains untyped values (nodes read in
from a document that doesn’t use a schema, for example), the XSLT processor attempts to

580 | Appendix C: XSLT, XPath, and XQuery Function Reference

cast all of those values to xs:double. If any of them can’t be cast to xs:double, the XSLT
processor raises an error.

A final note: if you want to store a numeric average in a typed variable, the xs:double datatype
is the most flexible. Using the most restrictive numeric type, xs:integer, is a really bad idea.
For example, the XSLT processor binds this variable without complaint:

<xsl:variable name="avg1" as="xs:integer" select="avg((3, 5, 4))"/>

On the other hand, this generates a static error:

<xsl:variable name="avg2" as="xs:integer" select="avg((3, 5, 18))"/>

If we use avg() to set the value of an integer variable dynamically, the XSLT processor throws
an error if the returned value isn’t an xs:integer. We could get this to work by casting the
result to an xs:integer:

<xsl:variable name="avg2" as="xs:integer"
 select="xs:integer(avg((3, 5, 18)))"/>

[2.0] base-uri()
Returns the base URI of a given node.

Syntax
xs:anyURI? base-uri(node()?)
xs:anyURI? base-uri()

Input
A node. Without an argument, base-uri() returns the base URI of the context item.

Output
The base URI of the given node.

The base-uri() function works with the XML Base specification. By default the base URI is
the URI of the XML document itself, but a document can change that by using the xml:base
attribute on any element.

If a given node does not have a base URI property and the node has a parent, base-uri()
looks at the node’s ancestors. The function attempts to find the base URI of the node’s parent,
then its parent’s parent, and so forth, until it either finds a base URI property or reaches a
node that does not have a parent. If no base URI property can be found, base-uri() returns
the empty sequence. If the argument to base-uri() is the empty sequence, the function returns
the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 2, “Accessors.”

[2.0] base-uri( ) | 581

Example
Here’s a revised version of our list of cars. Notice that the <manufacturer> elements all use the
xml:base attribute to define a new base URI:

<?xml version="1.0" encoding="utf-8"?>
<!-- xmlbase.xml -->
<cars>
 <manufacturer name="Chevrolet"
 xml:base="http://www.chevrolet.com/">
 <car>Cavalier</car>
 <car>Corvette</car>
 <car>Impala</car>
 <car>Malibu</car>
 </manufacturer>
 <manufacturer name="Ford"
 xml:base="http://www.ford.com/">
 <car>Pinto</car>
 <car>Mustang</car>
 <car>Taurus</car>
 </manufacturer>
 <manufacturer name="Volkswagen"
 xml:base="http://www.vw.com/">
 <car>Beetle</car>
 <car>Jetta</car>
 <car>Passat</car>
 <car>Touraeg</car>
 </manufacturer>
</cars>

We’ll test the base-uri() function with this stylesheet:

<?xml version="1.0"?>
<!-- base-uri.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the base-uri() function:</xsl:text>

 <xsl:text>

 The base URI for the </xsl:text>
 <xsl:text>document root is:
 </xsl:text>
 <xsl:value-of select="base-uri()"/>

 <xsl:text>

 The base URI for the </xsl:text>
 <xsl:text><cars> element is:
 </xsl:text>
 <xsl:value-of select="base-uri(cars)"/>

 <xsl:for-each select="/cars/manufacturer">
 <xsl:text>

 The base URI for the </xsl:text>
 <xsl:text>manufacturer named </xsl:text>
 <xsl:value-of select="@name"/>
 <xsl:text>:
 </xsl:text>
 <xsl:value-of select="base-uri()"/>

582 | Appendix C: XSLT, XPath, and XQuery Function Reference

 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

When running this stylesheet against our modified list of cars, we get these results:

Tests of the base-uri() function:

 The base URI for the document root is:
 file:/C:/projects/XSLTbookV2/AppendixC/xmlbase.xml

 The base URI for the <cars> element is:
 file:/C:/projects/XSLTbookV2/AppendixC/xmlbase.xml

 The base URI for the manufacturer named Chevrolet:
 http://www.chevrolet.com/

 The base URI for the manufacturer named Ford:
 http://www.ford.com/

 The base URI for the manufacturer named Volkswagen:
 http://www.vw.com/

The base-uri() function would be very useful if we were generating links from this XML
document. Here’s a stylesheet that creates links for the <car> elements using the base-uri()
function:

<?xml version="1.0"?>
<!-- base-uri2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" include-content-type="no"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Here are some cars</title>
 </head>
 <body>
 <h1>Here are some cars:</h1>
 <xsl:apply-templates select="cars/manufacturer"/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="manufacturer">
 <h2>
 <xsl:value-of select="@name"/>
 </h2>

 <xsl:for-each select="car">

 <xsl:value-of select="."/>

[2.0] base-uri( ) | 583

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

To generate the links, we use an attribute value template and the concat() function to combine
the value of the base URI, the value of the current element (the dot represents the <car> we’re
currently processing), and the string .html. This generates a series of links that look like this:

<h2>Volkswagen</h2>

 Beetle
 Jetta
 Passat
 Touraeg

Our assumption here is that the base URI property ends with a slash, as all the xml:base
attributes in our source document did. More robust code would check the value returned by
base-uri() and concatenate a slash if necessary.

boolean()
Converts its argument to a boolean value.

Syntax
[1.0] boolean boolean(object)
[2.0] xs:boolean boolean(item()*)

Inputs
An object. The object is converted to a boolean value. This conversion is described in the
following subsection.

Output
[1.0] The boolean value corresponding to the input object. Objects are converted to boolean
values as follows:

• A number is true if and only if it is not zero, negative zero, or NaN (not a number).

• A node-set is true if and only if it is not empty.

• A string is true if and only if its length is greater than zero.

• All other datatypes are converted in a way specific to those datatypes.

[2.0] For XSLT 2.0, things are more complicated. The value returned, as you’d expect,
is an xs:boolean. Here’s how the argument to boolean() is converted to a boolean value:

584 | Appendix C: XSLT, XPath, and XQuery Function Reference

• If the argument is a singleton of any numeric type, boolean() returns false if the
value is zero or NaN (not a number); everything else returns true.

• If the argument is a singleton of type xs:string, xs:anyURI, xs:untypedAtomic, or
any type derived from them, boolean() returns true if the argument has a length
greater than zero.

• If the argument is a singleton of type xs:boolean (or of a type derived from
xs:boolean), boolean() simply returns the argument as is.

• If the argument is a sequence whose first item is a node, boolean() returns true.

• If the argument is the empty sequence, boolean() returns false.

• If the argument is anything else (xs:date, xs:time, or a sequence of multiple atomic
values, for example), boolean() raises an error.

Defined in
[1.0] XPath section 4.3, “Boolean Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 15.1, “General Functions
and Operators on Sequences.”

Example
We’ll use our sales document to illustrate the boolean() function:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

Here’s our stylesheet:

boolean( ) | 585

<?xml version="1.0"?>
<!-- boolean.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
</xsl:text>
 <xsl:text>Tests of the boolean() function:</xsl:text>

 <xsl:text>

 boolean(true()) = </xsl:text>
 <xsl:value-of select="boolean(true())"/>

 <xsl:text>
 boolean(true) = </xsl:text>
 <xsl:value-of select="boolean(true)"/>

 <xsl:text>
 boolean('false') = </xsl:text>
 <xsl:value-of select="boolean('false')"/>

 <xsl:text>
 boolean('7') = </xsl:text>
 <xsl:value-of select="boolean('7')"/>

 <xsl:text>
 boolean(7) = </xsl:text>
 <xsl:value-of select="boolean(7)"/>

 <xsl:text>
 boolean(/report/brand/units[. > 20000]) = </xsl:text>
 <xsl:value-of select="boolean(/report/brand/units[. > 20000])"/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Tests of the boolean() function:

 boolean(true()) = true
 boolean(true) = false
 boolean('false') = true
 boolean('7') = true
 boolean(7) = true
 boolean(/report/brand/units[. > 20000]) = true

For the first test, the argument is a call to the true() function, which always returns true.
Because this is a boolean value already, the boolean() function simply returns that value as
is. For the second test, we’re asking for all the <true> elements in the current context; there
are no <true> elements, so this is false. The argument of the third and fourth tests are strings
whose length is greater than zero, so boolean() returns true. The fifth argument is a number
greater than zero, so it is true as well.

The final example uses an XPath statement to select all of the <units> elements in our sales
report that have a numeric value greater than 20000. Because this selects at least one node,
boolean() returns true. This works in XSLT 1.0 because it generates a node-set with at least
one member, and it works in XSLT 2.0 because it creates a sequence whose first member is a

586 | Appendix C: XSLT, XPath, and XQuery Function Reference

node. If we changed the expression to look for sales figures greater than 30000, boolean()
would return false.

Here’s a stylesheet that uses XSLT 2.0’s rules to process various sequences:

<?xml version="1.0"?>
<!-- boolean2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
</xsl:text>
 <xsl:text>Tests of the boolean() function:</xsl:text>

 <xsl:text>

 boolean(()) = </xsl:text>
 <xsl:value-of select="boolean(())"/>

 <xsl:variable name="testSequence1" as="item()*">
 <xsl:sequence select="(3)"/>
 </xsl:variable>

 <xsl:text>

 $testSequence1 = (</xsl:text>
 <xsl:value-of select="$testSequence1" separator=", "/>
 <xsl:text>)
 boolean($testSequence1) = </xsl:text>
 <xsl:value-of select="boolean($testSequence1)"/>

 <xsl:variable name="testSequence2" as="item()*">
 <xsl:sequence select="/report/brand/units"/>
 <xsl:sequence select="(3, 4, 5)"/>
 </xsl:variable>

 <xsl:text>

 $testSequence2 = (</xsl:text>
 <xsl:value-of select="$testSequence2" separator=", "/>
 <xsl:text>)
 boolean($testSequence2) = </xsl:text>
 <xsl:value-of select="boolean($testSequence2)"/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Tests of the boolean() function:

 boolean(()) = false

 $testSequence1 = (3)
 boolean($testSequence1) = true

 $testSequence2 = (27408, 8203, 22101, 14336, 19268, 3, 4, 5)
 boolean($testSequence2) = true

There are three different tests here. For the first test, we pass the boolean() function the empty
sequence, so the result is false. In the second test, we pass a singleton numeric value to
boolean(); because that value is nonzero, the result is true. In the final test, the argument we

boolean( ) | 587

use is a sequence that contains five <units> nodes, followed by three numeric values. Because
the first item in the sequence is a node, boolean() returns true.

In this stylesheet, if we define $testSequence1 to have more than one item, the stylesheet would
fail to compile. Any sequence we send to boolean() must be a singleton or a sequence whose
first value is a node. For the second sequence, $testSequence2, we can add as many items of
as many different types as we like, as long as the first item is a node. If there were no nodes
that matched the expression /report/brand/units, the first node in the sequence would be
the atomic value 3, so the stylesheet would generate a runtime error.

See “Converting to boolean values” in Chapter 5 for more examples and information.

ceiling()
Returns the smallest integer that is not less than the argument.

Syntax
[1.0] number? ceiling(number?)
[2.0] numeric? ceiling(numeric?)

Inputs
A number.

[1.0] If the argument is not a number, it is transformed into a number as if it had been pro-
cessed by the number() function. If the argument cannot be transformed into a number, the
ceiling() function returns the value NaN (not a number).

[2.0] In XSLT 2.0, the argument must be one of the four numeric types (xs:float, xs:deci
mal, xs:double, or xs:integer). If it is not, the XSLT processor raises an error. The result of
the ceiling() function will be of the same type as the argument.

Output
The smallest integer that is not less than the argument.

[1.0] In XSLT 1.0, ceiling() returns NaN if the argument cannot be converted to a number.

[2.0] In XSLT 2.0, ceiling() raises an error if the argument cannot be converted to a number.

Defined in
[1.0] XPath section 4.4, “Number Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 6.4, “Functions on Numeric
Values.”

Example
The following stylesheet shows the results of invoking the ceiling() function against a variety
of values. We’ll use this XML document as input:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->

588 | Appendix C: XSLT, XPath, and XQuery Function Reference

<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

Here’s the stylesheet that uses the ceiling() function:

<?xml version="1.0"?>
<!-- ceiling.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the ceiling() function:

</xsl:text>

 <xsl:text> ceiling(7.983) = </xsl:text>
 <xsl:value-of select="ceiling(7.983)"/>

 <xsl:text>
 ceiling(-7.893) = </xsl:text>
 <xsl:value-of select="ceiling(-7.893)"/>

 <xsl:text>
 ceiling(avg(/report/brand/units)) = </xsl:text>
 <xsl:value-of select="ceiling(avg(/report/brand/units))"/>

 <xsl:text>
 ceiling('blue') = </xsl:text>
 <xsl:value-of version="1.0” select="ceiling('blue')"/>

 </xsl:template>

</xsl:stylesheet>

When we transform the XML document with our stylesheet, here are the results:

Tests of the ceiling() function:

 ceiling(7.983) = 8

ceiling( ) | 589

 ceiling(-7.893) = -7
 ceiling(avg(/report/brand/units)) = 18264
 ceiling('blue') = NaN

For the last test of the ceiling() function, we specified version="1.0" on the <xsl:value-
of> element. In XSLT 1.0 mode, we get the result NaN (not a number). If we process this
<xsl:value-of> element in XSLT 2.0 mode, the stylesheet won’t run at all.

[2.0] codepoint-equal()
Determines whether two strings are equal, based on their Unicode codepoints.

Syntax
xs:boolean? codepoint-equal(xs:string?, xs:string?)

Inputs
Two xs:strings to be compared.

Output
This function returns true or false depending on whether the two strings are equal using the
Unicode code point collation. This function allows you to compare xs:anyURI values without
having to specify a collation. If either argument is the empty sequence, the result is the empty
sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.3, “Equality and Comparison
of Strings.”

Example
Here is a short stylesheet that tests strings to see whether they are equal:

<?xml version="1.0"?>
<!-- codepoint-equal.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the codepoint-equal() function:
</xsl:text>

 <xsl:text>
 codepoint-equal('A', 'A') = </xsl:text>
 <xsl:value-of select="codepoint-equal('A', 'A')"/>

 <xsl:text>
 codepoint-equal('A', '&#x41;') = </xsl:text>
 <xsl:value-of select="codepoint-equal('A', 'A')"/>

 <xsl:text>
 codepoint-equal('A', '&#65;') = </xsl:text>

590 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:value-of select="codepoint-equal('A', 'A')"/>

 <xsl:text>
 codepoint-equal('Strasse', 'Stra&#xDF;e') = </xsl:text>
 <xsl:value-of select="codepoint-equal('Strasse', 'Straße')"/>
 </xsl:template>

</xsl:stylesheet>

Here are the stylesheet results:

Tests of the codepoint-equal() function:

 codepoint-equal('A', 'A') = true
 codepoint-equal('A', 'A') = true
 codepoint-equal('A', 'A') = true
 codepoint-equal('Strasse', 'Straße') = false

The first three tests compare the capital letter A with itself and with the hexadecimal and
decimal representations of itself. The last test compares two spellings of the German word
Strasse, one of which uses ss and one of which uses the German “sharp-s” character (ß). In
the Unicode code point collation, these two strings are not equal.

There are some functions in XPath 2.0 and XSLT 2.0 that allow us to specify different collation
algorithms (one in which ss and ß are equal, for example). See the definitions of the functions
[2.0] compare(), contains(), [2.0] deep-equal(), [2.0] distinct-values(), [2.0] ends-with(
), [2.0] index-of(), [2.0] max(), [2.0] min(), starts-with(), substring-after(), and sub
string-before() for examples.

[2.0] codepoints-to-string()
Converts a sequence of Unicode codepoints to a string.

Syntax
xs:string codepoints-to-string(xs:integer*)

Inputs
A sequence of xs:integers, each of which represents a Unicode codepoint.

Output
An xs:string created by concatenating the given codepoints. If the input argument is the
empty sequence, codepoints-to-string() returns a zero-length string. If any codepoint in the
argument is not a legal XML character, the XSLT processor raises an error.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.2, “Functions to Assemble and
Disassemble Strings.”

Example
Here’s a short stylesheet that converts sequences of integers into strings:

[2.0] codepoints-to-string( ) | 591

<?xml version="1.0"?>
<!-- codepoints-to-string.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the codepoints-to-string() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 codepoints-to-string</xsl:text>
 <xsl:text>((76, 105, 108, 121)) = </xsl:text>
 <xsl:value-of
 select="codepoints-to-string((76, 105, 108, 121))"/>

 <xsl:text>
 codepoints-to-string</xsl:text>
 <xsl:text>((83, 116, 114, 97, 223, 101)) = </xsl:text>
 <xsl:value-of
 select="codepoints-to-string((83, 116, 114, 97, 223, 101))"/>
 </xsl:template>

</xsl:stylesheet>

The stylesheet generates these results:

Tests of the codepoints-to-string() function:

 codepoints-to-string((76, 105, 108, 121)) = Lily
 codepoints-to-string((83, 116, 114, 97, 223, 101)) = Straße

We mentioned earlier that if any codepoint in the input sequence is not a valid XML character,
the XSLT processor throws an error. As an example, codepoints-to-string((0)) causes the
XSLT processor to crash; feel free to try this in your spare time.

[2.0] collection()
Returns a collection of nodes. This expands on the capabilities of the document() function
defined in XSLT 1.0.

Syntax
node()* collection(xs:string?)

Input
An optional xs:string specifying the URI of a collection. If no string is given, the default
collection is returned.

592 | Appendix C: XSLT, XPath, and XQuery Function Reference

Output
The specified collection of nodes. If no collection name is given, the default collection is
returned. The details of the URI format and what kinds of resources can be accessed are
implementation-dependent.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.5, “Functions and Operators
that Generate Sequences.”

Example
For our example, we’ll use Saxon’s implementation that allows us to load an XML document
referencing other XML documents. The structure of the collection document is:

<?xml version="1.0"?>
<!-- polist.xml -->
<collection>
 <doc href="po38292.xml"/>
 <doc href="po38293.xml"/>
 <doc href="po38294.xml"/>
 <doc href="po38295.xml"/>
</collection>

When loading this document with the collection() function, Saxon looks at the href attrib-
utes of all the <doc> elements and considers each one a document URI. Saxon then opens and
parses those documents and adds their nodes to the collection. Each document URI in our
example points to a purchase order document structured like this:

<?xml version="1.0" ?>
<!-- po38293.xml -->
<purchase-order id="38293">
 <date year="2001" month="9" day="8"/>
 <customer id="4738" level="Basic">
 <address type="business">
 <name>
 <title>Ms.</title>
 <first-name>Amanda</first-name>
 <last-name>Reckonwith</last-name>
 </name>
 <street>930-A Chestnut Street</street>
 <city>Lynn</city>
 <state>MA</state>
 <zip>02930</zip>
 </address>
 <address type="ship-to"/>
 </customer>
 <items>
 <item part-no="23813-03-CDK">
 <name>Cucumber Decorating Kit</name>
 <qty>1</qty>
 <price>29.95</price>
 </item>
 </items>
</purchase-order>

[2.0] collection( ) | 593

When the file polist.xml is processed, our collection contains four document elements, each
of which represents a purchase order. We can then use XSLT and XPath to work with all the
nodes in the collection. Here is the stylesheet that loads the collection and works with it:

<?xml version="1.0"?>
<!-- collection.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the collection() function:</xsl:text>

 <xsl:variable name="docPile" as="node()*"
 select="collection('polist.xml')"/>

 <xsl:text>

 The customers in the </xsl:text>
 <xsl:text>collection are:
 </xsl:text>
 <xsl:for-each select="$docPile/purchase-order/customer">
 <xsl:sort select="address/name/last-name"/>
 <xsl:value-of
 select="address/name/title,
 address/name/first-name,
 address/name/last-name"
 separator=" "/>
 <xsl:text>
 </xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Running the stylesheet gives us these results:

A test of the collection() function:

 The customers in the collection are:
 Ms. Natalie Attired
 Mrs. Mary Backstayge
 Mr. Chester Hasbrouck Frisby
 Ms. Amanda Reckonwith

We loaded the collection and stored the document nodes of each of the files in the variable
docPile. Once the collection is loaded, we can work with the nodes in the collection, even
though they don’t share a common document root. In the sample stylesheet, we listed all of
the customers in all of the purchase orders in the collection. We used <xsl:for-each> to iterate
through the purchase orders, and we used <xsl:sort> to list the customers by their last names.

Remember that most of the details of the collection() function are implementation-defined.
Saxon’s use of the <collection> and <doc> elements are not part of the spec; neither is the
feature that let us load the collection document by typing the name of the file. See the docu-
mentation for your XSLT processor for the details of how it implements the collection()
function.

594 | Appendix C: XSLT, XPath, and XQuery Function Reference

[2.0] compare()
Compares two xs:strings and returns -1, 0, or 1, depending on whether the first string is less
than, equal to, or greater than the second.

Syntax
xs:integer? compare(xs:string?, xs:string?)
xs:integer? compare(xs:string?, xs:string?, $collation as xs:string)

Inputs
Two xs:strings and an optional collation.

Output
The numeric value -1, 0, or 1, depending on whether the first string is less than, equal to, or
greater than the second. The optional $collation argument names a collation used for com-
paring the two strings. To quote an example from the XSLT 2.0 spec, in a collation for German
characters, Strasse and Straße are equal; in other collations they are not. If either string is the
empty sequence, compare() returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.3, “Equality and Comparison
of Strings.”

Example
Here’s a stylesheet that uses compare() in several different ways:

<?xml version="1.0"?>
<!-- compare1.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Here are some tests of the compare() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 compare('Lily', 'lily') = </xsl:text>
 <xsl:value-of select="compare('Lily', 'lily')"/>

 <xsl:text>
 compare('Lily', 'Lily') = </xsl:text>
 <xsl:value-of select="compare('Lily', 'Lily')"/>

 <xsl:text>
 compare('Lily', </xsl:text>
 <xsl:text>'&#x4C;&#x69;&#x6C;&#x79;') = </xsl:text>
 <xsl:value-of select="compare('Lily', 'Lily')"/>

 <xsl:text>
 compare('Lily', 'Doug') = </xsl:text>
 <xsl:value-of select="compare('Lily', 'Doug')"/>

[2.0] compare( ) | 595

 <xsl:text>

 if (not(compare('Lily', 'Lily'))) : </xsl:text>
 <xsl:value-of select="if (not(compare('Lily', 'Lily')))
 then 'The two test strings are equal!'
 else 'The two test strings aren''t equal!'"/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here are some tests of the compare() function:

 compare('Lily', 'lily') = -1
 compare('Lily', 'Lily') = 0
 compare('Lily', 'Lily') = 0
 compare('Lily', 'Doug') = 1

 if (not(compare('Lily', 'Lily'))) : The two test strings are equal!

The first four tests of the compare() function compared strings, with the third test using
character entities instead of the actual text. In the fifth test, we used compare() in a boolean
expression; if the two strings are equal, compare() returns 0. The expression
not(compare()) is an awkward way of saying, “If these two strings are not unequal.”

Keep in mind that we could use any of the comparison operators in XPath, either the operators
for atomic values (eq, ne, gt, lt, ge, and le) or the more general operators (=, !=, >, <, >=, and
<=). The only time you’re required to use the compare() function is when you need to specify
a collation.

Speaking of which, we’ll look at a final example that uses a collation function. The German
word for street can be spelled two ways: Strasse and Straße. We’ll compare the two words
twice, once using the default collation and once using a German collation provided by an
extension function. Here’s the stylesheet:

<?xml version="1.0"?>
<!-- compare2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="string1" select="'Straße'"/>
 <xsl:variable name="string2" select="'Strasse'"/>

 <xsl:text>
Here are more tests of the compare() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text> compare('</xsl:text>
 <xsl:value-of select="$string1"/>
 <xsl:text>', '</xsl:text>
 <xsl:value-of select="$string2"/>
 <xsl:text>') = </xsl:text>
 <xsl:value-of select="compare($string1, $string2)"/>
 <xsl:text>
</xsl:text>

596 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text> compare('</xsl:text>
 <xsl:value-of select="$string1"/>
 <xsl:text>', '</xsl:text>
 <xsl:value-of select="$string2"/>
 <xsl:text>', [German collation]) = </xsl:text>
 <xsl:value-of
 select="compare($string1, $string2,
 concat('http://saxon.sf.net/collation?',
 'class=com.oreilly.xslt.GermanCollation;'))"/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here are more tests of the compare() function:
 compare('Straße', 'Strasse') = 1
 compare('Straße', 'Strasse', [German collation]) = 0

As you can see, the two spellings are different in the default collation, but they’re equal when
we use the German collation. (To keep the listing within the margins of the page, we used the
concat() function to combine the two halves of the Saxon collation URI.) See “The docu-
ment( ) Function and Sorting” in Chapter 8 for more information.

concat()
Takes all of its arguments and concatenates them. Any arguments that are not strings are
converted to strings as if processed by the string() function.

Syntax
[1.0] string concat(string, string, string*)
[2.0] xs:string concat(xs:anyAtomicType?, xs:anyAtomicType?, ...)

Inputs
Two or more strings. The concat() function is unique in that it may have any number of
arguments.

[2.0] In XSLT 2.0, the arguments passed to the concat() function can be any atomic type. All
of the values are converted to strings. If any of the arguments is the empty sequence, it is
treated as a zero-length string. It is an error if any argument is a sequence with a length greater
than 1.

Output
The concatenation of all of the input values.

Defined in
[1.0] XPath section 4.2, “String Functions.”

concat( ) | 597

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 7.4, “Functions on String
Values.”

Example
We’ll use this XML file to demonstrate how concat() works:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

In our stylesheet, we’ll use the concat() function to create filenames for various HTML files.
The filenames are composed from three pieces of information, concatenated by the
concat() function:

<?xml version="1.0"?>
<!-- concat.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the concat() function:
</xsl:text>
 <xsl:for-each select="list/listitem">
 <xsl:text>
 See the file </xsl:text>
 <xsl:value-of select="concat('album', position(), '.html')"/>
 <xsl:text> to see the details of
 the album "</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>."
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Our stylesheet generates these results:

Tests of the concat() function:

 See the file album1.html to see the details of
 the album "The Sacred Art of Dub."

 See the file album2.html to see the details of
 the album "Only the Poor Man Feel It."

 See the file album3.html to see the details of
 the album "Excitable Boy."
 ...

598 | Appendix C: XSLT, XPath, and XQuery Function Reference

[2.0] To illustrate how concat() combines atomic values in XSLT 2.0, here’s another
stylesheet:

<?xml version="1.0"?>
<!-- concat2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Another test of the concat() function:
</xsl:text>

 <xsl:text>
 concat(3, 4, current-time(), 'blue', </xsl:text>
 <xsl:text>/list/title) =
 </xsl:text>
 <xsl:value-of
 select="concat(3, 4, current-time(), 'blue', /list/title)"/>
 </xsl:template>

</xsl:stylesheet>

When used with our XML input document, the stylesheet produces these results:

Another test of the concat() function:

 concat(3, 4, current-time(), 'blue', /list/title) =
 3416:23:12.217-04:00blueAlbums I've bought recently:

This concatenates the numbers 3 and 4, the xs:time value returned by the current-time()
function, the string blue, and the <title> element from the input document. All of those values
are converted to strings and concatenated.

All the arguments to concat() must be atomic values or sequences of zero or one items. The
stylesheet works with our XML input document because there is only one node in the docu-
ment that matches the XPath expression /list/title. If we change the XPath expression
to /list/listitem, it selects more than one node, and the XSLT processor raises an error. To
concatenate sequences of multiple items, use the [2.0] string-join() function.

contains()
Determines whether the first argument string contains the second.

Syntax
[1.0] boolean contains(string, string)
[2.0] xs:boolean contains(xs:string?, xs:string?)
[2.0] xs:boolean contains(xs:string?, xs:string?, $collation as xs:string)

Inputs
Two strings. If the first string contains the second string, the function returns the boolean
value true. [2.0] In XSLT 2.0, there is an optional third argument—the name of a collation
that specifies how strings in different languages are compared.

contains( ) | 599

Output
The boolean value true if the first argument contains the second; false otherwise. If the
second string is a zero-length string, contains() returns true. If the first string is a zero-length
string, contains() returns false.

Defined in
[1.0] XPath section 4.2, “String Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 7.5, “Functions Based on
Substring Matching.”

Example
This stylesheet uses the replace-substring named template. It passes three arguments to the
replace-substring template: the original string, the substring to be searched for in the original
string, and the substring to replace the target substring in the original string. The replace-
substring template uses the contains(), substring-after(), and substring-before()
functions.

Here is our sample stylesheet. It replaces all occurrences of World with the string "Mundo":

<?xml version="1.0"?>
<!-- contains1.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the contains() function:

</xsl:text>
 <xsl:text> Replacing 'World' with 'Mundo' in </xsl:text>
 <xsl:text>'Hello World!':
 </xsl:text>
 <xsl:variable name="test">
 <xsl:call-template name="replace-substring">
 <xsl:with-param name="original">Hello World!</xsl:with-param>
 <xsl:with-param name="substring">World</xsl:with-param>
 <xsl:with-param name="replacement">Mundo</xsl:with-param>
 </xsl:call-template>
 </xsl:variable>
 <xsl:value-of select="$test"/>
 </xsl:template>

 <xsl:template name="replace-substring">
 <xsl:param name="original" />
 <xsl:param name="substring" />
 <xsl:param name="replacement" />
 <xsl:choose>
 <xsl:when test="contains($original, $substring)">
 <xsl:value-of select="substring-before($original, $substring)" />
 <xsl:value-of select="$replacement" />
 <xsl:call-template name="replace-substring">
 <xsl:with-param name="original"
 select="substring-after($original, $substring)" />

600 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:with-param name="substring" select="$substring" />
 <xsl:with-param name="replacement" select="$replacement" />
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$original" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

</xsl:stylesheet>

In this example, we’re replacing one substring with another. To do this, we use three functions
(contains(), substring-after(), and substring-before()) and a recursive named template
(replace-substring). Our recursive template takes three strings as input: the original string,
the string to be replaced, and the replacement string itself. If the original string doesn’t contain
the string to be replaced, our named template returns the entire string. Otherwise, the tem-
plate calls itself recursively, using three arguments: the portion of the string after the string
to be replaced, the string to be replaced, and the replacement string. Put another way, if the
named template finds the string to be replaced, it invokes itself on the rest of the string. The
substring-after function is a key part of the named template.

The stylesheet produces these results, regardless of the XML document used as input:

Hello Mundo!

[2.0] In our first example, we used XSLT 1.0, so we created a tail-recursive named procedure
that uses contains(), substring-after(), and substring-before() to replace one substring
with another. In XSLT 2.0, we can use the very useful replace() function instead:

<?xml version="1.0"?>
<!-- replace2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the replace() function:

</xsl:text>
 <xsl:text> Replacing 'World' with 'Mundo' in </xsl:text>
 <xsl:text>'Hello World!':
 </xsl:text>
 <xsl:value-of select="replace('Hello World', 'World', 'Mundo')"/>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates the same results as our XSLT 1.0 stylesheet, but with far less code.

As a final example, we’ll illustrate the use of a collation function:

<?xml version="1.0"?>
<!-- contains2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

contains( ) | 601

 <xsl:template match="/">
 <xsl:variable name="string1"
 select="'Schönaicherstraße'"/>
 <xsl:variable name="string2" select="'strasse'"/>

 <xsl:text>
Another test of the contains() </xsl:text>
 <xsl:text>function:

</xsl:text>

 <xsl:text> contains('</xsl:text>
 <xsl:value-of select="$string1"/>
 <xsl:text>', '</xsl:text>
 <xsl:value-of select="$string2"/>
 <xsl:text>') = </xsl:text>
 <xsl:value-of select="contains($string1, $string2)"/>
 <xsl:text>
</xsl:text>

 <xsl:text> contains('</xsl:text>
 <xsl:value-of select="$string1"/>
 <xsl:text>', '</xsl:text>
 <xsl:value-of select="$string2"/>
 <xsl:text>', [German collation]) = </xsl:text>
 <xsl:value-of
 select="contains($string1, $string2,
 concat('http://saxon.sf.net/collation?',
 'class=com.oreilly.xslt.GermanCollation;'))"/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Another test of the contains() function:

 contains('Schönaicherstraße', 'strasse') = false
 contains('Schönaicherstraße', 'strasse', [German collation]) = true

The German word for street can be spelled either Strasse or Straße. In this stylesheet, using
the German collation respects this difference; the default collation does not. (To keep the
listing within the margins of the page, we used the concat() function to combine the two
halves of the Saxon collation URI.) See “The document( ) Function and Sorting” in Chap-
ter 8 for more information.

count()
Counts the number of nodes in a given [1.0] node-set or [2.0] sequence.

Syntax
[1.0] number count(node-set)
[2.0] xs:integer count(item()*)

602 | Appendix C: XSLT, XPath, and XQuery Function Reference

Inputs
A node-set or sequence.

Output
The number of items in the node-set or sequence. [2.0] If the argument is the empty sequence,
count() returns 0.

Defined in
[1.0] XPath section 4.1, “Node Set Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 15.4, “Aggregate
Functions.”

Examples
Here’s the XML document we’ll use to illustrate the count() function:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

And our stylesheet that illustrates the count() function:

<?xml version="1.0"?>
<!-- count.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the count() function:

</xsl:text>

count( ) | 603

 <xsl:text> Our store sells </xsl:text>
 <xsl:value-of select="count(/report/brand)"/>
 <xsl:text> different brands of chocolate.</xsl:text>
 <xsl:text>

 For the last month, </xsl:text>
 <xsl:value-of select="count(/report/brand[units > 20000])"/>
 <xsl:text> brand(s) sold more than 20,000 units,</xsl:text>
 <xsl:text>
 and all but </xsl:text>
 <xsl:value-of select="count(/report/brand[units < 10000])"/>
 <xsl:text> brand(s) sold 10,000 units or more.</xsl:text>

 <xsl:text>

 Here are the brands we sell: </xsl:text>
 <xsl:for-each select="/report/brand">
 <xsl:text>
 Brand </xsl:text>
 <xsl:value-of select="position()"/>
 <xsl:text> of </xsl:text>
 <xsl:value-of select="count(/report/brand)"/>
 <xsl:text>: </xsl:text>
 <xsl:value-of select="name"/>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Here are the results of our stylesheet:

Tests of the count() function:

 Our store sells 5 different brands of chocolate.

 For the last month, 2 brand(s) sold more than 20,000 units,
 and all but 1 brand(s) sold 10,000 units or more.

 Here are the brands we sell:
 Brand 1 of 5: Lindt
 Brand 2 of 5: Callebaut
 Brand 3 of 5: Valrhona
 Brand 4 of 5: Perugina
 Brand 5 of 5: Ghirardelli

We use the count() function in several different ways here. In the first sentence, the number
5 is the count of <brand> elements in the document. In the second sentence, we use count()
with XPath predicates to count only <brand> elements whose <units> children have certain
values. Finally, in the list of the brands we sell, we use the position() and count() functions
together to create the “Brand x of y” text.

There are two things to notice. First of all, the stylesheet begins with <xsl:stylesheet
version="1.0". This stylesheet works with both XSLT 1.0 and 2.0 processors. Secondly, we
used < for the less-than symbol (<); the value of an attribute can’t contain a less-than sign.

Here’s a short stylesheet to illustrate how count() works with sequences in XSLT 2.0:

<?xml version="1.0"?>
<!-- count2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

604 | Appendix C: XSLT, XPath, and XQuery Function Reference

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the count() function:

</xsl:text>

 <xsl:variable name="salesFigures" as="xs:integer*">
 <xsl:sequence select="/report/brand/units"/>
 </xsl:variable>

 <xsl:text> Our store sells </xsl:text>
 <xsl:value-of select="count($salesFigures)"/>
 <xsl:text> different brands of chocolate.</xsl:text>
 <xsl:text>

 For the last month, </xsl:text>
 <xsl:value-of select="count($salesFigures[. > 20000])"/>
 <xsl:text> brand(s) sold more than 20,000 units,</xsl:text>
 <xsl:text>
 and all but </xsl:text>
 <xsl:value-of select="count($salesFigures[. < 10000])"/>
 <xsl:text> brand(s) sold 10,000 units or more.</xsl:text>
 </xsl:template>

</xsl:stylesheet>

We create a sequence of xs:integers here, and then use the count() function to count the
items in the sequence. Just as we did with the first stylesheet, we use predicates to select certain
values from the sequence. Here are the results:

Tests of the count() function:

 Our store sells 5 different brands of chocolate.

 For the last month, 2 brand(s) sold more than 20,000 units,
 and all but 1 brand(s) sold 10,000 units or more.

In the second stylesheet, our sequence contains the xs:integer values of the <units> elements
in our source document, so the XPath predicate uses the current node (.) in the comparison
expression: count($salesFigures[. > 20000]. In our first stylesheet, we could have written
count(/report/brand[units < 10000]) as count(/report/brand/units[. < 10000] to get
the same results with a similar XPath expression.

current()
Returns a node-set that has the current node as its only member.

Syntax
[1.0] node-set current()
[2.0] item() current()

Inputs
None.

current( ) | 605

Output
[1.0] A node-set that has the current node as its only member. Most of the time, the current
node is no different than the context node.

[2.0] This function, used inside an XPath expression, returns the item that was the context
item when the expression was invoked.

In XSLT 1.0 and 2.0, the current node/item is almost always the same as the context node/
item. For example, the two XPath expressions below are always the same:

<xsl:value-of select="current()"/>
<xsl:value-of select="."/>

Within a predicate expression, however, the current node and the context node are usually
different.

Defined in
[1.0] XSLT section 12.4, “Miscellaneous Additional Functions.”

[2.0] XSLT section 16.6, “Miscellaneous Additional Functions.”

Example
We’ll use the current() function along with a lookup table. We’ll transform a modified ver-
sion of our chocolate sales figures:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate-by-month.xml -->
<report year="2006">
 <title>Chocolate bar sales by month</title>
 <sales month="08" total="91316"/>
 <sales month="09" total="82911"/>
 <sales month="10" total="128587"/>
 <sales month="11" total="79244"/>
 <sales month="12" total="113606"/>
</report>

Here’s our stylesheet. It has a lookup table of month names; we’ll use the lookup table to
replace the month attribute with the name of the corresponding month. The stylesheet does
the same transform three times, once with the current() function and twice without it:

<?xml version="1.0"?>
<!-- current.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:months="http://www.months.com">

 <months:name sequence="01">January</months:name>
 <months:name sequence="02">February</months:name>
 <months:name sequence="03">March</months:name>
 <months:name sequence="04">April</months:name>
 <months:name sequence="05">May</months:name>
 <months:name sequence="06">June</months:name>
 <months:name sequence="07">July</months:name>
 <months:name sequence="08">August</months:name>

606 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <months:name sequence="09">September</months:name>
 <months:name sequence="10">October</months:name>
 <months:name sequence="11">November</months:name>
 <months:name sequence="12">December</months:name>

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the current() function:
</xsl:text>

 <xsl:text>
 Using the current() function:
</xsl:text>
 <xsl:text>
 Chocolate bar sales for </xsl:text>
 <xsl:value-of select="/report/@year"/>
 <xsl:text>:
</xsl:text>

 <xsl:for-each select="/report/sales">
 <xsl:text>
 </xsl:text>
 <xsl:value-of
 select="document('')/*/months:name[@sequence=current()/@month][1]"/>
 <xsl:text> - Total sales = </xsl:text>
 <xsl:value-of select="format-number(@total, '##,###')"/>
 </xsl:for-each>

 <xsl:text>

 Without the current() function:
</xsl:text>
 <xsl:text>
 Chocolate bar sales for </xsl:text>
 <xsl:value-of select="/report/@year"/>
 <xsl:text>:
</xsl:text>

 <xsl:for-each select="/report/sales">
 <xsl:text>
 </xsl:text>
 <xsl:value-of
 select="document('')/*/months:name[@sequence=./@month][1]"/>
 <xsl:text> - Total sales = </xsl:text>
 <xsl:value-of select="format-number(@total, '##,###')"/>
 </xsl:for-each>

 <xsl:text>

 Another test without the current() </xsl:text>
 <xsl:text>function:
</xsl:text>
 <xsl:text>
 Chocolate bar sales for </xsl:text>
 <xsl:value-of select="/report/@year"/>
 <xsl:text>:
</xsl:text>

 <xsl:for-each select="/report/sales">
 <xsl:text>
 </xsl:text>
 <xsl:value-of
 select="document('')/*/months:name[@sequence=./@sequence][1]"/>
 <xsl:text> - Total sales = </xsl:text>
 <xsl:value-of select="format-number(@total, '##,###')"/>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

current( ) | 607

Here are the results:

Tests of the current() function:

 Using the current() function:

 Chocolate bar sales for 2006:

 August - Total sales = 91,316
 September - Total sales = 82,911
 October - Total sales = 128,587
 November - Total sales = 79,244
 December - Total sales = 113,606

 Without the current() function:

 Chocolate bar sales for 2006:

 - Total sales = 91,316
 - Total sales = 82,911
 - Total sales = 128,587
 - Total sales = 79,244
 - Total sales = 113,606

 Another test without the current() function:

 Chocolate bar sales for 2006:

 January - Total sales = 91,316
 January - Total sales = 82,911
 January - Total sales = 128,587
 January - Total sales = 79,244
 January - Total sales = 113,606

The first test works correctly because we use the current() function. This function returns
the <sales> element we’re currently processing. Within the predicate expression, we have to
use current() to get that element. The <xsl:value-of> element outputs the text of the
<months:name> element whose sequence attribute matches the month attribute of the current
<sales> element.

Notice that we end the XPath expression with another predicate, [1], to make sure we select
only the first match. That doesn’t matter in XSLT 1.0, because <xsl:value-of> uses only the
first node in the node-set. XSLT 2.0, however, uses all the items that match. Because of the
structure of our XML source document, only one item matches in the first test, but that might
not be the case for all XML source documents. For that reason, specifying exactly which node
you want to use is a good habit to get into, especially if you’re going to migrate XSLT 1.0
stylesheets to XSLT 2.0.

The second and third tests don’t work because we don’t use the current() function. In the
second test, our XPath expression is document('')/*/months:name[@sequence=./@month][1].
The dot here represents the <months:name> element we’re evaluating, not the current
<sales> element. The XPath predicate [@sequence=./@month] doesn’t match anything, because
there aren’t any <months:name> elements that have a month attribute.

608 | Appendix C: XSLT, XPath, and XQuery Function Reference

The point of the third test is to illustrate what the dot operator (the context node) actually
represents. The predicate [@sequence=./@sequence] wouldn’t match anything if the dot
represented the <sales> element we’re currently processing; there aren’t any <sales> elements
with a sequence attribute. Because the dot represents the <months:name> element, there is a
match. We specified that XSLT should output the first item ([1]), so every month is January.

A final note about the predicate specifying that we use the first item: in the first test, we could
leave out the [1] predicate because the XPath expression matches only one node based on
our XML source document. In the second test, we could leave out the [1] predicate because
there weren’t any matches. In the third test, however, leaving out the [1] predicate and
changing the stylesheet version to 2.0 gives these results:

 Another test without the current() function:

 Chocolate bar sales for 2006:

 January February March April May June July August September Octo
ber November December - Total sales = 91,316
 January February March April May June July August September Octo
ber November December - Total sales = 82,911
 January February March April May June July August September Octo
ber November December - Total sales = 128,587
 January February March April May June July August September Octo
ber November December - Total sales = 79,244
 January February March April May June July August September Octo
ber November December - Total sales = 113,606

In XSLT 2.0, <xsl:value-of> uses all of the nodes that match, not just the first.

[2.0] current-date()
Returns the current date as an xs:date value.

Syntax
xs:date current-date()

Inputs
None.

Output
An xs:date value set to the current time on the system. The returned value is set to the default
timezone. (You can get the details of the default timezone with the implicit-timezone()
function). The current-date() function returns the same value throughout the processing of
the stylesheet. If you call current-date() a dozen times throughout your stylesheet, the func-
tion returns the same value each time.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 16, “Context Functions.”

[2.0] current-date( ) | 609

Example
Here is a stylesheet that displays the current date. It uses the current-date(),
format-date(), and implicit-timezone() functions.

<?xml version="1.0"?>
<!-- current-date.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>The current date is </xsl:text>
 <xsl:value-of
 select="format-date(current-date(),
 '[FNn], the [D1o] of [MNn], [Y01]')"/>
 <xsl:text>

The implicit timezone for the </xsl:text>
 <xsl:text>current context is: </xsl:text>
 <xsl:value-of select="implicit-timezone()"/>
 <xsl:text>

The timezone extracted from the </xsl:text>
 <xsl:text>current date is: </xsl:text>
 <xsl:value-of select="timezone-from-date(current-date())"/>
 </xsl:template>

</xsl:stylesheet>

Here are the stylesheet’s results:

The current date is Thursday, the 6th of July, 06

The implicit timezone for the current context is: -PT4H

The timezone extracted from the current date is: -PT4H

Notice that the implicit timezone retrieved with the implicit-timezone() function is the same
timezone we extracted from the current date. The implicit timezone is a component of all the
xs:date, xs:dateTime, and xs:time values created without specifying a particular timezone.

[2.0] current-dateTime()
Returns the current date and time as an xs:dateTime value.

Syntax
xs:dateTime current-dateTime()

Inputs
None.

Output
An xs:dateTime value set to the current date and time on the system. The returned value is
set to the default timezone. (You can get the details of the default timezone with the context

610 | Appendix C: XSLT, XPath, and XQuery Function Reference

function implicit-timezone()). The current-dateTime() function returns the same value
throughout the processing of the stylesheet. If you call current-dateTime() a dozen times
throughout your stylesheet, the function returns the same value each time.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 16, “Context Functions.”

Example
Here is a stylesheet that displays the current date and time. It uses the current-dateTime(),
format-dateTime() and implicit-timezone() functions.

<?xml version="1.0"?>
<!-- current-datetime.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>The current date and time is </xsl:text>
 <xsl:value-of
 select="format-dateTime(current-dateTime(),
 '[h]:[m01] [Pn] on [FNn], the [D1o] of [MNn], [Y]')"/>
 <xsl:text>

The implicit timezone for the </xsl:text>
 <xsl:text>current context is: </xsl:text>
 <xsl:value-of select="implicit-timezone()"/>
 <xsl:text>

The timezone extracted from the </xsl:text>
 <xsl:text>current date and time is: </xsl:text>
 <xsl:value-of select="timezone-from-dateTime(current-dateTime())"/>
 </xsl:template>

</xsl:stylesheet>

The results of this stylesheet are:

The current date and time is 6:43 a.m. on Thursday, the 6th of July, 2006

The implicit timezone for the current context is: -PT4H

The timezone extracted from the current date and time is: -PT4H

Notice that the implicit timezone retrieved with the implicit-timezone() function is the same
timezone we extracted from the current date and time. The implicit timezone is a component
of all the xs:date, xs:dateTime, and xs:time values created without specifying a particular
timezone.

[2.0] current-group()
Returns all the items that are included in the current group.

[2.0] current-group( ) | 611

Syntax
item()* current-group()

Inputs
None.

Output
The set of items that are included in the current group. This function is only useful inside the
<xsl:for-each-group> element. Calling current-group() outside <xsl:for-each-group> re-
turns the empty sequence.

Defined in
XSLT 2.0 section 14, “Grouping.”

Example
We’ll use a simplified version of our address book document to illustrate the current-
group() function:

<?xml version="1.0"?>
<!-- simple-addresses.xml -->
<addressbook>
 <address>
 <name>Mr. Chester Hasbrouck Frisby</name>
 <city>Sheboygan</city>
 <state>WI</state>
 </address>
 <address>
 <name>Mary Backstayge</name>
 <city>Skunk Haven</city>
 <state>MA</state>
 </address>
 <address>
 <name>Ms. Natalie Attired</name>
 <city>Winter Harbor</city>
 <state>ME</state>
 </address>
 <address>
 <name>Harry Backstayge</name>
 <city>Skunk Haven</city>
 <state>MA</state>
 </address>
 <address>
 <name>Mary McGoon</name>
 <city>Boylston</city>
 <state>VA</state>
 </address>
 <address>
 <name>Ms. Amanda Reckonwith</name>
 <city>Lynn</city>
 <state>MA</state>

612 | Appendix C: XSLT, XPath, and XQuery Function Reference

 </address>
</addressbook>

We’ll group these names by <state> with this stylesheet:

<?xml version="1.0"?>
<!-- current-group.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Here's a test of the </xsl:text>
 <xsl:text>current-group() function:
</xsl:text>
 <xsl:text>
 Customers grouped by state</xsl:text>

 <xsl:for-each-group select="//address" group-by="state">
 <xsl:sort select="state"/>
 <xsl:text>

 Customers in </xsl:text>
 <xsl:value-of select="current-grouping-key()"/>
 <xsl:text>:</xsl:text>

 <xsl:for-each select="current-group()">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text> of </xsl:text>
 <xsl:value-of select="city"/>
 </xsl:for-each>
 </xsl:for-each-group>
 </xsl:template>

</xsl:stylesheet>

In this example, we’re grouping the people in our address book by the state they live in. The
groups are selected by the <xsl:for-each-group> element. Within this element, we use
current-group() in an <xsl:for-each> element to iterate through all the items in the current
group.

Running our stylesheet against our simplified address book generates these results:

Here's a test of the current-group() function:

 Customers grouped by state:

 Customers in MA:
 Mary Backstayge of Skunk Haven
 Harry Backstayge of Skunk Haven
 Ms. Amanda Reckonwith of Lynn

 Customers in ME:
 Ms. Natalie Attired of Winter Harbor

 Customers in VA:
 Mary McGoon of Boylston

[2.0] current-group( ) | 613

 Customers in WI:
 Mr. Chester Hasbrouck Frisby of Sheboygan

We could make our stylesheet more sophisticated by using the count() function with current-
group(). If we have more than one customer in a state (count(current-group()) > 1), our
heading could be Customers in MA. For states that have only one customer (count(current-
group()) = 1), our heading could be Our only customer in ME.

[2.0] current-grouping-key()
Returns the value used to select the current group.

Syntax
xs:anyAtomicType? current-grouping-key()

Inputs
None.

Output
The value used to select the items in the current group. The current-grouping-key() function
is only useful inside an <xsl:for-each-group> element with a group-by or group-adjacent
attribute. Calling current-grouping-key() anywhere else returns the empty sequence.

Defined in
XSLT 2.0 section 14, “Grouping.”

Example
We’ll use a simplified version of our address book document to illustrate the current-
grouping-key() function:

<?xml version="1.0"?>
<!-- simple-addresses.xml -->
<addressbook>
 <address>
 <name>Mr. Chester Hasbrouck Frisby</name>
 <city>Sheboygan</city>
 <state>WI</state>
 </address>
 <address>
 <name>Mary Backstayge</name>
 <city>Skunk Haven</city>
 <state>MA</state>
 </address>
 <address>
 <name>Ms. Natalie Attired</name>
 <city>Winter Harbor</city>
 <state>ME</state>
 </address>
 <address>

614 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <name>Harry Backstayge</name>
 <city>Skunk Haven</city>
 <state>MA</state>
 </address>
 <address>
 <name>Mary McGoon</name>
 <city>Boylston</city>
 <state>VA</state>
 </address>
 <address>
 <name>Ms. Amanda Reckonwith</name>
 <city>Lynn</city>
 <state>MA</state>
 </address>
</addressbook>

We’ll group these names by <state> with this stylesheet:

<?xml version="1.0"?>
<!-- current-grouping-key.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Here's a test of the </xsl:text>
 <xsl:text>current-grouping-key() function:
</xsl:text>
 <xsl:text>
 Customers grouped by state</xsl:text>

 <xsl:for-each-group select="//address" group-by="state">
 <xsl:sort select="state"/>
 <xsl:text>

 Customers in </xsl:text>
 <xsl:value-of select="current-grouping-key()"/>
 <xsl:text>:</xsl:text>

 <xsl:for-each select="current-group()">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text> of </xsl:text>
 <xsl:value-of select="city"/>
 </xsl:for-each>
 </xsl:for-each-group>
 </xsl:template>

</xsl:stylesheet>

In this example, we’re grouping the people in our address book by the state they live in. In
the heading for each group, we output the grouping value (the state) with current-grouping-
key() in the heading for each state:

Here's a test of the current-grouping-key() function:

 Customers grouped by state:

 Customers in MA:

[2.0] current-grouping-key( ) | 615

 Mary Backstayge of Skunk Haven
 Harry Backstayge of Skunk Haven
 Ms. Amanda Reckonwith of Lynn

 Customers in ME:
 Ms. Natalie Attired of Winter Harbor

 Customers in VA:
 Mary McGoon of Boylston

 Customers in WI:
 Mr. Chester Hasbrouck Frisby of Sheboygan

[2.0] current-time()
Returns an xs:time object set to the current time.

Syntax
xs:time current-time()

Inputs
None.

Output
An xs:time value set to the current time on the system. The returned value is set to the default
timezone. (You can get the details of the default timezone with the context function implicit-
timezone()). The current-time() function returns the same value throughout the processing of
the stylesheet. If you call current-time() a dozen times throughout your stylesheet, the func-
tion returns the same value each time.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 2, “Accessors.”

Example
Here is a stylesheet that displays the current time. It uses the current-time(),
format-time(), and implicit-timezone() functions:

<?xml version="1.0"?>
<!-- current-time.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>The current time is </xsl:text>
 <xsl:value-of
 select="format-time(current-time(),
 '[h]:[m01] [Pn]')"/>

616 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text>

The implicit timezone for the </xsl:text>
 <xsl:text>current context is: </xsl:text>
 <xsl:value-of select="implicit-timezone()"/>
 <xsl:text>

The timezone extracted from the </xsl:text>
 <xsl:text>current date and time is: </xsl:text>
 <xsl:value-of select="timezone-from-time(current-time())"/>
 </xsl:template>

</xsl:stylesheet>

The exciting results from this stylesheet look like this:

The current time is 6:49 a.m.

The implicit timezone for the current context is: -PT4H

The timezone extracted from the current date and time is: -PT4H

Notice that the implicit timezone retrieved with the implicit-timezone() function is the same
timezone we extracted from the current time. The implicit timezone is a component of all the
xs:date, xs:dateTime, and xs:time values created without specifying a particular timezone.

[2.0] data()
Given a sequence of items, returns a sequence of atomic values that represent the set of items.

Syntax
xs:anyAtomicType* data(item()*)

Inputs
A sequence of items.

Output
A sequence in which each item in the input sequence has been converted to an atomic value.
If an item in the input sequence is an atomic value, it is returned as is in the result sequence.
For nodes, any item with a datatype is converted to an atomic value and returned in the result
sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 2, “Accessors.”

Example
Here is a stylesheet that creates a sequence of atoms and elements and lists them, identifying
atomic values versus elements in the sequence. Next, the stylesheet lists the sequence returned
by the data() function:

<?xml version="1.0"?>
<!-- data.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

[2.0] data( ) | 617

 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:datatest="http://www.oreilly.com">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <!-- Before we test the data() function, we create a sequence. -->
 <xsl:variable name="testSequence" as="item()*">
 <xsl:sequence select="(3, 4, 5)"/>
 <xsl:element name="currentDate">
 <xsl:value-of select="current-date()"/>
 </xsl:element>
 <xsl:element name="currentTime">
 <xsl:value-of select="current-time()"/>
 </xsl:element>
 <xsl:element name="integerTest">
 <xsl:value-of select="xs:integer(8)"/>
 </xsl:element>
 <xsl:sequence select="('blue', 'red')"/>
 <xsl:element name="floatTest1">
 <xsl:value-of select="xs:float(3.14)"/>
 </xsl:element>
 <xsl:element name="floatTest2">
 <xsl:value-of select="xs:float(42)"/>
 </xsl:element>
 <xsl:element name="dateTest">
 <xsl:value-of select="xs:date('1995-04-21')"/>
 </xsl:element>
 </xsl:variable>

 <xsl:text>
Here is a test of the data() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 Our original sequence is:

 </xsl:text>
 <xsl:value-of
 select="for $i in (1 to count($testSequence))
 return (datatest:print-item(
 subsequence($testSequence, $i, 1)))"
 separator="
 "/>

 <xsl:text>

 Passing our sequence to data() </xsl:text>
 <xsl:text>gives us:

 </xsl:text>

 <xsl:variable name="atomicSequence" as="item()*"
 select="data($testSequence)"/>
 <xsl:value-of
 select="for $i in (1 to count($atomicSequence))
 return (datatest:print-item(
 subsequence($atomicSequence, $i, 1)))"
 separator="
 "/>
 </xsl:template>

 <!-- Given an item(), this function returns a string -->
 <!-- describing that item. -->

618 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:function name="datatest:print-item" as="xs:string">
 <xsl:param name="item" as="item()"/>
 <xsl:choose>
 <xsl:when test="$item instance of element()">
 <xsl:value-of
 select="concat('Element: <', name($item), '>', $item,
 '</', name($item), '>')"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of
 select="concat('Atomic value: ', $item)"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:function>

</xsl:stylesheet>

Here are the results:

Here is a test of the data() function:

 Our original sequence is:

 Atomic value: 3
 Atomic value: 4
 Atomic value: 5
 Element: <currentDate>2008-03-04-05:00</currentDate>
 Element: <currentTime>23:58:38.609-05:00</currentTime>
 Element: <integerTest>8</integerTest>
 Atomic value: blue
 Atomic value: red
 Element: <floatTest1>3.14</floatTest1>
 Element: <floatTest2>42</floatTest2>
 Element: <dateTest>1995-04-21</dateTest>

 Passing our sequence to data() gives us:

 Atomic value: 3
 Atomic value: 4
 Atomic value: 5
 Atomic value: 2008-03-04-05:00
 Atomic value: 23:58:38.609-05:00
 Atomic value: 8
 Atomic value: blue
 Atomic value: red
 Atomic value: 3.14
 Atomic value: 42
 Atomic value: 1995-04-21

The test sequence we create has 11 items, 5 of which are atoms and 6 of which are elements.
We pass each item in the sequence to our datatest:print-item() function. This function
looks at the type of the item. If it is an element(), the function returns a string that includes
the opening tag for the element, its value, and its closing tag. For atoms, the function simply
returns the atom’s value. All of the strings returned by datatest:print-item() are labeled

[2.0] data( ) | 619

with Element: or Atom: so we can see whether each item is an atom or an element. This shows
us the contents of the original sequence.

After listing all the atoms and elements in the original sequence, we use the data() function
to convert our original sequence to a sequence of atomic values. Calling our datatest:print-
item() against each item in the new sequence shows that it is composed of atoms only.

In our stylesheet, we invoke our datatest:print-item() function against each item with the
following XPath expression:

select="for $i in (1 to count($testSequence))
 return (datatest:print-item(
 subsequence($testSequence, $i, 1)))"

This expression uses the new XPath for instruction to iterate over the items in the sequence
(count($testSequence)). For each item, we return the xs:string value returned by our
datatest:print-item() function. To keep the stylesheet organized, we have the relatively
complicated XPath expressions in the match="/" template, and we create a function to handle
the repetitive task of printing each item.

If we want, we can create an XPath expression that does the work of the function as well.
Here’s what that code looks like:

<!-- data2.xsl -->
...
 <xsl:for-each select="$testSequence">
 <xsl:value-of
 select="if (. instance of node())
 then concat('Element: <', name(.),
 '>', ., '</', name(.), '>')
 else concat('Atomic value: ', .)"/>
 <xsl:text>
 </xsl:text>
 </xsl:for-each>
...
 <xsl:variable name="atomicSequence" as="item()*"
 select="data($testSequence)"/>
 <xsl:for-each select="$atomicSequence">
 <xsl:value-of
 select="if (. instance of item())
 then concat('Atomic value: ', .)
 else concat('Element: <', name(.),
 '>', ., '</', name(.), '>')"/>
 <xsl:text>
 </xsl:text>
 </xsl:for-each>
...

This works, but it requires us to duplicate the if-then-else logic wherever we want to print
a sequence. It’s much better to use an <xsl:function> to do the repetitive work. There’s an-
other concern: an XSLT processor can give warnings about the type safety of the calls to the
name() function. If we change the processing of $atomicSequence so that it begins . instance
of node(), we get a static error and the stylesheet won’t work. To avoid this, it’s simpler to
put the code into a function.

620 | Appendix C: XSLT, XPath, and XQuery Function Reference

[2.0] dateTime()
This is a special constructor function that lets you create an xs:dateTime value from an
xs:date and xs:time.

Syntax
xs:dateTime? dateTime(xs:date?, xs:time?)

Inputs
An xs:date value and an xs:time value.

Output
A new xs:dateTime value based on the two input values. If either input value is the empty
sequence, xs:dateTime() returns the empty sequence. The timezone of the xs:dateTime result
is calculated as follows:

• If neither argument has a timezone, the result does not have a timezone.

• If one of the arguments has a timezone or if both arguments have the same time-
zone, the result has that timezone.

• If the two arguments have different timezones, the XSLT processor raises an error.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 5, “Constructor Functions.”

Example
This stylesheet uses the values from the current-date() and current-time() functions to
create a new xs:dateTime value:

<?xml version="1.0"?>
<!-- datetime.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Creating an xs:dateTime with an </xsl:text>
 <xsl:text>xs:date and xs:time:</xsl:text>
 <xsl:variable name="currentDate" as="xs:date" select="current-date()"/>
 <xsl:variable name="currentTime" as="xs:time" select="current-time()"/>
 <xsl:text>

 The current date is: </xsl:text>
 <xsl:value-of select="$currentDate"/>
 <xsl:text>

 The current time is: </xsl:text>
 <xsl:value-of select="$currentTime"/>

 <xsl:variable name="currentDateTime"
 select="dateTime($currentDate, $currentTime)"/>

[2.0] dateTime( ) | 621

 <xsl:text>

 The new xs:dateTime is: </xsl:text>
 <xsl:value-of select="$currentDateTime"/>
 <xsl:text>

 The new xs:dateTime value can be </xsl:text>
 <xsl:text>written as
 </xsl:text>
 <xsl:value-of
 select="format-dateTime($currentDateTime,
 '[h]:[m01] [Pn] on [FNn], the [D1o] of [MNn], [Y0001]')"/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Creating an xs:dateTime with an xs:date and xs:time:

 The current date is: 2006-11-16-05:00

 The current time is: 03:48:09.888-05:00

 The new xs:dateTime is: 2006-11-16T03:48:09.888-05:00

 The new xs:dateTime value can be written as
 3:48 a.m. on Thursday, the 16th of November, 2006

[2.0] day-from-date()
Given an xs:date value, returns its day value.

Syntax
xs:integer? day-from-date(xs:date?)

Input
An xs:date value.

Output
An xs:integer representing the day component of the given xs:date value. If the input argu-
ment is the empty sequence, this function returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the day-from-date() function:

<?xml version="1.0"?>
<!-- day-from-date.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

622 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:template match="/">
 <xsl:text>
Extracting the day from an xs:date:</xsl:text>
 <xsl:variable name="currentDate" as="xs:date" select="current-date()"/>
 <xsl:text>

The current date is: </xsl:text>
 <xsl:value-of select="$currentDate"/>

 <xsl:text>

 The current day: </xsl:text>
 <xsl:value-of select="day-from-date($currentDate)"/>
 <xsl:text>
 In words: </xsl:text>
 <xsl:value-of select="format-date($currentDate, '[DWw]')"/>
 <xsl:text>
 In German: </xsl:text>
 <xsl:value-of select="format-date($currentDate, '[Dw]', 'de', (), ())"/>
 <xsl:text>
 It's the </xsl:text>
 <xsl:value-of select="format-date($currentDate, '[dwo]')"/>
 <xsl:text> day of the year.</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The stylesheet creates these results:

Extracting the day from an xs:date:

The current date is: 2006-11-16-05:00

 The current day: 16
 In words: Sixteen
 In German: sechszehn
 It's the three hundred and twentieth day of the year.

Notice that some of the results were generated by the day-from-date() extraction function,
while other results were generated by using format-date() with a format string that selected
only the day component of the xs:date value.

See Also
The definitions of the [2.0] format-date(), [2.0] month-from-date(), [2.0] timezone-from-
date(), and [2.0] year-from-date() functions.

[2.0] day-from-dateTime()
Given an xs:dateTime value, returns its day value.

Syntax
xs:integer? day-from-dateTime(xs:dateTime?)

Inputs
An xs:dateTime value.

[2.0] day-from-dateTime( ) | 623

Output
An xs:integer representing the day component of the given xs:dateTime value. If the input
argument is the empty sequence, this function returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the day-from-dateTime() function:

<?xml version="1.0"?>
<!-- day-from-datetime.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the day from an xs:dateTime:</xsl:text>
 <xsl:variable name="currentDateTime" as="xs:dateTime"
 select="current-dateTime()"/>
 <xsl:text>

The current date and time is: </xsl:text>
 <xsl:value-of select="$currentDateTime"/>

 <xsl:text>

 The current day: </xsl:text>
 <xsl:value-of select="day-from-dateTime($currentDateTime)"/>
 <xsl:text>
 In words: </xsl:text>
 <xsl:value-of select="format-dateTime($currentDateTime, '[DWw]')"/>
 <xsl:text>
 In German words: </xsl:text>
 <xsl:value-of
 select="format-dateTime($currentDateTime, '[Dw]', 'de', (), ())"/>
 <xsl:text>
 It's the </xsl:text>
 <xsl:value-of select="format-dateTime($currentDateTime, '[dwo]')"/>
 <xsl:text> day of the year.</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The stylesheet creates these results:

Extracting the day from an xs:dateTime:

The current date and time is: 2006-11-16T04:04:46.811-05:00

 The current day: 16
 In words: Sixteen
 In German words: sechszehn
 It's the three hundred and twentieth day of the year.

624 | Appendix C: XSLT, XPath, and XQuery Function Reference

Notice that some of the results were generated by the day-from-dateTime() function, while
others were generated by using format-dateTime() with a format string that selected only the
day component of the xs:dateTime value.

See Also
The definitions of the [2.0] format-dateTime(), [2.0] hours-from-dateTime(), [2.0] minutes-
from-dateTime(), [2.0] month-from-dateTime(), [2.0] seconds-from-dateTime(), [2.0] time
zone-from-dateTime(), and [2.0] year-from-dateTime() functions.

[2.0] days-from-duration()
Given an xs:duration value, returns the number of days in that duration.

Syntax
xs:integer? days-from-duration(xs:duration?)

Inputs
A xs:duration.

Output
An xs:integer representing the days component of the given xs:duration. Be aware that for
an xs:yearMonthDuration, this function always returns 0 because there is no days component
of an xs:yearMonthDuration. Also, if the input argument is the empty sequence, this function
returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the days-from-duration() function with all three types of
durations:

<?xml version="1.0"?>
<!-- days-from-duration.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the days component from durations:</xsl:text>

 <xsl:variable name="sampleDuration" as="xs:duration"
 select="xs:duration('P3Y8M2DT4H23M12.2S')"/>
 <xsl:variable name="sampleYearMonthDuration" as="xs:yearMonthDuration"

[2.0] days-from-duration( ) | 625

 select="xs:yearMonthDuration('P3Y8M')"/>
 <xsl:variable name="sampleDayTimeDuration" as="xs:dayTimeDuration"
 select="xs:dayTimeDuration('P2DT4H23M12.2S')"/>

 <xsl:text>

 A sample xs:duration: </xsl:text>
 <xsl:value-of select="$sampleDuration"/>
 <xsl:text>
 The days component of this duration is </xsl:text>
 <xsl:value-of select="days-from-duration($sampleDuration)"/>
 <xsl:text>.</xsl:text>

 <xsl:text>

 A sample xs:yearMonthDuration: </xsl:text>
 <xsl:value-of select="$sampleYearMonthDuration"/>
 <xsl:text>
 The days component of this duration is </xsl:text>
 <xsl:value-of select="days-from-duration($sampleYearMonthDuration)"/>
 <xsl:text>.</xsl:text>

 <xsl:text>

 A sample xs:dayTimeDuration: </xsl:text>
 <xsl:value-of select="$sampleDayTimeDuration"/>
 <xsl:text>
 The days component of this duration is </xsl:text>
 <xsl:value-of select="days-from-duration($sampleDayTimeDuration)"/>
 <xsl:text>.</xsl:text>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates these results:

Extracting the days component from durations:

 A sample xs:duration: P3Y8M2DT4H23M12.2S
 The days component of this duration is 2.

 A sample xs:yearMonthDuration: P3Y8M
 The days component of this duration is 0.

 A sample xs:dayTimeDuration: P2DT4H23M12.2S
 The days component of this duration is 2.

Notice that calling days-from-duration() against xs:yearMonthDuration returns 0, as we men-
tioned earlier.

See Also
The definitions of the [2.0] hours-from-duration(), [2.0] minutes-from-duration(), [2.0]
months-from-duration(), [2.0] seconds-from-duration(), and [2.0] years-from-duration()
functions.

[2.0] deep-equal()
Compares two sequences of items to see whether they and all their descendants are equal.

626 | Appendix C: XSLT, XPath, and XQuery Function Reference

Syntax
xs:boolean deep-equal(item()*, item()*)
xs:boolean deep-equal(item()*, item()*, $collation as xs:string)

Inputs
Two sequences of items. An optional third argument identifies a collation that should be used
when comparing string values. (The collation is not used when comparing node names, so
<strasse> and <straße> are never equal, even though a German collation might find those
string values to be the same.)

Output
true if the items are deep-equal to each other; false otherwise. Given the variety of types of
items in XSLT 2.0, the rules for two sequences being deep-equal are somewhat complicated:

• If both values are empty sequences, deep-equal() returns true.

• If the two values are sequences of different lengths (count($value1) !=
count($value2)), deep-equal() returns false.

• If the two values are nodes of different kinds (an element and an attribute, for
example), deep-equal() returns false.

• If the two values are document nodes, they are equal only if $value1/(*|text())
is deep-equal to $value2/(*|text()).

• If the two values are element nodes, they must have the same name and the same
number of attributes. Also, those attributes must have the same values, and chil-
dren must all be deep-equal.

• The remaining node types (attributes, processing instructions, comments, and
text) are straightforward. For attributes and processing instructions, they must
have the same name and the same values. For comments and text, their string values
must be equal.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.3, “Equals, Union, Intersec-
tion and Except.”

Example
We’ll use our chocolate sales document to test the deep-equal() function:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>

[2.0] deep-equal( ) | 627

 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

Here is a stylesheet that compares several different values. Notice that deep-equal() compares
both atoms and nodes.

<?xml version="1.0"?>
<!-- deep-equal.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:variable name="testTree" as="node()*">
 <ora:report month="8" year="2006"
 xmlns:ora="http://www.oreilly.com">
 <ora:title>Chocolate bar sales</ora:title>
 <ora:brand>
 <ora:name>Lindt</ora:name>
 <ora:units>27408</ora:units>
 </ora:brand>
 </ora:report>

 <dw:report month="8" year="2006"
 xmlns:dw="http://www.oreilly.com">
 <dw:title>Chocolate bar sales</dw:title>
 <dw:brand>
 <dw:name>Lindt</dw:name>
 <dw:units>27408</dw:units>
 </dw:brand>
 </dw:report>

 <report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 </report>

 <address>
 <company>IBM Boeblingen</company>

628 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <street>Schoenaicherstrasse 220</street>
 </address>

 <address>
 <company>IBM Böblingen</company>
 <street>Schönaicherstraße 220</street>
 </address>
 </xsl:variable>

 <xsl:variable name="sequence1" as="item()*">
 <xsl:sequence select="(3, 4, 5)"/>
 </xsl:variable>

 <xsl:variable name="sequence2" as="item()*">
 <xsl:sequence select="(3, 5, 4)"/>
 </xsl:variable>

 <xsl:variable name="sequence3" as="item()*">
 <xsl:sequence select="(3, 4, 5)"/>
 </xsl:variable>

 <xsl:template match="/">
 <xsl:text>
Tests of the deep-equal() function:</xsl:text>

 <xsl:text>

 $sequence1 = (</xsl:text>
 <xsl:value-of select="$sequence1" separator=", "/>
 <xsl:text>)</xsl:text>
 <xsl:text>
 $sequence2 = (</xsl:text>
 <xsl:value-of select="$sequence2" separator=", "/>
 <xsl:text>)</xsl:text>
 <xsl:text>
 $sequence3 = (</xsl:text>
 <xsl:value-of select="$sequence3" separator=", "/>
 <xsl:text>)</xsl:text>

 <xsl:text>

 deep-equal(</xsl:text>
 <xsl:text>$sequence1, $sequence2) = </xsl:text>
 <xsl:value-of select="deep-equal($sequence1, $sequence2)"/>

 <xsl:text>

 deep-equal(</xsl:text>
 <xsl:text>$sequence1, $sequence3) = </xsl:text>
 <xsl:value-of select="deep-equal($sequence1, $sequence3)"/>

 <xsl:text>

 deep-equal(</xsl:text>
 <xsl:text>subsequence($sequence1, 3, 1),
</xsl:text>
 <xsl:text> subsequence($sequence2, 2, 1) = </xsl:text>
 <xsl:value-of
 select="deep-equal(subsequence($sequence1, 3, 1),
 subsequence($sequence2, 2, 1))"/>

 <xsl:text>

 Comparing the first two </xsl:text>
 <xsl:text>subtrees in $testTree:</xsl:text>
 <xsl:text>
 deep-equal(subsequence($testTree, 1, 1),
</xsl:text>
 <xsl:text> subsequence($testTree, 2, 1)) = </xsl:text>
 <xsl:value-of
 select="deep-equal(subsequence($testTree, 1, 1),

[2.0] deep-equal( ) | 629

 subsequence($testTree, 2, 1))"/>

 <xsl:text>

 Comparing part of our input </xsl:text>
 <xsl:text>document to
 part of the third subtree </xsl:text>
 <xsl:text>in $testTree:</xsl:text>
 <xsl:text>
 deep-equal(/report/brand[1]/units,$#xA;</xsl:text>
 <xsl:text> subsequence($testTree, 3, 1)</xsl:text>
 <xsl:text>/brand[1]/units) = </xsl:text>
 <xsl:value-of
 select="deep-equal(/report/brand[1]/units,
 subsequence($testTree, 3, 1)/brand[1]/units)"/>

 <xsl:text>

 Comparing two German addresses:</xsl:text>
 <xsl:text>
 deep-equal(subsequence($testTree, 4, 1),
</xsl:text>
 <xsl:text> subsequence($testTree, 5, 1)) = </xsl:text>
 <xsl:value-of
 select="deep-equal(subsequence($testTree, 4, 1),
 subsequence($testTree, 5, 1))"/>

 <xsl:text>

 Comparing two German addresses </xsl:text>
 <xsl:text>using German collation: </xsl:text>
 <xsl:text>
 deep-equal(subsequence($testTree, 4, 1),
</xsl:text>
 <xsl:text> subsequence($testTree, 5, 1),
</xsl:text>
 <xsl:text> $GermanCollation) = </xsl:text>
 <xsl:value-of
 select="deep-equal(subsequence($testTree, 4, 1),
 subsequence($testTree, 5, 1),
 concat('http://saxon.sf.net/collation?',
 ‘class=com.oreilly.xslt.GermanCollation;'))"/>
 </xsl:template>

</xsl:stylesheet>

The results are:

Tests of the deep-equal() function:

 $sequence1 = (3, 4, 5)
 $sequence2 = (3, 5, 4)
 $sequence3 = (3, 4, 5)

 deep-equal($sequence1, $sequence2) = false

 deep-equal($sequence1, $sequence3) = true

 deep-equal(subsequence($sequence1, 3, 1),
 subsequence($sequence2, 2, 1) = true

 Comparing the first two subtrees in $testTree:
 deep-equal(subsequence($testTree, 1, 1),
 subsequence($testTree, 2, 1)) = true

 Comparing part of our input document to
 part of the third subtree in $testTree:
 deep-equal(/report/brand[1]/units,
 subsequence($testTree, 3, 1)/brand[1]/units) = true

630 | Appendix C: XSLT, XPath, and XQuery Function Reference

 Comparing two German addresses:
 deep-equal(subsequence($testTree, 4, 1),
 subsequence($testTree, 5, 1)) = false

 Comparing two German addresses using German collation:
 deep-equal(subsequence($testTree, 4, 1),
 subsequence($testTree, 5, 1),
 $GermanCollation) = true

We start by creating a variable that contains three root nodes. The first two are identical except
for different namespace prefixes. The third root node in $testTree is similar to part of our
chocolate sales document. We also create three sequences of atomic values. We compare the
sequences of atoms with each other, and we compare one item from $sequence1 with one item
from $sequence2.

Comparing the first two root nodes in $testTree, they are in fact deep-equal to each other
because the namespace prefix doesn’t matter. Both prefixes map to the same URI, so the two
root nodes are the same. If the two nodes use the same prefixes, but those two identical prefixes
map to two different URLs, those two nodes would not be deep-equal to each other.

Next, we compare the <units> element from the first <brand> element in the third root node
in $testTree with the similar element from our input document. The two nodes are deep-
equal to each other.

Finally, we use the two <address> elements in $testTree. Using the default collation, the text
values IBM Boeblingen and IBM Böblingen are different, as are Schoenaicherstrasse 220 and
Schönaicherstraße 220. Using the German collation, those strings are the same, so deep-
equal() returns true. (To keep the listing within the margins of the page, we used the
concat() function to combine the two halves of the Saxon collation URI.) See “The docu-
ment( ) Function and Sorting” in Chapter 8 for more information.

[2.0] default-collation()
Returns a string that represents the default collation.

Syntax
xs:string default-collation()

Inputs
None.

Output
An xs:string that represents the default collation.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 16, “Context Functions.”

[2.0] default-collation( ) | 631

Example
Here’s a stylesheet that simply displays the default collation:

<?xml version="1.0"?>
<!-- default-collation.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
The default collation is:
 </xsl:text>
 <xsl:value-of select="default-collation()"/>
 </xsl:template>

</xsl:stylesheet>

The results are:

The default collation is:
 http://www.w3.org/2005/xpath-functions/collation/codepoint

The default collation, as defined in the XQuery 1.0 and XPath 2.0 Functions and Operators
spec, is the Unicode code point collation. That collation is associated with the URI http://
www.w3.org/2005/xpath-functions/collation/codepoint, and all implementations of XPath
2.0 and XQuery 1.0 are required to support it. Implementors are free to support other collation
schemes, and each processor can define its own mechanisms for associating a URI with a
particular collation. Each processor can define its own default collation as well.

A final note: the default collation can be overridden in functions that specify a collation se-
quence, such as compare(), deep-equal(), ends-with(), or max().

[2.0] distinct-values()
Given a sequence, returns a new sequence containing one copy of each unique value in the
original sequence.

Syntax
xs:anyAtomicType* distinct-values(xs:anyAtomicType*)
xs:anyAtomicType* distinct-values(xs:anyAtomicType*, $collation as xs:string)

Inputs
A sequence of atomic values. distinct-values() also has an optional argument specifying a
collation algorithm. If present, the collation algorithm is used to determine whether two values
are different from each other.

Output
A sequence containing only one copy of each atomic value in the original sequence. Some
minor complications are as follows:

632 | Appendix C: XSLT, XPath, and XQuery Function Reference

• When distinct-values() returns its result sequence, the order in which the unique
values are returned is implementation-defined. Also, within a group of values that
have the same value, which value is returned is implementation-defined.

• If the input sequence is the empty sequence, the empty sequence is returned. Pass-
ing the empty sequence to distinct-values() does not raise an error.

• When comparing xs:float and xs:double values, positive zero and negative zero
are considered equal. Also, if there are numbers with the value NaN (not a number),
only one of those values will be in the result sequence.

• When comparing xs:date, xs:dateTime, and xs:time values, if those values don’t
have a timezone component, their timezone is considered to be the timezone re-
turned by the implicit-timezone() function. Also be aware that xs:date,
xs:dateTime, and xs:time values can be equal even though their timezone values
are different. Noon in one timezone might be equal to 9 a.m. in another, for
example.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.1, “General Functions and
Operators on Sequences.”

Example
We’ll start with our simplified address book to illustrate the distinct-values() function:

<?xml version="1.0"?>
<!-- simple-addresses.xml -->
<addressbook>
 <address>
 <name>Mr. Chester Hasbrouck Frisby</name>
 <city>Sheboygan</city>
 <state>WI</state>
 </address>
 <address>
 <name>Mary Backstayge</name>
 <city>Skunk Haven</city>
 <state>MA</state>
 </address>
 <address>
 <name>Ms. Natalie Attired</name>
 <city>Winter Harbor</city>
 <state>ME</state>
 </address>
 <address>
 <name>Harry Backstayge</name>
 <city>Skunk Haven</city>
 <state>MA</state>
 </address>
 <address>
 <name>Mary McGoon</name>
 <city>Boylston</city>
 <state>VA</state>

[2.0] distinct-values( ) | 633

 </address>
 <address>
 <name>Ms. Amanda Reckonwith</name>
 <city>Lynn</city>
 <state>MA</state>
 </address>
</addressbook>

Here’s a simple stylesheet that lists the distinct values of the <state> elements in the XML
source document:

<?xml version="1.0"?>
<!-- distinct-values1.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Here is a test of the distinct-values() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 The states in the source </xsl:text>
 <xsl:text>document are:
 </xsl:text>
 <xsl:value-of
 select="/addressbook/address/state"
 separator=", "/>

 <xsl:text>

 The unique states </xsl:text>
 <xsl:text>is:
 </xsl:text>
 <xsl:value-of
 select="distinct-values(/addressbook/address/state)"
 separator=", "/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here is a test of the distinct-values() function:

 The states in the source document are:
 WI, MA, ME, MA, VA, MA

 The unique states is:
 WI, MA, ME, VA

In this example, the values returned by distinct-values() are returned in document order,
although other XSLT processors might return those values in sorted order or some other way.

Here’s a stylesheet that compares some of the special cases we mentioned earlier:

<?xml version="1.0"?>
<!-- distinct-values2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

634 | Appendix C: XSLT, XPath, and XQuery Function Reference

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Here are some tests of the </xsl:text>
 <xsl:text>distinct-values() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 A sequence of xs:time values:</xsl:text>
 <xsl:variable name="timeSequence" as="xs:time*">
 <xsl:sequence
 select="(xs:time('00:43:00-06:00'),
 xs:time('01:43:00-05:00'),
 xs:time('02:43:00'),
 xs:time('07:35:00'),
 current-time())"/>
 </xsl:variable>

 <xsl:text>

 </xsl:text>
 <xsl:value-of
 select="distinct-values($timeSequence)"
 separator="
 "/>

 <xsl:text>

 A sequence of integer values:</xsl:text>
 <xsl:variable name="numberSequence" as="xs:integer*">
 <xsl:sequence select="(3, 8, (2 + 1), -0, 0)"/>
 </xsl:variable>

 <xsl:text>
 </xsl:text>
 <xsl:value-of
 select="distinct-values($numberSequence)"
 separator=", "/>
 </xsl:template>

</xsl:stylesheet>

The results from this stylesheet look like this:

Here are some tests of the distinct-values() function:

 A sequence of xs:time values:

 00:43:00-06:00
 07:35:00
 06:23:05.19-04:00

 A sequence of integer values:
 3, 8, 0

In the first sequence, we compare five different xs:time values. The first three are actually
equal; they represent the same time in three different zones. Notice that the third xs:time
value uses the implicit timezone; you’ll get different results if you run this stylesheet on a
machine that isn’t set to the GMT-4 timezone. The fourth and fifth values are different, so there

[2.0] distinct-values( ) | 635

are three values in the output sequence. We used Saxon for this example; for duplicate values,
it returns the first one it finds.

For the second sequence, we have several numeric values. The values 3 and (2 + 1) are iden-
tical, and -0 and 0 are the same as well. Notice that in this case the value in the output sequence
is the second zero value, not the first. (Saxon normalizes negative zero to zero, although this
is implementation-defined.)

As a final example, we’ll use a collation function. Here is the stylesheet:

<?xml version="1.0"?>
<!-- distinct-values3.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A final test of the </xsl:text>
 <xsl:text>distinct-values() function:

</xsl:text>

 <xsl:variable name="testStrings" as="xs:string*">
 <xsl:sequence
 select="'street', 'Strasse', 'Straße'"/>
 </xsl:variable>

 <xsl:text> The test sequence:
 </xsl:text>
 <xsl:value-of select="$testStrings" separator=", "/>
 <xsl:text>
 distinct-values($testStrings):</xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="distinct-values($testStrings)"
 separator=", "/>

 <xsl:text>
 distinct-values($testStrings, </xsl:text>
 <xsl:text>[German collation]):
 </xsl:text>
 <xsl:value-of
 select="distinct-values($testStrings,
 concat('http://saxon.sf.net/collation?',
 'class=com.oreilly.xslt.GermanCollation;'))"
 separator=", "/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

A final test of the distinct-values() function:

 The test sequence:
 street, Strasse, Straße
 distinct-values($testStrings):
 street, Strasse, Straße
 distinct-values($testStrings, [German collation]):
 street, Strasse

636 | Appendix C: XSLT, XPath, and XQuery Function Reference

The German sharp-s character (ß) is equivalent to ss. The default collation doesn’t recognize
this, but our custom collation does. (To keep the listing within the margins of the page, we
used the concat() function to combine the two halves of the Saxon collation URI.) See “The
document( ) Function and Sorting” in Chapter 8 for more information.

[2.0] doc()
Given a URI, returns a document node representing the contents of that URI.

Syntax
document-node()? doc($uri as xs:string?)

Inputs
A URI. The format of the URI is implementation-defined.

Output
A document node that represents the contents of the requested URI.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.5, “Functions and Operators
that Generate Sequences.”

Example
Here is an example that uses Saxon’s support for simple filenames as URIs. We’ll invoke the
doc() function to load this XML document:

<?xml version="1.0"?>
<!-- polist.xml -->
<collection>
 <doc href="po38292.xml"/>
 <doc href="po38293.xml"/>
 <doc href="po38294.xml"/>
 <doc href="po38295.xml"/>
</collection>

Here’s our stylesheet:

<?xml version="1.0"?>
<!-- doc.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the doc() function:</xsl:text>

 <xsl:text>

 Here are all the purchase orders </xsl:text>
 <xsl:text>listed in polist.xml:</xsl:text>
 <xsl:for-each select="doc('polist.xml')/collection/doc">

[2.0] doc( ) | 637

 <xsl:text>
 </xsl:text>
 <xsl:value-of select="@href"/>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

We use the doc() function to load the file polist.xml, and then we use <xsl:for-each> to
process the contents of the document we just loaded. Here are the results:

A test of the doc() function:

 Here are all the purchase orders listed in polist.xml:
 po38292.xml
 po38293.xml
 po38294.xml
 po38295.xml

Notice that we use the doc() function in an XPath expression. We iterate through all the
<doc> elements in the source file using the document root returned by the doc() function. We
could also use the doc() function to open each of the documents referenced in the
polist.xml file.

See Also
The [2.0] collection(), [2.0] doc-available(), and document() functions and the discussion
of “[2.0] The doc( ) and doc-available( ) Functions” in Chapter 8.

[2.0] doc-available()
Tests to see if a given document node is available.

Syntax
xs:boolean doc-available($uri as xs:string)

Inputs
The URI of a document.

Output
This function returns true if the doc() function can successfully load the requested URI. If
the argument cannot be converted to an xs:anyURI, the XSLT processor raises an error. Oth-
erwise, doc-available() returns false. The format of the URI is implementation-defined.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.5, “Functions and Operators
that Generate Sequences.”

638 | Appendix C: XSLT, XPath, and XQuery Function Reference

Example
Here’s a short stylesheet that tests whether two documents are available. This uses Saxon’s
support for simple filenames as URIs:

<?xml version="1.0"?>
<!-- doc-available.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the doc-available() function:
</xsl:text>

 <xsl:text>
 doc-available('polist.xml') = </xsl:text>
 <xsl:value-of select="doc-available('polist.xml')"/>

 <xsl:text>

 doc-available('polist2.xml') = </xsl:text>
 <xsl:value-of select="doc-available('polist2.xml')"/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Tests of the doc-available() function:

 doc-available('polist.xml') = true

 doc-available('polist2.xml') = false

The file polist.xml exists in the current directory and can be loaded by Saxon; the file
polist2.xml does not exist in the current directory.

Many of the details of the doc-available() function are implementation-defined. See the
documentation for your XSLT processor to see how it implements doc-available() and what
URI formats it supports.

document()
Allows you to process multiple source documents in a single stylesheet. This extremely pow-
erful and flexible function is discussed extensively in Chapter 7, so we’ll only include a brief
overview of the function here.

Syntax
[1.0] node-set document(object, node-set?)
[2.0] node()* document(item()*)
[2.0] node()* document(item()*, node())

Inputs
The document() function most commonly takes a string as its argument; that string is treated
as a URI, and the XSLT processor attempts to open that URI and parse it. If the string is empty

document( ) | 639

(the function call is document('')), the document() function parses the stylesheet itself. See
“Grouping Nodes” in Chapter 7 for all the details on the parameters to the document()
function.

[2.0] In XSLT 2.0, the document() function can also take a second argument, a node used to
find the base URI property of the requested documents. The base URI of the node is combined
with the resource names in the first argument to form a complete URI.

Output
A [1.0] node-set or [2.0] sequence containing the nodes identified by the input argument.
Again, Chapter 7 has all the details, so we won’t rehash them here.

Defined in
[1.0] XSLT section 12.1, “Multiple Source Documents.”

[2.0] XSLT section 16.1, “Multiple Source Documents.”

Example
The following example uses the document() function with an empty string to implement a
lookup table. Here is our XML document:

<?xml version="1.0"?>
<!-- polist.xml -->
<collection>
 <doc href="po38292.xml"/>
 <doc href="po38293.xml"/>
 <doc href="po38294.xml"/>
 <doc href="po38295.xml"/>
</collection>

We’ll use the document() function against each href attribute in this XML file. Calling
document() returns a set of nodes representing the referenced document. Each href points to
a purchase order document that is something like this:

<?xml version="1.0" ?>
<!-- po38293.xml -->
<purchase-order id="38293">
 <date year="2001" month="9" day="8"/>
 <customer id="4738" level="Basic">
 <address type="business">
 <name>
 <title>Ms.</title>
 <first-name>Amanda</first-name>
 <last-name>Reckonwith</last-name>
 </name>
 <street>930-A Chestnut Street</street>
 <city>Lynn</city>
 <state>MA</state>
 <zip>02930</zip>
 </address>
 <address type="ship-to"/>
 </customer>
 <items>

640 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <item part-no="23813-03-CDK">
 <name>Cucumber Decorating Kit</name>
 <qty>1</qty>
 <price>29.95</price>
 </item>
 </items>
</purchase-order>

We want our stylesheet to find all of the purchase orders in which a customer ordered more
than one item. Here’s how the stylesheet looks:

<?xml version="1.0"?>
<!-- document.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the document() function:
</xsl:text>

 <xsl:for-each select="/collection/doc">
 <xsl:variable name="latestDoc” select="document(@href)"/>
 <xsl:if
 test="count($latestDoc/purchase-order/items/item) > 1">
 <xsl:text>
 </xsl:text>
 <xsl:value-of
 select="$latestDoc/purchase-order/customer/
 address/name/first-name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of
 select="$latestDoc/purchase-order/customer/
 address/name/last-name"/>
 <xsl:text>
 ordered </xsl:text>
 <xsl:value-of
 select="count($latestDoc/purchase-order/items/item)"/>
 <xsl:text> items on </xsl:text>
 <xsl:value-of
 select="$latestDoc/purchase-order/date/@month"/>
 <xsl:text>/</xsl:text>
 <xsl:value-of
 select="$latestDoc/purchase-order/date/@day"/>
 <xsl:text>/</xsl:text>
 <xsl:value-of
 select="$latestDoc/purchase-order/date/@year"/>
 <xsl:text> - see P.O. #</xsl:text>
 <xsl:value-of
 select="$latestDoc/purchase-order/@id"/>
 </xsl:if>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

document( ) | 641

Running the stylesheet gives us these results:

A test of the document() function:

 Chester Hasbrouck Frisby
 ordered 3 items on 6/19/2001 - see P.O. #38292
 Natalie Attired
 ordered 2 items on 4/21/2001 - see P.O. #38294

The stylesheet has used the document() function to open all of the purchase orders referenced
in polist.xml. For any orders in which the customer ordered more than one item
(count($latestDoc/purchase-order/items/item) > 1), we print out a few details from the
purchase order. Notice that we re-initialize the variable $latestDoc as we iterate through all
of the href attributes; if we find a document that we want to process, storing the tree in a
variable means we don’t have to call document() over and over to get the information we need.

[2.0] document-uri()
Given a node, returns the document URI property for that node.

Syntax
xs:anyURI? document-uri(node()?)

Inputs
A node.

Output
If the node is not a document node, document-uri() returns the empty sequence.
Otherwise, it returns the document URI property for the node. If the argument is the empty
sequence, document-uri() returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 2, “Accessors.”

Example
Here’s a short stylesheet that returns the document URI for the XML document we’re
processing:

<?xml version="1.0"?>
<!-- document-uri.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the document-uri() function:</xsl:text>

 <xsl:text>

 The document URI for the </xsl:text>

642 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text>root element is:
 </xsl:text>
 <xsl:value-of select="document-uri(/)"/>
 </xsl:template>

</xsl:stylesheet>

When we run this stylesheet against the file blank.xml, here are the results:

A test of the document-uri() function:

 The document URI for the root element is:
 file:/C:/projects/XSLTbookV2/AppendixC/blank.xml

element-available()
Determines if a given element is available to the XSLT processor. This function allows you to
design stylesheets that react gracefully if a particular extension element is not available to
process an XML document.

Syntax
[1.0] boolean element-available($elementName as string)
[2.0] xs:boolean element-available($elementName as xs:string)

Inputs
The element’s name. The name should be qualified with a namespace; if the namespace URI
is the same as the XSLT namespace URI, then the element name refers to an element defined
by XSLT. Otherwise, the name refers to an extension element. If the element name has a null
namespace URI, then the element-available function returns false. [2.0] If the argument
cannot be converted to a valid QName, the XSLT processor raises an error.

Output
The boolean value true if the element is available; false otherwise.

Defined in
[1.0] XSLT section 15, “Fallback.”

[2.0] XSLT section 18.2, “Extension Instructions.”

Example
We’ll illustrate the element-available() function with the following XML document:

<?xml version="1.0"?>
<!-- chapterlist.xml -->
<book>
 <title>XSLT</title>
 <chapter>
 <title>Getting Started</title>
 <para>If this chapter had any text, it would appear here.</para>
 </chapter>
 <chapter>

element-available( ) | 643

 <title>The Hello World Example</title>
 <para>If this chapter had any text, it would appear here.</para>
 </chapter>
 ...
 <chapter>
 <title>Combining XML Documents</title>
 <para>If this chapter had any text, it would appear here.</para>
 </chapter>
</book>

Our stylesheet attempts to use the Xalan-J <redirect:write> to write each <chapter> to a
different file. If that element is not available, we write all of the information to a single HTML
file. Here’s the stylesheet:

<?xml version="1.0"?>
<!-- element-available.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:redirect="org.apache.xalan.xslt.extensions.Redirect"
 extension-element-prefixes="redirect">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <xsl:choose>
 <xsl:when test="element-available('redirect:write')">
 <xsl:for-each select="/book/chapter">
 <redirect:write select="concat('chapter', position(), '.html')">
 <html>
 <head>
 <title><xsl:value-of select="title"/></title>
 </head>
 <body>
 <h1><xsl:value-of select="title"/></h1>
 <xsl:apply-templates select="para"/>
 <xsl:if test="not(position()=1)">
 <p>
 Previous
 </p>
 </xsl:if>
 <xsl:if test="not(position()=last())">
 <p>
 Next
 </p>
 </xsl:if>
 </body>
 </html>
 </redirect:write>
 </xsl:for-each>
 </xsl:when>
 <xsl:otherwise>
 <html>
 <head>
 <title><xsl:value-of select="/book/title"/></title>
 </head>
 <xsl:for-each select="/book/chapter">

644 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <h1><xsl:value-of select="title"/></h1>
 <xsl:apply-templates select="para"/>
 </xsl:for-each>
 </html>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

 <xsl:template match="para">
 <p><xsl:apply-templates select="*|text()"/></p>
 </xsl:template>

</xsl:stylesheet>

If the <redirect:write> element is available, we’ll get a separate file for each <chapter> ele-
ment. Those files look like this:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>XPath</title>
 </head>
 <body>
 <h1>XPath</h1>
 <p>If this chapter had any text, it would appear here.</p>
 <p>Previous</p>
 <p>Next</p>
 </body>
</html>

When rendered in a browser, the file looks like Figure C-1.

Clicking on the Previous link takes you to the file chapter2.html, while clicking on the Next
link takes you to chapter4.html.

Although the format of the message is slightly different, the output in the multiple HTML
files is the same.

Figure C-1. Sample HTML output file

element-available( ) | 645

If we use Saxon, which doesn’t have the <redirect:write> element, we get a single HTML file
that looks like this:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>XSLT</title>
 </head>
 <h1>Getting Started</h1>
 <p>If this chapter had any text, it would appear here.</p>
 ...
 <h1>Combining XML Documents</h1>
 <p>If this chapter had any text, it would appear here.</p>
</html>

When rendered, our output looks like Figure C-2.

MSXSL and the AltovaXML engine generate the same results.

In this example, the element-available() function allows us to determine what processing
capabilities are available and to respond gracefully to whatever we find.

[2.0] empty()
Given a sequence, returns true if the argument is the empty sequence, false otherwise.

Syntax
xs:boolean empty(item()*)

Figure C-2. HTML document listing all chapters

646 | Appendix C: XSLT, XPath, and XQuery Function Reference

Inputs
A sequence of items.

Output
true if the argument is the empty sequence; false otherwise. Although empty($sequence) and
count($sequence) = 0 are logically equivalent, empty() is likely to be more efficient.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.1, “General Functions and
Operators on Sequences.”

Example
This stylesheet illustrates the empty() function:

<?xml version="1.0"?>
<!-- empty.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:variable name="emptySequence" as="item()*">
 <xsl:sequence select="()"/>
 </xsl:variable>

 <xsl:variable name="singleton" as="item()*">
 <xsl:sequence select="(3)"/>
 </xsl:variable>

 <xsl:variable name="longSequence" as="item()*">
 <xsl:sequence
 select="(3, 4, 5, current-date(), current-time(), 8, 'blue',
 'red', xs:float(3.14), 42, xs:date('1995-04-21'))"/>
 </xsl:variable>

 <xsl:text>
Here are some tests of the empty() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 Our first sequence is:

 </xsl:text>
 <xsl:value-of select="$emptySequence" separator="
 "/>
 <xsl:text>

</xsl:text>
 <xsl:value-of select="if (empty($emptySequence))
 then 'This is the empty sequence!'
 else 'This is not the empty sequence!'"/>
 <xsl:text>

</xsl:text>

 <xsl:text>
 Our next sequence is:

 </xsl:text>
 <xsl:value-of select="$singleton" separator="
 "/>
 <xsl:text>

</xsl:text>

[2.0] empty( ) | 647

 <xsl:value-of select="if (empty($singleton))
 then 'This is the empty sequence!'
 else 'This is not the empty sequence!'"/>
 <xsl:text>

</xsl:text>

 <xsl:text>
 Our final sequence is:

 </xsl:text>
 <xsl:value-of select="$longSequence" separator="
 "/>
 <xsl:text>

</xsl:text>
 <xsl:value-of select="if (empty($longSequence))
 then 'This is the empty sequence!'
 else 'This is not the empty sequence!'"/>
 <xsl:text>

</xsl:text>

 </xsl:template>

</xsl:stylesheet>

The stylesheet generates these results:

Here are some tests of the empty() function:

 Our first sequence is:

This is the empty sequence!

 Our next sequence is:
 3

This is not the empty sequence!

 Our final sequence is:
 3
 4
 5
 2008-03-04-05:00
 11:04:14.25-05:00
 8
 blue
 red
 3.14
 42
 1995-04-21

This is not the empty sequence!

[2.0] encode-for-uri()
Given a string, encodes that string for use in a URI.

Syntax
xs:string encode-for-uri($uri-part as xs:string?)

648 | Appendix C: XSLT, XPath, and XQuery Function Reference

Input
A string containing the value to be escaped.

Output
The input string with the appropriate characters escaped as percent-encoded values. All char-
acters are escaped except the following: upper- and lowercase letters A–Z, the digits 0–9, the
hyphen-minus character (“–” or -), the underscore or low-line character (“_” or
_), the period or full stop (“.” or E;), and the tilde (“~” or ~). For example, the
space character, , is escaped as %20. All hexadecimal digits are in uppercase, so the char-
acter á (á, a lowercase a with an acute accent) is escaped as %E1.

Keep in mind that the encode-for-uri() function escapes every character, so you should use
it to escape only the parts of a URI that need to be escaped. For example, calling encode-for-
uri('http://www.oreilly.com/') returns http%3A%2F%2Fwww.oreilly.com%2F, which is almost
certainly not what you want.

If the value of the argument is the empty sequence, a zero-length string is returned.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.4, “Functions on String Values.”

Example
Here’s a stylesheet that features two examples courtesy of the XQuery 1.0 and XPath 2.0
Functions and Operators spec:

<?xml version="1.0" encoding="utf-8"?>
<!-- encode-for-uri.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the encode-for-uri() function:</xsl:text>

 <xsl:text>

 encode-for-uri</xsl:text>
 <xsl:text>('http://www.oreilly.com/') =
 </xsl:text>
 <xsl:value-of
 select="encode-for-uri('http://www.oreilly.com/')"/>

 <xsl:text>

 concat('http://www.example.com/', </xsl:text>
 <xsl:text>
 encode-for-uri</xsl:text>
 <xsl:text>('~bébé')) =
 </xsl:text>
 <xsl:value-of
 select="concat('http://www.example.com/',
 encode-for-uri('~bébé'))"/>

 <xsl:text>

 concat('http://www.example.com/', </xsl:text>
 <xsl:text>
 encode-for-uri</xsl:text>
 <xsl:text>('100% organic')) =
 </xsl:text>
 <xsl:value-of

[2.0] encode-for-uri( ) | 649

 select="concat('http://www.example.com/',
 encode-for-uri('100% organic'))"/>
 </xsl:template>

</xsl:stylesheet>

The stylesheet generates these results:

Tests of the encode-for-uri() function:

 encode-for-uri('http://www.oreilly.com/') =
 http%3A%2F%2Fwww.oreilly.com%2F

 concat('http://www.example.com/',
 encode-for-uri('~bébé')) =
 http://www.example.com/~b%C3%A9b%C3%A9

 concat('http://www.example.com/',
 encode-for-uri('100% organic')) =
 http://www.example.com/100%25%20organic

See Also
The descriptions of the [2.0] escape-html-uri() and [2.0] iri-to-uri() functions.

[2.0] ends-with()
Given two strings and an optional collation, returns true if the first string ends with the
characters of the second string.

Syntax
xs:boolean ends-with(xs:string?, xs:string?)
xs:boolean ends-with(xs:string?, xs:string?, $collation as xs:string)

Inputs
Two strings and an optional name of a collation algorithm. A collation algorithm defines how
characters are compared; to take an example from the specs, a collation algorithm might
define that the characters ss and the German ß (sharp-s) character are the same.

Output
Assuming both arguments are not zero-length strings, if the first string ends with the second,
ends-with() returns the boolean value true; otherwise, it returns false. If the second string
is a zero-length string, ends-with() returns true. If the first string and the second string are
both zero-length strings, ends-with() returns true. If the first string is a zero-length string but
the second string is not, ends-with() returns false.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.5, “Functions Based on Sub-
string Matching.”

650 | Appendix C: XSLT, XPath, and XQuery Function Reference

Example
Here’s a short stylesheet that demonstrates how the ends-with() function works:

<?xml version="1.0" encoding="utf-8"?>
<!-- ends-with1.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="string1" select="'Have a nice day'"/>
 <xsl:variable name="string2" select="'Have a nice day!'"/>
 <xsl:variable name="string3" select="'day'"/>

 <xsl:text>
A test of the ends-with() function:
</xsl:text>

 <xsl:text> ends-with('</xsl:text>
 <xsl:value-of select="$string1"/>
 <xsl:text>', '</xsl:text>
 <xsl:value-of select="$string3"/>
 <xsl:text>') = </xsl:text>
 <xsl:value-of select="ends-with($string1, $string3)"/>
 <xsl:text>
</xsl:text>

 <xsl:text> ends-with('</xsl:text>
 <xsl:value-of select="$string2"/>
 <xsl:text>', '</xsl:text>
 <xsl:value-of select="$string3"/>
 <xsl:text>') = </xsl:text>
 <xsl:value-of select="ends-with($string2, $string3)"/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

A test of the ends-with() function:
 ends-with('Have a nice day', 'day') = true
 ends-with('Have a nice day!', 'day') = false

The ends-with function is one of several that can contain an optional collation. How that
collation is specified varies from one processor to the next. In Saxon this is done with a URI
that includes the name of the Java class that performs the collation. Here’s an example that
compares the German words Straße and Strasse. In the default collation, these two words are
different; using the German collation, they’re the same. Here’s the stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!-- ends-with2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">

[2.0] ends-with( ) | 651

 <xsl:variable name="string1" select="'Straße'"/>
 <xsl:variable name="string2" select="'Strasse'"/>

 <xsl:text>
A test of the ends-with() function:
</xsl:text>

 <xsl:text> ends-with('</xsl:text>
 <xsl:value-of select="$string1"/>
 <xsl:text>', '</xsl:text>
 <xsl:value-of select="$string2"/>
 <xsl:text>') = </xsl:text>
 <xsl:value-of select="ends-with($string1, $string2)"/>
 <xsl:text>
</xsl:text>

 <xsl:text> ends-with('</xsl:text>
 <xsl:value-of select="$string1"/>
 <xsl:text>', '</xsl:text>
 <xsl:value-of select="$string2"/>
 <xsl:text>', [German collation]) = </xsl:text>
 <xsl:value-of
 select="ends-with($string1, $string2,
 concat('http://saxon.sf.net/collation?',
 'class=com.oreilly.xslt.GermanCollation;'))"/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

And here are the results:

A test of the ends-with() function:
 ends-with('Straße', 'Strasse') = false
 ends-with('Straße', 'Strasse', [German collation]) = true

Using the collation we defined, the two spellings of Strasse are the same; using the default
collation, they’re not. (To keep the listing within the margins of the page, we used the
concat() function to combine the two halves of the Saxon collation URI.) See “The docu-
ment( ) Function and Sorting” in Chapter 8 for more information.

[2.0] error()
Raises an error. This is equivalent to throwing an exception in Java, C++, Ruby, and other
languages.

Syntax
none error()
none error($error as xs:QName)
none error($error as xs:QName?, $description as xs:string)
none error($error as xs:QName?, $description as xs:string,
 $error-object as item()*)

Inputs
This function has four different signatures. The three optional parameters defined in the
“Syntax” section are the QName associated with the error, an xs:string, and a sequence of

652 | Appendix C: XSLT, XPath, and XQuery Function Reference

items. How these inputs are processed is implementation-defined, so useful or appropriate
values for these arguments vary from one processor to the next.

Output
This function never returns. The error() function returns an error to the external processing
environment. How (or if) the QName, string, and sequence of items passed to this function
are delivered to the environment is implementation-defined.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 3, “The Error Function.” In
addition, Appendix C of this spec defines a number of error conditions and codes. For ex-
ample, err:FODT0003 is the error code for a timezone value that is not valid. The err namespace
is bound to the URI http://www.w3.org/2005/xqt-errors—we’ll use this in our examples.
You’re free to create your own error codes and messages if you like.

Example
We’ll look at four stylesheets that throw errors, one for each of the four method signatures
of the error() function. Here’s the first, which we simply call error():

<?xml version="1.0"?>
<!-- error1.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Test #1 of the error() function:</xsl:text>

 <xsl:value-of select="error()"/>
 </xsl:template>

</xsl:stylesheet>

Our results look like this:

 FOER0000: Error signalled by application call on error()
Transformation failed: Run-time errors were reported

The error code here, FOER0000, is defined in the XQuery 1.0 and XPath 2.0 Functions and
Operators spec as “Unidentified error.”

For our second attempt, we use a QName that refers to a specific error code from the spec:

<?xml version="1.0"?>
<!-- error2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Test #2 of the error() function:</xsl:text>

[2.0] error( ) | 653

 <xsl:value-of
 select="error(QName('http://www.w3.org/2005/xqt-errors',
 'err:FORX0004'))"/>
 </xsl:template>

</xsl:stylesheet>

Our results:

 FORX0004: Error signalled by application call on error()
Transformation failed: Run-time errors were reported

These results have a specific error code, FORX0004. We’ll move on to our third example, in
which we add a descriptive string to the call to error():

<?xml version="1.0"?>
<!-- error3.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Test #3 of the error() function:</xsl:text>

 <xsl:value-of
 select="error(QName('http://www.w3.org/2005/xqt-errors',
 'err:FORX0004'),
 'Invalid replacement string.')"/>
 </xsl:template>

</xsl:stylesheet>

The results here are more informative; the error message includes our string:

 FORX0004: Invalid replacement string.
Transformation failed: Run-time errors were reported

The specs define error code FORX0004 as “Invalid replacement string,” so that’s what we put
into our error string. With Saxon, whatever string we pass to the error() function is put into
the output, so we’re free to put more information in the string if we want.

Our final example includes an item—in this case, an xs:dateTime value:

<?xml version="1.0"?>
<!-- error4.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Test #4 of the error() function:</xsl:text>

 <xsl:value-of
 select="error(QName('http://www.w3.org/2005/xqt-errors',
 'err:FORX0004'),

654 | Appendix C: XSLT, XPath, and XQuery Function Reference

 'Invalid replacement string.',
 current-dateTime())"/>
 </xsl:template>

</xsl:stylesheet>

Here our results are exactly what they were before:

 FORX0004: Invalid replacement string.
Transformation failed: Run-time errors were reported

Looking into the Saxon documentation, it seems the sequence of items we can pass to the
error() function are intended for more advanced techniques than simply writing messages
to the console. The saxon:try() function, available in the schema-aware version of Saxon,
appears to have access to this data. Again, virtually all of the details of how the error()
function work are implementation-defined, so check your processor’s documentation for
more information.

[2.0] escape-html-uri()
Given an HTML URI, returns that URI with its non-ASCII characters escaped as UTF-8
characters.

Syntax
xs:string escape-html-uri(xs:string?)

Inputs
An xs:string representing an HTML URI.

Output
The input string with all characters outside the range to ~ escaped as UTF-8 char-
acters. When a character is converted to UTF-8, it is represented as octets in the form %HH,
where HH is the hexadecimal representation of the octet. The hexadecimal characters generated
by escape-html-uri() are in uppercase. This function conforms to the rules for escaping non-
ASCII characters defined in the HTML 4.0 spec.

If argument is the empty sequence, a zero-length string is returned.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.4, “Functions on String Values.”

Example
This stylesheet uses escape-html-uri() to correctly encode characters in the URI (in this case
é, a lowercase e with an acute accent) as UTF-8. (This example was taken from the XQuery
1.0 and XPath 2.0 Functions and Operators spec.)

<?xml version="1.0" encoding="UTF-8"?>
<!-- escape-html-uri.xsl -->
<xsl:stylesheet version="1.0"

[2.0] escape-html-uri( ) | 655

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the escape-html-uri() function:</xsl:text>

 <xsl:text>

 escape-html-uri</xsl:text>
 <xsl:text>('http://www.example.com/~bébé') =
 </xsl:text>
 <xsl:value-of
 select="escape-html-uri('http://www.example.com/~bébé')"/>
 </xsl:template>

</xsl:stylesheet>

The results look like this:

Tests of the escape-html-uri() function:

 escape-html-uri('http://www.example.com/~bébé') =
 http://www.example.com/~b%C3%A9b%C3%A9

Notice that the single-byte character in the original URL (é) has been replaced by a two-byte
UTF-8 character (%C3%A9) in the output.

See Also
The descriptions of the [2.0] encode-for-uri() and [2.0] iri-to-uri() functions.

[2.0] exactly-one()
Raises an error unless its argument is a singleton, a sequence containing exactly one item. Be
aware that exactly-one() terminates processing. For a more flexible approach, use the
count() function to determine the cardinality of a sequence.

Syntax
item()+ exactly-one(item()*)

Inputs
A sequence.

Outputs
If the input sequence contains exactly one item, the input sequence is returned. Otherwise,
exactly-one() raises an error.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.2, “Functions That Test the
Cardinality of Sequences.” More details about this function can be found in XQuery 1.0 and
XPath 2.0 Formal Semantics section 7.2, “Standard Functions with Specific Static Typing
Rules.”

656 | Appendix C: XSLT, XPath, and XQuery Function Reference

Example
The exactly-one() function is useful for working with XSLT 2.0’s static typing. Any sequence
can be empty, a singleton, or have multiple items. If we need to test the cardinality of the
sequence at runtime, the exactly-one() function can enforce the restriction that a sequence
must be a singleton. However, exactly-one() terminates stylesheet processing if its argument
doesn’t have exactly one item, so it’s far more flexible to use the count() function to check
the number of items in a sequence before working with it.

Here is a short stylesheet that invokes the exactly-one() function with a singleton:

<?xml version="1.0"?>
<!-- exactly-one.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:text>
Here is a test of the exactly-one() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:variable name="singleton" as="item()*">
 <xsl:sequence select="0"/>
 </xsl:variable>

 <xsl:text>
 Our sequence is:

 </xsl:text>
 <xsl:value-of select="$singleton" separator="
 "/>

 <xsl:if test="count(exactly-one($singleton))">
 <xsl:text>

 Our test sequence has exactly </xsl:text>
 <xsl:text>one item!
</xsl:text>
 </xsl:if>
 </xsl:template>

</xsl:stylesheet>

In the test attribute of the <xsl:if> element we need to use exactly-one() to generate a
boolean value. Here’s a simple, yet incorrect, way to do this:

<xsl:if test="exactly-one($singleton)"> <!-- doesn’t work! -->

If the exactly-one() function doesn’t raise an error, it returns a sequence with exactly one
item. It would seem that a one-item sequence would always be true, but that’s not the case.
In our example here, the singleton sequence (0) evaluates to false because the atomic value
0 is false. Using the count() function ensures that we get a meaningful result. (With a sin-
gleton sequence, count() always returns 1, which is always true.)

Also keep in mind that many datatypes cannot be converted to boolean values. If our singleton
were the sequence (xs:date('1995-04-21')), the XSLT processor would raise an error because
xs:date values cannot be converted to boolean.

At any rate, here are the results:

[2.0] exactly-one( ) | 657

Here is a test of the exactly-one() function:

 Our sequence is:

 0

 Our test sequence has exactly one item!

See Also
The descriptions of the count(), [2.0] empty(), [2.0] one-or-more(), and the [2.0] zero-or-
one() functions and the XPath 2.0 treat as operater (in the section “[2.0] Datatype Operators
—instance of, castable as, cast as, and treat as” in Chapter 3).

[2.0] exists()
Returns true if the input sequence is nonempty; false otherwise.

Syntax
xs:boolean exists(item()*)

Input
A sequence of items.

Output
If the sequence of items is not empty, exists() returns true; otherwise, it returns false.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.1, “General Functions and
Operators on Sequences.”

Example
This simple stylesheet uses the exists() function against three sequences. The first sequence
is the empty sequence, the second is a singleton, and the third is a longer sequence:

<?xml version="1.0"?>
<!-- exists.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:text>
Here is a test of the exists() </xsl:text>
 <xsl:text>function:

 </xsl:text>

 <xsl:variable name="emptySequence" as="item()*">

658 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:sequence select="()"/>
 </xsl:variable>

 <xsl:variable name="singleton" as="item()*">
 <xsl:sequence select="(3)"/>
 </xsl:variable>

 <xsl:variable name="longSequence" as="item()*">
 <xsl:sequence
 select="(3, 4, 5, current-date(), current-time(), 8, 'blue',
 'red', xs:float(3.14), 42, xs:date('1995-04-21'))"/>
 </xsl:variable>

 <xsl:choose>
 <xsl:when test="exists($emptySequence)">
 <xsl:text>The empty sequence does exist!</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>The empty sequence doesn't exist!</xsl:text>
 </xsl:otherwise>
 </xsl:choose>

 <xsl:text>
 </xsl:text>
 <xsl:value-of select="if (exists($singleton))
 then 'The singleton sequence does exist!'
 else 'The singleton sequence doesn''t exist!'"/>

 <xsl:text>
 </xsl:text>
 <xsl:value-of select="if (exists($longSequence))
 then 'The long sequence does exist!'
 else 'The long sequence doesn''t exist!'"/>
 </xsl:template>

</xsl:stylesheet>

Notice that the first test of exists() does if-then-else logic with the XSLT 1.0 <choose> ele-
ment, while the other tests use the exists() function in XPath 2.0’s if statement. The results
from the stylesheet look like this:

Here is a test of the exists() function:

 The empty sequence doesn't exist!
 The singleton sequence does exist!
 The long sequence does exist!

false()
Always returns the boolean value false. Remember that the strings “true” and “false” don’t
have any special significance in XSLT; any string with a length greater than zero is true. This
function (and the true() function) allow you to generate boolean values when you need them.

false( ) | 659

Syntax
[1.0] boolean false()
[2.0] xs:boolean false()

Inputs
None.

Output
The boolean value false.

Defined in
XPath section 4.3, “Boolean Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators Section 9.1, “Additional Boolean
Constructor Functions.”

Example
Here’s a brief example that uses the false() function:

<?xml version="1.0"?>
<!-- false.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the false() function:

</xsl:text>

 <xsl:text> false() returned </xsl:text>
 <xsl:value-of select="false()"/>
 <xsl:text>!</xsl:text>
 </xsl:template>
</xsl:stylesheet>

When using this stylesheet against any XML document, it generates this less-than exciting
result:

A test of the false() function:

 false() returned false!

floor()
Returns the largest integer that is not greater than the argument.

Syntax
[1.0] number floor(number)
[2.0] numeric? floor(numeric?)

660 | Appendix C: XSLT, XPath, and XQuery Function Reference

Inputs
A number.

[1.0] If the argument is not a number, it is transformed into a number as if it had been pro-
cessed by the number() function. If the argument cannot be transformed into a number, the
floor() function returns the value NaN (not a number).

[2.0] In XSLT 2.0, the argument must be one of the four numeric types (xs:float, xs:decimal,
xs:double, or xs:integer). If it is not, the XSLT processor raises an error. The result of the
floor() function will be of the same type as the argument.

In XSLT 2.0, the argument must be a number. If it is not, the XSLT processor raises an error.

Output
The largest integer that is not less than the argument.

[1.0] In XSLT 1.0, floor() returns NaN if the argument cannot be converted to a number.

[2.0] In XSLT 2.0, floor() raises an error if the argument cannot be converted to a number.

Defined in
[1.0] XPath section 4.4, “Number Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 6.4, “Functions on Numeric
Values.”

Example
The following stylesheet shows the results of invoking the floor() function against a variety
of values:

<?xml version="1.0"?>
<!-- floor.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the floor() function:

</xsl:text>

 <xsl:text> floor(7.983) = </xsl:text>
 <xsl:value-of select="floor(7.983)"/>

 <xsl:text>
 floor(-7.893) = </xsl:text>
 <xsl:value-of select="floor(-7.893)"/>

 <xsl:text>
 floor('blue') = </xsl:text>
 <xsl:value-of version="1.0” select="floor('blue')"/>

 </xsl:template>

</xsl:stylesheet>

floor( ) | 661

When we transform the XML document with our stylesheet, here are the results:

Tests of the floor() function:

 floor(7.983) = 7
 floor(-7.893) = -8
 floor('blue') = NaN

For the last test of the floor() function, we specified version="1.0" on the <xsl:value-of>
element. In XSLT 1.0 mode, we get the result NaN (not a number). If we process this
<xsl:value-of> element in XSLT 2.0 mode, the stylesheet won’t run at all. If you change the
entire stylesheet to XSLT version 1.0, you’ll have to take the version attribute off of the
<xsl:value-of> element.

[2.0] format-date()
Formats an xs:date value according to a format string.

Syntax
xs:string? format-date(xs:date?, xs:string)
xs:string? format-date(xs:date?, xs:string, $language as xs:string?,
 $calendar as xs:string?,
 $country as xs:string?)

Inputs
In the first form of this function, an optional xs:date value and a formatting string. If the
xs:date value is omitted, the current date is used. In the second form of this function, you
can supply strings that represent the preferred language, calendar, and country codes for the
output value.

The following codes are defined for the formatting string. The default values are how the
processor interprets codes without any modifiers. In other words, [Y] is the same as [Y1]. The
codes are:

Y
The year. The default value is [Y1], which generates a four-digit year.

M
The month in the year. The default value is [M1], which generates a one- or two-
digit numeric month.

D
The day in the month. The default value is [D1], which generates a one- or two-
digit numeric day.

d
The day in the year. The default value is [d1], which generates a one-, two-, or
three-digit day (if the date is July 26 of a nonleap year, this generates 207, for
example).

662 | Appendix C: XSLT, XPath, and XQuery Function Reference

F
The day in the week. The default value is [Fn], which generates the lowercase word
representing the day of the week (wednesday, for example).

W
The week in the year. The default value is [W1], which generates the one- or two-
digit number of the week in the year.

w
The week in the month. The default value is [w1], which generates the one-digit
number of the week in the month.

Z
The timezone as an offset from UTC. The default value is [Z1], which generates
the hour and minute offset from UTC (-04:00, for example).

z
The timezone as an offset from GMT. The default value is [z1], which generates
the offset from GMT (GMT-4, for example).

For complete details on the formatting strings for dates, times, and numbers, see Appendix F.

Output
A string representing the xs:date formatted according to the format string. If the xs:date
argument is the empty sequence, the empty sequence is returned.

Defined in
XSLT section 16.5, “Formatting Dates and Times.”

Example
This stylesheet illustrates many different ways to format an xs:date and its various
components:

<?xml version="1.0"?>
<!-- format-date.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the format-date() function:
</xsl:text>

 <xsl:variable name="today" select="current-date()"/>
 <xsl:text>
 The current date is: </xsl:text>
 <xsl:value-of select="$today"/>
 <xsl:variable name="longFormat"
 select="concat('Today is [FNn], [MNn] [D1], [Y],
 ',
 'the [D1o] day of the [W1o] week of the year,',
 '
 the [w1o] week of the month,',
 '
 in the [zWw] time zone.')"/>

[2.0] format-date( ) | 663

 <xsl:text>

 The year - format-date</xsl:text>
 <xsl:text>($today, '[Y]'): </xsl:text>
 <xsl:value-of select="format-date($today, '[Y1111]')"/>
 <xsl:text>

 The two-digit year - </xsl:text>
 <xsl:text>format-date($today, '[Y11]'): </xsl:text>
 <xsl:value-of select="format-date($today, '[Y11]')"/>
 <xsl:text>

 The month - format-date(</xsl:text>
 <xsl:text>$today, '[M11]'): </xsl:text>
 <xsl:value-of select="format-date($today, '[M11]')"/>
 <xsl:text>

 The month in German words - </xsl:text>
 <xsl:text>format-date($today, '[MWw]', 'de', (), ()): </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of
 select="format-date($today, '[MWw]', 'de', (), ())"/>
 <xsl:text>

 The day in words - format-date(</xsl:text>
 <xsl:text>$today, '[DWw]'):
 </xsl:text>
 <xsl:value-of select="format-date($today, '[DWw]')"/>
 <xsl:text>

 The day in German words - </xsl:text>
 <xsl:text>format-date($today, '[Dw]', 'de', (), ()): </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="format-date($today, '[Dw]', ‘de', (), ())"/>
 <xsl:text>

 Using format-date($today, '[dwo]'):</xsl:text>
 <xsl:text>
 It's the </xsl:text>
 <xsl:value-of select="format-date($today, '[dwo]')"/>
 <xsl:text> day of the year.</xsl:text>
 <xsl:text>

 Using format-date($today, '[d1o]'):</xsl:text>
 <xsl:text>
 It's the </xsl:text>
 <xsl:value-of select="format-date($today, '[d1o]')"/>
 <xsl:text> day of the year.</xsl:text>

 <xsl:text>

 The grand finale:</xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="format-date($today, $longFormat)"/>
 </xsl:template>

</xsl:stylesheet>

The results look like this:

Tests of the format-date() function:

 The current date is: 2006-07-26-04:00

 The year - format-date($today, '[Y]'): 2006

 The two-digit year - format-date($today, '[Y11]'): 06

 The month - format-date($today, '[M11]'): 07

 The month in German words - format-date($today, '[MWw]', 'de', (), ()):
 Sieben

 The day in words - format-date($today, '[DWw]'):
 Twenty Six

664 | Appendix C: XSLT, XPath, and XQuery Function Reference

 The day in German words - format-date($today, '[Dw]', 'de', (), ()):
 sechsundzwanzig

 Using format-date($today, '[dwo]):
 It's the two hundred and seventh day of the year.

 Using format-date($today, '[d1o]):
 It's the 207th day of the year.

 The grand finale:
 Today is Wednesday, July 26, 2006,
 the 26th day of the 30th week of the year,
 the 4th week of the month,
 in the GMT-4 time zone.

Notice that we used the language code de for two of the examples. With the different com-
binations of modifiers, we printed out the components of a date in numbers and words, both
in cardinal and ordinal formats. Also notice that we stored the formatting string in a variable
so we could use it whenever we want.

[2.0] format-dateTime()
Formats an xs:dateTime value according to a format string.

Syntax
xs:string? format-dateTime(xs:dateTime?, $picture as xs:string)
xs:string? format-dateTime(xs:dateTime?, $picture as xs:string,
 $language as xs:string?,
 $calendar as xs:string?,
 $country as xs:string?)

Inputs
In the first form of this function, an optional xs:dateTime value and a formatting string. If the
xs:dateTime value is omitted, the current date and time is used. In the second form of this
function, you can supply strings that represent the preferred language, calendar, and country
codes for the output value.

The following codes are defined for the formatting string:

Y
The year. The default value is [Y1], which generates a four-digit year.

M
The month in the year. The default value is [M1], which generates a one- or two-
digit numeric month.

D
The day in the month. The default value is [D1], which generates a one- or two-
digit numeric day.

[2.0] format-dateTime( ) | 665

d
The day in the year. The default value is [d1], which generates a one-, two-, or
three-digit day (if the date is July 26 of a nonleap year, this generates 207, for ex-
ample).

F
The day in the week. The default value is [Fn], which generates the lowercase word
representing the day of the week (wednesday, for example).

W
The week in the year. The default value is [W1], which generates the one- or two-
digit number of the week in the year.

w
The week in the month. The default value is [w1], which generates the one-digit
number of the week in the month.

H
The hour in the day, in a 24-hour clock. The default value is [H1], which generates
the one- or two-digit number of the hour in the day. Note that this value will never
be greater than 23.

h
The hour in the day, in a 12-hour clock. The default value is [h1], which generates
the one- or two-digit number of the hour in the day.

P
The AM/PM marker. The default value is [Pn], which generates the AM/PM marker
in lowercase (a.m. or p.m.).

m
The minute in the hour. The default value is [m01], which generates the two-digit
minute in the hour.

s
The second in the minute. The default value is [s01], which generates the two-digit
second in the minute.

f
The fractional seconds. The default value is [f1], which generates the fractional
seconds to three decimal places.

Z
The timezone as an offset from UTC. The default value is [Z1], which generates
the hour and minute offset from UTC (-04:00, for example).

z
The timezone as an offset from GMT. The default value is [z1], which generates
the offset from GMT (GMT-4, for example).

For complete details on the formatting strings for dates, times, and numbers, see Appendix F.

666 | Appendix C: XSLT, XPath, and XQuery Function Reference

Output
A string representing the xs:dateTime formatted according to the format string. If the
xs:dateTime argument is the empty sequence, the empty sequence is returned.

Defined in
XSLT section 16.5, “Formatting Dates and Times.”

Example
This stylesheet illustrates many different ways to format an xs:dateTime and its various
components:

<?xml version="1.0"?>
<!-- format-dateTime.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the format-dateTime() function:
</xsl:text>

 <xsl:variable name="today" select="current-dateTime()"/>
 <xsl:text>
 The current date and time is: </xsl:text>
 <xsl:value-of select="$today"/>
 <xsl:variable name="longFormat"
 select="concat('It''s [h1]:[m11] [P] on ',
 '[FNn], [MNn] [D1], [Y],
 ',
 'the [D1o] day of the [W1o] week of the year,',
 '
 the [w1o] week of the month,',
 '
 in the [zWw] time zone.')"/>

 <xsl:text>

 The year - format-dateTime</xsl:text>
 <xsl:text>($today, '[Y]'): </xsl:text>
 <xsl:value-of select="format-dateTime($today, '[Y]')"/>
 <xsl:text>

 The hour (12-hour clock) - </xsl:text>
 <xsl:text>format-dateTime($today, '[h] [PN]'): </xsl:text>
 <xsl:value-of select="format-dateTime($today, '[h] [PN]')"/>
 <xsl:text>

 The minutes - format-dateTime(</xsl:text>
 <xsl:text>$today, '[m11]'): </xsl:text>
 <xsl:value-of select="format-dateTime($today, '[m11]')"/>
 <xsl:text>

 The seconds - format-dateTime(</xsl:text>
 <xsl:text>$today, '[s11].[f1111]): </xsl:text>
 <xsl:value-of select="format-dateTime($today, '[s11].[f1111]')"/>
 <xsl:text>

 The complete time - format-dateTime(</xsl:text>
 <xsl:text>$today, '[h]:[m11]:[s11] [P]'):
 </xsl:text>
 <xsl:value-of
 select="format-dateTime($today, '[h]:[m11]:[s11] [P]')"/>
 <xsl:text>

 The day in words - format-dateTime(</xsl:text>
 <xsl:text>$today, '[FNn]'):
 </xsl:text>
 <xsl:value-of select="format-dateTime($today, '[FNn]')"/>

 <xsl:text>

 The grand finale:</xsl:text>

[2.0] format-dateTime( ) | 667

 <xsl:text>
 </xsl:text>
 <xsl:value-of select="format-dateTime($today, $longFormat)"/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Tests of the format-dateTime() function:

 The current date and time is: 2006-07-26T13:58:25.790-04:00

 The year - format-dateTime($today, '[Y]'): 2006

 The hour (12-hour clock) - format-dateTime($today, '[h] [PN]'): 1 P.M.

 The minutes - format-dateTime($today, '[m11]'): 58

 The seconds - format-dateTime($today, '[s11].[f1111]): 25.7900

 The complete time - format-dateTime($today, '[h]:[m11]:[s11] [P]'):
 1:58:25 p.m.

 The day in words - format-dateTime($today, '[FNn]'):
 Wednesday

 The grand finale:
 It's 1:58 p.m. on Wednesday, July 26, 2006,
 the 26th day of the 30th week of the year,
 the 4th week of the month,
 in the GMT-4 time zone.

format-number()
Takes a number and formats it as a string.

Syntax
[1.0] string format-number($value as number, $picture as string,
 $formatName as string?)
[2.0] xs:string format-number($value as numeric, $picture as xs:string,
 $formatName as xs:string?)

Inputs
The number to be formatted and the format pattern string are required. The third argument
is the optional name of a decimal format; if the third argument is not supplied, the default
decimal format is used.

[2.0] The numeric argument must be one of the four numeric types (xs:float, xs:decimal,
xs:double, or xs:integer). If it is not a numeric type or cannot be converted to one, the XSLT
processor raises an error. The XSLT processor also raises an error if the named decimal format
does not exist.

668 | Appendix C: XSLT, XPath, and XQuery Function Reference

Output
The number, formatted according to the rules supplied by the other arguments. The special
characters used in the second argument are:

#
Represents a digit. Trailing or leading zeroes are not displayed. Formatting the
number 4.0 with the string #.## returns the string 4.

0
Represents a digit. Unlike the # character, the 0 always displays a zero. Formatting
the number 4.1 with the string #.00 returns the string 4.10.

.
Represents the decimal point.

–
Represents the minus sign.

,
Is the grouping separator.

;
Separates the positive-number pattern from the negative-number pattern.

%
Indicates that a number should be displayed as a percentage. The value will be
multiplied by 100, then displayed as a percentage. Formatting the number .76 with
the string ##% returns the string 76%.

\u2030
Is the Unicode character for the per-thousand (per-mille) sign. The value will be
multiplied by 1000, then displayed as a per mille. Formatting the number .768 with
the string ###\u2030 returns the string 768‰.

For complete details on the formatting strings for dates, times and numbers, see Appendix F.

The third argument, if given, must be the name of an <xsl:decimal-format> element. The
<xsl:decimal-format> element lets you define the character that should be used for the decimal
point and the grouping separator, the string used to represent infinity, and other formatting
options. See the discussion of the <xsl:decimal-format> element in Appendix A for more
information.

Defined in
[1.0] XSLT section 12.3, “Number Formatting.”

[2.0] XSLT section 16.4, “Number Formatting.”

Example
The following stylesheet uses the format-number() function in various ways:

<?xml version="1.0"?>
<!-- format-number.xsl -->

format-number( ) | 669

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:decimal-format name="f1"
 decimal-separator=":"
 grouping-separator="/"/>

 <xsl:decimal-format name="f2"
 infinity="Really, really big"
 NaN="[not a number]"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the format-number() </xsl:text>
 <xsl:text>function:

</xsl:text>

 <xsl:text> 1. format-number(528.3, '#.#;-#.#')=</xsl:text>
 <xsl:value-of
 select="format-number(528.3, '#.#;-#.#')"/>
 <xsl:text>
 2. format-number(528.3, </xsl:text>
 <xsl:text>'0,000.00;-0,000.00')=</xsl:text>
 <xsl:value-of
 select="format-number(528.3, '0,000.00;-0,000.00')"/>
 <xsl:text>
 3. format-number(-23528.3, </xsl:text>
 <xsl:text>'$#,###.00;($#,###.00)')=</xsl:text>
 <xsl:value-of
 select="format-number(-23528.3, '$#,###.00;($#,###.00)')"/>
 <xsl:text>
 4. format-number(1528.3, </xsl:text>
 <xsl:text>'#/###:00', 'f1')=</xsl:text>
 <xsl:value-of
 select="format-number(1528.3, '#/###:00;-#/###:00', 'f1')"/>
 <xsl:text>
 5. format-number(1 div 0, </xsl:text>
 <xsl:text>'###,###.00', 'f2')=</xsl:text>
 <xsl:value-of
 select="format-number(1 div 0, '###,###.00', 'f2')"/>
 <xsl:text>
 6. format-number(blue div orange, </xsl:text>
 <xsl:text>'#.##', 'f2')=</xsl:text>
 <xsl:value-of
 select="format-number(blue div orange, '#.##', 'f2')"/>
 <xsl:text>

 </xsl:text>

 <xsl:value-of select="report/title"/>
 <xsl:text> - </xsl:text>
 <xsl:value-of select="report/@month"/>
 <xsl:text>/</xsl:text>
 <xsl:value-of select="report/@year"/>
 <xsl:text>

</xsl:text>

 <xsl:variable name="totalSales"
 select="sum(/report/brand/units)"/>

 <xsl:for-each select="report/brand">
 <xsl:text> </xsl:text>
 <xsl:value-of select="name"/>

670 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text> - </xsl:text>
 <xsl:value-of select="format-number(units, '##,###')"/>
 <xsl:text> bars sold, </xsl:text>
 <xsl:value-of
 select="format-number(units div $totalSales, '##%')"/>
 <xsl:text> of all sales.
</xsl:text>
 </xsl:for-each>

 <xsl:text>
 Total sales: </xsl:text>
 <xsl:value-of
 select="format-number(sum(/report/brand/units), '##,###')"/>
 </xsl:template>

</xsl:stylesheet>

We’ll use this XML document with our stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 ...
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

When we run this stylesheet, here are the results:

Tests of the format-number() function:

 1. format-number(528.3, '#.#;-#.#')=528.3
 2. format-number(528.3, '0,000.00;-0,000.00')=0,528.30
 3. format-number(-23528.3, '$#,###.00;($#,###.00)')=($23,528.30)
 4. format-number(1528.3, '#/###:00', 'f1')=1/528:30
 5. format-number(1 div 0, '###,###.00', 'f2')=Really, really big
 6. format-number(blue div orange, '#.##', 'f2')=[not a number]

 Chocolate bar sales - 8/2006

 Lindt - 27,408 bars sold, 30% of all sales.
 Callebaut - 8,203 bars sold, 9% of all sales.
 Valrhona - 22,101 bars sold, 24% of all sales.
 Perugina - 14,336 bars sold, 16% of all sales.
 Ghirardelli - 19,268 bars sold, 21% of all sales.

 Total sales: 91,316

The first three examples use format-number() to control the decimal places, commas, and the
format of negative numbers. The fourth example uses the <decimal-format> named f1, which
uses a slash (/) as a grouping separator and a colon (:) as the decimal point.

format-number( ) | 671

Examples 5 and 6 cause problems in XSLT 2.0. Example 5 doesn’t work because division by
zero is a fatal error for xs:integer values in XSLT 2.0. Example 6 doesn’t work because the
div operator requires numeric operands. If you want XSLT 1.0 processing in an XSLT 2.0
stylesheet, you can add the version="1.0" attribute to any <xsl:value-of> element that needs
it:

<xsl:value-of version="1.0"
 select="format-number(1 div 0, '###,###.00', 'f2')"/>

The last set of examples extracts data from our document of chocolate bar sales, formatting
the total sales of each bar. We also generate the percentage of total sales for each brand and
print the total sales for all brands.

[2.0] format-time()
Given an xs:time value and a format string, returns the formatted time value.

Syntax
xs:string format-time(xs:time?, $picture as xs:string)
xs:string format-time(xs:time?, $picture as xs:string,
 $language as xs:string?,
 $calendar as xs:string?,
 $country as xs:string?)

Inputs
In the first form of this function, an optional xs:time value and a formatting string. If the
xs:time value is omitted, the current time is used. In the second form of this function, you
can supply strings that represent the preferred language, calendar, and country codes for the
output value.

The following codes are defined for the formatting string:

H
The hour in the day, in a 24-hour clock. The default value is [H1], which generates
the one- or two-digit number of the hour in the day. Note that this value will never
be greater than 23.

h
The hour in the day, in a 12-hour clock. The default value is [h1], which generates
the one- or two-digit number of the hour in the day.

P
The AM/PM marker. The default value is [Pn], which generates the AM/PM marker
in lowercase (a.m. or p.m.).

m
The minute in the hour. The default value is [m01], which generates the two-digit
minute in the hour.

672 | Appendix C: XSLT, XPath, and XQuery Function Reference

s
The second in the minute. The default value is [s01], which generates the two-digit
second in the minute.

f
The fractional seconds. The default value is [f1], which generates the fractional
seconds to three decimal places.

Z
The timezone as an offset from UTC. The default value is [Z1], which generates
the hour and minute offset from UTC (-04:00, for example).

z
The timezone as an offset from GMT. The default value is [z1], which generates
the offset from GMT (GMT-4, for example).

For complete details on the formatting strings for dates, times, and numbers, see Appendix F.

Output
A string representing the xs:time formatted according to the format string. If the xs:time
argument is the empty sequence, the empty sequence is returned.

Defined in
XSLT section 16.5, “Formatting Dates and Times.”

Example
Here’s a stylesheet that uses format-time() in several different ways:

<?xml version="1.0"?>
<!-- format-time.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the format-time() function:
</xsl:text>

 <xsl:variable name="now" select="current-time()"/>
 <xsl:text>
 The current date and time is: </xsl:text>
 <xsl:value-of select="$now"/>
 <xsl:variable name="longFormat"
 select="concat('It''s [h1]:[m11]:[s11] [P] ',
 'in the [zWw] time zone.')"/>

 <xsl:text>

 The hour (24-hour clock) - </xsl:text>
 <xsl:text>format-time($now, '[H]'): </xsl:text>
 <xsl:value-of select="format-time($now, '[H]')"/>
 <xsl:text>

 The minutes - format-time(</xsl:text>
 <xsl:text>$now, '[m11]'): </xsl:text>
 <xsl:value-of select="format-time($now, '[m11]')"/>

[2.0] format-time( ) | 673

 <xsl:text>

 Using format-time(</xsl:text>
 <xsl:text>$now, '[mWwo]'):
 It's the </xsl:text>
 <xsl:value-of select="format-time($now, '[mWwo]')"/>
 <xsl:text> minute of the hour.</xsl:text>
 <xsl:text>

 The time - format-time(</xsl:text>
 <xsl:text>$now, '[H]:[m11]'):
 </xsl:text>
 <xsl:value-of
 select="format-time($now, '[H]:[m11]')"/>

 <xsl:text>

 The grand finale:</xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="format-time($now, $longFormat)"/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Tests of the format-time() function:

 The current date and time is: 14:10:00.028-04:00

 The hour (24-hour clock) - format-time($now, '[H]'): 14

 The minutes - format-time($now, '[m11]'): 10

 Using format-time($now, '[mWwo]'):
 It's the Tenth minute of the hour.

 The time - format-time($now, '[H]:[m11]'):
 14:10

 The grand finale:
 It's 2:10:00 p.m. in the GMT-4 time zone.

function-available()
Determines if a given function is available to the XSLT processor. This function allows you
to design stylesheets that react gracefully if a particular extension function is not available.

Syntax
[1.0] boolean function-available($functionName as string)
[2.0] xs:boolean function-available($functionName as xs:string,
 $arity as xs:integer?)

Inputs
The function’s name. The name is usually qualified with a namespace; if the namespace of
the function name is nonnull, the function is an extension function. Otherwise, the function
is assumed to be one of the functions defined in the XSLT or XPath specifications.

[2.0] XSLT 2.0’s version of this function also has an arity argument. This lets you specify how
many parameters a function accepts. For example, function-available('ora:greatFunction',

674 | Appendix C: XSLT, XPath, and XQuery Function Reference

2) might return true, while function-available('ora:greatFunction', 3) might return
false. If you try to call function-available('me:my-function', 2) with an XSLT 1.0 process-
or, you’ll get a runtime error.

Output
The boolean value true if the function is available; false otherwise.

Defined in
[1.0] XSLT section 15, “Fallback.”

[2.0] XSLT section 18.1, “Extension Functions.”

Example
We’ll use the following XML document to test the function-available() function:

<?xml version="1.0"?>
<!-- favorites.xml -->
<list>
 <title>A few of my favorite albums</title>
 <listitem>A Love Supreme</listitem>
 <listitem>Beat Crazy</listitem>
 <listitem>Here Come the Warm Jets</listitem>
 <listitem>Kind of Blue</listitem>
 <listitem>London Calling</listitem>
 <listitem>Remain in Light</listitem>
 <listitem>The Joshua Tree</listitem>
 <listitem>The Indestructible Beat of Soweto</listitem>
</list>

Here’s our stylesheet:

<?xml version="1.0"?>
<!-- function-available.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:jpeg="class:JPEGWriter"
 extension-element-prefixes="jpeg">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of function-avilable():

</xsl:text>
 <xsl:for-each select="list/listitem">
 <xsl:choose>
 <xsl:when test="function-available('jpeg:buildJPEGFile')">
 <xsl:value-of
 select="jpeg:buildJPEGFile(., 'titlebar.jpg',
 concat('album', position(), '.jpg'),
 'Verdana Bold Italic', 20, 12, 20, '000000')"/>
 <xsl:text>See the file </xsl:text>
 <xsl:value-of select="concat('album', position(), '.jpg')"/>
 <xsl:text> to see the title of album #</xsl:text>
 <xsl:value-of select="position()"/>
 <xsl:text>
</xsl:text>

function-available( ) | 675

 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="position()"/>
 <xsl:text>. </xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Be aware that the mechanism for defining, referencing, and building ex-
tension functions varies from one processor to another. The example here
uses Xalan-J’s mechanism. We create a new namespace (jpeg) and de-
fine its URI as class:JPEGWriter. When we ask whether a function in
the jpeg namespace is available, Xalan-J attempts to load a Java class
named JPEGWriter. If that class can’t be found, function-available()
returns false. If the class is found, Xalan-J looks in the class and returns
true if that Java class contains a method with the requested name
(buildJPEGFile, in this example).

Also be aware that function-available() is not required to check the
signature of the method. In our example, if Xalan-J finds the class and
a method with the name we requested, it returns true. That doesn’t
mean that Xalan-J checked the number and type of arguments that we’re
passing to the function to see whether they’re correct. If they aren’t
correct, we’ll get a runtime error.

In our stylesheet, if the buildJPEGFile() function is available, we’ll invoke it to create JPEG
files for the titles of all our favorite albums. If the function is not available, we’ll simply write
those titles to the output stream. Here are the results we get when the buildJPEGFile() func-
tion is available:

See the file album1.jpg to see the title of album #1
See the file album2.jpg to see the title of album #2
See the file album3.jpg to see the title of album #3
See the file album4.jpg to see the title of album #4
See the file album5.jpg to see the title of album #5
See the file album6.jpg to see the title of album #6
See the file album7.jpg to see the title of album #7
See the file album8.jpg to see the title of album #8

All album titles (the text of the <listitem> elements) are converted to JPEG graphics. In this
example, the file album8.jpg looks like Figure C-3.

Figure C-3. Generated graphic for the eighth <listitem> element

676 | Appendix C: XSLT, XPath, and XQuery Function Reference

If the XSLT processor can’t load the extension function (maybe we’re using Saxon, which
doesn’t load extension classes this way; maybe the .class file isn’t on the classpath; maybe we
misspelled the function name, etc.), we get these results instead:

1. A Love Supreme
2. Beat Crazy
3. Here Come the Warm Jets
4. Kind of Blue
5. London Calling
6. Remain in Light
7. The Joshua Tree
8. The Indestructible Beat of Soweto

generate-id()
Generates a unique ID (an XML name) for a given node. If no node-set is given, generate-
id() generates an ID for the context node.

Syntax
[1.0] string generate-id(node-set?)
[2.0] xs:string generate-id()
[2.0] xs:string generate-id(node()?)

Inputs
[1.0] An optional node-set. If no node-set is given, this function generates an ID for the context
node. If the node-set is empty, generate-id() returns an empty string.

[2.0] An optional node. If no node is given, this function generates an ID for the context node.
If the argument is the empty sequence, the result is a zero-length string.

In XSLT 1.0, passing a node-set to the generate-id() function generated a unique ID for the
first item in the node-set; all nodes after the first were ignored. In XSLT 2.0, it is an error to
pass a sequence with more than one node to generate-id().

Output
A unique ID, or an empty string if an empty node-set is given. Several things about the
generate-id() function are important to know:

• For a given transformation, every time you invoke generate-id() against a given
node, the XSLT processor must return the same ID. The ID can’t change while
you’re doing a transformation. If you ask the XSLT processor to transform your
document with this stylesheet tomorrow, there’s no guarantee that generate-
id() will generate the same ID the second time around. All of tomorrow’s calls
(during one transformation) to generate-id() will generate the same ID, but that
ID might not be the one generated today.

• The generate-id() function is not required to check whether its generated ID du-
plicates an ID that’s already in the document. In other words, if an element in your
document has an attribute of type ID with the value sdk3829a, there’s a remote

generate-id( ) | 677

possibility that an ID returned by generate-id() would have the value sdk3829a.
It’s not likely, but it could happen.

• If you invoke generate-id() against two different nodes, the two generated IDs
must be different.

• [1.0] Given a node-set, generate-id() returns an ID for the node in the node-set
that occurs first in document order.

[2.0] Given a sequence, an XSLT 2.0 processor raises an error if that sequence
contains more than one item.

• If the node-set you pass to the function is empty (you invoke generate-
id(fleeber), but there are no <fleeber> elements in the current context), generate-
id() returns an empty string.

Defined in
[1.0] XSLT section 12.4, “Miscellaneous Additional Functions.”

[2.0] XSLT section 16.6, “Miscellaneous Additional Functions.”

Example
We’ll use our report of chocolate bar sales as the input to our stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

Our stylesheet generates a new ID for each node in our source document. Just to make sure
the XSLT processor generates the same node each time, we generate a new ID for each node
again. The two generated IDs should match for each node:

678 | Appendix C: XSLT, XPath, and XQuery Function Reference

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the generate-id() </xsl:text>
 <xsl:text>function:

</xsl:text>

 <xsl:text> We'll generate IDs for every node </xsl:text>
 <xsl:text>in the XML source:

</xsl:text>
 <xsl:for-each select="//*">
 <xsl:text> Node name: <</xsl:text>
 <xsl:value-of select="name()"/>
 <xsl:text>> - generated id: </xsl:text>
 <xsl:value-of select="generate-id()"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>

 <xsl:text>
 Now we'll try it again...

</xsl:text>
 <xsl:for-each select="//*">
 <xsl:text> Node name: <</xsl:text>
 <xsl:value-of select="name()"/>
 <xsl:text>> - generated id: </xsl:text>
 <xsl:value-of select="generate-id()"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Our stylesheet generates these results:

A test of the generate-id() function:

 We'll generate IDs for every node in the XML source:

 Node name: <report> - generated id: d1e2
 Node name: <title> - generated id: d1e4
 Node name: <brand> - generated id: d1e7
 Node name: <name> - generated id: d1e9
 Node name: <units> - generated id: d1e12
 Node name: <brand> - generated id: d1e16
 Node name: <name> - generated id: d1e18
 Node name: <units> - generated id: d1e21
 Node name: <brand> - generated id: d1e25
 Node name: <name> - generated id: d1e27
 Node name: <units> - generated id: d1e30
 Node name: <brand> - generated id: d1e34
 Node name: <name> - generated id: d1e36
 Node name: <units> - generated id: d1e39
 Node name: <brand> - generated id: d1e44
 Node name: <name> - generated id: d1e46
 Node name: <units> - generated id: d1e49

generate-id( ) | 679

 Now we'll try it again...

 Node name: <report> - generated id: d1e2
 Node name: <title> - generated id: d1e4
 Node name: <brand> - generated id: d1e7
 Node name: <name> - generated id: d1e9
 Node name: <units> - generated id: d1e12
 Node name: <brand> - generated id: d1e16
 Node name: <name> - generated id: d1e18
 Node name: <units> - generated id: d1e21
 Node name: <brand> - generated id: d1e25
 Node name: <name> - generated id: d1e27
 Node name: <units> - generated id: d1e30
 Node name: <brand> - generated id: d1e34
 Node name: <name> - generated id: d1e36
 Node name: <units> - generated id: d1e39
 Node name: <brand> - generated id: d1e44
 Node name: <name> - generated id: d1e46
 Node name: <units> - generated id: d1e49

The IDs generated each time are the same. Be aware that other processors generate IDs dif-
ferently. The first ID generated by Xalan-J is N10002, while the first ID generated by AltovaXML
is idreport220739936.

[2.0] hours-from-dateTime()
Given an xs:dateTime value, returns its hours value.

Syntax
xs:integer? hours-from-dateTime(xs:dateTime?)

Inputs
An xs:dateTime value.

Output
An xs:integer representing the hours component of the given xs:dateTime value. If the input
argument is the empty sequence, this function returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the hours-from-dateTime() function:

<?xml version="1.0"?>
<!-- hours-from-datetime.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

680 | Appendix C: XSLT, XPath, and XQuery Function Reference

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the hour from an xs:dateTime:</xsl:text>
 <xsl:variable name="currentDateTime" as="xs:dateTime"
 select="current-dateTime()"/>
 <xsl:text>

 The current date and time is: </xsl:text>
 <xsl:value-of select="$currentDateTime"/>

 <xsl:text>

 The current hour is: </xsl:text>
 <xsl:value-of select="hours-from-dateTime($currentDateTime)"/>
 <xsl:text>
 Also known as </xsl:text>
 <xsl:value-of select="format-dateTime($currentDateTime, '[h] [Pn]')"/>
 <xsl:text>
 or </xsl:text>
 <xsl:value-of select="format-dateTime($currentDateTime, '[H] [ZN]')"/>
 <xsl:text>
 or </xsl:text>
 <xsl:value-of select="format-dateTime($currentDateTime, '[H] [z]')"/>
 </xsl:template>

</xsl:stylesheet>

The stylesheet creates these results:

Extracting the hour from an xs:dateTime:

 The current date and time is: 2006-11-16T04:17:15.778-05:00

 The current hour is: 4
 Also known as 4 a.m.
 or 4 EST
 or 4 GMT-5

Notice that some of the results were generated by the hours-from-dateTime() function, while
others were generated by using format-dateTime() with a format string that selected only the
hours component of the xs:dateTime value.

See Also
The definitions of the [2.0] day-from-dateTime(), [2.0] format-dateTime(), [2.0] minutes-
from-dateTime(), [2.0] month-from-dateTime(), [2.0] seconds-from-dateTime(), [2.0] time
zone-from-dateTime(), and [2.0] year-from-dateTime() functions.

[2.0] hours-from-duration()
Given an xs:duration value, returns the number of hours in that duration.

Syntax
xs:integer? hours-from-duration(xs:duration?)

[2.0] hours-from-duration( ) | 681

Inputs
An xs:duration.

Output
An xs:integer representing the hours component of the given xs:duration. Be aware that for
an xs:yearMonthDuration, this function always returns 0 because there is no hours component
of an xs:yearMonthDuration. Also, if the input argument is the empty sequence, this function
returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the hours-from-duration() function with all three types of
durations:

<?xml version="1.0"?>
<!-- hours-from-duration.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the hours component from durations:</xsl:text>

 <xsl:variable name="sampleDuration" as="xs:duration"
 select="xs:duration('P3Y8M2DT4H23M12.2S')"/>
 <xsl:variable name="sampleYearMonthDuration" as="xs:yearMonthDuration"
 select="xs:yearMonthDuration('P3Y8M')"/>
 <xsl:variable name="sampleDayTimeDuration" as="xs:dayTimeDuration"
 select="xs:dayTimeDuration('P2DT4H23M12.2S')"/>

 <xsl:text>

 A sample xs:duration: </xsl:text>
 <xsl:value-of select="$sampleDuration"/>
 <xsl:text>
 The hours component of this duration is </xsl:text>
 <xsl:value-of select="hours-from-duration($sampleDuration)"/>
 <xsl:text>.</xsl:text>

 <xsl:text>

 A sample xs:yearMonthDuration: </xsl:text>
 <xsl:value-of select="$sampleYearMonthDuration"/>
 <xsl:text>
 The hours component of this duration is </xsl:text>
 <xsl:value-of select="hours-from-duration($sampleYearMonthDuration)"/>
 <xsl:text>.</xsl:text>

 <xsl:text>

 A sample xs:dayTimeDuration: </xsl:text>
 <xsl:value-of select="$sampleDayTimeDuration"/>
 <xsl:text>
 The hours component of this duration is </xsl:text>
 <xsl:value-of select="hours-from-duration($sampleDayTimeDuration)"/>

682 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text>.</xsl:text>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates these results:

Extracting the hours component from durations:

 A sample xs:duration: P3Y8M2DT4H23M12.2S
 The hours component of this duration is 4.

 A sample xs:yearMonthDuration: P3Y8M
 The hours component of this duration is 0.

 A sample xs:dayTimeDuration: P2DT4H23M12.2S
 The hours component of this duration is 4.

Notice that calling hours-from-duration() against xs:yearMonthDuration returns 0.

See Also
The definitions of the [2.0] days-from-duration(), [2.0] minutes-from-duration(), [2.0]
months-from-duration(), [2.0] seconds-from-duration(), and [2.0] years-from-duration()
functions.

[2.0] hours-from-time()
Given an xs:time value, returns its hours component.

Syntax
xs:integer? hours-from-time(xs:time?)

Input
An xs:time value.

Output
An xs:integer representing the hours component of the given xs:time value. If the argument
is the empty sequence, this function returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet uses hours-from-time() against the current time:

<?xml version="1.0"?>
<!-- hours-from-time.xsl -->
<xsl:stylesheet version="2.0"

[2.0] hours-from-time( ) | 683

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the hours component from an xs:time:</xsl:text>
 <xsl:variable name="currentTime" as="xs:time" select="current-time()"/>
 <xsl:text>

 The current time is: </xsl:text>
 <xsl:value-of select="$currentTime"/>

 <xsl:text>

 The current hour is: </xsl:text>
 <xsl:value-of select="hours-from-time($currentTime)"/>
 <xsl:text>
 Also known as </xsl:text>
 <xsl:value-of select="format-time($currentTime, '[h] [Pn]')"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="format-time($currentTime, '[H] [ZN]')"/>
 <xsl:text>, or </xsl:text>
 <xsl:value-of select="format-time($currentTime, '[H] [z]')"/>
 </xsl:template>

</xsl:stylesheet>

The stylesheet creates these results:

Extracting the hours component from an xs:time:

 The current time is: 17:02:52.515-05:00

 The current hour is: 17
 Also known as 5 p.m., 17 EST, or 17 GMT-5

Notice that the first result was generated by the hours-from-time() function, while the other
results were generated by the format-time() function with a format string that selected the
hours component from the xs:time value.

See Also
The definitions of the [2.0] format-time(), [2.0] minutes-from-time(), [2.0] seconds-from-
time(), and [2.0] timezone-from-time() functions.

id()
Returns the node in the source tree whose ID attribute matches the value(s) passed in as input.

Syntax
[1.0] node-set id(object)
[2.0] element()* id(xs:string*)
[2.0] element()* id(xs:string*, node())

684 | Appendix C: XSLT, XPath, and XQuery Function Reference

Inputs
[1.0] An object. If the input object is a node-set, the result is a node-set that contains the result
of applying the id() function to the string value of each node in the argument node-set.
Usually, the argument is some other node type, which is (or is converted to) a string. That
string is then used as the search value while all attributes of type ID are searched.

[2.0] An xs:string and an optional node. If the optional node argument is present, the pro-
cessor looks for those values in the document that contains that node.

In both XSLT 1.0 and 2.0, if the string value contains multiple values separated by spaces,
each space-separated value is used as a search argument for the id() function. Our examples
here use both simple strings and strings with multiple values.

Remember that a limitation of the XML ID datatype is that a single set of names across all
attributes is declared to be of type ID. The XSLT key() function and the associated
<xsl:key> element address this and other limitations; see the description of the key() function
earlier in this appendix and the description of the <xsl:key> element in Appendix A for more
information.

Output
[1.0] A node-set containing all nodes whose attributes of type ID match the string values of
the input node-set.

[2.0] A sequence containing all the nodes that have an ID value equal to one of the values
specified in the search string.

In a validated XML document, only one node will match each search
value; the value of an ID attribute must be unique across all ID attributes
in the document. Given that an XSLT processor is not required to vali-
date an XML document, it is possible that the node-set or sequence will
have more than one match for each search value.

Defined in
[1.0] XPath section 4.1, “Node Set Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 15.5, “Functions and Op-
erators that Generate Sequences.”

Example
For our example, we’ll use a list of components and parts with an embedded DTD. We’ll list
each component, followed by the name of each part used by that component. The id() func-
tion lets us retrieve the <part> element with the specific ID; from there we can get the name
of the part.

id( ) | 685

This is the exact opposite of the example for the XSLT 2.0 idref()
function. In that example, we take each <part> and list all of the com-
ponents that reference it.

Here’s our XML document:

<?xml version="1.0"?>
<!-- parts-list1.xml -->
<!DOCTYPE parts-list [
<!ELEMENT parts-list (component+, part+)>

<!ELEMENT component (name, partref+)>
<!ATTLIST component component-id ID #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT partref EMPTY>
<!ATTLIST partref refid IDREF #REQUIRED>

<!ELEMENT part (name)>
<!ATTLIST part part-id ID #REQUIRED
 price CDATA #REQUIRED
 source CDATA #REQUIRED>
]>

<parts-list>
 <component component-id="C28392-33-TT">
 <name>Turnip Twaddler</name>
 <partref refid="P81952-26-PK"/>
 <partref refid="P86679-52-SP"/>
 <partref refid="P81472-68-FD"/>
 <partref refid="P88107-39-GT"/>
 </component>
...
 <component component-id="C28772-63-OB">
 <name>Olive Bruiser</name>
 <partref refid="P80228-21-PT"/>
 <partref refid="P82387-85-PA"/>
 </component>

 <part part-id="P80228-21-PT" price="3.28" source="us">
 <name>Pitter</name>
 </part>
...
 <part part-id="P86994-25-RC" price="4.28" source="gb">
 <name>Ribbon Curler</name>
 </part>
</parts-list>

We’ll use this stylesheet to resolve the references:

<?xml version="1.0"?>
<!-- id.xsl -->
<xsl:stylesheet version="2.0"

686 | Appendix C: XSLT, XPath, and XQuery Function Reference

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Here is a test of the id() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:for-each select="/parts-list/component">
 <xsl:sort select="name"/>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text> (part #</xsl:text>
 <xsl:value-of select="@component-id"/>
 <xsl:text>) uses these parts:
 </xsl:text>
 <xsl:for-each select="id(partref/@refid)">
 <xsl:value-of select="name"/>
 <xsl:text>
 </xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

Our stylesheet generates these results:

Here is a test of the id() function:

 Clam Teaser (part #C28100-38-CT) uses these parts:
 Spanner
 Feather Duster
 Ribbon Curler

 Cucumber Decorating Kit (part #C23813-03-CDK) uses these parts:
 Feather Duster
 Paring Knife
 Mucilage
 Ribbon Curler

 Lemon Snubber (part #C21630-29-LS) uses these parts:
 Spanner
 Grommet
 Paring Knife

 Olive Bruiser (part #C28772-63-OB) uses these parts:
 Pitter
 Patter

 Prawn Goader (part #C28813-70-PG) uses these parts:
 Paring Knife
 Mucilage
 Ribbon Curler

 Turnip Twaddler (part #C28392-33-TT) uses these parts:
 Spanner
 Feather Duster

id( ) | 687

 Grommet
 Paring Knife

If the argument to the id() function is a string, each space-separated token in the string is
assumed to be a separate ID. That means we can use id() with the datatype IDREFS as well.
Here’s a modified version of our source document that uses an IDREFS attribute:

<?xml version="1.0"?>
<!-- parts-list2.xsl -->
<!DOCTYPE parts-list [
<!ELEMENT parts-list (component+, part+)>

<!ELEMENT component (name, partref)>
<!ATTLIST component component-id ID #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT partref EMPTY>
<!ATTLIST partref refid IDREFS #REQUIRED>

<parts-list>
 <component component-id="C28392-33-TT">
 <name>Turnip Twaddler</name>
 <partref
 refid="P81952-26-PK P86679-52-SP P81472-68-FD P88107-39-GT"/>
 </component>
...
 <part part-id="P80228-21-PT" price="3.28" source="us">
 <name>Pitter</name>
 </part>
...
</parts-list>

The only change here is that the refid attribute of the <partref> element is of datatype
IDREFS. Despite that change, we can transform parts-list2.xsl with the same stylesheet and get
the same results.

The value of any attribute of type ID, IDREF, and IDREFS must be valid
XML names. A ID value of 86679-52-SP is not a valid XML name, so an
XSLT processor that validates the XML source document might not
generate any results for that particular value. To see how this can cause
problems, change all of the IDs so that they start with a number, and
then run them through the Saxon XSLT processor. The results look like
this:

Here is a test of the id() function:

 Turnip Twaddler (part #28392-33-TT) uses these parts:

 Prawn Goader (part #28813-70-PG) uses these parts:

 Clam Teaser (part #28100-38-CT) uses these parts:

 Cucumber Decorating Kit (part #23813-03-CDK) uses these parts:

688 | Appendix C: XSLT, XPath, and XQuery Function Reference

 Lemon Snubber (part #21630-29-LS) uses these parts:

 Olive Bruiser (part #28772-63-OB) uses these parts:

When transforming the document with Saxon, we don’t get any results.
Using the Saxon -v flag to validate the XML source gives us dozens of
messages like this:

Error on line 59 column 56 of file:/C:/XSLT20/AppendixC/parts-list3.xml:
 SXXP0003: Error reported by XML parser: Attribute value "80228-21-PT"
of type ID must be an NCName when namespaces are enabled.

Changing the XML source document so that all of the IDs are valid XML
names gives us the results we expect.

Keep this in mind if you’re unable to get the id() function working; it’s a
subtle error that can be hard to debug. Using the current tools as of early
2008, Xalan and the Altova XML engine ignore the bad IDs, while
MSXSL and Saxon don’t generate any useful results.

[2.0] idref()
Given a sequence of ID values, returns a sequence containing all the nodes with an IDREF value
matching one of the given IDs.

Syntax
node()* idref(xs:string*)
node()* idref(xs:string*, node())

Inputs
A sequence of xs:strings, each of which represents an ID value. If the node() argument is
supplied, the XSLT processor looks for matching IDREF and IDREFS values in the document
that contains that node. Without the node() argument, the processor looks in the document
that contains the context node.

Outputs
A sequence of nodes, each of which has an IDREF or IDREFS value that matches one of the given
IDs. The nodes are returned in document order, and any duplicate nodes are removed.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.5, “Functions and Operators
that Generate Sequences.”

Example
For our example, we’ll use a list of components and parts with an embedded DTD. We’ll list
each part, followed by the name of each component that uses that part. The idref() function
lets us retrieve the <component> element with the specific ID; from there we can get the name
of the component.

[2.0] idref( ) | 689

This is the exact opposite of the example for the id() function. In that
example, we take each <component> and list all of the parts that it uses.

To illustrate the idref() function, we’ll use an XML document with an embedded DTD. (This
allows us to demonstrate the function without requiring a schema-aware XSLT processor.)
Here is a fragment of the document:

<?xml version="1.0"?>
<!-- parts-list1.xml -->
<!DOCTYPE parts-list [
<!ELEMENT parts-list (component+, part+)>

<!ELEMENT component (name, partref+)>
<!ATTLIST component component-id ID #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT partref EMPTY>
<!ATTLIST partref refid IDREF #REQUIRED>

<!ELEMENT part (name)>
<!ATTLIST part part-id ID #REQUIRED
 price CDATA #REQUIRED
 source CDATA #REQUIRED>
]>

<parts-list>
 <component component-id="C28392-33-TT">
 <name>Turnip Twaddler</name>
 <partref refid="P81952-26-PK"/>
 <partref refid="P86679-52-SP"/>
 <partref refid="P81472-68-FD"/>
 <partref refid="P88107-39-GT"/>
 </component>
...
 <component component-id="C28772-63-OB">
 <name>Olive Bruiser</name>
 <partref refid="P80228-21-PT"/>
 <partref refid="P82387-85-PA"/>
 </component>

 <part part-id="P80228-21-PT" price="3.28" source="us">
 <name>Pitter</name>
 </part>
...
 <part part-id="P86994-25-RC" price="4.28" source="gb">
 <name>Ribbon Curler</name>
 </part>
</parts-list>

Our document has a list of components; each component has an component-id attribute, a
<name>, and a <partrefs> element. Each <partrefs> element has a refids attribute that refers

690 | Appendix C: XSLT, XPath, and XQuery Function Reference

to some number <part> elements. The rules of the ID, IDREF, and IDREFS datatypes (or xs:ID,
xs:IDREF, and xs:IDREFS in an XML Schema) are:

• Any attribute of type ID (xs:ID) must have a unique value. That value must be
unique across all ID attributes. In other words, in our sample document, the
component-id attribute of a <component> element can’t have the same value as the
part-id attribute of a <part> element.

• Any attribute of type IDREF (xs:IDREF) must have a value that matches an ID at-
tribute somewhere in the document.

• Any attribute of type IDREFS (xs:IDREFS) must have a space-separated set of IDREF
values.

Our stylesheet is pretty simple; it lists all the <part> items in the document, then it uses
the idrefs() function to find all the <component>s that use that part. Here’s the
stylesheet:

<?xml version="1.0"?>
<!-- idref.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Here is a test of the idref() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:for-each select="/parts-list/part">
 <xsl:sort select="name"/>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text> (part #</xsl:text>
 <xsl:value-of select="@part-id"/>
 <xsl:text>) is used in these products:
 </xsl:text>
 <xsl:value-of select="idref(@part-id)/../../name"
 separator="
 "/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

When we use the idref() function here, we pass in the value of the part-id attribute
for the current <part> element. The idref() function returns the sequence of all the
attributes of type IDREF whose values contain the current part-id.

Keep in mind that idref() returns a sequence of the attributes themselves, not their
parents. That’s why our XPath expression to print the value of each product is
idref(@part-id)/../../name. The idref() function returns the sequence of the refid
attribute nodes that match. To get the name of each product, we first get the refid’s

[2.0] idref( ) | 691

parent and the <partref> element, then we get its parent and the <component> element,
and finally we get its <name> child. Here are the results:

Here is a test of the idref() function:

 Feather Duster (part #P81472-68-FD) is used in these products:
 Turnip Twaddler
 Clam Teaser
 Cucumber Decorating Kit

 Grommet (part #P88107-39-GT) is used in these products:
 Turnip Twaddler
 Lemon Snubber

 Mucilage (part #P80499-43-MC) is used in these products:
 Prawn Goader
 Cucumber Decorating Kit

 Paring Knife (part #P81952-26-PK) is used in these products:
 Turnip Twaddler
 Prawn Goader
 Cucumber Decorating Kit
 Lemon Snubber

 Patter (part #P82387-85-PA) is used in these products:
 Olive Bruiser

 Pitter (part #P80228-21-PT) is used in these products:
 Olive Bruiser

 Ribbon Curler (part #P86994-25-RC) is used in these products:
 Prawn Goader
 Clam Teaser
 Cucumber Decorating Kit

 Spanner (part #P86679-52-SP) is used in these products:
 Turnip Twaddler
 Clam Teaser
 Lemon Snubber

One thing our sample document doesn’t address is attributes of datatype IDREFS
(xs:IDREFS). If we want, we could also design our <component> element like this:

<?xml version="1.0"?>
<!-- parts-list2.xml -->
<!DOCTYPE parts-list [
<!ELEMENT parts-list (component+, part+)>

<!ELEMENT component (name, partref)>
<!ATTLIST component component-id ID #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT partref EMPTY>
<!ATTLIST partref refid IDREFS #REQUIRED>

692 | Appendix C: XSLT, XPath, and XQuery Function Reference

<!ELEMENT part (name) >
<!ATTLIST part part-id ID #REQUIRED
 price CDATA #REQUIRED
 source CDATA #REQUIRED>
]>

<parts-list>
 <component component-id="C28392-33-TT">
 <name>Turnip Twaddler</name>
 <partref
 refid="P81952-26-PK P86679-52-SP P81472-68-FD P88107-39-GT"/>
 </component>
...
 <part part-id="P80228-21-PT" price="3.28" source="us">
 <name>Pitter</name>
 </part>
 <part part-id="P82387-85-PA" price="6.92" source="us">
 <name>Patter</name>
 </part>
...
</parts-list>

In this case, the refid attribute has a datatype of IDREFS (xs:IDREFS). That means the
attribute has a whitespace-separated list of IDREF values. Because of the way idref()
works, we can use the stylesheet against this differently structured document and get
the same results. The file parts-list2.xml changed how the references to the part IDs
were structured, but it didn’t change how or where the part IDs themselves were de-
fined. That means the idref() function still returns the results we want.

Using idref(), we’ve retrieved all the uses of each of the <part>s in our inventory.

Keep in mind that values for ID, IDREF, and IDREFS datatypes must be
valid XML names. IDs that start with a number can cause unpredictable
results. See the note at the end of the discussion of the id() function
earlier in this appendix for all the details on this issue.

[2.0] implicit-timezone()
Returns the implicit timezone used when creating new xs:date, xs:dateTime, and xs:time
values.

Syntax
xs:dayTimeDuration implicit-timezone()

Inputs
None.

[2.0] implicit-timezone( ) | 693

Outputs
An xs:dayTimeDuration that contains the implicit timezone.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 16, “Context Functions.”

Example
Here’s a stylesheet that retrieves the implicit timezone as an xs:dayTimeDuration:

<?xml version="1.0"?>
<!-- implicit-timezone.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Using the implicit-timezone() function:

</xsl:text>
 <xsl:text> The implicit timezone for the current context is: </xsl:text>
 <xsl:value-of select="implicit-timezone()"/>
 </xsl:template>

</xsl:stylesheet>

The stylesheet generates these results:

Using the implicit-timezone() function:

 The implicit timezone for the current context is: -PT5H

The results for Bangalore and London, respectively, look like this:

 The implicit timezone for the current context is: PT5H30M
...
 The implicit timezone for the current context is: PT0S

[2.0] in-scope-prefixes()
Given an element, returns a sequence of all the namespace prefixes in scope for that
element.

Syntax
xs:string* in-scope-prefixes(element())

Inputs
An element.

Outputs
A sequence of xs:strings listing the namespace prefixes that are in scope for that element.

694 | Appendix C: XSLT, XPath, and XQuery Function Reference

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 11.2, “Operators and Functions
Related to QNames.”

Example
To illustrate the in-scope-prefixes() function, we’ll reuse our Shakespearean sonnet:

<?xml version="1.0"?>
<!-- sonnet.xml -->
<sonnet type='Shakespearean'>
 <auth:author xmlns:auth="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </auth:author>
 <!-- Is there an official title for this sonnet? They're
 sometimes named after the first line. -->
 <title>Sonnet 130</title>
 <lines>
 <line>My mistress' eyes are nothing like the sun,</line>
 <line>Coral is far more red than her lips red.</line>
 <line>If snow be white, why then her breasts are dun,</line>
 <line>If hairs be wires, black wires grow on her head.</line>
 <line>I have seen roses damasked, red and white,</line>
 <line>But no such roses see I in her cheeks.</line>
 <line>And in some perfumes is there more delight</line>
 <line>Than in the breath that from my mistress reeks.</line>
 <line>I love to hear her speak, yet well I know</line>
 <line>That music hath a far more pleasing sound.</line>
 <line>I grant I never saw a goddess go,</line>
 <line>My mistress when she walks, treads on the ground.</line>
 <line>And yet, by Heaven, I think my love as rare</line>
 <line>As any she belied with false compare.</line>
 </lines>
</sonnet>

We’ll use this stylesheet to list the namespace prefixes in scope for each element in the
document:

<?xml version="1.0"?>
<!-- in-scope-prefixes.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the in-scope-prefixes() function:</xsl:text>

 <xsl:for-each select="//*">
 <xsl:text>
 In-scope prefixes for <</xsl:text>
 <xsl:value-of select="name()"/>

[2.0] in-scope-prefixes( ) | 695

 <xsl:text>>: </xsl:text>
 <xsl:value-of select="in-scope-prefixes(.)" separator=", "/>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

A test of the in-scope-prefixes() function:
 In-scope prefixes for <sonnet>: xml
 In-scope prefixes for <auth:author>: xml, auth
 In-scope prefixes for <last-name>: xml, auth
 In-scope prefixes for <first-name>: xml, auth
 In-scope prefixes for <nationality>: xml, auth
 In-scope prefixes for <year-of-birth>: xml, auth
 In-scope prefixes for <year-of-death>: xml, auth
 In-scope prefixes for <title>: xml
 In-scope prefixes for <lines>: xml
 In-scope prefixes for <line>: xml
 In-scope prefixes for <line>: xml
 In-scope prefixes for <line>: xml
 In-scope prefixes for <line>: xml
 In-scope prefixes for <line>: xml
 In-scope prefixes for <line>: xml
 In-scope prefixes for <line>: xml
 In-scope prefixes for <line>: xml
 In-scope prefixes for <line>: xml
 In-scope prefixes for <line>: xml
 In-scope prefixes for <line>: xml
 In-scope prefixes for <line>: xml
 In-scope prefixes for <line>: xml
 In-scope prefixes for <line>: xml

The xml namespace prefix is always in scope; as the XSLT processor goes through the source
document, the auth prefix goes in and out of scope.

[2.0] index-of()
Given a sequence and a search argument, returns a sequence of integers indicating the posi-
tion(s) of the search argument in the sequence.

Syntax
xs:integer* index-of($sequenceParam as xs:anyAtomicType*,
 $searchParam as xs:anyAtomicType)
xs:integer* index-of($sequenceParam as xs:anyAtomicType*,
 $searchParam as xs:anyAtomicType,
 $collation as xs:string)

696 | Appendix C: XSLT, XPath, and XQuery Function Reference

Inputs
A sequence of atomic values and a search argument (also an atomic value). The optional third
argument specifies the URL of a collation to be used when comparing the search argument
to the values in the sequence.

Outputs
A sequence of xs:integers representing the position(s) of the search argument in the sequence.

If the search sequence is the empty sequence or if no values in the sequence match the search
argument, index-of() returns the empty sequence. Also, when comparing the search argu-
ment to values in the sequence, the processor uses the rules defined for the eq operator for
each datatype. If the eq operator is not defined for a given datatype, all values of that datatype
will not be considered equal to the search argument.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.1, “General Functions and
Operators on Sequences.”

Example
Here is a short stylesheet that uses the index-of() function:

<?xml version="1.0"?>
<!-- index-of.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:variable name="now" as="xs:time"
 select="current-time()"/>

 <xsl:variable name="testSequence1" as="item()*">
 <xsl:sequence
 select="(3, 4, 5, 'blue', $now, current-date(), 8, 'blue',
 'Strasse', 'Straße')"/>
 </xsl:variable>

 <xsl:text>
Here's a test of the index-of() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 Our first test sequence ($testSequence1) </xsl:text>
 <xsl:text>is:
 </xsl:text>
 <xsl:value-of select="$testSequence1" separator="
 "/>
 <xsl:text>

</xsl:text>

 <xsl:text> $now = </xsl:text>
 <xsl:value-of select="$now"/>
 <xsl:text>

</xsl:text>

[2.0] index-of( ) | 697

 <xsl:text> index-of($testSequence1, 3) = (</xsl:text>
 <xsl:value-of
 select="index-of($testSequence1, 3)" separator=", "/>
 <xsl:text>)

</xsl:text>

 <xsl:text> index-of($testSequence1, 'red') = (</xsl:text>
 <xsl:value-of
 select="index-of($testSequence1, 'red')" separator=", "/>
 <xsl:text>)

</xsl:text>

 <xsl:text> index-of($testSequence1, 'blue') = (</xsl:text>
 <xsl:value-of
 select="index-of($testSequence1, 'blue')" separator=", "/>
 <xsl:text>)

</xsl:text>

 <xsl:text> index-of($testSequence1, $now) = (</xsl:text>
 <xsl:value-of
 select="index-of($testSequence1, $now)" separator=", "/>
 <xsl:text>)</xsl:text>

 <xsl:text>

 index-of($testSequence1, </xsl:text>
 <xsl:text>'straße') = (</xsl:text>
 <xsl:value-of
 select="index-of($testSequence1, 'Strasse')"
 separator=", "/>
 <xsl:text>)
</xsl:text>

 <xsl:text>
 index-of($testSequence1, </xsl:text>
 <xsl:text>'straße', [German collation]) = (</xsl:text>
 <xsl:value-of
 select="index-of($testSequence1, 'Straße',
 concat('http://saxon.sf.net/collation?',
 'class=com.oreilly.xslt.GermanCollation;'))"
 separator=", "/>
 <xsl:text>)
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here's a test of the index-of() function:

 Our first test sequence ($testSequence1) is:
 3
 4
 5
 blue
 15:04:18.841-05:00
 2006-11-23-05:00
 8
 blue
 Strasse
 Straße

698 | Appendix C: XSLT, XPath, and XQuery Function Reference

 $now = 15:04:18.841-05:00

 index-of($testSequence1, 3) = (1)

 index-of($testSequence1, 'red') = ()

 index-of($testSequence1, 'blue') = (4, 8)

 index-of($testSequence1, $now) = (5)

 index-of($testSequence1, 'Strasse') = (9)

 index-of($testSequence1, 'Strasse', [German collation]) = (9, 10)

Notice that we stored the current time in the variable $now. Technically we don’t have to do
this because the current-time() function is stable; in other words, every time you call it during
a single transformation, it returns the same result.

Also notice that we used a custom collation in the last call to index-of(). In German,
Strasse and Straße are two ways to spell the same word. The default collation doesn’t recognize
this, but our custom collation does. (To keep the listing within the margins of the page, we
used the concat() function to combine the two halves of the Saxon collation URI.) See “The
document( ) Function and Sorting” in “The document( ) Function and Sorting for more
information.

[2.0] insert-before()
Allows you to create a new sequence by inserting items into an existing sequence.

Syntax
item()* insert-before($target as item()*, $position as xs:integer,
 $inserts as item()*)

Inputs
A sequence, an xs:integer (a position), and a second sequence.

Outputs
A new sequence in which the second sequence has been inserted into the first sequence before
the item at the requested position.

The rules for insert-before() are what you’d expect. If the first sequence is empty, the second
sequence is returned unchanged. If the second sequence is empty, the first sequence is returned
unchanged. If the position is less than 1, the processor inserts the second sequence at the start
of the first. Finally, if the position is greater than the number of items in the first sequence,
the second sequence is inserted at the end of the first.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.1, “General Functions and
Operators on Sequences.”

[2.0] insert-before( ) | 699

Example
Here’s a stylesheet that uses insert-before() in several ways:

<?xml version="1.0"?>
<!-- insert-before.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:variable name="longSequence" as="item()*">
 <xsl:sequence
 select="(3, 4, 5, current-date(), current-time(), 8, 'blue')"/>
 </xsl:variable>

 <xsl:variable name="shortSequence" as="item()*"
 select="(current-dateTime(), xs:yearMonthDuration('P3Y8M'))"/>

 <xsl:text>
Here's a test of the insert-before() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 Our first sequence ($longSequence) </xsl:text>
 <xsl:text>is:
 </xsl:text>
 <xsl:value-of select="$longSequence" separator="
 "/>

 <xsl:text>

 Our second sequence ($shortSequence) </xsl:text>
 <xsl:text>is:
 </xsl:text>
 <xsl:value-of select="$shortSequence" separator="
 "/>

 <xsl:text>

 Test 1. insert-before($longSequence, </xsl:text>
 <xsl:text>3, (23)) </xsl:text>
 <xsl:text>=
 </xsl:text>
 <xsl:value-of select="insert-before($longSequence, 3, (23))"
 separator="
 "/>

 <xsl:text>

 Test 2. insert-before($longSequence, </xsl:text>
 <xsl:text>4, $shortSequence) </xsl:text>
 <xsl:text>=
 </xsl:text>
 <xsl:value-of
 select="insert-before($longSequence, 4, $shortSequence)"
 separator="
 "/>

 <xsl:text>

 Test 3. insert-before($longSequence, </xsl:text>
 <xsl:text>4, $shortSequence) </xsl:text>
 <xsl:text>=
 </xsl:text>
 <xsl:value-of
 select="insert-before($longSequence, 4, $shortSequence)"
 separator="
 "/>

 <xsl:text>

 Test 4. insert-before($longSequence, 0, </xsl:text>
 <xsl:text>$shortSequence) </xsl:text>
 <xsl:text>=
 </xsl:text>

700 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:value-of select="insert-before($longSequence, 0, $shortSequence)"
 separator="
 "/>

 <xsl:text>

 Test 5. insert-before($longSequence, 42, </xsl:text>
 <xsl:text>$shortSequence) </xsl:text>
 <xsl:text>=
 </xsl:text>
 <xsl:value-of select="insert-before($longSequence, 42, $shortSequence)"
 separator="
 "/>

 <xsl:text>

 Creating a new variable based on </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:text>insert-before($longSequence, 4, $shortSequence): </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:text>updatedSequence = insert-before($longSequence, 4, </xsl:text>
 <xsl:text>$shortSequence) :
 </xsl:text>
 <xsl:variable name="updatedSequence" as="item()*"
 select="insert-before($longSequence, 4, $shortSequence)"/>
 <xsl:text>
 Test 6. $updatedSequence =
 </xsl:text>
 <xsl:value-of select="$updatedSequence" separator="
 "/>

 </xsl:template>

</xsl:stylesheet>

The results are:

Here's a test of the insert-before() function:

 Our first sequence ($longSequence) is:
 3
 4
 5
 2006-07-25-04:00
 04:24:21.216-04:00
 8
 blue

 Our second sequence ($shortSequence) is:
 2006-07-25T04:24:21.216-04:00
 P3Y8M

 Test 1. insert-before($longSequence, 3, (23)) =
 3
 4
 23
 5
 2006-07-25-04:00
 04:31:23.383-04:00
 8
 blue

 Test 2. insert-before($longSequence, 4, $shortSequence) =
 3
 4
 5
 2006-07-25T04:24:21.216-04:00

[2.0] insert-before( ) | 701

 P3Y8M
 2006-07-25-04:00
 04:24:21.216-04:00
 8
 blue

 Test 3. insert-before($longSequence, 4, $shortSequence) =
 3
 4
 5
 2006-07-25T04:24:21.216-04:00
 P3Y8M
 2006-07-25-04:00
 04:24:21.216-04:00
 8
 blue

 Test 4. insert-before($longSequence, 0, $shortSequence) =
 2006-07-25T04:24:21.216-04:00
 P3Y8M
 3
 4
 5
 2006-07-25-04:00
 04:24:21.216-04:00
 8
 blue

 Test 5. insert-before($longSequence, 42, $shortSequence) =
 3
 4
 5
 2006-07-25-04:00
 04:24:21.216-04:00
 8
 blue
 2006-07-25T04:24:21.216-04:00
 P3Y8M

 Creating a new variable based on
 insert-before($longSequence, 4, $shortSequence):
 updatedSequence = insert-before($longSequence, 4, $shortSequence) :

 Test 6. $updatedSequence =
 3
 4
 5
 2006-07-25T04:24:21.216-04:00
 P3Y8M
 2006-07-25-04:00
 04:24:21.216-04:00
 8
 blue

702 | Appendix C: XSLT, XPath, and XQuery Function Reference

We start the stylesheet by listing the two sequences we’ll be using. For our first test, we
hardcode a sequence (a singleton containing the value 23) and insert it. Test 2 inserts the short
sequence into the longer one before position 4 and returns the new sequence. Test 3 illustrates
that calling insert-before() doesn’t change the original sequence; it merely returns a new
sequence with the requested items inserted.

Tests 4 and 5 show what happens when the position is out of range. Specifying a position of
0 inserts the second sequence at the start of the first, while a position of 42 inserts the second
sequence at the end of the first. Finally, test 6 stores the new sequence in a variable.

[2.0] iri-to-uri()
Given a string containing an Internationalized Resource Identifier (IRI), this function converts
it to a URI. URI syntax allows only a subset of roughly 60 ASCII characters, which is inade-
quate for most of the world’s languages. IRI syntax addresses this problem; this function
translates IRI syntax to URI syntax.

Syntax
xs:string iri-to-uri(xs:string?)

Inputs
An xs:string containing an IRI.

Outputs
An xs:string with the appropriate characters escaped so that they are legal for a URI. (If you
want all the details, see RFC 3987, Internationalized Resource Identifiers [IRIs], available at
http://www.ietf.org/rfc/rfc3987.txt. For the details of URI syntax, see RFC 3986, Uniform Re-
source Identifiers [URI]: Generic Syntax, available at http://www.ietf.org/rfc/rfc3986.txt.)

This function does not escape the percent character (%). If you want to use this function, you
must escape all the percent signs yourself (calling replace-string($string, '%', '%25') will
do the trick) before you call iri-to-uri().

If the value of the argument is the empty sequence, a zero-length string is returned.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.4, “Functions on String Values.”

Example
Here are two examples from the spec:

<?xml version="1.0" encoding="utf-8"?>
<!-- iri-to-uri.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

[2.0] iri-to-uri( ) | 703

http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3986.txt

 <xsl:template match="/">
 <xsl:text>
Tests of the iri-to-uri() function:</xsl:text>

 <xsl:text>

 iri-to-uri('http://www.example.com/</xsl:text>
 <xsl:text>00/Weather/CA/Los Angeles#ocean') =
 </xsl:text>
 <xsl:value-of
 select="iri-to-uri('http://www.example.com/00/Weather/CA/Los Angeles#ocean')"/>

 <xsl:text>

 iri-to-uri('http://www.example.com/</xsl:text>
 <xsl:text>~bébé') =
 </xsl:text>
 <xsl:value-of
 select="iri-to-uri('http://www.example.com/~bébé')"/>

 <!-- The character 家 is Japanese for "home," I hope... -->
 <xsl:text>

 iri-to-uri('http://www.example.co.jp/</xsl:text>
 <xsl:text>家') =
 </xsl:text>
 <xsl:value-of
 select="iri-to-uri('http://www.example.co.jp/家')"/>
 </xsl:template>

</xsl:stylesheet>

As seen in Figure C-4, the IRIs are translated into URIs.

In the first example, the space was encoded as %20; in the second, the character é was encoded
as the two-byte UTF-8 sequence %C3%A9.

The Japanese character in the last example (家) was correctly encoded as the three-byte UTF-8
sequence %E5%AE%B6. (I believe this is the character for “home,” but I’m not 100% sure.)

See Also
The descriptions of the [2.0] encode-for-uri() and [2.0] escape-html-uri() functions.

Figure C-4. Sample with illegal URI characters escaped

704 | Appendix C: XSLT, XPath, and XQuery Function Reference

key()
References a relation defined with an <xsl:key> element. Conceptually, the key() function
works similarly to the id() function, although keys are more flexible than IDs.

Syntax
[1.0] node-set key(string, object)
[2.0] node()* key(xs:string, xs:anyAtomicType*)
[2.0] node()* key(xs:string, xs:anyAtomicType*, node())

Inputs
[1.0] The name of the key (defined by an <xsl:key> element) and an object. If the object is a
node-set, then the key() function applies itself to the string value of each node in the node-
set and returns the node-set of the result of all those key() function invocations. If the object
is any other type, it is converted to a string as if by a call to the string() function.

[2.0] The name of the key (an xs:string) and a sequence of search values. An optional third
argument limits the search to all the nodes that have the specified node as an ancestor-or-
self node. The third argument lets us limit the search results to a particular group of nodes.

Output
[1.0] A node-set containing the nodes in the same document as the context node whose values
for the requested key match the search argument(s). In other words, if our stylesheet has an
<xsl:key> element that defines a key named postalcodes based on the <postalcode> child of
all <address> elements in the current document, the function call key(postalcodes,
'34829') returns a node-set containing all the <address> elements with a <postalcode> element
whose value is 34829.

[2.0] A sequence of nodes, each of which matches one of the values in the sequence of search
values. How those nodes match the search arguments is determined by the specified key.

[2.0] Keep in mind that any untyped values in the sequence of search
values will be compared as strings. If the key you’re using defined
xs:date values as the index property, your string values will never match
and key() will always return the empty sequence. In this case, only
search values of type xs:date will return any results.

Defined in
[1.0] XSLT section 12.2, “Keys.”

[2.0] XSLT section 16.3, “Keys.”

Example
To illustrate the power of the key() function, we’ll use this document:

<?xml version="1.0"?>
<!-- simplified-names.xml -->

key( ) | 705

<addressbook>
 <address>
 <first-name>Chester Hasbrouck</first-name>
 <last-name>Frisby</last-name>
 <city>Sheboygan</city>
 <state>WI</state>
 </address>
 <address>
 <first-name>Mary</first-name>
 <last-name>Backstayge</last-name>
 <city>Skunk Haven</city>
 <state>MA</state>
 </address>
 <address>
 <first-name>Natalie</first-name>
 <last-name>Attired</last-name>
 <city>Winter Harbor</city>
 <state>ME</state>
 </address>
 <address>
 <first-name>Harry</first-name>
 <last-name>Backstayge</last-name>
 <city>Skunk Haven</city>
 <state>MA</state>
 </address>
 <address>
 <first-name>Mary</first-name>
 <last-name>McGoon</last-name>
 <city>Boylston</city>
 <state>VA</state>
 </address>
 <address>
 <first-name>Amanda</first-name>
 <last-name>Reckonwith</last-name>
 <city>Lynn</city>
 <state>MA</state>
 </address>
</addressbook>

Here’s the stylesheet we’ll use to process this document. Notice that we define a key to index
customer addresses by state:

<?xml version="1.0"?>
<!-- key-function.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:param name="searchState"/>

 <xsl:key name="customersByState" match="address" use="state"/>

 <xsl:template match="/">
 <xsl:text>
A test of the key() function:
</xsl:text>
 <xsl:text>
 All customers in </xsl:text>

706 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:value-of select="$searchState"/>
 <xsl:text>

 </xsl:text>
 <xsl:for-each select="key('customersByState', $searchState)">
 <xsl:value-of select="first-name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="last-name"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="city"/>
 <xsl:text>
 </xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Running our stylesheet with a $searchState parameter of MA gives these results:

A test of the key() function:

 All customers in MA

 Mary Backstayge, Skunk Haven
 Harry Backstayge, Skunk Haven
 Amanda Reckonwith, Lynn

A search parameter of WI finds only one customer:

A test of the key() function:

 All customers in WI

 Chester Hasbrouck Frisby, Sheboygan

lang()
Determines whether a given language string is the same as, or is a sublanguage of, the language
of the context node, as defined by an xml:lang attribute.

Syntax
[1.0] boolean lang(string)
[2.0] xs:boolean lang(xs:string?)
[2.0] xs:boolean lang(xs:string?, node())

Inputs
A string representing a language code. If the context node has a language of xml:lang="en-
us", invoking the lang() function with any of the values en, EN, and en-us returns the boolean
value true, while invoking lang() with the value en-gb returns the boolean value false.

Output
If the argument string is the same as, or is a sublanguage of, the context node’s language,
lang() returns the boolean value true. If the context node does not have an xml:lang attribute,
then the value of the xml:lang attribute of its nearest ancestor is used instead. If there is no
such attribute, then the lang() function returns the boolean value false. When comparing

lang( ) | 707

the language code of the context node with the argument string, the lang() function ignores
case.

Defined in
[1.0] XPath section 4.3, “Boolean Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 14, “Functions and Oper-
ators on Nodes.”

Example
Here is an XML document that uses language codes:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

Here’s a stylesheet that uses the lang() function:

<?xml version="1.0"?>
<!-- lang.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the lang() function:

</xsl:text>
 <xsl:for-each select="list/listitem">
 <xsl:choose>
 <xsl:when test="lang('EN')">
 <xsl:text> Here's an English-language album: </xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text> -------> Here's some World music: </xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Finally, here are the results:

708 | Appendix C: XSLT, XPath, and XQuery Function Reference

A test of the lang() function:

 Here's an English-language album: The Sacred Art of Dub
 Here's an English-language album: Only the Poor Man Feel It
 Here's an English-language album: Excitable Boy
 -------> Here's some World music: Aki Special
 Here's an English-language album: Combat Rock
 -------> Here's some World music: Talking Timbuktu
 -------> Here's some World music: The Birth of the Cool

Notice that the search argument of EN matches both en, the default language, and en-gb, the
code for U.K. English.

last()
Returns the position of the last node in the current context. This function is useful for defining
templates for the last occurrence of a given element or for testing whether a given node is the
last in the node-set to which it belongs.

Syntax
[1.0] number last()
[2.0] xs:integer last()

Inputs
None.

Output
A number equal to the number of nodes in the current context. For example, if the current
context contains 12 nodes, last() returns 12.

Defined in
[1.0] XPath section 4.1, “Node Set Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 16, “Context Functions.”

Example
We’ll use the last() function to handle the last item in a list in a special way. Here’s the XML
document we’ll use:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>

last( ) | 709

 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

Here is the stylesheet that handles the last <listitem> in the list differently:

<?xml version="1.0"?>
<!-- last.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the last() function:
</xsl:text>
 <xsl:for-each select="list/listitem">
 <xsl:text>
 </xsl:text>
 <xsl:if test="position()=last()">
 <xsl:text>
 LAST, but not least: </xsl:text>
 </xsl:if>
 <xsl:value-of select="."/>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

When we transform the XML document with this stylesheet, here are the results:

A test of the last() function:

 The Sacred Art of Dub
 Only the Poor Man Feel It
 Excitable Boy
 Aki Special
 Combat Rock
 Talking Timbuktu

 LAST, but not least: The Birth of the Cool

local-name()
Returns the local part of the first node in the argument node-set.

Syntax
[1.0] string local-name(node-set?)
[2.0] xs:string local-name()
[2.0] xs:string local-name(node()?)

Inputs
A node-set. If the node-set is empty, the function returns an empty string. If the node-set is
omitted, the function uses a node-set with the context node as its only member.

710 | Appendix C: XSLT, XPath, and XQuery Function Reference

Output
A string corresponding to the local name of the first element in the argument node-set. If the
node-set is empty, the local-name() function returns an empty string.

[2.0] In XSLT 2.0, it is a fatal error if the argument contains more than one node.

Defined in
[1.0] XPath section 4.1, “Node Set Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 14, “Functions and Oper-
ators on Nodes.”

Example
We’ll use our Shakespearean sonnet to test the local-name() function:

<?xml version="1.0"?>
<!-- sonnet.xml -->
<sonnet type='Shakespearean'>
 <auth:author xmlns:auth="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </auth:author>
 <!-- Is there an official title for this sonnet? They're
 sometimes named after the first line. -->
 <title>Sonnet 130</title>
 <lines>
 <line>My mistress' eyes are nothing like the sun,</line>
 <line>Coral is far more red than her lips red.</line>
 <line>If snow be white, why then her breasts are dun,</line>
 <line>If hairs be wires, black wires grow on her head.</line>
 <line>I have seen roses damasked, red and white,</line>
 <line>But no such roses see I in her cheeks.</line>
 <line>And in some perfumes is there more delight</line>
 <line>Than in the breath that from my mistress reeks.</line>
 <line>I love to hear her speak, yet well I know</line>
 <line>That music hath a far more pleasing sound.</line>
 <line>I grant I never saw a goddess go,</line>
 <line>My mistress when she walks, treads on the ground.</line>
 <line>And yet, by Heaven, I think my love as rare</line>
 <line>As any she belied with false compare.</line>
 </lines>
</sonnet>

Here’s the short stylesheet we’ll use:

<?xml version="1.0"?>
<!-- local-name.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

local-name( ) | 711

 <xsl:template match="/">
 <xsl:text>
A test of the local-name() function:
</xsl:text>

 <xsl:for-each select="//*">
 <xsl:text>
 The local name for <</xsl:text>
 <xsl:value-of select="name()"/>
 <xsl:text>>: </xsl:text>
 <xsl:value-of select="local-name(.)"/>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Here are the results from the stylesheet:

A test of the local-name() function:

 The local name for <sonnet>: sonnet
 The local name for <auth:author>: author
 The local name for <last-name>: last-name
 The local name for <first-name>: first-name
 The local name for <nationality>: nationality
 The local name for <year-of-birth>: year-of-birth
 The local name for <year-of-death>: year-of-death
 The local name for <title>: title
 The local name for <lines>: lines
 The local name for <line>: line
 The local name for <line>: line
 The local name for <line>: line
 The local name for <line>: line
 The local name for <line>: line
 The local name for <line>: line
 The local name for <line>: line
 The local name for <line>: line
 The local name for <line>: line
 The local name for <line>: line
 The local name for <line>: line
 The local name for <line>: line
 The local name for <line>: line
 The local name for <line>: line

[2.0] local-name-from-QName()
Given an xs:QName value, returns its local name.

Syntax
xs:NCName? local-name-from-QName(xs:QName?)

Input
An xs:QName value.

712 | Appendix C: XSLT, XPath, and XQuery Function Reference

Output
The local name portion of the given QName. This is returned as an xs:NCName, or “noncolonized”
name. If the argument is the empty sequence, local-name-from-QName() returns the empty
sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 11.2, “Operators and Functions
Related to QNames.”

Example
Here is a short stylesheet that uses local-name-from-QName():

<?xml version="1.0"?>
<!-- local-name-from-qname.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the local-name-from-QName() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:variable name="testQName1" as="xs:QName"
 select="QName('http://www.authors.com', 'auth:author')"/>

 <xsl:text>
 QName('http://www.authors.com', </xsl:text>
 <xsl:text>'auth:author') = </xsl:text>
 <xsl:value-of select="$testQName1"/>

 <xsl:text>
 The local name associated with </xsl:text>
 <xsl:text>this QName: "</xsl:text>
 <xsl:value-of select="local-name-from-QName($testQName1)"/>
 <xsl:text>"</xsl:text>

 <xsl:variable name="testQName2" as="xs:QName"
 select="QName('', 'sonnet')"/>

 <xsl:text>

 QName('', 'sonnet') = </xsl:text>
 <xsl:value-of select="$testQName2"/>

 <xsl:text>
 The local name associated with </xsl:text>
 <xsl:text>this QName: "</xsl:text>
 <xsl:value-of select="local-name-from-QName($testQName2)"/>
 <xsl:text>"</xsl:text>

 </xsl:template>

</xsl:stylesheet>

[2.0] local-name-from-QName( ) | 713

The straightforward results look like this:

Tests of the local-name-from-QName() function:

 QName('http://www.authors.com', 'auth:author') = auth:author
 The local name associated with this QName: "author"

 QName('', 'sonnet') = sonnet
 The local name associated with this QName: "sonnet"

[2.0] lower-case()
Given a string, returns the lowercased version of that string.

Syntax
xs:string lower-case(xs:string)

Inputs
An xs:string value.

Outputs
An xs:string in which all of the uppercase letters in the original string have been converted
to lowercase. Any character that was originally in lowercase and any character that does not
have an lowercase value is returned as is. If the value of the argument is the empty sequence,
a zero-length string is returned.

Accented characters and other features of the world’s languages mean that changing the case
of a string might change its length. Also be aware that lower-case() and upper-case() are
not always the inverse of each other in some languages. All of the case conversion rules are
defined by the Unicode standard, and XSLT processors are expected to conform with those
rules.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.4, “Functions on String Values.”

Example
Here is a stylesheet that illustrates the lower-case() function. Notice that we’re using
<xsl:output method="xml" encoding="UTF-8"/> to make sure the character set is handled
properly:

<?xml version="1.0" encoding="UTF-8"?>
<!-- lower-case.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" encoding="UTF-8" indent="yes"/>

 <xsl:template match="/">
 <testcase>

714 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <heading>Tests of the lower-case() function:</heading>
 <test>
 <label>lower-case('Lily') = </label>
 <result><xsl:value-of select="lower-case('Lily')"/></result>
 </test>
 <test>
 <label>lower-case('LILY') = </label>
 <result><xsl:value-of select="lower-case('LILY')"/></result>
 </test>
 <test>
 <label>lower-case('lily') = </label>
 <result><xsl:value-of select="lower-case('lily')"/></result>
 </test>
 <test>
 <label>lower-case('JALAPEÑO') = </label>
 <result><xsl:value-of select="lower-case('JALAPEÑO')"/></result>
 </test>
 </testcase>
 </xsl:template>

</xsl:stylesheet>

The results look like this:

<?xml version="1.0" encoding="UTF-8"?>
<testcase>
 <heading>Tests of the lower-case() function:</heading>
 <test>
 <label>lower-case('Lily') = </label>
 <result>lily</result>
 </test>
 <test>
 <label>lower-case('LILY') = </label>
 <result>lily</result>
 </test>
 <test>
 <label>lower-case('lily') = </label>
 <result>lily</result>
 </test>
 <test>
 <label>lowercase('JALAPEÑO') = </label>
 <result>jalapeño</result>
 </test>
</testcase>

[2.0] matches()
Determines whether a given string matches a given regular expression.

Syntax
xs:boolean matches($input as xs:string?, $pattern as xs:string)
xs:boolean matches($input as xs:string?, $pattern as xs:string,
 $flags as xs:string)

[2.0] matches( ) | 715

Inputs
An input string and a regular expression. The matches() function also supports an optional
string defining flags that modify how the regular expression is processed.

Outputs
true if the string matches the regular expression; false otherwise.

Regular expressions are extremely powerful, so there are a number of details about how they
work:

• If $input is the empty sequence, it is interpreted as a zero-length string. The
matches() function can still return true in this situation. For example,
matches((), '.?') is true, as is matches('', '.?').

• Regular expression matching does not use collations; the characters’ Unicode code
points are compared. Cases in which different characters are considered equal in
the world’s languages are not taken into account.

• Unless you use the ^ (start of line) or $ (end of line) characters as anchors in your
regular expression, a string is considered a match if any part of it matches the
regular expression.

• Unlike regular expressions used in the <xsl:analyze-string> element, curly braces
({ and }) are not doubled. (Curly braces used inside the regex attribute of
<xsl:analyze-string> must be doubled so they aren’t interpreted as attribute value
templates.)

• The $flags parameter modifies how the regular expression is processed. There are
four different flags:

s
Regular expressions are evaluated in what the specs refer to as “dot-all” mode.
When this flag is used, the dot operator (.) matches any character. Under
normal processing (without the s flag), the dot operator matches any character
except the newline character (
). This flag is useful when you want to
match strings that might include a newline character.

m
Regular expressions are evaulated in multiline mode. By default, the meta-
character (^) matches the start of the entire string, while $ matches the end of
the entire string. In multiline mode, ^ matches the start of any line within the
string and $ matches the end of any line within the string.

i
Regular expressions are evaluated in case-insensitive mode. The regular ex-
pression "a" matches both "a" and "A".

Note that Unicode issues can complicate this greatly. For example, the XQuery
1.0 and XPath 2.0 Functions and Operators spec gives the example of the
Unicode sign for degrees Kelvin (K), which is the letter "K". The

716 | Appendix C: XSLT, XPath, and XQuery Function Reference

combination of regex="k" and flags="i" matches the Kelvin sign as well as the
letters "k" (k) and "K" (K).

Other Unicode characters don’t convert to letters. For example, the Unicode
symbol for the Roman numeral I (ࡰ) looks like the letter I, but does not
convert to one.

x
All whitespace characters (,
, , and) are removed from
the regular expression before any comparison is done. In other words, with
the x flag, the regular expressions "John Smith" and "JohnSmith" are the same.
This flag is useful when you want to break a long regular expression into mul-
tiple lines to make it easier to read.

The flags can be combined in any order. The parameters 'xis' and 'six' work
exactly the same way.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.6, “String Functions that Use
Pattern Matching.”

Example
Here is a stylesheet that uses the matches() function:

<?xml version="1.0"?>
<!-- matches.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:variable name="string1"
 select="concat('Now is the time for all good men
',
 'and women
',
 'to aid the party.')"/>

 <xsl:text>
Here's a test of the matches() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 $string1 =
</xsl:text>
 <xsl:value-of select="$string1"/>

 <xsl:text>

 Test 1. matches($string1, </xsl:text>
 <xsl:text>'Now.*men') = </xsl:text>
 <xsl:value-of select="matches($string1, 'Now.*men')"/>

 <xsl:text>

 Test 2. matches($string1, </xsl:text>
 <xsl:text>'Now.*men$') = </xsl:text>
 <xsl:value-of select="matches($string1, 'Now.*men$')"/>

[2.0] matches( ) | 717

 <xsl:text>

 Test 3. matches($string1, </xsl:text>
 <xsl:text>'Now.*men$', 'm') = </xsl:text>
 <xsl:value-of select="matches($string1, 'Now.*men$', 'm')"/>

 <xsl:text>

 Test 4. matches($string1, </xsl:text>
 <xsl:text>'women $', 'm') = </xsl:text>
 <xsl:value-of select="matches($string1, 'women $', 'm')"/>

 <xsl:text>

 Test 5. matches($string1, </xsl:text>
 <xsl:text>'party.$') = </xsl:text>
 <xsl:value-of select="matches($string1, 'party.$')"/>

 <xsl:text>

 Test 6. matches($string1, </xsl:text>
 <xsl:text>'^and' 'm') = </xsl:text>
 <xsl:value-of select="matches($string1, '^and', 'm')"/>

 <xsl:text>

 Test 7. matches($string1, </xsl:text>
 <xsl:text>'women .?to' 's') = </xsl:text>
 <xsl:value-of select="matches($string1, 'women .?to', 's')"/>

 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here's a test of the matches() function:

 $string1 =
Now is the time for all good men
and women
to aid the party.

 Test 1. matches($string1, 'Now.*men') = true

 Test 2. matches($string1, 'Now.*men$') = false

 Test 3. matches($string1, 'Now.*men$', 'm') = true

 Test 4. matches($string1, 'women $', 'm') = true

 Test 5. matches($string1, 'party.$') = true

 Test 6. matches($string1, '^and' 'm') = true

 Test 7. matches($string1, 'women .?to' 's') = true

Our sample string contains two line breaks so we can test the ^ and $ characters along with
the flags. The regular expression in test 1 is the characters 'Now' followed by zero or more
characters, followed by the characters 'men'. Test 2 specifies that 'men' should be the last
three characters in the string; that’s clearly not the case here. In test 3, we specify that the
expression should be processed in multiline mode (using the 'm' flag), so 'men
' is con-
sidered a match for 'men$'.

718 | Appendix C: XSLT, XPath, and XQuery Function Reference

In test 4, we look for the characters 'women ', at the end of a line. Because we’re using multiline
mode, this matches. Notice that we had to include the space character at the end of the line;
'women$' does not match here. Test 5 specifies the characters 'party.' at the end of the string.
We’re not in multiline mode, but that’s OK; the last characters in the string are 'party.' Test
6 looks for the characters 'and' at the start of a line; because we’re in multiline mode, this
works.

Finally, we look for the characters 'women ' followed by a single optional character followed
by the characters 'to'. We’re using “dot all” mode here (we specified the 's' flag), so this is
a match. The single optional character here is a newline, which matches when the 's' flag is
in effect.

See Also
Appendix E has complete details on the way regular expressions work in XPath 2.0. Also see
the definitions of the following elements and functions: [2.0] <xsl:analyze-string>, [2.0]
<xsl:matching-substring>, [2.0] <xsl:non-matching-substring>, [2.0] regex-group(), [2.0]
replace(), and [2.0] tokenize().

[2.0] max()
Returns the largest value in a given sequence.

Syntax
xs:anyAtomicType max(xs:anyAtomicType*)
xs:anyAtomicType max(xs:anyAtomicType*, $collation as xs:string)

Input
A sequence of values.

Output
The maximum value in the given sequence. The max() function works with the following
types of values: numeric values (xs:integer, xs:double, xs:decimal, and xs:float), xs:string,
xs:boolean, xs:date, xs:dateTime, xs:time, xs:yearMonthDuration, and xs:dayTimeDuration
(but not xs:duration).

Given a sequence of numeric values, the XSLT processor returns the largest number, con-
verting datatypes as necessary. Given a sequence of durations, the XSLT processor returns
the longest of those durations. Given a sequence of strings, the XSLT processor returns the
string that appears last in sorted order.

The max() function assumes you’ll send it a sequence containing sensible data; if not, the
XSLT processor throws an error. Asking for the maximum value in the sequence
(xs:dayTimeDuration('P3DT8H17M'), 38, 'football') returns an error, as you’d expect.

Details about how the max() function works are as follows:

[2.0] max( ) | 719

• To find the longest of a sequence of durations, the values must all be
xs:dayTimeDurations, or they must all be xs:yearMonthDurations. You can’t mix the
two types of durations; if you do, the XSLT processor throws an error.

• If any of the items in the sequence are of type xs:untypedAtomic, the XSLT processor
attempts to cast it to xs:double. If the item can’t be converted to xs:double, the
XSLT processor throws an error.

• When comparing xs:string values, the default collation is used unless you specify
another.

• Finally, if you pass the max() function the empty sequence, it returns the empty
sequence. Although you’re not giving the function any useful data in this case, the
XSLT processor doesn’t throw an error.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.4, “Aggregate Functions.”

Example
Here’s a stylesheet that finds the maximum value in several different types of sequences:

<?xml version="1.0"?>
<!-- max.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="seq1" select="(3, 5, 18)"/>
 <xsl:variable name="seq2" select="(3, 5, 48.273, 2.9e3)"/>

 <xsl:variable name="value1" as="xs:integer" select="42"/>
 <xsl:variable name="value2" as="xs:double" select="2718.28E-3"/>
 <xsl:variable name="value3" as="xs:float" select="98.6"/>
 <xsl:variable name="value4" as="xs:decimal" select="2.54"/>
 <xsl:variable name="seq3"
 select="($value1, $value2, $value3, $value4)"/>

 <xsl:variable name="seq4"
 select="(xs:yearMonthDuration('P3Y8M'),
 xs:yearMonthDuration('P4Y2M'),
 xs:yearMonthDuration('P6Y4M'))"/>
 <xsl:variable name="seq5"
 select="(xs:dayTimeDuration('P2DT4H23M12.2S'),
 xs:dayTimeDuration('P3DT8H17M'),
 xs:dayTimeDuration('P3D'))"/>

 <xsl:text>
Here are some tests of the max() function:
</xsl:text>

 <xsl:text>
 max(</xsl:text>
 <xsl:value-of select="$seq1" separator=", "/>

720 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text>) = </xsl:text>
 <xsl:value-of select="format-number(max($seq1), '#.###')"/>

 <xsl:text>

 max(</xsl:text>
 <xsl:value-of select="$seq2" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="format-number(max($seq2), '#.###')"/>

 <xsl:text>

 max(</xsl:text>
 <xsl:value-of select="$seq3" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="format-number(max($seq3), '#.###')"/>

 <xsl:text>

 max(</xsl:text>
 <xsl:value-of select="$seq4" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="max($seq4)"/>

 <xsl:text>

 In text, the maximum of</xsl:text>
 <xsl:for-each select="$seq4">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="years-from-duration(.)"/>
 <xsl:text> years and </xsl:text>
 <xsl:value-of select="months-from-duration(.)"/>
 <xsl:text> months (</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>)</xsl:text>
 </xsl:for-each>

 <xsl:text>
 is </xsl:text>
 <xsl:value-of select="years-from-duration(max($seq4))"/>
 <xsl:text> years and </xsl:text>
 <xsl:value-of select="months-from-duration(max($seq4))"/>
 <xsl:text> months (</xsl:text>
 <xsl:value-of select="max($seq4)"/>
 <xsl:text>).</xsl:text>

 <xsl:text>

 max(</xsl:text>
 <xsl:value-of select="$seq5" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:variable name="max5" select="max($seq5)"/>
 <xsl:value-of select="$max5"/>

 <xsl:text>

 In text, the maximum of</xsl:text>
 <xsl:for-each select="$seq5">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="days-from-duration(.)"/>
 <xsl:text> days, </xsl:text>
 <xsl:value-of select="hours-from-duration(.)"/>
 <xsl:text> hours, </xsl:text>
 <xsl:value-of select="minutes-from-duration(.)"/>
 <xsl:text> minutes and </xsl:text>
 <xsl:value-of
 select="format-number(seconds-from-duration(.), '#.##')"/>
 <xsl:text> seconds (</xsl:text>

[2.0] max( ) | 721

 <xsl:value-of select="."/>
 <xsl:text>)</xsl:text>
 </xsl:for-each>

 <xsl:text>
 is </xsl:text>
 <xsl:value-of select="days-from-duration($max5)"/>
 <xsl:text> days, </xsl:text>
 <xsl:value-of select="hours-from-duration($max5)"/>
 <xsl:text> hours, </xsl:text>
 <xsl:value-of select="minutes-from-duration($max5)"/>
 <xsl:text> minutes and </xsl:text>
 <xsl:value-of
 select="format-number(seconds-from-duration($max5), '#.##')"/>
 <xsl:text> seconds.</xsl:text>

 </xsl:template>

</xsl:stylesheet>

Here are the results from this stylesheet:

Here are some tests of the max() function:

 max(3, 5, 18) = 18

 max(3, 5, 48.273, 2900) = 2900

 max(42, 2.71828, 98.6, 2.54) = 98.6

 max(P3Y8M, P4Y2M, P6Y4M) = P6Y4M

 In text, the maximum of
 3 years and 8 months (P3Y8M)
 4 years and 2 months (P4Y2M)
 6 years and 4 months (P6Y4M)
 is 6 years and 4 months (P6Y4M).

 max(P2DT4H23M12.2S, P3DT8H17M, P3D) = P3DT8H17M

 In text, the maximum of
 2 days, 4 hours, 23 minutes and 12.2 seconds (P2DT4H23M12.2S)
 3 days, 8 hours, 17 minutes and 0 seconds (P3DT8H17M)
 3 days, 0 hours, 0 minutes and 0 seconds (P3D)
 is 3 days, 8 hours, 17 minutes and 0 seconds.

The stylesheet demonstrates five different types of sequences. The first is all integers and the
second is a sequence of numbers. All the values in the first two sequences can be converted
to numbers, so the results are what we expect. The third sequence features four numeric
values, each of which has a specific numeric type. The last two sequences are made up of the
two types of durations. The stylesheet also uses functions such as years-from-duration() and
format-number() to format the data.

Here’s a short example that illustrates using a custom collation:

<?xml version="1.0"?>
<!-- max2.xsl -->

722 | Appendix C: XSLT, XPath, and XQuery Function Reference

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="seq1"
 select="('strasse', 'straße')"/>
 <xsl:variable name="seq2" select="reverse($seq1)"/>

 <xsl:text>
Here are some tests of the max() function:
</xsl:text>

 <xsl:text>
 max(</xsl:text>
 <xsl:value-of select="$seq1" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="max($seq1)"/>

 <xsl:text>
 max(</xsl:text>
 <xsl:value-of select="$seq1" separator=", "/>
 <xsl:text> [German collation]) = </xsl:text>
 <xsl:value-of
 select="max($seq1,
 concat('http://saxon.sf.net/collation?',
 'class=com.oreilly.xslt.GermanCollation;'))"/>

 <xsl:text>
 max(</xsl:text>
 <xsl:value-of select="$seq2" separator=", "/>
 <xsl:text> [German collation]) = </xsl:text>
 <xsl:value-of
 select="max($seq2,
 concat('http://saxon.sf.net/collation?',
 'class=com.oreilly.xslt.GermanCollation;'))"/>

 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here are some tests of the max() function:

 max(strasse, straße) = straße
 max(strasse, straße [German collation]) = strasse
 max(straße, strasse [German collation]) = straße

Using the default collation, these two strings are not equal. In the first example, straße sorts
after strasse, so that’s the value returned by the max() function. In the final two examples,
the two strings are considered equal by the German collation. In Saxon 9.0.0.3J, max() returns
the maximum value that appears first in the sequence. This is implementation dependent;
XSLT processors are allowed to return any of the equal maximum values.

[2.0] max( ) | 723

[2.0] min()
Returns the smallest value in a given sequence.

Syntax
xs:anyAtomicType min(xs:anyAtomicType*)
xs:anyAtomicType min(xs:anyAtomicType*, $collation as xs:string)

Input
A sequence of values. The optional collation is only used if the items in the sequence are
xs:strings.

Output
The minimum value in the given sequence. The min() function works with the following types
of values: numeric values (xs:integer, xs:double, xs:decimal, and xs:float), xs:string,
xs:boolean, xs:date, xs:dateTime, xs:time, xs:yearMonthDuration, and xs:dayTimeDuration
(but not xs:duration).

Given a sequence of numeric values, the XSLT processor returns the smallest number, con-
verting datatypes as necessary. Given a sequence of durations, the XSLT processor returns
the shortest of those durations. Given a sequence of strings, the XSLT processor returns the
string that appears first in sorted order.

The min() function assumes you’ll send it a sequence containing sensible data; if not, the
XSLT processor throws an error. Asking for the minimum value in the sequence (xs:year
MonthDuration('P4Y2M'), 'strawberry', 3.14) returns an error, as you’d expect.

Some notes about how the min() function works are as follows:

• To find the shortest of a sequence of durations, the values must all be
xs:dayTimeDurations, or they must all be xs:yearMonthDurations. You can’t mix the
two types of durations; if you do, the XSLT processor throws an error.

• If any of the items in the sequence are of type xs:untypedAtomic, the XSLT processor
attempts to cast it to xs:double. If the item can’t be converted to an xs:double, the
XSLT processor throws an error.

• When comparing xs:string values, the default collation is used unless you specify
another.

• Finally, if you pass the min() function the empty sequence, it returns the empty
sequence. Although you’re not giving the function any useful data in this case, the
XSLT processor doesn’t throw an error.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.4, “Aggregate Functions.”

Example
Here’s a stylesheet that finds the minimum value in several different types of sequences:

724 | Appendix C: XSLT, XPath, and XQuery Function Reference

<?xml version="1.0"?>
<!-- min.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="seq1" select="(3, 5, 18)"/>
 <xsl:variable name="seq2" select="(3, 5, 48.273, 2.9e3)"/>

 <xsl:variable name="value1" as="xs:integer" select="42"/>
 <xsl:variable name="value2" as="xs:double" select="2718.28E-3"/>
 <xsl:variable name="value3" as="xs:float" select="98.6"/>
 <xsl:variable name="value4" as="xs:decimal" select="2.54"/>
 <xsl:variable name="seq3"
 select="($value1, $value2, $value3, $value4)"/>

 <xsl:variable name="seq4"
 select="(xs:yearMonthDuration('P3Y8M'),
 xs:yearMonthDuration('P4Y2M'),
 xs:yearMonthDuration('P6Y4M'))"/>
 <xsl:variable name="seq5"
 select="(xs:dayTimeDuration('P2DT4H23M12.2S'),
 xs:dayTimeDuration('P3DT8H17M'),
 xs:dayTimeDuration('P3D'))"/>
 <xsl:variable name="seq6"
 select="('red', 'white', 'blue')"/>

 <xsl:text>
Here are some tests of the min() function:
</xsl:text>

 <xsl:text>
 min(</xsl:text>
 <xsl:value-of select="$seq1" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="format-number(min($seq1), '#.###')"/>

 <xsl:text>

 min(</xsl:text>
 <xsl:value-of select="$seq2" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="format-number(min($seq2), '#.###')"/>

 <xsl:text>

 min(</xsl:text>
 <xsl:value-of select="$seq3" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="format-number(min($seq3), '#.###')"/>

 <xsl:text>

 min(</xsl:text>
 <xsl:value-of select="$seq4" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="min($seq4)"/>

 <xsl:text>

 In text, the minimum of</xsl:text>
 <xsl:for-each select="$seq4">
 <xsl:text>
 </xsl:text>

[2.0] min( ) | 725

 <xsl:value-of select="years-from-duration(.)"/>
 <xsl:text> years and </xsl:text>
 <xsl:value-of select="months-from-duration(.)"/>
 <xsl:text> months (</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>)</xsl:text>
 </xsl:for-each>

 <xsl:text>
 is </xsl:text>
 <xsl:value-of select="years-from-duration(min($seq4))"/>
 <xsl:text> years and </xsl:text>
 <xsl:value-of select="months-from-duration(min($seq4))"/>
 <xsl:text> months (</xsl:text>
 <xsl:value-of select="min($seq4)"/>
 <xsl:text>).</xsl:text>

 <xsl:text>

 min(</xsl:text>
 <xsl:value-of select="$seq5" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:variable name="min5" select="min($seq5)"/>
 <xsl:value-of select="$min5"/>

 <xsl:text>

 In text, the minimum of</xsl:text>
 <xsl:for-each select="$seq5">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="days-from-duration(.)"/>
 <xsl:text> days, </xsl:text>
 <xsl:value-of select="hours-from-duration(.)"/>
 <xsl:text> hours, </xsl:text>
 <xsl:value-of select="minutes-from-duration(.)"/>
 <xsl:text> minutes and </xsl:text>
 <xsl:value-of
 select="format-number(seconds-from-duration(.), '#.##')"/>
 <xsl:text> seconds (</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>)</xsl:text>
 </xsl:for-each>

 <xsl:text>
 is </xsl:text>
 <xsl:value-of select="days-from-duration($min5)"/>
 <xsl:text> days, </xsl:text>
 <xsl:value-of select="hours-from-duration($min5)"/>
 <xsl:text> hours, </xsl:text>
 <xsl:value-of select="minutes-from-duration($min5)"/>
 <xsl:text> minutes and </xsl:text>
 <xsl:value-of
 select="format-number(seconds-from-duration($min5), '#.##')"/>
 <xsl:text> seconds.</xsl:text>

 <xsl:text>

 min(</xsl:text>
 <xsl:value-of select="$seq6" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="min($seq6)"/>

 </xsl:template>

726 | Appendix C: XSLT, XPath, and XQuery Function Reference

</xsl:stylesheet>

Here are the results from this stylesheet:

Here are some tests of the min() function:

 min(3, 5, 18) = 3

 min(3, 5, 48.273, 2900) = 3

 min(42, 2.71828, 98.6, 2.54) = 2.54

 min(P3Y8M, P4Y2M, P6Y4M) = P3Y8M

 In text, the minimum of
 3 years and 8 months (P3Y8M)
 4 years and 2 months (P4Y2M)
 6 years and 4 months (P6Y4M)
 is 3 years and 8 months (P3Y8M).

 min(P2DT4H23M12.2S, P3DT8H17M, P3D) = P2DT4H23M12.2S

 In text, the minimum of
 2 days, 4 hours, 23 minutes and 12.2 seconds (P2DT4H23M12.2S)
 3 days, 8 hours, 17 minutes and 0 seconds (P3DT8H17M)
 3 days, 0 hours, 0 minutes and 0 seconds (P3D)
 is 2 days, 4 hours, 23 minutes and 12.2 seconds.

The stylesheet demonstrates six different types of sequences. The first is all integers and the
second is a sequence of numbers. All the values in the first two sequences can be converted
to numbers, so the results are what we expect. The third sequence features four numeric
values, each of which has a specific numeric type. The next two sequences are made up of the
two types of durations, and the final sequence is made up of strings. The stylesheet also uses
functions such as years-from-duration() and format-number() to format the data.

Here’s a short example that illustrates using a custom collation:

<?xml version="1.0"?>
<!-- min2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="seq1"
 select="('straße', 'strasse')"/>
 <xsl:variable name="seq2" select="reverse($seq1)"/>

 <xsl:text>
Here are some tests of the min() function:
</xsl:text>

 <xsl:text>
 min(</xsl:text>
 <xsl:value-of select="$seq1" separator=", "/>
 <xsl:text>) = </xsl:text>

[2.0] min( ) | 727

 <xsl:value-of select="min($seq1)"/>

 <xsl:text>
 min(</xsl:text>
 <xsl:value-of select="$seq1" separator=", "/>
 <xsl:text> [German collation]) = </xsl:text>
 <xsl:value-of
 select="min($seq1,
 concat('http://saxon.sf.net/collation?',
 'class=com.oreilly.xslt.GermanCollation;'))"/>

 <xsl:text>
 min(</xsl:text>
 <xsl:value-of select="$seq2" separator=", "/>
 <xsl:text> [German collation]) = </xsl:text>
 <xsl:value-of
 select="min($seq2,
 concat('http://saxon.sf.net/collation?',
 'class=com.oreilly.xslt.GermanCollation;'))"/>

 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here are some tests of the min() function:

 min(strasse, straße) = strasse
 min(straße, strasse [German collation]) = straße
 min(strasse, straße [German collation]) = strasse

Using the default collation, these two strings are not equal. In the first example, strasse sorts
before straße, so that’s the value returned by the min() function. In the final two examples,
the two strings are considered equal by the German collation. In Saxon 9.0.0.3J, min() returns
the minimum value that appears first in the sequence. This is implementation dependent;
XSLT processors are allowed to return any of the equal minimum values.

[2.0] minutes-from-dateTime()
Given an xs:dateTime, returns its minutes value.

Syntax
xs:integer? minutes-from-dateTime(xs:dateTime?)

Inputs
An xs:dateTime value.

Output
An xs:integer representing the minutes component of the given xs:dateTime value. If the
argument is the empty sequence, this function returns the empty sequence.

728 | Appendix C: XSLT, XPath, and XQuery Function Reference

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the minutes-from-dateTime() function:

<?xml version="1.0"?>
<!-- minutes-from-datetime.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the minutes from an xs:dateTime:</xsl:text>
 <xsl:variable name="currentDateTime" as="xs:dateTime"
 select="current-dateTime()"/>
 <xsl:text>

 The current date and time is: </xsl:text>
 <xsl:value-of select="$currentDateTime"/>

 <xsl:text>

 The current minute is: </xsl:text>
 <xsl:value-of select="minutes-from-dateTime($currentDateTime)"/>
 </xsl:template>

</xsl:stylesheet>

The stylesheet creates these results:

Extracting the minutes from an xs:dateTime:

 The current date and time is: 2006-11-16T04:34:19.921-05:00

 The current minute is: 34

See Also
The definitions of the [2.0] day-from-dateTime(), [2.0] format-dateTime(), [2.0] hours-from-
dateTime(), [2.0] month-from-dateTime(), [2.0] seconds-from-dateTime(), [2.0] timezone-
from-dateTime(), and [2.0] year-from-dateTime() functions.

[2.0] minutes-from-duration()
Given an xs:duration value, returns the number of minutes in that duration.

Syntax
xs:integer? minutes-from-duration(xs:duration?)

Inputs
An xs:duration value.

[2.0] minutes-from-duration( ) | 729

Output
An xs:integer representing the minutes component of the given xs:duration. Be aware that
for an xs:yearMonthDuration, this function always returns 0 because there is no minutes com-
ponent of an xs:yearMonthDuration. Also, if the argument is the empty sequence, this function
returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the minutes-from-duration() function with all three types of
durations:

<?xml version="1.0"?>
<!-- minutes-from-duration.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the minutes component from durations:</xsl:text>

 <xsl:variable name="sampleDuration" as="xs:duration"
 select="xs:duration('P3Y8M2DT4H23M12.2S')"/>
 <xsl:variable name="sampleYearMonthDuration" as="xs:yearMonthDuration"
 select="xs:yearMonthDuration('P3Y8M')"/>
 <xsl:variable name="sampleDayTimeDuration" as="xs:dayTimeDuration"
 select="xs:dayTimeDuration('P2DT4H23M12.2S')"/>

 <xsl:text>

 A sample xs:duration: </xsl:text>
 <xsl:value-of select="$sampleDuration"/>
 <xsl:text>
 The minutes component of this duration is </xsl:text>
 <xsl:value-of select="minutes-from-duration($sampleDuration)"/>
 <xsl:text>.</xsl:text>

 <xsl:text>

 A sample xs:yearMonthDuration: </xsl:text>
 <xsl:value-of select="$sampleYearMonthDuration"/>
 <xsl:text>
 The minutes component of this duration is </xsl:text>
 <xsl:value-of select="minutes-from-duration($sampleYearMonthDuration)"/>
 <xsl:text>.</xsl:text>

 <xsl:text>

 A sample xs:dayTimeDuration: </xsl:text>
 <xsl:value-of select="$sampleDayTimeDuration"/>
 <xsl:text>
 The minutes component of this duration is </xsl:text>
 <xsl:value-of select="minutes-from-duration($sampleDayTimeDuration)"/>
 <xsl:text>.</xsl:text>
 </xsl:template>

</xsl:stylesheet>

730 | Appendix C: XSLT, XPath, and XQuery Function Reference

This stylesheet generates these results:

Extracting the minutes component from durations:

 A sample xs:duration: P3Y8M2DT4H23M12.2S
 The minutes component of this duration is 23.

 A sample xs:yearMonthDuration: P3Y8M
 The minutes component of this duration is 0.

 A sample xs:dayTimeDuration: P2DT4H23M12.2S
 The minutes component of this duration is 23.

Extracting the minutes component from an xs:yearMonthDuration returns 0, as you’d expect.

See Also
The definitions of the [2.0] days-from-duration(), [2.0] hours-from-duration(), [2.0] months-
from-duration(), [2.0] seconds-from-duration(), and [2.0] years-from-duration()
functions.

[2.0] minutes-from-time()
Given an xs:time value, returns its minutes component.

Syntax
xs:integer? minutes-from-time(xs:time?)

Input
An xs:time value.

Output
An xs:integer representing the minutes component of the given xs:time value. If the argu-
ment is the empty sequence, this function returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
Here’s a stylesheet that uses minutes-from-time():

<?xml version="1.0"?>
<!-- minutes-from-time.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

[2.0] minutes-from-time( ) | 731

 <xsl:template match="/">
 <xsl:text>
Extracting the minutes component from an xs:time:</xsl:text>
 <xsl:variable name="currentTime" as="xs:time" select="current-time()"/>
 <xsl:text>

 The current time is: </xsl:text>
 <xsl:value-of select="$currentTime"/>

 <xsl:text>

 The current minute is: </xsl:text>
 <xsl:value-of select="minutes-from-time($currentTime)"/>
 <xsl:text>, the </xsl:text>
 <xsl:value-of select="format-time($currentTime, '[mwo]')"/>
 <xsl:text> minute of the hour.</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The stylesheet creates these results:

Extracting the minutes component from an xs:time:

 The current time is: 04:39:49.875-05:00

 The current minute is: 39, the thirty-ninth minute of the hour.

Notice that the first result was generated by the minutes-from-time() function, while the
second result was generated by using format-time() with a format string that selected the
minutes component from the xs:time value.

See Also
The definitions of the [2.0] format-time(), [2.0] hours-from-time(), [2.0] seconds-from-
time(), and [2.0] timezone-from-time().

[2.0] month-from-date()
Given an xs:date value, returns its month value.

Syntax
xs:integer? month-from-date(xs:date?)

Input
An xs:date value.

Output
An xs:integer representing the month component of the given xs:date value. If the argument
is the empty sequence, this function returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

732 | Appendix C: XSLT, XPath, and XQuery Function Reference

Example
This stylesheet demonstrates the month-from-date() function:

<?xml version="1.0"?>
<!-- month-from-date.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the month from an xs:date:</xsl:text>
 <xsl:variable name="currentDate" as="xs:date" select="current-date()"/>
 <xsl:text>

The current date is: </xsl:text>
 <xsl:value-of select="$currentDate"/>

 <xsl:text>

 The current month: </xsl:text>
 <xsl:value-of select="month-from-date($currentDate)"/>
 <xsl:text>
 In English: </xsl:text>
 <xsl:value-of select="format-date($currentDate, '[MNn]')"/>
 <xsl:text>
 In German: </xsl:text>
 <xsl:value-of select="format-date($currentDate, '[MNn]', 'de', (), ())"/>
 <xsl:text>
 It's the </xsl:text>
 <xsl:value-of select="format-date($currentDate, '[M1o]')"/>
 <xsl:text> month of the year.</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The stylesheet creates these results:

Extracting the month from an xs:dateTime:

The current date and time is: 2006-07-05T12:38:00.877-05:00

 The current month: 7
 In English: July
 In German: Juli
 It's the 7th month of the year.

Notice that the first result was generated by the month-from-date() function, while the other
results were generated by using format-date() with a format string that selected only the
month component of the xs:date value.

See Also
The definitions of the [2.0] day-from-date(), [2.0] format-date(), [2.0] timezone-from-
date(), and [2.0] year-from-date() functions.

[2.0] month-from-date( ) | 733

[2.0] month-from-dateTime()
Given an xs:dateTime value, returns its month value.

Syntax
xs:integer? month-from-dateTime(xs:dateTime?)

Inputs
An xs:dateTime value.

Output
An xs:integer representing the month component of the given xs:dateTime value. If the ar-
gument is the empty sequence, this function returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the month-from-dateTime() function:

<?xml version="1.0"?>
<!-- month-from-datetime.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the month from an xs:dateTime:</xsl:text>
 <xsl:variable name="currentDateTime" as="xs:dateTime"
 select="current-dateTime()"/>
 <xsl:text>

The current date and time is: </xsl:text>
 <xsl:value-of select="$currentDateTime"/>

 <xsl:text>

 The current month: </xsl:text>
 <xsl:value-of select="month-from-dateTime($currentDateTime)"/>
 <xsl:text>
 In English: </xsl:text>
 <xsl:value-of select="format-dateTime($currentDateTime, '[MNn]')"/>
 <xsl:text>
 In German: </xsl:text>
 <xsl:value-of select="format-dateTime($currentDateTime, '[MNn]', 'de', (), ())"/>
 <xsl:text>
 It's the </xsl:text>
 <xsl:value-of select="format-dateTime($currentDateTime, '[M1o]')"/>
 <xsl:text> month of the year.</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The stylesheet creates these results:

734 | Appendix C: XSLT, XPath, and XQuery Function Reference

Extracting the month from an xs:dateTime:

The current date and time is: 2006-11-16T04:42:47.481-05:00

 The current month: 11
 In English: November
 In German: November
 It's the 11th month of the year.

Notice that some of the results were generated by the month-from-dateTime() function, while
other results were generated by using format-dateTime() with a format string that selected
only the month component of the xs:dateTime value.

See Also
The definitions of the [2.0] day-from-dateTime(), [2.0] format-dateTime(), [2.0] hours-from-
dateTime(), [2.0] minutes-from-dateTime(), [2.0] seconds-from-dateTime(), [2.0] timezone-
from-dateTime(), and [2.0] year-from-dateTime() functions.

[2.0] months-from-duration()
Given an xs:duration value, returns the number of months in that duration.

Syntax
xs:integer? months-from-duration(xs:duration?)

Inputs
An xs:duration value.

Output
An xs:integer representing the months component of the given xs:duration. Be aware that
for an xs:dayTimeDuration, this function always returns 0 because there is no months com-
ponent of an xs:dayTimeDuration. Also, if the argument is the empty sequence, this function
returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the months-from-duration() function with all three types of
durations:

<?xml version="1.0"?>
<!-- months-from-duration.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

[2.0] months-from-duration( ) | 735

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the months component from durations:</xsl:text>

 <xsl:variable name="sampleDuration" as="xs:duration"
 select="xs:duration('P3Y8M2DT4H23M12.2S')"/>
 <xsl:variable name="sampleYearMonthDuration" as="xs:yearMonthDuration"
 select="xs:yearMonthDuration('P3Y8M')"/>
 <xsl:variable name="sampleDayTimeDuration" as="xs:dayTimeDuration"
 select="xs:dayTimeDuration('P2DT4H23M12.2S')"/>

 <xsl:text>

 A sample xs:duration: </xsl:text>
 <xsl:value-of select="$sampleDuration"/>
 <xsl:text>
 The months component of this duration is </xsl:text>
 <xsl:value-of select="months-from-duration($sampleDuration)"/>
 <xsl:text>.</xsl:text>

 <xsl:text>

 A sample xs:yearMonthDuration: </xsl:text>
 <xsl:value-of select="$sampleYearMonthDuration"/>
 <xsl:text>
 The months component of this duration is </xsl:text>
 <xsl:value-of select="months-from-duration($sampleYearMonthDuration)"/>
 <xsl:text>.</xsl:text>

 <xsl:text>

 A sample xs:dayTimeDuration: </xsl:text>
 <xsl:value-of select="$sampleDayTimeDuration"/>
 <xsl:text>
 The months component of this duration is </xsl:text>
 <xsl:value-of select="months-from-duration($sampleDayTimeDuration)"/>
 <xsl:text>.</xsl:text>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates these results:

Extracting the months component from durations:

 A sample xs:duration: P3Y8M2DT4H23M12.2S
 The months component of this duration is 8.

 A sample xs:yearMonthDuration: P3Y8M
 The months component of this duration is 8.

 A sample xs:dayTimeDuration: P2DT4H23M12.2S
 The months component of this duration is 0.

As you can see from the results, extracting the months component from an
xs:dayTimeDuration returns 0.

See Also
The definitions of the [2.0] days-from-duration(), [2.0] hours-from-duration(), [2.0]
minutes-from-duration(), [2.0] seconds-from-duration(), and the [2.0] years-from-
duration() functions.

736 | Appendix C: XSLT, XPath, and XQuery Function Reference

name()
Returns the qualified name of a node. The qualified name includes the appropriate namespace
prefix. For information on the namespace URI (not the prefix), XPath provides the namespace-
uri() function.

Syntax
[1.0] string name(node-set?)
[2.0] xs:string name(node()?)

Inputs
[1.0] An optional node-set. If the node-set is present, the XSLT 1.0 processor invokes the
name() function against the first node in the node-set. If no node-set is given, the name()
function applies to the context node.

[2.0] An optional node sequence. In XSLT 2.0, it is an error to call the name() function with a
sequence containing more than one node. If the node sequence is not present, the name() func-
tion applies to the context node.

Output
The qualified name of the node. If the argument to the name() function is empty (say we use
select="item" where there are no <item> elements, for example), name() returns an empty
string.

Defined in
[1.0] XPath section 4.1, “Node Set Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 14, “Functions and Oper-
ators on Nodes.”

Example
Here is the XML document we’ll use to demonstrate the name() function:

<?xml version="1.0"?>
<!-- sonnet.xml -->
<sonnet type='Shakespearean'>
 <auth:author xmlns:auth="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </auth:author>
 <!-- Is there an official title for this sonnet? They're
 sometimes named after the first line. -->
 <title>Sonnet 130</title>
 <lines>
 <line>My mistress' eyes are nothing like the sun,</line>
 <line>Coral is far more red than her lips red.</line>
 <line>If snow be white, why then her breasts are dun,</line>

name( ) | 737

 <line>If hairs be wires, black wires grow on her head.</line>
 <line>I have seen roses damasked, red and white,</line>
 <line>But no such roses see I in her cheeks.</line>
 <line>And in some perfumes is there more delight</line>
 <line>Than in the breath that from my mistress reeks.</line>
 <line>I love to hear her speak, yet well I know</line>
 <line>That music hath a far more pleasing sound.</line>
 <line>I grant I never saw a goddess go,</line>
 <line>My mistress when she walks, treads on the ground.</line>
 <line>And yet, by Heaven, I think my love as rare</line>
 <line>As any she belied with false compare.</line>
 </lines>
</sonnet>

We’ll use this stylesheet to output the value of the name() function for each node in the XML
document:

<?xml version="1.0"?>
<!-- name.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the name() function:
</xsl:text>

 <xsl:for-each select="//*">
 <xsl:text>
 Element </xsl:text>
 <xsl:number level="any" count="*"/>
 <xsl:text>: </xsl:text>
 <xsl:value-of select="name()"/>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

When we transform the XML document with this stylesheet, here are the results:

A test of the name() function:

 Element 1: sonnet
 Element 2: auth:author
 Element 3: last-name
 Element 4: first-name
 Element 5: nationality
 Element 6: year-of-birth
 Element 7: year-of-death
 Element 8: title
 Element 9: lines
 Element 10: line
 Element 11: line
 Element 12: line
 Element 13: line
 Element 14: line
 Element 15: line
 Element 16: line

738 | Appendix C: XSLT, XPath, and XQuery Function Reference

 Element 17: line
 Element 18: line
 Element 19: line
 Element 20: line
 Element 21: line
 Element 22: line
 Element 23: line

Here’s a slightly more advanced version in which we use the XSLT 2.0 <xsl:sequence> element
to select a sequence of nodes from the document. We store that sequence in a variable, and
then iterate through the values of the variable and print the names of the elements:

<?xml version="1.0"?>
<!-- name2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.oreilly.com/xslt"
 xmlns:auth="http://www.authors.com/">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the name() function:
</xsl:text>

 <xsl:variable name="authorDetails" as="element()*"
 select="/sonnet/auth:author/*"/>
 <xsl:for-each select="$authorDetails">
 <xsl:text>
 Element </xsl:text>
 <xsl:value-of select="position()"/>
 <xsl:text>: </xsl:text>
 <xsl:value-of select="name()"/>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

(Notice that the sequence is stored in a variable with type element()*, and that we had to
define the auth namespace in the stylesheet.) The results contain the names of all the elements
that appear below the <auth:author> element in the source document:

Tests of the name() function:

 Element 1: last-name
 Element 2: first-name
 Element 3: nationality
 Element 4: year-of-birth
 Element 5: year-of-death

As we mentioned earlier, it is an error in XSLT 2.0 to pass more than one node to the
name() function. (In XSLT 1.0, the processor simply used the first node in the node-set and
ignored everything else.) It is possible to pass a variable with type element()* to the name()
function, but that sequence cannot contain more than one member. For example, the fol-
lowing is legal in XSLT 2.0:

name( ) | 739

 <xsl:variable name="salesFigures" as="element()*"
 select="/report/brand[1]/*[2]"/>
 <xsl:value-of select="name($salesFigures)"/>

This is legal because the XPath expression in the <xsl:variable> element selects only a single
node. This code, however, causes the XSLT 2.0 processor to raise an error:

 <xsl:variable name="salesFigures" as="element()*"
 select="/report/brand[1]/*"/>
 <xsl:value-of select="name($salesFigures)"/>

This is an error because the XPath expression selects more than one node from our sample
document. If we change the XML source document so that there is only one node under the
first <brand> element, the stylesheet would work.

namespace-uri()
Returns the namespace URI of the argument node.

Syntax
[1.0] string namespace-uri(node-set?)
[2.0] xs:anyURI namespace-uri()
[2.0] xs:anyURI namespace-uri(node()?)

Inputs
[1.0] A node-set. If the node-set is omitted, the namespace-uri() function creates a node-set
that has the context node as its only member.

[2.0] A node. If the node is omitted, the namespace-uri() function is evaluated against the
context item. If the input is a sequence with more than one node, the XSLT processor raises
an error.

Output
[1.0] The namespace URI of the first node in the argument node-set. If the argument node-
set is empty, the first node has no namespace URI, or the first node has a namespace URI that
is null, an empty string is returned.

[2.0] The namespace URI of the argument node. If the argument is the empty sequence, the
argument has no namespace URI or the node has a namespace URI that is null, an empty
string is returned.

Be aware that the namespace-uri() function returns an empty string for all nodes other than
element and attribute nodes.

Defined in
[1.0] XPath section 4.1, “Node Set Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 14, “Functions and Oper-
ators on Nodes.”

740 | Appendix C: XSLT, XPath, and XQuery Function Reference

Example
We’ll use a slightly modified version of our Shakespearean sonnet to illustrate the namespace-
uri() function:

<?xml version="1.0"?>
<!-- sonnet-namespace.xml -->
<sonnet type='Shakespearean'
 xmlns="http://www.oreilly.com/xslt">
 <author xmlns="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </author>
 <!-- Is there an official title for this sonnet? They're
 sometimes named after the first line. -->
 <title>Sonnet 130</title>
 <lines>
 <line>My mistress' eyes are nothing like the sun,</line>
 <line>Coral is far more red than her lips red.</line>
 <line>If snow be white, why then her breasts are dun,</line>
 <line>If hairs be wires, black wires grow on her head.</line>
 <line>I have seen roses damasked, red and white,</line>
 <line>But no such roses see I in her cheeks.</line>
 <line>And in some perfumes is there more delight</line>
 <line>Than in the breath that from my mistress reeks.</line>
 <line>I love to hear her speak, yet well I know</line>
 <line>That music hath a far more pleasing sound.</line>
 <line>I grant I never saw a goddess go,</line>
 <line>My mistress when she walks, treads on the ground.</line>
 <line>And yet, by Heaven, I think my love as rare</line>
 <line>As any she belied with false compare.</line>
 </lines>
</sonnet>

The sonnet has been modified so that it has a default namespace (http://www.oreilly.com/).
Our sample stylesheet goes through any XML document and invokes namespace-uri() against
every element and attribute node in the document. Here’s the stylesheet:

<?xml version="1.0"?>
<!-- namespace-uri.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the namespace-uri() function:

</xsl:text>

 <xsl:for-each select="//*">
 <xsl:text> Namespace URI for <</xsl:text>
 <xsl:value-of select="node-name(.)"/>
 <xsl:text>>: </xsl:text>
 <xsl:value-of select="namespace-uri()"/>

namespace-uri( ) | 741

 <xsl:text>
</xsl:text>
 <xsl:for-each select="@*">
 <xsl:text> Namespace URI for attribute "</xsl:text>
 <xsl:value-of select="node-name(.)"/>
 <xsl:text>": </xsl:text>
 <xsl:value-of select="namespace-uri()"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Here are the results of our stylesheet:

A test of the namespace-uri() function:

 Namespace URI for <sonnet>: http://www.oreilly.com/xslt
 Namespace URI for attribute "type":
 Namespace URI for <author>: http://www.authors.com/
 Namespace URI for <last-name>: http://www.authors.com/
 Namespace URI for <first-name>: http://www.authors.com/
 Namespace URI for <nationality>: http://www.authors.com/
 Namespace URI for <year-of-birth>: http://www.authors.com/
 Namespace URI for <year-of-death>: http://www.authors.com/
 Namespace URI for <title>: http://www.oreilly.com/xslt
 Namespace URI for <lines>: http://www.oreilly.com/xslt
 Namespace URI for <line>: http://www.oreilly.com/xslt
 Namespace URI for <line>: http://www.oreilly.com/xslt
 Namespace URI for <line>: http://www.oreilly.com/xslt
 Namespace URI for <line>: http://www.oreilly.com/xslt
 Namespace URI for <line>: http://www.oreilly.com/xslt
 Namespace URI for <line>: http://www.oreilly.com/xslt
 Namespace URI for <line>: http://www.oreilly.com/xslt
 Namespace URI for <line>: http://www.oreilly.com/xslt
 Namespace URI for <line>: http://www.oreilly.com/xslt
 Namespace URI for <line>: http://www.oreilly.com/xslt
 Namespace URI for <line>: http://www.oreilly.com/xslt
 Namespace URI for <line>: http://www.oreilly.com/xslt
 Namespace URI for <line>: http://www.oreilly.com/xslt
 Namespace URI for <line>: http://www.oreilly.com/xslt

In our modified sonnet, the <author> element declares a new default namespace, so all of the
elements inside it return the default namespace. Outside the <author> element, the original
default namespace comes back into scope.

[2.0] namespace-uri-for-prefix()
Given a namespace prefix and an element, returns the URI associated with that prefix.

Syntax
xs:anyURI? namespace-uri-for-prefix($prefix as xs:string?,
 $element as element())

742 | Appendix C: XSLT, XPath, and XQuery Function Reference

Inputs
A namespace prefix and an element. If the prefix is an empty string, the URI for the default
namespace is returned, assuming a default namespace is in scope.

Output
The URI associated with the namespace prefix for the given element.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 11.2, “Operators and Functions
Related to QNames.”

Example
For an example, we’ll reuse our Shakespearean sonnet:

<?xml version="1.0"?>
<!-- sonnet.xml -->
<sonnet type='Shakespearean'>
 <auth:author xmlns:auth="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </auth:author>
 <!-- Is there an official title for this sonnet? They're
 sometimes named after the first line. -->
 <title>Sonnet 130</title>
 <lines>
 <line>My mistress' eyes are nothing like the sun,</line>
 <line>Coral is far more red than her lips red.</line>
 <line>If snow be white, why then her breasts are dun,</line>
 <line>If hairs be wires, black wires grow on her head.</line>
 <line>I have seen roses damasked, red and white,</line>
 <line>But no such roses see I in her cheeks.</line>
 <line>And in some perfumes is there more delight</line>
 <line>Than in the breath that from my mistress reeks.</line>
 <line>I love to hear her speak, yet well I know</line>
 <line>That music hath a far more pleasing sound.</line>
 <line>I grant I never saw a goddess go,</line>
 <line>My mistress when she walks, treads on the ground.</line>
 <line>And yet, by Heaven, I think my love as rare</line>
 <line>As any she belied with false compare.</line>
 </lines>
</sonnet>

And here’s our stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<!-- namespace-uri-for-prefix.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

[2.0] namespace-uri-for-prefix( ) | 743

 <xsl:template match="/">
 <xsl:text>
Tests of the namespace-uri-for-prefix() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 namespace-uri-for-prefix</xsl:text>
 <xsl:text>('auth', //last-name) = "</xsl:text>
 <xsl:value-of
 select="namespace-uri-for-prefix('auth', //last-name)"/>
 <xsl:text>"</xsl:text>

 <xsl:text>
 namespace-uri-for-prefix</xsl:text>
 <xsl:text>('auth', //*:author) = "</xsl:text>
 <xsl:value-of
 select="namespace-uri-for-prefix('auth', //*:author)"/>
 <xsl:text>"</xsl:text>

 <xsl:text>
 namespace-uri-for-prefix</xsl:text>
 <xsl:text>('auth', /sonnet) = "</xsl:text>
 <xsl:value-of
 select="namespace-uri-for-prefix('auth', /sonnet)"/>
 <xsl:text>"</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Tests of the namespace-uri-for-prefix() function:

 namespace-uri-for-prefix('auth', //last-name) = "http://www.authors.com/"
 namespace-uri-for-prefix('auth', //*:author) = "http://www.authors.com/"
 namespace-uri-for-prefix('auth', /sonnet) = ""

In our stylesheet, we’re looking for the URI for the prefix auth. In the first test of namespace-
uri-for-prefix(), the auth prefix is in scope for the <auth:author> element and everything
inside it, so XSLT returns the URL associated with it. For the second test, we choose to use
a wildcard in the XPath expression. (The function call
namespace-uri-for-prefix('auth', //auth:author) requires us to define the auth namespace
in our stylesheet.) Finally, the last example returns an empty string because the auth prefix is
not in scope for the <sonnet> element.

This stylesheet was written with knowledge of the XML document. A more complicated ex-
ample would use a function such as in-scope-prefixes() to retrieve a sequence of prefixes,
and then use namespace-uri-for-prefix() to retrieve the URI associated with each prefix.

There are other complications: It is a fatal error to pass the empty sequence or a sequence of
more than one item as the second argument. That’s not a problem here because we wrote our
stylesheet knowing there were <last-name>, <auth:author>, and <sonnet> elements in the
document, and that each of them occurred once.

As always, feel free to implement a more robust stylesheet for your own amusement.

744 | Appendix C: XSLT, XPath, and XQuery Function Reference

[2.0] namespace-uri-from-QName()
Given an xs:QName value, returns the namespace URI associated with that QName.

Syntax
xs:anyURI? namespace-uri-from-QName(xs:QName?)

Input
An xs:QName value.

Output
The namespace URI associated with this QName. If the argument is the empty sequence, the
empty sequence is returned. If the QName is not in a namespace, a zero-length string is returned.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 11.2, “Operators and Functions
Related to QNames.”

Example
We’ll reuse our Shakespearean sonnet as our XML input document here:

<?xml version="1.0"?>
<!-- sonnet.xml -->
<sonnet type='Shakespearean'>
 <auth:author xmlns:auth="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </auth:author>
 <!-- Is there an official title for this sonnet? They're
 sometimes named after the first line. -->
 <title>Sonnet 130</title>
 <lines>
 <line>My mistress' eyes are nothing like the sun,</line>
 <line>Coral is far more red than her lips red.</line>
 <line>If snow be white, why then her breasts are dun,</line>
 <line>If hairs be wires, black wires grow on her head.</line>
 <line>I have seen roses damasked, red and white,</line>
 <line>But no such roses see I in her cheeks.</line>
 <line>And in some perfumes is there more delight</line>
 <line>Than in the breath that from my mistress reeks.</line>
 <line>I love to hear her speak, yet well I know</line>
 <line>That music hath a far more pleasing sound.</line>
 <line>I grant I never saw a goddess go,</line>
 <line>My mistress when she walks, treads on the ground.</line>
 <line>And yet, by Heaven, I think my love as rare</line>
 <line>As any she belied with false compare.</line>
 </lines>
</sonnet>

[2.0] namespace-uri-from-QName( ) | 745

Here is our stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<!-- namespace-uri-from-QName.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the namespace-uri-from-QName() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:variable name="testQName1" as="xs:QName"
 select="resolve-QName('auth:last-name',
 /sonnet/*:author/last-name)"/>
 <xsl:text>
 testQName1 = resolve-QName('auth:last-name', </xsl:text>
 <xsl:text>/sonnet/*:author/last-name)</xsl:text>
 <xsl:text>
 namespace-uri-from-QName($testQName1) = "</xsl:text>
 <xsl:value-of select="namespace-uri-from-QName($testQName1)"/>
 <xsl:text>"</xsl:text>

 <xsl:variable name="testQName2" as="xs:QName"
 select="resolve-QName('something-else', /sonnet)"/>
 <xsl:text>

 testQName2 = resolve-QName('</xsl:text>
 <xsl:text>something-else', /sonnet)</xsl:text>
 <xsl:text>
 namespace-uri-from-QName($testQName2) = "</xsl:text>
 <xsl:value-of select="namespace-uri-from-QName($testQName2)"/>
 <xsl:text>"</xsl:text>

 <xsl:variable name="testQName3" as="xs:QName"
 select="QName('http://www.authors.com/', 'pfx:writer')"/>
 <xsl:text>

 testQName3 = QName('http://www.</xsl:text>
 <xsl:text>authors.com/', 'pfx:writer')
</xsl:text>
 <xsl:text> namespace-uri-from-QName($testQName3) = "</xsl:text>
 <xsl:value-of select="namespace-uri-from-QName($testQName3)"/>
 <xsl:text>"</xsl:text>

 </xsl:template>

</xsl:stylesheet>

Here are our results:

Tests of the namespace-uri-from-QName() function:

 testQName1 = resolve-QName('auth:last-name', /sonnet/*:author/last-name)
 namespace-uri-from-QName($testQName1) = "http://www.authors.com/"

 testQName2 = resolve-QName('something-else', /sonnet)
 namespace-uri-from-QName($testQName2) = ""

 testQName3 = QName('http://www.authors.com/', 'pfx:writer')
 namespace-uri-from-QName($testQName3) = "http://www.authors.com/"

746 | Appendix C: XSLT, XPath, and XQuery Function Reference

The argument to the namespace-uri-from-QName() function must be an xs:QName. In this style-
sheet, we create QNames with the resolve-QName() function and the QName() constructor
function.

For the first test, we create a QName with a qualified element name of auth:last-name. The
element (the second argument to resolve-QName()) is the <last-name> element in our sonnet.
The resolve-QName() function returns a QName with a local name of last-name, a namespace
prefix of auth, and a namespace URI of http://www.authors.com/. If there are no nodes that
match the XPath expression /sonnet/*:author/last-name, the call to resolve-QName() fails.
The call also fails if the auth prefix is not declared for the <last-name> element.

The second test of namespace-uri-from-QName() uses an unprefixed element name in the call
to resolve-QName(). The XML document doesn’t have a default namespace, so our QName has
an empty string for its namespace prefix and namespace URI.

For the final test, we use the QName() function to create a QName from scratch. The two argu-
ments to the function are the namespace URI and an element name—in this case, a prefixed
element name. The resulting QName has a local name of writer, a namespace prefix of pfx, and
a namespace URI of http://www.authors.com/.

We’ll look at a couple more examples, but this time we’ll use a version of the sonnet that
does have a default namespace:

<?xml version="1.0"?>
<!-- sonnet-default-namespace.xml -->
<sonnet type='Shakespearean'
 xmlns="http://www.oreilly.com/xslt">
 <auth:author xmlns:auth="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
...
</sonnet>

The default namespace in the new version of our sonnet is http://www.oreilly.com/xslt. Now
we need to modify our stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<!-- namespace-uri-from-QName2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the namespace-uri-from-QName() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:variable name="testQName1" as="xs:QName"
 select="resolve-QName('auth:last-name',
 /*:sonnet/*:author/*:last-name)"/>
 <xsl:text>
 testQName1 = resolve-QName('auth:last-name', </xsl:text>
 <xsl:text>/*:sonnet/*:author/*:last-name)</xsl:text>

[2.0] namespace-uri-from-QName( ) | 747

 <xsl:text>
 namespace-uri-from-QName($testQName1) = "</xsl:text>
 <xsl:value-of select="namespace-uri-from-QName($testQName1)"/>
 <xsl:text>"</xsl:text>

 <xsl:variable name="testQName2" as="xs:QName"
 select="resolve-QName('something-else', /*:sonnet)"/>
 <xsl:text>

 testQName2 = resolve-QName('</xsl:text>
 <xsl:text>something-else', /*:sonnet)</xsl:text>
 <xsl:text>
 namespace-uri-from-QName($testQName2) = "</xsl:text>
 <xsl:value-of select="namespace-uri-from-QName($testQName2)"/>
 <xsl:text>"</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Now we get slightly different results:

Tests of the namespace-uri-from-QName() function:

 testQName1 = resolve-QName('auth:last-name', /*:sonnet/*:author/*:last-name)
 namespace-uri-from-QName($testQName1) = "http://www.authors.com/"

 testQName2 = resolve-QName('something-else', /*:sonnet)
 namespace-uri-from-QName($testQName2) = "http://www.oreilly.com/xslt"

The difference in these results is that we get a namespace URI for the QName we created without
a prefix. Our modified sonnet has a default namespace, so we get the value of that namespace.

The change in our stylesheet is that we had to use asterisks to refer to items in the http://
www.oreilly.com/xslt namespace. In other words, we had to replace /sonnet/*:auth/last-
name with /*:sonnet/*:auth/*:last-name. One way of referring to the default namespace from
the XML document would be to declare it with a namespace prefix in our stylesheet.

Another approach is that we could give the sonnet’s default namespace a prefix in our
stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<!-- namespace-uri-from-QName3.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ora="http://www.oreilly.com/xslt">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the namespace-uri-from-QName() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:variable name="testQName1" as="xs:QName"
 select="resolve-QName('auth:last-name',
 /ora:sonnet/*:author/ora:last-name)"/>
 ...
 </xsl:template>

</xsl:stylesheet>

748 | Appendix C: XSLT, XPath, and XQuery Function Reference

This gives us results similar to those in our second stylesheet:

Tests of the namespace-uri-from-QName() function:

 testQName1 = resolve-QName('auth:last-name',
 /ora:sonnet/*:author/ora:last-name)
 namespace-uri-from-QName($testQName1) = "http://www.authors.com/"

 testQName2 = resolve-QName('something-else', /ora:sonnet)
 namespace-uri-from-QName($testQName2) = "http://www.oreilly.com/xslt"

We associated the ora namespace prefix with the default namespace in the XML source docu-
ment. Whenever we use the ora prefix in our stylesheet, it refers to the http://
www.oreilly.com/xslt namespace. That’s the default namespace of the XML document we’re
processing, so we can use a specific namespace instead of a wildcard.

[2.0 – Schema] nilled()
Returns true if a given element has been nilled, false otherwise. If the argument is not an
element, nilled() returns the empty sequence.

Syntax
xs:boolean? nilled(node()?)

Inputs
A node.

Outputs
If the given node has been nilled (meaning it has the attribute xsi:nil="true"), this function
returns true; otherwise it returns false. Calling nilled() with the empty sequence returns
the empty sequence.

The nilled() function works only with schema-aware processors, and
only if the document is using a schema. The schema can be imported
into the stylesheet with <xsl:import-schema>, or the XML document can
use the xsi:schemaLocation or xsi:noNamespaceSchemaLocation attrib-
utes. If no schema is associated with the XML document, all of the nodes
in the document will have datatypes, and the nilled() function will
always return false.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 2, “Accessors.”

Example
Here is a very short XML document that we’ll use to demonstrate the nilled() function:

[2.0 – Schema] nilled( ) | 749

<?xml version="1.0" encoding="utf-8"?>
 <!-- person.xml -->
 <person
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt person.xsd">

 <name>Doug Tidwell</name>
 <age>42</age>
 <birthday xsi:nil="true"/>
 </person>

Notice that we’ve defined a schema, person.xsd. That schema says that the <birthday> element
can be nilled:

<?xml version="1.0" encoding="UTF-8"?>
<!-- person.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="age"/>
 <xs:element ref="birthday"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="name" type="xs:string"/>
 <xs:element name="age" type="xs:positiveInteger"/>
 <xs:element name="birthday" type="xs:date" nillable="true"/>

</xs:schema>

The XML document has specified that the <birthday> element is nil, and the schema specified
that the element is nillable. We’ll use this stylesheet to illustrate the nilled() function at work:

<?xml version="1.0"?>
<!-- nilled.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:po="http://www.oreilly.com/xslt">

 <xsl:output method="text"/>
 <xsl:import-schema namespace="http://www.oreilly.com/xslt"
 schema-location="person.xsd"/>

 <xsl:template match="/">
 <xsl:text>
A test of the nilled() function:
</xsl:text>

 <xsl:for-each select="//*">
 <xsl:text>
 Element <</xsl:text>

750 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:value-of select="name()"/>
 <xsl:text>> </xsl:text>
 <xsl:value-of select="if (nilled(.))
 then '===>>> IS nilled!'
 else 'is not nilled!'"/>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

A test of the nilled() function:

 Element <person> is not nilled!
 Element <name> is not nilled!
 Element <age> is not nilled!
 Element <birthday> ===>>> IS nilled!

[2.0] node-name()
Returns an expanded QName for nodes that can have names.

Syntax
xs:QName? node-name(node()?)

Input
A node.

Outputs
For nodes that are allowed to have names, returns the node name. For other kinds of nodes
(comment nodes, for example), node-name() returns the empty sequence. If the argument to
node-name() is the empty sequence, the function returns the empty sequence, as you’d expect.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 2, “Accessors.”

Example
We’ll use this stylesheet to illustrate how the node-name() function works with different kinds
of nodes:

<?xml version="1.0"?>
<!-- node-name.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">

[2.0] node-name( ) | 751

 <xsl:text>
Here's a test of the node-name() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:apply-templates
 select="*|comment()|processing-instruction()|text()"/>
 </xsl:template>

 <xsl:template match="*">
 <xsl:text>
</xsl:text>
 <xsl:text> Element node: node-name(.) = '</xsl:text>
 <xsl:value-of select="node-name(.)"/>
 <xsl:if test="prefix-from-QName(node-name(.))">
 <xsl:text>'
 Prefix: '</xsl:text>
 <xsl:value-of select="prefix-from-QName(node-name(.))"/>
 </xsl:if>
 <xsl:text>'
 Local name: '</xsl:text>
 <xsl:value-of select="local-name-from-QName(node-name(.))"/>
 <xsl:if test="namespace-uri-from-QName(node-name(.))">
 <xsl:text>'
 Namespace URI: '</xsl:text>
 <xsl:value-of select="namespace-uri-from-QName(node-name(.))"/>
 </xsl:if>
 <xsl:text>'
</xsl:text>

 <xsl:if test="count(@*)">
 <xsl:for-each select="@*">
 <xsl:text> Attribute node: node-name(.) = '</xsl:text>
 <xsl:value-of select="node-name(.)"/>
 <xsl:text>'
</xsl:text>
 </xsl:for-each>
 </xsl:if>

 <xsl:for-each select="namespace::*">
 <xsl:call-template name="namespace-node"/>
 </xsl:for-each>

 <xsl:for-each
 select="*|comment()|processing-instruction()|text()">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </xsl:template>

 <xsl:template match="comment()">
 <xsl:text>
</xsl:text>
 <xsl:text> Comment node: node-name(.) = '</xsl:text>
 <xsl:value-of select="node-name(.)"/>
 <xsl:text>'
</xsl:text>
 </xsl:template>

 <xsl:template match="processing-instruction()">
 <xsl:text>
</xsl:text>
 <xsl:text> Processing instruction node: </xsl:text>
 <xsl:text>node-name(.) = '</xsl:text>
 <xsl:value-of select="node-name(.)"/>
 <xsl:text>'
</xsl:text>
 </xsl:template>

752 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:template match="text()">
 <xsl:if test="string-length(normalize-space(.))">
 <xsl:text> Text node: node-name(.) = '</xsl:text>
 <xsl:value-of select="node-name(.)"/>
 <xsl:text>'
</xsl:text>
 </xsl:if>
 </xsl:template>

 <xsl:template name="namespace-node">
 <xsl:if test="string(node-name(.)) != 'xml'">
 <xsl:text> Namespace node: node-name(.) = '</xsl:text>
 <xsl:value-of select="node-name(.)"/>
 <xsl:text>'
</xsl:text>
 </xsl:if>
 </xsl:template>

</xsl:stylesheet>

We’ll test this stylesheet with a slightly modified version of our Shakespearean sonnet (we
added a processing instruction at the top):

<?xml version="1.0"?>
<!-- sonnet-pi.xml -->
<?xml-stylesheet href="node-name.xsl" type="text/xsl"?>
<!-- This is a slightly modified version of our usual sonnet. -->
<sonnet type='Shakespearean'>
 <auth:author xmlns:auth="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </auth:author>
 <!-- Is there an official title for this sonnet? They’re
 sometimes named after the first line. -->
 <title>Sonnet 130</title>
 <lines>
 <line>My mistress' eyes are nothing like the sun,</line>
 <line>Coral is far more red than her lips red.</line>
 <line>If snow be white, why then her breasts are dun,</line>
 <line>If hairs be wires, black wires grow on her head.</line>
 <line>I have seen roses damasked, red and white,</line>
 <line>But no such roses see I in her cheeks.</line>
 <line>And in some perfumes is there more delight</line>
 <line>Than in the breath that from my mistress reeks.</line>
 <line>I love to hear her speak, yet well I know</line>
 <line>That music hath a far more pleasing sound.</line>
 <line>I grant I never saw a goddess go,</line>
 <line>My mistress when she walks, treads on the ground.</line>
 <line>And yet, by Heaven, I think my love as rare</line>
 <line>As any she belied with false compare.</line>
 </lines>
</sonnet>

[2.0] node-name( ) | 753

Our example is a generic stylesheet that works with any XML document. For our sonnet, it
generates this output:

Here's a test of the node-name() function:

 Comment node: node-name(.) = ''

 Processing instruction node: node-name(.) = 'xml-stylesheet'

 Comment node: node-name(.) = ''

 Element node: node-name(.) = 'sonnet'
 Local name: 'sonnet'
 Attribute node: node-name(.) = 'type'

 Element node: node-name(.) = 'auth:author'
 Prefix: 'auth'
 Local name: 'author'
 Namespace URI: 'http://www.authors.com/'
 Namespace node: node-name(.) = 'auth'

 Element node: node-name(.) = 'last-name'
 Local name: 'last-name'
 Namespace node: node-name(.) = 'auth'
 Text node: node-name(.) = ''

 Element node: node-name(.) = 'first-name'
 Local name: 'first-name'
 Namespace node: node-name(.) = 'auth'
 Text node: node-name(.) = ''

 ...

 Comment node: node-name(.) = ''

 Element node: node-name(.) = 'title'
 Local name: 'title'
 Text node: node-name(.) = ''

 Element node: node-name(.) = 'lines'
 Local name: 'lines'

 Element node: node-name(.) = 'line'
 Local name: 'line'
 Text node: node-name(.) = ''

 Element node: node-name(.) = 'line'
 Local name: 'line'
 Text node: node-name(.) = ''
 ...

Notice that element, attribute, processing instruction, and namespace nodes have names,
whereas comment and text nodes don’t. Also notice that the document has a processing
instruction and a comment node that are outside the root element; those are available in the
match="/" template.

754 | Appendix C: XSLT, XPath, and XQuery Function Reference

The node-name() function returns an xs:QName. An xs:QName has three parts: the prefix, the
local name, and the namespace URI. All elements have a local name, but as you can see from
our results here, many elements do not have a prefix or namespace URI. XPath 2.0 provides
several functions to work with xs:QNames. In this stylesheet, we use prefix-from-QName(),
local-name-from-QName(), and namespace-uri-from-QName() to get the three parts.

Finally, the <?xml-stylesheet ... processing instruction defines the default stylesheet for
processing this XML document. When you invoke an XSLT processor, it typically requires
the name of an XML file and a stylesheet. The processor normally uses the stylesheet you
specify and ignores the processing instruction. If you want the XSLT processor to use the
default stylesheet, there is usually an option to do so. (With Saxon, the -a option does the
trick.) Check your processor’s documentation for details.

normalize-space()
Removes extra whitespace from its argument string.

Syntax
[1.0] string normalize-space(string?)
[2.0] xs:string normalize-space(xs:string?)

Inputs
An optional string. If the argument is omitted, the normalize-space() function uses the string
value of the context node.

[2.0] If the argument is the empty sequence, normalize-space() returns a zero-length string.

Output
The argument string, with whitespace removed as follows:

• All leading whitespace is removed.

• All trailing whitespace is removed.

• Within the string, any sequence of whitespace characters is replaced with a single
space.

If the string is all whitespace, a zero-length string is returned.

[2.0] In XSLT 2.0, passing the empty sequence to normalize-space() returns the empty
sequence.

Defined in
[1.0] XPath section 4.2, “String Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 7.4, “Functions on String
Values.”

normalize-space( ) | 755

Example
Here is a short example that demonstrates how normalize-space() works:

<?xml version="1.0"?>
<!-- normalize-space1.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:variable name="newline">
 <xsl:text>
</xsl:text>
 </xsl:variable>

 <xsl:variable name="testString">
 <xsl:text> This
is

a string
that had 		 lots of

whitespace.

</xsl:text>
 </xsl:variable>

 <xsl:template match="/">
 <xsl:text>
Tests of the normalize-space() function:</xsl:text>

 <xsl:text>

 normalize-space(' </xsl:text>
 <xsl:text>Hello, World!')="</xsl:text>
 <xsl:value-of
 select="normalize-space(' Hello, World!')"/>
 <xsl:text>"</xsl:text>
 <xsl:text>
 normalize-space($newline)="</xsl:text>
 <xsl:value-of select="normalize-space($newline)"/>
 <xsl:text>"
</xsl:text>
 <xsl:text> normalize-space($testString)=
 "</xsl:text>
 <xsl:value-of select="normalize-space($testString)"/>
 <xsl:text>"</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The stylesheet generates this output:

Tests of the normalize-space() function:

 normalize-space(' Hello, World!')="Hello, World!"
 normalize-space($newline)=""
 normalize-space($testString)=
 "This is a string that had lots of whitespace."

756 | Appendix C: XSLT, XPath, and XQuery Function Reference

In the first and third tests of normalize-space(), the whitespace was removed as advertised,
with the intermingled spaces, tabs () and newlines (
) inside the string replaced with
a single space. In the second test, the variable has a value of
. This is a string containing
only whitespace, so the space-normalized version of the string is a zero-length string.

Here’s another stylesheet that tests the XSLT 2.0 behavior when calling normalize-space()
with the empty sequence as input:

<?xml version="1.0"?>
<!-- normalize-space2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the normalize-space() function:</xsl:text>

 <xsl:text>

 normalize-space(())="</xsl:text>
 <xsl:value-of select="normalize-space(())"/>
 <xsl:text>"</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The results are as exciting as you’d expect:

A test of the normalize-space() function:

 normalize-space(())=""

[2.0] normalize-unicode()
Given a string, this function returns that string with its characters converted to a particular
Unicode normalization form.

Syntax
xs:string normalize-unicode(xs:string?)
xs:string normalize-unicode(xs:string?, $normalizationForm as xs:string)

Inputs
The string to be normalized. You can optionally specify a second string naming a normaliza-
tion form. The Unicode normalization forms are NFC, NFD, NFKC, NFKD, and FULLY-NORMALIZED.

In general, the Unicode normalization forms deal with how combining characters are pro-
cessed. As an example, the A-ring character (Å) can be a single character (Å) or an up-
percase A (A) followed by a combining ring above character (̊). These two represen-
tations are semantically equivalent, but different at a character level. Unicode normalization
converts the different representations to the same form so they can be compared.

[2.0] normalize-unicode( ) | 757

All conforming processors must support the NFC format. They are also free to support any or
all of the other formats defined by Unicode, and they can support their own formats if they
want.

If you’d like to know more, see Unicode Standard Annex #15, Unicode Normalization Forms,
available at http://www.unicode.org/unicode/reports/tr15/.

Outputs
The input string, with its characters converted to the appropriate Unicode normalization
form. If the value of the first argument is the empty sequence, normalize-unicode() returns
a zero-length string.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.4, “Functions on String Values.”

Example
Here is a very short example that compares the two character strings just mentioned:

<?xml version="1.0"?>
<!-- normalize-unicode.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Here is a test of the normalize-</xsl:text>
 <xsl:text>unicode() function:
</xsl:text>

 <xsl:text>
 compare('Å', </xsl:text>
 <xsl:text>'Å') = </xsl:text>
 <xsl:value-of select="compare('Å', 'Å')"/>

 <xsl:text>

 compare(normalize-unicode</xsl:text>
 <xsl:text>('Å'),
 normalize-unicode(</xsl:text>
 <xsl:text>'Å')) = </xsl:text>
 <xsl:value-of
 select="compare(normalize-unicode('Å'),
 normalize-unicode('Å'))"/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here is a test of the normalize-unicode() function:

 compare('Å', 'Å') = 1

 compare(normalize-unicode('Å'),
 normalize-unicode('Å')) = 0

758 | Appendix C: XSLT, XPath, and XQuery Function Reference

http://www.unicode.org/unicode/reports/tr15/

In the first comparison, the two strings are not equal. In the second comparison, the Unicode
normalized versions of the string are equal.

not()
Returns the negation of its argument. If the argument is not a boolean value already, it is
converted to a boolean value using the rules described in the boolean() function entry.

Syntax
[1.0] boolean not(boolean)
[2.0] xs:boolean not(item()*)

Inputs
A boolean value, or more commonly, an XPath expression that evaluates to a boolean value.

Output
false if the input parameter is true; true if the input parameter is false.

Defined in
[1.0] XPath section 4.3, “Boolean Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 9.3, “Functions on Boolean
Values.”

Example
To demonstrate the not() function, we’ll use the same stylesheet and XML document we
used for the boolean() function. Here’s our XML document:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>

not( ) | 759

 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

We’ll process this document with the following stylesheet, which uses not() instead of
boolean(). The boolean() function converts its argument to a boolean value; the not() func-
tion implicitly uses boolean() to convert its argument to a boolean value, and then negates it.

<?xml version="1.0"?>
<!-- not.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the not() function:</xsl:text>

 <xsl:text>

 not((true()) = </xsl:text>
 <xsl:value-of select="not(true())"/>

 <xsl:text>
 not(true) = </xsl:text>
 <xsl:value-of select="not(true)"/>

 <xsl:text>
 not('false') = </xsl:text>
 <xsl:value-of select="not('false')"/>

 <xsl:text>
 not('7') = </xsl:text>
 <xsl:value-of select="not('7')"/>

 <xsl:text>
 not(/report/brand/units[. > 20000]) = </xsl:text>
 <xsl:value-of select="not(/report/brand/units[. > 20000])"/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Tests of the not() function:

 not((true()) = false
 not(true) = true
 not('false') = false
 not('7') = false
 not(/report/brand/units[. > 20000]) = false

As you’d expect, these results are the exact opposite of the results we got when we tested the
boolean() function. For the first test, the argument is a call to the true() function, which
always returns true. The negation of true is false. For the second test, we’re asking for all
the <true> elements in the current context; there are no <true> elements, so this is false and
its negation is true. The argument of the third test is a string whose length is greater than zero,
so not() returns false (a nonzero-length string is true). Similarly, the argument of the fourth
test is a string whose length is greater than zero, so not() returns false here as well.

760 | Appendix C: XSLT, XPath, and XQuery Function Reference

The final example uses an XPath statement to select all of the <units> elements in our sales
report that have a numeric value greater than 20000. Because this selects at least one node, the
expression is true and not() returns false. This works in XSLT 1.0 because it generates a
node-set with at least one member, and it works in XSLT 2.0 because it creates a sequence
whose first item is a node. If we change the expression to look for sales figures greater than
30000, not() would return true.

number()
Converts its argument to a number.

Syntax
[1.0] number number(object?)
[2.0] xs:double number()
[2.0] xs:double number(xs:anyAtomicType)

Inputs
[1.0] An object.

[2.0] An xs:anyAtomicType value.

Output
A number. If no argument is passed to the number function, the context item is used. The
specific rules for converting the argument to a number are different for XSLT 1.0 and 2.0.

[1.0] Here are the rules for XSLT 1.0:

• If the argument is a boolean value, the value true is converted to the number 1; the
value false is converted to the number 0.

• If the argument is a node-set, the node-set is converted to a string as if it were passed
to the string() function, and then that string is converted to a number like any
other string. (Remember that the string() function returns the string value of the
first node in the node-set.)

• If the argument is a string, it is converted as follows:

— If the string consists of optional whitespace, followed by an optional minus sign
(–), followed by a number, followed by whitespace, it is converted to the
floating-point value nearest to the mathematical value represented by the string.
(The IEEE 754 standard defines a round-to-nearest rule; see the standard for
more information.)

— Any other string is converted to the value NaN (not a number).

• XSLT 1.0 processors are allowed to support other datatypes. If the argument is any
other type, it is converted to a number in a way that depends on that type. See the
documentation for your XSLT processor to find out what other types are supported
and how they are converted to numbers.

number( ) | 761

[2.0] Because XSLT 2.0 supports more datatypes, the rules are more complicated:

• If the argument is already an xs:double, it is returned unchanged.

• If the argument is an xs:boolean, true is returned as 1.0E0 and false is returned as
0.0E0.

• If the argument an xs:float, xs:decimal, or xs:integer, it is converted to an
xs:double and returned. If the argument is an xs:float and is one of the xs:float
values INF, -INF, NaN, positive zero, or negative zero, it is returned as the
xs:double version of those values.

• If the argument is the empty sequence, NaN (not a number) is returned.

• If the argument (or the context node, if there isn’t an argument) can’t be converted
to an xs:double, NaN is returned. (The xs:date, xs:dateTime, and xs:time datatypes
can’t be converted to numbers, for example.)

Defined in
[1.0] XPath section 4.4, “Number Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 14, “Functions and Oper-
ators on Nodes.”

Example
We’ll use our document of chocolate bar sales to illustrate the number() function:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

We’ll test the number() function with a variety of arguments:

762 | Appendix C: XSLT, XPath, and XQuery Function Reference

<?xml version="1.0"?>
<!-- number.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the number() function:</xsl:text>

 <xsl:text>

 number(true()) = </xsl:text>
 <xsl:value-of select="number(true())"/>
 <xsl:text>

 number(false()) = </xsl:text>
 <xsl:value-of select="number(false())"/>
 <xsl:text>

 number(/report/brand[2]/units) = </xsl:text>
 <xsl:value-of select="number(/report/brand[2]/units)"/>
 <xsl:text>

 number(//units) = </xsl:text>
 <xsl:value-of select="number(//units)"/>
 <xsl:text>

 number(/report/title) = </xsl:text>
 <xsl:value-of select="number(/report/title)"/>
 </xsl:template>

</xsl:stylesheet>

The output of our stylesheet looks like this:

Tests of the number() function:

 number(true()) = 1

 number(false()) = 0

 number(/report/brand[2]/units) = 8203

 number(//units) = 27408

 number(/report/title) = NaN

This is an XSLT 1.0 stylesheet, so the expression number(//units) works in an XSLT 2.0
processor running in XSLT 1.0 compatibility mode. In XSLT 2.0, the processor raises an error
if we pass more than one node to the number() function. Here’s a slightly different stylesheet
designed for XSLT 2.0:

<?xml version="1.0"?>
<!-- number2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the number() function:</xsl:text>

 <xsl:text>

 number(true()) = </xsl:text>
 <xsl:value-of select="number(true())"/>
 <xsl:text>

 number(false()) = </xsl:text>

number( ) | 763

 <xsl:value-of select="number(false())"/>
 <xsl:text>

 number(/report/brand[2]/units) = </xsl:text>
 <xsl:value-of select="number(/report/brand[2]/units)"/>
 <xsl:text>

 number((//units)[1]) = </xsl:text>
 <xsl:value-of select="number((//units)[1])"/>
 <xsl:text>

 number(/report/title) = </xsl:text>
 <xsl:value-of select="number(/report/title)"/>
 <xsl:text>

 number(current-date()) = </xsl:text>
 <xsl:value-of select="number(current-date())"/>
 <xsl:text>

 number(current-time()) = </xsl:text>
 <xsl:value-of select="number(current-time())"/>
 </xsl:template>

</xsl:stylesheet>

Notice that we had to change the number(//units) call to number((//units)[1]). This retrieves
all of the <units> elements at all levels of the document and selects the first one. At any rate,
here are the results:

Tests of the number() function:

 number(true()) = 1

 number(false()) = 0

 number(/report/brand[2]/units) = 8203

 number((//units)[1]) = 27408

 number(/report/title) = NaN

 number(current-date()) = NaN

 number(current-time()) = NaN

Notice that the xs:date and xs:time values are returned as NaN.

[2.0] one-or-more()
Raises an error unless its argument is a sequence containing one or more items. This function
can be used as a form of type checking. For example, we might have an <addressbook> element
that’s required to have at least one <address> element. We could call one-or-more(address)
with an <addressbook> element as the current item; if at least one <address> element isn’t
present, the XSLT processor would raise an error.

Syntax
item()+ one-or-more(item()*)

Inputs
A sequence. If that sequence doesn’t have at least one item, one-or-more() raises an error.

764 | Appendix C: XSLT, XPath, and XQuery Function Reference

Outputs
Assuming the input sequence has at least one item, one-or-more() returns that sequence. If
the input sequence is the empty sequence, one-or-more() raises an error.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.2, “Functions That Test the
Cardinality of Sequences.” More details about this function can be found in XQuery 1.0 and
XPath 2.0 Formal Semantics section 7.2, “Standard Functions with Specific Static Typing
Rules.”

Example
Here’s a simple stylesheet that illustrates the one-or-more() function:

<?xml version="1.0"?>
<!-- one-or-more.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:variable name="testSequence" as="item()*">
 <xsl:sequence
 select="(3, 4, 5, current-date(), current-time(), 8, 'blue',
 'red', xs:float(3.14), 42, xs:date('1995-04-21'))"/>
 </xsl:variable>

 <xsl:text>
Here is a test of the one-or-more() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 Our sequence is:

 </xsl:text>
 <xsl:value-of select="$testSequence" separator="
 "/>

 <xsl:if test="count(one-or-more($testSequence))">
 <xsl:text>

 Our test sequence has one or </xsl:text>
 <xsl:text>more items!</xsl:text>
 </xsl:if>

 </xsl:template>

</xsl:stylesheet>

Here are the results of our stylesheet:

Here is a test of the one-or-more() function:

 Our sequence is:

 3
 4
 5

[2.0] one-or-more( ) | 765

 2006-07-22-04:00
 23:04:38.183-04:00
 8
 blue
 red
 3.14
 42
 1995-04-21

 Our test sequence has one or more items!

Notice that we use the count() function in the test attribute of the <xsl:if> element. At first
glance, it seems like this would be a reasonable way to write the <xsl:if> element:

<xsl:if test="one-or-more($testSequence)"> <!-- doesn’t work! -->

The one-or-more() function returns the input sequence, assuming it has at least one value.
The XSLT processor attempts to convert the contents of the test attribute to a boolean. If the
sequence returned by one-or-more() is a single item or its first item is a node, this works.
However, our example sequence would cause the XSLT processor to raise an error. A sequence
of more than one item whose first item is an atom can’t be converted to a boolean value.
That’s why we have to write the <xsl:if> element like this:

<xsl:if test="count(one-or-more($testSequence))"/>

The XSLT processor converts the numeric value returned by count() into a boolean value.
That value will always be at least 1, so the test attribute evaluates to true anytime the one-
or-more() function works.

See Also
The descriptions of the [2.0] exactly-one() and [2.0] zero-or-one() functions.

position()
Returns the position of the context item within the sequence of items currently being
processed.

Syntax
[1.0] number position()
[2.0] xs:integer position()

Inputs
None.

Output
A number equal to the position of the current node in the sequence of items currently being
processed. For example, if the current node is the fifth being processed, position()
returns 5.

766 | Appendix C: XSLT, XPath, and XQuery Function Reference

Defined in
[1.0] XPath section 4.1, “Node Set Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 16, “Context Functions.”

Examples
This example uses the position() function to create a style attribute for the cells of an HTML
table. The background colors cycle through the options black, gray, and white, while the
foreground colors cycle through white, white, and black. Here’s the XML document we’ll use:

<?xml version="1.0"?>
<!-- albums.xml -->
<list xml:lang="en">
 <title>Albums I've bought recently:</title>
 <listitem>The Sacred Art of Dub</listitem>
 <listitem>Only the Poor Man Feel It</listitem>
 <listitem>Excitable Boy</listitem>
 <listitem xml:lang="sw">Aki Special</listitem>
 <listitem xml:lang="en-gb">Combat Rock</listitem>
 <listitem xml:lang="zu">Talking Timbuktu</listitem>
 <listitem xml:lang="jz">The Birth of the Cool</listitem>
</list>

We’ll use this stylesheet to generate our HTML document:

<?xml version="1.0"?>
<!-- position.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>
 <xsl:value-of select="/list/title"/>
 </title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>
 <xsl:value-of select="/list/title"/>
 </h1>
 <table border="1" cellpadding="5">
 <xsl:for-each select="/list/listitem">
 <xsl:variable name="style">
 <xsl:text>color: </xsl:text>
 <xsl:choose>
 <xsl:when test="position() mod 3 = 1">white</xsl:when>
 <xsl:when test="position() mod 3 = 2">white</xsl:when>
 <xsl:otherwise>black</xsl:otherwise>
 </xsl:choose>
 <xsl:text>; background: </xsl:text>
 <xsl:choose>
 <xsl:when test="position() mod 3 = 1">black</xsl:when>

position( ) | 767

 <xsl:when test="position() mod 3 = 2">gray</xsl:when>
 <xsl:otherwise>white</xsl:otherwise>
 </xsl:choose>
 <xsl:text>;</xsl:text>
 </xsl:variable>
 <tr style="{$style}">
 <td>
 <xsl:value-of select="."/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

We use the position() function to cycle through the different background and foreground
colors. Our stylesheet generates the following results:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Albums I've bought recently:</title>
 </head>
 <body style="font-family: sans-serif;">
 <h1>Albums I've bought recently:</h1>
 <table border="1" cellpadding="5">
 <tr style="color: white; background: black;">
 <td>The Sacred Art of Dub</td>
 </tr>
 <tr style="color: white; background: gray;">
 <td>Only the Poor Man Feel It</td>
 </tr>
 <tr style="color: black; background: white;">
 <td>Excitable Boy</td>
 </tr>
 <tr style="color: white; background: black;">
 <td>Aki Special</td>
 </tr>
 <tr style="color: white; background: gray;">
 <td>Combat Rock</td>
 </tr>
 <tr style="color: black; background: white;">
 <td>Talking Timbuktu</td>
 </tr>
 <tr style="color: white; background: black;">
 <td>The Birth of the Cool</td>
 </tr>
 </table>
 </body>
</html>

When rendered, the HTML file looks like Figure C-5.

768 | Appendix C: XSLT, XPath, and XQuery Function Reference

[2.0] prefix-from-QName()
Given an xs:QName value, returns its namespace prefix.

Syntax
xs:NCName? prefix-from-QName(xs:QName?)

Input
An xs:QName value.

Output
An xs:NCName (“noncolonized” name) representing the prefix from the QName. If the QName
doesn’t have a prefix or the xs:QName argument is the empty sequence, prefix-from-QName()
returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 11.2, “Operators and Functions
Related to QNames.”

Example
As usual, when we’re working with namespaces, we’ll use our Shakespearean sonnet as our
XML input document:

<?xml version="1.0"?>
<!-- sonnet.xml -->

Figure C-5. HTML file displaying items with different background colors

[2.0] prefix-from-QName( ) | 769

<sonnet type='Shakespearean'>
 <auth:author xmlns:auth="http://www.authors.com/">
 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </auth:author>
 <!-- Is there an official title for this sonnet? They're
 sometimes named after the first line. -->
 <title>Sonnet 130</title>
 <lines>
 <line>My mistress' eyes are nothing like the sun,</line>
 <line>Coral is far more red than her lips red.</line>
 <line>If snow be white, why then her breasts are dun,</line>
 <line>If hairs be wires, black wires grow on her head.</line>
 <line>I have seen roses damasked, red and white,</line>
 <line>But no such roses see I in her cheeks.</line>
 <line>And in some perfumes is there more delight</line>
 <line>Than in the breath that from my mistress reeks.</line>
 <line>I love to hear her speak, yet well I know</line>
 <line>That music hath a far more pleasing sound.</line>
 <line>I grant I never saw a goddess go,</line>
 <line>My mistress when she walks, treads on the ground.</line>
 <line>And yet, by Heaven, I think my love as rare</line>
 <line>As any she belied with false compare.</line>
 </lines>
</sonnet>

Here is our stylesheet:

<?xml version="1.0"?>
<!-- prefix-from-qname.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the prefix-from-QName() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:variable name="testQName1" as="xs:QName"
 select="resolve-QName('auth:last-name',
 /sonnet/*:author/last-name)"/>
 <xsl:text>
 testQName1 = resolve-QName('auth:last-name', </xsl:text>
 <xsl:text>/sonnet/*:author/last-name)</xsl:text>
 <xsl:text>
 prefix-from-QName($testQName1) = "</xsl:text>
 <xsl:value-of select="prefix-from-QName($testQName1)"/>
 <xsl:text>"</xsl:text>

 <xsl:variable name="testQName2" as="xs:QName"
 select="resolve-QName('something-else', /sonnet)"/>
 <xsl:text>

 testQName2 = resolve-QName('</xsl:text>
 <xsl:text>something-else', /sonnet)</xsl:text>

770 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text>
 prefix-from-QName($testQName2) = "</xsl:text>
 <xsl:value-of select="prefix-from-QName($testQName2)"/>
 <xsl:text>"</xsl:text>

 <xsl:variable name="testQName3" as="xs:QName"
 select="QName('http://www.authors.com/', 'pfx:writer')"/>
 <xsl:text>

 testQName3 = QName('http://www.</xsl:text>
 <xsl:text>authors.com/', 'pfx:writer')
</xsl:text>
 <xsl:text> prefix-from-QName($testQName3) = "</xsl:text>
 <xsl:value-of select="prefix-from-QName($testQName3)"/>
 <xsl:text>"</xsl:text>

 </xsl:template>

</xsl:stylesheet>

And here are our results:

Tests of the prefix-from-QName() function:

 testQName1 = resolve-QName('auth:last-name', /sonnet/*:author/last-name)
 prefix-from-QName($testQName1) = "auth"

 testQName2 = resolve-QName('something-else', /sonnet)
 prefix-from-QName($testQName2) = ""

 testQName3 = QName('http://www.authors.com/', 'pfx:writer')
 prefix-from-QName($testQName3) = "pfx"

The argument to the prefix-from-QName() function must be an xs:QName. In this stylesheet,
we create QNames with the resolve-QName() function and the QName() constructor function.

For the first test, we create a QName with a prefixed element name of auth:last-name. The
context for resolving the QName (the second argument to resolve-QName()) is the <last-
name> element in our sonnet. The resolve-QName() function returns a QName with a local name
of last-name, a namespace prefix of auth, and a namespace URI of http://
www.authors.com/. If there are no nodes that match the XPath expression /sonnet/*:author/
last-name, the call to resolve-QName() fails. The call also fails if the auth prefix is not defined
for the <last-name> element.

The second test of prefix-from-QName() uses an unprefixed element name in the call to
resolve-QName(). The XML document doesn’t have a default namespace, so our QName has an
empty string for its namespace prefix and namespace URI.

For the final test, we use the QName() constructor function to create a QName from scratch. The
two arguments to the constructor function are the namespace URI and an element name—
in this case, a prefixed element name. The resulting QName has a local name of writer, a name-
space prefix of pfx, and a namespace URI of http://www.authors.com/.

[2.0] QName()
This is a constructor function that allows you to create a new QName.

[2.0] QName( ) | 771

Syntax
xs:QName QName($paramURI as xs:string?, $paramQName as xs:string)

Inputs
Two xs:strings. The first string is the namespace URI of the QName, and the second is the
string value of the QName. If the second string contains a colon (:), the substring before the
colon is the namespace prefix of the QName and the substring after the colon is the local name.
For example, if the second string is auth:author, the namespace prefix is auth and the local
name is author.

The namespace URI string can be a zero-length string or the empty sequence, meaning this
QName does not belong to a namespace. In this case, the XSLT processor raises an error if the
second string contains a colon. (In other words, you can’t have a namespace prefix if you
don’t have a namespace URI.)

Output
An xs:QName value.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 11.1, “Additional Constructor
Functions for QNames.”

Example
Here is a stylesheet that creates several QNames, and then uses various functions to print the
details of those QNames:

<?xml version="1.0"?>
<!-- qname.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the QName() constructor function:
</xsl:text>

 <xsl:variable name="testQName1" as="xs:QName"
 select="QName('http://www.authors.com', 'auth:author')"/>

 <xsl:text>
 testQName1 = QName('http://www.</xsl:text>
 <xsl:text>authors.com', 'auth:author')</xsl:text>
 <xsl:text>
 prefix-from-QName</xsl:text>
 <xsl:text>($testQName1) = "</xsl:text>
 <xsl:value-of select="prefix-from-QName($testQName1)"/>
 <xsl:text>"
 local-name-from-QName($testQName1) = "</xsl:text>
 <xsl:value-of select="local-name-from-QName($testQName1)"/>
 <xsl:text>"
 namespace-uri-from-QName($testQName1) = "</xsl:text>
 <xsl:value-of select="namespace-uri-from-QName($testQName1)"/>
 <xsl:text>"</xsl:text>

772 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:variable name="testQName2" as="xs:QName"
 select="QName('', 'sonnet')"/>

 <xsl:text>

 testQName2 = QName('', 'sonnet')</xsl:text>
 <xsl:text>
 prefix-from-QName</xsl:text>
 <xsl:text>($testQName2) = "</xsl:text>
 <xsl:value-of select="prefix-from-QName($testQName2)"/>
 <xsl:text>"
 local-name-from-QName($testQName2) = "</xsl:text>
 <xsl:value-of select="local-name-from-QName($testQName2)"/>
 <xsl:text>"
 namespace-uri-from-QName($testQName2) = "</xsl:text>
 <xsl:value-of select="namespace-uri-from-QName($testQName2)"/>
 <xsl:text>"</xsl:text>

 <xsl:variable name="testQName3" as="xs:QName"
 select="QName('http://www.authors.com/', 'writer')"/>

 <xsl:text>

 testQName3 = QName('http://www.</xsl:text>
 <xsl:text>authors.com/', 'writer')</xsl:text>
 <xsl:text>
 prefix-from-QName</xsl:text>
 <xsl:text>($testQName3) = "</xsl:text>
 <xsl:value-of select="prefix-from-QName($testQName3)"/>
 <xsl:text>"
 local-name-from-QName($testQName3) = "</xsl:text>
 <xsl:value-of select="local-name-from-QName($testQName3)"/>
 <xsl:text>"
 namespace-uri-from-QName($testQName3) = "</xsl:text>
 <xsl:value-of select="namespace-uri-from-QName($testQName3)"/>
 <xsl:text>"</xsl:text>

 </xsl:template>

</xsl:stylesheet>

Here are the results:

Tests of the QName() constructor function:

 testQName1 = QName('http://www.authors.com', 'auth:author')
 prefix-from-QName($testQName1) = "auth"
 local-name-from-QName($testQName1) = "author"
 namespace-uri-from-QName($testQName1) = "http://www.authors.com"

 testQName2 = QName('', 'sonnet')
 prefix-from-QName($testQName2) = ""
 local-name-from-QName($testQName2) = "sonnet"
 namespace-uri-from-QName($testQName2) = ""

 testQName3 = QName('http://www.authors.com/', 'writer')
 prefix-from-QName($testQName3) = ""
 local-name-from-QName($testQName3) = "writer"
 namespace-uri-from-QName($testQName3) = "http://www.authors.com/"

Our stylesheet creates three QNames, and then retrieves the namespace prefix, local name, and
namespace URI for each one. For the first test, we create a QName with a prefixed element name
of auth:last-name. The second test has an empty namespace and an unprefixed element name,
and the third test has a namespace URI but no element prefix.

[2.0] QName( ) | 773

[2.0] regex-group()
When using a regular expression to process a string, this function returns portions of the
analyzed string based on groups in the regular expression. This function is used inside the
<xsl:matching-substring> element only.

Syntax
xs:string regex-group(xs:integer)

Inputs
An xs:integer representing a section of the regular expression.

Output
The portion of the analyzed string that matches the specified portion of the regular expression.
A portion of a regular expression must be in parentheses to be considered a group.

Here are some notes about how regex-group() works:

• Calling regex-group(0) returns the entire matching substring, including characters
that don’t belong to any group.

• If the requested portion of the regular expression exists, but doesn’t match any-
thing in the analyzed string, regex-group() returns a zero-length string. (In other
words, the group is optional in the regular expression.)

• If the requested portion of the regular expression exists, but it matches the zero-
length portion of the analyzed string, regex-group() returns a zero-length string.

• If the requested portion of the regular expression doesn’t exist (we call regex-
group(4) when the regular expression has only three groups, for example), regex-
group() returns a zero-length string.

• Finally, regex-group() returns a zero-length string if the group number is a negative
integer.

Defined in
XSLT 2.0 section 15, “Regular Expressions.”

Example
We’ll use a simplified version of one of the stylesheets we used to demonstrate the
<xsl:analyze-string> element:

<?xml version="1.0" encoding="utf-8"?>
<!-- regex-group.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">

774 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text>Formatted phone numbers:
</xsl:text>
 <xsl:for-each select="phonelist/phonenumber">
 <xsl:analyze-string select="."
 regex="([0-9]{{3}})-([0-9]{{3}})-([0-9]{{4}})">
 <xsl:matching-substring>
 <xsl:text>
 The data </xsl:text>
 <xsl:value-of select="regex-group(0)"/>
 <xsl:text> matches. </xsl:text>
 <xsl:text>
 The formatted phone number is: +1 (</xsl:text>
 <xsl:value-of select="regex-group(1)"/>
 <xsl:text>) </xsl:text>
 <xsl:value-of select="regex-group(2)"/>
 <xsl:text>-</xsl:text>
 <xsl:value-of select="regex-group(3)"/>
 </xsl:matching-substring>
 </xsl:analyze-string>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

We’re using a regular expression to analyze telephone numbers. The regular expression
([0-9]{{3}})-([0-9]{{3}})-([0-9]{{4}}) contains three groups: ([0-9]{{3}}), ([0-9]
{{3}}), and ([0-9]{{4}}). The two dashes between the groups are not in parentheses, so they
are not part of any group.

We’ll use this stylesheet to process this very simple document:

<?xml version="1.0" encoding="utf-8"?>
<!-- simple-phonelist.xml -->
<phonelist>
 <phonenumber>Doug's number is 919-555-1212</phonenumber>
 <phonenumber>617-555-1212</phonenumber>
</phonelist>

And here are the results:

Formatted phone numbers:

 The data 919-555-1212 matches.
 The formatted phone number is: +1 (919) 555-1212
 The data 617-555-1212 matches.
 The formatted phone number is: +1 (617) 555-1212

For each matching string, regex-group(0) returns the entire matching string, regex-
group(1) returns the area code (we’re using the Canadian and U.S. phone number format
here), regex-group(2) returns the exchange and regex-group(3) returns the last four digits of
the phone number. Notice that the output of regex-group(0) is the entire matching string,
including the two dashes that don’t belong to any matching group. In the first line of the XML
source file, regex-group(0) doesn’t return the characters outside the matching string, just the
part of the string that matches the regular expression.

Finally, if our regular expression allows a two- or three-letter state or province abbreviation
at the end of the phone number (we used the regular expression ([0-9]{{3}})-([0-9]{{3}})-
([0-9]{{4}})([A-Z]{{2,3}})?), regex-group(4) would return a zero-length string for both

[2.0] regex-group( ) | 775

<phonenumber> elements in our sample document. Although the match technically exists, it
doesn’t contain any data. In this case, we could use string-length(regex-group(4)) to see
whether the match contains any data.

See Also
The definition of the [2.0] <xsl:analyze-string> element.

[2.0] remove()
Given a sequence and a position, removes the item at the requested position.

Syntax
item()* remove($target as item()*, $position as xs:integer)

Inputs
A sequence and an xs:integer.

Outputs
This function returns the input sequence with the item at the requested position removed. If
the position is less than 1 or greater than the length of the sequence, the sequence is returned
unchanged. Finally, if the sequence is the empty sequence, the empty sequence is returned.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.1, “General Functions and
Operators on Sequences.”

Example
To illustrate the remove() function, we’ll look at three short stylesheets. Each stylesheet uses
a different type of sequence. The first stylesheet uses a singleton sequence:

<?xml version="1.0"?>
<!-- remove1.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:variable name="singleton" as="item()*">
 <xsl:sequence select="(3)"/>
 </xsl:variable>

 <xsl:text>
Here is a test of the remove() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 Our sequence ($singleton) </xsl:text>

776 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text>is:
 </xsl:text>
 <xsl:value-of select="$singleton" separator="
 "/>
 <xsl:text>

 remove($singleton, 0) = </xsl:text>
 <xsl:value-of select="remove($singleton, 0)"
 separator="
 "/>
 <xsl:text>

 remove($singleton, 7) = </xsl:text>
 <xsl:value-of select="remove($singleton, 7)"
 eparator="
 "/>
 <xsl:text>

 remove($singleton, 1) = </xsl:text>
 <xsl:value-of select="remove($singleton, 1)"
 separator="
 "/>
 <xsl:text>

 empty(remove($singleton, 1)) = </xsl:text>
 <xsl:value-of select="empty(remove($singleton, 1))"/>

 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here is a test of the remove() function:

 Our sequence ($singleton) is:
 3

 remove($singleton, 0) = 3

 remove($singleton, 7) = 3

 remove($singleton, 1) =

 empty(remove($singleton, 1)) = true

In our results, removing an item at positions 0 and 7 doesn’t change the sequence at all.
Removing the first item from a singleton returns the empty sequence, as you would expect.
As a final test, we use the empty() function to show that removing one item from a singleton
does, in fact, return the empty sequence.

Our next test of the remove() function uses a longer sequence that contains a variety of
datatypes:

<?xml version="1.0"?>
<!-- remove2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:variable name="longSequence" as="item()*">
 <xsl:sequence
 select="(3, 4, 5, current-date(), current-time(), 8, 'blue',
 'red', xs:float(3.14), 42, xs:date('1995-04-21'))"/>
 </xsl:variable>

[2.0] remove( ) | 777

 <xsl:text>
Here's another test of the remove() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 Our sequence ($longSequence) </xsl:text>
 <xsl:text>is:
 </xsl:text>
 <xsl:value-of select="$longSequence" separator="
 "/>
 <xsl:text>

 Test 1. remove($longSequence, 1) </xsl:text>
 <xsl:text>=
 </xsl:text>
 <xsl:value-of select="remove($longSequence, 1)"
 separator="
 "/>
 <xsl:text>

 Test 2. remove($longSequence, 1) =</xsl:text>
 <xsl:text>
 [We're running this test again to show the </xsl:text>
 <xsl:text>variable didn't change]
 </xsl:text>
 <xsl:value-of select="remove($longSequence, 1)"
 separator="
 "/>
 <xsl:text>

 Test 3. remove(remove($longSequence, 7), 1) </xsl:text>
 <xsl:text>=
 </xsl:text>
 <xsl:value-of select="remove(remove($longSequence, 7), 1)"
 separator="
 "/>

 <xsl:text>

 Creating a new variable based on </xsl:text>
 <xsl:text>remove($longSequence, 1):
 </xsl:text>
 <xsl:text>updatedSequence = remove($longSequence, 1):
 </xsl:text>
 <xsl:variable name="updatedSequence" as="item()*"
 select="remove($longSequence, 1)"/>
 <xsl:text>
 Test 4. $updatedSequence =
 </xsl:text>
 <xsl:value-of select="$updatedSequence" separator="
 "/>

 </xsl:template>

</xsl:stylesheet>

The somewhat longwinded results look like this:

Here's another test of the remove() function:

 Our sequence ($longSequence) is:
 3
 4
 5
 2006-07-25-04:00
 03:14:18.783-04:00
 8
 blue
 red
 3.14
 42
 1995-04-21

 Test 1. remove($longSequence, 1) =
 4
 5
 2006-07-25-04:00
 03:14:18.783-04:00
 8

778 | Appendix C: XSLT, XPath, and XQuery Function Reference

 blue
 red
 3.14
 42
 1995-04-21

 Test 2. remove($longSequence, 1) =
 [We're running this test again to show the variable didn't change]
 4
 5
 2006-07-25-04:00
 03:14:18.783-04:00
 8
 blue
 red
 3.14
 42
 1995-04-21

 Test 3. remove(remove($longSequence, 7), 1) =
 4
 5
 2006-07-25-04:00
 03:31:45.859-04:00
 8
 red
 3.14
 42
 1995-04-21

 Creating a new variable based on remove($longSequence, 1):
 updatedSequence = remove($longSequence, 1):

 Test 4. $updatedSequence =
 4
 5
 2006-07-25-04:00
 03:14:18.783-04:00
 8
 blue
 red
 3.14
 42
 1995-04-21

Our stylesheet begins by listing the items in the sequence. In our first test, removing the first
item returns a sequence in which the first item (3) has been removed. Next, we call
remove() against the same sequence. The results are the same. Remember, variables in XSLT
don’t change; they can be initialized, but not changed. We can call remove($longSequence,
1) as many times as we want, but the results will always be the same. If we want to “remove”
an item permanently, we need to store the sequence returned by remove() in a variable.

In our third test we nest calls to remove() to remove the first and seventh items. If we wanted
to remove the first two items, it would be more efficient to use subsequence($longSequence,

[2.0] remove( ) | 779

3). Because we’re removing items that aren’t adjacent, the nested calls to remove() are the
way to go.

The fourth example stores the results of the remove() function in a variable. That variable’s
type is item()* as well. Here are three ways of creating the new variable:

<!-- Simplest approach -->
<xsl:variable name="updatedSequence1" as="item()*"
 select="remove($longSequence, 1)"/>

<!-- This works... -->
<xsl:variable name="updatedSequence2" as="item()*">
 <xsl:sequence select="remove($longSequence, 1)"/>
</xsl:variable>

<!-- Doesn’t work! -->
<xsl:variable name="updatedSequence3" as="item()*">
 <xsl:value-of select="remove($longSequence, 1)"/>
</xsl:variable>

The first approach is the simplest; it’s what we used in our stylesheet. The second approach
works and is useful if we need to add multiple items to this sequence. The third approach
doesn’t work. The <xsl:value-of> element inserts the string value of the subsequence, with
the values separated by spaces. This creates a sequence of one item:

$updatedSequence3 =
4 5 2006-07-25-04:00 03:20:35.815-04:00 8 blue red 3.14 42 1995-04-21

Using <xsl:value-of> seems like a reasonable approach, but it doesn’t work. Be sure to use
<xsl:sequence> instead. (I’m mentioning that here because I’ve made the same mistake;
hopefully, you can learn from my absent-mindedness.)

Our last example illustrates remove() with the empty sequence:

<?xml version="1.0"?>
<!-- remove3.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:variable name="emptySequence" as="item()*">
 <xsl:sequence select="()"/>
 </xsl:variable>

 <xsl:text>
Here's a final test of the remove() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 Our sequence ($emptySequence) is </xsl:text>
 <xsl:text>empty:
 empty($emptySequence) = </xsl:text>
 <xsl:value-of select="empty($emptySequence)"/>
 <xsl:text>

 remove($emptySequence, 1) = </xsl:text>
 <xsl:value-of select="remove($emptySequence, 1)"/>

780 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text>

 empty(remove($emptySequence, 1)) </xsl:text>
 <xsl:text>= </xsl:text>
 <xsl:value-of select="empty(remove($emptySequence, 1))"/>

 </xsl:template>

</xsl:stylesheet>

Our last set of results are:

Here's a final test of the remove() function:

 Our sequence ($emptySequence) is empty:
 empty($emptySequence) = true

 remove($emptySequence, 1) =

 empty(remove($emptySequence, 1)) = true

[2.0] replace()
Given an input string, a regular expression, and a replacement string, replaces all matches of
the regular expression in the input string with the replacement string.

Syntax
xs:string replace($input as xs:string?, $pattern as xs:string,
 $replacement as xs:string)
xs:string replace($input as xs:string?, $pattern as xs:string,
 $replacement as xs:string, $flags as xs:string)

Inputs
Three strings; the first string is the original string, the second is a regular expression, and the
third is a replacement string. There is also an optional fourth string that specifies flags for how
the regular expression should be processed.

It is a fatal error if a regular expression matches a zero-length string. See
Appendix E for more details.

Outputs
An updated string in which all matches of the regular expression have been replaced with the
replacement string.

Here are the details about how replace() actually works:

• If the regular expression doesn’t match anything in the input string, the input string
is returned unchanged.

[2.0] replace( ) | 781

• If the regular expression matches two overlapping strings in the input string, only
the first match is replaced.

• Regular expression matching does not use collations; the characters’ Unicode code
points are compared. Cases in which different characters are considered equal in
the world’s languages are not taken into account.

• The input string and the replacement string can both be zero-length strings. If the
input string is a zero-length string, a zero-length string is returned. If the replace-
ment string is zero-length, any matches for the regular expression are deleted. The
regular expression cannot be a zero-length string, nor can it match a zero-length
string (matches("", $pattern, $replacement) can’t be true, in other words). As-
suming the input string is not of zero length, it is acceptable for a captured substring
to be of zero length.

If the expression matches("", $pattern, $replacement) is true, an error is raised.
For example, using the pattern '.?' with any input string raises an error because
this pattern matches a zero-length string.

• Unlike regular expressions used in the <xsl:analyze-string> element, curly braces
({ and }) are not doubled. (Curly braces used inside the regex attribute of
<xsl:analyze-string> must be doubled so they aren’t interpreted as attribute value
templates.)

• There are special features and requirements for the replacement string:

— A literal dollar sign ($) symbol must be escaped as \$, and a literal backslash
(\) must be escaped as \\. An error is raised if a dollar sign is not preceded by a
backslash or followed by at least one digit ([0–9]). An error is also raised if a
backslash is not part of a pair of backslashes (\\) or an escaped dollar sign (\$).

— Within the replacement string, you can use the notation $N to indicate the por-
tion of the input string that matches the Nth parenthesized portion of the regular
expression. (This capability is similar to the regex-group() function.) Here is a
regular expression we’ll use in our example; it represents the pattern for a 16-
digit credit card number:

([0-9]{4})-([0-9]{4})-([0-9]{4})-([0-9]{4})

There are four parenthesized groups here. (The hyphens between the paren-
theses aren’t in any group.) Given the credit card number 1234-5678-9101-1121,
$1 represents 1234, $2 represents 5678, $3 represents 9101, and $4 represents 1121.

— The notation $0 refers to the entire string matched by the regular expression. In
our example, that happens to be the entire input string, but that’s not always
the case.

— If a given regular expression group doesn’t match anything in the input string,
its value is a zero-length string.

782 | Appendix C: XSLT, XPath, and XQuery Function Reference

— If you use a single-digit $N expression and that digit is greater than the number
of regular expression groups, a zero-length string is returned. In our example,
$7 would produce a zero-length string.

— Whenever you use the $N notation, the processor assumes every consecutive
digit after the dollar sign refers to a group in the regular expression. If that’s not
the case, it uses the largest number of digits possible, and then the rest of the
digits are written to the output.

For example, if we use $417 in our earlier example, this would generate 112117.
$4 is the longest expression that matches anything, so the remaining digits (17)
are output along with the match. If our regular expression has 41 groups, this
would be interpreted as $41 followed immediately by a 7.

• If a regular expression specifies more than one alternative, and more than one of
those alternatives match at the same position in the input, the first alternative in
the regular expression is the one that’s used. Here’s an example from the spec:

replace("abcd", "(ab)|(a)", "[1=$1][2=$2]") = "[1=ab][2=]cd"

The first alternative in the regular expression (ab) is considered the match, so $1
is ab and $2 is a zero-length string. This is true even though the second alternative
is shorter than the first.

• Finally, the $flags parameter modifies how the regular expression is processed.
There are four different flags:

s
Regular expressions are evaluated in what the specs refer to as “dot-all” mode.
When this flag is used, the dot operator (.) matches any character. Under
normal processing (without the s flag), the dot operator matches any character
except the newline character (
). This flag is useful when you want to match
strings that might include a newline character.

m
Regular expressions are evaulated in multiline mode. By default, the meta-
character (^) matches the start of the entire string, while $ matches the end of
the entire string. In multiline mode, ^ matches the start of any line within the
string and $ matches the end of any line within the string.

i
Regular expressions are evaluated in case-insensitive mode. The regular ex-
pression "a" matches both "a" and "A".

Note that Unicode issues can complicate this greatly. For example, the XQuery
1.0 and XPath 2.0 Functions and Operators spec gives the example of the
Unicode sign for degrees Kelvin (K), which is the letter "K". The com-
bination of regex="k" and flags="i" matches the Kelvin sign as well as the
letters "k" (k) and "K" (K).

[2.0] replace( ) | 783

Other Unicode characters don’t convert to letters. For example, the Unicode
symbol for the Roman numeral I (ࡰ) looks like the letter I, but does not
convert to one. Fortunately, these complications are beyond the scope of this
book.

x
All whitespace characters (,
, , and) are removed from
the regular expression before any comparison is done. In other words, with
the x flag, the regular expressions "John Smith" and "JohnSmith" are the same.
This flag is useful when you want to break a long regular expression into mul-
tiple lines to make it easier to read.

The flags can be combined in any order. The parameters 'xis' and 'six' work
exactly the same way.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.6, “String Functions that use
Pattern Matching.”

Example
Here is a stylesheet with several tests of the replace() function:

<?xml version="1.0"?>
<!-- replace.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:variable name="string1"
 select="concat('Now is the time for all good men and ',
 'women to aid the party.')"/>
 <xsl:variable name="string2" as="xs:string"
 select="'Visa # 1234-5678-9101-1121'"/>

 <xsl:text>
Here's a test of the replace() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 $string1 =
 </xsl:text>
 <xsl:value-of select="$string1"/>

 <xsl:text>

 Test 1. replace($string1, </xsl:text>
 <xsl:text>'men', 'boys') =
 </xsl:text>
 <xsl:value-of select="replace($string1, 'men', 'boys')"/>

 <xsl:text>

 Test 2. replace($string1, </xsl:text>
 <xsl:text>' men', ' boys') =
 </xsl:text>
 <xsl:value-of select="replace($string1, ' men', 'boys')"/>

784 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text>

 Test 3. replace($string1, </xsl:text>
 <xsl:text>'wombats', 'weasels') =
 </xsl:text>
 <xsl:value-of select="replace($string1, 'wombats', ‘weasels')"/>

 <xsl:text>

 $string2 =
 </xsl:text>
 <xsl:value-of select="$string2"/>

 <xsl:text>

 Test 4. replace($string2, </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:text>'([0-9]{4}-)([0-9]{4}-)([0-9]{4}-)([0-9]{4})', </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:text>'XXXX-XXXX-XXXX-$4') =
 </xsl:text>
 <xsl:value-of
 select="replace($string2,
 '([0-9]{4})-([0-9]{4})-([0-9]{4})-([0-9]{4})',
 'XXXX-XXXX-XXXX-$4')"/>

 <xsl:text>

 Test 5. replace($string2, </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:text>'([0-9]{4}-)([0-9]{4}-)([0-9]{4}-)([0-9]{4})', </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:text>'$0 -> XXXX-XXXX-XXXX-$4') =
 </xsl:text>
 <xsl:value-of
 select="replace($string2,
 '([0-9]{4})-([0-9]{4})-([0-9]{4})-([0-9]{4})',
 '$0 -> XXXX-XXXX-XXXX-$4')"/>

 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here's a test of the replace() function:

 $string1 =
 Now is the time for all good men and women to aid the party.

 Test 1. replace($string1, 'men', 'boys') =
 Now is the time for all good boys and woboys to aid the party.

 Test 2. replace($string1, ' men', ' boys') =
 Now is the time for all good boys and women to aid the party.

 Test 3. replace($string1, 'wombats', 'weasels') =
 Now is the time for all good men and women to aid the party.

 $string2 =
 Visa # 1234-5678-9101-1121

 Test 4. replace($string2,
 '([0-9]{4})-([0-9]{4})-([0-9]{4})-([0-9]{4})',
 'XXXX-XXXX-XXXX-$4') =
 Visa # XXXX-XXXX-XXXX-1121

 Test 5. replace($string2,

[2.0] replace( ) | 785

 '([0-9]{4})-([0-9]{4})-([0-9]{4})-([0-9]{4})',
 '$0 -> XXXX-XXXX-XXXX-$4') =
 Visa # 1234-5678-9101-1121 -> XXXX-XXXX-XXXX-1121

Tests 1, 2, and 3 are pretty straightforward. Test 1 replaces text in the input string, but it
doesn’t work exactly the way we want. Test 2 uses a slightly modified pattern and replacement
string to get more useful results. Test 3 returns the input string without any changes because
the pattern does not match.

Tests 4 and 5 use the substring feature to display matching text from the original string. In
both cases, we’re using replace() to hide all but the last four digits of the credit card number.
Both tests use the fourth matching substring ($4), while test 5 also uses $0 to display the entire
matching string.

See Also
Appendix E has complete details on the way regular expressions work in XPath 2.0. Also see
the definitions of the following elements and functions: [2.0] <xsl:analyze-string>, [2.0]
matches(), [2.0] <xsl:matching-substring>, [2.0] <xsl:non-matching-substring>, [2.0] regex-
group(), and [2.0] tokenize().

[2.0] resolve-QName()
This is a function that constructs a QName. Given an xs:string in the format of a (optionally
prefixed) name and an element, this function returns a QName. The prefix of the name, if any,
is resolved using the namespaces in scope for the given element.

Syntax
xs:QName? resolve-QName($qname as xs:string?, $element as element())

Inputs
An xs:string that is a valid XML name (it can contain a namespace prefix as well) and an
element.

Outputs
A new xs:QName value.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 11.1, “Additional Constructor
Functions for QNames.”

Example
To create a new QName value with resolve-QName(), we’ll revisit our Shakespearean sonnet:

<?xml version="1.0"?>
<!-- sonnet.xml -->
<sonnet type='Shakespearean'>
 <auth:author xmlns:auth="http://www.authors.com/">

786 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <last-name>Shakespeare</last-name>
 <first-name>William</first-name>
 <nationality>British</nationality>
 <year-of-birth>1564</year-of-birth>
 <year-of-death>1616</year-of-death>
 </auth:author>
 <!-- Is there an official title for this sonnet? They're
 sometimes named after the first line. -->
 <title>Sonnet 130</title>
 <lines>
 <line>My mistress' eyes are nothing like the sun,</line>
 <line>Coral is far more red than her lips red.</line>
 <line>If snow be white, why then her breasts are dun,</line>
 <line>If hairs be wires, black wires grow on her head.</line>
 <line>I have seen roses damasked, red and white,</line>
 <line>But no such roses see I in her cheeks.</line>
 <line>And in some perfumes is there more delight</line>
 <line>Than in the breath that from my mistress reeks.</line>
 <line>I love to hear her speak, yet well I know</line>
 <line>That music hath a far more pleasing sound.</line>
 <line>I grant I never saw a goddess go,</line>
 <line>My mistress when she walks, treads on the ground.</line>
 <line>And yet, by Heaven, I think my love as rare</line>
 <line>As any she belied with false compare.</line>
 </lines>
</sonnet>

Here is our stylesheet:

<?xml version="1.0"?>
<!-- resolve-qname.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the resolve-QName() function:
</xsl:text>

 <xsl:variable name="testQName1" as="xs:QName"
 select="resolve-QName('auth:last-name',
 /sonnet/*:author/last-name)"/>

 <xsl:text>
 testQName1 = resolve-QName('auth:</xsl:text>
 <xsl:text>last-name', /sonnet/author/last-name)</xsl:text>
 <xsl:text>
 prefix-from-QName</xsl:text>
 <xsl:text>($testQName1) = "</xsl:text>
 <xsl:value-of select="prefix-from-QName($testQName1)"/>
 <xsl:text>"
 local-name-from-QName($testQName1) = "</xsl:text>
 <xsl:value-of select="local-name-from-QName($testQName1)"/>
 <xsl:text>"
 namespace-uri-from-QName($testQName1) = "</xsl:text>
 <xsl:value-of select="namespace-uri-from-QName($testQName1)"/>
 <xsl:text>"
</xsl:text>

 <xsl:variable name="testQName2" as="xs:QName"

[2.0] resolve-QName( ) | 787

 select="resolve-QName('something-else', /sonnet)"/>

 <xsl:text>
 testQName2 = resolve-QName('something-</xsl:text>
 <xsl:text>else', /sonnet)</xsl:text>
 <xsl:text>
 prefix-from-QName</xsl:text>
 <xsl:text>($testQName2) = "</xsl:text>
 <xsl:value-of select="prefix-from-QName($testQName2)"/>
 <xsl:text>"
 local-name-from-QName($testQName2) = "</xsl:text>
 <xsl:value-of select="local-name-from-QName($testQName2)"/>
 <xsl:text>"
 namespace-uri-from-QName($testQName2) = "</xsl:text>
 <xsl:value-of select="namespace-uri-from-QName($testQName2)"/>
 <xsl:text>"</xsl:text>

 <!-- This raises an error; the 'auth' prefix isn’t in scope for -->
 <!-- the <sonnet> element. -->
 <!-- <xsl:variable name="testQName3" as="xs:QName"
 select="resolve-QName('auth:new-element', /sonnet)"/> -->
 </xsl:template>

</xsl:stylesheet>

And here are the results:

Tests of the resolve-QName() function:

 testQName1 = resolve-QName('auth:last-name', /sonnet/author/last-name)
 prefix-from-QName($testQName1) = "auth"
 local-name-from-QName($testQName1) = "last-name"
 namespace-uri-from-QName($testQName1) = "http://www.authors.com/"

 testQName2 = resolve-QName('something-else', /sonnet)
 prefix-from-QName($testQName2) = ""
 local-name-from-QName($testQName2) = "something-else"
 namespace-uri-from-QName($testQName2) = ""

In our first use of resolve-QName(), we created a variable of datatype xs:QName that used the
auth prefix in the scope of the <last-name> element. Notice that the auth prefix is actually
defined on the <last-name>’s parent, but it is in scope. Once we’ve created the QName, we use
the *-from-QName() functions to display its parts.

The second example here creates a QName that doesn’t have a namespace. We’re using a local
name that doesn’t have a prefix, so the prefix-from-QName() function returns a zero-length
string. The second argument to resolve-QName() is a <sonnet> element. Our sonnet doesn’t
have a default namespace, so our QName isn’t in a namespace.

Finally, the commented-out code in the stylesheet attempts to use the auth namespace at the
root element (/sonnet). The auth namespace is not in scope at the root element, so this call
to resolve-QName() raises an error.

[2.0] resolve-uri()
Resolves a relative URI against an absolute URI.

788 | Appendix C: XSLT, XPath, and XQuery Function Reference

Syntax
xs:anyURI? resolve-uri($relative as xs:string?)
xs:anyURI? resolve-uri($relative as xs:string?, $base as xs:string)

Inputs
An xs:string representing a relative URI. An optional xs:string containing an absolute URI
is accepted as well. If no absolute URI is given, the base URI from the static context is used.

Outputs
An xs:anyURI containing the resolved URI. If the second argument is not provided and no
base URI is defined in the current context, an error is raised. If either input string is not a valid
URI, an error is raised. If the relative URI is an absolute URI, it is returned unchanged. Finally,
if the relative URI is the empty sequence, the empty sequence is returned.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 8, “Functions on anyURI.”

Example
Here is a stylesheet that resolves two URIs. In one we use the base URI from the static context,
while in the other we supply an absolute URI.

<?xml version="1.0"?>
<!-- resolve-uri.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the resolve-uri() function:</xsl:text>

 <xsl:text>

 The static base URI for the </xsl:text>
 <xsl:text>document root is:
 </xsl:text>
 <xsl:value-of select="static-base-uri()"/>

 <xsl:text>

 The base URI for the </xsl:text>
 <xsl:text>document root is:
 </xsl:text>
 <xsl:value-of select="base-uri()"/>

 <xsl:text>

 resolve-uri('doug.html') = </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="resolve-uri('doug.html')"/>

 <xsl:text>

 resolve-uri('doug.html', </xsl:text>
 <xsl:text>'http://www.oreilly.com/') = </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of
 select="resolve-uri('doug.html', 'http://www.oreilly.com/')"/>

 </xsl:template>

[2.0] resolve-uri( ) | 789

</xsl:stylesheet>

(We use the static-base-uri() function to print out the static base URI for the transformation
and use the base-uri() function to print out the base URI property before we use the resolve-
uri() function.) The results look like this:

Tests of the resolve-uri() function:

 The static base URI for the document root is:
 file:/C://resolve-uri.xsl

 The base URI for the document root is:
 file:/C://chocolate.xml

 resolve-uri('doug.html') =
 file:/C:/doug.html

 resolve-uri('doug.html', 'http://www.oreilly.com/') =
 http://www.oreilly.com/doug.html

We get these results when invoking this stylesheet against the file chocolate.xml. That file’s
location on the file system becomes the base URI for the document. The first test creates a
URI for a document in the same directory as our input document. The second test takes the
name of a resource and the URL of a web site and combines them to create a URI.

[2.0] reverse()
Given a sequence of items, returns a sequence with the items in reverse order.

Syntax
item()* reverse(item()*)

Inputs
A sequence of items. If the sequence is the empty sequence, the empty sequence is returned.

Outputs
A sequence with the input items in reverse order.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.1, “General Functions and
Operators on Sequences.”

Example
Here is a short stylesheet that creates a sequence and prints it, and then prints the sequence
again after invoking the reverse() function against it:

<?xml version="1.0"?>
<!-- reverse.xsl -->
<xsl:stylesheet version="2.0"

790 | Appendix C: XSLT, XPath, and XQuery Function Reference

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:datatest="http://www.oreilly.com">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:variable name="testSequence" as="item()*">
 <xsl:sequence
 select="(3, 4, 5, current-date(), current-time(), 8, 'blue',
 'red', xs:float(3.14), 42, xs:date('1995-04-21'))"/>
 </xsl:variable>

 <xsl:text>
Here is a test of the reverse() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 Our original sequence is:

 </xsl:text>
 <xsl:value-of select="$testSequence" separator="
 "/>

 <xsl:text>

 Passing our sequence to reverse() </xsl:text>
 <xsl:text>gives us:

 </xsl:text>

 <xsl:value-of select="reverse($testSequence)" separator="
 "/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here is a test of the reverse() function:

 Our original sequence is:

 3
 4
 5
 2006-07-22-04:00
 13:48:23.256-04:00
 8
 blue
 red
 3.14
 42
 1995-04-21

 Passing our sequence to reverse() gives us:

 1995-04-21
 42
 3.14
 red
 blue
 8
 13:48:23.256-04:00
 2006-07-22-04:00

[2.0] reverse( ) | 791

 5
 4
 3

Remember that variables don’t change, so the original sequence still exists. If we want to use
the reversed sequence, we would have to store it in a new variable.

[2.0] root()
Given a node, returns the root of the tree to which the node belongs.

Syntax
node() root()
node() root(node()?)

Inputs
An optional node. If no node is provided, the context node is used.

Outputs
The root of the tree to which the node (or the context node, if the call was root()) belongs.
This will usually be a document node, but that isn’t always the case.

If an argument is provided, and that argument is the empty sequence, the empty sequence is
returned. Also, if the argument itself is a document node, the argument is simply returned.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 14, “Functions and Operators
on Nodes.”

Example
To test the root() function, we’ll take another look at our list of favorite albums:

<?xml version="1.0"?>
<!-- favorites.xml -->
<list>
 <title>A few of my favorite albums</title>
 <listitem>A Love Supreme</listitem>
 <listitem>Beat Crazy</listitem>
 <listitem>Here Come the Warm Jets</listitem>
 <listitem>Kind of Blue</listitem>
 <listitem>London Calling</listitem>
 <listitem>Remain in Light</listitem>
 <listitem>The Joshua Tree</listitem>
 <listitem>The Indestructible Beat of Soweto</listitem>
</list>

We’ll use this stylesheet to test the root() function:

<?xml version="1.0"?>
<!-- root.xsl -->

792 | Appendix C: XSLT, XPath, and XQuery Function Reference

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ora="http://www.oreilly.com">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the root() function:</xsl:text>

 <xsl:variable name="testTree" as="node()*">
 <report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 </report>
 <otherReport month="9" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 </otherReport>
 </xsl:variable>

 <xsl:text>

 1. root(//listitem[3]):</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:value-of
 select="ora:doc-node-test(root(//listitem[3]))"/>

 <xsl:text>

 2. root(subsequence($testTree, 1, 1)):</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:value-of
 select="ora:doc-node-test(root(subsequence($testTree, 1, 1)))"/>

 <xsl:text>

 3. root(subsequence($testTree, 2)):</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:value-of
 select="ora:doc-node-test(root(subsequence($testTree, 2, 1)))"/>

 <xsl:text>

 4. root():</xsl:text>
 <xsl:text>
</xsl:text>
 <xsl:value-of
 select="ora:doc-node-test(root())"/>

 </xsl:template>

 <xsl:function name="ora:doc-node-test" as="xs:string">
 <xsl:param name="node" as="node()*"/>
 <xsl:choose>
 <xsl:when test="empty($node)">
 <xsl:value-of select="' [empty sequence]'"/>
 </xsl:when>

[2.0] root( ) | 793

 <xsl:when test="$node instance of document-node()">
 <xsl:value-of
 select="concat(' This IS a document node.
',
 ' root node''s name: <',
 node-name($node/*[1]),
 '>')"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of
 select="concat(' This IS NOT a document node.
',
 ' root node''s name: <',
 node-name($node),
 '>')"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:function>

</xsl:stylesheet>

Notice that we define a variable named testTree that contains two elements; you can’t have
two root elements in an XML document, but it is legal in a variable. We’ll use this variable to
demonstrate calls to root() that don’t return a document node.

Our stylesheet uses an <xsl:function> to refactor out the code that processes the various root
elements. Given a sequence, our function ora:doc-node-test() first checks to see whether
the sequence is the empty sequence. (For example, if we use this stylesheet to transform an
XML document that doesn’t contain three <listitem> elements, the sequence is empty.)

Assuming the sequence is not empty, we use the document-node() node test to see whether it
is a document node. If it is, we print the name of its first child element. A document node can
technically contain more than one child, so we use the node test $node/*[1] to select its first
child node. (See the discussion of the [2.0] <xsl:document> element in Appendix A for an
example of a document node with more than one child element.) If this is not a document
node, we simply pass the node itself to the node-name() function.

To make our stylesheet more robust, we could write the XPath expres-
sion like this:

<xsl:when test="($node treat as node()) instance of document-node()">

The variable $node has a type of node()*; the treat as instruction casts
it to a type of node(). We could also use the exactly-one() function to
ensure the sequence has only one item. Our stylesheet makes sure that
we only call the ora:doc-node-test() function with a singleton.

Now that we’ve discussed the function, we’ll look at the four tests of the root() function.
The first use of root() gets the root item of the third <listitem> element in the context item.
The second and third calls to root() use the two root nodes in the variable $testTree. While
both of them have root nodes, neither root node is a document node. For the last use of
root(), we send the root of the context item, which is the root node of the XML document
we’re transforming.

794 | Appendix C: XSLT, XPath, and XQuery Function Reference

Here are the results we get:

Tests of the root() function:

 1. root(//listitem[3]):
 This IS a document node.
 root node's name: <list>

 2. root(subsequence($testTree, 1, 1)):
 This IS NOT a document node.
 root node's name: <report>

 3. root(subsequence($testTree, 2)):
 This IS NOT a document node.
 root node's name: <otherReport>

 4. root():
 This IS a document node.
 root node's name: <list>

round()
Returns the integer closest to the argument.

Syntax
[1.0] number? round(number?)
[2.0] numeric? round(numeric?)

Inputs
[1.0] A number. If the argument is not a number, it is converted to a number as if it were
passed to the number() function.

[2.0] In XSLT 2.0, the argument for round() must be a number (xs:integer, xs:float,
xs:decimal, or xs:double, or a datatype derived from them). If the argument is not a number,
the XSLT processor raises an error. For example, if the argument is an untyped value read in
from an XML document that doesn’t use a schema, it must be cast to a numeric value before
it is passed to round().

Output
The integer that is closest to the argument. If two numbers are equally close to the argument
(1 and 2 are equally close to 1.5), the number closest to positive infinity is returned. Various
argument values are handled as follows:

• If the argument is positive infinity, then positive infinity is returned.

• If the argument is negative infinity, then negative infinity is returned.

• If the argument is positive zero, then positive zero is returned.

• If the argument is negative zero, then negative zero is returned.

• If the argument is between zero and –0.5, then negative zero is returned.

round( ) | 795

• If the argument is NaN (not a number), the round() function returns NaN.

[2.0] In XSLT 2.0, the output value has the same datatype as the input value. In other
words, the function round(xs:integer) returns an xs:integer, while round(xs:float)
returns an xs:float.

Defined in
[1.0] XPath section 4.4, “Number Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 6.4, “Functions on Numeric
Values.”

Example
The following stylesheet shows the results of invoking the round() function against a variety
of values. We’ll use this XML document as input:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

Here’s the stylesheet that uses the round() function:

<?xml version="1.0"?>
<!-- round1.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the round() function:

</xsl:text>

796 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text> round(7.983) = </xsl:text>
 <xsl:value-of select="round(7.983)"/>

 <xsl:text>
 round(-7.893) = </xsl:text>
 <xsl:value-of select="round(-7.893)"/>

 <xsl:text>
 round(avg(/report/brand/units)) = </xsl:text>
 <xsl:value-of select="round(avg(/report/brand/units))"/>

 <xsl:text>
 round('blue') = </xsl:text>
 <xsl:value-of select="round('blue')"/>

 </xsl:template>

</xsl:stylesheet>

When we process our XML document with this stylesheet, the results are:

Tests of the round() function:

 round(7.983) = 8
 round(-7.893) = -8
 round(avg(/report/brand/units)) = 18263
 round('blue') = NaN

If we change the <xsl:stylesheet> element to have version="2.0", the stylesheet won’t run
at all because round('blue') is a static error. We can add version="1.0" to the <xsl:value-
of> element so the element is processed in XSLT 1.0 mode. We can also use the number()
function to convert blue to a number. Here’s how the stylesheet looks:

<?xml version="1.0"?>
<!-- round2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 ...
 <xsl:text>
 [1.0] round('blue') = </xsl:text>
 <xsl:value-of version="1.0" select="round('blue')"/>

 <xsl:text>
 round(number('blue')) = </xsl:text>
 <xsl:value-of select="round(number('blue'))"/>
 </xsl:template>

</xsl:stylesheet>

The results are similar:

Tests of the round() function:
 ...
 [1.0] round('blue') = NaN
 round(number('blue')) = NaN

round( ) | 797

[2.0] round-half-to-even()
Returns the integer closest to the argument, with the exception that any value that ends
with .5 is rounded to the nearest even number.

Syntax
numeric? round-half-to-even(numeric?)
numeric? round-half-to-even(numeric?, $precision as xs:integer)

Inputs
A numeric value and an optional xs:integer specifying the number of digits of precision to
be used in the calculation. The numeric value must be of type xs:float, xs:double,
xs:decimal, or xs:integer. If it is not, the XSLT processor raises an error.

Output
The integer closest to the argument, with values ending in .5 rounded to the nearest even
number. With that exception, round-half-to-even() works the same as round():

• If the argument is positive infinity, then positive infinity is returned.

• If the argument is negative infinity, then negative infinity is returned.

• If the argument is positive zero, then positive zero is returned.

• If the argument is negative zero, then negative zero is returned.

• If the argument is between zero and –0.5, then negative zero is returned.

• If the argument is NaN (not a number), then NaN is returned.

If the $precision argument is used, the XSLT processor returns the number closest to
the value that is a multiple of 10 to the power of minus $precision. The value –2 rounds
the number to the nearest 100, while the value 2 rounds the number to the nearest .01.

The output value has the same datatype as the input value. In other words, the function
round-half-to-even(xs:integer) returns an xs:integer, while round-half-to-
even(xs:float) returns an xs:float.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 6.4, “Functions on Numeric
Values.”

Example
Here is a simple stylesheet that illustrates how round-half-to-even() works:

<?xml version="1.0"?>
<!-- round-half-to-even.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

798 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:template match="/">
 <xsl:text>
Tests of the round-half-to-even() function:
</xsl:text>

 <xsl:text>
 round-half-to-even(-0.5) = </xsl:text>
 <xsl:value-of select="round-half-to-even(-0.5)"/>

 <xsl:text>
 round-half-to-even(0.5) = </xsl:text>
 <xsl:value-of select="round-half-to-even(0.5)"/>

 <xsl:text>
 round-half-to-even(1.5) = </xsl:text>
 <xsl:value-of select="round-half-to-even(1.5)"/>

 <xsl:text>
 round-half-to-even(2.5) = </xsl:text>
 <xsl:value-of select="round-half-to-even(2.5)"/>

 <xsl:text>
 round-half-to-even(number('NaN')) = </xsl:text>
 <xsl:value-of select="round-half-to-even(number('NaN'))"/>

 <xsl:text>
 round-half-to-even</xsl:text>
 <xsl:text>(avg(/report/brand/units)) = </xsl:text>
 <xsl:value-of select="round-half-to-even(avg(/report/brand/units))"/>

 <xsl:text>
 round-half-to-even</xsl:text>
 <xsl:text>(avg(/report/brand/units), -2) = </xsl:text>
 <xsl:value-of
 select="round-half-to-even(avg(/report/brand/units), -2)"/>
 </xsl:template>

</xsl:stylesheet>

The stylesheet generates these results:

Tests of the round-half-to-even() function:

 round-half-to-even(-0.5) = 0
 round-half-to-even(0.5) = 0
 round-half-to-even(1.5) = 2
 round-half-to-even(2.5) = 2
 round-half-to-even(avg(/report/brand/units)) = 18263
 round-half-to-even(avg(/report/brand/units), -2) = 18300

Notice the effect of the $precision argument in the last line. The average sales figure has been
rounded to the nearest multiple of 100 (10 to the power of minus -2).

[2.0] seconds-from-dateTime()
Given an xs:dateTime value, returns its seconds value.

Syntax
xs:decimal? seconds-from-dateTime(xs:dateTime?)

Inputs
An xs:dateTime value.

[2.0] seconds-from-dateTime( ) | 799

Output
An xs:decimal representing the seconds component of the given xs:dateTime value. If the
argument is the empty sequence, this function returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the seconds-from-dateTime() function:

<?xml version="1.0"?>
<!-- seconds-from-datetime.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the seconds from an xs:dateTime:</xsl:text>
 <xsl:variable name="currentDateTime" as="xs:dateTime"
 select="current-dateTime()"/>
 <xsl:text>

 The current date and time is: </xsl:text>
 <xsl:value-of select="$currentDateTime"/>

 <xsl:text>

 The current seconds are: </xsl:text>
 <xsl:value-of select="seconds-from-dateTime($currentDateTime)"/>
 <xsl:text>,
 usually written as a whole number (</xsl:text>
 <xsl:value-of select="format-dateTime($currentDateTime, '[s01]')"/>
 <xsl:text>)</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The stylesheet creates these results:

Extracting the seconds from an xs:dateTime:

 The current date and time is: 2006-11-16T05:02:55.438-05:00

 The current seconds are: 55.438,
 usually written as a whole number (55)

See Also
The definitions of the [2.0] day-from-dateTime(), [2.0] format-dateTime(), [2.0] hours-from-
dateTime(), [2.0] minutes-from-dateTime(), [2.0] month-from-dateTime(), [2.0] timezone-
from-dateTime(), and [2.0] year-from-dateTime() functions.

800 | Appendix C: XSLT, XPath, and XQuery Function Reference

[2.0] seconds-from-duration()
Given an xs:duration value, returns the number of seconds in that duration.

Syntax
xs:decimal? seconds-from-duration(xs:duration?)

Inputs
An xs:duration value.

Output
An xs:decimal representing the seconds component of the given xs:duration. Be aware that
for an xs:yearMonthDuration, this function always returns 0 because there is no seconds com-
ponent of an xs:yearMonthDuration. Also, if the argument is the empty sequence, this function
returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the seconds-from-duration() function with all three types of
durations:

<?xml version="1.0"?>
<!-- seconds-from-duration.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the seconds component from durations:</xsl:text>

 <xsl:variable name="sampleDuration" as="xs:duration"
 select="xs:duration('P3Y8M2DT4H23M12.2S')"/>
 <xsl:variable name="sampleYearMonthDuration" as="xs:yearMonthDuration"
 select="xs:yearMonthDuration('P3Y8M')"/>
 <xsl:variable name="sampleDayTimeDuration" as="xs:dayTimeDuration"
 select="xs:dayTimeDuration('P2DT4H23M12.2S')"/>

 <xsl:text>

 A sample xs:duration: </xsl:text>
 <xsl:value-of select="$sampleDuration"/>
 <xsl:text>
 The seconds component of this duration is </xsl:text>
 <xsl:value-of select="seconds-from-duration($sampleDuration)"/>
 <xsl:text>.</xsl:text>

 <xsl:text>

 A sample xs:yearMonthDuration: </xsl:text>
 <xsl:value-of select="$sampleYearMonthDuration"/>

[2.0] seconds-from-duration( ) | 801

 <xsl:text>
 The seconds component of this duration is </xsl:text>
 <xsl:value-of select="seconds-from-duration($sampleYearMonthDuration)"/>
 <xsl:text>.</xsl:text>

 <xsl:text>

 A sample xs:dayTimeDuration: </xsl:text>
 <xsl:value-of select="$sampleDayTimeDuration"/>
 <xsl:text>
 The seconds component of this duration is </xsl:text>
 <xsl:value-of select="seconds-from-duration($sampleDayTimeDuration)"/>
 <xsl:text>.</xsl:text>
 </xsl:template>

</xsl:stylesheet>

This stylesheet generates these results:

Extracting the seconds component from durations:

 A sample xs:duration: P3Y8M2DT4H23M12.2S
 The seconds component of this duration is 12.2.

 A sample xs:yearMonthDuration: P3Y8M
 The seconds component of this duration is 0.

 A sample xs:dayTimeDuration: P2DT4H23M12.2S
 The seconds component of this duration is 12.2.

As we mentioned earlier, extracting the seconds component from an xs:yearMonthDuration
returns 0.

See Also
The definitions of the [2.0] days-from-duration(), [2.0] hours-from-duration(), [2.0]
minutes-from-duration(), [2.0] months-from-duration(), and [2.0] years-from-duration()
functions.

[2.0] seconds-from-time()
Given an xs:time value, returns its seconds component.

Syntax
xs:decimal? seconds-from-time(xs:time?)

Input
An xs:time value.

Output
An xs:decimal representing the seconds component of the given xs:time value. If the argument
is the empty sequence, this function returns the empty sequence.

802 | Appendix C: XSLT, XPath, and XQuery Function Reference

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
Here is a short stylesheet that uses the seconds-from-time() function:

<?xml version="1.0"?>
<!-- seconds-from-time.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the seconds component from an xs:time:</xsl:text>
 <xsl:variable name="currentTime" as="xs:time" select="current-time()"/>
 <xsl:text>

 The current time is: </xsl:text>
 <xsl:value-of select="$currentTime"/>

 <xsl:text>

 The current seconds are: </xsl:text>
 <xsl:value-of select="seconds-from-time($currentTime)"/>
 <xsl:text>,
 usually written as a whole number (</xsl:text>
 <xsl:value-of select="format-time($currentTime, '[s01]')"/>
 <xsl:text>)</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The stylesheet generates these results:

Extracting the seconds component from an xs:time:

 The current time is: 05:07:40.307-05:00

 The current seconds are: 40.307,
 usually written as a whole number (40)

Notice that the first result was generated by the seconds-from-time() function, while the
second was generated by format-time().

See Also
The definitions of the [2.0] hours-from-time(), [2.0] format-time(), [2.0] minutes-from-
time(), [2.0] seconds-from-time(), and [2.0] timezone-from-time() functions.

starts-with()
Determines whether the first argument string begins with the second argument.

starts-with( ) | 803

Syntax
[1.0] boolean starts-with(string, string)
[2.0] xs:boolean starts-with(xs:string, xs:string)
[2.0] xs:boolean starts-with(xs:string, xs:string, $collation as xs:string)

Inputs
Two strings.

[2.0] In XSLT 2.0, there is an optional third argument—the name of a collation that specifies
how strings are compared.

Output
Assuming both arguments are not zero-length strings, if the first string begins with the second,
starts-with() returns the boolean value true; otherwise, it returns false. If the second string
is a zero-length string, starts-with() returns true. If the first string and the second string are
both zero-length strings, starts-with() returns true. If the first string is a zero-length string
but the second string is not, starts-with() returns false.

Defined in
[1.0] XPath section 4.2, “String Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 7.5, “Functions Based on
Substring Matching.”

Example
We’ll use this sample XML document:

<?xml version="1.0"?>
<!-- favorites.xml -->
<list>
 <title>A few of my favorite albums</title>
 <listitem>A Love Supreme</listitem>
 <listitem>Beat Crazy</listitem>
 <listitem>Here Come the Warm Jets</listitem>
 <listitem>Kind of Blue</listitem>
 <listitem>London Calling</listitem>
 <listitem>Remain in Light</listitem>
 <listitem>The Joshua Tree</listitem>
 <listitem>The Indestructible Beat of Soweto</listitem>
</list>

This stylesheet outputs the contents of all <listitem> elements that begin with the string
“The”:

<?xml version="1.0"?>
<!-- starts-with.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">

804 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text>
A test of the starts-with() </xsl:text>
 <xsl:text>function:

</xsl:text>
 <xsl:for-each select="list/listitem[starts-with(., 'The')]">
 <xsl:number count="listitem" format="1. "/>
 <xsl:value-of select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Our stylesheet generates these results:

A test of the starts-with() function:

7. The Joshua Tree
8. The Indestructible Beat of Soweto

We used starts-with() inside an XPath predicate expression to select all of the <listitem>
nodes that begin with The.

The <xsl:number> element indicates the position of each item in the original list. Using
position() to generate item numbers labels the items as 1 and 2 because these are the only
two nodes being processed inside the <xsl:for-each> element.

[2.0] The starts-with function is one of several that can contain an optional collation. How
that collation is specified varies from one processor to the next. In Saxon this is done with a
URI that includes the name of the Java class that performs the collation. Here’s an example
that compares the German words Straße and Strasse. In the default collation, these two words
are different; using the German collation, they’re the same. Here’s the stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!-- starts-with2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="string1" select="'Straße'"/>
 <xsl:variable name="string2" select="'Strasse'"/>

 <xsl:text>
A test of the starts-with() function:
</xsl:text>

 <xsl:text> starts-with('</xsl:text>
 <xsl:value-of select="$string1"/>
 <xsl:text>', '</xsl:text>
 <xsl:value-of select="$string2"/>
 <xsl:text>') = </xsl:text>
 <xsl:value-of select="starts-with($string1, $string2)"/>
 <xsl:text>
</xsl:text>

 <xsl:text> starts-with('</xsl:text>
 <xsl:value-of select="$string1"/>
 <xsl:text>', '</xsl:text>
 <xsl:value-of select="$string2"/>

starts-with( ) | 805

 <xsl:text>', [German collation]) = </xsl:text>
 <xsl:value-of
 select="starts-with($string1, $string2,
 concat('http://saxon.sf.net/collation?',
 'class=com.oreilly.xslt.GermanCollation;'))"/>
 <xsl:text>
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

And here are the results:

A test of the starts-with() function:
 starts-with('Straße', 'Strasse') = false
 starts-with('Straße', 'Strasse', [German collation]) = true

Using the collation we defined, the two spellings of Strasse are the same; using the default
collation, they’re not. (To keep the listing within the margins of the page, we used the
concat() function to combine the two halves of the Saxon collation URI.) See “The docu-
ment( ) Function and Sorting” in Chapter 8 for more information.

[2.0] static-base-uri()
Returns the value of the base URI property from the static context. The base URI property
can change from one XML element to the next, but static-base-uri() returns the same value
regardless of the location in the input document. In Saxon-J 9.0.0.3, the static base URI is the
base URI of the stylesheet. Altova XML works similarly, although the format of the URI is
not exactly the same.

Syntax
xs:anyURI? static-base-uri()

Inputs
None.

Outputs
An xs:anyURI that represents the static base URI. If the base URI property is not defined in
the static context, static-base-uri() returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 16, “Context Functions.”

Example
To illustrate how static-base-uri() works, we’ll reuse our earlier document that used the
xml:base attribute to define different base URIs throughout the document:

<?xml version="1.0" encoding="utf-8"?>
<!-- xmlbase.xml -->
<cars>

806 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <manufacturer name="Chevrolet"
 xml:base="http://www.chevrolet.com/">
 <car>Cavalier</car>
 <car>Corvette</car>
 <car>Impala</car>
 <car>Malibu</car>
 </manufacturer>
 <manufacturer name="Ford"
 xml:base="http://www.ford.com/">
 <car>Pinto</car>
 <car>Mustang</car>
 <car>Taurus</car>
 </manufacturer>
 <manufacturer name="Volkswagen"
 xml:base="http://www.vw.com/">
 <car>Beetle</car>
 <car>Jetta</car>
 <car>Passat</car>
 <car>Touraeg</car>
 </manufacturer>
</cars>

Here’s our stylesheet. We call the static-base-uri() function at the document root, and we
also call it for the <manufacturer> elements that change the base URI:

<?xml version="1.0"?>
<!-- static-base-uri.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the static-base-uri() function:</xsl:text>

 <xsl:text>

 The static base URI for the </xsl:text>
 <xsl:text>document root is:
 </xsl:text>
 <xsl:value-of select="static-base-uri()"/>
 <xsl:text>

</xsl:text>

 <xsl:for-each select="/cars/manufacturer">
 <xsl:text> The static base URI for manufacturer </xsl:text>
 <xsl:value-of select="@name"/>
 <xsl:text> is:
 </xsl:text>
 <xsl:value-of select="static-base-uri()"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Here are our results:

Tests of the static-base-uri() function:

 The static base URI for the document root is:
 file:/C://static-base-uri.xsl

[2.0] static-base-uri( ) | 807

 The static base URI for manufacturer Chevrolet is:
 file:/C://static-base-uri.xsl
 The static base URI for manufacturer Ford is:
 file:/C://static-base-uri.xsl
 The static base URI for manufacturer Volkswagen is:
 file:/C://static-base-uri.xsl

As you can see, the static-base-uri() function always returns the same value (the URI of
the stylesheet), regardless of where we are in the XML document or whether any xml:base
attributes have been defined.

string()
Returns the string value of the argument.

Syntax
[1.0] string string(object)
[2.0] xs:string string(item()?)

Inputs
An [1.0]object or [2.0] item. The argument is converted to a string as described in the following
subsection.

Output
[1.0] A string. The input argument is converted to a string as follows:

• If the argument is a node-set, the first node in the node-set is converted to a string.
(The first node in the node-set is the one that occurs first in document order.) For
an element or root node, this means all of its text content. For an attribute, this
means its value.

• If the argument is a number, it is converted to a string as follows:

— The value NaN is converted to the string "NaN".

— Positive zero is converted to the string "0".

— Negative zero is converted to the string "0".

— Positive infinity is converted to the string "Infinity".

— Negative infinity is converted to the string "–Infinity".

— An integer is converted to a string representing that integer, using no decimal
point and no leading zeros. If the integer is negative, it will be preceded by a
minus sign (–).

— Any other number is converted to a string with a decimal point—at least one
number before the decimal point and at least one number after the decimal
point. If the number is negative, it will be preceded by a minus sign (–). There
will not be any leading zeros before the decimal point (with the possible

808 | Appendix C: XSLT, XPath, and XQuery Function Reference

exception of the one required digit before the decimal point). After the decimal
point, there will be only as many digits as needed to distinguish this number
from all other numeric values defined by the IEEE 754 standard, the same
standard used by the Java float and double types.

• If the argument is a boolean value, the value true is represented by the string
"true" and the value false is represented by the string "false".

• If the argument is any other type, it is converted to a string in a way that depends
on that type. See the documentation for your XSLT processor to find out what
other types are supported and how they are converted to strings.

[2.0] An xs:string. Because XSLT 2.0 supports more datatypes than XSLT 1.0, it’s not
surprising that the rules for converting values to strings are more complicated. The
rules are:

• If the item is an xs:string or any datatype derived from xs:string, the argument
is returned without any changes.

• If the item is a sequence, it must be either the empty sequence or a singleton. It is
an error to call string() with a sequence containing more than one item. This is a
major change from XSLT 1.0, in which string() (and a number of other functions)
simply took the first item in the node-set and processed it. If you are migrating an
XSLT 1.0 stylesheet to XSLT 2.0, you’ll have to change this code:

<xsl:value-of select="string(items/item/price)"/>

to this:

<xsl:value-of select="string((items/item/price)[1])"/>

If the string() function doesn’t have an argument, the context item is used. In
other words, string() is the same as string(.). Calling string() with the empty
sequence returns a zero-length string.

• If the item is numeric (xs:integer, xs:decimal, xs:float, or xs:double, or anything
derived from them), it is converted to a string using these rules:

— If the value is NaN (not a number), it is converted to the string "NaN".

— If the value is positive infinity, it is converted to the string "INF".

— If the value is negative infinity, it is converted to the string "–INF".

— If the value is positive zero, it is converted to the string 0.

— If the value is negative zero, it is converted to the string –0.

The XQuery 1.0 and XPath 2.0 Functions and Operators spec goes into exhaustive
detail about how various numeric datatypes are converted to strings. For example,
an xs:integer value will not have a decimal point when it is converted to a string.
There are also rules for how a mantissa and an exponent can be formatted, how
xs:decimal values with no digits after the decimal point are handled, and many,
many other rules. See the spec for all the details.

string( ) | 809

• If the item is an xs:date, xs:time, or xs:dateTime, the string value is the default
form of those datatypes. For example, an xs:date is represented as YYYY-MM-DD-Z
in most cases (the –Z represents the timezone if one is defined), an xs:time is
represented as HH:MM:SS-Z (where Z represents the timezone), and a xs:dateTime is
represented as YYYY-MM-DDTHH:MM:SS-Z.

The string() function returns the raw form of these types; the format-date(),
format-dateTime(), and format-time() functions are more useful ways of con-
verting these datatypes to strings.

• If the item is an xs:dayTimeDuration, xs:yearMonthDuration, or a basic
xs:duration, the string value is the default format. An xs:dayTimeDuration is
represented as P2DT4H23M12.2S (2 days, 4 hours, 23 minutes, and 12.2 seconds), for
example. The functions days-from-duration(), hours-from-duration(),
minutes-from-duration(), months-from-duration(), seconds-from-duration(),
and years-from-duration() are much more useful ways of converting these data-
types to strings.

• If the item is an xs:anyURI, it is returned as its string value. None of the characters
in the string value are escaped.

• For any other XML Schema datatypes that have a default format (typically known
as the canonical representation), they are converted to xs:string values using that
default format. The process for converting any datatypes that do not have a
canonical representation to strings is implementation-defined.

Defined in
[1.0] XPath section 4.2, “String Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 2, “Accessors,” with the
rules for converting datatypes to strings defined in section 17.1.2, “Casting to xs:string and
xs:untypedAtomic.”

Example
We’ll use our document of chocolate bar sales to test the string() function:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>

810 | Appendix C: XSLT, XPath, and XQuery Function Reference

 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

We’ll test the string() function with a variety of arguments:

<?xml version="1.0"?>
<!-- string.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the string() function:</xsl:text>

 <xsl:text>

 string(count(/report/brand)) = </xsl:text>
 <xsl:value-of select="string(count(/report/brand))"/>

 <xsl:text>

 string(true()) = </xsl:text>
 <xsl:value-of select="string(true())"/>

 <xsl:text>

 string(count(/report</xsl:text>
 <xsl:text>/brand/units[. > 20000])) = </xsl:text>
 <xsl:value-of
 select="string(count(/report/brand/units[. > 20000]))"/>

 <xsl:text>

 string(/report/brand/units</xsl:text>
 <xsl:text>[. > 20000][1]/../name) = </xsl:text>
 <xsl:value-of
 select="string(/report/brand/units[. > 20000][1]/../name)"/>
 </xsl:template>

</xsl:stylesheet>

Here are the results of our stylesheet:

Tests of the string() function:

 string(count(/report/brand)) = 5

 string(true()) = true

 string(count(/report/brand/units[. > 20000])) = 2

 string(/report/brand/units[. > 20000][1]/../name) = Lindt

[2.0] Converting a value to a string is usually pretty straightforward. Here is another stylesheet
that converts some of XSLT 2.0’s datatypes to strings:

string( ) | 811

<?xml version="1.0"?>
<!-- string2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
More tests of the string() function:</xsl:text>

 <xsl:text>

 string(xs:double(2718.28E-3)) = </xsl:text>
 <xsl:value-of select="string(xs:double(2718.28E-3))"/>

 <xsl:text>

 string(current-time()) = </xsl:text>
 <xsl:value-of select="string(current-time())"/>

 <xsl:text>

 string(xs:yearMonthDuration</xsl:text>
 <xsl:text>('P3Y8M')) = </xsl:text>
 <xsl:value-of
 select="string(xs:yearMonthDuration('P3Y8M'))"/>

 <xsl:text>

 string(xs:date('1995-04-21')) = </xsl:text>
 <xsl:value-of
 select="string(xs:date(’1995-04-21'))"/>

 <xsl:variable name="topBrands" as="xs:string*"
 select="/report/brand/units[. > 15000]/../name/string()"/>
 <xsl:text>

 Top-selling brands:
 </xsl:text>
 <xsl:value-of select="$topBrands" separator=", "/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

More tests of the string() function:

 string(xs:double(2718.28E-3)) = 2.71828

 string(current-time()) = 06:38:08.438-04:00

 string(xs:yearMonthDuration('P3Y8M')) = P3Y8M

 string(xs:date('1995-04-21')) = 1995-04-21

 Top-selling brands:
 Lindt, Valrhona, Ghirardelli

The stylesheet also uses the string() function as the last step in an XPath expression. The
expression /report/brand/units[. > 15000]/../name/string() finds all of the <units> el-
ements with a value greater than 15000, and then converts the text of their sibling <name>
elements into strings, returning a sequence of strings. Outputting this sequence with the
<xsl:value-of> element lists the three brands (Lindt, Valrhona, and Ghirardelli).

812 | Appendix C: XSLT, XPath, and XQuery Function Reference

[2.0] string-join()
Given a sequence of strings and a separator string, returns a string containing each string from
the sequence, separated by the second string.

Syntax
xs:string string-join(xs:string*, xs:string)

Inputs
A sequence of xs:strings and a string used as a separator.

Outputs
An xs:string that contains all of the strings in the sequence, separated by the second argu-
ment. If the second string is a zero-length string, the strings in the sequence are concatenated
without a separator. If the sequence is the empty sequence, string-join() returns a zero-
length string.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.4, Functions on String Values.

Example
Here is a stylesheet that tests the string-join() function:

<?xml version="1.0"?>
<!-- string-join.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the string-join() function:
</xsl:text>

 <xsl:variable name="testSequence" as="xs:string*">
 <xsl:sequence
 select="('Brooklyn', 'Manhattan', 'Williamsburg',
 'George Washington', 'Tribeca')"/>
 </xsl:variable>

 <xsl:text>
 Our sequence of strings:
 </xsl:text>
 <xsl:value-of select="$testSequence" separator="
 "/>

 <xsl:text>

 string-join($testSequeqnce, ' - ') = </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="string-join($testSequence, ' - ')"/>

 <xsl:text>

 Courtesy of the specs, here's </xsl:text>
 <xsl:text>another example:

 Ancestors of all </xsl:text>
 <xsl:text>the elements:
 using string-join
</xsl:text>

[2.0] string-join( ) | 813

 <xsl:text> (for $i in unordered</xsl:text>
 <xsl:text>(ancestor-or-self::*) return name($i), </xsl:text>
 <xsl:text>
 '/'):
</xsl:text>

 <xsl:for-each select="//*">
 <xsl:text>
 </xsl:text>
 <xsl:value-of
 select="string-join(for $i in ancestor-or-self::*
 return name($i), '/')"/>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

A test of the string-join() function:

 Our sequence of strings:
 Brooklyn
 Manhattan
 Williamsburg
 George Washington
 Tribeca

 string-join($testSequeqnce, ' - ') =
 Brooklyn - Manhattan - Williamsburg - George Washington - Tribeca

 Courtesy of the specs, here's another example:

 Ancestors of all the elements:
 using string-join
 (for $i in unordered(ancestor-or-self::*) return name($i),
 '/'):

 report
 report/title
 report/brand
 report/brand/name
 report/brand/units
 report/brand
 report/brand/name
 report/brand/units
 report/brand
 report/brand/name
 report/brand/units
 report/brand
 report/brand/name
 report/brand/units
 report/brand
 report/brand/name
 report/brand/units

814 | Appendix C: XSLT, XPath, and XQuery Function Reference

string-length()
Returns the number of characters in the string passed in as the argument to this function. If
no argument is specified, the context node is converted to a string and the length of that string
is returned.

Syntax
[1.0] number string-length(string?)
[2.0] xs:integer string-length()
[2.0] xs:integer string-length(string?)

Inputs
An optional string.

Output
The number of characters defined in the string (an xs:integer in XSLT 2.0). If no string is
specified as an argument, the context node is used. In other words, string-length() and
string-length(.) are equivalent.

[2.0] If the string is the empty sequence, the value 0 is returned.

Defined in
[1.0] XPath section 4.2, “String Functions.”

[2.0] XQuery 1.0 and XPath 2.0 section 7.4, “Functions on String Values.”

Example
The following example demonstrates the results of invoking the string-length() function
against various argument types. Here’s the XML document we’ll use for our example:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>

string-length( ) | 815

 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

We’ll process this document with the following stylesheet:

<?xml version="1.0"?>
<!-- string-length.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the string-length() function:</xsl:text>

 <xsl:text>

 string-length() = </xsl:text>
 <xsl:value-of select="string-length()"/>
 <xsl:text>
 string-length(/report) = </xsl:text>
 <xsl:value-of select="string-length(/report)"/>
 <xsl:text>
 string-length(/report/brand[1]) = </xsl:text>
 <xsl:value-of select="string-length(/report/brand[1])"/>
 <xsl:text>
 string-length(/report/brand[1]/name) = </xsl:text>
 <xsl:value-of select="string-length(/report/brand[1]/name)"/>

 <xsl:text>
</xsl:text>
 <xsl:for-each select="/report/brand">
 <xsl:text>
 The name of brand #</xsl:text>
 <xsl:value-of select="position()"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text>, has </xsl:text>
 <xsl:value-of select="string-length(name)"/>
 <xsl:text> characters.</xsl:text>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

Here are the results of our stylesheet:

Tests of the string-length() function:

 string-length() = 168
 string-length(/report) = 168
 string-length(/report/brand[1]) = 23
 string-length(/report/brand[1]/name) = 5

 The name of brand #1, Lindt, has 5 characters.
 The name of brand #2, Callebaut, has 9 characters.
 The name of brand #3, Valrhona, has 8 characters.
 The name of brand #4, Perugina, has 8 characters.
 The name of brand #5, Ghirardelli, has 11 characters.

When we invoked the string-length() function without any arguments, the root node (in
XSLT 2.0, the document node) was converted to a string, and then the length of that string

816 | Appendix C: XSLT, XPath, and XQuery Function Reference

was returned. (The context node is the root node at this point.) The string length of the root
element (<report>) has the same value because there is no text outside the <report> element.
Remember, the string value of any node is the concatenation of all the text in that node and
all of its descendants.

[2.0] string-to-codepoints()
Converts a string into a sequence of Unicode codepoints.

Syntax
xs:integer* string-to-codepoints(xs:string?)

Inputs
An xs:string.

Output
A sequence of xs:integers, each of which represents a Unicode codepoint. If the input string
is of zero length or is the empty sequence, the empty sequence is returned.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.2, “Functions to Assemble and
Disassemble Strings.”

Example
Here’s a short stylesheet that converts strings into sequences of integers:

<?xml version="1.0" encoding="UTF-8"?>
<!-- string-to-codepoints.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the string-to-codepoints() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 string-to-codepoints('Lily') = </xsl:text>
 <xsl:value-of
 select="string-to-codepoints('Lily')" separator=", " />

 <xsl:text>
 string-to-codepoints('Straße') = </xsl:text>
 <xsl:value-of
 select="string-to-codepoints('Straße')" separator=", "/>
 </xsl:template>

</xsl:stylesheet>

[2.0] string-to-codepoints( ) | 817

The stylesheet generates these results:

Tests of the string-to-codepoints() function:

 string-to-codepoints('Lily') = 76, 105, 108, 121
 string-to-codepoints('Straße') = 83, 116, 114, 97, 223, 101

[2.0] subsequence()
Returns a contiguous portion of a sequence.

Syntax
item()* subsequence($sourceSeq as item()*, $startingLoc as xs:double)
item()* subsequence($sourceSeq as item()*, $startingLoc as xs:double,
 $length as xs:double)

Inputs
A sequence and a starting position. An optional third argument specifies the number of items
to be returned. The second and third arguments are xs:doubles because many numeric
operations on untyped data return xs:double.

Some details about how the two numeric arguments work:

• If the starting position is larger than the number of items in the sequence, the empty
sequence is returned.

• If the sequence is the empty sequence, the empty sequence is returned.

Outputs
A new sequence containing the specified items.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.1, “General Functions and
Operators on Sequences.”

Example
Here’s a stylesheet that illustrates how subsequence() works:

<?xml version="1.0"?>
<!-- subsequence.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:variable name="testSequence" as="item()*">
 <xsl:sequence select="(3, 4, 5)"/>

818 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:element name="currentDate">
 <xsl:value-of select="current-date()"/>
 </xsl:element>
 <xsl:element name="currentTime">
 <xsl:value-of select="current-time()"/>
 </xsl:element>
 <xsl:element name="integerTest">
 <xsl:value-of select="xs:integer(8)"/>
 </xsl:element>
 <xsl:sequence select="('blue', 'red')"/>
 <xsl:element name="floatTest1">
 <xsl:value-of select="xs:float(3.14)"/>
 </xsl:element>
 <xsl:element name="floatTest2">
 <xsl:value-of select="xs:float(42)"/>
 </xsl:element>
 <xsl:element name="dateTest">
 <xsl:value-of select="xs:date('1995-04-21')"/>
 </xsl:element>
 </xsl:variable>

 <xsl:variable name="emptySequence" as="item()*">
 <xsl:sequence select="()"/>
 </xsl:variable>

 <xsl:text>
Here is a test of the subsequence() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 Our original sequence is:

 </xsl:text>
 <xsl:value-of select="$testSequence"
 separator="
 "/>

 <xsl:text>

 subsequence($testSequence, 8) = </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="subsequence($testSequence, 8)"
 separator="
 "/>

 <xsl:text>

 subsequence($testSequence, 3, 3) = </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="subsequence($testSequence, 3, 3)"
 separator="
 "/>

 <xsl:text>

 subsequence($testSequence, 1, 1) = </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="subsequence($testSequence, 1, 1)"
 separator="
 "/>

 <xsl:text>

 subsequence($testSequence, -1, 3) = </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="subsequence($testSequence, -1, 3)"
 separator="
 "/>

 <xsl:text>

 subsequence($testSequence, 14, 2) = </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="subsequence($testSequence, 14, 2)"

[2.0] subsequence( ) | 819

 separator="
 "/>

 <xsl:text>

 subsequence($testSequence, 2.3, 1.7) = </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="subsequence($testSequence, 2.3, 1.7)"
 separator="
 "/>

 <xsl:text>

 subsequence($emptySequence, 1) = </xsl:text>
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="subsequence($emptySequence, 1)"/>
 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here is a test of the subsequence() function:

 Our original sequence is:

 3
 4
 5
 2007-02-19-05:00
 11:19:24.734-05:00
 8
 blue
 red
 3.14
 42
 1995-04-21

 subsequence($testSequence, 8) =
 red
 3.14
 42
 1995-04-21

 subsequence($testSequence, 3, 3) =
 5
 2007-02-19-05:00
 11:19:24.734-05:00

 subsequence($testSequence, 1, 1) =
 3

 subsequence($testSequence, -1, 3) =
 3

 subsequence($testSequence, 14, 2) =

 subsequence($testSequence, 2.3, 1.7) =
 4
 5

820 | Appendix C: XSLT, XPath, and XQuery Function Reference

 subsequence($emptySequence, 1) =

In the first example, we start at the eighth item in the sequence and return all of the subsequent
items. Next, we start at the third item and return items 3, 4, and 5. To return a single item,
we use 1, 1 to get one item starting at the first item. Using a negative start position can actually
return items, as we see in the example –1, 3. The three items we’re requesting are items –1,
0, and 1. Item 1 is the only one that exists, so that’s what subsequence() returns. In the next
example, the starting position of 14 returns the empty sequence because there are less than
14 items. Using decimals for the numeric arguments means they are rounded to the nearest
whole number, so this is the same as 2, 2. Finally, calling subsequence() against the empty
sequence returns the empty sequence.

substring()
Returns a portion of a given string.

Syntax
[1.0] string substring($sourceString as string, $startingLoc as number,
 $length as number?)
[2.0] xs:string substring($sourceString as xs:string?,
 $startingLoc as xs:double)
[2.0] xs:string substring($sourceString as xs:string?,
 $startingLoc as xs:double,
 $length as xs:double)

Inputs
The substring() function takes a string and one or two numbers as arguments. The string is
the string from which the substring will be extracted. The second argument is used as the
starting position of the returned substring, and the optional third argument specifies how
many characters are returned.

Output
With two arguments (a string and a starting position), the substring() function returns all
characters in the string whose position is greater than or equal to the starting position. Be
aware that the first character in a string is at position 1, not 0.

With three arguments (a string, a starting position, and a length), the substring() function
returns all characters in the string whose position is greater than or equal to the starting
position or whose position is less than the starting position plus the length.

Normally, the arguments to the substring() function are integers, although they may be
floating-point numbers or more complicated expressions. In the case of floating-point num-
bers, the number is converted to an integer by the round() function.

Defined in
[1.0] XPath section 4.2, “String Functions.”

substring( ) | 821

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 7.4, “Functions on String
Values.”

Example
Here’s the stylesheet we’ll use to demonstrate the substring() function:

<?xml version="1.0"?>
<!-- substring.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the substring() function:</xsl:text>

 <xsl:text>

 1. substring('Now is the time', 4) = "</xsl:text>
 <xsl:value-of select="substring('Now is the time', 4)"/>
 <xsl:text>"
</xsl:text>
 <xsl:text> 2. substring('Now is the time', 4, 6) = "</xsl:text>
 <xsl:value-of select="substring('Now is the time', 4, 6)"/>
 <xsl:text>"
</xsl:text>

 <!-- Xalan chokes on this example, Saxon and MSXSL don’t. -->
 <xsl:text> 3. substring('Now is the time', 8, -6) = "</xsl:text>
 <xsl:value-of select="substring('Now is the time', 8, -6)"/>
 <xsl:text>"
</xsl:text>
 <xsl:text> 4. substring('Now is the time', -3, 6) = "</xsl:text>
 <xsl:value-of select="substring('Now is the time', -3, 6)"/>
 <xsl:text>"
</xsl:text>
 <xsl:text> 5. substring('Now is the time', 54, 6) = "</xsl:text>
 <xsl:value-of select="substring('Now is the time', 54, 6)"/>
 <xsl:text>"

</xsl:text>
 <xsl:text> 6. substring('Now is the time', 1.7, 6.4) = "</xsl:text>
 <xsl:value-of select="substring('Now is the time', 1.7, 6.4)"/>
 <xsl:text>"
</xsl:text>
 <xsl:text> 7. substring('Now is the time', 1.7, 6.5) = "</xsl:text>
 <xsl:value-of select="substring('Now is the time', 1.7, 6.5)"/>
 <xsl:text>"

</xsl:text>
 <xsl:text> count(document('')//*) = </xsl:text>
 <xsl:value-of select="count(document('')//*)"/>
 <xsl:text>

 8. substring('Here is a really, </xsl:text>
 <xsl:text>really, really long string',</xsl:text>
 <xsl:text>
 count(document('')//*)) = "</xsl:text>
 <xsl:value-of
 select="substring('Here is a really, really, really long string',
 count(document('')//*))"/>
 <xsl:text>"
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

When using the Saxon or MSXSL processor, here are the results:

822 | Appendix C: XSLT, XPath, and XQuery Function Reference

Tests of the substring() function:

 1. substring('Now is the time', 4) = " is the time"
 2. substring('Now is the time', 4, 6) = " is th"
 3. substring('Now is the time', 8, -6) = ""
 4. substring('Now is the time', -3, 6) = "No"
 5. substring('Now is the time', 54, 6) = ""

 6. substring('Now is the time', 1.7, 6.4) = "ow is "
 7. substring('Now is the time', 1.7, 6.5) = "ow is t"

 count(document('')//*) = 32

 8. substring('Here is a really, really, really long string',
 count(document('')//*)) = "y long string"

We’ll look at each test case individually:

1. The first test case returns all the characters whose position is >= 4.

2. The second test case returns all the characters whose position is >= 4 and < 10.
(Remember, the starting value and the length are added together to determine the
upper bound of the substring.)

3. The third test case returns all the characters whose position is >= 8 and < 2. This
useless range of characters is, of course, empty.

4. This test returns all the characters whose position is >= –3 and < 3. Even though
starting from a negative position seems as though it would return nothing, posi-
tions 1 and 2 fall into the requested range.

5. This test returns nothing because the starting position is greater than the length of
the string.

6. This test case uses floating-point numbers for the starting position and the length.
The two numbers are rounded, meaning this is equivalent to substring('Now is
the time', 2, 6). All characters whose positions are >= 2 and < 8 are returned.

7. This test case also uses floating-point numbers. In this case, the second number
(6.5) is rounded to 7, making this equivalent to substring('Now is the time', 2,
7). Characters whose positions are >= 2 and < 9 are returned.

8. For the final two test cases, we use a more complicated XPath expression
(count(document('')//*)) to generate a number. This value is the number of ele-
ments in the stylesheet itself. This test case returns all characters whose position
is >= 36.

A final note: Xalan raises an error with the example substring('Now is the time', 8,
–6):

XSLT Error (javax.xml.transform.TransformerException):
java.lang.StringIndexOutOfBoundsException:
String index out of range: -6

substring( ) | 823

Although this is an error in Xalan’s implementation, it does make the point that passing
unreasonable data to a function can lead to unpleasant results.

substring-after()
Given a data string and a search string, returns the portion of the data string after the first
occurrence of the search string. If the search string is not found, the substring-after() func-
tion returns a zero-length string.

Syntax
[1.0] string substring-after(string, string)
[2.0] xs:string substring-after(xs:string?, xs:string?)
[2.0] xs:string substring-after(xs:string?, xs:string?,
 $collation as xs:string)

Inputs
Two strings. The first string is the data string to be searched, and the second is the search
string. substring-after() looks for the search string in the data string.

[2.0] In XSLT 2.0, there is an optional third argument: the name of a collation that specifies
how strings are compared.

Output
The portion of the data string that occurs after the first occurrence of the search string. If the
search string does not appear in the data string, the function returns an empty string. If the
second string is a zero-length string, substring-after() returns a zero-length string. The
function also returns a zero-length string if the first string is shorter than the second string.

Defined in
[1.0] XPath section 4.2, “String Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 7.5, “Functions Based on
Substring Matching.”

Example
Here is a sample stylesheet that uses substring-after():

<?xml version="1.0"?>
<!-- substring-after1.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the substring-after() </xsl:text>
 <xsl:text>function:

</xsl:text>

 <xsl:text> substring-after('Abracadabra', </xsl:text>

824 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text>'bra') = "</xsl:text>
 <xsl:value-of
 select="substring-after('Abracadabra', 'bra')"/>
 <xsl:text>"
</xsl:text>

 <xsl:text> substring-after('Abracadabra', </xsl:text>
 <xsl:text>'abra') = "</xsl:text>
 <xsl:value-of
 select="substring-after('Abracadabra', 'abra')"/>
 <xsl:text>"
</xsl:text>

 <xsl:text> substring-after('Abracadabra', </xsl:text>
 <xsl:text>'A') = "</xsl:text>
 <xsl:value-of
 select="substring-after('Abracadabra', 'A')"/>
 <xsl:text>"
</xsl:text>

 <xsl:text> substring-after('Abracadabra', </xsl:text>
 <xsl:text>'A') = "</xsl:text>
 <xsl:value-of
 select="substring-after('Abracadabra', 'a')"/>
 <xsl:text>"
</xsl:text>

 <xsl:text> substring-after('Abracadabra', </xsl:text>
 <xsl:text>'') = "</xsl:text>
 <xsl:value-of
 select="substring-after('Abracadabra', '')"/>
 <xsl:text>"
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The stylesheet produces these results:

A test of the substring-after() function:

 substring-after('Abracadabra', 'bra') = "cadabra"
 substring-after('Abracadabra', 'abra') = ""
 substring-after('Abracadabra', 'A') = "bracadabra"
 substring-after('Abracadabra', 'A') = "cadabra"
 substring-after('Abracadabra', '') = "Abracadabra"

As a second example, here’s an XSLT 2.0 stylesheet that uses a custom collation:

<?xml version="1.0"?>
<!-- substring-after2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Another test of the substring-after() </xsl:text>
 <xsl:text>function:

</xsl:text>

 <xsl:text> substring-after('Schoenaicherstrasse', </xsl:text>
 <xsl:text>'Schön') =
 "</xsl:text>

substring-after( ) | 825

 <xsl:value-of
 select="substring-after('Schoenaicherstrasse', 'Schön')"/>
 <xsl:text>"
</xsl:text>

 <xsl:text> substring-after('Schoenaicherstrasse', </xsl:text>
 <xsl:text>'Schön', [German collation]) =
 "</xsl:text>
 <xsl:value-of
 select="substring-after('Schoenaicherstrasse', 'Schön',
 concat('http://saxon.sf.net/collation?',
 ‘class=com.oreilly.xslt.GermanCollation;'))"/>
 <xsl:text>"
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The stylesheet generates these results:

Another test of the substring-after() function:

 substring-after('Schoenaicherstrasse', 'Schön') =
 ""
 substring-after('Schoenaicherstrasse', 'Schön', [German collation]) =
 "aicherstrasse"

The German umlaut-o character (ö) is equivalent to oe. The default collation doesn’t recognize
this, but our custom collation does. (To keep the listing within the margins of the page, we
used the concat() function to combine the two halves of the Saxon collation URI.) See “The
document( ) Function and Sorting” in Chapter 8 for more information.

substring-before()
Given a data string and a search string, returns the portion of the data string before the first
occurrence of the search string. If the search string is not found, the substring-before()
function returns a zero-length string.

Syntax
[1.0] string substring-before(string, string)
[2.0] xs:string substring-before(xs:string?, xs:string?)
[2.0] xs:string substring-before(xs:string?, xs:string?,
 $collation as xs:string)

Inputs
Two strings. The first string is the string to be searched, and the second is the string to be
searched for in the first string.

[2.0] In XSLT 2.0, there is an optional third argument: the name of a collation that specifies
how strings are compared.

Output
The portion of the data string that occurs before the first occurrence of the search string. If
the search string does not appear in the data string, the function returns an empty string. If

826 | Appendix C: XSLT, XPath, and XQuery Function Reference

the second string is a zero-length string, substring-before() returns a zero-length string. The
function also returns a zero-length string if the first string is shorter than the second string.

Defined in
[1.0] XPath section 4.2, “String Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 7.5, “Functions Based on
Substring Matching.”

Example
Here is a sample stylesheet that uses substring-before():

<?xml version="1.0"?>
<!-- substring-before1.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the substring-before() </xsl:text>
 <xsl:text>function:

</xsl:text>

 <xsl:text> substring-before('Abracadabra', </xsl:text>
 <xsl:text>'abra') = "</xsl:text>
 <xsl:value-of
 select="substring-before('Abracadabra', 'abra')"/>
 <xsl:text>"
</xsl:text>

 <xsl:text> substring-before('Abracadabra', </xsl:text>
 <xsl:text>'Abracadabra') = "</xsl:text>
 <xsl:value-of
 select="substring-before('Abracadabra', 'Abracadabra')"/>
 <xsl:text>"
</xsl:text>

 <xsl:text> substring-before('Abracadabra', </xsl:text>
 <xsl:text>'A') = "</xsl:text>
 <xsl:value-of
 select="substring-before('Abracadabra', 'A')"/>
 <xsl:text>"
</xsl:text>

 <xsl:text> substring-before('Abracadabra', </xsl:text>
 <xsl:text>'a') = "</xsl:text>
 <xsl:value-of
 select="substring-before('Abracadabra', 'a')"/>
 <xsl:text>"
</xsl:text>

 <xsl:text> substring-before('Abracadabra', </xsl:text>
 <xsl:text>'') = "</xsl:text>
 <xsl:value-of
 select="substring-before('Abracadabra', '')"/>
 <xsl:text>"
</xsl:text>
 </xsl:template>

substring-before( ) | 827

</xsl:stylesheet>

The stylesheet produces these results:

A test of the substring-before() function:

 substring-before('Abracadabra', 'abra') = "Abracad"
 substring-before('Abracadabra', 'Abracadabra') = ""
 substring-before('Abracadabra', 'A') = ""
 substring-before('Abracadabra', 'a') = "Abr"
 substring-before('Abracadabra', '') = ""

As a second example, here’s an XSLT 2.0 stylesheet that uses a custom collation:

<?xml version="1.0"?>
<!-- substring-before2.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Another test of the substring-before() </xsl:text>
 <xsl:text>function:

</xsl:text>

 <xsl:text> substring-before('Schoenaicherstrasse', </xsl:text>
 <xsl:text>'straße') =
 "</xsl:text>
 <xsl:value-of
 select="substring-before('Schoenaicherstrasse', 'straße')"/>
 <xsl:text>"
</xsl:text>

 <xsl:text> substring-before('Schoenaicherstrasse', </xsl:text>
 <xsl:text>'straße', [German collation]) =
 "</xsl:text>
 <xsl:value-of
 select="substring-before('Schoenaicherstrasse', 'straße',
 concat('http://saxon.sf.net/collation?',
 'class=com.oreilly.xslt.GermanCollation;'))"/>
 <xsl:text>"
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

The stylesheet generates these results:

Another test of the substring-before() function:

 substring-before('Schoenaicherstrasse', 'straße') =
 ""
 substring-before('Schoenaicherstrasse', 'straße', [German collation]) =
 "Schoenaicher"

The German sharp-s character (ß) is equivalent to ss. The default collation doesn’t recognize
this, but our custom collation does. (To keep the listing within the margins of the page, we
used the concat() function to combine the two halves of the Saxon collation URI.) See “The
document( ) Function and Sorting” in Chapter 8 for more information.

828 | Appendix C: XSLT, XPath, and XQuery Function Reference

sum()
Converts all nodes in the argument node-set to numbers, and then returns the sum of all of
those numbers.

Syntax
[1.0] number sum(node-set)
[2.0] xs:anyAtomicType sum(xs:anyAtomicType)
[2.0] xs:anyAtomicType sum(xs:anyAtomicType, $empty as xs:anyAtomicType)

Inputs
[1.0] A node-set. Any node in the node-set that is not a number is converted to a number as
if it were passed to the number() function, after which the numeric values of all of the nodes
are summed.

[2.0] A sequence of atomic values, plus an optional value that is returned when the first
argument to sum() is the empty sequence.

Output
[1.0] The sum of the numeric values of all of the nodes in the argument node-set. If any node
in the argument node-set cannot be converted to a number, the sum() function returns NaN.

[2.0] Given a sequence of numeric values, sum() returns the sum of those values. Given a
sequence of durations, sum() returns the sum of those durations. As you’d expect from XSLT
2.0, there are some complications to consider:

• To calculate the sum of a sequence of durations, the durations must all be
xs:dayTimeDurations, or they must all be xs:yearMonthDurations. You can’t mix the
two types of durations; if you do, the XSLT processor raises an error.

• If any of the items in the sequence are of type xs:untypedAtomic, the XSLT processor
attempts to cast it to xs:double. If it can’t be converted to an xs:double, the XSLT
processor raises an error.

• If you pass a nonempty sequence to sum() and the sum is 0, the function returns 0.

• Passing the empty sequence to sum() returns 0 by default. If for some reason you’d
like the empty sequence to return some other value, such as the string "Not
applicable", you can specify the optional $empty argument. That argument, if it
exists, is returned when you call sum() with the empty sequence.

Defined in
[1.0] XPath section 4.4, “Number Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 15.4, “Aggregate
Functions.”

Example
We’ll demonstrate the sum() function against the following XML document:

sum( ) | 829

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>
 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

Here is a very simple stylesheet that uses the sum() function:

<?xml version="1.0"?>
<!-- sum.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the sum() function:

</xsl:text>

 <xsl:text> Total chocolate bar sales this quarter: </xsl:text>
 <xsl:value-of
 select="format-number(sum(/report/brand/units), '###,###')"/>
 </xsl:template>

</xsl:stylesheet>

Processing the XML document with this stylesheet generates these results:

A test of the sum() function:

 Total chocolate bar sales this quarter: 91,316

We used the format-number() function to format the value returned by the sum() function.

Here’s an XSLT 2.0 stylesheet that uses the sum() function against a variety of sequences:

<?xml version="1.0"?>
<!-- sum2.xsl -->
<xsl:stylesheet version="2.0"

830 | Appendix C: XSLT, XPath, and XQuery Function Reference

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:variable name="seq1" select="(3, 5, 18)"/>
 <xsl:variable name="seq2" select="(3, 5, 48.273, 2.9e3)"/>

 <xsl:variable name="value1" as="xs:integer" select="42"/>
 <xsl:variable name="value2" as="xs:double" select="2718.28E-3"/>
 <xsl:variable name="value3" as="xs:float" select="98.6"/>
 <xsl:variable name="value4" as="xs:decimal" select="2.54"/>
 <xsl:variable name="seq3"
 select="($value1, $value2, $value3, $value4)"/>

 <xsl:variable name="seq4"
 select="(xs:yearMonthDuration('P3Y8M'),
 xs:yearMonthDuration('P4Y2M'),
 xs:yearMonthDuration('P6Y4M'))"/>
 <xsl:variable name="seq5"
 select="(xs:dayTimeDuration('P2DT4H23M12.2S'),
 xs:dayTimeDuration('P3DT8H17M'),
 xs:dayTimeDuration('P3D'))"/>

 <xsl:text>Here are some tests of the sum() function:
</xsl:text>

 <xsl:text>
 sum(</xsl:text>
 <xsl:value-of select="$seq1" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="format-number(sum($seq1), '#.###')"/>

 <xsl:text>

 sum(</xsl:text>
 <xsl:value-of select="$seq2" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="format-number(sum($seq2), '#.###')"/>

 <xsl:text>

 sum(</xsl:text>
 <xsl:value-of select="$seq3" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="format-number(sum($seq3), '#.###')"/>

 <xsl:text>

 sum(</xsl:text>
 <xsl:value-of select="$seq4" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:value-of select="sum($seq4)"/>

 <xsl:text>

 In text, the sum of</xsl:text>
 <xsl:for-each select="$seq4">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="years-from-duration(.)"/>
 <xsl:text> years and </xsl:text>
 <xsl:value-of select="months-from-duration(.)"/>
 <xsl:text> months (</xsl:text>
 <xsl:value-of select="."/>

sum( ) | 831

 <xsl:text>)</xsl:text>
 </xsl:for-each>

 <xsl:text>
 is </xsl:text>
 <xsl:value-of select="years-from-duration(sum($seq4))"/>
 <xsl:text> years and </xsl:text>
 <xsl:value-of select="months-from-duration(sum($seq4))"/>
 <xsl:text> months (</xsl:text>
 <xsl:value-of select="sum($seq4)"/>
 <xsl:text>).</xsl:text>

 <xsl:text>

 sum(</xsl:text>
 <xsl:value-of select="$seq5" separator=", "/>
 <xsl:text>) = </xsl:text>
 <xsl:variable name="sum5" select="sum($seq5)"/>
 <xsl:value-of select="$sum5"/>

 <xsl:text>

 In text, the sum of</xsl:text>
 <xsl:for-each select="$seq5">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="days-from-duration(.)"/>
 <xsl:text> days, </xsl:text>
 <xsl:value-of select="hours-from-duration(.)"/>
 <xsl:text> hours, </xsl:text>
 <xsl:value-of select="minutes-from-duration(.)"/>
 <xsl:text> minutes and </xsl:text>
 <xsl:value-of
 select="format-number(seconds-from-duration(.), '#.##')"/>
 <xsl:text> seconds (</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>)</xsl:text>
 </xsl:for-each>

 <xsl:text>
 is </xsl:text>
 <xsl:value-of select="days-from-duration($sum5)"/>
 <xsl:text> days, </xsl:text>
 <xsl:value-of select="hours-from-duration($sum5)"/>
 <xsl:text> hours, </xsl:text>
 <xsl:value-of select="minutes-from-duration($sum5)"/>
 <xsl:text> minutes and </xsl:text>
 <xsl:value-of
 select="format-number(seconds-from-duration($sum5), '#.##')"/>
 <xsl:text> seconds.</xsl:text>

 <xsl:text>

 sum(()) = </xsl:text>
 <xsl:value-of select="sum(())"/>

 <xsl:text>

 sum((), 'Not applicable') = </xsl:text>
 <xsl:value-of select="sum((), 'Not applicable')"/>

 <xsl:text>

 sum((3, -3), 'Not applicable') = </xsl:text>
 <xsl:value-of select="sum((3, -3), 'Not applicable')"/>

 </xsl:template>

832 | Appendix C: XSLT, XPath, and XQuery Function Reference

</xsl:stylesheet>

Here are the results from the XSLT 2.0 stylesheet:

Here are some tests of the sum() function:

 sum(3, 5, 18) = 26

 sum(3, 5, 48.273, 2900) = 2956.273

 sum(42, 2.71828, 98.6, 2.54) = 145.858

 sum(P3Y8M, P4Y2M, P6Y4M) = P14Y2M

 In text, the sum of
 3 years and 8 months (P3Y8M)
 4 years and 2 months (P4Y2M)
 6 years and 4 months (P6Y4M)
 is 14 years and 2 months (P14Y2M).

 sum(P2DT4H23M12.2S, P3DT8H17M, P3D) = P8DT12H40M12.2S

 In text, the sum of
 2 days, 4 hours, 23 minutes and 12.2 seconds (P2DT4H23M12.2S)
 3 days, 8 hours, 17 minutes and 0 seconds (P3DT8H17M)
 3 days, 0 hours, 0 minutes and 0 seconds (P3D)
 is 8 days, 12 hours, 40 minutes and 12.2 seconds.

 sum(()) = 0

 sum((), 'Not applicable') = Not applicable

 sum((3, -3), 'Not applicable') = 0

system-property()
Returns the value of the system property named by the argument to the function.

Syntax
[1.0] object system-property(string)
[2.0] xs:string system-property(xs:string)

Inputs
The three properties defined by the XSLT 1.0 specification must be supported by all XSLT
1.0 processors; XSLT 2.0 processors must support the five additional properties defined in
the XSLT 2.0 spec. Other properties may be supported by individual processors, although
vendors are not allowed to add more properties in the xsl: namespace.

All XSLT processors must support three system properties:

system-property( ) | 833

xsl:version
A floating-point number representing the version of XSLT implemented by this
XSLT processor. This property is equivalent to the numeric value 1.0, although
some XSLT processors (Xalan, for example) return the value 1. XSLT 2.0 processors
must report the version as a floating-point number such as 2.0.

xsl:vendor
A string identifying the vendor of this XSLT processor.

xsl:vendor-url
A string containing the URL identifying the vendor of the XSLT processor. This
string is typically the home page of the vendor’s web site.

[2.0] The XSLT 2.0 specification defines five additional properties that must be supported by
all XSLT 2.0 processors:

xsl:product-name
The vendor’s name for the processor. The XSLT 2.0 specification recommends that
this name remain constant from one release of the product to the next, although
this is not a requirement.

xsl:product-version
The vendor-defined version of the processor. The XSLT 2.0 spec does not require
that the version be in any particular format.

xsl:is-schema-aware
Returns the string yes if the XSLT processor is schema-aware; returns the string
no otherwise.

xsl:supports-serialization
Returns the string yes if the XSLT processor supports serialization; returns the
string no otherwise.

xsl:supports-backwards-compatibility
Returns the string yes if the XSLT processor supports backwards compatibility for
earlier versions of XSLT; returns the string no otherwise.

Output
The value of the queried property.

Defined in
[1.0] XSLT section 12.4, “Miscellaneous Additional Functions.”

[2.0] XSLT section 16.6, “Miscellaneous Additional Functions.”

Example
Here is a stylesheet that queries the properties defined by XSLT 1.0:

<?xml version="1.0"?>
<!-- system-property1.xsl -->
<xsl:stylesheet version="1.0"

834 | Appendix C: XSLT, XPath, and XQuery Function Reference

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the system-property() function:</xsl:text>
 <xsl:text>

 xsl:version = "</xsl:text>
 <xsl:value-of select="system-property('xsl:version')"/>
 <xsl:text>"
</xsl:text>
 <xsl:text> xsl:vendor = "</xsl:text>
 <xsl:value-of select="system-property('xsl:vendor')"/>
 <xsl:text>"
</xsl:text>
 <xsl:text> xsl:vendor-url = "</xsl:text>
 <xsl:value-of select="system-property('xsl:vendor-url')"/>
 <xsl:text>"</xsl:text>
 </xsl:template>

</xsl:stylesheet>

We’ll process this stylesheet with the Saxon processor:

A test of the system-property() function:

 xsl:version = "2.0"
 xsl:vendor = "SAXON 9.0.0.3 from Saxonica"
 xsl:vendor-url = "http://www.saxonica.com/"

Running this stylesheet with Xalan-J gives these results:

A test of the system-property() function:

 xsl:version = "1"
 xsl:vendor = "Apache Software Foundation (Xalan XSLTC)"
 xsl:vendor-url = "http://xml.apache.org/xalan-j"

The Microsoft XSLT processor generates these values:

A test of the system-property() function:

 xsl:version = "1"
 xsl:vendor = "Microsoft"
 xsl:vendor-url = "http://www.microsoft.com"

Finally, we’ll use the Altova XML engine in XSLT 1.0 mode:

A test of the system-property() function:

 xsl:version = "1"
 xsl:vendor = "Altova GmbH"
 xsl:vendor-url = "http://www.altova.com"

In XSLT 2.0 mode, the Altova processor returns xsl:version = "2.0".

Here’s a stylesheet that tests for the XSLT 2.0 properties as well:

<?xml version="1.0"?>
<!-- system-property2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

system-property( ) | 835

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the system-property() function:</xsl:text>
 <xsl:text>

 xsl:version = "</xsl:text>
 <xsl:value-of select="system-property('xsl:version')"/>
 <xsl:text>"
</xsl:text>
 <xsl:text> xsl:vendor = "</xsl:text>
 <xsl:value-of select="system-property('xsl:vendor')"/>
 <xsl:text>"
</xsl:text>
 <xsl:text> xsl:vendor-url = "</xsl:text>
 <xsl:value-of select="system-property('xsl:vendor-url')"/>
 <xsl:text>"

XSLT 2.0 properties:

</xsl:text>
 <xsl:text> xsl:product-name = "</xsl:text>
 <xsl:value-of select="system-property('xsl:product-name')"/>
 <xsl:text>"
</xsl:text>
 <xsl:text> xsl:product-version = "</xsl:text>
 <xsl:value-of select="system-property('xsl:product-version')"/>
 <xsl:text>"
</xsl:text>
 <xsl:text> xsl:is-schema-aware = "</xsl:text>
 <xsl:value-of select="system-property('xsl:is-schema-aware')"/>
 <xsl:text>"
</xsl:text>
 <xsl:text> xsl:supports-serialization = "</xsl:text>
 <xsl:value-of
 select="system-property('xsl:supports-serialization')"/>
 <xsl:text>"
</xsl:text>
 <xsl:text> xsl:supports-backwards-compatibility = "</xsl:text>
 <xsl:value-of
 select="system-property('xsl:supports-backwards-compatibility')"/>
 <xsl:text>"</xsl:text>
 </xsl:template>

</xsl:stylesheet>

When processing this stylesheet with Saxon-B, the non-schema-aware processor, the results
look like this:

A test of the system-property() function:

 xsl:version = "2.0"
 xsl:vendor = "SAXON 9.0.0.3 from Saxonica"
 xsl:vendor-url = "http://www.saxonica.com/"

XSLT 2.0 properties:

 xsl:product-name = "SAXON"
 xsl:product-version = "9.0.0.3"
 xsl:is-schema-aware = "no"
 xsl:supports-serialization = "yes"
 xsl:supports-backwards-compatibility = "yes"

The same stylesheet with the schema-aware version (Saxon-SA) generates these results:

A test of the system-property() function:

 xsl:version = "2.0"

836 | Appendix C: XSLT, XPath, and XQuery Function Reference

 xsl:vendor = "SAXON 9.0.0.3 from Saxonica"
 xsl:vendor-url = "http://www.saxonica.com/"

XSLT 2.0 properties:

 xsl:product-name = "SAXON"
 xsl:product-version = "SA 9.0.0.3"
 xsl:is-schema-aware = "yes"
 xsl:supports-serialization = "yes"
 xsl:supports-backwards-compatibility = "yes"

Processing the stylesheet with the Altova XML engine in XSLT 2.0 mode gives these results:

A test of the system-property() function:

 xsl:version = "2.0"
 xsl:vendor = "Altova GmbH"
 xsl:vendor-url = "http://www.altova.com"

XSLT 2.0 properties:

 xsl:product-name = "Altova XSLT Engine"
 xsl:product-version = "2007"
 xsl:is-schema-aware = "yes"
 xsl:supports-serialization = "yes"
 xsl:supports-backwards-compatibility = "no"

Finally, XSLT processors are free to support other properties. The Java version of Saxon, for
example, supports the Java system properties. Here’s a stylesheet that queries some of those
properties:

<?xml version="1.0"?>
<!-- system-property3.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Getting Java system properties with </xsl:text>
 <xsl:text>system-property():</xsl:text>
 <xsl:text>

 java.version = "</xsl:text>
 <xsl:value-of select="system-property('java.version')"/>
 <xsl:text>"
 path.separator = "</xsl:text>
 <xsl:value-of select="system-property('path.separator')"/>
 <xsl:text>"
 file.separator = "</xsl:text>
 <xsl:value-of select="system-property('file.separator')"/>
 <xsl:text>"
 user.name = "</xsl:text>
 <xsl:value-of select="system-property('user.name')"/>
 <xsl:text>"
 user.country = "</xsl:text>
 <xsl:value-of select="system-property('user.country')"/>
 <xsl:text>"</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Here are the results Saxon returns:

system-property( ) | 837

Getting Java system properties with system-property():

 java.version = "1.5.0_10"
 path.separator = ";"
 file.separator = "\"
 user.name = "Skippy"
 user.country = "US"

Using this stylesheet with Altova returns blank values for all of the Java properties.

[2.0] timezone-from-date()
Given an xs:date value, returns its timezone component.

Syntax
xs:dayTimeDuration? timezone-from-date(xs:date?)

Input
An xs:date value.

Output
An xs:dayTimeDuration that represents the timezone component of the given xs:date value.
If the argument is the empty sequence, this function returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet illustrates the timezone-from-date() function:

<?xml version="1.0"?>
<!-- timezone-from-date.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the timezone from an xs:date:</xsl:text>
 <xsl:variable name="currentDate" as="xs:date" select="current-date()"/>
 <xsl:text>

 The current date is: </xsl:text>
 <xsl:value-of select="$currentDate"/>

 <xsl:text>

 The current timezone is: </xsl:text>
 <xsl:value-of select="timezone-from-date($currentDate)"/>
 <xsl:text>
 The timezone is also known as </xsl:text>
 <xsl:value-of select="format-date($currentDate, '[ZN]')"/>
 </xsl:template>

838 | Appendix C: XSLT, XPath, and XQuery Function Reference

</xsl:stylesheet>

The stylesheet creates these results:

Extracting the timezone from an xs:date:

 The current date is: 2006-11-16-05:00

 The current timezone is: -PT5H
 The timezone is also known as EST

Notice that the first result was generated by the timezone-from-date() function, while the
second was generated using format-date() with a format string that selected only the time-
zone component of the xs:date value.

See Also
The definitions of the [2.0] day-from-date(), [2.0] format-date(), [2.0] month-from-date(),
and [2.0] year-from-date() functions.

[2.0] timezone-from-dateTime()
Given an xs:dateTime value, returns its timezone.

Syntax
xs:dayTimeDuration? timezone-from-dateTime(xs:dateTime?)

Inputs
An xs:dateTime value.

Output
An xs:dayTimeDuration representing the timezone of the given xs:dateTime value. If the ar-
gument is the empty sequence, this function returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the timezone-from-dateTime() function:

<?xml version="1.0"?>
<!-- timezone-from-datetime.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

[2.0] timezone-from-dateTime( ) | 839

 <xsl:template match="/">
 <xsl:text>
Extracting the timezone from an xs:dateTime:</xsl:text>
 <xsl:variable name="currentDateTime" as="xs:dateTime"
 select="current-dateTime()"/>
 <xsl:text>

 The current date and time is: </xsl:text>
 <xsl:value-of select="$currentDateTime"/>

 <xsl:text>

 The current timezone is: </xsl:text>
 <xsl:value-of select="timezone-from-dateTime($currentDateTime)"/>
 <xsl:text>
 The timezone is also known as </xsl:text>
 <xsl:value-of select="format-dateTime($currentDateTime, '[ZN]')"/>

 </xsl:template>

</xsl:stylesheet>

The stylesheet creates these results:

Extracting the timezone from an xs:dateTime:

 The current date and time is: 2006-11-16T05:13:44.431-05:00

 The current timezone is: -PT5H
 The timezone is also known as EST

Notice that the first result was generated by the timezone-from-dateTime() function, while
the second was generated by using format-dateTime() with a format string that selected only
the timezone component of the xs:dateTime value.

See Also
The definitions of the [2.0] day-from-dateTime(), [2.0] format-dateTime(), [2.0] hours-from-
dateTime(), [2.0] minutes-from-dateTime(), [2.0] month-from-dateTime(), [2.0] seconds-
from-dateTime(), and [2.0] year-from-dateTime() functions.

[2.0] timezone-from-time()
Given an xs:time value, returns its timezone component.

Syntax
xs:dayTimeDuration? timezone-from-time(xs:time?)

Input
An xs:time value.

Output
An xs:dayTimeDuration value representing the timezone component of the given xs:time val-
ue. If the argument is the empty sequence, this function returns the empty sequence.

840 | Appendix C: XSLT, XPath, and XQuery Function Reference

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet illustrates the timezone-from-time() function:

<?xml version="1.0"?>
<!-- timezone-from-time.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the timezone from an xs:time:</xsl:text>
 <xsl:variable name="currentTime" as="xs:time" select="current-time()"/>
 <xsl:text>

 The current time is: </xsl:text>
 <xsl:value-of select="$currentTime"/>

 <xsl:text>

 The current timezone is: </xsl:text>
 <xsl:value-of select="timezone-from-time($currentTime)"/>
 <xsl:text>
 The timezone is also known as </xsl:text>
 <xsl:value-of select="format-time($currentTime, '[ZN]')"/>
 </xsl:template>

</xsl:stylesheet>

The stylesheet creates these results:

Extracting the timezone component from an xs:time:

 The current time is: 05:15:30.423-05:00

 The current timezone is: -PT5H
 The timezone is also known as EST

Notice that the first result was generated by timezone-from-time(), while the second was
generated with the format-time() function and a format string that selected the timezone
component of the xs:time.

See Also
The definitions of the [2.0] hours-from-time(), [2.0] format-time(), [2.0] minutes-from-
dateTime(), and [2.0] seconds-from-time() functions.

[2.0] tokenize()
Breaks a string into a sequence of strings, using a regular expression as a separator.

[2.0] tokenize( ) | 841

Syntax
xs:string* tokenize($input as xs:string?, $pattern as xs:string)
xs:string* tokenize($input as xs:string?, $pattern as xs:string,
 $flags as xs:string)

Inputs
A string to be tokenized and a regular expression. The tokenize() function also accepts a
third string containing flags that change how the regular expression is evaluated.

It is a fatal error if a regular expression matches a zero-length string. See
Appendix E for more details.

Outputs
A sequence of xs:strings, each of which represents a token parsed from the original string.
The returned strings do not contain the separator.

Here are the full details of how tokenize() works:

• If the first string is the empty sequence or a zero-length string, the empty sequence
is returned.

• If the regular expression doesn’t match anything in the input string, a singleton
sequence containing the original input string is returned.

• If the regular expression matches the start of the string, the first string in the re-
turned sequence will be an empty string (""). Similarly, if the regular expression
matches the end of the string, the last string in the returned sequence will be an
empty string.

• If the regular expression matches two overlapping strings in the input string, only
the first match is replaced.

• The regular expression cannot be a zero-length string, nor can it match a zero-
length string (in other words, matches("", $pattern, $replacement) can’t be true).
Assuming the input string is not of zero length, it is acceptable for a captured
substring to be of zero length.

If the expression matches("", $pattern, $replacement) is true, an error is raised.
For example, using the pattern '.?' with any input string raises an error because
this pattern matches a zero-length string.

• Regular expression matching does not use collations; the characters’ Unicode code
points are compared. Cases in which different characters are considered equal in
the world’s languages are not taken into account.

• Unlike regular expressions used in the <xsl:analyze-string> element, curly braces
({ and }) are not doubled. (Curly braces used inside the regex attribute of

842 | Appendix C: XSLT, XPath, and XQuery Function Reference

<xsl:analyze-string> must be doubled so they aren’t interpreted as attribute value
templates.)

• If a regular expression specifies more than one alternative, and more than one of
those alternatives match at the same position in the input, the first alternative in
the regular expression is the one that’s used. To quote an example from the spec,
tokenize("abracadabra", "(ab)|(a)") returns ("", "r", "c", "d", "r", "").

The first alternative in the regular expression (ab) is considered the match in this
situation, even though the second alternative (a) also matches.

• Finally, the third parameter modifies how the regular expression is processed.
There are four different flags:

s
Regular expressions are evaluated in what the specs refer to as “dot-all” mode.
When this flag is used, the dot operator (.) matches any character. Under
normal processing (without the s flag), the dot operator matches any character
except the newline character (
). This flag is useful when you want to match
strings that might include a newline character.

m
Regular expressions are evaulated in multiline mode. By default, the meta-
character (^) matches the start of the entire string, while $ matches the end of
the entire string. In multiline mode, ^ matches the start of any line within the
string, and $ matches the end of any line within the string.

i
Regular expressions are evaluated in case-insensitive mode. The regular ex-
pression "a" matches both "a" and "A".

Note that Unicode issues can complicate this greatly. For example, the XQuery
1.0 and XPath 2.0 Functions and Operators spec gives the example of the
Unicode sign for degrees Kelvin (K), which is the letter "K". The combi-
nation of regex="k" and flags="i" matches the Kelvin sign as well as the letters
"k" (k) and "K" (K).

Other Unicode characters don’t convert to letters. For example, the Unicode
symbol for the Roman numeral I (ࡰ) looks like the letter I, but does not
convert to one. Fortunately, these complications are beyond the scope of this
book.

x
All whitespace characters (,
, , and) are removed from the
regular expression before any comparison is done. In other words, with the x
flag, the regular expressions "John Smith" and "JohnSmith" are the same. This
flag is useful when you want to break a long regular expression into multiple
lines to make it easier to read.

The flags can be combined in any order. The parameters 'xis' and 'six' work
exactly the same way.

[2.0] tokenize( ) | 843

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.6, “String Functions that use
Pattern Matching.”

Example
Here’s the stylesheet we’ll use to illustrate how tokenize() works:

<?xml version="1.0"?>
<!-- tokenize.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:variable name="string1"
 select="concat('Now is the time for all good men
',
 'and women
',
 'to aid the party.')"/>

 <xsl:variable name="string2" as="xs:string"
 select="'Visa # 1234-5678-9101-1121'"/>

 <xsl:text>
Here are some tests of the </xsl:text>
 <xsl:text>tokenize() function:
</xsl:text>

 <xsl:text>
 $string1 =
</xsl:text>
 <xsl:value-of select="$string1"/>

 <xsl:text>

 $string2 =
</xsl:text>
 <xsl:value-of select="$string2"/>

 <xsl:text>

 tokenize($string1, </xsl:text>
 <xsl:text>'&#xA;') = </xsl:text>
 <xsl:text>
 ('</xsl:text>
 <xsl:value-of select="tokenize($string1, '
')"
 separator="',
 '"/>
 <xsl:text>')
 count() = </xsl:text>
 <xsl:value-of select="count(tokenize($string1, '
'))"/>

 <xsl:text>

 tokenize($string2, '-') = </xsl:text>
 <xsl:text>
 ('</xsl:text>
 <xsl:value-of
 select="tokenize($string2, '-')" separator="', '"/>
 <xsl:text>')
 count() = </xsl:text>
 <xsl:value-of select="count(tokenize($string2, '-'))"/>

 <xsl:text>

 tokenize($string2, </xsl:text>
 <xsl:text>'(Visa #)|-') = </xsl:text>
 <xsl:text>
 ('</xsl:text>
 <xsl:value-of
 select="tokenize($string2, '(Visa #)|-')" separator="', '"/>

844 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:text>')
 count() = </xsl:text>
 <xsl:value-of select="count(tokenize($string2, '(Visa #)|-'))"/>

 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here are some tests of the tokenize() function:

 $string1 =
Now is the time for all good men
and women
to aid the party.

 $string2 =
Visa # 1234-5678-9101-1121

 tokenize($string1, '
') =
 ('Now is the time for all good men',
 'and women ',
 'to aid the party.')
 count() = 3

 tokenize($string2, '-') =
 ('Visa # 1234', '5678', '9101', '1121')
 count() = 4

 tokenize($string2, '(Visa #)|-') =
 ('', '1234', '5678', '9101', '1121')
 count() = 5

In the first test, we tokenized a string by its newline characters (
). Note that we don’t
have to use the 's' flag here because we’re not looking for characters at the start or end of a
line; we’re simply looking for newline characters. For the second test, we broke our credit
card number into four pieces. Unfortunately, the first token is 'Visa # 1234', which isn’t what
we wanted. To get just the four segments of numbers, we need to rewrite our regular expres-
sion as we did in test 3. Because the pattern 'Visa # ' matches the start of the string, the first
token we get is a zero-length string.

The count() function displayes how many tokens are in each sequence.

See Also
Appendix E has complete details on the way regular expressions work in XPath 2.0. Also see
the definitions of the following elements and functions: [2.0] <xsl:analyze-string>, [2.0]
matches(), [2.0] <xsl:matching-substring>, [2.0] <xsl:non-matching-substring>, [2.0] regex-
group(), and [2.0] replace().

[2.0] trace()
Outputs diagnostic messages useful in tracing the processing of a stylesheet.

[2.0] trace( ) | 845

Syntax
item()* trace($value as item()*, $label as xs:string)

Inputs
A sequence of items and an xs:string. The string is typically something such as The value of
$x is:. A diagnostic message containing that string and the value of the items in the sequence
can be very useful in tracing the processing of the stylesheet.

Outputs
The output of the trace() function is the input sequence of items. They are returned without
changes.

In addition, trace() converts the sequence of items into an xs:string. That string and the
second argument are typically combined into a diagnostic message. Almost all of the details
of the trace() function are implementation-dependent. The format of the diagnostic message,
the destination of the diagnostic message, and the order in which calls to the trace() function
are evaluated can vary from one processor to the next.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 4, “The Trace Function.”

Example
This stylesheet is a smaller version of the stylesheet we used to illustrate the data() function.
We want to create trace messages each time we invoke the datatest:print-item() function
we created. Here’s the stylesheet:

<?xml version="1.0"?>
<!-- trace.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:datatest="http://www.oreilly.com">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:variable name="testSequence" as="item()*">
 <xsl:sequence select="(3)"/>
 <xsl:element name="currentDate">
 <xsl:value-of select="current-date()"/>
 </xsl:element>
 <xsl:element name="currentTime">
 <xsl:value-of select="current-time()"/>
 </xsl:element>
 <xsl:element name="integerTest">
 <xsl:value-of select="xs:integer(8)"/>
 </xsl:element>
 <xsl:sequence select="('blue', 'red')"/>
 <xsl:element name="floatTest1">

846 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:value-of select="xs:float(3.14)"/>
 </xsl:element>
 <xsl:element name="floatTest2">
 <xsl:value-of select="xs:float(42)"/>
 </xsl:element>
 <xsl:element name="dateTest">
 <xsl:value-of select="xs:date('1995-04-21')"/>
 </xsl:element>
 </xsl:variable>

 <xsl:text>
Here is a test of the </xsl:text>
 <xsl:text>trace() function:</xsl:text>

 <xsl:value-of
 select="for $i in (1 to count($testSequence))
 return (datatest:print-item(
 subsequence($testSequence, $i, 1)))"/>
 </xsl:template>

 <xsl:function name="datatest:print-item" as="xs:string">
 <xsl:param name="item" as="item()"/>
 <xsl:choose>
 <xsl:when test="$item instance of element()">
 <xsl:analyze-string regex="!!!.?"
 select="string(trace($item, 'trace() element '))">
 <xsl:matching-substring></xsl:matching-substring>
 </xsl:analyze-string>
 </xsl:when>
 <xsl:otherwise>
 <xsl:analyze-string regex="!!!.?"
 select="string(trace($item, 'trace() atom '))">
 <xsl:matching-substring></xsl:matching-substring>
 </xsl:analyze-string>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:text> </xsl:text>
 </xsl:function>

</xsl:stylesheet>

Our stylesheet creates a sequence of items, and then calls our datatest:print-item() func-
tion. When we invoke this with Saxon, we get these results:

trace() atom : xs:integer: 3
trace() element : element(currentDate, untyped): currentDate
trace() element : element(currentTime, untyped): currentTime
trace() element : element(integerTest, untyped): integerTest
trace() atom : xs:string: blue
trace() atom : xs:string: red
trace() element : element(floatTest1, untyped): floatTest1
trace() element : element(floatTest2, untyped): floatTest2
trace() element : element(dateTest, untyped): dateTest

Here is a test of the trace() function:

3

[2.0] trace( ) | 847

2006-12-19-05:00
17:13:55-05:00
8
blue
red
3.14
42
1995-04-21

Notice that all of the trace() messages are output before any of the <xsl:text> or <xsl:value-
of> elements. The format of the messages and the order in which calls to trace() are handled
is implementation-dependent. Running the same stylesheet with the Altova XML engine pro-
duces a slightly different output:

trace() atom 3
trace() element <currentDate>2006-12-19-05:00</currentDate>
trace() element <currentTime>17:30:28-05:00</currentTime>
trace() element <integerTest>8</integerTest>
trace() atom blue
trace() atom red
trace() element <floatTest1>3.14</floatTest1>
trace() element <floatTest2>42</floatTest2>
trace() element <dateTest>1995-04-21</dateTest>

Here is a test of the trace() function:

3
...

Again, all of the trace() messages appear before the other output.

translate()
Allows you to convert individual characters in a string from one value to another. In many
languages, this function is powerful enough to convert characters from one case to another.
([2.0] For case conversions, XQuery 1.0 and XPath 2.0 provide the more powerful lower-
case() and upper-case() functions.)

Syntax
[1.0] string translate(string, $mapString as string, $transString as string)
[2.0] xs:string translate(xs:string?, $mapString as xs:string,
 $transString as xs:string)

Inputs
Three strings. The first is the original, untranslated string, and the second and third strings
define the characters to be converted.

Output
The original string, translated as follows:

848 | Appendix C: XSLT, XPath, and XQuery Function Reference

• If a character in the original string appears in the second argument string (the
mapping string), it is replaced with the corresponding character in the third argu-
ment string (the translation string).

In other words, translate('CAR', 'ABCDE', 'EXHQF') returns HER. Going through
the characters of the first string in order, C is the third character in the mapping
string, so it is replaced with H, the third character in the translation string. The next
character of the first string, A, is the first character in the mapping string, so it is
replaced with E, the first character in the translation string. Finally, the last char-
acter of the first string, R, doesn’t appear in the second string, so it is not modified
at all.

• If a character in the original string appears in the second argument string and there
is no corresponding character in the third argument string (the second argument
string is longer than the third), then that character is deleted.

In other words, translate('CAR, 'ABCDER', 'EXHQF') returns HE. The first two
characters are translated as before. The last letter of the original string, R, is the
sixth character of the mapping string. Because there is no sixth character in the
translation string, the letter is deleted.

• If a character in the second argument string appears more than once, the first
occurrence determines the replacement character.

• If the third argument string is longer than the second argument string, the extra
characters are ignored.

• If the second string is a zero-length string, the original string is returned unchanged.

• [2.0] If the value of the first argument is the empty sequence, a zero-length string
is returned.

Defined in
[1.0] XPath section 4.2, “String Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 7.4, “Functions on String
Values.”

Example
Here’s a stylesheet with several examples of the translate() function:

<?xml version="1.0"?>
<!-- translate.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Tests of the translate() function:</xsl:text>

 <xsl:text>

 Convert a string to uppercase:</xsl:text>

translate( ) | 849

 <xsl:text>
 translate('Lily', </xsl:text>
 <xsl:text>'abcdefghijklmnopqrstuvwxyz', </xsl:text>
 <xsl:text>
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ')=</xsl:text>
 <xsl:value-of
 select="translate('Lily', 'abcdefghijklmnopqrstuvwxyz',
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ')"/>
 <xsl:text>

 Convert a string to lowercase:</xsl:text>
 <xsl:text>
 translate('Lily', </xsl:text>
 <xsl:text>'ABCDEFGHIJKLMNOPQRSTUVWXYZ', </xsl:text>
 <xsl:text>
 'abcdefghijklmnopqrstuvwxyz')=</xsl:text>
 <xsl:value-of
 select="translate('Lily', 'ABCDEFGHIJKLMNOPQRSTUVWXYZ',
 'abcdefghijklmnopqrstuvwxyz')"/>
 <xsl:text>

 Remove parentheses, spaces, and dashes </xsl:text>
 <xsl:text>from a U.S. phone number:</xsl:text>
 <xsl:text>
 translate('(555) 555-1212', '() -', '')=</xsl:text>
 <xsl:value-of select="translate('(555) 555-1212', '() -', '')"/>
 <xsl:text>

 Replace all but the last four digits of a </xsl:text>
 <xsl:text>credit card number with Xs:
</xsl:text>
 <xsl:variable name="credit" select="'1234 5678 9101 1810'"/>
 <xsl:text> $credit='</xsl:text>
 <xsl:value-of select="$credit"/>
 <xsl:text>'</xsl:text>
 <xsl:text>
 translate(substring($credit, 1, 15), </xsl:text>
 <xsl:text>'1234567890 ', 'XXXXXXXXXX-')</xsl:text>
 <xsl:text>
 substring($credit, 16)</xsl:text>
 <xsl:text>

 The first part is </xsl:text>
 <xsl:value-of
 select="translate(substring($credit, 1, 15), '1234567890 ',
 'XXXXXXXXXX-')"/>
 <xsl:text>
 The second part is </xsl:text>
 <xsl:value-of select="substring($credit, 16)"/>
 <xsl:text>
 Here's how they look together:
 </xsl:text>
 <xsl:value-of
 select="translate(substring($credit, 1, 15), '1234567890 ',
 'XXXXXXXXXX-')"/>
 <xsl:value-of select="substring($credit, 16)"/>
 </xsl:template>

</xsl:stylesheet>

When we use this stylesheet with any XML document, here are the results:

Tests of the translate() function:

 Convert a string to uppercase:
 translate('Lily', 'abcdefghijklmnopqrstuvwxyz',
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ')=LILY

 Convert a string to lowercase:
 translate('Lily', 'ABCDEFGHIJKLMNOPQRSTUVWXYZ',
 'abcdefghijklmnopqrstuvwxyz')=lily

 Remove parentheses, spaces, and dashes from a U.S. phone number:
 translate('(555) 555-1212', '() -', '')=5555551212

850 | Appendix C: XSLT, XPath, and XQuery Function Reference

 Replace all but the last four digits of a credit card number with Xs:
 $credit='1234 5678 9101 1810'
 translate(substring($credit, 1, 15), '1234567890 ', 'XXXXXXXXXX-')
 substring($credit, 16)

 The first part is XXXX-XXXX-XXXX-
 The second part is 1810
 Here's how they look together:
 XXXX-XXXX-XXXX-1810

true()
Always returns the boolean value true. Remember that the strings "true" and "false" don’t
have any special significance in XSLT. This function (and the false() function) allow you to
generate boolean values when you need them.

Syntax
[1.0] boolean true()
[2.0] xs:boolean true()

Inputs
None.

Output
The boolean value true.

Defined in
[1.0] XPath section 4.3, “Boolean Functions.”

[2.0] XQuery 1.0 and XPath 2.0 Functions and Operators section 9.1, “Additional Boolean
Constructor Functions.”

Example
Here’s a brief example that uses the true() function:

<?xml version="1.0"?>
<!-- true.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the true() function:

</xsl:text>

 <xsl:text> true() returned </xsl:text>
 <xsl:value-of select="true()"/>
 <xsl:text>!</xsl:text>
 </xsl:template>
</xsl:stylesheet>

true( ) | 851

When using this stylesheet against any XML document, it generates this less-than-exciting
result:

A test of the true() function:

 true() returned true!

[2.0] type-available()
Given the name of a datatype, returns true if that datatype is known to the XSLT processor.

Syntax
xs:boolean type-available($typeName as xs:string)

Input
An xs:string containing the name of a datatype.

Output
The xs:boolean value true if the datatype is known to the XSLT processor; false otherwise.

Defined in
XSLT 2.0 section 18.1.4, “Testing Availability of Types.”

Example
Here’s a short stylesheet that checks the availability of two datatypes. The first datatype is
defined to all XSLT 2.0 processors, while the second datatype is defined in a schema and
therefore requires a schema-aware processor.

<?xml version="1.0"?>
<!-- type-available.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:age="http://www.oreilly.com/xslt"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the type-available() function:
</xsl:text>
 <xsl:text>
 xs:integer is available: </xsl:text>
 <xsl:value-of select="type-available('xs:integer')"/>
 <xsl:text>
 age:age-type is available: </xsl:text>
 <xsl:value-of select="type-available('age:age-type')"/>
 </xsl:template>

</xsl:stylesheet>

Notice that we have to declare the namespace prefixes for the datatypes. Because there is no
<xsl:import-schema> element, only the first datatype is available:

852 | Appendix C: XSLT, XPath, and XQuery Function Reference

A test of the type-available() function:

 xs:integer is available: true
 age:age-type is available: false

If we import a schema into the stylesheet, a schema-aware processor will find other types
available:

<?xml version="1.0"?>
<!-- type-available2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:age="http://www.oreilly.com/xslt"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:import-schema namespace="http://www.oreilly.com/xslt">
 <xs:schema
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:simpleType name="age-type">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="130"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>
 </xsl:import-schema>
 ...
</xsl:stylesheet>

With the schema imported, the stylesheet tells us the second datatype is available:

A test of the type-available() function:

 xs:integer is available: true
 age:age-type is available: true

[2.0] unordered()
Given a sequence, returns those items in an implementation-defined order.

Syntax
item()* unordered(item()*)

Inputs
A sequence of items.

Outputs
A sequence containing the same items as the input sequence, but in an order determined by
the XSLT processor.

[2.0] unordered( ) | 853

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.1, “General Functions and
Operators on Sequences.”

Example
The unordered() function is a way of telling the XSLT processor that we don’t care how items
are sequenced. In some cases, this can improve the performance of the XSLT processor. As
an example, we’ll look at the ancestors of an element in two ways. Using the normal approach,
the ancestors appear in document order. When using unordered() with Saxon, the ancestors
appear in the reverse order. Most likely, Saxon is taking advantage of its internal data struc-
tures to start at a node and list its ancestors from the innermost level of the document outward.
Using the same stylesheet with AltovaXML, the ancestors appear in document order in both
cases.

We’ll reuse one of our purchase orders as our input document:

<?xml version="1.0" ?>
<!-- po38293.xml -->
<purchase-order id="38293">
 <date year="2001" month="9" day="8"/>
 <customer id="4738" level="Basic">
 <address type="business">
 <name>
 <title>Ms.</title>
 <first-name>Amanda</first-name>
 <last-name>Reckonwith</last-name>
 </name>
 <street>930-A Chestnut Street</street>
 <city>Lynn</city>
 <state>MA</state>
 <zip>02930</zip>
 </address>
 <address type="ship-to"/>
 </customer>
 <items>
 <item part-no="23813-03-CDK">
 <name>Cucumber Decorating Kit</name>
 <qty>1</qty>
 <price>29.95</price>
 </item>
 </items>
</purchase-order>

We’ll display the ancestors of the <first-name> element, selecting them once with a normal
XPath expression and selecting them a second time with the unordered() function. Here’s the
stylesheet:

<?xml version="1.0"?>
<!-- unordered.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

854 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:text>
Here is a test of the unordered() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:for-each select="//first-name">
 <xsl:text>
 Element <first-name></xsl:text>
 <xsl:value-of select="."/>
 <xsl:text></first-name>:
 </xsl:text>
 <xsl:text>
 Ancestors:
 </xsl:text>
 <xsl:value-of select="ancestor::*/name()" separator=", "/>
 <xsl:text>

 Unordered ancestors:
 </xsl:text>
 <xsl:value-of select="unordered(ancestor::*/name())"
 separator=", "/>
 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

Here are the results:

Here is a test of the unordered() function:

 Element <first-name>Amanda</first-name>:

 Ancestors:
 purchase-order, customer, address, name

 Unordered ancestors:
 name, address, customer, purchase-order

The first time we select the ancestors of the element, they appear in document order. The
second time, the ancestors appear in what is presumably the most efficient way for Saxon to
find them.

[2.0] unparsed-entity-public-id()
Returns the public ID of the unparsed entity with the specified name. If there is no such entity,
unparsed-entity-public-id() returns an empty string.

Syntax
xs:string unparsed-entity-public-id(xs:string)

Input
The name of the unparsed entity.

Output
The public ID of the unparsed entity with the specified name.

[2.0] unparsed-entity-public-id( ) | 855

Defined in
XSLT 2.0 section 16.6, “Miscellaneous Additional Functions.”

Example
Unparsed entities are rarely used; they typically refer to non-XML data, as in the entity author-
picture defined in this XML document:

<?xml version="1.0"?>
<!-- unparsed-entity.xml -->
<!DOCTYPE book [
 <!ENTITY author-picture PUBLIC "-//OReilly//Author Images//DT"
 "dougtidwell.jpg" NDATA JPEG>
]>

<book>
 <prolog cover-image="author-picture"/>
 <body>
 <p>Pretend that lots of useful content appears here.</p>
 </body>
</book>

We’ll use this stylesheet to return the public ID of our unparsed entity:

<?xml version="1.0"?>
<!-- unparsed-entity-public-id.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the unparsed-entity-</xsl:text>
 <xsl:text>public-id() function:</xsl:text>

 <xsl:text>

 </xsl:text>
 <xsl:text>The public ID of the cover image is:
 </xsl:text>
 <xsl:value-of
 select="unparsed-entity-public-id(/book/prolog/@cover-image)"/>
 <xsl:text>.
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

When we transform the XML document with our stylesheet, the results look like this:

A test of the unparsed-entity-public-id() function:

 The public ID of the cover image is:
 -//OReilly//Author Images//DT.

856 | Appendix C: XSLT, XPath, and XQuery Function Reference

unparsed-entity-uri()
Returns the URI of the unparsed entity with the specified name. If there is no such entity,
unparsed-entity-uri returns an empty string.

Syntax
[1.0] string unparsed-entity-uri(string)
[2.0] xs:anyURI unparsed-entity-uri(xs:string)

Inputs
The name of the unparsed entity.

Output
The URI of the unparsed entity with the specified name.

Defined in
[1.0] XSLT section 12.4, “Miscellaneous Additional Functions.”

[2.0] XSLT section 16.6, “Miscellaneous Additional Functions.”

Example
Unparsed entities are rarely used; they typically refer to non-XML data, as in the entity author-
picture in this XML document:

<?xml version="1.0"?>
<!-- unparsed-entity.xml -->
<!DOCTYPE book [
 <!ENTITY author-picture PUBLIC "-//OReilly//Author Images//DT"
 "dougtidwell.jpg" NDATA JPEG>
]>

<book>
 <prolog cover-image="author-picture"/>
 <body>
 <p>Pretend that lots of useful content appears here.</p>
 </body>
</book>

We’ll use this stylesheet to get the public URI of our unparsed entity:

<?xml version="1.0"?>
<!-- unparsed-entity-uri.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
A test of the unparsed-entity-</xsl:text>
 <xsl:text>uri() function:</xsl:text>

 <xsl:text>

 </xsl:text>

unparsed-entity-uri( ) | 857

 <xsl:text>The URI of the cover image is:
 </xsl:text>
 <xsl:value-of
 select="unparsed-entity-uri(/book/prolog/@cover-image)"/>
 <xsl:text>.
</xsl:text>
 </xsl:template>

</xsl:stylesheet>

When we transform the XML document with our stylesheet, the results look like this:

A test of the unparsed-entity-uri() function:

 The URI of the cover image is:
 file:/C:/projects/XSLTbookV2/AppendixC/dougtidwell.jpg.

The URI of the unparsed entity is based on the base URI of the XML document itself.

[2.0] unparsed-text()
Given a URI, returns the unparsed text of the resources identified by that URI.

Syntax
xs:string unparsed-text($href as xs:string)
xs:string unparsed-text($href as xs:string, $encoding as xs:string)

Inputs
An xs:string specifying the URI of the requested document. An optional second string speci-
fies the document’s encoding.

Output
An xs:string that contains the unparsed text of the URI.

Defined in
XSLT 2.0 section 16.2, “Reading Text Files.”

Example
In this example, we’ll generate an HTML page. Part of the page is a standard header and
footer; those will be inserted into the document as unparsed text. If we use the collection(),
doc(), or document() functions, the data we read would have to be well-formed XML. Using
unparsed-text() instead, we can read documents that aren’t necessarily well-formed (most
HTML documents, for example) and use them.

We’ll use our document of chocolate bar sales as the XML input document:

<?xml version="1.0" encoding="utf-8"?>
<!-- chocolate.xml -->
<report month="8" year="2006">
 <title>Chocolate bar sales</title>
 <brand>
 <name>Lindt</name>

858 | Appendix C: XSLT, XPath, and XQuery Function Reference

 <units>27408</units>
 </brand>
 <brand>
 <name>Callebaut</name>
 <units>8203</units>
 </brand>
 <brand>
 <name>Valrhona</name>
 <units>22101</units>
 </brand>
 <brand>
 <name>Perugina</name>
 <units>14336</units>
 </brand>
 <brand>
 <name>Ghirardelli</name>
 <units>19268</units>
 </brand>
</report>

We’ll generate an HTML report from this document. Our stylesheet uses unparsed-text() to
import an HTML header and footer:

<?xml version="1.0"?>
<!-- unparsed-text.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:variable name="reportTitle">
 <xsl:value-of select="/report/title"/>
 <xsl:text> for </xsl:text>
 <xsl:value-of select="/report/@month"/>
 <xsl:text>/</xsl:text>
 <xsl:value-of select="/report/@year"/>
 </xsl:variable>

 <xsl:template match="/">
 <html>
 <head>
 <title>
 <xsl:value-of select="$reportTitle"/>
 </title>
 </head>
 <body style="font-family: sans-serif;">
 <xsl:value-of
 select="unparsed-text('header.html')"
 disable-output-escaping="yes"/>
 <xsl:apply-templates select="*|text()"/>
 <xsl:value-of
 select="unparsed-text('footer.html')"
 disable-output-escaping="yes"/>
 </body>
 </html>
 </xsl:template>

[2.0] unparsed-text( ) | 859

 <xsl:template match="title">
 <h1>
 <xsl:value-of select="$reportTitle"/>
 </h1>
 </xsl:template>

 <xsl:template match="brand">
 <h2>
 <xsl:value-of select="name"/>
 <xsl:text> : </xsl:text>
 <xsl:value-of select="units"/>
 </h2>
 </xsl:template>

</xsl:stylesheet>

Notice that we used the disable-output-escaping attribute on <xsl:value-of>. Without this
attribute, the markup we import is displayed as <td>This header was generated....
That means the text we import is treated as text, not as markup to be processed by the browser.

The document header.html looks like this:

<!-- header.html -->
<table width=33% border=1>
 <tr style="background: lightgray;">
 <td style="text-align: center;
 font-weight: bold;">
 This header was generated by

 <code>unparsed-text()</code>, using a
 stylesheet from
O'Reilly's
 <cite>XSLT</cite>, 2nd edition.
 </td>
 </tr>
</table>

Notice that our HTML document features unquoted attributes on the <table> element and
old-style
 elements. Despite those violations of XML syntax, we can still import this
document and use it in our results.

(With the exception of the word “footer” in place of “header,” the file footer.html is exactly
the same.)

Our completed document appears as in Figure C-6.

Another great use of the unparsed-text() function is reading structured data formats such as
comma-separated values. See the discussion in the section “[2.0] The unparsed-text( ) and
unparsed-text-available( ) Functions” in Chapter 8 for a complete example.

[2.0] unparsed-text-available()
Given a URI, returns true if that document is available, false otherwise. This function allows
you to check the existence and availability of a document before you attempt to open it with

860 | Appendix C: XSLT, XPath, and XQuery Function Reference

unparsed-text(). If you attempt to open a document that is unavailable, the XSLT processor
raises a fatal error.

Syntax
xs:boolean unparsed-text-available(xs:string)
xs:boolean unparsed-text-available(xs:string, xs:string)

Inputs
An xs:string specifying the URI of the requested document. An optional second string speci-
fies the document’s encoding.

Output
true if the document is unavailable; false otherwise.

Defined in
XSLT 2.0 section 16.2, “Reading Text Files.”

Figure C-6. HTML file created with the unparsed-text() function

[2.0] unparsed-text-available( ) | 861

Example
Here’s a short stylesheet that checks to see whether three different files are available:

<?xml version="1.0"?>
<!-- unparsed-text-available.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:text>
Here are some tests of the </xsl:text>
 <xsl:text>unparsed-text-available() function:</xsl:text>

 <xsl:text>

 unparsed-text-available</xsl:text>
 <xsl:text>('header.html') = </xsl:text>
 <xsl:value-of
 select="unparsed-text-available('header.html')"/>

 <xsl:text>

 unparsed-text-available</xsl:text>
 <xsl:text>('disclaimer.html') = </xsl:text>
 <xsl:value-of
 select="unparsed-text-available('disclaimer.html')"/>

 <xsl:text>

 unparsed-text-available</xsl:text>
 <xsl:text>('footer.html') = </xsl:text>
 <xsl:value-of
 select="unparsed-text-available('footer.html')"/>

 </xsl:template>

</xsl:stylesheet>

The results are:

Here are some tests of the unparsed-text-available() function:

 unparsed-text-available('header.html') = true

 unparsed-text-available('disclaimer.html') = false

 unparsed-text-available('footer.html') = true

The second file isn’t available, but the first and third files are.

[2.0] upper-case()
Given a string, returns the uppercased version of that string.

Syntax
xs:string upper-case(xs:string?)

862 | Appendix C: XSLT, XPath, and XQuery Function Reference

Inputs
An xs:string value.

Outputs
An xs:string in which all of the lowercase letters in the original string have been converted
to uppercase. Any character that was originally in uppercase and any character that does not
have an uppercase value is returned as is. If the value of the argument is the empty sequence,
a zero-length string is returned.

Accented characters and other features of the world’s languages mean that changing the case
of a string might change its length. Also be aware that upper-case() and lower-case() are
not always the inverse of each other in some languages. All of the case-conversion rules are
defined by the Unicode standard, and XSLT processors are expected to conform with those
rules.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 7.4, “Functions on String Values.”

Example
Here is a stylesheet that illustrates the upper-case() function. Notice that we’re using
<xsl:output method="xml" encoding="UTF-8"/> to make sure the character set is handled
properly:

<?xml version="1.0" encoding="UTF-8"?>
<!-- upper-case.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" encoding="UTF-8" indent="yes"/>

 <xsl:template match="/">
 <testcase>
 <heading>Tests of the upper-case() function:</heading>
 <test>
 <label>upper-case('Lily') = </label>
 <result><xsl:value-of select="upper-case('Lily')"/></result>
 </test>
 <test>
 <label>upper-case('LILY') = </label>
 <result><xsl:value-of select="upper-case('LILY')"/></result>
 </test>
 <test>
 <label>upper-case('lily') = </label>
 <result><xsl:value-of select="upper-case('lily')"/></result>
 </test>
 <test>
 <label>uppercase('jalapeño') = </label>
 <result><xsl:value-of select="upper-case('jalapeño')"/></result>
 </test>
 </testcase>
 </xsl:template>

[2.0] upper-case( ) | 863

</xsl:stylesheet>

The results look like this:

<?xml version="1.0" encoding="UTF-8"?>
<testcase>
 <heading>Tests of the upper-case() function:</heading>
 <test>
 <label>upper-case('Lily') = </label>
 <result>LILY</result>
 </test>
 <test>
 <label>upper-case('LILY') = </label>
 <result>LILY</result>
 </test>
 <test>
 <label>upper-case('lily') = </label>
 <result>LILY</result>
 </test>
 <test>
 <label>uppercase('jalapeño') = </label>
 <result>JALAPEÑO</result>
 </test>
</testcase>

[2.0] year-from-date()
Given an xs:date value, returns its year component.

Syntax
xs:integer? year-from-date(xs:date?)

Input
An xs:date value.

Output
An xs:integer representing the year component of the given xs:date value. If the argument
is the empty sequence, this function returns the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the year-from-date() function:

<?xml version="1.0"?>
<!-- year-from-date.xsl -->
<xsl:stylesheet version="2.0"

864 | Appendix C: XSLT, XPath, and XQuery Function Reference

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the year from an xs:date:</xsl:text>
 <xsl:variable name="currentDate" as="xs:date" select="current-date()"/>
 <xsl:text>

 The current date is: </xsl:text>
 <xsl:value-of select="$currentDate"/>

 <xsl:text>

 The current year: </xsl:text>
 <xsl:value-of select="year-from-date($currentDate)"/>
 <xsl:text>
 In words: </xsl:text>
 <xsl:value-of select="format-date($currentDate, '[YWw]')"/>
 <xsl:text>
 In German: </xsl:text>
 <xsl:value-of select="format-date($currentDate, '[YWw]', 'de', (), ())"/>
 </xsl:template>

</xsl:stylesheet>

The stylesheet creates these exciting results:

Extracting the year from an xs:date:

 The current date is: 2006-11-16-05:00

 The current year: 2006
 In words: Two Thousand and Six
 In German: Zweitausend Sechs

See Also
The definitions of the [2.0] day-from-date(), [2.0] format-date(), [2.0] month-from-date(),
and [2.0] timezone-from-date() functions.

[2.0] year-from-dateTime()
Given an xs:dateTime value, returns its year value.

Syntax
xs:integer? year-from-dateTime(xs:dateTime?)

Inputs
An xs:dateTime value.

Output
An xs:integer representing the year component of the given xs:dateTime value. If the argu-
ment is the empty sequence, this function returns the empty sequence.

[2.0] year-from-dateTime( ) | 865

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the year-from-dateTime() function:

<?xml version="1.0"?>
<!-- year-from-datetime.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the year from an xs:dateTime:</xsl:text>
 <xsl:variable name="currentDateTime" as="xs:dateTime"
 select="current-dateTime()"/>
 <xsl:text>

The current date and time is: </xsl:text>
 <xsl:value-of select="$currentDateTime"/>

 <xsl:text>

 The current year: </xsl:text>
 <xsl:value-of select="year-from-dateTime($currentDateTime)"/>
 <xsl:text>
 In words: </xsl:text>
 <xsl:value-of select="format-dateTime($currentDateTime, '[YWw]')"/>
 <xsl:text>
 In German: </xsl:text>
 <xsl:value-of
 select="format-dateTime($currentDateTime, '[YWw]', 'de', (), ())"/>
 </xsl:template>

</xsl:stylesheet>

The stylesheet creates these results:

The current date and time is: 2006-11-16T05:18:20.187-05:00

 The current year: 2006
 In words: Two Thousand and Six
 In German: Zweitausend Sechs

See Also
The definitions of the [2.0] day-from-dateTime(), [2.0] format-dateTime(), [2.0] hours-from-
dateTime(), [2.0] minutes-from-dateTime(), [2.0] month-from-dateTime(), [2.0] seconds-
from-dateTime(), and [2.0] timezone-from-dateTime() functions.

[2.0] years-from-duration()
Given an xs:duration value, returns the number of years in that duration.

866 | Appendix C: XSLT, XPath, and XQuery Function Reference

Syntax
xs:integer? years-from-duration(xs:duration?)

Inputs
An xs:duration value.

Output
An xs:integer representing the years component of the given xs:duration. Be aware that for
an xs:dayTimeDuration, this function always returns 0 because there is no years component
of an xs:dayTimeDuration. Also, if the argument is the empty sequence, this function returns
the empty sequence.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 10.5, “Component Extraction
Functions on Durations, Dates and Times.”

Example
This stylesheet demonstrates the years-from-duration() function with all three types of
durations:

<?xml version="1.0"?>
<!-- years-from-duration.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Extracting the years component from durations:</xsl:text>

 <xsl:variable name="sampleDuration" as="xs:duration"
 select="xs:duration('P3Y8M2DT4H23M12.2S')"/>
 <xsl:variable name="sampleYearMonthDuration" as="xs:yearMonthDuration"
 select="xs:yearMonthDuration('P3Y8M')"/>
 <xsl:variable name="sampleDayTimeDuration" as="xs:dayTimeDuration"
 select="xs:dayTimeDuration('P2DT4H23M12.2S')"/>

 <xsl:text>

 A sample xs:duration: </xsl:text>
 <xsl:value-of select="$sampleDuration"/>
 <xsl:text>
 The years component of this duration is </xsl:text>
 <xsl:value-of select="years-from-duration($sampleDuration)"/>
 <xsl:text>.</xsl:text>

 <xsl:text>

 A sample xs:yearMonthDuration: </xsl:text>
 <xsl:value-of select="$sampleYearMonthDuration"/>
 <xsl:text>
 The years component of this duration is </xsl:text>
 <xsl:value-of select="years-from-duration($sampleYearMonthDuration)"/>
 <xsl:text>.</xsl:text>

 <xsl:text>

 A sample xs:dayTimeDuration: </xsl:text>

[2.0] years-from-duration( ) | 867

 <xsl:value-of select="$sampleDayTimeDuration"/>
 <xsl:text>
 The years component of this duration is </xsl:text>
 <xsl:value-of select="years-from-duration($sampleDayTimeDuration)"/>
 <xsl:text>.</xsl:text>
 </xsl:template>

</xsl:stylesheet>

Here are the results from this stylesheet:

Extracting the years component from durations:

 A sample xs:duration: P3Y8M2DT4H23M12.2S
 The years component of this duration is 3.

 A sample xs:yearMonthDuration: P3Y8M
 The years component of this duration is 3.

 A sample xs:dayTimeDuration: P2DT4H23M12.2S
 The years component of this duration is 0.

As you can see, extracting the years component from an xs:dayTimeDuration returns 0.

See Also
The definitions of the [2.0] days-from-duration(), [2.0] hours-from-duration(), [2.0]
minutes-from-duration(), [2.0] months-from-duration(), and [2.0] seconds-from-duration(
) functions.

[2.0] zero-or-one()
Raises an error unless its argument is a sequence containing zero or one items. For example,
if a <name> element can have at most one <title> child, zero-or-one(title) would raise an
error if a <name> element had the wrong number of <title> elements. Be aware that zero-or-
one() terminates processing; for a more flexible approach, use the count() function to
determine the cardinality of a sequence.

Syntax
item()? zero-or-one(item()*)

Inputs
A sequence of items. The sequence must either be empty or a singleton.

Outputs
This function returns the input sequence, assuming it has zero or one items. If the input
sequence has more than one item, the zero-or-one() function raises an error.

Defined in
XQuery 1.0 and XPath 2.0 Functions and Operators section 15.2, “Functions That Test the
Cardinality of Sequences.” More details about this function can be found in XQuery 1.0 and

868 | Appendix C: XSLT, XPath, and XQuery Function Reference

XPath 2.0 Formal Semantics section 7.2, “Standard Functions with Specific Static Typing
Rules.”

Example
We’ll look at a trivial example that illustrates the zero-or-one() function. Invoking zero-or-
one() with a sequence containing more than one item raises an error. Here’s the stylesheet:

<?xml version="1.0"?>
<!-- zero-or-one.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:variable name="emptySequence" as="item()*">
 <xsl:sequence select="()"/>
 </xsl:variable>

 <xsl:variable name="singleton" as="item()*">
 <xsl:sequence select="(3)"/>
 </xsl:variable>

 <xsl:text>
Here are two tests of the zero-or-one() </xsl:text>
 <xsl:text>function:
</xsl:text>

 <xsl:text>
 Calling zero-or-one() with the empty </xsl:text>
 <xsl:text>sequence:
 </xsl:text>

 <xsl:if test="count(zero-or-one($emptySequence) < 2)">
 <xsl:text>
 Our sequence has zero or one items!</xsl:text>
 </xsl:if>

 <xsl:text>

 Calling zero-or-one() with a </xsl:text>
 <xsl:text>singleton:
</xsl:text>
 <xsl:text>
 Our sequence is:
 </xsl:text>
 <xsl:value-of select="$singleton" separator="
 "/>

 <xsl:if test="count(zero-or-one($singleton) < 2)">
 <xsl:text>

 Our sequence has zero or one items!</xsl:text>
 </xsl:if>
 </xsl:template>

</xsl:stylesheet>

Notice that we use the count() function to create a boolean value here. Converting a sequence
into a boolean value directly won’t work here. If the sequence is the empty sequence, the
XSLT 2.0 processor evaluates that as false, which is the opposite of what we want. Even if
the sequence has one member, there are still problems; the sequence (0) evaluates as false,
and the sequence (xs:date('1995-04-21')) raises an error. The best way to get a boolean value
here is to see whether the size of the returned sequence is < 2.

[2.0] zero-or-one( ) | 869

The stylesheet generates these results:

Here are two tests of the zero-or-one() function:

 Calling zero-or-one() with the empty sequence:

 Our sequence has zero or one items!

 Calling zero-or-one() with a singleton:

 Our sequence is:
 3

 Our sequence has zero or one items!

Calling zero-or-one() with the empty sequence or a singleton returns the input sequence;
calling zero-or-one() with anything else raises an error.

See Also
The descriptions of the count(), [2.0] empty(), [2.0] exactly-one(), and the [2.0] one-or-
more() functions and the discussion of the XPath 2.0 treat as operator in the section “[2.0]
Datatype Operators—instance of, castable as, cast as, and treat as” in Chapter 3.

870 | Appendix C: XSLT, XPath, and XQuery Function Reference

APPENDIX D

XML Schema Overview

This appendix is a brief overview of XML Schema. For in-depth information about
XML Schemas, I highly recommend Eric van der Vlist’s XML Schema, published by
O’Reilly. The XML Schema Primer at the W3C is very useful as well.

We’ll cover three topics in this appendix. First, we’ll look at how to declare elements
and attributes in XML Schema. Next we’ll go through the many ways to create types.
Finally, we’ll look at how to use XML Schemas in XSLT stylesheets. The focus here is
on the aspects of XML Schema that apply to XSLT. A schema-aware XSLT processor
can use a schema to validate a document or element. If we’re working with types de-
clared in an XML Schema, a schema-aware processor can use those datatypes just like
xs:string, xs:date, or any other basic datatype.

Declaring Elements and Attributes
The most common task in XML Schema is declaring elements and attributes. We’ll
start with an empty element, then move on to more sophisticated things.

Creating an Empty Element
Here’s how we create an empty element:

<?xml version="1.0" encoding="UTF-8"?>
<!-- empty1.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="empty1">
 <xs:complexType/>
 </xs:element>

</xs:schema>

871

That’s it. The empty <xs:complexType> means that our element can’t have any attributes
and it can’t have any content. It’s not terribly useful, but that’s how it works. An XML
document that uses this schema looks like this:

<?xml version="1.0" encoding="utf-8"?>
<!-- empty1.xml -->
<empty1
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt empty1.xsd"/>

Although we said our empty element couldn’t contain attributes, it looks like we have
three of them here. The first two (xmlns and xmlns:xsi) are actually namespace decla-
rations, not attributes. The xsi:schemaLocation attribute (it actually is an attribute)
associates the XML Schema with our document. In the schema, the targetNamespace
attribute defines the namespace used by this schema; it’s also the default namespace
(xmlns="http://www.oreilly.com/xslt") in the schema and the XML document. To tie
everything together, the xsi:schemaLocation attribute in our XML document tells the
XML parser where to find the schema that defines what a valid document looks like.

There are other ways of using namespaces, but we won’t cover them in any detail here.
For example, our XML document could look like this:

<ora:empty1
 xmlns:ora="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt empty1.xsd"/>

We took out the default namespace and declared a namespace prefix that matches the
namespace in the XML Schema. Because the XML document doesn’t have a default
namespace, we have to qualify all of the elements with the namespace prefix that
matches the target namespace of the schema. That’s why our element is now
<ora:empty1> instead of <empty1>.

Creating an Empty Element with Attributes
Our next step is to create an attribute for our empty element. To do that, we declare
what XML Schema refers to as a complex type:

<?xml version="1.0" encoding="UTF-8"?>
<!-- empty2.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="empty2">
 <xs:complexType>
 <xs:attribute name="color"/>
 </xs:complexType>
 </xs:element>

872 | Appendix D: XML Schema Overview

</xs:schema>

The XML document is slightly more interesting now:

<?xml version="1.0" encoding="utf-8"?>
<!-- empty2.xml -->
<empty2
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt empty2.xsd"
 color="blue"/>

We simply declared an attribute with a name here. We could have declared a datatype
for the attribute; we’ll do that soon.

Creating an Element with Text
To create an element that’s actually useful, we’ll want to let it contain something. We’ll
start by simply creating an element whose type is xs:string:

<?xml version="1.0" encoding="UTF-8"?>
<!-- content1.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="content1" type="xs:string"/>

</xs:schema>

Notice that we didn’t use <xs:complexType> this time. We simply said our element was
a string. Here’s a valid document for this schema:

<?xml version="1.0" encoding="utf-8"?>
<!-- content1.xml -->
<content1
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt content1.xsd">
Our element now contains some text! It’s getting more useful
all the time.
</content1>

Creating an Element with Text and Attributes
Now we’ll create an element that has both text and attributes. Remember, in order to
create attributes, we have to create an <xs:complexType>, so we have to create a new
type based on xs:string. Here’s how we do that:

<?xml version="1.0" encoding="UTF-8"?>
<!-- content2.xsd -->
<xs:schema

Declaring Elements and Attributes | 873

 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="content2">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="color” type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

</xs:schema>

Our new element is a complex type, but it uses what XML Schema refers to as simple
content. In other words, this element is an extension of a simple type, xs:string. The
extension to the simple type is that we’re adding an attribute. Here’s how our document
looks now:

<?xml version="1.0" encoding="utf-8"?>
<!-- content2.xml -->
<content2
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt content2.xsd"
 color="blue">
Our element now contains some text! It's getting more useful
all the time.
</content2>

Creating an Element with Mixed Content
For our final example, we’ll create an element with mixed content. Mixed content means
this element can contain text and other elements. Here’s an expanded schema that
declares a second element; the first element can contain any combination of text and
the second element:

<?xml version="1.0" encoding="UTF-8"?>
<!-- content3.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="content3">
 <xs:complexType mixed="true">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="emphasis"/>
 </xs:sequence>
 <xs:attribute name="color" type="xs:string"/>
 </xs:complexType>
 </xs:element>

874 | Appendix D: XML Schema Overview

 <xs:element name="emphasis" type="xs:string"/>

</xs:schema>

Now we’ve declared a complex type that contains mixed content, an element, and an
attribute. Here’s a valid document in our new schema:

<?xml version="1.0" encoding="utf-8"?>
<!-- content3.xml -->
<content3
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt content3.xsd"
 color="blue">
Our element <emphasis>now</emphasis> contains some text!
It's getting <emphasis>more useful</emphasis> all the time.
</content3>

One final detail: in the schema, we declared the <emphasis> element outside the complex
type and referred to it in the declaration of the <content3> element. If we had declared
<emphasis> like this:

 <xs:complexType mixed="true">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="emphasis” type="xs:string"/>
 ...

we would get the same results, but we couldn’t reuse the <emphasis> element anywhere
else. In all our examples from now on, we’ll declare elements globally and reference
them where we need them. (A globally declared element is an <xs:element> whose parent
is the <xs:schema> element.)

Defining Datatypes
Some of the elements and attributes we’ve created to this point use the built-in XML
Schema datatypes. The ability to define our own types is a powerful feature of the
language. Custom datatypes are the feature most directly related to XSLT. With a
schema-aware processor, we can use our own datatypes for validation. We’ll cover the
ways to create datatypes in the next section.

We don’t cover the basic datatypes (xs:string, xs:integer, etc.) used
by XML Schema here. See the discussion of “[2.0] XPath 2.0 Data-
types” in Appendix B for all the details on those datatypes.

Anonymous Types
Everything we’ve done to this point has used anonymous types. That means we used
<xs:simpleType> or <xs:complexType>, but we didn’t give those types a name. That was

Defining Datatypes | 875

OK for our simple schemas because we didn’t want to reuse those datatypes outside
the element in which they were defined. From now on, we’ll give our datatypes a name
so we can use them whenever we need to. Here’s the difference between an anonymous
type and a named type:

<?xml version="1.0" encoding="UTF-8"?>
<!-- content4.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="content4a">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="color" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="content4b-type">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="color" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:element name="content4b" type="content4b-type"/>

</xs:schema>

The first element in the schema, <content4a>, uses an anonymous type. The second
element has the exact same structure, but it uses the named datatype we created. The
difference, of course, is that we can use the named datatype anywhere, while the
anonymous type exists only inside the declaration of element <content4a>.

Groups
There are three kinds of groups we can define in an XML Schema: <xs:sequence>
groups, <xs:choice> groups, and <xs:all> groups. Normally these groups are inside
the declaration of a type or element, but we can also use the <xs:group> element to
create a group separately and refer to it as we need it.

The most flexible group is a choice group. A choice group contains a list of elements,
only one of which may appear in a valid XML document. Although that sounds re-
strictive, we can say that a choice group can appear zero or more times, and we can put
it in a mixed content model. For example, here’s a choice group that says a <p> element
can contain text and any combination of <a>, ,
, <code>, <i>, or elements:

876 | Appendix D: XML Schema Overview

<?xml version="1.0" encoding="UTF-8"?>
<!-- paragraph.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="a">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="href" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

 <xs:element name="b">
 <xs:complexType mixed="true">
 <xs:choice minOccurs="0” maxOccurs="unbounded">
 <xs:element ref="a"/>
 <xs:element ref="br"/>
 <xs:element ref="code"/>
 <xs:element ref="i"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name="br"/>

 <xs:element name="code">
 <xs:complexType mixed="true">
 <xs:choice minOccurs="0” maxOccurs="unbounded">
 <xs:element ref="a"/>
 <xs:element ref="b"/>
 <xs:element ref="br"/>
 <xs:element ref="i"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name="i">
 <xs:complexType mixed="true">
 <xs:choice minOccurs="0” maxOccurs="unbounded">
 <xs:element ref="a"/>
 <xs:element ref="b"/>
 <xs:element ref="br"/>
 <xs:element ref="code"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name="img">
 <xs:complexType>
 <xs:attribute name="href" type="xs:string"/>

Defining Datatypes | 877

 </xs:complexType>
 </xs:element>

 <xs:element name="p">
 <xs:complexType mixed="true">
 <xs:choice minOccurs="0” maxOccurs="unbounded">
 <xs:element ref="a"/>
 <xs:element ref="b"/>
 <xs:element ref="br"/>
 <xs:element ref="code"/>
 <xs:element ref="i"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

</xs:schema>

All of the elements that have mixed content can also contain any number of elements
from the <xs:choice>. This schema gives us a great deal of flexibility; we can have a
<p> element that contains text that contains a <code> element, which in turn contains
a element, which in turn contains an <i> element.

Next we’ll look at sequence groups. A sequence group is defined with <xs:sequence>
and contains a list of elements that must appear in the sequence in which they are listed.
We can minOccurs="0" to indicate that some of the elements are optional. Here’s a
schema that defines elements that must appear inside a <person> element:

<?xml version="1.0" encoding="UTF-8"?>
<!-- person.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="age"/>
 <xs:element ref="birthday"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="name" type="xs:string"/>
 <xs:element name="age" type="xs:positiveInteger"/>
 <xs:element name="birthday" type="xs:date"/>

</xs:schema>

This schema says that any <person> element must contain a <name> element, an <age>
element, and a <birthday> element. The elements must occur in this order, and all of
them are required.

878 | Appendix D: XML Schema Overview

The final kind of group we’ll look at is the <xs:all> group. An <xs:all> group contains
a list of elements. All of the elements in the list must appear once, although the order
in which they appear doesn’t matter. We can define some of the elements as being
optional by using minOccurs="0" if necessary. The only legal values for minOccurs and
maxOccurs are 0 and 1. Here’s a schema with an <xs:all> group:

<?xml version="1.0" encoding="UTF-8"?>
<!-- person-all.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="person">
 <xs:complexType>
 <xs:all>
 <xs:element ref="name"/>
 <xs:element ref="age"/>
 <xs:element ref="birthday"/>
 </xs:all>
 </xs:complexType>
 </xs:element>

 <xs:element name="name" type="xs:string"/>
 <xs:element name="birthday" type="xs:date" nillable="true"/>
 <xs:element name="age" type="xs:positiveInteger"/>

</xs:schema>

The three elements here can occur in any order, but all three must occur. Here’s an
XML document that’s valid against this schema:

<?xml version="1.0" encoding="utf-8"?>
<!-- person-all.xml -->
<person
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt person-all.xsd">
 <age>42</age>
 <birthday>1965-06-19</birthday>
 <name>Doug Tidwell</name>
</person>

There is one important restriction on <xs:all> groups. The elements defined or refer-
enced inside the group can only be individual elements. You can’t use a group to add
multiple elements to the group—you have to do that individually.

One more thing before we leave the topic of groups: XML Schema defines the
<xs:group> element. We can use it to define a group of elements or to reference a group
of elements defined elsewhere. Here’s an example:

<?xml version="1.0" encoding="UTF-8"?>
<!-- group.xsd -->
<xs:schema

Defining Datatypes | 879

 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="person">
 <xs:complexType>
 <xs:group ref="person-elements"/>
 </xs:complexType>
 </xs:element>

 <xs:group name="person-elements">
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="birthday"/>
 <xs:element ref="age"/>
 </xs:sequence>
 </xs:group>

 <xs:element name="name" type="xs:string"/>
 <xs:element name="birthday" type="xs:date"/>
 <xs:element name="age" type="xs:positiveInteger"/>

</xs:schema>

We define a named group and refer to it in the definition of the <person> element.

Creating New Datatypes by Restriction
A common way to create new datatypes is to restrict the values of another datatype.
We’ll look at three approaches: ranges, enumerations, and regular expressions.

For our first example, we’ll use a range to define a datatype called age based on
xs:integer. We would like for the age datatype to have a value between 0 and 130.
(We’re being optimistic about longevity here.) Here’s how we define a range of valid
values:

<?xml version="1.0" encoding="UTF-8"?>
<!-- person1.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="age"/>
 </xs:sequence>
 <xs:attribute name="eyeColor" type="xs:string"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="name" type="xs:string"/>

880 | Appendix D: XML Schema Overview

 <xs:simpleType name="age-type">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="130"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:element name="age" type="age-type"/>

</xs:schema>

We’ve defined a new datatype, age-type, and we’ve used it as the datatype for the
element <age>. Here’s a valid document for this schema:

<?xml version="1.0" encoding="utf-8"?>
<!-- person1.xml -->
<person
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt person1.xsd"
 eyeColor="brown">
 <name>Doug Tidwell</name>
 <age>42</age>
</person>

If the value of <age> is outside the range we defined, this document won’t validate.

We’ll continue developing our person schema by limiting the value of the eyeColor
attribute. For simplicity’s sake, we’ll limit this attribute to four colors. We do that with
an enumeration:

<?xml version="1.0" encoding="UTF-8"?>
<!-- person2.xsd -->
...
 <xs:attribute name="eyeColor" type="eyeColor-type"/>
 </xs:complexType>
 </xs:element>

 <xs:simpleType name="eyeColor-type">
 <xs:restriction base="xs:string">
 <xs:enumeration value="blue"/>
 <xs:enumeration value="brown"/>
 <xs:enumeration value="gray"/>
 <xs:enumeration value="green"/>
 </xs:restriction>
 </xs:simpleType>
 ...

If the value of the eyeColor attribute is anything other than the four values defined here,
validation fails.

For a final use of restrictions, we’ll use a regular expression. The regular expression
defines what valid data looks like; if a value of that type doesn’t match the regular
expression, validation fails. Here’s a datatype defined with a regular expression:

Defining Datatypes | 881

<?xml version="1.0" encoding="UTF-8"?>
<!-- person3.xsd -->
...
 <xs:element name="driversLicense" type="driversLicense-type"/>
...
 <xs:simpleType name="driversLicense-type">
 <xs:restriction base="xs:string">
 <xs:pattern value="[A-Z]{2}-[0-9]{4}-[0-9]{6}"/>
 </xs:restriction>
 </xs:simpleType>
 ...

Here’s a document that’s valid according to this schema:

<?xml version="1.0" encoding="utf-8"?>
<!-- person3.xml -->
<person
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt person3.xsd"
 eyeColor="brown">
 <name>Doug Tidwell</name>
 <age>42</age>
 <driversLicense>NC-3821-388297</driversLicense>
</person>

(Notice that we defined the element that uses the datatype before the datatype itself.
The order in which you define things in the schema doesn’t matter.)

Because we’ve defined our own datatypes through restriction, validation fails if <age>
is outside the defined range, or eyeColor isn’t one of our four colors, or
<driversLicense> doesn’t match our regular expression. Because all of these datatypes
are named, we can reuse them wherever we need them.

Creating New Datatypes by Extension
Another way to create new datatypes is through extension. The most common example
of this is adding an attribute to a simple type. The XML Schema spec says that simple
types (xs:string, xs:integer, etc.) can’t have attributes. We can create a complex type
that allows an element to have content of type xs:integer and have an attribute. Here’s
how the schema looks:

<?xml version="1.0" encoding="UTF-8"?>
<!-- extension.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="currency-type">
 <xs:restriction base="xs:string">
 <xs:enumeration value="USD"/>
 <xs:enumeration value="GBP"/>

882 | Appendix D: XML Schema Overview

 <xs:enumeration value="CNY"/>
 <xs:enumeration value="EUR"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="price-type">
 <xs:simpleContent>
 <xs:extension base="xs:decimal">
 <xs:attribute name="currency" type="currency-type"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:element name="price" type="price-type"/>

</xs:schema>

Now we have an element whose content must be an xs:decimal, while it must also have
an attribute named currency. Here’s a valid document for this schema:

<?xml version="1.0" encoding="utf-8"?>
<!-- extension.xml -->
<price
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt extension.xsd"
 currency="USD">
438.92
</price>

If we change the content of the element to be akd482.58, validation fails.

Casting Between Datatypes
It is possible to cast an atomic value from one atomic datatype to another. We can’t do
that with complex types, but it does work for atomic types. Here’s a short example that
illustrates this:

<?xml version="1.0"?>
<!-- typecasting.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:age="http://www.oreilly.com/xslt"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:import-schema namespace="http://www.oreilly.com/xslt">
 <xs:schema
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:simpleType name="age-type">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="130"/>

Defining Datatypes | 883

 </xs:restriction>
 </xs:simpleType>
 </xs:schema>
 </xsl:import-schema>

 <xsl:template match="/">
 <xsl:variable name="age” as="age:age-type"
 select="age:age-type(42)"/>
 <xsl:variable name="age-int" as="xs:integer"
 select="$age cast as xs:integer"/>
 <xsl:variable name="float-age" as="age:age-type"
 select="xs:float(42.0) cast as age:age-type"/>
 <xsl:value-of select="$age, $age-int, $float-age"
 separator=", "/>
 </xsl:template>
</xsl:stylesheet>

The three variables at the bottom of the stylesheet are of datatypes age:age-type,
xs:integer, and xs:float. Because all of these are numeric types, we can cast a value
from one type to another. We still have to follow the restrictions for each datatype; the
statement xs:float(148.3) cast as age:age-type fails at runtime. Casting
xs:float(48.3) to an age:age-type creates a new age:age-type value of 48.

To “cast” to or from a complex type, we have to build the complex type ourselves. In
other words, to create a new complex type, we have to use <xsl:element> to create and
validate the complex type, filling in the elements and attributes of the complex type
appropriately. See the second example of the <xsl:element> element in Appendix A for
more details.

Creating List Types
Another datatype we can create is a list type. A list type references a datatype; the new
list type allows space-separated values of that type. We’ll add a new datatype called
state-abbr to our schema, then create a list type based on it. Here’s the schema:

<?xml version="1.0" encoding="UTF-8"?>
<!-- list.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="birthday"/>
 <xs:element ref="age"/>
 <xs:element ref="priorAddresses"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

884 | Appendix D: XML Schema Overview

 <xs:simpleType name="state-abbr-type">
 <xs:restriction base="xs:string">
 <xs:length value="2"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="state-abbr-list-type">
 <xs:list itemType="state-abbr-type"/>
 </xs:simpleType>

 <xs:element name="name" type="xs:string"/>
 <xs:element name="birthday" type="xs:date"/>
 <xs:element name="age" type="xs:positiveInteger"/>
 <xs:element name="priorAddresses">
 <xs:complexType>
 <xs:attribute name="states" type="state-abbr-list-type"/>
 </xs:complexType>
 </xs:element>

</xs:schema>

Now we have an attribute named states whose content is a list of one or more state
abbreviations. Here’s a valid document:

<?xml version="1.0" encoding="utf-8"?>
<!-- list.xml -->
<person
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt list.xsd">
 <name>Doug Tidwell</name>
 <birthday>1965-06-19</birthday>
 <age>42</age>
 <priorAddresses states="GA TN NC"/>
</person>

Creating Union Types
A union type references two or more datatypes. The valid content of a union type is a
value from one of those datatypes. We’ll create another schema that defines a list of
zipcodes, then create a union type that allows the states attribute to be either a list of
state abbreviations or a list of zipcodes. Here’s an excerpt from the schema:

<?xml version="1.0" encoding="UTF-8"?>
<!-- union.xsd -->
...
 <xs:simpleType name="zipcode">
 <xs:restriction base="xs:integer">
 <xs:pattern value="[0-9]{5}"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="zipcode-list-type">

Defining Datatypes | 885

 <xs:list itemType="zipcode"/>
 </xs:simpleType>

 <xs:simpleType name="state-abbr-type">
 <xs:restriction base="xs:string">
 <xs:length value="2"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="state-abbr-list-type">
 <xs:list itemType="state-abbr-type"/>
 </xs:simpleType>

 <xs:simpleType name="address-union-type">
 <xs:union memberTypes="state-abbr-list-type zipcode-list-type"/>
 </xs:simpleType>
 ...
 <xs:element name="priorAddresses">
 <xs:complexType>
 <xs:attribute name="states" type="address-union-type"/>
 </xs:complexType>
 </xs:element>

</xs:schema>

And here’s a valid document for this schema:

<?xml version="1.0" encoding="utf-8"?>
<!-- union.xml -->
<person
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt union.xsd">
 <name>Doug Tidwell</name>
 <birthday>1965-06-19</birthday>
 <age>42</age>
 <priorAddresses states="27516 37174 30606"/>
</person>

A states attribute that contains a list of zip codes or a list of state abbreviations is legal.
What we can’t do is combine the two. The following is illegal:

 <!-- Not valid! -->
 <priorAddresses states="27516 37174 30606 NC TN GA"/>

Substitution Groups
A substitution group is a set of elements that can be substituted for each other. We’ll
add an <address> element to our schema, then we’ll define two types of address that
can be used instead. Here’s the schema:

<?xml version="1.0" encoding="UTF-8"?>
<!-- substitute.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"

886 | Appendix D: XML Schema Overview

 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="birthday"/>
 <xs:element ref="age"/>
 <xs:element ref="address"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="name" type="xs:string"/>
 <xs:element name="birthday" type="xs:date"/>
 <xs:element name="age" type="xs:positiveInteger"/>

 <xs:element name="address" type="xs:string"/>
 <xs:element name="businessAddress" type="xs:string"
 substitutionGroup="address"/>
 <xs:element name="residentialAddress" type="xs:string"
 substitutionGroup="address"/>

</xs:schema>

The schema defines two additional elements, <businessAddress> and
<residentialAddress>, that can be substituted for <address>. Notice that the two ad-
ditional elements use the substitutionGroup attribute to reference the element they can
replace. Also, all of the elements are the same type. Here’s a valid XML document:

<?xml version="1.0" encoding="utf-8"?>
<!-- substitute.xml -->
<person
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt substitute.xsd">
 <name>Doug Tidwell</name>
 <birthday>1965-06-19</birthday>
 <age>42</age>
 <address>4013 Corporate Parkway</address>
</person>

This document is valid as well:

<?xml version="1.0" encoding="utf-8"?>
<!-- substitute2.xml -->
<person
...
 <businessAddress>4013 Corporate Parkway</businessAddress>
</person>

And so is this:

<?xml version="1.0" encoding="utf-8"?>
<!-- substitute3.xml -->

Defining Datatypes | 887

<person
...
 <residentialAddress>1234 Main Street</residentialAddress>
</person>

Abstract Elements and Datatypes
Our final topic is the use of abstract elements and datatypes. An abstract element or
datatype works like an abstract class in object-oriented programming languages. We
define the abstract class, but we have to create a subclass to actually use it. In terms of
XML Schema, we’ll be creating new elements and datatypes based on the abstract ones.

In our first example, we’ll define an abstract element and its properties, and then use
our substitution group as before. The only change to the schema is that we’ve added
abstract="true" to the definition of the <address> element:

<?xml version="1.0" encoding="UTF-8"?>
<!-- abstract1.xsd -->
<xs:schema
...
 <xs:element name="address" type="xs:string" abstract="true"/>

 <xs:element name="businessAddress" type="xs:string"
 substitutionGroup="address"/>
 <xs:element name="residentialAddress" type="xs:string"
 substitutionGroup="address"/>
...

The effect of the abstract element is that we’re forcing the document to contain either
a <businessAddress> or a <residentialAddress>. This document is valid:

<?xml version="1.0" encoding="utf-8"?>
<!-- abstract1.xml -->
<person
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt abstract1.xsd">
 <name>Doug Tidwell</name>
 <birthday>1965-06-19</birthday>
 <age>42</age>
 <businessAddress>4013 Corporate Parkway</businessAddress>
</person>

If this document used the <address> element instead of <businessAddress>, it would
not be valid.

Finally, we’ll look at an abstract datatype. In this example, we’ll define an abstract
datatype named state-or-province-type and an element of that type named <state-
or-province>. We’ll then define two nonabstract extensions of those types called
province-type and state-type. The <xsl:state-or-province> elements in our sample
document will use the xsi:type attribute to declare the element to be of a nonabstract
type:

888 | Appendix D: XML Schema Overview

<?xml version="1.0" encoding="UTF-8"?>
<!-- abstract2.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="birthday"/>
 <xs:element ref="age"/>
 <xs:element ref="state-or-province"
 minOccurs="2" maxOccurs="2"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="name" type="xs:string"/>
 <xs:element name="birthday" type="xs:date"/>
 <xs:element name="age" type="xs:positiveInteger"/>

 <xs:element name="address" type="xs:string"/>

 <xs:complexType name="state-or-province-type" abstract="true"/>

 <xs:complexType name="state-type">
 <xs:complexContent>
 <xs:extension base="state-or-province-type">
 <xs:attribute name="state-abbr">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="NC"/>
 <xs:enumeration value="TN"/>
 <xs:enumeration value="GA"/>
 <!-- Other states left out -->
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="province-type">
 <xs:complexContent>
 <xs:extension base="state-or-province-type">
 <xs:attribute name="province-abbr">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="NS"/>
 <xs:enumeration value="BC"/>
 <xs:enumeration value="PEI"/>
 <!-- Other provinces left out -->
 </xs:restriction>

Defining Datatypes | 889

 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="state-or-province" type="state-or-province-type"/>

</xs:schema>

The two datatypes we define extend the abstract datatype by adding an attribute. Each
attribute is restricted with an enumeration. The state-type datatype has a state-
abbr attribute that can only contain values from our enumeration; the same is true for
the province-type datatype and its province-abbr attribute.

Here’s a valid XML document:

<?xml version="1.0" encoding="utf-8"?>
<!-- abstract2.xml -->
<person
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt abstract2.xsd">
 <name>Doug Tidwell</name>
 <birthday>1965-06-19</birthday>
 <age>42</age>
 <state-or-province xsi:type="province-type" province-abbr="NS"/>
 <state-or-province xsi:type="state-type" state-abbr="NC"/>
</person>

(For the sake of illustration, we changed the minOccurs attribute on the <state-or-
province> element so we could use both nonabstract datatypes here.) Because the
<state-or-province> element is declared with an abstract datatype, we have to use the
xsi:type attribute to declare a nonabstract datatype for the element.

Using an XML Schema in a Stylesheet
Now that we’ve covered how schemas work, we’ll take a look at how to use them in
XSLT. The <xsl:import-schema> element lets us import an XML Schema into our style-
sheet directly. In addition to <xsl:import-schema>, an XML document can reference a
schema with the xsi:noNamespaceSchemaLocation or xsi:schemaLocation attributes. If
our stylesheet is set up correctly, the XSLT processor can use the referenced schema to
validate data.

Importing XML Schemas with <xsl:import-schema>
The <xsl:import-schema> element allows you to import an XML Schema. The schema
is imported and processed before any input documents are processed. This allows you
to define datatypes and validation rules before the XSLT processor begins to transform

890 | Appendix D: XML Schema Overview

the input document. This element is only supported by schema-aware XSLT 2.0
processors.

The element has two optional parameters: namespace, which defines the namespace
URI for the schema, and schema-location, which contains the URI of the schema file
itself. <xsl:import-schema> can use schema-location to import a file, or it can contain
the actual XML Schema within the stylesheet. We’ll look at a couple of examples here;
for more complete examples, see the discussion of the [2.0 – Schema] <xsl:import-
schema> element.

The simplest way to import a schema into a stylesheet is to use the URI:

<?xml version="1.0"?>
<!-- import-schema.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:po="http://www.oreilly.com/xslt">

 <xsl:import-schema namespace="http://www.oreilly.com/xslt"
 schema-location="po.xsd" />

 <xsl:output method="text"/>

 <xsl:template match="schema-element(po:purchase-order)">
 <xsl:text>
This is a test of the <xsl:import-</xsl:text>
 <xsl:text>schema> element.

</xsl:text>
 <xsl:text>Here are all the items in this purchase </xsl:text>
 <xsl:text>order:
</xsl:text>
 <xsl:for-each select="po:items/po:item">
 <xsl:text> * </xsl:text>
 <xsl:value-of select="po:partname"/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

 <xsl:template match="*">
 <xsl:message terminate="yes">
 <xsl:text>This is not a valid purchase order!</xsl:text>
 </xsl:message>
 </xsl:template>

</xsl:stylesheet>

Notice that the imported schema is associated with a namespace URI, which in turn is
associated with the prefix po. The XSLT pattern uses the schema-
element(po:purchase-order) node test to find all of the elements named <purchase-
order> with a namespace URI of http://www.oreilly.com/xslt. Given that starting
point, the stylesheet finds all of the <item> elements in the purchase order. The output
looks like this:

This is a test of the <xsl:import-schema> element.

Here are all the items in this purchase order:

Using an XML Schema in a Stylesheet | 891

 * Turnip Twaddler
 * Clam Teaser

The second template in our stylesheet matches anything except a valid purchase order.
If the root element doesn’t have the correct name and namespace URI, the second
template stops the processor.

We can use <xsl:import-schema> with the schema embedded inside the XSLT stylesheet
as well:

<?xml version="1.0"?>
<!-- import-schema2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns="http://www.oreilly.com/xslt"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:po="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xsl:import-schema namespace="http://www.oreilly.com/xslt">
 <xs:schema
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="purchase-order">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="date"
 minOccurs="1" maxOccurs="1"/>
 <xs:element ref="customer"
 minOccurs="1" maxOccurs="1"/>
 <xs:element ref="items"
 minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="date">
 <xs:complexType>
 <xs:attribute name="year" type="xs:integer"/>
 <xs:attribute name="month" type="xs:integer"/>
 <xs:attribute name="day" type="xs:integer"/>
 </xs:complexType>
 </xs:element>
...
 </xs:schema>
 </xsl:import-schema>
...
 <xsl:template match="schema-element(po:purchase-order)">
 ...
</xsl:stylesheet>

It is a fatal error to have an <xsl:import-schema> element that has a select attribute
and content.

892 | Appendix D: XML Schema Overview

Using XML Schemas Without Namespaces
To use an XML Schema without <xsl:import-schema>, we have to tie the XML, the
schema, and the stylesheet together. We’ll start by doing this without namespaces,
beginning with the xsi:noNamespaceSchemaLocation attribute in our XML document:

<?xml version="1.0"?>
<!-- parts-list-schema-no-ns.xml -->
<parts-list
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="parts-list-no-ns.xsd">
 <component component-id="C28392-33-TT">
 <name>Turnip Twaddler</name>
 <partref refid="P81952-26-PK"/>
 <partref refid="P86679-52-SP"/>
 ...

The schema doesn’t specify a default namespace:

<?xml version="1.0" encoding="UTF-8"?>
<!-- parts-list-no-ns.xsd -->
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="parts-list">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="component" minOccurs="1" maxOccurs="unbounded"/>
 ...

The only prefix we used here is the one for XML Schema itself. The XML file and the
schema are now in sync and namespace-free, so our stylesheet is straightforward:

<?xml version="1.0"?>
<!-- id-schema-no-ns.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>
 ...
 <xsl:for-each select="/parts-list/part">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text> (part #</xsl:text>
 <xsl:value-of select="@part-id"/>
 <xsl:text>) is used in these products:
 </xsl:text>
 <xsl:for-each
 select="/parts-list/component
 [partref/@refid=current()/@part-id]">
 <xsl:value-of select="name"/>
 ...

Because we’re not using namespaces, we don’t have to qualify anything in our XPath
expressions. Next we’ll look at using a schema with namespaces.

Using an XML Schema in a Stylesheet | 893

Using XML Schemas with Namespaces
If we’re using an XML Schema with a namespace, we have to make sure the three files
(.xml, .xsd, and .xsl) are in sync. It’s slightly more complicated, as you’d expect. First
of all, the XML file needs to have a default namespace:

<?xml version="1.0"?>
<!-- parts-list-schema-ns.xml -->
<parts-list xmlns="http://www.oreilly.com/xslt"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oreilly.com/xslt
 parts-list-schema-ns.xsd">
 <component component-id="C28392-33-TT">
 <name>Turnip Twaddler</name>
 <partref refid="P81952-26-PK"/>
 ...

Notice that we’ve defined the default namespace (xmlns=) as http://www.oreilly.com/
xslt. The xsi:schemaLocation attribute has two parts, separated by whitespace: the
namespace URI and the URI of the schema itself. The schema file uses the same default
namespace:

<?xml version="1.0" encoding="UTF-8"?>
<!-- parts-list-schema-ns.xsd -->
<xs:schema
 xmlns="http://www.oreilly.com/xslt"
 targetNamespace="http://www.oreilly.com/xslt"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="parts-list">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="component" minOccurs="1" maxOccurs="unbounded"/>
 <xs:element ref="part" minOccurs="1" maxOccurs="unbounded"/>
 ...

We also use the XML Schema attribute targetNamespace; it has the same value as the
default namespace. Finally, we need to use the namespace in the XSLT file. We define
http://www.oreilly.com/xslt as the default namespace and define a prefix for that
namespace as well:

<?xml version="1.0"?>
<!-- id-schema-ns.xsl -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.oreilly.com/xslt"
 xmlns:pl="http://www.oreilly.com/xslt">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Here is a test of the id() </xsl:text>
 <xsl:text>function in reverse:
</xsl:text>

894 | Appendix D: XML Schema Overview

 <xsl:for-each select="/pl:parts-list/pl:part">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="pl:name"/>
 <xsl:text> (part #</xsl:text>
 <xsl:value-of select="@part-id"/>
 <xsl:text>) is used in these products:
 </xsl:text>
 <xsl:for-each
 select="/pl:parts-list/pl:component
 [pl:partref/@refid=current()/@part-id]">
 <xsl:value-of select="pl:name"/>

Because we’ve defined namespaces in our schema, we have to create a namespace prefix
for that namespace and use it whenever we refer to elements in the XML document. If
we change the stylesheet to look for <parts-list> elements instead of <pl:parts-
list> elements, the stylesheet won’t work. It’s more difficult to use a schema with
namespaces, but you don’t always have a choice.

To address this problem, XSLT 2.0 adds the xpath-default-namespace attribute. In our
previous stylesheet, we defined a namespace and a namespace prefix, then used the
prefix in all of our XPath statements. With xpath-default-namespace, we don’t have to
do that:

<?xml version="1.0"?>
<!-- id-schema-ns2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.oreilly.com/xslt"
 xpath-default-namespace="http://www.oreilly.com/xslt">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Here is a test of the id() </xsl:text>
 <xsl:text>function in reverse:
</xsl:text>

 <xsl:for-each select="/parts-list/part">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text> (part #</xsl:text>
 <xsl:value-of select="@part-id"/>
 <xsl:text>) is used in these products:
 </xsl:text>
 <xsl:for-each
 select="/parts-list/component
 [partref/@refid=current()/@part-id]">
 <xsl:value-of select="name"/>
 <xsl:if test="position() != last()">
 <xsl:text>
 </xsl:text>
 </xsl:if>
 </xsl:for-each>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

Using an XML Schema in a Stylesheet | 895

By adding xpath-default-namespace to our stylesheet, our XPath expressions are much
simpler.

Be aware that you can add this attribute to any element in the XSLT namespace. For
example, we could remove xpath-default-namespace from the <xsl:stylesheet> ele-
ment and write our stylesheet like this:

<?xml version="1.0"?>
<!-- id-schema-ns3.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.oreilly.com/xslt">
...
 <xsl:for-each select="/parts-list/part"
 xpath-default-namespace="http://www.oreilly.com/xslt">
 <xsl:text>
 </xsl:text>
 <xsl:value-of select="name"/>
...
</xsl:stylesheet>

This gives us the same results as before. If you’re using data from different namespaces
(maybe you’re reading more than one XML document as input), redefining the default
XPath namespace as needed makes your XPath expressions much simpler. Most of the
time, though, you’ll just use it on <xsl:stylesheet>.

896 | Appendix D: XML Schema Overview

APPENDIX E

[2.0] Regular Expressions

The regular expression language used by XSLT 2.0, XPath 2.0, and XQuery 1.0 is a
superset of the XML Schema regular expression language. Regular expressions are used
in the XSLT 2.0 [2.0] <xsl:analyze-string> element and the XPath 2.0 and XQuery 1.0
functions [2.0] matches(), [2.0] replace(), and [2.0] tokenize().

This appendix defines the syntax and capabilities of regular expressions in XSLT 2.0,
XPath 2.0, and XQuery 1.0. The details of regular expressions are defined in XQuery
1.0 and XPath 2.0 Functions and Operators section 7.6, “String Functions that Use
Pattern Matching.”

[XPath] The Functions and Operators spec extends the XML Schema
regular expression in several ways. Features unique to the XPath 2.0 and
XQuery 1.0 regular expression language are indicated with the text
[XPath].

Simple Expressions
The simplest regular expression is just a string of text. The regular expression abc
matches the string abc. We’re merely searching for a series of characters inside some
data. For this case, contains('abc', 'abc') does the same thing.

Regular expressions exist to do far more than search for a literal string; they help us
find data that matches a pattern. We can use character sets to specify groups of char-
acters. The regular expression [abc]d matches two characters in which the first char-
acter is a, b, or c, followed by the character d.

We can also negate a character set, asking for all the characters not in the character set.
To do this, add a caret (^) to the start of the character set. The regular expression
[^abc]d matches two characters in which the first character is anything except a, b, or
c, followed by d.

Ranges give us a shorthand way of defining character sets. The character set [0-9]
specifies the digits 0 through 9, while the character set [a-zA-Z] specifies all of the

897

unaccented letters used in Western European languages. A range can be negated just
like any other character set; [^0-9] specifies anything except the digits.

Ranges can also be subtracted from each other. The range [A-Z-[IOQ]] matches any
unaccented uppercase letter except I, O, or Q.

Subexpressions
It’s often useful to split a regular expression into subexpressions. A subexpression is
surrounded by parentheses, and can be modified by a quantifier to define how often
(or if) an expression can occur. For example, this regular expression matches a phone
number in the format 999-999-9999:

 ([0-9]{3})-([0-9]{3})-([0-9]{4})

The regular expression has three subexpressions, each of which matches a group of
digits. XSLT 2.0 provides the regex-group() function to retrieve the part of the analyzed
string that matches a particular subexpression. Here’s an example:

<?xml version="1.0" encoding="utf-8"?>
<!-- subexpressions1.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:analyze-string select="'Call me at 919-555-1212, please.'"
 regex="([0-9]{{3}})-(\p{{Nd}}{{3}})-([0-9]{{4}})">
 <xsl:matching-substring>
 <xsl:text>The matching substring is '</xsl:text>

 <!-- <xsl:value-of select=”."/> does the same thing here -->
 <xsl:value-of select="regex-group(0)"/>
 <xsl:text>'
</xsl:text>
 <xsl:text>The formatted string is '</xsl:text>
 <xsl:value-of
 select="('(', regex-group(1), ') ', regex-group(2),
 '-', regex-group(3), '''')"
 separator=""/>
 </xsl:matching-substring>
 </xsl:analyze-string>
 </xsl:template>

</xsl:stylesheet>

(The curly braces in this example are doubled so that the XSLT processor knows this
is not an attribute value template.) Notice that the regular expression contains two
hyphens that are not part of any subexpression. The function regex-group(0) returns
the entire portion of the string that matches. That means everything from the first
character that matches the regular expression to the last character that matches the
regular expression. In our test string here, regex-group(0) returns 919-555-1212, but

898 | Appendix E: [2.0] Regular Expressions

not any of the other characters in the string. (Asking for the context item does the same
thing.) That includes the two hyphens that aren’t in any of the subexpressions. Here
are the results of the stylesheet:

The matching substring is '919-555-1212'
The formatted string is '(919) 555-1212'

Calling regex-group() with a negative number or with a number larger than the number
of subexpressions returns an empty string.

The replace() function provides a mechanism similar to regex-group(). Within the
replacement string, the dollar sign ($) references the matches to different subexpres-
sions. As you would expect, $1 returns the match for the first subexpression, $2 returns
the match for the second subexpression, and $0 returns the entire matching string.
Here’s the replace() version of our previous example:

<?xml version="1.0" encoding="utf-8"?>
<!-- subexpressions2.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>The string '</xsl:text>
 <xsl:value-of
 select="replace('Call me at 919-555-1212, please',
 '([0-9]{3})-([0-9]{3})-([0-9]{4})',
 '$0')"/>
 <xsl:text>' contains a match!
</xsl:text>
 <xsl:text>The version with all the replacements:
 </xsl:text>
 <xsl:value-of
 select="replace('Call me at 919-555-1212, please',
 '([0-9]{3})-([0-9]{3})-([0-9]{4})',
 '($1) $2-$3')"/>
 </xsl:template>

</xsl:stylesheet>

The first call to the replace() function simply uses the $0 operator. This string is iden-
tical to the original string. The replace() function replaces only the part of the string
that matches, so replacing the part that matches with the part that matches doesn’t
change anything. The second call to replace() formats the phone number as we want.
We put the area code ($1) inside parentheses, followed by a space, the exchange ($2),
a dash, and the last four digits ($3). The results look like this:

The string 'Call me at 919-555-1212, please' contains a match!
The version with all the replacements:
 Call me at (919) 555-1212, please

Subexpressions | 899

There is one important difference between regex-group() and
replace(). Calling regex-group() with a group number that does not
exist returns an empty string. With the dollar sign, the XSLT 2.0 engine
interprets the rightmost digits as literal characters, continuing this proc-
ess until only a single digit is left. If that single digit is greater than the
number of subexpressions, that digit is replaced with an empty string.
To quote an example from the spec, if there are five subexpressions,
$23 returns the value of the second subexpression followed by the num-
ber 3. Using $63 with the same regular expression simply returns the
value 3.

Quantifiers
A quantifier specifies how many times (or if) something occurs. There are three quan-
tifier characters and a syntax for specifying quantities more explicitly. For example,
(a|b)?c matches ac, bc, and c, because the question mark indicates zero or one instances
of a pattern. Here are all the quantifiers and their syntax:

?
Zero or one of a pattern.

*
Zero or more of a pattern.

+
One or more of a pattern.

{x}
The pattern must occur exactly x times. The pattern (a|b){3} matches aaa and
abb, but not ab.

{x,}
The pattern must occur at least x times. The pattern (a|b){3,} matches aaa and
aaaaaaaaa, but not aa.

{x,y}
The pattern must occur at least x times, but no more than y times. The pattern
(a|b){2,5} matches aa and aaa, but not aaaaaa.

[XPath] Reluctant Quantifiers
By default, a regular expression or subexpression matches the longest possible string.
The quantifiers +, *, and ? match as many characters as possible. Adding a question
mark to the end of a quantifier causes the expression or subexpression to match the
shortest possible string. The quantifiers are modified as follows:

a+?
Matches a once

900 | Appendix E: [2.0] Regular Expressions

a??
Matches a, either once or not at all (works only in the matches() function; more
on this later in this section)

a*?
Matches a, zero times or once (works only in the matches() function; more on this
later in this section)

a{x}?
Matches a, exactly x times (in this case the reluctant qualifier doesn’t change
anything)

a{x,}?
Matches a exactly x times (the comma is irrelevant—a reluctant quantifier matches
only the minimum length)

a{x,y}?
Matches a exactly x times (the second number, y, is irrelevant—a reluctant quan-
tifier matches only the minimum length)

As an example, we’ll use the replace() function. We’ll put square brackets around
each match in the original string. The normal quantifier and the reluctant quantifier
work differently, as we’ll see. Here’s the stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!-- reluctant.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Original string: 'Call me at 19195551212'
</xsl:text>
 <xsl:text> replace($x, '([0-9]+)', '[$1]'):
 </xsl:text>
 <xsl:value-of
 select="replace('Call me at 19195551212',
 '([0-9]+)',
 '[$1]')"/>
 <xsl:text>
</xsl:text>
 <xsl:text> replace($x, '(([0-9])+?)', '[$1]'):
 </xsl:text>
 <xsl:value-of
 select="replace('Call me at 19195551212',
 '(([0-9])+?)',
 '[$1]')"/>
 <xsl:text>
</xsl:text>
 <xsl:text> replace($x, '(([0-9]){2,4}?)', '[$1]'):
 </xsl:text>
 <xsl:value-of
 select="replace('Call me at 19195551212',
 '(([0-9]){2,4}?)',
 '[$1]')"/>
 </xsl:template>

</xsl:stylesheet>

[XPath] Reluctant Quantifiers | 901

Here are the results:

Original string: 'Call me at 19195551212'
 replace($x, '([0-9]+)', '[$1]'):
 Call me at [19195551212]
 replace($x, '(([0-9])+?)', '[$1]'):
 Call me at [1][9][1][9][5][5][5][1][2][1][2]
 replace($x, '(([0-9]){2,4}?)', '[$1]'):
 Call me at [19][19][55][51][21]2

With the normal quantifier (([0-9]+)), the entire string of digits is matched. The single
match appears between square brackets. In the second example, the reluctant qualifier
((([0-9])+?)) matches each digit separately, so there are square brackets around each
digit. The final example reluctantly matches two to four digits, which means each match
is two digits long. Notice that the last number in the string isn’t part of a match at all.

With the exception of the matches() function, it is illegal to have an
expression that matches a zero-length string. The reluctant qualifiers
a??, a*?, a{0}?, a{0,}?, and a{0,5}? all match nothing at all. If you use
a regular expression that matches a zero-length string anywhere except
the matches() function, the XSLT processor throws a static error.

Processing Modes
There are four flags that change how regular expressions are evaluated:

s
Regular expressions are evaluated in what the specs refer to as “dot-all” mode.
When this flag is used, the dot operator (.) matches any character. Under normal
processing (without the s flag), the dot operator matches any character except the
newline character (#xA). This flag is useful when you want to match strings that
might include a newline character.

Perl and other languages refer to this as “single-line” mode; that’s
why the abbreviation for “dot-all” mode is s.

m
Regular expressions are evaulated in multiline mode. By default, the
metacharacter (^) matches the start of the entire string, while $ matches the end of
the entire string. In multiline mode, ̂ matches the start of any line within the string,
and $ matches the end of any line within the string.

i
Regular expressions are evaluated in case-insensitive mode. The regular expression
"a" matches both "a" and "A".

902 | Appendix E: [2.0] Regular Expressions

Note that Unicode issues can complicate this greatly. For example, the XQuery 1.0
and XPath 2.0 Functions and Operators spec gives the example of the Unicode sign
for degrees Kelvin (K), which is the letter "K". The combination of
regex="k" and flags="i" matches the Kelvin sign as well as the letters
"k" (k) and "K" (K).

Other Unicode characters don’t convert to letters. For example, the Unicode sym-
bol for the Roman numeral I (Ⅰ) looks like the letter I, but does not convert
to one.

x
All whitespace characters (#x9, #xA, #xD and #x20) are removed from the regular
expression before any comparison is done. In other words, with the x flag, the
regular expressions "John Smith" and "JohnSmith" are the same. This flag is useful
when you want to break a long regular expression into multiple lines to make it
easier to read.

The flags can be combined in any order. The attributes flags="xis" and flags="six"
work exactly the same way.

[XPath] Anchors
In XML Schema, regular expressions are anchored; in other words, the regular expres-
sion is assumed to start at the beginning of the text and end at the end of the text. That
means the expression abc matches only the three-character string abc. If there are any
extra characters before or after the letters abc, XML Schema does not consider the string
a match.

The regular expression language in XPath 2.0 doesn’t work that way. When we use any
of the regular expression functions or elements, a string matches if it contains the reg-
ular expression anywhere inside it. In other words, using XPath’s regular expression
language, both abc and I know my abc's match the expression abc. XPath provides the
traditional anchor operators used in other regular expression languages. The caret (^)
matches the start of the string, while the dollar sign ($) matches the end of the string.
If multiline mode is on (-m), the caret matches the start of the string and any character
immediately following a newline. Similarly, in multiline mode, the dollar sign matches
the end of the string and any character immediately before a newline.

Here’s an example that illustrates how the anchors work:

<?xml version="1.0" encoding="utf-8"?>
<!-- anchors.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>matches('abcdefghij', 'cde'): </xsl:text>

[XPath] Anchors | 903

 <xsl:value-of
 select="if (matches('abcdefghij', 'cde'))
 then 'It''s a match!'
 else 'No match'"/>
 <xsl:text>
matches('abcdefghij', 'cde$'): </xsl:text>
 <xsl:value-of
 select="if (matches('abcdefghij', 'cde$'))
 then 'It''s a match!'
 else 'No match'"/>
 <xsl:text>
matches('abcdefghij', 'hij$'): </xsl:text>
 <xsl:value-of
 select="if (matches('abcdefghij', 'hij$'))
 then 'It''s a match!'
 else 'No match'"/>
 <xsl:text>
matches('ab&#xA;cdefghij', '^cde', 'm'): </xsl:text>
 <xsl:value-of
 select="if (matches('ab
cdefghij', '^cde', 'm'))
 then 'It''s a match!'
 else 'No match'"/>
 </xsl:template>

</xsl:stylesheet>

The first example doesn’t use an anchor at all, so matches() returns true. The second
test looks for the characters cde at the end of the string, which means matches() is
false. In the third example, hij is at the end of the string, so we have a match. In the
final example, we insert a newline character (
) inside the string and use multiline
mode. Looking for cde at the start of a line succeeds. Here are the results of the
stylesheet:

matches('abcdefghij', 'cde'): It's a match!
matches('abcdefghij', 'cde$'): No match
matches('abcdefghij', 'hij$'): It's a match!
matches('ab
cdefghij', '^cde', 'm'): It's a match!

If you want your regular expressions to work the way they do in XML Schema, simply
surround your regular expressions with ^ and $. The expression ^abc$ matches the
three-character string abc, while the expression abc matches any string of any length
that contains the three characters abc at least once.

Back-references
A back-reference allows you to refer to a previously matched subexpression within the
regular expression itself. As an example, say you want to find words that begin and end
with the same two letters. The expression ([a-z]{2})(.*)\1 does the trick. The \1
represents whatever two characters matched the first subexpression. The back-
reference \2 represents the match for the second subexpression, \3 represents the match
for the third subexpression, and so on. (Notice that although the references go back-
wards, counting subexpressions goes from left to right.)

Here’s a sample stylesheet:

904 | Appendix E: [2.0] Regular Expressions

<?xml version="1.0" encoding="utf-8"?>
<!-- back-reference.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>Using back-references to find words that begin
</xsl:text>
 <xsl:text> and end with the same two letters:

</xsl:text>
 <xsl:text> replace($x, '([a-z]{2})(.*)\1', '$1--$2--$1')
</xsl:text>
 <xsl:text> edited: </xsl:text>
 <xsl:value-of
 select="replace('edited', '([a-z]{2})(.*)\1', '$1--$2--$1')"/>
 <xsl:text>
 editor: </xsl:text>
 <xsl:value-of
 select="replace('editor', '([a-z]{2})(.*)\1', '$1--$2--$1')"/>
 <xsl:text>
 educated: </xsl:text>
 <xsl:value-of
 select="replace('educated', '([a-z]{2})(.*)\1', '$1--$2--$1')"/>
 <xsl:text>
 orator: </xsl:text>
 <xsl:value-of
 select="replace('orator', '([a-z]{2})(.*)\1', '$1--$2--$1')"/>
 </xsl:template>

</xsl:stylesheet>

The stylesheet generates these results:

Using back-references to find words that begin
 and end with the same two letters:

 replace($x, '([a-z]{2})(.*)\1', '$1--$2--$1')
 edited: ed--it--ed
 editor: editor
 educated: ed--ucat--ed
 orator: or--at--or

For the words edited, educated, and orator, the regular expression matches. The
replace() function writes out the two letters at the start and end of the word, with
whatever was in between them offset by double hyphens. The word editor doesn’t
match the regular expression, so it isn’t changed.

Metacharacters
Within a regular expression, most characters represent themselves. For example, the
regular expression A represents a capital A. There are, of course, special characters that
are processed differently:

.
By default, this matches any character except the newline character. In dot-all
mode, this matches the newline character as well.

Metacharacters | 905

^
By default, this represents the beginning of the string literal. In multiline mode,
this represents the beginning of a line within the string.

[XPath] Use of the caret to indicate that the beginning of a string or line is an
addition to the regular expression syntax defined by XML Schema.

The caret can also be used inside a character class expression to indicate the neg-
ation of that character set. For example, [a-f] represents the letters a through f,
while [^a-f] represents every character except the letters a through f.

$
[XPath] By default, this represents the end of the string literal. In multiline mode,
this represents the end of a line within the string.

\
Escapes the following character.

|
The union operator. The expression A|B matches both A and B. It does not match AB.

?
Zero or one of a pattern. For example, A[A-Z]?Z matches AZ and ABZ, but not ABCZ.

*
Zero or more of a pattern. For example, A[A-Z]* matches any string of uppercase
basic Latin characters that starts with A and is followed by zero or more uppercase
Latin characters. The strings A, ABC, AA, and AREALLYLONGSTRING all match this
expression.

+
One or more of a pattern. For example, A[A-Z]+ matches any string of uppercase
basic Latin characters that starts with A and is followed by one or more uppercase
characters. The strings AA, AD, and ADD match this expression, but A does not.

(
Starts a subexpression. For example, in the expression A(BCD)+, the parentheses
define the subexpression BCD, which can appear once or not at all. This expression
matches A and ABCD.

)
Ends a subexpression.

[
Begins a character class expression. For example, the expression [a-f] refers to the
letters a through f.

-
Within square brackets, separates the upper and lower bounds of a range. For
example, [a-f] represents the letters a through f. The expressions [a-f] and a|b|
c|d|e|f are equivalent.

906 | Appendix E: [2.0] Regular Expressions

]
Ends a character class expression.

{
Starts a named category, block, or quantifier. For example, \p{IsThai} specifies
the set of all Thai characters (฀ to ๿), while \p{Lu} specifies all upper-
case letters.

Quantifiers can have three forms: {x}, {x,}, and {x,y}, where x and y are integers
and y is greater than x. The quantifier {2} means something must occur exactly
two times, {2,} means at least two times, and {2,5} means two to five times. The
expression (AB|AC|AD){2,5} matches ACAB and ACADACADAB, but not AB or ABABABA
BABAB.

}
Ends a named category, block, or quantifier.

Because curly braces ({ and }) identify attribute value templates, you
must use double curly braces for a regular expression inside an attribute.
For example, if you want to look for a five-digit number with the
<xsl:analyze-string> element, you would code this:

<xsl:analyze-string select="." regex="[0-9]{{5}}" ...>

If you don’t double the curly braces inside an attribute, the regular ex-
pression [0-9]{5} (single curly braces) is interpreted as a single digit
followed by the number 5.

On the other hand, when using a regular expression in a function call,
you don’t use double curly braces. To replace a five-digit number with
dashes, you would code this:

<xsl:value-of select="replace(., [0-9]{5}, '-----')"/>

Single-Character Escapes
The regular expression language provides escapes for some special characters. They are:

\n
The newline character (
)

\r
The return character ()

\t
The tab character ()

\\
The backslash character (\)

\|
The vertical bar character (|)

Single-Character Escapes | 907

\.
A period (.)

\-
The hyphen or minus character (-)

\^
The circumflex accent (^)

\?
A question mark (?)

*
An asterisk (*)

\+
The plus sign (+)

\{
A left curly bracket ({)

\}
A right curly bracket (})

\(
A left parenthesis (()

\)
A right parenthesis ())

\[
A left square bracket ([)

\]
A right square bracket (])

Multiple-Character Escapes
There are also escapes that represent multiple characters. They are:

\s
Any whitespace character

\S
Anything other than a whitespace character

\d
Any digit

\D
Anything other than a digit

\w
Any word character. Word characters are all characters except the punctuation,
separator and other characters (the character groups defined with P, Z and C).

908 | Appendix E: [2.0] Regular Expressions

\W
Anything other than a word character.

\i
Any character that can be the first letter of an XML name. That includes the
underscore (_), the colon (:), and characters of all the world’s languages defined
as letters in the XML specification.

\I
Anything other than a character that can be the first letter of an XML name.

\c
Any character that can be used in an XML name. That includes all of the characters
that can appear as the first character (\i), plus the period (.), hyphen (–), and the
characters defined as digits, combining characters and extenders in the XML
specification.

\C
Anything other than a character that can be used in an XML name.

\p
A character in the following named character group. For example, \p{Nd} matches
a numeric digit, while \p{IsThai} matches a Thai character.

\P
Anything other than a character in the following named character group. For ex-
ample, \P{Nd} matches anything except a numeric digit, while \P{IsThai} matches
anything except a Thai character.

Character Groups
For convenience, we can use character groups to stand for groups of characters. Spec-
ifying L is simpler than specifying all letters, particularly if you have to allow for the
many thousands of characters defined in the Unicode standard. The character groups
are used with the \p and \P operators; \p{L} means all letters, while \P{L} means
everything except letters. The character groups and their names are defined in the
Unicode Character Database, available online here: http://www.unicode.org/Public/
UNIDATA/UCD.html.

The following lists are the character groups.

Letters
L

All letters.

Lu
All uppercase letters.

Character Groups | 909

http://www.unicode.org/Public/UNIDATA/UCD.html
http://www.unicode.org/Public/UNIDATA/UCD.html

Ll
All lowercase letters.

Lt
Letters in titlecase, such as C5;, which is a single character that combines a
capital letter D with a small z that has a caron.

Lm
Modifiers (characters such as ª, which is the feminine ordinal indicator [ª]).

Lo
Other letters, including ideographs. The Hebrew letter alef (א) is an example.

Marks
M

All marks.

Mn
Nonspacing marks (characters such as ́, which is the Unicode combining
acute accent).

Mc
Spacing combining marks.

Me
Enclosing marks.

Numbers
N

All numbers, including alternate forms such as circled (Unicode character
①, which is the circled digit one) and parenthesized (Unicode character
প, the parenthesized digit one).

Nd
Decimal digits (as opposed to Ⅶ, which is the Unicode character for the
Roman numeral seven).

Nl
Numbers as letters (as opposed to digits; the aforementioned Unicode character
Ⅶ character applies here).

No
Other numeric characters, such as ½, which is the single character for the
fraction ½.

910 | Appendix E: [2.0] Regular Expressions

Punctuation
P

All punctuation characters.

Pc
Connector characters, such as _, which is the underscore character.

Pd
Dashes, such as the hyphen-minus character, -.

Ps
Opening (start) characters, such as a left curly bracket ({).

Pe
Closing characters, such as a right curly bracket (}).

Pi
Initial quote marks. Be aware that in some languages, an initial quote mark might
actually be in the set of closing characters (Pe). As an example, quotations in Swed-
ish begin and end with a double closing quotation mark (ȝ). In that case, the
initial quote mark would not be found by searching for Pi.

Pf
Final quote marks. As with initial quote marks, a character used as a final quote
mark in a particular language can be from the set of opening or closing characters.

Po
Other punctuation marks.

Separators
Z

All separators

Zs
Space characters, such as an em space (Unicode character  ) or an en space
(Unicode character  )

Zl
The line separator character (Unicode character  )

Zp
The paragraph separator character (Unicode character  )

Symbols
S

All symbols

Sm
Math symbols

Character Groups | 911

Sc
Currency symbols

Sk
Modifiers

So
Other symbols

Everything Else
C

All others

Cc
Control characters

Cf
Formatting characters

Co
Private use (reserved by Unicode)

Cn
Not assigned

The Unicode standard also defines a class of “surrogate” characters,
Cs. These characters don’t apply to XML documents; by the time a
document is parsed, the surrogate characters no longer exist. For this
reason, Cs is not a valid character group.

Block Escapes
A block escape is a simple way to refer to a range of characters that have some property
in common. Each block escape has a name; to use a block name, prepend Is to it. Block
escapes are used with the \p and \P operators. For example, the expression
\p{IsThai} refers to the Thai characters (฀ – ๿). The expression
\P{IsThai} refers to everything except Thai characters. The block names are listed here
in the format defined in the XML Schema spec.

Table E-1 shows the complete list of block escapes. This table was generated from
version 5.0.0 of the file blocks.txt. The list of block escape names is part of the Unicode
Character Database; see http://www.unicode.org/ for the latest version of the Unicode
standard.

912 | Appendix E: [2.0] Regular Expressions

http://www.unicode.org/

Table E-1. Block escape names

Block name Starting character Ending character

BasicLatin �

Latin-1Supplement € ÿ

LatinExtended-A Ā ſ

LatinExtended-B ƀ ɏ

IPAExtensions ɐ ʯ

SpacingModifierLetters ʰ ˿

CombiningDiacriticalMarks ̀ ͯ

GreekandCoptic Ͱ Ͽ

Cyrillic Ѐ ӿ

CyrillicSupplement Ԁ ԯ

Armenian ԰ ֏

Hebrew ֐ ׿

Arabic ؀ ۿ

Syriac ܀ ݏ

ArabicSupplement ݐ ݿ

Thaana ހ ޿

NKo ߀ ߿

Devanagari ऀ ॿ

Bengali ঀ ৿

Gurmukhi ਀ ੿

Gujarati ઀ ૿

Oriya ଀ ୿

Tamil ஀ ௿

Telugu ఀ ౿

Kannada ಀ ೿

Malayalam ഀ ൿ

Sinhala ඀ ෿

Thai ฀ ๿

Lao ຀ ໿

Tibetan ༀ ࿿

Myanmar က ႟

Georgian Ⴀ ჿ

HangulJamo ᄀ ᇿ

Ethiopic ሀ ፿

Character Groups | 913

Block name Starting character Ending character

EthiopicSupplement ᎀ ᎟

Cherokee Ꭰ ᏿

UnifiedCanadianAboriginalSyllabics ᐀ ᙿ

Ogham   ᚟

Runic ᚠ ᛿

Tagalog ᜀ ᜟ

Hanunoo ᜠ ᜿

Buhid ᝀ ᝟

Tagbanwa ᝠ ᝿

Khmer ក ៿

Mongolian ᠀ ᢯

Limbu ᤀ ᥏

TaiLe ᥐ ᥿

NewTaiLue ᦀ ᧟

KhmerSymbols ᧠ ᧿

Buginese ᨀ ᨟

Balinese ᬀ ᭿

PhoneticExtensions ᴀ ᵿ

PhoneticExtensionsSupplement ᶀ ᶿ

CombiningDiacriticalMarksSupplement ᷀ ᷿

LatinExtendedAdditional Ḁ ỿ

GreekExtended ἀ ῿

GeneralPunctuation   ⁯

SuperscriptsandSubscripts ⁰ ₟

CurrencySymbols ₠ ⃏

CombiningDiacriticalMarksforSymbols ⃐ ⃿

LetterlikeSymbols ℀ ⅏

NumberForms ⅐ ↏

Arrows ← ⇿

MathematicalOperators ∀ ⋿

MiscellaneousTechnical ⌀ ⏿

ControlPictures ␀ ␿

OpticalCharacterRecognition ⑀ ⑟

EnclosedAlphanumerics ① ⓿

BoxDrawing ─ ╿

914 | Appendix E: [2.0] Regular Expressions

Block name Starting character Ending character

BlockElements ▀ ▟

GeometricShapes ■ ◿

MiscellaneousSymbols ☀ ⛿

Dingbats ✀ ➿

MiscellaneousMathematicalSymbols-A ⟀ ⟯

SupplementalArrows-A ⟰ ⟿

BraillePatterns ⠀ ⣿

SupplementalArrows-B ⤀ ⥿

MiscellaneousMathematicalSymbols-B ⦀ ⧿

SupplementalMathematicalOperators ⨀ ⫿

MiscellaneousSymbolsandArrows ⬀ ⯿

Glagolitic Ⰰ ⱟ

LatinExtended-C Ⱡ Ɀ

Coptic Ⲁ ⳿

GeorgianSupplement ⴀ ⴯

Tifinagh ⴰ ⵿

EthiopicExtended ⶀ ⷟

SupplementalPunctuation ⸀ ⹿

CJKRadicalsSupplement ⺀ ⻿

KangxiRadicals ⼀ ⿟

IdeographicDescriptionCharacters ⿰ ⿿

CJKSymbolsandPunctuation 　 〿

Hiragana ぀ ゟ

Katakana ゠ ヿ

Bopomofo ㄀ ㄯ

HangulCompatibilityJamo ㄰ ㆏

Kanbun ㆐ ㆟

BopomofoExtended ㆠ ㆿ

CJKStrokes ㇀ ㇯

KatakanaPhoneticExtensions ㇰ ㇿ

EnclosedCJKLettersandMonths ㈀ ㋿

CJKCompatibility ㌀ ㏿

CJKUnifiedIdeographsExtensionA 㐀 䶿

YijingHexagramSymbols ䷀ ䷿

CJKUnifiedIdeographs 一 鿿

Character Groups | 915

Block name Starting character Ending character

YiSyllables ꀀ ꒏

YiRadicals ꒐ ꓏

ModifierToneLetters ꜀ ꜟ

LatinExtended-D ꜠ ꟿ

SylotiNagri ꠀ ꠯

Phags-pa ꡀ ꡿

HangulSyllables 가 힯

HighSurrogates � �

HighPrivateUseSurrogates � �

LowSurrogates � �

PrivateUseArea  

CJKCompatibilityIdeographs 豈 﫿

AlphabeticPresentationForms ﬀ ﭏ

ArabicPresentationForms-A ﭐ ﷿

VariationSelectors ︀ ️

VerticalForms ︐ ︟

CombiningHalfMarks ︠ ︯

CJKCompatibilityForms ︰ ﹏

SmallFormVariants ﹐ ﹯

ArabicPresentationForms-B ﹰ ﻿

HalfwidthandFullwidthForms ＀ ￯

Specials ￰

LinearBSyllabary 𐀀 𐁿

LinearBIdeograms 𐂀 𐃿

AegeanNumbers 𐄀 𐄿

AncientGreekNumbers 𐅀 𐆏

OldItalic 𐌀 𐌯

Gothic 𐌰 𐍏

Ugaritic 𐎀 𐎟

OldPersian 𐎠 𐏟

Deseret 𐐀 𐑏

Shavian 𐑐 𐑿

Osmanya 𐒀 𐒯

CypriotSyllabary 𐠀 𐠿

Phoenician 𐤀 𐤟

916 | Appendix E: [2.0] Regular Expressions

Block name Starting character Ending character

Kharoshthi 𐨀 𐩟

Cuneiform 𒀀 𒏿

CuneiformNumbersandPunctuation 𒐀 𒑿

ByzantineMusicalSymbols 𝀀 𝃿

MusicalSymbols 𝄀 𝇿

AncientGreekMusicalNotation 𝈀 𝉏

TaiXuanJingSymbols 𝌀 𝍟

CountingRodNumerals 𝍠 𝍿

MathematicalAlphanumericSymbols 𝐀 𝟿

CJKUnifiedIdeographsExtensionB 𠀀 𪛟

CJKCompatibilityIdeographsSupplement 丽 𯨟

Tags 󠀀 󠁿

VariationSelectorsSupplement 󠄀 󠇯

SupplementaryPrivateUseArea-A 󰀀

SupplementaryPrivateUseArea-B 􀀀

You can find the latest list of block names and the characters they contain at
Unicode.org in the file blocks.txt.

Character Groups | 917

APPENDIX F

XSLT Formatting Codes

This appendix lists the formatting codes for numbers, dates, and times used in XSLT.
These codes are used in the following elements and functions:

• format-date(), format-time() and format-dateTime(), defined in XSLT 2.0 sec-
tion 16.5, “Formatting Dates and Times.”

• The format attribute of the <xsl:number> element, defined in XSLT 1.0 section 7.7,
“Numbering.” The capabilities of the format attribute were enhanced in XSLT 2.0
section 12, “Numbering.”

• The <xsl:decimal-format> element, defined in XSLT 1.0 section 12.3, “Number
Formatting.”

• The format-number() function, defined in XSLT 1.0 and XSLT 2.0.

Most of the formatting codes for numbers were defined in XSLT 1.0. The main addi-
tions for number formatting added by XSLT 2.0 are the ordinal and language options.
The date and time formatting functions were added in XSLT 2.0. There are three types
of formatting codes we’ll list here:

• The date and time format codes defined by the ISO 8601 standard for the repre-
sentation of dates and times. You use these format codes for creating new xs:date,
xs:time, xs:dateTime, xs:duration, xs:dayTimeDuration, and
xs:yearMonthDuration values.

• The date and time formatting codes defined in XSLT 2.0 section 16.5, “Formatting
Dates and Times.” Use these codes to format parts of xs:date, xs:time,
xs:dateTime, xs:duration, xs:dayTimeDuration, and xs:yearMonthDuration values.

• The numbering formatting codes defined in XSLT 1.0 section 7.7, “Numbering,”
and section 12.3, “Number Formatting.” These codes were extended in XSLT 2.0
section 12, “Numbering,” and section 16.4, “Number Formatting.”

919

Formatting Codes for Numbers
The following subsections detail the codes for formatting numbers. These are used by
the <xsl:decimal-format> and <xsl:number> elements and by the format-number()
function.

Parts of Numbers
Table F-1 describes the characters that represent parts of a number. They are used by
the format-number() function and by the <xsl:decimal-format> element.

Table F-1. Number formatting codes

Code Meaning

Represents a digit. Trailing or leading zeroes are not displayed. Formatting the number 4.0 with the
string "#.##" returns the string "4".

0 Represents a digit. Unlike the # character, the 0 always displays a zero. Formatting the number 4.1
with the string "#.00" returns the string "4.10".

. Represents the decimal point.

- Represents the minus sign.

, Is the grouping separator.

; Separates the positive-number pattern from the negative-number pattern.

% Indicates that a number should be displayed as a percentage. The value is multiplied by 100, and then
displayed as a percentage. Formatting the number .76 with the string "##%" returns the string "76%".

\u2030 Is the Unicode character for the per-thousand (per-mille) sign. The value will be multiplied by 1000,
and then displayed as a per mille. Formatting the number .768 with the string "###\u2030" returns
the string "768‰".

Parts of Decimal Formats
The <xsl:decimal-format> element lets us define named formats for decimal numbers.
Each named format is a group of settings for the properties discussed in Table F-2.

Table F-2. Parts of decimal formats

Part name Meaning Default value

name Gives a name to this format. N/A

decimal-
separator

Defines the character (usually either a period or comma) used as the decimal point.
This character is used both in the format string and in the output.

. (period)

grouping-
separator

Defines the character (usually either a period or comma) used as the thousands
separator. This character is used both in the format string and in the output.

, (comma)

infinity Defines the string used to represent infinity. Be aware that XSLT’s number facilities
support both positive and negative infinity. This string is used only in the output.

Infinity

920 | Appendix F: XSLT Formatting Codes

Part name Meaning Default value

minus-sign Defines the character used as the minus sign. This character is used only in the output. – (hyphen, -)

NaN Defines the string displayed when the value to be formatted is not a number. This
string is used only in the output.

NaN

percent Defines the character used as the percent sign. This character is used both in the
format string and in the output.

% (percent sign)

per-mille Defines the character used as the per-mille sign. This character is used both in the
format string and in the output.

‰ (Unicode per-
mille character,
‰).

zero-digit Defines the character used for the digit zero. This character is used both in the format
string and in the output.

0 (zero)

digit Defines the character used in the format string to stand for a digit. #

pattern-
separator

Defines the character used to separate the positive and negative subpatterns in a
pattern. This character is used only in the format string.

; (semicolon)

Formatting Codes for Dates and Times

Parts of Dates and Times
Table F-3 describes the codes defined for the different parts of xs:date, xs:dateTime,
and xs:time values.

Table F-3. Parts of dates and times

Specifier Meaning Default presentation modifier

Y Year (absolute value) 1

M Month in year 1

D Day in month 1

d Day in year 1

F Day of week n

W Week in year 1

w Week in month 1

H Hour in day (24 hours) 1

h Hour in half-day (12 hours) 1

P a.m./p.m. marker n

m Minute in hour 01

s Second in minute 01

f Fractional seconds 1

Z Timezone as a time offset from UTC—or if an alphabetic modifier is
present, the conventional name of a timezone (such as PST)

1

Formatting Codes for Dates and Times | 921

Specifier Meaning Default presentation modifier

z Timezone as a time offset using GMT—for example, GMT+1 1

C Calendar: the name or abbreviation of a calendar name n

E Era: the name of a baseline for the numbering of years—for example,
the reign of a monarch

n

Presentation Modifiers
A presentation modifier is a code that defines how a part of a date or time value should
be displayed. For example, FNn displays the day of the week as the capitalized name of
the day, using the current language. If your system is set up to use English and the
calendar used in the United States, the name of the day of the week (FNn) for 15 August
2007 is Wednesday. The formatting code FWw displays the numeric value Four. Using
German with the same codes on the same date displays the values Mittwoch and Drei
(Wednesday is the third day of the week in the European calendar). Table F-4 describes
the presentation modifiers.

Table F-4. Presentation modifiers

Modifier Meaning

1 The value as a number with one or more digits: 0, 1, 2, 3, 4,

01 The value as a number with two or more digits: 00, 01, 02, ... 09, 10, 11, ... 99, 100, 101,

(Other numeric values) An XSLT processor is free to support other numbering schemes. To quote an example from the spec, a
formatting code of ๑ tells the processor to use Thai numbering. See the documentation for
your processor to see which numbering schemes it supports.

A The value as an uppercase letter: A, B, C, ... Z, AA, AB, AC,

a The value as a lowercase letter: a, b, c, ... z, aa, ab, ac,

I The value as an uppercase roman numeral: I, II, III, IV, V, VI, VII, VIII, IX, X,

i The value as an lowercase roman numeral: i, ii, iii, iv, v, vi, vii, viii, ix, x,

n The name of the component in lowercase. Applies only to components that have names, such as the
day of the week (F), the month of the year (M), and the time zone (Z).

N The name of the component in uppercase. Applies only to components that have names, such as the
day of the week (F), the month of the year (M), and the time zone (Z).

Nn The name of the component in title case. Applies only to components that have names, such as the
day of the week (F), the month of the year (M), and the time zone (Z).

w The value as a word in lowercase: one, two, three, four,

W The value as a word in uppercase: ONE, TWO, THREE, FOUR,

Ww The value as a word in title case: One, Two, Three, Four,

922 | Appendix F: XSLT Formatting Codes

Calendars
These are the calendar names defined in the XSLT 2.0 specification. In addition to the
values listed in Table F-5, an XSLT processor is free to implement support for other
calendars. The abbreviation for any calendar not listed in the table must be qualified
with a namespace prefix. Check the documentation for your XSLT processor to see
which calendars it supports.

Table F-5. Calendars

Abbreviation Calendar

AD Anno Domini (Christian Era)

AH Anno Hegirae (Muhammedan Era)

AME Mauludi Era (solar years since Mohammed’s birth)

AM Anno Mundi (Jewish Calendar)

AP Anno Persici

AS Aji Saka Era (Java)

BE Buddhist Era

CB Cooch Behar Era

CE Common Era

CL Chinese Lunar Era

CS Chula Sakarat Era

EE Ethiopian Era

FE Fasli Era

ISO ISO 8601 calendar

JE Japanese Calendar

KE Khalsa Era (Sikh calendar)

KY Kali Yuga

ME Malabar Era

MS Monarchic Solar Era

NS Nepal Samwat Era

OS Old Style (Julian Calendar)

RS Rattanakosin (Bangkok) Era

SE Saka Era

SH Mohammedan Solar Era (Iran)

SS Saka Samvat

TE Tripurabda Era

VE Vikrama Era

VS Vikrama Samvat Era

Formatting Codes for Dates and Times | 923

APPENDIX G

XSLT 2.0 Migration Guide

This appendix contains some hits and suggestions for migrating your XSLT 1.0 style-
sheets to XSLT 2.0. Most XSLT 1.0 stylesheets will work with an XSLT 2.0 processor,
but there are a few errors you need to watch for. We’ll also look at some of the new
features in XSLT 2.0. If none of the new features in XSLT 2.0 and XPath 2.0 provide
any value for you, there’s no reason to migrate your stylesheets. (It’s very unlikely that
nothing in XSLT 2.0 and XPath 2.0 can help you, but still....)

Powerful New Features in XSLT 2.0 and XPath 2.0
We’ll discuss some of the most important new features in XSLT 2.0 and XPath 2.0.
This isn’t a complete list, but it should give you an idea of whether XSLT 2.0 will
simplify your stylesheets and applications.

Recursion Isn’t Necessary Nearly as Often
In XSLT 1.0 stylesheets, tail recursion was a common technique. String replacement,
for example, requires a recursive template that replaces the first instance of a substring,
and then reinvokes itself with the remainder of the string. In XSLT 2.0, you can use the
replace() function. Recursive templates are much more difficult to write and maintain;
if you can replace them with simpler code in an XSLT 2.0 stylesheet, it’s worth it. See
the section “[2.0] Using the XPath 2.0 replace( ) Function to Avoid Recursion” in
Chapter 5 for a more detailed example. Another good example is in the section “Doing
Math Without Recursion” in Chapter 8.

Grouping Is Much, Much Easier
Grouping in XSLT 2.0 is orders of magnitude easier than it was in XSLT 1.0. The
<xsl:for-each-group> element can make your code as much as 80% smaller, depending
on the complexity of your XSLT 1.0 stylesheets. If your existing stylesheets do grouping,
the new grouping support in XSLT 2.0 can make them much more elegant. See the
section “[2.0] New Grouping Syntax in XSLT 2.0” in Chapter 7 for all the details.

925

Datatypes and XML Schemas Are Supported
If type checking and validation are important to your application, moving to XSLT 2.0
is a must. A basic XSLT 2.0 processor supports all the basic datatypes of XML Schema,
while a schema-aware processor lets you define your own datatypes and use them in
your stylesheets. Datatypes and schema support are discussed in Chapter 3.

Regular Expressions Are Supported
Although XSLT 1.0 supports functions such as contains(), substring-before(), and
substring-after(), these are no substitute for regular expressions. The regular ex-
pression support in XSLT 2.0 is very powerful and flexible. See the discussions of the
[2.0] <xsl:analyze-string> element and the [2.0] matches(), [2.0] replace(), and [2.0]
tokenize() functions for the details on regular expression support. Appendix E has a
complete overview of the regular expression syntax used in XSLT 2.0 and XPath 2.0.

Potential Errors
There are several differences between XSLT 1.0 and XSLT 2.0 that can cause fatal errors.
If you’re going to migrate your 1.0 stylesheets to 2.0, you’ll need to handle all of those
differences.

Passing Undefined Parameters with <xsl:call-template> Causes an Error
In XSLT 1.0, you could use <xsl:call-template> to invoke a template with as many
parameters as you wanted. If any of those parameters weren’t defined in the template,
they were ignored. In XSLT 2.0, using <xsl:call-template> with an undefined param-
eter causes a fatal error.

It’s not an error to pass undefined parameters with <xsl:apply-
templates>, <xsl:apply-imports>, or <xsl:next-match>.

Many times XSLT 1.0 stylesheets passed extra parameters because they might eventu-
ally be needed by another template. Every time another template was invoked (via
<xsl:apply-templates> or <xsl:call-template>), the extra parameters were passed
along. XSLT 2.0 features much more sophisticated tunnel parameters. A tunnel pa-
rameter isn’t passed to each template, so it makes your stylesheets much cleaner. See
the section “Tunnel parameters” in Chapter 5 for more information.

This potential problem is a static error. That means the XSLT 2.0 processor can tell
whether you’re passing the wrong number of parameters to a template without actually
transforming an XML document.

926 | Appendix G: XSLT 2.0 Migration Guide

Math Works Differently in Some Cases
XSLT 1.0 featured a simple number datatype. Math operations, particularly anything
dealing with division by zero, work differently in XSLT 2.0.

To make things more complicated, XSLT 2.0 handles different kinds of numbers dif-
ferently. Dividing an xs:integer or xs:decimal by zero is a fatal error, while dividing
an xs:double or xs:float returns INF (infinity).

The simplest way to avoid this error is to add version="1.0" to the element. That causes
the XSLT 2.0 processor to evaluate the expression in XSLT 1.0 mode, so your stylesheets
will behave as they always have.

<xsl:variable version="1.0" name="ratio"
 select="$orders div $returns"/>

A more sophisticated approach is to use the new XPath if operator. For example, you
could change the code like this:

<xsl:variable name="ratio"
 select="if ($returns != 0) then
 $orders div $returns else
 0"/>

If the value of $returns is not equal to zero, we perform the calculation; otherwise, we
return zero.

Division works with six datatypes: xs:integer, xs:decimal, xs:float, xs:double,
xs:yearMonthDuration, and xs:dayTimeDuration. Here’s a stylesheet that illustrates how
division by zero works:

<?xml version="1.0"?>
<!-- divide-by-zero.xsl -->
<xsl:stylesheet version="2.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">
 <xsl:text>
Division by zero in XSLT 2.0:

</xsl:text>

 <xsl:text><xsl:value-of select="1 div 0"/>
</xsl:text>
 <xsl:text> [fatal error]

</xsl:text>
 <xsl:text><xsl:value-of select="1.0 div 0.0"/>
</xsl:text>
 <xsl:text> [fatal error]

</xsl:text>
 <xsl:text><xsl:value-of select="xs:integer(1) </xsl:text>
 <xsl:text>div xs:integer(0)"/>
</xsl:text>
 <xsl:text> [fatal error]

</xsl:text>
 <xsl:text><xsl:value-of select="xs:decimal(1.0) </xsl:text>
 <xsl:text>div xs:decimal(0.0)"/>
</xsl:text>
 <xsl:text> [fatal error]

</xsl:text>
 <xsl:text><xsl:value-of select="xs:double(1.0) </xsl:text>
 <xsl:text>div xs:double(0.0)"/>
 </xsl:text>
 <xsl:value-of

Potential Errors | 927

 select="(xs:double(1.0) div xs:double(0.0), '

')"/>
 <xsl:text><xsl:value-of select="xs:float(1.0) </xsl:text>
 <xsl:text>div xs:float(0.0)"/>
 </xsl:text>
 <xsl:value-of
 select="(xs:float(1.0) div xs:float(0.0), '

')"/>

 <xsl:text>Dividing durations by zero:

</xsl:text>
 <xsl:text><xsl:value-of select="xs:yearMonthDuration</xsl:text>
 <xsl:text>('P3Y4M') div xs:double(0.0)"/>
 </xsl:text>
 <xsl:text> [fatal error]

</xsl:text>
 <xsl:text><xsl:value-of select="xs:yearMonthDuration</xsl:text>
 <xsl:text>('P3Y4M') div
 </xsl:text>
 <xsl:text>xs:yearMonthDuration('P0Y0M')"/>
 </xsl:text>
 <xsl:text> [fatal error]

</xsl:text>
 <xsl:text><xsl:value-of select="xs:dayTimeDuration</xsl:text>
 <xsl:text>('P3DT8H') div xs:double(0.0)"/>
 </xsl:text>
 <xsl:text> [fatal error]

</xsl:text>
 <xsl:text><xsl:value-of select="xs:dayTimeDuration</xsl:text>
 <xsl:text>('P3DT8H') div
 </xsl:text>
 <xsl:text>xs:dayTimeDuration('P0DT0H')"/>
 </xsl:text>
 <xsl:text> [fatal error]

</xsl:text>
 </xsl:template>

</xsl:stylesheet>

As we noted before, dividing xs:double or xs:float by zero returns INF; everything else
causes a fatal error. Dividing xs:yearMonthDuration or xs:dayTimeDuration by zero or
by an interval of length zero also causes a fatal error.

It’s possible division by zero will be a static error, but it’s far more likely to occur at
runtime. If you migrate your stylesheet to use XSLT 2.0’s math processing, you’ll need
to test your code to make sure any division by zero error cases are handled correctly.

Type Checking Is Much Stricter
XSLT 1.0 had a very simple type system. The support for XML Schema in XSLT 2.0
means type checking is much stricter. For example, in XSLT 1.0, this statement works:

<xsl;value-of select="substring-before(12345, 3)"/>

This returns the value 12, which causes a static error in XSLT 2.0. To get this function
to work in XSLT 2.0, we have to write it like this:

<xsl;value-of select="substring-before(string(12345), string(3))"/>

As you migrate your stylesheets from XSLT 1.0 to 2.0, you’ll find yourself explicitly
casting values such as this quite often.

Calling Some Functions with More Than One Node Causes an Error
In XSLT 1.0, there were a number of functions that took a node as an argument. If we
passed more than one node to the function, it simply took the first node and ignored

928 | Appendix G: XSLT 2.0 Migration Guide

the rest. XSLT 2.0 is much more strict; passing more than one node to a function that
requires a single node is a fatal error. You can certainly make the argument that using
the argument /purchase-order/items/item when you really mean /purchase-order/
items/item[1] is sloppy code. Whether you agree with that opinion or not, XSLT 2.0
forces you to pass a single node to the function.

The XSLT 1.0 and XPath 1.0 functions generate-id(), local-name(), name(), name
space-uri(), number(), and string() require a single node in XSLT 2.0. To avoid any
problems, simply add the predicate [1] to your stylesheets as you migrate them. In
addition, if you use an XPath expression to select nodes for the concat() function, that
XPath expression cannot return more than a single node. The expression
concat('#1. ', /report/brand/name) throws an error in XSLT 2.0 if more than one
node matches the XPath expression. On the other hand, concat('#1. ', (/report/
brand/name)[1]) always works.

This is a dynamic error. It can be difficult to catch if your XPath expressions typically
select only one node. That means the error condition occurs in the rare case that the
XPath expression returns more than one node. If you need only one node, changing
your expression from x/y/z to (x/y/z)[1] is the best way to go.

Approaches to Migration
There are several approaches to migrating your stylesheets to XSLT 2.0. We’ll outline
them here.

Write (or Rewrite) Your Stylesheets from Scratch
Obviously this is the most drastic option. If you don’t have a large investment in XSLT
1.0 code, you can start writing XSLT 2.0 stylesheets from scratch. It’s more likely that
you would replace a few stylesheets used in parts of your application, and then use your
expertise and experience to rewrite larger and more sophisticated stylesheets.

This requires a significant commitment in development resources and training. Having
the resources to develop stylesheets from scratch is one thing; those resources need to
understand all of the new features of XSLT 2.0 and how to take advantage of them.

Change the Version to 2.0 and See What Happens
The simplest approach to migration is to change the version attribute of the
<xsl:stylesheet> element to 2.0. If you have any static errors, the XSLT 2.0 processor
will flag those immediately. You can then fix the errors or use version="1.0" on specific
XSLT elements so the XSLT 2.0 processor will use backwards-compatible mode.

If you use this approach, it’s important to check for the dynamic errors we covered in
the previous section. If you add version="2.0" to your stylesheet and it runs with an

Approaches to Migration | 929

XML document, that doesn’t mean it will run with every document. As with any modi-
fied code, testing is crucial before you put your stylesheet into production.

Replace Awkward XSLT 1.0 Code with XSLT 2.0 Features
A less drastic way to migrate to XSLT 2.0 is to look through your stylesheets for tem-
plates that could be replaced with XSLT 2.0 features. For example, if you have a re-
cursive template to do string replacement, replacing that with the new replace() func-
tion will simplify your code. (It’s likely it will perform better as well.) Anything that
uses recursion or extension functions is a candidate for replacement with XSLT 2.0.

Another thing to look for is using variables extensively. If you use a variable to store
the result generated by a named template, consider replacing the named template with
an <xsl:function>. Using an XSLT 2.0 function means you can invoke the code inside
an XPath expression. The function call can replace the variable and the named template
with a single step.

If the templates in your stylesheet pass many parameters, consider using tunnel
parameters. As stylesheets grow in complexity and power, it’s common for every tem-
plate to accept one or more parameters, and then pass those parameters on to any
templates it invokes. The stylesheet needs to pass those parameters to every template
in case they’re needed somewhere. Tunnel parameters make your code much cleaner
and simplify maintenance.

Mix XSLT 1.0 and XSLT 2.0 in the Same Stylesheet
A very useful technique for XSLT 2.0 migration is to process parts of the stylesheet in
XSLT 1.0 or XSLT 2.0 mode. The simplest way to do this is to create an stylesheet with
version="2.0", adding version="1.0" to templates as needed. (Remember, the
version attribute can be used on any XSLT element except <xsl:output>.) This lets you
migrate your stylesheet in stages without worrying about dynamic errors. If your style-
sheet depends on math being processed using XSLT 1.0 rules, you can set that section
of the stylesheet to use version="1.0". As your XSLT 2.0 experience grows, you can
address the XSLT 1.0 sections of the stylesheet and migrate them to XSLT 2.0.

Don’t Migrate at All
This is the cheapest and fastest solution. If your stylesheets aren’t good candidates for
using the new features of XSLT 2.0, there’s no real reason to migrate. Having said that,
it’s unlikely that any sophisticated stylesheet can’t be improved by any of the new
features.

930 | Appendix G: XSLT 2.0 Migration Guide

The architecture of your application can determine whether you should migrate. If you
application sends XML data and an XSLT stylesheet down to a browser, that browser
has to have an XSLT 2.0-compliant processor. There aren’t any browsers that have
XSLT 2.0 support built in, so it could be a while before migration is an option for you.

Approaches to Migration | 931

Glossary

A
absolute location path

A location path that begins with /, followed
by one or more location steps separated
by /. All location paths that begin with / are
evaluated from the root node, so they always
return the same result, regardless of the con-
text node. Compare with location path and
relative location path.

ancestor
A node that appears above a given node.
Ancestors include a node’s parent, its pa-
rent’s parent, its parent’s parent’s parent,
etc. XPath also defines the ancestor axis,
which includes a node’s parent, its parent’s
parent, its parent’s parent’s parent, etc., but
not the node itself. Contrast with parent.

[2.0] arity
The number of parameters required by a
function.

[2.0] atomic value
A value from one of the atomic datatypes
defined by XML Schema (or a datatype de-
rived from one of those types). xs:integer,
xs:dayTimeDuration, and xs:string are ex-
amples of atomic datatypes.

attribute node
The XPath node type that represents an at-
tribute from an XML document. Attributes
are different from other nodes because an
attribute node is not considered a child of
the element node that contains it. Despite

this fact, the element node is considered the
parent of the attribute node.

attribute set
A named group of attributes. You can create
an attribute set (with the <xsl:attribute-
set> element), then reference that attribute
set elsewhere. For more information, see the
description of the <xsl:attribute-set> ele-
ment in Appendix A.

attribute value template
An expression that contains an XPath ex-
pression in curly braces ({}). The XPath ex-
pression is evaluated at runtime, and its val-
ue replaces the expression. For an example
of an attribute value template, see the dis-
cussion of the <xsl:attribute> element in
Appendix A; Chapter 3 contains a complete
discussion of attribute value templates.

axis
A relationship between the context node
and other nodes in the document. XPath de-
fines 13 different axes; see “Axes” in Chap-
ter 3 for a complete discussion of them.

B
base URI

The URI associated with every node in the
XPath source tree. In certain circumstances,
the base URI is used to resolve references to
other resources. If a given node is an element
or processing-instruction node and that
node occurs in an external entity, then the
base URI for that node is the base URI of the
external entity. If an element or processing-

933

instruction node does not occur in an exter-
nal entity, then its base URI is the base URI
of the document in which it appears. The
base URI of a document node is the base URI
of the document itself, and the base URI of
an attribute, comment, namespace, or text
node is the base URI of that node’s parent.

C
[2.0] cast

The conversion of a value from one atomic
type to another.

CDATA section
A section of an XML document in which all
markup is ignored. A CDATA section be-
gins with the characters <![CDATA[, and ends
with the characters]]>. If two right brackets
appear in the content of a CDATA section,
they must be escaped. Within a stylesheet,
determining whether a given text node was
originally a CDATA section is not possible.
It is possible to generate certain elements as
CDATA sections with the cdata-section-
elements attribute of the <xsl:output>
element.

child
An immediate descendant of a given node.
Contrast with descendant. child is also the
name of one of the XPath axes. The children
of a node include all comment, element,
processing-instruction, and text nodes. At-
tribute nodes and namespace nodes are not
considered children.

[2.0] codepoint
A number that represents a Unicode char-
acter. For example, the number x20AC is the
codepoint for the Euro sign (€).

[2.0] codepoint collation
The collation that simply compares strings
according to their codepoint values. This is
the default collation used by all XSLT
processors.

[2.0] collation
A set of rules defining how string values
should be compared. In XSLT 2.0 and XPath
2.0, processors have the option to support

special collations that allow comparisons
based on various languages. For example,
the German word for street can be spelled
Strasse or Straße; a custom collation might
define those two strings as equal.

comment node
A node that represents a comment from the
original XML document. This is one of the
seven kinds of nodes defined by XPath.

[2.0] complex type
Any datatype defined with XML Schema
that can have children or attributes.

[2.0] constructor function
A function used to create an atomic value of
a particular datatype. The name of the func-
tion is the name of the datatype; the function
xs:integer() is a constructor function for
the xs:integer datatype.

context
A data structure that determines how XPath
expressions are evaluated.

[1.0] In XPath 1.0, the context consists of
five items: the context node, a pair of non-
zero positive integers (the context position
and context size), a set of variable bindings,
a function library, and the set of name-
space declarations that are in scope.

[2.0] In XPath 2.0, the context includes ev-
erything from the XPath 1.0 context plus
several other items. These include the data-
types and namespaces currently in scope.
See “The XPath Context” in Appendix B for
a complete description of everything in the
context.

[2.0] context item
The item from which all XPath expressions
are evaluated. In XPath 2.0, if the context
item is a node, the context node and the
context item are the same. If the context
item is an atomic value, the context node is
undefined.

context node
The node from which all XPath expressions
are evaluated. The context node is analo-
gous to the current directory at a command

[2.0] cast

934 | Glossary

prompt; all commands you type at a com-
mand prompt are evaluated in terms of the
current directory. Compare with current
node.

[2.0] In XPath 2.0, the context node is un-
defined if the context item is an atomic val-
ue. If the context item is a node, the context
node and the context item are the same.

context position
[1.0] A nonzero positive integer that indi-
cates the position of the current node. The
context position is always less than or equal
to the context size.

[2.0] A nonzero positive integer that indi-
cates the position of the current item within
the sequence of items currently being
processed.

context size
[1.0] The number of nodes in the current
node list.

[2.0] The number of items in the sequence
of items currently being processed.

current node
[1.0] The node currently being processed.
The node is defined by the select attribute
of the <xsl:apply-templates> or <xsl:for-
each> elements. Except within a predicate
expression, the current node and the con-
text node are the same.

[2.0] The item currently being processed.

current node list
The list of nodes selected by the select at-
tribute of the <xsl:apply-templates> or
<xsl:for-each> element currently being
processed. By default, the current node list
is in document order, but it may be reor-
dered with one or more <xsl:sort>
elements.

[2.0] In XPath 2.0, the current node list is
referred to as “the sequence of items cur-
rently being processed” in lieu of the term
“current node list.”

D
descendant

A given node’s children, its children’s chil-
dren, its children’s children’s children, etc.
descendant is also the name of one of the ax-
es defined by XPath. Contrast with child.

document element
The element in the XML source document
that contains the entire XML document.
The node that represents the document el-
ement is a child of the root node; the root
node and the element node for the docu-
ment element are not the same.

document node
In a tree created from a well-formed XML
document, the root node will be a document
node with exactly one element node as its
child. That element node represents the
document element, and does not have any
text nodes as children. An XML parser will
only create document nodes from well-
formed XML documents. However, it is
possible within an XSLT stylesheet to create
a document node that is not well-formed.
See the discussion of the <xsl:document> el-
ement for an example.

document order
The order in which a set of nodes appeared
in the XML source document.

[2.0] dynamic context
The portion of the context that can change
during the evaluation of a stylesheet or
XPath expression. The context item, con-
text size, and context position are all part of
the dynamic context. See “[2.0] The XPath
2.0 context” in Chapter 3 for a complete de-
scription of everything in the context. Com-
pare with [2.0] static context.

E
element node

An XPath node that represents an element
from the XML source document.

Glossary | 935

empty sequence
A sequence that contains zero items.

encoding
A set of characters, referenced in the XML
declaration to describe the characters used
in a particular document. The range of val-
ues for encodings is defined in http://
www.ietf.org/rfc/rfc2278.txt. The range of
values supported by a given XML parser or
XSLT processor varies.

expanded name
The complete name of an element or attrib-
ute, including the local name and a possibly
null namespace URI.

extension element
An element in an XSLT stylesheet whose
namespace prefix references an extension.
The XSLT specification defines how exten-
sion elements are identified in the stylesheet,
but does not specify how they are imple-
mented. Extension elements are implemen-
ted with a piece of code that is referenced in
the stylesheet; each XSLT processor defines
how that code is invoked to handle the
transformation of the extension element.
See Chapter 8 for an extensive discussion
of extension elements and extension
functions.

extension function
A function whose namespace prefix refer-
ences an extension. The XSLT specification
defines how extension functions are identi-
fied in the stylesheet, but does not specify
how they are implemented. Extension func-
tions are implemented with a piece of code
that is referenced in the stylesheet; each
XSLT processor defines how that code is in-
voked to handle the invocation of the
extension function. See Chapter 9 for an ex-
tensive discussion of extension elements
and extension functions.

F
fallback processing

Processing designed to handle the absence
of an extension element or an extension

function gracefully. This processing is
typically accomplished with the element-
available() or the function-available()
function. When either function returns
false, a stylesheet can respond gracefully to
the absence of the requested function. XSLT
also defines the <xsl:fallback> element,
which can be used when an extension
element is not available.

final result tree
A tree that forms part of the final output of
a transformation. Once created, the con-
tents of the final result tree are not accessible
within the stylesheet itself.

I
ID

One of the basic datatypes defined by the
XML specification. (It is also defined as type
xs:ID in XML Schema.) In an XML docu-
ment, one attribute of an element can be de-
clared to be of type ID; this means that the
value of that attribute must be unique across
all attributes of type ID for all elements in the
document. No more than one attribute on a
given element can be of type ID. Attributes
of type ID are useful for generating cross-
references with the id() function. See
Chapter 5 for an extensive discussion of the
ID, IDREF, and IDREFS datatypes.

IDREF
One of the basic datatypes defined by the
XML specification. (It is also defined as type
xs:IDREF in XML Schema.) In an XML docu-
ment, an attribute declared to be of type
IDREF must have a value that matches an ID
attribute elsewhere in the document. Attrib-
utes of type IDREF are useful for generating
cross-references with the id() function. See
Chapter 5 for an extensive discussion of the
ID, IDREF, and IDREFS datatypes.

IDREFS
One of the basic datatypes defined by the
XML specification. (It is also defined as type
xs:IDREFS in XML Schema.) In an XML
document, an IDREFS attribute must contain
one or more whitespace-separated values,

empty sequence

936 | Glossary

http://www.ietf.org/rfc/rfc2278.txt
http://www.ietf.org/rfc/rfc2278.txt

each of which matches an ID attribute
elsewhere in the document. Attributes of
type IDREFS are useful for generating cross-
references with the id() function. See
Chapter 5 for an extensive discussion of the
ID, IDREF, and IDREFS datatypes.

[2.0] item
A value that is either an atomic value or a
node.

K
key

A key is similar to a database index. It has
three components: a name, used to identify
the key (specified with the name attribute of
the <xsl:key> element); the nodes, which
will be returned by the key (specified with
the use attribute of the <xsl:key> element);
and the values, used to search for things in
the key (specified with the match attribute of
the <xsl:key> element).

The key <key name="language-index"
match="defn" use="@language"/>, for exam-
ple, defines a new key named language-
index. Given a value for the language attrib-
ute, the key returns all <defn> elements
whose language attributes match the given
value. See “Branching Elements of XSLT” in
Chapter 5 for a complete discussion of keys
and how they are used.

L
literal result element (LRE)

An element in an XSLT stylesheet that does
not belong to the XSLT namespace and is
not an extension element. Literal elements
are simply copied to the result tree.

local name
The nonqualified portion of an element or
attribute name. For example, in the element
<xsl:template>, template is the local name.

location path
An XPath expression that selects a set of no-
des relative to the context node. Compare
with absolute location path and relative lo-
cation path.

location step
Consists of three parts: an axis name, a node
test, and zero or more predicate
expressions. There are three location steps
in the following XPath expression:
preceding-sibling::region/
product[@name="Sandpiper"]/text().

The first location step is preceding-
sibling::region; it has an axis name of
preceding-sibling and a node test of
region. It selects all <region> elements that
are preceding siblings of the context node.
It does not have a predicate expression.

The second location step, which is
product[@name="Sandpiper"], has an axis
name of child, the default axis. Its node test
is product and it has the predicate
[@name="Sandpiper"]. It selects all
<product> children of the previous location
step that have an attribute named name with
a value of Sandpiper.

The third location step, text(), has an axis
name of child and a node test of text(). It
selects all text node children of the previous
location step. It does not have a predicate
expression.

M
mode

An XSLT feature that allows an element to
be processed multiple times, using a differ-
ent template and producing a different
result each time. See the discussion of the
<xsl:apply-templates> element in Appen-
dix A for a detailed example of modes.

N
namespace

A collection of element and attribute names
that are associated with a URI.

namespace declaration
Part of an XML document that defines a
namespace for a particular part of the docu-
ment. Namespace declarations appear as
XML attributes. A namespace declaration
that begins xmlns= defines the default

namespace declaration

Glossary | 937

namespace, while a declaration that begins
xmlns:prefix defines a namespace with a
prefix.

namespace node
The XPath node type that corresponds to a
namespace declaration in an XML
document.

namespace prefix
Part of a qualified name used to associate an
element or attribute with a namespace URI.

namespace URI
The URI associated with a collection of ele-
ment and attribute names.

NCName
An XML noncolonized name, used for local
names and namespace prefixes. An
NCName must start with a letter or an
underscore (_).

node test
An XPath expression that selects certain
nodes. The expressions child::*, para, and
@id select all child nodes, all <para> child
nodes, and any attribute named id, respec-
tively. Four node tests—text(), comment(),
node(), and processing-instruction()—
look like functions, even though they tech-
nically aren’t. ([2.0] XSLT 2.0 also includes
the document-node() node test.) See “XPath
Node Tests” in Appendix B for a complete
listing of XPath node tests.

O
output escaping

The process of changing reserved characters
(such as <, >, and &) into their entity refer-
ences (such as <, >, and &).

P
parameter

An XSLT mechanism used to bind a name
to a value, defined with the <xsl:param> el-
ement. The difference between a parameter
and a variable is that the value specified in
the definition of a parameter is a default val-
ue. When the template or stylesheet that

contains the parameter is invoked, the de-
fault value can be overridden. Like variables,
though, once the value of a parameter is set,
it cannot be changed.

parent
A node that appears immediately above a
given node. A parent is a node’s first ances-
tor. XPath also defines the parent axis,
which contains a node’s parent. With the
exception of the root node, all nodes in an
input document have a parent. Contrast
with ancestor.

path expression
An expression that selects nodes from a tree.
The expression is composed of some num-
ber of steps. The nodes returned by a path
expression appear in document order with
any duplicates removed.

pattern
A condition that a given node may or may
not match. The syntax for a pattern is a sub-
set of the syntax for XPath expressions. Pat-
terns are used in the XSLT elements
<xsl:template>, <xsl:key>, <xsl:number>,
and <xsl:for-each-group>.

predicate expression
An XPath expression that appears in square
brackets ([]). Predicate expressions filter a
[1.0] node-set or [2.0] sequence, selecting
only nodes that match the expression in
square brackets. See “Predicates” in Chap-
ter 3 for more information.

prefix
An abbreviation for namespace prefix.

[2.0] primitive type
XML Schema defines 19 primitive types. In
the XPath 2.0 data model, these are all de-
fined as subtypes of xs:anyAtomicType. (The
19 primitive types are xs:boolean,
xs:string, xs:decimal, xs:double, xs:float,
xs:QName, xs:anyURI, xs:hexBinary,
xs:base64Binary, xs:date, xs:time, xs:date
Time, xs:gYear, xs:gYearMonth, xs:gMonth,
xs:gMonthDay, xs:gDay, xs:duration, and
xs:NOTATION.) XPath also adds
xs:untypedAtomic, the datatype of any value

namespace node

938 | Glossary

that has not been validated against a schema
or cast to a primitive type.

processing instruction
Part of an XML document containing in-
structions for applications. Here is a sample
processing instruction:

<?xml-stylesheet href="docbook/html/
 docbook.xsl" type="text/xsl"?>

This processing instruction associates an
XSLT stylesheet with an XML document.
See “Document Object Model (DOM)” in
Chapter 1 for a complete discussion of
processing instructions.

processing-instruction node
The XPath node type that represents a pro-
cessing instruction from an XML document.

Q
qualified name

An element or attribute name that may be
qualified with a namespace prefix. The
format of a qualified name is prefix:local-
name, where the optional prefix and local-
name are both NCNames. In an XSLT
stylesheet, <xsl:template> is a prefixed
qualified name, while <template> is not. The
names in an XSLT stylesheet (variable
names, template names, mode names, etc.)
are qualified names, whether they have pre-
fixes or not. Note that if the default name-
space is null (xmlns=""), an unprefixed
QName will not have a namespace.

QName
An abbreviation for qualified name.

R
[2.0] regular expression

A pattern used to analyze strings. Regular
expressions can be used in the XPath 2.0
functions matches(), replace(), and
tokenize(), as well as the XSLT 2.0 instruc-
tion <xsl:analyze-string>.

relative location path
A location path that consists of one or more
location steps separated by /, but not

starting with /. Compare with location
path and absolute location path.

[1.0] result-tree fragment
A fragment of the result tree that can be
associated with a variable in XSLT 1.0. See
“XPath 1.0 Datatypes” in Appendix B for a
more complete discussion of result-tree
fragments. [2.0] In XSLT 2.0, the result-tree
fragment has been replaced with the
sequence.

root node
The XPath node that represents the root of
an XML document. Note that the root node
is not the same as the element node for the
document element. The root node is speci-
fied with the XPath expression /. The chil-
dren of the root node are the element node
for the document element, as well as any
comments or processing instructions that
occur outside the document element. [2.0]
In XSLT 2.0, root nodes that represent an
XML document are called document nodes.

S
sequence

An ordered collection of items.

sibling
Two nodes that have the same parent. XPath
defines the preceding-sibling and
following-sibling axes.

[2.0] static context
The portion of the context that is known be-
fore an XML source document is processed.
See “[2.0] The XPath 2.0 context” in Chap-
ter 3 for a complete description of every-
thing in the context. Compare with [2.0]
dynamic context.

static error
An error that can be detected before an XML
source document is processed.

step
A portion of a path expression that navigates
from one node to another. An axis step, a
node test, and a predicate are all steps in an
path expression.

step

Glossary | 939

stylesheet
An XML document, written with the XSLT
vocabulary, that specifies how an XML
document should be transformed.

T
template

A rule in an XSLT stylesheet that defines
how part of an XML document should be
transformed. Templates are defined with
the <xsl:template> element.

text node
A group of characters from an XML docu-
ment. Text nodes are one of the seven types
of nodes defined by XPath. The XPath
specification states that as much text as pos-
sible must be combined into a single text
node. In other words, a text node will never
have a preceding or following sibling that is
also a text node.

top-level element
An element whose parent is the <xsl:style
sheet> element.

[2.0] tunnel parameter
Within a template, a tunnel parameter is au-
tomatically passed on to any templates
called by that template. The tunnel param-
eter is passed on recursively to any further
templates that may be invoked along the
way.

[2.0] type annotation
The datatype associated with every element
and attribute node. Type annotations are
added to element and attribute nodes when
they are validated by a schema. Any nodes
that are not validated with a schema have
the datatype xs:untyped; any attribute that
is not validated has the datatype
xs:untypedAtomic.

U
unparsed entity

A resource in an XML document whose con-
tents may or may not be text, and if text, may
not be XML. Every unparsed entity has an
associated XML notation. See the discus-

sion of the unparsed-entity-uri() function
in Appendix C for more details on unparsed
entities.

[2.0] unparsed text
Text that is returned by the
unparsed-text() function. As the name im-
plies, this text is not parsed in any way, so it
may or may not be valid XML, well-formed
XML, or any kind of markup at all.

URI
Uniform Resource Identifier, a generalized
version of the URLs used on the Web. URIs
are defined by RFC 2396 and only support
roughly 60 ASCII characters. International-
ized Resource Identifiers (IRIs), defined by
RFC 3987, are supported by XSLT 2.0 and
support a much wider range of characters.
The XPath 2.0 iri-to-uri() function con-
verts an IRI to a URI as a convenience.

V
valid document

An XML document that follows the basic
rules of XML documents and additionally
follows all rules of its associated document
type definition or schema. See “XML Docu-
ment Rules” in Chapter 1 for a complete
discussion of the XML document rules;
“Document Type Definitions (DTDs) and
XML Schemas,” also in Chapter 1, discusses
document type definitions and schemas.

validation
The process of comparing a node against a
schema. If the node is valid, that node and
all its children and attributes are assigned a
datatype based on the node definitions in
the schema.

variable
An XSLT mechanism used to bind a name
to a value, defined with the <xsl:variable>
element. Variables are different from pa-
rameters because parameters can have
default values. One significant difference
between XSLT variables and variables in
most other programming languages is that
once an XSLT variable is bound, its value

stylesheet

940 | Glossary

cannot be changed. See “Variables” in
Chapter 5 for a complete discussion of the
<xsl:variable> element and how it is used.

W
well-formed document

An XML document that follows the basic
rules of XML syntax. See “XML Document
Rules” in Chapter 1 for a complete discus-
sion of those rules.

whitespace
One of four characters: space (), tab
(), return (), or linefeed (
).

X
XML declaration

Part of an XML document that defines the
version of XML being used and the encoding
of the document. Although the XML decla-
ration looks like a processing instruction, it
is not. For that reason, you cannot access the
XML declaration from an XSLT stylesheet
or an XPath expression.

XML declaration

Glossary | 941

Index

Symbols
!= (not equal) operator, 556
all mode attribute value, 159
current mode attribute value, 159
default mode attribute value, 159
$ (dollar sign) metacharacter, 906
((left parenthesis) metacharacter, 906
) (right parenthesis) metacharacter, 906
* (asterisk)

as attribute, 52
metacharacter, 906
multiplication operator, 556
occurrence indicator operator, 556
quantifier character, 900
wildcard, 51, 52, 61

+ (plus sign)
addition operator, 556
metacharacter, 906
occurrence indicator operator, 556
quantifier character, 900
unary plus operator, 556

, (comma) sequence operator, 557
- (hyphen) metacharacter, 906
- (minus sign)

subtraction operator, 557
unary minus operator, 557

. (period) metacharacter, 905
/ (slash)

location step operator, 557
operator, 77

// (double slash)
comment, 309
location step operator, 557
operator, 62

< (less than) operator, 146, 557
<< (node-before) operator, 102, 557
<= (less-than-or-equal-to) operator, 146, 557
= (equal to) operator, 557
> (greater than) operator, 558
>= (greater than or equal to), 558
>> (node-after) operator, 101, 558
? (question mark)

metacharacter, 906
occurrence indicator operator, 558
quantifier character, 900

@* (at-sign and asterisk) wildcard, 61
[(square bracket) metacharacter, 906
[] (square brackets) operator, 558
\ (backslash) metacharacter, 906
\(left parenthesis escape character, 908
\) right parenthesis escape character, 908
* asterisk escape character, 908
\+ plus sign escape character, 908
\- hyphen or minus escape character, 908
\. period escape character, 908
\? question mark escape character, 908
\c escape character, 909
\C escape character, 909
\d escape character, 908
\D escape character, 908
\i escape character, 909
\I escape character, 909
\n newline escape character, 907
\p escape character, 909
\P escape character, 909
\r return escape character, 907
\s escape character, 908
\S escape character, 908
\t tab escape character, 907

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

943

\w escape character, 908
\W escape character, 909
\[left square bracket escape character, 908
\\ backslash escape character, 907
\] right square bracket escape characters, 908
\{ left curly brace escape character, 908
\| vertical bar escape character, 907
\} right curly brace escape character, 908
] (square bracket) metacharacter, 907
^ (carat) metacharacter, 906
{ (left curly brace) metacharacter, 907
{} (curly braces)

in regular expressions, 363
| (vertical bar) union operator, 98, 99, 558, 561,

906
} (right curly brace) metacharacter, 907
( ) (parentheses) parenthesized expression

operator, 556

A
absolute expressions

XPath, 58
absolute location path

defined, 933
absolute XPath expressions, 62
abstract datatypes

about, 888–890
abstract elements

about, 888–890
abs( ) function, 569–570
accessor functions

list of, 563
addition (+) operator, 556
addition operator

XPath, 71
adjust-date-to-timezone( ) function, 570–572
adjust-dateTime-to-timezone( ) function, 573–

575
adjust-time-to-timezone( ) function, 575–577
Altova XSLT engine

about, xii
commands for Hello World example, 26,

40
global parameters, 156
installing, 23

ancestor axis, 64, 549
ancestor-or-self axis, 64, 107, 549
ancestor::table[] predicate, 66
ancestors

defined, 933
anchors, 903–904
and operator, 558
anonymous datatype, 875
APIs (see SAX (Simple API for XML))
arity

defined, 933
as attribute, 52, 435, 489, 525, 540, 544
asterisk (*) as attribute, 52
asterisk (*) metacharacter, 906
asterisk (*) multiplication operator, 556
asterisk (*) occurrence indicator operator, 556
asterisk (*) quantifier character, 900
asterisk (*) escape character, 908
atomic values

comparing, 83
defined, 933
group-adjacent attribute, 233
sequence, 215–219
XPath 2.0, 46, 52

attr interface, 13
attribute axis, 64, 548
attribute nodes

about, 49
built-in template rules, 32
defined, 546, 933

attribute sets
defined, 933
<xsl:attribute-set> element, 383

attribute value templates
collation for sorting, 289
defined, 933

attributes
common attributes, 361
declaring, 192
elements with, 873
empty elements with, 872
list of by element, 362–544
output methods, 31
quotes, 7
selecting, 59
XPath, 45
<xsl:sort element>, 211

attribute( ) node test, 51, 547
avg( ) function, 577–581
axes, xviii

(see also specific axes)
defined, 933
list of in XPath, 63

944 | Index

location paths, 62
XPath, 548

B
back-references

about, 904–905
backslash (\) metacharacter, 906
backslash (\\) escape character, 907
base datatype

xs:anyType datatype, 70
base URIs

defined, 933
document( ) function, 252

base-uri( ) function, 581–584
basic XSLT 2.0 processor, 104
Bean Scripting Framework (see BSF)
bgcolor attribute, 148, 153
binary octets

datatypes, 70
bindings (see variable bindings)
block escapes

character group, 912–917
boolean datatype, 67, 552
boolean functions

list of, 563
boolean operators

XPath, 82–87
boolean values

<xsl:if> element, 146
boolean( ) function, 584–588
branching elements, 145–150

<xsl:choose> element, 148
<xsl:for-each> element, 149
<xsl:if> element, 146

browser support
XSLT 2.0, xiii

BSF (Bean Scripting Framework)
SVG pie chart example, 303
XSLT extensions, 326–330

built-in datatypes of XML Schema, 46
byte-order-mark attribute, 482, 503

C
C character groups, 912
calendars

formatting codes, 923
carat (^) metacharacter, 906
Cascading Style Sheets (see CSS)

case-insensitive mode, 363
case-order attribute, 213, 511
case-sensitivity

attributes, 8
cast

defined, 934
cast as operator, 94, 558
castable as operator, 95, 383, 558
casting

between datatypes, 883
Cc character group, 912
CDATA nodes

text in, 50
CDATA section

defined, 934
cdata-section-elements attribute, 481, 503
ceiling( ) function, 588–590
Cf character group, 912
character attribute, 487
character groups, 909–917
character maps

<xsl:character-map> element, 391
characters, xviii

(see also character groups; escape
characters; metacharacters; whitespace)
\c escape character, 909

child axis, 63, 548
child(ren)

axes, 63–65
defined, 934
elements, 49
root nodes and, 48
text, 13, 60

closing characters (Pe) character group, 911
Cn character group, 912
Co character group, 912
codepoint collation

defined, 934
codepoints

defined, 934
codepoints-to-string( ) function, 591–592
collation attribute, 195, 427, 449, 511
collation functions

list of, 569
collations

custom, 287–293
defined, 934

collection types (see statically known default
collection type)

Index | 945

collections
XPath context, 550

collection( ) function, 271, 592–594
combining XML documents, 245–275

collection( ) function, 271
document( ) function, 245–257
doc( ) and doc-available( ) functions, 269–

271
grouping, 257–259
lookup tables, 254
unparsed-text( ) and unparsed-text-

available( ) functions, 272
XSLT 2.0, 260–268

comma (,) sequence operator, 557
comment interface, 13
comment nodes

about, 50
built-in template rules, 32
defined, 546, 934
selecting, 60

comments
in XPath expressions, 102

comment( ) node test, 60, 547
common functions

defined, 330
compare( ) function, 291, 595–597
comparing

atomic values, 83
expressions, 82
sequences, 84
text, 291

comparison operators
atomic values, 84

complex types
defined, 934

concat( ) function, 170, 597–599
conditional expressions

XPath 2.0, 88
connector characters (Pc) character group,

911
constructor functions

defined, 934
list of, 564
XPath 2.0, 92

contact nodes
axes, 63–65

contains( ) function, 599–602
content

separation from presentation, 5

context, xviii
(see also dynamic context; functions;
namespace declarations; static context;
variables)
defined, 934
nodes, 28
XPath, 55, 550

context functions
list of, 564

context items
defined, 57, 934
self axis, 64
XPath context, 550

context nodes
defined, 934
XPath context, 550

context position
defined, 935
XPath context, 550

context size
defined, 57, 935
XPath context, 550

control characters (Cc) character group, 912
Coordinated Universal Time (UTC), 69
copy-namespaces attribute, 401, 406
count attribute, 122, 466
count( ) function, 602–605
count( ) predicate, 66
cross-references (see links)
cross-referencing functions, 564
CSS (Cascading Style Sheets)

about, 1
compared to XSLT, 112

CSS styles
HTML documents, 399

curly braces ({})
in regular expressions, 363

curly braces escape characters, 908
currency symbols (Sc) character group, 912
current node lists

defined, 935
current nodes

defined, 935
current-dateTime( ) function, 610–611
current-date( ) function, 609–610
current-grouping-key( ) function, 228, 229,

231, 614–615
current-group( ) function, 228, 229, 611–614
current-time( ) function, 616

946 | Index

current( ) function, 605–609

D
d attribute, 315
D formatting code, 132
D1o formatting code, 132
dashes (Pd) character group, 911
data binding

defined, 16
data model

XPath, 46–54
data-type attribute, 211, 511
databases

extension elements, 333–339
Xalan XSLT processor, 337–339

datatype operators
XPath 2.0, 93–97

datatypes, xviii
(see also built-in datatypes; list types of XML
Schema; union types; specific datatype)
converting to boolean values, 146
defining, 875–890
for division, 927
parameters, 158
XML ID, IDREF and IDREFS, 181–194
in XML schemas, 10
XPath, 67–71, 551–555
XPath 2.0, 926
XSLT 2.0, 12, 162, 926

data( ) function, 617–620
date functions

defined, 330
list of, 565

dates
formatting, 130–132, 921–923

dates-and-times:month-name( ) function, 332
dateTime( ) function, 621–622
day-from-dateTime( ) function, 623–625
day-from-date( ) function, 622–623
days-from-duration( ) function, 625–626
debugging, xviii

(see also errors)
stylesheets, 35

decimal digits (Nd) character group, 910
decimal numbers

formatting, 127–130
decimal-separator attribute, 408
declarations (see namespace declarations; XML

declarations)

declaring, xviii
(see also defining)
attributes, 192
elements, 871–875

deep-equal( ) function, 626–631
default collation sequences

URIs, 362
default namespace

XPath context, 550
default values

attributes, 49
parameters, 155

default-collation attribute, 362, 521
default-collation( ) function, 631–632
default-validation attribute, 520
defining, xviii

(see also declaring)
datatypes, 875–890

depoint-equal( ) function, 590–591
descendant axis, 64, 549
descendant-or-self axis, 64
descendants

defined, 935
design goals (see features)
digit attribute, 409
digits (see numbers)
disable-output-escaping attribute, 526, 528
distinct-values( ) function, 218, 632–637
div (division) operator, 558
division

datatypes, 927
division operator, xviii

(see also integer division (idiv) operator)
XPath, 77

doc-available( ) function, 269–271, 638–639
DocBook documents

converting to HTML, 163
using group-starting-with attribute, 238
<xsl:for-each-group> element, 431

doctype-public attribute, 481, 503
doctype-system attribute, 481, 503
document elements

defined, 6, 935
document interface, 13
document nodes, xviii

(see also root nodes)
built-in template rules, 32
defined, 935

Document Object Model (see DOM)

Index | 947

document order
defined, 935

document root elements
versus root elements, 105

Document Type Definition) (see DTD)
document-node( ) node test, 52, 547
document-uri( ) function, 642–643
documents, xviii

(see also combining XML documents;
DocBook documents; HTML (HyperText
Markup Language); statically known
documents; unstructured XML documents;
XML documents)
XPath context, 550

document( ) function, 245–257, 639–642
doc( ) function, 269–271, 637–638
dollar sign ($) metacharacter, 906
DOM (Document Object Model)

about, 19
combining data, 246
programming interface for, 12
using extension elements, 345

DOM trees
example, 14

dot-all mode, 363
double slash (//) comment, 309
double slash (//) location step operator, 557
double slash (//) operator, 62
DTD (Document Type Definition)

rules for, 8–10
versus XML schemas, 10

duplicate IDs
generate-id( ) function, 204

duration functions
list of, 565

Dwo formatting code, 131
dwo formatting code, 132
dynamic context

about, 57
defined, 935
XPath 2.0, 56

dynamic errors (see errors)
dynamic functions

defined, 330
dynamic type

defined, 96
dynamic typing

adding nodes, 73
dynamically scoped variables

compared to tunnel parameters, 166

E
EcmaScript code

SVG pie chart example, 304
element interface, 13
element nodes

about, 48
built-in template rules, 32
defined, 545, 935

element-available( ) function, 282, 643–646
elements, xviii

(see also branching elements; document
elements; extension elements; LRE (literal
result element); namespace-qualified
elements; non-XSLT elements; tags; top-
level elements; wrapper elements; specific
element)
children, 49
declaring, 871–875
empty, 871–873
key( ) functions defined for, 197
list of, 362–544
with mixed content, 874
in scope of namespace declarations, 50
selecting text from, 59
with text, 873–874
top level, 33
versus tags, 11
whitespace in, 33
XML document rules, 6

elements attribute, 498, 517
element( ) node test, 51, 547
else keyword, 89
empty elements

creating, 871–873
empty sequences

defined, 936
empty tags

end markers, 8
empty( ) function, 646–648
enclosing marks (Me) character group, 910
encode-for-uri( ) function, 648–650
encoding

defined, 936
encoding attribute, 481
end tags

parsing, 8
ends-with( ) function, 650–652

948 | Index

entities (see unparsed entities)
eq (equal to) operator, 559
equal to (=) operator, 557
equal to (eq) operator, 559
errors, xviii

(see also debugging; static errors)
calling functions with multiple nodes, 929
extension element prefixes, 282
imported templates, 369
migration, 926–928
passing multiple sequences to generate-id( )

function, 203
priority attributes on name templates, 525
regular expression matches, 363
variables at same level with same name,

533
version attribute, 361
<xsl:call-template> element with undefined

parameter, 926
XslCompiledTransform object, 300

error( ) function, 652–655
escape characters, xviii

(see also block escapes; output escaping)
list of, 907–909
node-before (<<) operator, 102
output documents, 526

escape-html-uri( ) function, 655
escape-uri-attributes attribute, 482, 504
event-driven interfaces

versus in-memory interfaces, 16
events

in SAX, 15
every operator, 559
every operators, 89
exactly-one( ) function, 656–658
examples

testing of, xii
except operator, 98, 559
exclamation mark equal sign (!=) not equal

operator, 556
exclude-result-prefixes attribute, 361, 520
EXIF tags, 359
exists( ) function, 658–659
expanded names

defined, 936
expressions, xviii

(see also absolute expressions; conditional
expressions; node tests; path expressions;
predicate expressions; quantified

expressions; regular expressions; relative
expressions: XPath expressions)
comments in, 102
comparing, 82
datatypes returned by XPath 1.0, 67

EXSLT library, 330
SVG pie chart example, 303

extending XSLT, 277–360
accessing databases, 333–339
creating new functions, 279–281
custom collations, 287–293
EXSLT library, 330
hidden word graphics, 293–303
multiple output files, 281–286
photo album example, 339–359
SVG pie charts, 303–326
XSLT extension mechanism, 277–279

Extensible Markup Language (see XML)
Extensible Stylesheet Language (XSL)

standards, 18
Extensible Stylesheet Transformations (XSLT)

history, 1
extension

creating datatypes by, 882–883
extension elements, 278

accessing databases, 333–339
defined, 936
photo album example, 339–359

extension functions
about, 278
defined, 936
EXSLT library, 330
.NET framework, 354–359

extension-element-prefixes attribute, 282, 362,
520

external parameters (see global parameters)
ext( ) node test, 50

F
fallback processing, 278

extension functions, 936
false( ) Function, 659
features

XPath 2.0, 45
XSLT, 2

files
multiple output files, 281–286

final quote marks (Pf) character group, 911
final result trees

Index | 949

defined, 936
flags attribute, 363
floating-point numbers

datatype, 68, 552
floor( ) function, 660–662
FNn formatting code, 132
following axis, 65, 549
following-sibling axis, 64, 549
for loop processor, 174–179
for operator, 89, 559
formal semantics

XQuery 1.0 XPath 2.0, 17
format attribute, 121, 466, 502
format-dateTime( ) function, 130, 665–668
format-date( ) function, 130, 264, 662–665
format-number( ) function, 127–130, 252, 668–

672, 920
format-time( ) function, 130, 672–674
formatting

dates and times, 130–132
decimal numbers, 127–130

formatting characters (Cf) character group,
912

formatting codes, 919–923
dates and times, 921–923
numbers, 920–921

formatting objects
tags in Hello World example, 39

Formatting Objects specification (see XSL
(Extensible Stylesheet Language))

forwards-compatible mode, 286, 364
fragments (see result-tree fragments)
from attribute, 466
function signatures

defined, 57
function-available( ) function, 294, 312, 332,

674–677
functional programming languages

relationship to XSLT, 2
functions, xviii

(see also extension functions; specific
function)
about, 2
calling with more than one node, 928
context, 56
creating, 279–281
listed alphabetically, 569–870
listed by category, 563–569
in predicates, 65

XPath context, 550
XQuery 1.0 and XPath 2.0, 17

G
gDay datatype, 70
ge (greater than or equal to) operator, 559
generate-id( ) function, 198–204, 677–680
getStateName( ) function, 260, 262
global parameters, 155–158
glossary, 933–941
gMonth datatype, 70
goals (see features)
graphics (see hidden word graphics; pie charts;

SVG (Scalable Vector Graphics))
greater than (>) operator, 558
greater than (gt) operator, 559
greater than or equal to (>=) operator, 558
greater than or equal to (ge) operator, 559
Greenwich Mean Time, 69
<greeting> element, 31
group-adjacent attribute, 228, 426
group-adjacent grouping style, 232–238
group-by attribute, 228, 426
group-by grouping style, 229
group-ending-with attribute, 228, 427
group-ending-with grouping style, 241
group-starting-with attribute, 228, 426
group-starting-with grouping style, 238
grouping

by distinct values, 261
multiple documents, 257–259

grouping functions
list of, 564

grouping-separator attribute, 408, 468
grouping-size attribute, 468
groups, xviii

(see also character groups; substitution
groups)
datatypes, 876
nodes, 219–227
XSLT 2.0, 228–242, 925

gt (greater than) operator, 238, 559

H
h01 formatting code, 132
Hello World example, 25–44

processing stylesheets, 27–30
stylesheet structure, 30–35

950 | Index

transforming into different file types, 36–
43

transforming XML documents, 25–27
hidden word graphics

generating, 293–303
history

XML, 4
XSLT, 1–3

hours-from-dateTime( ) function, 680–681
hours-from-duration( ) function, 681–683
hours-from-time( ) function, 683
href attribute, 441, 447, 502
HTML (HyperText Markup Language)

about, 4
<code> element, 461
converting DocBook documents to, 163
CSS styles, 399
generating from XML, 115
generating with links, 188–192
Hello World example, 30
mastheads, 151
using <xsl:key> element, 226
using group-adjacent attribute, 232
using group-starting-with attribute, 238
whitespace in, 115
wrapper elements, 34
writing script code, 309

HTML tables
photo album example, 339–359

Hwo formatting code, 132
HyperText Markup Language (see HTML)
hyphen (-) metacharacter, 906
hyphen (\-) escape character, 908

I
i flag, 363, 902
id attribute, 520
ID datatype

defined, 936
limitations of, 192

identity transform stylesheet, 133
idiv (integer division) operator, 560
IDREF datatype, 181–194, 936
IDREFS datatype, 181–194, 936
idref( ) function, 188, 689–693
id( ) function, 184–188, 192, 684–689
if operator, 89, 237, 260, 560
if statement, 263
implicit-timezone( ) function, 693

importing
stylesheets, 33
XML schemas, 890–892

In XSLT 2.0
<xsl:sort> element, 512

in-memory interfaces
versus event-driven interfaces, 16

in-scope-prefixes( ) function, 694–696
include-content-type attribute, 482, 504
indent attribute, 481, 504
index-of( ) function, 263, 696–699
infinity attribute, 409
inherit-namespaces attribute, 402, 417
initial quote marks (Pi) character group, 911
input-type-annotations attribute, 521
inputs

by function, 569–870
insert-before( ) function, 699–703
installing

XSLT processors, 20–24
instance of operator, 93, 560
integer datatype, 68
integer division (idiv) operator, 79, 560
interactivity

SAX, 15
interfaces

for programming, 12–16
intersect operator, 98, 99, 560
invoking

templates by name, 151
iri-to-uri( ) function, 703–704
is operator, 100, 560
<item> elements, 262
items, xviii

(see also context items)
defined, 937

item( ) datatype, 52
iteration

defined, 3
iterators

over sequences, 89

J
Jacl interpreter

XSLT extensions, 329
Java programs, xviii

(see also Saxon Java extensions; Xalan Java
extensions)
commands for Hello World example, 41

Index | 951

global parameters, 156
Hello World example, 39

java programs
hidden word graphics, 295–298

JavaScript engine
XSLT extensions, 329

JDBC data source
Xalan XSLT processor, 337

JRuby language
XSLT extensions, 328

Jython
XSLT extensions, 327

K
Kay, Michael, xvii
keys, 194–198

defined, 937
<xls:key> element, 33

keywords
XPath, 556–561

key( ) function, 194–198–204, 224, 229, 258,
705–707

L
L letters character group, 909
lang attribute, 213, 328, 329, 467, 511
lang( ) function, 707–709
last( ) function, 709
le (less than or equal to) operator, 560
left curly brace (\{) escape character, 908
left curly brace ({) metacharacter, 907
left parenthesis escape character, 908
left square bracket (\[) escape character, 908
less than (<) operator, 557
less than (lt) operator, 560
less than or equal to (<=)operator, 557
less than or equal to (le) operator, 560
less-than (<) operator, 146
less-than-or-equal (<=) operator, 146
letter-value attribute, 467
letters

numbers as, 910
letters character groups, 909
level attribute, 466
libraries (see EXSLT library; .NET library;

Xalan SQL library)
<line> element, 59
line separator (Zl) character group, 911

line[] predicate, 66
link points

creating, 190
links, 181–204

key facility, 194–198
unstructured documents, 198–204
XML ID, IDREF and IDREFS datatypes,

181–194
list types

creating, 884
literal result element (LRE)

defined, 937
Ll character group, 910
Lm character group, 910
Lo character group, 910
local names

defined, 937
matching nodes with, 52

local-name-from-QName( ) function, 712–714
local-name( ) function, 710–712
location paths, 55–66

axes, 62
context, 55
defined, 937
predicates, 65
relative and absolute expressions, 58
selecting things other than elements, 59
simple, 58
wildcards, 61

location step (/) operator, 557
location step (//) operator, 557
location steps

defined, 937
lookup tables

combining XML documents, 254
<xsl:function> element, 262

loops
emulating, 174–179
use of, 3

lower-case( ) function, 714–715
lowercase letters (Ll) character group, 910
LRE (literal result element)

defined, 937
lt (less than) operator, 560
Lt character group, 910
Lu character group, 909

M
M character group, 910

952 | Index

m flag, 363, 902
m01 formatting code, 132
m1o formatting code, 132
main method

root templates as, 29
maps (see character maps)
marks

character groups, 910
master documents

document( ) function, 246
match attribute, 59, 195, 449, 524
matches( ) function, 715–719
matching

namespace nodes, 60
mathematical functions

defined, 331
mathematical operations

errors, 927
without recursion, 262

mathematical operators
XPath, 71–81

max( ) function, 719–723
Mc character group, 910
Me character group, 910
media-type attribute, 482, 504
memory

SAX versus DOM, 15
messages (see warning messages)
metacharacters

about, 905–907
method attribute, 480, 503
methods, xviii

(see also main method; static methods;
output methods)
root templates as main method, 29

Microsoft MSXSL (see .NET framework)
migration, 925–931

approaches to, 929–931
errors, 926–928
XSLT 2.0 and XPath 2.0, 925

minus sign (-) metacharacter, 906
minus sign (-) subtraction operator, 557
minus sign (-) unary minus operator, 557
minus sign (\-) escape character, 908
minus-sign attribute, 409
minutes-from-dateTime( ) function, 728–729
minutes-from-duration( ) function, 729–731
minutes-from-time( ) function, 731–732
min( ) function, 724–728

Mn character group, 910
MNn formatting code, 132
MNn,3-3 formatting code, 132
mod (modulus) operator, 561
mod operator, 80, 123
mode attribute, 152, 158, 372, 524
modes, xviii

(see also forward-compatible mode;
processing modes)
built-in template rules, 32
defined, 937

modifiers (see presentation modifiers)
modifiers (Lm) character group, 910
modifiers (Sk) character group, 912
modulus (mod) operator, 561
month-from-dateTime( ) function, 734–735
month-from-date( ) function, 732–733
month-name( ) function, 332
months-from-duration( ) function, 735–736
MSXSL XSLT processor (see .NET framework)
Muench method, 224, 229
multi-line mode, 363
multiplication (*) operator, 556
multiplication operator

XPath, 76

N
N numbers character groups, 910
name attribute, 194, 377, 383, 387, 391, 408,

416, 435, 448, 455, 482, 489, 500,
524, 531, 540

names, xviii
(see also expanded names; local names;
qualified names; XML names)
invoking templates by, 151

namespace attribute, 377, 416, 443
namespace axis, 65, 549
namespace declarations

defined, 937
elements in, 50
XPath context, 550

namespace nodes
about, 50, 60
built-in template rules, 32
defined, 546, 938
matching, 51
selecting, 60

namespace prefix
defined, 938

Index | 953

wildcards in elements attribute, 498
namespace prefixes

namespace nodes, 61
wildcards, 518

namespace URIs
defined, 938

namespace URLs
matching namespaces, 61

namespace-qualified elements
wildcards, 142

namespace-uri-for-prefix( ) function, 742–744
namespace-uri-from-QName( ) function, 745–

749
namespace-uri( ) function, 740–742
namespaces

about, 19
default, 550
defined, 937
for extensions, 279
matching based on namespace URL, 61
rules for, 11
XML schemas, 893–896
<xsl:function> element, 279

name( ) function, 737–740
namspace prefixes

wildcards for, 62
NaN attribute, 409
NCName

defined, 938
Nd character group, 910
ne (not equal to) operator, 561
nesting

elements, 7
.NET framework

about, xii
commands for Hello World example, 26,

40
global parameters, 156, 157
hidden work graphics, 298–303
installing, 22
photo album example, 354–359

.NET library
SVG pie chart example, 303

newline (\n) escape character, 907
nilled( ) function, 749–751
Nl character group, 910
No character group, 910
node functions

list of, 566

node interface, 13
node operators

XPath 2.0, 100–102
node tests

defined, 938
XPath, 50

node-after (>>) operator, 101, 558
node-before (<<) operator, 102, 557
node-name( ) function, 751–755
node-set

specifying first elements using predicate
expressions, 201

node-set datatype
conversion to boolean values, 146
defined, 67, 551

node-set functions
list of, 567

nodes, xviii
(see also attribute nodes; CDATA nodes;
context nodes; comment nodes; current
nodes; document nodes; element nodes;
namespace nodes; processing-instruction
nodes; range expressions; root nodes;
siblings; text nodes; whitespace-only nodes)
adding, 73
arguments in id( ) and idref( ) functions,

185
combining XML documents, 252
comparing, 98
context, 28
functions with multiple, 928
invoking generate-id( ) functions against,

203
processing absolute expressions, 59
sequence, 215–219
setting base URIs, 253
tests, 547
types of in XPath, 46–50, 545
<xsl:apply-templates> element, 372

node( ) node test, 50, 62, 547
non-extractive XML processing

defined, 16
non-XSLT elements, 114
None. attribute, 449
nonspacing marks (Mn) character group, 910
normalization-form attribute, 482, 504
normalize-space( ) function, 142–143, 755–

757
normalize-unicode( ) function, 757–759

954 | Index

not equal (!=) operator, 556
not equal to (ne) operator, 561
not( ) function, 83, 759–761
number datatype

conversion to boolean values, 146
defined, 68, 552
errors in math operations, 927

<number> elements, 96
numbering

document parts, 118–127
numbers, xviii

(see also decimal numbers)
errors in math operations, 927
formatting codes, 920–921
in predicates, 65
\d any digit escape character, 908

numbers (N) character groups, 910
numbers as letters (Nl) character group, 910
number( ) function, 761–764
numeric functions

list of, 566
numeric values

single quotes, 168

O
objects (see formatting objects)
occurrence indicator (*) operator, 556
occurrence indicator (+) operator, 556
occurrence indicator (?) operator, 558
omit-xml-declaration attribute, 481, 504
one-or-more( ) function, 764–766
opening (Ps) character group, 911
operations (see mathematical operations)
operators, xviii

(see also boolean operators, datatype
operators; mathematical operators; set
operators)
precedence in XPath, 562
XPath, 71–102, 556–561
XQuery 1.0 and XPath 2.0, 17

or operator, 561
order attribute, 213, 511
order of operations

boolean operators in XPath, 83
ordinal attribute, 127, 468
other letters (Lo) character group, 910
other numeric characters (No) character group,

910

other punctuation marks (Po) character group,
911

output, 113–144
dates and times, 130–132
decimal numbers, 127–130
by function, 569–870
multiple files, 281–286
numbering document parts, 118–125
text, 113–118
whitespace, 139–144
<xsl:copy> and <xsl:copy-of> elements,

132–139
output escaping

defined, 938
output methods

<xsl:output> element, 30, 480–487
output view

of XML documents, 105
output-version attribute, 504
override attribute, 435

P
P character groups, 911
P formatting code, 132
paragraph separator (Zp) character group, 911
parameters, xviii, 152–167

(see also global parameters; tunnel
parameters)
defined, 938
defining in templates, 152
passing to templates, 154, 158
<xsl:param> element, 33
XSLT 2.0, 158–167

parent
defined, 938

parent axis, 63, 548
parentheses escape characters, 908
parenthesis metacharacter, 906
parenthesized expression operator, 556
parents

axes, 63–65
element nodes and attribute nodes, 49

parsing
multiple XML documents, 245–253
stylesheets, 27
whitespace-only nodes, 140
XML documents, 6, 13
and XPath, 45

partial XML schema validation, 11

Index | 955

path (see location paths; relative location path)
path expressions

defined, 938
pattern matching

about, 2
pattern-separator attribute, 409
patterns

defined, 938
Pc character group, 911
Pd character group, 911
PDF files

Hello World example, 38
Pe character group, 911
per-mille attribute, 409
percent attribute, 409
period (.) metacharacter, 905
period (\.) escape character, 908
Pf character group, 911
photo album example, 339–359
PI (processing instruction interface), 13
Pi character group, 911
pie charts

SVG, 303–326
plus sign (+) addition operator, 556
plus sign (+) metacharacter, 906
plus sign (+) occurrence indicator operator,

556
plus sign (+) quantifier character, 900
plus sign (+) unary plus operator, 556
plus sign (\+) escape character, 908
Po character group, 911
polymorphism

invoking templates, 151
position( ) function, 242, 766–768
preceding axis, 64, 549
preceding siblings

grouping with <xsl:variable> element, 224
preceding-sibling axis, 64, 549
predicate expressions

defined, 938
specifying first elements from node-set or

sequences, 201
predicates

comparing values, 187
XPath, 65
<xsl:for-each> element, 215

prefix-from-QName( ) function, 769–771
prefixes, xviii

(see also namespace prefixes)

extension elements, 282
xsl namespace, 11

presentation
separation from content, 5

presentation modifiers
about, 922

primitive datatypes
XML Schema, 552

primitive types
defined, 938

priority
template rules, 31

priority attribute, 524, 525
processing, xviii

(see also non-extractive XML processing)
predicates, 65
sequences, 91
stylesheets versions 1.0 and 2.0, 286

processing instruction interface, 13
processing instructions

defined, 939
processing modes

about, 902–903
processing namespace prefixes, 12
processing-instruction nodes

about, 50
built-in template rules, 32
defined, 546, 939
selecting, 60

processing-instruction( ) node test, 51, 60, 547
processors (see Altova XSLT engine; .NET

framework; Saxon XSLT processor;
Xalan XSLT processor; XSLT 1.0
processors; XSLT 2.0 processors;
XSLT processors)

programming
interfaces for, 12–16

Ps character group, 911
pull interfaces

versus push interfaces, 16
punctuation

character groups, 911
push interfaces

versus pull interfaces, 16

Q
QName functions

list of, 566
QName( ) function, 771–773

956 | Index

qualified names, xviii
(see also xs:QName datatype)
defined, 939

quantified expressions
XPath 2.0, 89

quantifiers, xviii, 900
(see also reluctant quantifiers)

query languages (see XQuery 1.0)
query statements

Xalan XSLT processor, 338
question mark (?) metacharacter, 906
question mark (?) occurrence indicator

operator, 558
question mark (?) quantifier character, 900
question mark (\?) escape character, 908
quote marks

character groups, 911
quotes

attributes, 7

R
random functions

defined, 331
range (to) operator, 561
range expressions

XPath 2.0, 91
recursion

avoiding using XSLT 2.0 processors, 250
combining XML documents, 250–252
defined, 3
mathematical operations without, 262
template rules, 32
using, 169–174
XSLT 2.0 and XPath 2.0, 925

recursive templates, 250
<redirect:write> element, 281
references (see back-references)
regex attribute, 363
regex-group( ) function, 774–776, 898
regular expression functions

defined, 331
list of, 567

regular expressions, 897–917
anchors, 903–904
back-references, 904–905
character groups, 909–917
defined, 939
escapes, 907–909
metacharacters, 905–907

processing modes, 902–903
quantifiers, 900
reluctant quantifiers, 900–902
simple expressions, 897
subexpressions, 898–900
XSLT 2.0 and XPath 2.0, 926

relative expressions
XPath, 58

relative location path
defined, 939

relative references
base URIs and document( ) function, 252

RelaxNG schema language
about, 19

reluctant quantifiers
about, 900–902

remove( ) function, 776–781
replace( ) function, 173, 781–786, 899, 901
required attribute, 490
required parameters

XSLT 2.0, 161
resolve-QName( ) function, 786–788
resolve-uri( ) function, 788–790
restriction

creating datatypes by, 880–882
result tree fragment datatype, 552
result-prefix attribute, 458
result-tree fragments

defined, 939
return (\r) escape character, 907
reverse( ) function, 790–792
RFC 2396 and RFC2732

xs:anyURI datatype, 70
right curly brace (\}) escape character, 908
right curly brace (}) metacharacter, 907
right parenthesis escape character, 908
right square bracket (\]) escape characters,

908
root elements, xviii

(see also document elements)
versus document root elements, 105

root nodes, xviii
(see also document nodes)
about, 48
ancestor axis, 64
defined, 545
result-tree fragment, 935

root templates
as main method, 29

Index | 957

root( ) function, 792–795
rotate

operator, 315
round-half-to-even( ) function, 798–799
round( ) function, 795–797
rules

DTDs, 8–10
templates, 31
XML documents, 6–12

S
s flag, 363, 902
S symbols character groups, 911
s:float datatype, 69
SAX (Simple API for XML)

about, 19
programming interface for, 15

Saxon Java extensions
photo album example, 347–353

Saxon XSLT processor
about, xii
collation for sorting, 289
commands for Hello World example, 26,

40
custom collations, 287
databases, 334
global parameters, 156
installing, 21
passing global parameters, 492
undefined parameters, 160

Sc character group, 912
Scalable Vector Graphics (see SVG)
schema-aware XSLT 2.0 processors, 104
schema-element( ) node test, 51, 547
schema-location attribute, 443
schemas (see XML schemas)
Schematron

about, 19
Schema] type attribute, 378
Schema] validation attribute, 378
scope

elements in namespace declarations, 50
parameters, 155
variables, 169

seconds-from-dateTime( ) function, 799–800
seconds-from-duration( ) function, 801–802
seconds-from-time( ) function, 802–803

select attribute, 105, 127, 211, 216, 362, 372,
378, 381, 398, 405, 424, 426, 453,
455, 468, 489, 494, 500, 508, 511,
528, 531, 540

selecting
attributes, 59
comment nodes, processing instruction

nodes and namespace nodes, 60
text from elements, 59

self axis, 63, 548
semantics (see formal semantics)
separation

of content and presentation, 5
separator attribute, 117, 378, 381, 529
separators

character groups, 911
sequence (,) operator, 557
sequence functions

list of, 567
sequence of items currently being processed,

xviii
(see also current node lists)
defined, 935

sequences, xviii
(see also default collation sequences; empty
sequences)
comparing, 84
defined, 939
groups of nodes or atomic values, 215–219
iterators over, 89
passing multiple to generate-id( ) functions,

203
specifying first elements using predicate

expressions, 201
testing, 91
XPath 2.0, 45, 46, 52
<xsl:perform-sort> element, 216, 496

serialization
XSLT 2.0 and XQuery 1.0, 17

set functions
defined, 331

set operators
XPath 2.0, 97–100

sets (see attribute sets)
SGML (Standard Generalized Markup

Language), 4
siblings, xviii

(see also preceding siblings)
defined, 939

958 | Index

signatures (see function signatures)
Simple API for XML (see SAX)
simple expressions, 897
single quotes

around values, 153
numeric values, 168, 534

Sk character group, 912
slash (/) location step operator, 557
slash (/) operator

XPath, 77
Sm character group, 911
some operator, 89, 561
sonnet[] predicate, 66
sorting

data, 205–215
document( ) function, 254
using custom collations, 288–290

“sounds great, maybe later” (see SGML
(Standard Generalized Markup
Language))

space characters (Zs) character group, 911
spacing combining marks (Mc) character

group, 910
SQL statements

transforming from XML documents, 169
SQL support

Saxon XSLT processor, 334
<sql:close> element, 334, 335
sql:close( ) function, 337–339
<sql:connect> element, 335
<sql:connection> element, 334
sql:disableStreamingMode( ) function, 337–

339
sql:new( ) function, 339
<sql:query> element, 334, 335
sql:query( ) function, 337–339
square bracket escape characters, 908
square bracket metacharacters, 906
square brackets ([]) operator, 558
square brackets escape characters, 908
stable attribute, 512
standalone attribute, 481, 504
Standard Generalized Markup Language

(SGML), 4
standards

for stylesheets, 1
XML, 18–20
XSLT, 16

start (Ps) character group, 911

starts-with( ) function, 803–806
static context

about, 56
defined, 935
XPath 2.0, 56

static datatype
defined, 96

static errors
defined, 939

static methods
SVG pie chart example, 303

static-base-uri( ) function, 806–808
statically known default collection type

defined, 57
statically known documents

defined, 57
steps, xviii

(see also location steps)
defined, 939

<store> element, 310
string attribute, 487
string datatype, 68, 552

conversion to boolean values, 146
string functions

defined, 331
list of, 568

string replacement
using recursion, 169

string values
in processing instructions, 50

string-join( ) function, 813–814
string-length( ) function, 815–817
string-to-codepoints( ) function, 817
strings

replacing using recursion, 171
in XPath boolean expressions, 82

string( ) function, 808–812
<strip-space> element, 142
stylesheet-prefix attribute, 458
stylesheets

as XML documents, 2
associating with XML documents, 19
debugging, 35
defined, 940
importing, 33
migration, 929
processing in Hello World example, 27–30
processing versions 1.0 and 2.0, 286
standards, 1, 18

Index | 959

structure of in Hello World example, 30–
35

transforming Hello World example, 25–27
XPath view of XML documents, 105–112

subexpressions, 898–900
subsequence( ) function, 273, 818–821
substitution groups

defined, 886
substring-after( ) function, 170, 824–826
substring-before( ) function, 170, 826–828
substring( ) function, 821–824
subtraction operator

XPath, 75
subtraction operator (-) operator, 557
sum( ) function, 250–252, 829–833
SVG (Scalable Vector Graphics)

about, 20
pie charts, 303–326

SVG files
Hello World example, 36

<svg:g> group element, 316
symbols

character groups, 911
syntax

escaping single quotes in XSLT 2.0 and
XPath 2.0, 174

by function, 569–870
grouping, 228–242
tunnel parameters, 167
XPath, 45, 63
XQuery 1.0, 17
xsl:sort element, 209

system-property( ) function, 833–838

T
tab (\t) escape character, 907
tables (see HTML tables; lookup tables)
tags, xviii

(see also elements; EXIF tags)
formatting objects in Hello World example,

39
versus elements, 11
XML rules for, 8

<td> element, 380
templates, xviii

(see also attribute value templates; recursive
templates; root templates)
defined, 940
defining parameters in, 152

emulating loops, 174–179
invoking by name, 151
passing parameters to, 154
rules, 31
XPath expressions, 59

terminate attribute, 453
test attribute, 147, 439, 536
testing, xviii

(see also node tests)
sequences, 91

text, xviii
(see also unparsed text)
adding white space to output, 143–144
in CDATA nodes, 50
children, 60
comparing, 291
elements with, 873–874
generating, 113–118
selecting from elements, 59

text interface, 13
text nodes

about, 49
built-in template rules, 32
defined, 546, 940

text( ) node test, 60, 547
time functions

defined, 330
list of, 565

times
formatting, 130–132, 921–923

timezone-from-dateTime( ) function, 839–840
timezone-from-date( ) function, 838–839
timezone-from-time( ) function, 840–841
titlecase (Lt) character group, 910
to (range) operator, 149, 561
tokenize( ) function, 273, 841–845
top-level elements

about, 33
defined, 940

toRadians( ) function, 332
trace( ) function, 845–848
transform attribute, 315
translate operator, 315
translate( ) function, 848–850
treat as operator, 96, 561
trees (see DOM trees; final result trees; result

tree fragment datatype)
true( ) function, 851
tunnel attribute, 490, 540

960 | Index

tunnel parameters
defined, 159, 940
XSLT 2.0, 163–167

type annotation datatype, 940
type attribute, 402, 406, 412, 417, 502
type checking

XSLT 2.0, 928
type-available( ) function, 852–853
types, xviii

(see also primitive types; statically known
default collection type)
nodes in XPath, 46–50

U
unabbreviated syntax

XPath, 63
unary minus (-) operator, 557
unary minus (–) operator, 81
unary plus (+) operator, 81, 556
undeclare-prefixes attribute, 482, 504
undefined parameters

XSLT 1.0, 159
Unicode

case-insensitive mode, 363
Uniform Resource Identifier (see URI)
union (|) operator, 98, 99, 558, 561, 906
union types

creating, 885
unordered( ) function, 853–855
unparsed entities

defined, 940
unparsed text

defined, 940
unparsed-entity-public-id( ) function, 855–856
unparsed-entity-uri( ) function, 857–858
unparsed-text-available( ) function, 272, 860–

862
unparsed-text( ) function, 272, 858–860
unstructured XML documents

links, 198–204
upper case (Lu) character group, 909
upper-case( ) function, 862–864
ur-type datatype (see base datatype)
URI (Uniform Resource Identifier), xviii

(see also base URIs)
default collation sequences, 362
defined, 940

use attribute, 449
use-attribute-sets attribute, 383, 401, 416

use-character-maps attribute, 391, 482, 504
use-when attribute, 362
UTC (Coordinated Universal Time), 69

V
valid documents

defined, 940
validation

defined, 940
well-formed versus valid documents, 10
XML schemas, 11

validation attribute, 402, 406, 413, 417, 502
value attribute, 466
values, xviii

(see also atomic values; default values; string
values)
of attributes, 7
comparing using predicates, 187
dates, 70
floating point, 69
grouping by, 261
IDs, 194
matching elements using key( ) function,

197
single quotes around, 153

variable bindings
XPath context, 550

variables
about, 2, 167
containing nodes, 536
context, 56
defined, 940
error with, 533
match and use attributes, 195
named templates, 930

version attribute, 361, 481, 520
vertical bar (\|) escape character, 907
vertical bar (|) union operator, 98, 99, 558, 561,

906
views (see output view)
VRML files

Hello World example, 41

W
warning messages

<xsl:style> element, 30
well-formed documents

defined, 941

Index | 961

versus valid documents, 10
whitespace

defined, 941
in DOM trees, 15
elements and, 33
in HTML, 115
processing, 139–144
<xsl:analyze-string> element, 364
<xsl:preserve-space> element, 498

whitespace (\s) escape character, 908
whitespace-only nodes

parsing, 140
width attribute, 153
wildcards

elements attribute, 498
location paths, 61
namespace prefixes, 518
namespace-qualified elements, 142

word (\w) escape character, 908
word graphics, hidden, 293–303
wrapper elements

HTML documents, 34

X
x flag, 364, 903
Xalan Java extensions

photo album example, 341–359
Xalan SQL library

accessing databases, 338
Xalan XSLT processor

<redirect:write> element, 281
about, xii
commands for Hello World example, 26,

40
database, 337–339
global parameters, 156
installing, 20
passing global parameters, 492
undefined parameters, 160

XDM (XPath 2.0 Data Model), 17
Xlink (XML linking language)

about, 20
XML (Extensible Markup Language), 4–12

history, 4
programming interfaces for, 12–16
rules, 6–12
standards, 18–20
XSLT standards, 16

XML 1.0

<aml:lang> and <xml:space> attributes,
49

rules, 6
XML declarations

defined, 941
rules for, 8

XML documents, xviii
(see also CDATA section; combining XML
documents; document elements;
namespace declarations; processing
instructions; stylesheets; unparsed entities;
unstructured XML documents; valid
documents; well-formed documents; valid
documents; well-formed documents)
root elements versus XPath document root

elements, 105
stylesheets as, 2
transforming into SQL statements, 169
XPath view of, 104–112

XML ID datatype, 181–194
XML linking language (Xlink), 20
XML names

\i escape character, 909
xml namespace prefix, 108
XML Path Language (see XPath)
XML pointer language (Xpointer), 20
XML Schema, 871–896

advantages over DTDs, 10
built-in datatypes, 46
datatypes, 552, 875–890
elements and attributes, 871–875
standards, 18
stylesheets, 890–896
support for, 4
XSLT 2.0, 419, 926

xml:base attribute, 253
xml:lang attribute, 49
xml:space attribute, 49, 142, 498, 518
xmlns:xsl attribute, 520
XPath (XML Path Language), 45–112, 545–

562
anchors, 903–904
attribute value templates, 66
axes, 548
boolean operators, 82
comments in expressions, 102
context, 550
data model, 46–54
datatypes, 67–71, 551–555

962 | Index

document root elements versus XML root
elements, 105

keywords, 556–561
location paths, 55–66
node tests, 547
node types, 545
operator precedence, 562
operators, 71–102, 556–561
reluctant quantifiers, 900–902
slash (/) operator, 77
standards, 16
view of XML documents, 104–112
XSLT 2.0 processors, 104

XPath 1.0
comparing sets of nodes, 97
context, 55, 934
datatypes, 67, 551
dynamic typing, 73
modulo (mod) operator, 80
operator precedence, 562

XPath 2.0
addition, 73
atomic values, 83
collection( ) function, 271
comments in expressions, 102
compare( ) function, 291
constructor functions, 92
context, 56, 934
current node list, 935
datatype operators, 93–97
datatypes, 68, 70, 552
distinct-values( ) function, 218
division, 78
escaping single quotes, 174
every and some operators, 89
index-of( ) function, 263
integer division, 79
migration features, 925
modulo (mod) operator, 80
multiplication, 77
node operators, 100–102
node tests, 51
node type versus role, 105
operator precedence, 562
operators, 88–102
regular expression language, 903
replace( ) function, 173
sequences and atomic values, 52
set operators, 97–100

standards, 16
subtraction, 75
wildcards for namespace prefixes, 62

XPath 2.0 Data Model (XDM), 17
XPath expressions

attributes containing, 195
creating lookup tables, 256

xpath-default-namespace attribute, 362, 520
Xpointer (XML pointer language), 20
XQuery

integration with, 4
XQuery 1.0

compare( ) function, 291
datatypes, 70
index-of( ) function, 263
operator precedence, 562
standards, 17

xs:anyAtomicType atomic value type, 552
xs:anyAtomicType datatype, 71
xs:anySimpleType datatype, 70
xs:anyType datatype, 70
xs:anyURI atomic value type, 552
xs:anyURI datatype, 70
xs:base64Binary atomic value type, 553
xs:base64Binary datatype, 70
xs:boolean atomic value type, 553
xs:boolean datatype, 68
xs:date atomic value type, 553
xs:date datatype, 69
xs:dateTime atomic value type, 553
xs:dateTime datatype, 69
xs:dayTimeDuration atomic value type, 553
xs:dayTimeDuration datatype, 70
xs:decimal atomic value type, 553
xs:decimal datatype, 69
xs:double atomic value type, 553
xs:double datatype, 69
xs:duration atomic value type, 554
xs:duration datatype, 69
xs:float atomic value type, 554
xs:gDay atomic value type, 554
xs:gMonthA atomic value type, 554
xs:gMonthDay atomic value type, 554
xs:gMonthDay datatype, 70
xs:gYear atomic value type, 554
xs:gYearMonth atomic value type, 554
xs:gYearMonth datatype, 70
xs:hexBinary atomic value type, 555
xs:hexBinary datatype, 70

Index | 963

xs:integer datatype, 69
xs:NOTATION atomic value type, 555
xs:QName atomic value type, 555
xs:QName datatype, 70
xs:string atomic value type, 555
xs:string datatype, 68
xs:time atomic value type, 555
xs:time datatype, 69
xs:untyped atomic value type, 555
xs:untyped datatype, 71
xs:untypedAtomic atomic value type, 555
xs:untypedAtomic datatype, 71
xs:yearMonthDuration atomic value type, 555
xs:yearMonthDuration datatype, 70
XSL (Extensible Stylesheet Language)

standards, 18
xsl namespace prefix, 11
<xsl:analyze-string> element, 362–368
<xsl:apply-imports> element, 368–371
<xsl:apply-templates> element, 151, 210, 214,

218, 238, 372–377
<xsl:attribute> element, 377–383
<xsl:attribute-set> element, 383–387
<xsl:call-template> element, 151, 387–390,

926
<xsl:character-map> element, 391–395
<xsl:choose> element, 88, 148, 263, 395–398
<xsl:comment> element, 397–401
<xsl:copy> element, 132–139, 401–405
<xsl:copy-of> element, 132–139, 405–408
<xsl:decimal-format> element, 127–130, 408–

412, 920
<xsl:document> element, 412–416
<xsl:element> element, 416–422
<xsl:fallback> element, 278, 281, 282, 422–

424
<xsl:for-each> element, 149, 207, 214, 227,

424–426
<xsl:for-each-group> element, 214, 228, 229,

260, 426–434
<xsl:function> element, 262, 279–281, 435–

438
<xsl:if> element, 146, 263, 439
<xsl:import> element, 33, 440–443
<xsl:import-schema> element, 890–892
<xsl:import-schema> element, 443–445
<xsl:include> element, 33, 446–448
<xsl:key> element, 33, 194–198, 224, 448–

451

<xsl:matching-substring> element, 451
<xsl:message> element, 453–455
<xsl:namespace> element, 455–457
<xsl:namespace-alias> element, 457–460
<xsl:next-match> element, 460–463
<xsl:non-matching-substring> element, 463
<xsl:number> element, 118–127, 131, 465–

477, 920
<xsl:otherwise> element, 148, 263, 477–480
<xsl:output> element, 30, 480–487
<xsl:output-character> element, 487–488
<xsl:param> element, 33, 152–167, 489–493
<xsl:perform-sort> element, 214, 215–219,

494–498
<xsl:preserve-space> element, 33, 141–142,

498–500
<xsl:processing-instruction> element, 500–

502
<xsl:result-document> element, 278, 502–507
<xsl:sequence> element, 53, 216, 508–511
<xsl:sort> element, 205–215, 227, 254, 511–

517
<xsl:strip-space> element, 33, 141–142, 517–

519
<xsl:stylesheet> element, 256, 519–523
<xsl:template> element, 28, 31, 152, 524–525
<xsl:text> element, 114, 526–528
<xsl:transform> element, 528
<xsl:value-of> element, 115, 116–118, 528–

531
<xsl:variable> element, 33, 162, 167, 222, 531–

536
<xsl:when> element, 148, 263, 536–538
<xsl:with-param> element, 152–167, 539–

544
XslCompiledTransform object, 298
XSLT (Extensible Stylesheet Transformations)

history, 1–3
XSLT 1.0

addition, 72
conditional expressions, 88
match and use attributes, 195
output methods, 480
parameter passing, 163
standards, 16
undefined parameters, 159
variables at same level with same name,

533
<xsl:value-of> element, 529

964 | Index

XSLT processors, xii
XSLT 1.0 processors

common extension elements, 507
forwards-compatible mode, 364

XSLT 2.0
addition, 72
browser support, xiii
collation attribute, 195
combining XML documents, 260–268
converting to boolean values, 146
creating new functions, 279–281
custom collations, 287–293
data-type attribute, 213
datatypes, 12
design requirements, 3
dividing <xs:double> elements by zero,

412
doc( ) and doc-available( ) function, 269–

271
elements attribute, 498, 518
escaping single quotes, 174
EXSLT functions, 331
formatting dates and times, 130–132
formatting functions, 130
grouping, 228–242
idref( ) function, 188
migration features, 925
mode attribute, 159, 376, 524
new features, 515
output methods, 480
parameters, 158–167
passing sequences of generate-id( )

functions, 203
priority attribute, 525
processors, 104
rules for passing parameters, 390
schema features, 419
self axis, 64
separator attribute, 381
sequences, 89
specifying first elements using predicate

expressions, 201
standards, 16
subtraction, 75
to operator, 149
type checking, 928
unparsed-text( ) and unparsed-text-

available( ) functions, 272
variables containing nodes, 536

xpath-default-namespace attribute, 522
<xsl:number> element, 126–127
<xsl:perform-sort> element, 215–219
<xsl:result-document> element, 278
<xsl:sort> element, 214
<xsl:text> element, 526
<xsl:value-of> element, 116–118, 529
XSLT processors, xii

XSLT 2.0 processors
avoiding recursion, 250

XSLT extensions
writing in other languages, 326–330

XSLT processors, xviii
(see also Altova XSLT engine; .NET
framework; Saxon XSLT processor; Xalan
XSLT processor; XSLT 1.0 processors;
XSLT 2.0 processors)
EXSLT support, 331
installing, 20–24

XSLT stylesheets (see stylesheets)
XsltArgumentList object, 157

Y
year-from-dateTime( ) function, 865
year-from-date( ) function, 864–865
years-from-duration( ) function, 866–868

Z
Z character groups, 911
zero-digit attribute, 409
zero-or-one( ) function, 868–870
Zl character group, 911
Zp character group, 911
Zs character group, 911

Index | 965

About the Author
Doug Tidwell is a senior programmer at IBM. He has more than a sixth of a century
of programming experience, and has been working with markup languages for more
than a decade. He was a speaker at the first XML conference in 1997 and has taught
XML classes around the world. His job as a cyber evangelist is to look busy and to help
people use new technologies to solve problems. Using a pair of zircon-encrusted tweez-
ers, he holds a master’s degree in computer science from Vanderbilt University and a
bachelor’s degree in English from the University of Georgia. He lives in Raleigh, North
Carolina, with his wife and their daughter Lily.

Colophon
The animal on the cover of XSLT, Second Edition, is a Jabiru (Jabiru mycteria). Standing
up to five feet tall and with a wingspan of eight feet, this wading stork is the largest
flying bird in the western hemisphere. The bird’s habitat ranges from southern Mexico
to northern Argentina, and much of its migrating population is found in Belize from
November through July. Its habitat generally includes coastal areas, savannas, and
marshes, and it feeds on freshwater wildlife such as frogs, fish, and even snakes. Its
plumage is mostly white, but its head, neck, and beak are jet black. A featherless red
pouch at the base of its neck gives the Jabiru its name, which means “swollen neck” in
the Tupi-Guarani language.

The Jabiru population has steadily decreased over the past decades due to hunting and
deforestation, but some areas of Central America have seen a recovery in the bird’s
numbers. It is currently considered a species of least concern by the World Conserva-
tion Union, an improvement from a status of near-threatened in 1988.

The cover image is an original antique engraving from the 19th century. The cover font
is Adobe’s ITC Garamond. The text font is Linotype Birka, the heading font is Adobe
Myriad Condensed, and the code font is LucasFont’s TheSansMonoCondensed.

	XSLT, Second Edition
	Table of Contents
	Preface
	About This Book
	Where I’m Coming From
	I Believe in Open, Platform-Neutral, Standards-Based Computing
	I Assume You’re Busy
	I Don’t Care Which Standards-Compliant Tools You Use
	XSLT Is a Tool, Not a Religion
	You Shouldn’t Migrate All of Your Stylesheets Just Because There’s a New Version of XSLT

	How This Book Is Organized
	Conventions Used in This Book
	How to Contact Us
	Safari® Enabled
	Acknowledgments for the Second Edition
	Acknowledgments from the First Edition

	Chapter 1. Getting Started
	The Design of XSLT
	[2.0] The Design of XSLT 2.0

	XML Basics
	XML’s Heritage
	XML Document Rules
	An XML document must be contained in a single element
	All elements must be nested
	All attributes must be quoted
	XML tags are case-sensitive
	All end tags are required
	Empty tags can contain the end marker
	XML declarations
	Document Type Definitions (DTDs) and XML Schemas
	Well-formed versus valid documents
	Tags versus elements
	Namespaces
	[2.0] Datatypes

	Programming Interfaces for XML: DOM, SAX, and Others
	DOM
	SAX
	Other programming interfaces

	XSLT Standards
	XSL transformations (XSLT) version 1.0
	XML path language (XPath) version 1.0
	XSL transformations (XSLT) version 2.0
	XML path language (XPath) version 2.0
	XQuery 1.0 and XPath 2.0 Data Model (XDM)
	XQuery 1.0 and XPath 2.0 functions and operators
	XQuery 1.0 and XPath 2.0 formal semantics
	XSLT 2.0 and XQuery 1.0 serialization
	XQuery 1.0: an XML query language
	XML syntax for XQuery 1.0 (XQueryX)

	XML Standards
	XML 1.0
	XML 1.1
	The Extensible Stylesheet Language (XSL)
	XML Schemas
	RelaxNG
	Schematron
	The Simple API for XML (SAX)
	Document Object Model (DOM)
	Namespaces in XML
	Associating stylesheets with XML documents
	Scalable Vector Graphics (SVG)
	XML pointer language (XPointer) version 1.0
	XML linking language (XLink) version 1.0

	Installing XSLT Processors
	Installing Xalan
	Installing Saxon
	Installing the Microsoft XSLT Processor
	Installing the Altova XSLT Engine

	Summary

	Chapter 2. The Obligatory Hello World Example
	Goals of This Chapter
	Transforming Hello World
	Our Sample Document
	A Sample Stylesheet
	Transforming the XML Document
	Stylesheet Results

	How a Stylesheet Is Processed
	Parsing the Stylesheet
	Parsing the Transformee
	Lather, Rinse, Repeat
	Walking Through Our Example

	Stylesheet Structure
	The <xsl:stylesheet> Element
	The <xsl:output> Element
	Our First <xsl:template>
	The <xsl:template> for <greeting> Elements
	Built-in Template Rules
	Built-in template rule for element and document nodes
	Built-in template rule for modes
	Built-in template rule for text and attribute nodes
	Built-in template rule for comment and processing instruction nodes
	Built-in template rule for namespace nodes

	Top-Level Elements
	Other Approaches

	Sample Gallery
	The Hello World SVG File
	The Hello World PDF File
	The Hello World Java Program
	The Hello World VRML File

	Summary

	Chapter 3. XPath: A Syntax for Describing Needles
 and Haystacks
	The XPath Data Model
	Node Types
	The root node
	Element nodes
	Attribute nodes
	Text nodes
	Comment nodes
	Processing instruction nodes
	Namespace nodes

	Node Tests
	[2.0] New node tests in XPath 2.0

	[2.0] Sequences and Atomic Values

	Location Paths
	The Context
	[1.0] The XPath 1.0 context
	[2.0] The XPath 2.0 context

	Simple Location Paths
	Relative and Absolute Expressions
	Selecting Things Besides Elements with Location Paths
	Selecting attributes
	Selecting the text of an element
	Selecting comments, processing instructions, and namespace nodes

	Using Wildcards
	Axes
	Unabbreviated syntax
	Axis roll call

	Predicates
	Numbers in predicates
	Functions in predicates

	Attribute Value Templates
	Datatypes
	Datatypes in XPath 1.0
	Datatypes in XPath 2.0

	XPath Operators
	Mathematical Operators
	Addition (+)
	Subtraction (–)
	Multiplication (*)
	Division (div)
	[2.0] Integer division (idiv)
	Modulo (mod)
	Unary minus (–x)
	Unary plus (+x)

	Boolean Operators
	Comparing expressions
	[2.0] Comparing atomic values
	[2.0] Comparing sequences

	[2.0] Conditional Expressions—if, then, and else
	[2.0] Iterators Over Sequences—The for Operator
	[2.0] Quantified Expressions—some and every
	[2.0] Range Expressions—The to Operator
	[2.0] Constructor Functions
	[2.0] Datatype Operators—instance of, castable as, cast as, and treat as
	instance of
	cast as
	castable as
	treat as

	[2.0] Set Operators—except, intersect, and union
	except
	intersect
	union

	[2.0] Node Operators
	The is operator
	node-after (>>)
	node-before (<<)

	[2.0] Comments in XPath Expressions
	[2.0] Types of XSLT 2.0 Processors
	The XPath View of an XML Document
	Output View
	The Stylesheet

	Summary

	Chapter 4. Creating Output
	Goals of This Chapter
	Generating Text
	Creating Simple Text
	Outputting the Value of Something
	[2.0] Changes to <xsl:value-of> in XSLT 2.0

	Numbering Things
	[2.0] Changes to <xsl:number> in XSLT 2.0

	Formatting Decimal Numbers
	[2.0] Formatting Dates and Times
	Using <xsl:copy> and <xsl:copy-of>
	A Stylesheet That Reproduces Its Input Document
	A Stylesheet That Doesn’t Quite Reproduce Its Input Document

	Dealing with Whitespace
	Whitespace Basics
	Using <xsl:preserve-space> and <xsl:strip-space>
	The normalize-space⁠(⁠⁠) function
	A Simple Technique for Adding Whitespace to Text Output

	Summary

	Chapter 5. Branching and Control Elements
	Goals of This Chapter
	Branching Elements of XSLT
	The <xsl:if> Element
	Converting to boolean values
	Boolean examples

	The <xsl:choose> Element
	<xsl:choose> example

	The <xsl:for-each> Element
	<xsl:for-each> example

	Invoking Templates by Name
	How It Works
	Templates à la mode

	Parameters
	Defining a Parameter in a Template
	Passing Parameters
	Global Parameters
	Setting global parameters in a Java program
	Setting global parameters in .NET

	[2.0] Important Differences in XSLT 2.0
	New values for the mode attribute
	Undefined parameters are illegal
	Required parameters
	Datatyping support
	Tunnel parameters

	Variables
	Are These Things Really Variables?
	Variable Scope

	Using Recursion to Do Most Anything
	Implementing a String Replace Function
	Procedural design
	Recursive design

	[2.0] Using the XPath 2.0 replace⁠(⁠⁠) Function to Avoid Recursion

	A Stylesheet That Emulates a for Loop
	Template Design
	Implementation
	The Complete Example

	Summary

	Chapter 6. Creating Links and Cross-References
	Using the XML ID, IDREF, and IDREFS Datatypes
	The Datatypes and How They Work
	Linking Parts of an XML Document
	A Stylesheet That Uses the id⁠(⁠⁠) Function
	[2.0] The idref⁠(⁠⁠) Function
	Generating HTML Documents with Links
	Limitations of IDs

	XSLT’s Key Facility
	Defining a Key with <xsl:key>
	Generating Links with the key⁠(⁠⁠) Function
	Advantages of the key⁠(⁠⁠) Function

	Generating Links in Unstructured Documents
	An Unstructured XML Document in Need of Links
	The generate-id⁠(⁠⁠) Function

	Summary

	Chapter 7. Sorting and Grouping Elements
	Sorting Data with <xsl:sort>
	Our First Example
	The Details on the <xsl:sort> Element
	What’s the deal with that syntax?
	Attributes
	Where can you use <xsl:sort>?

	Another Example

	[2.0] The <xsl:perform-sort> Element
	Grouping Nodes
	Our First Attempt
	A Brute-Force Approach
	Grouping with <xsl:variable>
	The <xsl:key> Approach

	[2.0] New Grouping Syntax in XSLT 2.0
	The Most Common Grouping Style: group-by
	Another Type of Grouping: group-adjacent
	Grouping using group-starting-with
	Grouping Using group-ending-with

	Summary

	Chapter 8. Combining Documents
	The document⁠(⁠⁠) Function
	An Aside: Doing Math with Recursion
	Recursive design
	Using format-number⁠(⁠⁠) to control output

	Base URIs and the document⁠(⁠⁠) Function

	The document⁠(⁠⁠) Function and Sorting
	Implementing Lookup Tables
	Grouping Across Multiple Documents
	[2.0] Using XSLT 2.0 to Simplify Things
	Grouping by Distinct Values
	Doing Math Without Recursion
	Implementing Lookup Tables with <xsl:function>
	Using if Instead of <xsl:choose>
	Using the format-date⁠(⁠⁠) Function
	The Complete XSLT 2.0 Solution

	[2.0] The doc⁠(⁠⁠) and doc-available⁠(⁠⁠) Functions
	[2.0] The collection⁠(⁠⁠) Function
	[2.0] The unparsed-text⁠(⁠⁠) and unparsed-text-available⁠(⁠⁠) Functions
	Summary

	Chapter 9. Extending XSLT
	The XSLT Extension Mechanism
	Extension Elements
	Extension Functions
	Fallback Processing
	Namespaces for Extensions

	[2.0] Creating New Functions with <xsl:function>
	Example: Generating Multiple Output Files
	Creating Custom Collations
	Using a Custom Collation for Sorting
	Using a Custom Collation for Comparing Text

	Generating Hidden Word Graphics
	Java Version
	.NET Version

	Example: Generating an SVG Pie Chart
	Writing Extensions in Other Languages
	Jython
	JRuby
	JavaScript
	Jacl

	Using Extension Functions from the EXSLT Library
	Accessing a Database with an Extension Element
	Accessing a Database in Saxon
	Accessing a Database in Xalan

	Creating a Photo Album with an Extension Element
	Xalan Java Version
	Saxon Java Version
	.NET Version

	Summary

	Appendix A. XSLT Reference
	Appendix B. XPath Reference
	XPath Node Types
	The Root Node
	Element Nodes
	Attribute Nodes
	Text Nodes
	Comment Nodes
	Processing-Instruction Nodes
	Namespace Nodes

	XPath Node Tests
	XPath Axes
	The XPath Context
	XPath 1.0 Datatypes
	[2.0] XPath 2.0 Datatypes
	Operators and Keywords
	Operator Precedence—XPath 1.0
	[2.0] Operator Precedence—XQuery 1.0 and XPath 2.0

	Appendix C. XSLT, XPath, and XQuery Function
 Reference
	Kinds of Functions
	Accessor Functions
	Boolean Functions
	Constructor Functions
	Context Functions
	Cross-Referencing and Grouping Functions
	Date, Time, and Duration Functions
	Node Functions
	Numeric Functions
	QName Functions
	Regular Expression Functions
	Sequence or Node-Set Functions
	String Functions
	Miscellaneous Functions
	Collation Functions
	

	Appendix D. XML Schema Overview
	Declaring Elements and Attributes
	Creating an Empty Element
	Creating an Empty Element with Attributes
	Creating an Element with Text
	Creating an Element with Text and Attributes
	Creating an Element with Mixed Content

	Defining Datatypes
	Anonymous Types
	Groups
	Creating New Datatypes by Restriction
	Creating New Datatypes by Extension
	Casting Between Datatypes
	Creating List Types
	Creating Union Types
	Substitution Groups
	Abstract Elements and Datatypes

	Using an XML Schema in a Stylesheet
	Importing XML Schemas with <xsl:import-schema>
	Using XML Schemas Without Namespaces
	Using XML Schemas with Namespaces

	Appendix E. [2.0] Regular Expressions
	Simple Expressions
	Subexpressions
	Quantifiers
	[XPath] Reluctant Quantifiers
	Processing Modes
	[XPath] Anchors
	Back-references
	Metacharacters
	Single-Character Escapes
	Multiple-Character Escapes
	Character Groups
	Letters
	Marks
	Numbers
	Punctuation
	Separators
	Symbols
	Everything Else
	Block Escapes

	Appendix F. XSLT Formatting Codes
	Formatting Codes for Numbers
	Parts of Numbers
	Parts of Decimal Formats

	Formatting Codes for Dates and Times
	Parts of Dates and Times
	Presentation Modifiers
	Calendars

	Appendix G. XSLT 2.0 Migration Guide
	Powerful New Features in XSLT 2.0 and XPath 2.0
	Recursion Isn’t Necessary Nearly as Often
	Grouping Is Much, Much Easier
	Datatypes and XML Schemas Are Supported
	Regular Expressions Are Supported

	Potential Errors
	Passing Undefined Parameters with <xsl:call-template> Causes an Error
	Math Works Differently in Some Cases
	Type Checking Is Much Stricter
	Calling Some Functions with More Than One Node Causes an Error

	Approaches to Migration
	Write (or Rewrite) Your Stylesheets from Scratch
	Change the Version to 2.0 and See What Happens
	Replace Awkward XSLT 1.0 Code with XSLT 2.0 Features
	Mix XSLT 1.0 and XSLT 2.0 in the Same Stylesheet
	Don’t Migrate at All

	Glossary
	A
	B
	C
	D
	E
	F
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Index

