
Building NT File System Drivers

Windows NT

A Developer's Guide

O'REILLY Rajeev Nagar

Windows NT File System Internals

This book is dedicated to:

My parents, Maya and Yogesh

My wife and best friend, Priya

Our beautiful daughters, Sana and Ria

For it is their faith, support, and encouragement

that inspires me to keep striving

Table of Contents

Preface . ix

I. Overview .. l

1. Windows NT System Components ... 3
The Basics .. 3
The Windows NT Kernel ... 9
The Windows NT Executive .. 15

2. File System, Driver Development... 20
What Are File System Drivers? ... 21
What Are Filter Drivers? ... 33
Common Driver Development Issues ... 36
Windows NT Object Name Space ... 56
Filename Handling for Network Redirectors .. 60

3. Structured Driver Development.. 65
Exception Dispatching Support ... 66
Structured Exception Handling (SEH) .. 74
Event Logging ... 86
Driver Synchronization Mechanisms ... 93
Supporting Routines (RTLs) ... 112

vii

Table of Contents

II. The Managers .. 115

4. The NT I/O Manager . 777
The NT I/O Subsystem .. 118
Common Data Structures ... 735
I/O Requests: A Discussion ... 180
System Boot Sequence ... 185

5. The NT Virtual Memory Manager . 194
Functionality ...'.. 195
Process Address Space ... 196
Physical Memory Management .. 201
Virtual Address Support ... 204
Shared Memory and Memory-Mapped File Support 213
Modified and Mapped Page Writer ... 224
Page Fault Handling ... 230
Interactions with File System Drivers .. 233

6. The NT Cache Manager I . 243
Functionality ... 244
File Streams .. 245
Virtual Block Caching .. 246
Caching During Read and Write Operations .. 248
Cache Manager Interfaces .. 255
Cache Manager Clients .. 258
Some Important Data Structures ... 250
File Size Considerations ... 257

7. The NT Cache Manager II ... 270
Cache Manager Structures ... 277
Interaction with Clients (File Systems and Network Redirectors) 273
Cache Manager Interfaces .. 2.93

8. The NT Cache Manager HI .. 325
Flushing the Cache .. 325
Termination of Caching ... 328
Miscellaneous File Stream Manipulation Functions 334
Interactions with the VMM .. 344
Interactions with the I/O Manager .. 348
The Read-Ahead Module ... 349
Lazy- Write Functionality .. 352

Table of Contents___ix

III. The Drivers . 357

9. Writing a File System Driver I... 359
File System Design ... 360
Registry Interaction .. 365
Data Structures ... 367
Dispatch Routine: Driver Entry ... 390
Dispatch Routine: Create ... 3-97
Dispatch Routine: Read ... 424
Dispatch Routine: Write ... 437

10. Writing A File System Driver II... 449
I/O Revisited: Who Called? .. 449
Asynchronous I/O Processing ... 464
Dispatch Routine: File Information ... 476
Dispatch Routine: Directory Control ... 503
Dispatch Routine: Cleanup .. 525
Dispatch Routine: Close ... 529

11. Writing a File System Driver HI.. 532
Handling Fast I/O .. 532
Callback Example ... 552
Dispatch Routine: Flush File Buffers ... 554
Dispatch Routine: Volume Information .. 556
Dispatch Routine: Byte-Range Locks .. 562
Opportunistic Locking ... 57/
Dispatch Routine: File System and Device Control 584
File System Recognizers ... 599

12. Filter Drivers .. 615
Why Use Filter Drivers? ... 6/5
Basic Steps in Filtering ... 622
Some Dos and Don'ts in Filtering ... 663

Table of Contents

IV The Appendixes .. 669

A. Windows NT System Services ... 671

B. MPR Support... 729

C. Building Kernel-Mode Drivers ... 736

D. Debugging Support .. 741

E. Recommended Readings and References 747

E Additional Sources for Help ... 750

Index... 753

Preface

Over the past three years, Windows NT has come to be regarded as a serious,
stable, viable, and highly competitive alternative to most other commercially avail-
able operating systems. It is also one of the very few new commercially released
operating systems that has been developed more or less from scratch in the last
15 years, and can claim to have achieved a significant amount of success.
However, Microsoft has not yet documented, in any substantial manner, the guts
of this increasingly important platform. This has resulted in a dearth of reliable
information available on the internals of the Windows NT operating system.

This book focuses on explaining the internals of the Windows NT I/O subsystem,
the Windows NT Cache Manager, and the Windows NT Virtual Memory Manager.
In particular, it focuses on file system driver and filter driver implementation for
the Windows NT platform, which often requires detailed information about the
above-mentioned components.

Intended Audience
This book is intended for those who have a need today for understanding a signif-
icant portion of the Windows NT operating system, and also for those among us
who simply are curious about what makes Windows NT tick.

Typically, the book should be interesting and useful to you if you design or imple-
ment kernel-mode software, such as file system or device drivers. It should also
be interesting to those of you who are studying or teaching operating system
design and wish to understand the Windows NT operating system a little bit
better. Finally, if you are a system administrator who really wants to know what it
is that you have just spent the vast majority of your annual budget on (operating

arzz___Preface

system licenses, additional third-party driver licenses for virus-checking software,
and so on), this book should help satisfy your curiosity.

The approach taken in writing this book is that the information provided should
give you more than what you can get from any other documentation that is
currently available. Therefore, I expend a lot of effort discussing the whys and
hows that underlie the design and implementation of the Windows NT I/O
subsystem, Virtual Memory Manager, and Cache Manager. For those of you who
need to implement a file system or filter driver module right this minute, there is a
substantial amount of code included that should get you well along on your way.

Above all, this book is intended as a guide and reference to assist you in under-
standing a major portion of the Windows NT operating system better than you do
today. I hope it will help to make you more informed about the operating system
itself, which in turn should help you exploit the operating-system-provided func-
tionality in an optimal manner.

Windows NT File System Internals was written with certain assumptions in mind: I
assume that you understand the fundamentals of operating systems and therefore,
do not need me to explain what an operating system is; at the same time, I do
not assume that you understand file system technology (especially on the
Windows NT platform) in any great detail, although such understanding will
undoubtedly help you if and when you decide to design and implement a file
system yourself. I further assume that you know how to develop programs using
a high-level language such as C. Finally, I assume that you have some interest in
the subject matter of this book; otherwise, I find it hard to imagine why anyone
would want to subject themselves to more than 700 pages of excruciatingly
detailed information about the I/O subsystem and associated components.

Book Contents and Organization
In order to design and develop complex software such as file system drivers or
other kernel-mode drivers, it becomes necessary to first understand the operating
system environment thoroughly. At the same time, I always find it useful to have
sample code to play with that can assist me when I start designing and devel-
oping my own software modules. Therefore, I have organized this book along the
following lines.

Part 1: Overview

This part of the book provides you with the required background material that is
essential to successfully designing and developing Windows NT kernel-mode
drivers. This portion of the book should be of particular interest to those of you

Preface___xiii

who intend to actually develop kernel-mode software for the Windows NT
platform.

Chapter 1, Windows NT System Components
This chapter provides an introduction to the various components that together
constitute the kernel-mode portion of the Windows NT operating system. The
overall architecture of the operating system is discussed, followed by a brief
discussion on the Windows NT Kernel and the Windows NT Executive
components.

Chapter 2, File System Driver Development
This chapter provides an introduction to file system and filter drivers. Some
common driver development issues that arise when designing for the
Windows NT platform are also discussed here, including a discussion on allo-
cating and freeing kernel memory, working efficiently with linked lists of
structures, and using Unicode strings in your driver. Finally, discussions on
the Windows NT object name space and the MUP and MPR components,
which are of interest to developers who wish to design network redirectors,
are presented in this chapter.

Chapter 3, Structured Driver Development
Designing well-behaved kernel-mode software is the focus of this chapter.
Exception dispatching support provided by the operating system is discussed
here; the section on structured exception handling discusses how you can
develop robust kernel-mode software. There is also a detailed discussion of
the various synchronization primitives that are available to kernel-mode devel-
opers, and which are essential to writing correct system software. The
synchronization primitives discussed here include spin locks, dispatcher
objects, and read-write locks.

Part 2: The Managers

Part 2 of this book describes the Windows NT I/O Manager, the Windows NT
Virtual Memory Manager, and the Windows NT Cache Manager in considerable
detail from the perspective of a developer who wishes to design and implement
file system drivers. Regardless of whether or not you eventually choose to design
and implement kernel-mode software for the Windows NT platform, these chap-
ters should be useful to you and will provide you with a detailed understanding
of some important and complex Windows NT operating system software modules.

Chapter 4, The NT I/O Manager
This chapter takes a detailed look at the Windows NT I/O Manager. The
components of the I/O subsystem, as well as the design principles that
guided the development of the I/O Manager and I/O subsystem components,
are discussed here; so is the concept of thread-context, which is extremely

xtv___Preface

important for kernel-mode driver developers. This chapter also provides a
description of some of the more important system data structures and of
handling synchronous and asynchronous I/O requests. Finally, a high-level
overview of the operating system boot sequence is included.

Chapters, The NT Virtual Memory Manager
Topics discussed in this chapter include the functionality provided by the
VMM, process address space layout, physical memory management and
virtual address space manipulation support provided by the Virtual Memory
Manager, and memory-mapped file support. This chapter provides an over-
view on how page fault handling is provided by the VMM, on the workings
of the modified page writer, and finally, on the interactions of the Virtual
Memory Manager with file system drivers.

Chapter 6, The NT Cache Manager I
This chapter provides an introduction to the Windows NT Cache Manager.
The functionality provided by the Cache Manager is discussed here, followed
by a discussion on how cached read and write I/O requests are jointly
handled by the I/O Manager, file system drivers, and the Cache Manager. The
various Cache Manager interfaces are introduced, followed by a discussion on
the clients that typically request services from the Windows NT Cache
Manager. Some important data structures required for successful interaction
with the Cache Manager are also described. Finally, there is a discussion on
how file size manipulation can be successfully performed for cached files.

Chapter 7, The NT Cache Manager II
This chapter provides an overview of how the Windows NT Cache Manager
uses internal data structures to provide caching services to the rest of the
system. File system drivers must be cognizant of certain requirements that
they must fulfill to interact successfully with the Cache Manager; these require-
ments are discussed here. This chapter also has details of each of the various
interfaces (function calls) that are available to Cache Manager clients.

Chapters, The NT Cache Manager III
Topics discussed in this chapter include flushing the system cache, termi-
nating caching for a file, descriptions of certain miscellaneous Cache-Manager-
provided function calls, and the interactions of the Cache Manager with the
I/O Manager, and the Virtual Memory Manager. Finally, read-ahead and
delayed-write functionality, provided by the Windows NT Cache Manager, is
discussed.

Part 3: The Drivers

Part 3 describes how to use the information provided in Parts 1 and 2 of this
book. This portion of the book focuses exclusively on actual design and develop-

Preface___xv

ment of two types of kernel-mode drivers. It could also be used as a reference in
understanding how the various Windows NT file systems process user requests
for file I/O and as an aid to understanding what is actually going on in the system
when you debug any lower-level kernel-mode driver that you may have
developed.

Chapter 9, Writing a File System Driver I
This chapter provides an introduction to file system design and also describes
how to configure (via Registry entries) your file system driver implementation
on a Windows NT system. A comprehensive description of the important data
structures that you should implement in order to develop a Windows NT file
system driver is also provided. Details on how you can implement the create/
open, read, and write dispatch routines in your file system driver are included.

Chapter 10, Writing A File System Driver II
This chapter contains discussions of some important concepts that you should
understand when trying to design a Windows NT file system driver; these
include the concept of the top-level component for an IRP and how to imple-
ment support for asynchronous I/O requests in your file system driver. A
description of how to implement support for processing the directory control,
cleanup, and close requests is also provided.

Chapter 11, Writing a File System Driver III
Topics discussed in this chapter include the fast I/O method for data access,
implementing callback routines in your FSD for use by the Windows NT
Cache Manager and Virtual Memory Manager, dispatch routines including
flushing file buffers, getting and setting volume information, implementing
byte-range lock support, supporting opportunistic locking, and implementing
support for file system control and device I/O control requests (including a
detailed discussion on handling mounting and verification requests for logical
volumes). Finally, there is a detailed discussion of how to implement a mini-
file system recognizer driver for your file system driver product.

Chapter 12, Filter Drivers
A description of the functionality that can be provided by a filter driver is
followed by some examples of customer requirements where filter driver
development can be useful. Topics discussed here include getting a pointer to
the appropriate target device, attaching to the target device object, the conse-
quences of executing an attach operation, and the various I/O-Manager-
provided support functions available for use by a filter driver.

xvi___Preface

Appendixes
Appendix A, Windows NT System Services

This appendix contains a detailed listing of the major Windows NT I/O
Manager-provided native system calls.

Appendix B, MPR Support
This appendix describes functions that network redirectors should implement
to provide MPR support.

Appendix C, Building Kernel-Mode Drivers
This appendix provides an overview of the build process used to create
kernel-mode drivers.

Appendix D, Debugging Support
An introduction to the Microsoft WinDbg source-level debugger is provided.

Appendix E, Recommended Readings and References
A list of recommended readings is provided for your benefit if you wish to
delve further into or get more detailed information on some of the topics
discussed in this book.

Appendix F, Additional Sources for Help
This appendix lists some online sources and other resources that you can
explore for more information on kernel-mode development for Windows NT.

I would suggest that the chapters be read in the sequence in which they are orga-
nized. However, advanced readers who understand the basic kernel-mode
environment on the Windows NT platform may wish to skip directly to Part 2 of
this book. Throughout this book, an effort has been made to avoid forward refer-
ences to undefined terms; however, such references are flagged whenever they
cannot be avoided.

Accompanying Diskette
A diskette accompanies this book and is often referred to in various chapters of
the book. This diskette contains source code for the following:*

A file system driver template
Note carefully that this is simply a skeleton driver that does not provide for
most of the functionality typically implemented by file system drivers. The
code has been compiled for the Intel x86 platform. The code has not been
tested, however, and should never be used as is without major enhancement
and testing efforts on your part.

* Many of the file system dispatch routines arc also documented and discussed in the text.

Preface__xvii

This driver source is provided as a framework for you to use to design and
implement a real file system driver for the Windows NT environment.

A filter driver implementation
The filter driver for which source has been provided intercepts all I/O
requests targeted to a specified mounted logical volume. You can extend this
filter driver source code to implement any value-added functionality you wish
to provide to your customers.

If you intend to develop kernel-mode software for the Windows NT platform, I
strongly recommend that you obtain at least a Professional Level Subscription to
the Microsoft Developer's Network (MSDN). This subscription will provide you
with access to the Windows NT Device Driver's Kit (DDK), associated documenta-
tion, and a reasonable number of additional benefits. Contact the Microsoft
Developer's Network at http://www.microsoft.com/msdn for additional details.

Note that the source code provided on the accompanying disk has only been
compiled using the Microsoft Visual C++ compiler (Version 4.2). This compiler
can be purchased directly from Microsoft. They can be reached on the World
Wide Web at http://www.microsoft.com/visualc.

Finally, you should note that successful compilation of the file system driver
source requires a header file (ntifs.h) that is currently only available from
Microsoft by purchasing a Windows NT IPS kit. This kit was released in April 1997
and is sold as a separate product by Microsoft from the MSDN subscription. You
can obtain more information about this product at http://www.microsoft.com/
hwdev/ntifskit. Although many of the structure, constant, and type definitions
contained in the header file have been provided in this book, they are subject to
frequent change, and I would encourage you to carefully evaluate your require-
ments and try to purchase this product if at all possible.

Conventions Used in This Book
This book uses the following font conventions:

Italic
is used for World Wide Web URL addresses, to display email addresses, to
display Usenet newsgroup addresses, and to highlight special terms the first
time they are defined.

Constant Width
is used to display command names, filenames, field names, constant defini-
tions, type (structure) definitions, and in code examples.

xviii__Preface

Acknowledgments
I consider myself extremely fortunate to have known, studied under, and worked
with some of the most exceptional minds in the field of computer science. I
would like to especially thank the following individuals: for introducing me to
synchronization primitives and serving as an advisor to a much-harried and peren-
nially late-to-complete-thesis graduate student, Dr. Sheau-Dong Lang at the
University of Central Florida. Also, Dr. Ronald Dutton of the University of Central
Florida for teaching me the fundamentals of algorithm design and analysis, and
supporting me through one of the most difficult periods in my academic life. I
would like to acknowledge the trust, support, and friendship of Robert Smith,
whom I consider a mentor and friend and who entrusted me, a rookie engineer,
to write his first commercial file system driver. I would also like to thank my
colleagues at each of the companies I have worked at, namely, Micro Design Inter-
national, Inc., Transarc Inc., and Hewlett-Packard Inc., for their support and
advice. My grateful thanks to our technical reviewers: Mike Kazar, Derrel Blain,
and David J. Van Maren who took time from their busy schedules to review this
book.

Many thanks to the people at O'Reilly and Associates who have contributed to
this effort: Mary Anne Weeks Mayo was the production project manager and
quality was assured by Ellie Fountain Maden, John Files, Nicole Gipson Arigo,
and Sheryl Avruch. Seth Maislin wrote the index. Madeline Newell and Colleen
Miceli lent critical freelance support. Mike Sierra contributed his FrameMaker tool-
tweaking prowess. Chris Reilley and Robert Romano were responsible for the
crisp illustrations you see in the book. The book's interior was designed by Nancy
Priest, Edie Freedman designed the front cover, and Hanna Dyer designed the
back cover.

Finally, many thanks to Robert Denn for his editorial support over the past year
and, most importantly, for his patience and trust that I would eventually complete
this effort. It has been a pleasure working with him.

Overview
Part I introduces the Windows NT Operating System and some of the issues of file
system driver development.

• Chapter 1, Windows NT System Components
• Chapter 2, File System Driver Development
• Chapter 3, Structured Driver Development

In ibis chapter:
• The Basics
« The Windows NT

Kernel
* The Windows NT

Executive

Windows NT System
Components

The focus of this book is the Windows NT file system and the interaction of the
file system with the other core operating system components. If you are interested
in providing value-added software for the Windows NT platform, the topics on
filter driver design and development should provide you with a good under-
standing of some of the mechanics involved in designing such software.

File systems and filter drivers don't exist in a vacuum, but interact heavily with the
rest of the operating system. This chapter provides an overview of the main
components of the Windows NT operating system.

The Basics
Operating systems deal with issues that users prefer to forget, including initial-
izing processor states, coordinating multiple CPUs, maintaining CPU cache
coherency, managing the local bus, managing physical memory, providing virtual
memory support, dealing with external devices, defining and scheduling user
processes/threads, managing user data stored on external devices, and providing
the foundation for an easily manageable and user-friendly computing system.
Above all, the operating system must be perceived as reliable and efficient, since
any perceived lack of these qualities will almost certainly result in the universal
rejection and thereby in the quick death of the operating system.

Contrary to what you may have heard, Windows NT is not a state-of-the-art oper-
ating system by any means. It employs concepts and principles that have been
known for years and have actually been implemented in many other commercial
operating systems. You can envision the Windows NT platform as the result of a
confluence of ideas, principles, and practices obtained from a wide variety of

Chapter 1: Windows NT System Components

sources, from both commercial products and research projects conducted by
universities.

Design principles and methodologies from the venerable UNIX and OpenVMS
operating system platforms, as well as the MACH operating system developed at
CMU, are obvious in Windows NT. You can also see the influence of less sophisti-
cated systems, such as MS-DOS and OS/2. However, do not be misled into
thinking that Windows NT can be dismissed as just another conglomeration of
rehashed design principles and ideas. The fact that the designers of Windows NT
were willing to learn from their own experiences in designing other operating
systems and the experiences of others has led to the development of a fairly
stable and serious computing platform.

The Core Architecture
Certain philosophies derived from the MACH operating system are visible in the
design of Windows NT. These include an effort to minimize the size of the kernel
and to implement parts of the operating system using the client-server model,
with a message-passing method to transfer information between modules. Further-
more, the designers have tried to implement a layered operating system, where
each component interacts with other layers via a well-defined interface.

The operating system was designed specifically to run in both single-processor
and symmetric multiprocessor environments.

Finally, one of the primary goals was to make the operating system easily
portable across many different hardware architectures. The designers tried to
achieve this goal by using an object-based model to design operating system
components and by abstracting out those small pieces of the operating system
that are hardware-dependent and therefore need to be reimplemented for each
supported platform; the more portable components can, theoretically, simply be
recompiled for the different architectures.

Figure 1-1 illustrates how the Windows NT operating system is structured. The
figure shows that Windows NT can be broadly divided into two main compo-
nents: user mode and kernel mode.

User mode

The operating system provides support for protected subsystems. Each protected
subsystem resides in its own process with its memory protected from other
subsystems. Memory protection support is provided by the Windows NT Virtual
Memory Manager.

The Basics

Figure 1-1. Overview of the Windows NT operating system environment

The subsystems provide well-defined Application Programming Interfaces (APIs)
that can be used by user-mode processes to obtain desired functionality. The
subsystems then communicate with the kernel-mode portion of the operating
system using well-defined system service calls.

Chapter 1: Windows NT System Components

NOTE Microsoft has never really documented the operating-system-provid-
ed system-service calls. They instead encourage application develop-
ers for the Windows NT platform to use the services of one of the
subsystems provided by the operating system environment.
By not documenting the native Windows NT system service APIs,
the designers have tried to maintain an abstract view of the operat-
ing system. Therefore, applications only interact with their preferred
native subsystem, leaving the subsystem to interact with the operat-
ing system. The benefit to Microsoft of using this philosophy is to
tie most applications to the easily portable Win32 subsystem (the
subsystem of choice and, sometimes, the subsystem of necessity),
and also to allow the operating system to evolve more easily than
would be possible if major applications depended on certain specif-
ic native Windows NT system services.
However, it is sometimes more efficient (or necessary) for Windows
NT applications and kernel-mode driver developers to be able to ac-
cess the system services directly. In Appendix A, Windows NT Sys-
tem Services, you'll find a list of the system services provided by the
Windows NT I/O Manager to perform file I/O operations.

Environment subsystems provide an API and an execution environment to user
processes that emulates some specific operating system (e.g., an OS/2 or UNIX or
Windows 3.x operating system). Think of a subsystem as the personality of the
operating system as viewed by a user process. The process can execute comfort-
ably within the safe and nurturing environment provided by the specific
subsystem without having to worry about the capabilities, programming inter-
faces, and requirements of the core Windows NT operating system.

The following environment subsystems are provided with Windows NT:

Win32
The native execution environment for Windows NT. Microsoft actively encour-
ages application developers to use the Win32 API in their software to obtain
operating system services.
This subsystem is also more privileged than the others.* It is solely respon-
sible for managing the devices used to interact with users; the monitor,
keyboard, and mouse are all controlled by the Win32 subsystem. It is also the

* In reality, this is the only subsystem that is actively encouraged by Microsoft for use by third-party ap-
plication program designers. The other subsystems work (more often than not) but seem to exist only as
checklist items. If, for example, you decided to develop an application using the POSIX subsystem in-
stead, you will undoubtedly encounter limitations and frustrations due to the very visible lack of commit-
ment on behalf of Microsoft in making the subsystem fully functional and full featured.

The Basics__7

sole Window Manager for the system and defines the policies that control the
appearance of graphical user interfaces.

POSIX
This exists to provide support to applications conforming to the POSIX 1003.1
source-code standard. If you have applications that were developed to use
the APIs defined in that standard, you should theoretically be able to compile,
link, and execute them on a Windows NT platform.
There are severe restrictions on functionality provided by the POSIX
subsystem that your applications must be prepared to accept. For example,
no networking support is provided by the POSIX subsystem.

OS/2
Provides API support for 16-bit OS/2 applications on the Intel x86 hardware
platform.

WOW (Windows on Windows)
This provides support for 16-bit Windows 3.x applications. Note, however,
that 16-bit applications that try to control or access hardware directly will not
execute on Windows NT platforms.

VDM (Virtual DOS Machine)
Provided to support execution of 16-bit DOS applications. As in the case of
16-bit Windows 3.x applications, any process attempting to directly control or
access system hardware will not execute on Windows NT.

Integral subsystems extend the operating system into user space and provide
important system functionality. These include the user-space components of the
Security subsystem (e.g., the Local Service Authority); the user-space components
of the Windows NT LAN Manager Networking software; and the Service Control
Manager responsible for loading, unloading, and managing kernel-mode drivers
and system services, among others.

Kernel mode

The difference between executing code in kernel mode and in user mode is the
hardware privilege level at which the CPU is executing the code.

Most CPU architectures provide at least two hardware privilege levels, and many
provide multiple levels. The hardware privilege level of the CPU determines the
possible set of instructions that code can execute. For example, when executing
in user mode, processes cannot directly modify or access CPU registers or page-
tables used for virtual memory management. Allowing all user processes access to
such privileges would quickly result in chaos and would preclude any serious
tasks from being performed on the CPU.

8___________________________Chapter 1: Windows NT System Components

Windows NT uses a simplified hardware privilege model that has two privilege
levels: kernel mode, which allows code to do anything necessary on the
processor;* and user mode, where the process is tightly constrained in the range
of allowed operations.

If you're familiar with the Intel x86 architecture set, kernel mode is equivalent to
the Ring 0 privilege level for processors in the set and user mode to Ring 3-

The terms kernel mode and user mode, although often used to describe code
(functions), are actually privilege levels associated with the processor. Therefore,
the term kernel-mode code simply means that the CPU will always be in kernel-
mode privilege level when it executes that particular code, and the term user-
mode code means that the CPU will execute the code at user-mode privilege level.

Typically, as a third-party developer, you cannot execute Windows NT programs
while the CPU is at kernel-mode privilege level unless you design and develop
Windows NT kernel-mode drivers.

The kernel-mode portion of Windows NT is composed of the following:

The Hardware Abstraction Layer (HAL)
The Windows NT operating system was designed to be portable across
multiple architectures. In fact, you can run Windows NT on Intel x86 plat-
forms, DEC Alpha platforms, and also the MIPS-based platforms (although
support for this architecture has recently been discontinued by Microsoft).
Furthermore, there are many kinds of external buses that you could use with
Windows NT, including (but not limited to) ISA, EISA, VL-Bus, and PCI bus
architectures. The Windows NT developers created the HAL to isolate hard-
ware-specific code. The HAL is a relatively thin layer of software that
interfaces directly with the CPU and other hardware system components and
is responsible for providing appropriate abstractions to the rest of the system.

The rest of the Windows NT Kernel sees an idealized view of the hardware,
as presented by the HAL. All differences across multiple hardware architec-
tures are managed internally by the HAL. The set of functions exported by the
HAL are invoked by both the core operating system components (e.g., the
Windows NT Kernel component), and device drivers added to the operating
system.
The HAL exports functions that allow access to system timers, I/O buses,
DMA and Interrupt controllers, device registers, and so on.

* Code that executes in kernel mode can do virtually anything with the system. This includes crashing
the system or corrupting user data. Therefore, with the flexibility of kernel-mode privileges comes a lot
of responsibility that kernel-mode designers must be aware of.

The Windows NT Kernel

The Windows NT Kernel
The Windows NT Kernel provides the fundamental operating system function-
ality that is used by the rest of the operating system. Think of the kernel as
the module responsible for providing the building blocks that can subse-
quently be used by the Windows NT Executive to provide all of the powerful
functionality offered by the operating system. The kernel is responsible for
providing process and thread scheduling support, support for multiprocessor
synchronization via spin lock structures, interrupt handling and dispatching,
and other such functionality.
The Windows NT Kernel is described further in the next section.

The Windows NT Executive
The Executive comprises the largest portion of Windows NT. It uses the
services of the kernel and the HAL, and is therefore highly portable across
architectures and hardware platforms. It provides a rich set of system services
to the various subsystems, allowing them to access the operating system
functionality.

The major components of the Windows NT Executive include the Object
Manager, the Virtual Memory Manager, the Process Manager, the I/O
Manager, the Security Reference Monitor, the Local Procedure Call facility, the
Configuration Manager, and the Cache Manager.
File systems, device drivers, and intermediate drivers form a part of the I/O
subsystem that is managed by the I/O Manager and are part of the Windows
NT Executive.

The Windows NT Kernel
The Windows NT Kernel has been described as the heart of the operating system,
although it is quite small compared to the Windows NT Executive. The kernel is
responsible for providing the following basic functionality:

• Support for kernel objects
• Thread dispatching

• Multiprocessor synchronization

• Hardware exception handling

• Interrupt handling and dispatching
• Trap handling

• Other hardware specific functionality

Chapter 1: Windows NT System Components

The Windows NT Kernel code executes at the highest privilege level on the
processor.* It is designed to execute concurrently on multiple processors in a
symmetric multiprocessing environment.

The kernel cannot take page faults; therefore, all of the code and data for the
kernel is always resident in system memory. Furthermore, the kernel code cannot
be preempted; therefore, context switches are not allowed when a processor
executes code belonging to the kernel. However, all code executing on any
processor can always be interrupted, provided the interrupt level is higher than
the level at which the code is executing.

IRQ Levels
The Windows NT Kernel defines and uses Interrupt Request Levels (IRQLs) to
prioritize execution of kernel-mode components. The particular IRQL at which a
piece of kernel-mode code executes determines its hardware priority. All inter-
rupts with an IRQL that is less than or equal to the IRQL of the currently
executing kernel-mode code are masked off (i.e., disabled) by the Windows NT
Kernel. However, the currently executing code on a processor can be interrupted
by any software or hardware interrupt with an IRQL greater than that of the
executing code. IRQLs are hierarchically ordered and are defined as follows (in
increasing order of priority):

PASSIVE_LEVEL
Normal thread execution interrupt levels. Most file system drivers are asked to
provide functionality by a thread executing at IRQL PASSIVE_LEVEL,
though this is not guaranteed. Most lower-level drivers, such as device
drivers, are invoked at a higher IRQL than PASSIVE_LEVEL.
This IRQL is also known as LOW_LEVEL.

APC_LEVEL
Asynchronous Procedure Call (APC) interrupt level. Asynchronous Procedure
Calls are invoked by a software interrupt, and affect the control flow for a
target thread. The thread to which an APC is directed will be interrupted, and
the procedure specified when creating the APC will be executed in the
context of the interrupted thread at APC_LEVEL IRQL.

DISPATCH_LEVEL
Thread dispatch (scheduling) and Deferred Procedure Call (DPC) interrupt
level. DPCs are defined in Chapter 3, Structured Driver Development. Once a

* The highest privilege level is defined as the level at which the operating system software has complete
and unrestricted access to all capabilities provided by the underlying CPU architecture.

The Windows NT Kernel_______________________________________U_

thread IRQL has been raised to DPC level or greater, thread scheduling is
automatically suspended.

Device Interrupt Levels (DIRQLs)
Platform-specific number and values of the device IRQ levels.

PROFILE_LEVEL
Timer used for profiling.

CLOCK1_LEVEL
Interval timer clock 1.

CLOCK2_LEVEL
Interval timer clock 2.

IPI_LEVEL
Interprocessor interrupt level used only on multiprocessor systems.

POWER_LEVEL
Power failure interrupt.

HIGHEST_LEVEL
Typically used for machine check and bus errors.

APC_LEVEL and DISPATCH_LEVEL interrupts are software interrupts. They are
requested by the kernel-mode code and are lower in priority than any of the hard-
ware interrupt levels. The interrupts in the range CLOCK1_LEVEL to HIGH_
LEVEL are the most time-critical interrupts, and they are therefore the highest
priority levels for thread execution.

Support for Kernel Objects
The Windows NT Kernel also tries to maintain an object-based environment. It
provides a core set of objects that can be used by the Windows NT Executive and
also provides functions to access and manipulate such objects. Note that the
Windows NT Kernel does not depend upon the Object Manager (which forms
part of the Executive) to manage the kernel-defined object types.

The Windows NT Executive uses objects exported by the kernel to construct even
more complex objects made available to users.

Kernel objects are of the following two types:

Dispatcher objects
These objects control the synchronization and dispatching of system threads.
Dispatcher objects include thread, event, timer, mutex, and semaphore object
types. You will find a description of most of these object types in Chapter 3.

/2___________________________Chapter 1: Windows NT System Components

Control objects
These objects affect the operation of kernel-mode code but do not affect
dispatching or synchronization. Control objects include APC objects, DPC
objects, interrupt objects, process objects, and device queue objects.

The Windows NT Kernel also maintains the following data structures:

Interrupt Dispatcher Table
This is a table maintained by the kernel to associate interrupt sources with
appropriate Interrupt Service Routines.

Processor Control Blocks (PRCBs)
There is one PRCB for each processor on the system. This structure contains
all sorts of processor-specific information, including pointers to the thread
currently scheduled for execution, the next thread to be scheduled, and the
idle thread.

NOTE Each processor has an idle thread that executes •whenever no other
thread is available. The idle thread has a priority below that of all
other threads on the system. The idle thread continuously loops
looking for work such as processing the DPC queue and initiating a
context switch whenever another thread becomes ready to execute
on the processor.

Processor Control Region
This is a hardware architecture-specific kernel structure that contains pointers
to the PRCB structure, the Global Descriptor Table (GOT), the Interrupt
Descriptor Table (IDT), and other information.

DPC queue
This global queue contains a list of procedures to be invoked whenever the
IRQL on a processor falls below IRQL DISPATCH_LEVEL.

Timer queue
A global timer queue is also maintained by the NT Kernel. This queue
contains the list of timers that are scheduled to expire at some future time.

Dispatcher database
The thread dispatcher module maintains a database containing the execution
state of all processors and threads on the system. This database is used by the
dispatcher module to schedule thread execution.

In addition to the object types mentioned above, the Windows NT Kernel main-
tains device queues, power notification queues, processor requester queues, and
other such data structures required for the correct functioning of the kernel itself.

The Windows NT Kernel_______________________________________13

Processes and Threads
A process is an object* that represents an instance of an executing program. In
Windows NT, each process must have at least one thread of execution. The
process abstraction is composed of the process-private virtual address space for
the process, the code and data that is private to the process and contained within
the virtual address space, and system resources that have been allocated to the
process during the course of execution.

Note that process objects are not schedulable entities in themselves. Therefore
you cannot actually schedule a process to execute. However, each process
contains one or more schedulable threads of execution.

Each thread object executes program code for the process and is therefore sched-
uled for execution by the Windows NT Kernel. As noted above, more than one
thread can be associated with any process, and each thread is scheduled for
execution individually.

The context of a thread object consists of user- and kernel-stack pointers for the
thread, a program counter for the thread indicating the current instruction being
executed, system registers (including integer and floating-point registers)
containing state information, and other processor status maintained while the
thread is executing.

Each thread has a scheduling state associated with it. The possible states are
initialized, ready-to-run, standby, running, waiting, and terminated. Only one
thread can be in the running state on any processor at any given instant, though
multiple threads can be in this state on multiprocessor systems (one per
processor).

Threads have execution priority levels associated with them; higher priority
threads are always given preference during scheduling decisions and always
preempt the execution of lower priority threads. Priority levels are categorized
into the real-time priority class and the variable priority class.

* The Windows NT Kernel defines the fundamental thread and process objects. The Windows NT Exec-
utive uses the core structures defined by the kernel to define Executive thread and process object abstrac-
tions.

14 ____ __________Chapter 1: Windows NT System Components

NOTE It is possible to encounter situations of priority-inversion on Win-
dows NT systems, where a lower-priority thread may be holding a
critical resource required by a higher-priority thread (even a thread
executing with real-time priority). Any thread that is of higher-priori-
ty than the one holding the critical resource would then get the op-
portunity to execute even if it has a priority lower than that of the
thread waiting for the resource.*
The scenario described above violates the assumption that higher
priority threads will always preempt and execute before any lower
priority threads are allowed to execute. This could lead to incorrect
behavior, especially in situations where thread priorities must be
maintained (e.g., for real-time processes). Kernel-mode designers
must anticipate and understand that these situations can occur un-
less they ensure that resource acquisition hierarchies are correctly
defined and maintained.
Windows NT does not provide support for features such as priority
inheritance that could automatically help avoid the priority inver-
sion problem.

Most kernel-provided routines for programmatically manipulating or accessing
thread or process structures are not exposed to third-party driver developers.

Thread Context and Traps
A trap is the processor-provided mechanism for capturing the context of an
executing thread when certain events occur. Events that cause a trap include inter-
rupts, exception conditions (described in Chapter 3), or a system service call
causing a change in processor mode from user mode to kernel mode of execution.

When a trap condition occurs, the operating system trap handler is invoked.t The
Windows NT trap handler code saves the information for an executing thread in
the form of a call frame before invoking an appropriate routine to process the
trap condition. Here are two components of a call frame:

A trap frame
This contains the volatile register state.

* Priority inversion requires three threads to be running concurrently: the high-priority thread that re-
quires the critical resource, the low-priority thread that has the resource acquired, and the intermediate-
priority thread that does not want or need the resource and therefore gets the opportunity to preempt the
low-priority thread (because it has a higher relative priority) but also (in the process) prevents the high-
priority thread from executing even though it has a relatively lower priority.
t The trap handler is written in assembly, is highly processor- and architecture-specific, and is a core
piece of functionality provided by the Windows NT Kernel.

The Windows NT Executive_____________________________________75

An exception frame
When exception conditions occur that cause the trap handler to be invoked,
the nonvolatile register state is also saved.

In addition, the trap handler also saves the previous machine state and any infor-
mation that will allow the thread to resume execution after the trap condition has
been processed appropriately.

The Windows NT Executive
The Windows NT Executive is composed of distinct modules, or subsystems, each
of which assumes responsibility for a primary piece of functionality. Typically,
references to Windows NT kernel-mode code actually refer to modules in the
Executive.

The Executive provides a rich set of system service calls (an API) for subsystems
to access its services. In addition, the Executive also provides comprehensive
support to developers who wish to extend the existing functionality. Develop-
ment is usually in the form of third-party device drivers, installable file system
drivers, and other intermediate and filter drivers used to provide value-added
services.

The various components that comprise the Windows NT Executive maintain more
or less strict boundaries around themselves. Once again, the object-based nature
of the operating system manifests itself in the prolific use of abstract data types
and methods. Modules do not directly access the internal data structures of other
modules; note that, although the designers have managed to stick to well-defined
interfaces internally, modules still make many assumptions when they invoke
each other. The assumptions are often in the form of expectations of what
processing the called module will perform and how error conditions will be
handled and/or reported. Finally, as you will observe later in this book, the
synchronization hierarchy employed by the Executive components when they
recursively invoke each other is more than just a little complicated.

The Windows NT Object Manager
All components of the Windows NT Executive that export data types for use by
other kernel-mode modules use the services of the Object Manager to define,
create, and manage the data types, as well as instances of the data types.

The NT Object Manager manages objects. An object is defined as an opaque data
structure implemented and manipulated by a specific kernel-mode (Executive)
component. Each object may have a set of operations defined for it; these include

Chapter 1: Windows NT System Components

operations to create an instance of the object, delete an instance of the object,
wait for the object to be signaled, and signal the object.

The Object Manager provides the capabilities to do the following:

• Add new object types to the system dynamically (note that the Object Man-
ager does not concern itself with the internal data structure of the object).

• Allow modules to specify security and protection for instances of the object
type.

• Provide methods to create and delete object instances.
• Allow the module defining an object type to provide its own methods (such

as methods for create, close, and delete operations) to manipulate instances
of object types.

• Provide a consistent methodology to maintain references of instances of the
object type.

• Provide a global naming hierarchy based upon the more commonly used file
system hierarchy inverted-tree format.

The Object Manager maintains a global name space for Windows NT. All named
objects in the system can be accessed via this name space. The object name space
is modeled on normal filenaming conventions. Therefore, there is a global root
directory named "\" created by the Object Manager during system initialization.
Executive components can create directories and subdirectories under the root
directory and then create instances of defined object types under any such direc-
tory. Whenever an object is created or inserted (even for file-system-defined
objects such as files and directories), parsing of the object name begins at the root
of the Object-Manager-maintained name space. If an object type has a parse
method defined for it (as for example, file objects representing open file system
files and directories), the Object Manager invokes the parse method for the object.
Chapter 2, File System Driver Development, provides additional information on
how the Object Manager handles requests to open or create on-disk file or direc-
tory objects.

The object type structure maintained by the NT Object Manager contains informa-
tion such as the type of memory pool from which instances of the object type
should be allocated, the valid access types for the object, pointers to procedures
associated with the object (these are optional and could include pointers to
create, open, close, delete, and other such procedures), and some synchroniza-
tion structure maintained by the Object Manager for all object instances of the
particular type.

Each object instance has a standard object header and an object-type-specific
object body associated with it. The standard object header contains information

The Windows NT Executive_____________________________________17_

such as pointers to the name of the object (if any), a security descriptor associated
with the object (if any), the access mode for the object, reference counts for the
object, a pointer to the object type (to which the object instance belongs), and
other attributes associated with the object.

Whenever a thread successfully opens an instance of a particular object type, the
NT Object Manager returns to the requesting thread an opaque handle to the
object instance. Note that there can be more than one handle to any object
instance at any given point in time. For example, object handles can potentially
be inherited.

The Object Manager maintains information associated with each object handle,
including a pointer to the object instance, the access information for the open
operation, and other attributes for the handle. Note that there is no direct relation-
ship between the handle and the pointer to the open instance of the object type.
The handle is typically an index into an object table, which is composed of an
array of object table entries.

WARNING Handles are specific to a process. Therefore, if a thread successfully
performs a create and open operation and obtains a handle in re-
turn, all threads for the particular process can use that handle.
However, if the same handle is used in the context of a thread asso-
ciated -with any other process, you will receive an error code indicat-
ing that the handle is invalid.*

Other Windows NT Executive Components
As mentioned earlier, the other major components of the Windows NT Executive
are as follows:

The Process Manager
This component is responsible for the creation and deletion of processes and
threads. It uses the services provided by the Windows NT Kernel to perform
tasks such as suspending an executing process, resuming execution of a
process, providing process information, and so on.

* Although this may not make sense to you yet, this error is a leading cause of frustration to driver de-
velopers who open a resource in their DriverEntry () routine and then try to use the returned handle
in some other dispatch routine, which is typically executed in the context of another thread (and process).

18__________________________Chapter 1: Windows NT System Components

The Local Procedure Call (LPC) facility
This facility is the mechanism by which messages can be passed between two
processes on the same node.* The client process typically passes parameters
to a server process and requests some services. In return, it may receive some
processed data back from the server process.
The client's call to the server is intercepted by a stub in the client process that
packages the parameters being sent to the server procedure. Then the LPC
facility provides the mechanism for the client process to transmit the data to
the server and then wait for a response back from the server. This is done
using a Port object, defined and created by the LPC facility.

The LPC facility is modeled on the Remote Procedure Call mechanism used to
implement the client-server model across machines connected by a local or
wide area network. The LPC facility is better optimized for communication
within a node where all processes have access to the same physical memory.

Security Reference Monitor
This module is responsible for enforcing security policy on the local node. It
also provides object auditing facilities.

Virtual Memory Manager
The Windows NT Virtual Memory Manager (VMM) manages all available phys-
ical memory on the local node. It is also responsible for providing virtual
memory management functionality to the rest of the operating system, as well
as to all applications that execute on the node.
Almost all kernel-mode and user-mode modules must interact with the Virtual
Memory Manager component. Most modules are clients of the Virtual Memory
Manager and therefore depend on the VMM to provide memory management
services. File systems, however, are special, because they must often provide
services to the VMM (e.g., for reading or writing page files). File system
designers must understand thoroughly the interactions of file system drivers
with the VMM module. The VMM is discussed in greater detail in Chapter 5,
The NT Virtual Memory Manager.

Cache Manager
The Windows NT Executive contains a dedicated caching module to provide
virtual block caching functionality (in system memory) for file data stored on
secondary storage media. The Cache Manager uses the services of the
Windows NT Virtual Memory Manager to provide caching functionality. All of
the native NT file system driver implementations use the services of the Cache

* A single node can be defined as a computer containing either a single processor or multiple processors.
Multiple nodes can potentially be networked together to create a Windows NT cluster.

The Windows NT Executive_____________________________________19

Manager. The Windows NT Cache Manager is discussed in detail in Chapters
6-8.

I/O Manager
The Windows NT I/O Manager defines and manages the framework within
which all kernel-mode drivers (including file system, network, disk, interme-
diate, and filter drivers) can reside. The I/O Manager is described in detail in
Chapter 4, The NTI/O Manager.

In this chapter:
• What Are File System

Drivers?
• What Are Filter

Drivers?
• Common Driver

Development Issues
• Windows NT Object

File System Driver
^ • Filename Handling

Development

The focus of this book is on kernel-mode file system driver and filter driver devel-
opment for the Windows NT operating system. However, before beginning a
discussion on how to design and implement a kernel-mode file system or filter
driver, you need a good understanding of just what the file system and filter
drivers do. Knowing what these drivers can and cannot do will help you decide
whether it is worth all the trouble to design one.

In this chapter, I will briefly discuss the various types of file system drivers and
filter drivers to give you some idea of the functionality that is traditionally
expected from them. I will also discuss some common concepts used during the
design and implementation of kernel-mode drivers in Windows NT. Topics
discussed here include how to make portions of your kernel-mode driver page-
able, how to allocate and free kernel memory required during execution, how to
use some of the system-defined structures and functions to create linked lists, and
how to troubleshoot and debug your driver. It may be best for you to skim
through this material initially, then refer back to it once you have read some of
the succeeding chapters and have begun the process of designing and developing
your kernel-mode file system or filter driver.

One of the challenges I faced when trying to design a file system driver for
Windows NT was understanding how user-specified filenames are treated. I will
discuss this as part of a larger discussion on the name space, which is managed
by the Windows NT Object Manager. I will also discuss the roles played by the
Multiple Provider Router (MPR) component and the Multiple UNC Provider (MUP)
in supporting network file system drivers, which must be integrated with the
name space on the local node. Chapters following this one examine some of the
topics presented here in considerable depth.

20

What Are File System Drivers.'___________________________________27

What Are File System Drivers?
A file system driver is a component of the storage management subsystem. It
provides the means for users to store information to and retrieve it from nonvola-
tile media such as disks or tapes.

Functionality Provided by a File System Driver
A file system driver implementation typically provides the following functionality
to the user:*

• Ability to create, modify, and delete files"!
• Ability to share files and transfer information between them easily, though in

a secure and controlled manner
• Ability to structure the contents of a file in a manner appropriate to the appli-

cation

• Ability to identify stored files by their symbolic/logical names, instead of speci-
fying the physical device name

• Ability to view the data logically, rather than dealing with a more detailed
physical view

The above functionality is provided by all commercially available local (disk
based) file system driver implementations. In addition to this functionality, remote
file systems, both networked and distributed, provide the following functionality,
to some degree or another, depending upon the sophistication of the file system
used:

• Network transparency
• Location transparency
• Location independence
• User mobility

• File mobility

Not all of the functionality listed here provided by all remote file system imple-
mentations. However, as file system technology evolves, more and more
sophisticated network file systems meet or exceed many of these goals.

* See the book An Introduction To Operating Systems by Harvey Deitel. Consult Appendix E, Recom-
mended Readings and References, for more information.
t A. file is a named collection of user data stored on secondary storage devices (e.g., disk drives).

22____________________________Chapter 2: File System Driver Development

Types of File System Drivers
There are different kinds of file system driver implementations that you can
design, implement, and install. They include local file systems, network filesys-
tems, and distributed file systems.

Disk (local) file system drivers

Local file systems manage data stored on disks connected directly to a host
computer.

The file system driver receives requests to open, create, read, write, and close
files stored on such disks. These requests typically originate in user processes and
are dispatched to the file system via the I/O subsystem manager. Figure 2-1 illus-
trates how a local file system driver provides services to a user thread.

Figure 2-1. Local file system

In the figure, the disk driver transfers data to and from a logical disk connected to
the system. The logical disk is simply a storage abstraction; from the perspective
of the file system, it is a linear sequence of fixed-size, randomly accessible blocks
of storage. In reality, a logical disk could be a portion of a physical disk
(commonly known as a partition), or it could be an entire physical disk, or it
could even be some combination of partitions residing across multiple physical
disks (known as a logical volume). Software modules called logical volume

What Are File System Drivers?

managers allow the file system driver to see a contiguous sequence of available
disk space and hide all of the details of mapping logical blocks to the correct
physical blocks.

Logical volume management software often provides features such as software
mirroring of data, striping across multiple physical disks, as well as capabilities to
resize logical volumes dynamically. Therefore, you will often see such software
advertised as fault-tolerant software.

To be managed by a local file system driver, each logical volume must have a
valid file system layout. The file system layout includes appropriate file system
metadata information, specific to the type of file system driver used. For example,
the FASTFAT file system driver requires a completely different on-disk layout than
the NTFS file system driver. It uses structures very different from those used by
NTFS to store user data.

On Windows NT systems, whenever you use the format utility on a logical
volume, you are actually creating the file system metadata (management) struc-
tures that will later be used by the file system driver to provide functionality such
as allocating space for user data storage, associating stored user data with the user-
specified filename, and creating catalogs (directory structures) used in retrieving
user files.

Before a user can begin accessing data stored on logical volumes, the logical
volume must be mounted on the system. When a logical volume is mounted, a
file system driver verifies the metadata and begins managing the volume, using
the metadata stored on the volume and setting up appropriate in-memory data
structures based on the metadata.

Local file systems provide a single name space for each mounted logical volume.
Most commercially available, modern file system implementations provide a hierar-
chical, tree-structured layout. This tree structure consists of directories (container
objects), and files (named user data objects) contained within directories. Each
directory, as well as each file contained within a directory, has a unique filename
associated with it. The valid character set that can be used to construct a filename
is dependent upon the specific file system implementation. For example, the
native NTFS file system allows some characters that the FASTFAT file system typi-
cally disallows. Most file systems and the I/O subsystem explicitly disallow certain
characters. For example, the "\" character is used on Windows NT-based systems
as a path separator and cannot be part of a valid filename.

Figure 2-2 shows a hierarchical file system name space as presented by a local file
system driver. Each object in this file system can be uniquely identified by a
name, starting with the root of the file system. The important thing to note is that

24 _____ __________________Chapter 2: File System Driver Development

each mounted logical volume has its own hierarchical tree structure with a unique
root directory serving as the top-level container object for that logical volume.

Figure 2-2. Hierarchical name space for directories and files

The user of a mounted logical volume is always aware of the particular mounted
logical volume that she is accessing. If she wishes to access a file that does not
reside on the currently mounted logical volume, she has to ensure that the logical
volume on which the file resides is both accessible and mounted. Then she can
specify the complete file pathname identifying the file, beginning at the root of
the logical volume on which the file resides, to access the contents of the file.

Network file systems

As the name suggests, network file systems allow users to share locally connected
disks with other users over a local or wide area network. For example, say you
have a physical disk C: connected to your machine. Now you may want to allow
me direct access to the files and directories stored under the accounting subdirec-
tory on your C: local drive. To do this, both you and I would have to use the
services of a network file system. This network file system would allow me to
access the shared files on your disk, just as if I were accessing my own local disk.

There are two components to each network file system implementation:

The client-side redirector
There must be a software component, executing on my node, that will take
my requests for accessing files stored in your C:\accounting directory and
transfer them across the network to be processed on your machine. Further-
more, this software component must be capable of receiving data from your
machine and handing it back to me.

The sewer on the node where the disk is being shared
Once the redirector on the client sends a request across the network, a soft-
ware component on the server system must respond to this request.

What Are File System Drivers? 25

The server component then has two major tasks to perform; the first is to
interface with the remote client using a well-defined protocol, and the second
is to interface with the local file systems to obtain data on behalf of the client
node.

Figure 2-3 shows the client and server components of the network file system
implementation.

Figure 2-3. Remote (network) file system

The most common example of a remote file system to NT users is the LAN
Manager Network, which supports the sharing of directories, logical volumes,
printers, and other remote resources. The LAN Manager Network consists of the
LAN Manager Redirector component executing in the kernel on client nodes and
the LAN Manager Server software executing in the kernel on server nodes
exporting local file systems or other resources such as printers and the 8MB
(Server Message Block) network protocol used by the two components to transfer
data across the network.

26___________________________Chapter 2: File System Driver Development

NOTE In 1996, Microsoft submitted a networking protocol specification
called the Common Internet File System (CIFS) 1.0 to the Internet
Engineering Task Force as an Internet-Draft document. Microsoft
has since been working with other parties to get CIFS published as
an Informational RFC. CIFS is the latest incarnation of the 8MB pro-
tocol specification and is expected to be a part of future updates to
"Windows NT 4.x and Windows 95. Throughout this book, I use the
term 8MB to refer to the networking protocol implementation used
by the Microsoft LAN Manager Redirector and Server components;
however, you can easily substitute the term CIFS for SMB.

Note that the redirector is the component that presents itself as a file system on
the client node. This allows users to request access to remote data just as they
would request data from her local file system. The redirector handles all of the
mechanics of getting the data for users from across the network. Although
networks are inherently unreliable (especially wide area networks), it is the
responsibility of the redirector to try to reestablish lost connections transparently,
or to return appropriate errors so that the application can retry the request if
required.

The server does not need to present a file-system-like interface, because clients
on the server node can use the services of the local file system directly to access
data stored on the disk drives local to the server.

Both the redirector and the server use a transport protocol to transfer data and
commands across the network. There are many transport protocols, such as the
TCP/IP protocol, the UDP/IP, and Microsoft-specific protocols such as NetBIOS.
The transport protocols may be connection-oriented (e.g., TCP/IP, NetBIOS), so
that they provide a virtual circuit to the redirector and server software, or connec-
tionless (e.g., UDP/IP).

Figure 2-4 illustrates how a server node can share a particular directory with
clients across the network. To the client node, the shared directory forms the root
of a distinct logical volume. Requests from the client node to the networked
volume are handled by the redirector, which is responsible for transmitting the
request across the network to the server node. The network server software on
the server node processes the request, utilizing the local file system on the server
node to access and manipulate the shared volume. Finally, the server returns the
results of the operation to the remote client.

In the case of network file systems, the client is aware of the fact that the user is
accessing data residing on the server node. Therefore, although all of the
mechanics of data transfer are hidden from the user of the file system, the user is

What Are File System Drivers:1 27

Figure 2-4. Sharing a directory across the network

always aware of which data is stored locally and which is obtained from a remote
server node.

Finally, you should note that applications on the server node use local file system
services to access file data residing on the shared logical volumes. In certain
cases, this may lead to data consistency problems if file data from shared logical
volumes is also cached on client nodes. Local (disk-based) file system drivers are
often expected to cooperate with network server software to help avoid such data
consistency problems whenever possible.

Distributed file systems

Distributed file systems have evolved from standard network file systems. They
present a single name space to the user and completely hide the actual physical
location of the data from the user of the file system.

This means that a user supplies a single pathname to identify the required file,
regardless of the physical location of the file. Therefore, a user can access
resources residing on a remote server machine without even realizing it.

Architecturally, distributed file systems look very much like network file systems,
since they also have client software executing on client nodes and server software
executing on remote nodes to make their resources available across the network.
The primary difference, however, is the single name space provided by distrib-
uted file systems over and above what is offered by simpler network file systems.
Note that both client and server software could be concurrently executing on any
node that participates in the implementation of the distributed file system.

28 Chapter 2: File System Driver Development

Figure 2-5 illustrates how a distributed file system presents a single name space to
the user of the file system. A client of the file system on node 1 can access all of
the files and directories that constitute the file system without regard for where
they physically reside. There is a single (virtual) global root directory for the file
system tree. Although not illustrated in the figure, any point in the global name
space could in actuality be a mount point for a remotely exported subtree.

Figure 2-5- Global name space presented by distributed file systems

NOTE A mount point is simply a named directory in the file system name
space to which a remotely exported subtree can be grafted. In
Figure 2-5 above, you can see that the accounting, payroll, and per-
sonnel directories are mount points for the distributed file system.
The accounting directory has a subtree from node 1 grafted on, the
payroll directory allows access to data stored on node 2, while the
personnel directory allows access to data stored on node 3- Any user
of this file system can now transparently access a file or a directory
without regard for where the data actually resides. The user simply
sees a single name space for the entire distributed file system.
When a user tries to access anything below a mount point, the cli-
ent software on the node must forward the request to the remote
server that is actually exporting the contents below the accessed
mount point, allowing the server to process the user request.
Many distributed file systems use another approach to access data
stored remotely. The client software often transfers data from the re-
mote server on behalf of the requesting process and caches it local-
ly. This obviates the need to contact a remote server every time a
user asks for previously requested data stored there. However, so-
phisticated client-server cache consistency processes are required to
maintain data coherency across the entire network.

What Are File System Drivers?___________________________________29

Sometimes, distributed file systems provide global data consistency guarantees
exceeding those provided by the network file system implementations. For
example, a distributed file system could guarantee that all users of the file system
would always see the same view of a file's contents even if they were concur-
rently accessing and modifying the file on multiple (geographically distributed)
client nodes.

Special (pseudo)file systems

Often, you will encounter kernel-mode software that presents a file-system-like
interface to the user but actually does something completely different when the
interface calls are exercised. For example, the /proc file system on UNIX systems
actually allows a user to access and potentially modify the address space of a
running process.

Basically, any kernel-mode driver that presents a file-system-like interface but
performs special functionality (different from the traditional task of managing data
stored on physical devices) can be considered a special file system
implementation.

Other examples of special file system implementations include kernel-mode
drivers that provide hierarchical storage management (HSM) functionality, or
drivers that present virtual file systems (e.g., some commercially available source
code control systems).

Windows NT and File System Drivers
File system drivers are a component of the I/O subsystem on the Windows NT
platform and therefore must conform to the interface defined by the NT I/O
Manager.

The Windows NT I/O Manager has defined a standard interface to which all
kernel-mode drivers must conform. This interface applies equally to local file
system drivers, network and distributed file system redirector software, interme-
diate drivers, filter drivers, and device drivers. File system drivers can be loaded
dynamically under Windows NT and can theoretically also be unloaded
dynamically.*

The Windows NT/ I/O Manager provides a comprehensive set of support routines
for file system driver designers to use. These routines allow the new file system to
utilize common services and behave consistently (just as the native file systems

* In practice, it is very difficult to implement a file system that can be dynamically unloaded. It is possible,
though, with a lot of foresight and care in the design and implementation of the file system driver. Most
people, however, do not find the result worth all of the effort required.

Chapter 2: File System Driver Development

do) on Windows NT machines. Furthermore, there is a well-defined, although
poorly documented,* set of interfaces that the file system driver designer must
conform to, in order to interact successfully with the Windows NT Virtual Memory
Manager and the Windows NT Cache Manager.

Using a File System
There are two ways in which a user can take advantage of the services provided
by a file system driver:

Invoke standard system service calls
This is by far the most commonly used method of requesting access to files
and directories. The user process simply invokes standard system service calls
to request operations such as opening or creating a file, reading or writing file
data, and closing the file.

Use I/O control requests sent to a file system driver
Sometimes, applications need to request specific services that cannot be
requested using one of the canned system service calls. In these situations, as
long as a file system can do the desired operation, a user can send the
request and data directly to the file system driver via the File System Control
CFSCTL) interface.

A typical example of using standard system services to request access to a file is
when a process must read the contents of file C:\payroll\june-97. The sequence
of operations executed by a typical application process using the Win32
subsystem is as follows:

1. Open the file.

The requesting process will typically invoke the Win32 CreateFile ()
service routines, specifying the name of the file to be opened, the access
mode desired for the open file, and other related arguments. Internally, the
Win32 subsystem invokes the NtCreateFileO system service call to
request the open operation on behalf of the caller.t
At this point, the CPU switches to kernel-mode privilege level. The code imple-
menting the system call NtCreateFile() is implemented by the I/O
Manager, which is a component of the Windows NT Executive, and the kernel-
mode privilege level is required to run functions implemented by the I/O
Manager. The open/create request meanders around the NT Executive,

* Until this book was written.
t Any user-space process can directly invoke the NtCreateFile () system service routine. Unfortunate-
ly, these system service routines have not been well documented by Microsoft. Appendix A, Windows NT
System Services, has a comprehensive list of the available system services.

What Are File System Drivers?___________________________________3/

dispatched first to the I/O Manager via the NtCreateFile () invocation,
then to the NT Object Manager to parse the user-supplied name, and finally
back into the I/O Manager to identify the file system driver managing the
mounted logical volume C:. Once the file system driver has been identified,
the I/O Manager invokes the file system driver create/open dispatch entry
point to process the user request.

Finally, the file system driver performs appropriate processing and returns the
results of the create/open operation to the I/O Manager, which in turn returns
the results to the Win32 subsystem (the privilege level switches back to user-
mode), and the Win32 subsystem eventually returns the results to the
requesting process.

2. Read the file data.
If the open operation succeeds, a handle is returned back to the requesting
process. The requesting process now asks to read data in the file, specifying
the starting offset and the number of bytes to be read. Typically, the Read-
File () function call provided by the Win32 subsystem invokes the
NtReadFile () system service routine on behalf of the requesting process.
The NtReadFile () routine is also implemented by the NT I/O Manager.
Because the requesting process must supply a valid file handle, obtained from
a previous successful create operation, to request a read, the I/O Manager can
easily identify an internal data structure corresponding to the open operation
performed earlier. This internal data structure, called a file object, will be
comprehensively described later in this book. From the file object structure,
the I/O Manager can determine the logical volume that contains the open file
and will then forward the read request to the file system driver for further
processing.

The file system driver will return as much of the user-requested data as it can
and will return the results of the operation back to the I/O Manager. Eventu-
ally, the results of the read request will be returned back to the requesting
process via the Win32 subsystem.

3. Close the file.

Once the requesting process has finished processing the contents of the file, it
performs a close operation for the file handle received from the previously
executed open request. The close handle operation informs the system that
the process no longer needs to access the file data.
The close file process invokes the Win32 CloseHandle () function to close
the open file handle. The Win32 subsystem in turn invokes the NtClose ()
system service routine.

32___________________________Chapter 2: File System Driver Development

The file system is notified by the I/O Manager that the user process has
closed the file handle, and the file system is free to dispose of any state infor-
mation it may have maintained for the open file.

There are many file operations that can be requested by a user in addition to the
three described here. However, the basic methodology is the same: a process or
thread opens or creates a file, performs some operations on the file, and finally
closes the open file handle. Note that the NT system services are available to all
threads executing on a Windows NT system, including user-mode threads and
kernel-mode threads. Furthermore, the NT system services are available regardless
of the subsystem (Win32, POSIX, OS/2) used by a requesting process.

NOTE The system service routines provided by the NT I/O Manager are ge-
neric and very comprehensive. They have to be generic because, as
mentioned earlier, the services must be capable of supporting re-
quests generated by a user from any one of the supported Windows
NT subsystems, which are quite diverse in themselves.
As a matter of fact some of the most powerful functionality provid-
ed by the I/O Manager and the file system drivers is often not avail-
able (or provided) by the Windows NT subsystems and the only
way to request the desired functionality is to invoke the system ser-
vices directly. Therefore, it is more of a pity that Microsoft does not
do a better job documenting the available Windows NT system ser-
vice calls.

Support provided for file system control requests by file system drivers is
described in detail later in this book.

The File System Driver Interface
A well-defined interface between the file system driver code and the rest of the
operating system must exist, if the operating system is to support multiple file
system drivers, including those developed by third-party companies. This interface
should clearly document the various interactions between the components
involved in satisfying a user request to access file data; the description must also
provide for suitable abstractions so that the many varied types of file systems can
be successfully integrated into the rest of the operating system.

The goal should be to create modularized components that can be easily substi-
tuted and extended without requiring extensive, complicated, and expensive
redesign of the entire system. It seems as though the designers of the I/O
subsystem started out trying to meet exactly these goals. Therefore, there are well-
defined methods for a file system to install, load, and register itself with the rest of

What Are Filter Drivers? ______________________________________33

the operating system. The I/O Manager also sends very well defined I/O request
packets describing user requests to a file system driver for further processing.
Last, but not least, there is a fairly comprehensive list of supporting routines that a
file system designer can use to make life easier and to better integrate the new
file system with the rest of the system.

Unfortunately, things tend to become more than a little messy when you consider
the different ways the file system and the operating system interact. Sometimes, as
a result of these complex interactions, the abstractions that system designers try to
maintain start to break down. The situation is made much worse when the oper-
ating system and the file system are jointly responsible to provide support for
cached data, and also for supporting memory-mapped files. In Windows NT, for
example, the Virtual Memory Manager depends on the file system to provide
support for page files used to implement virtual memory support. However, the
file system, in turn, depends upon the Virtual Memory Manager for allocation of
memory required to process file system requests. This recursive relationship tends
to make life even more complicated.

Although the designers at Microsoft who developed the Windows NT operating
system seem to have made a strong effort to maintain a clean demarcation
between the file system and the rest of the operating system, it seems as though,
over time, the lines have gotten more than a little blurred and that more and more
implicit behaviors and functionality have become ingrained in the system. This
leads to more complicated design and code, and requires extensive documenta-
tion from Microsoft for third-party file system designers to develop a successful
and robust file system driver.

The sort of documentation that third-party developers would like to have access
to was not available when this book went to press. This book will help you under-
stand the system better and give you a starting point to achieve your desired goals.

What Are Filter Drivers?
A filter driver is an intermediate driver that intercepts requests targeted to some
existing software module (e.g., the file system or a disk driver). By intercepting
the request before it reaches its intended target, the filter driver has the opportu-
nity to either extend, or simply replace, the functionality provided by the original
recipient of the request.

34 _________________________Chapter 2: File System Driver Development

NOTE It isn't required that the filter driver always supplant the existing
driver; that would simply become a case of unnecessarily reinvent-
ing the wheel. The filter driver can instead focus on providing what-
ever specialized functionality it needs to implement, while still
allowing the existing code to perform what it does best, provide the
original functionality.

For example, consider the existing file systems shipped with the Windows NT
operating system. They consist of the FASTFAT (the legacy FAT file system
support) file system, the NTFS (log-based) file system, the CDFS file system for
CD-ROM media, the LAN Manager Redirector to access remote shared drives, and
so on. None of the file systems, however, currently provides support for online
encryption and decryption of stored data.

Now suppose that you are a security expert who knows how to design and imple-
ment an incredibly secure encryption algorithm. You wish to develop and sell
software that would encrypt user data before it ever got stored on disk, and auto-
matically decrypt it before giving it back to an authorized user. So how would
you go about designing your software?

You certainly do not want to write a completely new file system driver, because
that would be too time consuming, and it would not really provide any added
value to the end user. What you really want to do is design a filter driver that
intercepts requests in either of the following places:

Above the file system
To allow your code to intercept the user request before the file system driver
ever gets the opportunity to see it.

Below the file system
To allow your driver to perform any required processing after the file system
has finished its tasks. However, your driver can do whatever you need before
the request is received by a disk driver, or by a network driver that is asked
by the file system to obtain data from secondary storage devices or from
across the network.
In this scenario, you can perform your magic somewhere along the way
before the data either is written to the disk or returned to the user.

Figure 2-6 illustrates two different places where you can insert your filter driver
software.

Once you have inserted your filter driver at an appropriate place in the driver hier-
archy, you can intercept I/O requests from the user, perform your magic, and
then forward the request to the existing module (either the file system or the disk

What Are Filter Drivers? 35

Figure 2-6. Filter drivers in the driver hierarchy

driver) so that they can continue to provide functionality, such as managing the
mounted logical volume or transferring data to or from the physical disks.

So if you insert your filter driver so that it intercepts I/O requests dispatched to a
file system driver, you can encrypt the data before it is passed into the file system
for transfer to secondary storage, and you can decrypt it after the file system has
retrieved the encrypted data from secondary storage, before it sends the data back
to the user.

If, however, you decide to intercept requests below the file system, then you
would follow the same methodology, except that now you would get a chance to
modify the buffer only after it had passed through the file system and either
before it is written out to disk (or across the network), or immediately after it has
been retrieved from disk (or from across the network), but before it is returned to
the file system.

It is relatively easy to insert a filter driver into the existing driver hierarchy in
either of these two places, without having to redesign all other existing Windows
NT file system, disk, and other intermediate drivers, because all drivers in the I/O
subsystem must conform to a well-defined, layered driver interface.

This means, for example, that all drivers must respond to a standard set of
requests that the I/O Manager could issue. Furthermore, there is a standard
method by which a kernel-mode driver (or the I/O Manager itself) requests the
services provided by another driver in the calling hierarchy. Every driver in the

36___________________________Chapter 2: File System Driver Development

hierarchy must also respond to an I/O request in the expected manner, regardless
of the caller.

NOTE The I/O subsystem does not mandate that all drivers implement
their dispatch routines in exactly the same way; the only condition
is that the drivers are aware of their own response to standard I/O
Manager requests and are therefore aware of the impact they have
by inserting themselves into the driver hierarchy.

Although everything seems to be just perfect for you to immediately begin
designing your incredibly secure encryption/decryption algorithm for the
Windows NT platform, there are some details that you will unfortunately have to
consider. Ideally, the Windows NT I/O subsystem would be so modular that
implementing your functionality should be a piece of cake. In reality, you must
understand some subtle interactions that manifest themselves, depending on
where in the driver hierarchy you decide to insert your filter driver. Chapter 12,
Filter Drivers, focuses exclusively on the issues involved in designing a filter
driver for the Windows NT platform.

Common Driver Development Issues
This book discusses many issues that kernel-mode file system and filter driver
designers should understand thoroughly. There are some common development
issues, however, that I would like to briefly discuss in this section. These include
how to allocate and free memory in your kernel-mode driver, and how to imple-
ment some rudimentary debugging support in your driver.

Consult the Microsoft Driver Development Kit (DDK) documentation for addi-
tional details on some of the functions described here. Some of the material in
this section uses terms that will be defined later in the book. Therefore, skim
through the material during your first reading of this book and then come back to
reread it after you have read through at least Chapter 4, The NT'I/O Manager.

Working with Kernel Memory
In Chapter 5, The NT Virtual Memory Manager, you will read about the NT VMM
in considerable detail. However, there are some fairly common issues involved
with driver development and the need for kernel memory that I will describe
here. The code fragments presented later in this book assume that you have a
good understanding of how to allocate and free kernel memory.

Common Driver Development Issues______________________ ____ 3 7

You must answer the following questions as you begin designing a kernel-mode
driver:

• Does my driver occupy paged or nonpaged memory?

• Can I page out driver code?

• How do I allocate kernel memory on demand?

• How do I free previously allocated memory?
• Are there any issues I must be aware of when attempting to acquire or free

kernel memory?

Pageable kernel-mode drivers

By default, the kernel loader will load all driver executables and any global data
that you may have defined in your driver into nonpaged memory. Therefore, if
you want your driver to reside in nonpaged memory, there is nothing further you
need to do besides compiling, linking, and loading the driver.

Furthermore, the kernel loads the entire driver executable (and any associated
dynamic link libraries) all at once, before invoking any driver initialization
routines. Although it may not make much sense to you at this time, after loading
the executable into memory, the kernel loader closes the executable file, allowing
a user to delete even the currently executing driver image.

It is possible to specify to the loader the portions of your driver that you wish to
make pageable. This can be done by using the following compiler directive in
your driver code:*

•ifdef ALLOC_PRAGMA
•pragma alloc_text(PAGE, function_namel)
ttpragma alloc_text(PAGE, function_name2)
// You can list additional functions at this point just as the two
// functions are listed above ...
•endif // ALLOC_PRAGMA

Be careful, though, that you never allow any routine that could possibly be
invoked at a high IRQL to be paged out. File system drivers can never allow any
code or data to be paged out that might be required to satisfy page fault requests
from the NT Virtual Memory Manager.

It is also possible for a kernel-mode driver to determine at run-time whether
certain sections of driver code and/or data should be paged out or locked into
memory. To do this, the driver must perform the following actions:

* The functions referenced in a pragma statement must he defined in the same compilation unit as the
pragma.

38___________________________Chapter 2: File System Driver Development

• To make a code section pageable, use the following compiler directive in
your code,
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGExxxx, function_namel)
#pragma alloc_text(PAGExxxx, function_name2)

fendif
where xxxx is an optional, four-character, unique identifier for the driver's
pageable section.

• To make a data section pageable, use the following compiler directive in your
code:
#ifdef ALLOC_PRAGMA
#pragma data_seg(PAGE)...
// Define your pageable data section module here.
tpragma data_seg() // Ends the pageable data section.

• Invoke MmLockPagableCodeSection() and MmLockPagableCodeSec-
tionByHandle () to lock code sections that were marked as pageable in
memory.

• Invoke MmLockPagableDataSectionf) and MmLockPagableDataSec-
tionByHandle () to lock data sections that were marked as pageable.

• Invoke MmUnlockPagableImageSection() to unlock any code or data
section that may have been locked using the functions listed above.

There are two additional routines provided by the VMM that you should be aware
of (and look up in the DDK documentation) if you wish to page out the entire
driver or reset paging attributes back to their original settings:

MmPageEntireDriver()
This routine will make the entire driver pageable, overriding any section page
attributes that were declared earlier using compiler directives.

MmResetDriverPaging()
This function will reset the paging attributes back to the initially declared
attributes.

Finally, to automatically have the Memory Manager discard sections of code that
you won't need once the driver has been initialized, use the following compiler
directives:

•ifdef ALLOC_PRAGMA
•pragma alloc_text(INIT, DriverEntry)
•pragma alloc_text(INIT, functionl_called_by_driver_entry)

•endif // ALLOC_PRAGMA

Common Driver Development Issues_______________________________39

Be careful to specify only those functions that can be safely discarded and will
never again be required once the driver initialization has been completed.

Allocating kernel memory

Every kernel-mode driver requires memory to store private data. Typically, your
driver will request memory from the NT Virtual Memory Manager. Whenever your
driver requests memory, it must determine whether it needs paged or nonpaged
memory. If your driver can afford to incur page faults during execution when
accessing allocated memory, try to use paged memory whenever possible.

NOTE Most lower-level disk and network drivers typically can't use page-
able data because their code often executes at high IRQ levels that
do not allow page faults.* However, file systems (which are often
considerably larger and more resource intensive than disk drivers)
do sometimes have the opportunity to allocate certain memory from
the paged pool. If you can use pageable memory in your driver, al-
ways take the extra effort to identify the memory that could be page-
able and specify the paged pool type when requesting memory
from the Virtual Memory Manager.

Nonpaged memory is a limited resource available to the entire system. Though
the amount of memory reserved for nonpaged pool depends upon the type of
system used (and the amount of physical memory available on the system), it is
definitely something to be conservatively used.t

The following support routines are provided by the Windows NT Executive to
kernel-mode drivers for allocating memory:

• ExAllocatePool()
• ExAllocatePoolWithQuota()

ExAllocatePoolWithTag()
• ExAllocatePoolWithQuotaTagO

* See Chapter 5 for a detailed discussion on page fault handling performed by the Windows NT Virtual
Memory Manager. This chapter also further explains why kernel-mode drivers must not incur page faults
at high IRQ levels.
f The NT Virtual Memory Manager uses a private algorithm to determine the total amount of nonpaged
pool reserved on a node. This algorithm uses the total amount of physical memory on the system as the
determining factor to compute the amount of nonpaged pool. The Virtual Memory Manager also attempts
to increase the amount of nonpaged pool (if required) up to a precomputed maximum value. Finally,
although the initially allocated nonpaged pool is contiguous, it tends to get fragmented, and the Virtual
Memory Manager makes no attempts to ensure that the pool stays contiguous when expanding it.

40___________________________Chapter 2: File System Driver Development

Note that all of the pool allocation support routines are nonblocking in Windows
NT. In other words, the memory allocation function invoked will return memory
if it is currently available; otherwise, the functions will return NULL (indicating
that memory could not be allocated). On many other operating system platforms
(e.g., many UNIX derivatives), kernel-mode components are allowed to specify
whether the memory allocation function should block (wait) for memory to
become available, or return failure immediately.

Whenever your driver invokes one of these functions to request memory, it must
specify the type of memory required:

NonPagedPool
The pool allocation package will return either a pointer to nonpageable
memory or NULL.

PagedPool
Always specify this type if your application can handle a page fault when
accessing the allocated memory. Never allocate paged memory if you have
any synchronization structures (described in the next chapter) contained
within the allocated memory.

NonPagedPoolMustSucceed
If all else fails and you simply must get memory immediately, use this pool
type. Note that the memory reserved for this type is an extremely scarce
resource. It may be as low as 16KB on a system, though the amount is vari-
able. If you request pool of this type (and only do that if you failed to get
memory any other way), and if the Virtual Memory Manager cannot provide
you with the requested memory, it will bugcheck the system (described later
in this chapter) with an error code of MUST_SUCCEED_POOL_EMPTY.

NonPagedPoolCacheAligned
This allocates nonpaged memory that is aligned on a CPU-specific boundary,
determined by the data cache line size. Note that this option defaults to the
NonPagedPool allocation type on Intel platforms.

PagedPoolCacheAligned
A request to allocate pageable memory aligned along the CPU data cache line
size.

NonPagedPoolCacheAlignedMustSucceed
Once again, use this option to request nonpaged memory only as a last resort.

The pool allocation package initializes several lists, each containing blocks of a
certain fixed size. Whenever you request memory using one of the ExAllocate-
Pool () functions listed above, the support routine will try to allocate a fixed-size
block that is closest in size (greater than or equal to) the requested amount.

Common Driver Development Issues_______________________________47

If your request exceeds a page, however, or if the requested amount exceeds the
size of the largest-size block in the various lists, or if there is no available block of
the appropriate size in the preallocated lists, the Virtual Memory Manager will allo-
cate the requested amount from any available system memory of the appropriate
type.

NOTE When the lists of preallocated blocks are empty, the Virtual Memory
Manager will allocate at least one page of memory, split it up, and
put any remaining amount (after returning the requested amount of
memory to the caller) on the appropriate block list.
Unfortunately, however, for requests for nonpaged pool where the
requested amount is greater than PAGE_SIZE, the pool allocation
support routine will not attempt to split up any unused amount.
This wastes precious nonpaged memory, another reason why you
should be extremely conservative in your requests for this type of
memory.

If there is simply no memory available of the requested type, the Virtual Memory
Manager will return NULL to the caller or bugcheck* if you request memory from
the must-succeed pool.

It is also possible for your driver to use one of MmAllocateNonCached-
Memory() or MmAllocateContiguousMemory () t to request nonpaged, or
physically contiguous, memory, respectively. These routines are not typically used
by file system or filter drivers, which use either the Executive pool routines or
other constructs, such as zones or lookaside lists (described below), for memory
management.

Using zones

Kernel-mode drivers can fragment the physical memory available to the system if
they repeatedly allocate and free small amounts of memory (less than 1 PAGE_
SIZE). This can cause all sorts of problems for the rest of the system, including
degradation of system performance.

* To bugcheck the system is to bring down (halt) the system in a controlled manner. Typically, the Ke-
BugCheck () function is used, which will bring clown the system while displaying the bugcheck code
and possibly more information on the reason for the bugcheck operation. You should bugcheck a system
only when your driver discovers an unrecoverable inconsistency that will corrupt the system.
t The contiguous memory is allocated from the list of nonpaged memory pages reserved at system ini-
tialization time. Note that there is no way to ensure that the system will have the amount of contiguous
memory requested, because the nonpaged pool tends to become fragmented due to expansion and us-
age. The only advice typically given to kernel-mode driver designers that develop drivers requiring con-
tiguous nonpaged memory is to load the memory early in the system boot cycle and to retain the
contiguous memory given to the driver by the Virtual Memory Manager.

Chapter 2: File System Driver Development

One way you can avoid this situation of fragmenting system memory is by preallo-
cating a reasonably sized chunk of memory and then doing some of your own
memory management, allocating and freeing smaller-sized blocks from this preal-
located chunk as necessary. This method avoids system fragmentation, because
the Virtual Memory Manager is usually out of the picture once you have preallo-
cated your fixed-sized chunk. You only need to go back to the Virtual Memory
Manager when you run out of memory in your chunk and need to expand its size.

To help you incorporate this method of memory management into your driver,
the Windows NT Executive provides a set of support utilities. These functions
work on a zone, for which your driver must have preallocated memory. Another
requirement is that the size of each block that can be allocated from the zone is
fixed at the time of zone initialization. Therefore, if you have a fixed-size data
structure that is smaller than the size of one page, and if you know that you will
be repeatedly allocating and freeing memory for structures of this type, you
should seriously consider using the zone method (or the lookaside list discussed
later) to perform the memory allocation and deallocation.

Note that the method used here requires your driver to retain a preallocated piece
of memory. The trade-off is a possible waste of kernel memory, since you would
typically allocate the chunk at driver-initialization time (especially when your
driver does not require the memory for a long time), against the possibility of frag-
menting the kernel pool of available pages.

Here is the sequence of operations you must follow to use the zones method:

1. Determine the size of the memory chunk you are likely to need.
Be careful not to allocate either too much or too little memory for the zone.
Allocating too much memory is simply being wasteful, and allocating too little
will result in having to allocate more, leading to memory fragmentation, some-
thing you wish to avoid.

TIP Determining the optimal amount of memory that should be preallo-
cated for a zone is often an iterative task. However, as a general
rule, you should be conservative with the amount of memory re-
served for a zone. If you allocate too little memory, under most cir-
cumstances the worst-case scenario will be that your driver has to
go back to the VMM for more memory at run-time. If you allocate
too much memory (more than you will ever use), you will have ef-
fectively denied access to the excess memory to all components in
the system and could thereby even cause some components to fail.

2. Allocate the zone using one of the ExAllocatePool () routines listed
previously.

Common Driver Development Issues_______________________________43

You have a choice of allocating from nonpaged or paged pool. Note that the
base address of your piece of memory must be aligned on a 8-byte boundary
(i.e., the base address should be a multiple of 8).

3. Allocate and initialize a spin lock or use some other synchronization mecha-
nism to protect modifications to the list.
Synchronization structures, including Executive spin locks, are discussed
extensively in the next chapter.

4. Define a structure of type ZONE_HEADER somewhere in global memory (or
in a driver object extension).
Driver object extensions are discussed in Chapter 4. The ZONE_HEADER struc-
ture serves as a control structure for the zone, used by the zone management
support routines to allocate and free entries from the zone.

5. Invoke ExInitializeZone () to initialize the zone header.
You will also have to pass in (as arguments to the routine) a pointer to the
zone you allocated in Step 2 and the size of the structures that you expect to
allocate from the zone. The size of the structures you expect to allocate must
be aligned on a 8-byte boundary.
Also note that a ZONE_SEGMENT_HEADER-sized block of memory from the
chunk of memory you supply will be used by the zone manipulation routines
to maintain some additional control information. The rest of the preallocated
memory will be carved out into the fixed-size blocks (of the size specified by
you) for use by your driver.

Now the zone is ready for use by your driver. Whenever you need a new structure
from the zone, use either the ExAllocateFromZone () or the Exlnter-
lockedAllocateFromZone () functions. The only difference between these
two functions is that the interlocked version accepts a pointer to the Executive spin
lock structure that you previously initialized, and will automatically guarantee list
consistency by using the spin lock to provide synchronization. If you decide to use
the noninterlocked version instead, you are responsible for ensuring that the list
does not get corrupted due to concurrent access and modification by multiple
threads. Therefore, you must use some appropriate synchronization method in your
driver.

To return a previously allocated structure to a zone, use either the ExFreeTo-
Zone () or the ExInterlockedFreeToZone () support routines provided.

Do not use the zone manipulation routines at an IRQL greater than DISPATCH_
LEVEL, because you will not be able to use the synchronization structures (spin
locks or another) at a higher IRQL.

44____________________________Chapter 2: file System Driver Development

In the event that you do need to extend the size of a zone, you must use the
ExExtendZone () function provided. Once again, you must pass a newly allo-
cated chunk of memory that will be used to extend the zone. Remember that the
base address of this memory must also be aligned along a 8-byte boundary.

Unfortunately, there is no routine provided that decreases the size of a previously
extended zone. Therefore, any chunk allocated and used when you initialize or
extend the zone will be unavailable to the rest of the system until the machine is
rebooted. This places the responsibility on your driver to ensure that you are
fairly accurate in your estimates of how much memory should be reserved for the
zone.

The file system example code provided in Part 3 uses zones for memory manage-
ment. Examine the source code for the sample file system driver on the
accompanying diskette for examples of using this method in your driver.

Using lookaside lists

Although using zones helps to reduce fragmentation of system memory, there are
some disadvantages you must be aware of when you use zones.

• Your driver must preallocate the memory for the zone, usually at driver initial-
ization time, even though this memory may not be used until much later.

• You must be fairly accurate about your memory requirements; you cannot
release any excess memory that you may have allocated during peak driver
utilization.

When you design and use your driver, you will see that there are periods
when your driver is simply overwhelmed with requests. At such times, natu-
rally, your memory requirements will increase. If you use zones, there is a dis-
tinct probability that your zone will get depleted at such times. Then, you
must either allocate memory directly from the system or extend the zone.

Extending the zone means that the newly allocated memory cannot be
released until a system reboot—not a very appealing prospect. Allocating
directly from the system means that you have to maintain some sort of flag in
your allocated structure indicating where the memory came from so that you
could release it appropriately (either back to the zone if it came from the
zone, or back to the system if you allocated using a direct invocation to an
ExAllocatePool () routine).

• You must use either some private synchronization mechanism or, more typi-
cally, a spin lock to synchronize access to the zone.

The lookaside list is a new structure defined in Windows NT 4.0, and with the
associated support routines, it addresses the limitations of the zone method.

Common Driver Development Issues____________________ __________45

When you invoke the ExInitializeNPagedLookasideList () or the
ExInitializePagedlookasideList () functions to initialize the list, no
memory is preallocated. Instead, entries are allocated on an as-needed basis when
you actually require the memory. Although your driver is free to supply pointers
to your driver-specific allocate and free functions when initializing the list header,
this is optional and the Windows NT Executive pool management package will
use the ExAllocatePoolWithTag() function (and the corresponding free
routine) by default.

Second, you are required to specify a list depth at initialization time. This depth
specifies the maximum number of entries of the desired size that will be queued
on the list. Note that the list becomes populated with available entries as you allo-
cate and then subsequently free the memory.

Therefore, when you start requiring memory and the package begins allocating
some on your behalf, any freed entries will not be given back to the system but
will instead be queued onto the list head until the depth number of entries have
been queued. Any entries allocated and released beyond this value will automati-
cally be returned to the system.

This allows your driver to increase your memory consumption during peak usage
periods without having either to retain the memory until the next boot cycle or
maintain the state information (using flags) in your allocated structures to deter-
mine where to return the memory when you release it.

Finally, on architectures that provide Windows NT with the appropriate instruction
support, the ExAllocateFromNPagedLookasideList() (or the ExAllo-
cateFromPagedLookasideList ()) function and the corresponding release
functions will use an atomic 8-byte compare-exchange operation to synchronize
access to the list instead of using the FAST_MUTEX or KSPIN_LOCK (described in
the next chapter) associated with the list. This is a considerably more efficient method
of synchronization.

Remember to always allocate the NPAGED_LOOKASIDE_LIST list header or the
PAGED_LOOKASIDE_LiIST list header from nonpaged memory.

Available kernel stack

Each thread executing on the Windows NT platform has both a user stack, used
when the thread is executing in user mode, and a kernel stack, used only when
the thread is executing in kernel mode.

Whenever a thread requests system services causing a switch to kernel mode, the
trap mechanism always switches stacks and replaces the user-space stack with the
kernel-space stack allocated for the thread. This kernel stack is of fixed size and is
therefore a limited resource. On Windows NT 3.51 and earlier, the kernel stack

Chapter 2: File System Driver Development

was limited to two pages of memory; therefore, on Intel architectures, each thread
was restricted to an 8KB kernel stack. Beginning with Windows NT 4.0, the kernel
stack size has been increased to 12KB. However, this is not sufficient in itself for
your driver to be extravagant in its use of available stack space.

There is a lot of recursive behavior exhibited by the higher level drivers in
Windows NT, especially with the file system drivers, the NT Virtual Memory
Manager, and the NT Cache Manager. This can lead to situations where the kernel
stack gets depleted rather rapidly. Furthermore, the highly layered model of
drivers within the I/O subsystem can cause the kernel stack to be depleted if the
driver hierarchy becomes too deep and if one or more drivers in the hierarchy are
not careful about their stack usage.

Be warned that the kernel stack cannot be increased dynamically. Therefore,
always be prudent in your usage of local variables that reside on the stack. If you
develop a filter driver that inserts itself into a driver hierarchy, be extremely frugal
with your usage of the stack space, because you may inadvertently push the stack
consumption beyond the limit and bring down the system unexpectedly.

Working with Unicode Strings
All character strings are represented internally by the Windows NT operating
system as Unicode (16-bit wide) characters (also called wide characters). This
allows the system to more easily accommodate and work with languages not
based on the Latin alphabet.

When you design your driver, be prepared to receive strings in Unicode and to be
able to manipulate such strings. Each Unicode string is represented using the
UNICODE_STRING structure defined by the system. This structure consists of the
following fields:

Length
This is the length of the string in bytes (not characters). It does not include
the terminating NULL character if the string is null-terminated.

MaximumLength
This is the actual length of the buffer in bytes. Note that it is possible to have
a maximum length that is much greater than the Length field.

Buffer
The is a pointer to the actual wide-character string constant. Wide-character
strings do not necessarily have to be null terminated since the Length field
above describes the number of valid bytes contained in the string.

Any string you wish to store in the associated Buffer must have a length (in
bytes) that is less than or equal to the MaximumLength.

Common Driver Development Issues___ __ 47

NOTE To use a null-terminated wide-character string in a UNICODE_
STRING structure, initialize the Length field to the number of
bytes contained in the wide-character string constant, excluding the
UNICODE_NULL character; initialize the MaximumLength field to
the size of the string constant (this should include the entire buffer
including the space allocated for the UNICODE_NULL character).

There are a variety of support routines provided to facilitate manipulation of
Unicode strings. The DDK header files contain the function declarations:

RtllnitUnicodeString
This function initializes a counted Unicode string. You can either pass in an
optional wide-character null-terminated source string or NULL. The target
Unicode string Buffer will either be initialized to point to the Buffer field
in the null-terminated source string (if supplied) or will be initialized to NULL.
The Length and MaximumLength fields will be appropriately initialized.*

RtlAnsiStringToUnicodeString
Given a source ANSI string, this routine will convert the string to Unicode and
initialize the contents of the target string to contain the converted character
string. You can either request the routine to allocate memory for the target
wide-character string or supply the memory yourself by initializing Maximum-
Length in the target Unicode string structure to the length of your passed-in
buffer. If you do request that the routine allocate memory for you, then
remember to free the memory by invoking the RtlFreeUnicodeStringO
function (see below).

RtlUnicodeStringToAnsiString
This routine converts a source Unicode string to a target ANSI string.

RtlCompareUnicodeString
A case-sensitive or case-insensitive comparison of two Unicode strings is
performed. This function returns 0 if the strings are equal, a value less than 0
if the first Unicode string is less than the second one, and a value greater than
0 if the first Unicode string is greater than the second.

RtlEqualUnicodeString
This function performs either a case-sensitive or a case-insensitive comparison
of two Unicode strings. TRUE is returned if the strings are equal and FALSE
otherwise.

* If a source wide-character string constant is supplied, the Length of the target string will be set to the
number of non-null characters in the source string multiplied by sizeof (WCHAR). The Maximum-
Length field will be initialized to the value contained in the Length field + sizeof (UNICODE_NULL).

48 __ ________________ ______Chapter 2: File System Driver Development

RtlPrefixUnicodeString
This function is defined as follows:
BOOLEAN
RtlPrefixUnicodeString(

IN PUNICODE_STRING Stringl,
IN PUNICODE_STRING StringS ,
IN BOOLEAN CaselnSensitive

)
This function will return TRUE if Stringl is a prefix of the counted string
String2. If both strings are equal, this function will return TRUE.

RtlUpcaseUnicodeString
This function converts a copy of the source string into upper case Unicode
characters and writes out the resulting string into the target string argument. It
will also allocate memory for the target string if you request it to; otherwise
you must pass in a target string with memory already allocated.

Use the RtlFreeUnicodeString () function to free the memory allocated
for you by this function.

RtlDowncaseUnicodeString
This routine performs the converse of the RtlUpcaseUnicodeString ()
function above.

RtlCopyUnicodeString
A copy of the source Unicode string is put into the target string. As many
Unicode characters as possible will be copied, given the MaximumLength
field of the target string. The caller is always responsible for preallocating
memory for the target of the copy operation.

RtlAppendUnicodeStringToString
This function will concatenate two Unicode strings. If the contents of the
Length field in the target plus the Length of the source is greater than the
value contained in the MaximumLength field in the target, the function will
return STATUS_BUFFER_TOO_SMALL.

RtlAppendUnicodeToString
This is similar to the RtlAppendUnicodeStringToString () function
except that the source Unicode string is simply a wide-character string instead of
a buffered Unicode string.

RtlFreeUnicodeString
Any memory allocated by a previous invocation to RtlAnsiStringToUni-
codeString() or RtlUpcaseUnicodeString () is released.

Declaring a wide-character (16-bit character set) string constant is a simple matter
of appending an L before the string constant. For example, the ANSI string
constant "This is a string" could easily be declared as a wide-character

Common Driver Development Issues________________________ ________49

string as L"This is a string". The size of each character comprising a wide-
character string is computed as sizeof (WCHAR). The wide-character string
constant can then be used to create a UNICODE_STRING structure by initializing
the Buffer field to point to the wide-character string constant and initializing the
Length and MaximumLength fields appropriately.

Be careful not to treat Unicode characters as if they were simple ANSI. For
example, you cannot assume that there is any kind of relationship between
upper- and lowercase Unicode characters. Therefore, some of your assumptions
(including allocating a fixed-sized table to contain the character set) will no
longer be valid with respect to Unicode strings.

Linked-List Manipulation
Most drivers need to link together internal data structures, or create driver-specific
queues. Typically, you will use linked lists to perform such functionality. The
Windows NT Executive provides system-defined data structures and support func-
tions for manipulating linked lists.

There are three types of linked list support functions and structures defined by
the Windows NT DDK:

Singly linked lists
The DDK provides a predefined structure to use to create your own singly
linked lists. The structure is defined as follows:
typedef struct _SINGLE_LIST_ENTRY {

struct _SINGLE_LIST_ENTRY *Next;
} SINGLE_LIST_ENTRY, *PSINGLE_LIST_ENTRY;
You should declare a variable of this type to serve as the list anchor. Initialize
the Next field to NULL in the list anchor before attempting to use it. For
example, you can have a field either in your driver extension structure or in
global memory associated with the driver that is declared as follows:
SINGLE_LIST_ENTRY PrivateListHead;
Each structure that you wish to link together using this list entry type should
also contain a field of type SINGLE_LIST_ENTRY. For example, if you wish
to queue structures of type SFsdPrivateDataStructure, you would
define the data structure as follows:
typedef SFsdPrivateDataStructure {

// Define all sorts of f ields. . .
SINGLE_LIST_ENTRY NextPrivateStructure;
/ / All sorts of other fields. . .

50___________________________Chapter 2: File System Driver Development

Now, whenever you wish to queue an instance of the SFsdPrivateData-
Structure onto a linked list, use either of the following routines:

- PushEntryList()
This function takes two arguments: a pointer to the list anchor for the
linked list and a pointer to the field of type SINGLE_LIST_ENTRY in
your data structure that you wish to queue. Therefore, if you have a vari-
able called SFsdAPrivateStructure of type SFsdPrivateData-
Structure, you can invoke this routine as follows:
PushEntryList(&PrivateListHead,

&(SFsdAPrivateStructure.NextPrivateStructure));
You must ensure that this invocation is protected by some sort of internal
synchronization mechanism that your driver uses.

— ExInterlockedPushEntryList()
The only difference between this function call and the PushEntry-
List () function is that you must supply a pointer to an initialized variable
of type KSPIN_LOCK when you invoke this function. Synchronization is
automatically provided by the ExInterlockedPushEntryList () func-
tion via the spin lock that you provide.

Note that you must ensure that all of the list entry structures you pass in
to the ExInterlockedPushEntryList () have been allocated from
nonpaged pool, because the system cannot take a page fault once a spin
lock has been acquired.

Corresponding routines that unlink the first entry from the list are the PopEn-
tryListO and the ExInterlockedPopEntryList () functions.

Doubly linked lists
The following structure type is predefined by the Windows NT operating
system for supporting doubly linked lists:
typedef struct _LIST_ENTRY {

struct _LIST_ENTRY * volatile Flink;
struct _LIST_ENTRY * volatile Blink;

} LIST_ENTRY, *PLIST_ENTRY, *RESTRICTED_POINTER PRLIST_ENTRY;
Just as in the case of singly linked lists, you must define a variable of type
LIST_ENTRY to serve as your list anchor. You should use the Initialize-
ListHead(&SFsdListAnchorOfTypeListEntry) macro to initialize the
forward and backward pointers in the list anchor variable. Note that the
forward and backward pointers are initialized to point to the list anchor; there-
fore, never expect to get a NULL list entry pointer when you traverse the list
(the doubly linked list is organized as a circular list).

Common Driver Development Issues_______________________________57

If you wish to link together structures of a particular type, ensure that a field
of type LIST_ENTRY is associated with (typically contained in) the structure
definition. For example, you can define a structure called SFsdPrivate-
DataStructure as follows:
typedef SFsdPrivateDataStructure {

// Define all sorts of fields...
LIST_ENTRY NextPrivateStructure;
// All sorts of other fields...

}
To queue an instance of a structure of type SFsdPrivateDataStructure,
you can now use the following macros/functions:
— InsertHeadList()

This macro takes as arguments a pointer to the list anchor (which must
have been initialized using InitializeListHead() described above)
and a pointer to the field of type LIST_ENTRY in the structure to be
queued, and inserts the entry at the head of the list.
For example, you can invoke this macro, as shown here, to queue an
instance called SFsdAPrivateStructure of the SFsdPrivateData-
Structure structure type:
InsertHeadList(&SFsdListAnchorOfTypeListEntry,

&(SFsdAPrivateStructure.NextPrivateStructure));
— InsertTailList()

Similar to the InsertHeadList described above except that it inserts
the entry at the tail of the list.

— RemoveHeadList() orRemoveTailList()
These macros simply require a pointer to the list anchor. The former will
return a pointer to the entry removed from the head of the list and the lat-
ter will return a pointer to the entry removed from the tail of the list.

— RemoveEntryList()
This macro takes as an argument a pointer to the LIST_ENTRY field in
the structure to be removed.

There are interlocked versions (written as functions) of the macros described
above. These functions take as an additional argument a pointer to an initial-
ized variable of type KSPIN_LOCK, which is used to synchronize access to
the list. The list entries must always be allocated from non-paged pool if you
wish to use the interlocked functions to manipulate the linked list.
You should use the IsListEmpty () macro to determine whether a doubly
linked list is empty. This macro returns TRUE if the Flink and Blink fields

52__________ _________________Chapter 2: File System Driver Development

in the list anchor structure both point to the list anchor. Otherwise, the macro
returns FALSE.

S-Lists
This is a new structure introduced in Windows NT 4.0 to support interlocked,
singly linked lists efficiently. To use this structure, you should define a list
anchor of the following type:
typedef union _SLIST_HEADER {

ULONGLONG Alignment;
struct {

SINGLE_LIST_ENTRY Next;
USHORT Depth;
USHORT Sequence;

};
} SLIST_HEADER, *PSLIST_HEADER;

The ExInitializeSListHeadO function can be used to initialize a S-List
linked list anchor. Your driver must supply a pointer to the list anchor struc-
ture when invoking this function. Ensure that the list anchor is allocated from
nonpaged pool. Furthermore, you should allocate and initialize a spin lock to
be used when you add or remove entries from the list.

The ExInterlockedPushEntrySList() and the ExInterlockedPop-
EntrySList () functions that are provided to add and remove list entries
may not use the spin lock but may instead try to use an 8-byte atomic
compare-exchange instruction on those architectures that support it.

All entries for the S-List linked list must be allocated from nonpaged pool.
You can also use the ExQueryDepthSListHead() to determine the
number of entries currently on the list. This is convenient, since you no
longer have to maintain a separate count of the number of entries (as you
might have to if you use an anchor of type SINGLE_LIST_ENTRY structure
instead).

Using the CONTAINING_RECORD macro

The Windows NT DDK provides the following macro, which is very useful to all
kernel-mode driver developers:

#define CONTAINING_RECORD(address, type, field) \
((type*)((PCHAR)(address) - (PCHAR)(&((type *)0)->field)))

This macro can be used to get the base address of any in-memory structure, as
long as you know the address of the field contained in the structure. The macro
definition is quite simple: your driver supplies the address to a field in the struc-
ture, the structure type, and the field name; the macro will compute the field
offset (in bytes) for the supplied field in the structure and subtract the computed

Common Driver Development Issues_________________________ _____53

offset number of bytes from the supplied field pointer address to get the base
address of the structure itself.

The CONTAINING_RECORD macro allows you the flexibility to place fields of
type LIST_ENTRY and SINGLE_LIST_ENTRY anywhere in the containing data
structure. You can use this macro whenever you need to determine the address of
an in-memory data structure, if you know the address of a field contained in the
structure.

As an example of how the CONTAINING_RECORD macro can be used by your
driver, consider the following structure defined by a kernel-mode file system
driver:

typedef struct _SFsdFileControlBlock {
// Some fields that will be expanded upon later in this book.

// To be able to access all open file(s) for a volume, we will
// link all FCB structures for a logical volume together
LIST_ENTRY NextFCB;

} SFsdFCB, *PtrSFsdFCB;

LIST_ENTRY SFsdAllLinkedFCBs;

The interesting field in the SFsdFCB structure is the NextFCB field. This field is
of type LIST_ENTRY and will presumably be used to insert FCB structures onto a
doubly linked list. The global variable SFsdAllLinkedFCBs is used to serve as
the list anchor.

The interesting point to note is that the NextFCB field is not the first field in the
SFsdFCB structure.* Rather, it is somewhere in the middle of the structure defini-
tion. However, given the address of the NextFCB field, the CONTAINING_
RECORD macro is used to determine the address of the FCB structure itself. The
following code fragment traverses and processes all FCB structures that are linked
to the SFsdAllLinkedFCBs global variable:t

LIST_ENTRY TmpListEntryPtr = NULL;
PtrSFsdFCB PtrFCB = NULL;

TmpListEntryPtr = SFsdAllLinkedFCBs.Flink;
while (TmpListEntryPtr != &SFsdAllLinkedFCBs) {

PtrFCB = CONTAINING_RECORD(TmpListEntryPtr, SFsdFCB, NextFCB);
// Process the FCB now.

// Get a pointer to the next list entry.

* A common method of manipulating linked lists of structures is to place link pointers at the head of the
structure and to cast the link pointer to the structure type when following pointers in the linked list.
t I have deliberately omitted any synchronization code to simply illustrate the use of the CONTAINING_
RECORD macro.

54________ ___________________Chapter 2: File System Driver Development

TmpListEntryPtr = TmpListEntryPtr->Flink;
}
Therefore, note once again that your driver is not required to place fields of type
LIST_ENTRY and SINGLE_LIST_ENTRY at the head of the containing data
structures, as long as you use the CONTAINING_RECORD (or some equivalent)
macro to get a pointer to the base structure.

Preparing to Debug the Driver
Here are some simple points to keep in mind when designing your kernel-mode
driver:

Insert debug breakpoints
Appendix D, Debugging Support, describes debugging the kernel-mode driver
in greater detail. Note for now that if you have a debugger attached to your
target machine, you can insert the DbgBreakPoint () function call in your
code to break into the debugger when certain conditions occur.

Be careful to place appropriate #ifdef statements around your debug break-
point statements so you can easily disable the break statements in a
nondebug build of the driver. Here's a method I've used:
#if DBG
#define SFsdBreakPoint() DbgBreakPoint()
#else
#define SFsdBreakPoint()
ttendif
The DBG variable has a value of 1 when you compile your driver using a
checked build environment. In this case, any SFsdBreakPoint () state-
ments in your driver will be activated. The expectation is that you will only
execute the debug version of your driver during the development and test
phase and that you will always have a debug host node connected to the
target machine executing your driver. However, if you compile the driver
using the free (nondebug) build environment, the SFsdBreakPoint () state-
ment will be rendered harmless.

The Windows NT DDK also provides a KdBreakPoint () function that is
defined exactly as the SFsdBreakPoint () function described here. There-
fore, you may choose to simply use KdBreakPoint () in your code and be
assured that the breakpoint will be automatically rendered harmless in a non-
debug build.

Insert debug print statements
You can use the KdPrint () macro that is defined to DbgPrint () in a
debug version of the driver code. You can supply a formatted string to this
function just as you would do with a printf () function call.

Common Driver Development Issues_______________________________55

The KdPrint {) macro automatically becomes non-operational in the
nondebug version of the driver executable.

Insert bugcheck (panic) calls in your driver
Never bring down the system unless you absolutely have to. And there are
very few reasons indeed to bring down a live production system executing
your code.* Instead, explore every alternative available if you detect inconsis-
tencies in your code. Try to disable your driver if you can, stop processing
requests, shut down the offending module, anything to avoid halting the
system.

But there still might be situations (especially during development) when you
may wish to bugcheck the system. There are two alternative function calls
that you can invoke to bring down the system immediately in a controlled
manner:

— KeBugCheck()
This function takes a single unsigned long argument (the BugCheck-
Code), which can be the reason that you have decided to terminate sys-
tem execution. Internally, KeBugCheck () simply invokes
KeBugCheckEx () described below.

— KeBugCheckEx()
This function takes a maximum of five possible arguments. The first is the
BugCheckCode, the remaining four are optional arguments (each of
type unsigned long) you may supply that provide more information
to the user of the system and can possibly assist in postmortem analysis
of the cause for the bugcheck.

There are no restrictions mandated by the system as to what the values of
these four optional arguments should be.

If there is no debugger connected to the system, the system will do the
following:
— Disable all interrupts on the node.
— Ask all other nodes (in a multiprocessor system) to stop execution.

— Use HalDisplayString () to print a message.
The user will see the infamous blue screen of death (BSOD) on their moni-
tor. The message
STOP: Ox%lX (Ox%lX, Ox%lX, Ox%lX, Ox%lX)

* Some exceptions that immediately come to mind are if continuing system execution could cause system
security to be compromised or would lead to user data corruption. In such situations, it is preferable to
bugcheck the system rather than to continue running.

Chapter 2: File System Driver Development

will be displayed, with the bugcheck code displayed first, followed by
each of the optional arguments supplied to KeBugCheckEx () .

— If a message can be associated with the bugcheck code, invoke HalDis-
playString () to print the descriptive message.

— The KeBugCheckEx () function will then attempt to dump the machine
state.
If any of the bugcheck arguments is a valid code address, the system will
try to print the name of the image file that contains the code address.

The routine prints the version of the operating system executing on the
node and then attempts to display the list of the node's loaded modules.
The number of loaded module names displayed depends upon the num-
ber of lines of text that can be displayed on your monitor. Finally, the
function will try to dump out some of the current stack frame. The system
will then stop execution.

If, however, a debugger is connected to the system, the KeBugCheckEx ()
function will display the message
Fatal System Error: Ox%lX (Ox%lX, Ox%lX, Ox%lX, Ox%lX)
on your debug host node, using the DbgPrint () function call. Then, the
system will break into the debugger using the DbgBreakPoint () function
call. You now have the opportunity to examine the system state to determine
the cause of the error. If you ask the system to continue, the code sequence
described above is executed.

Windows NT Object Name Space
As described in Chapter 1, Windows NT System Components, the designers of
Windows NT have tried hard to make it an object-based system. There is a
comprehensive set of object types that are defined by the system, and each object
type has appropriate methods (or functions) associated with it to allow kernel-
mode components to access and modify objects of the type.

Windows NT object types include adapter objects, controller objects, process
objects, thread objects, driver objects, device objects, file objects, timer objects,
and so on. One such special object type is the directory object. This object is
simply a container object that, in turn, contains objects of other types.

The Object Manager allows each object to have an optional name associated with
it. This facilitates the sharing of objects across processes, since more than one
process can potentially open the same named object of a particular type. The
Object Manager therefore manages a single, global name space for a node
running the Windows NT operating system.

Windows NT Object Name Space________________________ _________57

Following in the footsteps of most modern-day commercial file system implemen-
tations, the NT Object Manager presents a hierarchical name space to the rest of
the system. There is a root directory object called \ for this global name space.
All named objects can be located by specifying an absolute pathname for the
object starting at the root of the object name space. Note that the Object Manager
allows the creation of named object directories contained within directory objects,
thereby providing a multilevel tree hierarchy.

The Object Manager also supports a special object type called the symbolic link
object type. A symbolic link is simply an alias for another named object.

Figure 2-7 shows a typical name space presented by the NT Object Manager:

Figure 2-7. Name space presented by the Object Manager

The NT Object Manager defines object types when requested by other NT compo-
nents. Certain object types are predefined by the Windows NT Object Manager.
Whenever a Windows NT Executive component requests a new type to be
defined by the NT Object Manager, the component has the option of providing
pointers to the parse, close, and delete callback functions to be associated with all
object instances of that particular type. The Object Manager remembers these func-
tion pointers and invokes the callback functions whenever a parse, close, or
cleanup operation is being performed on an object instance of the particular type.

Whenever a user process or an application tries to open an object, it must supply
an absolute pathname to the NT Object Manager. The Object Manager begins
parsing the name, one token at a time. Whenever the Object Manager encounters
an object that has a parsing callback function associated with it, the Object
Manager suspends its own parsing of the name, and invokes the parsing function

5S___________________________Chapter 2: File System Driver Development

supplied for the object, passing it the remainder of the user-supplied pathname
(the portion that has not yet been parsed).

So how is all of this relevant to file system drivers or network redirectors?

Consider what happens when a user process tries to open the file
C:\accounting\june-97.

The user's open request is submitted to the Win32 subsystem, which translates the
C: portion of the name to the string \DosDevices\C: before forwarding the request
to the Windows NT Executive for further processing.* The complete name sent to
the Windows NT kernel is \DosDevices\C:\accounting\june-97.

All create and open requests are directed initially to the NT Object Manager. The
Object Manager receives the open request and begins parsing the filename. The
first thing it notices is that the object \DosDevices\C: is really a symbolic link
object (the \DosDevices portion of the name refers to a directory object type).
Since symbolic link object types contain the name of the object they are linked to,
the Object Manager replaces the symbolic link name (i.e., \DosDevices\C-) with
the name of the linked object (i.e., \Device\HarddiskO\PartitionT).

NOTE Under Windows NT 4.0, the \DosDevices object type is itself a sym-
bolic link to the directory object \??. Therefore, under Windows NT
4.0, the Object Manager will first replace the \DosDevices symbolic
link name with \.?.?and then restart parsing of the name.

The complete name is now \Device\HarddiskO\Partitionl\accounting\june-97.
Once the Object Manager has performed the name replacement, it begins the
parsing of the pathname once again, beginning at the root of the object name,
space. The object name space, including the portion managed by the file system
is illustrated in Figure 2-8.

Now, the Object Manager traverses the global object name space until it encoun-
ters the Partitionl device object. This is a device object type defined by the
Windows NT I/O Manager. The I/O Manager also supplies a parsing routine
when creating this object type. Therefore, the Object Manager stops any further
parsing of the pathname and instead forwards the open request to the Windows

* Note that the C: drive letter name is simply a shortcut provided by the Win32 subsystem to the \Dos-
Devices\C: symbolic: link object type in the Windows NT object name space. Therefore, the Win32 sub-
system is responsible for expanding the name before forwarding the request to the Windows NT
Executive. This is also the reason why you cannot use the C:\. . . pathname if you try to open or create
a filename from within the NT Executive (for example, from within your driver). You must instead use
the Windows NT Object Manager recognizable pathname, beginning at the root of the Object Manager
name space.

Windows NT Object Name Space 59

Figure 2-8. Object name space

NT I/O Manager's parsing routine. The string passed to the Windows NT I/O
Manager is that portion of the pathname that has not yet been parsed by the
Object Manager, namely \accounting\june-97. When invoking the parsing
routine, the Object Manager also passes a pointer to the Partitionl device object
to the NT I/O Manager.

The Windows NT I/O Manager now executes a reasonably complicated sequence
of instructions to perform the open operation on behalf of the caller. This
sequence is described in considerable detail in subsequent chapters. For now,
you should note that the I/O Manager will typically identify the file system driver
that is currently managing the mounted logical volume for the physical disk repre-
sented by Partitionl, the named device object. Once it has identified the
appropriate file system driver, the I/O Manager will simply forward the open
request to the file system driver's create/open dispatch routine.

Now, it is the responsibility of the file system driver to process the user request.
Note that the filename passed to the file system driver is the portion that was not
parsed by the NT Object Manager: \accounting\june-97.

This is how user open/create requests end up in a file system driver. Under-
standing the sequence of operations that lead to the invoking of the file system

60___________________________Chapter 2: File System Driver Development

create/open dispatch entry point will be quite valuable when we begin to explore
the implementation of the file system create/open dispatch entry point and the
file system mount logical volume implementation in greater detail.

Filename Handling for Network
Redirectors
Earlier in this chapter, we saw how a network redirector is a kernel-mode soft-
ware module that presents a file system interface to local users, but in reality
communicates with server modules on remote nodes to obtain data from the
remote shared logical volumes.

The Multiple Provider Router (MPR) and the Multiple Universal Naming Conven-
tion Provider (MUP) modules interact with the network redirector to present the
appearance of a local file system to the user on the client machine. These compo-
nents, in conjunction with a kernel-mode network redirector module, have the
responsibility of integrating the name space of the remote (shared) logical volume
file system into the local name space on the client node. Therefore, to design and
develop a network redirector module for the Windows NT operating system, you
will have to understand both of these components fairly well.

Multiple Provider Router (MPR)
The MPR module is a user-mode DLL executing on client nodes. It serves as a
buffer between the common application utilities that are network-aware and the
multiple network providers that may execute on the client node.

NOTE A network provider is a software module designed to work in close
cooperation with the network redirector. The network provider
serves as a sort of interface to the rest of the system, allowing net-
work-aware applications to request some common functionality
from the network redirector in a standard fashion, without having to
develop code specific to each type of redirector that may be in-
stalled on the client node.

You may be wondering how there can be multiple network redirectors on a
single client node. Having multiple redirectors installed and running on a client
node is not really an unusual condition if you stop to think about it. The
Windows NT operating system ships with the LAN Manager Redirector that is
supplied with the operating system itself. In addition, there are commercially avail-
able implementations of the Network File System (NFS) protocol as well as the

Filename Handling for Network Redirectors___________________ ______67

Distributed File System (DPS) protocol that are also implemented as network redi-
rectors. Then, think about all of the third-party developers like yourself who
design and implement a network file system, and you could easily end up with a
situation where a client node will have more than one network redirector installed.

So what exactly does the MPR do? Consider the net command that is available
on your Windows NT client node. This command allows the user to create a new
connection to a shared, remote network drive. Furthermore, it allows the user to
obtain information about the connection to the remote node, browse shared
network resources on remote nodes, delete the connection when it's no longer
needed, and perform other similar tasks. As the user of the network or as an appli-
cation developer who wishes to interact with the multiple network redirectors that
may be installed on the machine, you would prefer to interact with the network
redirectors in some standard manner, without dealing with the peculiarities of any
particular network.

This is exactly what the MPR attempts to facilitate. The MPR has defined two sets
of routines, each belonging to a distinct, well-defined interface. There is a set of
network-independent APIs that are supported by the MPR DLL and are available
to all Win32 application developers who wish to request services from a network
redirector/provider. Similarly, there is another set of provider APIs that are
invoked by the MPR DLL and must be implemented by the various network
redirectors.

Therefore, a Win32 application trying to create a new network connection (for
example) would invoke a standard Win32 API routine called WNetAddConnec-
t ion()or WNetAddConnection2(). These functions are implemented within
the MPR DLL. Upon receiving this request, the MPR DLL will invoke the NPAdd-
Connection () or an equivalent routine that must be provided by each network
provider DLL that has registered itself with the MPR. Once such a request is
received by the network provider DLL, the network provider can determine
whether it will process the request, returning the results of the operation back to
the MPR for subsequent forwarding onto the original requesting process, or
whether it will allow the MPR to do the work. Note that in order to process
requests, the network provider DLL will often invoke the kernel-mode network
redirector software using file system control requests. Chapter 11, Writing a File
System Driver III, explains how file system control requests are processed by the
file system driver (redirector).

62 __________________________Chapter 2: File System Driver Development

NOTE To register a network provider DLL with the MPR, the Registry on
the client node must be modified. If you design and implement a
network redirector and also decide to ship a network provider DLL
with it, your installation program will probably perform all the ap-
propriate modifications for you.
Appendix B, MPR Support, describes the modifications that must be
made to the Registry in order to install your network provider DLL.

The order in which the various network provider DLLs are invoked is dependent
upon the order in which the providers are listed in the Registry on the client node.

In the case of the NPAddConnection() request issued by the MPR to the
network provider DLL, the DLL most likely submits the request to the kernel-
mode redirector. The redirector attempts to contact the remote node specified in
the arguments to the request, tries to locate the shared resource on the remote
node, and also tries to make the connection on behalf of the requesting process.

If the request succeeds, and if the requesting process had specified it, the
network provider DLL may also try to create a symbolic link as a drive letter (e.g.,
X-) to represent the newly created connection to the remote shared resource
object. The symbolic link may refer either to a new device object created by the
kernel-mode redirector, representing the new connection, or to the common redi-
rector device object itself.* In either case, whenever the user's process attempts to
access the name space below the X: drive letter, the request will be redirected by
the I/O Manager to the network redirector in the kernel for further processing.

Consult Appendix B for a description of the functions that your network provider
must implement in order to support the common Windows NT network-aware
applications. If you implement a network provider DLL that supports the func-
tions described, your network redirector will be able to take advantage of system-
supplied utilities, such as the net command to add/delete/query connections to
remote (shared) resources.

Multiple UNC Provider
The Windows NT platform also allows users to access remote (shared) resources
using the Universal Naming Convention (UNC). This convention is pretty simple

* The network-provided DLL typically uses the Win32 function Def ineDosDevices () to create the
drive letter (symbolic link object type). Also note that most file systems and network redirectors create a
named device object representing the file system device or the redirector device. Often, drive letters (sym-
bolic links) for remote shared network drives refer to the network redirector device object.

Filename Handling for Network Redirectors___________________________63

in its design: each shared remote resource can be uniquely identified by the name
\\server_name\shared_resource_name.

There are very few restrictions on the characters that can be used in either the
server name and the shared resource name. You cannot use the "\" character as
part of either the server name or the shared resource name, but most other
common characters are allowed. The other restriction that you must be aware of
is that the total length of the UNC name (including the name of the remote server
and the name of the shared resource) cannot exceed 255 characters.

So when a user tries to access a remote shared resource by using a UNC name,
how does the name get resolved?

Since UNC is Win32-specific, the Win32 subsystem is always looking for UNC
names specified by a user process. Upon encountering such a name, the Win32
subsystem replaces the "\\" characters with the name \Device\UNC and then
submits the request to the Windows NT Executive.

The \Device\UNC object type is really a symbolic link to the object
\Device\Mup. The MUP driver is an extremely simple kernel-mode driver
module (unlike the MPR module discussed above, which resides in user space)
that has been described as a resource locator and is typically loaded automatically
at system boot time. It creates a device object of type FILE_DEVICE_MULTI_
UNC_PROVIDER during the driver initialization.* It also implements a create/open
dispatch routine that is invoked whenever a create/open request targeted to the
MUP driver is received, as in the case described above.

After the open request is received by the MUP driver, the MUP sends a special
input/output control (IOCTL) to each network redirector that has registered itself
with the MUP, asking the redirector whether it recognizes (and is willing to claim)
some subset of the caller supplied name (i.e., \server_name\shared_
resource_name \. . .).

Any redirector (or even more than one) can claim a portion of the remote
resource name. The redirector recognizing the name must inform the MUP about
the number of characters in the name string that it recognizes as a unique, valid,
remote resource identifier. The first redirector that registers itself with the MUP
has a higher priority than the next one to do so, and this ordering determines
which redirector gets to process the user request, if more than one redirector
recognizes the remote shared resource name.

* You will read in much greater detail about creating device objects and about device objects in general
later in this book.

Chapter 2: File System Driver Development

When any one redirector recognizes the name, the MUP prepends the name of
the device object for the network redirector to the pathname string, replaces the
name in the file object, and returns STATUS_REPARSE to the Object Manager.
This time around, the request is directed to the network redirector that claimed
the name for further processing. Now the MUP is completely out of the picture
and will no longer be invoked for any operations pertaining to that particular
create/open request.

The only other optimization performed by the MUP is to cache the portion of the
name recognized by the redirector. The next time an open request is received
beginning with the same string, the MUP checks its cache to see if the name is
present, and if so, directly reroutes the request to the target network redirector
device object without performing the tedious polling that it had done the first
time around. Names are automatically discarded from the cache after some period
of inactivity (typically if 15 minutes have elapsed since the name was last used in
an open operation).

To work in conjunction with the MUP, your network redirector must do two
things:

• Register itself with the MUP, using a system-supplied support routine called
FsRtlRegisterUncProvider () . This typically is done by your driver at
initialization.

• Respond to the special device control request issued by the MUP, asking your
driver to check whether it recognizes a name.

Example code fragments are provided later in this book.

The next chapter discusses how you can incorporate structured exception
handling and the various synchronization primitives available under Windows NT
in your driver.

In this chapter:

• Structured Exception

Event Logging
Driver
Synchronization
Mechanisms
Supporting Routines
(RTLs)

Structured Driver
Development

Writing a kernel-mode driver is not easy. Unfortunately, installing a new kernel-
mode driver on your production system is sometimes even worse. Drivers that
execute as part of the NT Executive could potentially crash your system and do so
in a way that makes it extremely hard to identify the responsible module. Further-
more, system crashes could occur with a certain regularity, or they might occur
only occasionally (typically, it seems, when you are praying hard that they do not
occur because you are doing something extremely important). Worse, a kernel-
mode driver could corrupt your data, and do so in such a way that by the time
you discover the corruption is taking place, it is too late to recover your data.

Therefore, if you are installing a new kernel-mode driver, there are certain expec-
tations that you would have from such a driver, such as:

• The driver should not cause data corruption. This is a fundamental responsi-
bility for kernel-mode driver designers and developers, and unfortunately, it is
the hardest characteristic to evaluate objectively.*

• The driver should not cause system crashes. The objective is to ensure that
even under adverse circumstances, when externally connected devices (such
as disk drives or network cards) are not functioning correctly, the drivers
must manage such errors gracefully. Note that the definition of handling an
error gracefully is slightly nebulous: it might mean that the driver should be
able to work around the situation if possible, or it might mean that the driver
should (at the very least) be able to shut itself down (i.e., not provide the

' Therefore, it's rare that good system administrators take new drivers and install them in production en-
vironments immediately. A wise alternative would be to try out the driver on noncritical machines and
evaluate its behavior over a reasonably long period of time. Unfortunately, the trial environment will
probably not be an exact duplicate of the environment on the production machines, and the system ad-
ministrator still can't be certain that the driver won't corrupt data in high-load, production environments.

65

Chapter 3: Structured Driver Development

associated functionality), but still allow the rest of the system to continue func-
tioning normally.

• Expanding on the preceding point, software errors present in the driver code
(which inevitably occur even when exceptional care is taken by developers)
should not cause the system to crash. This might seem paradoxical since
bugs, by definition, are unexpected and hence difficult to predict and man-
age. However, in many cases it is possible for kernel-mode driver developers
to prepare for the eventuality that software errors might creep into the code
and might not all be discovered during in-house testing. If the resulting driver
is implemented correctly, it is indeed possible to ensure that, in most cases,
such bugs do not result in system crashes.

• The driver should be able to provide adequate status reports to the system
administrator. For example, if an error condition occurs, a clear, concise
description of the problem should be conveyed by the driver to the adminis-
trator, allowing the administrator to try to rectify the problem if possible, or to
be aware that certain loss of functionality has either already occurred or might
occur shortly. Even when the driver and its devices are functioning correctly,
there might be situations in which clear, concise status reports should be pro-
vided to system administrators. Data provided by drivers during error condi-
tions could include information on recovered errors, certain performance-
related statistics, or the values of automatically tuned driver parameters. This
would allow administrators to understand the behavior and limitations of the
system and might also afford them the opportunity to modify the work load
or to further fine-tune driver parameters based on expected usage patterns.

The responsibility of achieving the expectations of the user falls squarely upon
the kernel-mode driver designers and developers. The good news, however, is
that it is possible to develop software for the Windows NT platform that meets the
expectations listed here; indeed, the operating system provides ample support for
developers to allow them to incorporate such desired features into their drivers.

Exception Dispatching Support
An exception is an atypical event that occurs due to the execution of some instruc-
tion by a thread. Exceptions are processed synchronously in the context of the
thread that caused the exception condition. Since exception conditions are
synchronous events that occur as a direct result of the execution of an instruction,
they can be reproduced, provided that exactly the same conditions can be regen-
erated and the instruction is retried. The Windows NT Kernel provides support for
exception dispatching when an exception is encountered.

68____________________________Chapter 3-' Structured Driver Development

1. Creates a trap frame for the thread. This trap frame contains the contents of
all the volatile registers, i.e., registers with contents that might get overwritten
as a result of processing the exception condition.

2. Optionally creates an exception frame, which contains the contents of other
nonvolatile registers. The trap handler module always creates an exception
frame when processing an exception condition.

3. Creates an exception record structure, which contains the exception code
describing the exception that occurred, the exception flags, the address in the
code at which the exception occurred, and any other parameters that might
be associated with the specific exception condition. The only value that is
currently legal for the exception flags field is EXCEPTION_NONCONTINU-
ABLE, indicating that this is a fatal exception and further processing should
be terminated.
Some exceptions may have additional parameters that are supplied by the
trap handler to provide more information about the exception condition. The
only such exception condition that has additional parameters supplied is
EXCEPTION_ACCESS_VIOLATION, which provides two associated argu-
ments, one indicating whether it was a read or a write operation that caused
the access violation, and the other is the virtual address that was inaccessible.

4. Transfers control to the Windows NT kernel exception dispatcher module.*
The exception dispatcher module in the Windows NT Kernel is called
KiDispatchException().

Possible Outcomes from Processing an Exception
The exception dispatcher module in the kernel determines the processor mode in
which the exception condition occurred. User-mode exceptions and kernel-mode
exceptions are handled slightly differently, but the basic philosophy is the same.
Before we go through the steps that the exception handler undertakes in
processing the exception condition, we will first discuss briefly the possible
outcomes from processing an exception condition.

Each exception condition can be processed by the exception handler module in
one of three ways:

• The exception handler changes one or more of the conditions that caused the
problem and then directs the exception dispatcher to retry the instruction.

* Some exception conditions are automatically handled by the trap handler and do not require transfer
of control to the exception dispatcher module. For example, debugger breakpoints are handled by direct-
ly invoking the debugger.

Exception Dispatching Support___________________________________69

For example, consider an exception that indicates a page fault occurred. The
exception handler will invoke the page fault handler to bring the contents of
the page into system memory from some secondary storage device or from
across a network. The memory access is then retried and should now succeed.
Another example is when a code segment tries to allocate some memory and
subsequently tries to access it. If the original memory allocation failed, access-
ing a pointer to that memory block results in a memory access violation. The
following example illustrates such a condition:
int *SomePtr = NULL;

// allocate 4K bytes
SomePtr = ExAllocatePool(PagedPool, 4096);

// Normally, the memory allocation request will succeed and SomePtr
// will contain a valid pointer address. However, it is possible that
// the request may occasionally fail. For the sake of discussion,
// assume that in the particular instance described below, the
// memory allocation request does fail and therefore ExAllocatePool()
// returns NULL.

// Although I personally recommend always checking the value of the
// returned pointer value above, many other designers might argue
// that structured exception handling allows for more readable
// code by avoiding unnecessary, multiple, if (...) {}, kind of
// statements.

RtlZeroMemory(SomePtr, 4096);
// If SomePtr was NULL, we'll get an exception in the statement above.
Invoking RtlZeroMemory () with a NULL pointer results in the
EXCEPTION_ACCESS_VTOLATION exception being raised. In this case, the
exception handler can set the value of SomePtr to point to some preallo-
cated memory and retry the instruction.

WARNING Retrying the assembly code that corresponds to RtlZeroMemo-
ry () (in this case) could lead to unexpected error conditions. Un-
less the compiled assembly code is closely examined, you can't be
sure the modification of SomePtr in the exception handler results
in the expected behavior, e.g., the compiler might have initialized a
register with the initial value of SomePtr, which was NULL. Now,
the value contained in the register will always be reused because
the instruction that was retried might be a move memory instruction
following the one that initialized the register. This means the reini-
tialization of SomePtr in the exception handler won't take effect,
and the exception condition simply reoccurs in an infinite loop.
Therefore, retrying of instructions that have led to an exception con-
dition is a tricky proposition at best.

70____________________________Chapter 3-' Structured Driver Development

If desired, exception handlers can return a specific return code, indicating
that the instruction resulting in the exception condition should be retried.
Note that the constant value is actually unimportant but the fact that such a
value is returned is noteworthy.

• The exception handler decides that the exception condition is one it does not
wish to process.
If this happens, an appropriate value is returned indicating that the exception
should be propagated. Therefore, the exception dispatcher will continue
searching for other handlers that might wish to process this exception.
For example, imagine that a particular exception handler can process only
one type of exception condition, say EXCEPTION_ACCESS_VIOLATION. If
an exception indicating data misalignment is encountered, this particular
exception handler will return a value indicating that it could not process the
specific exception condition and that the dispatcher should continue travers-
ing the call frames, looking for an exception handler that is prepared to pro-
cess this specific exception.

• The exception handler executes a specific block of code, which processes the
exception condition and then indicates to the caller that execution should
resume following the exception handler code.
In this case, the exception handler does not retry the instruction that caused
the original exception condition, but instead tries to resume execution at the
instruction immediately following the exception handler code.
This method of processing the exception condition is substantially different
from simply modifying some condition and retrying the instruction as
described previously. Here, the exception handler performs some processing
and then wants the instruction execution to resume immediately following the
exception handler code. In the case where some condition causing the excep-
tion was modified (described earlier), the exception handler wanted execu-
tion to commence at the same instruction that caused the exception condition
in the first place.

It is not necessary that the exception handler reside in the same function or proce-
dure in which the exception condition occurred. It could have been in any of the
routines that comprised the calling hierarchy.

For example, consider a situation in which procedure_A invokes procedure_B,
which in turn invokes procedure_C. Further, imagine that an exception condition
(say EXCEPTION_ACCESS_VIOLATION) was encountered at an instruction in
procedure_C. It is quite possible that neither procedure__B nor procedurejC have
an exception handler that is prepared to process the exception condition.

Exception Dispatching Support 71

If an exception handler resides in procedure_A, and if the exception handler in
procedure_A handles the exception condition, execution flow will resume in
procedure_A at the instruction immediately following the exception handler code.
The stack frames for procedure_C and procedure_B will be automatically
unwound in order to resume execution in procedure_A. Figure 3-1 illustrates this.

Figure 3-1- Flow of execution when an exception handler handles an exception

As you see, there are three different ways in which an exception handler might
respond if called upon to process a particular exception condition.

As will be discussed later, part of unwinding the stack frames for procedure_C
and procedure_B will cause any appropriate termination handlers to be invoked.
This allows for systematic unwinding in those procedures and thereby prevents
nasty side-effects such as deadlock conditions which might otherwise occur due
to this unexpected transfer of flow of control from procedure_C to procedure_A.

Dispatching Kernel-Mode Exceptions
Given these different ways in which an exception handler might process an excep-
tion condition, it is useful to understand what the exception dispatcher code in the
NT kernel, KiDispatchException(), actually does to process the exception
condition. The following sequence of steps listed is executed by KiDispatchEx-
ception () when it's invoked for an exception condition caused by a thread
executing kernel-mode code:

,

72____________________________Chapter 3-' Structured Driver Development

1. First, the exception dispatcher checks to see if a debugger is active, and if so,
it transfers control to the debugger.

The debugger will indicate either that the exception has been processed by
returning TRUE, or that the exception was not processed and the search for
another handler should proceed.

Note that the debugger may have modified the current instruction pointer and/
or the current stack pointer obtained from the execution context structure
passed to it. Therefore, if the exception is processed by the debugger, execu-
tion will not necessarily resume at the same instruction that caused the
exception condition.

If the debugger returns TRUE, indicating that it has processed the exception,
KiDispatchException() returns control back to the thread that caused
the exception via the trap handler, which was responsible for invoking the
dispatcher routine.

2. If a debugger is not present or if the debugger returns FALSE, indicating that
it did not process the exception, the dispatcher attempts to invoke any call
frame-based exception handlers.
Invocation of a call frame-based exception handler is performed via an RTL func-
tion call, RtlDispatchException(). This routine is not typically exposed to
third-party driver developers.

The RtlDispatchException() function searches backward through the
stack-based call frames looking for an exception handler prepared to process
the exception. This search continues until either some exception handler
returns a code indicating that the instruction that caused the exception condi-
tion should be retried, or the entire call hierarchy has been examined for
possible appropriate exception handlers and none were found.

Compilers for the Windows NT platform that support structured exception
handling register exception handlers with the RTL, on behalf of executing
threads. Unfortunately, the functions used to register and deregister exception
handlers are not ordinarily exposed to third-party developers. The good
news, however, is that it would be rare for a kernel-mode driver to need to
access these routines directly, since the compiler typically provides structured
handling support and performs the dirty work for you.

The RTL package also provides an interface for compiler developers to
register termination handlers on behalf of executing threads. Termination
handlers are described later in this chapter.

3. In Step 2, a call frame-based exception handler may or may not be found.

Even if one or more exception handlers were identified, these exception
handlers might not be prepared to process the specific exception condition.

Exception Dispatching Support___________________________________73

As described later in this section, structured exception handling allows you to
check the type of exception condition and determine whether you wish to
handle the exception in your exception handler or whether you wish to prop-
agate the exception condition to the next possible exception handler.

If the return code from RtlDispatchException() is FALSE, indicating
that the exception has not been processed, the exception dispatcher once
again attempts to invoke any debugger that may be executing. This is called
second chance processing and the actions undertaken at this time are the
same as would be taken had a recursive exception been encountered.

If a debugger is connected, it has a final opportunity to keep the system alive.
However, if no debugger is connected or if the debugger once again returns
FALSE, the exception dispatcher will invoke KeBugCheck () and halt the
entire system, resulting in the dreaded blue screen of death.

The reason for the system crash will be given as KMODE_EXCEPTION_NOT_
HANDLED. This indicates that no exception handler was found that would
process the exception that occurred during kernel-mode execution. Unless
extreme measures are called for, your code (if you happen to write a kernel-
mode driver) should never, ever, cause such a blue screen.

Exception dispatching support, as well as support for registering call frame-based
exception handlers, is provided by the Windows NT operating system and is not a
function of (or dependent upon) any specific compiler. That said, you might note
that unless you use a compiler that supports and uses the Windows NT exception
handling model, you cannot develop code that can take advantage of the excep-
tion handling features provided by the operating system. The Microsoft C/C++
compiler provides structured exception handling support to both user-mode and
kernel-mode code.

The Exception Dispatcher: User Mode Exceptions
The direct invocation of RtlDispatchException() by KiDispatchExcep-
tion () is done only for exceptions that occur while code is executing in kernel
mode. If the exception occurs in user mode, KiDispatchException()
performs slightly different processing.

A message is sent to the process's debug port using LPC (the local procedure call
interface). If the port processes the exception, there is no further work for
KiDispatchException () .

Consider the case, however, where the debug port for the process fails to handle
the exception. Attempting to execute user-mode exception handlers in the kernel
would not be a wise thing to do. At the very least, it would introduce a large secu-
rity hole in the operating system. Therefore, the KiDispatchException ()

74____________________________Chapter 3-' Structured Driver Developn

function prepares to transfer control to a corresponding user-space excepi
dispatcher module.

The dispatcher function pushes the trap frame, the exception frame, and
exception record on the user space stack. Then, KiDispatchExecutioi
modifies the exception record such that, once control is returned from the exc
tion dispatcher and the trap handler, a special user-space routine will be invo
that will further process the exception condition by invoking any user-mi
exception handlers. Note that the modification performed here involves chanj
the instruction pointer value in the exception record to point to the user-sp
exception dispatcher function.

Treatment of user-mode exception handlers is similar in that the calling hierar
is examined to see if any exception handler can be found that is preparec
process the exception. If none of the user-mode exception handlers process
exception condition, the process containing the thread that caused the excep
condition is typically terminated. Termination of the user-space thread is genet
done by the default exception handler, which is usually installed by the Wi
(and other) subsystems.

Now that you understand the sequence of actions that take place when an exc
tion condition occurs, the next logical question to ask is: How do I write c
that would be able to process unexpected events, such as exception conditic
Good question, and the next section provides you with one answer.

Structured Exception Handling (SEH)
The Windows NT Executive makes extensive use of structured excep
handling. Each of the NT kernel-mode components tries to prepare for the eve:
ality that unexpected error situations might occur as a result of executing a
and these modules work hard to ensure that any unexpected error conditions
not bring down the entire system. It is extremely good practice for indepenc
driver developers to also implement structured exception handling in their dr
implementations. This results in more robust kernel-mode drivers, leading t
more stable Windows NT system, which in turn results in happier customers.

Structured Exception Handling (SEH)___________________________ 75

TIP As a kernel-mode driver designer, you can choose to avoid using
structured exception handling in your driver. Many kernel-mode
drivers do this and get away with it. However, if you develop file
system drivers, I strongly urge you to use SEH in your driver, not
only because it's the right thing to do, but also because some of the
Windows NT Cache Manager support routines and some of the Vir-
tual Memory Manager functions will raise exceptions, instead of re-
turning errors under certain conditions that aren't catastrophic and
shouldn't result in a system panic. The expectation is that the file
system driver will handle such exceptions and treat them as regular
error conditions.
If your driver uses structured exception handling, you can handle
such exceptions gracefully; failure to use structured exception han-
dling will result in an otherwise avoidable bugcheck condition.

Before we discuss what structured exception handling (SEH) is and the benefits
that SEH can provide, let me tell you what structured exception handling cannot
provide.

Structured exception handling is not a panacea for bad driver design or shoddy
implementation. If you do not take care during driver design and development,
no amount of structured exception handling is going to rectify the situation. Simi-
larly, SEH cannot ensure that system crashes can be completely avoided; trying to
access paged memory within code that executes at an IRQ level greater than or
equal to IRQL DISPATCH_LEVEL will result in a guaranteed system crash,
despite the presence of exception handlers.

Finally, SEH should become pervasive throughout the driver implementation in
order to have substantial benefits from its usage. If exception handling is not
implemented systematically throughout the driver code base, the implementation
will still be vulnerable to unexpected error conditions in the portions of the code
that are not protected by exception handlers.

Structured exception handling is a methodology by which a developer or designer
can provide exception handlers that can process exception conditions, avoiding
the default processing performed by KiDispatchException () , namely, the
call to KeBugCheck () .

NOTE No default handler exists to catch all kernel-mode exception condi-
tions. Therefore, if your file system or filter driver causes an excep-
tion to occur but does not provide any exception handler to process
such exceptions, you will bring down the system.

76 ____________________________ Chapter 3-' Structured Driver Development

Furthermore, structured exception handling allows the designer to provide a
systematic method for unwinding from within a specific block of code. This
systematic unwinding can help ensure that exception conditions do not result in
deadlocks or hangs or other similar nasty conditions because the thread cannot
perform adequate cleanup processing when trying to recover from an unexpected
error condition.

SEH requires compiler support; on Windows NT, a compiler that provides support
for SEH is the Microsoft C/C++ compiler.

As I mentioned earlier in this chapter, an exception condition results in control
being transferred to the kernel trap handler. The trap handler might resolve
certain obvious exception conditions or it may in turn transfer control to KiDis-
patchException() , the exception dispatcher code within the NT kernel.
KiDispatchException() in turn invokes RtlDispatchExceptionO to
invoke any exception handlers that the developer might have provided. Your
exception handler must be registered with the run-time library for it to be
invoked. This registration is performed transparently by the Microsoft C/C++

compiler, which generates appropriate code to achieve this whenever it encoun-
ters the try-except construct (described below) in your code. Similarly,
automatic unwinding of your stack-based call frame is performed whenever an
exception condition occurs and you have used the try-finally construct in
your code. The C/C++ compiler, cooperating with the run-time library, generates
appropriate code for unwinding the call frame.

Here are the two primary constructs of structured exception handling:

• The try-except construct allows you to create code that can handle unex-
pected events or exception conditions cleanly, and is defined as follows:
try {

// Execute any code here.

} except (/* call an exception filter here. */) {

// Code executed only if the exception filter returns
//a code of EXCEPTION_EXECUTE_HANDLER.
// This code is called the exception handler code.
// Once this code is executed, control is transferred to
// the next instruction following the try-except construct.

This construct consists of three parts: the try construct that allows you to
define a block of code that is protected by your exception handler; the excep-
tion filter allows you to specify whether you wish to handle a specific excep-

Structured Exception Handling (SEH)_______________________________77

tion condition; and the exception handler performs any exception condition-
related processing.

• The try-finally construct allows you to specify a termination handler for
a specific block of code. By doing so, you can ensure that correct cleanup-
related processing is always performed, regardless of the method chosen to
exit from the specific block of code. This construct is defined as follows:
try {

// Execute any code here.

} finally {
// Perform any cleanup here. The code within the finally
// construct (also called the termination handler) will be
// executed irrespective of the method chosen to exit from
// the block of code protected by the try construct above.

}
The try-finally construct consists of two parts: the try construct that
allows you to define a block of code that is protected by the termination han-
dler, and the finally construct, which contains the code comprising the ter-
mination handler itself.

The try-except Construct
The try-except construct allows you to protect a block of code such that, if an
exception occurs within the protected block of code, control is transferred (by the
RtlDispatchException() routine) to your exception handler. In order for
this transfer of control to take place, the compiler and the Windows NT Kernel
have to cooperate.

The compiler, upon encountering a try-except construct, automatically inserts
additional code that registers an exception handler for that particular block of
code (called a frame) with the NT Kernel. As described earlier in this chapter, the
kernel is then responsible for assuming control when an exception condition
occurs, and subsequently, the kernel allows your exception handler to take a
crack at handling the exception.

Every exception that occurs as a direct result of executing code within the frame
protected by the exception handler results in an eventual transfer of control to the
exception handler code, unless the exception is handled by the attached
debugger. However, you may not want your exception handler to handle all
possible exception conditions; therefore, you can utilize an exception filter to
determine whether your code should handle the exception or not.

The exception filter is the portion of code that is bracketed following the except
keyword. Note that the exception filter can be fairly complex and you can actu-

78 ____________________________ Chapter 3-' Structured Driver Developme

ally invoke a function called the exception filter function to perform ai
processing that is part of your exception filter. The exception filter can return 01
of three values:

« EXCEPTION_EXECUTE_HANDLER
EXCEPTION_CONTINUE_SEARCH

• EXCEPTION_CONTINUE_EXECUTION
The EXCEPTION_EXECUTE_HANDLER return code value causes the excepti<
handler to be executed. After the exception handler has completed its processir
execution flow resumes at the first instruction immediately following the exce
tion handler. To understand this better, consider these sample routines:

NTSTATUS MyProcedure_A (
int *Somevariable)
{

char *APtrThatWasNotInitialized = NULL;
int Another InaneVariable = 0;
NTSTATUS RC = STATUS_SUCCESS ;

try {

*SomeVariable = MyProcedure_B(APtrThatWasNotInitialized) ;

// The following line is not executed if an exception occurred
// in the procedure call.
Another InaneVariable = 5;

} except (EXCEPTION_EXECUTE_HANDLER) {
RC = GetExceptionCode () ;
DbgPrint ("Exception encountered with value = Ox%x\n", RC) ;

// Execution flow resumes here once the exception has been handled.
AnotherlnaneVariable = 10;

return (RC) ;

int MyProcedure_B (
char *IHopeThisPtrWasInitialized)
{

char ACharThatlWillTryToReturn = ' A 1 ;

// Exception occurs in the following line if "IHopeThisPtrWasInitializec
/ / is invalid.
*IHopeThisPtrWasInitialized = ACharThatlWillTryToReturn;

// The following code is never executed if an exception occurred abov
ACharThatlWillTryToReturn = 'B1;

return (0) ;

Structured Exception Handling (SEH)_______________________________79

As you can see in the code fragment, an exception condition will occur when
MyProcedure_B attempts to copy a character using the input argument char-
acter pointer. Since MyProcedure_B does not have an exception handler, the
handler in the calling function (MyProcedure_A) will be invoked. The excep-
tion filter in MyProcedure_A is trivial, it immediately returns EXCEPTION_
EXECUTE_HANDLER. This results in the exception handler being invoked, which
simply obtains the exception code (STATUS_ACCESS_VTOLATION) and issues a
debug print call.

The interesting point to note is that execution flow (after the exception handler
code has executed) resumes at the statement AnotherlnaneVariable = 10
in MyProcedure_A. All statements following the one that caused the exception
in MyProcedure_B are skipped and so are any statements that follow the invoca-
tion of MyProcedure_B within the function MyProcedure_A. This resumption
of execution at the instruction immediately after the exception handler code is
achieved by unwinding of the stack-based call frames.

Although the exception filter was extremely trivial in the preceding example, it
can potentially be quite complex. You can invoke a separate filter function to
determine what you wish to do with the exception condition, but remember that
the filter function must return one of the three status codes listed above. As an
argument to the filter function, you can pass the exception code using the GetEx-
ceptionCode () intrinsic function call or you can use the
GetExceptionInformation() intrinsic function call to pass even more infor-
mation, such as the thread context represented by the contents of the processors'
registers.

The GetExceptionCode () intrinsic function returns the exception code value;*
this function can be invoked either within the exception filter or within the excep-
tion handler, while the GetExceptionInformation() intrinsic function can
only be invoked within the exception filter.

Typically, your exception filter (or any filter function that you use) will not
require the additional information contained in the EXCEPTION_POINTERS struc-
ture, returned by the GetExceptionInformation() function. Although it is
theoretically possible to modify the contents of individual registers contained
within this structure, doing so results in extremely nonportable, and probably
nonmaintainable, code; I would highly discourage it.

Note that neither the GetExceptionCode () function call nor the GetExcep-
tionlnf ormation () call can be invoked from the exception filter function.

* It actually returns the same value that you could obtain from the ExceptionCode field in the
EXCEPTION_RECORD structure defined later.

SO ____________________________ Chapter 3: Structured Driver Development

The following code fragment demonstrates the use of the exception filter function:

NTSTATUS MyProcedure_A (
int *SomeVariable)
{

char *APtrThatWasNotInitialized = NULL;
int Another InaneVariable = 0;
NTSTATUS RC = STATUS_SUCCESS ;

try {

*SomeVariable = MyProcedure_B (APtrThatWasNotlnitialized) ;

// The following line is not executed if an exception occurs
//in the procedure call.
AnotherlnaneVariable = 5;

} except (MyExceptionFilter (GetExceptionCodeO ,
GetExceptionlnf ormation ())) {

RC = GetExceptionCode () ;
DbgPr int ("Exception with value = Ox%x\n", RC) ;

// Execution flow resumes here once the exception has been handled.
AnotherlnaneVariable = 10;

return (RC) ;

int MyProcedure_B (
char *IHopeThisPtrWasInitialized)
{

char ACharThatlWillTryToReturn = 'A1 ;

// Exception occurs in the next statement if the value of
// IHopeThisPtrWasInitialized is invalid.
*IHopeThisPtrWasInitialized = ACharThatlWillTryToReturn;

// The following code is never executed if an exception occurred above.
ACharThatlWillTryToReturn = 'B';

return (0) ;

unsigned int MyExceptionFilter (
unsigned int ExceptionCode,
PEXCEPTION_POINTERS ExceptionPointers)
{

// Assume we cannot handle this exception.
unsigned int RC = EXCEPTION_CONTINUE_SEARCH;

// This function is my exception filter function. It must return
// one of three values viz. EXCEPTION_EXECUTE_HANDLER,
// EXCEPTION_CONTINUE_SEARCH, or EXCEPTION_CONTINUE_EXEC0TION.
// In our example here, we decide to handle access violations only.

Structured Exception Handling (SEH) 81

switch (ExceptionCode) {
case STATUS_ACCESS_VIOLATION :

RC = EXCEPTION_EXECUTE_HANDLER;
break ;

default:
break;

// If you wish, you could further analyze the exception condition by
// examining the ExceptionPointers structure.

ASSERT ((RC == EXCEPTION_EXECUTE_HANDLER) ||
(RC == EXCEPTION_CONTINUE_SEARCH) | |
(RC == EXCEPTION_CONTINUE_EXECUTION)) ;

return (RC) ;
}
Exception handlers can be nested, either across procedure calls or even within
the same function. Note that certain exception conditions are fatal errors (e.g.,
accessing paged memory that causes a page fault at an IRQL greater than or equal
to DISPATCH_LEVEL) and will result in a system panic,* regardless of the fact
that you had inserted exception handlers in your code. Therefore, as mentioned
earlier in this chapter, do not assume that using exception handlers will guarantee
that all error conditions can be effectively trapped.

The try-finally Construct
The try-finally construct represents a termination handler and is used to
ensure consistent unwinding from within a block of code, even when exception
conditions cause abrupt transfer of control to some other call frame. The concept
here is very simple: consider a block of code protected within a try-finally
construct. Before control is transferred to any instruction outside of the try-
finally construct, statements enclosed within the finally portion of the
construct are executed.

This simple example illustrates the point:

NTSTATUS MyProcedure_A (
int *SomeVariable,
int AnotherVariable)

char
int
int
NTSTATUS

*APtrThatWasNotInitialized = NULL;
Another InaneVariable = 0;
AnotherInaneVariable2 = 0;

RC = STATUS_SUCCESS;

* The VMM will bugcheck the system when it notices that the page fault was incurred at high IRQL.

82 ____________________________ Chapter 3-' Structured Driver Development

try {

if (iAnotherVariable) {
AnotherlnaneVariable = 7;

*SomeVariable = MyProcedure_B (APtrThatWasNotlnitialized,
&AnotherInaneVariable) ;

// The following line is not executed if an exception occurs
//in the procedure call above.
AnotherInaneVariable2 = 5;

} except (MyExceptionFilter (GetExceptionCode () ,
GetExceptionlnformationf))) {
// Even if an exception condition got us here, the value of
// AnotherlnaneVariable MUST be 15 since the statements within
// the finally portion in MyProcedure_B get executed before we
// start executing any code within the exception handler.
ASSERT (AnotherlnaneVariable == 15);
RC = GetExceptionCode () ;
DbgPrint("Exception with value = Ox%x\n", RC) ;

//I will assert that AnotherlnaneVariable is set to 15 because the
// assignment is within the "finally" construct in MyProcedure_B and hence
// the assignment operation MUST have been performed.
ASSERT (AnotherlnaneVariable == 15);

// Execution flow resumes here once the exception has been handled.
AnotherlnaneVariable = 10;

return(RC) ;

int MyProcedure_B (
char *IHopeThisPtrWasInitialized,
int *AnotherInaneVariable)

char ACharThatlWillTryToReturn = 'A';

try {

if (*AnotherInaneVariable ==7) {
// This is a BAD thing to do if you value system performance.
// However, I am executing a return here to illustrate that the
// code within the "finally" below will get executed even though
// I am abruptly returning from this function call,
return(1);

// Exception occurs here if IHopeThisPtrWasInitialized is invalid.
*IHopeThisPtrWasInitialized = ACharThatlWillTryToReturn;

Structured Exception Handling (SEN) _______________________________ 83

II The following code is never executed if an exception occurs
/ / above .
ACharThatlWillTryToReturn = 'B';

} finally {
// Whatever happens above, i.e., whether a return statement was executed
//or whether an exception condition occurred, the following code will
// get executed. Note that if an exception did occur, the following
// code will get executed BEFORE the code within the exception
// handler in MyProcedure_A gets executed.
*AnotherInaneVariable = 15;

return (0) ;
}

Code for the exception filter function MyExceptionFilter () was presented
earlier while discussing the try-except construct.

There are three different ways that flow of control can be transferred out of
MyProcedure_B:

• It is possible that the return statement within the try-finally construct
does not get executed and no exception condition occurs.
This would happen if, for example, AnotherVariable is initialized to a
valid value.
In this case, all of the statements between the try and the finally key-
words will get executed; then the code within the finally construct that
comprises the termination handler will execute and then return control to
MyProcedure_A via the return (0) statement.

• Consider the case where AnotherVariable is set to 0. Now, the
return (1) statement within MyProcedure_B will return control back to
MyProcedure_A. However, due to the presence of the try-finally con-
struct, the code within the finally portion will get executed before the
return (1) statement is processed. Therefore, the value of *Another-
InaneVariable will be set to 15.

• Now, consider the case where AnotherVariable is not set to 0, and
APtrThatWasNotlnitialized is set to NULL. We know that this will
result in an exception condition (STATUS_ACCESS_VIOLATION) in
MyProcedure_B. You are also aware that MyProcedure_A has an excep-
tion handler that will process this exception since the exception filter used by
MyProcedure_A is willing to handle exceptions of this type.
However, before the exception handler gets executed in MyProcedure_A,
the kernel unwinds the stack-based call frames. Part of this unwinding
involves execution of any statements within the termination handlers* that pro-

Chapter 3-' Structured Driver Development

tect any of the frames comprising the calling hierarchy between
MyProcedure_A and MyProcedure_B.

In our example, MyProcedure_A directly invokes MyProcedure_B and so
there is only one frame to unwind from and one corresponding termination
handler.
Since the affected block of code (in which the exception occurred) is pro-
tected by a termination handler, the statements within the finally portion
will be executed before statements comprising the exception handler in
MyProcedure_A are executed. Therefore, the value of *AnotherInane-
Variable will be set to 15 and we have an ASSERT in the exception han-
dler in MyProcedure_A to check for this fact.

Typically, termination handlers are not used to perform the kind of simple initial-
ization shown in the example. Rather, termination handlers are used to ensure
that any necessary cleanup is performed before transferring control to some other
module. For example, if memory had been allocated for some temporary
purpose, freeing of this memory can be done within the termination handler
(some BOOLEAN variable can be checked to see if memory had indeed been allo-
cated or the value of the pointer itself can be checked if the pointer is always
guaranteed to have been initialized to NULL).

Similarly, if any locks had been acquired (e.g., some ERESOURCE type of
resource or some MUTEX had been acquired), the lock can be released from
within the termination handler. Therefore, the termination handler is a powerful
tool that can ensure that all required cleanup is performed in a consistent fashion
and is guaranteed to be done, regardless of the method used to exit from the
protected module.

A word of caution

In the preceding example, I placed a return (1) statement in the middle of
MyProcedure_B in a block of code protected by a termination handler. The
purpose of using this return statement was to demonstrate that even if such
statements are used to exit the protected frame, the termination handler will still
be automatically executed due to the stack-based call frame unwinding that takes
place. This concept applies to other C statements, such as break and continue,
which cause a transfer of control to some other statement. If this transfer of

* It is possible to prevent call frame unwinding in certain cases by inserting a return statement within
the termination handler. However, this could result in completely indecipherable and unmaintainable
code, and I strongly urge you not to even consider such esoteric usage and implementation of termination
handlers.

Structured Exception Handling (SEH)_______________________________&5

control is to an instruction outside of the protected frame, the termination handler
will always get executed before such a transfer of control takes place.

However, if you care about the performance exhibited by your driver, you should
try never to use such statements in any frame that is protected by a termination
handler. The reason for this is simple: call frame unwinding is an expensive opera-
tion in terms of execution time. In fact, on some processor architectures,
unwinding can result in the execution of literally hundreds of extra assembly
instructions. Therefore, you should try to avoid such unwinding, unless it
happens because of some exception condition.

NOTE Exception conditions are, by definition, atypical events. Therefore,
the prime consideration in dealing with an exception condition is to
recover as gracefully as possible; performance considerations are
secondary.

You might be concerned that avoiding the return statement in code that is
protected by a termination handler could be very limiting. I would agree with that
analysis; therefore, I will recommend that you use the following method to work
around this limitation:

// Who says gotos are always bad ????
// Define the following macro in some global header file.
tfdefine try_return(S) { (S) ; goto try_exit; }

NTSTATUS AnotherProcedureThatUsesATerminationHandler (void)
{

NTSTATUS RC = STATUS_SUCCESS ;

try {

if (!NT_SUCCESS(RC)) {
// Assume for example that some memory allocation failed above
// and that normal execution cannot continue.
// Use the try_return MACRO here instead of a simple return
// statement.
// Note that any legitimate C statement can be executed as part of
// the macro itself.
try_return(RC);

try_exit: NOTHING;

} finally {

}
return(RC);

86 Chapter 3: Structured Driver Development

The try_return macro simply performs a jump to the end of the function (actu-
ally, it should cause a jump to the block of code just before the termination
handler as illustrated in the code fragment). Additionally, it allows you to execute
any legitimate C statement before the jump is performed. By using try_return
instead of directly using a return statement, you can avoid the overhead of
having the compiler perform call frame unwinding (to ensure that the termination
handler code is executed) on your behalf.

By consistently utilizing the try_return macro in your code and also using
termination handlers systematically, you can take complete advantage of the
powerful functionality that termination handlers provide (especially with regard to
consistent clean-up after error conditions that cause a premature exit from the
frame) and yet not suffer from the performance degradation associated with call-
frame unwinding.

Using both exception handlers and termination handlers together

Using both types of handlers together is the right way to both protect your code
from unexpected exception conditions and also to ensure consistent clean-up
within the frame. Typically, the following method can be employed:

NTSTATUS AProcedureForDemonstrationPurposes (void)

NTSTATUS RC = STATUS_SUCCESS ;

// The outer exception handler ensures that all exceptions will first
// be directed to us.
try {

// The inner termination handler is our guarantee that we will always
// get an opportunity to clean-up after ourselves.
try {

try_exi t: NOTHING;
} finally {

// Clean-up code goes here.
}

} except (/* the exception filter goes here */) {
//My exception handler goes here.

}
return(RC);

Event Logging
Often, kernel-mode drivers need to convey information to the system adminis-
trator or to the user of the host machine. This information could include error

Event Logging___S7

messages possibly caused by software or malfunctioning of attached hardware
peripherals, warning messages that might indicate recovered errors or the possi-
bility of an impending error, and informational (or status) messages indicating that
some important activity had transpired.

The Windows NT Event Log serves as a central repository for messages sent by
various software modules on that machine. The event log is a database containing
event records that have a fixed, defined format. A user can either use the system-
supplied event log viewer to extract information from the event log database or
use the API supplied by the Win32 subsystem environment to obtain such data.

NOTE Although it might be possible to decipher the actual record structure
of an event log entry in the file, if you wish to develop your own
event log viewer, you might be better off simply using the Win32-
based supplied API to access the event log file. This API includes
calls to open the file, obtain individual records, and close the file.

The concept underlying the usage of the event logging facility in Windows NT is
fairly simple. The kernel-mode driver logs an event indicating that something
significant has occurred. Each event, which must be defined in a message file, has
a unique event identifier associated with it. The event identifier has the same
format as other NTSTATUS type of status codes (the format is described later).
The logged event contains information such as the event identifier, the name of
the component logging the event, or any strings or other binary data that should
be associated with the event. The event log also allows the kernel module to
include other pertinent information for events indicating an error condition, such
as the number of times the operation has been retried (prior to logging the
event), an offset in the device where the error occurred, the status that was
returned by the driver to the I/O Manager in the I/O Request Packet (IRP), and
other similar information.

Event identifiers have replacement strings associated with them. For example, the
system-defined error IO_ERR_PARITY has the following replacement string asso-
ciated with it (this string is typically read from the file
%SystemRoot%\system32\iologmsg.dll)'

A parity error was detected on %l . t

* Note that %SystemRoot% is replaced by the location of the Windows NT installation of the host machine.
t This message also demonstrates the use of insertion strings. An insertion string is a string supplied by
the driver when it records an event record. The first insertion string is represented as %1, the second as
962, and so on. The driver supplied insertion strings are automatically inserted into the text message by
the event log viewer (which obtains the insertion strings from the event record).

Chapter 3: Structured Driver Development

The format of status codes returned by the system and of event identifiers created
by independent drivers follows the figure below.

• S = Severity Code (2 bits). This can assume the following values:

— 00 = Success

— 01 = Informational

— 10 = Warning
— 11 = Error

• C = Customer Code Flag (1 bit). This bit should be set to 1 for status codes/
event identifiers defined by third-party drivers (which means that it should be
set to 1 for any privately defined status codes in your driver).

• R = Reserved Bit (1 bit). Microsoft recommends that this bit be set to 0.

• Facility (12 bits). This indicates a group to which the error/status code
belongs and can have one of the following values:

— FACILITY_NONE (defined as 0x0)

— FACILITY_RPC_RUNTIME (defined as 0x2)

— FACILITY_RPC_STUBS (defined as 0x3)

— FACILITY_IO_ERROR_CODE (defined as 0x4)

If you develop file system or filter drivers or other such kernel-mode drivers,
you will typically set the value of Facility to 0x0 or to 0x4 for any status codes
defined by you.

• The Code (16 bits). This can be set to any unique value for each status code
defined in your driver. A typical error code your driver might define follows:
—define MYDRIVER_ERROR_CODE_IO_FAILED (OxE0047801)
If we expand the error code, we get the binary value 1110 0000 0000 0100
0111 1000 0000 0001.

This corresponds to the fact that this is an error condition (bit positions 30
and 31 are set to 1), this is a customer defined error (bit position 29 is set to
1), the reserved bit is set to 0, the facility that this error belongs to is
FACILITY_IO_ERROR_CODE (since Facility is set to 0x4—bit positions 16
through 27), and the privately defined error code is 0x7801 (bit positions 0
through 15). Note that the privately defined error code can be any 16-bit

Event Logging___89

value, as long as all such error codes defined by your driver are unique
within your driver.*

So that the event viewer application (or any application that interprets the error
log) can associate a textual description with your event identifier, your driver will
have to supply a message file that contains the text associated with each partic-
ular event ID. For example, a typical text message that might be identified with
our error defined previously could be as follows:

The driver tried to perform an I/O operation on the device. This I/O
operation failed due to a time-out condition (device did not respond
within the specified time-out period).

As you can see, providing the user with a clear explanation of the probable cause
of failure is quite helpful. The system administrator might be able to use the error
message supplied by you as a starting point to diagnose and rectify the cause for
the failure. An appropriate message file can be created using the resource
compiler used by your driver. Consult the documentation supplied with your
resource compiler to determine how to create the message file.t Here is an
example message file:

;Sample Message File.

:Filename: myeventfile.mc
;Module Name: mydriver_event.h

; # i fnde f _MYDRIVER_EVENT_H_
; #define _MYDRIVER_EVENT_H_
;Notes:
; This file is generated by the MC tool from the mydriver_event.me file.

;0sed from kernel mode. Do NOT use %1 for insertion strings since
;the I/O Manager automatically inserts the driver/device name as the
; first string.

MessageIdTypedef=ULONG

SeverityNames=(Success=OxO:STATUS_SEVERITY_SUCCESS
Informational=0xl:STATUS_SEVERITY_INFORMATIONAL
Warning=0x2:STATUS_SEVERITY_WARNING
Error=0x3:STATUS_SEVERITY_ERROR)

* Although the error code defined by your driver might also be (coincidentally) defined by some other
driver in the system, event identifiers are uniquely identified as a tuple eonsisting of (source, event ID).
Therefore, as long as all identifiers within your driver are unique, you should not be concerned about
providing unique values with respect to all other drivers in the system.
t Note that your resource compiler, while processing your input file, can create both the output message
file as well as a header file that you can use with your driver. Therefore, you should have to define the
event identifiers (and the associated text) in only one place, the input file to your resource compiler. This
will help prevent discrepancies between any header files that your driver might use and the message file
that eventually ships with your driver.

.90____________________________Chapter 3: Structured Driver Development

FacilityNames=(10=0x004)

Messageld=0x7800 Facility=IO Severity=Informational
SymbolicName=MYDRIVER_INFO_DEBUG_SUPPORT
Language=English
This message and accompanying data is for DEBUG support only.

Messageld=0x7801 Facility=IO Severity=Error
SymbolicName=MYDRIVER_ERROR_CODE_IO_FAILED
Language=English
The driver tried to perform an I/O operation on the device. This I/O
operation failed due to a time-out condition (device did not respond
within the specified time-out period).

;Use the above entries as a template in creating your own message file.

;#endif // _MYDRIVER_EVENT_H_

It is possible to have insertion strings within text messages associated with event
identifiers. Placeholders are denoted as %1, %2, etc. If you specify placeholders in
your message, the driver can supply the strings to be inserted when writing the
event log entry. However, note that the I/O Manager always inserts the device/
driver name as the first insertion string with every recorded event record. Even if
the driver supplies insertion strings, they are placed after the device/driver name.
The net result is that using %1 as a placeholder for an insertion string in your text
(associated with an event identifier) will always result in the device/driver name
being placed there, instead of the first driver-supplied insertion string. To obtain
the first driver-supplied insertion string, use %2 as the placeholder; to get the
second driver supplied insertion string, use %3, and so on.

How the Event Log Viewer Finds a Message File
For the event log viewer to be able to find your message file, your driver (or more
likely, the application that installs your driver) will have to modify the Registry on
the target machine. Typically, users will use the Win32 subsystem as their native
subsystem. In this case, a unique subkey should be created by the installation utility
under the Registry path: CurrentControlSet\Services\EventLog\System.'

* Note that there are three possible locations under the EventLog key where your subkey could poten-
tially be located: Application (for applications or user-mode drivers), Security, and System (for system-
supplied and kernel-mode drivers). As kernel-mode driver developers, the logical and correct choice for
your entry is under the System key.

Event Logging 91

This unique subkey should have the same name as the driver executable. For
example, the subkey for the system-supplied AT disk driver is atdisk, which is the
same as the name of the driver executable file (atdisk.sys). Within this subkey, at
least two value entries must be created:

EventMessageFile
This value is of type REG_EXPAND_SZ and contains the complete path and
filename for the message file that contains the text messages corresponding to
each event identifier. An example of a complete pathname and filename
might be %SystemRoot%\MyDriverDirectory\message.dll.

TypesSupported
This value is of type REG_DWORD and should be set to 0x7 for your driver,
indicating that your driver supports events of type EVENTLOG_ERROR_TYPE
(defined as Oxl), EVENTLOG_WARNING_TYPE (defined as 0x2), and
EVENTLOG_INFORMATION_TYPE (defined as 0x4).

Once you have created the appropriate Registry entries and your installation
program has copied the appropriate message file (in our example: message.dll~) to
the correct directory, the event log viewer application should be able to find and
use the contents of your message file.

Recording Event Log Entries
Now that you have defined the appropriate event identifiers specific to your
driver, you can use these event identifiers to record event log entries using
support routines provided by the I/O Manager. Logging an event is performed in
two steps:

1. An event/error log entry is allocated with loAllocateErrorLogEntry ().
2. After the error log entry has been initialized, the event can be logged with

loWriteErrorLogEntry().

The routine used to allocate an event log entry, so it can subsequently be
recorded, is defined as follows:

PVOID
loAllocateErrorLogEntry(

IN PVOID loObject,
IN UCHAR EntrySize

92 Chapter 3: Structured Driver Development

Parameters:

loObject
This must point either to the device object* representing the device for which
the error/event is being logged or to a driver object representing the driver
controlling a device for which the event is being logged.

EntrySize
The size of the object to be allocated. Since you as the developer can log
binary data with the event log record, and you can also supply insertion
strings that augment your message, the size of the entry should be calculated
as follows,
sizeof(IO_ERROR_LOG_PACKET) + (n * sizeof(ULONG) +

sizeof(InsertionStrings))
where n = number of words of data to be dumped with the event record.

Functionality Provided:

The IcAllocateErrorLogEntry () will allocate an entry for your use. You
can then initialize this entry and invoke ZoWriteErrorLogEntry () to write to
the event log. This routine returns a NULL pointer if it cannot allocate an entry for
your use. In this case, you should not write the event at this time and wait for the
next occurrence of the error, then you can retry this operation.

One note of caution: this routine references the device/driver object passed in as
the loObject argument. Therefore, once you invoke this routine, you must
invoke the ZoWriteErrorLogEntry () routine, which will dereference the
object and release the memory allocated for the error log entry.

Initialization of the error log entry is quite simple and is well documented in the
device driver reference supplied by Microsoft.

Once an event log entry has been obtained, you must invoke the loWriteEr-
rorLogEntry () routine to write the record to the event log. This routine is
defined as follows:

VOID
ZoWriteErrorLogEntry(

IN PVOID ElEntry

Parameters:

ElEntry
The initialized event log entry to be recorded.

* See Chapter 4, '/"he NT I/O Manager, for a discussion on device object and driver object structures.

Driver Synchronization Mechanisms

Functionality Provided:

The loWriteErrorLogEntry () queues the initialized event log entry to be
written out. The actual write operation will be performed asynchronously by a
system worker thread. Note that since this routine returns immediately after
queuing the entry, the device/driver object will not yet have been dereferenced.
The dereference will only occur after the entry has been asynchronously written
to the event log.

NOTE The -way that the entry is asynchronously written to the event log
file is also interesting. The system worker thread dequeues the
event log record, inserts the device/driver name strings and then
uses LPC (a local procedure call) to write the record to a special
port where another user space thread writes the entry to the event
log file. The system worker thread continues writing out all records
until it encounters an error condition or until all the pending event
log records have been sent to the port handler.

Driver Synchronization Mechanisms
One of the primary functions of a driver is to prevent data corruption. A principal
cause of data corruption is a lack of synchronization between two or more concur-
rent threads of execution that manipulate the same data structures. Since
Windows NT can execute on both uniprocessor as well as on symmetric multipro-
cessor machines, it becomes especially important for kernel-mode drivers to use
synchronization primitives carefully. If you develop device drivers, take care
when manipulating data structures shared by Interrupt Service Routines (ISRs) and
threads that execute at normal IRQ level.

As discussed in Chapter 1, Windows NT System Components, the Windows NT
kernel-mode environment contains the Executive as well as the Windows NT
Kernel. The Executive is preemptible and parts of it are also pageable. The
Kernel, however, is neither preemptible nor pageable. Although not preemptible,
on multiprocessor machines, the kernel can execute concurrently on each
processor.

In this section, we'll see the various synchronization primitives available to drivers
forming part of the NT Executive. These synchronization primitives are either
exported by the NT Kernel itself or by the NT Executive; the Executive uses the
basic primitives supplied by the Kernel to construct more complex synchroniza-
tion primitives. My intent is to provide an introduction to the different primitives
available and to explain where each can be used. The sample code in the

94 Chapter 3-' Structured Driver Development

remainder of this book, especially file system and filter driver code, will make
extensive use of some of these synchronization primitives. For further information
on the syntax for calling the supporting routines mentioned in this section,
consult the Microsoft Device Drivers Kit (DDK) documentation.

Spin Locks
The kernel spin lock structure is fundamental to providing synchronization across
processors in a multiprocessor environment. Spin locks are used to provide
mutual exclusion, i.e., a spin lock is used to ensure that only one thread
executing on one processor can access the shared data protected by the spin
lock. The sequence of instructions executed after acquiring the spin lock is also
known as a critical region. The critical region ends when the spin lock is released.

When a thread on a processor acquires a spin lock, context switching (preemp-
tion of the thread) is disabled until the thread releases the spin lock. Similarly,
any other thread, executing on another processor, will continuously try to gain
access to the spin lock, making no progress until it succeeds. This method of
busy-waiting (i.e., continuously attempting to check to see if the spin lock has
become available) is also called spinning for the lock, hence leading to the name
spin lock.*

The exact method used by the kernel to implement a spin lock is processor
dependent; typically, however, an atomic test-and-set assembly instruction is used
to implement the spin lock. The software tests the state of the lock variable and if
it's free, sets it to the busy state. If the lock state is busy, the software keeps
repeating execution of the test-and-set instruction.

NOTE Often, to reduce bus contention, the test-and-set operation is not
used continuously in the implementation of the spin lock. Rather,
the operating system uses the test-and-set instruction once, and if it
finds the lock state set to busy, then ordinary polling instructions
are used until the lock state is found to be free. At this time, the test-
and-set instruction is retried to obtain the lock.

Spin locks must be acquired by the thread executing on a processor at the highest
IRQL at which all other attempts to acquire the same spin lock will be made.

Follow these few, simple rules to ensure correct behavior of your spin locks:

* The thread that is spinning for the loek cannot be preempted (just as the thread that has acquired the
lock). However, these threads can be interrupted by an interrupt at a higher IRQL than the one at which
they execute.

Driver Synchronization Mechanisms

• Never refer to any pageable data once your code acquires a spin lock. Simi-
larly, all code that executes once a spin lock is acquired must be nonpage-
able code.
The reason for this restriction is that the system cannot service any page faults
at an IRQL greater than or equal to the DISPATCH_LEVEL. Therefore, when
a page fault occurs at a high IRQL, the system checks for pageable code and
issues a KeBugCheck () , assuming that the condition is a direct result of a
programming/design error.

• Try not to call other functions once you have acquired a spin lock. If you do
need to call another function, be sure that none of the functions called refer
to any pageable code or data.

• Because spin locks must be shared by all processors on a node, keep the
spin lock for the minimum amount of time possible, then release it to allow
another processor to acquire it.

It is possible to design and implement code in which a sequence of spin locks are
acquired, i.e., you acquire spin lock #\ followed by a call to acquire spin lock #2,
and so on. Or else, you might implement code in which you acquire a spin lock
and then follow this up with one or more calls to acquire other synchronization
primitives (e.g., mutexes). This could cause a deadlock condition. There is no
deadlock checking performed when a processor acquires multiple spin locks and
since dispatching or preemption is disabled once any spin lock is acquired, it is
quite possible to create a system deadlock.

There are two types of spin locks that exist on Windows NT platforms:

Interrupt spin locks
These spin locks synchronize access to device driver data structures. They are
acquired and released at the IRQL associated with the particular device
managed by the device driver. The device driver usually does not allocate
memory for spin locks itself, neither does it explicitly acquire or release inter-
rupt spin lock structures. As a matter of fact, the kernel automatically acquires
the spin lock associated with the interrupt before invoking the Interrupt
Service Routine (ISR) for the interrupt, and releases it after the ISR execution
has been completed.

The KeSynchronizeExecution() function, documented in the DDK, can
be used to synchronize the execution of a device driver routine with the
execution of an ISR for a specific interrupt. This function acquires the inter-
rupt spin lock associated with the interrupt pointer, supplied as an argument
to the routine after raising the IRQL for the thread to the DIRQL for the inter-
rupt. KeSynchronizeExecution() then invokes the specified routine

96 Chapter 3: Structured Driver Development

whose execution has to be synchronized with that of the ISR and finally
releases the spin lock before returning to the caller.

Interrupt spin locks must always be used whenever a lower level driver
wishes to synchronize the execution of a module with the ISR for the driver.
Attempting to use an Executive spin lock will undoubtedly lead to data
corruption and/or system deadlock situations.

Executive spin locks
Executive spin locks can only be acquired from threads executing at IRQL
PASSIVE_LEVEL, APC_LEVEL, or DISPATCH_LEVEL. Therefore, they are
typically used by higher level drivers such as file system drivers to synchro-
nize access in multiprocessor environments. They can certainly be used by
device driver developers, as long as they are not used to synchronize execu-
tion with the ISR for the drive driver.

The rest of this discussion assumes that you are using Executive spin locks to
synchronize data access.

For the remainder of this book, we will focus on the usage of Executive spin
locks.

To use Executive spin locks, you must first allocate enough storage for a spin lock
structure. The storage for a spin lock must be allocated from nonpaged pool. Typi-
cally, your driver should either embed the spin lock definition in the driver
extension, which is always allocated from nonpaged memory, or use a global defi-
nition, since all global variables within a kernel-mode driver are typically not
pageable; or use an allocation function (e.g., ExAllocatePool (NonPaged-
Pool, sizeof (struct KSPIN_LOCK))).

WARNING If you happen to allocate a dispatcher object from paged pool in-
stead of nonpaged pool, you will see some unexpected system
bugchecks occur. Your driver might be working fine, but occasional-
ly the system will bugcheck with an exception indicating that paged
memory was accessed at high IRQL. The stack trace that you might
obtain will not even point to your driver. This is because the kernel
stores all threads waiting for active dispatcher objects on global
linked lists. Each of these linked lists is protected by a spin lock.
When the kernel traverses such a linked list with the spin lock ac-
quired, and the object on the list happens to be paged out, you will
encounter a system bugcheck. Note that the object might not always
be paged out of memory, so your system might work fine, some-
times, though not always.

The following kernel support routines are available to you for manipulating an
Executive spin lock:

Driver Synchronization Mechanisms_______________________________97

KelnitializeSpinlock ()
This routine accepts a pointer to the allocated spin lock structure. It will initial-
ize the spin lock, and must be invoked before trying to acquire the spin lock
for the first time.

KeAcguireSpinLock() /KeAcguireSpinLockAtDpcLevel()
These routines will spin trying to acquire the spin lock. A pointer to the spin
lock to be acquired must be passed in as an argument. When either of these
routines returns, the spin lock will have been acquired. The only difference
between the two routines is that the KeAccruireSpinLock() routine will
first raise the IRQL for the processor to DISPATCH_LEVEL and therefore
return the old IRQL to the caller, to be used in releasing the spin lock, while
KeAcquireSpinLockAtDpcLevel () assumes that the current IRQL is
already at DISPATCH_LEVEL.

NOTE On uniprocessor systems, the KeAcquireSpinLockAtDpcLev-
el () doesn't do anything, i.e., it immediately returns control to the
caller. Therefore, invoking this function (if appropriate) will result in
a slight performance gain for your driver on uniprocessor systems.

KeReleaseSpinLock() /KeReleaseSpinLockFromDpcLevel{)
These routines allow you to release a previously acquired spin lock. KeRe-
leaseSpinLock () expects an additional parameter: the old IRQL returned
from the previous call to KeAcquireSpinLockf). The processor is
returned to the old IRQL, once the spin lock is released.

A spin lock should be used whenever synchronization is required across multiple
processors, in arbitrary thread contexts, when processing interrupts, and when
context switching has to be prevented. Furthermore, all the rules mentioned
earlier should be followed whenever spin locks are used. If, however, you wish
to provide synchronization across multiple processors in the context of some
thread and you do not mind context switching occurring, then other Executive
dispatcher objects (described in the next section) can be used.

Note the words in arbitrary thread contexts in the preceding paragraph. Spin
locks can be used even by device drivers, whose entry points (such as read/write)
are typically executed in the context of some arbitrary thread. It is even probable
that such entry points for device drivers might be executed at high IRQL. Spin
locks can be used freely by such drivers, while other dispatcher objects (such as
mutexes or event objects) can only be used in a nonarbitrary thread context, i.e.,
the other dispatcher objects are used by file system drivers or filter drivers that sit
above the file system.

98 Chapter 3: Structured Driver Development

NOTE File system driver dispatch routines (e.g., read/write routines) are
typically executed in the context of a system worker thread for asyn-
chronous operations or in the context of the user thread initiated by
an I/O request (e.g., a user application invoked the ReadFileO
call). Since this is a nonarbitrary thread context, file systems are free
to wait for dispatcher objects to be set to the signaled state.
Device drivers, on the other hand, have IRPs (I/O Request Packets)
queued. Each I/O Request Packet for a driver dispatch routine is
subsequently dequeued (and the request initiated), in the context of
whichever thread happens to be currently executing on that proces-
sor. Therefore, since the dispatch routine for the device driver exe-
cutes in the context of an arbitrary, unknown thread, •waiting for
dispatcher objects to be signaled is not allowed. Thread context is
discussed in detail later in this book.

Dispatcher Objects
Kernel dispatcher objects are a set of abstractions, provided by the kernel to the
Executive, to support synchronization. These objects control dispatching and
synchronization of system operations. Dispatcher objects can be in one of two
states:

• Signaled state, in which no thread is currently accessing the shared data pro-
tected by the dispatcher objects or no other thread is currently within the criti-
cal section of the code.

• Not-signaled state, indicating that a thread is accessing shared data protected
by the dispatcher objects and/or executing the critical region of the code.

Since your driver forms part of the NT Executive, you can use these dispatcher
objects to provide synchronization within your driver implementation. Note that
dispatcher objects provided by the kernel must be treated as opaque data struc-
tures. The kernel provides all functions that you might need to initialize, query
the state, set the state, and clear the state for these objects. You must provide the
storage needed to contain these objects. This storage must be provided from
nonpaged pool (similar to that provided for spin locks) and can be provided from
the driver extension structure, as a global variable, or as memory that is allocated
dynamically.

The method used to synchronize access to shared data or to control execution
within a critical region of code follows:

Driver Synchronization Mechanisms_______________________________59

1. A thread needs to access a shared data resource (i.e., access some shared data
or execute code within a critical region, so it invokes a Kernel Wait Routine).
The wait routines that the thread can invoke are:

— KeWaitForSingleObject()
— KeWaitForMultipleObjects() or
— KeWaitForMutexObj ect()
If the objects being waited for are in the signaled state, the wait will be satis-
fied and control will return to the waiting thread. Note that before the wait is
satisfied, the objects that were being waited for will be set to the not-signaled
state, preventing any other thread, which might concurrently invoke a wait
routine, from simultaneously getting access to the shared data resource.

2. Any other thread invoking a wait routine for one of the objects set to the not-
signaled state in Step 1 will be suspended.

3. When the first thread completes processing the shared data resource, it will
invoke an appropriate routine, depending upon the object used to achieve
synchronization, KeReleaseMutexO or KeSetEvent () , to release the
dispatcher objects and set the state of the dispatcher object to Signaled.

4. Now that the first thread has released the dispatcher objects, one of the
threads waiting for the dispatcher objects, to gain access to the shared data
resource, will be awakened.
This thread will now be permitted access to the shared data resource.

NOTE In the case of some synchronization objects, multiple threads will
be awakened concurrently. However, only one of them will subse-
quently be able to acquire the synchronization object.

5. Steps 1 to 4 are repeated every time a thread wishes to access the shared data
resource.

If a thread cannot gain access to the shared data resource (i.e., if the dispatcher
object is in the not-signaled state because another thread is actively accessing the
shared data or executing code within the critical region), the thread will be
suspended or blocked, awaiting the release of the dispatcher object. This allows
other threads in the system to continue executing and is very different from a spin
lock, where the thread will be in a busy-wait state until it gains access. Dispatcher
objects are therefore more conducive to better system performance.

As mentioned earlier in the discussion on spin locks, driver dispatch routines that
execute in an arbitrary thread context cannot wait for dispatcher objects to be

100___________________________Chapter 3-' Structured Driver Development

signaled. Also, it is considered a fatal error to wait for a nonzero time interval on
a dispatcher object at IRQL that is greater than PASSIVE_LEVEL. Therefore, most
device driver designers will not use dispatcher objects for mutual exclusion, but
file system developers or developers of filter drivers that sit above the file system
in the calling hierarchy can potentially use dispatcher objects.

Finally, note that when a thread invokes the kernel routine to wait for a
dispatcher object (e.g., KeWaitForSingleObject ()) , the thread can specify a
TimeOut interval. If the dispatcher object does not get signaled within the speci-
fied TimeOut interval, the thread will be awakened with a special status code of
STATUS_TIMEOUT. This allows the thread to ensure that the wait will be a
bounded one. If a TimeOut interval of 0 is supplied, the thread will never be put
to sleep; the state of the object will be checked and if not-signaled, control will
immediately be returned to the thread with the status of STATUS_TIMEOUT.

The following dispatcher objects are available to designers and developers of
kernel-mode drivers:

• Event objects

• Timer objects

• Mutual exclusion objects

• Semaphore objects

In addition to the dispatcher objects listed here, threads can also wait for process,
thread, and file object structures.

Event objects

Event objects are used to synchronize execution between multiple threads. They
record the occurrence of an event that determines execution flow. Consider a
producer-consumer relationship between two threads: producer thread A creates
data to be processed while consumer thread B processes data whenever it
becomes available. Since thread B does not know when data will become avail-
able, it has two options:

• Keep inquiring from thread A whether data is available for processing. This is
not conducive to good system performance, since valuable processor cycles
get consumed in this kind of busy-wait mode.

• Wait for thread A to inform it whenever data is made available.

Since the second option is clearly superior, it is most often used in such situations.

To implement this notification, an event object can be used.*

* Note that a counting semaphore (discussed later) could he used equally well for this purpose.

Driver Synchronization Mechanisms_______________________________101

The event object must be initialized before it can be used. Initially, the event
object would be set to the not-signaled state. Thread B would then invoke a wait
call on this event object and would be suspended from execution until the wait
can be satisfied. When thread A has data available for processing, it could invoke
the KeSetEvent () call to signal the event object. This would result in thread B
being inserted into the queue of threads that can be scheduled for execution. At
some point, the system scheduler schedules thread B for execution, and thread B
processes the data. This method can be repeated as often as required.

There are two types of event objects:

Notification event objects
In this type of event object, every thread that is waiting for the event object is
scheduled for execution once the event object is signaled. Also, the state of
the event object, when signaled, is not automatically reset to the not-signaled
state. Therefore, an explicit call to KeResetEvent () will have to be made
by some thread to set the state of the event object to the not-signaled state.
This type of event object is typically used when a single occurrence of an
event, resulting in the event object being set to the signaled state, triggers
execution by any other thread waiting for that event to occur. For example,
consider the analogy of a car race: when the start signal is given, all cars in
the competition take off, each trying to get to the finish line.

Synchronization event objects
This type of event object is our producer-consumer example. Here, when the
event object is set to the signaled state, only one waiting thread will be sched-
uled for execution and the event object is then automatically reset to the not-
signaled state. This type of object ensures that only one thread accesses the
shared data resource at any point in time.

The following kernel-mode support routines are available for interacting with
event objects:

KelnitializeEvent()
Your driver must allocate storage for the event object from nonpaged pool.
Once you have allocated the storage, you must invoke this routine to
initialize the event object before any thread attempts to wait for, signal, or
reset it. When this routine is invoked, you can specify whether the event
object should be a notification type object or a synchronization type object.
You can also specify the initial state of the event object, signaled or not-
signaled.

loCreateSynchronizationEvent()
Note that this is not strictly a kernel support routine, but one provided by the
I/O Manager. This routine is only available in the Windows NT 4.0 and later

102 ___________________________ Chapter 3: Structured Driver Development

releases and allows your driver to request that a named synchronization event
object be created or opened. Since this event object has a name, multiple
drivers can now use the same event object to synchronize access to a shared
data resource.*

This routine will either create a named event object, if no such event object
exists (and also initialize the event object to the signaled state), or open a
previously created event object. It returns two values, a pointer to and a
handle for the event object. All the calls to manipulate event objects, listed
below, can be used on the returned event object pointer. When your driver
no longer needs to use this object, it should invoke the ZwClose () routine
to close the returned handle.

KeSetEvent ()
This routine allows you to set the state of the event object to the signaled
state. One or more threads that are waiting for the object to be signaled will
get scheduled for execution.

Consider the following pseudocode fragment:
thread_A {

while (TRUE) {
create new data;
signal event object 1;
wait for event object 2 to be signaled;

thread_B {
while (TRUE) {

wait for event object 1 to be signaled;
process data;
signal event object 2;

This code describes a typical producer-consumer relationship. Here we see
that each thread performs a wait operation immediately after signaling an
event object.
Signaling an event object is one point when the system scheduler might
perform a context switch. However, since our threads will voluntarily put
themselves to sleep following the signal operation, it seems redundant for
them to be scheduled out, only to be rescheduled some time later and imme-
diately put to sleep. It would be more efficient, instead, if they were allowed

* The event objects that you otherwise allocate storage for from within your driver are only accessible to
your driver unless you implement some horrendous method of passing pointers between drivers, using
a private IOCTL. Therefore, it was quite difficult for two or more drivers in Windows NT Version 3.51 and
earlier versions to synchronize access to a shared data resource using event objects.

Driver Synchronization Mechanisms______________________________103

to continue executing after the signal operation so that they could put them-
selves to sleep and avoid the extra overhead of one unnecessary context
switch. This can be achieved by specifying the Wait argument to
KeSetEventO as TRUE.

NOTE Implementation of POSIX threads-style condition variables requires
the capability to atomically release a mutex object and then put the
thread that released the mutex to sleep. This can be achieved easily
by specifying the Wait argument in KeSetEvent () as TRUE.

KeResetEvent () /KeClearEvent ()
Both routines allows you to set the state of the object to the not-signaled
state. KeResetEvent () also returns the previous state of the event object.

KeReadStateEvent ()
This routine gives you the current value of the event object (signaled or not-
signaled).

Timer objects

Timer objects are used to record the passage of time. If a thread wishes to
perform a task after some time has elapsed or at a specified time value, it should
use a timer object. The timer object has a state associated with it, either signaled
or not-signaled. When the desired time interval passes, the timer object is set to
the signaled state and all threads waiting for the timer object will have their wait
satisfied and will be scheduled for execution.

Just as with other dispatcher objects, storage for the timer object must be
provided in nonpaged memory by the driver. The timer object must be initialized
to the not-signaled state.

There are two ways your driver can use a timer object:

• A thread in your driver might initialize a timer object and then invoke a wait
routine (e.g., KeWaitForSingleObject ()) to suspend execution until the
timer object is set to the signaled state (after the specified time interval has
elapsed).

• Alternatively, when setting the timer object to expire after the time period has
elapsed, a Deferred Procedure Call (DPC) might be specified. When the time
period expires, the DPC routine will be scheduled for execution, and any
required processing could be performed within that DPC routine.

104 _________________________Chapter 3-' Structured Driver Development

NOTE Deferred Procedure Calls are another way of influencing the opera-
tion of the kernel. The DPC provides the capability of breaking into
the execution of the currently running thread (via a software inter-
rupt), and executing a specified procedure at IRQL DISPATCH_
LEVEL. No system services can be invoked when executing the
DPC procedure and page faults are not tolerated. Furthermore,
DPCs are not targeted to a specific thread like Asynchronous Proce-
dure Calls. Whenever the current IRQL falls below DISPATCH_LEV-
EL, a software interrupt will happen and the DPC dispatcher
invoked. Typically, DPCs are used by device drivers to complete in-
terrupt-handling-related processing.
On any single processor, only one DPC can be executing at any giv-
en instant in time. However, on multiprocessor systems, there could
potentially be a DPC executing on each processor concurrently.
Thread scheduling on the processor is suspended while the DPC is
executing at IRQL DISPATCH_LEVEL

With the release of Windows NT 4.0, two types of timer objects are available:*

Notification timer object
When this type of timer object is signaled, all threads that were waiting for
this object have their waits satisfied. These threads will all get scheduled for
execution.

Synchronization timer object
When this type of timer object is signaled, only one thread waiting for the
timer object will have its wait satisfied. The timer object will automatically be
reset to the not-signaled state.

One further enhancement made in Windows NT 4.0 to timer objects is that you
can now specify periodic (recurring) timer objects. These timer objects will auto-
matically be reinserted into the active timer list, as many times as specified in the
Period argument when setting the timer object.

The following kernel-mode support routines are available for interacting with
timer objects:

KelnitializeTimer()/KeInitializeTimeEx()
The latter version is only available on the Windows NT 4.0 and subsequent
releases. This routine expects a pointer to a timer object allocated in
nonpaged memory. It will initialize the value of the timer object to the not-
signaled state. With the KeInitializeTimeEx() routine, you can specify
the type of the timer object (Synchronization type or Notification type).

* Windows NT 3.51 and earlier versions only supported the notifieation type of timer object.

Driver Synchronization Mechanisms______________________________705

KeSetTimer ()/KeSetTimerEx ()
This routine allows you to set a timer object. The time value is specified in
system time units (100-nanosecond intervals). You have two choices: if you
supply a negative time unit value, the value will be interpreted relative to the
current time when the routine was invoked. If a positive value is supplied, it
is interpreted as an absolute value; the time that the system was booted is
taken as time unit 0.

The KeSetTimerEx () routine became available with the release of Win-
dows NT 4.0 and it allows you to specify the number of times you wish the
timer to be reactivated.
Note that you can specify a DPC routine to be invoked once the timer is set
to the signaled state.

KeReadStateTimer()
This routine returns the current state of the timer (signaled or not-signaled).

KeCancelTimer()
This routine cancels a previously set timer if it has not yet expired. If there is
an associated DPC routine, it is canceled too.
Two points should be noted here. First, canceling a timer does not set the
state of the timer to the signaled state. Second, if the timer had previously
expired and the associated DPC routine is in the queue, that DPC routine will
not get canceled. Only if the timer had not previously expired will the associ-
ated DPC routine not get queued.

Mutex objects (mutual exclusion)

Mutex objects are similar to spin locks in that they allow only one thread to access
a shared data resource at any given instant in time. Any other thread that attempts
to acquire the same mutex object will be suspended until the first thread releases
the mutex object. The fact that a thread will be suspended awaiting the mutex
object to be signaled is the distinguishing feature between spin locks and mutex
objects.

Storage for mutex objects must be provided by the driver from nonpaged pool.
Also, the driver must ensure that any code executed once a mutex is acquired is
not pageable. Mutex objects come in two varieties:

Fast mutex objects
A fast mutex is simply a wrapped-up event dispatcher object. It provides
mutual exclusion semantics by allowing only one thread to acquire the mutex
at any instant. When the mutex object is released (i.e., its corresponding
event is signaled), only one other thread from those waiting for the mutex
object will be scheduled for execution. Therefore, the concepts underlying

106___________________________Chapter 3-' Structured Driver Development

the fast mutex data structure are the same as those for synchronization type
event object structures.

Fast mutex objects do not provide any form of deadlock prevention support.
Also, fast mutex objects cannot be recursively acquired. Therefore, if you
implement code in which one thread tries to acquire fast mutex #\ followed
by fast mutex #2 while another thread does so in the reverse order, you will
get a deadlock situation. Similarly, any thread that tries to recursively obtain a
fast mutex will deadlock with itself.

Support for fast mutex objects is provided by the NT Executive, because fast
mutex objects are not among the primitive synchronization mechanisms
exported by the Windows NT Kernel. Using fast mutexes is faster (hence the
name) than using the normal mutex structures supported by the kernel. The
routines to manipulate fast mutex objects follow:

ExInitializeFastMutex()
Initializes the passed-in fast mutex structure. This is actually a macro that
simply initializes the event object that comprises the fast mutex structure.

ExAcquireFastMutex()/ExAcquireFastMutexUnsafe()
If the fast mutex is not currently acquired by another thread, this thread
will be allowed to acquire the fast mutex. Any other thread that subse-
quently attempts to acquire this mutex will be suspended until the mutex
is released.

If the mutex had already been acquired by some other thread, the current
thread will be blocked until the fast mutex becomes available.

The difference between the two invocations is simple: if ExAcquire-
FastMutex () is used, the Executive disables delivery of Asynchronous
Procedure Calls (APCs) to the thread that has acquired the fast mutex. If
ExAcquireFastMutexUnsaf e () is used instead, the Executive
assumes that the call is protected within a critical region* and hence does
not bother to disable APCs.

* Highest level drivers such as file system drivers can invoke KeEnterCriticalRegion() and Ke-
LeaveCriticalRegion () to note that the current thread is entering or leaving a critical region. Invok-
ing KeEnterCriticalRegionl) disables kernel-mode APCs. KeLeaveCriticalRegionl)
reenables delivery of kernel-mode APCs to the calling thread. The KeEnterCriticalRegion () macro
should be invoked whenever your driver would find it awkward to be interrupted from its processing to
receive a kernel-mode APC.

Driver Synchronization Mechanisms__ __ __ 707

NOTE Asynchronous Procedure Calls are a method by which control flow
for a thread can be affected. An APC must be targeted toward a spe-
cific thread. This is in contrast to a DPC, which executes in the con-
text of any arbitrary thread currently executing on the processor.
The thread to which an APC is directed will be interrupted (via a
software interrupt), and the procedure specified when creating the
APC will be executed in the context of the interrupted thread at a
special IRQL, APC_LEVEL.
APCs can be delivered both in user mode and in kernel mode. Ker-
nel-mode APCs come in two flavors: normal and special. Normal
APCs can be disabled by a kernel-mode driver by invoking KeEn-
terCriticalregionO. However, special APCs cannot be dis-
abled. Consult the DDK for more information on Asynchronous
Procedure Calls.

ExReleaseFastMutex()/ExReleaseFastMutexUnsafe()
These calls release a previously acquired fast rnutex. Note that the appro-
priate call to be used depends on which call was invoked to acquire the
fast mutex, ExAccjuireFastMutex{) or ExAccruireFastMutex-
Unsafe () .

ExTryToAcguireFastMutex()
This routine will attempt to acquire the fast mutex. If it is successful, it
will return TRUE (and will have blocked kernel-mode APCs). If it could
not acquire the fast mutex, it will return FALSE. The caller then has the
option of retrying immediately (polling) or retrying after some period of
time.

Mutex objects
Mutex objects are similar to their fast mutex counterparts. However, mutex
objects are supported by the NT Kernel, and they have the following addi-
tional features missing in the fast mutex implementations:
— Your driver can associate a level with each mutex object that it initializes.*

The kernel checks the level of the mutex being acquired to ensure that all
previously acquired mutexes are at a level strictly less than the level of
the current mutex (unless the same mutex is being acquired recursively).

— Mutex objects can be acquired recursively.

' The level associated with a mutex object should correspond to your locking hierarchy. For example, if
your locking hierarchy dictates that mutex #1 is always acquired before mutex #2, then you should asso-
ciate a lower level (lower nonzero numerical value) with mutex #1 and a higher level (higher nonzero
numerical value) with mutex #2.

,

108___________________________Chapter 3: Structured Driver Development

Therefore, a thread in your driver can safely reacquire the same mutex
object multiple times. The only restriction is that the mutex should be
released exactly the same number of times that it was acquired.

— When a thread in your driver has a wait on a mutex object satisfied, the
priority of the thread is boosted to the lowest real-time priority in the
system.

This priority will subsequently automatically be lowered when the mutex
object is released.

— The owning process (for the thread that acquires the mutex) will not be
paged out to secondary storage.

The following routines are provided by the NT Kernel to support mutex
objects:

KelnitializeMutex()
Your driver must specify a valid nonzero Level argument if it needs to
acquire multiple mutex objects concurrently (if you specify 0 as the value
for Level for each mutex that you initialize, trying to acquire multiple
mutex objects concurrently will result in a system bugcheck).

KeReadStateMutex()
This routine returns the current state of the mutex (signaled or not
signaled).

KeReleaseMutex()
This routine is used to release a previously acquired mutex. If the thread
releasing the mutex expects to immediately execute a call to a kernel wait
routine (e.g., KeWaitForSingleObject ()) , it should supply the Wait
argument as TRUE. This will avoid an unnecessary context switch.

Semaphore objects

Semaphore objects (counting semaphores) allow one or a specific number of
threads to concurrently access a shared data resource. They can be used to
provide mutual exclusion (similar to mutex objects) by specifying that only one
thread should be allowed access to the shared object at any point in time. By
allowing the flexibility of specifying the exact number of threads that can concur-
rently access shared data, they are ideal in situations where the amount of
parallelism needs to be tightly controlled. Semaphores should be viewed as gates.
As long as the gate is open, concurrent access to the shared data resource is
allowed. Once the gate is shut, no more threads will be allowed access to the
shared data resource.

Although similar to mutex objects, semaphores do not provide the deadlock
checking facility provided by mutex objects. Acquisition of a semaphore does not

Driver Synchronization Mechanisms______________________________109

result in disabling kernel-mode APCs. Note that storage for semaphore objects
must be provided by your driver and should always be allocated from non-paged
memory.

Here's how semaphores work. Each semaphore has an associated Count value. If
the Count associated with the semaphore object is zero, any thread that waits for
the semaphore object will be suspended. Whenever a thread that acquired the
semaphore object releases the semaphore, the Count gets incremented by a speci-
fied amount (the Adjustment argument specified when releasing the
semaphore). If incrementing the Count results in a transition from 0 to a non-
zero value, then a certain number of waiting threads will have their wait satisfied.

Each time a wait is satisfied the Count gets decremented by 1; therefore, the
number of waits that will get satisfied on a transition from 0 to a nonzero value
will be equal to the value of the nonzero Count. The net result is that a fixed
number of threads (bounded by the Limit value specified when initializing the
semaphore) can concurrently acquire the semaphore and thereby concurrently
access the shared resource.

The following routines are provided by the NT Kernel to support counting sema-
phore objects:

KelnitializeSemaphore()
You can specify the initial value of the Count associated with the sema-
phore. If the Count is nonzero, the semaphore will be set to the signaled
state. You must also specify the maximum count that will be allowed for the
semaphore. This Limit argument bounds the number of concurrent accesses
to the shared data resource protected by the semaphore.

KeReleaseSemaphore {)
When releasing a semaphore, your driver can specify the Argument, which
is the amount by which the Count associated with the semaphore should be
incremented. This might result in satisfying one or more waiting threads. Note
that if incrementing the count by the supplied Argument value results in
exceeding the original Limit value (specified when initializing the sema-
phore), or if you specify a negative value for the Argument variable, the
thread performing the release will encounter an exception of STATUS_
SEMAPHORE_LIMIT_EXCEEDED.

KeReadStateSemaphore()
This routine returns the current value of the Count associated with the sema-
phore. This value should be interpreted as the number of waits that will be
immediately satisfied for the semaphore object.

110___________________________Chapter 3-' Structured Driver Development

ERESOURCE Objects (Read/Write Locks)
The Windows NT Executive provides an important additional synchronization
mechanism extensively used by file system drivers. The ERESOURCE structure is a
primitive that provides single writer (exclusive access), multiple reader (shared
access) semantics. Therefore, each thread has the flexibility of determining the
type of access to request from the resource structure.

When a thread needs to modify the shared data protected by the resource, it must
request the read/write lock exclusively. However, if the thread just needs to read
the contents of the shared data protected by the resource, it will typically acquire
the resource shared, allowing other threads to concurrently read the same shared
data. If any thread acquires the resource exclusively, of course, no other thread
can acquire it.

Storage for these read/write locks must be provided by the driver from nonpaged
pool.

The ERESOURCE structure has the concept of an owning thread for the resource
(multiple reader threads could concurrently own the same resource shared). Addi-
tionally, these read/write locks provide recursive acquisition functionality.
However, the thread must release the lock as many times as it was acquired.

A note of caution: none of the dispatcher synchronization primitives discussed in
this chapter needs to be uninitialized when a driver determines that the primitive
is no longer needed and deallocates the memory reserved for the synchronization
primitive. However, ERESOURCE structures must be uninitialized (or deleted from
the global linked list of resources) before memory allocated for these structures
can be deallocated.

Finally, all the resource manipulation routines require that the IRQL of the
processor be less than or equal to DISPATCH_LEVEL.

NOTE The ERESOURCE structure uses an Executive spin lock to protect in-
ternal fields within the resource structure. When acquiring this spin
lock, the Executive raises the IRQL for the processor to DISPATCH_
LEVEL. Therefore, invoking any of the routines at an IRQL greater
than DISPATCH LEVEL could lead to a deadlock condition.

The following routines are provided by the NT Executive to support ERESOURCE
structures:

Driver Synchronization Mechanisms_______________________________111

ExInitializeResourceLite ()
This simple routine initializes the resource structure allocated by the driver.
The resource is added to a global linked list of resource structures, and there-
fore, it is important that the driver uninitialize the resource before freeing
memory allocated to it.

ExDeleteResourceLite()
This routine unlinks the resource from the global linked list of resources. The
memory reserved for this resource structure can subsequently be released.

ExAcquireResourceExclusiveLite ()
This routine will attempt to acquire the resource structure exclusively (for
write access). The thread requesting exclusive access can specify whether it
wishes to wait (block) for the resource to become available. If the thread is
not prepared to block, and if some other thread has the resource acquired
shared or exclusively, this routine will return FALSE, indicating that the
request to acquire the resource was unsuccessful.

ExTryToAcquireResourceExclusiveLite()
This routine is functionally equivalent to invoking ExAcquireResourceEx-
clusiveLite () with the Wait argument set to FALSE. However, Microsoft
literature claims that this call is more efficient.

ExAcquireResourceSharedLite ()
This routine will attempt to acquire the resource structure shared (for read
access). The thread requesting exclusive access can specify whether it wishes
to wait (block) for the resource to become available. If the thread is not
prepared to block and if some other thread has the resource acquired exclu-
sively, this routine will return FALSE, indicating that the request to acquire the
resource was unsuccessful. If other threads have this resource acquired
shared, the current request for shared access will be successful and will return
TRUE.

ExReleaseResourceForThreadLite ()
Invoke this function to release a previously acquired resource. The thread ID
(identifying the thread that is performing this operation) must be passed in as
an argument to this routine. This thread ID can be obtained by a call to
ExGetCurrentResourceThread().

ExAcquireSharedStarveExclusive ()
Typically, requests for resource acquisition are managed so that threads
requesting exclusive access are not starved out. Starvation can occur under
the following scenario:
A thread has the resource acquired shared. Subsequently, a request for exclu-
sive acquisition arrives with the Wait argument set to TRUE. This request is

112 Chapter 3: Structured Driver Development

therefore queued. Before the thread that has the resource shared releases the
resource, another shared acquisition request is also received. If the NT Execu-
tive keeps satisfying the requests for shared acquisition while making the
request for exclusive access wait, it is possible that the request for exclusive
activation will get starved (i.e., will never be completed).
Therefore, the NT Executive will typically not satisfy a new request for shared
access if a previous request for exclusive access is already queued.*

By using this call however, a thread deliberately requests that its request for
shared access be given preference over any preexisting queued requests for
exclusive access.

ExAcquireSharedWaitForExclusive()
This routine is the inverse of the previous one. Here, a shared access
requester explicitly states that preference should be given to exclusive access
requests even if such requests arrive after the current one. Therefore, the
current request will only be satisfied if there are no pending exclusive
requests for the resource (unless this is a recursive acquisition request).

Supporting Routines (RTLs)
The Windows NT Executive provides a substantial amount of support to kernel-
mode driver developers via the run-time library and the filesystem run-time
library.t These libraries should be explored thoroughly if you wish to develop
kernel-mode drivers.

The run-time library consists of sets of routines that do the following:

• Manipulate doubly linked lists
• Query the Windows NT Registry and write information to the Registry

• Execute type conversion routines (character to string, etc.)

• Execute string manipulation routines for ASCII and Unicode strings (including
conversion from ASCII to Unicode and vice versa)

• Copy, zero, move, fill, and compare memory blocks
• Perform 32-bit integer arithmetic and 64-bit large integer and long arithmetic

(including conversion between types)

* Note that if a requesting thread already owns the resource exclusively and asks for shared access to the
resource (recursively), the request is always granted.
t The file system run-time library (FSRTL) functions and structure headers are not declared in the DDK
(although some of the RTL functions are exposed). However, throughout the course of this book, I will
present important routines and structures defined in the file system run-time library. Microsoft released a
Windows NT Installable File Systems (IFS) Developers Kit in April 1997. From all available informational
the time of writing this book, the header files for structure definitions and function declarations contained
within the FSRTL are only available as part of the Installable File Systems (IFS) kit from Microsoft fora
sum of money in addition to the amount paid for the Device Driver's Kit (DDK).

Supporting Routines (RTLs)____________________________________113

• Perform time conversion and manipulation routines
• Create and manipulate security descriptors

Although routines contained in these two libraries are not discussed in detail here
(see Chapter 2, File System Driver Development, for a discussion of some of them),
example code throughout this book will use one or more of the functions, struc-
ture definitions, and macros contained within these libraries.

Run-time library functions can be easily identified by the prefix Rtl prepended to
all function declarations. Similarly filesystem run-time library routines can be iden-
tified by the FsRtl prefix prepended to function declarations.

I highly recommend you familiarize yourself with the functionality provided by
these two libraries, and that you use these routines in your driver whenever the
need arises. You should use run-time library routines when you would have other-
wise used standard C library routines, e.g., instead of using the memcpy () library
call, try to use the RtlCopyMemory () supporting routine. This will ensure
correct behavior of your driver on all platforms.

Although header files for both of these libraries must be purchased from Microsoft
as part of an IPS kit, this book will provide descriptions and sample usage of
important structure definitions and function declarations provided by each of
these libraries.

In this chapter:
• The NT I/O Subsystem
• Common Data

Structures
• I/O Requests: A

Discussion
• System Boot

Sequence
The NT I/O Manager

Successfully interfacing with external devices is essential for any computing
system. A general-purpose commercial operating system like Windows NT must
also interact with a variety of peripherals, the common ones most of us use each
day, as well as the more uncommon external devices that might be useful in
some specific settings. For example, we expect the NT operating system to
provide us with built-in support for our hard disks, keyboard, mouse, and video
monitor. If, however, I wish to attach a programmable toaster device to my
system (my new invention), and I would like to control this device using my
computer, which is running Windows NT, I suspect that I will have to develop a
driver to control the device. Furthermore, if I expect to be successful in devel-
oping this driver, I will obviously have to look to the operating system to provide
an appropriate environment and support structure that makes developing,
installing, testing, and using this driver a task that might be difficult but not
insurmountable.

Although some might argue that such expectations of support from an operating
system are unreasonable, the Windows NT operating system does provide such a
framework, so that mere mortals like you and me can develop necessary drivers
to control such esoteric devices as a programmable toaster. In fact, the NT oper-
ating system provides a consistent, well-defined I/O subsystem within which all
code required to interface with external devices can reside. The I/O subsystem is
extensive, encompassing file system drivers, intermediate drivers, device drivers,
and services to support and interface with such drivers. It is also consistent in its
treatment of external devices.

In this chapter, I will present an introduction to the NT I/O Manager, the compo-
nent responsible for creating, maintaining, and managing the NT I/O subsystem.
To develop any kind of driver for the Windows NT operating system, an under-

117

118 Chapter 4: The NT I/O Manager

standing of the framework provided by the I/O Manager is extremely important.
First, I will describe some of the services provided by the I/O Manager. Next, I
will present an overview of the components comprising the I/O subsystem,
including a discussion of the various types of drivers that can exist within the I/O
subsystem. I will then describe some common data structures that kernel-mode
developers should be familiar with. Following this is a discussion on some
common issues involving I/O requests sent to kernel-mode drivers. Finally, I will
present a description of the system boot sequence, with emphasis on the activities
of the I/O Manager and the drivers within the kernel.

The NT I/O Subsystem
The NT I/O subsystem is the framework within which all kernel-mode drivers
controlling and interfacing with peripheral devices reside. This subsystem is
composed of the following components (see Figure 4-1):

• The NT I/O Manager, which defines and manages the entire framework.

• File system drivers that are responsible for local, disk-based file systems.

• Network redirectors that accept I/O requests and issue them over the network
to a file server. The redirectors are implemented similarly to other file system
drivers.

• Network file servers that accept requests sent to them by redirectors on other
nodes, and reissue these requests to local file system drivers. Although file
servers do not need to be implemented as kernel-mode drivers, typically they
are implemented as such for performance reasons.

• Intermediate drivers, such as SCSI class drivers. These drivers provide generic
functionality that is common to a set of devices. Intermediate drivers also
include drivers that provide added functionality, such as software mirroring or
fault tolerance, by using the services of device drivers.

• Device drivers that interface directly with hardware, such as controller cards,
network interface cards, and disk drives. These are typically the lowest-level
kernel-mode drivers.

• Filter drivers that insert themselves into the driver hierarchy to perform func-
tionality that is not directly available using the existing set of drivers. For
example, a filter driver can layer itself above a file system driver, intercepting
all requests that are issued to the file system driver. A filter driver could just
as well layer itself below the file system driver, but above a device driver,
intercepting all requests targeted to the device driver. Note that conceptually,
the only tangible difference between filter drivers and other intermediate driv-
ers is that filter drivers typically intercept requests targeted to some existing

The NT I/O Subsystem 119

Figure 4-1. Kernel-mode components, including the I/O subsystem

device and then provide their own functionality, either in lieu of or in addi-
tion to the functionality provided by the driver that was the original recipient
of the request.

Functionality Provided by the NT I/O Manager
The NT I/O Manager oversees the NT I/O subsystem. The following is a list of
some of the functionality provided by the I/O Manager:

• The I/O Manager defines and supports a framework that allows the operating
system to use peripherals connected to the system.

The type and number of peripherals that can potentially be used with a Win-
dows NT system is not limited, since new types of peripheral devices are con-

118__________________________________Chapter 4: The NT I/O Manager

standing of the framework provided by the I/O Manager is extremely important.
First, I will describe some of the services provided by the I/O Manager. Next, I
will present an overview of the components comprising the I/O subsystem,
including a discussion of the various types of drivers that can exist within the I/O
subsystem. I will then describe some common data structures that kernel-mode
developers should be familiar with. Following this is a discussion on some
common issues involving I/O requests sent to kernel-mode drivers. Finally, I will
present a description of the system boot sequence, with emphasis on the activities
of the I/O Manager and the drivers within the kernel.

The NT I/O Subsystem
The NT I/O subsystem is the framework within which all kernel-mode drivers
controlling and interfacing with peripheral devices reside. This subsystem is
composed of the following components (see Figure 4-1):

• The NT I/O Manager, which defines and manages the entire framework.
• File system drivers that are responsible for local, disk-based file systems.

• Network redirectors that accept I/O requests and issue them over the network
to a file server. The redirectors are implemented similarly to other file system
drivers.

• Network file servers that accept requests sent to them by redirectors on other
nodes, and reissue these requests to local file system drivers. Although file
servers do not need to be implemented as kernel-mode drivers, typically they
are implemented as such for performance reasons.

• Intermediate drivers, such as SCSI class drivers. These drivers provide generic
functionality that is common to a set of devices. Intermediate drivers also
include drivers that provide added functionality, such as software mirroring or
fault tolerance, by using the services of device drivers.

• Device drivers that interface directly with hardware, such as controller cards,
network interface cards, and disk drives. These are typically the lowest-level
kernel-mode drivers.

• Filter drivers that insert themselves into the driver hierarchy to perform func-
tionality that is not directly available using the existing set of drivers. For
example, a filter driver can layer itself above a file system driver, intercepting
all requests that are issued to the file system driver. A filter driver could just
as well layer itself below the file system driver, but above a device driver,
intercepting all requests targeted to the device driver. Note that conceptually,
the only tangible difference between filter drivers and other intermediate driv-
ers is that filter drivers typically intercept requests targeted to some existing

The NT I/O Subsystem 119

Figure 4-1. Kernel-mode components, including the I/O subsystem

device and then provide their own functionality, either in lieu of or in addi-
tion to the functionality provided by the driver that was the original recipient
of the request.

Functionality Provided by the NT I/O Manager
The NT I/O Manager oversees the NT I/O subsystem. The following is a list of
some of the functionality provided by the I/O Manager:

• The I/O Manager defines and supports a framework that allows the operating
system to use peripherals connected to the system.

The type and number of peripherals that can potentially be used with a Win-
dows NT system is not limited, since new types of peripheral devices are con-

120__________________________________Chapter 4: The NT I/O Manager

tinuously being designed and developed. Therefore, the I/O subsystem for a
commercial operating system like Windows NT must be well-designed and
extensible, such that it can easily accommodate the myriad devices, each with
its own set of unique characteristics, that could be used.

• The NT I/O Manager provides a comprehensive set of generic system services
used by the various subsystems to actually perform I/O or request other ser-
vices from kernel-mode drivers.

Consider a read request initiated by a user process. This read request is
directed to the controlling subsystem, such as the Win32 subsystem. Note that
the Win32 subsystem does not actually direct the read request to the file sys-
tem driver or device driver itself; instead it invokes a system service called
NtReadFileO , supplied by the I/O Manager. The NtReadFileO system
service then assumes the responsibility for directing the request to the appro-
priate driver and conveying the results to the Win32 subsystem. Also note that
the buffer supplied by the user process requesting the read operation usually
cannot be used directly by the kernel-mode drivers that will eventually satisfy
the request. The I/O Manager provides the support to automatically perform
the necessary operations that would allow the kernel-mode drivers to use a
buffer address that is accessible in kernel-mode. Later in this chapter, I will
describe this operation of manipulating user-mode buffers in further detail.
Although the native NT system services are very poorly documented (if at all),
you can find a detailed description of these services in Appendix A, Windows
NT System Services, in this book.

• The NT I/O Manager defines a single I/O model that all drivers in the system
must conform to. As mentioned above, this model consists of objects and a
set of associated methods used to manipulate the objects. Kernel-mode driv-
ers do not need to be concerned with the originator of an I/O request, since
they respond to all I/O requests in the same manner.
This results in a consistent interface provided to users of the I/O subsystem,
such as the Win32 or POSIX subsystem, and also protects the kernel-mode
drivers from having to worry about the vagaries associated with the particular
subsystem that issued the I/O request.

Furthermore, since every kernel-mode driver must conform to this single I/O
model, kernel-mode drivers can use services provided by each other, since a
kernel-mode driver does not really care whether the I/O request originates in
kernel-mode or user-mode. That said, if you do invoke the services of
another kernel-mode driver from your kernel-mode driver, there are certain
considerations that you must be aware of. These will be described later in this
chapter.

The NT I/O Subsystem

Finally, the single I/O model allows for the implementation of layered kernel-
mode drivers, which are supported by the NT I/O Manager. Each kernel-
mode driver in a layered hierarchy can utilize the services of the underlying
driver to complete a specific operation. In turn, the underlying driver can sat-
isfy the issued request without concerning itself with whether the request
came to it directly from some user process or from a driver that resides above
it in the hierarchy of layered drivers.

The I/O Manager supports installable file system implementations that use the
peripheral devices connected to the system.

The NT operating system includes support for the CD-ROM file system, the
NTFS log-based file system, the legacy FAT file system, the LAN Manager File
System Redirector, as well as the HPFS file system. In addition to supporting
such native local- and network-based file systems, the I/O Manager provides
the infrastructure for development of external, installable file systems, i.e., file
system implementations from third-party vendors. You can purchase commer-
cial implementations of NFS (the Network File System), DPS (the Distributed
File System), and other file system and network redirector implementations.

The NT I/O Manager supports dynamically loadable kernel-mode drivers.

The I/O Manager provides support for device-independent services that can
be utilized by other components of the NT operating system, as well as by
kernel-mode drivers that are implemented by third-party vendors.

If a kernel-mode driver needs to invoke the dispatch routine for another ker-
nel-mode driver, it can use the loCallDriver () service provided by the
I/O Manager. Similarly, if a kernel-mode driver has to allocate a Memory
Descriptor List (MDL) structure, the loAllocateMdl () routine, can be
used. There are other such services that are commonly used by kernel-mode
components (including kernel-mode drivers), provided by the NT I/O Man-
ager. The list of services is available in the Windows NT Device Drivers Kit
(DDK).

The NT I/O Manager interacts with the NT Cache Manager to support virtual
block caching of file data.
Later in this book, you will learn more about the functionality provided by
the NT Cache Manager.

The NT I/O Manager interacts with the NT Virtual Memory Manager and file
system implementations to support memory-mapped files.

In the next chapter, you will read in detail about memory-mapped files. Sup-
port for memory-mapped files is provided jointly by the NT I/O Manager, the
NT Virtual Memory Manager, and the appropriate file system driver.

122_______ ___________________________Chapter 4: The NT I/O Manager

If you wish to develop kernel-mode drivers for Windows NT, your driver must
conform to the specifications provided by the NT I/O Manager. This includes
creating and maintaining some data structures defined by the I/O Manager and
also supplying the methods that manipulate such objects. Furthermore, your
driver must respond appropriately to requests issued by the NT I/O Manager, and
your driver must return results of each operation back to the I/O Manager. It is
extremely unlikely that you can successfully develop a kernel-mode driver that
does not use any of the services provided by the NT I/O Manager. Therefore, you
will need to understand well the framework provided by the NT I/O Manager.
The remainder of this chapter addresses some of these issues in further detail.

Concepts in I/O Manager Design
The design of the NT I/O subsystem exhibits a number of characteristics
described in the following sections.

Packet-based I/O
The I/O subsystem is packet-based; i.e., all I/O requests are submitted using I/O
Request Packets (IRPs). IRPs are typically constructed by the I/O Manager in
response to user requests and sent to the targeted kernel-mode driver. However,
any kernel-mode component can create an IRP and issue it to a kernel-mode
driver using the loAllocatelrp () and loCallDriver () I/O Manager
routines described in the DDK.

The I/O Request Packet is the only method you can use to request services from
an I/O subsystem driver. By strictly conforming to this packet-based I/O model,
the NT I/O Manager ensures consistency across the I/O subsystem and enables
the layered driver model, described later in this section.

Each IRP sent to a kernel-mode driver represents a pending I/O request to that
driver. An IRP will continue to be outstanding until the recipient of the IRP
invokes the loCompleteRequest () service routine for that particular IRP.
Invoking loCompleteRequest () results in that I/O operation being marked as
completed, and the I/O Manager then triggers any post-completion processing
that was awaiting completion of the I/O request. A particular IRP can be
completed only once; i.e., only one kernel-mode driver can invoke loComple-
teRequest () for any outstanding IRP in the system.

You should be aware that, although packet-based I/O is the rule in Windows NT,
the NT I/O Manager, NT Cache Manager, and the various NT file system imple-
mentations collaborate to implement functionality called the fast I/O path, which
is an exception to this rule. The fast I/O method of I/O operations is only valid
for file system drivers. These operations are implemented using direct function

The NT I/O Subsystem__123

calls into the file system drivers and the NT Cache Manager instead of using the
normal IRP method. The fast I/O path is described in detail later in this book.

NT object model
The I/O Manager conforms to the NT Object Model defined and implemented by
the Object Manager component of the NT Executive.

Kernel-mode drivers, peripheral devices, controller cards, adapter cards, inter-
rupts, and instances of open files are all represented in memory as objects that
can be manipulated. These objects also have a set of methods, a set of operations
that can be performed on the object, associated with them. For example, each
controller card in the system is represented by a controller object, while each
instance of an open file is represented by the file object data structure. The
controller object can only be accessed using one of the methods associated with
the object. This same restriction also applies to the file object structure, as well as
to all other object types defined by the I/O Manager.

Note that kernel-mode drivers developed for Windows NT have to conform to
this object-based model along with the rest of the I/O subsystem. All drivers must
initialize a driver object structure representing the loaded instance of the device
driver itself. In addition, if the driver manages devices or peripherals attached to
the system, it must create and initialize one or more device object structures.

Since the I/O Manager uses the NT object model, it can also use the services of
the Security Subsystem to control access to objects. The I/O Manager supports
named object structures. For example, file objects have a name associated with
them indicating the on-disk file that they represent. You can also create other
named objects, such as device objects, that can then be opened by other
processes or kernel-mode drivers.

Layered drivers
The I/O Manager supports layered kernel-mode drivers. Each driver in the hier-
archy accepts an I/O Request Packet, processes it, and then invokes the next
driver in the hierarchy.

Drivers lower in the hierarchy are closer to the actual hardware. However, only
the lowest drivers typically interact directly with hardware devices or cards. The
layered driver model is a boon to designers who wish to provide value-added
functionality not supplied with the base operating system. This feature enables
intermediate and filter drivers to be inserted into the driver hierarchy whenever
required, and therefore allows new functionality to be easily added to the system.
Furthermore, since each driver in the hierarchy interacts with drivers above and
below it in a consistent fashion, development, debugging, and maintenance of

.724

kernel-mode drivers is a lot easier than on most other operating system
implementations .

Asynchronous I/O
The NT I/O Manager supports asynchronous I/O* allowing a thread to request
I/O operations and continue performing other computational tasks until the previ-
ously requested I/O operations have been completed. This makes for greater
parallelism in completing computational tasks as opposed to the purely sequential
model in which a thread must wait for an I/O operation to proceed before it
proceeds with other activity.

Figure 4-2 graphically illustrates the sequence of activities that occur when
performing synchronous and asynchronous I/O operations. As you can see from
the illustration, the thread using asynchronous I/O can continue performing
computational activity in parallel with the servicing of the I/O request that it has
initiated. This results in higher performance and higher net throughput for the
system. Note that the default I/O mechanism is the synchronous model.

Preemptible and interruptible
The I/O subsystem is preemptible and interruptible. It is extremely important for
all kernel-mode driver developers to understand these two concepts.

Every thread executing in kernel mode executes at a certain system-defined Inter-
rupt Request Level (IRQL). Each IRQL has an interrupt vector assigned to it by the
system, and there are a total of 32 different IRQLs defined by Windows NT. Any
thread can have its execution interrupted due to an interrupt at a higher IRQL
than the IRQL at which that thread is executing. When such an interrupt occurs,
the Interrupt Service Routines (ISRs) associated with that particular interrupt are
executed in the context of the currently executing thread. This results in a suspen-
sion of the current flow of execution so that thread can execute the ISR code.t

IRQ levels range from PASSIVE_LEVEL (defined as numeric value 0), which is
the default level at which all user threads and system worker threads execute, to
IRQL HIGH_LEVEL (defined as numeric value 31), which is the highest possible
hardware IRQL in the system. Most file system dispatch routines are executed at
IRQL PASSIVE_LEVEL. However, most lower-level device driver routines (for
example, SCSI class driver read/write dispatch entry points) are executed at
higher IRQ levels — typically at IRQL DISPATCH_LEVEL (defined as numeric
value 2).

* The term overlapped I/O used by the Win32 subsystem refers to the same coneept as that of asynchro-
nous I/O supported by the NT I/O Manager.
t ISR execution can be interrupted as well if another, even higher-level interrupt occurs.

The NT I/O Subsystem_____________________________ ___ __ 125

Figure 4-2. Synchronous/asynchronous processing

Since all code in the I/O subsystem is interruptible, drivers developed for the NT
operating system must use appropriate synchronization and protection mecha-
nisms to prevent data corruption for data accessed at different IRQ levels. For
example, if your kernel-mode driver accesses a data structure at IRQL PASSIVE_
LEVEL in the context of a system worker thread, and if this driver also needs to
access this same data structure at IRQL DISPATCH_LEVEL when servicing an
interrupt request, the driver will have to use a spin lock that is always acquired at
IRQL DISPATCH_LEVEL, which is the highest-level IRQL at which the spin lock
could possibly be acquired, to provide mutually exclusive access to the data
structure.*

Threads executing I/O subsystem code in the kernel are also preemptible. The
Windows NT operating system associates execution priorities with threads. These
priorities are typically variable, and most user-level threads and system worker

* Chapter 3, Structured Driver Development, provides a description of the available locking and synchro-
nization primitives in the Windows NT kernel environment.

126 Chapter 4: The NT I/O Manager

threads execute at relatively lower priorities, which allow them to be preempted
by the NT scheduling code (in the NT Kernel) when a higher-priority thread is
scheduled to run.

The fact that such threads could be preempted while executing kernel-mode code
also necessitates synchronization mechanisms to ensure data consistency. This
requirement is not present in other operating systems, such as the Windows 3.1
operating environment, or some versions of UNIX (e.g., HPUX, or SunOS), which
currently do not allow preemption of threads or processes executing in kernel
mode.

Kernel-mode driver designers must be extremely careful when acquiring common
resources (e.g., read/write locks, semaphores) from within the context of different
threads, because the Windows NT Kernel does not provide any built-in safe-
guards against programming errors resulting in situations like the priority
inversion scenario described in Chapter 1, Windows NT System Components.

If you develop a driver that needs to acquire more than one synchronization
resource at an IRQL that is less than or equal to DISPATCH_LEVEL, you must
also be careful to define a strict locking hierarchy. For example, assume that your
kernel-mode driver has to lock two FAST_MUTEX objects, fast_mutex_l and/as/1
mutex_2. You must define the order in which all threads in your driver can
acquire both of these mutex objects. This order could be "acquire fast_mutex_l
followed by fast_mutex_2 or vice-versa. The reason for strictly defining and main-
taining a locking hierarchy is to avoid a situation like one where thread-a
acquired fast_mutex_l, wants to acquire fast_mutex_2, and gets preempted.
Thread-b in the meantime gets scheduled to execute, acquires fast_mutex_2, and
now needs to acquire fast_mutex_l. This scenario would cause a deadlock
condition.

Portable and hardware independent

The I/O subsystem is portable and hardware independent. Kernel-mode drivers
developed for Windows NT environments are also required to be portable and
hardware independent.

The NT Hardware Abstraction Layer (HAL) is responsible for providing an abstrac-
tion of the underlying processor and bus characteristics to the rest of the system.
NT drivers must be careful to use the appropriate HAL, NT Executive, and I/O
Manager support routines to ensure portability across Alpha, MIPS, PowerPC, and
Intel platforms.

The vast majority of the code in the NT I/O subsystem is written in C, a high-level
and portable language. NT currently also requires kernel-mode driver developers
to write their code in the C language, though it is possible with some extra work

The NT I/O Subsystem 127

to write and link drivers in assembly. However, development in low-level
languages, such as assembly, is highly discouraged, because assembly languages
are inherently processor/architecture specific, and therefore such drivers cannot
execute on more than one type of processor architecture.*

Multiprocessor safe

The I/O subsystem is multiprocessor safe. Windows NT was designed from the
ground up to be able to execute on symmetric multiprocessing environments.

Execution of NT kernel-mode code and drivers on multiprocessor machines
requires careful synchronization by kernel designers to avoid data consistency
problems. For example, on uniprocessor machines, a common practice used to
avoid data consistency problems while servicing an interrupt is to disable all other
interrupts on the same machine (e.g., via a cli assembly instruction on x86 archi-
tectures). However, this same mechanism will fail on symmetric multiprocessor
systems, because it is possible to encounter an interrupt on another processor,
even though all interrupts had been disabled on the current processor. Similarly,
on uniprocessor systems, it can be guaranteed (e.g., via usage of a critical section)
that only one thread at a time can access a particular data structure. However, on
symmetric multiprocessor architectures, even if preemption of a thread from a
single processor were temporarily suspended, other threads executing on other
processors could conceivably try to simultaneously access the same data structure.

Typically, spin locks and other higher level (Executive) synchronization mecha-
nisms must be used consistently and correctly in Windows NT drivers to ensure
correct functionality on multiprocessor systems.

Modular

The NT I/O subsystem is modular. Any driver within the NT I/O subsystem can
be easily replaced by another driver that provides support for the same dispatch
entry points supported by the original driver. The use of I/O Request Packets to
submit I/O requests and an object-based model where all I/O operations are
invoked via standard methods (or well-defined dispatch routine entry points)
allows easy replacement of one kernel-mode driver with another that responds
appropriately to the same dispatch routines.

All drivers also invoke the services of the I/O Manager using a well-defined and
consistent set of service and utility functions. Theoretically, therefore, the I/O
Manager is also easily replaceable. In practice, however, the I/O Manager is an
extremely complex and integral component of the core NT operating system, and

* There are third-party-provided libraries that claim to assist you in developing Windows NT device driv-
ers in C++.

128________ _______ ________________Chapter 4: The NT I/O Manager

would be extremely difficult to replace easily, even by developers at Microsoft
itself.

One obvious benefit of the modularity in the I/O subsystem, however, is the rela-
tive ease with which I/O Manager support functions and driver functionality can
be reimplemented without affecting any clients that use the services of the I/O
Manager or such drivers. As long as the interfaces are maintained consistently, the
internals of any implementation can be changed whenever required.

Configurable

All components of the I/O subsystem are configurable. The I/O Manager and all
components that comprise the I/O subsystem try to maximize run-time config-
urability. The NT I/O Manager works with the HAL to determine the set of
peripherals connected to the system at boot time. It then initializes the appro-
priate data structures to support these connected devices. This process avoids any
requirements for hardcoding device configurations into the operating system.
Windows NT does not as yet support true plug-and-play, though it should in the
near future.

Kernel-mode drivers can be developed to manipulate devices; each driver is
dynamically loadable and unloadable, minimizing unnecessary kernel overhead.
The I/O Manager determines the drivers to be loaded, and the order in which
they should be loaded, based upon the entries in the Windows NT Registry. I/O
Manager configuration parameters, as well as those required by kernel-mode
drivers, are obtained from the Windows NT Registry.

Any drivers that you develop should be as configurable as possible. This includes
avoiding any hardcoded values in the driver code and instead obtaining these
values from the system Registry, maximizing user configurability.

Process and Thread Context
Before discussing other details specific to the I/O Manager and the I/O
subsystem, it would be useful for you to understand the concepts underlying
thread/process contexts and to realize why a good grasp of these concepts is
essential to understanding the operation of the various components in the
Windows NT Kernel. To design and develop kernel-mode drivers under Windows
NT successfully, you will need a solid grasp of these issues.

Every process in a Windows NT operating environment is represented by a
process object structure and has an execution context that is unique to that
process. The execution context for the process includes the process virtual
address space (described in greater detail in the next chapter), a set of resources
visible to that process, and a set of threads that belong to the process. Examples

The NT I/O Subsystem 129

of resources owned by a process include file handles for files opened by that
process, any synchronization objects created by that process, and any other
objects that are created either by the process or on behalf of that process. Each
process has at least one thread that is created and belongs to the process,
although the process certainly could have numerous threads that belong to it.
Note that in Windows NT, the fundamental scheduleable entity is a thread object
and not the process object.

Each process is described internally by the Windows NT Kernel by a Process Envi-
ronment Block (PEB) structure, which is opaque to the rest of the system. The
PEB contains process global context, such as startup parameters, image base
address, synchronization objects for process-wide synchronization, and loader
data structures. Upon creation, the process is also assigned an access token called
the primary token of the process. This token is used, by default, by threads associ-
ated with the process to validate themselves when they access any Windows NT
object.

An object table is created for each new process object structure. This object table
is either empty or a clone of the parent process object table, depending upon the
arguments supplied to the system's create process routine and the inheritance
attributes (OBJ_INHERIT) for each of the objects contained within the object
table for the parent process. The default access token and the base priority for a
new process is the same as that of the parent process.

A thread object is the entity that actually executes program code and is scheduled
for execution by the Windows NT Kernel. Every thread object is associated with a
process object; several threads can be associated with a single process object,
which enables concurrent execution of multiple threads in a single address space.
On uniprocessor systems, threads can never be executed concurrently; however,
on multiprocessor systems, concurrent execution is possible and does occur.

Each thread object has a thread context unique to it. This context is architecture-
dependent and is typically composed of the following:

• Distinct user and kernel stacks for the thread, identified by a user stack
pointer and a kernel stack pointer

• Program counter

• Processor status

• Integer and floating-point registers

• Architecture-dependent registers

You will notice that object handles and other related information about open
object structures stored in the process' object table are global to all threads associ-
ated with the process. Therefore, all threads in a process can access all open

130_________________________________Chapter 4: The NT I/O Manager

handles for the process, even those opened by other threads within the process.
Threads belonging to other processes can only access objects that belong to the
process to which they are affiliated; any attempt to access a resource owned by
another process will result in an error returned by the Object Manager component
in Windows NT.*

Threads are typically referred to as user-mode or kernel-mode threads. Note that
there is no difference in the internal representation of such threads, as far as the
Windows NT operating system is concerned. The only conceptual difference
between such threads is the mode of the processor when the thread typically
executes code, and the virtual address range that is therefore accessible by the
thread. For example, a Win32 application process contains threads that execute
code while the processor is in user mode and therefore are referred to as user-
mode threads. On the other hand, there is a global pool of worker threads
created by the Windows NT Executive in the context of a special system process
that are used to execute operating system or driver code when the processor is in
kernel mode; these threads are typically referred to as kernel-mode threads.

Although user-mode threads typically execute code with the processor in user
mode, they often request system services, such as file I/O, which result in the
processor executing a trap and entering kernel mode to execute the file system
code that will service the I/O request. Notice that the user-mode thread is now
executing operating system (file system driver) code with the processor in kernel
mode, with all the rights and privileges that exist while the processor in this state.
While executing in kernel mode, the thread can access kernel virtual addresses
and perform operations that are otherwise always denied while the processor is in
user mode.

Execution contexts

Consider a kernel-mode driver that you develop. The fact that this is a kernel-
mode driver tells us that, while the code is being executed, the processor will be
in kernel mode and will therefore be able to access the kernel virtual address
range. You might wonder which set of threads will execute the code that you
develop. Will it be some special thread that you would have to create, or will it
be a user-mode thread that requests services from your driver, or will it be a
thread on loan from the pool of system worker threads I referred to earlier?

The answer is, it depends. Your driver might always execute code in the context
of a special thread that you may have created at driver initialization time, or it

* Typically, if you write a kernel-mode driver that attempts to use a handle that is not valid within the
execution context of the currently executing process, you will see an error status of STATUS_INVALID_
HANDLE returned to you.

The NT I/O Subsystem__131

might execute code in the context of a user thread that has requested I/O
services, or it might be invoked in the context of system worker threads. It is
quite possible that, if you develop a file system driver, your driver will execute
code in the context of all three types of threads. Furthermore, if you develop
device drivers or other lower-level drivers that have their dispatch routines
invoked in response to interrupts, your code will execute in the context of which-
ever thread was executing on that processor at the particular instant when the
interrupt occurs. This is referred to as execution of code in the context of an arbi-
trary thread, i.e., a thread whose context is unknown to your driver. The
operating system temporarily "borrows" the execution context of this thread to
execute your driver routines simply because this thread happened to be executing
code on the processor at the time the interrupt occurred.

As a kernel-mode driver designer, you must, therefore, always be aware of the
execution context in which your code will execute. This execution context is
always one of the following:

The context of a user-mode thread that has requested system services
If you develop a file system driver or a filter driver that resides above the file
system in the driver hierarchy, then your code will often execute in the
context of the user-mode thread that requested, say, a read operation. Your
code will then be able to access the kernel virtual address range, as well as
the virtual addresses in the lower 2GB of the virtual address space belonging
to the user-mode process to which the requesting user-mode thread belongs.*

Typically, only file system drivers or filter drivers that intercept file system
requests should expect that their dispatch routinest will be executed directly
in the context of user-mode threads. Other drivers cannot expect this, simply
because higher-level drivers might have posted the user request to be
executed asynchronously in the context of a worker thread, or your driver
code might be executed in response to an interrupt as discussed previously.

The context of a dedicated worker thread created by your driver or by some kernel-
mode component (typically a component belonging to the I/O subsystem)

File system drivers sometimes create special threads in the context of the
system process (using the PsCreateSystemThread() system service
routine described in the DDK) that they subsequently use to perform opera-
tions that cannot otherwise be performed in the context of user-mode threads
requesting I/O services. Filter drivers might also choose to create such dedi-

* See the next chapter for a detailed discussion on virtual address spaces.
t Dispatch routines are the entry points into a kernel-mode driver. Later in this chapter, I will describe-
the possible dispatch routines that a kernel-mode driver could have.

132__________________________________Chapter 4: The NT I/O Manager

cated worker threads; or for that matter, any kernel-mode component can
choose to create one or more worker threads.
If you write a file system driver, you might occasionally request that certain
operations be carried out by such threads created by you. Your code will
then execute in the context of your special threads. If, however, you write
lower-level drivers, and if the file system uses a special thread to process I/O
requests, your driver might now be invoked in the context of the special
thread created by the file system driver. Either way, you can see that the code
executes in the context of specially created threads belonging to the system
process.

The context of system worker threads specially created by the I/O Manager to serve
I/O subsystem components

It is possible for certain I/O operations to be performed in the context of
system worker threads that are created by the I/O Manager. These worker
threads are often used by file system driver implementations, or by device
drivers or other kernel-mode components that need thread context to perform
their operations. For example, consider asynchronous I/O requests from user-
mode applications. Typically, a file system driver will service such a request
by "posting" the request to be picked up and handled by a system worker
thread. Control is immediately returned to the calling application once the
request has been posted, and the I/O Manager will notify the application
once the request has been serviced in the context of the system worker
thread. In such a situation, all lower-level drivers will have their dispatch
routines invoked in the context of the system worker thread. Note that a
system worker thread belongs to the system process, just like the dedicated
worker threads created by kernel-mode components described earlier.
The important point to note here is that once the request has been posted to
the system worker thread, the virtual address space now accessible in the
context of the system worker thread is not the same as the virtual address
space that was accessible in the context of the original, user-mode thread that
requested the I/O operation. Similarly, the resources that were valid in the
context of the original user-mode thread are no longer valid in the context of
the system worker thread. The reason for this is obvious: the system worker
thread executes in the context of the system process, and the user-mode
thread that requested the I/O operation belongs to a distinct application
process with its own object table, virtual address space, and process environ-
ment block.

The context of some arbitrary thread
Consider now a device driver able to service one IRP at any given point in
time. Typically, most device drivers respond to I/O requests by queuing the

The NT I/O Subsystem__733

IRP for delayed processing, and by returning control immediately to the
driver above it in the hierarchy. The IRP will be processed later when the
driver can get to it, which is when I/O Request Packets before it in the queue
have been processed.
So how is an IRP taken off the queue? Once the current I/O operation is
completed by the target device, the device informs the operating system via a
hardware interrupt. The operating system responds to this interrupt by
invoking the Interrupt Service Routines that various drivers have associated
with that specific interrupt. One of these Interrupt Service Routines will be
the ISR specified by your driver. As part of ISR execution, the current IRP will
complete, and the next IRP will be taken off the device queue and scheduled
for actual I/O.*

The point to note here is that the ISR is executed asynchronously, in the
context of the currently executing thread—an arbitrary thread. Therefore,
when responding to such an interrupt, the driver cannot assume that the
virtual address space accessible to it is the same as that of the user thread that
requested the IRP now being completed. Resources associated with that
thread are not available to the driver code either, because the driver does not
know which thread's context is being borrowed to execute the ISR code.

Importance of thread and process contexts

Your kernel-mode driver code will be invoked in one of the execution contexts
described previously. The code you develop should be aware of the execution
context in which it will be invoked, since that determines the restrictions under
which your driver must operate.

Consider the case where you develop a kernel-mode driver that needs to open
some object; for example, your driver may perform file I/O itself and may there-
fore open a file and receive a file handle in return.t If you open this file in your
driver initialization code (the DriverEntry () routine that every kernel-mode
driver must have), you should be aware that this handle will only be valid in the

* If you do develop device drivers, you will note that most processing described above is actually per-
formed as a Deferred Procedure Call (DPC) initiated by the ISR. However, the DPC is also executed in
the context of an arbitrary thread. Although I will not focus on DPCs and device driver development in
this hook, you can consult the DDK for more information.
t Although it may seem strange that a kernel-mode driver might want to perform file I/O, there are filter
drivers that provide functionality that requires such capabilities. A strength of the object-based, layered
model followed by Windows NT components is that kernel-mode drivers have a tremendous amount of
flexibility in terms of services available to them. This leads to the design of very robust, and useful, kernel-
mode drivers.

134__________________________________Chapter 4: The NT I/O Manager

context of the kernel process and the threads associated with the kernel process.
So, if you use this handle in the context of system worker threads, the handle will
be valid. However, if you attempt to use the handle in the context of a user
thread, or an arbitrary thread context, your handle will not be valid. Similarly, if
your driver opens an object while servicing a read request in the context of a user
thread, the handle can be used only in the context of that thread. Any attempt to
use the handle in the context of a system worker thread, for example, will result
in an error.

You must be also be aware of when you can safely use the user buffer address,
passed to your driver, for a read or write I/O operation. The user specifies a
virtual address pointer that is perfectly valid in the context of that particular user
thread. However, if the I/O operation is not performed in the context of that user
thread (e.g., the I/O operation is performed asynchronously), the virtual address
passed in by the user application will no longer be valid and therefore cannot be
used by the kernel-mode driver. The I/O Manager provides support for accessing
user buffers in other contexts besides that of the requesting thread. I will discuss
this support in detail later in this chapter.

As discussed above, there are certain restrictions on the resources that can be
used by your driver, depending on the thread context in which your code
executes. This thread context depends on the circumstances under which your
code is invoked, and this context will determine the resources that your driver
can utilize.

Objects and handles

All objects created by kernel-mode components in the Windows NT Executive
can be referred to in two ways, either by using an object handle returned by the
NT Object Manager when the object is created or opened, or by using a pointer
to the object. Note that the pointer to an object allocated by a kernel-mode
component will typically be valid in all execution contexts, because the virtual
address referring to the object will be from the kernel virtual address range (more
on this in the next chapter). However, as mentioned earlier, object handles are
specific to the execution context in which the handle is obtained and hence are
valid only in that particular execution context.

Remember that each object created by the NT Object Manager has a reference
count associated with it. When the object is initially created, this reference count
is set to 1. The reference count is incremented whenever a kernel-mode compo-
nent requests the Object Manager to do so, typically via an invocation of
ObRef erenceObjectByHandle (), which is described in the DDK. The refer-
ence count is decremented whenever a close operation is performed on the
object handle. Kernel-mode drivers use the ZwClose () system service routine to

Common Data Structures 135

close a handle to any system-created object. The reference count is also decre-
mented when a kernel-mode component invokes ObDereferenceObject (),
which requires the object pointer to be passed in. When the object count goes to
zero, the object will be deleted by the NT Object Manager.

In the course of this book, you will often find places where we open an object
and receive a handle, then obtain a pointer to the object and stash it away some-
place (possibly in global memory), reference the object, and close the handle.
This allows us two advantages:

• By saving a pointer to the object, we can always reobtain a handle to the
same object in the context of a thread other than the one that originally
opened the object. You can find concrete examples of this later in the book.

• By referencing the object and closing the original handle, we are assured the
object will not be deleted (until we finally dereference it for the last time), yet
we are also assured that, once the last dereference operation is performed,
the object will automatically be deleted.

Keep the above discussion in mind as you go through the discussion and code
presented throughout this book. This methodology of working with objects and
object handles will probably be used extensively by you when you develop your
own kernel-mode driver.

Common Data Structures
Data structures are the heart of any computer application or operating system.
The NT I/O Manager defines certain data structures that are important to kernel-
mode driver designers and developers. Often, your driver will have to create and
maintain one or more instances of these data structures to provide driver function-
ality. In this section, I will briefly discuss the structure and uses of some of the
data structures that are important to file system driver and filter driver developers.
Note that all of these structures are well documented in the Windows NT DDK.
However, our objective here is to understand the reason for creating and working
with these data structures, as well as to get a good understanding of the important
fields that comprise these data structures.

Driver Object
The DRIVER_OBJECT structure represents an instance of a loaded driver in
memory. Note that a kernel-mode driver can only be loaded once; i.e., multiple
instances of the same driver will not be loaded by the Windows NT I/O Manager.
The driver object structure is defined as follows:

136 Chapter 4: The NT I/O Manager

typedef struct _DRIVER_OBJECT {
CSHORT Type ;
CSHORT Size;
/* a linked list of all device objects created by the driver */
PDEVICE_OBJECT DeviceObject;
ULONG Flags;
PVOID DriverStart;
ULONG DriverSize;
PVOID DriverSection;
/*** ********************************
the following field is provided only in NT Version 4.0 and later

PDRIVER_EXTENSION
/*****************

DriverExtension;

the following field is only provided in NT Version 3.51 and before

ULONG

UNICODE_STRING
PUNICODE_STRING
PFAST_IO_DISPATCH
PDRIVER_INITIALIZE
PDRIVER_STARTIO
PDRIVER_UNLOAD
PDRIVER_DI SPATCH

} DRIVER_OBJECT;

Count;

DriverName;
HardwareDatabase;
FastloDispatch;
Driverlnit;
DriverStartlo;
DriverUnload;
Ma j orFunction [IRP_MJ_MAXIMUM_FUNCTION 11;

Earlier in this chapter, I discussed the NT packet-based I/O model. Each I/O
Request Packet describes an I/O request. The major function of an I/O request
packet is to request functionality from a driver.

We know that the IRPs will have to be dispatched to some I/O driver routines. If
you examine the driver object structure, you will notice that it contains memory
allocated for an array of function pointers called the Ma j orFunction array. It is
the responsibility of the kernel-mode driver to initialize the contents of this array
for each major function that the kernel-mode driver supports. There are no restric-
tions on the number of functions that your driver must support, nor are there any
restrictions specifying that each function pointer should point to a unique func-
tion; you could initialize the entry points for all major functions to point to a
single routine and this would work perfectly (as long as your driver routine
handled all the IRPs that would be directed to it). If you develop a kernel-mode
driver, you will probably support at least one major function and should therefore
initialize the function pointers appropriately.

The DriverStartlo and the DriverUnload fields are also left for the driver
to initialize. Lower-level Windows NT drivers typically provide a Startle func-
tion, which is invoked either when an IRP is dispatched to the driver, or when an
IRP has just been popped off a queue. The DriverStartlo field is initialized
by lower-level drivers to point to this driver-supplied StartIO function. Typi-

Common Data Structures_____________________________________737

cally, as you will see in code presented later in this book, file system drivers and
filter drivers will not need a DriverStartlo routine, because such drivers
manage their pending I/O Request Packets via other internal queue management
implementations. The DriverUnload field should point to a routine that is
executed just before the driver is unloaded. This allows your kernel-mode driver
an opportunity to ensure that any on-disk information is in a consistent state, as
well as to allow lower-level drivers to put the device(s) they control into a known
state. Note that it is not required that your driver be unloadable; in particular, file
system drivers are extremely difficult to design so that they can be unloaded on
demand. If your driver cannot be unloaded, you must not initialize the Driv-
erUnload field in the driver object structure (the field is initialized to NULL by
the I/O Manager and therefore your driver entry routine need not do anything to
this field).

Many kernel-mode drivers create one or more device object structures. These
structures are linked in the DeviceObject field in the driver object structure. At
driver load time, this linked list is empty. However, the NT I/O Manager fills the
list with pointers to device objects created by your driver as such device objects
are created using the loCreateDevice () service routine.

To load a driver, the I/O Manager executes an internal routine called lopLoad-
Driver () . This routine performs the following functionality:

• Determines the name of the driver to be loaded and checks whether the
driver has already been loaded by the system.
The I/O Manager checks to see whether the driver has already been loaded
by examining a global linked list of loaded kernel modules. If the driver is
already loaded, the I/O Manager immediately returns success; otherwise, it
continues with the process of loading the driver. To have your driver loaded,
your installation utility must have created an appropriate entry in the Registry.
See Part 3 for more information on how the Registry must be configured for
kernel-mode file system and filter drivers.

• If the driver is not loaded, the I/O Manager requests the Virtual Memory Man-
ager (VMM) to map in the driver executable. As part of mapping in the driver
code, the VMM checks to see that the file contains a valid Windows NT exe-
cutable format. If the driver was built incorrectly, the VMM will fail the map
request and the I/O Manager, in turn, will fail the driver load request.

• Now the I/O Manager invokes the Object Manager, requesting that a new
driver object be created. Note that the DRIVER_OBJECT type is an I/O Man-
ager-defined object type, which was previously created by the I/O Manager at
system initialization time; it is therefore recognized as a valid object type by
the NT Object Manager. Note also that the returned driver object structure is

138_________________________________Chapter 4: The NT I/O Manager

allocated from nonpaged system memory and is, therefore, accessible at all
IRQ levels.

• The I/O Manager zeroes out the driver object structure returned by the Object
Manager. Each entry in the MajorFunction array is initialized to lopln-
validDeviceRequest (). This is the default dispatch routine for the vari-
ous entry points. This routine simply sets a return status of STATUS_
INVALID_DEVICE_REQUEST and returns control to the calling process.

• The I/O Manager initializes the Driverlnit field to refer to the initialization
routine in your driver (the DriverEntry routine). DriverSection is ini-
tialized to the section object pointer* for the mapped executable, Driver-
Start is initialized to the base address to which the driver image was
mapped, and DriverSize is initialized to the size of the driver image.

• The I/O Manager requests that the object be inserted into the linked list of
driver objects maintained by the NT Object Manager. In return, the I/O Man-
ager gets a handle to the object. This handle is referenced by the I/O Man-
ager and closed, thereby ensuring that the object will be deleted when
dereferenced at driver unload time.

• The HardwareDatabase field is initialized with a pointer to the Configura-
tion Manager's hardware configuration information; this field could be used
by lower-level drivers to determine the hardware configuration for the current
boot cycle. The I/O Manager also initializes the DriverName field so that it
can be used by the error logging component when required.

• Finally, the I/O Manager invokes the driver initialization routine, which is
where your driver gets the opportunity to initialize itself, including initializing
the function pointers in the driver object structure. You should note that your
driver initialization routine is always invoked at IRQL PASSIVE_LEVEL,
allowing you to use pretty much all of the system services available. Further-
more, your initialization routine will be invoked in the context of the system
process; this is especially important to keep in mind if you open any objects
or create any objects resulting in a handle being returned to you. Any such
handles will only be valid in the context of the system process. In order to be
able to use such objects in the context of other threads, you will have to use
the methodology described earlier in the chapter, where you obtain a pointer
to the object and then subsequently obtain handles in the context of other
threads as and when required.

If your driver fails the initialization routine it will automatically be unloaded
by the Windows NT I/O Manager. Remember to deallocate any allocated

* Chapter 5, The NT Virtual Memory Manager, explains section objects and the process of mappinf files
in greater detail.

Common Data Structures_____________________________________139

memory prior to returning control to the I/O Manager and also to close and
dereference any open objects, or else you will leave a trail behind you that
could lead to degraded or impaired system behavior.

The driver entry routine is the initialization routine for a kernel-mode driver and
is invoked by the I/O Manager. Each kernel-mode driver can also register a re-
initialization routine that is invoked after all other drivers have been loaded and
the rest of the I/O subsystem, as well as other kernel-mode components, have
been initialized. In NT 3.51 and earlier, the Count field in the driver object struc-
ture contained a count of the number of times the reinitialization routine had
been invoked.

Beginning with NT 4.0 and later, the NT I/O Manager allocates an additional struc-
ture that is an extension of the original driver object structure. This driver
extension structure is defined below and contains fields to support plug-and-play
for lower-level drivers that manage hardware devices and peripherals. The Count
field has been moved to the driver extension structure with the new release;
however, it still provides the same functionality as it did in earlier releases. Plug-
and-play support is provided by lower-level drivers and will not be covered in
this book.

typedef struct _DRIVER_EXTENSION {
// back pointer to driver object
struct _DRIVER_OBJECT *DriverObject;
// driver routine invoked when new device added
PDRIVER_ADD_DEVICE AddDevice;
ULONG Count;
UNICODE_STRING ServiceKeyName;

) DRIVER_EXTENSION, *PDRIVER_EXTENSION;

Finally, notice that there is a pointer to a fast I/O dispatch table in the driver entry
structure. Currently, only file system driver implementations provide support via the
fast I/O path. Essentially, the fast path is simply a way to avoid the abstract, clean,
modular, yet relatively slow method of using packet-based I/O. Using the function
pointers provided by the file system driver in this structure, the NT I/O Manager
can either directly invoke the file system dispatch routines or call directly into the
NT Cache Manager to request I/O without having to set up an IRP structure. The
FastloDispatch field should be initialized by the driver entry routine to refer to
an appropriate structure containing initialized file system entry points. In the
coverage of the NT Cache Manager, provided later in this book, you will see a
detailed discussion of the entry points that comprise the fast I/O method of I/O.

Device Object
Device object structures are created by kernel-mode drivers to represent logical,
virtual, or physical devices. For example, a physical device, such as a disk drive,

140 Chapter 4: The NT I/O Manager

is represented in memory by a device object. Similarly, consider the situation
where you develop an intermediate driver that presents a large physical disk as
three smaller disks or partitions. Now, there will be one device object, repre-
senting a large physical disk, that is created by the lower-level disk driver, and
your intermediate driver should create three additional device objects, each of
which represents a virtual disk. Finally, a driver might choose to create a device
object to represent a logical device; for example, the file system drivers create a
device object to represent the file system implementation. This device object can
be opened by other processes and can be used to send specific commands
targeted to the file system driver itself.

Without a device object, a kernel-mode driver will not receive any I/O requests,
since there must be a target device for every I/O request dispatched by the I/O
Manager. For example, if you develop a disk driver and do not create a device
object structure representing this particular disk device, no user process can
access this disk. Once you do create a device object for the disk, however, file
system drivers can potentially mount any volumes present on the physical media
and user-mode processes can try to read and write data from the disk.

Unnamed device objects are rarely created by kernel-mode drivers, since such
device objects are not easily accessible to other kernel-mode or user-mode compo-
nents. If you create an unnamed device object, none of the other components in
the system will be able to open it, and therefore, no component will direct any
I/O to it. However, one common example of unnamed device objects are those
created by file system drivers to represent mounted file system volumes. In this
case, there is a device object, created by the disk driver representing the physical
or virtual disk, on which the file system volume resides, and a Volume Parameter
Block (VPB) structure (described later) performs the association between the
named physical disk device object and the unnamed logical volume device object
created by the file system driver. I/O requests are sent to the device object repre-
senting the physical disk. However, the I/O Manger checks to see whether the
disk has a mounted volume on it (mounted volumes are identified by an appro-
priate flag in the VPB structure for the device object that represents the physical
disk), and if so, it redirects the I/O to the unnamed device object representing the
instance of the mounted volume.

When your driver issues a call to loCreateDevice () to request creation of a
device object, it can specify an additional amount of nonpaged memory to be allo-
cated and associated with the newly created device object. The reason is to have
a global memory area reserved for and associated with that particular device
object. This memory is called the device object extension and will be allocated by
the I/O Manager on behalf of your driver. The I/O Manager initializes the Devi-
ceExtension field to point to this allocated memory. There are no constraints

Common Data Structures 141

mandated by the I/O Manager on how this memory object should be used by
your driver. You may wonder what the difference is between requesting a device
extension and declaring global static variables. The answer can be summed up as
potentially cleaner code design. Another important benefit is that device-specific
global variables stored in a device object extension become logically associated
with the device object immediately, and therefore you can avoid unnecessary
acquisition of synchronization resources before accessing this device-object-
specific data.

Any static variables declared by your kernel-mode driver are global to the entire
Windows NT operating system. They are also not logically associated with any
particular device object, so if your driver creates and manages multiple device
object structures, you will have to design some method where the global struc-
tures can be associated with specific device objects. Note, however, that both
statically declared global variables and the device extensions are allocated from
nonpaged pool, although you can request that your static variables be made page-
able (typically, this is never done). Many kernel-mode drivers make use of both
statically declared global variables that are required by the entire driver, and a
driver extension containing global variables that are specific to the context of a
certain device object structure.

The device object structure is defined as follows:

typedef struct _DEVICE_OBJECT {
CSHORT
USHORT
LONG
struct _DRIVER_OBJECT
struct _DEVICE_OBJECT
struct _DEVICE_OBJECT
struct _IRP
PIO_TIMER
ULONG
ULONG
PVPB
PVOID
DEVICEJTYPE
CCHAR
union {

LIST_ENTRY
WAIT_CONTEXT_BLOCK

} Queue;
ULONG
KDEVICE_QUEUE
KDPC
ULONG
PSECURITY_DESCRIPTOR
KEVENT
USHORT

Type;
Size;
Ref erenceCount ;
*DriverOb j ect ;
*NextDevice ;
*AttachedDevice ;
*CurrentIrp;
Timer;
Flags;
Characteristics ;
Vpb;
DeviceExtension;
DeviceType;
StackSize;

ListEntry;
Web;

AlignmentRequirement
DeviceQueue;
Dpc;
ActiveThreadCount ;
SecurityDescr iptor ;
DeviceLock;
SectorSize;

142 Chapter 4: The NT I/O Manager

USHORT Sparel;

the following fields only exist in NT 4.0 and later

struct _DEVOBJ_EXTENSION
PVOID

*DeviceObjectExtension;
Reserved;

the following field only exists in NT 3.51 and earlier versions

LARGE_INTEGER
DEVICE_OBJECT;

Spare2;

Any kernel-mode driver can direct the I/O Manager to create a device object
using the loCreateDevice () routine. This routine, if successful, will return a
pointer to the device object structure that is allocated from nonpaged memory.
Many of the fields in the device object structure are reserved for use by the I/O
Manager. A brief description of the important fields is given below:

• As long as the ReferenceCount field is nonnull, two invariants hold true.
First, the device object will never be deleted. Second, the driver object repre-
senting the driver that created this device object will never be deleted (i.e.,
the driver will never be unloaded as long as any of the device objects created
by the driver has a positive reference count). The ReferenceCount field is
manipulated at various times by the I/O Manager and can also be manipu-
lated by the driver.* An example of this field being incremented by the I/O
Manager is whenever a new file stream is opened on a mounted volume; the
reference count for the device object representing the mounted volume is
incremented by 1 to ensure that the volume is not dismounted as long as any
file is open. This also ensures that the file system driver is not unloaded as
long as any file is open, since unloading the driver could lead to a system
crash. Similarly, whenever a new volume is mounted, the device object repre-
senting the logical volume has its reference count incremented to ensure that
both the device object and the corresponding driver object are not deleted.

• The I/O Manager initializes the DriverObject field to refer to the driver
object representing the loaded instance of the kernel-mode driver that
invoked the loCreateDevice () routine.

• All device objects created by a kernel-mode driver are linked together using
the NextDevice field in the device object. Note that there is no particular
order in which a kernel-mode driver, traversing this linked list, should expect
to find created device objects. As it happens, the I/O Manager adds new

* Be careful if your driver manipulates the ReferenceCount field in the device object, because there
is no method with which you can synchronize your operation with that of the I/O Manager. This could
lead to inconsistent behavior.

Common Data Structures 143

device objects to the head of the linked list; therefore, you will probably find
the last device object inserted at the beginning of the list.
In this chapter, as well as in Chapter 12, Filter Drivers, you will be exposed to
more detail about how filter drivers can be developed for Windows NT envi-
ronments. These filter drivers are intermediate-level drivers that intercept I/O
requests targeted to certain device objects by interjecting themselves into the
driver hierarchy and by attaching themselves to the target device objects. The
concept of attaching to a device object is simple, as illustrated in Figure 4-3.

Figure 4-3. Illustration of a device object being attached to another

When a device object is attached to another (via the I/O-Manager-provided
loAttachDevice () or the loAttachDeviceByPointer () routines), the
AttachedDevice field in the device being attached to (device object #\ in
Figure 4-3) will be set to the address of the device object being attached
(device object #2).

• The Current I rp field is of interest to designers of device drivers or other
lower-level drivers. Such drivers typically use the I/O-manager-supplied
loStartNextPacket () or loStartPacket () routines to queue and
dequeue an IRP from the driver queue of pending IRPs. Once the I/O man-
ager dequeues a new IRP, it makes the dequeued IRP the current IRP to be
processed by the driver. To do this, it inserts the IRP pointer in the Current-
Irp field of the device object. The I/O manager subsequently passes a
pointer to DeviceObject->CurrentIrp when invoking the device driver
Startlo () dispatch routine.
This field is typically not of much interest to higher-level drivers.

144 Chapter 4: The NT I/O Manager

• The Timer field is initialized when the driver invokes lolnitialize-
Timer (). This allows the I/O Manager to invoke the driver-supplied timer
routine every second.

• The device object Characteristics field describes some additional
attributes for the physical, logical, or virtual device that the object represents.
The possible values are FILE_REMOVABLE_MEDIA, FILE_READ_ONLY_
DISK, FILE_FLOPPY_DISK, FILE_WRITE_ONCE_MEDIA, FILE_REMOTE_
DEVICE, FILE_DEVICE_IS_MOUNTED, or FILE_VIRTUAL_VOLUME. This
field is manipulated by the I/O Manager, as well as by the file system or ker-
nel-mode driver that manages the device object.

• The DeviceLock is a synchronization-type event object allocated by the I/O
Manager. Currently, this object is acquired by the I/O Manager prior to dis-
patching a mount request to a file system driver. This allows synchronization
of multiple requests to mount the volume. You should only be concerned
with this event object if you design a file system driver that uses the I/O-Man-
ager-supplied loVerifyVolume () routine (described in Part 3). In that
case, you should be careful not to invoke that routine when you get a mount
request from the I/O Manager, since the DeviceLock would have been pre-
viously acquired by the I/O Manager prior to sending you the mount IRP;
invoking the verify routine would cause the I/O Manager to try to reacquire
this resource and cause a deadlock.

• The I/O Manager allocates memory for the device extension and initializes
the DeviceExtension field to point to this allocated memory.

I/O Request Packets (IRP)
As described earlier, the Windows NT I/O subsystem is packet-based. Kernel-
mode drivers that comprise the I/O subsystem receive I/O Request Packets (IRP),
which contain details of the operation being requested. The recipient of the IRP is
responsible for processing the IRP, and either forwarding it on to another kernel-
mode driver for additional processing, or completing the IRP, indicating that
processing of the request described in the IRP has been terminated.

IRP allocation

All I/O requests are routed through the NT I/O Manager. Most often, a user
process executes a Win32- or other subsystem-specific I/O request (e.g., Create-
File ()) , and this request gets translated to an NT system service call to the I/O
Manager. Upon receiving the I/O request, the I/O Manager identifies the driver
that should service the I/O request. Most likely, this will be a file system driver
that will have mounted the file system on the physical device to which the I/O
request is targeted.

Common Data Structures_____________________________________145

To dispatch the request to the kernel-mode driver, the I/O Manager allocates an
I/O Request Packet using the routine loAllocatelrp () .* This structure is
always allocated from nonpaged pool. The method of allocation'differs slightly in
the various versions of Windows NT.

NOTE A zone is a system-defined structure supported by the Windows NT
Executive and is used to efficiently manage allocation and dealloca-
tion of fixed-sized chunks of memory. Allocating and freeing memo-
ry using zones is more efficient than asking for small chunks of
memory from the VMM, which could also lead to some internal
memory fragmentation. Using a zone requires your driver to per-
form two steps: first, allocate the memory that will comprise the
zone and inform the NT Executive about this allocated pool, as well
as the size of entries you will allocate from the zone; second, use
the available ExAllocateFromZone () and other related support
routines to allocate and free entries using the zone.
Read Chapter 2, File System Driver Development, for a discussion on
how to use zones in your driver.

In NT version 3.51 and earlier, the I/O Manager first attempts to allocate the IRP
from a zone composed of fixed-sized IRP structures. As you will read later in this
discussion of IRPs, the size of the IRP depends upon the number of stack loca-
tions that are required for the IRP. Therefore, the I/O Manager keeps two zones
available, one for IRPs with relatively fewer stack locations, and the other for I/O
Request Packets with a larger number of stack locations. If the zone from which
allocation is attempted is found empty (this can happen in high-load situations
where an extremely large amount of concurrent I/O is in progress), the I/O
Manager requests memory for the IRP directly from the VMM (actually, the I/O
Manager uses the ExAllocatePool () support routine provided by the NT Exec-
utive). For I/O requests that originate in user-mode, if no memory is currently
available, an error is returned to the user application indicating that the system is
out of available resources. However, for I/O requests that originate in kernel-
mode, the I/O Manager attempts to allocate memory for the IRP from the
NonPagedPoolMustSucceed memory pool. If this memory allocation request
does not succeed, the attempt will result in a system bugcheck.

The methodology used in NT version 4.0 is similar with one slight variation: the
I/O Manager uses lookaside lists, a new structure used to manage fixed-sized
pools of memory introduced in this new release, instead of zones. The reason for

* The loAllocatelrp () routine is documented in the DDK. It can also be used by other kernel-mode
drivers to request an IRP to be allocated. Supply a FALSE for the ChargeQuota argument required with
this routine invocation.

146 Chapter 4: The NT I/O Manager

this new structure is to gain some efficiency, because lookaside lists do not
always use spin locks to perform synchronization; instead they use an atomic 8-
byte compare exchange instruction on architectures where such support is
possible.

Other kernel-mode components besides the I/O Manager can use the I/O-
Manager-supplied routine loAllocatelrp () to request a new IRP structure.
This IRP can subsequently be used to send a I/O request to a kernel-mode driver.
Other routines provided by the I/O Manager that also use loAllocatelrp () to
obtain a new IRP structure and then return these newly allocated IRPs after the
initialization of certain fields are loMakeAssociatedlrp (), loBuildSyn-
chronousFsdRequest () , loBuildDeviceloControlRecjuest () , and lo-
BuildAsynchronousFsdRecruest () . Consult the DDK for more information
on these routines. Part 3 also uses some of these routines in implementing filter
drivers.

IRP structure

Logically, each I/O Request Packet is composed of the following:

• The IRP header

• I/O Stack Locations

The IRP header contains general information about the I/O request, useful to the
I/O Manager as well as to the kernel-mode driver that is the target of the request.
Many of the fields in the IRP header can be accessed by a kernel-mode driver;
other fields exist solely for the convenience of the I/O Manager and should be
considered off-limits by the drivers processing the IRP.

Here is a brief explanation of important fields that comprise the IRP header:

MdlAddress
A Memory Descriptor List (MDL) is a system-defined structure that describes a
buffer in terms of the physical memory pages that back up the virtual address
range comprising the buffer. There are different ways in which buffers used
for I/O request handling can be passed down to the kernel-mode driver.
Descriptions for the three methods will appear shortly. Remember for now,
though, that if the Directlo method is used, the MdlAddress field will
contain a pointer to the MDL structure that can then be used in data transfer
operations.

Associatedlrp
This field is an union of three elements, defined as follows:
union {

struct
LONG

_IRP *MasterIrp;
IrpCount;

Common Data Structures _____________________________________ 147

PVOID SystemBuffer;
} Associatedlrp;

Any IRP structure that has been allocated can be categorized as either a
master IRP or an associated IRP. An associated IRP is, by definition, associ-
ated with some master IRP, and can be created only by a higher-level kernel-
mode driver. By creating one or more associated IRPs, the highest-level driver
can split up the original I/O request and send each associated IRP to lower-
level drivers in the hierarchy for further processing.

For example, higher-level drivers sometimes execute the following loop:
while (more processing is required) {

create an associated IRP using loMakeAssociatedlrp () ;
send the associated IRP to a lower-level driver using
loCallDriver () ;
if (STATUS_PENDING is returned) {

wait on an event for the completion of the associated IRP;
} else {

associated IRP was completed;
check result and determine whether to continue;

For an associated IRP, the union described here contains a pointer to the
master IRP. For a master IRP, however, this union contains the count of the
number of associated IRPs for this master IRP; or, if no associated IRPs have
been created, the SystemBuffer pointer might be initialized to a buffer allo-
cated in kernel virtual address space for data transfer. System buffers are
allocated by the I/O Manager when a kernel-mode driver requests buffered
I/O (described later in this book).
Note that the IrpCount field is manipulated under the protection of an
internal I/O Manager resource. Therefore, external kernel-mode drivers must
not attempt to manipulate or access the contents of this field directly.

ThreadListEntry
This field is typically manipulated by the I/O Manager. Before invoking a
driver dispatch routine via loCallDriver () , all I/O Manager routines
insert the IRP into a linked list of IRPs for the thread in whose context the I/O
operation is taking place. For example, if a user thread invokes a read
request, the I/O Manager will allocate a new IRP structure, and insert it into
the list of IRPs being processed by the user thread prior to invoking the file
system read dispatch routine.

148_________________________________Chapter 4: The NT I/O Manager

NOTE There is a field in each thread structure called IrpList, which
serves as the head of a linked list of pending I/O Request Packets.
The ThreadListEntry field, described earlier, is used to queue
the IRP to this linked list. This list is used to track all pending I/O
Request Packets for the thread in question; this is especially useful
when the I/O subsystem tries to cancel IRPs for a particular thread.
Note that the loAllocatelrp () routine does not queue the re-
turned IRP to the linked list of outstanding IRPs for the current
thread. Therefore, when a cancel request is posted, that IRP will not
be found among the list of IRPs for the thread.

loStatus
This field should be appropriately updated by your kernel-mode driver before
completing the I/O Request Packet. A description of the structure is provided
later in this chapter. Note that this field is part of the IRP structure, and not
part of the I/O status block structure passed in to the I/O Manager by the
thread requesting the I/O operation. It is the I/O Manager's responsibility to
transfer the results of the I/O operation from this field to the I/O status struc-
ture submitted by the requesting thread. This operation is performed by the
I/O Manager as part of the postprocessing of the IRP, once the IRP has been
completed by kernel-mode drivers.

RequestorMode
When code in your driver is executed, it would be useful if you knew
whether the caller was a user-mode thread (e.g., an application requesting an
I/O operation), or if the caller was a kernel component (some other driver
requesting your services in the context of a system worker thread).

You may wonder why such information could be useful. Think about the
case where the caller is a user-mode thread; you know then that you cannot
blindly assume that the arguments passed in to your driver are legitimate. If
your driver uses the direct-IO method of passing buffer pointers (explained
later), you will need to convert the passed-in addresses to something usable
by your kernel-mode code. This is especially true if the request will be
handled asynchronously by your driver.

On the other hand, if your driver is invoked from a system worker thread,
you could bypass these argument checks, because you could assume that
addresses passed in to you are legitimate and usable directly by your driver.

Similarly, the NT I/O Manager, as well as other kernel components such as
the Virtual Memory Manager, need to identify and differentiate whether
clients of their services are executing kernel-mode (operating system) code,
or whether the request came from a user-space component. This information

Common Data Structures 149

is used to check the legitimacy of the arguments passed in to these kernel-
mode components.*

The solution used throughout the NT Executive is to identify the processor
mode in which the calling thread executed prior to invoking the services of
the kernel-mode component. Note that the key concept here is that the
previous mode of the calling thread is important; the very fact that the thread
is executing kernel-mode code at the instant when the check is made tells us
that the current mode will always be kernel mode. To obtain the previous
mode information, the I/O Manager directly accesses a field in the thread
structure. The ExGetPreviousMode () function, declared in the DDK,
provides the same functionality to third-party driver developers. This routine
returns the previous mode of the thread being checked: user or kernel mode.
The I/O Manager puts the information about the previous mode of the
requesting thread into the RequestorMode field prior to invoking the
loCallDriver () routine, which, in turn, invokes one of your driver
dispatch routines. You should use this information both internally in your
driver, as well as in invocations to system service routines such as
MmProbeAndLockPages().

Pendi ngRe turned
Each IRP is typically handled by more than one driver in the hierarchy. To
process an IRP asynchronously, a kernel-mode driver must execute the
following steps:

a. Mark the IRP pending by invoking the loMarklrpPending () function,

b. Queue the IRP internally.

Lower-level drivers may use a Startlo () function instead,

c. Return a status code of STATUS_PENDING.
The loMarklrpPending () call (implemented as a macro) simply sets
the SL_PENDING_RETURNED flag in the Control field of the current
I/O stack location.t

At the time of IRP completion processing, during the execution of the loCom-
pleteRecjuest () function, the I/O Manager traverses each stack location
that had been used by drivers in the hierarchy, looking for any completion
routines that may need to be invoked. This traversal of stack locations
happens in reverse order from that used in processing the IRP. The most
recently used stack location is processed first (the one used by the lowest-

* If the I/O Manager read system service (NtReadFile ()) blindly assumed that the passed-in buffer
address was a legitimate kernel-mode usable address, malicious users could have a field day overwriting
operating system data with their own!
t Stack locations are discussed in detail later in this chapter. You may skip this discussion for the moment
and come back to it after you have read that section.

750__________________________________Chapter 4: The NT I/O Manager

level driver in the hierarchy that processed the IRP), followed by the next
one, and so on.

As each stack location is unwound, the I/O Manager notes whether the SL_
PENDING_RETUKNED flag had been set in the I/O stack location, and sets
the PendingReturned flag to TRUE if the flag had been set. However, if
the flag was not set in the stack location, the I/O Manager sets the Pending-
Returned field to FALSE.

WARNING The value of the PendingReturned field may change as the I/O
stack locations are being traversed, -while the I/O Manager looks for
completion routines that may need to be invoked.

So why is the value of this field important? Well, later on in the loCom-
pleteRecjuest () function, the I/O Manager checks the value of the Pend-
ingReturned field to determine whether or not to queue a special kernel
Asynchronous Procedure Call (APC) to the thread that originally requested the
I/O operation. Your file system or filter driver will have to cooperate with the
I/O Manager to ensure that the right course of action is adopted. You will see
how your driver's actions affect the behavior of the I/O Manager later in this
chapter.

Cancel, Cancellrql, and CancelRoutine
Kernel-mode drivers that process I/O Request Packets that might potentially
require an indefinite time interval to be completed should provide appro-
priate IRP cancellation support. Our perspective is that of a file system driver
or that of a filter driver. We would need to provide this functionality if we do
not pass on IRPs to lower-level disk or network drivers but perform our own
processing instead. Note that all three fields listed above are manipulated by
either the driver or the I/O Manager to provide the capability to cancel
pending I/O Request Packets when required.

ApcEnvironment
When an IRP is completed, the I/O Manager performs postprocessing on the
IRP, the details of which are given below. The ApcEnvironment field is
used internally by the I/O Manager in performing postprocessing on the IRP
in the context of the thread that originally requested the I/O operation. This
field is initialized by the I/O Manager when allocating the IRP and should not
be accessed by driver designers.

Zoned/AllocationFlags
The Zoned field was replaced with the AllocationFlags field in NT
version 4.0. Fundamentally, the field (called by whatever name) records

Common Data Structures_____________________________________151

internal bookkeeping information used by the I/O Manager during IRP
completion to determine whether the IRP was allocated from a zone/looka-
side list, or from system nonpaged pool, or from system nonpaged-must-
succeed pool. This information is not useful from the kernel driver's perspec-
tive, except when debugging the driver and trying to locate all IRP structures
allocated out of the global lookaside list or zone.

Caller-supplied arguments
The following are part of the IRP:
PIO_STATUS_BLOCK Userlosb;
PREVENT UserEvent;

union {
struct {

PIO_APC_ROUTINE UserApcRoutine;
PVOID UserApcContext;

} AsynchronousParameters;
LARGE_INTEGER " AllocationSize;

} Overlay;
The Userlosb field in the IRP is set by the I/O Manager to point to the I/O
status block supplied by the thread requesting I/O. As part of the postpro-
cessing performed by the NT I/O Manager upon completion of an IRP, the
I/O Manager copies the contents of the loStatus field to the I/O status
block pointed to by the Userlosb field.
Most NT I/O system service routines (documented in Appendix A) accept an
optional event argument. This argument (if supplied by the caller) is initial-
ized by the NT I/O Manager to the not-signaled state and is set to the
signaled state by the I/O Manager upon completion of I/O. The I/O Manager
fills in the UserEvent field with the address of the caller-supplied event
object.
The AllocationSize field in the Overlay structure is only valid for file
create requests. The user is allowed to specify an optional initial size for a file
being created. The I/O Manager initializes the AllocationSize field with
this caller-supplied size prior to invoking the file system driver create/open
dispatch routine.

Many of the NT system services provided for I/O operations by the NT I/O
Manager allow asynchronous operations. The caller thread can request that
I/O be performed asynchronously and can also specify an APC to be invoked
upon completion of the IRP. For these system services, the I/O Manager duti-
fully invokes the user-supplied APC, passing it the supplied APC context, as
part of the postprocessing performed by the I/O Manager upon completion of
the IRP by a kernel-mode driver. The I/O Manager stores the calling-thread-
supplied APC function pointer in the UserApcRoutine field. The context is

154 Chapter 4: The NT I/O Manager

this point, none of the I/O Manager routines use this field to pass information
to a kernel-mode driver.*
The CurrentStackLocation field is simply a pointer to the current stack
location for the IRP. Stack locations are discussed later in this chapter. The
important point to note for kernel-mode drivers is to always use I/O Manager-
provided access functions to get the pointer to the current and the next stack
locations in the IRP. To maintain portability, your driver should never try to
access the contents of this field directly.

The OriginalFileObject field is initialized by the I/O Manager to the
address of the file object to which an I/O operation is being targeted. The
same information is available to the highest-level driver (typically, the file
system driver) to which the I/O operation is sent from the current stack loca-
tion. However, the I/O Manager keeps this information in the IRP header and
can therefore access it independently of the manner in which stack locations
are manipulated by lower-level drivers. The file object is used in the postpro-
cessing of the IRP after it has been completed. For example, if the file object
pointer is not NULL (i.e., the OriginalFileObject field is initialized at
IRP allocation), the I/O Manager checks whether it needs to send a message
to a completion port,t or dereference any event objects, or perform any
similar notification or cleanup operation related to that file object. It is legiti-
mate for this field to be NULL, in which case the I/O Manager will skip some
of the postprocessing that it would otherwise perform.

The Ape field is used internally by the I/O Manager after the IRP has been
completed, to queue an APC request for final postprocessing of the IRP in the
context of the thread that issued the I/O request.

As mentioned earlier, each I/O Request Packet is composed of the IRP header,
and the stack locations for that IRP. Some of the fields in the IRP structure such as
StackCount, CurrentLocation, and CurrentStackLocation are related
to stack location manipulation. IRP stack locations are discussed next.

Stack locations and reusing IRP structures

Windows NT I/O request packets are reusable. In a layered driver environment,
such as in the Windows NT I/O subsystem, each higher-level driver in the hier-
archy invokes the next lower-level driver, until some driver actually completes the

* If you write a file system driver, you might notice the value of this field is nonnull for directory-control
IRPs. However, the same buffer pointer containing the directory name is accessible via the information
obtained from the current stack location for the IRP, stored in the Parameters. QueryDirecto-
ry.FileName field.
t Consult the Win32 SDK for further information about I/O Completion Ports.

Common Data Structures 155

original IRP. It is quite possible, and is often the case, that the same IRP is passed
down from driver to driver until it is completed.

Completing the IRP requires invoking loCompleteRequest (); after such a call
is issued, no component, other than the I/O Manager, can touch that IRP, since it
can be deallocated at any time.

So how can a single IRP structure be reused cleanly? The solution provided by the
NT I/O Manager is to use stack locations that contain descriptions of the I/O
requests to the target device objects. When initially dispatching the IRP to a
kernel-mode driver, the I/O Manager fills in one stack location with the parame-
ters for the desired operation. Later, the driver to which the IRP is sent determines
whether it can complete the IRP itself, or whether it needs to invoke another
driver lower in the hierarchy. If it needs to invoke a lower-level driver, the current
holder of the IRP can simply initialize the next IRP stack location, and then
invoke the lower-level driver via loCallDriver (), passing it the IRP. This
process is repeated until a driver in the chain performs all of the required
processing and decides to complete the IRP.

The NT I/O Manager allocates space for multiple associated stack locations when
an IRP structure is allocated. Each of these stack locations can contain a complete
description of an I/O request. For example, an IRP allocated for a read request
should contain the following information:

• A function code, which will be examined by the kernel-mode driver to deter-
mine the type of request issued. In this example, the function code indicates
a read request.

• An offset from which data should be read.
• The number of bytes that are requested.
• A pointer to the output buffer.

In addition to the above, other information relevant to the read request might also
be passed to the driver that manages the device object that is the target of the
read operation. All of this information is encapsulated into a single stack location
structure.

The number of stack locations allocated for an IRP depends upon the Stack-
Size field in the target device object to which the IRP is being issued. The
StackSize field is initialized to 1 when the device object is created; it can then
be set to any value by the driver managing the device object. The StackSize
field is also changed when a device object is attached to another device object. As
part of the attach process, the StackSize value is set to the value obtained
from the device object being attached to, incremented by 1. The logic here is
simple: an IRP sent to a device object needs one stack location for the initial

156 Chapter 4: The NT I/O Manager

target device object; it also needs one stack location for each filter and/or driver
in the hierarchy that will perform some processing on the I/O Request Packet.

As shown in Figure 4-4, if a read request is sent to the file system driver that has a
volume mounted on disk A, the I/O Manager will allocate four stack locations
when creating the read IRP. These stack locations are used in reverse order,
similar to the last-in-first-out usage of a stack structure. When invoking a driver,
the I/O Manager always pushes the stack location pointer to point to the next
stack location; when the called driver releases the IRP, the stack location pointer
is popped to once again point to the previous stack location. Therefore, when
invoking the filter driver dispatch routine in Figure 4-4 below, the I/O Manager
uses stack location #4, the last stack location allocated.

Figure 4-4. IRP stack locations used for a driver hierarchy

The NT I/O Manager initializes the StackCount field in the IRP header with the
total number of stack locations allocated for that IRP. The CurrentLocation
field in IRP header is initialized by the I/O Manager to (StackCount + 1). This
value is decremented each time a driver dispatch routine is invoked via
loCallDriver().

Therefore, if the StackCount is 4, the initial value of CurrentLocation is set
to 5, which is an invalid stack location pointer value. The reason for this,
however, is that to dispatch an IRP to the next driver in the hierarchy, the kernel
component must always get a pointer to the next stack location and then fill in
appropriate parameters for the request.

When an IRP is being dispatched to the first driver in the hierarchy, the next stack
location will be (CurrentStackLocation—1) equal to 4, the correct value for
the stack location used for the filter driver above.

Common Data Structures 157

The I/O Manager often performs sanity checks using this value to ensure that the
IRP is being routed correctly through the I/O subsystem. For example, in
loCallDriver (), the I/O Manager first decrements the CurrentLocation
field (since a new driver is being invoked, it requires the next IRP stack location),
then checks to see if the CurrentLocation value is less than or equal to 0. If
the value does become less than or equal to 0, it is obvious that loCall-
Driver () is being invoked once too often for the number of stack locations that
were initially allocated (or that there is some stray pointer corrupting memory),
and therefore the I/O Manager performs a bugcheck with the error code of NO_
MORE IRP STACK_LOCATIONS.

NOTE The reason for a bugcheck is that, by the time the loCallDriv-
er () is invoked, critical damage may have already been done,
since the caller will in all likelihood have filled in the contents of
the next stack location for the use of the driver being called. Howev-
er, in this situation, the next stack location is some unallocated mem-
ory at the end of the IRP structure, which could literally be anything.
Continuing execution at this time could lead to all sorts of prob-
lems, including the possible corruption of user data.

The I/O Manager maintains a pointer to the current stack location, in addition to
the CurrentLocation value mentioned previously. This pointer is maintained
in the CurrentStackLocation field in the Tail.Overlay structure that is
contained in the IRP header. Kernel-mode drivers should never try to manipulate
the contents of either the CurrentLocation or the CurrentStackLocation
fields themselves.* The I/O Manager does provide routines for a driver to get a
pointer to the current stack location, via a call to loGetCurrentlrpStack-
Location () , to get a pointer to the next stack location using loGetNext-
IrpStackLocation () so that the driver can set up the contents of the stack
location appropriately for the next driver in the hierarchy, and in rare cases to use
IoSetNextIrpStackLocation() to set the stack location value.

The stack location structure defined in the NT DDK is composed of some fields
that are independent of the nature of the I/O request being described by the stack
location. Here are these fields:

Maj orFunc t i on
The NT I/O Manager defines a set of major functions, each of which identifies
a generic function that a kernel-mode driver can implement. Functions are
identified by function codes or numbers, and the set of functions is deliber-

* That being said, it is true that NT file systems themselves perform some underhanded operations on
these fields. However, for most kernel-mode drivers, it is far more preferable to stick with the I/O Man-
ager-supplied aeeess methods to view and modify the contents of these fields.

158 Chapter 4: The NT I/O Manager

ately comprehensive, since the function codes serve all types of NT kernel-
mode drivers, including file system drivers, intermediate drivers, device
drivers, and other lower level drivers.

When an IRP is delivered to a kernel-mode driver, the driver must examine
the MajorFunction field in the current stack location to find out the func-
tionality expected from the driver. The possible major function codes are
shown below:
#define IRP_MJ_CREATE
tdefine IRP_MJ_CREATE_NAMED_PIPE
tdefine IRP_MJ_CLOSE
tdefine IRP_MJ_READ
tdefine IRP_MJ_WRITE
tdefine IRP_MJ_QUERY_INFORMATION
tdefine IRP_MJ_SET_INFORMATION
tdefine IRP_MJ_QUERY_EA
#define IRP_MJ_SET_EA
ttdefine IRP_MJ_FLUSH_BUFFERS

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09

tdefine IRP_MJ_QUERY_VOLUME_INFORMATION OxOa
#define IRP_MJ_SET_VOLUME_INFORMATION OxOb
#define IRP_MJ_DIRECTORY_CONTROL OxOc
tdefine IRP_MJ_FILE_SYSTEM_CONTROL OxOd
tdefine IRP_MJ_DEVICE_CONTROL OxOe
tdefine IRP_MJ_INTERNAL_DEVICE_CONTROL OxOf
tdefine IRP_MJ_SHUTDOWN 0x10
tdefine IRP_MJ_LOCK_CONTROL Oxll
tdefine IRP_MJ_CLEANUP 0x12
tdefine IRP_MJ_CREATE_MAILSLOT 0x13
tdefine IRP_MJ_QUERY_SECURITY 0x14
tdefine IRP_MJ_SET_SECURITY 0x15
tdefine IRP_MJ_QUERY_POWER 0x16
tdefine IRP_MJ_SET_POWER 0x17
tdefine IRP_MJ_DEVICE_CHANGE 0x18
tdefine IRP_MJ_QUERY_QUOTA 0x19
tdefine IRP_MJ_SET_QUOTA Oxla
tdefine IRP_MJ_PNP_POWER Oxlb
tdefine IRP_MJ_MAXIMUM_FUNCTION Oxlc
Function codes beginning at IRP_MJ_DEVICE_CHANGE and higher were
introduced in NT version 4.0. Also, not all of the major function codes are
implemented yet; for example, the quota-related function codes do not yet
have any support from native NT file system drivers.

None of the major functions listed above is mandatory for a kernel-mode
driver to implement, except for the ability to open and close objects managed
by the driver. Open and close operations are very important because, if open
operations fail, no I/O requests can be submitted, since there does not exist
any object that would be the target of the requests. Similarly, if opens suc-
ceed, the close operations will eventually be invoked, and close operations
cannot fail (the I/O Manager does not check the return code from a close

Common Data Structures_____________________________________159

operation). Therefore, if you do not implement a close operation to comple-
ment your open, the system might eventually run out of resources, depending
on what operations were previously performed during the open, and also
depending on the data structures created during the open operation.
The major function codes in the context of a file system driver and a filter
driver are discussed in Part 3-

MinorFunction
Minor function codes provide more information specific to the major function
code in the I/O stack location. For example, consider the IRP_MJ_
DIRECTORY_CONTROL major function code above. An IRP containing this
major function code is sent by the I/O Manager to file system drivers. The
intent is to perform some file directory operation. The question, however, is
what directory control operation does the I/O Manager want the file system
driver to perform?

The available operations include obtaining information about directory
contents (IRP_MN_QUERY_DIRECTORY) and notifying the I/O Manager
when certain attributes of files or directories contained within the target direc-
tory change (IRP_MN_NOTIFY_CHANGE_DIRECTORY).

Currently, only a few of the major functions have minor functions associated
with them. However, for those few, the kernel-mode driver developer must
examine this field to correctly determine the functionality it is expected to
provide.

Flags
The Flags field also provides additional information that qualifies the function-
ality expected from the target driver. For example, consider the IRP_MJ_
DIRECTORY_CONTROL major function code previously discussed. If the minor
function is IRP_MN_QUERY_DIRECTORY, the Flags field could contain addi-
tional information that might cause the file system to behave differently when
returning the contents of the directory being queried.

For example, if the SL_RESTART_SCAN flag is set, the file system driver will
restart the scan from the beginning of the directory being queried. Or if the
SL_RETURN_SINGLE_ENTRY flag is set, the file system driver will return
only the first entry matching the specified search criteria.

Lower-level drivers also have an interest in the settings for this flag. For
example, removable media drivers will perform a read request dispatched to
them from a file system driver if the SL_OVERRIDE_VERIFY_VOLUME flag
has been set. If, however, the flag has not been set, and the device driver has
recognized a media change (and informed the file system about it), it will fail
all I/O requests, including all read requests.

160 Chapter 4: The NT I/O Manager

Control
When a kernel-mode driver must process an IRP asynchronously, the driver
can queue the IRP, mark it "pending" via a call to IoMarkIrpPending()
and subsequently return control back to the caller. The call to loMarklrp-
Pending () simply sets the SL_PENDING_RETUKNED flag in the Control
field for the current stack location. Any kernel-mode driver can examine the
Control field for the existence of this flag.
This flag is also used internally by the NT I/O Manager to store information
about whether a completion routine associated with the current stack location
should be invoked if the return code supplied at IRP completion indicates a
success, a failure, or a cancel operation. These flags are designated as SL_
INVOKE_ON_SUCCESS, SL_INVOKE_ON_FAILURE, and SL_INVOKE_ON_
CANCEL. Kernel-mode drivers typically should not need to be directly
concerned with the state of these flags.

DeviceObject
This field is set by the NT I/O Manager as part of the processing performed in
the loCallDriver () routine. The contents are set to the device object
pointer for the target device object (i.e., the device object to which the IRP is
being dispatched).

FileObject
The I/O Manager sets this field to point to the file object that is the target of
an I/O operation. Note that just calling loAllocatelrpO from your driver
will not result in this field being set. If you intend to use the returned IRP for
an operation on a specific file object, your driver must set the field itself.

CompletionRoutine
The contents of this field are set by the I/O Manager when the loSetCom-
pletionRoutine () macro is invoked. The I/O Manager checks for a
completion routine as part of the postprocessing performed during IRP
completion. If a completion routine is specified, the routine is invoked in the
context of the thread performing the postprocessing; typically this is in the
context of the thread that invoked the loCompleteRequest () routine.
Since IRP completion is often performed by lower level drivers at a high
IRQL, it is quite likely that the completion routine will be invoked at some
high IRQL.
You should also note that completion routines are invoked in a last-specified-
first-invoked order. Therefore, the highest-level driver's completion routine
will be invoked after all other completion routines have been invoked. If any
driver returns STATUS_MORE_PROCESSING_REQUIRED from an invocation
to the driver-supplied completion routine, the I/O Manager immediately stops
all postprocessing of the IRP. Freeing the memory for that IRP will then

Common Data Structures 161

become the responsibility of the driver that returns the STATUS_MORE_
PROCESSING_REQUIRED status.

If you develop a higher-level driver, like a file system driver or a filter driver,
and if you specify a completion routine, always execute the following
sequence of code in your completion routine:
if (PtrIrp->PendingReturned) {

loMarklrpPending(Ptrlrp);
}
If you fail to do this and if there are other drivers layered above yours in the
calling hierarchy, the IRP may be processed incorrectly and you could experi-
ence a driver or process hang. The reason for the potential hang will be
further explained later in this chapter.

Context
This field contains the context supplied by the kernel-mode driver when it
specifies a completion routine for the IRP.

If you develop an intermediate driver, you will have to be careful about copying
some of the values contained in the current I/O stack location into the next I/O
stack location when you prepare to forward the IRP to the next driver in the hier-
archy. For example, you must copy the contents of the Flags field, so the lower-
level driver will know that it should perform an I/O read operation requested by
a file system even though it had previously informed the file system about a
media change.

Processing an IRP

Handling an IRP sent to your driver can be quite straightforward. The next four
figures illustrate some of the common methods employed to handle an IRP
dispatched to a kernel-mode driver.

In Figure 4-5, you can see that the target kernel-mode driver receives an IRP,
obtains a pointer to the current stack location, performs some processing based
on the contents of the I/O stack location, and, finally, completes the I/O request
packet. Note, however, that there could be a delay between receiving the request
and beginning the processing, since the driver might queue the IRP if it is
currently busy processing other requests. The queued IRP would subsequently get
processed asynchronously in the context of a worker thread.

Also note that once the driver gets control back from an invocation to loComplete-
Request () , it must not touch the IRP or any of the fields contained within the IRP
again. Doing so could lead to data corruption and system crashes.

Figure 4-6 illustrates how a kernel-mode driver receives an IRP, obtains a pointer
to the current stack location, and performs processing based upon the contents of

162 Chapter 4: The NT I/O Manager

Figure 4-6. IRP processing where IRP is reused and sent to lower-level driver

If your driver forwards an IRP to another driver, it is no longer allowed to try to
access that IRP, since it does not know when the lower-level driver will complete
that particular IRP. Typically, forwarding of the IRP is done via a call to loCall-
Driver (). The I/O Manager will invoke the lower-level driver in the context of
the thread that makes the call to loCallDriver (); however, the lower-level
driver that now receives the IRP might return STATUS_PENDING and complete
the IRP asynchronously.

Figure 4-7 illustrates a sequence where a higher-level kernel-mode driver (e.g., a
file system driver) uses associated I/O request packets to issue I/O requests to
other lower-level drivers. This might be done if, for example, the higher-level

Common Data Structures 163

driver wishes to split up an I/O request; it might even be required if the higher-
level driver needs processing to be performed by more than one set of lower-
level drivers.

Figure 4- 7. Using associated IRP structures to process an IRP

Note that the higher-level driver does not need to invoke loComplete-
Reguest () on the original IRP; the I/O Manager will automatically complete the
original IRP once all associated IRPs have been completed by lower-level drivers.
However, the higher-level driver can request that a completion routine be
invoked when the associated IRP completes, thereby giving it the opportunity to
perform some postprocessing, and also allowing itself the opportunity to
complete the original IRP at its own convenience.

Figure 4-8 illustrates a variation of the method using associated IRPs; here the
kernel-mode driver uses one of the I/O Manager-supplied functions to create new
I/O Request Packets, which are then dispatched to other kernel-mode drivers.
Once the newly created I/O Request Packets have been completed, the original
IRP can be redispatched to lower-level drivers for further processing, or it can be
immediately completed.

IRP completion and deallocation

Every I/O Request Packet must be completed in order for the I/O Manager to be
informed that the request contained within the IRP has been completely
processed. To complete an IRP, a kernel-mode driver has to invoke the loCom-
pleteRequest () I/O Manager support routine.

164 Chapter 4: The NT I/O Manager

Figure 4-8. Using newly allocated IRPs to help in processing of an IRP

Once this routine is invoked, the NT I/O Manager performs some postprocessing
on the I/O request packet being completed, as follows:

1. The I/O Manager performs some basic checks to ensure that the IRP is in a
valid state. The value of the current stack location pointer is verified to ensure
that it is less than or equal to (total number of stacks + 1). If the value is not
valid, the system will bugcheck with an error code of MULTIPLE_IRP_
COMPLETE_REQUESTS. If you install the debug build of the operating
system, the I/O Manager will execute some additional assertions, such as
checking for a returned status code of STATUS_PENDING when completing
the IRP, and checking other invalid return codes from the driver.

2. Now, the I/O Manager starts scanning through all stack locations contained in
the IRP looking for completion routines that need to be invoked. Each stack
location can have a completion routine associated with it, which should be
called depending on whether the final return code was a success or a failure,
or if the IRP was canceled. The I/O stack locations are scanned in reverse
order, with the highest-valued I/O stack location being checked first. This
results in completion routines invoked such that a completion routine
supplied by a disk driver (the lowest-level driver) will be invoked first, while
the completion routine for the highest-level driver (typically, the file system
driver) will be invoked last.

Completion routines are invoked in the context of the same thread that calls
loCompleteRequest (). If any completion routine returns STATUS_MORE_

Common Data Structures_____________________________________165

PROCESSING_REQUIRED, the I/O Manager immediately stops all further
postprocessing and returns control back to the routine that invoked loCom-
pleteRequest () . Now, it is the responsibility of the driver that returned
STATUS_MORE_PROCESSING_REQUIRED to invoke loFreelrp () later.*

3. If the IRP being completed is an associated IRP, the I/O Manager will decre-
ment the Associatedlrp. IrpCount field in the master IRP. Then, the I/O
Manager invokes an internal routine, lopFreelrpAndMdls () , to free up
memory allocated for the associated IRP and also to free any MDL structures
allocated for the associated IRP. Finally, if this happens to be the last associated
IRP outstanding for the master IRP, the I/O Manager recursively invokes
loCompleteRequest () on the master IRP itself.

4. A lot of the postprocessing performed by the I/O Manager occurs in the
context of the thread that had originally requested the I/O operation. To do
this, the I/O Manager queues a kernel-mode APC, which is subsequently
executed in the context of the requesting thread. However, this methodology
cannot be employed for certain types of IRP structures, used for the following
types of operations:

Close operations
An IRP describing a close operation is generated by the I/O Manager and
sent to the affected kernel-mode driver whenever the last reference to a
kernel-mode object is removed. This might just as well occur while a
special kernel-mode APC was already executing. To perform a close oper-
ation on objects defined by the I/O Manager, a special internal I/O
Manager routine called IopCloseFile() is always invoked.
lopCloseFile () is synchronous and therefore blocking. It allocates
and issues a close IRP to the target kernel-mode driver and waits for an
event object to complete the close operation. Therefore, when
completing an IRP for a close operation, the I/O Manager simply copies
over the return status (which incidentally is never checked by the
requesting thread for a close operation), signals the event object for
which the thread executing lopCloseFile () is waiting, and then
returns control immediately. The IRP is subsequently deleted in
lopCloseFile().

' The DDK assumes that STATUS_MORE_PROCESSING_REQUIRED will only be invoked by kernel-
mode drivers for associated IRPs that they have created. There is nothing, however, that prevents your
driver from returning this status code for a normal IRP request that was dispatched to you by the I/O
Manager. The problem, though, is that there is a lot of postprocessing required on that IRP that will have
been abruptly interrupted due to your returning such a status code from your completion routine. Your
driver will then have to devise a method whereby such postprocessing can be resumed later; this is not
a trivial task.

166_________________________________Chapter 4: The NT I/O Manager

Paging I/O requests
Paging I/O requests are issued on behalf of the NT Virtual Memory
Manager (VMM). In Chapters 5-8, you will read about the functionality
provided by the NT VMM and the NT Cache Manager. For now, simply
understand that the I/O Manager cannot afford to incur a page fault while
completing a paging I/O request. That would cause a system crash. There-
fore, the I/O Manager will do one of two things when completing a
paging I/O request:

— For a synchronous paging I/O request, the I/O Manager will copy the
returned I/O status into the caller-supplied I/O status block structure,
signal the kernel event object for which the caller might be waiting,
then free the IRP and return control, since there is no additional post-
processing to be performed.

— For an asynchronous paging I/O request, the I/O Manager will queue
a special kernel APC to be executed in the context of the thread that
requested paging I/O. This is the Modified Page Writer (MPW)
thread, which is a component of the VMM subsystem. In the next
chapter you will read a lot more about the MPW thread. For now, it
is enough for you to know that the routine that executes in the
context of the MPW thread (once the APC has been delivered),
copies the status from the paging read operation to the I/O status
block provided by the modified page writer, and subsequently
invokes an MPW completion routine using another kernel APC.

Later, you will see that the I/O Manager typically frees up any Memory
Descriptor Lists that are associated with the IRP, before freeing up the IRP
itself. However, for paging I/O operations, the MDL structures that are
used belong to the VMM (i.e., they are allocated by the VMM and will
therefore be freed only by the VMM upon completion of I/O). That is the
reason why the I/O Manager does not free up the MDL structures used in
paging I/O requests.

Mount requests
If you examine the flags supplied in the NT DDK, indicating paging I/O
requests and mount requests (IRP_PAGING_IO and IRP_MOTJNT_
COMPLETION, respectively), you will notice that they are both defined
to the same value. This is because the I/O Manager treats the mount
request exactly the same as a synchronous, paging I/O read request.
Therefore, the I/O Manager performs exactly the same postprocessing for
mount requests as described for a synchronous, paging I/O request.

5. If the IRP did not describe either a paging I/O, a close, or a mount request,
the I/O Manager next unlocks any locked pages described by Memory

Common Data Structures 167

Descriptor Lists (MDLs) associated with the I/O Request Packet. Note that the
MDL structures are not freed at this time; they are freed as part of the postpro-
cessing performed in the context of the requesting thread.

6. At this point, the I/O Manager has completed as much of the postprocessing
it can, without being in the context of the requesting thread. Therefore, the
I/O Manager queues a special kernel APC to the thread that requested the I/
O operation. The internal I/O Manager routine that is invoked in the context
of the calling thread is called lopCompleteRecjuest () . It could happen,
however, that there might not be any thread context to send the APC request
to. This happens if the thread exited after starting an asynchronous I/O opera-
tion, the request had already been initiated by the lower level driver, and the
driver could not complete the request within a fixed time-out period. In this
scenario, the I/O Manager has given up on the request, and therefore, it
simply frees up the memory allocated for the IRP at this point since no further
postprocessing can be performed.
For synchronous I/O operations, the I/O Manager does not queue the special
kernel APC but simply returns control immediately at this point. These IRP
structures have the IRP_DEFER_IO_COMPLETTON flag set in the Flags
field in the IRP. Examples of IRP major functions for which IRP completion
can be deferred are directory control operations, read operations, write opera-
tions, create/open requests, query file information, and set file information
requests. By returning control immediately, the I/O Manager avoids the over-
head associated with queuing kernel-mode APCs and the overhead of serving
APC interrupts. Instead, the thread that originally requested the I/O operation
by invoking loCallDriver () invokes lopCompleteRequest () directly
once control is returned to it. This is simply an optimization performed by the
NT I/O Manager.
Note that the I/O Manager will perform two checks to determine whether the
APC should be queued or not for the above situation:
— The IRP_DEFER_IO_COMPLETION flag should be set to TRUE.
— The Irp->PendingReturned field should be set to FALSE.
Only if both of the conditions above are TRUE will the I/O Manager simply
return from the loCompleteRequest () function at this stage.

The following situation may result in a problem if you are not careful in your
driver:

— Your driver specifies a completion routine before forwarding a request to
a lower-level driver.

168__________________________________Chapter 4: The NT I/O Manager

— There is a driver layered above you in the calling hierarchy (e.g., a filter/
intermediate driver).

— Your driver does not execute the instructions listed earlier about invoking
loMarklrpPending () if Irp->PendingReturned is set to TRUE.

Now the I/O Manager may incorrectly believe that an APC should not be
queued (thinking that the completion was being performed in the context of
the requesting thread) and the original thread will stay blocked forever.

The other situation where the I/O Manager does not queue an APC is if the
file object has a completion port associated with it, in which case the I/O
Manager sends a message to this completion port instead.

At this time, all processing that could have been performed in loComplete-
Request () is complete.

The remaining steps described below occur in the context of the thread that had
originally requested the I/O operation. The NT I/O Manager routine that performs
these steps is the lopCompleteRequest () routine previously mentioned.

1. For buffered I/O operations, the I/O Manager copies any data returned as a
result of the successful execution of the I/O request back into the caller's
buffer. Details of buffered I/O operations are provided later in this chapter;
however, note for now that if the driver returns an error or if the driver
returns a code indicating that a verify operation is required in the IRP
loStatus structure, no copy will be performed.*
Also, the number of bytes copied into the caller's buffer equals the value of
the Information field in the loStatus structure; therefore, if that field is
not set correctly, the caller will not get back all or any of the returned data.
The I/O Manager-allocated buffer is also deallocated once the copy operation
is performed.

2. Any Memory Descriptor Lists associated with the IRP are freed at this time.

* You should understand that the NT I/O Manager treats warning status codes as if the operation suc-
ceeded; i.e., the I/O Manager will copy data into the caller's buffer even if the status code was not
STATUS_SUCCESS, as long as it does not indicate an error.

Common Data Structures 169

TIP It is possible for a file system driver to deliberately return a pointer
to an MDL allocated by the Cache Manager when requested to do
so by a caller for either a read or a write I/O request. Such requests
are distinguished by the presence of the IRP_MN_MDL flag in the
MinorFunction field of the IRP stack location in the IRP sent to
the file system driver. Since all MDLs associated -with an IRP are
blindly freed at this point, it appears that there is not much point to
a file system driver returning an MDL to the caller. However, current-
ly the only kernel-mode client using the IRP_MN_MDL flag is the
LAN Manager Server module, and this module typically circumvents
the problem by returning STATUS_MORE_PROCESSING_RE-
QUIRED from a completion routine. See Chapter 9, Writing a File
System Driver I, for a discussion on how the file system driver pro-
cesses MDL-read and MDL-write requests.

3. The I/O Manager copies the Status and Information fields into the
caller-supplied I/O status block structure.

4. If the caller supplied an event object to be signaled, the I/O Manager signals
that event object. The I/O Manager signals the event object in the Event
field for any file object associated with the I/O Request Packet if either no
event object was supplied by the caller or the I/O operation was executed
synchronously because the file object was opened for synchronous access
only.

5. Typically, the NT I/O Manager increments the reference count of any caller-
supplied event object or any file object associated with an IRP before
forwarding the IRP to a driver for processing. At this time, the I/O Manager
dereferences both of these objects if they had been referenced before.

6. The I/O Manager dequeues the IRP from the list of I/O Request Packets
pending for the current thread.

7. Memory for the I/O Request Packet is finally freed; if the I/O Request Packet
has been allocated from a zone/lookaside list, memory for that packet is
returned to the zone/lookaside list for reuse; otherwise, memory is returned
back to the system.

Working with I/O request packets

There are a few key concepts that you must understand very well with regard to
handling I/O Request Packets sent to your kernel-mode driver:

• Once your driver receives the IRP, no other component in the system, includ-
ing the I/O Manager, can be concurrently accessing the same IRP. Until your
driver either forwards the IRP to another kernel-mode driver, or completes

170 Chapter 4: The NT I/O Manager

the IRP, processing of the request described by the I/O Request Packet is
solely the responsibility of your driver.

Once your driver completes the IRP, or forwards it to another kernel-mode
driver, your driver must give up control of the IRP and not attempt to access
any of the fields contained within it again. The only time you can touch that
IRP again is if you had specified a completion routine prior to forwarding the
IRP. In that case, the I/O Manager will invoke your completion routine as part
of its postprocessing performed during IRP completion.

If you specify a completion routine to be invoked at the time of IRP comple-
tion, it can perform any postprocessing necessary. Keep in mind, though, that
your completion routine might be called at an IRQL less than or equal to
DISPATCH_LEVEL. If your completion routine is invoked at a high IRQL,
you cannot incur any page faults while your code is executing. You do have
the option of stopping any postprocessing of the IRP by returning STATUS_
MORE_PROCESSING_REQUIRED from your completion routine. Be careful,
though, when doing this, especially from a lower-level driver, because some
of the completion routines specified by other drivers higher in the chain,
which normally would be invoked, will now not be called unless you play
some tricks with the IRP later.
No IRP can be completed more than once.* If you do try to do this either
deliberately or erroneously, you might cause data corruption and/or system
crashes. Although the I/O Manager checks for the possibility that an IRP is
being completed more than once, the check is not completely foolproof, so
be aware of this requirement when designing your driver.

Your driver cannot blindly assume that it is being invoked to process an IRP
in the context of the thread that originally requested the I/O operation. As a
matter of fact, lower-level drivers, such as intermediate drivers and device
drivers, will probably never have their dispatch routines invoked in the con-
text of the issuing thread. Therefore, your driver must be careful when trying
to access objects, handles, resources, and memory when processing the I/O
Request Packet. Understand the context in which your dispatch routines can
be invoked and only use resources that are available to you and that are valid
in that particular context.

Kernel-mode drivers have tremendous freedom in what they are able to do.
At the same time, the responsibilities that are placed upon kernel-mode code
are greater than for user-space applications. If your driver uses pointers to

* It is possible for a completion routine to return STATUS_MORE_PROCESSING_REQUIRED, perform
some specialized postprocessing with the IRP, and then reissue the loCompleteReguest () function
on the IRP to make the I/O Manager correctly dispose of the IRP. This is the single exception to the rule
mentioned above and results in the situation where an IRP is completed more than once.

Common Data Structures 171

buffers sent by user-space code, be careful about how you use such buffers.
It is possible for kernel-mode drivers to easily compromise system integrity by
misusing, or not carefully validating, any buffers and data contained within
them, sent by unprotected, user-mode applications. Determine the mode of
the caller in deciding whether or not to validate pointers sent to you. Use the
previous mode of the caller in making your decision on whether or not to val-
idate user-supplied buffers.
Use only the I/O Manager-provided access methods to manipulate stack loca-
tions in an IRP. It is possible for a kernel-mode driver to modify IRP stack
locations, which can affect both how IRP processing is done initially, as well
as how IRP postprocessing is performed once the IRP has been completed.
Try to resist the temptation to manipulate the contents of the stack locations
in any undocumented fashion.
Use your own I/O Request Packets if you wish to utilize services of other driv-
ers above or below you in the hierarchy. Avoid using private communication
channels that are not extensible. To create IRP structures, use one of the I/O
Manager-supplied support routines (i.e., IoAllocateIrp(), loBuildSyn-
chronousFsdRequest () , IoBuildAsynchronou.sFsdRecru.est () , lo-
BuildDeviceloControlRequest(), and IoMakeAssociatedIrp()).
Use lolnitializelrp (), in conjunction with loAllocatelrpO , to ini-
tialize the common fields in the IRP header. Be careful, and reread the previ-
ous section to determine which additional fields you might wish to initialize.
Also, realize that loFreelrp () may or may not need to be invoked, depend-
ing on the status code you return from any completion routine you may have
specified.
Some kernel-mode components, such as the LAN Manager server, allocate I/O
Request Packets from internal pools, instead of requesting them from the NT
I/O Manager. Be aware that these components may use some of the fields in
the IRP in a manner different from the standard manner in which those fields
are manipulated by the I/O Manager. Therefore, be careful when depending
upon the contents of fields that the I/O Manager wants to keep private and
that are not documented in the DDK, since there are no guarantees made by
the system that the fields will always contain consistent values.
Furthermore, components like the LAN Manager server often have a
maximum number of stack locations that they typically allocate for an I/O
Request Packet. If you add one or more additional filter or intermediate
drivers to the driver hierarchy, the number of stack locations required may
then exceed the maximum that the LAN Manager server can deal with. There
is a workaround to this problem, where you can instruct the user to specify

172 Chapter 4: The NT I/O Manager

additional stack locations that the LAN Manager server should allocate via a
Registry parameter.

Volume Parameter Block (VPB)
The VPB is the link between the file system device object representing the
mounted volume and the device object representing the physical or virtual disk
that contains the physical file system data structures. Each time a file open request
for an on-disk file stream is sent to a device object for a physical or virtual
device,* the I/O Manager invokes an internal routine called lopCheckVpb-
Mounted (). This routine is responsible for initiating a logical volume mount
operation, if the VPB associated with the physical/virtual device that is the target
of the request indicates that the volume has not been mounted. If, however, the
volume is previously mounted, the I/O Manager redirects the open operation to
the device object whose pointer is obtained using the DeviceObject field in
the VPB.

Memory for a volume parameter block is automatically allocated from nonpaged
pool by the Windows NT I/O Manager when a device object is created through a
loCreateDevice () call or when a file system driver invokes the loVerify-
Volume () call, for the following types of device objects:

• FILE_DEVICE_DISK
• FILE_DEVICE_CD_ROM
• FILE_DEVICE_TAPE
• FILE_DEVICE_VTRTUAL_DISK (used for RAM disks or any similar virtual

disk structures that can hold a mountable volume)

Note that each of the these types of device objects can have a logical volume
present on the device object, and each of these device objects typically also repre-
sents a single mountable partition for a device. The volume parameter block is
used to map the file system (logical) volume device object to the physical device
also represented by a device object. This structure is initially zeroed by the I/O
Manager upon allocation. The following definition describes the VPB:

* Since the most commonly used subsystem on Windows NT platforms is the Win32 subsystem, consider
the case when a user performs a file open operation on a file stream on drive letter C:. This drive letter
is nothing but a Win32 subsystem-visible name that is actually a symbolic link to a Windows NT name,
such as \Device\HardDiskO\Partitionl. Therefore, accessing a file stream on C: is the same as accessing
an on-disk file stream on the physical disk device object with the name \Device\HardDiskO\Partitionl.
Note that the Windows NT named object is not the device object representing the mounted volume; rath-
er, it is the device object representing the physical/virtual disk drive. The VPB is used to perform the
association between the named physical/virtual disk device object and the unnamed logical volume de-
vice object.

Common Data Structures 173

typedef struct _VPB {
CSHORT Type;
CSHORT Size;
USHORT Flags;
USHORT VolumeLabelLength; // in bytes
struct _DEVICE_OBJECT *DeviceObject;
struct _DEVICE_OBJECT *RealDevice;
ULONG SerialNumber;
ULONG ReferenceCount;
WCHAR VolumeLabel[MAXIMUM_VOLUME_LABEL_LENGTH / sizeof(WCHAR)];

} VPB, *PVPB;

Each mounted volume can have a label associated with it with a maximum length
of 32 characters. The VolumeLabelLength field is initialized by file system
drivers to the actual length of the label for the volume, which is stored in the
VolumeLabel field. Each file system volume can also have a serial number asso-
ciated with it that should be read off the volume by the file system driver and
placed in the SerialNumber field. As long as the reference count for the VPB
is nonzero, the I/O Manager will not deallocate the VPB structure. The RealDe-
vice field is initialized by the I/O Manager to point to the physical or virtual
device object that contains the mountable logical volume. The DeviceObject
field is initialized by the file system driver whenever a mount operation takes
place. This field contains the address of the device object of type FILE_DEVICE_
DISK_FILE_SYSTEM, created by the file system to represent the mounted
volume.

The Flags field in the VPB can have one of three values:

VPB_MOUNTED
This bit is set by the I/O Manager once a file system mounts the logical
volume represented by the VPB. This happens after a file system driver
returns STATUS_SUCCESS from an IRP sent to it with a major function of
IRP_MOUNT_COMPLETION.

VPB_LOCKED
This field can be set or cleared by the file system driver that has mounted the
logical volume represented by the VPB. While this field is set, the NT I/O
Manager will fail all subsequent open/create requests targeted to that logical
volume. File systems may choose to set this field in response to application
requests to lock the logical volume, or if they temporarily wish to prevent any
create/open requests from proceeding. The FASTFAT file system responds to
application IOCTL requests to lock a volume (FSCTL_LOCK_VOLUME) by
setting this field in the VPB.

174 __________________________________ Chapter 4: The NT I/O Manager

VPB_PERSISTENT
This field is also manipulated by file system drivers. If this field is set, the I/O
Manager will not delete the VPB structure, even if the Ref erenceCount in
the VPB is 0.

The NT I/O Manager provides two routines that should be used by filter drivers
and file system drivers to synchronize access to a VPB structure. These support
routines are defined as follows:

VOID
loAcquireVpbSpinLock (

OUT PKIRQL Irql

VOID
loReleaseVpbSpinLock (

IN KIRQL Irql
) ;
Parameters:

Irql
For the loAcquireVpbSpinLock () routine, this is a pointer that, upon
return, will contain the IRQL to which the thread must be restored when the
corresponding release function is invoked.
For the routine loReleaseVpbSpinLock () , this argument contains the
IRQL value returned when the spin lock was acquired.

Functionality Provided:

There is a global spin lock structure that is acquired by the I/O Manager internally
while manipulating contents of the VPB. If your driver wishes to check or manipu-
late the Flags, DeviceObject, or Ref erenceCount fields in any VPB, you
should first invoke the loAcquireVpbSpinLock () support routine to ensure
data consistency. Note that this is a global spin lock and that, while this spin lock
is acquired, not many I/O operations can continue (e.g., new create and open
operations will be blocked). Therefore, be careful to acquire the lock only for the
short period required while accessing the specified fields.

For more detailed information on the flow of execution leading to a mount opera-
tion, as well as for a detailed explanation of handling VPB structures for volumes
mounted on removable media, consult Part 3-

I/O Status Block
The I/O Status Block is used to convey the results of an I/O operation. This struc-
ture is defined as follows:

Common Data Structures 175

typedef struct _IO_STATUS_BLOCK {
NTSTATUS Status;
ULONG Information;

} IO_STATUS_BLOCK, *PIO_STATUS_BLOCK;

Every I/O Request Packet (IRP) has an I/O Status Block associated with it. A
kernel-mode driver should always insert the return code describing the results of
processing the request in the Status field in the I/O status block structure. This
field will, therefore, contain a return code denoting success (STATUS_SUCCESS),
a return code denoting a warning, an informational message, or an error. Error
status codes also include those indicating that an exception (which was handled
by the driver) occurred while processing an I/O request. Consult the previous
chapter for a discussion of the structure of NT return codes.

The Information field is typically filled with any additional information related
to the requested I/O operation. For example, for a read request of 1024 bytes, the
Information field upon return will contain the actual number of bytes read
even if the Status field indicates STATUS_SUCCESS. Therefore, the Informa-
tion field in this case would contain a value between 0 and 1024 bytes.

File Object
If you develop file system drivers in Windows NT, or if you develop filter drivers
that reside above the file system driver in the driver hierarchy, you should
become very familiar with the structure of a file object. A file object is the I/O
Manager's in-memory representation of an open object. For example, if an open
operation is successfully performed on an on-disk file, the I/O Manager creates a
file object structure to represent that particular instance of the open operation. If
another open operation is performed on the same file stream, the I/O Manager
will allocate a new file object to represent this second open operation, even
though both open operations were performed on the same underlying, on-disk
file stream.

You should conceptualize a file object as the kernel equivalent of a handle
created as a result of a successful open/create request. File objects are not limited
to representing open file streams; rather, they are an abstraction used to represent
any object opened by the NT I/O Manager. Therefore, if you open a logical
volume or a disk drive device object, the open operation will result in the
creation and initialization of a file object data structure.

All I/O operations targeted to on-disk file streams or logical volumes require a file
object structure as the target for the request (you cannot perform a read request in a
vacuum; you must have a target file object representing a previous successful open
operation to which you can direct the read operation). The responsibility for

176 Chapter 4: The NT I/O Manager

creating and maintaining a file object data structure is jointly shared by the NT I/O
Manager and the file system driver.

The file object structure is allocated by the I/O Manager before it passes the open
or a create request to a kernel-mode file system driver. The create/open IRP
contains a pointer to this newly allocated file object structure; it is the responsi-
bility of the kernel-mode file system driver that processes the create/open request
to initialize certain fields in the file object structure.

The file object structure is defined by the NT I/O Manager:

typedef struct _FILE_OBJECT {
CSHORT
CSHORT
PDEVICE_OBJECT
PVPB
PVOID
PVOID
PSECTION_OBJECT_POINTERS
PVOID
NTSTATUS
Struct _FILE_OBJECT
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
ULONG
UNICODE_STRING
LARGE_INTEGER
ULONG
ULONG
PVOID
KEVENT
KEVENT
PIO_COMPLETION_CONTEXT

} FILE_OBJECT;

Type;
Size;
DeviceObject;
Vpb;
FsContext;
FsContext2;
SectionObjectPointer;
PrivateCacheMap;
FinalStatus;
*RelatedFileObject;
LockOperation;
DeletePending;
ReadAccess;
WriteAccess;
DeleteAccess;
SharedRead;
SharedWrite;
SharedDelete;
Flags;
FileName;
CurrentByteOffset;
Waiters;
Busy ;
LastLock;
Lock;
Event;
CompletionContext;

The DeviceObject and Vpb fields in the file object structure are initialized by
the I/O Manager before sending a create or an open request to the file system
driver. The DeviceObject is initialized to the address of the target physical or
virtual device object to which the request is directed. The Vpb field is initialized
to the mounted VPB associated with the target device object.

The FsContext, FsContext2, SectionObjectPointer, and Private-
CacheMap fields are initialized and/or maintained by the file system driver
implementation and the NT Cache Manager. They will be discussed in greater
detail later in this book. The NT I/O Manager does not maintain the contents of

Common Data Structures 177

:;ed by
system
iical or
tialized

.vate-
driver

greater
.tents of

these fields, though it does check for and use the contents of the FsContext
field; this will be discussed in Part 3.

The FileName field is initialized by the I/O manager to a string representing the
file, volume, or physical device to be opened. This name can either be a relative
pathname or an absolute pathname. A relative pathname is indicated by the pres-
ence of a nonnull value in the RelatedFileObject field. This field contains a
pointer to a previously opened file object data structure. The relative pathname
supplied in the FileName field must now be considered relative to the name of
the file represented by the RelatedFileObject. Note that the RelatedFile-
Object field is only valid in the context of a create request. At all other times,
the contents of this field are undefined.

The CurrentByteOf fset field is maintained by file systems for those file
objects that were opened for synchronous access only. This field contains the
current pointer position for the file stream, which is updated upon the successful
completion of read and/or write I/O operations.

The CompletionContext field is used by the NT I/O Manager to send a
message to a Local Procedure Call (LPC) port upon completion of an IRP. The
DeletePending flag is set in the file object structure when a file system
receives a set information IRP specifying that the file stream should be deleted.

The LockOperation field is set to TRUE by the I/O Manager if the thread that
owns the file object structure invoked a byte-range lock operation at least once
while the file was open. This field is later checked when the thread closes the file
object to determine whether or not to send an unlock IRP to the file system driver.

The various access fields (ReadAccess, WriteAccess, and DeleteAccess)
are set and cleared by the I/O Manager. So are the various share access related
fields (SharedRead, SharedWrite, and SharedDelete). The state of these
fields determines how the file is currently opened and also determines whether
subsequent opens requesting certain specific types of access will be allowed to
proceed or will be denied with an error code of STATUS_SHARING_VIOLATION.
There exists an I/O Manager support routine called loCheckShareAccess (),
which maintains the state of these fields. This routine is typically only invoked by
file system drivers and will be described later in this book.

Later in this chapter, you will read about synchronous and asynchronous I/O oper-
ations from the perspective of the file system drivers that must provide the code
to implement such requests. A user can open a file object specifying that all opera-
tions performed on the opened object by that particular file object be executed
synchronously. This is indicated by the presence of a FO_SYNCHRONOUS_FLAG
in the Flags field of the file object structure, which is set by the I/O Manager as
part of the create/open request. One of the effects of requesting synchronous I/O

178_________________________________Chapter 4: The NT I/O Managtt

operations is that the I/O Manager always serializes all I/O operations performed
using that particular file object. To implement this sequential behavior, the NT I/O
Manager uses the Busy and the Waiters fields in the file object data structure,
The Busy field is set when an I/O operation using that particular file object is in
progress. The Waiters field denotes the number of threads waiting to perform
I/O operations using the same file object. These fields should not be of much
interest to other kernel-mode drivers.

The file object is a waitable kernel-mode object, i.e., threads can request asynchro-
nous I/O, and subsequently wait for the completion of the I/O operation. The
Event field in the file object is used by the I/O Manager to maintain the state of
the wait object. This event object is set to the not-signaled state by the I/O
Manager when an I/O operation begins using that file object. It is subsequently
set to be signaled once the I/O is completed, though only if the caller had not
explicitly supplied another event object to wait for.

The Flags field can reflect many values, one of has been described here, and
each describes a state associated with the file object structure. I will defer discus-
sion of each of the possible values of this field until later in the book, when the
field is actually used in our code.

Determining Which Objects to Use
Here are a few simple rules to "put everything together" when developing your
driver:

• When your driver loads, a driver object will be created and sent to your initial-
ization routine by the I/O Manager. You must fill in certain fields in the driver
object, such as the various dispatch routine function pointers, for the function-
ality you wish to support. If you do not fill in the function pointers, your
driver will not receive any requests, because all requests will be handled by
the default routine (lopInvalidDeviceRequest ()) .

• In order to provide any functionality, you will probably create at least one
device object. More than likely, you will create one device object representing
your driver and subsequent other device objects representing other virtual
and/or physical devices you support. Most of the device objects you create
will be named, unless you develop a file system driver, in which case, most
of the device objects will represent logical volumes and will therefore be
unnamed. When requesting a create operation for a device object, you should
also specify a device extension in which you can store global data associated
with each new device object.

• If you write a filter driver, you will create one device object for each target
device object whose I/O requests you wish to intercept. You will then attach

Common Data Structures 179

your device object to the target device object. This procedure of attaching to
the target will actually cause all I/O requests directed to the target to be re-
routed to your device object.*

• If you develop a file system driver, you will have to manipulate the Volume
Parameter Block (VPB) for the physical device object on which you perform a
mount operation. Performing a mount will cause the I/O Manager to make
the physical device object accessible for read/write requests and those
requests will be sent to your device object representing the mounted logical
volume.

• Once you make a device object available for receiving I/O requests, requests
will be sent to you in the form of I/O Request Packets (IRPs). If you develop
a file system driver, you will also receive requests via the fast path (more on
that later in this book).

• When you receive an IRP, you will determine the nature of the I/O operation
your driver is being asked to perform. To do this, you should get a pointer to
the current stack location in the IRP and use it to extract information pertain-
ing to the I/O request. Your driver will then perform appropriate processing
of the IRP, either synchronously or asynchronously.

• Your driver may be able to complete the IRP, or it might determine that the
IRP needs to be forwarded to a driver that is lower in the hierarchy for some
additional processing. In the latter case, you should obtain a pointer to the
next stack location in the IRP and fill in the information that the next driver in
the hierarchy can subsequently extract to determine the nature of processing
it has to perform.

• If your driver will complete the IRP, it must return results of the I/O operation
in the I/O status block structure. The Status field should contain the result,
while the Information field should contain any additional information you
wish to return to the caller.

• Last, but not least, if you develop a file system driver, you will access and pos-
sibly modify the file object structure as part of processing an open request
(and subsequently when processing most IRPs). Each such structure repre-
sents an instance of a successful open operation.

In addition to the objects mentioned in this chapter, if you develop a device
driver, you will be concerned with other objects as well, including controller
objects, adapter objects, and interrupt objects.

Furthermore, your driver will undoubtedly create one or more object types of its
own. For example, file system drivers will create some internal representation of a

* The process of attaching to a target device object is described in detail in Chapter 12.

180 Chapter 4: The NT I/O Manager

file stream in memory. For those familiar with UNIX operating system environ-
ments, think about the vnode structure that is created and maintained by all file
systems. The NT equivalent of this structure is a File Control Block, an object we
will discuss at length in Part 3. In addition, file systems will create a context to
internally represent an instance of a file open operation (similar to the system-
defined file object structure). In Windows NT parlance, this structure is called a
Context Control Block.

Once you start using these objects in your code development, they should
become second nature to you and you will no longer have to spend time trying
to figure out what a device object represents.

I/O Requests: A Discussion
The following discussion provides some additional information that you should
keep in mind as we develop a higher-level kernel-mode driver. This information
will be used not only in the sample drivers provided in this book, but also in any
commercial kernel-mode drivers you design and develop.

Synchronous/Asynchronous Operations
Some I/O operations are always performed synchronously; therefore, any
system driver that you develop only has to design a synchronous method of 1
processing IRPs for such types of requests. Other operations can be handled!
either synchronously or asynchronously; your file system driver must, therefore,
provide both synchronous and asynchronous code paths for processing such I/O j
request packets.

How does a kernel-mode driver determine whether an IRP should be handled!
synchronously or asynchronously?

Before we address that question, it might be useful to see why handling asynchro-j
nous requests correctly is important. Consider a file system driver that you
that does not honor asynchronous requests but performs all requests synchro-!
nously. Your implementation should work correctly most of the time. The onel
problem that might occur is when your driver receives asynchronous paging I/OJ
write requests. These requests typically originate from the NT Modified
Writer. The number of worker threads available to the Modified Page Writer is]
fixed. It may be that the MPW uses only two threads to perform such paging I/0,J
one to the page files and the other to memory-mapped files.

In low-memory and high-stress situations, the VMM tries to quickly flush modif
pages out to secondary storage to make room for other data in the systei
memory. The MPW does this by rapidly issuing asynchronous page write requei

I/O Requests: A Discussion 181

to file systems that manage one or more of the modified pages, either in mapped
files or in page files. If your driver blocks the MPW thread until the I/O is
completed, it slows down the whole process of flushing data out to disk, which
can result in unacceptably long delays to the users of the system.

Therefore, if you develop a higher level kernel-mode driver, it would be prudent
to provide support for asynchronous I/O operations.

Only some I/O system services can be processed asynchronously:

• Read requests
• Write requests

• Directory control requests

• Byte range lock/unlock requests
• Device I/O control requests

• File system I/O control requests

As you may have noticed, all of the types of requests listed above can potentially
take a significant amount of time to complete. Therefore, it is logical that the
caller be allowed to request asynchronous processing for such requests. All of the
other IRP major functions should complete reasonably quickly.

Therefore, if your file system or higher-level filter driver (layered above a file
system) receives an IRP with a major function other than the ones listed here, you
can assume that you are allowed to block in the context of the calling thread.

For the major functions listed, the caller has the option of specifying whether the
request should be performed synchronously or asynchronously. To find out what
the caller wants, your kernel-mode driver can invoke the following I/O Manager
support routine:

BOOLEAN
loIsOperationSynchronous (

IN PIRP Irp

Parameters:

Irp
The I/O request packet sent to your driver. This IRP has flags set by the I/O
Manager that determine whether the IRP can be processed synchronously or
asynchronously. Note that asynchronous operations can always be performed
synchronously (with the slight caveat discussed above); however, even if your
driver performs a synchronous operation asynchronously and therefore
returns STATUS_PENDING to the I/O Manager, the NT I/O Manager will
perform a wait operation in the kernel on behalf of the calling thread.

,

182 Chapter 4: The NT I/O Manager

Functionality Provided:

This simple function call performs the following checks:

• If the IRP_SYNCHRONOUS_IRP flag has been set, the IRP should be exe-
cuted synchronously. All IRP structures that describe major functions other
than the ones listed above will have this flag set in the IRP. The presence of
this flag causes ZoIsOperationSynchronous () to return TRUE.

• As described earlier in this chapter, the caller may have opened the target file
object for synchronous access only. This is denoted by the F0_
SYNCHRONOUS_IO flag being set in the file object data structure; the pres-
ence of this flag causes the loIsOperationSynchronous () routine to
return TRUE.

• The IRP may be a paging I/O read or write request, denoted by the IRP_
PAGING_IO flag in the IRP. Furthermore, even paging I/O requests can be
synchronous or asynchronous. Synchronous paging I/O requests are indicated
by the presence of the IRP_SYNCHRONOUS_PAGING_IO flag in the IRP. If
the latter flag is not set, the I/O Manager knows that this is an asynchronous
paging I/O request and returns FALSE; otherwise, the I/O Manager identifies
the request as a synchronous paging I/O request and returns TRUE.

The NT I/O Manager provides different methods of informing callers when asyn-
chronous I/O operations have been completed. Here are the possible methods:

• The file object structure is a waitable object in Windows NT. When an I/O
operation is initiated on a file object, the object is initially set to the not-sig-
naled state; when the I/O operation completes, the file object is set to the sig-
naled state.

• The asynchronous NT system services provided by the I/O Manager accept an
optional Event object that is initially set to the not-signaled state and is sig-
naled when the I/O operation is completed. In the discussion on IRP comple-
tion, I mentioned that the I/O Manager signals a user-supplied event object
when performing the final postprocessing upon IRP completion in the context
of the calling thread. Note, however, that if an event object is supplied, the
file object will not be signaled.

• Asynchronous NT system services provided by the I/O Manager also accept
an optional caller-supplied APC routine. This routine is invoked via an Asyn-
chronous Procedure Call by the I/O Manager as part of the postprocessing
performed in the context of the calling thread.

One final note about synchronous requests; all synchronous requests made using
the same file object structure are serialized, regardless of whether they are made
by the same thread or by other threads that are part of the same process. The file

I/O Requests: A Discussion 183

system driver also has the responsibility of maintaining a current position pointer
for each file object that is updated whenever a file object is opened for synchro-
nous I/O.

Handling User-Space Buffer Pointers
When you create a device object that can receive and serve I/O requests, your
driver gets the opportunity to specify how it will handle user-supplied buffer
address pointers. You won't fully understand why this information is necessary
until you read the next chapter on the NT Virtual Memory Manager. For now,
however, note that the range of addresses that a user-mode thread can access is
limited to the lower 2GB of the 4GB address space accessible to any process
under Windows NT. Furthermore, this 2GB range of virtual address space is
unique per process (i.e., the addresses used by thread-A do not necessarily refer
to the same physical memory location as do similar addresses used by thread-B).
Of course, threads belonging to the same process do share the same address
space.

A user-mode application typically performs I/O to and from secondary storage
using temporary buffers it has allocated in its own thread context. We will
currently ignore the alternative method used by applications, which involves
using shared memory or memory-mapped files.

For example, consider an application that needs to read some data for a file from
disk. This application will typically allocate a buffer that should be large enough
to contain the amount of requested data. The application will then invoke a read
operation on the open file from which it wishes to obtain data, specifying the
byte offset to read from and the amount of information to be read.

The read request from the application will eventually be translated into an NT
system service call provided by the NT I/O Manager. Among the arguments
received by the I/O Manager will be the pointer to the buffer, supplied by the
user-mode application. This read request now is sent by the I/O Manager to the
file system driver that manages the mounted logical volume on which the open
file object resides.* It is at this point that the I/O Manager finds out how the file
system driver will deal with the user-supplied buffer pointer. This buffer is valid
only in the context of the user-mode thread and does not refer to locked
(nonpaged) memory. The file system can choose from the following possible
options:

' As you go through the rest of the book, you will find out that this statement is not completely true,
since often the I/O Manager bypasses the file system driver completely and instead gets data directly from
the system cache. Let us keep things simple and straightforward for now, though, and ignore that method
of data transfer.

184 Chapter 4: The NT I/O Manager

Request that the I/O Manager always allocates a nonpaged system buffer that
will subsequently be used by the file system driver in the data transfer. It
would then be the responsibility of the I/O Manager to copy any data being
written out to disk from the user-supplied buffer to the system buffer before
dispatching the IRP to the file system driver. Similarly, for I/O operations
where the user-mode application needs to obtain information from the file sys-
tem driver or to read data from disk, the I/O Manager would have to copy
the data back from the system buffer to the user-allocated buffer once the IRP
had been completed.

• This method of handling user-mode buffers by instructing the I/O Manager to
always allocate a corresponding system buffer is called the Buffered I/O method.
The system buffer pointer is passed down to your driver in the Associated-
Irp.SystemBuffer field in the IRP. Note that the I/O Manager will also
often initialize the UserBuffer field in the IRP with the address of the
caller-supplied buffer. Do not attempt to use the contents of this field in your
kernel-mode driver, though, because the SystemBuf fer field already con-
tains the system buffer pointer you can use.

The disadvantage of using buffered I/O is the requirement for extra memory
copies to be performed by the I/O Manager. This is not desirable when you
wish to maximize system performance. However, buffered I/O is the simplest
and therefore most widely utilized method of handling user-supplied buffers.

Another disadvantage of using the buffered I/O method is that the memory
for the system buffer allocated by the I/O Manager is not paged. This results
in unnecessary depletion of the nonpaged pool of memory reserved for the
system. A third problem is that, although the memory is not paged out, if you
wish to use Direct Memory Access to transfer data directly to/from memory
and peripheral devices, a Memory Descriptor List will have to be created by
either your driver or a lower-level driver to describe the physical pages that
back the allocated buffer.
If your driver wishes to avoid the overhead of allocating and copying data to
and from a system buffer, you can instead specify that your driver will use the
direct I/O method. If this method is specified, the I/O Manager will request an
MDL from the VMM that describes the user buffer directly, and it will also
request the VMM to allocate and lock physical pages for the user buffer. The
resulting MDL pointer will be passed to your driver in the MdlAddress field
in the IRP.

The direct I/O method is more efficient than the allocation of an extra buffer
and the resulting copy operations that must be performed. The downside is
that your driver must be capable of working with the MDL directly; i.e., there
is no virtual address pointer that your driver can use when transferring data.

System Boot Sequence 185

Now, this works fine when you simply pass the MDL down to a lower-level
driver, which subsequently uses it in a DMA data transfer. However, if you
need a virtual address pointer that is accessible in the context of the thread
you process the IRP in, your driver will have to use the MmGetSystemAd-
dressForMdl () support routine from the VMM. You must be careful when
using this routine; freeing the Memory Descriptor List will cause all processors
in the system to flush their caches. The reason for this is complex; simply
stated though, obtaining a system virtual address for the MDL is done by dou-
bly mapping the physical pages. This is also known as aliasing, a technique
which, if not handled correctly, causes many cache consistency problems and
resulting headaches for the VMM. If your driver does use the direct I/O
method for handling user-supplied buffers, try to avoid using the MmGetSys-
temAddressForMdl () routine whenever possible.

• The third method is not to specify either direct I/O or buffered I/O as the pre-
ferred method for handling user-supplied buffers. If you do not specify either
of these two methods, the I/O Manager will simply pass down the user
address to your driver in the UserBuf f er field in the IRP.
The responsibility for manipulating the user buffer is on your driver if you
choose this method. File system drivers often use this method, and then make
a decision in their dispatch routines whether they will create an MDL them-
selves or internally allocate a system buffer they can use while processing the
request. Most lower-level drivers, however, prefer to use the direct I/O
method described above.

These methods do not apply to buffers passed in for device or file system IOCTL
(I/O Control) requests. I will discuss IOCTL requests and the buffer manipulation
performed by the I/O Manager for such requests in Part 3.

System Boot Sequence
Before you proceed to the remaining chapters in this book, it might be useful to
understand the steps that are executed from the time you power-on your
Windows NT system until the point where you see the logon screen on the
console.

This information can prove quite useful when you design your driver, because it
determines when your driver will be loaded and what part your driver might be
called upon to play during this process. However, you should also note that the
boot process is highly system-, processor-, operating-system-version-, and architec-
ture-dependent, and the sole objective in listing some of the steps below is simply
to provide you with generic information about "what really happens" when the
system boots, not to prepare you to be able to adapt the boot sequence to a new

186_________________________________Chapter 4: The NT I/O Manager

processor architecture.* Therefore, be warned that the following description is
highly simplified, though mostly correct.

The main problem in examining the system boot sequence is to determine the
starting point. For the purposes of this section, our "beginning" will be the point
at which code provided by Microsoft as part of the NT operating system gets
executed:

1. The NT system startup routine is invoked by the system start-up module. This
routine is passed a BootRecord structure, which contains basic machine
and environment information used later by the OS Loader component.
The NT system startup routine performs some global initialization and deter-
mines the disk drive and partition that the system is booting from. Part of the
global initialization involves initializing memory descriptors for use during this
initial system boot-up stage. The system startup routine also invokes a boot
loader heap initialization routine, which sets up memory descriptors appropri-
ately so that the boot loader can subsequently use that memory during the
system load process.

The boot sequence described so far comprises Phase 1 of the eight phases in
the NT system boot process.

2. The boot loader startup routine is now invoked by the system startup routine.
Note that system startup routine does not expect that the call to the boot
loader startup routine will ever return, since that would indicate that system
boot sequence has failed. However, if this does happen, you will probably
see a hung system, where a hard power reset might be required to restart.
The boot loader startup routine opens the boot partition, which had been
previously identified by the caller, and reads the boot.ini file off it. As part of
attempting to read this file, the boot loader startup routine uses code that has
been compiled in to determine whether the boot partition contains an NTFS,
CDFS, FAT, or HPFS partition. Note that the standard file system drivers have
not been loaded yet, and the boot loader startup routine uses hardcoded
support for only those file systems that Microsoft has chosen to provide boot
support for; these happen to be the standard NT file system implementations.
Since support for boot file systems has to be built into the NT boot loader
startup code, providing a third-party bootable file system implementation is
close to impossible without the active assistance of Microsoft.

* I have described the sequence that executes on the x86 processor architecture. Despite my warnings
above, much of the code executed during system startup has been designed to be relatively portable
across different architectures; therefore, the methodology and principles used are pretty much the same.

System Boot Sequence 187

At this point, the boot loader startup routine makes a real-mode BIOS inter-
rupt call to set the video adapter to 80*50, 16-color, alphanumeric mode. It
also clears the display by writing blanks out to the screen.
The boot loader startup routine reads the entire contents of the boot.ini file
and presents the list of bootable kernels available to the user, as listed in the
boot.ini file. To read the file, the boot loader startup routine once again
employs routines that can recognize NTFS, FAT, CDFS, and HPFS data struc-
tures, and can navigate successfully through the on-disk file system layout. If
the boot.ini file is empty, the default option presented is NT (default) and the
default directory path to boot from is C:\winnt*
The boot loader startup routine now attempts to match the default boot loca-
tion provided by the user in the [boot loader] section of the boot.ini file,
with the options read from the [operating systems] section of the file.
If no default option was specified, the default directory path is searched for.
If the boot loader startup routine does not find a match between the default
boot option and those options listed in the [operating systems] section,
the default boot location chosen is C:\winnt.
The default boot location and the possible options are presented by the boot
loader startup routine to the user using video display support routines. If the
boot kernel path location selected by the user is C:\, the NT loader startup
code assumes that the user wishes to boot into DOS, Windows 3.x, Windows
95, or OS/2; therefore, it attempts to read in the bootsect.dos file and then
reboots the machine into whichever alternative operating system is present.
If the boot location indicates that the user wishes to boot into Windows NT
(this can happen because of a time-out in the selection process, or because of
the user selecting a specific boot system), the boot loader startup routine
attempts to read in the ntdetect.com executable from the root directory of the
boot partition. If ntdetect.com is not found, or if the size of the file seems
incorrect, or if any of the other consistency checks made by the OS loader
startup code fail, the boot process will fail and you will have to reboot the sys-
tem. If, however, a valid executable is found, it is read into memory, and the
system attempts to use the services provided by the hardware manufacturer to
detect the current hardware configuration.
Note that we are well into Phase 2 of the system boot initialization at this
point. The OS loader startup routine now initializes the SCSI boot driver if
required. The ntldr.exe OS loader is now loaded into memory.

* Note that the hoot loader startup routine currently has a bug in that it cannot handle more than 10 en-
tries in the boot.inifile. All entries exceeding this limit are simply ignored. Apparently, this bug has existed
since Windows NT Version 3.5 (and probably since well before that).

188 Chapter 4: The NT I/O Manager

3. The OS loader opens the console input and output devices, and also the
system and boot partitions. It also displays the OS loader identification
message on the console, OS Loader V4. 0.
The loader uses the boot partition information to generate a complete path-
name for the ntoskrnl.exe NT kernel system image file. Note that the system
always expects to find this file in the System32 directory under the boot parti-
tion location. Once the system image has been loaded into memory, the OS
loader loads into memory the hal.dll system file. The HAL (Hardware Abstrac-
tion Layer) isolates platform dependent functionality for the rest of the
Windows NT Executive.

At this point, all DLLs imported by the two loaded system files are identified
and loaded into memory. Now, the OS loader attempts to load the SYSTEM
hive from the NT Registry. At this time, the loader has already made the deter-
mination whether it should load the LastKnownGood control set or the
Default control set from the Registry. This determination is important because
the control set determines the set of boot drivers that will be loaded into the
system.

To load the SYSTEM hive into memory, the OS loader attempts to open and
read the SYSTEM file from the System32\config directory on the boot parti-
tion. If the attempt to open and read in the SYSTEM file fails, an attempt is
made to read in the SYSTEM. ALT file. If neither of these attempts succeed, the
OS loader fails the boot attempt. If the file can be successfully read, the
contents of the file are verified, and in-memory data structures are initialized
to reflect the contents of the on-disk file. Also, note that the system loader
block, which is eventually passed to the loaded system image, is appropri-
ately modified to point to the in-memory copy of the SYSTEM hive.

At this time, the OS Loader determines the list of boot drivers that need to be
loaded into memory. Included among this list is the driver responsible for the
boot partition file system. Note that boot drivers are identified by the Start
value entry (should be equal to 0) associated with the driver's key in the
control set that was loaded into memory. Once the list of boot drivers has
been identified, the OS Loader sorts these drivers based upon the Service-
GroupOrder specified in the Registry; subsequent drivers within a group are
sorted based on the GroupOrderList specified in the Registry and the Tag
value entry associated with each driver key in the Registry.
Once the driver load order has been determined, all boot drivers are loaded.
In the event of an error while loading boot drivers, the ErrorControl value
entry associated with the driver in the Registry is examined. If the driver was
marked as a critical driver for the system boot process, the current boot fails;
otherwise, the OS loader continues loading other boot drivers.

System Boot Sequence 189

Finally, the OS Loader prepares to execute the loaded system image and trans-
fers control to the entry point in the NT kernel.

During Phases 3-5 of the system boot process, the various NT Executive
components and the NT kernel are initialized. Drivers that should be automati-
cally loaded with a Start value entry of 1 are also loaded during Phase 5 of
the system boot process.

The NT kernel initialization routine, KilnitializeKernel (), is invoked
during Phase 3 initialization by the kernel system startup routine (which is the
entry point into the system image that was loaded into memory by the NT OS
loader). This routine initializes the processor control block data structure, the
kernel data structures, and the idle thread and process objects, and invokes
the NT Executive initialization routine. Various spin locks protecting kernel
data structures and kernel linked list structures are initialized here. The
various kernel linked list heads (DPC queue list head, timer notification list
head, various thread table lists, and other similar kernel data structures) are
also initialized here.

Once the kernel idle thread structure has been initialized, the Executive initial-
ization routine is now invoked in the context of this idle thread. Initialization
of the NT Executive and the various subcomponents of the Executive takes
place in two phases.* During Phase 0 of the Executive initialization, the
following subcomponents initialize their internal states:

— The Hardware Abstraction Layer (HAL)
— The NT Executive component

— The Virtual Memory Manager (VMM)

Memory Manager paged and nonpaged pools, the page frame database
(explained in the next chapter), Page Table Entry (PTE) management
structures, and various VMM resources, such as mutex and spin lock data
structures, are initialized at this time. The VMM also initializes the NT sys-
tem-cache-related data structures at this time, including the system cache
working set and the various VMM data structures used to manage the sys-
tem cache.

— The NT Object Manager
— The Security subsystem

* Do not confuse these phases with the system boot sequence Phases 1 through 8. These two phases are
internal and specific to the initialization of the NT Executive and its various subcomponents.

190 Chapter 4: The NT I/O Manager

— The Process Manager
During Phase 0 initialization of the NT Executive, the initial system pro-
cess is created. Note that the idle process was hand crafted by the NT ker-
nel before any of the Executive initialization began. The system process
created at this time is distinct from the idle process that was created ear-
lier. A system thread is also created in the context of the initial system
process at this time. Phase 1, or the remainder of the NT Executive initial-
ization, is now performed in the context of this newly created thread
belonging to the initial system process.

During Phase 1 initialization of the NT Executive and various subcomponents,
all interrupts are disabled and the priority of the thread in whose context the
initialization is performed is raised to a high priority, effectively disabling any
preemption. Also, during Phase 1 of the Executive initialization, the system is
considered fully functional and subcomponents are now allowed to perform
all required operations to complete their initialization. The following subcom-
ponents are invoked (or their operations performed) during Phase 1 initializa-
tion of the NT Executive:

— The Hardware Abstraction Layer (HAL) is invoked to complete
initialization.

— The system date and time are initialized.
— On an multiprocessor system, other processors are started at this time.

— The Object Manager, Executive subsystem, and the Security subsystem
are invoked to perform the remainder of their initialization.

— The Virtual Memory Manager (VMM) Phase 1 initialization is performed.

At this time, the memory mapping functionality is initialized and becomes
available to the rest of the system. VMM threads are also started now. The
VMM can be considered fully functional and ready to service the remain-
der of the system after Phase 1 initialization.

— The NT Cache Manager is initialized after the VMM initialization has been
completed.

You will read more about the NT Cache Manager and the functionality
provided by it later in this book. Note for now, that during Cache Man-
ager initialization, the number of worker threads required for asynchro-
nous operations is determined and created, and the Cache Manager
linked list structures and synchronization resources are initialized.

— The Configuration Manager is invoked to begin its initialization.

The Configuration Manager manages the NT Registry. During this phase
of initialization, the Configuration Manager (CM) makes available the

System Boot Sequence 191

\REGISTRY\MACHINE\SYSTEM and the \REGISTRY\MACHINE\HARD-
WARE hives in the registry. To do this, all of the information obtained by
ntdetect.com earlier, as well as information read into memory by the OS
loader is filled into appropriate entries in the SYSTEM or HARDWARE
hives. Once this phase of initialization has been completed, part of the
Registry name space is available to other system components, particularly
kernel-mode drivers that will soon be loaded; however, the CM will not
write out modifications to the Registry at this time. The kernel-mode driv-
ers that will soon be called upon to perform driver-specific initialization
can use the standard Registry routines to access this information.
The NT I/O Manager is called upon to perform its initialization.
The I/O Manager first initializes internal state objects, including synchroni-
zation data structures, linked lists, and memory pools (e.g., the IRP zone/
lookaside lists). Then, the I/O Manager registers all of its internally
defined object types (i.e. adapter objects, controller objects, device
objects, driver objects, I/O completion objects, and file objects) with the
Object Manager using an internal routine called ObCreateObject-
Type () .* The I/O Manager also creates the \Device, \DosDevices, and
the \Driverroot directories in the object name-space at this time.
Next, the boot drivers loaded by the OS loader are initialized by the I/O
Manager. This includes invoking the driver entry routines for each of
these drivers to perform driver-specific initialization. The raw file system
driver is also loaded at this time. The only other file system driver loaded
is the boot file system driver. Drivers must adhere to the restrictions on
interacting with the NT Registry. Finally, the drivers with a Start value
entry value of 1 are loaded and their driver entry routines invoked for
driver-specific initialization.

Driver reinitialization routines are subsequently invoked for all loaded
drivers that have requested reinitialization. Following this, the NT I/O
Manager assigns drive letters to recognized disk partitions. The drive let-
ters A: and B: are reserved for floppy drives. The I/O Manager examines
the registry for any "sticky" drive letter assignments that need to be main-
tained for CD-ROM drives and for hard disk drive partitions. These drive-
letter assignments are internally reserved so that they will not be used
subsequently when determining dynamic DOS drive letter assignments.

' Note that the Object Manager is not aware of these object types otherwise (i.e., information about I/O
Manager-defined objects is not coded into the Object Manager design). This illustrates the philosophy of
a layered and object-based system, followed by the NT development team.

192 Chapter 4: The NT I/O Manager

Note that before reserving a drive letter for each of the hard disk drives,
the I/O Manager performs an open operation on the physical drive.
Therefore, if you develop a hard disk device driver or a lower-level filter
or intermediate driver, you should expect an open request at this time. If
the open request succeeds, a symbolic link to the device object is created
in NT object name space; the name assigned to this link is of the form
\DosDevices\PhysicalDrive°/od where %d represents the disk drive num-
ber in sequence. The NT I/O Manager also queries partition information
from the disk driver at this time. The following method is used by the I/O
Manager to determine the order in which drive letters are assigned to
fixed disk partitions:

— The NT I/O Manager queries the Registry for any "sticky" drive letter
assignments that need to be maintained.

— Bootable partitions are first assigned dynamic DOS-compatible drive
letters (i.e., a symbolic link is created to the device object repre-
senting the partition, with the name \DosDevices\%c: where %c
represents the drive letter chosen by the NT I/O Manager for the
partition).

— Primary partitions are next chosen for dynamically assigned drive
letters.

— Extended partitions are subsequently assigned DOS drive letters.

— Other (enhanced) partitions are now assigned DOS drive letters. After
drive letters have been assigned to hard disk drive and removable
drive partitions, the NT I/O Manager assigns drive letters to all CD-
ROM drives that were identified during hardware detection.

— The Local Procedure Call (LPC) subsystem and the Process Manager
subsystem now complete their initialization.

— The Reference Monitor and Session Manager subsystem are invoked
next to complete their initialization.

5. At this point, Phases 3-5 of the system boot process have been completed.
Remember that NT Executive components were initialized in the context of
the system worker thread belonging to the system process, which was created
by the NT kernel. This thread now assumes the role of the Memory Manager
zero page thread; this is a very low-priority thread used to asynchronously
zero out pages that are placed on the free list by the VMM. As you will read
in the next chapter, all pages need to be zeroed out before they can be
reused to make the system conform to C2 security defined by the US Depart-
ment Of Defense (DOD).

System Boot Sequence 193

6. The system has been initialized at this point. During Phases 6-8 of the system
boot process, the various subsystems are initialized and other services are
loaded by the Service Controller Manager. This includes the loading of kernel-
mode drivers with a Start value of 2 in the Registry.

We have finished our bird's-eye view of the NT system boot process. This should
have given you a reasonable understanding of the steps executed to bring the NT
system to a stable state so that it can begin responding to user requests.

This chapter has introduced you to the Windows NT I/O Manager and the
Windows NT I/O subsystem. Another important component of the NT Executive
is the NT Virtual Memory Manager, which is the topic of the next chapter.

The NT Virtual
Memory Manager

In this chapter:
* Functionality
• Process Address Space
• Physical Memory

Management
"Virtual Address

Support
* Shared Memory and

Support
Modified and
Mapped Page Waiter
Page Fault Handling
Interactions with
File System Drivers

An important functionality provided by modern day operating systems is the
management of physical memory on the node. Typically, the amount of available
volatile RAM on a machine is less than that required by all the applications and
by the operating system itself. Therefore, the operating system has to intervene
and facilitate sharing this limited memory resource, given the often conflicting
demands placed by all components on the node.

Furthermore, with multiple applications executing concurrently on the same
machine, the operating system has the task of ensuring that these applications can
perform their tasks independently of each other. Therefore, code and data struc-
tures for each of the applications must be managed such that they do not interfere
with code and data from any other application. The operating system must also
protect its own in-memory resources (both code and data), used to manage the
system, from all of the applications executing on the system. This is required to
guarantee the integrity and security of the machine itself. Finally, sophisticated
applications on the same machine (and sometimes on networked clusters of
machines) often need to share in-memory data with each other. The operating
system has to facilitate orderly sharing of data such that only those applications
that are given permission to access the shared data are allowed to do so.

The Virtual Memory Manager (VMM) has the responsibility for providing all of this
functionality. The VMM is so named because it helps provide an abstraction to
each application executing on the system: each application can perform its tasks
believing all of the memory resources on that system are available for the sole use
of that application. Furthermore, the application can execute believing that it has

194

Functionality___195

an infinite amount of memory resource available to it. This abstraction of an infi-
nite amount of memory reserved solely for the use of a specific application is
called virtual memory. The VMM is the kernel-mode component responsible for
providing this abstraction.

functionality
The NT VMM provides the following functionality to the other components of the
system:

• The Virtual Memory Manager provides a demand-paged (with clustering sup-
port), virtual memory system. Each process has a private virtual address space
associated with it.* This virtual address space is backed by physical pages,
allocated on demand from the total pool of physical pages available on the
machine.

• Management of the virtual address space associated with a process is sepa-
rated from the manipulation of physical pages. The VMM provides support for
application control of the virtual address space allocation, commitment,
manipulation, and deallocation.

• Virtual memory support is provided with the help of the local file systems. In
order to provide the illusion of a large amount of available memory (greater
than the amount of actual RAM), the contents of memory are backed-up to
storage allocated on secondary storage media. Memory backed by on-disk
storage is called committed memory. Committed memory is backed either by
page files, which can be dynamically resized, or by data/image files on sec-
ondary storage.

• The VMM provides support for memory-mapped files. These files can be arbi-
trarily large; files larger than 2GB can be mapped using partial views of the
file.

• It supports sharing memory between different processes on the system. This
is also used as a method of interprocess communication.

• It implements per-process quotas.

• It determines the policies for working-set management of physical memory
allocated to processes.

* Currently (for Windows NT Version 4.0 and earlier), the Virtual Address gpace associated with a process
is limited to 4 GB. It is inevitable that this support will be extended to 2 bytes when Windows NT be-
comes a true 64-bit operating system. At the time this book went to press, Microsoft announced its inten-
tion to support a 64-bit address space with Version 5.0 of the operating system.

196 Chapter 5: The NT Virtual Memory Manager

Furthermore, all physical memory allocation/deallocation decisions are per-
formed by the NT VMM. This is done irrespective of whether memory is allo-
cated to user-mode applications or for kernel-mode file data caching.

• It provides support for the protection of memory using Access Control Lists
(ACLs).

• It provides support for the POSIX fork and exec operations, thereby enabling
compliance with the POSIX standard.

• It provides support for copy-on-write pages. It has the ability to establish
guard pages and to set page level protection.*

Process Address Space
An address is simply a value that points to a memory location contained within

Process Address Space__75*7

• Uninitialized global data
• Heap (dynamically allocated memory)
• Shared memory

• Shared libraries

These components must be stored somewhere in physical memory, though not all
of these components need to always exist in physical memory all of the time. If
these components are brought into physical memory when needed, the process
must have some way of accessing the memory locations where this information is
stored. Therefore, an address space (or a range of addresses) must be associated
with each process.

Some amount of physical memory in the system must also be devoted to the oper-
ating system code and data. So now, not only does the VMM have to provide
virtual addresses for process-specific information, it must provide virtual addresses
to refer to operating system components, including addresses that refer to its own
code used to manage the memory in the system. This is achieved by the creation
of a special system process, which, like any other process, has 4GB of virtual
memory available to it. However, creation of the system process is not sufficient
in itself.

You know that user processes executing on the system often have to request
services from the operating system. These requests might be related to I/O opera-
tions, allocation and manipulation of memory, creation of new processes and
other similar operations. The NT operating system provides system services that
receive user requests and execute code in kernel mode to handle such requests.
This leads to the situation where operating system code executing in kernel mode
must perform some tasks in the context of the user process that issued the request.

Figure 5-1 illustrates a typical process address space on an Intel x86 hardware
platform.*

To perform such tasks, operating system code and data must be addressable from
within the context of the user process; i.e., there must be a range of virtual
addresses that refer to operating system code and data, but actually "reside"
within the 4GB limit set by the underlying hardware. To achieve this, the NT
VMM divides the 4GB range of addresses allocated to each process into two
halves, a 2GB range dedicated to user-mode virtual addresses, called user space (a

* Some hardware platforms support a segmented addressing scheme, which divides physical memory into
contiguous chunks known as segments. However, the view presented by the NT VMM to the entire system
is that of a linear (or a flat) virtual address space. Any segmentation issues (if they exist on a particular
architecture) are handled transparently by the VMM.

198 Chapter 5: The NT Virtual Memory Manager

Figure 5-1 • Virtual address space for a typical process

user process executing in user mode can only access this 2GB range) and another
2GB range containing kernel-mode virtual addresses, called kernel space.

NOTE Let me reiterate the following concept: a processor can execute code
in user mode (typically Ring 3 on Intel x86 architectures) or it can ex-
ecute code in kernel/privileged mode (typically Ring 0 on Intel x86 ar-
chitectures). Therefore, although stated otherwise, user-mode or
kernel-mode states are associated with a processor, not with any code
(or process) executing on that processor. The distinction, though sub-
tle, must be well understood by all kernel developers.

Although the 2GB of user-mode virtual addresses refer to process-private data
(not accessible by other processes in the system), the 2GB of kernel-mode
addresses always refer to the same physical pages* on the system (regardless of
the thread context in which they are accessed) containing operating system code
and data.

* Pages are explained later in this chapter.

Process Address Space

Another concept that you should understand is that of a hyperspace area within
the 4GB virtual address space associated with each process. This hyperspace area
is a range of virtual addresses actually reserved from within the 2GB kernel space
area, but specially designated, since it typically contains process-specific internal
data structures maintained by the NT VMM. Whenever a context switch occurs,
the VMM refreshes this virtual address space to refer to information specific to the
new process. These data structures include page table pages for the process, w,
and other such VMM data structures.

If you develop kernel-mode drivers, you always have to be aware of the thread
context in which your code operates. For example, if you design a file system
driver, your dispatch entry points will typically be executed in the context of the
user process that invoked the corresponding system call.* If this is the case, your
driver can use addresses (passed in the IRP) within the lower 2GB of the
process's virtual address space to refer to user-space memory (e.g., user buffers).
However, if you write intermediate or lower-level drivers (e.g., device drivers),
your dispatch routines will typically be invoked in the context of an arbitrary
thread, defined as the thread that is executing on that processor at that particular
time. In this case, you cannot assume that any user-space virtual addresses that
might be contained in the I/O Request Packet are still valid, because your code is
not executing in the context of the user thread originating the request; hence the
lower 2GB of the virtual address space now map to physical pages belonging to
some other process.

On the other hand, if you develop a kernel-mode driver and allocate memory, the
returned memory pointer will typically be a virtual address in kernel space. Since
the kernel-space virtual address is the same for all processes in the system, the
allocated memory can be referred to (using the returned pointer) in the context of
any thread in which your code might be executing.

How do you ensure that a user-space buffer pointer passed in via an IRP is acces-
sible from within your driver, if code within your driver might execute in an
arbitrary thread context? The VMM provides support to map user-space memory
into kernel virtual address space precisely for this purpose
(MmGetSystemAddressForMdl ()).t

One final point: it might be necessary for your kernel-mode driver to occasionally
access the virtual address space of some other process. One of the ways that this

* This is not always true. Sometimes, the subsystem (e.g., the Win32 subsystem) will invoke file system
entry points in the context of a worker thread belonging to some Win32-specific process. Furthermore,
the NT VMM and the NT Cache Manager often originate calls into the file system read/write routines in
the context of a thread belonging to the system process.
t This routine is described in further detail later in this chapter.

200 ________________________Chapter 5: The NT Virtual Memory Manager

can be accomplished is by using the KeAttachProcess () kernel support
routine. This routine is not documented in the Windows NT DDK, but is defined
as follows:

VOID
KeAttachProcess (

IN PEPROCESS Process
) ;
Parameters:

Process
A pointer to the process you wish to attach to. This can be obtained by an
invocation to loGetCurrentProcess () .

Functionality Provided:

The KeAttachProcess () call allows your kernel-mode thread to attach itself to
the target process. Then your thread will execute in the context of that process,
allowing it to access the entire virtual address space and all other resources
belonging to that process.

NOTE A reason you might wish to access the virtual address space of an-
other process is if memory had been mapped into the virtual ad-
dress space of the target process and you need to access it. Another
reason is if you need to use any resources (e.g., file handles) that be-
long to the target process.
Be very careful though, since attaching to another process is an ex-
tremely expensive operation and will result in two context switches,
at the very least, if the target process has been swapped out. Fur-
thermore, it will probably result in flushing of Translation Lookaside
Buffers on all processors in a symmetric multiprocessor (SMP) sys-
tem, which can be detrimental to system performance.

Do not invoke this routine at an IRQL greater than DISPATCH_LEVEL. An execu-
tive spin lock used to protect internal data structures in the implementation of this
routine is acquired at IRQL DISPATCH_LEVEL; therefore, invoking this function
at a higher IRQL could lead to a deadlock scenario. Also, do not attempt to attach
to a second process if you have already invoked the KeAttachProcess () func-
tion without invoking the corresponding detach routine, described next, or a
bugcheck will occur.

The corresponding routine to detach from a process to which your thread is
attached is defined as follows:

VOID
KeDetachProcess (

Physical Memory Management__________________________________207

VOID
) ;

Parameters:

None.

Functionality Provided:

The KeDetachProcess () function allows your kernel mode thread to detach
itself from a previously attached process. Do not invoke this routine at an IRQL
greater than DISPATCH_LEVEL.

Physical Memory Management
To write a kernel-mode driver (especially a file system driver), it helps to broadly
understand the method used by the memory manager to manage physical
memory. Once you understand how physical memory is manipulated, I will
describe how virtual addresses are mapped to physical addresses. This knowledge
can be invaluable when debugging NT systems and when attempting to under-
stand why certain things work the way they do.

Page Frames and the Page Frame Database
The NT VMM must manage the available physical memory in the system. The
method used by the VMM is the standard page-based scheme used by modern
day commercial operating systems such as Solaris, HPUX, or other System V Revi-
sion 4 (SVR4)-based UNIX implementations.

The NT VMM divides the available RAM into fixed-size page frames. The size of
the page frame (page size) supported can vary from 4K to 64K; on Intel x86 archi-
tectures, it is currently set to 4K bytes.* Each page frame is represented by an
entry in a structure called the page frame database (PFN database)$ The page
frame database is simply an array of entries allocated in nonpaged system
memory, one for each page frame of physical memory. For each page frame, the
following information is maintained:

* Windows NT and most other commercial operation systems currently use fixed-sized pages. However,
a considerable amount of research has been performed on the implementation of support for variable-
sized pages by the underlying hardware architecture and the operating system. Support for variable-sized
pages might someday be implemented in commercial operating systems, though one might conjecture
that UNIX platforms are likely to implement it sooner than NT. With Windows NT Version 4.0, Microsoft
does use 4 MB-sized pages (supported by the Intel Pentium processor extensions) to contain kernel mode
code on Intel platforms. However, as stated here, truly variable-sized pages are not yet supported by the
Windows NT platform.
f This is similar to the core map structure on 4.3 BSD-based systems.

202__________________________Chapter 5: The NT Virtual Memory Manager

• A physical address for the page frame represented by the entry in the PFN
database. This physical address is currently limited to a 20-bit field. When
combined with a 12-bit page offset, you can see that the resulting 32-bit quan-
tity is limited to supporting a 4GB physical memory system.

• A set of attributes associated with the page frame. These are:
— A modified bit that indicates whether the contents of the page frame were

modified

— Status indicating whether a read or write operation is underway for the
page frame

— A page color associated with the page (on some platforms)

NOTE On systems that have a physically indexed direct-mapped cache,
poor allocation of virtual addresses to physical addresses within
page frames can lead to contention for the same cache line (i.e., 2
physical pages hash to the same cache line) and hence always
cause cache misses if the pages happen to be part of the working
set for one process or for two or more processes executing concur-
rently. Page coloring attempts to address this problem in software.
Note that page coloring support is not provided by the NT VMM on
x86 based machines. However, such support is provided, for exam-
ple, for the MIPS R4000 processor.

— Information on whether this page frame contains a shared page or a
private page for a process

• A back pointer to the Page Table Entry/Prototype Page Table Entry (PTE/
PPTE)* that points to this page. This pointer is used to perform a reverse map-
ping from a physical address to the corresponding virtual address.

• Reference count for the page. The reference count value indicates to the
VMM whether any PTE refers to the page in the page frame database.

• Forward and backward pointers for any hash lists on which the page frame
might be linked.

• An event pointer that refers to an event whenever a paging I/O read opera-
tion is in progress; i.e., data is being brought into memory from secondary
storage.

Valid page frames are those that have a nonzero reference count. These page
frames contain a page of information actively being used by some process (or by
the operating system). When a page frame is no longer pointed to by a PTE, the

* Page Table Entries and Prototype Page Table Entries are described in more detail later in this chapter.

Physical Memory Management__________________________________203

reference count is decremented. When the reference count is zero, the page
frame is considered unused. Each unused page frame is on one of five different
lists, reflecting the state of the page frame:

• The bad page list, linking together page frames that have parity (ECC) errors
• The free list, indicating pages that are available for immediate reuse but have

not yet been zeroed
The NT VMM (in order to conform to C2 level security as defined by the US
DOD) will not reuse a page frame unless the contents have been zeroed.
However, in the interest of keeping low overhead, pages are not zeroed each
time they are freed. Once a critical mass of free and not-zeroed pages has
been reached, a system worker thread is awakened to asynchronously zero
pages on the free list.

• The zeroed list, linking page frames that are available for immediate reuse
• The modified list, linking page frames that are no longer referenced but can-

not be reclaimed until the contents of the page have been written to second-
ary storage

Writing modified pages to secondary storage is typically performed asynchro-
nously by the Modified Page Writer/Mapped Page Writer, a component that I
will discuss in detail later in this chapter.

• The standby list, containing page frames with pages that were removed from
the process's working set
The NT VMM aggressively tries to decrease the number of page frames allo-
cated to a given process, based upon the access pattern of the process. This
number of pages allocated to the process at any given instant is called the
working set for the process. By automatically trimming the working set for a
process, the NT VMM tries to make better use of the physical memory. How-
ever, if a page frame allocated to a process is stolen due to this trimming of
the working set, the VMM does not immediately reclaim the page frame.
Instead, by placing the page frame on this standby list, the VMM delays the
reuse of the page frame, giving the process an opportunity to regain the page
frame by accessing an address contained within it. While a page frame is on
this list, it is marked as being in a transitional state, since it is not yet free, nor
does it really belong to a process.

The NT VMM keeps both a minimum and a maximum for the total of free and
standby page frames on the system. Whenever a page frame is linked to the free
or standby list and the total is below the minimum or above the maximum, an
appropriate VMM global event is signaled. These events are used by the VMM to
determine whether sufficient number of pages are available in the system.

204__________________________Chapter 5: The NT Virtual Memory Manager

Often, the VMM invokes an internal routine to check whether memory is available
for a certain operation. For example, your driver might invoke a system routine
called MmAllocateNonCachedMemory () . This routine needs free pages that it
can allocate to your driver and therefore invokes an internal routine (not directly
available to kernel developers) called MiEnsureAvailablePageOrWait () to
check whether the number of required pages are available from either the free or
the standby list. If not available, the MiEnsureAvailablePageOrWait ()
routine will block on the two events waiting for sufficient pages to become avail-
able. If neither of the two events is set within a fixed period of time, the system
will panic by invoking KeBugCheck () .

Note that manipulation of the page frame database is a frequent operation. There
has been considerable research on how VMM implementations can achieve
greater concurrency by using fine-grained locking for the page frame database (or
whatever the equivalent structure is called on some specific platform). However,
the NT VMM does not follow any such model of using fine-grained locking. There
is a global lock, an Executive spin lock, for the entire page frame database. This
spin lock is acquired at an appropriate IRQL (APC_LEVEL or DISPATCH_
LEVEL) when the PFN database is accessed. This might reduce concurrency,
since it forces single threading whenever the PFN database must be accessed, but
it definitely simplifies the code. Note that no I/O is ever performed (indeed no
routine outside the VMM module is ever invoked) with the PFN lock acquired.
However, since the lock is acquired at DISPATCH_LEVEL or less, you can now
be completely convinced that any page fault by your code at a higher IRQL will
lead to a system panic.

Virtual Address Support
The NT Virtual Memory Manager provides virtual address support to the
remainder of the system:

• Virtual address ranges can be manipulated independently of the physical
memory on the system.

• If a virtual address is backed by either physical memory or on-disk storage,
the NT VMM assists the processor hardware in transparently translating the vir-
tual address into the corresponding physical address.

• If the page containing the translated physical address needs to be read from
secondary storage, the NT VMM initiates and manages the I/O operation.

To achieve this transfer of data from disk to memory, the NT VMM uses the
support of the appropriate file system driver.

Virtual Address Support______________________________________205

• The VMM determines the paging policies used to control the transfer of infor-
mation to and from disk and main memory to maximize system throughput.

As noted earlier in this chapter, the VMM provides each process with an address
space larger than the amount of physical memory available on the system. Virtual
addresses must eventually refer to some code or data residing in physical RAM on
the system. Therefore, in order to support this large address space, the VMM and
the system hardware must transparently translate virtual addresses into physical
addresses. Furthermore, since the total memory requirements of all processes
executing on the system will typically be in excess of the total physical memory
available, the VMM must be able to move data and code to and from secondary
storage as required.

The NT VMM is a core component that determines the perceived performance
and cost of the system. RAM, although getting cheaper every day, is still not a
costless component. At the same time, users are very demanding of their
machines and a poor implementation of the VMM can significantly degrade the
overall system throughput. Therefore, the VMM is extremely sensitive to the
minimum memory requirements it imposes upon the system. As is the case with
every design decision, certain tradeoffs have to be made. Later in this chapter, I
will discuss an explicit tradeoff made by the designers of the NT VMM, resulting
in problems for implementations of distributed file systems in the NT environment.

Virtual Address Manipulation
To provide a separate virtual address space for a process, the NT VMM maintains
a self-balancing binary tree (splay tree) of Virtual Address Descriptors (VADs) for
each process in the system. Every block of memory allocated for a process is
represented by a VAD structure inserted into this tree. A pointer to the root of this
tree is inserted into the process structure. A virtual address descriptor structure
contains the following information:

• The starting virtual address for the range represented by the VAD
• The ending virtual address for the VAD range
• Pointers to other VAD structures in the splay tree
• Attributes determining the nature of the allocated virtual address range

These attributes contain the following information:
— Information on whether allocated memory has been committed

For committed memory, the VMM allocates storage space from a page file
to back up the allocated memory whenever it needs to be swapped to
disk.

206 Chapter 5: The NT Virtual Memory Manager

— Information specifying whether the range of allocated virtual addresses
are private to the process, or whether the virtual address range is shared

— Bits describing the protection associated with the memory backing a
range of virtual addresses
The protection is composed of combinations of primitive protection
attributes: PAGE_NOACCESS, PAGE_READONLY, PAGE_READWRITE,
PAGE_WRITECOPY, PAGE_EXECUTE, PAGE_EXECUTE_READ, PAGE_
EXECUTE_READWRITE, PAGE_EXECUTE_WRITECOPY, PAGE_GUARD,
and PAGE_NOCACHE.

— Whether copy-on-write has been enabled for the range of pages
The copy-on-write feature allows efficient support for POSIX-style
f ork () operations, in which the address space is initially shared by par-
ent and child processes. If, however, either the parent or children try to
modify a page, a private copy is created for the process performing the
modification.

— Whether this range should be shared by a child process when a fork ()
occurs (VIEW_UNMAP = do not share, VIEW_SHARE = shared by parent
and child)

This information is valid only for mapped views of a file, which are dis-
cussed later in this chapter.

— Whether the VAD represents a mapped view of a section object
— The amount of committed memory associated with the VAD

Whenever memory is allocated on behalf of a process or whenever a process
maps a view of a file into its virtual address space, the NT VMM allocates a VAD
structure and inserts it into^the splay tree. At allocation time, a process can specify
whether it requires committed memory, or whether it simply needs to reserve a
range of virtual addresses. Allocating committed memory results in the amount of
memory requested being charged against the quota allocated to the process.
Reserving a virtual address range, however, is a benign operation in that only a
VAD structure is created and inserted into the splay tree, and the starting virtual
address is returned to the requesting process. Note that memory must be
committed before it is actually used.

The NT VMM allows a process to allocate and deallocate purely virtual address
spaces, i.e., the memory need never be committed. If a process allocates a virtual
range of addresses and subsequently discovers that it needs to commit only a
subset of the range, the NT VMM also allows the process to do so.

Virtual Address Support______________________________________207

There is a native allocation routine supplied by the NT VMM called NtAllocate-
VirtualMemory () , which is not available to kernel developers. Kernel-mode
drivers have access to the following routine instead:

NTSTATUS
ZwAllocateVirtualMemory(

IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN ULONG ZeroBits,
IN OUT PULONG RegionSize,
IN ULONG AllocationType,
IN ULONG Protect

);
Parameters:

ProcessHandle
An open handle to the process in whose context the memory is being allo-
cated. For NT kernel-mode drivers that call this routine, it is the context of the
system process (e.g., at driver initialization time). You can use the macro
NtCurrentProcess () , which simply returns a special handle value of (-1)
which identifies the current process as the system process. Note that if you
ask for memory to be allocated within the context of a process other than
your current process, the NtAllocateVirtualMemory () routine will use
the KeAttachProcess () routine described earlier, to attach your process
to the target process before allocating the range of virtual addresses.

BaseAddress
Upon a successful return from this routine, the BaseAddress argument will
contain the starting virtual address for the allocated memory.
If you supply a nonnull initial value, the VMM will attempt to allocate the
memory at the address supplied by you, after rounding it down to a multiple
of the page size. If, however, you supply a null initial value, the VMM will
simply pick a base address for you.

Note that if the VMM cannot allocate memory at the base address supplied by
you (the address has already been used or not enough contiguous memory is
available beginning at that address), and if you have specified MEM_RESERVE
as AllocationType (defined later), an error will be returned (STATUS_
CONFLICTING_ADDRESSES). The same error will be returned if you
supplied a base address without previously reserving it (using this same
routine).

Finally, you cannot specify a base address greater than 2GB, and your speci-
fied range cannot exceed the 2GB virtual address limit. The important point
to note, then, is that if you use this call, you will get a kernel-mode address
that will not be valid in the context of any process except the process passed

208 Chapter 5: The NT Virtual Memory Manager

in (via the handle argument). This call is, therefore, not the preferred way to
get kernel memory for your driver (use the ExAllocatePool () routines
instead).

ZeroBits
This argument is only valid if the BaseAddress argument discussed above
was passed in initialized to NULL (the VMM gets to pick the base address).
You can specify the number of high-order bits that must be zero for the base
address of the allocated memory.

By doing this, you can ensure that the returned starting address is below a
specific value. This argument cannot be greater than 21 (since that would
make the starting address less than 4096 bytes). A value of 0 is treated (at
least) as a value of 2, since the returned virtual address will always be within
the user-space-addressable 2GB of virtual address space.

RegionSize
Note that this is a pointer argument. You must supply the number of bytes to
be allocated. You will receive the actual number of bytes allocated, which
will be your number rounded up to a multiple of the page size.

AllocationType
You have a choice of MEM_COMMIT, MEM_RESERVE, or MEM_TOP_DOWN.
The first option indicates that you wish space to be reserved in the page file
(this memory is committed and therefore usable). The second option says that
you simply want the virtual address range and that you might commit the
memory later. The first two options are therefore mutually exclusive. The
third option can be combined with either of the first two and it states that you
want the highest possible starting virtual address allocated, given the
constraints specified by the ZeroBits argument.

Protect
Your options are one or more of the following primitive protections: PAGE_
NOACCESS, PAGE_READONLY, PAGE_READWRITE, PAGE_NOCACHE (cannot
be placed into the data cache, this is not allowed for mapped pages), and
PAGE_EXECUTE.

Functionality Provided:

This routine can only be used to allocate memory within the lower 2GB of the
process virtual address space (even for the system process). Therefore, it is typi-
cally not used by kernel-mode drivers, unless you are quite sure that you will to
access the memory only in the context of the specified process. If you need to
allocate memory that is accessible within the context of any process, use the
ExAllocatePool () routines instead.

This routine allows you to do one of three things:

Virtual Address Support______________________________________209

• Reserve a range of virtual addresses but not commit them
• Reserve and commit a range of virtual addresses (in one call)
• Commit a previously reserved range of virtual addresses

The corresponding routine to free the allocated range is defined as follows:

NTSTATUS
NTAPI
ZwFreeVirtualMemory(

IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN OUT PULONG RegionSize,
IN ULONG FreeType

);
Parameters:

ProcessHandle
An open handle to the process in whose context previously allocated memory
is being freed.

BaseAddress
The first address of the virtual address range being freed. This value is
rounded down to a multiple of the page size.

RegionSize
Note that this is a pointer argument. You must supply the number of bytes to
be freed. You will receive the actual number of bytes freed, rounded up to a
multiple of the page size.

FreeType
Your options are one of the following: MEM_DECOMMIT or MEM_RELEASE.
These are mutually exclusive.

Functionality Provided:

You can use this routine to do the following:

• Decommit previously committed pages (but retain the virtual address range
allocation)

• Release both the committed memory as well as the virtual address range that
was previously allocated

This routine is fairly flexible, in the sense that it allows you to modify a subset of
the address range previously allocated by you. Note, however, that you cannot
expect to be able to free or release a range that spans two previous invocations to
ZwAllocateVirtualMemory () ; i.e., the entire range that you specify must be
contained within a single, previously allocated VAD. If you specify a Region-
Size value equal to 0, the VMM interprets this to mean that the entire VAD must

210__________________________Chapter 5: The NT Virtual Memory Manager

be freed/decommited. However, in this case, you must specify the correct
BaseAddress (equal to the starting BaseAddress of the VAD, or the Base-
Address specified when you allocated the range earlier).

It might sound strange but there is a possibility that you might get an error indi-
cating that you exceeded your quota for the target process if you try to free a
subset of a previously allocated range. The reason for this is that the VMM splits a
VAD, if required, into two VADs in order to accommodate your request to free up
a range contained within the original allocated range. Of course, this requires allo-
cating a new VAD structure which is charged to the quota assigned to the target
process. If this pushes the allocated memory for that process to an amount greater
than what is allowed, you will get an error returned.

Translation of Virtual Addresses
In this section, I will briefly discuss virtual to physical address translation. This
topic is covered very well in the literature, and I recommend that you consult
Appendix E, Recommended Readings and References, for further information.

Each virtual address in Windows NT is currently a 32-bit quantity. This virtual
address must be transparently translated to refer to some physical byte in
memory.* Two system components work together to achieve this translation:

• The Memory Management Unit (MMU) provided in hardware by the processor
• The Virtual Memory Manager implemented by the operating system in soft-

ware

Translation is not necessarily performed only in one direction, for example, from
virtual memory addresses to physical memory addresses. The VMM must also be
able to translate in the reverse direction, from a physical address to any corre-
sponding virtual addresses.t Whenever the contents of a physical page are written
out to secondary storage to make room for some other data, the corresponding
virtual addresses must be marked as "no longer valid in memory." This requires
that the physical address be translated back to its corresponding virtual address.

Virtual address translation is typically performed by the MMU in hardware. The
VMM is responsible for maintaining appropriate translation maps or page tables
that can subsequently be used by the MMU to do the actual translation. Broadly

* Memory-mapped I/O device registers are also addressable via the virtual address space. Therefore, a
virtual address could be translated to a physical address that actually corresponds to a mapped register
on an I/O bus.
t It is possible for an operating system to implement aliasing, where more than one virtual address refers
to the same physical address.

r Virtual Address Support____________________ _____________________211

speaking, the following sequence of operations is typically performed to translate
a physical address:

1. As part of the context switch procedure that causes a process to begin
executing, the VMM sets up appropriate page tables that contain virtual-to-
physical address translation information specific to that process.

2. When the executing process accesses a virtual address, the MMU attempts to
perform virtual to physical address translation by either using a cache called
the Translation Lookaside Buffer (TLB) or, if an entry is not found in the TLB,
using the page tables set up by the VMM. Each translated address must be
contained within a page that, in turn, might be present in one of the page
frames on the system.

NOTE Translating from a virtual to a physical address is a time-consuming
operation. Since this operation must be performed for every memo-
ry access, most architectures provide efficient translation. One way
of speeding up this process is by using an associative cache such as
a Translation Lookaside Buffer (TLB). The TLB contains a list of the
most recently performed translations, tagged by the process ID.
Therefore, if a virtual address is located in the TLB, the correspond-
ing physical address can be immediately obtained and the contents
of that address are guaranteed to be in main memory. Software ma-
nipulation of the TLB is architecture dependent; some architectures
allow the VMM to explicitly load, unload, and flush TLB entries (ei-
ther one entry at a time or the entire TLB), while other architectures
simply load or unload the TLB as a by-product of certain execution
sequences.

3. If the byte referenced by the translated physical address is currently in main
memory, the process is allowed access to the data.

4. If, however, the contents of the page are not contained within a page frame
in memory, an exception is raised, a page fault occurs, and control is trans-
ferred to the VMM page fault handler that brings the appropriate data into the
system memory. An exception could also be raised by hardware if the page
protection conflicts with the attempted mode of access or for other similar
reasons.

Note that the design of the MMU has far-reaching implications on the design of
the VMM subsystem. Naturally, the portion of the VMM subsystem that interfaces
with the MMU is very architecture-specific and inherently nonportable.

As described earlier, the VMM maintains a page frame database in nonpaged pool
to manage the physical memory available on the system. This database is
composed of page frame entries where each page frame represents a chunk of

212__________________________Chapter 5: The NT Virtual Memory Manager

contiguous physical memory. Since each physical page frame in the system is
numbered sequentially (from page frame 0 to page frame (n-1) for n page frames
of physical RAM), computing the PFN database entry for a page frame is relatively
trivial. Once a virtual address has been translated into a physical address
(composed of a page frame and an offset into the frame), the page frame number
is multiplied by the size of the PFN database entry and the resulting address is
added to the physical base address assigned to the PFN database. The net result is
a physical address pointer to the start of the entry describing the page frame in
the PFN database for the translated physical address.

Consider the 32-bit virtual address on a Windows NT platform. Since the page
size is 4096 bytes, computing an offset into a page requires 12 bits (the least signif-
icant 12 bits). This leaves the MMU with 20 bits to uniquely identify a page frame.
Page frames are uniquely identifiable via Page Table Entries (PTEs) in a page
table, where a page table is simply an array of PTEs. Note that many architectures
(including the Intel x86 architecture) clearly define the structure of a PTE.*

On the Intel platform, each PTE must be 32 bits (or 4 bytes) wide. Given that
there are a total of 22<) (1 million) possible PTEs and each PTE has a size of 22

bytes, the amount of memory required to store translation information for a single
4GB virtual address space is 222 bytes (4MB). Since each page table can itself store
one page-size worth of information (2 bytes), 1024 page frames would be
required simply to contain all the PTEs for the virtual address space for a single
process.t

To avoid consuming this significant amount of memory for translation informa-
tion,* page tables are also paged in and out of memory. To do this, the x86
processor defines a two-level page table scheme. Each process has a page direc-
tory that contains PTEs for page tables. This directory is a single page in size and
therefore can contain 1024 PTEs, each referencing a page table. A typical virtual

* Other architectures, such as the MIPS R3000, provide no hardware support for page tables. Therefore,
the MIPS R3000 does not mandate the structure of PTEs either, since the entire responsibility of translating
virtual to physical addresses lies with the VMM.
f Note that the Intel x86 architecture is segmented, where a virtual address is actually composed of a
segment and an offset. The Intel hardware converts this virtual address into a 32-bit linear address, which
is subsequently translated into a physical address using the method described in this section. Since the
Windows NT VMM presents a flat memory model to the system (hiding the segmentation details), we will
neglect the virtual to linear address conversion process and assume that user addresses are virtual ad-
dresses that simply require a 1-step conversion to a physical address.
$ Note that rarely will 4GB of virtual address space need to be completely translated, since most address
spaces are sparse in nature, i.e., there exist gaps in the virtual address space for addresses that are never
used. Reserving memory for PTEs that will probably never be utilized is therefore quite unnecessary.

Shared Memory and Memory-Mapped File Support______________________213

address for a process has 10 bits reserved to identify a page table from a page
directory associated with the process, 10 bits to identify a page frame given a
page table, and 12 bits to get to the desired offset within a page.

Figure 5-2 graphically illustrates how virtual to physical address translation is
performed on Windows NT systems. Note that even on systems such as the MIPS
R3000 where the architecture places no limitations on the structure of the PTEs
(and correspondingly provides no hardware virtual address translation support
except for TLB lookups), the VMM maintains a similar set of data structures to
simplify the design and maintenance of the VMM subsystem.

Everything so far seems to be relatively straightforward. The MMU checks the TLB
and if it gets a TLB hit, it simply returns the translated physical address. On the
other hand, if it gets a TLB miss, it must check the page tables for the process to
locate the corresponding PTE that determines the physical page frame that might
contain the accessed address. Now, if the PTE indicates that the page is resident
in memory and the protection attributes match the access mode, the MMU allows
the access to continue. Otherwise, an appropriate exception (page-fault or protec-
tion-violation) is raised and control transfers to the VMM. However, the observant
reader must have noticed the presence of an additional table called the Prototype
Page Table in Figure 5-2. So where exactly does the PPT fit into this clean model
we understand so well by now?

Prototype Page Tables are used to contain page table entries for page frames that
contain pages shared by more than one process. Sharing of pages and page
frames occurs when more than one process maps in the same byte range for the
same mapped object. Therefore, to understand the PPT, you must first understand
the concept of shared memory and memory mapped files.

Shared Memory and Memory-Mapped
File Support
Accessing memory seems so convenient to application developers these days. An
application process can simply issue a malloc call (or its equivalent), receive a
virtual address from the VMM, and begin using this virtual address to access the
allocated block of memory. The operating system is responsible, along with the
hardware, for managing physical memory and maintaining the appropriate transla-
tion between virtual addresses and physical addresses. Furthermore, the operating
system can observe the behavior of all processes executing on the system,
allowing it to make rational decisions concerning the allocation of physical
memory to specific processes.

214 Chapter 5: The NT Virtual Memory Manager

Figure 5-2. Virtual to physical address translation

At the same time, most applications must do other things besides computational
activities requiring memory. Notably, all applications need to perform some I/O to
and from secondary storage. In addition, sophisticated applications sometimes
wish to share in-memory data with each other.

Traditionally, I/O has been performed via read/write system calls handled by the
appropriate file system. Servicing these calls requires the execution of a system
trap to switch the processor from user mode to kernel mode and vice versa. For a

I Sh,Shared Memory and Memory-Mapped File Support______________________215

read request, the file system must first read data into system memory and then
copy it into buffers allocated by the application. For a write request, the operating
system must first copy data from the application's buffers into system memory.
This copying of data to and from system buffers, combined with the overhead of
making system calls for I/O requests, can lead to substantial execution overhead
for application processes.

Consider now the case where two processes on the same system are accessing
the same file. These processes might be accessing the same byte range, but since
they have their own private buffers containing the data, where each buffer is
backed by physical pages different from those backing the other buffer, each
process has potentially a different view of the same data. Process-1 might have
read the data into memory and modified it but not yet written it out to disk; if
process-2 reads the same byte range, it will not see the modified data but will
instead be given the original data obtained from disk. This can be a deterrent to
efficient sharing of data between the two processes, because each process would
have to ensure that its modifications are written out to disk before the other
process reads-in the byte range.

Imagine now if each process could simply map the on-disk file into their virtual
address space. The VMM provides virtual memory support by swapping data to
and from an on-disk page file whenever required. An application allocates some
memory, tries to access it and possibly gets a page fault. The page fault is
resolved (we will see how later in this chapter), and magically the application can
now access some physical memory reserved solely for its use.

Now consider the case where the data is originally read from an on-disk file and
is destined to be written out to the same on-disk file. In this case, why not use
the file itself as the backing store for data instead of a page file? Instead of making
the application issue read/write system calls to access the data, simply let the
application reserve a virtual address range associated with an on-disk byte range,
try to access this memory (in reality, access the byte range with which the virtual
addresses are associated) represented by the virtual address range, get a page
fault, and then the operating system will resolve the page fault by allocating some
physical memory and obtaining the appropriate data from the on-disk file. Simi-
larly, the application can simply modify the data in-memory and the operating
system will—whenever required—write out the modified data to the on-disk file
and, possibly, release the physical memory to make room for another process.

The above method of mapping in a file has one additional benefit; all applications
that try to map in the same file can now have their respective virtual addresses
backed by the same physical pages, so all applications will always see a consis-

216 Chapter 5: The NT Virtual Memory Manager

tent view of the data, regardless of the fact that any application could modify the
data at any time.*

The NT VMM supports file mapping. The mapped object is the on-disk file. When
you execute a file (say Microsoft Word), the executable (the mapped object in this
case) is mapped into your process's virtual address space and instructions are
executed. Now, if some other user, on the same machine, tries to execute
Microsoft Word as well, the same executable is mapped into his or her virtual
address space, and since the physical pages backing the VADs are probably
already in memory, the other user should see a relatively fast response time. See
Figure 5-3 for an illustration of file mapping.

Figure 5-3. Two processes mapping the same page into their virtual address space

Note that file mapping is not the only way to share physical memory between
two processes. Since Virtual Address Descriptors (VADs) are manipulated sepa-
rately from the physical page frames backing the virtual addresses, it is entirely
possible for the VMM to allow processes to share memory by simply ensuring that
appropriate VADs for the two processes are backed by the same physical page
frames. File mapping is simply an extension of this concept wherein the shared

* Each application must synchronize its changes, so that there are no unexpected consequences.

Shared Memory and Memory-Mapped File Support______________ _______277

memory object is actually backed by an on-disk, permanent file object, instead of
a page file. Just as you can create file-backed shared memory objects, it is also
possible to create shared memory objects that will later be backed by one of the
system page files. This is typically done when you wish to share memory
between two modules or processes in the system. Often, kernel-driver designers
need to share memory between some user-space helper processes and the kernel
driver. The shared memory support provided by the VMM allows this function-
ality. When a shared memory object is created (one that is not backed by an on-
disk file), the starting virtual address associated with the object represents offset 0
into the shared object. Therefore, all processes sharing this object can index into
the appropriate byte offset and manipulate data. You must note, however, that
modifications to shared memory objects that are not backed by an on-disk file
will not be permanent; i.e., such modifications will be lost once the shared object
is closed by all processes using this object.

So how does mapping actually work? What data structures are created by the
VMM to support mapped/shared objects. Before I address these questions, let me
revisit the issue of the Prototype Page Table described back in Figure 5-2.

Prototype Page Table
Page frames that contain shared (mapped in) pages are described by a special
structure—the Prototype Page Table (PPT). This structure can be allocated from
paged or nonpaged memory.

Whenever the VMM creates a mapping or a shared object for a process, it allo-
cates Prototype Page Table Entries (PPTEs) to describe the physical page frames
that will back the file mapping. The PPT for a mapped object is shared by all
processes that map in the same object. Each PPTE refers to a page that may or
may not be present in memory; i.e., the page may be contained within a physical
page frame, or it may need to be brought in from secondary storage when
accessed. Since all processes have to use the same PPT (and corresponding
PPTEs), it follows that all processes use the same physical page frame and there-
fore see the same view of the mapped data.

Whenever a page frame is assigned to a PPTE, the PPTE is marked as valid. The
page frame entry within the PEN database is then initialized to point back to the
PPTE. Note that neither the Intel x86 MMU nor the MIPS R3000 or similar architec-
tures support prototype page tables. How does the VMM arrange things such that
the MMU can work with shared memory?

Consider the Intel x86 architecture. The Intel x86 MMU strictly defines the struc-
ture of page tables and PTEs. The VMM creates a PPT (with PPTEs) in allocated
memory whenever a process creates a file mapping. Imagine now that the

218 Chapter 5: The NT Virtual Memory Manager

process tries to access a virtual address that is part of a range backed by a
mapped file object. The MMU will translate the virtual address into a page direc-
tory table offset and then offset into an appropriate page table. On the first access
to this virtual address, the page table entry will indicate that the page is not
backed by any physical memory.

This will result in a page fault and control will transfer to the VMM page fault
handler. The page fault handler notices that the VAD containing the accessed
virtual address is marked as being backed by a mapped object. The VMM can
then find the appropriate PPTE and fault the page in. At this point, the PPTE is
marked as valid and refers to a PFN database entry and correspondingly, a PFN
database entry points back to the PPTE. At the same time, the VMM initializes the
PTE as valid and makes it refer to the appropriate physical address. The net result
is that both the PPTE and the PTE contain information about the physical address,
but the corresponding PFN database entry only points back to the PPTE. Now,
the memory access is retried, and, since the MMU finds the PTE initialized
correctly (it does not know nor does it care about PPTEs), the translation from
virtual address to a physical address can be performed.

A Small Problem with the PPT Design
You must note that, since the PFN database entry never refers back to the PTE,
the VMM has no way of finding, from a PFN database entry, all the PTEs for all
the processes that have mapped that shared object into their virtual address
space. The best that the VMM can do is find the PPTE that refers to the PFN data-
base entry (using the back pointer) and thereby manipulate the contents of the
PPTE.

There is one serious flaw with this design: imagine that a kernel-mode compo-
nent wanted to request the VMM to purge certain pages from physical memory,'
Normally (for nonshared files), you can certainly ask the VMM to do this and the
VMM will respond by marking the PFN database entry invalid. Furthermore, the
VMM will use the information stored in the PFN database entry to find the appro-
priate PTE in the address space of some process that is currently referring to the
PFN database entry. It will mark the PTE entry not valid, ensuring that the MMU
will have to fault the page back in on the next access to an address contained
within the page.

* You might ask why would anyone want to do this? Suppose you were implementing some complicated
distributed data access method across multiple nodes where all consistency guarantees were maintained
by your modules. Now, if some process on a remote machine modified shared data that was mapped in
on a local node, you might wish to ensure that all nodes accessing this data refreshed their memory with
the latest copy of the data. This is precisely what distributed file systems such as the OSF DPS attempt to
do. There could be other similar scenarios that might be needed to support certain complicated function-
ality on distributed architectures.

Shared Memory and Memory-Mapped File Support______________________275*

However, if the page belongs to a mapped object, the VMM has no way of
accessing all the PTEs that refer to the page frame containing the shared page.
Therefore, if you requested that the VMM purge such a page from memory, the
VMM will return an error saying that this functionality is not possible for mapped
objects. This is a serious problem for any third-party developer that counts on
being able to purge pages from system memory on demand.

Sections and Views
The Windows NT system tends to be strongly object-centric; i.e., most function-
ality is provided in the form of objects and methods that manipulate such objects.
File mappings are created and accessed as a two-step process:

1. A section object is created by the VMM in response to a request for a file
mapping or a shared memory object.

2. When the process actually needs to access a byte range for a mapped file or a
shared memory object, the caller must request the VMM to map a view into
the file. Conceptually, this view is like a window into the file, allowing access
to a limited byte range. Of course, it is possible for a process to request
multiple views for the same file concurrently, just as it is possible for multiple
processes to have different views concurrently into the same mapped file.

Note that section objects have a set of protection attributes associated with them,
just as all other objects in the Windows NT environment can. By specifying a set
of protection attributes for the section object, a process can define the manner in
which this object (and any data for a file object that might be mapped in and
represented by the section object) is manipulated.

Section objects backed by on-disk files fall into two categories:

• Executable image file mappings

• File (nonimage) mappings

When you tell the VMM to create a section object representing a mapped file, you
can specify how the mapped file should be treated. The system loader uses file
mapping to run executables and specifies that the file mapping be treated as an
executable image file mapping. However, it is entirely your prerogative to request
that an executable (say, a copy of Microsoft Word) be mapped in as a nonimage
file mapping.

Note that the VMM performs tests to verify that any section object created for an
executable image file mapping actually does map in a valid executable. If you try
to map in a simple text file as an executable image file mapping, you will get an
error from the VMM. Also, it is entirely possible for the same executable file to be
mapped both as an executable image file and as a simple file mapping; the

220 Chapter 5: The NT Virtual Memory Manager

address alignments for each of these mappings will probably be quite different
though.

A major difference between how executable image file mappings and nonimage
file mappings (or simple shared memory) are handled is in how modifications to
the mapped range are managed by the VMM. When a nonimage file mapping is
modified by a process, the modification is immediately seen by all processes
mapping in the same file, because the contents of the shared physical page are
changed by the VMM. These modifications will eventually be reflected in the on-
disk mapped object when the modifications are flushed to secondary storage.
However, when an image file mapping is modified, a private copy of the page is
made for the process making the modification. This private page will now be
backed by a page file, since the modifications to an image file mapping are never
written out to the mapped object (the on-disk file). These modifications are even-
tually discarded when the process unmaps the file.

To create a shared memory object (a section object), the NT VMM provides a
routine called NtCreateSection () . Though this routine is not exported to
kernel developers, the ZwCreateSection () routine can be used instead. This
routine is defined as follows:

NTSTATUS
NTAPI
ZwCreateSection (

OUT PHANDLE
IN ACCESS_MASK
IN POBJECT_ATTRIBUTES
IN PLARGE_INTEGER
IN ULONG
IN ULONG
IN HANDLE

SectionHandle,
DesiredAccess,
ObjectAttributes OPTIONAL,
MaximumSize OPTIONAL,
SectionPageProtection,
AllocationAttributes,
FileHandle OPTIONAL

Parameters:

Sect!onHandle
If this routine returns a success status, a handle to the created section object is
returned in this argument. Note that this handle is only valid in the context of
the process that creates the section object. If you wish to access the section
object in the context of other processes as well, you must use the ObRef er-
enceObjectByHandle () object manager routine (described in the DDK) to
get a pointer to the actual section object. Subsequently, you can use the
ObOpenObj ectByPointer () routine to get a handle in the context of some
other process.

DesiredAccess
This argument allows you to specify the access desired to the section object:
SECTION_MAP_EXECUTE, SECTTON_MAP_READ, or SECTION_MAP_WRITE.

Shared Memory and Memory-Mapped File Support______________________221

Obj ectAttributes
This can be NULL, or you can specify an initialized structure (use the
InitializeObjectAttributes () macro to do this). Note that if you
need to share a piece of memory between two processes (or share memory
between a module executed in user mode and a kernel-mode driver), you
can use this structure to supply a name for the section object. This named
section object can subsequently be opened by other processes, and thus
sharing of in-memory data can be achieved without having to use a named
file from secondary storage.

This structure can also be used to supply a security descriptor for the section
object, which allows you to protect the section object appropriately.

MaximumSize
For a page-file-based section (i.e., you simply wish to create a shared
memory object), this value cannot be NULL, since it represents the size of the
section.

For a mapped file, it represents the maximum size to which the section might
be extended. If the section is for a mapped file and the size of the file is less
than this value, the file size is extended at this time.*

Note that any value supplied by you is rounded up to a multiple of the host
page size. Finally, if this value is set to NULL for mapped files, the VMM will
set the value to the end-of-file at that time (appropriately rounded up).

Sect ionPageProtection
This defines the protection to be placed on each page contained in the
section. Here are the appropriate values:

— PAGE_READONLY
— PAGE_READWRITE
— PAGE_EXECUTE
— PAGE_WRITECOPY

AllocationAttributes
These attributes allow the caller to inform the VMM if this section object repre-
sents a shared piece of memory (backed by the page file), a file mapping for

* This is a very important point to note for developers of file systems, since you should he prepared to
receive a request for extending the file size when the memory manager is in the process of creating a file
mapping. I will discuss this more later in this chapter.

222__________________________Chapter 5: The NT Virtual Memory Manager

an executable, or a file mapping for some other type of file. Here are the
options to use:*

— SEC_IMAGE, indicating that an executable is being mapped into a
process virtual address space

— SEC_FILE, indicating that the supplied file handle refers to an open file
that must be treated as a regular (nonimage) file mapping

— SEC_RESERVE, indicating that all pages allocated to the section object
must be placed into the reserved state (only valid for a shared memory
object not backed by an on-disk file)

— SEC_COMMIT, indicating that all pages allocated to the section object
must be placed into the committed state (must also be set if SEC_FILE
is set or if the shared memory object is not an executable image file
mapping)

FileHandle
This optional argument indicates that the section object represents a mapped
file (the handle must refer to an open file). Otherwise, the VMM will simply
create a section object backed by a page file (simple piece of shared memory).

Functionality Provided:

This routine can be used by kernel-mode drivers to create a shared memory
object (named or anonymous) or to create a file mapping for an on-disk file. Even
if you are a file system driver developer implementing an on-disk or a network
file system, you can use this call to create a shared memory object or mapped file
object (do not try to create a mapped file object on your own file system using
this call unless you really know what you are doing).

Sometimes, kernel-mode driver developers wish to share in-memory data with
user-space modules. Or, if you design a kernel-mode driver that obtains data from
across the network or transfers data across the network using the services of a
user process, you may use this call to create either a simple shared memory
object or a file-backed shared memory object in order to facilitate easy and effi-
cient data transfer between the kernel driver and the user-space process (consider
using a named object to allow for easy opening of the object by the user-mode
service).

* These symbolic definitions do not exist in any of the supplied DDK inelude files, but you can use the
symbolic names (or the actual values) in the winnt.h include file provided with the Win32 SDK. Since
this routine is not documented by Microsoft, they must have figured that it was not necessary to define
these symbols in any DDK header file.

Shared Memory and Memory-Mapped File Support____ __________ 223

TIP In the description of the ZwCreateSection() routine, I men-
tioned the existence of an Object Manager routine that can be used
to obtain a handle to an object in the context of any arbitrary pro-
cess, given a pointer to that object. This routine is called ObOpe-
nObjectByPointer () and is defined as follows (note that this
routine is not ordinarily documented in the DDK):

NTSTATUS
ObOpenObj ectByPointer(

IN PVOID Object,
IN ULONG HandleAttributes,
IN PACCESS_STATE PassedAccessState OPTIONAL,
IN ACCESS_MASK DesiredAccess OPTIONAL,
IN POBJECT_TYPE ObjectType OPTIONAL,
IN KPROCESSOR_MODE AccessMode,
OUT PHANDLE Handle

) ;
Typically, you can pass in NULL for PassedAccessState and for
the ObjectType. Be careful to request only the type of access in
the DesiredAccess argument permitted by the original open op-
eration (from which you obtained a pointer to the object). The Han-
dleAttributes can be obtained from the previous invocation to
ObReferenceObjectByHandle () . That routine returns Han-
dlelnformation, which in turn contains the returned Handle-
Attributes.
There is also a routine called ObReferenceObj ectByPoint-
er () , which simply increments the object reference count for the
specified object. This function is defined in the Windows NT IPS kit
as follows:

NTSTATUS
ObReferenceObj ectByPointer(

IN PVOID Object,
IN ACCESS_MASK DesiredAccess OPTIONAL,
IN POBJECT_TYPE ObjectType OPTIONAL,
IN KPROCESSOR_MODE AccessMode,

There are other routines, well documented in the DDK, to open and close a previ-
ously created section object and to map and unmap a view using a section object.
Consult the available documentation for the following system support routines:

• ZwOpenSection()
• ZwMapViewOfSection()
• ZwUnmapViewOfSection()

224____________ _____________Chapter 5: The NT Virtual Memory Manager

File-Mapping Structures
When a process creates a file mapping, the process must specify whether an
executable file or another type of file is being mapped. Although both types of
file mappings eventually result in the file contents being mapped into the virtual
address space of a process, the NT VMM treats the map requests differently.

As mentioned earlier, any modifications made to pages belonging to image file
mappings will not be reflected in the on-disk mapped executable. The page will
be backed by a page file instead, and all changes made to the page will be
discarded once the mapping is closed.

Internally, the NT VMM maintains two types of section objects (and associated
data structures) for each mapped file object. For each type of mapping, the VMM
maintains a SEGMENT data structure that describes the mapping. Therefore, there
are two possible segment data structures associated with each mapped file: the
image segment and the data segment. Each segment data structure, in turn, points
to the prototype page table for a mapped object.

Although the segment data structure is opaque to kernel-mode developers, the
point to note here is that both types of mappings can exist concurrently. An
executable can be mapped both as an image file and as a nonimage file. For each
type of mapping, the VMM will create and maintain a segment data structure asso-
ciated with the representation of the file in memory. Because there are two
separate data structures created, depending on the type of mapping performed,
the same byte range in a file contained within a page could exist in two separate
page frames concurrently in memory! This is possible because each type of
mapping has its own segment data structure and its own prototype page tables
with different PPTEs.

Modified and Mapped Page Writer
As discussed earlier, the NT Virtual Memory Manager has the task of presenting
the illusion of a large amount of available virtual memory to each process, even
though the amount of physical memory on the system is limited. To perform this
task, the NT VMM must use secondary storage devices as a backing store for in-
memory data and page data in and out. This paging is performed transparently to
the processes executing on the system.

The NT VMM automatically flushes dirty or modified pages to secondary storage
to reclaim page frames for use by other threads in the system. Modified data
within a page frame will be written either to one of the 16 possible page files, or
to a named file on disk if the page frame was allocated to a mapped section

Modified and Mapped Page Writer________________________________225

object. Unless modified page frames are flushed to disk, the NT VMM cannot
reuse the page frames, as doing so would cause data loss.

In order to ensure that sufficient RAM is available whenever required, the NT
VMM always keeps a certain number of page frames available. These page frames
must not contain any modified data and therefore, they can be reallocated when-
ever the VMM decides to do so. If the VMM did not maintain this pool of
available page frames, it might need to make processes block, waiting for modi-
fied data to be flushed to secondary storage before it could reassign page frames
to them. Making processes block is not conducive to good system performance.

Therefore, the NT VMM creates at least two special dedicated threads called Modi-
fied and Mapped Page Writer threads. Note that it is quite possible that the
number of threads created could be greater than two. At least one modifier page
writer thread is created to asynchronously write modified page frames to the page
files. At least one other thread, called the mapped page writer thread, is assigned
to asynchronously write out modified page frames to mapped files. Both of these
threads essentially perform the same functionality and therefore throughout this
book, the terms mapped page writer thread and modified page writer thread are
used interchangeably.

The sole purpose of these dedicated threads is to flush modified page frames out
to secondary storage, thereby keeping a certain number of page frames available
for reassignment. Each of these threads is a real-time thread with a priority set to
at least LOW_REALTIME_PRIORITY + 1.

The algorithm used by the modified page writer threads is shown below. Note
that the following pseudocode is based on the operations performed by the
mapped and modified page writer threads flushing page frames to memory-
mapped or page files; differences in operations between these two threads is
clearly indicated whenever required:

// The following routine summarizes the MPW code executed by a dedicated
// worker thread. Note, however, that although the specific method used
// in various versions of the operating system might be different, the
// fundamental methodology described here should be consistent.
MiModifiedPageWriterWorker() {

for (;;) {
// Wait for event to get set, indicating that insufficient "free"
// (not modified) pages exist. This event is set when the system
// is running low on available pages and the VMM wants some
// modified pages written out so they can be reassigned.
// This event is also set when the total number of modified pages
// in the system becomes greater than a pre-determined
// threshold value (the "threshold value" in turn depends on
// whether the system is configured as a workstation or as a server
// and on how much RAM is present on the system).
KeWaitForSingleObject(ModifiedPageWriterEvent, ...);

226 Chapter 5: The NT Virtual Memory Manager

II Now, lock the PFN database.

for (;;) {

// The event was set indicating that some pages need to
// be flushed. Pick a page frame to be flushed (the first on
// the modified pages list from the PFN database?) and invoke
// an appropriate routine.
MiGatherMappedPages (PageFramelndex, ...) ;

// The above routine is responsible for the actual flush.
// To perform the flush I/O, the PFN database
// lock will have been dropped and reacquired by the
// MiGatherMappedPages() routine. Therefore, check whether
// adequate clean pages are now available and if so, stop
// flushing.
if (enough free pages are available) {

// Unlock PFN database.

break;
}

} // End of loop in which the MPW thread flushed modified pages to
// disk.

} // End of infinite loop awaiting event to be set so that the
// MPW thread can begin flushing pages.

} // end of MiModifiedPageWriterWorker() routine

// The following routine is responsible for collecting a bunch of
// contiguous modified pages and writing them out to the page file.
// The similar routine responsible for writing out mapped file pages is
// called MiGatherMappedPages().
MiGatherMappedPages (...) / MiGatherPageFilePages (...) {

// Find a paging file for page file backed pages only,
if (paging file not available) {

// Nothing can be done as some I/O is already in progress
// to all paging files.
return;

// Find a contiguous chunk of available paging file space using a
// bitmap per paging file.
// OR
// If this is a mapped file, ensure that the mapped file is not an
// image file.

// Initialize a MDL (Memory descriptor List) to be used in the
// I/O operation

// Scan both backward and forward, starting from the sent-in page frame

Modified and Mapped Page Writer ________________________________ 227

// index, to find a contiguous set of modified pages that can be
// written out to the page file or to the mapped file.
for (each candidate PTE) {

if (PTE is modified and backed by the page file or by the mapped

// Increment reference count on this PTE
PTE->ref erence_count++ ;

// Mark this PTE as "not modified," anticipating that our write
// will succeed.
PTE->modified = FALSE;

// Mark the fact that this PTE is being flushed. Any flush
// requests for this PTE (say from a file system or from the
// Cache Manager will be blocked until this I/O completes) .
PTE->being_flushed = TRUE;

// Put the page file page address into the PTE.
// Add this page frame into the physical page list described by
// the MDL.

// OK, so now we have a list of page frames that we wish to flush.

if (number of pages reserved in the page file > number of contiguous
modified page frames encountered) {

// Release extra space pre-allocated from the page file
// (if any) .

// Unlock the PFN database lock.

/***/

// NOTE: If this were the routine handling mapped files, some
// additional processing would be performed here. This processing is
//as follows:
{

// Only for mapped files.
if (this file is marked as "fail all i/o, " forget it and return) {

return;

// Make a callback into the file system advising the file system
// that a paging I/O is on its way.
// THIS IS VERY IMPORTANT:
// The file system must - in response to this callback - acquire
// all resources that might be needed to satisfy the paging-IO
// operation. We will cover this call-back in detail later in
// this chapter and in Part 3 of this book.
if (FsRtlAcquireFileForModWrite (...)) {

// Call-back succeeded, issue I/O here

228 Chapter 5: The NT Virtual Memory Manager

ZoAsynchronousPageWrite (...)
} else {

// Call-back failed.
// Return error locally = STATUS_FILE_LOCK_CONFLICT;
// Note that pages will stay marked dirty and the operation
// will be retried sometime later.

/ / Return

} // End of code that is executed only for mapped files.
/***/

// NOTE: The following code is only executed for pagefile backed pages

// Perform an asynchronous, paging-IO operation. This operation is
// a special request handled by the I/O manager who quickly
// redirects it to the appropriate file system on which the page
// file is located . . .
loAsynchronousPageWrite (...) ;

// Return;
} // end of code executed only for page files.

// Lock the page frame database lock.

} // end of MiGatherPageFilePages () / MiGatherMappedPages ()

// The following routine is invoked as an Asynchronous Procedure Call
// (APC) when the asynchronous paging I/O is completed by the file system.
// Note that the file system might choose to handle the I/O
// synchronously though that is not recommended ...

MiWriteComplete (Context, StatusOfOperation, Reserved) {
BOOLEAN FailAllIoWasSet = FALSE;

// The Context is actually the MDL that was sent to the file system
MdlPointer = Context;

// Lock the PFN database

for (each page that comprised the MDL that was written out) {

// Set write-in-progress to false
PTE->being_flushed = FALSE;

// If an error was encountered ...
if (error AND this was a write to a mapped file AND the mapped

file belongs to a networked file system) {

Modified and Mapped Page Writer

// THIS IS IMPORTANT TO FILE SYSTEM DEVELOPERS WRITING
// REDIRECTORS.
// The VMM assumes that if a paging I/O to a file across the
// network has failed, the network MUST BE DOWN.
// In this case, the VMM marks the file as "fail all I/O" and
// all modified data to the file will now be discarded!
FailAllIOWasSet = TRUE;

// Dereference the page.
PTE->reference_count—;

if (error AND not file on networked file system) {
// Mark page as modified once again so write will be retried
// later.
PTE->modified = TRUE;

}
} // Loop for each page.

// FOR MAPPED FILES ONLY ...
ReleaseFileResources(); // Resources acquired using file system

// callback

// Unlock PFN database.

if (FailAllIOWasSet) {
// The user sees the famous error message
// "system lost write-behind data" now.
loRaiselnformationalHardError(STATUS_LOST_WRITE_BEHIND_DATA,

FileName, Status);
}

} // end of MiWriteComplete()
Note that in this pseudocode, the VMM uses an I/O Manager function loAsyn-
chronousPageWrite () to flush modified data to secondary storage. This call
will be quickly routed by the I/O Manager to the file system driver managing the
mounted file system on which the target page file or mapped file resides.

The file system driver can easily recognize that the write request is a paging I/O
request because the I/O Request Packet sent to the file system has the IRP_
PAGING_IO and the IRP_NOCACHE flags set. Note that the file system is not
permitted to take another page fault while resolving the paging I/O write request.
The I/O Manager handles asynchronous page writes differently when performing
postprocessing on IRP structures that described such paging I/O requests. Essen-
tially, the I/O Manager invokes the MiWriteComplete () routine by means of a
kernel APC upon completion of the asynchronous paging I/O IRP. The routine is
invoked in the context of the MPW thread.

230 Chapter 5: The NT Virtual Memory Manager

Page Fault Handling
The NT VMM is responsible for handling the case when contents referred to by a
virtual address are not present in physical memory. Although the hardware MMU
typically translates virtual addresses into physical addresses, when the MMU
discovers that the PTE indicates that the page is not in memory, the MMU will
turn the problem over to the VMM for resolution. The VMM routine invoked
when a page fault occurs, either in kernel mode or in user mode, is called MmAc-
cessFault (). This routine takes three arguments:

• The virtual address that caused the page fault
• A boolean argument that indicates whether a store/write operation caused the

page fault (a FALSE value indicates that this was a read/load operation)

• The mode (kernel or user) in which the fault occurred

First, the MInAccessFault () routine checks the current IRQL. If it is greater than
APC_LEVEL, and if either the page directory or the Page Table Entry indicates
that the page is not valid, the VMM will bugcheck the system and the following
message will be printed on your debugger screen:

MM:***PAGE FAULT AT IRQL > 1 Va %x, IRQL %x

The routine within the VMM that resolves page faults is appropriately called
MiDispatchFault () . The MmAccessFault () routine invokes MiDispatch-
Fault () to resolve the fault and make the contents of the page frame valid. This
routine handles page faults for access to addresses in both system address space
(the upper 2GB of the virtual address space) and in user process address space.
Faults are dispatched for further processing to an appropriate subroutine based
upon the nature of the faulting address:

• If the faulting address is backed by a page file, the routine MiResolvePage-
FileFault () is invoked.
This routine performs the following tasks:

— Allocate enough page frames in memory so that data can be read from
the page file.

— Note that this routine uses the MiEnsureAvailablePageOrWait ()
routine mentioned earlier in this chapter.

— Figure out the page file to which the read operation should be directed
from the PTE.

— Build a Memory Descriptor List (MDL) containing the list of available
physical pages.

Page Fault Handling__231

— Mark the PTEs for the pages being brought into memory as being "in
transition."

— Return a special status OxC0033333 to the caller, MiDispatchFault ().
Because MiResolvePageFileFault () returned a status of OxC0033333,
MiDispatchFault () will then invoke a paging I/O read operation using
the IoPageRead() call exported by the I/O Manager. Just as in the case of
the paging I/O write request described in the Modified Page Writer discus-
sion, the file system driver invoked by the I/O Manager to satisfy the page
read request will recognize the request as a paging read, because of the pres-
ence of the IRP_PAGING_IO and the IRP_NOCACHE flags. Note that the file
system cannot incur any page faults while trying to satisfy the paging I/O
read request.
The VMM then waits for the page fault read request to be completed, and if
successful, adds the page to the working set of the active process.

• If the PTE for the faulting address indicates that the page is in transition, then
the MiResolveTransitionFault () routine is invoked. A transition page
is marked as being in-transition for one of the following reasons:

— The page frame contains valid data, but the page was placed on the free
list because it was automatically trimmed.

— The page frame contains valid data, but it was placed on the modified list
as a result of being automatically trimmed from the working set of a
process.

— The page is being actively read from secondary storage; this is a collided
page fault.

This routine performs the following tasks:

— For pages that are being actively read from secondary storage, the Mi-
ResolveTransitionFault () routine will block, awaiting I/O comple-
tion. If an error occurs, it will mark the PTE invalid and return success,
forcing the caller to undergo another page fault, for which the PTE will
now no longer be marked as in-transition.

— Otherwise, this routine will mark the transition PTE valid and will add it
to the working set for the current process.

Note that this routine will not return the status OxC0033333 since there is no
page read operation to be initiated by MiDispatchFault () .

• The MmAccessFault () routine invokes MiDispatchFault () with a pro-
totype PTE (PPTE) to fault into memory if the faulting virtual address belongs
to a shared memory range or to a memory-mapped file. In this case, MiDis-

232__________________________Chapter 5: The NT Virtual Memory Manager

patchFault () invokes the MiResolveProtoPteFau.lt () subroutine,
which in turn performs the following tasks:

— If the PPTE belongs to a mapped file, the MiResolveMappedFile-
Fault () routine is invoked to determine the set of pages to be faulted
into memory, allocate an MDL and return OxC0033333. Note that the
VMM attempts to cluster pages together to improve performance.

— If the PPTE was created to back up shared memory contained within a
page file, the MiResolvePageFileFault () routine is invoked. This
routine determines the page file number from which to perform the
paging I/O read operation, builds an MDL structure that will subsequently
be used to perform the read, and returns OxC0033333.

— If the PPTE indicates that it is in transition, this routine will itself invoke
the MiResolveTransitionFault () subroutine discussed above.

— If a zeroed page is required, the MiResolveDemandZeroFault ()
subroutine is invoked.

Once an appropriate subroutine has been invoked successfully, the Mi-
ResolveProtoPteFault () routine will make the PTE reflect the contents
of the PPTE. Now the PTE for the process will refer to the PEN database entry
for the page frame whose contents either will be read in (if OxC0033333 is
returned) or are already valid if a transition fault was resolved.

• Sometimes, the VMM simply needs to materialize a page frame containing
zeroes in response to a page fault. This may happen when a thread tries to
extend a file on disk, or if a thread tries to access some newly allocated, com-
mitted memory. In this case, the MiDispatchFault () routine simply
invokes the MiResolveDemandZeroFault () subroutine, which in turn
allocates a zeroed page frame from the list of available page frames. If such a
page frame is not available, the MiResolveDemandZeroFault () routine
returns OxC7303001, which simply causes the fault to recur and at that time a
page should become available (remember that the MPW thread is always try-
ing to ensure that there are enough free and unmodified page frames avail-
able to be reallocated).

As you can see, the NT VMM supports the MMU in resolving virtual addresses to
physical addresses by faulting in pages that are not present in system memory. If
you develop a kernel-mode driver that takes a page fault at an IRQL greater than
or equal to DISPATCH_LEVEL, you will cause the system to bugcheck, since the
VMM will not satisfy page faults at such a high IRQL. Ensure that all code and
data that is accessed at high IRQLs has been previously locked into nonpageable
system memory.

Interactions with File System Drivers ______________________________ 233

Interactions with File System Drivers
The NT Virtual Memory Manager and file system drivers have mutual dependen-
cies between them. The VMM depends on file system drivers to provide support
for page file I/O and also to provide support for section objects representing
memory-mapped files. The file system, in turn, depends upon the NT VMM to
resolve page faults that occur within the file system driver; to manipulate user and
system buffers; to be able to allocate, manipulate, and deallocate memory; and to
help cache file stream data.*

Here is a list of functionality provided by the VMM to the file system drivers on
NT platforms:

• The file system driver is an executable, dynamically loadable driver that is
loaded into system virtual address space with the assistance of the VMM and
the file system driver that contains the executable. By default, code for the file
system and other kernel-mode drivers is not pageable; i.e., these drivers
reside in RAM as long as they are loaded. Similarly, all global memory associ-
ated with kernel-mode drivers is never paged-out by default. There is a com-
piler directive that your driver can specify that will cause portions of the
driver code to be marked as pageable. This pragma is defined with any NT
compatible compiler as follows:
tpragma alloc_text (PAGExxxx, NameOfRoutine)
Note that xxxx should be a unique sequence of four characters that identifies
a pageable portion (also referred to a pageable section) of code. Furthermore,
at run-time, it is possible for your driver to invoke the MmLockPageable-
DataSection() or the MmLockPageableCodeSection () routines to
dynamically lock code or data. These routines and the corresponding unlock
routines are well documented in the DDK documentation. Some information
on making drivers pageable is also provided in Chapter 2, File System Driver
Development.

.
tney allocate at run-time. Typically, your driver will invoke a version of the
ExAllocatePoolWithTagf) routine to request pageable, nonpageable, or
cache-aligned memory. You can even request memory with the condition that
failure to allocate memory should result in an automatic system panic.
Although the Executive support routines manage these pools from which your
driver obtains memory, the physical memory and its manipulation is per-
formed only by the VMM. Any virtual address pointers (for memory) returned

* Chapter 6, The NT Cache Manager I, defines file streams more formally. For now, you can substitute the
word file for file stream if you like.

234__________________________Chapter 5: The NT Virtual Memory Manager

using one of the ExAllocatePool () routines is guaranteed to be in kernel
virtual address space.
Note that your driver can also invoke the ZwAllocateVirtualMemoryO
routine to directly request memory from the VMM, although the returned vir-
tual address will be in the lower 2GB of the process virtual address space;
therefore, such memory will only be accessible in the context of the allocat-
ing thread/process.

• Since your kernel-mode driver must be accessible while executing in the con-
text of any process in the system, the VMM manipulates the virtual address
space of every process in the system such that the lower 2GB are unique
(and private) to that process while the upper 2GB are reserved as the system
virtual address space and are mapped to the same physical addresses in the
context of all processes executing on the system.

• As a file system or as a kernel-mode driver, your code will often need to use
buffers that are passed in from user-mode code (e.g., a thread that executes
in user mode allocates memory and passes this buffer down to your driver).
Your driver must use this buffer to transfer data either into or out of the
buffer. However, there are two problems here that your kernel-mode driver
must address:

— Unless your driver is always guaranteed to execute in the context of the
user-mode thread, your driver cannot use the virtual addresses passed in
by the user-space thread, since they are only valid in that particular
thread's context.

— Sometimes, your driver might need to access the passed in buffer at an
IRQL greater than APC_LEVEL. In this case, you must ensure that the
buffer is backed by locked physical pages, because a page fault will
certainly result in a system crash.

The VMM assists you in addressing both of the issues listed. Any buffer can
have its associated physical pages locked in memory by invoking any of the
VMM routines such as MmProbeAndLockPages(), MmBuildMdl () , and
other similar routines. These request the VMM to create a Memory Descriptor
List (MDL), an opaque structure that describes the list of physical page frames
backing your allocated virtual address range. Optionally, depending upon the
VMM routine invoked, the pages will also be locked in memory; the page
frames allocated to the buffer will not be reclaimed until they are unlocked. If
you need to map the passed in addresses into system virtual address space,
you can use the MmGetSystemAddressForMdl () VMM routine.

Interactions with File System Drivers__________________________ ___235

TIP A Memory Descriptor List (MDL) is a system-defined structure that
describes a virtual address range (buffer) in terms of physical pages.
It contains an array, each element of which refers to a page frame
index for the frame backing the virtual address range. The array is
allocated immediately after the MDL structure; i.e., the MDL struc-
ture and the array (both of which are allocated from nonpaged
pool) are physically contiguous in memory.
Typically, your kernel-mode driver will often request the VMM to
create such an MDL for a user buffer and will usually map the buff-
er to system virtual address space. This ensures that the pages stay
locked until you have finished processing them and that you can ac-
cess the virtual addresses in the context of any arbitrary process.
The ntddk.h include file, supplied as part of the DDK, contains the
description of the MDL data structure. Note that your driver ideally
must not access the fields within the data structure directly, since
they could be changed by the system.

The VMM manages the stack frames allocated to all threads executing in the
system. The stack allocated to a thread executing in kernel mode is of fixed
length. In NT 3.51 and previous versions, this stack was limited to two page-
frames. In Windows NT 4.0, the stack has been expanded to three 4KB pages
of RAM (12288 bytes).

The VMM assists the file system (and the NT Cache Manager) in caching file
data. All of the physical memory manipulation is concentrated in the NT
VMM. Therefore, the support of the VMM is actively required in using physi-
cal memory to cache byte streams, which eventually enhances system through-
put.

The VMM provides support for clustering when satisfying page faults, which
helps improve system performance.

Typically, the VMM tries to cluster I/O operations into groups of 16 pages. On
Intel x86 platforms, this leads to a 64KB I/O size, while on Alpha machines,
this translates to 128KB I/O operations.
Sometimes, filter drivers need to do unusual things, like caching data to a file
on a local file system. Or, user-mode code and kernel-mode drivers might
need to pass data buffers between them. To solve problems like these, kernel-
mode drivers and user-mode applications can use the services of the VMM to
create shared memory objects or memory-mapped files.

236__________________________Chapter 5: The NT Virtual Memory Manager

TIP Although the focus of the book is not on designing and developing
NT device drivers, you should be aware that the NT VMM utility rou-
tines and data structures (the MDL data structure and routines that
manipulate it) are also applicable to device driver designers. There
are other supporting routines that the VMM provides to device driv-
er developers, most notably MmMapIoSpace () , which maps a giv-
en physical address range into nonpaged system space. Consult the
DDK for additional documentation on this routine as well as other
supporting routines provided by the Hardware Abstraction Layer
(HAL).
Remember, however, that regardless of the nature of the kernel-
mode driver that you develop, you -will need to understand the con-
tents of this chapter.

The NT Virtual Memory Manager provides the MmQuerySystemSize () sup-
port routine that can sometimes be useful to file system drivers.
The MmQuerySystemSize () function takes no arguments. It simply returns
an enumerated type result that can take one of the following values:
— MmSma 11 System (enumerated type value = 0)

— MmMediumSystem (enumerated type value = 1)
— MmLargeSystem (enumerated type value = 2)
The value returned depends upon the amount of physical memory configured
on the system. The VMM initializes a global variable, MmSystemSize, to one
of these three values at system initialization time, after determining the
amount of physical memory available on the node. MmQuerySystemSizeO
returns the contents of this global variable.
The actual amount of RAM that may result in one value being returned
instead of another is subject to change between different versions of Win-
dows NT. For example, if your system has less than 12MB of physical mem-
ory, you could expect to get back the MmSmallSystem value when you
invoke the MmQuerySystemSize () function. Similarly, if you have less
than 20MB of available physical memory, you could expect to get MmMedium-
System returned.

The MmQuerySystemSize () function call is typically made by kernel-mode
components to guide them in making resource allocation decisions. For exam-
ple, consider the case when the MmSmallSystem value is returned as a
result of calling this function. Now your file system driver may not know
exactly what a "small system" really means, but you can infer that, relatively
speaking, the amount of available physical memory is less than what it would
be on medium or large systems. Therefore, your driver could preallocate

Interactions with File System, Drivers______________________________237

smaller-sized zones, or create fewer worker threads as compared to what it
may do on medium or large systems. Use this routine to get additional infor-
mation about the system to help determine the resource utilization within
your driver.

There will undoubtedly be other factors that your driver will consider in mak-
ing the final determination about the amount of resources (physical memory)
your driver should consume.

The NT VMM also depends on the file system for the following functionality:

• Page files are created and manipulated on mounted file systems. Therefore, to
implement virtual memory support, the VMM needs the file system to perform
paging I/O read and write operations.

As illustrated by sample code in Part 3, the file system driver must completely
rely on the VMM when receiving I/O requests directed to a page file. There-
fore, the file system should avoid acquiring any resources (to provide any syn-
chronization), should never incur a page fault in processing the read/write
request, should never defer the request for asynchronous processing, and
should never block the request for any reason. It should simply forward the
request immediately (after determining the on-disk parameters for the
request) to the appropriate lower-level device drivers.

• In order to provide support for shared memory or for memory-mapped files,
the VMM needs the active support of the underlying file system. First, the
VMM requires that the file system provide appropriate callbacks to help main-
tain the locking hierarchy in the NT system. In addition, the VMM requires
that the file system be prepared to receive page faults that occur as a direct
consequence of the user process accessing mapped memory.
The callbacks that must be implemented by the file system driver are the
AcquireFileForNTCreateSection() and ReleaseFileForNtCrea-
teSectionf). The file system is expected to acquire all resources that
might be needed while the NT VMM executes code in support of a create
section request. I will discuss the implementation of these callbacks in detail
in Part 3.

Support Routines Provided for FSD Implementations
The VMM provides two specific routines, MmFlushImageSection() and
MmCanFileBeTruncated(), that are very important for file system designers,
but they are not well documented. Part 3 has examples using these routines.

238 Chapter 5: The NT Virtual Memory Manager

MmFlushlmageSection ()

This function is used by a file system driver to ask the VMM to discard pages in
memory containing information associated with a specified image section object.
For example, consider a copy of the Microsoft Word executable file that a user
mapped in to memory and now wishes to delete, maybe to upgrade the copy to a
later version of the software. The file system driver must ensure, before actually
deleting the file, that all pages containing file data are flushed (discarded). During
normal execution, these pages may contain file stream data even after all user
handles to the file have been closed. However, the file system cannot allow such
information to stay around in memory if it plans to delete the file stream.

NOTE Note that the VMM enforces a restriction that a file can't be deleted
as long as any user has actively mapped in the file stream; if the file
is currently being executed, it cannot be deleted. However, from the
discussions presented in this chapter, you have learned that the
VMM keeps file data around in memory even after all handles to the
mapped file stream have been closed, as long as it does not really
need to reuse the physical memory. This helps achieve faster re-
sponse if the user closes the file handle but reopens it soon after.
It is precisely during these situations that the file system driver must
flush the system pages before proceeding with the delete operation.

This function is also invoked by a file system driver before allowing a thread to
open a file stream for write access. Also, the VMM will typically not allow a user
to open a file for write access if another thread had previously mapped the file
into memory as an executable.

The MmFlushlmageSection () function is defined as follows:

BOOLEAN
MmFlushlmageSection (

IN PSECTION_OBJECT_POINTERS
IN MMFLUSH TYPE

SectionObjectPointer,
FlushType

where

typedef enum _MMFLUSH_TYPE {
MmFlushForDelete,
MmFlushForWrite

} MMFLUSHJTYPE;

Interactions with File System Drivers______________________________23.9

Resource Acquisition Constraints:

The file system driver must ensure that the file stream has been acquired exclu-
sively before invoking this function. Typically, the MainResource* for the file
stream is acquired exclusively before calling MmFlushlmageSection () .

Parameters:

SectionObj ectPointer
In the next chapter, the SECTION_OBJECT_POINTERS structure will be
described in detail. For now, note that a unique instance of this structure type
is associated with each representation of the file stream in memory. The VMM
expects a pointer to this structure to be passed in to the MmFlushlmageSec-
tion () function.

FlushType
This can assume one of two values, MmFlushForDelete or MmFlushFor-
Write. When checking whether a user open can be allowed to proceed
during processing a create/open request for an on-disk file stream, the file
system should pass in the MmFlushForWrite value. Before actually
attempting to delete an on-disk file (in the set file information dispatch
routine and in the cleanup dispatch routine, both of which are described in
Part 3), the file system should pass in the MmFlushForDelete enumerated
type value.

Functionality Provided:

• If the routine receives the argument MmFlushForDelete, and any user
thread has mapped the file stream into its virtual address space as a regular
data stream (memory-mapped file), the VMM will immediately return FALSE.

• In either case, whether MmFlushForDelete or MmFlushForWrite is
passed in, if any thread has mapped the file stream into its virtual address
space as an executable, the VMM will reject the request and return FALSE.

• Otherwise, the VMM will grab the page frame database lock and mark the
image section object for deletion.

Once the VMM has determined that it is safe to proceed with flushing of the
image section, the VMM will actually walk through the list of dirty pages
contained within the section and flush them out to secondary storage if they are
backed by an on-disk page file. Note that any dirty (modified) pages belonging to
mapped files are simply discarded immediately. Before actually starting the flush
operation, the VMM will ensure that all asynchronous modified page writer opera-
tions on the file stream have been stopped (and will actually block until any

* More information on synchronization objects associated with a file stream is provided in Part 3.

240 Chapter 5: The NT Virtual Memory Manager

ongoing write operations have been completed). If your file system supports page
files and if any of the dirty pages are backed by the page files residing on your
file system, your driver should expect to receive recursive paging I/O write
requests at this time.

Once the modified pages have been flushed (if required), the VMM will tear
down the image section object for the file stream, making it safe for the file
system to proceed with a delete or open operation.

There are two extremely important points you must be aware of before invoking
this function:

• When trying to flush modified pages for the image section to a page file, the
VMM will ignore any I/O errors encountered.

• The VMM will dereference the file object that was referenced when the image
section object was created.

To the file system designer, this means that your driver could receive a close
request as part of the processing performed during this call. If your file sys-
tem is in the middle of processing a create operation, do not be surprised to
suddenly receive the last close operation on the file stream as a result of
invoking this function.*

MmCanFileBeTruncatedO
This routine is provided by the VMM to help a file system determine whether a
truncate operation on a file stream should be allowed to proceed. The VMM
imposes certain restrictions on when file size modifications and/or deletions are
allowed to proceed. A user is not allowed to truncate a file stream if the file
stream is mapped in as an executable; the truncate request will be denied if an
image section object has been created by the VMM and is actively being used by
a user thread. The rationale is that it would confuse the user executing the file
tremendously if a page fault failed because the contents corresponding to the
page no longer exist on disk due to the truncate operation, although the contents
existed just a moment ago. Also, if any thread has mapped the file stream as a
data file (not as an image section), and if the new file size would be less than the
currently mapped view length of the file stream, the VMM will disallow the trun-
cate request.

The MmCanFileBeTruncated() function is typically invoked by the file system
before allowing a truncate request to proceed. An example using this function is

* Although you will appreciate this more when you actually develop your file system driver, this could
cause all sorts of problems for your driver if you have to arbitrate between tearing down file system struc-
tures (as a result of the last close being received) and using them because you are processing a create/
open request.

Interactions ivith File System Drivers__________________________ 241

provided in Chapter 10, Writing A File System Driver II. The function is defined as
follows:

BOOLEAN
MmCanFileBeTruncated (
IN PSECTION_OBJECT_POINTERS SectionPointer,
IN PLARGE_INTEGER NewFileSize
) ;
Resource Acquisition Constraints:

The file system driver must ensure that the file stream has been acquired exclu-
sively before invoking this function. Typically, the MainResource* for the file
stream is acquired exclusively before calling MmCanFileBeTruncated () .

Parameters:

SectionObj ectPointer
The SECTION_OBJECT_POINTERS structure is described in detail in the
next chapter. Note for now that a unique instance of this structure type is
associated with each representation of the file stream in memory.

NewFileSize
A pointer to a large integer containing the proposed new file size.

Functionality Provided:

• Internally, MmCanFileBeTruncated () invokes MmFlushlmageSec-
tion (), supplying MmFlushForWrite as the reason for the flush request.

If the MmFlushlmageSection () function returns FALSE, the MmCanFile-
BeTruncated () function will also return FALSE and deny the truncate
request.

• Otherwise, the function checks if any user thread-mapped views exist; if they
do and the new file size would be less than the size of the mapped view, the
MmCanFileBeTruncated () function returns FALSE.

• Otherwise, the function returns TRUE, allowing the truncate request.

The basic philosophy followed here is:

• If an image section is in use for the file stream, the VMM will return FALSE.

• If a user data section exists for the file stream, and if the new file size is less
than the size of the currently mapped view, the VMM will return FALSE.

• If neither of the two conditions above are found to be TRUE, the VMM will
return TRUE.

* More information on synchronization objects associated with a file stream is provided in Part 3.

. .

242 Chapter 5: The NT Virtual Memory Manager

This chapter presented the Virtual Memory Manager. The next three chapters will
cover the NT Cache Manager, a kernel-mode component that assists file system
drivers in caching data. This component depends heavily upon the NT VMM and
is explicitly supported by it.

In this chapter:
• Functionality
• File Streams
• Virtual Block

Caching
• Caching During Read

and Write Operations
• Cache Manager

Interfaces
• Cache Manager

Some Important Data
Structures
File Size
Considerations

Manager Ivj

Although constant advances in storage technologies have led to faster and
cheaper secondary storage devices, accessing data off secondary storage media is
still much slower than accessing data buffered in system memory. Therefore, to
achieve greater performance with applications that manage large amounts of data
(e.g., with database management applications), it becomes important to have data
brought into system memory before it is accessed {read-ahead functionality), to
retain such information in memory until it is no longer needed {caching of data),
and possibly to defer writing of modified data to disk to obtain greater efficiency
(write-behind or delayed-write functionality).

Most modern operating systems provide support for some form of file data
caching.* This task is traditionally performed by individual file systems or by
modules such as the systemwide buffer cache on UNIX systems. In the Windows
NT operating system, the NT Cache Manager encapsulates the functionality
required to cache file data.t In order to perform this task, the Cache Manager inter-
acts with file system drivers and with the NT Virtual Memory Manager. The Cache
Manager is an integral component of the Windows NT environment. By simply
using Windows NT to access file data, each of us utilizes the services provided by
the Cache Manager. If our requests to access data seem to be satisfied fairly
quickly, without even accessing the disk drive, we know that the Cache Manager

* Even the maligned Microsoft DOS environment featured the (in)famous SmartDrive caching module.
t Actually, the Cache Manager caches byte streams (without interpretation), which can be stored on disk
using any layout defined by the file system. Therefore, file system metadata can also be cached by the
NT Cache Manager.

243

244_______________________________Chapter 6: The NT Cache Manager 1

worked hard to preread our data into system memory. If requests to copy files or
modify them return almost instantaneously, it is probably because the modified
data was buffered in memory. When we notice that the hard disk shows activity
periodically (every few seconds), we realize that modified data is being lazy-
written to disk. And finally, when we lose data as a result of a system crash, it is
quite evident that the Cache Manager must be to blame.*

In this chapter, as well as in the next two, I will present the NT Cache Manager in
detail, focusing on the responsibilities of the Cache Manager, the methodology
used by it to buffer data, and also the interactions of the Cache Manager with the
NT file system drivers and the NT Virtual Memory Manager.

Functionality
The NT Cache Manager is a distinct component of the NT Executive, and it is
closely affiliated with the Virtual Memory Manager.

It provides a consistent systemwide cache for data stored on secondary storage
devices.

This cache is managed in conjunction with the appropriate file system drivers,
and with the cooperation of the Virtual Memory Manager and the I/O
Manager.

It performs read-ahead on file data.
The Cache Manager attempts to tune its read-ahead policy per file based on
the pattern of data access performed by user applications. Since all I/O
requests on buffered files get routed through the Cache Manager, the Cache
Manager can keep track of the access pattern for the data belonging to the
file. Therefore, if a user application reads (say) the first 10K bytes for a file,
the NT Cache Manager will typically try to read ahead the next 64K bytes of
the file into memory. Subsequently, if the application attempts to obtain this
data, it can simply be copied over from the system cache, thereby avoiding
making the user application wait until the data can be read from secondary
storage. For sequentially accessed files, the read-ahead functionality provided
by the Cache Manager can result in significant performance gains, since data
will have already been read into system volatile memory before the applica-
tion requests access to such data.

* By accepting (and requiring) greater throughput via caching in volatile system RAM, users accept the
risks associated with such caching. Typically, unplanned system outages (perhaps due to failure of hard-
ware components or errors in the software) result in the loss of modified data that had not been flushed
to secondary storage. Although it is possible to use nonvolatile memory to cache data, the associated costs
with such usage are prohibitive for most environments.

File Streams___245

It provides delayed-write functionality for modified cached data.
By keeping modified data in memory for some time before actually writing it
to disk, the Cache Manager provides greater responsiveness to the user appli-
cations that actually perform the write. It can also batch multiple contiguous
write operations in memory and write all the modified bytes out in a single
I/O operation, which is typically more efficient than performing each smaller
write operation individually. Finally, it is possible that a user application may
repeatedly modify the same byte range. By deferring I/O to disk, such modifi-
cations are made only in memory, avoiding completely the overhead of
repeated write operations to the media.

File Streams
Each instance of an open file is represented by a file object structure in Windows
NT. Any linear stream of bytes associated with a file object can be defined as a
file stream. Examples of file streams include the data for the given file,* a direc-
tory (containing information about other files stored on disk), file system
metadata (such as volume information), Access Control Lists (ACLs) associated
with the file, and extended attributes stored with the file.

NT file systems create, delete, and manipulate file streams as the result of either
externally generated user requests to read or write file data, or internally gener-
ated requests to manipulate file-system-specific data structures. File systems
identify file streams that they wish to support and cache. For example, unless
directed otherwise by a user, file systems cache user data contained within a file.
For each file stream to be cached, the file system typically supports both cached
and noncached access.

The Cache Manager provides support for the caching of file streams by using
memory mapping, and it also integrates caching with the memory manager's poli-
cies for other uses of pageable memory. From the perspective of the Cache
Manager, the stream is simply a random sequence of bytes representing informa-
tion that should be kept in memory. Therefore, the same set of services offered
by the Cache Manager can be used by file system drivers to cache user file data
or file system metadata.

* Some files could have multiple data streams if the file system supports this feature. For example, NTFS
supports multiple data streams. NTFS uses two distinct byte streams (for the same named file) to store the
resource and data forks associated with Macintosh files stored on NTFS file systems on NT servers.

246 Chapter 6: The NT Cache Manager I

Virtual Block Caching
Some operating systems use physical offsets (or disk block addresses) to cache
file data in system memory. Instead of using disk block addresses, the NT Cache
Manager provides a virtual block cache by using the file mapping method for
caching file streams. Figure 6-1 illustrates the difference between these two
methods for data caching (for buffered data). Note that the numbering indicates
the logical sequence in which the operations are performed.

In operating systems that use physical block addressing for cached data (the old
buffer cache implementation in UNIX SVR4), the file system or caching module
must first convert virtual byte offsets in a file to physical block offsets on disk
before checking whether data is available in the system cache, since the caching
module—the buffer cache—keeps track of cached data by using physical disk
addresses. However, as shown in Figure 6-1, the NT Cache Manager only uses
virtual byte offsets in a file to keep track of cached information. The Cache
Manager does not need to understand physical block addresses for the data being
accessed. Therefore, file system drivers in the Windows NT operating system
generally translate virtual byte offsets in a file to physical block offsets on disk
only if the data could not be obtained from the in-memory cache being managed
by the Cache Manager.

The advantages of using a virtual block cache (as compared to a physical block
cache) follow:

• Some applications may use native NT system calls to access file data, e.g.,
NtReadFile () or NtWriteFile() ,* while other applications executing
concurrently may map the file data into their address space for read or read/
write access. By using virtual block caching, via file mapping, and by using
proper synchronization, it is possible for all such applications to see the most
current data.t

• Conceptually, there is no difference between file data mapped in by the NT
Cache Manager compared to file data mapped in by an application. By using
the file mapping model, all physical memory becomes available for data cach-
ing. As mentioned before, the allocation of physical memory is controlled by
the NT Virtual Memory Manager; the number of physical pages allocated to

* Typically, applications use the interfaces provided by a subsystem (e.g., the ReadFile () interface pro-
vided by the Win32 subsystem) to perform read/write operations. Invoking such interface routines even-
tually results in calls to native NT system services. For a comprehensive listing of system services provided
by the I/O Manager for data access, see Appendix A, Windows NT System Services.
t Note that neither the FASTFAT nor the NTFS native file system implementations currently guarantee that
applications using conventional system calls will always obtain the most current data if other applications
have also mapped the file for read/write access. However, in most cases, the file systems go to consider-
able lengths to ensure that this is indeed the case.

Virtual Block Caching 247

Figure 6-1. Comparison of virtual block address caching with physical block address caching

the Cache Manager depends on changing needs for memory by other compo-
nents in the system (e.g., memory allocated for image file pages versus data
file pages).

• Often, the I/O Manager invokes the Cache Manager directly, bypassing the
file system driver or the network redirector driver completely. In such cases, it

248 Chapter 6: The NT Cache Manager \

is possible for the Cache Manager to resolve the file access via a single hard-
ware virtual address lookup.' This is considerably more efficient than the pro-
cess of converting a virtual address to a physical disk address before checking
whether data is available in system buffers.

Caching During Read and Write
Operations
In the NT operating system, user processes are allowed to specify at the time of
opening a file whether data for the file should be buffered in memory. Only those
files opened without the IRP_NOCACHE flag—to indicate that data for the file can
be buffered—have their data cached in system memory. In order to understand
how the NT Cache Manager provides the caching functionality described in the
previous section, think of the Cache Manager as an application, executing on the
system, which happens to open the very same files as those opened by all of the
other applications executing on the same system.

In order to cache data, the Cache Manager has to utilize system memory. As was
noted in Chapter 5, The NT Virtual Memory Manager, each process executing in
the Windows NT environment has 4GB of virtual address space available to it.
The lower half of this address space is process-specific, while the upper 2GB are
reserved for the operating system and are shared for every process executing in
the system. This virtual address model applies also to the system process, which
is a special process created at system initialization time. At system initialization,
the Cache Manager reserves a range of virtual addresses within the upper 2GB of
the system process virtual address space. Since this virtual address range that is
reserved for the exclusive use of the NT Cache Manager exists within the upper
2GB of the virtual address space, every process executing on the system has
access to the virtual address range reserved for the NT Cache Manager. Figure 6-2
depicts the location of the range of virtual addresses reserved by the NT Cache
Manager.

Although a certain range of virtual addresses is reserved for the exclusive use of
the NT Cache Manager, physical pages are not necessarily allocated for this range
of virtual addresses. The number of physical pages that are allocated to the Cache
Manager is determined, and constantly adjusted, by the NT Virtual Memory
Manager. In the absence of demand for physical memory from other user
processes or system components, the Virtual Memory Manager may choose to
increase the amount of physical memory allocated to the Cache Manager. On the

* Virtual address translation can be immediately performed using the Translation Lookaside Buffer (TLB).
A TLB hit results in extremely efficient translation to the corresponding physical memory address.

Caching During Read and Write Operations 249

Figure 6-2. Virtual address range reserved for the NT Cache Manager

other hand, on heavily loaded systems with scarce available physical memory, the
memory manager may decrease the amount of physical memory allocated to the
Cache Manager for caching file data.

It is important to note that these decisions concerning physical memory allocation
are the sole prerogative of the NT Virtual Memory Manager.

The Cache Manager application uses file mapping to buffer file data. Caching is
initiated on a file stream by a file system driver through a call to the Cache
Manager. Upon receiving such a request, the Cache Manager, invokes the Virtual
Memory Manager to create a section object representing the file mapping—this is
done for the entire file stream. Subsequently, when a process attempts to access
data belonging to the stream, the Cache Manager dynamically maps views of the
file stream into portions of the virtual address space reserved for itself in the
system virtual address space. Note that since the range of virtual addresses
reserved for the Cache Manager is fixed, the Cache Manager may have to unmap
one or more previously mapped views in order to be able to create a new view.

In order to better understand the role played by the Cache Manager in servicing
I/O requests, let's examine the typical sequence of steps executed in response to
user-initiated read and write operations.

Cached Read Operation
Consider a read operation initiated by a user application. This read operation is
passed on to the file system by the NT I/O Manager.* Figure 6-3 illustrates the

* As shown later, the file system is bypassed by the I/O Manager in many cases. However, for simplicity,
let's assume that I/O operations are first sent to the file system driver by the I/O Manager subsystem.

250 Chapter 6: The NT Cache Manager I

sequence of operations executed to satisfy the read request (using the copy
interface* provided by the Cache Manager).

An explanation for each step listed in the figure is provided below. Note that the
arrows in the figure represent flow of control.

1. The user application executes a read operation, which causes control to be
transferred to the I/O Manager in the kernel.

2. The I/O Manager directs the read request to the appropriate file system driver
using an IRP. The user buffer may be mapped into the system virtual address
space, or the I/O Manager may allocate a Memory Descriptor List repre-
senting the buffer and lock pages associated with this MDL, or the virtual
address for the buffer may be passed-in unmodified by the I/O Manager. In
Part 3 you will see that the file system driver has control over which of these
operations is performed by the I/O Manager.

3. The file system driver receives the read request and notices that the read oper-
ation is directed to a file that is opened for buffered access. If caching has not
yet been initiated for this file, the file system driver initiates caching on the
file by invoking the Cache Manager. In turn, the Cache Manager requests the
Virtual Memory Manager to create a file mapping (section object) for the file
to be cached.

4. The file system driver passes the read request to the NT Cache Manager using
the CcCopyRead () t Cache Manager call. The Cache Manager is now respon-
sible for executing all the necessary steps to transfer data into the user's
buffer.

5. The Cache Manager examines its data structures to determine whether there is
a mapped view of the file containing the range of bytes requested by the
user. If no mapped view exists, the Cache Manager creates one.

6. The Cache Manager simply performs a memory copy operation from the
mapped view into the user's buffer.

7. If the mapped view of the file is not backed by physical pages containing the
required data, a page fault occurs and control is transferred to the Virtual
Memory Manager.

8. The VMM allocates physical pages that will be used to contain the requested
data* for which the page fault occurred and then issues a noncached paging I/O

* Later in this chapter, I will discuss the various interface methods presented by the NT Cache Manager
to other system components. The copy interface is one of the four available interfaces.
t See the next two chapters for a detailed discussion on all the routines exposed by the Cache Manager.
£ In order to free up physical memory, the Virtual Memory Manager may need to write modified pages
to disk. For now, assume that unmodified free pages are available.

Caching During Read and Write Operations 251

User application executes a read
request on a file which was opened

with buffering enabled

Virtual
Memory
Manager

NT Cache
ManaflerFile System Driver

Figure 6-3. Sequence of steps executed to satisfy a user read request for a cached file

read operation to the file system driver via the NT I/O Manager. Note that
although the figure above does not indicate that the paging I/O request is
routed via the NT I/O Manager, that is indeed what happens.

,

252_______________________________Chapter 6: The NT Cache Manager I

9. Upon receiving the noncached read request, the file system driver creates a
corresponding I/O request to obtain data off secondary storage media and
sends this I/O request to the lower-layer drivers.

10. The device driver(s) below the file system obtain data from secondary storage
(or from across the network) and complete the request.

11. The file system driver completes the paging I/O request from the NT Virtual
Memory Manager.

12. The instruction that resulted in a page fault is reexecuted.

13. The Cache Manager completes the copy operation from the mapped view for
the file to the user's buffer. This time, the copy should complete without
incurring a page fault (although it is theoretically possible to have a page fault
repeatedly on a page that has just been brought in, practically speaking, this
does not occur).

14. The Cache Manager returns control to the file system driver after the cached
data has been copied into the user's buffer. Note that this data will also
remain cached in the virtual address space reserved for the Cache Manager
(however, this data may be discarded from system memory by the NT Virtual
Memory Manager at any time).

15. The file system driver completes the original IRP sent to it by the NT I/O
Manager.

16. The I/O Manager completes the original user read request.

Cached Write Operation
Now, consider a write operation initiated by a user application. Figure 6-4 illus-
trates the sequence of operations executed to satisfy the write request (using the
copy interface provided by the Cache Manager).* As you will see, the sequence of
operations is similar to the read operation described previously. An explanation
for each step listed in the figure is provided below:

1. The user application executes a write operation, which causes control to be
transferred to the I/O Manager in the kernel.

2. The I/O Manager directs the write request to the appropriate file system
driver using an IRP. As in the case of the read operation, the buffer may be
mapped into the system virtual address space, or an MDL may be created, or

* The figure has been deliberately simplified for the sake of clarity. As you will see in Chapter 9, Writing
a File System Driver I, in order to account for incomplete block transfers, write operations may cause the
file system to actually read data from disk before executing the write.

254_______________________________Chapter 6: The NT Cache Manager I

if caching has not yet been initiated for this file, the file system driver initiates
caching on the file by invoking the Cache Manager. The Virtual Memory
Manager creates a file mapping (section object) for the file to be cached.

4. The file system driver simply passes on the write request to the NT Cache
Manager via the CcCopyWrite () Cache Manager call, which is part of the
copy interface made available by the Cache Manager.

5. The Cache Manager examines its data structures to determine whether there is
a mapped view for the file containing the range of bytes being modified by
the user. If no such mapped view exists, the Cache Manager creates a
mapped view for the file.

6. The Cache Manager performs a memory copy operation from the user's buffer
to the virtual address range associated with the mapped view for the file.

7. If this virtual address range is not backed by physical pages, a page fault
occurs and control is transferred to the Virtual Memory Manager.

8. The VMM allocates physical pages, which will be used to contain the
requested data (for which the page fault occurred). In Figure 6-4, assume that
entire pages are being overwritten by the user. In such a scenario, neither the
Cache Manager nor the VMM read previously existing data off the disk before
modifying such data. However, if partial pages are being modified, page
faults will result in paging I/O read operations being issued by the Virtual
Memory Manager, before the page is allowed to be modified. The instruction
that resulted in a page fault is reexecuted.

9. The Cache Manager completes the copy operation from the user's buffer to
the virtual address range associated with the mapped view for the file.

10. The Cache Manager returns control to the file system driver. Note that the
user data now resides in system memory and has not yet been written to
secondary storage media. The actual transfer of data to secondary storage will
be performed later by the Cache Manager.*

11. The Cache Manager completes the request.
12. The file system driver completes the original IRP sent to it by the NT I/O

Manager.
13. The I/O Manager completes the original user write request.

* Either the lazy writer component of the Cache Manager or the modified page writer component of the
Memory Manager may initiate the write to secondary storage media. Also, it is possible that a user request
to flush system buffers or a flush initiated by the file system driver (due to some reason such as a cleanup
operation) may be responsible for instigating the write operation to disk. The lazy writer component will
be covered in greater detail in the next chapter. Refer to Chapter 5 for more details on the modified page
writer.

Cache Manager Interfaces_____________________________________255

Cache Manager Interfaces
Now that we have explored how caching is typically used by file system drivers,
let us look at the different ways in which system components can use the NT
Cache Manager. File system drivers and other components in the Windows NT
operating system can use the services provided by the Cache Manager through
four sets of interface routines. The first set of interface routines provides support
for basic file stream access and manipulation, while the other three can be used
as different access methods for the system cache.

The four sets of interfaces provided by the NT Cache Manager are file stream
manipulation functions, the copy interface, the MDL interface, and the pinning
interface.

File Stream Manipulation Functions
The Cache Manager provides support for initializing cached operations for a file
stream, terminating caching, flushing cached data to disk (on demand), modifying
file sizes, purging cached data, zeroing file data, support for logging file systems,*
and other common maintenance functions. The functions provided by the Cache
Manager within this interface set consist of the following:

• CcInitializeCacheMap
• CcUninitializeCacheMap
• CcSetFileSizes
• CcPurgeCacheSection
• CcSetDirtyPageThreshold
• CcFlushCache
• CcZeroData
• CcGetFileObjectFromSectionPtrs
• CcSetLogHandleForFile
• CcSetAdditionalCacheAttributes
• CcGetDirtyPages
• CcIsThereDirtyData
• CcGetLsnForFileObject

* Some file systems (e.g., the NTFS file system) use a method called logging to enable faster recovery and
ensure metadata integrity upon a system crash (or any unexpected shutdown). These file systems need
to ensure a certain sequence in which log entries and corresponding file metadata/data are written to
disk. The Cache Manager provides support for such file system drivers via the routines listed above.

256 Chapter 6: The NT Cache Manager 1

Copy Interface
The copy interface is the simplest form of cached access. The client module,
using the Cache Manager, can utilize this interface to copy either a range of bytes
from a buffer in memory to a specified virtual byte offset in the cached file
stream, or a range of bytes from a specified virtual byte offset in the cached file
stream to a buffer in memory.

This interface includes a call to initiate read-ahead and also includes calls to
support write throttling. Write throttling allows the client of the Cache Manager
(usually a file system driver) to defer certain write operations if the system is
running low on available or unmodified pages. This condition can occur if some
applications keep modifying data at an extremely rapid rate, greater than the rate
at which the lazy writer or modified page writer can initiate the transfer of modi-
fied data to disk or across the network to a storage server. Note that it is also
quite possible that the disk or network driver may not be able to keep pace with
the rate at which I/O requests to write data to disk are being generated by the
modified page writer or the lazy writer. This would also result in a decrease in the
number of available, unmodified pages.

The functions provided by the Cache Manager within this interface set consist of
the following:

• CcCopyRead/CcFastCopyRead
• CcCopyWrite/CcFastCopyWrite
• CcCanlWrite
• CcDeferWrite
• CcSetReadAheadGranularity
• CcScheduleReadAhead

MDL Interface
A Memory Descriptor List (MDL) is an opaque Memory-Manager-defined data
structure that maps a particular virtual address range to one or more paged-based
physical address ranges. The MDL interface to the Cache Manager allows direct
access to the system cache via Direct Memory Access (DMA).* The set of routines
comprising the MDL interface return an MDL to the caller, containing the byte
range described in the request, which can be subsequently used by the caller to
transfer data directly into or out of the system cache.

* DMA allows a device controller to transfer data directly between system memory and a secondary stor-
age device. The processing unit doesn't get involved in the data transfer, resulting in better performance.

Cache Manager Interfaces_____________________________________257

This interface is useful to subsystems that need direct access to the contents of the
system cache. For example, network file servers that need to DMA across the
network device directly into or out of the Cache Manager's virtual address range
use the MDL interface to achieve higher performance. In the absence of this inter-
face, a network driver transferring data out of the system cache might first have to
allocate a temporary buffer, copy data from the system cache to this temporary
buffer, let the network device perform the transfer, and, finally, deallocate the
temporary buffer. The extraneous calls to allocate/deallocate the temporary buffer
and the redundant copy can all be avoided if data can be transferred by the
network device directly from the system cache across the network. This can
indeed be achieved using the CcMdlRead () and CcMdlReadComplete ()
sequence of calls.*

Note that this interface shares the same read-ahead call as the copy interface.
Also, routines comprising the MDL interface and those belonging to the copy inter-
face can be used concurrently on the same file stream. The functions provided by
the Cache Manager within this interface set consist of the following:

« CcMdlRead
• CcMdlReadComplete
• CcPrepareMdlWrite
• CcMdlWriteComplete
An interesting point to note here is that, while most of the other Cache Manager
routines associated with data transfer (e.g., CcMdlReadO, CcCopyRead())
perform data transfer as part of the functionality provided by the routine, the
CcPrepareMdlWrite() routine simply creates an MDL containing original data,
which can be subsequently modified by the caller prior to invoking CcMdl-
WriteComplete () . Therefore, although some data transfer might be performed
by the Cache Manager when CcPrepareMdlWrite () is invoked (to obtain
current file stream data from disk or across the network and place it in the pages
described by the MDL), the routine acts more as an enabler routine, allowing the
caller to transfer the new data later, using the returned MDL.

Pinning Interface
This interface provided by the Cache Manager can be used to perform two tasks:

• Map data into the system cache for direct access using a buffer pointer

• Pin (or lock) the physical pages that back the mapped data

* The terminology used here is important: CcMdlRead () is used when the client wishes to read from
the system cache and write to the network (or disk). CcPrepareMdlWrite () is used when the client
wishes to transfer directly from the network device (or disk) and write to the system cache.

258_______________________________Chapter 6: The NT Cache Manager I

In addition to being able to read data directly using a buffer pointer, the caller
can also modify the data directly in the system cache.

When access to the mapped data is no longer required, the data can be
unpinned. This will also result in locked pages being unlocked and made avail-
able for other uses. Once the data is unpinned, the pointer to the data should no
longer be used.

Pinning data is typically used for efficiency reasons when file system drivers or
other system components need to access frequently used data structures (or other
data associated with the file stream) directly in memory. It is also used to ensure
that the data being accessed cannot be removed from system memory. However,
locking mapped data consumes physical memory and therefore decreases the
amount of memory available to other system components.

Note that the pinning interface cannot currently be used in conjunction with
either the copy interface or the MDL interface.

This interface is often used by file system drivers when dealing with cached file
system metadata. The pinning interface consists of the following functions:

• CcMapData

• CcPinMappedData
• CcPinRead
• CcSetDirtyPinnedData
• CcPreparePinWrite
• CcUnpinData
• CcUnpinDataForThread
• CcRepinBcb
• CcUnpinRepinnedBcb
• CcGetFileObjectFromBcb
The above functions are described in greater detail in Chapter 7, The NT Cache
Manager II.

Cache Manager Clients
The following components are typical users of the interfaces provided by the
Cache Manager. These components are also known as clients of the Cache
Manager.

• File system drivers such as NTFS, FASTFAT, CDFS, and other third-party file
systems use the copy interface services of the Cache Manager to perform each-

Cache Manager Clients_______________________________________259

ing on user file data. This allows for greater performance, because once user
data is cached in system memory, subsequent access to the data can be satis-
fied immediately without getting the data again from secondary storage media.

File system drivers also use the Cache Manager to cache file system metadata,
including volume structures, directory information, bitmaps for free space on
disk, extended attributes associated with a file, and other similar information.
Many of these structures are often pinned in memory by the file system
driver. Note that the Cache Manager does not interpret the type of data
streams being cached; it only knows about file object data structures and data
streams associated with such file objects.

File system drivers also typically use the read-ahead and delayed write func-
tionality provided by the Cache Manager, although it is quite possible that cer-
tain sophisticated file system implementations may add their own support for
read-ahead or delayed write operations. Finally, all file system drivers have to
use the file stream manipulation functions provided by the Cache Manager to
interface correctly with the Cache Manager.

• Network redirectors are similar to file system driver implementations; how-
ever, these modules obtain data from file servers across a network, instead of
from a secondary storage medium directly attached to the host system. These
components typically cache various data streams in the system cache to pro-
vide extremely fast performance comparable to local file systems.

Network redirectors typically use the copy interface provided by the Cache
Manager. They may also use the MDL interface to DMA data directly into or
out of the system cache. These components also benefit from the read-ahead
and write-behind functionality provided by the Cache Manager. In order to ini-
tiate or terminate caching on specific data streams or to perform other cache
manipulation functions, network redirectors use the file stream manipulation
functions.

• Network File Servers are indirect clients of the Cache Manager, since they use
the local file systems to ultimately obtain access to file data. These drivers
never invoke Cache Manager routines directly. File servers are often imple-
mented as kernel-mode drivers for performance reasons. They use the copy
interface via the file system drivers that serve their requests. Also, file servers
typically use DMA to transfer data directly into (or out of) the system cache.
To do this, file servers use the MDL interface to the Cache Manager. Since file
servers cannot directly invoke the Cache Manager, they use special flags in
read/write IRPs sent to file system drivers to request that a memory descriptor
list be created for the specified virtual address range in the file stream. After
data transfer has been completed, file servers inform file system drivers that
previously created memory descriptor lists can now be deleted. Chapter 9,

260 Chapter 6: The NT Cache Manager I

contains an explanation of the flags used by file servers to request the cre-
ation and deletion of MDLs for data buffered in the system cache.

• Filter drivers, or other drivers that use the NT file system interface for special-
ized purposes, are indirect clients of the Cache Manager. Consider a filter
driver that provides hard disk caching for data stored on slower media such
as magnetic tape or optical media. Such a driver uses the services of a local
file system to store the cached information. Therefore, the filter driver is an
indirect client of the Cache Manager, since the file system supporting the filter
driver uses the copy interface to transfer data into and from system memory.
Similarly, consider a filter driver that provides HSM* functionality. Such a
driver has to migrate data from a relatively fast secondary storage device,
such as a magnetic disk, to a slower device, such as tape. To help speed up
the process, the filter driver uses DMA to transfer data directly from the sys-
tem cache to tape and, therefore, uses the MDL interface (via special flags in
read/write IRPs sent to the file system driver) provided by the Cache Man-
ager. After the transfer process has completed, the filter driver will inform the
file system driver that any previously created memory descriptor lists can now
be deleted.

Table 6-1 summarizes the way clients of the Cache Manager use its various
interfaces.

Table 6-1. Clients of the Cache Manager

File Stream
Manipulation
Copy Interface
MDL Interface
Pinning Interface

Local File
Systems

7

/

/

Network
Redirectors

'

/
/

Network File
Servers

/
/

Filter
Drivers

/
/

Some Important Data Structures
The services provided by the Cache Manager are most heavily utilized by file
system drivers and network redirectors, which serve user I/O requests. The data

* HSM or Hierarchical Storage Management involves efficient management of available storage using con-
figurations comprising faster and more expensive media along with slower but cheaper media, to mini-
mize cost per byte of stored data and yet have data always available when required. Typically, this is
performed by automatically transferring infrequently accessed data to slower, cheaper media, such as
tape, from the faster (but more expensive) hard disks. When such data is subsequently accessed, the driv-
er automatically transfers data back from tape to hard disk. There are other aspects to HSM that are outside
the scope of this discussion.

Some Important Data Structures_________________________________267

structures and fields described below are important to understand to interface
correctly with the Cache Manager.

Fields in the File Object
As explained in Chapter 4, The NTI/O Manager, each file stream, when created or
opened, has a file object structure (of type FILE_OBJECT) created for it by the
I/O Manager. Although most of the fields within the file object structure are filled
in by the I/O Manager, the file system drivers and network redirectors that are the
recipients of the I/O requests on the associated file stream are required to fill in
certain specific fields. Three important fields that must be initialized follow:

• The FsContext field
• The SectionObjectPointer field

• The PrivateCacheMap field

This initialization is typically performed at file stream open (or create) time; it is
possible, though, for a file system or network redirector to defer this operation to
some other time before caching is first initiated for the file stream.

FsContext

If caching via the NT Cache Manager is required for an open file stream (repre-
sented by the file object structure), the FsContext field must be initialized to
point to a structure of type FSRTL_COMMON_FCB_HEADER. This structure is
defined as follows:

typedef struct _FSRTL_COMMON_FCB_HEADER {
CSHORT NodeTypeCode;
CSHORT NodeByteSize;
UCHAR Flags;
UCHAR IsFastloPossible;

// The following two fields are only present in Version 4.0+ of the
// the Windows NT operating system.
// Second Flags Field.
UCHAR Flags2;
// The following reserved field should always be 0.
UCHAR Reserved;

PERESOURCE Resource ;
PERESOURCE PagingloResource;
LARGE_INTEGER AllocationSize;
LARGE_INTEGER FileSize;
LARGE_INTEGER ValidDataLength;
} FSRTL_COMMON_FCB_HEADER;

The above structure will be referred to as the CommonFCBHeader structure. It
has to be allocated by the file system or network driver from nonpaged kernel

262_______________________________Chapter 6: The NT Cache Manager I

memory. As you will see in Chapter 9, each file stream is uniquely represented in
memory by a File Control Block (FCB) structure.

NOTE For readers with a UNIX background, note that a File Control Block
is analogous to a UNIX vnode structure representing a file (or direc-
tory) in memory.

Although multiple concurrent open operations performed on the same file stream
may result in multiple file object structures being created, there is only one
unique FCB for the file, and all file object structures must refer to it.

Similarly, only one CommonFCBHeader structure can exist per file stream. There-
fore, it is not uncommon to see file system driver or network driver
implementations allocate the CommonFCBHeader structure as part of their FCB
structure representing the file stream. Note, however, that the file system driver is
not required to allocate the CommonFCBHeader as part of the FCB structure as
long as a one-to-one (unique) logical association can be created between these
two structures.

The first two fields in the CommonFCBHeader—NodeTypeCode and NodeBy-
teSize—are unused by the Cache Manager. The fields comprising this structure
are described below. Note that many of these fields require the understanding of
concepts explained in later chapters (specifically Chapters 9-11); the issue of
initialization of each of these fields will be revisited when all such required
concepts have been presented:

Flags
The CommonFCBHeader structure has pointers to two synchronization
ERESOURCE type structures. The PagingloResource is acquired by the
modified page writer thread. By setting an appropriate value in the Flags
field, the file system driver or network redirector is allowed to specify to the
MPW thread that the MainResource (see below) should be acquired instead
of the PagingloResource. In Chapter 11, Writing a File System Driver III,
reasons why a file system driver or a network redirector may set such a flag
will be discussed.

Flags2
This field was added with Version 4.0 of the operating system. As discussed
later in this book, it is possible for an FSD to specify that lazy-write opera-
tions not be performed for a cached file stream. However, if the Flags2 field
has the FSRTL_FLAG2_DO_MODIFIED_WRITE flag set (defined as 0x01),
the Cache Manager will ignore the FSD request to disallow delayed opera-
tions and perform lazy-write I/O for the file stream.

Some Important Data Structures_________________________________263

IsFastloPossible
For efficiency reasons, the I/O Manager attempts to bypass the file system
driver or network redirector for cached files and tries to obtain file data
directly from the Cache Manager. This process is called the fast I/O process.
The IsFastloPossible field allows the file system driver or network redi-
rector to control whether fast I/O operations should be allowed to proceed
for the specific file stream. The contents of this field are set by the file system
driver or network redirector and can be one of the following three enumer-
ated types: FastloIsNotPossible, FastloIsPossible, or Fastlols-
Questionable.

Resource and PagingloResource
Access to data associated with a file stream must be synchronized using these
ERESOURCE structures.*

This is a requirement for file system drivers and network redirectors in order
to be able to interface correctly with the Cache Manager and Memory
Manager components.

Memory for both resources must be allocated by the file system or network
redirector from nonpaged pool, and the fields in the CoiranonFCBHeader
must be initialized to point to the allocated structures. These structures must
also have been initialized by the FSD via the ExInitializeRe-
sourceLite () executive support routine.
Since these resources provide shared reader and exclusive writer semantics,
the Cache Manager expects the file system driver or network redirector to
synchronize all modifying operations for the file stream by obtaining the
MainResource exclusively. Similarly, read operations can be synchronized
by obtaining the MainResource shared.

AllocationSize
This is the actual amount of on-disk storage space allocated for the file
stream. Typically, this is a multiple of the media sector size or file system
cluster size.t This field must be initialized by the file system driver or network
redirector to the appropriate value. Subsequently, the Cache Manager must be
notified each time this value changes. In the next chapter, you will see how
the file system driver notifies the Cache Manager of changes in the allocation
size.

* See Chapter 3, Structured Driver Development, for a discussion on various synchronization structures
available under Windows NT including a discussion on ERESOURCE type structures.
t Space is allocated on secondary storage devices in units called sectors. Each sector is composed of a
fixed number of bytes—for example, one sector may equal 512 bytes. To avoid fragmentation, some file
system drivers allocate storage space using clusters as units, where each cluster is some number of sectors.
For example, one cluster may equal 8 physical sectors.

264 Chapter 6: The NT Cache Manager I

FileSize
This is the size of the file as presented to the user; this value indicates the
number of bytes contained within the file stream. Any read operations
beyond this value will result in an end-of-file (STATUS_END_OF_FILE) error
message being returned to the application process. Any read operations that
overlap this value will be truncated at this value.

For example, if the FileSize is 45 bytes and the reader wishes to obtain
(say) 30 bytes beginning at offset 40 in the file stream, only 5 bytes will actu-
ally be returned to the reader by the file system driver (or the Cache
Manager). However, if the same reader wishes to read 30 bytes beginning at
offset 45 (assuming that offsets are counted beginning at offset 0), an error
STATUS_END_OF_FILE will be returned to the reader.

The file system driver or network redirector initializes this field to an appropri-
ate value and informs the Cache Manager whenever this value changes.

ValidDataLength
Consider a situation where the FileSize for a file stream is 100 bytes.
However, only the first 10 bytes of the file stream have valid data and the last
90 bytes were never written to by any process. The Val idDataLength for
this file stream is then set to 10. Any read operations that attempt to access
bytes beyond this range will automatically get zeroes returned to them. This
helps avoid unnecessary I/O operations from disk and also helps provide
data security (since older information stored on the media from some
previous file stream is not inadvertently returned to the user).

Few file systems maintain the concept of a ValidDataLength stored on
disk associated with a file stream. The NTFS and the HPFS file system drivers
supplied with the NT operating system do support this concept. However,
regardless of whether the file system driver supports the valid data length
concept, the Cache Manager expects the file system driver or network redi-
rector to initialize this field to an appropriate value.

SectionObjectPointer

This field has to be initialized to point to a structure of type SECTION_OBJECT_
POINTERS.* This structure must be allocated from nonpaged kernel memory by
the file system driver or network redirector and is shared by the Virtual Memory
Manager and the Cache Manager. It stores file-mapping and caching-related infor-
mation for a file stream. This structure has the following format:

typedef struct _SECTION_OBJECT_POINTERS {

* This structure is also required by the Virtual Memory Manager to provide support for memory-mapped
files. See Chapter 5 for details on memory mapped files.

Some Important Data Structures_________________ _______________265

PVOID DataSectionObject;
PVOID SharedCacheMap;
PVOID ImageSectionObject;

} SECTION_OBJECT_POINTERS;
typedef SECTION_OBJECT_POINTERS *PSECTION_OBJECT_POINTERS;

Only one structure of this type can be associated with a given file stream at any
time. However, it is entirely possible, and very probable in the case of user-
opened files, that multiple file objects, each representing an open instance of a
given file stream, can exist simultaneously on the node. In this case, all of the
SectionObjectPointer fields in each file object structure must be initialized
with the address of the single allocated structure of this type. Therefore, this struc-
ture is typically associated with the FCB for the file stream.

Upon allocation, it is the responsibility of the client of the Cache Manager to clear
all fields within the SECTION_OBJECT_POINTERS data structure. After clearing
the structure, the client does not need to be concerned anymore with the manipu-
lation of any of the fields. An explanation of fields contained in this structure
follows (remember that only the VMM or Cache Manager can manipulate these
fields):

DataSectionObj ect
This pointer is used by the Virtual Memory Manager to refer to an internal
data structure representing a data section object created for the file stream.
Therefore, this field is initialized by the Virtual Memory Manager when
caching is initiated for the file stream.

SharedCacheMap
The Cache Manager creates private data structures called cache maps to keep
track of the views mapped for the specific data stream. This field is initialized
by the Cache Manager with the address of the SharedCacheMap structure
(described later in this section) when caching is initiated for the file stream.

ImageSectionObject
The Virtual Memory Manager initializes this field with the address of a private
data structure whenever an image section is created for the file stream.

PrivateCacheMap

The client of the Cache Manager is expected to initialize this field to NULL for
each file object structure. Note that multiple file object structures may exist concur-
rently in memory for a given file stream. It is also possible that caching may have
been initiated by some, but not all, file object structures.

We know that file system drivers, network redirectors, and other clients of the
Cache Manager work in cooperation with the Cache Manager to present a consis-
tent view of the data to all users; this is done for those threads that access data

266 Chapter 6: The NT Cache Manager I

using the cached path as well as for those who do not. The only way for a file
system driver or network redirector to determine whether caching has been initi-
ated using a specific file object for a given file stream is to examine whether the
PrivateCacheMap field is nonnull. This check must only be performed after
acquiring the MainResource, either shared or exclusively.

Information on whether caching has been initiated on a file stream via a specific
file object cannot be maintained elsewhere by a client. This is because the Cache
Manager retains the right to forcibly terminate caching via some or all file objects
associated with the file stream. Therefore, as mentioned earlier, the fact that the
PrivateCacheMap field is nonnull is the only reliable indicator for the client
that caching is currently initiated via the file object structure being examined.

Cache Maps
The Cache Manager must maintain information about each file stream for which it
helps to cache data. This information is maintained using Cache Maps. For each
file stream, the Cache Manager allocates a Shared Cache Map structure that serves
as the anchor for all information regarding views mapped for the file stream and
other information associated with the file stream. This shared cache map structure
is allocated when caching is first initiated for the file upon the request of a file
system driver or a network redirector.

In addition to the shared cache map structure that is unique for each file stream
and therefore allocated only when caching is first initiated for a file stream, each
time a client issues a request to initiate caching using a specific file object struc-
ture, the Cache Manager allocates a Private Cache Map structure. This structure
serves as a marker for the Cache Manager, establishing the fact that caching has
been initiated using the specific file object. It also contains some private informa-
tion for the Cache Manager for read-ahead control and other such data.

Note that both the private cache map structure and the shared cache map struc-
ture are allocated and maintained by the Cache Manager.

Buffer Control Blocks
One of the interfaces presented by the Cache Manager and mentioned previously
is the pinning interface. Clients of the Cache Manager that use this interface must
use the Buffer Control Block structure. This structure is divided into two parts: a
public BCB, that is exposed to clients of the Cache Manager, and a private BCB
that is internal to the Cache Manager.

The public BCB is defined as follows:

typedef struct _PUBLIC_BCB {

File Size Considerations______________________________________267

CSHORT NodeTypeCode;
CSHORT NodeByteSize;
ULONG MappedLength;
LARGE_INTEGER MappedFileOffset;

} PUBLIC_BCB, *PPUBLIC_BCB;

The public BCB is extremely simple and serves as a context to the Cache Manager
client—to be used in the pinning and subsequent unpinning of data. Upon return
from a successful request to the Cache Manager by the file system driver or
network redirector to pin data for a file stream, a pointer to the BCB structure is
returned by the Cache Manager. Memory for this BCB structure is allocated by the
Cache Manager.

The file system driver uses the pointer to the BCB structure in an opaque manner:
the MappedLength and MappedFileOffset provide information to the client
about the actual offset, beginning where the data has been pinned in memory
and the number of bytes of data that were pinned.

Subsequent requests by the client to repin the memory structures or to unpin the
memory must be performed using the BCB pointer as a context, which is returned
to the Cache Manager. As will be explained in the next chapter, it's possible for
the BCB returned by the Cache Manager to change across different Cache
Manager invocations when the BCB is passed in as context. Therefore, the client
must not attempt to make and use a copy of the returned BCB structure. The
private portion of the BCB is not exposed by the Cache Manager.

File Size Considerations
There are three different file size values:

• The AllocationSize for a file stream is a value that reflects the actual on-
disk space reserved for the file stream, which is a multiple of the minimum
allocation unit for the media on which the file stream resides.

• The FileSize for a file stream is the value beyond which all read opera-
tions return an end-of-file error.*

• The ValidDataLength is the amount of valid data contained within a file
stream.
Any bytes accessed beyond this value (up to the FileSize) contain invalid
data and should result in zeroes being returned to the application trying to
read this information.

* Note that it is entirely possible that, for certain file system implementations, the FileSize may be
greater than the AllocationSize. This happens when the file system driver supports sparse file im-
plementations. None of the file systems supplied with Windows NT currently support sparse files.

268 Chapter 6: The NT Cache Manager I

There are two important considerations for Cache Manager clients who change
one or more of these file sizes.

One cardinal rule all clients must follow is that changing the AllocationSize
or the FileSize must be synchronized with other read/write requests and that
the Cache Manager must be immediately informed of any changes.

Synchronizing changes in the FileSize with other read/write requests is accom-
plished by ensuring that the FCB for the file stream has been acquired exclusively while
performing such a change. Both the MainResource as well as the Paginglo-
Resource must be acquired exclusively before changing either of the file size values.
The CcSetFileSizes () routine, which is invoked with the FCB for the file
acquired will inform the Cache Manager.

The rationale behind the above rule is simple: the file system driver (or network
redirector) is often bypassed by the I/O Manager, which tries to transfer data to or
from a file stream directly, using the Cache Manager via the fast I/O path. In such
cases, if the Cache Manager is not correctly notified of FileSize changes,
invalid results may be returned to the application trying to perform the data
transfer.* For example, if the current file size is extended by an application but the
Cache Manager is not informed of the new file size, it is quite possible that the
application will receive a STATUS_END_OF_FILE error when trying to read infor-
mation from beyond the old end-of-file offset. This is incorrect and could result in
data corruption.

A second important point to note is that changes in the FileSize are generally
not synchronized with paging I/O read or write requests. Note that paging I/O
requests generally originate either from the lazy writer or modified block writer
components, or are a result of direct user read/write operations on mapped files.
While paging I/O requests are dealt with in greater detail in Chapters 9-11, the
reader should be cognizant of the following:

• Paging I/O read requests starting beyond end-of-file are completed with a
STATUS_END_OF_FILE error.

• Paging I/O read requests that start before the current end-of-file but extend
beyond current end-of-file are truncated to the current end-of-file byte offset.
However, the client must be careful to set the number of bytes written to be
the same as the number of bytes initially requested (although no I/O was actu-
ally performed).

* In certain cases, when the file is being truncated, the Cache Manager or the Memory Manager may
refuse to allow the operation to proceed. This topic will be dealt with in greater detail in Chapter 10,
Writing A File System Driver II. However, it is important to note that the file system driver or network
redirector must coordinate changes in the file size for a file stream with the Cache Manager module.

File Size Considerations______________________________________269

• Paging I/O write requests that start beyond the current end-of-file must be
voided by the file system driver or network redirector and STATUS_SUCCESS
should be returned.

The ValidDataLength concept is supported by few file system drivers on disk.
If the file system driver supports and records the ValidDataLength value on
disk, it should initialize the CommonFCBHeader with the current value when the
file stream is first opened. Subsequently, the Cache Manager will inform the file
system driver when this value changes and the file system driver or network redi-
rector can then record the modified value on disk. Note that the Cache Manager
may have been invoked directly by the I/O Manager to service a user write
request that could have resulted in a change in the valid data length.

The Cache Manager informs the client of the change in the valid data length via
the SetFilelnformation IRP. This IRP and the method used by the Cache
Manager to notify the client will be discussed in greater detail in Chapter 10.

If the client does not support the concept of a valid data length on disk and there-
fore does not wish to receive notification from the Cache Manager about changes
in this value, the client must initialize the ValidDataLength field as follows:
the low 32 bits of the valid data length must be initialized to OxFFFFFFFF and the
high 32 bits of the field must be initialized to Ox7FFFFFFF.

Even if the client does not record the valid data length on disk, it might still be
useful to the client to maintain the valid data length while the file stream stays
open. Consider the situation where a user process extends the file length. Subse-
quently, the user process issues a write request beyond the old end-of-file byte
offset. This request will be directed to the Cache Manager, which will first try to
fault the page in while trying to get a page ready to receive the user data. This
page fault will eventually need to be serviced by the file system driver or network
redirector. If the file system driver maintains the concept of the valid data length
in-memory, it could recognize that no read operation was required since the file
stream had just been extended and zeroes can be returned immediately to
complete the page fault request.

In this chapter:
* Cache Manager

Structures
* Interaction with

Clients (file Systems
and Network
Redirectors)

* Cache Manager
The NT Cache merfaces

Manager II

In the previous chapter, you were introduced to the NT Cache Manager module,
which provides a global cache for file streams, along with read-ahead and
delayed-write functionality. As was noted in that chapter, the Cache Manager
cannot provide such functionality by itself, but must work in conjunction with the
Virtual Memory Manager, the I/O Manager, and each file system or network redi-
rector driver to boost throughput and increase system performance.

In this chapter, as well as in the next one, the interfaces presented by the Cache
Manager are examined in much greater detail. First I present an overview of
Cache Manager data structures used internally by the Cache Manager to maintain
state information for cached file streams. You were exposed to some of these
structures in the previous chapter; in this chapter, you will see how the Cache
Manager tries to maintain a consistent in-memory representation of all information
associated with the cached file streams.

Then I describe further the interactions between the Cache Manager and its
clients, specifically file system drivers and network redirectors. This includes an
introduction to the resource acquisition constraints that must be followed by the
Cache Manager as well as by the client, followed by a detailed examination of the
steps involved in initiating caching for file streams; code examples are used to
make the material more concrete and applicable in real-world development
environments.

Although the routines exported by the Cache Manager are the primary means of
interaction between the Cache Manager and the file system drivers, there are also
callback routines exported by Cache Manager clients, which are in turn invoked
by the Cache Manager. I present some information on these routines in this
chapter. Further discussion on callbacks exported by file system drivers will also
be presented in Chapter 11, Writing a File System Driver III.

270

Cache Manager Structures__________________________________ 271

A detailed listing (with descriptions and examples) of the copy interface, the
pinning interface, and the MDL interface concludes the chapter.

Cache Manager Structures
The Cache Manager maintains information for each file stream on which caching
has been initiated. Before examining the interactions between the Cache Manager
and other system components, it will be useful to understand some of the data
structures used internally by the Cache Manager to maintain the required state
information for cached file streams. Very little information is currently publicly
available on the data structures used by the Cache Manager, and it is also likely
that these data structures will continue to change and evolve in new releases of
the Windows NT operating system. However, it is quite instructive to get an
overall sense of the manner in which the Cache Manager keeps track of cached
file streams.

The I/O Manager creates a file object structure for every successful open opera-
tion on a file stream. For every file object on which caching has been initiated,
the Cache Manager maintains caching-related state information:

• A private cache map structure for each file object

• The shared cache map structure, which is shared by all file objects represent-
ing the same file stream

The private cache map structure is allocated by the Cache Manager for each file
object when caching is initiated using that file object. It is unique to the file
object, and therefore multiple private cache maps can exist concurrently for an
open file stream. On the other hand, only one shared cache map structure is allo-
cated by the Cache Manager when caching is first initiated for a file stream via
some file object. This shared cache map is used by all open instances for the file
stream. The shared cache map is accessible indirectly via the SectionObject-
Pointer field in the file object structure.

Recall from the previous chapter that the Cache Manager provides caching
services by mapping views of the file stream. Each mapped view of the file is
represented internally by the Cache Manager in a structure called the Virtual
Address Control Block (VACB). The mapping granularity—or the size of each
mapped view for every file stream—is set to a constant value by the Cache
Manager and therefore is the same for each VACB. This constant value determines
how large the Cache Manager makes each window into the file stream. The Cache
Manager maintains a global array of VACB structures and allocates VACBs to a
specific file stream on an as-needed basis.

272_______________________________Chapter 7: The NT Cache Manager U

The shared cache map structure is the primary repository of caching information
for a file stream and is maintained by the Cache Manager.

All VACBs associated with the same file stream are accessible to the Cache
Manager using the shared cache map structure. Each VACB contains the virtual
address associated with the view, as well as the starting offset in the file stream.
This allows the Cache Manager to quickly determine whether a mapped view
already exists containing the byte range requested by the user. If no such view
exists, the Cache Manager can create a new view and allocate a VACB to repre-
sent it.* The list of VACBs associated with the file stream is accessible using an
array of VACB pointers associated with the shared cache map. Since VACB struc-
tures are allocated from a fixed-size global pool of VACBs, it is possible that the
Cache Manager may not have any free VACBs to allocate to a file stream when a
view needs to be created. In this case, the Cache Manager may need to unmap a
previously mapped view for a file stream (this could be from the same file stream
that requires a new view to be mapped in or it could be from another file
stream), remove the VACB from the linked list of VACBs allocated for the file
stream, and then reassign the VACB to the new file stream. However, this opera-
tion is typically not required, since VACBs are freed whenever file close
operations are performed, and a free VACB is generally available whenever
required.

As shown in Figure 7-1, all private cache map structures for a cached file stream
are linked together, and this list of private cache maps is anchored by a field in
the shared cache map structure for the cached file stream.

This layout also allows the Cache Manager to keep track of all file objects that
have the file stream cached, since the private cache map structure is always associ-
ated with a corresponding file object that represents an instance of the file stream
opened for cached data access. As will be explained later in this chapter, in some
situations the Cache Manager might need to forcibly terminate caching previously
initiated using different file objects for a specific file stream. The Cache Manager
must be able to get to each file object that has the file stream cached.

Now that you have some understanding of the structures used internally by the
Cache Manager, we can examine the various routines exported by the Cache
Manager and the interactions between the Cache Manager and file system drivers
or network redirectors.

* Note that a byte range accessed by a user application may be quite large and may span multiple VACBs
(since the size of the view associated with a VACB is a constant). However, the Cache Manager can still
quickly determine what portions of the requested byte range are already contained in a mapped view of
the file (if any such view exists) and what subset needs to be mapped in.

Interaction with Clients (File Systems and Network Redirectors) 273

Figure 7-1. State maintained by Cache Manager for a cached file stream

Interaction with Clients (File Systems
and Network Redirectors)
File system and network redirector drivers interact heavily with the Cache
Manager; they must initiate caching for every file object for each file stream that

2 74 Chapter 1: The NT Cache Manager II

can be buffered, use an appropriate Cache Manager interface routine to transfer
data to and from the system cache, service page fault requests from the Virtual
Memory Manager (caused by the Cache Manager), flush or purge data belonging
to a file stream from the cache, and finally, terminate caching when the file
stream is no longer being accessed.

To perform these operations, file system and network redirector clients use the
interface routines made available by the Cache Manager. Nearly all interface
routines available to file system or network redirector drivers result in an opera-
tion being performed on the cached information for a specific file stream. Since
many threads could concurrently attempt to manipulate data for a file stream, any
file system using Cache Manager services must correctly synchronize all such
concurrent operations. Synchronization is maintained by following well-defined
rules describing how mutual exclusion can be maintained whenever data for a file
stream is modified. At the same time, applications that share data for read opera-
tions should be allowed to proceed concurrently only if no other thread is
modifying the data. Therefore, many Cache Manager interface routines can also
be invoked concurrently on behalf of multiple threads reading data for the same
file stream.

Resource Acquisition
As you know, each file stream is uniquely represented in memory by a File
Control Block (FCB) structure. In the previous chapter, you saw that each FCB
must be associated with a unique structure of type FSRTL_COMMON_FCB_
HEADER. There are two important fields contained within this structure:

• MainResource
• PagingloResource
Both of these fields contain pointers to objects of type ERESOURCE.

In order to synchronize correctly with the Cache Manager and the Virtual Memory
Manager, all I/O operations to a file stream, including reading or writing file data
or file size changes, must be synchronized using one or both of these resources.*

* For some third-party file system or network driver implementations, there may be additional synchro-
nization primitives associated with a file stream that may need to be acquired. Although the NT environ-
ment does not prohibit the existence of such additional primitives, these .should be acquired (and
released) in some manner compatible with the requirements placed by the Cache Manager on the two
ERESOURCE type objects. For example, some file systems might have a third resource that may have to
be acquired exclusively to provide mutual exclusion between threads when the file stream is being mod-
ified. In this case, this third resource would have to be acquired in addition to the predefined resources
(i.e., the MainResource and/or the PagingloResource) mentioned here.

Interaction with Clients (File Systems and Network Redirectors)______________275

NOTE In any multithreaded or multiprocessor environment, shared objects
that are accessed in the context of more than one thread or process
must be protected using a synchronization primitive. This ensures
that the state of the shared object does not change unexpectedly in
the midst of an operation involving the object.
Synchronization primitives of type ERESOURCE (as described in
Chapter 3, Structured Driver Development) are read/write locks that
help provide multiple reader, single modifier semantics. By acquir-
ing the synchronization primitive exclusively, a thread is able to en-
sure that no other thread can concurrently access the shared data
object. On the other hand, by acquiring the synchronization primi-
tive shared, multiple threads can concurrently read the data compris-
ing the shared object, but no thread can acquire the synchronization
primitive exclusively and modify the shared object.
Since starvation is a possibility for threads requiring exclusive ac-
cess, the NT operating system typically grants waiting requests for
exclusive access over requests for shared access.
A final note: in order to ensure data integrity and consistency, all
threads accessing the shared data object must follow the resource ac-
quisition rules described here. None of the synchronization is auto-
matic and failure to observe the rules by any single thread could
potentially lead to data corruption. Therefore, it is the file system
driver's responsibility to ensure that resources are acquired correctly
in the context of the thread requesting the cached I/O operation.

For each interface routine exported by the Cache Manager, there are well-defined
options describing how the file stream should be acquired:

• Resources for the file stream should be acquired exclusively.

• Resources should be acquired shared.

• Resources should not be acquired (or should be unowned).
• The Cache Manager is not affected by the state of the resources.

Although the Cache Manager requires that synchronization be performed using
the two resources associated with the FCB, there are not any clear, specific rules
governing how these resources should actually be used to provide the required
synchronization. For example, acquiring an FCB representing a file stream exclu-
sively may consist of one of the following actions:

• Acquire the MainResource exclusively
• Acquire the PagingloResource exclusively
• Acquire both the MainResource and the PagingloResource exclusively

276 Chapter 7: The NT Cache Manager 11

In this case, to prevent deadlock, a locking hierarchy must be defined
between the two resources. Typically, most file systems define a hierarchy in
which the MainResource must be acquired before the PagingloRe-
source is acquired.

Similarly, acquiring an FCB for shared access might be implemented by the Cache
Manager client as acquiring any one or both of the resources shared. A determina-
tion of the exact usage of these resources is made by each file system or network
redirector, based on the requirements of the particular driver.

Typically, the PagingloResource is acquired only while servicing paging read
operations or during delayed write (paging I/O write) operations. For example, if
the file system driver read routine is invoked to service a page fault request, the
FCB for the file stream is acquired shared, by acquiring the PagingloResource
shared. The MainResource, on the other hand, is typically used by the Cache
Manager client to service requests that execute in the context of user threads (or
as a result of direct user requests). For example, a write request executing in the
context of the originating user thread is synchronized by acquiring the MainRe-
source for the file exclusively.

NOTE Each FSD has unique requirements that influence -when and how re-
sources should be acquired to ensure correct synchronization of
FSD data structures. In general, however, the Windows NT environ-
ment appears to favor usage of the PagingloResource to syn-
chronize most modifications to file state (e.g., file size changes)
while the MainResource appears to be used mostly to synchro-
nize user-initiated I/O requests with each other.

Sometimes, the Cache Manager client may acquire both resources before
performing an action of the file stream. For example, truncation of a file stream is
performed only after both the MainResource and the PagingloResource
have been exclusively obtained. This prevents any unwanted side effects from
taking place, since file size changes are typically not otherwise synchronized with
background delayed-write or read-ahead activity that might be in progress. As
mentioned previously, whenever both resources need to be acquired simulta-
neously, a well-defined locking hierarchy should dictate the order in which the
two resources are acquired. For the remainder of this book, we will define the
hierarchy such that the MainResource is acquired before the
PagingloResource.

In Part 3, the rules governing resource acquisition for file streams will be
discussed in greater detail.

Interaction with Clients (File Systems and Network Redirectors)______________277

Prerequisites to Initiation of Caching
Now that you have a fair idea of how caching is provided by the Cache Manager,
it is time to begin exploring the sequence of steps undertaken by Cache Manager
clients to interact with the Cache Manager and provide higher performance to
user applications. The previous chapter lists the various kinds of modules that
interact with the Cache Manager; the two specific clients that use Cache Manager
services directly are file systems and network redirector drivers.

Fundamentally, both disk-based file systems and network redirectors provide
similar functionality to user applications, namely, access to data streams stored as
files on media. The difference is that network redirectors obtain data from servers
residing on other nodes across the network, while local file systems simply use
the services of disk drivers to obtain data from media directly attached to the
node on which the request was initiated. For the remainder of this chapter, we
will not differentiate between the two kinds of modules, except where absolutely
necessary, and will refer to both types of drivers genetically as file system drivers.

At driver initialization: fast I/O support

Typically, I/O requests for a file are conveyed by the I/O Manager to the file
system driver using I/O Request Packets (IRPs). However, the overhead associ-
ated with the creation, completion, and destruction of IRPs is sometimes an
inhibitor of good performance. Also, if data is cached by the Cache Manager, it is
possible that such data could be directly obtained from the system cache by
directly issuing a request to the Cache Manager instead of going through the file
system driver.- Since the Cache Manager can then directly access data within the
system cache, such access is as fast as a single hardware lookup (using the Trans-
lation Lookaside Buffer to convert the virtual address into a physical memory
address), which is extremely efficient. The desire to achieve better system perfor-
mance by taking into consideration the factors mentioned here led to the creation
of the fast I/O method for obtaining cached file data in the Windows NT
environment.*

Fast I/O is only performed if the file stream is cached and it is always a synchro-
nous operation. An interesting point to note is that if data transfer is not possible
using the fast I/O path for a specific operation on a file stream, the I/O Manager
simply resorts to using the standard IRP method to retry the operation. This is no

* It could legitimately be argued that the entire fast I/O interface was a last minute hack or addition to
the I/O subsystem in response to some serious performance problems encountered during testing by the
Windows NT development group. Whether this is true is difficult to say, unless confirmed or denied by
engineers at Microsoft. However, the fast I/O interface seems to have measurably enhanced throughput
in the I/O path, and will continue to exist for the foreseeable future unless some major revamping of the
Cache Manager module is undertaken by Microsoft.

2 78 Chapter 7: The NT Cache Manager II

worse than the original method of always creating an IRP to communicate with
the file system driver to service a user request. Figure 7-2 illustrates the flow of
execution when fast I/O is used to satisfy user requests.

Figure 7-2. I/O requests using the fast I/O path

Interaction with Clients (File Systems and Network Redirectors)______________275*

In Figure 7-2, the following steps are performed:

1. The I/O Manager receives a user request to read or write data for a specific
file object. The file object represents an open instance for a file stream.

2. The I/O Manager invokes the fast I/O read or write entry point, which causes
the corresponding Cache Manager entry point to be invoked. Note that typi-
cally the Cache Manager copy interface is used to obtain the data.

3. The Cache Manager attempts to transfer data from or to the system cache. If
data exists in the system cache and is present in memory, Step 9 is executed.
Otherwise, execution continues with Step 4 below.

4. A page fault occurs, causing the memory manager page fault handler routine
to be invoked.

5. The page fault handler routine calls into the file system driver entry point
using an I/O Request Packet. Although the figure does not show this, the
actual call into the file system driver entry point is via the I/O Manager
loCallDriver () routine.

6. The file system driver uses the services of disk and network drivers to transfer
data.

7. The file system satisfies the page fault request and control returns to the page
fault handler.

8. The page fault is satisfied and the Cache Manager data transfer operation is
restarted.

9. The Cache Manager completes the data transfer.
10. The Cache Manager returns control back to the I/O Manager (via the fast I/O

entry point).

11. The I/O Manager completes the user request synchronously.

As you might have noticed, data that is physically present in memory can be trans-
ferred extremely quickly to or from the user's buffer. However, if data is not
already physically present in memory, a trip through the file system will eventu-
ally result as a consequence of the page fault that must be resolved. This is not
conducive to quick response times and is typically not required, due to the read-
ahead performed by the Cache Manager.

Providing support for fast I/O is not required from file system drivers, and file
systems have the option of not supporting fast I/O or of disabling fast I/O
support for certain file streams dynamically. However, the resulting performance
degradation is evident, especially when data transfer rates are compared with file
systems that do provide fast I/O support.

280 _______________________________ Chapter 7: The NT Cache Manager II

To provide fast I/O support, the file system driver must perform the following
actions, generally at driver initialization time:

• Initialize a global/static structure of type FAST_IO_DISPATCH. This structure
contains a list of pointers that must be initialized to functions implementing
each of the fast I/O entry points.

• Initialize a pointer within the DRIVER_OBJECT structure to refer to the fast
I/O dispatch table described above.

There are specific operations that can be executed using the fast I/O method. The
list of possible operations differs between the various NT versions. Specifically,
Windows NT Version 4.0 supports more operations using the fast I/O method
than Windows NT Version 3.51. Further information on the implementation of fast
I/O support is given in Part 3.

The following code fragment illustrates the two steps described above:*

// Declare a static global fast I/O structure that contains function
// pointers. The fast I/O structure here is contained within a global
// data structure type declaration.
typedef struct _SFsdData {

SFsdldentif ier Nodeldentif ier ;

// Other fields that you will read about in subsequent chapters.

// The NT Cache Manager, the I/O Manager, and this code will
// conspire to bypass IRP usage using the function pointers
// contained in the following structure
FAST_IO_DISPATCH SFsdFastloDispatch;

// Still more fields . . .
} SFsdData, *PtrSFsdData;

// Declare all the functions that we will implement to support the
// fast I/O path. In this example, only read and write operations are
// supported via the fast I/O method.
extern BOOLEAN SFsdFastloChecklf Possible (

IN FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN ULONG LockKey,
IN BOOLEAN CheckForReadOperation,
OUT PIO_STATUS_BLOCK loStatus,
IN DEVICE_OBJECT *DeviceObject
);

extern BOOLEAN SFsdFastloRead (

* All of the routines are prefixed with SFsd to conform to the convention used by the sample file system
driver code provided in Part 3.

Interaction with Clients (File Systems and Network Redirectors)______________ 281

IN FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN ULONG LockKey,
OUT PVOID Buffer,
OUT PIO_STATUS_BLOCK loStatus,
IN DEVICE_OBJECT *DeviceObject

);
extern BOOLEAN SFsdFastloWrite (

IN FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN ULONG LockKey,
IN PVOID Buffer,
OUT PIO_STATUS_BLOCK loStatus,
IN DEVICE_OBJECT *DeviceObject

// Driver Entry routine - this is where all of the initialization takes
// place.
NTSTATUS SFsdDriverEntry (
IN PDRIVER_OBJECT DriverObject , // created by the I/O subsystem
IN PUNICODE_STRING RegistryPath) // path to registry key for the driver
{

// Initialize the global data structure. Note that we will
// end up zeroing out the fast I/O dispatch structure as well.
// This will save us setting individual fields to NULL.
RtlZeroMemory (&SFsdGlobalData, sizeof (SFsdGlobalData)) ;

// Other initialization operations . . .

// Initialize the IRP major function table, and the fast I/O table.
SFsdlnitializeFunctionPointers (DriverObject) ;

// Still more initialization stuff . . .

void SFsdlnitializeFunctionPointers (
PDRIVER_OBJECT DriverObject) /* created by the I/O sub-
system */
t

PFAST_IO_DISPATCH PtrFastloDispatch = NULL;

// Initialize dispatch function table here. See Part 3
// and accompanying disk for details.

// Now, it is time to initialize the fast I/O stuff . . .
// Note that I am initializing the "FastloDispatch" field in
// the DriverObject below.
PtrFastloDispatch = DriverObject->FastIoDispatch =

& (SFsdGlobalData . SFsdFastloDispatch) ;

282_______________________________Chapter 7: The NT Cache Manager II

II Initialize the global fast I/O structure
// NOTE: The fast I/O structure has undergone a substantial
// revision in Windows NT Version 4.0. The structure has been
// extensively expanded.
// Therefore, if your driver needs to work on both V3.51 and V4.0+,
// you will have to be able to distinguish between the two versions
//at compile time.
PtrFastIoDispatch->SizeOfFastIoDispatch = sizeof(FAST_IO_DISPATCH) ;
PtrFastIoDispatch->FastIoCheckIfPossible =

SFsdFastloChecklfPossible;
PtrFastIoDispatch->FastIoRead = SFsdFastloRead;
PtrFastIoDispatch->FastIoWrite = SFsdFastloWrite;

// See Part 3 for other initialization steps performed here.
}
In this example, the test driver only supports read and write operations using the
fast I/O method. Therefore, other fields in the FAST_IO_D IS PATCH data structure
are initialized to NULL. An explanation for the SFsdFastloChecklf Possible!)
routine, as well as other information on the implementation of the fast I/O routines
is provided in Part 3.

File open

In Windows NT, to access data for a file stream, the file stream must first be
opened. The open* operation performed by an application returns a handle to the
application. This handle is used by the application when reading or writing to the
file stream and corresponds to a file object structure, created by the I/O Manager,
representing an instance of a successful open operation.

From the perspective of the file system driver servicing the open request, a consid-
erable amount of work is performed at file open time to support access to the file
stream. The file system constructs all in-memory data structures required to
support I/O operations to the file stream, including the construction of any data
structures that might be required to support buffered access to file data. The file
system driver must also fill in specific fields in the file object structure; these fields
were described in the previous chapter.

The file system driver allocates and initializes a file control block (FCB) structure,
which is a unique representation of the file stream in memory. This is done only
if no such structure currently exists; as it would if the file stream had been previ-
ously opened and at least one reference to the FCB were still present. If a new

* Open operations requesting access to previously created file streams and close operations that create
new file streams result in the same IRP being dispatched to a file system by the I/O Manager, with a major
function of IRP_MJ_CREATE. Effectively, a create operation is simply a two-step process, where an entry
representing the new file is first created, and subsequently opened. We will refer to both create and open
operations together as requests to open a file stream.

Interaction with Clients (File Systems and Network Redirectors)_______ _____283

file control block is created, most file system drivers also allocate memory for a
structure of type FSRTL_COMMON_FCB_HEADER (see the previous chapter for an
explanation of the various fields in the CommonFCBHeader structure). Often, this
structure, which is required by the Cache Manager to be able to cache file data, is
embedded by file system drivers within the file control block representing the file
stream.

Note that even if the current open operation specifies noncached access to file
data, the file system driver will still end up allocating the FSRTL_COMMON_FCB_
HEADER along with the FCB for the file, since subsequent concurrent open opera-
tions might require cached file access. Initialization of the individual fields within
the structure is performed by the file system at this time as follows:

• The FSD initializes the two ERESOURCE type objects, allocated as part of the
CommonFCBHeader from the nonpaged memory pool, with the Exlni-
tializeResourceLite () system call.
The two resource object fields are the MainResource and the Paging-
loResource.

• The enumerated type field IsFastloPossible is initialized to an appropri-
ate value.
Typically, FSDs set this to FastloIsPossible. By doing so, the I/O Man-
ager is encouraged to begin using the fast I/O method for accessing data for
the file stream at the very earliest—typically, as soon as caching is initiated for
the file.*

• Each of the file size fields—the AllocationSize, ValidDataLength,
and FileSize—is initialized to their true values.

If the file stream has been created as a result of the create operation, then the
file size fields will all be initialized to 0. Otherwise, for an existing file stream
or if the create operation requested preallocation of space for the file, the file
size fields will be initialized to the correct values.

Once the CommonFCBHeader is allocated and initialized, the FsContext field
in the file object is initialized to refer to the allocated CommonFCBHeader
structure.

The PrivateCacheMap field in the file object structure is initialized by the file
system driver to NULL.

Finally, the FSD must also allocate and initialize a structure of type SECTION_
OBJECT_POINTERS. A single (unique) instance of the structure is typically associ-

* Caching for the file stream is initiated when the FSD receives the first I/O request for the file stream.
Therefore, the first I/O request for the file stream will always be described via an IRP by the I/O Manager.

284_______________________________Chapter 7: The NT Cache Manager II

ated with the FCB. Each of the fields within the structure is initialized to NULL.
The SectionObjectPointer field in the file object structure is then initialized
to refer to the allocated structure.

The following code extract from a file system driver implementation of a file open
operation performs the operations described here (in the code extract, it's
assumed that the IRP_NOCACHE flag has not been specified):

// There are some fields that must always be associated with an FCB
//to successfully interface with the Cache Manager. The sample FSD
// implementation has extracted these fields into a separate structure.
typedef struct _SFsdNTRequiredFCB {

FSRTL_COMMON_FCB_HEADER CommonFCBHeader;
SECTION_OBJECT_POINTERS SectionObj ect;
ERESOURCE MainResource;
ERESOURCE PagingloResource;

} SFsdNTRequiredFCB, *PtrSFsdNTRequiredFCB;

// The actual FCB structure is defined by the sample FSD as shown below:
typedef struct _SFsdFileControlBlock {

SFsdldentifier Nodeldentifier;
// We will go ahead and embed the "NT Required FCB" right here.
// Note that it is just as acceptable to simply allocate
// memory separately for the other half of the FCB and store a
// pointer to the "NT Required" portion here, instead of embedding
// it.
SFsdNTRequiredFCB NTRequiredFCB;
// Other fields go here. See subsequent chapters for details.
// . . .
// Some state information for the FCB is maintained using the
// Flags field
uint32 FCBFlags;
// More fields here ...

} SFsdFCB, *PtrSFsdFCB;

// Some Flag definitions, see accompanying diskette for definitions
// of other flag values.
#define SFSD_INITIALIZED_MAIN_RESOURCE (0x00002000)
ttdefine SFSD_INITIALIZED_PAGING_IO_RESOURCE (0x00004000)

// Our work is performed while servicing a create/open request.
// The parameters to the SFsdCommonCreate() function will be explained
//in Part 3.
NTSTATOS SFsdCommonCreate(
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp)
{

PtrSFsdFCB PtrNewFCB = NULL;
LARGE_INTEGER FileAllocationSize, FileEndOfFile;
PFILE_OBJECT PtrNewFileObject = NULL;
PtrSFsdVCB PtrVCB = NULL;
// Other declarations ...

Interaction with Clients (File Systems and Network Redirectors)___________ 285

try {

//As you will see in Chapter 9, a lot of information is obtained
// from the IRP sent to the FSD for a create/open request.
// The I/O-Manager-created file object structure pointer is also
// obtained from the current I/O Stack Location in the FCB.
PtrloStackLocation = loGetCurrentlrpStackLocation(Ptrlrp);
PtrNewFileObject = PtrIoStackLocation->FileObject;

// The Volume Control Block (VCB) pointer is obtained
// from the target device object representing the mounted logical
// volume.

// The create/open operation is fairly complex and is detailed in
// Part 3. The FSD has to validate all arguments passed- in within
// the IRP, and then traverse the path supplied within the IRP,
// eventually leading to the file/directory/link that has to be
// created/opened.

// Assume that all the complicated processing has been done and
// that we have decided to create a new FCB structure.
// Note that a typical FSD gets the current file stream allocation-
// size and EOF values from the directory entry for the file
// stream (obtained from secondary storage) .
// In this example, we assume that this is the first instance of
// an "open" operation for a specific file stream. Therefore, we
// allocate the FCB structure for this file stream.
RC = SFsdCreateNewFCB(&PtrNewFCB, &FileAllocationSize,

SFileEndOfFile,
PtrNewFileObject, PtrVCB);

if (!NT_SUCCESS(RC)) {
try_return(RC) ;

} finally {
// All of the cleanup code is executed here.

return (RC) ;
} / / SFsdCommonCreate ()

NTSTATUS SFsdCreateNewFCB (
PtrSFsdFCB *ReturnedFCB,
PLARGE_INTEGER AllocationSize ,
PLARGE_INTEGER EndOfFile,
PFILE_OBJECT PtrFileObject ,
PtrSFsdVCB PtrVCB)
{

NTSTATUS RC = STATUS_SUCCESS;
PtrSFsdFCB PtrFCB = NULL;

286 Chapter 7: The NT Cache Manager II

PtrSFsdNTRequiredFCB
PFSRTL_COMMON_FCB_HEADER

PtrReqdFCB = NULL;
PtrCoiranonFCBHeader = NULL;

try {
// Obtain a new FCB structure.
// The function SFsdAllocateFCB () will obtain a new structure
// either from a zone or from memory requested directly from the
// VMM. Note that the sample FSD (described in greater detail in
// Part 3 of this book) allocates the entire FCB from nonpaged pool
// though you may choose to be "smarter" about your allocation
// method and possibly break up the FCB into paged and nonpaged
// portions.
PtrFCB = SFsdAllocateFCB () ;
if (! PtrFCB) {

// Assume lack of memory.
try_return(RC = STATUS_INSUFFICIENT_RESOURCES) ;

// Initialize fields required to interface with the NT Cache
// Manager. Note that the returned structure has already been
// zeroed. This means that the SectionObject structure has been
// zeroed, which is a requirement for newly created FCB structures.
PtrReqdFCB = & (PtrFCB->NTRequiredFCB) ;

// Initialize the MainResource and PagingloResource structures now.
ExInitializeResourceLite (& (PtrReqdFCB->MainResource)) ;
SFsdSetFlag(PtrFCB->FCBFlags, SFSD_INITIALIZED_MAIN_RESOURCE) ;

ExInitializeResourceLite (& (PtrReqdFCB->PagingIoResource)) ;
SFsdSetFlag (PtrFCB->FCBFlags, SFSD_INITIALIZED_PAGING_IO_RESOURCE) ;

// Start initializing the fields contained in the CommonFCBHeader.
PtrCommonFCBHeader = &(PtrReqdFCB->CommonFCBHeader);

// Allow fast I/O for now.
PtrCoiranonFCBHeader->IsFastIoPossible = FastloIsPossible;

// Initialize the MainResource and PagingloResource pointers in
// the CommonFCBHeader structure to point to the ERESOURCE
// structures we have allocated and already initialized above.
PtrCommonFCBHeader->Resource = &(PtrRegdFCB->MainResource);
PtrCommonFCBHeader->PagingIoResource =

&(PtrReqdFCB->PagingIoResource) ;

// Ignore the Flags field in the CommonFCBHeader for now. Part 3
// of the book describes it in greater detail.

// Initialize the file size values here.
PtrCommonFCBHeader->AllocationSize = *(AllocationSize);
PtrCommonFCBHeader->FileSize = *(EndOfFile);

// The following will disable ValidDataLength support. However,
// your FSD may choose to support this concept.
PtrCommonFCBHeader->ValidDataLength.LowPart = OxFFFFFFFF;

Interaction with Clients (File Systems and Network Redirectors)______________287

PtrCommonFCBHeader->ValidDataLength.HighPart = OxVFFFFFFF;

// Initialize other fields for the FCB here.
PtrFCB->PtrVCB = PtrVCB;
InitializeListHead(&(PtrFCB->NextCCB));

// Other similar initialization continues ...

// Initialize fields contained in the file object now.
PtrFileObject->PrivateCacheMap = NULL;
// Note that we could have just as well taken the value of
// PtrReqdFCB directly below. The bottom line, however, is that
// the FsContext field must point to a FSRTL_COMMON_FCB_HEADER
// structure.
PtrFileObject->FsContext = (void *)(PtrCommonFCBHeader);

// Other initialization continues here ...

try_exi t: NOTHING;
} finally {

return (RC) ,-
}

Initiation of Caching
All file stream operations in NT require that the file stream first be opened. To
avoid incurring unnecessary overhead, file system drivers do not initiate caching
for a file stream until it can be determined that I/O (read/write of file data) will
be performed on the file stream. Therefore, caching is typically initiated only
when the first I/O operation (read/write) is received by the file system driver.
Note that caching must be initiated for each file object on which I/O can be
performed (only if buffered access is allowed by the user). To determine whether
caching had been previously initiated for a specific file object, the Private-
CacheMap field in the file object is checked as follows:

#define SFsdHasCachingBeenlnitiated(PFileObject) \
((PFileObject)->PrivateCacheMap ? TRUE : FALSE)

To initiate caching, the FSD uses the CcInitializeCacheMapt) interface
routine. This routine is defined as follows:

void CcInitializeCacheMap (
IN PFILE_OBJECT PtrFileObject;
IN PCC_FILE_SIZES FileSizes;
IN BOOLEAN PinAccess;
IN PCACHE_MANAGER_CALLBACKS CallBacks;
IN PVOID LazyWriterContext

288 Chapter 7: The NT Cache Manager II

where:

typedef struct _CC_FILE_SIZES {
LARGE_INTEGER AllocationSize;
LARGE_INTEGER FileSize;
LARGE_INTEGER ValidDataLength;

} CC_FILE_SIZES, *PCC_FILE_SIZES;

// The callbacks structure is defined as follows:
typedef struct _CACHE_MANAGER_CALLBACKS {

PACQUIRE_FOR_LAZY_WRITE AcquireForLazyWrite ;
PRELEASE_FROM_LAZY_WRITE ReleaseFromLazyWrite;
PACQUIRE_FOR_READ_AHEAD AcquireForReadAhead;
PRELEASE_FROM_READ_AHEAD ReleaseFromReadAhead;

} CACHE_MANAGER_CALLBACKS, *PCACHE_MANAGER_CALLBACKS;

Resource Acquisition Constraints:

The above routine requires that the FCB for the file be acquired either shared or
exclusive prior to invoking the routine.

Parameters:

PtrFileObject
This is the file object for which caching is being initiated.

FileSizes
The Cache Manager requires that the current file sizes be supplied at this
time. Note that since the FCB for the file is acquired either shared or exclu-
sively, none of the file size values can change while caching is being initiated
for any file object associated with the file stream.*

PinAccess
The caller can specify if the pinning interface will be used to access data.
Note that the pinning interface cannot be used concurrently with either the
copy interface or the MDL interface to access data for the file stream. Typi-
cally, for user file open requests, you should set this to FALSE.

Callbacks
In the Windows NT environment, the file system, Virtual Memory Manager,
and the Cache Manager are all highly dependent on each other. I/O opera-
tions can be initiated from the file system driver (on behalf of user processes),
via the Virtual Memory Manager or from the Cache Manager. To avoid system

* It is highly recommended (in order to avoid data corruption) that the FCB for a file be acquired exclu-
sively whenever there are any modifications resulting in changes to the data or attributes of the file stream.
Therefore, if the FCB for the file stream has been acquired shared or exclusively while caching is being
initiated, we can be certain that the file sixes will not change from underneath us.

Interaction with Clients (File Systems and Network Redirectors)______________289

deadlock, a well-defined hierarchy must set the order in which each of these
components can acquire their respective resources associated with the file
stream(s) on which I/O is being performed. This order is defined as follows:

— File system resources are acquired first.

— Cache Manager resources are acquired next.

— Virtual Memory Manager resources are acquired last.

To help maintain this hierarchy, the file system driver is required to supply
the Cache Manager with callback routines that are utilized by the read-ahead
and delayed-write threads in the Cache Manager. These callback routines are
supplied when caching is initiated by the FSD using this argument. Further
details on this topic will be presented in Part 3.

LazyWriterContext
This value is treated as an opaque pointer value by the Cache Manager. It is
used as an argument supplied to the file system driver when the Cache
Manager uses the AcquireForLazyWrite () and AcquireForRead-
Ahead () callback routines. (The name of the argument is somewhat of a
misnomer since the same context is used for both the read-ahead and write-
behind callbacks; therefore it is not just the lazy writer context, but the read-
ahead context as well.) Typically, the FSD will supply a pointer to a Context
Control Block (CCB)* as the context.

Functionality Provided:

The CcInitializeCacheMap () routine is responsible for creating all data
structures required for the Cache Manager to support caching for the concerned
file stream. The first invocation of this routine results in the creation of the shared
cache map structure for the file stream. It is extremely important to note that the
Cache Manager also references the file object structure at this time to ensure that
the file object stays around and that a corresponding uninitialize operation will
occur sometime in the future. The Cache Manager also creates a file mapping
(section) object for the file using the services of the Virtual Memory Manager. For
all subsequent invocations of this routine for the same file stream (with different
file object structures), the Cache Manager checks the current size of the mapping
section object and extends it if required.

The Cache Manager also allocates a private cache map structure and initializes it.
A pointer to the allocated PrivateCacheMap is stored in the Private-
CacheMap field within the passed-in file object structure. Since the value of the

* The Context Control Block is a structure created by file system drivers to represent an open instance of
a file stream. There is one CCB corresponding to each successful open operation; therefore there is a one-
to-one mapping between file object structures created by the I/O Manager (representing a successful
open operation on a file stream) and CCBs created by the file system driver. CCB structures arc discussed
in detail in Chapter 9, Writing a File System. Driver I.

290_______________________________Chapter 7: The NT Cache Manager tt

PrivateCacheMap field now becomes nonnull, subsequent I/O requests will
check this field using the SFsdHasCachingBeenInitiated() macro, defined
above, and determine that caching had been previously initiated for the file
stream via the specific file object.

Note that the Cache Manager does not map in any views for the file stream at this
time. These views into the file are created only when data transfer is requested
using any of the three interfaces provided by the Cache Manager.

Since the initialization routine does not return any status back to the caller, the
Cache Manager raises exceptions if something goes wrong while trying to perform
the initialization for the file object. Exception handlers in the FSD should be
capable of receiving such exceptions and returning an appropriate error back to
the application that initiated the cached I/O operation.

WARNING Using Structured Exception Handling is no longer optional if you
write a file system driver that interacts with the Windows NT Cache
Manager. I would advise that all kernel-mode drivers should incor-
porate SEH to ensure that system integrity and robustness is not
compromised.

Example of Usage:

Caching is initiated by file system drivers when either a read or a write operation
is invoked for a file stream. In this code snippet, caching is initiated when a read
request is processed for a file stream.

//A pointer to a callbacks structure must be passed in to the Cache
// Manager when initializing caching for a file stream. Typically, file
// systems use a single global callbacks structure that has been
// initialized.
typedef struct _SFsdData {

SFsdldentifier Nodeldentifier;
// Some fields that will be discussed further in Part 3.

// The NT Cache Manager uses the following callbacks to ensure
// correct locking hierarchy is maintained.
CACHE_MANAGER_CALLBACKS CacheMgrCallBacks;

// Some more fields that will also be discussed in Part 3.

} SFsdData, *PtrSFsdData;

// The arguments to the SFsdCommonRead() function (part of the sample FSD
// provided in this book) will be discussed in Part 3.
NTSTATUS SFsdCommonRead(
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp)

Interaction with Clients (File Systems and Network Redirectors) 291

NTSTATUS RC = STATUS_SUCCESS;
PFILE_OBJECT PtrFileObject = NULL;
PtrSFsdFCB PtrFCB = NULL;
PtrSFsdCCB PtrCCB = NULL;
PtrSFsdNTRequiredFCB PtrReqdFCB = NULL;
BOOLEAN NonBufferedlo = FALSE;
LARGE_INTEGER ByteOffset;
uint32 ReadLength = 0, TruncatedReadLength = 0;
BOOLEAN CanWait = FALSE;
void *PtrSystemBuffer = NULL;
// Other declarations .. .

try {

//As you will see in Chapter 9, a lot of information is obtained
// from the IRP sent to the FSD for a read request.
// The I/O-Manager-created file object structure pointer is also
// obtained from the current I/O Stack Location in the FCB.
PtrloStackLocation = loGetCurrentlrpStackLocation(Ptrlrp);
PtrFileObject = PtrIoStackLocation->FileObject;

// Get the FCB and CCB pointers.
// Typically the FsContext2 field in the file object refers to
// the Context Control Block associated with the file object.
PtrCCB = (PtrSFsdCCB)(PtrFileObject->FsContext2);
ASSERT(PtrCCB);
PtrFCB = PtrCCB->PtrFCB;
ASSERT(PtrFCB);

// Other arguments are also obtained ...

NonBufferedlo = ((PtrIrp->Flags & IRP_NOCACHE) ? TRUE : FALSE);
ByteOffset = PtrIoStackLocation->Parameters .Read.ByteOffset;
ReadLength = PtrIoStackLocation->Parameters.Read.Length;

// Don't worry about how the following flag is set in the
// PtrlrpContext structure at this time. Note, however, that
// the CanWait value determines whether the caller is willing to
// perform the operation synchronously (CanWait = TRUE), or if the
// caller prefers asynchronous processing (CanWait = FALSE).
CanWait = ((PtrIrpContext->IrpContextFlags &

SFSD_IRP_CONTEXT_CAN_BLOCK)
? TRUE : FALSE);

PtrReqdFCB = &(PtrFCB->NTRequiredFCB);

/ / A lot of preprocessing is typically performed that you will
// read about later in this book.

// Assume for now that this FSD does not have to worry about
// paging I/O requests.

// Try to acquire the FCB MainResource shared. Assume that the call

292_______________________________Chapter 7: The NT Cache Manager II

II cannot fail. Also assume that the caller does not mind blocking.
ExAcquireResourceSharedLite(&(PtrReqdFCB->MainResource), TRUE)

// More processing here that will be discussed later in Part 3 of
// this book.

// Branch here for cached vs. noncached I/O.
if (iNonBufferedlo) {

// The caller wishes to perform cached I/O. Initiate caching if
// this is the first cached I/O operation using this file
// object
if (!SFsdHasCachingBeenInitiated(PtrFileObject)) {

// This is the first cached I/O operation. You must ensure
// that the Common FCB Header contains valid sizes at this
// time
CcInitializeCacheMap(PtrFileObject, (PCC_FILE_SIZES)

(&(PtrReqdFCB->CommonFCBHeader.AllocationSize)) ,
FALSE, //We will not utilize pin access for

// this file
&(SFsdGlobalData.CacheMgrCallBacks), // callbacks
PtrCCB); // The context used in callbacks

// Check and see if this request requires an MDL returned to
// the caller.
if (PtrIoStackLocation->MinorFunction & IRP_MN_MDL) {

// Caller wants an MDL returned. Note that this mode
// implies that the caller is prepared to block.
// CcMdlReadO is discussed later in this chapter.
CcMdlRead(PtrFileObject, &ByteOf f set , TruncatedReadLength,

&(PtrIrp->MdlAddress) ,
&(PtrIrp->IoStatus)) ;

NumberBytesRead = PtrIrp->IoStatus . Information;
RC = PtrIrp->IoStatus. Status;

try_return(RC) ;

// This is a regular run-of-the-mill cached I/O request. Let
// the Cache Manager worry about it.
// First though, we need a buffer pointer (address) that is
// valid. More on this in Chapter 9.
PtrSystemBuf fer = SFsdGetCallersBuf fer (Ptrlrp) ;
ASSERT (PtrSystemBuf fer) ;
if (!CcCopyRead(PtrFileObject, & (ByteOf f set) , ReadLength,

CanWait, PtrSystemBuf fer , & (PtrIrp->IoStatus))) {
// The caller was not prepared to block and data is not
// immediately available in the system cache.
// Mark IRP Pending and prepare to post the request for
// asynchronous processing. I am beginning to sound like a
// broken record but more on this in Part 3 of the book.
try_return(RC = STATUS_PENDING) ;

Cache Manager Interfaces_____________________________________25*3

// We have the data
RC = PtrIrp->IoStatus.Status;
NumberBytesRead = PtrIrp->IoStatus.Information;

try_return(RC);

} else {
// Noncached processing done here.

}

// Other processing ...

try_exi t: NOTHING;

} finally {
// A lot of processing done here before completing the IRP.

} // end of "finally" processing

return(RC);

Cache Manager Interfaces
Once caching has been initiated for a file stream using a file object, requests to
read and write data are satisfied from the system cache. In the previous chapter,
three interfaces provided by the Cache Manager to access cached data were listed.
Each of the routines comprising the three interfaces is covered in this section.

TIP You may find it useful simply to skim through the material present-
ed below on your first reading and to refer back to it when required
as you progress through Part 3 (describing FSD development) and
also when you eventually design and debug your kernel-mode file
system (or filter) driver.

Copy Interface
The copy interface is most commonly used by FSDs to access data within the
system cache. The following routines comprise the copy interface.

CcCopyReadO/CcFastCopyReadQ
BOOLEAN
CcCopyRead (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,

294_______________________________Chapter 7: The NT Cache Manager II

IN BOOLEAN Wait,
OUT PVOID Buffer,
OUT PIO_STATUS_BLOCK loStatus

VOID
CcFastCopyRead (

IN PFILE_OBJECT FileObject,
IN ULONG FileOffset,
IN ULONG Length,
IN ULONG PageCount,
OUT PVOID Buffer,
OUT PIO_STATUS_BLOCK loStatus

) ;

Resource Acquisition Constraints:

The FCB for the file must usually be acquired shared before invoking the routine.
Acquiring the FCB exclusively will prevent multiple readers from being able to
concurrently access file data and should therefore be avoided in the interest of
efficiency.

Parameters:

FileObject
This is a pointer to the file object structure representing the open operation
performed by the thread. Caching must have been previously initiated by the
file system driver on this file object.

Note that if the file system driver has not initiated caching prior to invoking
the CcCopyReadO or CcFastCopyRead () routines, an exception will be
generated since the Cache Manager assumes that the private cache map and
shared cache map structures exist and have been initialized correctly.

FileOffset
This is the starting offset in the file, from where the read operation should be
performed.

For the CcCopyRead () routine, the starting offset can be anywhere within
the allowable range of file offsets—a 64-bit quantity. However, the CcFast-
CopyRead () expects the entire range being requested (starting offset +
number of bytes) to be contained within 4GB (maximum range allowable for
a 32 bit offset).

Length
This field specifies the number of bytes requested in the read operation.

Wait
This argument is only accepted by the CcCopyRead () routine. If the entire
byte range requested is not present in the system cache (therefore, the data

Cache Manager Interfaces_____________________________________295

would have to read off media using the page fault mechanism), and if Wait
is specified as FALSE, the CcCopyRead () routine returns a FALSE value to
the caller. The caller can subsequently determine whether to restart the copy
operation or to pursue some other course of action.

The CcFastCopyRead() routine assumes that the caller is prepared to wait
for the data; i.e., the implied value of Wait is TRUE.

PageCount
This is the number of pages requested in the read operation. Argument is
required only by the CcFastCopyRead() routine. The caller can use the
COMPUTE_PAGES_SPANNED () macro supplied in the ntddk.h header file to
determine the value to be passed in.

NOTE It is surprising that the Cache Manager requires this argument, since
computing the value could just as easily be done within the routine
by the Cache Manager itself.

Buffer
This field contains a pointer to the buffer into which the copy operation
should be performed is passed-in. If the buffer pointer becomes invalid (once
the Cache Manager is invoked), an exception will be raised by the Cache
Manager.

loStatus
The Status field is generally set to STATUS_SUCCESS by the Cache Manager.
The Information field contains the number of bytes that were actually
transferred.

Functionality Provided:

Fundamentally, both the CcCopyRead () and the CcFastCopyRead() routines
perform the same functionality: data is transferred from the system cache to the
buffer passed in to either of the two routines. The Cache Manager also schedules
read-ahead based upon the pattern of accesses detected during multiple invoca-
tions of either of these two routines.

The primary difference between the two routines is that the CcFastCopy-
Read () routine assumes that the caller is always prepared to block, waiting for
the data to be brought into the system cache if it is not already there. In the case
of the CcCopyRead () routine, the caller is allowed to specify whether waiting
for the data to be brought into the system cache is acceptable or not. If Wait is
set to FALSE and file data is not already physically present in memory, the Cache
Manager will simply return a status of FALSE to the caller. However, if data is

296______________________________Chapter 7: The NT Cache Manager II

already physically present in memory, or if Wait is supplied as TRUE, the Cache
Manager will return as many bytes as it successfully reads, which can be less than
or equal to the number of bytes requested (if the read extends beyond the end-of-
file).

A second constraint for the CcFastCopyRead () routine is that it expects to
work with byte ranges that are completely contained within a 32-bit quantity.
Therefore, the CcFastCopyRead () routine will not accept a byte range with a
starting offset greater than or equal to 4GB or an ending offset (= starting offset +
length) greater than or equal to 4GB.

For both routines, the Cache Manager expects the file system to have checked
that the byte range being requested does not extend beyond the end-of-file mark
(based on the size of the file stream). Therefore, the only likely reason for the
number of bytes in the Information field to be less than the number of bytes
requested is if data was not present in the system cache and there was an error
encountered faulting in the data from disk (or from across the network).

If the buffer pointer passed in to either routine is invalid, an exception is raised
by the Cache Manager.

The implementation of both routines is conceptually very simple:

• The Cache Manager determines if a mapped view for the desired range exists.
If no such view exists, the Cache Manager will create such a view.

• The Cache Manager checks to see if the requested data is already physically
present in memory (using the services provided by the Virtual Memory Man-
ager). If data is not already in memory and if Wait is supplied as FALSE (for
the CcCopyRead () routine), the Cache Manager immediately returns to the
caller with a return status of FALSE, indicating that data transfer was not per-
formed. In the case of the CcFastCopyRead () routine, the Cache Manager
expects that the caller is prepared to block, waiting for data to be brought
into the system cache. If data is not already present, the Cache Manager also
determines the number of pages that should be brought in using a single I/O
operation, based upon the number of bytes requested. This information is
then conveyed by the Cache Manager to the Virtual Memory Manager, which
is responsible for handling the page fault (when it occurs) and actually obtain-
ing data via the page fault path from the file system driver.

• The Cache Manager performs a simple copy operation from the system cache
(using the mapped view of the file) to the buffer sent in by the caller. If data
is already available in the system cache, the copy operation will immediately
complete. Otherwise, a page fault will occur, and the page fault handler in
the Virtual Memory Manager obtains the data from disk or from across the net-
work. Note that this results in a recursive operation into the file system driver.

Cache Manager Interfaces _____________________________________ .297

The Cache Manager returns the total number of bytes successfully transferred in
the Information field in the loStatus parameter.

CcCopyWriteO/CcFastCopyWriteQ
BOOLEAN
CcCopyWrite (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN PVOID Buffer

VOID
CcFastCopyWrite (

IN PFILE_OBJECT FileObject,
IN ULONG FileOffset,
IN ULONG Length,
IN PVOID Buffer

);
Resource Acquisition Constraints:

The FCB for the file must be acquired exclusively before invoking either of the
two routines. This allows only a single thread to be able to access the file stream
and modify it.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread. Caching must have been previously
initiated by the file system driver on this file object.

Note that if the file system driver has not initiated caching prior to invoking
the CcCopyWrite () / CcFastCopyWrite () routines, an exception will
be generated, since the Cache Manager assumes that the private cache map
and shared cache map structures exist and have been initialized correctly.

FileOffset
This is the starting offset in the file, from where the modification operation
should be performed.

For the CcCopyWrite () routine, the starting offset can be anywhere within the
allowable range for file offsets, which is a 64-bit quantity. However, the CcFast-
CopyWrite () routine expects the entire range being modified (starting offset +
number of bytes) to be contained within 4GB (maximum range allowable for a
32-bit offset).

298_______________________________Chapter 7: The NT Cache Manager II

Length
This is the number of bytes to be modified.

Wait
This argument is only accepted by the CcCopyWrite () routine. The caller
can decide whether blocking for disk I/O is acceptable or not. For example,
in order to modify a byte range in memory, free pages are required. To free
up physical memory, some data may have to be transferred to disk. This
involves disk (or network) I/O, which is a blocking operation. Similarly, if a
page is being partially modified, the previous contents of the page must
already be present in memory. If not, then the data has to be read off
secondary storage. This, too, is a blocking operation.

If Wait is specified as FALSE to the CcCopyWrite () routine and blocking
becomes necessary, the routine returns FALSE to the caller.*

The CcFastCopyWrite () routine assumes that the caller is prepared to
block to achieve the data transfer; i.e., the (implied) value of Wait is TRUE.

If the file stream was opened for write-through operations, data will have
been flushed to secondary storage media before this call returns. By defini-
tion, this call therefore will block and hence the Wait argument must be
TRUE in this case. Otherwise, a return value of FALSE will result and no data
transfer will occur.

Buffer
This argument contains a pointer to the buffer from which the copy operation
should be performed. If the buffer pointer becomes invalid (once the Cache
Manager is invoked), an exception will be raised by the Cache Manager.

Functionality Provided:

The CcCopyWrite () and the CcFastCopyWrite () functions are similar to
their read counterparts. They are responsible for transferring modified data from
the user's buffer into the system cache.

As mentioned above in the case of the routines providing read functionality, the
primary difference between the CcCopyWrite () and CcFastCopyWrite ()
routines is that the latter routine assumes the caller is always prepared to block in
the context of the requesting thread. The requesting thread may have to block
due to any one of the following reasons:

If FALSE is returned, the caller should assume that none of the data has been transferred.

Cache Manager Interfaces_____________________________________299

• In the case of partial write requests,* data may first have to be obtained from
disk (or from across the network) before it can be modified.

• The file stream may have been opened with write-through mode specified
(the FO_WRITE_THROUGH flag was set in the file object structure). In this
case, modified data will be physically written out to disk (or across the net-
work) before either of these two routines return control back to the caller.
Note that writing to disk is a blocking operation, since it involves a recursive
call back into the file system driver (which will then forward the request to
the disk drivers/network drivers responsible for the actual transfer of data).

• There may not be a sufficient number of available, unmodified pages of physi-
cal memory to contain the new data before it can be lazy-written to disk. To
create space in memory for the data, the Virtual Memory Manager has to flush
out other previously modified data to disk, discard the data, and reallocate
the physical pages to contain the newly modified bytes.

If CcCopyWrite () is used, the caller can specify whether blocking is accept-
able. If the caller is not prepared to block and data transfer cannot be
immediately completed, the routine returns a FALSE status.

The CcFastCopyWrite () routine expects that the starting and ending offsets
for the entire request are contained within a 32-bit quantity. It also assumes that
the caller is prepared to block until the write operation can be successfully
completed.

Just as in the case of CcCopyRead () described previously, an invalid buffer
being passed in to the Cache Manager results in an exception condition being
raised. Similarly, any errors encountered in either obtaining original data from
secondary store (in the case of a partial write operation) or in writing the new
data out (if write-through mode had been specified) will cause an exception to be
raised. The exception values include the following:

STATUS_INVALID_USER_BUFFER
This exception is raised if the user buffer is invalid or becomes invalid while
the request is being processed.

* A partial write (as used in this context) is a write operation that does not begin and end on whole page
boundaries. Note that the smallest unit of physical memory manipulated by the VMM is a page. The con-
tents of a page are marked as either valid or not valid. It is too expensive for the VMM to keep track of
valid ranges within a page. If an entire page is being overwritten (in a write request), the VMM optimizes
by not obtaining the original byte range from secondary store—if the old data was not already present in
memory. Instead, the VMM simply materializes an empty (zeroed) page into which the new data can be
transferred and subsequently, the new contents of the page are marked as valid. If, however, an entire
page is not being modified, the VMM must ensure that the original contents of the page have been
brought into memory before the modification of a subset of the appropriate byte range is allowed to pro-
ceed. Transferring the affected byte range into memory from secondary storage (if it is not already
present) is an expensive operation.

300_______________________________Chapter 7: The NT Cache Manager II

STATUS_UNEXPECTED_IO_ERROR or STATUS_IN_PAGE_ERROR
One of these two exceptions is raised if the Cache Manager received an error
from the VMM when requesting data transfer. Note that the data transfer
requested by the Cache Manager could be a read operation (in the event that
the write request is a partial write), or it could be the attempt to write out the
contents of the caller-supplied buffer.

STATUS_INSUFFICIENT_RESOURCES
This exception is raised if the Cache Manager could not allocate required
memory to complete the request.

The implementation of both routines is similar to that for the read case described
earlier:

• The Cache Manager determines if a mapped view for the desired range exists.
If no such view exists, the Cache Manager creates such a view.

• The write request may either be contained completely within a page or span
multiple pages. For those pages whose contents are being completely over-
written, the Cache Manager recognizes that obtaining the original contents
from disk (for the byte range associated with the pages) is not required.
Therefore, the Cache Manager requests zeroed pages from the VMM (using a
special call provided by the VMM) and transfers the new data there. For those
pages that are not being completely overwritten, the Cache Manager will per-
form a simple copy operation from the user's buffer into the virtual address
space associated with the mapped view.
Note that as a result of the copy operation, a page fault may occur if the byte
range being modified is not already present in physical memory. The Virtual
Memory Manager will resolve the page fault by bringing the original contents
(for the byte range) from disk and restarting the copy operation. The copy
operation should then complete successfully.

CcCanlWriteQ

This routine is defined as follows:

BOOLEAN
CcCanlWrite (

IN PFILE_OBJECT FileObject,
IN ULONG BytesToWrite,
IN BOOLEAN Wait,
IN BOOLEAN Retrying

Cache Manager Interfaces_____________________________________301

Resource Acquisition Constraints:

If Wait is TRUE, the file system should ensure that no resources have been
acquired. Otherwise, the caller can choose to have the FCB resources unowned,
or acquired shared or exclusively.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread.

BytesToWrite
This is the number of bytes to be modified.

Wait
This argument is used by the Cache Manager to determine whether the caller
is prepared to wait in the routine until it is acceptable for the caller to be
allowed to perform the write operation.

Retrying
The file system may have to keep requesting permission to proceed with a
write operation (if Wait is supplied as FALSE) until it is allowed to do so.
This argument allows the file system to notify the Cache Manager if it had
previously requested permission for the same write request or if the current
instance was the first time permission was being requested for the specific
write operation.

Functionality Provided:

This routine is part of a group of routines that allow the file system to defer
executing a write request until it is appropriate to do so. There are a number of
reasons why deferring a write operation is necessary. They include the following:

• The file system may need to restrict the number of dirty pages outstanding for
each file stream at any time. This allows the file system to ensure that cached
data for other file streams does not get discarded to make space for data
belonging to a single file stream. Such a situation may arise if a process keeps
modifying data for a specific file stream at a very fast rate.

• The Cache Manager tries to keep the total number of modified pages within a
certain limit, for all files that have their data cached. This helps ensure that a
sufficient number of free pages are available for other purposes, including
memory for loading executable files, memory-mapped files, and memory for
other system components.

• The Virtual Memory Manager sets certain limits on the maximum number of
dirty pages within the system (based upon the total amount of physical mem-

302_______________________________Chapter 7: The NT Cache Manager II

ory present on the system). If the write operation causes the limit to be
exceeded, the VMM would rather defer the write until the modified page
writer has flushed some of the existing dirty data to disk.

In order to assist the Cache Manager and the Virtual Memory Manager in
managing physical memory optimally, the file system driver can use the CcCanl-
Write () routine to determine whether the current write operation should be
allowed to proceed. Use of this routine is optional.

The Wait argument allows the file system to specify whether the thread can be
blocked until the write can be allowed to proceed. If Wait is FALSE and the write
operation should be deferred, the routine returns FALSE. The file system can then
determine an appropriate course of action—this might be to postpone the opera-
tion using the CcDef erWrite () routine described next in this section.

Setting Wait to TRUE causes the Cache Manager to block the current thread (by
putting it to sleep) until the write can be allowed to proceed. Note that the file
system should ensure that no resources are acquired by the thread, since this may
lead to a system deadlock.

The Retrying argument allows a file system to notify the Cache Manager
whether permission is being requested either for the first time or in the case when
permission had been previously requested (and denied) at least once before. If
set to TRUE, the Cache Manager assigns a slightly higher priority to the current
request while determining whether it should be allowed to proceed or not (e.g., if
two write requests are pending and one of them is being retried, the Cache
Manager will try to allow the one being retried to proceed first). Note, however,
that there are no guarantees to ensure that a request being retried will indeed be
allowed to proceed before other new requests.

Conceptually, the functionality provided by the Cache Manager in this routine is
fairly simple:

• First, check whether the current write operation can proceed based upon crite-
ria including whether the outstanding number of dirty pages associated with a
file stream has been exceeded, whether the total number of dirty pages in the
system cache has exceeded some limit, or whether the Virtual Memory Man-
ager needs to block this write until enough unmodified pages are available in
the system.

• If the write operation can proceed, return TRUE.

• Otherwise, if Wait is set to TRUE, put the current thread to sleep until the
write operation can be allowed to proceed. Once the thread is awakened
from the sleep, return TRUE. However, if Wait is FALSE, return FALSE imme-
diately.

Cache Manager Interfaces_____________________________________303

Note that a value of TRUE, if returned by this function, does not guarantee that
conditions will continue to remain amenable to performing the write operation.
Therefore, it is quite possible that CcCanlWrite () returns TRUE but by the time
the write operation is actually submitted, conditions have changed (other writes
may have caused many more pages to become dirty) such that the current write
should really be deferred. However, since correctness of the operation is not
affected, the caller should not really worry about this possible race condition.

To ensure that no other thread sneaks in to perform a write and thereby increase
the number of outstanding modified pages, your FSD can acquire the FCB for the
file stream exclusively before invoking CcCanlWrite (). However, Wait should
then be set to FALSE.

CcDeferWriteQ
VOID
CcDeferWrite (

IN PFILE_OBJECT FileObject,
IN PCC_POST_DEFERRED_WRITE PostRoutine,
IN PVOID Contextl,
IN PVOID Context2,
IN ULONG BytesToWrite,
IN BOOLEAN Retrying

);
where:
typedef
VOID (*PCC_POST_DEFERRED_WRITE) (

IN PVOID Contextl,
IN PVOID Context2

);
Resource Acquisition Constraints:

No resources should be acquired before invoking this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread.

PostRoutine
The routine to be invoked whenever it is appropriate for the current write
request to proceed. Typically, this is a recursive call into the file system write
routine.

304_______________________________Chapter 7: The NT Cache Manager II

Contextl and Context2
These are arguments that the PostRoutine will accept. Typically, if the post
routine is the same as the generic write routine, these arguments are the
DeviceObject and the IRP (for the current request).

BytesToWrite
This is the number of bytes being modified.

Retrying
This allows the file system to specify whether the check (should the write be
allowed to proceed?) is being performed for the first time or has already been
performed before.

Functionality Provided:

This routine is part of a group of routines that allows the file system to defer
executing a write request. As discussed earlier, the CcCanlWrite () routine
allows a file system driver to query the Cache Manager to see if the current write
request can proceed immediately. If the CcCanlWrite () routine returns FALSE,
the file system can use the CcDeferWrite () routine to queue the write until it
is appropriate for it to proceed.

The PostRoutine argument allows the file system to specify the routine that
will perform the actual write operation when invoked. It is quite possible that the
Cache Manager might choose to invoke the post routine immediately (in the
context of the thread invoking the CcDeferWrite () routine). Typically,
however, the post routine is invoked asynchronously whenever a sufficient
number of dirty pages have been flushed to disk.

CcSetReadAheadGranularityO
VOID
CcSetReadAheadGranularity (

IN PFILE_OBJECT FileObject,
IN ULONG Granularity

) ;
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread.

Cache Manager Interfaces_____________________________________305

Granularity
This is the new granularity to be used in determining the number of addi-
tional bytes obtained by the read-ahead thread.

Functionality Provided:

The default read-ahead size is PAGE_SIZE. This simple routine allows the file
system to determine an appropriate read-ahead granularity for a file stream. The
new granularity should be a power of two and should be greater than or equal to
the PAGE_SIZE value.

CcScheduleReadAheadQ
VOID
CcScheduleReadAhead (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length

);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread.

FileOffset
This is the offset from which the last read was initiated.

Length
This is the number of bytes requested in the last read operation.

Functionality Provided:

The CcScheduleReadAhead () routine is shared by both the copy interface
and the MDL interface. This routine allows the file system to request that read-
ahead be performed (if appropriate) for a file stream.

Using this routine is optional, since read-ahead is automatically initiated by the
Cache Manager (unless the file system has requested that read-ahead be disabled
for a specific file stream) whenever a read operation is performed, using either
the copy interface or the MDL interface. However, this routine allows a file system
to initiate read-ahead itself whenever required.

The FileOffset and Length arguments typically describe a read operation
that has just been completed (in the case of an MDL read, the read operation may
have just been initiated). Since it has been determined empirically by Windows

306______________________________Chapter 7: The NT Cache Manager II

NT designers that the read-ahead implementation on Windows NT is not particu-
larly beneficial when the original read request is fairly small (performance might
actually degrade in some cases where read-ahead is inappropriately invoked), the
file system typically does not invoke the read-ahead routine directly. Instead, the
file system can use the following system-defined macro to initiate read-ahead if
required:

•define CcReadAhead(FO,FOFF,LEN) { \
if ((LEN) >= 256) { \

CcScheduleReadAhead((FO),(FOFF),(LEN)); \
} \

}
Whether read-ahead is actually performed depends on the following factors:

• If the file stream had been opened for sequential access, the Cache Manager
will typically read ahead aggressively to ensure that data is always present in
the cache to satisfy the (expected) next read operation.

• Even if the file stream is not open for sequential access, the Cache Manager
maintains information, associated with the file stream, that allows it to deter-
mine the pattern of data access. If data is currently being accessed sequen-
tially or if data is being accessed in a certain recognizable pattern, the Cache
Manager will again attempt to read ahead enough data to satisfy the next read
operations from the system cache.

The set of routines comprising the copy interface are the most commonly used by
file systems when accessing cached data for file streams. Consult Part 3, as well as
the accompanying diskette, for code fragments that illustrate the usage of these
routines.

Pinning Interface
The pinning interface allows a client to map data into the system cache, lock the
data into the system cache if required, and subsequently manipulate the data
using a virtual address pointer. Data can be unpinned later when it is no longer
required. The following routines comprise the pinning interface.

CcMapDataQ
BOOLEAN
CcMapData (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
OUT PVOID *Bcb,
OUT PVOID *Buffer

Cache Manager Interfaces__307

Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread.

FileOffset
Data should be mapped in beginning at this offset in the file stream.

Length
This is the number of bytes that should be mapped into the system cache.

Wait
This is TRUE, if the caller wishes only that the data be mapped in (as
opposed to requiring that the data be physically present in the system cache),
otherwise, FALSE.

Bcb
If this routine returns a success code, a pointer to a Buffer Control Block
(BCB) structure (allocated by the Cache Manager) is returned in this argu-
ment. The memory allocated for the BCB structure is released by the Cache
Manager when the CcUnpinData () routine is invoked for the last time. The
BCB is also considered to be referenced whenever this routine is successfully
invoked. A corresponding invocation of CcUnpinData () will dereference
the BCB.

Buffer
This contains the virtual address of the mapped data (if the routine is
successful). The pointer is valid until a request to unmap or unpin the data is
made.

Functionality Provided:

The CcMapData () routine allows the caller to request that a range of bytes asso-
ciated with the file stream be mapped into the system cache. This range of bytes
will not be unmapped until a subsequent call to CcUnpinData () is made. If
successful, this routine returns two values:

• A pointer to a Buffer Control Block (BCB) structure. This pointer should be
used by the caller as context to be supplied to the Cache Manager on subse-
quent calls to manipulate the mapped buffer.

• A virtual address pointer representing the start of the mapped range.

Note that this routine simply maps in the desired byte range—no guarantees are
provided that the byte range will be pinned into memory. Therefore, it is entirely

Chapter 7: The NT Cache Manager II

possible that subsequent attempts to access the byte range may cause page faults
that will eventually result in the data being brought into memory from secondary
storage.

It is important to note that the caller must not use the returned buffer pointer to
modify the mapped range of bytes until a call either to CcPinMappedDataO or
CcPreparePinWrite () is made. Therefore, the caller can only use the
returned buffer pointer to read the mapped range until the range is pinned in
memory.

If Wait is TRUE, the Cache Manager will map the data into the cache and return.
In this case, the data does not need to be physically present in the cache. If Wait
is FALSE, the Cache Manager will return success only if the data is already physi-
cally present in the cache. The net result is that setting Wait to TRUE should
result in quicker turnaround from the Cache Manager, since it must only ensure
that data is mapped into the cache, as opposed to the alternative case, when the
Cache Manager must ensure that data is physically present.

It is quite possible that this routine may pin the data into memory before
returning a success code to the caller. However, the caller must be careful not to
depend on this behavior and to explicitly invoke an appropriate routine to pin
the mapped data when required.

Finally, the caller can invoke this routine multiple times for the same byte range.
However, a corresponding invocation to CcUnpinData () must be made for
each instance that the CcMapData () routine was successfully called.

CcPinMappedDataO
BOOLEAN
CcPinMappedData (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN OUT PVOID *Bcb

);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread.

Cache Manager Interfaces_____________________________________309

FileOffset
Data is mapped in beginning at this offset in the file stream.

Length
This is the number of bytes that were mapped into the system cache.

Wait
This is TRUE if the caller can block, waiting for data to be brought into the
system cache.

Bcb
When data was previously mapped into the system cache, a pointer to a BCB
structure was returned by the Cache Manager. That pointer must now be used
as context in this routine. It is quite possible that the Cache Manager might
allocate a new BCB when this routine is invoked, and therefore return a new
BCB pointer value to be used as context in subsequent calls for the pinned
byte range.*

Functionality Provided:

Upon successful return from the CcPinMappedData () routine, the caller can be
assured that the previously mapped data is now pinned in the system cache.
Now, the caller is also permitted to modify the pinned data. However, if modifica-
tions are performed, the caller must inform the Cache Manager by using the
CcSetDirtyPinnedData () routine, described later.

The CcPinMappedData () routine will not do anything and simply return
success if any of the previous invocations to CcMapData () resulted in data
being pinned in the system cache. Similarly, since it is legitimate to invoke the
CcPinMappedData () routine multiple times for the same file stream, this
routine will simply return a success if the requested byte range has been pinned
before.

This routine is used only to pin previously mapped data. As was mentioned
earlier, a successful return from a call to CcMapData () requires that a subse-
quent call to CcUnpinData () be made. However, note that no additional calls
to CcUnpinData () are required if the CcPinMappedData () routine is success-
fully invoked for previously mapped data. Therefore, the following rules should
be followed in this regard:

• If you invoke CcMapData () successfully for a specific byte range, you must
subsequently invoke CcUnpinData () .

* If a new BCB pointer value is returned from this call, you (the caller) should assume that the old BCB
has been dereferenced and deallocated.

310 Chapter 7: The NT Cache Manager II

• If you invoke CcMapData () and then you use CcPinMappedData () , you
will invoke CcUnpinData () only once, to correspond to the CcMapData ()
call. Specifically, you should not invoke CcUnpinData () twice.

• If you invoke CcMapData () more than once for the same byte range (i.e.,
using the same BCB pointer), you must invoke CcUnpinData () for each
instance when CcMapData () was successfully invoked.

• Regardless of the number of times you invoke CcPinMappedData () for the
same byte range (i.e., using the same BCB pointer), you do not have to
invoke CcUnpinData () to correspond to any of these calls (since the calls
are effectively turned into NULL operations).

CcPinReadQ
BOOLEAN
CcPinRead (

IN PFILE_OBJECT
IN PLARGE_INTEGER
IN ULONG
IN BOOLEAN
OUT PVOID
OUT PVOID

FileObject,
FileOffset,
Length,
Wait,
*Bcb,
*Buffer

Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread. The caller should have initialized
caching for the file stream using this file object.

FileOffset
The caller wishes to have data pinned in memory beginning at this file offset.

Length
This is the number of bytes that should be pinned in the system cache.

Wait
This is TRUE if the caller can block, waiting for data to be brought into the
system cache.

Bcb
If this routine returns a success code, a pointer to a BCB structure (allocated
by the Cache Manager) is returned in this argument. The BCB structure must
be used as context when invoking other routines for the buffer returned

Cache Manager Interfaces_____________________________________311

below. The memory allocated for the BCB structure is released by the Cache
Manager when the CcUnpinData () routine is invoked for the last time.

Buffer
This contains the virtual address of the mapped data (if the routine is
successful). The pointer is valid until a request to unmap or unpin the data is
made.

Functionality Provided:

A call to CcPinRead () is functionally equivalent to calling CcMapData ()
followed by a call to CcPinMappedData () . The net result is that the requested
byte range is pinned in the system cache. The caller is allowed to modify the byte
range that is pinned, as long as the caller informs the Cache Manager that data
has been modified (via the CcSetDirtyPinnedData () call).

The CcPinRead () routine returns TRUE if it successfully pins the requested byte
range in the system cache. If successful, the routine also returns the following
(just as in the case of the CcMapData () routine described earlier):

• A pointer to a Buffer Control Block (BCB) structure. This pointer should be
used by the caller as context to be supplied to the Cache Manager on subse-
quent calls to manipulate the pinned buffer.

• A virtual address pointer representing the start of the pinned range.

If the Wait argument is set to FALSE, the CcPinRead () routine checks to see if
the requested byte range is immediately available in the system cache. If the byte
range is not present in the system cache, the routine will return an unsuccessful
(FALSE) return code. However, if data is immediately available or if Wait is
supplied as TRUE, this routine returns success.

This routine may be invoked multiple times for the same byte range belonging to
the same file stream. However, each successful invocation of CcPinRead () must
be later followed by a corresponding call to CcUnpinData () .

CcSetDirtyPinnedDataO
VOID
CcSetDirtyPinnedData (

IN PVOID Bcb,
IN PLARGE_INTEGER Lsn OPTIONAL

);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

312_______________________________Chapter 7: The NT Cache Manager II

Parameters:

Bcb
This is the BCB pointer used as context. This pointer was obtained from a
previous invocation to either CcPinMappedData () or CcPinRead () .

Lsn
This is a Logical Sequence Number (LSN)* associated with this dirty data.

Functionality Provided:

Once data has been pinned in memory using either CcPinRead () or CcPin-
MappedData () , the file system is free to modify the data. However, once this
data is modified, the Cache Manager must be informed that the byte range
contains dirty (modified) data that has yet to be written to secondary media. The
file system uses CcSetDirtyPinnedData () to inform the Cache Manager that
the pinned data has been modified.

In the descriptions for CcPinMappedData () and CcPinRead () , it's mentioned
that the BCB pointer returned by the Cache Manager should be used as context
when invoking the Cache Manager to perform operations on the pinned byte
range. The CcSetDirtyPinnedData () routine also requires the BCB pointer,
so that the Cache Manager can identify the byte range that has to be marked dirty.

The Cache Manager allows the file system to request that a Logical Sequence
Number (LSN) be associated with the modified, pinned byte range. If your driver
wishes to associate a unique number with the pinned byte range, it can pass in
the optional second argument to the Cache Manager. This number can be used to
determine the sequence in which data is eventually written to secondary media.

When CcSetDirtyPinnedData () is invoked, the Cache Manager marks as
dirty the BCB for the pinned byte range. This call also results in the lazy-writer
thread being signaled if the lazy writer is not currently active. In time, the lazy-
writer component will write the modified data out to secondary storage. There are
two important points that must be noted here:

• No I/O is attempted in the context of the thread invoking this routine.

* NT provides a Log File Service (LFS) component that can be used by file systems or other modules (ap-
parently, the LFS has yet to be extended to become generically usable by components other than kernel-
mode file systems). This component provides logging and recovery services to users. Currently, NTFS is
the only client of the Log File Service. The LFS provides logging and recovery services to NTFS, via the
use of log files associated with file objects. Records written by the LFS to the log files are identified using
Logical Sequence Numbers (LSNs). These LSNs are used in a monotonically increasing fashion, and the
file system can identify the oldest record describing a transaction that has not yet been updated on sec-
ondary media using the Logical Sequence Number associated with this record. The Cache Manager pro-
vides the service where a client can associate a Logical Sequence Number with a byte range that has been
pinned in memory.

Cache Manager Interfaces__________________ _____ ____ 373

• None of the data that is pinned in memory will ever be written until it is
unpinned (and no other references to pin the data are outstanding). There-
fore, all data that is dirty and pinned will have to wait until it is completely
unpinned before it can either be explicitly flushed or lazy-written to second-
ary storage.

Finally, if the byte range being marked dirty extends beyond current valid data
length, the Cache Manager updates the valid data length for the file stream. At
some point, the Cache Manager will then inform the file system that the valid data
length for the file stream has been changed.

CcPreparePin WriteQ
BOOLEAN
CcPreparePinWrite (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Zero,
IN BOOLEAN Wait,
OUT PVOID *Bcb,
OUT PVOID *Buffer

) ;
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread. The caller should have initialized
caching for the file stream via this file object.

FileOffset
The caller wishes to have data pinned in memory beginning at this file offset.
The caller will then begin writing the byte range, presumably beginning at
this offset.

Length
This is the number of bytes that should be pinned in the system cache.

Zero
If TRUE, the Cache Manger will zero out the contents of the buffer before
returning successfully from this routine.

Wait
This is TRUE if the caller can block, waiting for data to be brought into the
system cache.

314_______________________________Chapter 7: The NT Cache Manager II

Bcb
If this routine returns a success code, a pointer to a BCB structure (allocated
by the Cache Manager) is returned in this argument. The BCB structure must
be used as context when invoking other routines for the buffer returned
below. The memory allocated for the BCB structure is released by the Cache
Manager when the CcUnpinData () routine is invoked for the last time.

Buffer
This contains the virtual address of the mapped data (if the routine is
successful). The pointer is valid until a request to unmap or unpin the data is
made.

Functionality Provided:

The CcPreparePinWrite () is used when the file system knows that it will
modify a byte range for the file stream. Upon successful completion of this call,
the file system can immediately begin transferring data into the buffer reserved for
the byte range.

Functionally, this call is similar to the CcPinRead() routine; the Cache Manager
maps in the desired byte range and then ensures that data is present in memory.
If Wait is set to FALSE and the Cache Manager cannot return all the data
requested within the byte range, the Cache Manager will return FALSE from this
routine. However, if either Wait is set to TRUE or all the requested data is imme-
diately available in the cache, the Cache Manager will pin the requested byte
range in memory and return TRUE to the caller.

As a user of this routine, you should be aware of an important optimization
performed by the Cache Manager: if the requested byte range contains pages that
will be completely overwritten, the Cache Manager will not bother to read the
original data contained in those pages from secondary media. Instead, the Cache
Manager simply returns zeroed pages. Therefore, the caller of this routine must be
careful not to use the CcPreparePinWrite () call in lieu of the CcPinReadO
routine, since the buffer returned by the latter can indeed have data read from it.
However, the buffer returned by CcPreparePinWrite () must only be used to
transfer new data to secondary media.

Just as was described for the CcPinRead () routine, this function returns the
following:

• A pointer to a Buffer Control Block (BCB) structure. This pointer should be
used by the caller as context to be supplied to the Cache Manager on subse-
quent calls to manipulate the pinned buffer.

• A virtual address pointer representing the start of the pinned range.

Cache Manager Interfaces _____________________________________ 375

This routine may be invoked multiple times for the same byte range belonging to
the same file stream. However, each successful invocation of CcPreparePin-
Write () must be later followed by a corresponding call to CcUnpinData () .

If Zero is set to TRUE, the Cache Manager will zero out the entire buffer before
returning from this routine. Finally, the buffer returned by the Cache Manager is
marked as dirty (internally). Therefore, at some time, the lazy-writer thread will
begin writing the contents of the buffer to secondary storage. However, as noted
in the description for CcSetDirtyPinnedData () , the modified byte range will
be written to disk only after it has been unpinned.

CcUnpinDataQ/CcUnpinDataForThreadO
VOID
CcUnpinData (

IN PVOID Bcb

VOID
CcUnpinDataForThread (

IN PVOID Bcb,
IN ERESOURCE_THREAD ResourceThreadld

);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with these
routines.

Parameters:

Bcb
BCB pointer used as context. This pointer was obtained from a previous invo-
cation to CcMapData () , CcPinRead () , or CcPreparePinWrite () .

ResourceThreadld
This is only used in CcUnpinDataForThread () . It identifies the thread
performing the operation.

Functionality Provided:

It is extremely important that each successful invocation of CcMapData () ,
CcPinRead(), and CcPreparePinWrite () be followed by a corresponding
call to CcUnpinData () ; this should be done after the operation requiring that
data be pinned has been completed. This routine simply unpins (unlocks) the
byte range from the system cache.

The byte range is unmapped from memory only after all invocations of CcUnpin-
Data () have been made — one for each invocation of CcMapData () ,
CcPinReadO, or CcPreparePinWrite () . Data that was modified in the

316______________________________Chapter 7: The NT Cache Manager II

system cache and has been marked dirty will be written to secondary storage by
the lazy-writer thread after the BCB has been completely unmapped. Note that no
I/O is performed in the context of the thread invoking the CcUnpinData ()
routine (all I/O will be performed asynchronously). This can be a problem when
the client (file system driver) needs to ensure that all data has indeed been
written to secondary storage when the BCB has been completely unmapped
(unpinned). A solution to this problem is described later (see CcUnpin-
RepinnedBcb ()) .

Functionally, there is no difference between the CcUnpinData () and the CcUn-
pinDataForThread () routines.

CcRepinBcbQ
VOID
CcRepinBcb (

IN PVOID Bcb
);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

Bcb
This is the BCB pointer used as context. This pointer was obtained from a previous
invocation to either CcMapData () , CcPinRead () , or CcPreparePin-
WriteO.

Functionality Provided:

After the BCB has been completely unpinned (i.e., CcUnpinData () has been
invoked for each successful invocation of CcMapData () , CcPinRead () , or
CcPreparePinWrite ()) , the modified data will be asynchronously written to
disk via the lazy-writer module. However, this presents a problem for file streams
that have also been opened by users with write-through access specified (F0_
WRITE_THROUGH set in the flags for the associated file object).

Since the user requires that the data be synchronously written to disk, file systems
have to ensure that such write-through functionality is indeed performed before
returning to the requesting user process. To ensure this, file systems use the
CcRepinBcb () and the CcUnpinRepinnedBcb () routines.

The CcRepinBcb () routine simply references the BCB an additional time. This
ensures that the BCB will not be deleted when a subsequent call to CcUnpin-
Data () is made.

Cache Manager Interfaces______________________________ 317

NOTE The BCB is deleted only after all references to the BCB are re-
moved. Typically, a BCB is referenced when one of the Cc-
MapRead () , etc. routines are invoked. The reference is only
removed when CcUnpinData () is subsequently called.

The significance of this operation is explained below (see CcUnpinRe-
pinnedBcb ()) .

CcUnpinRepinnedBcbQ
VOID
CcUnpinRepinnedBcb (

IN PVOID Bcb,
IN BOOLEAN WriteThrough,
OUT PIO_STATUS_BLOCK loStatus

);
Resource Acquisition Constraints:

The caller must ensure that no client resources have been acquired when
invoking this routine (otherwise, a system deadlock is possible).

Parameters:

Bcb
This is the BCB pointer used as context. This pointer was obtained from a
previous invocation to either CcMapDataO, CcPinReadO, or to CcPre-
parePinWrite().

Wr i t eThrough
If set to TRUE, the Cache Manager will synchronously flush modified data to
secondary storage before returning from this call.

loStatus
This is set to STATUS_SUCCESS if WriteThrough is FALSE (i.e., since there
was nothing to flush synchronously, the return status must be STATUS_
SUCCESS). Otherwise, it returns the actual result of the flush operation.

Functionality Provided:

In the earlier description for CcUnpinData () , it's mentioned that modified,
pinned data will be asynchronously written to secondary storage by the lazy-
writer component of the Cache Manager when the BCB is completely unpinned/
unmapped. This happens after the reference count for the BCB structure is equal
to 0; i.e., for every successful invocation of CcMapDataO, CcPinReadO,
CcPreparePinWriteO, a corresponding invocation of CcUnpinData () has
been performed.

3/S______________________________Chapter 7: The NT Cache Manager II

Consider the case, however, when a user process that has opened the file stream
with write-through access makes a write request for the byte range that has been
pinned in memory. Alternatively, the user process may request a write-through
operation when the file system has pinned metadata for the file stream in memory
(metadata includes file stream date, time, and size information, along with other
information pertaining to the file stream). To perform write-through, the file
system must ensure that the data has been written to secondary storage before
control is returned to the user process.

The file system achieves this by using the CcRepinBcb {) and CcUnpinRe-
pinnedBcb () sequence of calls to the Cache Manager. The CcRepinBcb () call
adds a reference to the BCB structure, ensuring that the BCB will not be deleted
when CcUnpinData () is invoked (which will be done by the file system as part
of processing the user request). Subsequently, before completing the IRP
describing the user's write request (typically, the file system does this by
requesting that it be invoked by the I/O Manager before the IRP is completed),
the file system will invoke CcUnpinRepinnedBcb (). Note that the file system
must ensure that no resources have been acquired by the file system when this
routine is invoked.

If WriteThrough is set to TRUE by the file system, the Cache Manager will
synchronously write the modified data to secondary storage before returning from
the routine. This ensures that the resource acquisition hierarchy is maintained, yet
the file system can honor the user's desire for write-through operation.

Although there is a Cache Manager interface routine to flush cached data
(described in the next chapter), pinned buffers are not flushed when that routine
is invoked. Therefore, by using the method described here, the file system can
achieve its objective of ensuring synchronous flush/write-through of user data.

CcGetFileObjectFromBcbO
PFILE_OBJECT
CcGetFileObjectFromBcb (

IN PVOID Bcb
);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

Bcb
This is the BCB pointer used as context. This pointer was obtained from a
previous invocation to either CcMapData () , CcPinRead () , or to
CcPreparePinWrite().

Cache Manager Interfaces_____________________________________319

Functionality Provided:

The Cache Manager returns a pointer to the file object that was used when
caching was first initiated for the file stream. Note that the file object is not
returned referenced (i.e., the Cache Manager does not reference the file object
structure an extra time when returning a pointer to the structure from this routine)
and hence the Cache Manager cannot guarantee that the file object structure will
not be deallocated at any instant.

MDL Interface
The Memory Descriptor List (MDL) interface is used by clients of the Cache
Manager so that they can perform I/O directly into or out of the system cache.
This interface can be used concurrently with the copy interface; however, neither
the copy interface nor the MDL interface can be used in conjunction with the
pinning interface. The following routines comprise the MDL interface.

CcMdlReadQ
VOID
CcMdlRead (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
OUT PMDL *MdlChain,
OUT PIO_STATUS_BLOCK loStatuS

);
Resource Acquisition Constraints:

The FCB for the file must usually be acquired shared before invoking the routine
Acquiring the FCB exclusively will prevent multiple readers from being able to
concurrently access file data.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread. Caching must have been previously
initiated by the file system driver on this file object.

Note that if the file system driver did not initiate caching prior to invoking the
CcMdlRead () routine, an exception is generated, because the Cache
Manager assumes that the private cache map and shared cache map structures
exist and have been initialized correctly.

FileOffset
This is the starting offset in the file. This offset denotes the file position from
which the data will be transferred from the system cache. Note that the Cache

320_______________________________Chapter 7: The NT Cache Manager II

Manager does not require that the starting offset be aligned on some
boundary (e.g., page boundary or sector boundary). However, the device that
eventually uses the returned MDL to perform data transfer may have certain
alignment restrictions that the caller should keep in mind.

Length
This is the number of bytes that will be transferred from the system cache.

MdlChain
If this routine does not generate an exception condition and if the status field
in the returned loStatus argument is set to TRUE, then the Cache Manager
will return a pointer to an allocated MDL, describing the requested byte range
in this field.

loStatus
The Cache Manager returns the status code for this operation—in the Status
field—as well as the number of bytes that are described by the MDL in the
Information field. Typically, if the CcMdlRead () routine does not
generate an exception condition, the Status field will be set to STATUS_
SUCCESS.

Functionality Provided:

The CcMdlRead () routine returns a Memory Descriptor List (MDL) that describes
physical pages allocated for the passed-in byte range. This allows the client to
read data directly from the system cache and write it either across the network or
to some secondary storage device (that typically supports DMA).

Note that the returned pages are locked; i.e., the specified byte range is guaran-
teed to continue to be backed by the physical pages described in the MDL. The
pages are available for reuse only after the caller invokes the CcMdlReadCom-
plete () routine to signify that the caller no longer has any use for the MDL.
Also note that the returned MDL is not necessarily mapped into the system virtual
address space. If the caller does require that the pages be mapped into the system
virtual address space, the caller can invoke the MmGetSystemAddress-
ForMdl () function to do so. (Note that MmGetSystemAddressForMdl () is
actually a macro defined in the ntddk.h header file.)

As part of creating an MDL describing the byte range (requested by the caller),
the Cache Manager ensures that data is physically present in the requested pages.
This is done by faulting the requested byte range into the system cache.

If this routine fails to allocate an MDL or if the data cannot be read-in, an exception
will be generated by this routine. Therefore, the client must ensure that an excep-
tion handler is prepared to handle any exceptions generated as a result of invoking

Cache Manager Interfaces_____________________________________321

this routine (a rare, though typical exception is STATUS_INSUFFICIENT_
RESOURCES).

CcMdlReadCompleteQ
VOID
CcMdlReadComplete (

IN PFILE_OBJECT FileObject,
IN PMDL MdlChain

);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure used when
CcMdlRead () was invoked.

MdlChain
This is the pointer to the MDL chain that was returned by the Cache Manager
when CcMdlRead () was invoked.

Functionality Provided:

Once the client has transferred data from the system cache using the MDL created
by the Cache Manager (see description of CcMdlRead ()) , the client must invoke
this routine to allow the Cache Manager to deallocate the MDL and unlock the
physical pages associated with the byte range.

If multiple calls to CcMdlRead () are made for different byte ranges for a file
stream, it is not necessary that the calls to CcMdlReadComplete () be made in
the same order (or in any particular order) to release the various MDL chains.
However, to avoid serious memory leaks, among other problems, the client must
ensure that a call to CcMdlRead () is always followed by a corresponding call to
CcMdlReadComplete().

CcPrepareMdlWriteQ
VOID
CcPrepareMdlWrite (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
OUT PMDL *MdlChain,
OUT PIO_STATUS BLOCK loStatus

322 Chapter 7: The NT Cache Manager II

Resource Acquisition Constraints:

The FCB for the file must at least be acquired shared before invoking the routine.
Typically, the FCB for the file stream is acquired exclusively by the file system to
ensure that data consistency is maintained.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread. Caching must have been previously
initiated by the file system driver on this file object.
Note that if the file system driver has not initiated caching prior to invoking
the CcPrepareMdlWrite() routine, an exception is generated, because the
Cache Manager assumes that the private cache map and shared cache map
structures exist and have been initialized correctly.

FileOffset
This is the starting offset in the file. This offset denotes the file position at
which the data will be transferred into the system cache. Note that the Cache
Manager does not require that the starting offset be aligned on some
boundary (e.g., page boundary or sector boundary). However, the device that
eventually uses the returned MDL to perform data transfer may have certain
alignment restrictions that the caller should keep in mind.

Length
This is the number of bytes that will be transferred into the system cache.

MdlChain
If this routine does not generate an exception condition and if the status field
in the returned loStatus argument is set to TRUE, then the Cache Manager
will return a pointer to an allocated MDL, describing the requested byte range
in this field.

loStatus
The Cache Manager returns the status code for this operation in the Status
field, as well as the number of bytes that are described by the MDL in the
Information field. Typically, if the CcPrepareMdlWrite () routine does
not generate an exception condition, the Status field will be set to STATUS_
SUCCESS.

Functionality Provided:

The CcPrepareMdlWrite () routine is analogous to the CcMdlReadO routine
in that it returns a list of locked physical pages that can subsequently be used by
the client to transfer data directly into the system cache. Typically, data is trans-

Cache Manager Interfaces_____________________________________323

ferred directly from across the network or from a secondary storage device that
supports DMA.

The pages comprising the returned MDL are guaranteed to be resident (locked in
memory) until the caller invokes the CcMdlWriteComplete () routine to
signify that data has been transferred into the system cache. Just as in the case of
CcMdlRead () , the caller must not assume that the pages backing the requested
byte range have been mapped into system virtual address space. However, the
caller may choose to map these pages into the system virtual address space explic-
itly as a separate step.

Since the Cache Manager assumes that the byte range for which an MDL has been
requested will be modified by the caller, the Cache Manager tries to optimize for
the case when entire pages are being overwritten by returning zeroed pages
instead of attempting to fault the original data into the system cache. Typically
this is done only when the requested byte range extends beyond the current valid
data length.*

If this routine fails to allocate an MDL or if the data cannot be read in, it will
generate an exception. Therefore, the client must ensure that an exception
handler is prepared to handle any exceptions generated as a result of invoking
this routine (a rare exception is STATUS_INSUFFICIENT_RESOURCES; this
exception would be raised if the Cache Manager could not allocate an MDL or
some other similar scenario).

CcMdlWriteCompleteO
VOID
CcMdlWriteComplete (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN PMDL MdlChain

);
Resource Acquisition Constraints:

The caller must ensure that no client resources have been acquired when
invoking this routine, or a system deadlock is possible.

* Though the Cache Manager could further optimize for the case when entire pages are presumably being
overwritten by returning zeroed pages spanning a byte range contained within current valid data length,
it appears as though the Cache Manager does not do so. One possible explanation for this is the fact that
if the write operation does not successfully complete, the Cache Manager would then overwrite perfectly
valid data with zeroes! The conservative option, in this case, is to fault in all data that is contained within
the current valid data length for the file and to return zeroed pages only for that portion of the byte range
that extends beyond the valid data length.

324_______________________________Chapter 7: The NT Cache Manager II

Parameters:

FileObject
This argument contains a pointer to the file object structure used when
CcPrepareMdlWrite () was invoked.

FileOffset
This is a starting offset passed in to the CcPrepareMdlWrite () routine.

MdlChain
This is the pointer to the MDL chain that was returned by the Cache Manager
when CcPrepareMdlWrite () was invoked.

Functionality Provided:

After data has been transferred into the system cache following a call to CcPre-
pareMdlWrite (), the client must invoke the CcMdlWriteComplete () routine
to inform the Cache Manager that it is now safe to unlock the pages comprising the
MDL. In turn, the Cache Manager will unlock the pages backing the requested byte
range and also ensure that the modified data is written to disk.

If the file stream was opened with write-through specified, the Cache Manager
will not return control from this routine until the data has been written to
secondary storage. In this case, any error in writing the data out to media is
returned in the form of a raised exception. However, if the file stream was not
opened for write-through access, the Cache Manager simply initiates an asynchro-
nous write operation via the lazy writer component. This data will then be written
to disk at a later time.

In order to avoid system deadlock (especially in the case where write-through has
been specified), it is extremely important that this routine be invoked with none
of the client's resources acquired.

In the next chapter, we will continue our detailed exploration of the Cache
Manager and examine issues related to termination of caching, flushing and
purging of file streams, cleanup and close operations, and truncation of cached
streams. We'll also review the interaction of the Cache Manager with the Virtual
Memory Manager, the lazy-writer, and the read-ahead components of the Cache
Manager.

In this chapter:
• Flushing the Cache
• Termination of

Caching
• Miscellaneous File

Stream
Manipulation
Functions

• Interactions with the
VMM

• Interactions with the
I/O Manager

• The Read-Ahead
Module

• Lazy-Write
Functionality

The NT Cache
Manager III

This chapter explains the remaining file stream manipulation functions that were
listed in Chapter 6, The NT Cache Manager I. These include flushing the cache on
demand, purging pages from the system cache, changing file sizes (and informing
the Cache Manager of such changes), and terminating caching for a file object.

Following the description of the file stream manipulation functions, I describe
some of the interactions the Cache Manager has with both the Virtual Memory
Manager and the I/O Manager. I then present a discussion of the lazy-writer and
the read-ahead components of the Cache Manager.

Flushing the Cache
Modified cached data is typically written asynchronously to secondary storage
media by the lazy-writer component. Also, if the system is running low on avail-
able physical memory, the Virtual Memory Manager may flush modified pages to
secondary storage. However, any thread that opens a file stream for write access
can request that cached data be flushed, and it then has the option of waiting
until the flush operation completes before continuing with further processing.

Another method that a thread can use to force modified data to be written to
secondary storage is to use write-through operations. This is accomplished by
specifying the FILE_WRITE_THROUGH flag when the file stream is opened.

325

326______________________________Chapter 8: The NT Cache Manager III

NOTE By requesting write-through mode, a thread informs the file system
that a system call (resulting in a call to the file system) to write modi-
fied data must ensure that the data has been written to secondary
storage before returning control back to the thread. Then, in the
event of unexpected system crashes, the thread can guarantee that
data was not lost due to in-memory buffering.

An interesting situation arises when multiple open operations are concurrently
performed on a file stream, some requesting cached access and others specifying
write-through mode. Typically, when the file system receives a write request
using a file object that specifies write-through, the file system has to ensure that
all modified data for the file stream in the system cache is written to secondary
storage, including the newly modified data.* Therefore, requests for access to data
using file objects that were created with write-through specified typically result in
frequent flush operations performed on the file stream.

The routine used by file systems to request that file stream data be flushed is
defined as follows:

VOID
CcFlushCache (

IN PSECTION_OBJECT_POINTERS SectionObjectPointer,
IN PLARGE_INTEGER FileOffset OPTIONAL,
IN ULONG Length,
OUT PIO_STATUS_BLOCK loStatus OPTIONAL

) ;
Resource Acquisition Constraints:

The file system can choose from one of two acquisition options:

• The FCB for the file stream can be acquired exclusively.

• The FCB for the file stream is left unowned. The file system should guarantee
in this case that no resources are acquired before invoking the Cache Man-
ager.

* It is indeed possible that a file system may flush only the region specified in the write-through request.
Typically, however, most files are relatively small (many are less than 64KB in length), and it might make
sense for the file system to request that the entire file be flushed out to secondary storage—hopefully, in
a single I/O operation. Only modified pages will ever be written out; therefore, most file systems simply
request that the Cache Manager flush the entire file and subsequently let the Cache Manager and the Vir-
tual Memory Manager figure out the pages to be actually written.

Flushing the Cache___327

Parameters:

SectionObj ectPointer
The file system allocates a section object pointer structure when caching is
first initiated for the file stream. As noted in Chapter 6, the Shared-
CacheMap field is used by the Cache Manager to store a pointer to an
allocated shared cache map structure uniquely associated with the file stream.
The Cache Manager can uniquely identify the file stream that should be
flushed using this pointer.

Since a pointer to the section object pointers structure is required, caching
must have been previously initiated on the file stream.

FileOffset
This is an optional argument. If supplied, the offset specifies the starting
offset of the byte range to be flushed. If not supplied, the Cache Manager
assumes that the starting offset is byte 0 in the file stream. Also, if the file
offset argument is omitted, the Cache Manager ignores the Length argument
and also assumes that the entire file should be flushed to secondary storage.
Note that the large integer structure is not pushed onto the stack and that a
pointer to the large integer structure is required instead.

Length
This is the number of bytes that should be flushed. This argument is ignored
if no file offset is supplied to the Cache Manager.

loStatus
The Cache Manager returns the status code for this operation in the Status
field of the loStatus structure. This is an optional argument and the caller
can supply a NULL pointer if the client does not need to know the result of
the operation.

Functionality Provided:

The CcFlushCache () routine accepts a request to flush the modified in-
memory data to secondary storage. The flushing is performed synchronously, and
hence the calling thread should be prepared to block, waiting for the I/O opera-
tion to complete.

The implementation of this routine is conceptually very simple: the Cache Manager
receives this request and decides if the entire file (beginning at file offset 0) should
be flushed or if a specific byte range in the file should be flushed. This is deter-
mined based on whether the caller supplied a file offset argument or not. If a file
offset is supplied, then the requested byte range is flushed; otherwise, the entire file
is flushed. If a byte range is supplied, the Cache Manager checks that a valid range
has been requested.

328______________________________Chapter 8: The NT Cache Manager III

The Cache Manager then asks the Virtual Memory Manager to flush the section
object (representing the file stream mapping object) to secondary storage. The
results of the operation are then returned to the caller, if the caller supplies an
loStatus argument.

Note that modified buffers that are currently pinned in memory are not flushed
when this routine is invoked. These buffers are flushed asynchronously by the
lazy-writer thread after they are unpinned.

Termination of Caching
Once caching has been initiated for a file object, the user can access data directly
out of the system cache and also enjoy the benefits obtained from read-ahead and
lazy-write operations on the cached data. As was noted in the previous chapter,
in response to a file system request to initiate caching, the Cache Manager allo-
cates the shared cache map data structure. Once all processes in the system
complete processing data for the file stream, this structure should be deallocated
by the Cache Manager and memory pages used to cache data for the file stream
should be freed.

After I/O operations on the file stream have ceased, a close operation is
performed on the file handle representing the file stream. This operation indicates
that the particular process no longer needs to access the data for that file stream,
and the file system should terminate caching of data using the associated file
handle.

After all processes that opened the file stream close their respective handles to the
file, all references to file objects for the file stream are removed. At this time, all
data structures used to maintain cache state information can be deallocated and
data for the file stream can be purged from system memory.

To understand the sequence of operations that leads to termination of caching for
a file stream, let us examine the cleanup and close requests handled by file
system drivers.

Once a process completes all desired I/O operations on a file stream, it performs
a close operation on the handle representing that file stream. When the last user
handle corresponding to the file object is closed, the I/O Manager invokes the file
system driver with an IRP containing the major function IRP_MJ_CLEANUP. This
is known as a cleanup request to the file system driver.

Termination of Caching_________________________________ 329

NOTE The terminology is a little confusing here; you may wonder why a
dose operation by a process on a handle to the file stream results in
a cleanup request (IRP) to the file system. And then, at some point,
the file system receives a close request (IRP) as well for the file
stream. The simple answer: someone at Microsoft picked these non-
intuitive names! Alternative names for these IPRs could include IRP_
MJ_FILE_OBJ_USERS_HANDLES_CLOSEDhmn, for the cleanup re-
quest, and IRP_MJ_FILE_ALL_REFERENCES_GONE for the close
request. Hopefully, the discussion in this chapter and in Part 3 will
help clarify the situation.

The cleanup request notifies the file system that no additional user processes will
attempt to access the file stream using the specific file object (an argument to the
file system receiving the cleanup request). In response, the file system performs a
well-defined sequence of operations; these operations are explained in further
detail in Part 3. However, regarding interfacing with the Cache Manager, the file
system driver typically does the following:

• The file system flushes all the buffers associated with the file stream.*
Once the IRP for the cleanup request is completed by the file system, the call-
ing process expects that modified data should have been written to secondary
storage, or at the very least, it should be scheduled to be written fairly soon.

• The file system terminates caching for the passed-in file object.

You have already seen the Cache Manager routine used by the file system to flush
buffers for a file stream. The routine to terminate caching for a file object associ-
ated with a file stream is defined as follows:

BOOLEAN
CcUninitializeCacheMap (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER Truncatesize OPTIONAL,
IN PCACHE_UNINITIALIZE_EVENT UninitializeCompleteEvent OPTIONAL

);
The CACHE_UNINITIALIZE_EVENT structure is defined below:

typedef struct _CACHE_UNINITIALIZE_EVENT {
struct _CACHE_UNINITIALIZE_EVENT *Next;
KEVENT Event;

} CACHE_UNINITIALIZE_EVENT, *PCACHE_UNINITIALIZE_EVENT;

' The Cache Manager routine to uninitialize the cache map for a file object also ensures that data for the
file stream gets flushed to secondary storage. However, that flush operation is typically performed asyn-
chronously, and invoking the flush call explicitly could be useful to file systems that wish to ensure that
modified buffers are written to secondary storage each time a user handle is closed.

330 Chapter 8: The NT Cache Manager III

Resource Acquisition Constraints:

The FCB for the file stream must be acquired exclusively before invoking this
routine.

Parameters:

FileObject
This is a pointer to the file object structure for which caching is being termi-
nated by the file system.

TruncateSize
This is an optional argument. If the file stream has been deleted, the delete
actually occurs only when the final cleanup call for the file stream is received
by the file system driver, i.e., when the last user handle is closed.* At this
time, the Cache Manager purges all pages from the system cache and forces
the section representing the file mapping to be closed if the value of the
TruncateSize argument is set to 0.
Alternatively, the file system may wish to truncate the file stream even when
there are other open handles for the file stream. In this case, specifying a
valid truncate size results in this truncation and pages are purged when the
last user handle is closed.

UninitializeCompleteEvent
The name for this optional argument is somewhat of a misnomer (maybe
UninitializeAndFlushCompleteEvent might have been a better
choice). Since the Cache Manager might choose to lazy-write the file stream data
to secondary storage and/or lazy-delete the section object representing the file
mapping, this argument allows the caller to request that it be notified when the
actual flush of cached data and the subsequent uninitialization of the cache map
is completed.

Functionality Provided:

The CcUninitializeCacheMapO routine is used by file systems for each file
object when a cleanup IRP is received for a file object. Note that this routine
should be invoked for every file object, regardless of whether caching had ever
been invoked for the file object. This is because truncation related to deletion of a

* This is a peculiarity of the Windows NT system. As you will see in Chapter]0, Writing A File System
Driver II, to delete a file stream (more specifically, to delete a link/name-entry in a directory associated
with a file stream), a process must first open the link for the file stream, mark it for deletion, and finally
close the handle. When all file handles for the file stream are closed, the directory entry will actually be
deleted (and so will the file stream if the link count for the file was 1). For cached files, when the last
user handle for the file stream is closed, the Cache Manager purges all the pages associated with the file
stream from system memory and also forces the section to be closed. In other operating systems, it is not
always required that a file stream be opened in order to delete it.

Termination of Caching______________________________________331

file is only performed when the last cleanup operation is invoked for a file
stream; i.e., when all user file handles (and therefore all corresponding file
objects) have been closed. Similarly, truncation specified for a file stream opened
by other processes is performed when all user handles to the file stream have
been closed.

Invoking this routine for a file object on which caching has not been initialized
has a benign effect.

WARNING Although the above statement is mostly true, if you write a file sys-
tem driver, be careful to ensure that the SectionObjectPointer
field in the file object structure has been initialized prior to invoking
this routine. Failure to do so might lead to an exception being
raised because the Cache Manager dereferences this field to get to
the shared cache map field within the structure. The shared cache
map structure in turn is used to determine whether caching is in
progress at all for the file stream associated with the file object.

You should ensure that the file control block for the file stream has been acquired
exclusively prior to invoking the routine. If caching has been initiated for the file
object on which this operation is being performed, caching will be uninitialized.
You should note that after returning from this operation, the PrivateCacheMap
field in the file object structure will have been reset to NULL.

If the last open user handle to the file stream is being closed, invoking this
routine will result in the following:

• If a valid TruncateSize argument was supplied, the pages starting at the
supplied offset will be purged from the system cache.

• Modified (but unpurged) pages in the system cache are flushed to secondary
storage.

• The shared cache map for the file stream is deleted (actually a lazy-delete will
be initiated, since modified pages may be lazy-flushed to secondary storage).

As was noted in Chapter 6, the Cache Manager does not interpret the contents of
the byte streams that it caches for other system components. In particular, the
Cache Manager is used by file systems to cache not only user data but also file
system metadata, such as volume information, extended attributes, directory
contents, and other similar information. To initiate caching for such file streams,
file systems use the loCreateStreamFileObject () routine to request that
the I/O Manager create a file object representing the file stream. Once this file
object has been created, the file system can itself initiate caching on the returned
file object and use the system cache to cache nonuser data.

332______ ______________________Chapter 8: The NT Cache Manager III

The loCreateStreamFileObject () routine creates a file object and refer-
ences it. It then executes a close operation on the referenced file object before
returning the file object pointer to the caller. This close operation on the handle
for the newly created file object results in a cleanup IRP being dispatched to the
file system. The file system should recognize that this is a cleanup request for a
special stream file object data structure and simply no-op the call (instead of
trying to uninitialize caching for the file object).

You should also note that receipt of a cleanup request on a file object by the file
system does not mean that no further I/O requests will be received by the file
system using that file object. Although the cleanup request does indicate that all
user handles associated with the file object have been closed, it is indeed possible
that the Cache Manager (and/or the Virtual Memory Manager) may have refer-
enced the file object and might send read or write-behind requests to the file
system using that file object.

Typically, once a file system receives a cleanup request on a file object, further
I/O requests should be expected if the following conditions hold true:

• The file object was the first one used to initiate caching for the file stream
(i.e., this was the first file object—corresponding to the first open instance
among many possible file open instances—that was used in a call to CcIni-
tial izeCacheMap () to initiate caching).

• The file system did not invoke CcFlushCache () explicitly when receiving
the cleanup IRP and there is modified data in the system cache (you should
note that the lazy-writer would then try to write-behind this modified data),
or there are other open instances for the same file stream and one or more is
resulting in modified data in the system cache (this means that some other
thread/process seems to be modifying data for the file stream). •

Close Request
When the last user handle associated with a file object is closed, the file system
receives a cleanup request. In response, the file system flushes the cached file
stream data, uninitializes the cache map, and performs other housekeeping func-
tionality for that file object.

It is important to note that, although all user handles associated with a file object
may be closed, there may be references to the particular file object. As long as
one or more references exist to a file object, the file object structure cannot be
deallocated. However, once the last reference to the file object structure has been
removed, the file system receives a close IRP (IRP_MJ_CLOSE). At this time, the
file system can perform any final housekeeping associated with the file object
before it gets deallocated.

Termination of Caching______________________________________333

Although most file systems do not interact with the Cache Manager when a close
IRP is received for a file stream, it is important to note that the Cache Manager
retains a reference to the first file object for a file stream on which caching has
been initiated. This may result in a close operation on a file object being delayed
until after the cleanup request for the file object has been received and completed.

To clarify this further, consider a file stream for a file foo on disk. When process-1
opens this file, a file object is created to represent the open instance for the file
stream. Now, imagine that process-2 also opens file foo. At this time, another file
object representing the second open for the file stream is created. Now, let
process-1 initiate the first I/O operation (either read or write) on the file stream.
The file system driver initiates caching for the file object, and this request to
initiate caching is received by the Cache Manager. While initiating caching for the
file object, the Cache Manager notices that this is the first occurrence of caching
being initiated for the file stream foo. Therefore, the Cache Manager retains a refer-
ence to the file object. Although, at some later time, process-2 might also perform
buffered I/O, which causes caching to be initiated for the second file object associ-
ated with the file stream foo, the Cache Manager does not reference any other file
object for the same file stream.

After both processes have closed their respective handles, the file system will get
a close IRP only when the Cache Manager (and any other component that refer-
ences the file object) releases its reference to the file object structure.

NOTE You know that the Cache Manager invokes the Virtual Memory Man-
ager to create a section object representing the file mapping for
each file that is cached. When the VMM is invoked for the first time
on a file stream (to create a section object or file mapping), the
VMM also references the passed-in file object. Therefore, the first
file object on which caching is initiated for a file stream is refer-
enced at least twice due to the act of caching being initiated—once
by the Cache Manager and a second time by the Virtual Memory
Manager. Both of these references need to be removed before a
close IRP is received by the file system for this particular file object.
This method of referencing the file object and thereby delaying the
close operation for a file object results in cached data being kept
around in the system cache across user file open and close opera-
tions. Therefore, if you open a Microsoft Word document, then
close it and then quickly open it once again, the second open and
subsequent I/O operations will typically access cached data, and
should be a lot quicker than the first one.

334______________________________Chapter 8: The NT Cache Manager HI

Miscellaneous File Stream
Manipulation Functions
In Chapter 7, The NT Cache Manager II, as well as in this chapter, I presented in
detail some file stream manipulation functions used by Cache Manager clients. For
example, you now know how to request that the Cache Manager initialize
caching for a file stream, how to flush the cache, and how to uninitialize caching.
In this section, the remaining file stream manipulation functions made available
by the Cache Manager are presented.

CcSetFileSizesQ
VOID
CcSetFileSizes (

IN PFILE_OBJECT FileObject,
IN PCC_FILE_SIZES FileSizes // See the previous chapter

// for the type definition
);
Resource Acquisition Constraints:

The FCB for the file must be acquired exclusively before invoking this routine.

Parameters:

FileObject
This argument contains a pointer to a file object structure associated with the
file stream whose size is being modified.

FileSizes
This is an initialized structure with the correct AllocationSize (may be
different from the current one), FileSize (i.e., the end-of-file value, which
might be changed), and the ValidDataLength. Note that the value in the
ValidDataLength field is not used.

Functionality Provided:

When the file system changes either the allocation size for a file or the current
end-of-file mark for a file stream on which caching has been initiated, it must
inform the Cache Manager of the new sizes. This is done using the CcSetFile-
Sizes () routine.

By acquiring the file stream exclusively, the file system ensures that no other
thread can concurrently access the data contained within the stream until the file
size change operation has been completed. This ensures that users see a consis-
tent view of the data.

The functionality provided by this routine is as follows:

Miscellaneous File Stream Manipulation Functions______________________335

1. If the new allocation size is greater than the previous allocation size, the
Cache Manager will extend the section size for the mapped data section
object created for the file stream.
Remember that the Cache Manager provides caching services by mapping the
file stream data. Mapping of a file stream is performed by requesting that the
Virtual Memory Manager create a section object for the file stream. Therefore,
the Cache Manager (once again) asks the VMM to increase the size of the
section object to correspond to the new allocation size for the file stream.
Note that this section object extension operation could result in a recursive
callback into the file system.

2. The Cache Manager will update the end-of-file with the new file size value.
If the valid data length value is being maintained (remember that the file
system can decide whether valid data length should be maintained or not),
the Cache Manager will also update the valid data length field for the file
stream. If the new end-of-file mark is less than the previous end-of-file value,
the Cache Manager may purge the cache of all extraneous pages.
You should note that in certain cases, the NT Cache Manager may actually
flush some dirty data to disk before purging the pages from the cache. These
flush operations typically cause a recursion back into the file system driver at
this time. The flush operations are usually performed when the file system
driver has not yet initiated caching on the file stream, yet the user has
mapped the file into the process' virtual address space.

CcPurgeCacheSection ()
BOOLEAN
CcPurgeCacheSection (

IN PSECTION_OBJECT_POINTERS SectionObjectPointer,
IN PLARGE_INTEGER FileOffset OPTIONAL,
IN ULONG Length,
IN BOOLEAN UninitializeCacheMaps

);
Resource Acquisition Constraints:

The FCB for the file must be acquired exclusively before invoking this routine.

Parameters:

SectionObj ectPointer
The Cache Manager uses the SectionObjectPointer to uniquely identify
the cached file stream on which the purge operation is being performed.

336______________________________Chapter 8: The NT Cache Manager III

FileOffset
The caller can specify that data be purged beginning at this file offset. If the
FileOffset value is nonnull, the Length argument (described below) will
be used; otherwise the Length argument will be ignored. Note that if the
FileOffset pointer value is set to NULL, all cached pages associated with
the file stream will be purged from memory.

Length
The client file system can request that the supplied number of bytes should
be purged, beginning at the FileOffset value described above. Note that
the Length field is ignored if the value of the FileOffset pointer is set to
NULL. If the supplied Length is not a multiple of the PAGE_SIZE for the
system, then the value will be adjusted upward to a multiple of the page size.
For example, if the FileOffset is 0, signifying that the purge should begin
at the beginning of the file stream, and the Length is 5, then at least one
page will be purged. Note that typically the page size is 4K bytes or greater.

UninitializeCacheMaps
If set to TRUE, the Cache Manager will force uninitialization of caching for all
file objects associated with the file stream.

Functionality Provided:

A file system uses this routine when a file stream is being truncated, but not
deleted. This routine causes previously written data to be discarded from memory
without being flushed to secondary storage (although a flush might have taken
place already due to asynchronous I/O initiated by either the lazy-writer or the
modified page/block writer).

The file system supplies a pointer to the section object structure associated with
the file stream. The Cache Manager purges the entire file (i.e., all pages in
memory for the file stream) if the supplied FileOffset pointer is NULL or if the
FileOffset value is 0 and Length is 0. Otherwise, it purges beginning at the
supplied offset value for Length number of bytes. Note that if Length is set to
0, then the remainder of the file, beginning at FileOffset, will be purged from
memory.

An important point to note here is that user-mapped files cannot be purged or
truncated as long as the file is mapped by some process. Therefore, if a user
process previously mapped the file (see Chapter 5, The NT Virtual Memory
Manager, for details), the purge request fails and potentially stale data continues
to reside in the system cache. If the purge is unsuccessful, this routine returns
FALSE; otherwise it returns TRUE.

Miscellaneous File Stream Manipulation Functions 33 7

WARNING The fact that a purge could fail simply because a user previously
mapped the file is a big problem for distributed file systems. As an
example, consider a remote file system (e.g., NFS or DPS) that is be-
ing accessed by processes on multiple nodes on a network. If some
process on node-1 maps the file into its virtual address space and
then a request to truncate the file stream is received from another
process on another node, the mapped pages cannot be purged from
node-1 until the process that mapped the file into memory unmaps
it. We -will discuss this problem further in a later chapter.

The client can also request that all file objects with caching initiated for this file
stream have their cache maps uninitialized. Note that typically, uninitialization of
a cache map is only performed by a file system upon receiving a cleanup request.
Uninitialization of the cache maps forces all file objects to reinitiate caching when-
ever new I/O operations are received. If UninitializeCacheMaps is set to
TRUE, the Cache Manager will force uninitialization of all cache maps on all file
objects associated with this file stream, regardless of whether the purge operation
succeeds or fails.

CcSetDirtyPageThresholdQ
VOID
CcSetDirtyPageThreshold (

IN PFILE_OBJECT FileObject,
IN ULONG DirtyPageThreshold

) ;

Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This is a file object associated with the file stream on which a restriction is
being placed. The file object must have caching initialized.

DirtyPageThreshold
This is the maximum number of modified pages that can be outstanding at
any time for this file stream.

Functionality Provided:

In order to help provide good overall system performance, a file system may
restrict the maximum total number of outstanding modified pages associated with
a file stream. An example of when this may be necessary is if some process starts
rapidly modifying pages for a file stream at a rate faster than the system can cope

338___ _ _______________________Chapter 8: The NT Cache Manager III

with, resulting in pages for other file streams being discarded from memory, to
make room for this one particular file stream. This situation leads to unnecessary
thrashing of pages in and out of memory and degrades overall system responsive-
ness and performance to other processes.

By restricting the total number of outstanding modified pages for a file stream,
and subsequently using the CcCanlWrite () and CcDeferWrite () routines
described in the previous chapter, the file system can ensure that no rogue
process can seriously degrade overall system performance by flooding the system
cache with data belonging to a single file stream.

CcZeroData ()
BOOLEAN
CcZeroData {
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER StartOffset,
IN PLARGE_INTEGER EndOffset,
IN BOOLEAN Wait
);
Resource Acquisition Constraints:

The FCB for the file must be acquired exclusively before invoking this routine.

Parameters:

FileObject
This argument contains a pointer to a file object structure for which a range
of bytes should be zeroed.

StartOffset
This is the starting offset for the range of bytes to be zeroed.

EndOffset
This is the corresponding ending offset.

Wait
This is set to TRUE if the file system is prepared to block in the context of the
thread used to invoke this routine. Otherwise, it should be set to FALSE.

Functionality Provided:

This routine can be used by the Cache Manager client to zero a range of bytes
within a file stream. The StartOffset and EndOffset arguments determine
the actual range of bytes that will be modified (set to zero).

The CcZeroData () routine can be invoked regardless of whether or not
caching has been initiated on the concerned file object. If caching has not been
previously initiated on the file object or if the file object has been marked for

Miscellaneous File Stream Manipulation Functions______________________339

write-through, i.e., the FO_WRITE_THROUGH flag was set, then the byte range is
zeroed directly on-disk.

Note that it is possible that other file objects for the same file stream may have
caching initiated (even though the one being used to zero data might not), or that
other file objects for the same file stream may not have write-through specified. In
such situations, the cached byte range might not be consistent with the newly
zeroed range on disk. Therefore, file system developers should be especially
careful when invoking this routine if they want to present a consistent view of
data to all processes accessing the file stream.

The Wait argument allows the file system to specify whether the file system is
prepared to block in the context of the thread used to invoke the CcZero-
Data () routine. Writing to secondary storage is potentially a blocking operation,
and if write-through is set or if the file object does not have caching initiated and
if Wait is set to FALSE, no zeroing of data will be performed. In general, if Wait
is set to FALSE, the Cache Manager will be able to successfully zero the specified
byte range only if the required space for the byte range is immediately accessible
in the system cache. If Wait is set to TRUE, however, the Cache Manager
attempts to zero as much of the byte range in the system cache as possible, and
the remainder of the specified byte range is zeroed directly on disk.

File systems should note that if the Cache Manager decides to zero data directly
on disk, invoking this routine leads to a recursive callback into the file system in
the form of a paging I/O write operation. See Chapter 10 for a discussion of the
implications on FSD processing when the zeroing operation is performed directly
on-disk.

If the Cache Manager successfully zeroes the specified byte range, the call to this
routine returns TRUE; otherwise the Cache Manager returns FALSE. This routine
raises an exception (e.g., STATUS_INSUFFICIENT_RESOURCES) in the event of
an error while allocating resources or while performing I/O to secondary storage.

CcGetFileObjectFromSectionPtrsQ
PFILE_OBJECT
CcGetFileObjectFromSectionPtrs (

IN PSECTION_OBJECT_POINTERS SectionObjectPointer
);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

340______________________________Chapter 8: The NT Cache Manager III

Parameters:

SectionObj ectPointer
This is a pointer to the section object associated with the FCB representing
the file stream.

Functionality Provided:

The Cache Manager returns a pointer to the file object used when caching was
first initiated for the file stream. Note that the Cache Manager does not reference
the file object structure an extra time when returning a pointer to the structure
from this routine, and hence, the Cache Manager cannot guarantee that the file
object structure will not be deallocated at any instant.

This routine is typically used when the file system needs to perform an operation
requiring a file object pointer that might not be conveniently available at that time.

CcSetLogHandleForFileQ
VOID
CcSetLogHandleForFile (

IN PFILE_OBJECT FileObject,
IN PVOID LogHandle,
IN PFLUSH_TO_LSN FlushToLsnRoutine

) ;
where:
typedef
VOID (*PFLUSH_TO_LSN) (

IN PVOID LogHandle,
IN LARGE_INTEGER Lsn

) ;

Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This is a file object for a file stream with which the log handle is being
associated.

LogHandle
This is an opaque value (from the Cache Manager's perspective) associated
with the file stream identified by the passed-in file object.

FlushToLsnRoutine
This routine is invoked before the Cache Manager flushes buffers (or any
BCB) for the file.

Miscellaneous File Stream Manipulation Functions______________________341

Functionality Provided:

As described in the previous chapter, the Cache Manager helps the Log File
Service assist file systems that use on-disk logging to help guarantee data consis-
tency and to provide fast recovery from system crashes. The file system can
associate a handle with a file stream for a data file using this routine; typically this
handle represents a log file associated with the data file.

The file system can also specify a callback routine, which is invoked before the
Cache Manager flushes a BCB (Buffer Control Block) to disk. By specifying a call-
back routine, the file system is informed of the newest Logical Sequence Number
(associated with a data record) being flushed, giving the file system an opportu-
nity to ensure that the contents of the log file are written to before the data is
written out. Typically, this is required by logging file systems to guarantee data
consistency in the event of system crashes. See the previous chapter, especially
the discussion on CcSetDirtyPinnedData () , for additional information.

CcSetAdditionalCacheAttributesQ
VOID
CcSetAdditionalCacheAttributes (

IN PFILE_OBJECT FileObject,
IN BOOLEAN DisableReadAhead,
IN BOOLEAN DisableWriteBehind

);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This is a pointer to a file object structure for the file stream for which read-
ahead and/or write-behind is being disabled. Caching must have been initi-
ated for the file stream using the passed-in file object, or an exception will be
raised.

DisableReadAhead
If set to TRUE, read-ahead is being disabled.

DisableWriteBehind
If set to TRUE, write-behind (or lazy-write) will be disabled.

Functionality Provided:

Typically, read-ahead and lazy-write (or write-behind) are enabled for all file
streams for which caching is initiated. In the event that a file system wishes to

342______________________________Chapter 8: The NT Cache Manager III

disable one or both of these features for a particular file stream, this routine can
be used to do so.

CcGetDirtyPagesQ
LARGE_INTEGER
CcGetDirtyPages (

IN PVOID LogHandle,
IN PDIRTY_PAGE_ROUTINE DirtyPageRoutine,
IN PVOID Contextl,
IN PVOID Context2

) ;
where:

typedef
VOID (*PDIRTY_PAGE_ROUTINE) (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN PLARGE_INTEGER OldestLsn,
IN PLARGE_INTEGER NewestLsn,
IN PVOID Contextl,
IN PVOID Context2

> ;
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

LogHandle
This is a log handle, previously associated with the file stream, for which dirty
pages should be returned.

DirtyPageRoutine
This is the callback routine to be invoked for each dirty page that is found for
the file stream identified by the LogHandle input parameter.

Contextl
This is an opaque (from the Cache Manager's perspective) value to be passed
in to the dirty page callback routine.

Context2
This is a second opaque value to be passed in to the dirty page callback
routine.

Functionality Provided:

For logging file systems, the Cache Manager provides this routine to obtain a list
of dirty pages for file streams associated with the specified log handle. Cached file

Miscellaneous File Stream Manipulation Functions______________________343

streams may have been previously associated with a log handle. Each of these
cached file streams may also have one or more byte ranges cached in memory,
with modified data that has not yet been written to secondary storage.

The Cache Manager checks all cached byte ranges in memory, and if it finds any
such range that has dirty data for a file stream that was associated with the speci-
fied log handle, the Cache Manager immediately invokes the supplied dirty page
routine for this byte range. The dirty page routine is given the starting file offset,
length of the cached range (in memory), the oldest and newest logical sequence
numbers associated with this range, and the two opaque context values that the
file system supplied in the call to CcGetDirtyPages ().

The file system should be aware that the callback is invoked at high IRQL with a
spin lock acquired. Therefore, the callback is not allowed to take a page fault and
it must perform its tasks quickly before returning control back to the Cache
Manager. Also, since the Cache Manager invokes the callback for each modified
byte range, the callback could be invoked multiple times for every file stream
associated with the specified log handle.

The call to CcGetDirtyPages () returns 0 if no dirty pages are encountered, or
else it returns the value of the oldest logical sequence number found for a modi-
fied byte range for a file stream associated with the supplied log handle.

CdsThereDirtyDataQ
BOOLEAN
CdsThereDirtyData (

IN PVPB Vpb
) ;

Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

Vpb
This is a pointer to a mounted Volume Parameter Block structure.

Functionality Provided:

In response to this call, the Cache Manager simply scans through all the cached
file streams, looking for those that are associated with the supplied VPB and have
some modified—but not flushed—data in the system cache. If any such cached
file stream is encountered, the Cache Manager returns TRUE.

Note that this is a quick way for a file system to determine whether dirty data for
any file stream on a particular volume exists in the system cache.

344 _ __________________________Chapter 8: The NT Cache Manager HI

So how does the Cache Manager determine whether a cached file stream belongs
to the specified volume? Recall that the Cache Manager stores a pointer to the
referenced file object used in the very first CcInitializeCacheMap() invoca-
tion for a file stream. Also, recall from Chapter 4, The NT I/O Manager, that each
file object has a pointer to the VPB for the volume on which the file stream for
the file object resides. Therefore, the Cache Manager can always obtain the
pointer to the VPB from the file object for that file stream.

CcGetLsnForFileObjectQ
LARGE_INTEGER
CcGetLsnForFileObj ect(

IN PFILE_OBJECT FileObject,
OUT PLARGE_INTEGER OldestLsn OPTIONAL

) ;

Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This is the file object for the file stream for which information is being
requested.

OldestLsn
This is an optional argument. If the oldest logical sequence number is also
required, this argument will be filled in.

Functionality Provided:

This routine simply returns the newest logical sequence number associated with a
file stream among dirty byte ranges. If caching has not been initiated for the file
stream, or if all data for the file stream has already been flushed to secondary
storage, this routine returns 0.

If the OldestLsn argument is supplied, and if there is any dirty data cached in
memory, the routine will also return the oldest logical sequence number for the
file stream.

Interactions with the VMM
The Cache Manager depends on the services provided by the Virtual Memory
Manager to provide caching functionality. Specifically, all policies related to actual
memory management, such as allocation of physical memory, creation of file

Interactions with the VMM____________________________________345

mappings, destruction of file mappings (section objects), and flushing data cached
in memory are performed with the active assistance of the VMM subsystem.

Dependencies upon the VMM exist throughout the Cache Manager implementa-
tion; most of these dependencies are resolved by internal calls to the VMM.
Unfortunately, most of the Cache Manager calls to the VMM use routines that are
not exposed to other kernel developers. Still, in order to understand the Cache
Manager, it is useful to be aware of the dependencies that the Cache Manager has
on the VMM. This allows you to be more aware of the dependencies within the
NT Executive as a whole, and if you design or develop a kernel-mode driver, you
will undoubtedly see stack traces during system crashes that indicate that both the
Cache Manager and VMM were involved in calls that ended up in your code.* Let
us examine the various points where the Cache Manager requires the assistance
of the Virtual Memory Manager.

At system initialization time, the Cache Manager requires a range of addresses
within the system virtual address space to be reserved for its exclusive use. This is
performed by the VMM automatically, and therefore the Cache Manager can be
guaranteed an available fixed-size virtual address byte range.

When the Cache Manager initializes, it needs to determine the number of threads
it should create, the maximum number of dirty pages that the entire system cache
can contain, and other such configuration parameters. To determine absolute
values, the Cache Manager uses a VMM routine called MmQuerySystemSize ()
(see Chapter 5 for the definition of this routine).

Assume that a file system invokes the CcInitializeCacheMap() routine
described earlier to initiate caching for a file stream using a specific file object. To
service this request, the Cache Manager checks whether caching was previously
initiated for the file stream using any other file object. If this is the first instance of
caching being initiated for the file stream using any file object, the Cache Manager
has to map the file stream into memory (specifically, into the reserved virtual
address range set aside for the Cache Manager). The Cache Manager achieves this
by using the MmCreateSection() routine, and although this routine is not
exported by the Windows NT Executive for use by any external kernel drivers,
the routine is amazingly similar to the NtCreateSection() (also known as the
ZwCreateSection () t) system call. The MmCreateSection () routine results
in the creation of a section object that represents a file stream mapping to the

* My apologies for insinuating that newly developed kernel code by readers could lead to system crashes.
Unfortunately, this is a fact of life that all kernel developers either learn to accept and so become better
designers/developers, or deny stoically forever, resulting in their customers finding out the effects of the
designers intransigence the hard way.
t This routine is defined in Chapter 5.

346______________________________Chapter 8: The NT Cache Manager III

VMM. A pointer to the section object can subsequently be used by the Cache
Manager whenever it needs to manipulate the section or its contents.

When the allocation size of a file stream is extended, the Cache Manager must
extend the section associated with the specific file stream if the file stream was
previously mapped into the system cache. This is achieved, once again, by
invoking the VMM via a routine called MmExtendSection (). Unfortunately, this
routine is not defined or exposed by the NT Executive and hence the arguments
supplied to this routine are subject to change.

Whenever a file system tries to perform I/O to a cached byte range and the
request is transferred to the Cache Manager, the Cache Manager must map a view
of the affected byte range into the system virtual address space (using the section
object created earlier when caching was initiated). This is achieved by invoking
the VMM routine called MmMapViewInSystemCache () . Note that, although this
routine is not exposed, the functionality provided is similar to that of ZwMap-
ViewOf Section (). The difference, however, is that the requested view is
mapped into the specific reserved virtual address range set aside for the Cache
Manager.

Correspondingly, whenever the Cache Manager wishes to discard a previously
mapped view, it uses the VMM routine MmUnmapViewInSystemCache () .*

Now, when the Cache Manager has to flush the data associated with a file stream,
the actual flush is performed by invoking the MmFlushSection () call. The inter-
esting point to note is that, for any data present in the system cache, the Cache
Manager never directly invokes the file system or the I/O Manager to write data
out, instead, the Cache Manager always requests that the VMM flush out the asso-
ciated section (and more specifically, a byte range within the section), thereby
always synchronizing with the modified page writer thread within the VMM. This
is true even when the lazy-writer component within the Cache Manager performs
asynchronous write-behind of data.

* Unmapping a mapped view is almost never a cheap operation. If pages are physically assigned to some
addresses within the mapped view, invoking this routine leads to TLB (Translation Lookasidc Buffer)
flushes. This degrades performance somewhat.

Interactions with the VMM 347

NOTE The way a file system eventually sees this request to write data out
is in the form of a noncached, paging I/O -write request that comes
via the VMM and the I/O Manager. Again, if you were to see the
stack trace, you might be able to see the Cache Manager routine
(CcFlushCache ()) in the trace. Sometimes, if the modified page
writer is already in the process of asynchronously flushing out the
same byte range, you may not even see the Cache Manager in the
trace, since the Cache Manager's request to the VMM would be
blocked waiting for the asynchronous flush to complete.

When the Cache Manager has to read data into the system cache, it does not even
have to invoke the VMM explicitly. It simply attempts to copy data from the
mapped view in the system cache into the user-supplied buffer. This causes a
page fault, which is automatically (and normally) handled by the page fault
handler component of the VMM. Note that when the read-ahead component of
the Cache Manager wishes to bring data asynchronously into the system cache, it,
too, simply tries to touch (or access) a byte from each page that is being brought
into the system cache. Once again, the act of accessing a byte leads to a page
fault (if the data is not already in physical memory) and this page fault is resolved
by the VMM. Remember that the page fault will eventually be resolved by a
noncached, paging I/O read request to the file system by the VMM, although the
file system cannot tell whether the page fault is due to the Cache Manager
touching a page that was not in memory or some other process doing so.

NOTE File system drivers (especially those for the Windows NT operating
system) have to be fully aware of how an I/O request arrives at ei-
ther the read or write dispatch entry point. Therefore, file systems
work very hard to determine the sequence of operations that caused
the dispatch entry point to be invoked. This applies equally well to
paging I/O operations. Part 3 discusses this topic extensively.

There are other VMM routines that are available only to the Cache Manager for
use during normal operations. For example, the Cache Manager can check
whether an address is backed by a physical page (and if not, request that the
page be made resident and zeroed) using the MmCheckCachedPageState ()
routine. The Cache Manager can set an address range to modified (causing the
data to be flushed out) using a routine called MmSetAdd.ressRangeMod.i-
f ied() . Also, the Cache Manager can force pages to be purged from the system
cache using the MmPurgeSection () routine.*

* The request to purge might be failed by the VMM if the section is mapped by a user process as well as
by the Cache Manager.

348______________________________Chapter 8: The NT Cache Manager III

Note that the Cache Manager is treated as any other (though slightly special)
client by the VMM. This means that the VMM maintains a working set for the
pages allocated to the Cache Manager and trims or expands the physical memory
that is assigned to the Cache Manager, based upon demands made by the Cache
Manager and other modules in the system. This allows the VMM to make global
allocation decisions wisely and prevents file data caching from overwhelming the
system to the extent that all other work becomes impossible.

Although routines listed in this section might not be exported and described in
detail for use by other kernel-mode subsystems, it is obvious that special support
is provided by the VMM to the Cache Manager. This makes the Cache Manager
unique within the NT Executive and allows it, in turn, to provide caching support
to other modules, such as file systems.

One final note: although the Cache Manager uses the services of the NT VMM, the
VMM never needs to utilize services provided by the Cache Manager.* Therefore,
the relationship is mostly a one-directional, client-server relationship.

Interactions with the I/O Manager
The Cache Manager uses the services of the I/O Manager, just like other system
modules. For example, the Cache Manager must request that the I/O Manager allo-
cate an IRP for it using the loAllocatelrp () system call. The Cache Manager
uses loCallDriver () when it invokes the file system to notify the file system
about changes in the file size. Other I/O Manager routines such as loAllo-
cateMdl () and loRaiselnformationalHardError () are also used by the
Cache Manager.

An important point to note about the interactions between the Cache Manager
and the I/O Manager is the existence of the fast I/O path described in the
previous chapter. The I/O Manager tries to increase system throughput by
bypassing the file system completely and invoking the Cache Manager directly to
satisfy user I/O requests for cached file streams. If this fails, the I/O Manager
defaults to using the standard I/O path through the file system driver. The fast I/O
path is described in detail in the previous chapter and further information is also
available in Chapter 11, Writing a File System Driver III

* As with everything else, this is almost true. It appears that the VMM uses a single routine, CcZeroEnd-
Of LastPage () , provided by the Cache Manager, when mapping a section on behalf of a user process.
The purpose of this routine is to check for uninitialized pages at the end of the file stream being mapped,
and if found, to zero these pages by freeing them. This routine is exported for use by other kernel devel-
opers, but the lack of sufficient documentation explaining this routine seems to deter usage by any other
module.

The Read-Ahead Module______________________________ _______349

The Read-Ahead Module
The Cache Manager helps enhance system responsiveness and throughput by
providing read-ahead functionality. This means that the Cache Manager tries to
bring data from secondary storage into the system cache before it is even
requested by a user process. Subsequently, when the user process tries to access
the byte range that was read-ahead into the system cache, the user I/O request
can be immediately satisfied from the data present in the cache, avoiding a time
consuming read operation to obtain data from secondary storage or from across
the network.

In order to provide read-ahead, the Cache Manager must be able to answer the
following questions:

• Should read-ahead be performed for a specific file stream?

• If it is determined that read-ahead should be performed for a cached file
stream, when should read-ahead be initiated?

• What should be read-ahead into the system cache?

• Given a user request that was recently satisfied, what would be the byte
range that the user process is likely to access in the near future?

• Who does the actual read-ahead operation—one thread, many threads, spe-
cially reserved threads, or simply system worker threads?

• If errors occur while trying to read-ahead data into the system cache, what
should the Cache Manager do in response to these error conditions?

Let us examine each of the issues listed here to see how the Cache Manager
implements read-ahead functionality.

Should Read-Ahead Be Attempted for a File Stream?
The default answer to this question is yes. Read ahead is generally attempted by
the Cache Manager for all file streams that are cached in memory. The exception
is that read-ahead is not attempted for file streams on which caching was initiated
specifying that PinnedAccess would be used to access cached data.

It is possible for file systems to request that read-ahead be disabled for specific
file streams. This can be achieved by the CcSetAdditionalCacheAt-
tributes () routine described earlier in this chapter.

When Should the Cache Manager Try Read-Ahead?
Read-ahead is attempted by the Cache Manager either at the explicit request of
file system drivers or automatically when I/O requests are serviced by the Cache

350 Chapter 8: The NT Cache Manager III

Manager. A file system can request that read-ahead be performed by using the
following system defined macro:

#define CcReadAhead (FO, FOFF, LEN) {
if ((LEN) >= 256) {

CcScheduleReadAhead((FO) , (FOFF) , (LEN)) ;

where:

FO = file object pointer
FOFF = file offset from where last read request was initiated
LEN = length in bytes of last read request

As you can see, the system will perform read-ahead (at the explicit request of a
module such as a file system) only if the last read operation was greater than 256
bytes. Apparently, invoking read-ahead for smaller read operations actually results
in degraded system performance.*

The CcSch.eduleReadAh.ead() routine is automatically invoked by the Cache
Manager whenever CcCopyRead () , CcFastCopyRead() , or CcMdlReadO
are invoked. The Cache Manager checks read-ahead is not currently active for the
file stream and, if not active, will invoke CcScheduleReadAhead() . Of course,
if read-ahead is disabled for the file stream, it will not be attempted.

NOTE The Cache Manager often schedules read-ahead concurrently with
trying to read in the current user request. Typically though, the
Cache Manager will not get ahead of itself and the user request will
be received by the file system before the read-ahead request makes
it to the file system.

What Does the Cache Manager Read-Ahead?
The function of read-ahead is to try to anticipate the byte range the user process
might next access and preread into memory. The Cache Manager relies on the
property of locality of reference to make educated guesses about the byte range
that the user process might access next, following the current read request.

Simply stated, this means that a user process is likely to access a byte range that is
within a few bytes of the byte range that was just accessed. Therefore, say that a
process accessed bytes 1000—5000 within a file with length of 2MB. There is a

* The caller is not required to use the read-ahead macro; it's simply a good idea.

The Read-Ahead Module______________________________________351

greater probability that the process will next try to access byte offset 10,000 than
that the process will next try to access byte offset (1MB + 1).

A process can specify when opening a file whether the file stream will be
accessed in a sequential manner by means of the FO_SEQUENTIAL_ONLY flag in
the file object. This flag serves as a valuable hint to the Cache Manager, which
then tries to keep at least two read-ahead granularities ahead of the current read
operation (although the default read-ahead granularity is one PAGE_SIZE, it can
be changed using the CcSetReadAheadGranularity () routine described
earlier). This means that if the user process has just accessed the first page length
in the file stream, approximately two additional pages beyond the ending offset of
the first page will be read-ahead by the Cache Manager.

Even if the sequential-only flag is not supplied by a process when opening a file
stream, the Cache Manager keeps track of read requests performed via the copy
or the MDL interfaces. If the Cache Manager detects a sequential nature in the
read operations being performed (e.g., if the previous two read requests were
close enough to be considered sequential), the Cache Manager will attempt to
read-ahead from the offset where the last read request ended (rounded up to a
multiple of the page size).

NOTE The Cache Manager masks off certain noise bits when trying to char-
acterize two or more read operations as being sequential or not. For
example, if read operation #1 starts at offset 0 and has a length of
4096 bytes, and read operation #2 starts at offset 5002 and has a
length of 1500 bytes, the Cache Manager will disregard the fact that
operation #2 starts 6 bytes beyond the end of the first request and
will consider the two read requests to be sequential in nature. There-
fore, read-ahead will be attempted.

Note that the Cache Manager keeps track of whether sequential accesses are
being performed in the forward or in the reverse direction. Read-ahead will also
be performed if a process begins reading from the end of a file stream sequen-
tially toward the beginning of the file.

Who Performs the Actual Read-Ahead Operation?
The read-ahead is performed in the context of a system worker thread. As you
know, there are worker threads available to asynchronously perform operations
that are not time-critical. Therefore, the Cache Manager simply posts a request
using the ExQueueWorkItem() system call. Note that the Cache Manager speci-
fies that the request be posted onto the critical work queue.

352______________________________Chapter 8: The NT Cache Manager HI

This ExQueueWorkItem() routine is defined in the documentation for the
Device Driver's Kit. It allows a work request to be queued to a global system
queue. The work item is subsequently performed in the context of a system
worker thread when such a thread becomes available.

There are three categories of work requests that can be queued: delayed work
requests, critical work requests, and hypercritical work requests. The read-ahead
operation is queued onto the critical work queue. Note also that, when invoking
this routine, the caller has to specify the actual function call that the worker
thread must invoke, and the caller must also supply an opaque context pointer
that will be supplied as an argument to the specified function call.

In Chapter 7, I mentioned that a file system has to supply callback routines when
initiating caching on a file stream. These callback routines are used to maintain
locking hierarchy between the Cache Manager, the VMM, and the file system
driver. One of the callback routines that a file system must supply (AccruireFor-
ReadAhead ()) allows the Cache Manager to acquire file system resources before
initiating read-ahead. This callback is invoked by the thread that actually performs
the read-ahead operation on a file stream. Upon completion of the read-ahead
operation, the thread invokes ReleaseFromReadAhead() to inform the file
system that resources previously acquired should now be released.

Further information on the implementation of these callback routines is given in
Chapter 11.

What If There Are I/O Errors in Attempting the
Read-Ahead?
If there are I/O errors during the read-ahead, the Cache Manager ignores them
and simply aborts the current read-ahead operation. It is possible that read-ahead
might be retried in the future.

Lazy-Write Functionality
Just as in the case of read-ahead operations, the Cache Manager tries to help
enhance system responsiveness and provide greater throughput by implementing
write-behind (or lazy-write) functionality. Here, the Cache Manager does not write
modified data supplied by a user process, either directly to disk or across the
network to a file server. Instead, the Cache Manager buffers the data in memory
and periodically flushes modified data asynchronously to nonvolatile storage. This
asynchronous, periodic flushing of data is called write-behind (or delayed-write or
lazy-write) functionality.

Lazy-Write Functionality______________________________________353

As in the case of read-ahead operations, the Cache Manager must be able to
answer the following questions:

• Should lazy-write be performed for a specific file stream?

• If it is determined that lazy-write should be performed for a cached file
stream, how is the lazy-write functionality initiated?

• Who does the actual lazy-write operation?
• If errors occur during trying to lazy-write data from the system cache, what

should the Cache Manager do in response to these error conditions?

Let us examine each of the issues listed above to see how the Cache Manager
implements lazy-write functionality.

Should Lazy-Write Be Attempted for a File Stream?
By default, all cached file streams are lazy-written unless lazy-write has been
disabled for a specific file stream, using the CcSetAdditionalCacheAt-
tributes () routine described earlier in this chapter. However, data that is
currently pinned in memory is not flushed until the data is unpinned.*

Furthermore, temporary files are not written to secondary storage, since the appli-
cation has specified that the file be deleted anyway once the last user handle to
the file has been closed.

How Is Lazy-Write Functionality Initiated?
The lazy-writer is invoked in one of the following ways:

• The Cache Manager has a DPC (Deferred Procedure Call) timer that pops
once every few seconds (between 1—3 seconds). When this timer pops, it
schedules a scan through the cache to find candidates that should be flushed
to secondary storage.

• The Cache Manager explicitly schedules a scan of all cached byte ranges to
search for modified ranges that can be flushed to secondary storage.

Once a scan is initiated, the Cache Manager sets a target amount of data that it
would like to flush in that instance. Typically, the Cache Manager determines that
one quarter of the currently modified (or dirty) data in the system cache should
be flushed. This allows the Cache Manager to sweep through all of the dirty data
in four scans through the cache. Note that the scan always begins at the point at

* This is different from the read-ahead case where file streams that specified PinAccess as TRUE would
simply not have read-ahead initiated for them. Lazy-write, in contrast, is performed on these file streams,
but pinned byte ranges are skipped until unpinned.

354______________________________Chapter 8: The NT Cache Manager III

which the last scan terminated; this ensures that all dirty pages in the system
cache are flushed out to secondary storage in a round-robin fashion.

When searching the cache for candidates to be flushed, the Cache Manager simply
looks at each shared cache map that has dirty pages outstanding and schedules an
asynchronous write operation for the shared cache map. The Cache Manager
continues to schedule such write operations until the targeted limit of 1/4 of the
total dirty pages has been exceeded or the Cache Manager runs out of dirty pages
to be flushed.

The Cache Manager also tries to adapt the rate at which it flushes data to disk. For
example, if the Cache Manager notices that modified pages are being produced at
a fast rate, it will try to flush out more data in the current scan to keep the total
number of outstanding dirty pages constant in the system cache.

Who Performs the Actual Lazy-Write Operation?
As noted in the preceding section, the Cache Manager periodically scans through
all the shared cache maps and schedules asynchronous write operations for those
that contain dirty data. Just as in the case of the read-ahead functionality, the
actual write-behind operation is performed in the context of a system worker
thread. The write-behind requests are posted to the global critical work queue
and are picked up by available system worker threads assigned to service that
queue.

Before actually posting the write to the file system, via a synchronous call inter-
nally to CcFlushCache () , the thread performing the write-behind will invoke
the file system callback for AcquireForLazyWrite (). After completion of the
flush operation, the Cache Manager will invoke a corresponding callback
ReleaseFromLazyWrite () to inform the file system that it can release its
resources.

The thread performing the write-behind will also check to see if the write opera-
tion extended the ValidDataLength associated with the file stream. If the
current ValidDataLength is exceeded, the file system will be invoked via the
IRP_MJ_SET_INFORMATTON I/O Request Packet (the AdvanceOnly Boolean
flag will be set to TRUE),* and informed of the new valid data length for the file
stream.

Finally, the thread that performs the lazy-write operation also performs a lazy/
delete operation of the shared cache map for the file stream if such a delete had

* A description of this IRP is presented in Part 3. There, you will also find an explanation of this special
flag that exists solely to inform the file system that the ValidDataLength for the file stream must be
changed.

Lazy-Write Functionality______________________________________355

been requested earlier by the file system. Of course, no file object should be
actively referencing the shared cache map so that the delete operation is
attempted. If any thread is awaiting the deletion of the shared cache map, the
appropriate event will be set in order to inform the thread that the shared cache
map was deleted.

What If There Are I/O Errors in Attempting the
Write-Behind?
Consider a situation where the system worker thread, performing a lazy-write,
encounters an error during the actual write operation. In this case, the thread
attempts to retry the write operation—one page at a time. The theory here is to
try to write out as much data as possible.

Once the retry operation has been attempted (one write per page being flushed
to secondary storage), any I/O errors encountered while retrying are essentially
ignored. The thread marks the pages as clean and thereby effectively loses all
data that could not be flushed to secondary storage. This is a nasty side effect of
the delayed-write method because a user process that opened the file stream
wrote data that was buffered, received a successful return code, closed the file
stream, and exited can lose the data that it thought had been successfully written
out, due to the failure of the write-behind attempt!

However, the Cache Manager does pop up a message on the system console, and
also writes out the message to the error log, stating that some data for the specific
file stream was lost in the write-behind process. Unfortunately, by the time the
system operator receives this message, it is already too late to save the data, since
the pages have been marked clean.*

With this chapter, we have concluded our discussion of the NT Cache Manager.
In Part 3, you will find code examples and discussions of how file systems and
filter drivers take advantage of the services provided by the NT Cache Manager.

* It would he wise for system administrators to invest in high availability software (and redundant hard-
ware) that provide for mirrored copies to avoid such nasty surprises. However, this still does not guaran-
tee that such data loss will never occur.

In this chapter:
• File System Design
• Registry Interaction
• Data Structures
• Dispatch Routine:

Driver Entry
• Dispatch Routine:

Create
• Dispatch Routine: WVltlYlgd

Read
• Dispatch Routine:

Write

Most of you reading this book will never design a file system implementation; as
a matter of fact, the number of people who do design and implement complete
commercially available file systems are truly very few. However, a lot of you prob-
ably have a strong desire or at the very least some amount of curiosity to learn
about how file systems fit into the Windows NT operating system; many of you
might even design some functionality that incorporates file-system-like features.
For example, you may choose to design a source code management system as a
pseudo-file system implementation;* or you may choose to design a filter driver
that intercepts file system requests to examine or possibly modify them before
passing them on to the file system driver. In either case, an understanding of the
implementation of file systems in the Windows NT environment will be a good
investment. Also, if you simply wish to learn a little bit more about what really
happens when your I/O is received by the native NT file systems (e.g., FASTFAT,
NTFS), the discussions on the various FSD dispatch routines should give you a
fairly good overview.t

This chapter, as well as most of the remaining chapters in this book, focuses on
the implementation of a file system in the Windows NT environment. The method
of presentation is fairly simple: first, file system data structures are covered,
followed by each of the dispatch routines that a file system would typically imple-
ment. To understand the implementation better, I first describe the functionality
expected from the file system for the dispatch routine; this is typically accompa-

* A good example of this is the ClearCase source code control system from Atria Systems, Inc.
t Unfortunately, I cannot discuss the myriad details that the native FSD implementations have to take care
of and which are dependent on the specifics on the on-disk layout used by the FSD implementation. Doc-
umenting all of that (if indeed such information were ever made public) would occupy a whole book by
itself. You can, however, purchase the IPS kit from Microsoft, which seems to contain some modified
source to at least two file system implementations (FASTFAT and CDFS).

359

360____________________________Chapter 9: Writing a File System Driver I

nied by code or pseudo-code (if required) that illustrates the concepts followed
by an explanation of the code (pseudocode) fragment provided.

This chapter starts off with some of the very basic functionality expected from a
file system; file system driver initialization, create, read, and write operations are
covered here. Some of the more advanced concepts for the read and write
dispatch routines (as well as other dispatch entry points) will also be covered in
the next two chapters.

File System Design
No file system implementation can be successful without a sound design serving
as its base. To construct a sound design, you should have a very good under-
standing of the goals that your file system is being designed to achieve. For
instance, some file systems are deliberately developed to be simple and fast; their
fundamental design goal is to provide a reliable, easily maintainable, and uncom-
plicated means of managing stored data. These file systems make no guarantees
about ensuring data consistency in the presence of software or hardware failures;
neither do they provide some of the advanced functionality, such as data security,
and compression features that you might expect from more sophisticated file
systems. A prime example of a relatively simple, yet very reliable file system is the
FAT file system implemented in Windows NT.

Other file system implementations are considerably more sophisticated. For
example, the NTFS file system implementation under Windows NT is a log-based
file system. This file system design stresses fast recoverability from system failures,
ensuring data consistency in the presence of hardware or software failures,
providing security for user data, and providing other useful functionality,
including flexible byte-range locking and data compression.

There are other file system designs that are even more sophisticated and distrib-
uted in nature. The Distributed File System (DPS)* from the Open Software
Foundation is an example of a considerably more complex file system implemen-
tation. This file system comprises local disk-based file systems that provide
features similar to NTFS, and also client-server components that provide consis-
tent, global accessibility with the benefits of a single name space across
geographically distributed locations. The long-awaited Object File System (OFS)
implementation from Microsoft is also an example of a distributed and complex
file system implementation, which should provide sophisticated functionality such
as online logical volume replication and location independence.

* The predecessor to DPS is the famous Andrew File System (AFS) implementation from Carnegie Mellon
University. Commercial versions of both DPS and AFS are now available from Transarc Corporation.

File System Design _ _____________________________________367

For more information about some of the file system implementations mentioned
here, consult the references provided at the end of this book.

Sample File System Code
The design goals for the sample file system implementation code provided in this
book are to acquaint you with the interactions between the Windows NT oper-
ating system components and a file system driver. Therefore, I focus only on
these interactions and exclude coverage of other file-system-specific implementa-
tion details.

Every file system implementation must interact intimately with the rest of the oper-
ating system. After all, the file system does not exist in a vacuum, and the only
generic way for a user to access data managed by the file system is by using some
well-defined system services.

All file systems must also manage the on-disk data structures that allow them to
store user data. Figure 9-1 illustrates how a file system design can be composed of
multiple layers to address the various functional requirements expected of the
implementation. The veneer serves as the upper-level interface between the file
system implementation and the remainder of the operating system environment.
This layer is the most operating-system-specific layer. The core can be designed to
serve the requirements of the veneer by managing on-disk data structure accesses;
this layer can be designed to be relatively free from any operating-system-specific
constraints. The driver interface layer, once again, must deal with lower-level disk
or network drivers in the operating system and therefore has to conform to the
interface presented by such drivers.

Figure 9-1. File system components in a layered file system driver (FSD) design

Most file systems, including the native NT FSD implementations, conform to the
high-level design illustrated in Figure 9-2. The FSD code samples in this book also
use the same methodology. However the code samples ignore the two lower

362 Chapter 9: Writing a File System Driver I

layers illustrated in Figure 9-1 and focus exclusively on the veneer. Therefore, you
will not see any code that deals with the actual retrieval and manipulation of data
to and from secondary storage; this book does not present any discussion of these
topics either. Naturally, the code fragments provided in this book should only be
used as a starting point for your development efforts. They do, however, illustrate
the important aspects of interacting with the NT I/O Manager, the NT Cache
Manager, and the NT Virtual Memory Manager. You can design the lower levels
of your commercial file system driver and plug your implementation into the
driver model presented here to get yourself a fully functional, "native" file system
driver under Windows NT.

Figure 9-2. High-level view of a simple file system implementation architecture

Logistics
The sample code will get you started understanding, designing, and developing a
commercial NT file system or filter driver. Although not complete by any means,
the code should serve as a framework, using which you can innovate and build in
the functionality for your commercial file system driver. Keep the following points

File System Design__363

in mind as you read through the code samples and explanations accompanying
the code:

Maintain focus on interactions between the NT operating system and the FSD.
For a commercial FSD implementation, there are a lot of conflicting design
choices that must be made. Some of the more obvious ones include choosing
between fast {tuned) implementations or cleaner, more abstract, though rela-
tively slower designs. Or you might consider the tradeoffs involved in
incorporating strict security requirements in your design as opposed to the
inevitable resulting inconvenience caused to users. You may choose to
increase concurrency at the expense of a complex design that is relatively
more difficult to maintain and enhance; or you may choose a less parallel
model, which might be quicker to design and implement and also be more
easily maintainable.

The sample code in this book does not even attempt to enumerate the
various choices available to the FSD designer, let alone provide solutions for
such complex issues. Therefore, while reading through the sample FSD imple-
mentation, focus on learning about the interactions with the NT operating
system, and consult the literature listed at the back of this book for additional
information on the issues involved in developing file system drivers.

Note that all data structures and function names are prefixed by the letters SFsd.
This allows for easy identification of those function calls and data structures
that are implemented by the sample FSD. NT driver conventions require that
you should prefix your function and data structure names with an appropriate
identifier unique to your driver.

Exception handling is built into the sample code (or code fragments).
The sample FSD implementation presented in this book utilizes structured
exception handling. You may disregard some of the details pertaining to struc-
tured exception handling if you believe that providing this support is
unnecessary from your perspective. However, I would strongly encourage
you to consider incorporating SEH into your implementation at the onset of
file system design, since the resulting benefits in terms of code robustness far
outweigh the cost of the time commitments required for such support.

Comments are interspersed in the implementation.
Some people believe that comments included with source code are useful,
while others do not. I have liberally interspersed comments in the sample
code included with this book. Please read these comments, because much of
the information they contain is not repeated in the accompanying text.

Look for alternative methods for implementation.
Designing and implementing kernel-mode drivers requires a certain amount
of on-the-job experience and is often an iterative process. The sample imple-

Chapter 9: Writing a File System Driver I

mentations presented in this book should not be construed as the only way
the desired functionality can be implemented. Alternatives typically abound,
and you should always explore any such alternative methods if you can think
of them. Use the implementation presented here as a general guideline, but
always keep an eye out for alternative designs.

Be aware of memory allocation issues.
Kernel-mode drivers, including file system drivers or filter drivers, should be
cognizant of their memory requirements. Your goal should always include effi-
cient usage of system memory. If you require nonpaged memory (and you
typically will), you should always carefully monitor your requirements and
attempt to minimize your usage of these scarce resources.

Even if you are careful and separate your memory requirements into non-
paged memory required by your driver, as well as paged memory you can
work with, remember that paging is not a cheap operation. Excessive page
faults or TLB faults caused by your kernel-mode driver will lead to degraded
performance by the entire system. Therefore, always be careful, to the point
of being stingy, with your memory needs.

Having said all of that, you should note that the code you see in this book
makes no attempt at efficient memory usage, except for an example in which
zone structures are utilized.* That is something you must work at in your
commercial implementations.

Be aware of synchronization issues.
Chapter 3, Structured Driver Development, explained the various objects that
can be used to synchronize access to shared data structures in Windows NT.
The sample code in this book uses one or more of these objects. For certain
shared data structures, it may sometimes be possible to modify the synchroni-
zation methodology used in the code samples, such that performance is
enhanced. Typically, this is done by carefully examining the various situations
under which a particular shared data structure is accessed, and then possibly
lowering the synchronization requirements associated with the shared data
only if you have determined that data integrity will still be preserved. No such
attempts at enhancing performance have been made in the sample code
presented in the book. I have used a simpler, cleaner design that always uses
synchronization primitives to monitor access to shared data structures. You
can, however, analyze any drivers that you develop based on code samples
provided in this book for obtaining performance gains using such methods.

* If your software only executes on Windows NT Version 4.0 and later, consider using lookaside lists in-
stead of zones.

T Registry Interaction 365

Remember, though, to always be conservative in your analysis; otherwise,
you may inadvertently cause data corruption.

Registry Interaction
A typical file system implementation requires the creation of a number of keys
and associated value-entries in the Windows NT Registry:

• HKEY_LOCAL_MACHINE\ SYSTEMX CurrentControlSetX ServicesX SampleFSD

Table 9-1 shows the subkeys and value entries that should be created.

Table 9-1. Subkeys and

Subkey/Value Entry
ErrorControl

Group

ImagePath

Start

Type

Parameters

Value Entries

Type
REG_DWORD

REG_SZ

REG_EXPAND_S Z

REG_DWORD

REG_DWORD

-

Value
Oxl

"File System"

"%System-
Root%\ System32 \ dr
ivers\sfsd.sys"
0x2 or 0x3

0x2

-

Description
Log an error and
display a message
box if driver fails
to load, but
continue initializa-
tion (if driver is
being loaded auto-
matically).
This indicates the
driver belongs to
the group of file
system drivers. If
you develop a
network redirector
instead, replace the
value with Network
Provider.
The complete path
name of the driver
image.
A value of 0x2
specifies automatic
start; 0x3 specifies
manual start only.
Indicates that this
is a file system
driver.
This subkey
contains driver
required config-
urable parameters.
For a list of parame-
ters accepted by the
sample FSD, see
Table 9-2.

366 Chapter 9: Writing a file System Driver I

Table 9-2 lists the possible configurable parameters accepted by the sample FSD.
In your driver, you can add other value entries under the Parameters subkey.

Table 9-2. Configurable Parameters Accepted by the Sample FSD

Value Entry
PreAllocated-
NumStructures

Type
REG_DWORD

Value
0 (Default)

Description
Specifies the
number of struc-
tures for which to
preallocate
memory (this illus-
trates how an FSD
could use the
Registry to obtain
user-configurable
information).

HKEY_LOCAL_MACHINE\... \ CurrentControlSetV ServicesN EventLogX Sys-
tem\ SampleFSD
This key is added to allow any event log viewer application to decipher the
messages logged by the sample FSD implementation to the NT Event Log.
Table 9-3 shows the value entries that are created.

HKEY_LOCALJVIACHINE\ SOFTWAREX SampleFSD

Information contained below this key is not available at system load time.
However, it is often useful to keep nonessential information about the driver
itself, the manufacturer, or other information here.

Data Structures 367

The sample FSD implementation will create the following value entries and
sub-keys as shown in Table 9-4.

The CurrentVersion subkey listed in Table 9-4 could contain the follow-
ing value entries:

— VersionMajor
— VersionMinor
— VersionBuild
— InstallDate

The Windows NT Software Developers Kit and the Device Drivers Kit provide
ample documentation and recommendations on these optional value entries.

Data Structures
At the core of any file system driver design are the data structures that together
define the file system; these include the on-disk data structures that determine the
management of the actual stored data, as well as the in-memory data structures
that facilitate orderly access to such data. If you understand the data structures
that might be required for a particular type of driver or kernel component, you
have probably won half of the battle in your attempts at successfully designing
such a component.

In an ideal world, the operating system should be completely independent of the
on-disk data structures and layout maintained by a specific file system driver; the
operating system should also be indifferent to the in-memory structures that a
FSD implementation might implement, since these in-memory structures exist
simply to help the implementation provide file-system-specific functionality.
Windows NT is not an ideal operating system environment, and neither, for that

teH I368____________________________Chapter 9: Writing a File System Driver I

matter, is any other commercially available operating system. However, Windows
NT is relatively indifferent to the on-disk data structures maintained by a file
system. Typically though, it would confuse a user of your file system tremen-
dously if the FSD did not maintain expected information for files stored on
physical media. For example, if your FSD did not maintain last write time, last
access time, or a file name on disk, your file system could seem fairly strange to a
Windows NT user, since such users have come to expect and depend on the exist-
ence of these attributes associated with file streams.

The native file systems supplied with Windows NT vary greatly in the features
provided to users of the file system. The FASTFAT file system does not provide
any security attributes for files (typically stored as Access Control Lists); it does
not support multiple hard links to files, file compression, or fast recovery from
system failures. The NTFS implementation does, however, support all of the
features listed above, and therefore the on-disk data structures maintained by the
NTFS implementation differ greatly from those maintained by the FAT file system
implementation.

As mentioned earlier, the goals that you set for your file system will determine the
on-disk data structures that you need to maintain. In the remainder of this book,
we won't discuss on-disk structures any further, since they do not need to
conform to any specific model for you to successfully implement a file system
driver under Windows NT. However, as you design your file system, you should
carefully study the various alternatives available to you in the format of the on-
disk layout and associated structures for your file system.

The interesting structures from our perspective, therefore, are the in-memory data
structures that your FSD should implement. Although Windows NT does not
mandate that any specific structures be maintained, here are the two structures
you should become familiar with:

• The File Control Block (FCB) structure

• The Context Control Block (CCB) structure

An FCB uniquely represents an open, on-disk object in system memory. Notice
that I said that an FCB represents an on-disk object, not just an on-disk file. Direc-
tories, files, volume structures, and practically any other object that your FSD
maintains and that can be opened by a user of your file system would be repre-
sented as an FCB.* If you have some background in UNIX implementations, you
can easily draw an analogy between UNIX vnode structures, which are simply

* .Some fi/e system implementations, including the native file systems denote in-memory representations
of directory structures as DCB objects (Directory Control Blocks). DCBs are not any different (functional-
ly) from FCBs and the sample FSD (as well as the discussion provided throughout the course of the book)
uses the FCB to represent both files and directories.

Data Structures___369

abstract representations of files in memory, and Windows NT file control block
(FCB) structures. They both serve the same purpose of representing of the on-
disk object in memory.

A CCB is simply a handle or the context created and maintained by the FSD to
represent an open instance of an on-disk object. For example, when a user appli-
cation performs an open operation on a file, it receives a handle from the
operating system if the open request was successful. Corresponding to this
handle, a Windows NT FSD creates a CCB structure, which is simply the kernel
equivalent of the user handle. Is your FSD required to maintain a CCB for each
open instance and an FCB to uniquely represent an open on-disk object? My
answer to this is yes, it is. If you are not convinced of the necessity for main-
taining these data structures, I would advise you to reserve judgment on this
question until you have read through the next few chapters.

Representation of a File in Memory
You already know of the file object structure created by the I/O Manager to repre-
sent successful open operations on files and directories. To see how file objects,
FCB structures, CCB structures, and VCB structures fit together, refer to Figure 9-3-

I would recommend that, to better understand the figure, you should start at the
bottom of the illustration. Here is a description of its various components.

Physical device object

At the very bottom of the illustration, you see two device objects: the physical
device object and the logical device object. The physical device object structure is
typically a media-type object with a DeviceType of FILE_DEVICE_DISK,
FILE_DEVICE_VIRTUAL_DISK, FILE_DEVICE_CD_ROM, or some such type.

This structure is created by a device driver, via the loCreateDevice () routine,
to represent the physical or virtual disk object that it manages. At creation time, a
VPB (Volume Parameter Block) structure is allocated and associated with media
type objects by the NT I/O Manager. Initially, the VPB flags indicate that the phys-
ical media does not have any logical volume mounted on it, via the absence of
the VPB_MOUNTED flag value. Later though, some file system implementation
might verify the data structures on the physical media and decide to mount a
logical volume on that physical device object.

This leads us to the next object depicted in the illustration, the logical volume
device object.

370 Chapter 9: Writing a File System Driver I

Figure 9-3. Representation of files in memory

Data Structures___377

Logical volume device object

The volume device object represents an instance of a mounted logical volume.
This device object is created by a file system driver implementation; our sample
FSD will also create volume device objects.

A mount operation is typically required on most operating systems before users
are allowed to access file system data on secondary storage devices. This logical
mount operation is performed by a file system driver implementation on that plat-
form. The process of mounting a volume exists simply to allow a file system
driver the opportunity to prepare the volume for subsequent access.

Most of the steps that a file system might undertake as part of mount operation
are file-system-specific and the operating system does not interfere much during
the process. Typically, a file system driver will first check the on-disk data struc-
tures to determine whether the medium to be mounted contains valid file system
information. If these checks pass, the file system will then read in basic volume
information such as volume size, root directory location, free block map, allocated
cluster map, and so on, and then create the requisite in-memory structures that
will be used to support access to the volume.

As part of mounting the logical volume, most operating systems (including
Windows NT) do require that certain system-defined data structures be created
and/or initialized, to establish linkage between the rest of the I/O Manager struc-
tures and the in-memory representation of the mounted logical volume.
Therefore, file system designers must always understand the requirements that the
operating system places upon the file system implementation and ensure that the
correct data structures are initialized as required.

Under Windows NT, the I/O Manager requires that a device object representing
the mounted logical volume be created, and for physical media, the VPB associ-
ated with the device object representing the physical media be correctly initialized.

Each volume device object is logically associated with a physical device object
using the VPB structure belonging to the physical device object. This association
occurs at volume mount time, which happens when the very first create/open
request is received by the I/O Manager for an object residing on the physical
device object.

The pseudocode fragment below illustrates how a logical volume device object
structure is associated with the physical device object structure. This logical
volume device object is important, because it is created by the FSD that mounts
the logical volume and is used by the I/O Manager to determine the target driver/
device object for a create/open request.

372____________________________Chapter 9: Writing a File System Driver I

The sequence follows:

I/O Manager receives an open/create request for an object residing on the
physical device object (e.g., an open for "C:\dirl");
I/O Manager obtains a pointer to the VPB structure associated with the
physical device object representing "C:";
I/O Manager checks the "Flags" field in the VPB to see if a mounted
logical volume exists for the physical device object;
if (no mounted volume exists, i.e., VPB_MOUNTED is not set) {

I/O Manager requests each of the file systems to check whether
they wish to perform a mount on the physical device object;
One of the file system drivers performs a mount operation;
As part of the "mount" process, the FSD will create a device object
of type FILE_DEVICE_DISK_FILE_SYSTEM or the network equivalent;
Now, the DeviceObject field in the VPB will point to the logical
volume device object (this is done by the FSD that performs the
mount);

When some file system has returned STATUS_SUCCESS for a mount request,
the I/O Manager will set the VPB_MOUNTED flag in the Flags field for
the VPB;
}
Now the I/O Manager can proceed with other instructions pertaining to the create/
open request (described later in the book).

VPB

Immediately above the two device objects depicted in Figure 9-3 is the VPB struc-
ture. This structure performs the important task of creating a logical association
between the physical disk device object and the logical volume device object. A
VPB structure only exists for device objects that represent physical, virtual, and/or
logical media that can be mounted. Therefore, if you design network redirectors
and/or servers, you will not interact directly with the VPB structure.

Note that there is no physical association between the physical device object and
the logical device object representing the mounted volume (i.e., there is no
pointer leading from a logical volume device object directly to the physical device
object or vice versa, as would typically happen when two device objects are
connected via an attach operation); for example, later in this book, we'll discuss a
routine called loAttachDevice () used by intermediate or filter drivers to
create an association between their own device object and a target device object.
Such attachments are performed with the intent of intercepting requests targeted
to the original device object (the one being attached to).

For file system mount operations, however, the only association between the two
device objects is the logical connection via the VPB structure. The I/O Manager is
aware of this logical association between the two device objects, and always
checks the VPB structure on receipt of a create/open request for an on-disk object

Data Structures___373

to determine the file system volume device object to which the request should
actually be directed.

Also note that each file object structure representing a successful open operation
on an on-clisk object points to the VPB structure belonging to the physical device
on which the opened on-disk object resides.

Volume control block (VCB)

As mentioned earlier, as part of the mount process, each file system implementa-
tion creates appropriate in-memory data structures that will enable the file system
to permit orderly and correct access to data contained in the logical volume. One
of the structures maintained by the sample FSD to assist in this process is the
Volume Control Block structure.

The VCB structure contains such essential information as a pointer to the in-
memory root directory structure (i.e., the FCB for the root directory), a count of
the number of file streams that are currently open on the logical volume, some
flags representing the state of the logical volume at any given instant, synchroniza-
tion structures used to maintain the integrity of the VCB structure itself, and other
similar information. However, just as with all other structures defined by the
sample FSD, the VCB structure is slightly less comprehensive then it would be if
we were developing a full-fledged physical-media-based file system driver imple-
mentation. In that case, the VCB would also typically contain pointers to
structures containing information about available free clusters on disk, a list of
allocated clusters, and any such on-disk structure management related information.

Note that the Windows NT I/O Manager does not require that a file system main-
tain a structure like the VCB structure. However, most file system implementations
(including the native NT file system implementations) maintain some variant of
such VCB data structures.

The sample FSD code allocates the VCB as part of the device object extension for
the device object created to represent the mounted logical volume. This seems
like a very logical manner in which to allocate the VCB structure, since this
method of allocation creates the association between the mounted logical volume
representation known to the rest of the system (i.e., the device object) and the file
system internal representation (i.e., the VCB structure). This also implies that the
VCB structure is allocated by the I/O Manager from nonpaged system memory
(since a device extension is allocated by the I/O Manager on behalf of the caller
when the device object is being created).

If you study the VCB structure, defined below by the sample FSD, you will see
that it contains fields used in obtaining services of the NT Cache Manager. Many
Windows NT FSD implementations use the Cache Manager to cache on-disk

374____________________________Chapter 9: Writing a File System Driver I

volume metadata structures. This is accomplished by creating a stream file object
to represent the open on-disk volume information and then initiating caching for
this file object. The data is mapped into the system cache using CcMapData () ,
and it can be easily accessed, just as cached file stream data is typically accessed
by user threads.

The VCB structure defined by the sample FSD is shown below:

typedef struct _SFsdVolumeControlBlock {
SFsdldentifier Nodeldentifier;
/ / a resource to protect the fields contained within the VCB
ERESOURCE VCBResource;
// each VCB is accessible on a global linked list
LIST_ENTRY NextVCB;
// each VCB points to a VPB structure created by the NT I/O Manager
PVPB PtrVPB;
// a set of flags that might mean something useful
uint32 VCBFlags;
// A count of the number of open files/directories
//As long as the count is != 0, the volume cannot
// be dismounted or locked.
uint32 VCBOpenCount;
// we will maintain a global list of IRPs that are pending
// because of a directory notify request.
LIST_ENTRY NextNotifyIRP;
// the above list is protected only by the mutex declared below
KMUTEX NotifylRPMutex;
// for each mounted volume, we create a device object. Here then
// is a back pointer to that device object
PDEVICE_OBJECT VCBDeviceObject;
//We also retain a pointer to the physical device object, which we
// have mounted ourselves. The I/O Manager passes us a pointer to this
// device object when requesting a mount operation.
PDEVICE_OBJECT TargetDeviceObj ect;
// the volume structure contains a pointer to the root directory FCB
PtrSFsdFCB PtrRootDirectoryFCB;
// For volume open operations, we do not create a FCB (we use the VCB
// directly instead). Therefore, all CCB structures for the volume
// open operation are linked directly to the VCB
LIST_ENTRY VolumeOpenListHead;
// Pointer to a stream file object created for the volume information
// to be more easily read from secondary storage (with the support of
// the NT Cache Manager).
PFILE_OBJECT PtrStreamFileObj ect;
// Required to use the Cache Manager.

SECTION_OBJECT_POINTERS SectionObj ect;
// File sizes required to use the Cache Manager.
LARGE_INTEGER AllocationSize;
LARGE_INTEGER FileSize;
LARGE_INTEGER ValidDataLength;

} SFsdVCB, *PtrSFsdVCB;

// some valid flags for the VCB

Data Structures___375

#define SFSD_VCB_FLAGS_VOLUME_MOUNTED (0x00000001)
ttdefine SFSD_VCB_FLAGS_VOLUME_LOCKED (0x00000002)
tdefine SFSD_VCB_FLAGS_BEING_DISMOUNTED (0x00000004)
#define SFSD_VCB_FLAGS_SHUTDOWN (0x00000008)
#define SFSD_VCB_FLAGS_VOLUME_READ_ONLY (0x00000010)
#define SFSD_VCB_FLAGS_VCB_INITIALIZED (0x00000020)

File control blocks (FCB)

Figure 9-3, shown earlier, depicts two FCB structures, each of which represents a
file stream in memory.

Just as an application needs to maintain in-memory data structures to provide
services to users, file systems must maintain some in-memory data structures.
Traditional file systems typically manipulate two types of on-disk objects: files and
directories. A file, as we understand it, simply represents a stream of bytes stored
on disk. A directory is a file-system-defined structure that contains information
about files; i.e., a directory is not useful in itself except as a means to locate files,
which, in turn, contain the user's data. In database terms, the directory simply
comprises an index for the actual data, where the data is defined as the individual
file streams. Files and directories are examples of persistent objects, objects that
persist across system reboots, since they are stored on nonvolatile secondary
storage media.

Files are simply named objects contained within directories. An important concept
is the logical separation between a directory entry (a named file object) and any
data associated with the file object. For example, consider a file foo, contained in
directory dirl. File foo is identified within directory dirl by the presence of a
directory entry created within dirl representing file foo. Regardless of how much
data is associated with the file, there will typically exist one directory entry of a
fixed size within the directory dirl that names file foo as a valid object contained
in the directory.

Further, if the file foo has 2 bytes associated with it, and now if you truncate the
size to 0 bytes, the directory entry within the directory dirl will still exist, except
that now it will be updated to reflect the new size. Truncating the file may have
caused any on-disk storage assigned to the file to be released, but it does not free
up the directory entry for the file. Deleting the file, however, will free the direc-
tory entry for the file and the storage allocated for the data will also (in this case)
be freed.

Finally, if an FSD supports multiple linked files, the logical separation between a
file name and the storage space allocated for file data becomes even more
obvious. Now, you may have two separate directory entries referring to the same
on-disk stored data. For example, file foo in directory dirl and file bar in direc-
tory dir2 may simply be synonyms for the same on-disk data. Now, even if you

Chapter 9: Writing a File System Driver I

delete a directory entry (say, the entry for foo in directory dirt), the storage allo-
cated for the data will not be released, since the directory entry for bar in
directory dir2 still points to the allocated data. Space allocated for data will only
be freed after all directory entries referring to the allocated storage space for data
on secondary media are deleted.

When a user tries to access a file or a directory object, which exists on secondary
storage, the file system must obtain information from secondary storage to satisfy
the user request. Typically, this information will be the actual data stored on disk;
sometimes, though, a user might want control information (also known as meta-
data), such as the last time any process actually modified the contents of the file,
or the last time a process tried to read the contents of the file. Therefore, all file
systems should also be able to provide such information on request.

When a file system obtains data from secondary storage, it must keep this data in
system memory somewhere to make it accessible to the user. If file data is stored
somewhere in system memory, the file system is responsible for maintaining
appropriate pointers to this data. Also, if multiple users try to access the same
data, the file system should be able to consistently satisfy these concurrent
requests. This requires that the file system assume some responsibility for
providing appropriate synchronization when a thread tries to access on-disk data.

To provide the functionality just described, file systems create and maintain an
abstract representation of open files and directories; i.e., each file system defines
for itself the in-memory control data structures that it must maintain to satisfy user
requests for access to persistent on-disk objects. Note that these in-memory repre-
sentations of files and directories are not themselves persistent; they exist simply
to facilitate access to on-disk data and can always be recreated from the data
stored on secondary storage.

On most UNIX implementations, an in-memory abstraction of a file or directory is
commonly called a vnode. On Windows NT systems, it is called a File Control
Block. Regardless of the term used to identify this representation (we'll stick with
the Windows NT terminology in the rest of the book), the important thing to note
is that an on-disk object must always be represented by one, and only one, FCB.
Therefore, even if your file system were to support multiple linked file streams,
you should only create one FCB to represent this file stream in memory, regard-
less of the fact that two different processes may have used different path names
or identifiers to open the same on-disk object.*

Here is the FCB defined by the sample FSD:

* Multiple hard links are simply alternate names for the same file stream. For example, a file
\directoryl\foo could also be identified by the path \directory2\directory3\bar, as long as both path
names referred to the same on-disk byte stream; an FSD will represent the file by a single FCB structure.

T
Data Structures__ 377

typedef struct _SFsdNTRequiredFCB {
// see Chapters 6-8 for an explanation of the fields here

FSRTL_COMMON_FCB_HEADER CoramonFCBHeader;
SECTION_OBJECT_POINTERS SectionObj ect;
ERESOURCE MainResource;
ERESOURCE PagingloResource;

} SFsdNTRequiredFCB, *PtrSFsdNTRequiredFCB;

typedef struct _SFsdDiskDependentFCB {
// although the sample FSD does not maintain on-disk data structures,
// this structure serves as a reminder of the logical separation that
// your FSD can maintain between the disk-dependent and the disk-
// independent portions of the FCB.
uint!6 DummyField; // placeholder

} SFsdDiskDependentFCB, *PtrSFsdDiskDependentFCB;

typedef struct _SFsdFileControlBlock {
SFsdldentifier Nodeldentifier;
// We will embed the "NT Required FCB" right here.
// Note though that it is just as acceptable to simply allbcate
// memory separately for the other half of the FCB and store a
// pointer to the "NT Required" portion here instead of embedding it
// . . .
SFsdNTRequiredFCB NTRequiredFCB;
// the disk-dependent portion of the FCB is embedded right here
SFsdDiskDependentFCB DiskDependentFCB;
// this FCB belongs to some mounted logical volume
struct _SFsdLogicalVolume *PtrVCB;
// to be able to access all open file(s) for a volume, we will
// link all FCB structures for a logical volume together
LIST_ENTRY NextFCB;
// some state information for the FCB is maintained using the
// flags field
uint32 FCBFlags;
// all CCBs for this particular FCB are linked off the following
// list head.
LIST_ENTRY NextCCB;
// NT requires that a file system maintain and honor the various
// SHARE_ACCESS modes ...
SHARE_ACCESS FCBShareAccess;
// to identify the lazy writer thread(s) we will grab and store
// the thread id here when a request to acquire resource (s) arrives ...
uint32 LazyWriterThreadID;
// whenever a file stream has a create/open operation performed,
// the Reference count below is incremented AND the OpenHandle count
// below is also incremented.
// When an IRP_MJ_CLEANUP is received, the OpenHandle count below
// is decremented.
// When an IRP_MJ_CLOSE is received, the Reference count below is
// decremented.
// When the Reference count goes down to zero, the FCB can be
// de-allocated.
// Note that a zero Reference count implies a zero OpenHandle count.
// This must always hold true ...

378____________________________Chapter 9: Writing a File System Driver I

uint32 ReferenceCount;
uint32 OpenHandleCount;
// if your FSD supports multiply linked files, you will have to
// maintain a list of names associated with the FCB
SFsdObjectName FCBName;
// we will maintain some time information here to make our life easier
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
// Byte-range file lock support (we roll our own).
SFsdFileLockAnchor FCBByteRangeLock;
// The OPLOCK support package requires the following structure.
OPLOCK FCBOplock;

} SFsdFCB, *PtrSFsdFCB;

Notice that the FCB in the sample FSD is divided into two main logical
components:

• The SFsdFCB structure, which is operating system independent

• The SFsdNtRequiredFCB structure, which contains fields required to inter-
act with the rest of the system

Additionally, the disk-dependent data structures can also be carved out into a
separate data structure to provide increased portability and modularity, as is illus-
trated by the structures defined previously.

SFsdFCB. The first thing you should note about file control block structures is that
the operating system does not determine the contents of this structure. Therefore,
each file system implementation has complete flexibility over the fields contained
in the FCB structure. The fields that exist in the SFsdFCB structure shown here
are simply representative of the contents of typical FCB structures, defined by the
various file system driver implementations under Windows NT. Usually, most file
systems will maintain some information about the object names (hard links) asso-
ciated with the FCB structure. Similarly, most FCB structures defined by file
system drivers will maintain a field representing the current ReferenceCount
for the FCB, and another field representing the current OpenHandleCount for
the FCB. In this chapter and in the next two chapters, I will present code exam-
ples that manipulate the fields contained in the sample FCB structure. These code
examples will assist you in understanding why such fields are helpful to file
system drivers.

Another noteworthy aspect of the FCB defined in the sample FSD is the lack of
any information about on-disk structures; e.g., there is no information about the
actual on-disk clusters occupied by the file stream represented by the FCB. As
mentioned earlier, we'll ignore those aspects of FSD implementations that require
creating and maintaining on-disk data structures. A real file system, however, does
not have this luxury and will contain far more information about on-disk file

Data Structures 379

stream layout than shown in the sample FSD. If you wish to adapt the sample
FSD for your own file system driver implementation, I would recommend that
you isolate the on-disk format-related information into a separate data structure
and then associate that separate structure with the FSD shown here, either via a
pointer embedded in the FCB or by embedding the data structure itself into the
FCB. This method will allow you to maintain a clean logical separation between
the disk-independent and the disk-dependent parts of the FCB structure. For
example, you can create a FCB structure as shown in Figure 9-4.

Figure 9-4. A logical breakdown of the components of an FCB

This separation is illustrated by the presence of a DiskDependentFCB field of
type SFsdDiskDependentFCB structure, embedded in the SFsdFCB structure
shown above.

SFsdNtRequiredFCB. Although Windows NT allows an FSD considerable latitude
in how it wishes to define its own FCB structures, successful integration with the
Cache Manager and the Virtual Memory Manager requires that certain NT-defined
structures also be associated with the FCB. Integration with the NT Cache
Manager and the VMM is essential if an FSD needs to use the NT system cache
and also support memory mapped files.

There are four fields that must be associated with each FCB as a prerequisite for
successful integration:

• A single structure of type FSRTL_COMMON_FCB_HEADER (called the Com-
monFCBHeader field in the sample FCB above)

• A single structure of type SECTION_OBJECT_POINTERS (called the Sec-
tionObjecAfield in the sample FCB)

• Two synchronization structures of type ERESOURCE (named as the MainRe-
source and the PagingloResource by the sample FSD)

380____________________________Chapter 9: Writing a File System Driver I

Just as there must be only one FCB representing the file stream in memory, there
must be only one instance of each of these NT-defined structures associated with
a particular FCB. Typically, these fields do not need to be associated with FCB
structures representing directory objects; however, you can still create them to
maintain consistency.

TIP You will also require these structures for FCBs representing directo-
ry objects if you intend to use the loCreateStreamFileOb-
ject () function to cache directory information.

File system drivers have to allocate memory for the NT-required fields; the
ERESOURCE type objects can never be allocated from paged pool, neither should
you allocate the CommonFCBHeader or the SectionObject fields from paged
memory.

When are in-memory FCB structures created and freed? A new FCB structure,
composed of the disk-independent, disk-dependent, and NT-required parts, is allo-
cated when a byte stream is being opened for the first time and no other FCB
structure representing this byte stream currently exists in system memory. For
example, if an application decides to open a file foo for the very first time since
the system was booted up, the FSD managing the logical volume on which foo
resides creates an FCB structure in response to the caller's open request (i.e., as
part of processing an IRP_MJ_CREATE request). Subsequent requests to open
the file foo, however, will not result in the creation of a new in-memory FCB struc-
ture, as long as the previously created FCB structure is still retained in memory by
the FSD. The factor that determines whether an FCB is still retained by an FSD is
the value of the ReferenceCount field (or its equivalent), maintained by the
FSD in the FCB structure. See the discussion on FCB reference counts presented
below for more information. If, however, the FCB for the file foo has already been
discarded by the FSD when the new open request is received, the FSD will once
again create a new FCB structure to represent file foo in memory.

This file control block structure serves as the single unique representation of the
open byte stream in system memory. The FCB is retained as long as any NT
component maintains a reference for it. The reference count for an FCB is
contained in the ReferenceCount field in the sample FCB shown here; your
file system driver is free to name an analogous field whatever it may choose. A
ReferenceCount value of zero implies that the FCB can be safely deallocated,
because no component in the system is actively accessing the byte stream associ-
ated with the byte stream represented by the FCB at that instant.

Data Structures___381

ReferenceCount and OpenHandleCountfields. Two fields in the SFsdFCB struc-
ture are the ReferenceCount field and the OpenHandleCount field. It is
extremely important that you understand the significance of these two fields.

Both the reference count and the open handle count are internal counts main-
tained by the FSD in the FCB structure and are therefore not externally visible to
any other kernel-mode or user-mode component. Both counts help to determine
when a FSD can safely deallocate the FCB structure.

The reference count is simply a number that indicates the total number of
outstanding references to this FCB structure, known to the file system driver. As
long as the reference count is not zero, the FSD knows that some component is
using the FCB and therefore, memory for the FCB structure cannot be deallo-
cated. The reference count field is incremented by 1 whenever a successful create/
open operation is processed by the FSD in response to an IRP_MJ_CREATE
request. The contents of this field are decremented by 1 whenever a close opera-
tion is processed for the FCB in response to an IRP_MJ_CLOSE request. Note
that the key concept here is that the open count is simply the number of refer-
ences known to the FSD; if some external component stores away the pointer to
a FCB without the FSD's knowledge, the open count associated with the FCB will
not have been incremented, and therefore there is no guarantee made by the FSD
that it will be retained once the reference count is 0.

You should also note that the NT I/O Manager expects the FSD to maintain a
reference count that is incremented during a create request and decremented
during a close request. Furthermore, the I/O Manager also expects that the FSD
will free the memory for the FCB only after this count is equal to zero. This
knowledge is used by the I/O Manager and other Windows NT components
because although neither the I/O Manager nor other system components manipu-
late the reference count directly, they can and do indirectly manipulate when the
counter is decremented, by controlling when a close IRP request (with major func-
tion IRP_MJ_CLOSE) is issued. Therefore, NT system components can be
reasonably certain of the FSD's behavior and can manipulate how long a FCB
structure is retained by the FSD.

The open handle count simply indicates the number of outstanding user open
handles for the FCB. This field is also incremented as part of processing an IRP_
MJ_CREATE request; it is, however, decremented only in response to an IRP_
MJ_CLEAN request issued to the FSD. The IRP_MJ_CLEAN request is issued by
the I/O Manager to the FSD whenever a user process closes a file handle for the
last time (i.e., when the system open handle count for a file object representing
all user open instances is equal to zero).

382______________________________Chapter 9: Writing a File System Driver I

File object type structures, just like other Windows NT Executive-defined data
structures, are maintained by the NT Object Manager. For file object structures,
the Object Manager maintains two counts, a ProcessHandleCount for each
process that has one or more open handles associated with the file object, and a
SystemHandleCount that is the sum total of all ProcessHandleCount values
associated with the file object. In addition to these two handle count values, the
NT Object Manager maintains an ObjectReferenceCount for all objects.* This
reference count is always incremented whenever either the ProcessHandle-
Count or the SystemHandleCount value is incremented. However, it is
possible that the ObjectReferenceCount will be incremented even if neither
the ProcessHandleCount nor the SystemHandleCount are incremented
(e.g., a kernel-mode component references the object but does not request a new
handle for the object).

When a process closes a open handle (i.e., when ZwClose() or NtClose() is
invoked), the NT Object Manager decrements both the ProcessHandleCount
and the SystemHandleCount for the object. It then invokes any object-dose
method associated with the object being closed; in the case of file objects, the
close routine, called lopCloseFile (), is supplied by the Windows NT I/O
Manager. The Object Manager supplies the ProcessHandleCount and the
SystemHandleCount values to the lopCloseFile () function.

The lopCloseFile () function issues an IRP_MJ_CLEANUP request to the FSD
if and only if all outstanding user handles for the file object have been closed and
if the passed-in SystemHandleCount for the file object is equal to 1, meaning
there was only one outstanding reference on the file object at the time the
NtClose () operation was invoked.

Once lopCloseFile () has completed processing (i.e., the FSD has completed
processing the cleanup request, if invoked), the Object Manager decrements the
ObjectReferenceCount for the file object structure. If this reference count
value is 0, the Object Manager deletes the object and, prior to doing so, invokes
the delete method (lopDeleteFile ()) associated with the file object.
lopDeleteFile (), in turn, issues an IRP_MJ_CLOSE request to the FSD
managing the file object structure.

Although an FSD receives a cleanup IRP whenever a user handle is closed, the
FSD knows that it cannot free up the FCB until the last IRP_MJ_CLOSE request is
received for that FCB.

* I have made up the symbolic names presented here since the field names for an object structure are
not exposed by the Windows NT Object Manager. However, the actual symbolic names used by the Ob-
ject Manager are relatively uninteresting from our perspective, as long as we understand the logic used
by the Object Manager to determine how objects are retained in system memory and when they should
be deleted.

Data Structures___383

For readers with a UNIX background, you can create the analogy where a IRP_
MJ_CLEANUP request corresponds to a UNIX vnode close operation, and the last
IRP_MJ_CLOSE request signifies that an inactivate operation should be
performed on the vnode structure.

The reference count and the open handle count maintained internally by the FSD
in the FCB structure together help the FSD determine the answer to the following
two questions:

How many user handles are outstanding for the FCB?
In other words, the FSD should have some idea about the total number of
IRP_MJ_CREATE requests that were successful, and for which a corre-
sponding IRP__MJ_CLEANUP has not yet been received. As long as this
number is nonzero, the FSD knows that at least one thread has a valid open
handle to the file stream represented by the FCB, and the FCB structure
should be retained in memory. Note that this is in addition to the requirement
that the FCB cannot be deleted as long as the Ref erenceCount is not 0.
You should also note that, although the OpenHandleCount in the FCB is
incremented in response to the create operation (when a new file object is
created by the I/O Manager), the count does not necessarily correspond to
the system-wide handle count on the corresponding file object, which is main-
tained by the NT Object Manager. Each time a user file handle is duplicated
(say between threads in the same process), or inherited (by a child of a
parent process), or whenever some process requests a new handle from a file
object pointer, the Object Manager increments the SystemHandleCount on
the file object representing the open file instance. Since an FSD is not
informed when such duplication or inheritance of file handles occurs, the
OpenHandleCount maintained internally by the FSD does not get incre-
mented at such occasions. However, this does not cause any problems for the
FSD, since the NT I/O Manager will not invoke an IRP_MJ_CLEANUP
request on the particular file object unless all user threads that had an open
handle for that file object have also invoked a close operation on it. There-
fore, the FSD will always see one cleanup operation corresponding to one
create/open request and will decrement the open handle count in response to
the cleanup request.

How many outstanding references exist for the FCB structure?
The Ref erenceCount field helps determine the total number of outstanding
references for the FCB. It is entirely possible, and indeed very probable, that
the ReferenceCount will be nonzero long after the OpenHandleCount
has gone down to zero. This simply means that, although all user handles for
the FCB have been closed, some kernel-mode component wishes to retain
the FCB in memory.

384____________________________Chapter 9: Writing a File System Driver I

Typically, this situation arises when the NT Cache Manager and the NT VMM
together conspire to keep file data cached in memory, even after a user appli-
cation process has closed the file, indicating that it has finished processing the
file stream. The reason that the Cache Manager and/or the VMM wish to
retain the file data in memory (and remember that they cannot have file data
retained in memory unless the FCB is also present) is to be able to provide
relatively fast response if the user application needs to access the contents of
the file stream once again. This may seem a bit silly to you but, quite often,
application processes open and close the same file multiple times within the
span of a few minutes, and retaining file contents in memory to help speed
up the second and subsequent accesses to the same file stream's data
enhances system throughput.

To sum up, how would the VMM or any component ensure that an FCB is
retained by the FSD in memory? Here's the answer: if, for example, the VMM
wishes to ensure that an FCB will stay around, it references some file object asso-
ciated with the FCB. By referencing the file object, the VMM prevents the NT
Object Manager from issuing a close request on that file object, even if all user
handles for that particular file object are closed. Therefore, the FCB reference
count is not decremented to 0 and the FCB is retained in memory.

Context control blocks (CCB)

A CCB structure is used by the FSD to store state information for a specific open
operation performed on a file stream. As discussed earlier, each file stream is
uniquely represented in memory by an FCB structure. The FCB structure,
however, only contains information that assists in managing user accesses to the
file stream as a whole; it does not contain any information about specific user
open operations. The CCB structure is used instead for this purpose.

There is one CCB structure created by the FSD for each successful open operation
on the file stream. Each CCB structure is typically associated in some way with
the unique FCB structure representing the file stream; in the sample FSD, all CCB
structures associated with a FCB structure are linked together and accessible from
the FCB structure. Also, each CCB structure contains a pointer back to its associ-
ated FCB.

The CCB defined by the sample FSD is shown below:

typedef struct _SFsdContextControlBlock {
SFsdldentifier Nodeldentifier;
// Pointer to the associated FCB
struct _SFsdFileControlBlock *PtrFCB;
// all CCB structures for a FCB are linked together
LIST_ENTRY NextCCB;
// each CCB is associated with a file object

Data Structures___385

PFILE_OBJECT PtrFileObject;
// flags (see below) associated with this CCB
uint32 CCBFlags;
/ / current byte offset is required sometimes
LARGE_INTEGER CurrentByteOffset;
/ / if this CCB represents a directory object open, we may
/ / need to maintain a search pattern
PSTRING DirectorySearchPattern;
// we must maintain user specified file time values
uint32 UserSpecifiedTime;

} SFsdCCB, *PtrSFsdCCB;

Figure 9-3 shows three CCB structures, each created by an FSD in response to an
IRP_MJ_CREATE request. Two of the CCB structures are for the same file stream
(file #T), and they are therefore linked together on FCB #1. The other CCB struc-
ture represents an instance of a successful open operation on FCB #2.

Note carefully that there is a one-to-one mapping between a file object structure
created by the I/O Manager in response to an open/create request and the CCB
structure created by the FSD. Therefore, there may be only one FCB structure
created for an open file stream, but there can potentially be many CCB structures
created for the same file stream, each of which serves as the FSD's context for a
successful open operation on the file stream.

Why would a file system wish to create a CCB structure representing each
successful open operation? There are quite a few situations when the file system
wishes to maintain some state that is not global to the entire file stream (i.e., a
state that is not common to all open instances of the file). As an example, the
CCB could be used to maintain information about byte-range locks requested by a
thread using a particular file object; if the thread closes the file handle without
unlocking all of the outstanding byte-range locks for that handle, the FSD can
automatically perform the unlock operation upon receipt of an IRP_MJ_
CLEANUP request on the file object by checking for the outstanding locks on the
CCB associated it. Similarly, the CCB is often also used by an FSD to store informa-
tion about the next offset from which to resume a directory search operation in
response to find-first and find-next requests issued by an application.

As you can see, it is quite useful to have context maintained by the FSD for each
outstanding open operation, thereby avoiding cluttering up the FCB with
nonglobal state information.

The I/O Manager puts no requirements on the FSD about the contents of a CCB
structure; the FSD is allowed complete control about whether it wishes to main-
tain such a structure in the first place. Also, if the FSD does maintain a CCB
structure, the contents are completely opaque to the I/O Manager. All of the
current NT file system implementations maintain one CCB structure per open
operation.

386^ __________________________Chapter 9: Writing a File System Driver I

File objects

Finally, Figure 9-3 also depicts three file object structures; two of these file objects
represent open operations performed on file #1 while the third file object repre-
sents an open operation performed on file #2. Each of these file object structures
is allocated and maintained by the I/O Manager in response to an open request
by a thread on a file stream. Chapter 4, The NT I/O Manager, describes the file
object structure in considerable detail.

As was mentioned in Chapter 4, the file system driver is responsible for initializing
the FsContext and the FsContext2 fields in the file object structure. In Figure
9-3, you will observe that the FsContext2 field seems to be pointing to the CCB
structure. As you read earlier, each instance of an open operation is represented
by a CCB structure and, in order to be able to correctly associate a file object with
the corresponding CCB, most file system implementations under Windows NT
initialize the FsContext2 field as part of processing an IRP_MJ_CREATE
request to refer to the CCB structure that is newly allocated during the open oper-
ation. Note that this type of association is not mandated by the NT I/O Manager.
If, however, you do develop a filter driver that attaches itself to a device object
representing a mounted logical volume for one of the native NT file systems (e.g.,
FASTFAT, NTFS, or CDFS), you should expect that the FsContext2 field will
have been initialized by the file system implementation to refer to a CCB structure
internal to the FSD.

Unfortunately, though, a file system driver does not have an equivalent amount of
flexibility with respect to manipulating the FsContext field. Although, theoreti-
cally, this field also exists solely for driver use, the NT Cache Manager, I/O
Manager, and the Virtual Memory Manager make certain assumptions about what
this field points to; therefore, in order to integrate your FSD correctly with the rest
of the system, your driver must initialize the FsContext field to point to the
common FCB header structure associated with the FCB. This initialization is
performed by the FSD as part of processing an IRP_MJ_CREATE request.

Other Data Structures
In addition to the data structures described above, a file system driver typically
maintains other data structures that assist in providing standard file system func-
tionality to the system. These data structures include the following:

Support for byte-range locking
Many file system implementations support byte-range locks. These locks can
either be mandatory or advisory in nature. Mandatory locks are part of the
specification to which NT FSD implementations must conform; i.e., if a thread
acquires a lock on a certain byte range, the FSD implementation on the

Data Structures___387

Windows NT operating system should enforce the semantics associated with
that lock for all other threads attempting to use the same byte range for the
same file stream. On the other hand, advisory byte-range locks are a synchro-
nization mechanism for different cooperating processes that need to
coordinate concurrent access to the same byte range for a specific file stream.
Advisory byte-range file locks are not really supported on the Windows NT
platform, although your FSD does have the option of implementing advisory
lock support instead of mandatory locks. Be careful if you do this, though,
since most Windows-based applications expect locks to be mandatory.
If you design an FSD that supports byte range locking (as do all native NT file
system driver implementations), you will undoubtedly maintain certain data
structures associated with the FCB/CCB to support this functionality. The
sample FSD code presented in this book implements some support for byte-
range locking, a topic that is discussed in Chapter 11, Writing a File System
Driver III.

Support for a Dynamic Name Lookup Cache (DNLC) implementation
You may be familiar with the concept of a DNLC if you have studied file
systems on the UNIX platform; if you are not, the DNLC is simply a per-direc-
tory cache of the files that were recently accessed within that directory. This
list of recently accessed filenames with their on-disk metadata information,
which is typically implemented as a hashed list, simply helps the FSD quickly
look up a particular file within a specific directory. Normally, most FSD imple-
mentations use linear searching to look up specific file names within a
directory; the DNLC helps speed things up by skipping the tedious linear
search for the more recently accessed files.

Implementation of a DNLC is not mandatory; in fact, the NT system (or any
operating system for that matter) does not care whether your FSD uses a
DNLC or not. However, you should be aware of the term in case you happen
to run into a FSD implementation that does implement this functionality.

Note that the sample FSD presented in this book does not implement any sort
of DNLC functionality.

Support for file stream or directory quotas
Although the NT operating system does not yet support quotas associated
with file streams, directories, or logical volumes, NT Version 5.0 is expected
to provide such support. If you design an FSD that implements quota manage-
ment, similar to the disk quota implementation on the BSD UNIX operating
system, your FSD will have to maintain appropriate data structures to support
this quota management functionality. These data structures will include both
on-disk structures as well as in-memory representations of the data structures.

388____________________________Chapter 9: Writing a File System Driver I

Quotas will not be discussed further in this book, though you should
certainly be able to add support for this feature for the native FSD implemen-
tations on the current NT releases, using the filter driver information provided
in Chapter 12, Filter Drivers.

Support for opportunistic locking (oplock) functionality in Windows NT
Opportunistic locks are a characteristic of the LAN Manager networking
protocol implemented in the Windows family of operating system environ-
ments. Basically, oplocks are guarantees made by a server for a shared logical
volume to its clients. These guarantees inform the client that the contents of a
certain file stream will not be allowed to be changed by the server, or if some
change is imminent, the client will be notified before the change is allowed to
proceed.

The guarantees made by the server node are helpful in improving client
response performance to requests accessing remote file streams, since the
client can safely cache the file stream data, knowing that the data will not be
changed behind its back, leading to data inconsistency across nodes.

Oplocks are not required for NT FSD implementations. However, if you
expect logical volumes, managed by your FSD implementation, to be shared
using the LAN Manager protocol shipped with the Windows NT operating
system (typically, this does not apply if you are designing a network redi-
rector), then you should get familiar with the requirements for successfully
implementing oplock support. Otherwise, you may have to assuage unhappy
clients who will complain that accessing shared logical volumes managed by
your FSD over the LAN Manager network is slower that accessing (say) a
shared NTFS logical volume.
Later in this book, we'll explore oplock support in greater detail.

Support for directory change notification
Directory change notification is another neat feature that was implemented in
the Windows NT operating system by the native file system drivers and the
I/O Manager. Basically, directory change notification functionality works
somewhat like the following: a component (either user-mode or kernel-
mode) needs to monitor changes to a specific directory or to a directory tree.
This component can specify exactly which changes to monitor; e.g., it may be
interested in being notified if new files get added to the directory, or it may
only need to be notified if a specific file is accessed or modified. The I/O
Manager receives a request from the component specifying the type of access
the component wishes to monitor and the directory or directory tree that it
wishes to monitor. In response to this request, the I/O Manager asks the FSD
to asynchronously invoke a specific I/O Manager notification function when
the to-be-monitored changes occur.

Data Structures___389

This feature is very powerful, since it allows a lot of applications to do away
with the inefficient polling methodology used before in monitoring changes
to particular directories, and to use this notification methodology instead.
Supporting this functionality requires the active participation of the I/O
Manager and the FSD. Supporting the directory change notification feature is
not mandatory; however, all of the native NT FSD implementations support it
and you should at least understand the requirements that your FSD would
have to meet in order to provide this kind of support.

Directory change notification support is discussed further in the next chapter.
Support for data compression

NTFS provides data compression functionality. Your FSD might also imple-
ment online data compression. This would require that your FSD maintain on-
disk and in-memory structures that indicate whether a file stream has been
compressed or not, and if it has been compressed, store information such as
the original file length and other such control information.

The NT I/O Manager provides support for FSD implementations that support
data compression by providing system call interfaces allowing a user process
to specify whether it expects to receive compressed or uncompressed data
back (for read operations). Similarly, Version 4.0 of the operating system
allows processes to request that compressed data be written out. In addition,
the NT I/O Manager allows a user process to query control information, such
as the compressed length, as well as the uncompressed length, of the file
stream.

Support for encryption/decryption of data
Some sophisticated file system implementations could potentially provide
support for dynamic encryption/decryption of stored data. If you design an
FSD that provides such functionality, you will undoubtedly create appropriate
data structures that help you manage the encrypted data and decrypt it when
required.

It is also quite likely that you might choose to design a filter driver that layers
itself on top of the native NT file system implementations and provides
support for data encryption and decryption.

Support for logging for fast recovery
NTFS is an example of an FSD implementation that uses in-memory and on-
disk logging to be able to provide quick recovery from unexpected system
failures. A lot of research has been performed on the design and develop-
ment of log-based and/or logging file system implementations. If you design
such a log-based file system implementation, you will have to maintain appro-
priate on-disk and in-memory log file streams and also other supporting data
structures that will allow you to provide the logging feature to users.

390____________________________Chapter 9: Writing a File System Driver I

Maintain support for on-disk data structures
Typically, a disk-based file system, or a network redirector, will maintain
support for the on-disk data structures, such as an on-disk file stream repre-
sentation (i.e., on-disk FCB/vnode/inode), a directory entry structure (e.g., the
dirent structure) used in obtaining the contents of a directory, on-disk
bitmaps, volume information, and other similar structures. Your FSD may also
need to provide appropriate translation routines that would convert the in-
memory information to on-disk formats for storage on physical media or for
transmitting across a network.

Dispatch Routine: Driver Entry
All kernel-mode drivers are required to have a driver entry routine. This routine is
invoked by the NT I/O Manager in the context of a system worker thread at IRQL
PASSIVE_LEVEL.

Functionality Provided
File system drivers typically perform the steps listed below in their driver entry
routines. Note that these steps are not much different from those performed by
other lower-level drivers in their initialization routines:

1. Allocate memory for global data structures and initialize these data structures.

2. Read Registry information if required.

Although most file system implementations will not provide many config-
urable parameters, redirectors and servers (e.g., the LAN Manager software)
do allow users to specify the values of many configurable parameters.

3. Create a device object to which requests targeted to the FSD itself (as
opposed to requests targeted to logical volumes managed by the FSD) can be
sent.
This device object will be one of the following types of device objects:

— FILE_DEVICE_DISK_FILE_SYSTEM
This is used by disk-based FSD implementations such as NTFS (device
object name is \Ntfs) and FAT (device object name is \Fai).

— FILE_DEVICE_NETWORK
This is used by network servers, e.g., the LAN Manager Server.

— FILE_DEVICE_TAPE_FILE_SYSTEM
— FILE_DEVICE_NETWORK_FILE_SYSTEM

Dispatch Routine: Driver Entry 391

This is used by the LAN Manager redirector, and other third-party NFS/
DPS implementations.

4. Initialize the function pointers for the dispatch routines that will accept the
different IRP requests.

5. Initialize the function pointers for the fast I/O path and the callback functions
used for synchronization across modules.

6. Initialize any timer objects and associated DPC objects, that your FSD might
require.

Some FSD implementations use timer interrupts to perform asynchronous
processing. This requires using timer objects.

7. Initiate asynchronous initialization, if required.

For example, if your driver needs to create worker threads that perform some
initialization asynchronously, the threads can be created either in the context
of the DriverEntry () routine or as an asynchronous operation.

8. Physical-media-based file system drivers will invoke loRegisterFile-
System () to register the current loaded instance of the driver.
Note that the physical-media-based FSDs supported by the NT I/O Manager
are disk-, virtual disk-, CDROM-, and tape-based FSD implementations. By
registering the FSD with the I/O Manager, your FSD will ensure that it is on
the list of file system drivers asked by the I/O Manager to examine and poten-
tially perform a mount operation on media accessed for the first time in a
boot cycle.

9. Network file system implementations that support Universal Naming Conven-
tion (UNC) names will invoke FsRtlRegisterUncProvider () to register
themselves with the MUP component.

10. Network redirectors and servers will also register a shutdown notification func-
tion using the IoRegisterShutdownNotification() routine, ensuring
that the FSD has an opportunity to flush modified data before the system
goes down, as well as perform any other necessary processing.

Code Fragment
The following DriverEntry () code sample performs the previously listed
steps. The code fragment contains conditionally compiled code for disk-based file
system drivers as well as for network redirectors:

NTSTATUS DriverEntry(
PDRIVER_OBJECT DriverObject,
PUNICODE_STRING RegistryPath)

// created by the I/O subsystem
// path to the Registry key

392 ____________________________ Chapter 9: Writing a File System Driver I

NTSTATUS RC = STATUS_SUCCESS ;
UNICODE_STRING DriverDeviceName;
BOOLEAN RegisteredShutdown = FALSE;
try {

try {
// initialize the global data structure
RtlZeroMemory (ScSFsdGlobalData, sizeof (SFsdGlobalData)) ;

// initialize some required fields
SFSdGlobalData.Nodeldentifier .NodeType =

SFSD_NODE_TYPE_GLOBAL_DATA ;
SFsdGlobalData. Nodeldentif ier .NodeSize =

sizeof (SFsdGlobalData) ,-

// initialize the global data resource and remember the fact
// that the resource has been initialized
RC =
ExInitializeResourceLite (& (SFsdGlobalData. GlobalDataResource)) ;
ASSERT (NT_SUCCESS (RC)) ;
SFsdSetFlag (SFsdGlobalData . SFsdFlags ,

SFSD_DATA_FLAGS_RESOURCE_INITIALIZED) ;

// store a pointer to the driver object sent to us by the I/O
// Mgr.
SFsdGlobalData. SFsdDriverObject = DriverObject;

// initialize the mounted logical volume list head
InitializeListHead(& (SFsdGlobalData. NextVCB)) ;

// before we proceed with any more initialization, read in
// user supplied configurable values . . .
if (!NT_SUCCESS(RC = SFsdObtainRegistryValues (RegistryPath))) {

// in your commercial driver implementation, it would be
// advisable for your driver to print an appropriate error
// message to the system error log before leaving
try_return (RC) ;

// we have the Registry data, allocate zone memory
// This is an example of when FSD implementations
// try to preallocate some fixed amount of memory to avoid
// internal fragmentation and/or waiting later during runtime
// . . .
if (!NT_SUCCESS(RC = SFsdlnitializeZones ())) {

// we failed, print a message and leave . . .
try_return(RC) ;

// initialize the IRP major function table, and the fast I/O
// table
SFsdlnitializeFunctionPointers (DriverObject) ;

// create a device object representing the driver itself
// so that requests can be targeted to the driver . . .

Dispatch Routine: Driver Entry 393

II e.g., for a disk-based FSD, "mount" requests will be sent to
// this device object by the I/O Manager.
// For a redirector/server, you may have applications
// send "special" lOCTLs using this device object ...
RtllnitUnicodeStringl&DriverDeviceName, SFSD_FS_NAME);
if (!NT_SUCCESS(RC = loCreateDevice(

DriverObject, // our driver object
0, // don't need an extension for this object
&DriverDeviceName,

// name - can be used to "open" the driver
// see the book for alternate choices

FILE_DEVICE_DISK_FILE_SYSTEM,
0, //no special characteristics

// do not want this as an exclusive device, though you might
FALSE,
&(SFsdGlobalData.SFsdDeviceObj ect)))) {

// failed to create a device object, leave ...
try_return(RC);

i f de f _THI S_IS_A_NETWORK_REDIR_OR_SERVER_

// since network redirectors/servers do not register
// themselves as "file systems," the I/O Manager does not
// ordinarily request the FSD to flush logical volumes at
// shutdown. To get some notification at shutdown, use the
// IoRegisterShutdownNotification() instead ...
if (!NT_SUCCESS(RC =

loRegisterShutdownNotification(
SFsdGlobalData.SFsdDeviceObject))) {

// failed to register shutdown notification ...
try_return(RC);

RegisteredShutdown = TRUE;

// Register the network FSD with the MUP component.
if (!NT_SUCCESS(RC = FsRtlRegisterUncProvider(

&(SFsdGlobalData.MupHandle) ,
&DriverDevi c eName,
FALSE))) {

try_return(RC);

#else // This is a disk-based FSD

#endif

// register the driver with the I/O Manager, pretend as if
// this is a physical-disk-based FSD (or in other words, this
// FSD manages logical volumes residing on physical disk
// drives)
loRegisterFileSystern(SFsdGlobalData.SFsdDeviceObject);

/ _THIS_IS_A_NETWORK_REDIR_OR_SERVER_

} except (EXCEPTION_EXECUTE_HANDLER) {

394 Chapter 9: Writing a File System Driver I

II we encountered an exception somewhere
RC = GetExceptionCode();

try_exit: NOTHING;
} finally {

// start unwinding if we were unsuccessful
if (!NT_SUCCESS(RC)) {

#ifdef _THIS_IS_A_NETWORK_REDIR_OR_SERVER_
if (RegisteredShutdown) {

ZoUnregisterShutdownNotif ication (SFsdGlobalData. SFsdDeviceObject) ;
}

#endif // _THIS_IS_A_NETWORK_REDIR_OR_SERVER_

// Now, delete any device objects, etc. we may have created
if (SFsdGlobalData. SFsdDeviceObject) {

IoDeleteDevice(SFsdGlobalData. SFsdDeviceObject) ;
SFsdGlobalData. SFsdDeviceObject = NULL;

// free up any memory we might have reserved for zones/
// lookaside lists
if (SFsdGlobalData. SFsdFlags

& SFSD_DATA_FLAGS_ZONES_INITIALIZED) {
SFsdDestroyZones () ;

// delete the resource we may have initialized
if (SFsdGlobalData. SFsdFlags

& SFSD_DATA_FLAGS_RESOURCE__INITIALIZED) {
// uninitialize this resource
ExDeleteResourceLite(& (SFsdGlobalData. GlobalDataResource)) ;
SFsdClearFlag (SFsdGlobalData . SFsdFlags ,

SFSD_DATA_FLAGS_RESOURCE_INITIALIZED) ;

return (RC) ,-

void SFsdlnitializeFunctionPointers (
PDRIVER_OBJECT DriverObject) // created by the I/O subsystem

PFAST_IO_DISPATCH PtrFastloDispatch = NULL;

// initialize the function pointers for the IRP major
// functions that this FSD is prepared to handle ...
// NT Version 4.0 has 28 possible functions that a
// kernel mode driver can handle.
// NT Version 3.51 (and earlier) has only 22 such functions,
//of which 18 are typically interesting to most FSDs.

Dispatch Routine: Driver Entry 395

II The only interesting new functions that a FSD might (currently)
// want to respond to beginning with are the
// IRP_MJ_QUERY_QUOTA and the IRP_MJ_SET_QUOTA requests.

// The code below does not handle quota manipulation; neither
// does the NT Version 4.0 operating system (or I/O Manager).
// However, you should be on the lookout for any such new
// functionality that your FSD might have to implement in
// the near future.

// The functions that your FSD might wish to consider implementing
// (and are not covered below) are:

// Note that
// MAILSLOT"
// develop.
DriverObject
DriverObject
DriverObject
DriverObject
DriverObject
DriverObj ect
DriverObj ect
DriverObj ect

the "IRP_MJ_CREATE_NAMED_PIPE", and the "IRP_MJ_CREATE_
requests won't be directed toward any FSD you would

>Ma j orFunction[IRP_MJ_
•>Ma j orFunction [IRP_MJ_
>Ma j or Func t i on [IRP_M J.
•>MajorFunction [IRP_MJ_
• >Ma j or Func t i on [IRP_M J.
•>Maj orFunction [IRP_MJ.
•>Maj orFunction [IRP_MJ_
•>Maj orFunction [IRP_MJ.

.CREATE]
CLOSE]
READ]
.WRITE]
_QUERY_INFORMATION]
.SET_INFORMATION]
_FLUSH_BUFFERS]

= SFsdCreate;
= SFsdClose;
= SFsdRead;
= SFsdWrite;
= SFsdFilelnfo;
= SFsdFilelnfo;
= SFsdFlush;

DriverObj ect->Maj orFunction[IRP_MJ_

DriverObj ect->Maj orFunction[IRP_MJ_

DriverObj ect->MajorFunction[IRP_MJ_

DriverObject->MajorFunction[IRP_MJ_

DriverObj ect-
DriverObj ect-

DriverObject-
DriverObj ect-
DriverObj ect-

DriverObject-

DriverObj ect-

>Ma j orFunction [IRP_MJ.
>MajorFunction[IRP_MJ_LOCK_CONTROL]

.QUERY_VOLUME_INFORMATION]
= SFsdVolInfo;

SET_VOLUME_INFORMATION]
= SFsdVolInfo;

,DIRECTORY_CONTROL]
= SFsdDirControl;

FILE_SYSTEM_CONTROL]
= SFsdFSControl;

.DEVICE_CONTROL]
= SFsdDeviceControl;

.SHUTDOWN] = SFsdShutdown;

->MajorFunction[IRP_MJ_
->Maj orFunction[IRP_MJ_
->Maj orFunction[IRP_MJ_

->Maj orFunction[IRP_MJ_

->Maj orFunction[IRP_MJ_

CLEANUP]
.QUERY_SECURITY]
SET_SECURITY]

,QUERY_EA]

.SETJEA]

= SFsdLockControl;
= SFsdCleanup;
= SFsdSecurity;

= SFsdSecurity;

= SFsdExtendedAttr;

= SFsdExtendedAttr;

// Now, it is time to initialize the fast I/O stuff ...
PtrFastloDispatch = DriverObject->Fast!oDispatch

= &(SFsdGlobalData.SFsdFastIoDispatch) ;

// initialize the global fast I/O structure
// NOTE: The fast I/O structure has undergone a substantial revision
// in Windows NT Version 4.0. The structure has been extensively
// expanded.

Chapter 9: Writing a File System Driver I

II Therefore, if your driver needs to work on both V3.51 and V4.0+,
// you will have to be able to distinguish between the two versions
// at compile time.
PtrFastIoDispatch->SizeOfFastIoDispatch = sizeof (FAST_IO_DISPATCH) ;
PtrFastIoDispatch->FastIoCheckIf Possible

= SFsdFastloChecklfPossible;
PtrFastIoDispatch->FastIoRead = SFsdFastloRead;
PtrFastIoDispatch->FastIoWrite = SFsdFastloWrite;
PtrFastIoDispatch->FastIoQueryBasicInfo = SFsdFastloQueryBasidnfo;
PtrFastIoDispatch->FastIoQueryStandardInfo = SFsdFastloQueryStdlnfo;
PtrFastIoDispatch->FastIoLock = SFsdFastloLock;
PtrFastIoDispatch->FastIoUnlockSingle = SFsdFastloUnlockSingle;
PtrFastIoDispatch->FastIoUnlockAll = SFsdFastloUnlockAll;
PtrFastIoDispatch->FastIoUnlockAllByKey = SFsdFastloUnlockAllByKey;
PtrFastIoDispatch->AcquireFileForNtCreateSection

= SFsdFastloAcqCreateSec;
PtrFastIoDispatch->ReleaseFileForNtCreateSection

= SFsdFastloRelCreateSec;

// the remaining are only valid under NT Version 4.0 and later
#if (_WIN32_WINNT >= 0x0400)

PtrFastIoDispatch->FastIoQueryNetworkOpenInfo = SFsdFastloQueryNetlnfo;
PtrFastIoDispatch->AcquireForModWrite = SFsdFastloAcqModWrite;
PtrFastIoDispatch->ReleaseForModWrite = SFsdFastloRelModWrite;
PtrFastIoDispatch->AcquireForCcFlush = SFsdFastloAcqCcFlush;
PtrFastIoDispatch->ReleaseForCcFlush = SFsdFastloRelCcFlush;

// MDL functionality
PtrFastIoDispatch->MdlRead = SFsdFastloMdlRead;
PtrFastIoDispatch->MdlReadComplete = SFsdFastloMdlReadComplete;
PtrFastIoDispatch->PrepareMdlWrite = SFsdFastloPrepareMdlWrite;
PtrFastIoDispatch->MdlWriteComplete = SFsdFastloMdlWriteComplete;

// although this FSD does not support compressed read/write
// functionality, NTFS does, and if you design a FSD that can provide
// such functionality,
// you should consider initializing the fast I/O entry points for
// reading and/or writing compressed data . . .

#endif // (_WIN32_WINNT >= 0x0400)

// last but not least, initialize the Cache Manager callback functions
// which are used in CcInitializeCacheMap ()
SFsdGlobalData.CacheMgrCallBacks . AcquireForLazyWrite

= SFsdAcqLazyWrite;
SFsdGlobalData.CacheMgrCallBacks.ReleaseFromLazyWrite

= SFsdRelLazyWrite;
SFsdGlobalData.CacheMgrCallBacks.AcquireForReadAhead

= SFsdAcqReadAhead;
SFsdGlobalData.CacheMgrCallBacks .ReleaseFromReadAhead

= SFsdRelReadAhead;

return;

Dispatch Routine: Create______________________________________397

Notes
The two routines listed comprise the bulk of the driver entry code for the sample
FSD driver. The code fragment doesn't initiate any asynchronous initialization;
neither does it initialize any timer or DPC objects. However, your FSD can
certainly perform such functions in its driver entry routine. Otherwise, the code
pretty much follows the logical steps listed earlier that most FSD implementations
perform in the initialization routine.

For additional details on some of the supporting functions invoked by the driver
entry routine, consult the disk that accompanies this book.

Dispatch Routine: Create
As a file systems designer, you will probably count the "create" routine as one of
the more difficult routines to design and implement. This routine forms the very
core of your FSD, since in order to perform any operation on on-disk objects, the
object must first be created and/or opened. Therefore, not only are create
routines required to be robust, but the design and implementation of the create
routine can also contribute significantly to overall system performance, because
badly designed or implemented "create" routines can become a bottleneck very
easily during frequent (high stress) file system manipulation operations.

Logical Steps Involved
The I/O stack location contains the following structure relevant to processing a
create/open request issued to an FSD:

typedef struct _IO_STACK_LOCATION {

union {

// System service parameters for: NtCreateFile
struct {

PIO_SECURITY_CONTEXT SecurityContext ;
ULONG Options;
USHORT FileAttributes;
USHORT ShareAccess;
ULONG EaLength;

} Create;

398_______ ____________________Chapter 9: Writing a File System Driver I

} Parameters;

} IO_STACK_LOCATION, *PIO_STACK_LOCATION;

Create routines are conceptually not very difficult. Unfortunately, however, the
details involved in processing a create request sometimes become overwhelming.
Logically, you need to perform the following operations when processing a create
or an open request on an object stored on secondary storage:*

1. First, you would have to obtain the caller-supplied path that leads you to the
object of interest.

Note that most of the common, commercially available operating systems are
equipped only to handle inverted-tree-based file system organizations. In this
kind of file system arrangement, there is a container object, such as a direc-
tory structure, which in turn leads you to the actual named data objects, also
known as file streams. Container objects typically also contain other container
objects in addition to file streams, thereby leading to the inverted-tree struc-
tured file system layout.

On some operating system platforms such as most commercial UNIX imple-
mentations, the FSD is not supplied with the entire path leading to a specific
named file stream. Instead, the operating system performs the task of parsing
the path leading to the target file stream, and only supplies the FSD with a
handle to the container object and the name of an object to open within the
container. See Figure 9-5 for an illustration of a file system layout. For
example, if a thread wished to open an object \dirl\dir2\...\foo on such a
platform, the operating system would first request the FSD to open \ (or the
root of the tree), then request the FSD to open dirl given a handle to \
(received from the just concluded open request), then move on to dir2 given
a handle to \dirl and so on, until the operating system finally requests the
FSD to open the object foo—the actual target of the create/open request

On Windows NT platforms, however, the I/O Manager (which happens to be
the component that invokes the FSD create dispatch entry point) does not
perform such name parsing. Instead, the I/O Manager supplies the FSD with
the entire caller-supplied path and then expects the FSD to perform any
required processing that might be required, including parsing the pathname
supplied; i.e., the I/O Manager would give the FSD the complete name,
\dirl\dir2\...\foo in the example discussed earlier, for processing in the

* Note that a request to create a new object always implies that the caller wishes to open the object as
well. Therefore, when I use the term create in this section, I do so generically, implying that this is either
some form of open request, or a create and open request.

Dispatch Routine: Create 399

Figure 9-5. Simple representation of an inverted-tree file system layout

create dispatch routine. This is both a blessing and a curse: it affords consider-
able latitude to the FSD on how it can structure on-disk names and paths
leading to on-disk objects, but the complete responsibility for parsing the
caller-supplied name is the responsibility of the FSD implementation.

One final point should be mentioned here is that the NT I/O Manager
supports the concept of relative open operations, where the pathname
supplied by the caller is assumed to be relative to a container (directory)
object opened earlier, instead of being a path beginning at the root of the file
system tree. Your FSD must be able to distinguish between these two kinds
of create/open operations and be able to deal with each of them correctly.

2. Now, your FSD can obtain other arguments supplied by the caller that will
determine how you process the create/open request. These arguments
include information on whether the caller has specified that the target must
be created (and the FSD should return an error if the target already exists),
whether the target must be opened only (and the FSD should return an error
if the target object does not exist), or whether the target should be created
conditionally (opened if it exists but created if it does not). Note that the
caller may also request the creation of a hard link to an existing object.
However, in the Windows NT operating system environment, this does not
happen via the create entry point so we will discuss it later.*

Other caller-supplied arguments include any specifications on the type of
object being created or opened (e.g., whether the caller wishes to create or

* The method used to create a hard link in Windows NT is via the IRP_MJ_SET_INFORMATION request,
which is described in the next chapter.

400____________________________Chapter 9: Writing a File System Driver 1

open a container object or a file-stream object). Furthermore, the caller can
specify attributes to associate with the object if a new one is being created;
e.g., a caller might specify that the delete-on-close attribute be associated with
the object, to make it a temporary object that is automatically deleted by the
FSD once the object has been closed for the last time. Other attributes include
the sharing mode that a caller might wish to enforce with the object being
opened.

3. Once your FSD has obtained all of the caller-supplied information, all it needs
to do is to try to locate the target object, given the user-supplied pathname
leading to this object.
Your driver may or may not be successful in locating the target object, given
the path to that object. If the object is found and the caller has requested that a
new object must be created (CreateDisposition in sample code below is
FILE_CREATE), your driver must return an object exists error code. If however
the object is not found—i.e., it does not exist, but the caller has specified that
the object must only be opened and not created (CreateDisposition is
FILE_OPEN)—your driver must return an object not found error. Finally, the
create-if-not-found or open-if-found option (CreateDisposition is FILE_
OPEN_IF or FILE_OVERWRITE_IF) is the most flexible since it allows your
driver to return success more often than not. Regardless, you will either decide
to return an error at this point or move on to the next step.

4. At this time, your driver can check whether the caller can be allowed to
create/open the object, given the caller's identity, the operation requested,
and the sharing mode requested. The sharing mode assumes greater impor-
tance if another thread already has the target object open, in which case the
new request must not conflict with the sharing mode allowed by the previous
open operations.
If your FSD provides access-checking functionality, you can use the caller's
subject context to validate whether the caller has appropriate privileges to
perform the desired operation on the target file/directory object. You may
also be required to perform traverse access checking while parsing the path-
name leading up to the target object.

5. If your FSD is successful in creating and/or opening the target object, it will
have to create appropriate in-memory data structures that can be used later in
accesses to the object. For example, if no FCB describing this object currently
exists in memory, the FSD must create one. More likely than not, the FSD will
also create a CCB structure at this time to maintain some context for this
particular instance of a create request.

Both of these structures, as well as any supporting structures, will have to be
initialized appropriately by the FSD.

Dispatch Routine: Create______________________________________401

6. The Windows NT I/O Manager expects that, for a successful create/open oper-
ation, the FSD will initialize certain fields in the file object structure as
described earlier. Your FSD should do so at this point if the create/open oper-
ation does succeed.

7. Lastly, your FSD must convey the results of the create/open request to the
I/O Manager, which in turn will forward the results to the caller.

As long as your driver understands the steps, described here, that it must perform
in response to a create request and implements them systematically, you should
be able to handle create requests correctly.

Synchronization Issues
There are other, more advanced considerations that file systems often have to
deal with in designing the create/open dispatch entry point, as well as other
dispatch entry points.

One of the issues that you should understand well is the synchronization that
your file system driver must perform to process create requests correctly and effi-
ciently. For example, your FSD must be cognizant of the fact that multiple
concurrent create/open operations could potentially be happening in the same
file system and possibly in the same directory. All of these concurrent operations
should be handled consistently. For example, consider the situation when two
threads request that the target file \dirl\foo be created if it does not exist and
opened if it does exist. Assume that the file does not exist. Unless your FSD is
careful about synchronizing both requests correctly, it might actually allocate a
new directory entry for the file twice in directory dirl and assign the same name
foo to both the directory entries. The inconsistent result can be avoided, however,
by serializing both requests with respect to each other.

Another consideration that your FSD must take into account is that delete and/or
file close operations (leading to the possible destruction of a FCB) could also be
happening concurrently with other create/open requests. In this case, your FSD
must be careful to correctly synchronize concurrent operations, such that a consis-
tent view of file system data structures is always maintained. For example, two
threads may both be manipulating an object \dirl\foo concurrently. One thread
might request that the object be deleted, while the other thread may wish to
create/open the object. Your FSD must again be very careful to always maintain
internal consistency. Note that it is not important to guarantee which thread is
allowed access first; i.e., should the thread trying to delete be allowed to go first
or should the thread performing the create/open be allowed to go first? No file
system guarantees any such ordering to its clients. Regardless of which operation
happens first, however (and yes, it might be possible for one of the user requests

402_____________________________Chapter 9: Writing a File System Driver I

to get an error code returned, depending on the sequence in which the threads
are allowed to proceed), it is important that both not be allowed to proceed
together or file system internal data structures will surely become corrupted.

At other times, your FSD will have to synchronize between multiple threads
performing I/O to the same file control block concurrently. For example, a thread
could be performing a read operation at the same time as another thread is
attempting a write.* In such cases, it is the FSD implementation's responsibility to
ensure that the read and write requests are serialized with respect to each other. It
is not the responsibility of the FSD to ensure that the read and write occur in
some specific sequence; the caller can ensure such order using other methods,
such as byte-range locking on the file stream. As long as the read and write
routines do not overlap within the FSD (i.e., once the FSD has begun processing
the read in SFsdRead () , the write is blocked in SFsdWrite() until the thread
executing SFsdRead () completes processing, or vice versa), the FSD will have
succeeded in maintaining its responsibilities.

You will also need to synchronize multiple threads attempting other directory
manipulation operations concurrently. For example, one thread might be querying
the contents of a directory while another might be in the process of deleting an
object within the directory.

Regardless of which operation is being performed on a particular FCB, your file
system driver will surely have to utilize some sort of synchronization mechanism
to ensure orderly access. If you are developing a significantly more complex FSD,
such as one that is inherently networked (e.g., NFS) and/or distributed in nature
(e.g., DPS), your task is now made even more complicated by the fact that your
create/open operations must now be made consistent across nodes as well.

Note that, in most situations, synchronization attempts described here and prac-
ticed throughout the sample code are fairly fine-grained; the FSD attempts to
synchronize at the level of each FCB. If two concurrent operations proceed inde-
pendently on two different FCB structures (on two different file streams or
directories), the FSD will not serialize the two operations. At this point, you may
be wondering why you should not simply disallow concurrent operations to the
same logical volume? Although such synchronization might be a little bit coarser
than that performed at the level of an FCB, it seems as if that would make life a

* Often, you may encounter the case where a delayed-write from the NT Cache Manager on an FCB pro-
ceeds concurrently with a user read request on the same FCB. At other times, a user write may be received
at the same time as a Cache Manager read-ahead operation. In most such cases (unless the user has re-
quested direct disk I/O), such operations will be allowed to proceed concurrently. This is in contrast to
the situations where two concurrent user write requests on an FCB will be serialized with respect to each
other or a write and a read operation proceeding concurrently and independently will also be serialized
with respect to each other. This is discussed in detail later in the book as well.

Dispatch Routine: Create______________________________________403

lot simpler. Unfortunately, although serializing all accesses to a logical volume
may make an FSD developer's life easier, generally speaking, for any file system,
preventing concurrent access to different files within the same logical volume is
simply not a viable option. Imagine how upset you might become if a file system
made you wait two hours to respond to a dir request simply because it serial-
ized all accesses to files within a logical volume! As a matter of fact, in order to
enhance response time and throughput, you should always be looking for ways
in which your FSD can safely increase parallelism and concurrency. For example,
you should always allow multiple threads to concurrently read data for the same
file stream, even though for write operations you would have to serialize across
different threads.

Note that a file system driver typically never keeps any resources acquired across
invocations of a particular dispatch routine. For example, if the create dispatch
routine is invoked and the thread acquires some resources as part of the
processing performed in the create, these resources must be released before the
thread exits file system code (from the create entry point). Not doing this will lead
either to a system crash or to a hang/deadlock. Resources are only acquired while
processing some file system code within a particular dispatch routine.

Here is a set of general synchronization rules followed by the sample FSD to
ensure consistent access to an FCB. Your driver is free to determine appropriate
synchronization rules specific to your situation:

• The sample FSD will use the MainResource and the PagingloResource
as the two synchronization resources for each file control block structure rep-
resenting a file stream. These are read/write locks and will be acquired either
shared or exclusively, depending upon the specific situation.

Note once again that your FSD is free to use other synchronization primitives
in addition to the MainResource and the PagingloResource. You can
choose from any of the mutex/executive mutex primitives available or use
counting semaphores.

• Since two resources will be used by the FSD to synchronize access to an FCB,
a locking hierarchy must be maintained for these two resources. The locking
hierarchy I will follow is that, if both resources need to be acquired, the
MainResource will always be acquired before the PagingloResource is
acquired.

Whenever multiple synchronization primitives are used to synchronize access
to an object, you must determine a hierarchy between such primitives to
avoid deadlock scenarios. For example, consider the case where no hierarchy
was defined and two threads tried to concurrently manipulate the same FCB.
For some reason, both threads determine that they must acquire both the

404____________________________Chapter 9: Writing a File System Driver I

resources to completely shut out all other operations on the FCB. One of the
threads may now acquire the MainResource and then try to acquire the
PagingloResource. The other thread, in the meantime, might have already
acquired the PagingloResource and could now be attempting to acquire
the MainResource. Both threads will now block on each other, and neither
can subsequently make any headway. This situation will not occur if the lock-
ing hierarchy described above is followed, since only one thread will be able
to acquire the MainResource and that thread can continue on to acquire
the PagingloResource.

• Typically, the sample FSD will acquire the MainResource only to perform
synchronization between multiple user threads accessing the same FCB struc-
ture. For example, if two user threads perform a query directory operation on
an FCB representing a directory (container object), the SFsdDirControl ()
dispatch routine implementation will first attempt to acquire the MainRe-
source exclusively for the target FCB on behalf of each thread. This will
ensure that accesses will be serialized across both threads within the specific
dispatch routine.

Similarly, as described earlier, if multiple user threads try to perform I/O on
the same file stream (FCB) concurrently, each of threads will use the MainRe-
source to synchronize access to the FCB. All threads attempting a read I/O
operation will acquire the MainResource shared, allowing multiple reads to
proceed concurrently on the file stream. All threads attempting a write opera-
tion, however, will do so having acquired at least the MainResource exclu-
sively, thereby preventing any other read or write operation to proceed
concurrently.

• The sample FSD will typically acquire the PagingloResource only when
performing read or write operations that have the IRP_PAGING_IO flag set
in the IRP structure.* This will simply allow the FSD to synchronize across
multiple concurrent paging I/O operations. However, user read/write opera-
tions and paging I/O operations will typically not be serialized with respect to
each other (since user requests use the MainResource while the NT VMM-
initiated requests use the PagingloResource) and will therefore proceed
concurrently.

• On some occasions, the sample FSD will acquire both the MainResource
and the PagingloResource on behalf of the same thread, while ensuring

* The presence of this flag indicates that this request comes to the FSD via the NT VMM. The FSD must
be extremely careful in handling paging I/O requests, since page faults are not allowed at that time. Also,
most consistency checks will be bypassed by the FSD when a paging I/O request is directed to page files.
The FSD implementation will simply trust the VMM to submit a valid request and pass on the request to
the underlying lower-level device drivers for completion (by reading/writing the requested byte range
from/to secondary storage devices).

Dispatch Routine: Create______________________________________405

that the resource acquisition hierarchy is always maintained (i.e., the MainRe-
source is always acquired before the attempt to acquire the Paginglo-
Resource). This will be done for specific situations only; e.g., both
resources will be acquired when the size of file stream changes (a file is trun-
cated/extended) .

TIP It is difficult to present any sort of cookbook on how and when re-
sources should be acquired by all FSDs since each FSD has unique
requirements that dictate the synchronization methodology adopted
by it. However, in general, keep in mind that many critical in-memo-
ry fields contained in the FCB data structure are synchronized using
the PagingloResource. That said, however, file create opera-
tions and all user-initiated operations are usually synchronized using
the MainResource. Finally, as mentioned, some operations (e.g.,
an IRP_MJ_CREATE that also specifies a certain file allocation size)
will require both resources to be acquired.
As noted, it is certainly not easy and will require considerable
thought on your part to determine the correct synchronization meth-
odology that -will ensure data consistency for your FSD.

Consider the create dispatch entry point. When processing the create/open
request, the FSD has to examine the contents of each directory that comprises the
pathname leading up to the target object. When examining the contents of a direc-
tory object in the path, the FSD must ensure that the contents of the directory do
not unexpectedly change. To do this, the FSD will block changes by acquiring the
MainResource for the directory object's FCB. Your FSD can determine whether
the MainResource needs to be acquired exclusively or shared. Acquiring the
resource exclusively ensures that no other create or lookup operation can
proceed concurrently in the same directory, while acquiring it shared does allow
other create or lookup operations to proceed concurrently in the same directory.

One final note: often FSD implementations are fairly coarse-grained in the
synchronization employed while processing create/open requests. For example, it
appears that the Windows NT CDFS implementation simply acquires a resource
associated with the volume control block exclusively for the logical volume on
which the create operation is being performed. This ensures that no other create/
open can proceed while the current request is being processed. There are,
however, some FSD implementations that do not lock out all other create/open
operations when processing any one of them. You can determine the appropriate
locking for your FSD.

406____________________________Chapter 9: Writing a File System Driver I

Simple Algorithm to Process a Create/Open Request
Before you examine the code/pseudocode provided here, understand the
following simple algorithm used to process a create/open request of an on-disk
file object. You know that the NT I/O Manager depends upon the FSD to parse a
complete pathname in the create dispatch routine.* Assume that the I/O Manager
has given a pathname \dirl\dir2\dir3\foobar to be processed. The following
simple terms and rules are important:

• The pathname supplied is composed of individual components.
• Each component is identified by a string composed of characters, e.g., dir2.

Your FSD can determine the range of characters and symbols that would be
acceptable to it.

• Components are demarcated by the presence of a valid separator character;
the convention on Windows platforms is to use the \ character.

• The last component in the pathname string is the actual target of the create/
open operation.

• Each component in the pathname string preceding the last component must
be a valid subdirectory.

The algorithm used to parse the pathname can be implemented as follows:

determine the starting directory from which to begin processing;
get current component and next component by parsing pathname

(using the \ as the path separator);
current component = starting directory (= \ in example given);
open current component;
next component = string obtained from the pathname (= dirl)
while (TRUE) {

perform traverse access checks if required, i.e., check whether
caller has appropriate privileges to read contents of the
directory identified by the current component;

if (entire path has been parsed) {
// we are down to the last token/component.
// In our example, we are at the point where current
// component = dir3 and next component = foobar
final component = next component;
break;

}
lookup* next component in current component

* If you are familiar with UNIX file system structures and implementations, this is simply a namei ()
(name-to-inode) type of routine that a file system must implement.
t A lookup operation simply means checking whether the named object exists within the specified di-
rectory. To perform the lookup, most FSD implementations read in the list of entries that comprise the-
directory and perform a string comparison of the name being looked up with all of the entries in the
directory in a linear fashion. If a match is found, the object exists in the directory; otherwise, the FSD
determines that the object does not exist.

Dispatch Routine: Create ______________________________________ 407

(may involve I/O to obtain directory contents) ;
if (not found) {

return (STATUS_OB JECT_PATH_NOT_FOUND) ;
}
if (next component looked-up != directory) {

return (STATUS_OB JECT_PATH_NOT_FOUND) ;
}
close current component;
open next component;
current component = next component;
next component = get next string identifier from pathname;

}
lookup final component;
if (not found) {

if (create requested) {
perform create ...;

} else {
return (STATUS_OBJECT_NAME_NOT_FOUND) ;

}
} else {

if (create only request) {
return (STATUS_OBJECT_NAME_COLLISION) ;

open final component;
initialize various internal (FCB/CCB) and external (file object)

data structures;
return (results) ;
This algorithm is the general methodology used by file systems in response to a
create/open request. Basically, the algorithm starts parsing the given pathname,
beginning at the user-supplied starting point. This could either be the root of the
file system, or in the case of relative file opens, it would begin at the directory
identified by the RelatedFileObject field, initialized by the NT I/O Manager
in the newly created file object for the target of the open.

Once the starting point has been determined, the file system driver simply iterates
through all of the components that comprise the pathname leading to the target
file/directory object. If the FSD is security conscious, it will always check whether
the caller has appropriate privileges to traverse and/or read the directories in the
pathname.

After the FSD has successfully traversed the user-supplied pathname, the FSD will
look for the target file/directory object. Depending on whether the object already
exists or not, and also on the type of create/open operation requested by the
user, the FSD will either complete the request or return an appropriate error code
to the caller. The code fragments later provide you with some more information
about how to process create/open requests on the Windows NT platform.

408____________________________Chapter 9: Writing a File System Driver I

More About the Name Supplied to the FSD
Before you examine the following code fragment, you may still be wondering
about the composition of a pathname when it is sent to you by the I/O Manager.
You might also wonder how the I/O Manager determines that a create/open
request should be sent to your FSD.

Let me briefly summarize the answer to the latter question first. Consider physical-
disk-based FSD implementations. Remember from Chapter 4, that the I/O
Manager assigns drive letters to each physical disk in the system. When a thread
decides to create/open an object, it must supply a path leading to the object. Typi-
cally this path will look like D:\dirl\dir2....\target^file. Now, this create/open
request gets directed to the I/O Manager,* which determines that the target device
object for this request is the physical disk represented by the letter D:. (Note that
D: and other such symbolic identifiers are simply symbolic links that point to a
particular physical device object; in this case, to a SCSI disk drive.)

The I/O Manager then checks the volume parameter block (VPB) associated with
the device object for the physical disk to see whether any logical volume has
been mounted on the physical disk identified by the device object. If no mount
operation has been performed, the I/O Manager will attempt a new mount
sequence, which is explained in further detail in the next chapter. If a logical
mount had been previously performed or after a successful mount operation is
completed, the I/O Manager will send the complete pathname excluding the
portion that has already been parsed, i.e., excluding D:, to the FSD as an argu-
ment to the create/open dispatch routine. The logic here is simple: the NT Object
Manager and the I/O Manager have already parsed (processed) some portion of
the user-supplied pathname to determine the target FSD for the request. The FSD
should not need that portion of the string. The remainder of the user-supplied
string, however, has not yet been parsed/processed, and it is sent in its entirety to
the FSD.

For network redirectors, the situation is not very different conceptually. Requests
are directed to specific network redirectors, identified by the symbolic name asso-
ciated with a device object created by the redirector. For example, a hypothetical
redirector might create a symbolic link F: that points to a device object that
handles all I/O-related requests for a remote, shared network drive. Once again,
the actual pathname sent by the I/O Manager to the redirector device object
dispatch routine will be the portion that has not been parsed by the I/O Manager
or the Object Manager (i.e., everything excluding the string used to identify the
target device object and therefore, everything excluding F:).

* In the next chapter, I will explain the mount process in a little more detail. At that time, I will also men-
tion how the create/open request gets directed to the NT I/O Manager in the first place.

Dispatch Routine: Create______________________________________409

Code Fragment
NTSTATUS SFsdCommonCreate(
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp)
{

// Declarations go here ...

ASSERT(PtrlrpContext);
ASSERT(Ptrlrp);

try {

AbsolutePathName. Buffer = NULL;
AbsolutePathName. Length = AbsolutePathName. MaximumLength = 0;

// First, get a pointer to the current I/O stack location
PtrloStackLocation = loGetCurrentlrpStackLocation (Ptrlrp) ;
ASSERT (PtrloStackLocation) ;

// If the caller cannot block, post the request to be handled
// asynchronously
if (! (PtrIrpContext->IrpContextFlags

& SFSD_IRP_CONTEXT_CAN_BLOCK)) {
// We must defer processing this request, since we could
// block anytime while performing the create/open ...

RC = SFsdPostRequest (PtrlrpContext, Ptrlrp);
DeferredProcessing = TRUE;

try_return(RC) ;

// Now, we can obtain the parameters specified by the user.
// Note that the file object is the new object created by the
// I/O Manager, in anticipation that this create/open request
// will succeed.
PtrNewFileObjec t = PtrIoStackLocation->FileObject;
TargetObjectNam e = PtrNewFileObject->FileName;
PtrRelatedFileObject = PtrNewFileObject->RelatedFileObject;

// If a related file object is present, get the pointers
//to the CCB and the FCB for the related file object
if (PtrRelatedFileObject) {

PtrRelatedCCB = (PtrSFsdCCB) (PtrRelatedFileObject->FsContext2) ,
ASSERT (PtrRelatedCCB) ;
ASSERT (PtrRelatedCCB->NodeIdentifier.NodeType

== SFSD_NODE_TYPE_CCB) ;
// each CCB in turn points to a FCB
PtrRelatedFCB = PtrRelatedCCB->PtrFCB;
ASSERT (PtrRelatedFCB) ;
ASSERT ((PtrRelatedFCB->NodeIdentif ier . NodeType

== SFSD_NODE_TYPE_FCB)
I I
(PtrRelatedFCB->NodeIdentif ier .NodeType

== SFSD_NODE_TYPE_VCB)) ;

410 ____________________________ Chapter 9: Writing a File System Driver I

RelatedObjectName = PtrRelatedFileObject->FileName;

// Allocation size is only used if a new file is created
// or a file is superseded.

AllocationSize = Ptrlrp->0verlay. AllocationSize. LowPart;

// Note: Some FSD implementations support file sizes > 2GB.
// The following check is only valid if your FSD does not support
//a large file size. With NT version 5.0, 64-bit support will
// become available and your FSD ideally should support large files
if (PtrIrp->Overlay. AllocationSize. HighPart) {

RC = STATUS_INVALID_PARAMETER;
try_return(RC) ;

// Get a pointer to the supplied security context
PtrSecurityContext =

PtrIoStackLocation->Parameters . Create . SecurityContext ;

// The desired access can be obtained from the SecurityContext
DesiredAccess = PtrSecurityContext->DesiredAccess;

// Two values are supplied in the Create .Options field:
// (a) the actual user-supplied options
// (b) the create disposition
RequestedOptions =

(PtrIoStackLocation->Parameters .Create. Options &
FILE_VALID_OPTION_FLAGS) ;

// The file disposition is packed with the user options ...
// Disposition includes FILE_SUPERSEDE, FILE_OPEN_IF, etc.
RequestedDisposition =

((PtrIoStackLocation->Parameters. Create. Options » 24)
&& OxFF) ;

FileAttributes =
(uintS) (PtrIoStackLocation->Parameters .Create .FileAttributes

& FILE_ATTRIBUTE_VALID_FLAGS) ;
ShareAccess = PtrIoStackLocation->Parameters . Create . ShareAccess ;

// If your FSD does not support EA manipulation, you might return
// invalid parameter if the following are supplied.
// EA arguments are only used if a new file is created or a file is
// superseded
PtrExtAttrBuf fer = PtrIrp->AssociatedIrp. SystemBuf fer;
ExtAttrLength = PtrIoStackLocation->Parameters .Create. EaLength;

// Get the options supplied by the user

// User specifies that returned object MUST be a directory.
// Lack of presence of this flag does not mean it *cannot* be a
// directory *unless* FileOnlyRequested is set (see below)

Dispatch Routine: Create______________________________________411

II Presence of the flag however, does require that the returned
// object be a directory (container) object.
DirectoryOnlyRequested =

((RequestedOptions & FILE_DIRECTORY_FILE) ? TRUE : FALSE);

// User specifies that returned object MUST NOT be a directory.
// Lack of presence of the flag below does not mean it cannot be a
// file unless DirectoryOnlyRequested is set (see above).

// Presence of the flag, however, does require that the returned
// object be a simple file (noncontainer) object.
FileOnlyRequested =

((RequestedOptions & FILE_NON_DIRECTORY_FILE) ? TRUE : FALSE);

// We cannot cache the file if the following flag is set.
// However, things do get a little bit interesting if caching
// has been already initiated due to a previous open ...
// (maintaining consistency then becomes a little bit more
// of a headache - see read/write file descriptions)
NoBufferingSpecified =

((RequestedOptions & FILE_NO_INTERMEDIATE_BUFFERING)
? TRUE : FALSE);

// Write-through simply means that the FSD must not return from
// a user write request until the data has been flushed to
// secondary storage (either to disks directly connected to the
// node, or across the network in the case of a redirector)
WriteThroughRequested =

((RequestedOptions & FILE_WRITE_THROUGH) ? TRUE : FALSE);

// Not all of the Windows NT file system implementations support
// the delete-on-close option. The presence of this flag implies
// that after the last close on the FCB has been performed, your
// FSD should delete the file. Specifying this flag saves the
// caller from issuing a separate delete request. Also, some FSD
// implementations might choose to implement a Windows NT
// idiosyncratic behavior where you could create such "delete-on-
// close"-marked files under directories marked for deletion.
// Ordinarily, an FSD will not allow you to createa new file under
// a directory that has been marked for deletion.
DeleteOnCloseSpecified =

((RequestedOptions & FILE_DELETE_ON_CLOSE) ? TRUE : FALSE);

NoExtAttrKnowledge =
((RequestedOptions & FILE_NO_EA_KNOWLEDGE) ? TRUE : FALSE);

// The following flag is only used by the LAN Manager redirector
// to initiate a "new mapping" to a remote share.
// Third-party FSD implementations will not see this flag.
CreateTreeConnection =

((RequestedOptions & FILE_CREATE_TREE_CONNECTION)
? TRUE : FALSE);

472____________________________Chapter 9: Writing a File System Driver I

II The NTFS file system, for example, supports the OpenByFileld
// option. Your FSD may also be able to associate a unique
// numerical ID with an on-disk object. Any thread can then obtain
// this ID via a "query file information" call to your FSD.
// Later, the caller might decide to reopen the object; this time,
// though, it may supply your FSD with the file identifier instead
// of a file/pathname.
OpenByFileld =

((RequestedOptions & FILE_OPEN_BY_FILE_ID) ? TRUE : FALSE);

// Are we dealing with a page file? Page files are not very
// different from any other kind of on-disk file stream though you
// should allocate the FCB, CCB, and other structures for a page
// file from nonpaged pool.
PageFileManipulation =

((PtrIoStackLocation->Flags & SL_OPEN_PAGING_FILE)
? TRUE : FALSE);

// The open target directory flag is used as part of the sequence
// of operations performed by the I/O Manager is response to a
// file/dir rename operation. See the explanation in the book for
// details.
OpenTargetDirectory =

((PtrIoStackLocation->Flags & SL_OPEN_TARGET_DIRECTORY) ?
TRUE : FALSE);

// If your FSD supports case-sensitive file name checks, you may
// choose to honor the following flag. It is not mandatory for your
// FSD to support case-sensitive name matching (e.g., FAT/CDFS do
// not support case-sensitive name comparisons.
IgnoreCaseWhenChecking =

((PtrIoStackLocation->Flags & SL_CASE_SENSITIVE)
? TRUE : FALSE);

// Ensure that the operation has been directed to a valid VCB ...
PtrVCB = (PtrSFsdVCB)(PtrIrpContext->TargetDeviceObject->

DeviceExtension);
ASSERT(PtrVCB);
ASSERT(PtrVCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_VCB);

// Use coarse-grained locking and acquire the VCB exclusively. This
// will lock out all other concurrent create/open requests.
ExAcquireResourceExclusiveLite(&(PtrVCB->VCBResource), TRUE);
AcquiredVCB = TRUE;

// Disk-based file systems might decide to verify the logical
// volume (if required and only if removable media are supported)
//at this time.

// Implement your own volume verification routine ...
// Read the DDK for more information on when a FSD must verify a
// volume (this is typically done when a lower-level disk driver
// for removable drives reports that the media in the drive might
// possibly have been changed; i.e., user ejected and inserted some

Dispatch Routine: Create ______________________________________ 413

II media) . Chapter 11 also describes the volume verification
// process in considerable detail.

// If the volume has been locked, fail the request. Users may have
// locked the volume to issue a dismount request
if (PtrVCB->VCBFlags & SFSD_VCB_FLAGS_VOLUME_LOCKED) {

RC = STATUS_ACCESS_DENIED;
try_return(RC) ;

// If a "volume open" is requested, satisfy it now.
if ((PtrNewFileObject->FileName. Length == 0) &&

((PtrRelatedFileObject == NULL) ||
(PtrRelatedFCB->NodeIdentifier .NodeType

== SFSD_NODE_TYPE_VCB))) {
//If the supplied file name is NULL and either there exists
// no related file object or a related file object was supplied
// but it refers to a previously opened instance of a logical
// volume, this open must be for a logical volume.

// Note: your FSD might decide to do special things (whatever
// they might be) in response to an open request for the
// logical volume.

// Logical volume open requests are done primarily to get/set
// volume information, lock the volume, dismount the volume
// (using the IOCTL FSCTL_DISMOUNT_VOLUME) , etc.

// If a volume open is requested, perform checks to ensure that
// invalid options have not also been specified . . .
if ((OpenTargetDirectory) (PtrExtAttrBuf fer)) {

RC = STATUS_INVALID_PARAMETER;
try_return(RC) ;

if (DirectoryOnlyRequested) {
//a volume is not a directory
RC = STATUS_NOT_A_DIRECTORY;
try_return(RC) ;

if { (RequestedDisposition != FILE_OPEN) &&
(RequestedDisposition != FILE_OPEN_IF)) {

// cannot create a new volume, I'm afraid ..
RC = STATUS_ACCESS_DENIED;
try_return(RC) ;

RC = SFsdOpenVolume(PtrVCB, PtrlrpContext, Ptrlrp,
ShareAccess, PtrSecurityContext, PtrNewFileObject)

Returnedlnformation = PtrIrp->IoStatus . Information;

try_return(RC) ;

414 ____________________________ Chapter 9: Writing a File System Driver I

II Your FSD might implement the open-by-id option. The "id"
// is an FSD-defined unique numerical representation of the on-
// disk object. The caller can subsequently give you this file id
// and your FSD should be completely capable of opening the object.
if (OpenByFileld) {

// perform the open . . .
// RC = SFsdOpenByFileId(PtrIrpContext, Ptrlrp);
// try_return(RC) ;

// Now determine the starting point from which to begin the parsing
if (PtrRelatedFileObject) {

//We have a user-supplied related file object.
// This implies a relative open; i.e., relative to the
// directory represented by the related file object ...

// Note: The only purpose FSD implementations ever have for
// the related file object is to determine whether this
// is a relative open or not. At all other times (including
// during I/O operations), this field is meaningless from
// the FSD's perspective.
if (! (PtrRelatedFCB->FCBFlags & SFSD_FCB_DIRECTORY)) {

// we must have a directory as the "related" object
RC = STATUS_INVALID_PARAMETER;
try_return (RC) ;

// So we have a directory, ensure that the name begins with
// a \ (i.e., begins at the root and does *not* begin with a
// \\) .
// NOTE: This is just an example of the kind of pathname string
// validation that an FSD must do. Although the remainder of
// the code may not include such checks, any commercial
// FSD *must* include such checking (no one else, including
// the I/O Manager will perform checks on your FSD's behalf).
if ((RelatedObjectName. Length ==0) ||

(RelatedObjectName.Buffer[0] !=L'\\')) {
RC = STATUS_INVALID_PARAMETER;
try_return(RC) ;

// Similarly, if the target file name starts with a \, it
// is wrong, since the target file name can no longer be
// absolute if a related file object is present.
if ((TargetObjectName. Length != 0) &&

(TargetObjectName. Buffer [0] == L'\\')) {
RC = STATUS_INVALID_PARAMETER;
try_return(RC) ;

// Create an absolute pathname. You could potentially use
// the absolute pathname if you cache previously opened
// file/directory object names.

T
Dispatch Routine: Create ______________________________________ 415

AbsolutePathName.MaximumLength = TargetObjectName. Length +
RelatedObjectName. Length + sizeof (WCHAR) ;

if (! (AbsolutePathName. Buffer =
ExAllocatePool (PagedPool,

AbsolutePathName.MaximumLength))) {
RC = STATUS_INSUFFICIENT_RESOURCES;
try_return(RC) ;

RtlzeroMemory (AbsolutePathName . Buffer,
AbsolutePathName.MaximumLength) ;

RtlCopyMemory ((void *) (AbsolutePathName. Buf fer) ,
(void *) (RelatedObjectName. Buf fer) ,
RelatedObjectName. Length) ;

AbsolutePathName. Length = RelatedObjectName. Length;
RtlAppendunicodeTostring (SAbsolutePathName , L " \ \ ") ;
RtlAppendunicodeTostring (&AbsolutePathName ,

TargetObjectName. Buf fer) ;

} else {

// The supplied pathname must be an absolute pathname.
if (TargetObjectName. Buf fer[0] != L'\\') {

RC = STATUS_INvALID_PARAMETER;
try_return (RC) ;

AbsolutePathName.MaximumLength = TargetObjectName. Length;
if (! (AbsolutePathName. Buf fer =

ExAllocatePool (PagedPool,
AbsolutePathName.MaximumLength))) {

RC = STATUS_INSUFFICIENT_RESOURCES ;
try_return(RC) ;

RtlzeroMemory (AbsolutePathName. Buf fer ,
AbsolutePathName.MaximumLength)

RtlCopyMemory ((void *) (AbsolutePathName. Buf fer) ,
(void *) (TargetObjectName. Buf fer) ,
TargetObjectName. Length) ;

AbsolutePathName. Length = TargetObjectName. Length;

// Go into a loop parsing the supplied name
// Use the algorithm supplied in the book to implement this loop.

// Note that you may have to open intermediate directory objects
// while traversing the path. You should try to reuse existing code
// whenever possible; therefore, you should consider using a common

416 ____________________________ Chapter 9: Writing a File System Driver I

// open routine regardless of whether the open is on behalf of the
// caller or an intermediate (internal) open performed by your
// driver.

// But first, check if the caller simply wishes to open the root
//of the file system tree.
if (AbsolutePathName. Length ==2) {

// This is an open of the root directory, ensure that
// the caller has not requested a file only
if (FileOnlyRequested | |

(RequestedDisposition == FILE_SUPERSEDE)
| | (RequestedDisposition == FILE_OVERWRITE) | |
(RequestedDisposition == FILE_OVERWRITE_IF)) {

RC = STATUS_FILE_IS_A_DIRECTORY;
try_return (RC) ;

// Insert code to open root directory here.
// Include creation of a new CCB structure.

try_return(RC) ;

if (PtrRelatedFileObject) {
// Insert code such that your "start directory" is
// the one identified by the related file object

} else {
// Insert code to start at the root of the file system

// NOTE: If your FSD does not support access checking (i.e.,
// your FSD does not check traversal privileges) , you could
// easily maintain a prefix cache containing pathnames and
// open FCB pointers. Then, if the requested pathname is already
// present in the cache, you can avoid the tedious traversal
// of the entire pathname performed below and described in the
// book.

// If you do not maintain such a prefix table cache of previously
// opened object names, or if you do not find the name to be opened
// in the cache, then get the next component in the name to be
// parsed. Note that obtaining the next string component is
// similar to the strtok library routine where the separator is a
// \.

// Your FSD should also always check the validity of the token
//to ensure that only valid characters comprise the path/ file
/ / name .

// Insert code to open the starting directory here.

while (TRUE) {
// Insert code to perform the following tasks here:

T
Dispatch Routine: Create ______________________________________ 417

II (a) acquire the parent directory FCB MainResource
// exclusively.
// (b) ensure that the parent directory in which you will
// perform a lookup operation is indeed a directory.
// (c) if there are no more components left after this one
// in the pathname supplied by the user, break.
// (d) attempt to lookup the subdirectory in the parent.
// (e) if not found, return STATUS_OB JECT_PATH_NOT_FOUND .
// (f) otherwise, open the new subdirectory and make it
/ / the new parent .
// (g) close the current parent directory (after releasing
// resources that were acquired in step (a) above.
// (h) go back and repeat the loop for the next component in
// the path.

// NOTE: If your FSD supports it, you should always check
// that the caller has appropriate privileges to traverse
// the directories being searched.

// Now we are down to the last component, check it out to see if it
// exists ...
// Even for the "open target directory" case below, it is important
// to know whether the final component specified exists.

// If "open target directory" was specified:
if (OpenTargetDirectory) {

if (NT_SUCCESS(RC)) {
// File exists, set this information in the Information
// field.
Returnedlnf ormation = FILE_EXISTS;

} else {
RC = STATUS_SUCCESS;
// Tell the I/O Manager that file does not exist.
Returnedlnformation = FILE_DOES_NOT_EXIST;

// Now, do the following:
// (a) Replace the string in the FileName field in the
// PtrNewFileObject to identify the target name
// only (i.e., the final component string without the path
// leading to the object) .
// (b) Return with the target's parent directory opened.
// (c) Update the file object FsContext and FsContext2 fields
// to reflect the fact that the parent directory of the
// target has been opened.

try_return(RC) ;

// We make the check here to see if the file stream already exists.
// Assume that RC will contain the status (success/failure) for our
// check.

418 ____________________________ Chapter 9: Writing a File System Driver I

if (!NT_SUCCESS(RC)) {
// Object was not found, create if requested
if ((RequestedDisposition == FILE_CREATE) |

(RequestedDisposition == FILE_OPEN_IF) | |
(RequestedDisposition == FILE_OVERWRITE_IF)) {

// Create a new file/directory here.

// Open the newly created object.

// Note that a FCB structure will be allocated at this time
// and so will a CCB structure. Assume that these are
// called PtrNewFCB and PtrNewCCB respectively.
// Further, note that since the file is being created, no
// other thread can have the file stream open at this time.

// Set the allocation size for the object is specified.

// Set extended attributes for the file.

// Set the Share Access for the file stream.
// The FCBShareAccess field will be set by the I/O Manager.
ZoSetShareAccess (DesiredAccess , ShareAccess ,

PtrNewFileObject,
& (PtrNewFCB->FCBShareAccess)) ;

RC = STATUS_SUCCESS ;
Returnedlnformation = FILE_CREATED;

try_return(RC) ;

} else {

// File stream does exist. Now we must perform some additional
// error checking.

if (RequestedDisposition == FILE_CREATE) {
Returnedlnformation = FILE_EXISTS;
RC = STATUS_OBJECT_NAME_COLLISION;
try_return(RC) ;

}

// Insert code to open the target here, return if failed.

// The FSD will allocate a new FCB structure if no such
// structure currently exists in memory for the file stream.
// A new CCB will always be allocated.
// Assume that these structures are named PtrNewFCB and
// PtrNewCCB respectively.
// Further, you should obtain the FCB MainResource exclusively
//at this time.

// Once you have opened the file stream and created an FCB,
// you should perform some additional checks to verify whether

Dispatch Routine: Create______________________________________419

II the user open request should be succeeded.

// Check if caller wanted a directory only and target object
// not a directory, or caller wanted a file only and target
// object not a file.
if (FileOnlyRequested && (PtrNewFCB->FCBFlags

& SFSD_FCB_DIRECTORY)) {
// Close the new FCB and leave
// SFsdCloseCCB(PtrNewCCB);
RC = STATUS_FILE_IS_A_DIRECTORY;
try_return(RC);

// Check whether caller-specified flags are incompatible
// with the type of object being returned.
if ((PtrNewFCB->FCBFlags & SFSD_FCB_DIRECTORY) &&

((RequestedDisposition == FILE_SUPERSEDE) | |
(ReguestedDisposition == FILE_OVERWRITE) j j
(ReguestedDisposition == FILE_OVERWRITE_IF))) {

// SFsdCloseCCB(PtrNewCCB) ;
RC = STATUS_FILE_IS_A_DIRECTORY;
try_return(RC) ;

if (DirectoryOnlyRequested &&
! (PtrNewFCB->FCBFlags & SFSD_FCB_DIRECTORY))

// Close the new FCB and leave
// SFsdCloseCCB(PtrNewCCB) ;
RC = STATUS_NOT_A_DIRECTORY;
try_return(RC) ;

// Check share access and fail if the share conflicts with an
// existing open.
if (PtrNewFCB->OpenHandleCount > 0) {

// The FCB is currently in use by some thread.
// We must check whether the requested access/share access
// conflicts with the existing open operations.

if (!NT_SUCCESS(RC = locheckshareAccess(DesiredAccess,
ShareAccess,
PtrNewFileObj ect,
&(PtrNewFCB->FCBShareAccess),
TRUE))) {

// SFsdCloseCCB(PtrNewCCB);
try_return(RC);

} else {
// Store the fact that an open is being satisfied with
// the specified share access.
losetshareAccess(DesiredAccess, ShareAccess,

PtrNewFileObj ect,
&(PtrNewFCB->FCBShareAccess)) ;

}

420____________________________Chapter 9: Writing a File System Driver I

Returnedlnformation = FILE_OPENED;

// If a supersede or overwrite was requested, do it now.
// Your FSD may need to determine whether any byte-range
// locks exist on the file stream. For overwrite requests (as
// opposed to requests to supersede the file stream), your FSD
// may wish to deny the request if a conflicting byte-range
// lock has been obtained by another process.
if (RequestedDisposition == FILE_SUPERSEDE) {

// Attempt the operation here ...
// RC = SFsdSupersede(...);
if (NT_SUCCESS(RC)) {

Returnedlnformation = FILE_SUPERSEDED;

} else if ((RequestedDisposition == FILE_OVERWRITE) ||
(RequestedDisposition == FILE_OVERWRITE_IF)){

// Attempt the operation here ...
// RC = SFsdOverwritef...);
if (NT_SUCCESS(RC)) {

Returnedlnformation = FILE_OVERWRITTEN;

}

try_exit: NOTHING;

} finally {
// Complete the request unless we are here as part of unwinding
// when an exception condition was encountered, OR
// if the request has been deferred (i.e., posted for later
// handling)
if {RC != STATUS_PENDING) {

// If we acquired any FCB resources, release them now.

// If any intermediate (directory) open operations were
// performed, implement the corresponding close (do not
// however close the target you have opened on behalf of the
// caller) .

if (NT_SUCCESS(RC)) {
// Update the file object such that:
// (a) the FsContext field points to the NTRequiredFCB
// field in the FCB
// (b) the FsContext2 field points to the CCB created as a
// result of the open operation

//If write-through was requested, then mark the file
// object appropriately.
if (WriteThroughRequested) {
PtrNewFileObject->Flags |= FO_WRITE_THROUGH ;

// Release the PtrNewFCB MainResource at this time.
} else {

Dispatch Routine: Create______________________________________421

II Perform failure-related postprocessing now.

//As long as this unwinding is not being performed as a
// result of an exception condition, complete the IRP.
if (!(PtrIrpContext->IrpContextFlags

& SFSD_IRP_CONTEXT_EXCEPTION)) {
PtrIrp->IoStatus.Status = RC;
PtrIrp->IoStatus.Information = Returnedlnformation;

// Free up the IRP Context.
SFsdReleaselrpContext(PtrlrpContext);

// complete the IRP.
loCompleteRequest(Ptrlrp, IO_DISK_INCREMENT);

if (AcquiredVCB) {
ASSERT (PtrVCB) ;

SFsdReleaseResource(& (PtrVCB->VCBResource))
AcquiredVCB = FALSE;

if (AbsolutePathName. Buffer != NULL) {
ExFreePool (AbsolutePathName. Buffer) ,-

re turn(RC);
}

Notes
The FSD implementation can receive a create/open request for one of the
following objects:

The FSD device object itself
This open will typically be received by the FSD if a process sends an IOCTL
to the FSD to affect the behavior of the driver. This request can be imple-
mented by your driver in any manner appropriate to your driver
implementation. The sample FSD simply succeeds such a request immediately
(see the accompanying diskette).

A mounted logical volume
If a process wants to request that a volume be dismounted, the process must
first open the logical volume itself, as opposed to opening an object
contained on the mounted logical volume. Similarly, processes may wish to
perform query and/or set label operations on the logical volume, in which
case they might request an open of the logical volume. Finally, some threads

422____________________________Chapter 9: Writing a file System Driver I

might wish to read the volume information directly off media for which they
would need to open the volume device object directly.

A file or directory object on the logical volume
These are the more commonly received create/open requests. A user process
may wish to open either a file object or a directory object, both of which are
supported by all FSD implementations. Open operations on directories are
performed to query the contents of the directory. Normal file open operations
are performed to be able to access/modify file stream data or control
information.

The preceding code fragment above is mostly self-explanatory. Read the
comments to understand the code better. The first thing you will notice is that a
lot of the routines have been commented out. These are placeholders for you to
replace with appropriate functionality suitable for your FSD implementation.

Basically, the implementation follows the logical steps, listed earlier, that an FSD
should perform upon receiving a create/open request. The objective is to try to
find the target object, given a path leading to that object. If the object exists and
the user wishes to open it, the FSD will create a file control block (if none
currently exists), create a context control block, and initialize the I/O Manager file
object appropriately. If the object does not exist and the user wants to create it,
the FSD will first create the object on secondary storage (on the logical volume)
and then open the object for the caller, creating an FCB, a CCB, and initializing
the file object structure. If a new object is created, the FSD may also set an alloca-
tion size for the created object if the caller has specified such a size.

The code fragment describes a special type of request from the NT I/O Manager
indicated by the presence of the SL_OPEN_TARGET_DIRECTORY flag in the
current I/O stack location. This flag is slightly unusual and quite specific to the
Windows NT environment. Basically, when the I/O Manager receives a request to
move or rename a file or directory, it sends this request to the FSD, supplying the
target name in the rename/move request. For example, if a user requests that file
\dirl\dir2\dir3\foo be renamed/moved to \dirl\dir4\bar, the I/O Manager will
send the latter string to the FSD with the SL_OPEN_TARGET_DIRECTORY flag
set. The FSD must respond as follows when this flag is set:

• The FSD must first check to see if the target object (i.e., bar) exists on the
path leading to bar.
The presence or absence of the target should be conveyed back to the I/O
Manager.

• The FSD must replace the pathname in the file object with the last compo-
nent; i.e., replace \dirl\dir4\barin our example with the string bar.

Dispatch Routine: Create______________________________________423

This replace operation is required due to the manner in which the I/O Man-
ager subsequently invokes the FSD SFsdFilelnfo () dispatch entry point.
In Chapter 10, Writing A File System Driver II, this routine is described in fur-
ther detail.

• Instead of opening/creating the actual target (bar in our example), the FSD
must open the parent directory (in our example, the FSD must return with
dir4 having been opened for the caller).

Note that although an FCB structure is initialized as part of the processing
performed for a successful create/open operation, the FSD does not invoke
CcInitializeCacheMap () at this time for the file object and the FCB repre-
senting the open file. The reason for this is fairly simple; often commonly used
applications open file objects simply to perform a query-file-information operation
on them and subsequently close the file stream without ever attempting any I/O.
Therefore, requesting the Cache Manager to perform any initialization in anticipa-
tion of buffered I/O would simply degrade performance in such situations.
Therefore, it is recommended in Windows NT that the FSD implementation defer
any Cache Manager-related initialization until the time when a read or write oper-
ation is actually attempted for the first time.

Although it is not discussed in the code fragment, it is possible for an FSD to
replace the name supplied with the file object created by the I/O Manager and
return STATUS_REPARSE to the I/O Manager. Be careful, though, to free the
memory allocated by the I/O Manager for the original file name buffer and allo-
cate new memory from paged pool. Also, if applicable, you may wish to set the
RelatedFileObject pointer to NULL in this situation.

If your FSD does not support page file create requests, you can return an error
when such a request is received by your driver. Page file create requests will only
be initiated by the NT VMM internal routine called (NtCreatePagingFile (),
which invokes the I/O Manager internal routine (not exported) called loCreate-
FileO with an attribute that specifies that the file to be created is a page file.
Page files are not really different from any other ordinary file created on a logical
volume. However, most NT FSD implementations return STATUS_ACCESS_
DENIED or STATUS_SHARING_VIOLATION if a thread tries to open an already-
opened page file. Also, you should ensure that all in-memory representations of a
page file are allocated from nonpaged pool; this includes the FCB and the CCB
structure for the file. The rationale is simply to allow your FSD to safely access
these in-memory structures without incurring a page fault when a paging I/O is
received by your driver, because page faults at that time will crash the system.

Finally, you will have noticed that the code fragment checks the access requested
and whether the caller is allowed to open the file for the desired access. An I/O

424____________________________Chapter 9: Writing a File System Driver I

Manager routine loCheckShareAccess () is used to determine whether the
desired access and the specified share access conflict with any previous open for
the file stream. If no such conflict is present, the I/O Manager updates the
FCBShareAccess field (this is a result of the last argument, called Update-
ShareAccess, to the routine being set to TRUE). Of course, if this is the first
open operation on the file stream (or if all previous open handles have been
closed), then the FSD directly invokes the ZoSetShareAccess () function to
set the share access in the FCBShareAccess field in the FCB structure. In the
next chapter, you will see that the share access stored in the FCB will be removed
when the last file handle corresponding to the file object is closed (i.e., when the
IRP_MJ_CLEANUP request is received by the FSD).

Dispatch Routine: Read
The read dispatch entry point is invoked in response to user requests to access
file data. Most FSD implementations allow users to access data for ordinary file
streams only, and any attempt to directly access directory contents will typically
be rejected with a STATUS_ACCESS_DENIED error.

All NT FSD implementations support two kinds of read I/O requests:

• Buffered read operations
• Nonbuffered read operations satisfied directly from secondary storage

By default, an FSD will attempt to satisfy the read request using buffered (cached)
data. All of the native Windows NT FSD implementations use the services of the
NT Cache Manager in caching file data in memory. You can, however, choose
some other caching module with your FSD implementation, though the NT Cache
Manager does a fairly good job and you should at least seriously consider using it
instead.

In order for the caller to request that the read be satisfied directly from secondary
storage, the file object used in the read operation should have been opened with
FILE_NO_INTERMEDIATE_BUFFERING set. The only other read operations that
are directly satisfied from secondary storage by the FSD are those marked as
paging I/O. These operations come to the FSD from the NT VMM and cannot be
satisfied by a recursive call back to the NT Cache Manager, but should be sent to
the underlying disk driver for further processing.

Logical Steps Involved
The I/O stack location contains the following structure relevant to processing a
read request issued to an FSD:

T Dispatch Routine: Read ______________________________________ 425

typedef struct _IO_STACK_LOCATION {

//

union {

// System service parameters for: NtReadFile
struct {

ULONG Length;
ULONG Key;
LARGE_INTEGER ByteOffset;

} Read;

} Parameters ;

} IO_STACK_LOCATION, *PIO_STACK_LOCATION;

An FSD performs the following simple tasks upon receiving a read request on a
file object:

1. Get a pointer to the CCB and FCB for the file stream.

2. Verify that the read operation is allowed.

Typically, FSD implementations on any operating system platform will reject
user read requests directed to directory objects.

3. Identify the type of read operation: a paging I/O operation, a normal non-
cached operation, a non-MDL cached read operation, or an MDL read
operation.

This is probably the most important task that your FSD will perform in the
read operation. You should be able to identify whether the read is a recursive
operation, or whether the read request comes to your FSD directly from a
user thread, from the VMM, or from the NT Cache Manager. Furthermore,
your FSD should be able to identify whether the read is as a result of read-
ahead being performed by the Cache Manager. For more discussion on this
topic, read through the next chapter.

4. Obtain any resources that are appropriate to ensure consistency of data.

Most FSD implementations, including the sample code provided here, acquire
the MainResource shared if the read request has been received directly
from a user thread. This prevents other write operations from proceeding con-
currently, but does allow concurrent read operations. If, however, the read
request is due to a page fault, the FSD will acquire the PagingloResource
shared instead.

426____________________________Chapter 9: Writing a File System Driver I

5. Obtain the starting offset, length, and buffer pointer supplied by the caller.
The starting offset and length uniquely determine the byte range requested by
the caller. The caller provides a buffer for the FSD to return data. In Chapter
4, I explained the various buffering mechanisms that can be used by callers of
kernel-mode drivers. Most NT FSD implementations and the sample code pro-
vided here choose METHOD_NEITHER as the buffering option for the device
objects created to represent mounted logical volumes. The result is that the
I/O Manager does not manipulate the caller buffer, but sends it down as-is to
the FSD.

6. Lock the user's buffer if required, and also create a Memory Descriptor List
(MDL) for requests that must be directed to lower-level drivers.

7. Check if the byte range requested by the caller has been locked; it is possible
with Windows NT, however, for the caller to provide a key that would still
allow the read request to proceed.

If the byte range desired by the user has a byte-range lock that does not per-
mit read access by other processes, the FSD will return an error to the caller.

8. Determine whether the byte range specified by the caller is valid, and if not,
return an appropriate error code to the caller.

9. If this is a buffered I/O request and caching has not yet been initiated on the
FCB, invoke CcInitializeCacheMap () to initiate caching at this time.

10. If this is a buffered non-MDL I/O request, forward the request on to the NT
Cache Manager via an invocation to CcCopyRead () , or if this is a nonbuf-
fered (direct I/O or paging I/O request), forward it on to the lower-level
driver for further processing.

If this is an MDL read request, use the CcMdlRead () function, provided by
the Cache Manager, to return an MDL containing file data to the caller.

11. Once data has been obtained either from the Cache Manager or from lower-
level drivers, release FCB resources acquired and return the results to the
caller.

Code Fragment
NTSTATUS SFsdCommonRead(
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp)
{

// Declarations go here ...

try {
// First, get a pointer to the current I/O stack location.
PtrloStackLocation = loGetCurrentlrpStackLocation(Ptrlrp);

Dispatch Routine: Read ______________________________________ 427

ASSERT (PtrloStackLocation) ;

// If this happens to be an MDL read complete request, then
// there is not much processing that the FSD has to do.
if (PtrIoStackLocation->MinorFunction & IRP_MN_COMPLETE) {

// Caller wants to tell the Cache Manager that a previously
// allocated MDL can be freed.
SFsdMdlComplete (PtrlrpContext , Ptrlrp,

PtrloStackLocation, TRUE) ;
// The IRP has been completed.
Completelrp = FALSE;
try_return(RC = STATUS_SUCCESS) ;

// If this is a request at IRQL DISPATCH_LEVEL, then post
// the request (your FSD may process it synchronously
// if you implement the support correctly) .
if (PtrIoStackLocation->MinorFunction & IRP_MN_DPC) {

Completelrp = FALSE;
PostRequest = TRUE;
try_return(RC = STATUS_PENDING) ;

PtrFileObject = PtrIoStackLocation->FileObject;
ASSERT (PtrFileObject) ;

// Get the FCB and CCB pointers.
PtrCCB = (PtrSFsdCCB) (PtrFileObject->FsContext2) ;
ASSERT (PtrCCB) ;
PtrFCB = PtrCCB->PtrFCB;
ASSERT (PtrFCB) ;

// Get some of the parameters supplied to us.
ByteOffset = PtrIoStackLocation->Parameters .Read. ByteOff set;
ReadLength = PtrIoStackLocation->Parameters .Read. Length;

CanWait =
((PtrIrpContext->IrpContextFlags & SFSD_IRP_CONTEXT_CAN_BLOCK)

? TRUE : FALSE) ;
Paginglo = ((PtrIrp->Flags & IRP_PAGING_IO) ? TRUE : FALSE);
NonBuf feredlo = ((PtrIrp->Flags & IRP_NOCACHE) ? TRUE : FALSE) ;
Synchronous I o =

((PtrFileObject->Flags & FO_SYNCHRONOUS_IO) ? TRUE : FALSE);

// A 0 byte read can be immediately succeeded.
if (ReadLength ==0) {

try_return(RC) ;

// NOTE: if your FSD does not support file sizes > 2GB, you
// could validate the start offset here and return end-of-file
// if the offset begins beyond the maximum supported length.

// Is this a read of the volume itself?

428 ____________________________ Chapter 9: Writing a File System Driver I

if (PtrFCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_VCB) {
// Yup, we need to send this on to the disk driver after
// validation of the offset and length.
PtrVCB = (PtrSFsdVCB) (PtrFCB) ;

// Acquire the volume resource shared.
if (!ExAcguireResourceSharedLite (& (PtrVCB->VCBResource) ,

CanWait)) {
// Post the request to be processed in the context of a
// worker thread.
Completelrp = FALSE;
PostRequest = TRUE;
try_return(RC = STATUS_PENDING) ;

}
PtrResourceAcquired = & (PtrVCB->VCBResource) ;

// Insert code to validate the caller-supplied offset here.

// Lock the caller's buffer.
if (!NT_SUCCESS(RC = SFsdLockCallersBuf f er (Ptrlrp,

TRUE, ReadLength))) {
try_return(RC) ;

}

// Forward the request to the lower-level driver.

// For synchronous I/O wait here, else return STATUS_PENDING .
// For asynchronous I/O support, read the discussion in
/ / Chapter 10 .

try_return(RC) ;

//If the read request is directed to a page file (if your FSD
// supports paging files) , send the request directly to the disk
// driver. For requests directed to a page file, you have to trust
// that the offsets will be set correctly by the VMM. You should
// not attempt to acquire any FSD resources either.
if (PtrFCB->FCBFlags & SFSD_FCB_PAGE_FILE) {

loMarklrpPending (Ptrlrp) ;
// You will need to set a completion routine before invoking
/ / a lower- level driver.
// Forward request directly to disk driver.
// SFsdPageFileIo(PtrIrpContext, Ptrlrp);

Completelrp = FALSE;

try_return(RC = STATUS_PENDING) ;

// If this read is directed to a directory, it is not allowed
// by the sample FSD. Note that you may choose to create a stream
// file for FSD (internal) directory read/write operations, in
// which case you should modify the check below to allow reading

Dispatch Routine: Read ______________________________________ 429

II (directly from disk) directories as long as the read originated
// from within your FSD. Your driver will have to be smart enough
// to recognize that the read originated in your FSD (e.g., via
// the contents of the TopLevellrp field in TLS described in the
// next chapter) .
if (PtrFCB- >FCBFlags & SFSD_FCB_DIRECTORY) {

RC = STATUS_INVALID_DEVICE_REQUEST;
try_return (RC) ;

PtrRegdFCB = & (PtrFCB->NTRequiredFCB) ;

// This is a good place for oplock-related processing.
// Chapter 11 expands upon this topic in greater detail.

// Check whether the desired read can be allowed depending
// on any byte-range locks that might exist. Note that for
// paging I/O, no such checks should be performed.
if (! Paginglo) {

// Insert code to perform the check here . . .
// if (! SFsdCheckForByteLock (PtrFCB, PtrCCB, Ptrlrp,
// PtrCurrentloStackLocation)) {
// try_return(RC = STATUS_FILE_LOCK_CONFLICT) ;

// There are certain complications that arise when the same file
// stream has been opened for cached and noncached access. The FSD
//is then responsible for maintaining a consistent view of the
// data seen by the caller.
// Also, it is possible for file streams to be mapped in both as
// data files and as an executable. This could also lead to
// consistency problems since there now exist two separate
// sections (and pages) containing file information.
// Read Chapter 10 for more information on the issues involved in
// maintaining data consistency.
// Insert appropriate code here.

// Acquire the appropriate FCB resource shared,
if (Paginglo) {

// Try to acquire the FCB PagingloResource shared,
if (!ExAcquireResourceSharedLite(&(PtrReqdFCB->

PagingloResource),
CanWait)) {

Completelrp = FALSE;
PostRequest = TRUE;
try_return(RC = STATUS_PENDING);

}
// Remember the resource that was acquired.

PtrResourceAcquired = &(PtrReqdFCB->PagingIoResource);
} else {

// Try to acquire the FCB MainResource shared.
if (!ExAcquireResourceSharedLite(&(PtrReqdFCB->MainResource),

CanWait)) {

430 ____________________________ Chapter 9: Writing a File System Driver I

Completelrp = FALSE;
PostRequest = TRUE;
try_return(RC = STATUS_PENDING) ;

}
// Remember the resource that was acquired.

PtrResourceAcquired = & (PtrReqdFCB->MainResource) ;

// Validate start offset and length supplied.
// If start offset is > end-of-file, return an appropriate
// error. Note that since an FCB resource has already been
// acquired, and since all file size changes require acquisition
//of both FCB resources (see Chapter 10) , the contents of the FCB
// and associated data structures can safely be examined.

// Also note that I am using the file size in the Common FCB
// Header to perform the check. However, your FSD might keep a
// separate copy in the FCB (or some other representation of the
// file associated with the FCB) .
if (RtlLargeIntegerGreaterThan(ByteOf fset,

PtrReqdFCB->CommonFCBHeader .FileSize)) {
// Starting offset is > file size.
try_return(RC = STATUS_END_OF_FILE) ;

// We can also truncate the read length here
// such that it is contained within the file size.

// This is a good place to set whether fast I/O can be performed
//on this particular file or not. Your FSD must make its own
// determination on whether or not to allow fast I/O operations.
// Commonly, fast I/O is not allowed if any byte-range locks exist
// on the file or if oplocks prevent fast I/O. Practically any
// reason chosen by your FSD could result in your setting
// FastloIsNotPossible
//OR FastloIsQuestionable instead of FastloIsPossible .
//
// PtrReqdFCB->CommonFCBHeader.IsFastIoPossible = FastloIsPossible;

// Branch here for cached vs. noncached I/O.
if (INonBufferedlo) {

// The caller wishes to perform cached I/O. Initiate caching if
// this is the first cached I/O operation using this file
// object.
if (PtrFileObject->PrivateCacheMap == NULL) {

// This is the first cached I/O operation. You must ensure
// that the Common FCB Header contains valid sizes at this
// time.
CcInitializeCacheMap(PtrFileObject,

(PCC_FILE_SIZES)(&(PtrReqdFCB->
CommonFCBHeader.AllocationSize)) ,

FALSE, // We will not utilize pin access for

T
Dispatch Routine: Read ______________________________________ 431

II this file
& (SFsdGlobalData. CacheMgrcallBacks), // callbacks
PtrCCB) ; // The context used in callbacks

// Check and see if this request requires an MDL returned to
// the caller.
if (PtrIoStackLocation->MinorFunction & IRP_MN_MDL) {

// Caller does want an MDL returned. Note that this mode
// implies that the caller is prepared to block.
CcMdlRead(PtrFileObject, &ByteOffset, TruncatedReadLength,

&(PtrIrp->MdlAddress) ,
&(PtrIrp->IoStatus)) ;

NumberBytesRead = PtrIrp->IoStatus . Information;
RC = PtrIrp->IoStatus. Status;

try_return(RC) ;

// This is a regular run-of-the-mill cached I/O request. Let
// the Cache Manager worry about it.
// First though, we need a buffer pointer (address) that is
// valid.
PtrSystemBuf fer = SFsdGetCallersBuf fer (Ptrirp) ;
if (!CcCopyRead(PtrFileObject, & (ByteOf f set) , ReadLength,

CanWait, PtrSystemBuf fer , & (PtrIrp->IoStatus))) {
// The caller was not prepared to block and data is not
// immediately available in the system cache.
Completelrp = FALSE;
PostRequest = TRUE;
// Mark IRP Pending . . .
try_return(RC = STATUS_PENDING) ;

//We have the data
RC = PtrIrp->IoStatus. Status;
NumberBytesRead = PtrIrp->IoStatus . Information;

try_return(RC) ;

} else {

// Send the request to lower-level drivers.

// For paging I/O, the FSD has to trust the VMM to do the right
// thing.

// First, mark the IRP as pending, then invoke the lower-level
// driver after setting a completion routine.
// Meanwhile, this particular thread can immediately return a
// STATUS_PENDING return code.
// The completion routine is then responsible for completing
// the IRP and unlocking appropriate resources.

432 ____________________________ Chapter 9: Writing a File System Driver I

II Also, at this point, your FSD might use the
// information contained in the ValidDataLength field to simply
// return zeroes to the caller for reads extending beyond
// current valid data length.

loMarklrpPending(Ptrlrp) ;

// Invoke a routine to read disk information at this time.
// You will need to set a completion routine before invoking
// a lower-level driver.

Completelrp = FALSE;

try_return(RC = STATUS_PENDING) ;
}

try_exit : NOTHING ;

} finally {
// Post IRP if required.
if (PostRequest) {

// Implement a routine that will queue-up the request to be
// executed later (asynchronously) in the context of a system
// worker thread. See Chapter 10 for details.

if (PtrResourceAcquired) {
SFsdReleaseResource (PtrResourceAcquired) ;

}
} else if (Completelrp && ! (RC == STATUS_PENDING)) {

// For synchronous I/O, the FSD must maintain the current byte
// offset.
// Do not do this however, if I/O is marked as paging I/O.
if (Synchronous I o && IPaginglo && NT_SUCCESS (RC)) {

PtrFileObject->CurrentByteOf fset =
RtlLargeIntegerAdd(ByteOffset,
RtlConvertUlongToLargelnteger ((unsigned

longJNumberBytesRead)) ;

// If the read completed successfully and this was not a
// paging I/O operation,* you should modify the time stamp for
// the file stream indicating that an access operation was
// performed. You can do this in one of two ways:
// (a) You could set a flag in the CCB indicating that the file
// stream was accessed and in the cleanup routine
// (described in the next chapter) , you would update the
/ / time value.

* Paging I/O requests are either asynchronous requests initiated by the VMM or the NT Cache Manager,
or recursive requests from the FSD to the Cache Manager, back to the FSD. Therefore, most FSD imple-
mentations do not update the file access/modification time upon processing such requests. Paging I/O
requests can also occur due to page faults on a user-mapped file stream. Unfortunately, by choosing not
to update the access time for all paging I/O requests, your FSD will be unable to mark the fact that some
user application accessed the file albeit via the memory-mapped file method.

T
Dispatch Routine: Read 433

/ / (b) Or, you could simply get the current time and insert it
// into FCB structure now. Then at file cleanup time, you
// would update the directory entry for the file.
if (NT_SUCCESS(RC) && IPaginglo) {

// The following is method (a) above. If you wish to be
// more accurate, then update the time in the FCB now.
// Also remember in this case to remove the
// FO_FILE_FAST_IO_READ flag from the the file object.
SFsdSetFlag(PtrCCB->CCBFlags, SFSD_CCB_ACCESSED) ;

if (PtrResourceAcguired) {
SFSdReleaseResource (PtrResourceAcquired) ;

// Can complete the IRP here if no exception was encountered.
if (! (PtrIrpContext->IrpContextFlags

& SFSD_IRP_CONTEXT_EXCEPTION)) {
PtrIrp->IoStatus. Status = RC;
PtrIrp->IoStatus . Information = NumberBytesRead;

// Free up the IRP Context.
SFsdReleaselrpContext (PtrlrpContext) ;

// Complete the IRP.
IoCompleteReguest(PtrIrp, IO_DISK_INCREMENT) ;

}
} // can we complete the IRP?

} // end of "finally" processing.

return (RC) ;}
NTSTATUS SFsdLockCallersBuffer(
PIRP Ptrlrp,
BOOLEAN IsReadOperation,
uint32 Length)

NTSTATUS
PMDL

RC = STATUS_SUCCESS ;
PtrMdl = NULL;

ASSERT (Ptrlrp) ;

try {
// Is an MDL already present in the IRP?
if (! (PtrIrp->MdlAddress)) {

// Allocate an MDL.
if (! (PtrMdl = loAllocateMdl (PtrIrp->UserBuf fer , Length, FALSE,

FALSE, Ptrlrp))) {
RC = STATUS_INSUFFICIENT_RESOURCES;
try_return(RC) ;

// Probe and lock the pages described by the MDL.

434____________________________Chapter 9: Writing a File System Driver I

II We could encounter an exception doing so, swallow the
// exception.
// NOTE: The exception could be due to an unexpected (from our
// perspective), invalidation of the virtual addresses that
// comprise the passed-in buffer.
try {

MmProbeAndLockPages(PtrMdl, PtrIrp->RequestorMode,
(IsReadOperation ? loWriteAccess:JoReadAccess));

} except(EXCEPTION_EXECUTE_HANDLER) {
RC = STATUS_INVALID_USER_BUFFER;

try_exit: NOTHING;

} finally {
if (!NT_SUCCESS(RC) && PtrMdl) {

loFreeMdl (PtrMdl) ;
// You must NULL the MdlAddress field in the IRP after freeing
// the MDL, or else the I/O Manager will also attempt to free
// the MDL pointed to by that field during I/O completion. The
// pointer becomes invalid once you free the allocated MDL and
// you will encounter a system crash during IRP completion.
PtrIrp->MdlAddress = NULL;

return (RC) ;

void *SFsdGetCallersBuf fer (
PIRP Ptrlrp)
{

void *ReturnedBuf fer = NULL;

// If an MDL is supplied, use it.
if (PtrIrp->MdlAddress) {
ReturnedBuffer = MmGetSystemAddressForMdl (PtrIrp->MdlAddress)

} else {
ReturnedBuffer = PtrIrp->UserBuf fer;

return (ReturnedBuffer) ;

void SFsdMdlComplete (
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp,
PIO_STACK_LOCATION PtrloStackLocation,
BOOLEAN ReadCompletion)
{

NTSTATUS RC = STATUS_SUCCESS;
PFILE_OBJECT PtrFileObject = NULL;

Dispatch Routine: Read ______________________________________ 435

PtrFileObject = PtrIoStackLocation->FileObject;
ASSERT (PtrFileObject) ;

// Not much to do here.
if (ReadCompletion) {

CcMdlReadComplete (PtrFileObject, PtrIrp->MdlAddress) ;
} else {

// The Cache Manager needs the byte offset in the I/O stack
// location.

CcMdlWriteComplete (PtrFileObject,
& (PtrIoStackLocation->Parameters . Write. ByteOf f set) ,
PtrIrp->MdlAddress) ;

// Clear the MDL address field in the IRP so the loCompleteRequest ()
// does not try to play around with the MDL.
PtrIrp->MdlAddress = NULL;

// Free up the Irp Context.
SFsdReleaselrpContext (PtrlrpContext) ;

// Complete the IRP.
PtrIrp->IoStatus. Status = RC;
PtrIrp->IoStatus. Information = 0;
loCompleteRequest (Ptr Irp, IO_NO_INCREMENT) ;

return;

Notes
This code fragment follows the list of logical steps, described earlier, that a file
system driver typically implements to satisfy a read request. In response to the
request, the FSD must first obtain the parameters supplied by the caller. Valida-
tion of the starting offset and the read length is typically not required for requests
issued by the VMM.

Notice that the sample FSD conditionally acquires either the volume control block
resource, the file control block MainResource, or the FCB PagingloRe-
source, depending upon the nature of the request. The various ways in which
the read routine can be invoked are discussed in greater detail in the next chapter.

The buffer supplied by the caller is passed directly to the FSD by the I/O
Manager. The FSD, in turn, creates a memory descriptor list (MDL) and locks
pages in memory before forwarding the request to a lower-level disk driver. This
allows the disk driver to obtain the data in the context of any arbitrary thread,
directly into the locked pages. The routine SFsdLockCallersBuf fer () illus-
trates the method used in creating a memory descriptor list and locking pages in

436____________________________Chapter 9: Writing a File System Driver I

memory so that lower-level drivers can subsequently access the buffer in the
context of any arbitrary thread, even at a high IRQL.

Before a read request is allowed to proceed, the FSD should also ensure that
there are not any conflicting byte locks on the range requested by the caller. If
conflicting locks do exist, the caller should get an appropriate error code returned
to it. Note, however, that byte lock checks are not performed for requests marked
as paging I/O, since these requests originate from the VMM in response to a page
fault incurred by the thread trying to access the data, it is assumed that the checks
must have been performed at some earlier point in time. Unfortunately, though,
you will notice that the byte-range lock check will also be skipped for page faults
incurred when accessing data mapped into the virtual address space of a process
(memory-mapped file).

The caller of the read routine can request either cached or noncached I/O. When
a request for buffered I/O is received by the FSD, the driver checks if caching had
previously been initiated on the file stream using that particular file object. If this
happens to be the first cached I/O request received for that particular file object,
the FSD initiates caching by invoking the CcInitializeCacheMap () function
call. Chapter 7, The NT Cache Manager II, describes this routine in greater detail.
Once caching has been initiated, the FSD can simply forward the cached I/O
request to the NT Cache Manager for further processing. Note that it is quite
possible that invoking CcCopyRead () might result in a page fault incurred by
the Cache Manager, which causes the FSD read routine to be recursed into, this
time for paging I/O. The FSD will then handle the page fault by obtaining data
directly from disk or from across the network (for redirectors) and complete the
paging I/O request.

The preceding code fragment doesn't elaborate on the steps taken by an FSD to
forward an I/O request to the lower-level disk driver to get data from secondary
storage. The methodology used by your FSD depends upon the specific require-
ments for your driver. However, some common steps are performed by all FSD
implementations before forwarding a request to lower-level drivers:

• Your FSD will determine the logical block offset and number of logical blocks
that need to be read.

• The FSD may be able to obtain data in a single I/O operation or, for discontig-
uous data, your FSD might need to make multiple requests.

Your FSD may initiate multiple I/O requests concurrently to the disk driver to
handle the discontiguous data case.

• If a single I/O request is being sent to the lower-level disk driver, the FSD
will initialize the next IRP stack location in the IRP sent to it and will also set

Dispatch Routine: Write______________________________________437

a completion routine before forwarding the IRP down to the next driver in
the hierarchy.
It is important for the FSD to set a completion routine so that the correct sta-
tus can be returned to the caller and also to ensure that all resources acquired
during the read operation are released before the request is returned to the
caller. Furthermore, the FSD can respond to errors returned by the lower-level
disk drivers by initiating appropriate processing from the completion routine.

• If multiple I/O requests are required to read all of the data from secondary
storage, the FSD can initiate all I/O requests concurrently or sequentially.
The FSD can initiate concurrent read operations by creating multiple associ-
ated IRP structures, initializing the IRPs appropriately, creating partial MDLs
for each of the concurrent requests, setting a completion routine for each asso-
ciated IRP, and sending the associated IRP requests down to the lower-level
drivers.*

For read I/O requests, a caller can specify that an MDL be returned containing the
file data. This request for an MDL-read operation can be identified by checking
for the IRP_MN_MDL flag value in the MinorFunction field of the current I/O
stack location. The code fragment above invokes the CcMdlRead () function,
which results in an MDL being allocated by the Cache Manager. Once the caller
has completed processing the data contained in the MDL, a second read request
is issued to the FSD. This special read request is only issued to inform the Cache
Manager that the MDL structure can now be freed (and pages reallocated, if
required) and is identified by the IRP_MN_COMPLETE flag value in the Minor-
Function field. The FSD must simply invoke the CcMdlReadComplete ()
Cache Manager function in response to this request as is illustrated in the SFsd-
MdlComplete () function.

Dispatch Routine: Write
The steps involved in processing a write request are very similar to those
performed in processing read requests.

* Note that the loMakeAssociatedlrp () routine can be used to request that the I/O Manager allocate
an associated IRP structure for the FSD while the loBuildPartialMdl () routine will create the partial
MDL for the FSD. One side effect of creating associated IRP structures is that the I/O Manager will auto-
matically complete the master IRP once all associated IRPs have been completed. To prevent this from
happening, simply increment the Associatedlrp count in the master IRP before sending requests to
the lower-level driver. This trick will cause the I/O manager to believe that there is some associated IRP
pending (even after the last one has been completed), and your FSD can subsequently complete the mas-
ter IRP itself (remember, though, to decrement the Associatedlrp count before completing the master
IRP yourself).

438 ____________________________ Chapter 9: Writing a File System Driver I

Logical Steps Involved
The I/O stack location contains the following structure relevant to processing a
write request issued to a FSD:

typedef struct _IO_STACK_LOCATION {

union {

/ / System service parameters for: NtWriteFile
struct {

ULONG Length;
ULONG Key;
LARGEJNTEGER ByteOffset;

} Write;

} Parameters;

//

} IO_STACK_LOCATION, *PIO_STACK_LOCATION;

An FSD performs the following simple tasks upon receiving a write request for a
file object:

1 . Get a pointer to the CCB and the FCB for the file stream.
2. Verify that the write operation is allowed.

Most FSD implementations will reject user write requests directed to directory
objects.

3. Identify the type of write operation: a paging I/O operation, a normal non-
cached operation, or a cached write operation. Also determine if the write
request was initiated by the lazy-writer thread or by the modified page/block
writer thread.

It is extremely important that your dispatch routine know the caller initiating
the write request. In Windows NT, paging I/O asynchronous requests are not
synchronized with user file size changes, and therefore, your FSD should be
able to always determine whether a write operation should be allowed to pro-
ceed or should be disregarded.

4. Obtain any resources that are appropriate to ensure consistency of data.

The sample FSD implementation provided here acquires the MainResource
exclusively if the write request has been received directly from a user thread.
This prevents all other user-initiated read or write requests from proceeding

Dispatch Routine: Write______________________________________439

concurrently. If, however, the write request has been marked as paging I/O,
the FSD will acquire the PagingloResource exclusively as well.*

5. Obtain the starting offset, length, and buffer pointer supplied by the caller.

The starting offset and length uniquely determine the byte range requested by
the caller. The caller provides a buffer, as well, for the FSD to transfer data
from.

6. Lock the user's buffer, if required, and also create a memory descriptor list
(MDL) for requests that must be directed to lower-level drivers.

7. Check that the byte range requested by the caller has been locked; it is
possible with Windows NT, however, for the caller to provide a key that
would still allow the write request to proceed.

8. Determine whether the byte range specified by the caller is valid.

In the case of write requests, a starting offset beyond end-of-file for a user-ini-
tiated request implies that the user is extending the file size.

9. If this is a buffered I/O request and caching has not yet been initiated on the
FCB, invoke CcInitializeCacheMap () to initiate caching at this time.

10. If this is a buffered I/O request, forward the request to the NT Cache Manager
via an invocation to CcCopyWrite () ; if this is a nonbuffered (direct I/O or
paging I/O) request, forward it on to the lower-level driver for further
processing.

11. Once data has been transferred either to the Cache Manager buffers, or to
secondary storage using lower-level drivers, release FCB resources acquired
and return the results to the caller.

Code Fragment
NTSTATUS SFsdCommonWrite(
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp)
{

// Declarations go here

try {
// First, get a pointer to the current I/O stack location.
PtrloStackLocation = loGetCurrentlrpStackLocation(Ptrlrp);
ASSERT(PtrloStackLocation);

* Actually, the native NT implementations appear to use a different philosophy when determining how
to acquire the resources for the FCB. They tend to acquire the resource shared, unless the write operation
extends beyond the current cnd-of-file. The reason for acquiring the paging I/O resource shared is based
on the philosophy that the VMM will correctly serialize paging I/O write operations to any specific byte-
range, and that it is better to provide greater concurrency in writing dirty pages quickly to secondary stor-
age. This method of acquisition is slightly more difficult to implement.

440 ____________________________ Chapter 9: Writing a File System Driver I

II If this is an MDL write complete request, then
// there is not much processing that the FSD has to do.
if (PtrIoStackLocation->MinorFunction & IRP_MN_COMPLETE) {

// Caller wants to tell the Cache Manager that a previously
// allocated MDL can be freed. This may cause a recursive write
// back into the FSD.
SFsdMdlComplete(PtrIrpContext, Ptrlrp,

PtrloStackLocation, FALSE) ;
// The IRP has been completed.
Completelrp = FALSE;
try_return(RC = STATUS_SUCCESS } ;

}
// If this is a request at IRQL DISPATCH_LEVEL, then post
// the request (your FSD may process it synchronously
// if you implement the support correctly) .
if (PtrIoStackLocation->MinorFunction & IRP_MN_DPC) {

Completelrp = FALSE;
PostRequest = TRUE;
try_return(RC = STATUS_PENDING) ;

PtrFileObject = PtrIoStackLocation->FileObject;
ASSERT (PtrFileObject) ;

// Get the FCB and CCB pointers.
PtrCCB = (PtrSFsdCCB) (PtrFileObject->FsContext2) ;
ASSERT (PtrCCB) ;
PtrFCB = PtrCCB->PtrFCB;
ASSERT (PtrFCB) ;

// Get some of the other parameters supplied to us.
ByteOffset = PtrIoStackLocation->Parameters .Write. ByteOff set;
WriteLength = PtrIoStackLocation->Parameters .Write. Length;

CanWait = ((PtrIrpContext->IrpContextFlags
& SFSD_IRP_CONTEXT_CAN_BLOCK)

? TRUE : FALSE) ;
Paginglo = ((PtrIrp->Flags & IRP_PAGING_IO) ? TRUE : FALSE);
NonBuf feredlo = ((PtrIrp->Flags & IRP_NOCACHE) ? TRUE : FALSE) ;
Synchronouslo = ((PtrFileObject->Flags & FO_S YNCHRONOUS_IO) ?

TRUE : FALSE) ;

// You might wish to check at this point whether the file object
// being used for write really did have write permission requested
// when the create/open operation was performed. Of course, for
// paging I/O write operations, the check is not valid, since
// paging I/O (via the VMM) could use any file object (likely the
// first one with which caching wasinitiated on the FCB) to
// perform the write operation.

//A 0-byte write can be immediately succeeded.
if (WriteLength ==0) {

try_return(RC) ;

Dispatch Routine: Write ______________________________________ 441

II NOTE: if your FSD does not support file sizes > 2GB, you
// could validate the start offset here and return end-of-file
// if the offset begins beyond the maximum supported length.

// Is this a write of the volume itself?
if (PtrFCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_VCB) {

// Yup, we need to send this on to the disk driver after
// validation of the offset and length.
PtrVCB = (PtrSFsdVCB) (PtrFCB) ;

// Acquire the volume resource exclusively
if (!ExAcquireResourceExclusiveLite (& (PtrVCB->VCBResource) ,

CanWaitM {
// Post the request to be processed in the context of a
/ / worker thread .
Completelrp = FALSE;
PostRequest = TRUE;
try_return(RC = STATUS_PENDING) ;

}
PtrResourceAcquired = & (PtrVCB->VCBResource) ;

// Insert code to validate the caller-supplied offset here.

// Lock the caller's buffer.
if (!NT_SUCCESS(RC = SFsdLockCallersBuf f er (Ptrlrp,

TRUE, WriteLength))) {
try__return(RC) ,-

// Forward the request to the lower-level driver.

// For synchronous I/O wait here, else return STATUS_PENDING .
// For asynchronous I/O support, read the discussion in
// Chapter 10.

try_return(RC) ;

// Your FSD should check whether it is
// convenient to allow the write to proceed by utilizing the
// CcCanlWrite () function call. If it is not convenient to perform
// the write at this time, you should defer the request for a
// while. The check should not, however, be performed for
// noncached write operations. To determine whether we are
// retrying the operation or not, use the IrpContext structure we
// have created (see the accompanying diskette to this book for a
// definition of the structure) .

IsThisADeferredWrite =
((PtrIrpContext->IrpContextFlags

& SFSD_IRP_CONTEXT_DEFERRED_WRITE) ? TRUE : FALSE) ;
if (INonBufferedlo) {

if (! CcCanlWrite (PtrFileObject, WriteLength, CanWait,
IsThisADeferredWrite)) {

// Cache Manager and/ or the VMM does not want us to perform

442____________________________Chapter 9: Writing a File System Driver I

II the write at this time. Post the request.
SFsdSetFlag(PtrIrpContext->IrpContextFlags,

SFSD_IRP_CONTEXT_DEFERRED_WRITE);
CcDeferWrite(PtrFileObject, SFsdDeferredWriteCallBack,

PtrlrpContext, Ptrlrp, WriteLength,
IsThisADeferredWrite);

Completelrp = FALSE;
try_return(RC = STATUS_PENDING);

// If the write request is directed to a page file (if your FSD
// supports paging files), send the request directly to the disk
// driver. For requests directed to a page file, you have to trust
// that the offsets will be set correctly by the VMM. You should
// not attempt to acquire any FSD resources either,
if (PtrFCB->FCBFlags & SFSD_FCB_PAGE_FILE) {

loMarklrpPending(Ptrlrp);
// You will need to set a completion routine before invoking
//a lower-level driver
// forward request directly to disk driver
// SFsdPageFilelotPtrlrpContext, Ptrlrp);

Completelrp = FALSE;

try_return(RC = STATUS_PENDING);

// We can continue. Check whether this write operation is targeted
// to a directory object, in which case the sample FSD will
// disallow the write request. Once again though, if you create a
// stream file object to represent a directory in memory, you
// could come to this point as a result of modifying the directory
// contents internally by the FSD itself. In that case, you should
//be able to differentiate the directory write as being an
// internal, noncached write operation and allow it to proceed.
if (PtrFCB->FCBFlags & SFSD_FCB_DIRECTORY) {

RC = STATUS_INVALID_DEVICE_REQUEST;
try_return(RC) ;

PtrReqdFCB = & (PtrFCB->NTRequiredFCB) ;

// There are certain complications that arise when the same file
// stream has been opened for cached and noncached access. The FSD
// is then responsible for maintaining a consistent view of the
// data seen by the caller.
// If this happens to be a nonbuffered I/O, you should try to
// flush the cached data (if some other file object has already
// initiated caching on the file stream) . You should also try to
// purge the cached information, though the purge will probably
// fail if the file has been mapped into some process's virtual
// address space.
// Read Chapter 10 for more information on the issues involved in

Dispatch Routine: Write ______________________________________ 443

II maintaining data consistency.
// Insert appropriate code here . . .
// CcFlushCache (. . .
// CcPurgeCacheSection(. . .

// Acquire the appropriate FCB resource exclusively.
if (Paginglo) {

// Try to acquire the FCB PagingloResource exclusively.
if (IBxAcquireResourceExclusiveLite (& (PtrReqdFCB->

PagingloResource) ,
CanWait)) {

Completelrp = FALSE;
PostRequest = TRUE;
try_return(RC = STATUS_PENDING) ;

}
// Remember the resource that was acquired.

PtrResourceAcquired = & (PtrReqdFCB->PagingIoResource) ;
} else {

// Try to acquire the FCB MainResource exclusively.
if (!ExAcquireResourceExclusiveLite(&(PtrReqdFCB->

MainResource) ,
CanWait)) {

Completelrp = FALSE;
PostRequest = TRUE;
try_return(RC = STATUS_PENDING) ;

}
// Remember the resource that was acquired.

PtrResourceAcquired = & (PtrReqdFCB->MainResource) ;

// Validate start offset and length supplied.
// Here is a special check that determines whether the caller
// wishes to begin the write at current end-of-file (whatever the
// value of that offset might be) .
if ((ByteOffset.LowPart == FILE_WRITE_TO_END_OF_FILE) &&

(ByteOffset.HighPart == OxFFFFFFFF)) {
WritingAtEndOfFile = TRUE;

// Paging I/O write operations are special. If paging I/O write
// requests begin beyond end-of-file, the request should be no-
// op'ed (see the next two chapters for more information). If
// paging I/O requests extend beyond current end of file, they
// should be truncated to current end-of-file.
// Insert code to do this here.

// This is also a good place to set whether fast I/O can be
// performed on this particular file or not. Your FSD must make
// its own determination whether or not to allow fast I/O
// operations. Commonly, fast I/O is not allowed if any byte-range
// locks exist on the file or if oplocks prevent fast I/O. Many
// reasons could result in setting FastloIsNotPossible
//OR FastloIsQuestionable instead of FastloIsPossible.

444____________________________Chapter 9: Writing a file System Driver I

PtrReqdFCB->CommonFCBHeader.IsFastloPossible = FastloIsPossible;

// This is also a good place for oplock-related processing.
// Chapter 11 expands upon this topic in greater detail.

// Check whether the desired write can be allowed, depending
//on any byte-range locks that might exist. Note that for
// paging I/O, no such checks should be performed,
if (IPaginglo) {

// Insert code to perform the check here ...
// if (!SFsdCheckForByteLock(PtrFCB, PtrCCB, Ptrlrp,
// PtrCurrentloStackLocation)) {
// try_return(RC = STATUS_FILE_LOCK_CONFLICT);

}

// Check whether the current request will extend the file size,
//or the valid data length (if your FSD supports the concept of a
// valid data length associated with the file stream) . In either
// case, inform the Cache Manager using CcSetFileSizes() about
// the new file length. Note that real FSD implementations will
// have to first allocate enough on-disk space before they
// inform the Cache Manager about the new size to ensure that the
// write will subsequently not fail due to lack of disk space.

// if ((WritingAtEndOfFile) ||
// ((ByteOffset + TruncatedWriteLength) >
// PtrReqdFCB->CommonFCBHeader.FileSize)) {
// we are extending the file;
// allocate space and inform the Cache Manager
// } else if (same test as above for valid data length) {
// we are extending valid data length, inform Cache Manager;

// Branch here for cached vs. noncached I/O.
if (INonBufferedlo) {

// The caller wishes to perform cached I/O. Initiate caching if
// this is the first cached I/O operation using this file
// object.
if (PtrFileObject->PrivateCacheMap == NULL) {

// This is the first cached I/O operation. You must ensure
// that the Common FCB Header contains valid sizes.
CcInitializeCacheMaptPtrFileObject,

(PCC_FILE_SIZES)(&(PtrReqdFCB->
CommonFCBHeader.AllocationSize)),

FALSE, // We will not utilize pin access for
// this file.

St(SFsdGlobalData.CacheMgrCallBacks) , // Callbacks.
PtrCCB); // The context used in callbacks.

Dispatch Routine: Write _________________________ ____________ 445

// Check and see if this request requires an MDL returned to
// the caller.
if (PtrIoStackLocation->MinorFunction & IRP_MN_MDL) {

// Caller does want an MDL returned. Note that this mode
// implies that the caller is prepared to block.
CcPrepareMdlWrite (PtrFileOb j ect , ScByteOf f set ,

TruncatedWriteLength,
&(PtrIrp->MdlAddress) , & (PtrIrp->IoStatus)) ;

NumberBytesWritten = PtrIrp->IoStatus . Information;
RC = PtrIrp->IoStatus. Status;

try_return(RC) ;

// This is a regular run-of-the-mill cached I/O request. Let
// the Cache Manager worry about it.
// First though, we need a valid buffer pointer (address) .
// More on this in Chapter 10.

// Also, if the request extends the ValidDataLength, use
// CcZeroDataO first to zero out the gap (if any) between
// current valid data length and the start of the request.
PtrSystemBuf fer = SFsdGetCallersBuf f er (Ptrlrp) ;
ASSERT (PtrSystemBuffer) ;
if (!CcCopyWrite(PtrFileObject, & (ByteOf f set) ,

TruncatedWriteLength,
CanWait, PtrSystemBuffer)) {

// The caller was not prepared to block and data is not
// immediately available in the system cache.
Completelrp = FALSE;
PostRequest = TRUE;
// Mark IRP Pending . . .
try_return(RC = STATUS_PENDING) ;

} else {
// We have the data
PtrIrp->IoStatus. Status = RC;
PtrIrp->IoStatus . Information

= NumberBytesWritten = WriteLength;

} else {

// If the request extends beyond valid data length, and if the
// caller is not the lazy-writer, then utilize CcZeroDataO to
// zero out any blocks between current ValidDataLength and the
// start of the write operation. This method of zeroing data
// is convenient since it avoids any unnecessary writes to
// disk. Of course, if your FSD makes no guarantees about
// reading uninitialized data (native NT FSD implementations
// guarantee that read operations will receive zeroes if the
// sectors were not written to, thereby ensuring that old data
// cannot be reread unintentionally or maliciously) , you can
// avoid performing the zeroing operation altogether. You
// must, however, be careful about correctly determining the

446____________________________Chapter 9: Writing a File System Driver I

II top-level component for the IRP so as to be able to extend
// valid data length only when appropriate and also avoid any
// infinite, recursive loops.
// See Chapter 10 for a discussion on this topic.

// Send the request to lower-level drivers.
// Here is a common method used by Windows NT file system
// drivers that are in the process of sending a request to the
// disk driver. First, mark the IRP as pending, then invoke
// the lower-level driver after setting a completion routine.
// Meanwhile, this particular thread can immediately return
//a STATUS_PENDING return code.
// The completion routine is then responsible for completing
// the IRP and unlocking appropriate resources.

loMarklrpPending(Ptrlrp);

// Invoke a routine to write information to disk at this time.
// You will need to set a completion routine before invoking
// a lower-level driver.

Completelrp = FALSE;

try_return(RC = STATUS_PENDING);

try_exit: NOTHING;

// If a synchronous I/O write request succeeded, and if the file
// size has changed as a result, you may wish to update the file
// size and the modification time for the file stream in the
// directory entry for the link at this time.

} finally {
// Post IRP if required,
if (PostRequest) {

// Implement a routine that will queue-up the request to be
// executed later (asynchronously) in the context of a system
// worker thread. See Chapter 10 for details.

if (PtrResourceAcquired) {
SFsdReleaseResource(PtrResourceAcquired);

} else if (Completelrp && !(RC == STATUS_PENDING)) {
// For synchronous I/O, the FSD must maintain the current byte
// offset. Do not do this however, if I/O is marked as paging
// I/O.
if (Synchronouslo && !Paginglo && NT_SUCCESS(RC)) {

PtrFileObject->CurrentByteOffset =
RtlLargelntegerAddfByteOffset,

RtlConvertUlongToLargelnteger((unsigned
longJNumberBytesWritten));

}

Dispatch Routine: Write ______________________________________ 447_

//If the write completed successfully and this was not a
// paging I/O operation, set a flag in the CCB that indicates
// that a write was performed and that the file time should be
// updated at cleanup. The other option would be to set the
// access time in the FCB directly now.
if (NT_SUCCESS(RC) && IPaginglo) {

SFsdSetFlag(PtrCCB->CCBFlags, SFSD_CCB_MODIFIED) ;

// If the file size was changed, set a flag in the FCB
// indicating that this occurred.

// If the request failed, and we had done some nasty stuff like
// extending the file size (including informing the Cache
// Manager about the new file size) , and allocating on-disk
// space etc., undo it at this time.

// Release resources.
if (PtrResourceAcquired) {

SFsdReleaseResource (PtrResourceAcquired) ;

// Can complete the IRP here if no exception was encountered.
if (! (PtrIrpContext->IrpContextFlags

& SFSD_IRP_CONTEXT_EXCEPTION)) {
PtrIrp->IoStatus. Status = RC;
PtrIrp->IoStatus. Information = NumberBytesWritten;

// Free up the IRP Context.
SFsdReleaselrpContext (PtrlrpContext) ;

// Complete the IRP.
loCompleteRequest (Ptrlrp, IO_DISK_INCREMENT) ;

}
} // Can we complete the IRP?

} // End of "finally" processing.

return (RC) ;

void SFsdDef erredWriteCallBack (
void *Contextl, // Should be
PtrlrpContext
void *Context2) // Should be Ptrlrp
{

// You should typically simply post the request to your internal
// queue of posted requests (just as you would if the original write
// could not be completed because the caller could not block) .
// Once you post the request, return from this routine. The write
// will then be retried in the context of a system worker thread.

448____________________________Chapter 9: Writing a File System Driver I

Notes
This code fragment provides you with a sound framework that you should follow
when implementing a dispatch routine to process file system write requests.
Conceptually, write requests are not very different from read operations, and can
be handled simply by forwarding the request to the NT Cache Manager, or by
forwarding the request down to a disk or network driver to transfer information
to secondary storage (either locally or across the network).

Some of the issues that you should be concerned about when implementing the
write dispatch routine include correctly identifying the caller of the entry point,
ensuring that data consistency is maintained if the same file stream is opened for
both cached and noncached access, and keeping the Cache Manager informed
about any changes to the file size. We will discuss some of these issues further in
the next chapter.

In this chapter:
• I/O Revisited: Who

Called?
• Asynchronous I/O

Processing
• Dispatch Routine:

File Information
• Dispatch Routine:

Directory Control
• Dispatch Routine:

Cleanup
• Dispatch Routine:

Close

Writing A File
System Driver II

In this chapter, we'll continue to discuss how a file system driver can be
conceived and implemented. First, discuss the read and write dispatch routines
that you were introduced to in the previous chapter, focusing on the different
ways in which these two entry points can be invoked. When you design a file
system driver, knowing the different ways in which a particular dispatch routine
can be invoked is essential to creating a robust design. I intend to help you under-
stand better the logic described by the code and comments presented in the
previous chapter, as well as to plug in the gaps left by the sample code presented
earlier. In order to understand the context in which these two routines can be
invoked, you must first understand the concept of the top-level component for any
I/O request dispatched to an FSD. I discuss this concept at length here.

Next I look at some of the issues that you must deal with in providing support for
asynchronous I/O, including the file information dispatch routines (both query
and set file information) and the directory control, cleanup, and close entry
points. By this time, you should have a very good understanding of the issues
involved in providing some of the basic functionality expected from a Windows
NT file system driver.

I/O Revisited: Who Called?
Throughout the course of this book, I have repeatedly mentioned that the FSD
read and write dispatch routines can be invoked by all sorts of different compo-
nents on a Windows NT system and that these invocations can occur due to
different direct or indirect actions initiated by processes. Here is a formal list of

449

450___________________________Chapter 10: Writing A File System Driver II

the different ways in which the read and write entry points for a file system driver
can be invoked:

• From a user- or kernel-mode thread that requests I/O using one of the NT system
services, e.g., NtReadFile () , NtWriteFile () , ZwReadFile () , Zw-
WriteFile(), or NtFlushBuffers ()

• From a user- or kernel-mode thread as a result of a page fault on a byte range
that is part of a mapped view of a named file stream (i.e., page faults on vir-
tual addresses backed by named file objects):
— From the NT Cache Manager as a result of asynchronous read-ahead oper-

ations being performed
— Recursion into the FSD dispatch routines, due to page faults incurred by

the NT Cache Manager when servicing a buffered I/O request

— Due to page faults in files mapped by user application processes (typi-
cally page faults on mapped-in, executable files)

• From the NT Virtual Memory Manager as a result of servicing a page fault that
was incurred by some user-mode or kernel-mode process for allocated buff-
ers (i.e., page faults on virtual addresses backed by paging files)

• From the NT Virtual Memory Manager as a result of asynchronous flushing of
modified pages (modified page write operations)*

• From the NT Cache Manager as a result of asynchronous flushing of Cache
Manager buffers (lazy-write of data)

Regardless of the caller and of the situation leading up to the invocation of the
read/write entry points, the implementation of these two important dispatch entry
points should try to achieve the following goals:

• Satisfy cached (buffered) I/O requests by forwarding the I/O request to the
NT Cache Manager

• Satisfy nonbuffered I/O requests by directly accessing secondary storage
devices

• Return a consistent view of file stream data, regardless of whether the request
is a buffered or nonbuffered I/O request

• Try to maintain consistency between views of file data mapped in as an exe-
cutable and as a regular data stream

* For the purposes of discussions in this book, there is conceptually no difference between VMM-initiated
flushing of pages belonging to a page file and VMM-initiated flushing of pages belonging to a named on-
disk (mapped) file.

I/O Revisited: Who Called? 451

• Ensure correct synchronization by following a strict, well-defined resource
acquisition hierarchy

Figure 10-1 illustrates the manner in which the NT file system drivers, the NT
Cache Manager, and the NT VMM interact.* This figure also serves to demonstrate
the various ways in which an FSD read/write dispatch entry point can be
invoked. In order to better understand how the FSD achieves the goals listed
earlier, you should understand the concept of a top-level component for an IRP.

Top-Level Component for an IRP
From the figure, you can see that an I/O request in Windows NT can be one of
the following three types:

• The I/O request is directly issued to an FSD.

• The I/O request either originates in the Cache Manager component or is
handed directly to the Cache Manager by the I/O Manager (bypassing the
FSD).

• The I/O request originates in the VMM component, or is directly handled by
the VMM in the kernel in the case of a page fault.

Depending on which category a given I/O request falls into, the FSD always iden-
tifies a top-level component that is associated with the IRP representing the
request. The top-level component is defined as the kernel-mode component that
initiates the processing for a specific I/O request.t

Note carefully that identification of a top-level component is not restricted to read/
write I/O requests. Rather, your FSD must consistently be aware of the top-level
component associated with any functionality invoked in your FSD implementa-
tion; either the FSD itself, or the NT VMM could be a top-level component for
query/set file size requests.

According to our definition, therefore, the FSD will identify itself as the top-level
component when a user read request is directly forwarded by the NT I/O
Manager to the read dispatch routine in the FSD, because all of the processing for
that IRP is initiated in the FSD dispatch routine. If instead, the I/O request for a
read operation originates in the NT Cache Manager (due to read-ahead being

' Note that the shaded areas represent modules that initiate asynchronous I/O in the context of system
worker threads or dedicated kernel-mode worker threads.
t Microsoft Windows NT developers have previously defined a top-level component as the kernel-mode
component that directly receives the user I/O request. I believe that this definition is not complete, since
lead-ahead and lazy-write calls originating in the NT Cache Manager clo not originate as a result of any
particular user request, yet the Cache Manager should be considered the top-level component for these
1/0 operations. We will therefore use the definition presented here to identify top-level components.

452 Chapter 10: Writing A File System Driver II

Figure 10-1. Interaction between FSDs, the VMM, and the Cache Manager

I/O Revisited: Who Called?_____________________________________453

performed), the FSD identifies the Cache Manager as being the top-level compo-
nent handling the particular IRP. Again, the rationale for classifying the Cache
Manager as the top-level component is that all of the processing for the particular
I/O operation originates in the Cache Manager. Finally, requests that originate in
the VMM for flushing modified pages to secondary storage are identified by the
FSD by noting that the VMM is the top-level component associated with the
request.

Setting and querying the top-level component value

To identify the top-level component for a particular I/O request, the FSD, the NT
Cache Manager, and the NT VMM use Thread-Local Storage (TLS). A thread is
represented within the Windows NT Executive by a structure called ETHREAD.
Although the structure is opaque to most of the NT Executive components,
including FSDs, you should note that this structure contains a field called
TopLevellrp. The TopLevellrp field is large enough to store a pointer value.
An FSD typically stores the pointer to the current IRP being processed in the
context of a particular thread in this field. This, however, is only done if the FSD
is the top-level component for the IRP.

There are a few constant values that are used to identify the fact that some other
component may be top-level for a particular IRP. For example, the fact that the
NT Cache Manager is top-level for a particular I/O request is noted by storing a
constant value defined as FSRTL_CACHE_TOP_LEVEL_IRP in this field. Here is
a list of the constant values that could be stored in the top-level IRP field:

tdefine FSRTL_FSP_TOP_LEVEL_IRP (0x01)
(tdefine FSRTL_CACHE_TOP_LEVEL_IRP (0x02)
#define FSRTL_MOD_WRITE_TOP_LEVEL_IRP (0x03)
#define FSRTL_FAST_IO_TOP_LEVEL_IRP (0x04)
ttdefine FSRTL_MAX_TOP_LEVEL_IRP_FLAG (0x04)

The constant value FSRTL_FSP_TOP_LEVEL_IRP is stored by an FSD in the TLS
only when an IRP has been posted to be processed in the context of a worker
thread and only if some other component (other than the FSD) happens to be top-
level for that particular I/O request. In other words, when processing a request
for deferred processing in the context of a worker thread, the FSD performs the
following tests:

Was the FSD the top-level component for the original request? If so, set the
IRP pointer in TLS, since the FSD will still continue to be the top-level compo-
nent even while processing the request in the context of the current worker
thread.

454___________________________Chapter 10: Writing A File System Driver II

• Otherwise, set the constant FSRTL_FSP_TOP_LEVEL_IRP in the TLS for
the worker thread, to indicate that some other component is actually top-level
for this particular IRP.

The constant value FSRTL_CACHE_TOP_LEVEL_IRP is stored in the TLS by the
FSD when a callback is received by the FSD to preacquire FSD resources for read-
ahead, lazy-write and/or flush operations initiated by the Cache Manager. You
have already been introduced to the Cache Manager callbacks provided by a file
system driver in Chapter 7, The NT Cache Manager II.

When the FSD receives the callback to preacquire resources, it should set the
FSRTL_CACHE_TOP_LEVEL_IRP constant flag value in the TLS. Later, when the
IRP is received by the FSD, it can easily identify that the Cache Manager happens
to be the top-level component for the request.

The constant value FSRTL_MOD_WRITE_TOP_LEVEL_IRP is stored in the TLS
by the modified/mapped page writer threads themselves at thread creation time.
This is because the modified/mapped page writer threads are dedicated worker
threads that initiate write-behind requests and are therefore always top-level
components for IRPs that result from their actions. The FSD can check for the
existence of this value, but does not need to set the value itself.

The constant value FSRTL_FAST_IO_TOP_LEVEL_IRP is set in the TLS by the
File System run-time library (FSRTL) fast I/O routines. The FSRTL routines are not
typically exported in the DDK. You have to buy a separate IPS Kit license from
Microsoft to get header files that define all of the FSRTL routines that Microsoft
wishes to export.

Note that the FSRTL exports certain routines that your FSD can use to service the
fast I/O calls to your FSD. For example, the FSRTL exports a function called
FsRtlCopyRead(), to which Microsoft I/O designers recommend your fast I/O
read function pointer should be initialized. This function provides the expected
preamble before passing the fast I/O request directly to the NT Cache Manager
and bypassing the FSD in the process. We will discuss the fast I/O path in greater
detail later in the next chapter, but note for now that the FsRtlCopyRead()
helper routine and others like it automatically set the FSRTL_FAST_IO_TOP_
LEVEL_IRP flag in the TLS for the thread performing fast I/O. This flag indicates
to the FSD that some other component (in this case, the NT Cache Manager), is
top-level, since the fast path bypassed the FSD dispatch routines.

An FSD uses the following two routines to access and/or modify the contents of
this field in the TLS:

• IoSetTopLevelIrp()

I/O Revisited: Who Called?_____________________________________455

VOID
loSetTopLevellrp(

IN PIRP Irp
) ;
Resource Acquisition Constraints:

None.

Parameters:

Irp
This is either a pointer to an IRP structure or a constant value. If the FSD
happens to be the top-level component for the IRP, it supplies the
pointer to the IRP as an argument to this routine.

Functionality Provided:

This routine will simply set the passed-in value into the TopLevellrp field
in the thread structure for the currently executing thread in whose context the
routine is invoked.

• IoGetTopLeve1Irp()
PIRP
loGetTopLevellrp(

VOID
) ;
Resource Acquisition Constraints:

None.

Parameters:
None
Return Value:

An IRP pointer or the constant value that was stored in the TLS. You can
always identify whether or not this is a valid IRP pointer by checking whether
the returned value, cast to an unsigned long, is less than the constant FSRTL_
MAX_TOP_LEVEL_IRP_FLAG.

Functionality Provided:

This routine returns the contents of the TopLevellrp field in the thread
structure for the currently executing thread in whose context the routine is
invoked.

Code sample

Here is a code fragment from the sample FSD that illustrates how an FSD would
check and/or set the top-level component field in the TLS.

456 __________________________ Chapter 10: Writing A File System Driver II

NTSTATUS SFsdReadf
PDEVICE_OBJECT DeviceObj ect , // the logical volume device object
PIRP Irp) // I/O Request Packet
{

NTSTATUS RC = STATUS_SUCCESS;
PtrSFsdlrpContext PtrlrpContext = NULL;
BOOLEAN AreWeTopLevel = FALSE;

FsRtlEnterFileSystemO ;
ASSERT (DeviceObj ect) ;
ASSERT (Irp) ;

// set the top level context
AreWeTopLevel = SFsdlsIrpTopLevel (Irp) ;

try {

// get an IRP context structure and issue the request
PtrlrpContext = SFsdAllocatelrpContext (Irp, DeviceObject) ;
ASSERT (PtrlrpContext) ;

RC = SFsdCommonRead (PtrlrpContext, Irp) ;

} except (SFsdExceptionFilter (PtrlrpContext, GetExceptionlnformationf)))
{

RC = SFsdExceptionHandler (PtrlrpContext, Irp);

SFSdLogEvent (SFSD_ERROR_INTERNAL_ERROR, RC) ;

if (AreWeTopLevel) {
loSetTopLevellrp(NULL) ;

FsRtlExitFileSystemO ;

return(RC) ;

BOOLEAN SFsdlsIrpTopLevel (
PIRP Irp) // the IRP sent to our dispatch routine
{

BOOLEAN ReturnCode = FALSE;

if (IoGetTopLevelIrp() == NULL) {
//OK, so we can set ourselves to become the "top level" component.
loSetTopLevellrp(Irp) ;
ReturnCode = TRUE;

return(ReturnCode);
}

T I/O Revisited: Who Called?_____________________________________457

Notes

The code fragment illustrates the processing performed in the FSD read dispatch
routine entry point before the FSD invokes the SFsdCommonRead () routine,
shown in the previous chapter. Here, you can see that the FSD invokes a routine
to determine whether the FSD can be the top-level component for the current
IRP. The invoked routine is called SFsdlsIrpTopLevel (). This routine simply
checks the current value of the TopLevellrp field in the TLS to determine
whether it has already been set. If the field contains a nonzero value, the FSD
assumes that some other component is top-level for the current request; other-
wise, the FSD sets the IRP pointer value in the TLS to indicate that the FSD itself
is top-level for the current request.

Although this processing is adequate for the sample FSD (and for that matter, the
FAT and CDFS file system implementations in NT also do pretty much the same
thing), NTFS and other more sophisticated file systems may manipulate the TLS
storage area differently. Fundamentally though, the above concepts can be used
to determine the top-level component for any I/O request dispatched to the FSD.

How information about the top-level component is used

This concept of identifying the top-level component for each request is used as
follows:

In determining the flow of execution when processing a request. Consider a file
stream mapped by some thread that has the file stream opened for nonbuffered
I/O. Write operations performed by this thread will eventually be dispatched to
the FSD write routine via the NT VMM in the form of paging I/O write operations.
If such a modification performed by the user extends beyond current valid data
length for the file, most FSD implementations will attempt to zero the range
between the current valid data length and the start of the new write operation.

Figure 10-2 illustrates the byte range being modified in such a situation.

The reason an FSD might wish to zero the "hole" represented by the byte range
between the current valid data length and the starting offset for the current
request is to avoid returning old data that might be present on disk for the sectors
backing this range.

To ensure consistency between cached and buffered data for a file stream, the
FSD should use CcZeroData () to zero the resulting hole. Upon receiving the
request to zero data, the Cache Manager checks for a write-through file object,
and directly flushes data to disk in such a scenario. This flush is performed
synchronously by the Cache Manager.

458 Chapter 10: Writing A File System Driver II

Figure 10-2. Range to be zeroed for write extending beyond valid data length

The flush operation is also dispatched to the FSD write routine as a synchronous,
paging I/O write operation. Now, the FSD must distinguish this synchronous flush
for the original write-through request from the original request itself. The only reli-
able method to do this is to check the top-level component for the new request.
Since the flush is a recursive call in the context of the thread performing the orig-
inal write-through operation, the FSD can identify that it cannot be top-level with
respect to the flush IRP. This identification allows the FSD to perform the right
processing in response to the flush, and the FSD will now not attempt to change
the valid data length again (it was already done when the original write was
received), nor will the FSD try to recursively invoke the Cache Manager to zero
any holes (since that would lead to a deadlock, and/or infinite recursive loop
condition).

There are other file systems (e.g., distributed file systems) that might be required
to perform some special processing when the FSD is top-level for a request, and
they could safely avoid such processing in the case of recursive requests. These
FSD implementations also find it useful to identify the top-level component for an
IRP, and they modify their processing appropriately.

Last but not least, an FSD must always be careful about dealing with asynchro-
nous I/O requests if some other component is top-level for a request. As
discussed below, the top-level component for the IRP ensures that resource acqui-
sition hierarchies across the FSD, VMM, and Cache Manager are maintained.
Therefore, when an FSD receives an I/O request for which it is not top-level, and
when it is a recursive I/O request or an I/O request that requires synchronous
processing, the FSD should never post the request to be handled in the context of
some other worker thread, since this could lead to a deadlock situation. This issue
is addressed once again in the discussion on asynchronous I/O processing below.

I/O Revisited: Who Called?_____________________________________459

In performing synchronization. Earlier in this book, we discussed the resource
acquisition hierarchy that must be maintained by FSD implementations, the NT
Cache Manager, and the NT VMM in order to avoid deadlocks. The hierarchy
follows:

• File system driver resources must always be acquired first.

• The NT Cache Manager resources are acquired next, if required.

• The NT VMM resources are acquired last.

To help maintain this hierarchy, the Cache Manager, as well as the VMM, are
careful to preacquire FSD resources in situations when they are top-level for an
I/O operation. This ensures that the resource acquisition hierarchy is always main-
tained. Earlier in Chapter 7, as well as in Chapter 8, The NT Cache Manager III,
we discussed the four Cache Manager callbacks that an FSD should be cognizant
of. In the next chapter, we'll see a sample implementation of the callback routines
that the FSD is expected to provide.

For now, note that since the top-level component for any IRP operation is careful
to preacquire FSD resources before sending the request down to the FSD, the file
system implementation must always be careful of which resources it then tries to
acquire recursively (remember that ERESOURCE type synchronization objects, as
well as normal KMUTEX objects, can be recursively obtained) and of the manner
in which it then tries to acquire such resources. If your FSD uses other resources
that are not recursively acquirable (e.g., FAST_MUTEX structures), the FSD must
be careful not to attempt such acquisition when it is not top-level for the IRP
(since the top-level component must have presumably preacquired the resource).

The bottom line is that the FSD should be aware that the top-level component
typically has a whole bunch of resources acquired before sending the request to
the FSD dispatch routine entry point, and it is therefore the FSD's responsibility to
proceed carefully.

In file size modifications. There are two rules you must always follow with
respect to file size modifications:

• The valid data length for a file stream can only be extended by the top-level
component for any I/O request, and only directly in response to user modifi-
cations of file stream data.

• The end-of-file value cannot be extended or changed by paging I/O opera-
tions. Chapter 6, The NT Cache Manager I, explains in greater detail the behav-
ior expected from an FSD in this regard.

The first rule is straightforward if you understand the concept of a top-level writer,
which can be defined as the component that is performing a write operation

Chapter 10: Writing A File System Driver II

jit of a user thread modification of file stream data. Now, it
o restate the above rule as only the top-level writer component
lid data length for a file stream.

write request extending the valid data length is received by the
em is the top-level writer and therefore extends the valid data
7O write requests, the FSRTL package is typically the top-level
•equest is not a recursive request, and therefore the valid data
d. If a user maps in a file, and modifies that mapped view for
5 the valid data length in the process, the FSD once again is the
nd extends the value appropriately when the modifications are
>D via paging I/O.

hat Cache Manager lazy-write operations can never cause the
to be extended, because lazy-write operations are never directly
odifications. However, VMM-initiated modified page write opera-
cause the valid data length to be extended by the FSD, just as it
ile for an FSD to receive other paging I/O write operations
beyond valid data length. The reason for this is that paging I/O

:oupled from normal user thread synchronization.

lall problem in determining whether or not it should extend the
for a paging I/O write operation. As I mentioned earlier, if the
is due to a user modification of a mapped view of a file, the FSD
g I/O write request and must extend the valid data length,
saging I/O write beyond the current valid data length value is
ig by the Cache Manager, the FSD does not have to extend the

since this will be done by the Cache Manager itself at some
Unfortunately, it is difficult to distinguish between these two

fore, the native Windows NT FSD implementations, as well as
FSDs, typically use the following workaround. When the FSD
:k from the lazy-writer thread requesting resources be acquired
srations via the AccjuireForLazyWrite () callback function,
ne lazy-writer thread ID (using the PsGetCurrentThread ()
call) in the FCB for the file stream. Later, when a paging I/O
eceived, the FSD checks the current thread ID with the stored
ndicates that the write is due to lazy-writing performed by the

• in this book when discussing the NT Cache Manager, it is extremely important for
3ache Manager informed when any file size value changes. Therefore, if the FSD
lid data length should be extended, it must inform the Cache Manager, using the
routine (invoked by the FSD write dispatch routine processing the user write re-
transferring modified data from the user-supplied buffer either to the system cache
or directly to disk.

I/O Revisited: Who Called?_____________________________________461

Cache Manager, and the FSD knows that it must not modify the valid data length.
Subsequently, when preacquired FSD resources are released by the Cache
Manager via another callback (ReleaseFromLazyWrite ()) , the stored thread
ID value is zeroed.

In reporting unrecoverable hard error conditions. It is possible that a data
transfer cannot be completed due to some unrecoverable error condition. The top-
level component for an IRP uses the loRaiselnf ormationalHardError ()
support routine (explained in the DDK) to report an appropriate error message to
the user. For example, the modified page writer component will report failures in
flushing modified pages to disk by specifying STATUS_LOST_WRITEBEHIND_
DATA as the error code when invoking this routine. Similarly, the NT Cache
Manager lazy-writer thread will use the same error code if it received an error
when trying to lazily-write modified cached data for a file stream.

Achieving I/O-Related Goals
In Chapter 9, Writing a File System Driver /, the code samples for read and write
IRP processing demonstrated how I/O requests for cached data transfer are
forwarded to the Cache Manager via the CcCopyRead () and the CcCopy-
Write {) function calls.

As mentioned, the FSD must ensure consistency between cached and noncached
I/O to the same file stream. The FSD must also maintain a consistent view of the
file data, given the fact that two separate sections can possibly exist for a file
stream, if it is mapped both as an executable and as a regular data section object.
There are two kinds of consistency problems that arise depending upon the type
of I/O operation:

• If the caller attempts to read file data requesting nonbuffered I/O, the FSD
should try to avoid returning stale data to the user if the file stream has also
been cached in system memory. Also, you probably recall from earlier chap-
ters that the NT VMM maintains separate section objects for the same file
stream mapped in both as an executable and as a data section object. Your
FSD must, therefore, also attempt to maintain consistency between these two
different section objects; if a thread modifies the data for the file stream, the
image section object should also get the most recent modifications.*

* As discussed in Chapter 5, The NT Virtual Memory Manager, this policy of maintaining two different
section objects leads to considerable headaches for FSD designers. If the same file stream is indeed
mapped in both as an executable and as a data section object, and is modified while the executable is
being executed, returning the latest modifications when servicing page faults will probably cause the ex-
ecutable to crash anyway. Therefore, you could legitimately argue that providing a consistent view of the
data has dubious benefits in this case.

462___________________________Chapter 10: Writing A File System Driver II

When the FSD receives a noncached read request on a file stream that is cur-
rently being cached by the Cache Manager, most FSD implementations simply
perform a flush operation on the accessed byte range using the CcFlush-
Cache () call. However, the invocation of CcFlushCache () is typically
done by NT FSD implementations before acquiring any resources in the con-
text of the thread requesting nonbuffered read access. The implication here is
that no guarantees are made by the FSD in this case to always return the lat-
est data—it is still theoretically possible for some other thread to quickly mod-
ify the accessed byte range in the system cache between completion of the
flush operation and the instant when the FSD acquires FCB resources shared
to satisfy the noncached read.
If your FSD needs to guarantee that the most recently modified data is always
returned, it can do so either by preacquiring resources exclusively before initi-
ating the flush operation or by purging data from the system cache, as in the
noncached write access described below.
In the code sample presented in the previous chapter for the read dispatch
entry point, you would have to add the following code to achieve the flush:
// The test below flushes the data cached in system memory if the
// current request mandates noncached access (file stream must be
// cached) and
// (a) the current request is not paging I/O, which indicates it is not
// a recursive I/O operation OR originating in the Cache Manager
// (b) OR the current request is paging I/O BUT it did not originate
// via the Cache Manager (or is a recursive I/O operation) and we
// do have an image section that has been initialized.

// Note that the MmlsRecursiveloFault() macro below is defined in the
// IPS Kit as follows:
// #define MmlsRecursiveloFault() \
// ((PsGetCurrentThread()->DisablePageFaultClustering) | \
// (PsGetCurrentThread()->ForwardClusterOnly))
//
ttdefine SFSD_REQ_NOT_VIA_CACHE_MGR(ptr) \

(!MmlsRecursiveloFault() && ((ptr)->ImageSectionObject != NULL))

if (NonBufferedlo &&
(PtrReqdFCB->SectionObject.DataSectionObject != NULL)) {

if (!Paginglo ||
(SFSD_REQ_NOT_VIA_CACHE_MGR(&(PtrReqdFCB->SectionObject)))) {
CcFlushCache(&(PtrReqdFCB->SectionObject),

&ByteOffset, ReadLength,
&(PtrIrp->IoStatus)) ;

// If the flush failed, return error to the caller
if (!NT_SUCCESS(RC = PtrIrp->IoStatus.Status)) {

try_return(RC);

I/O Revisited: Who Called? _____________________________________ 463

• If the caller requests a noncached write operation on a file stream that is also
currently being cached, the FSD must ensure that the cached data is consis-
tent with the new (to-be-written) on-disk information.

The FSD has to avoid the situation where it writes new information to disk,
and subsequently, the older information, when flushed by the lazy-writer or
modified page writer threads overwrites the latest data.

To prevent such problems from occurring, I would suggest that your FSD
implementation flush the currently cached information for the affected byte
range and also purge it from the system cache, thereby forcing the Cache
Manager to reload the latest information from secondary storage. This is also
the approach followed by most existing Windows NT file system drivers.

One point that you must be aware of is that the NT VMM will fail a purge
request if any process has the file stream mapped in its virtual address space.
This will result in stale data being returned to the caller, but unfortunately,
given the current design of the NT VMM, all FSD implementations have to
learn to live with this restriction.

Finally, be careful about how you acquire file control block resources when
performing such a purge operation. The Cache Manager requires that the FCB
resources be acquired exclusively when requesting a purge. However, if you
acquire FCB resources exclusively, perform the purge, and then release the
FCB resources, you still run the risk of having another thread sneak in and
perform another cached write on the file stream data, thereby invalidating all
you just tried to achieve via the purge.

The following code fragment demonstrates how the cache flush and subse-
quent purge can be achieved:
if (NonBuf feredlo && IPaginglo &&

(PtrReqdFCB->SectionObject.DataSectionObject !=NULL)) {
// Flush and then attempt to purge the cache
CcFlushCache(&(PtrReqdFCB->SectionObject) ,

&ByteOffset, WriteLength,
&(PtrIrp->IoStatus)) ;

// If the flush failed, return error to the caller
if (!NT_SUCCESS(RC = PtrIrp->IoStatus . Status)) {

try_return(RC) ;

// Attempt the purge and ignore the return code
CcPurgeCacheSection(& (PtrReqdFCB->SectionObject) ,

(WritingAtEndOfFile ?
&(PtrReqdFCB->

CommonFCBHeader .FileSize)
&(ByteOffset)) ,
WriteLength, FALSE) ;

// We are finished with our flushing and purging

464___________________________Chapter 10: Writing A File System Driver II

Resource acquisition hierarchies across the NT Cache Manager, the VMM, and the
FSD are maintained by the presence of FSD callbacks, which are invoked by the
Cache Manager and the NT VMM, to preacquire FSD resources before they initiate
an I/O operation. Later in the next chapter, you will see sample code for such a
callback operation. Similarly, when the I/O Manager uses the fast I/O method to
bypass the FSD and directly request data from the NT Cache Manager, either the
FSRTL routine or the FSD fast I/O routine must ensure that the correct file system
resources are acquired before passing the request on to the Cache Manager.

The Cache Manager and the VMM are also extremely careful not to invoke
routines exported by the respective modules in any manner that could lead to
deadlock.

Asynchronous I/O Processing
FSD dispatch routines can be invoked either for synchronous or for asynchronous
processing. Synchronous processing implies that the I/O request can be processed
and completed in the context of the requesting thread, even if the requesting
thread must be made to block, awaiting completion of processing of the request.
Asynchronous processing, on the other hand, requires that the request either be
completed in the context of the thread that invoked the FSD dispatch routine
entry point, or if processing requires blocking of the original thread, be processed
asynchronously in the context of some worker thread.

Two situations can result in a thread being blocked when processing an I/O
request:

• When a thread tries to acquire some synchronization resource (e.g., a mutex
or a read/write lock)
The thread requesting the resource may be put into the blocked state, await-
ing release of the resource by another thread that already has this resource
acquired.

• When transferring data to/from secondary storage

Most lower-level disk drivers queue I/O requests for subsequent, asynchro-
nous processing if they are actively processing other I/O requests when the
new request is received.

Although you can design an FSD that always performs synchronous processing,
this can lead to system stability problems, especially in the case when your FSD
tries to synchronously service asynchronous paging I/O requests from the VMM.

Asynchronous I/O Processing___________________________________465

WARNING It is important that your FSD honor requests for asynchronous pro-
cessing. As was explained in Chapter 5, the NT VMM modified page
writer and mapped page writer threads aggressively try to write out
modified pages when the system is running low on available physi-
cal memory. To achieve their objectives of flushing out pages quick-
ly, each of these routines sends asynchronous paging I/O requests
to the different FSDs in the system. If your FSD attempts to process
such I/O requests synchronously, you are essentially thwarting the
memory manager's attempts to respond quickly to the system's re-
quirements for free pages. Not only do you prevent additional write
requests from being queued to your FSD for processing, you also
prevent write requests from being queued to any other FSD in the
system. Worse, if your FSD were to block for a long time, it is al-
most certain that the VMM would eventually bugcheck the system.
Note that you -will never block while attempting to acquire FSD re-
sources for asynchronous mapped page -writer requests, since these
will have been preacquired by the NT VMM via a callback to the
FSD before issuing the write request.

To provide support for asynchronous processing, your FSD must perform the
following operations:

• Determine whether the caller has requested synchronous or asynchronous
processing.

Your FSD can use the loIsOperationSynchronous () routine to find out
whether an operation should be performed synchronously. This routine is
defined as follows:
BOOLEAN
loIsOperationSynchronous(

IN PIRP Irp
);
Resource Acquisition Constraints:

None.

Parameters:

Irp
Pointer to the I/O Request Packet sent by the I/O Manager to the FSD.

Return Value:

TRUE if the current request should be processed synchronously; FALSE if the
request is an asynchronous I/O request.

466________________________ Chapter 10: Writing A File System Driver II

Functionality Provided:

The NT I/O Manager checks the following conditions to determine whether
the operation is synchronous. If this is not an asynchronous paging I/O opera-
tion,* and one of the following is true, the operation is synchronous.

— The file object used in the IRP specifies that the file was opened for
synchronous access.

— The NT I/O Manager API is an inherently synchronous API (e.g., the
"create/open" operation is inherently synchronous).

— The IRP indicates that this is a synchronous paging I/O operation.

If the above checks evaluate to TRUE, the I/O Manager returns TRUE to indi-
cate that the operation should be performed synchronously; otherwise, the
I/O Manager returns FALSE, indicating that this I/O request should not be
processed synchronously.

• If the caller is not prepared to block, always attempt to acquire resources in a
nonblocking manner only. If resources cannot be acquired without blocking,
post the request to a queue to be picked up later and processed in the con-
text of a worker thread routine.

• When invoking the Cache Manager for accesses to buffered data, always
inform the Cache Manager of whether the caller is prepared to block. Often,
the Cache Manager may not be able to satisfy the request immediately and for
nonblocking callers will return a FALSE value from the function call, indicat-
ing that the request processing should be deferred and retried later.

Most Windows NT file system drivers do not create dedicated worker threads to
process asynchronous requests. Rather, the FSDs use the services of a pool of
global system worker threads. The Windows NT Executive provides a set of
supporting structure definitions and utilities that allow the FSD to initialize a work
queue item for deferred processing and post the request to an appropriate queue
supplying a callback function that can subsequently be invoked in the context of
the worker thread.

Earlier in this chapter, we saw some sample code for a typical read dispatch
routine entry point in the FSD. The SFsdRead () routine allocates an IrpCon-
text structure. This IrpContext structure serves as an encapsulation of the
current I/O request, and turns out to be useful when preparing the IRP for
deferred processing and the subsequent posting of the IRP. Here is a sample
IrpContext structure as defined by the FSD:

* Even if the file object was opened specifying synchronous I/O operations, the modified/mapped page
writer will try to write data out asynchronously. Therefore, the last clause in the list of checks performed
above is important.

Asynchronous I/O Processing 467

typedef struct _SFsdIrpContext {
SFsdldentif ier Nodeldentif ier;
uint32 IrpContextFlags;
// copied from the IRP
uint8 MajorFunction;
// copied from the IRP
uintS Minor Function ;
// to queue this IRP for asynchronous processing
WORK_QUEUE_ITEM WorkQueueltem;
// the IRP for which this context structure was created
PIRP Irp ;
// the target of the request (obtained from the IRP)
PDEVICE_OBJECT TargetDeviceObj ect ;
// if an exception occurs, we will store the code here
NTSTATUS SavedExceptionCode;

} SFsdlrpContext, *PtrSFsdIrpContext;
#define SFSD_IRP_CONTEXT_CAN_BLOCK (0x00000001)
tdefine SFSD_IRP_CONTEXT_WRITE_THROUGH (0x00000002)
tdefine SFSD_IRP_CONTEXT_EXCEPTION (0x00000004)
#define SFSD_IRP_CONTEXT_DEFERRED_WRITE (0x00000008)
tdefine SFSD_IRP_CONTEXT_ASYNC_PROCESSING (0x00000010)
ftdefine SFSD_IRP_CONTEXT_NOT_TOP_LEVEL (0x00000020)
ttdefine SFSD_IRP_CONTEXT_NOT_FROM_ZONE (0x80000000)

The IrpContext structure is used by the sample FSD implementation to encap-
sulate the current I/O request. Your FSD can utilize a similar structure, if it proves
to be convenient. Notice that the IrpContext structure has a flag, SFSD_IRP_
CONTEXT_CAN_BLOCK, that indicates to the FSD if the current caller of the
dispatch routine can block during I/O processing. This flag is set when the
IrpContext structure is allocated, to indicate whether synchronous processing
can be performed. Furthermore, the WorkQueueltem field in the IrpContext
structure is used by the FSD to post the request for deferred processing in the
context of a system worker thread.

The following code fragment demonstrates the implementation of a simple
(though typical) IrpContext allocation routine:

PtrSFsdlrpContext SFsdAllocatelrpContext (
PIRP Irp,
PDEVICE_OBJECT PtrTargetDeviceObject)

PtrSFsdlrpContext
BOOLEAN
KIRQL
PIO_STACK_LOCATION

Ptr IrpContext = NULL;
AllocatedFromZone = TRUE;
Currentlrql;
PtrloStackLocation = NULL;

// first, try to allocate out of the zone
KeAcquireSpinLock (& (SFsdGlobalData . ZoneAllocationSpinLock) ,

ScCurrentlrql) ;
if (!ExIsFullZone(&(SFsdGlobalData.IrpContextZoneHeader))) {

// we have enough memory
PtrlrpContext =

468 __________________________ Chapter 10: Writing A File System Driver II

(PtrSFsdlrpContext)ExAllocateFromZone
(&(SFsdGlobalData. IrpContextZoneHeader)) ;

// release the spin lock
KeReleaseSpinLock (& (SFsdGlobalData . ZoneAllocationSpinLock) ,

Currentlrql) ;
} else {

// release the spin lock
KeReleaseSpinLock (& (SFsdGlobalData. ZoneAllocationSpinLock) ,

Currentlrql) ;

// if we failed to obtain from the zone, get it directly from the
// VMM
PtrlrpContext = (PtrSFsdlrpContext) ExAllocatePool (NonPagedPool,

SFsdQuadAlignfsizeof (SFsdlrpContext))) ;
AllocatedFromZone = FALSE;

// if we could not obtain the required memory, bugcheck.
// Do NOT do this in your commercial driver, instead handle
// the error gracefully (e.g., by returning STATUS_INSUFFICIENT_
// RESOURCES to the caller and also logging the error condition) .
if (! PtrlrpContext) {

SFsdPanic (STATUS_INSUFFICIENT_RESOURCES ,
SFsdQuadAlign(sizeof (SFsdlrpContext)) , 0) ;

// zero-out the allocated memory block
RtlZeroMemory (PtrlrpContext, SFsdQuadAlign(sizeof (SFsdlrpContext))) ;

// set up some fields . . .
PtrIrpContext->NodeIdentifier.NodeType = SFSD_NODE_TYPE_IRP_CONTEXT;
PtrIrpContext->NodeIdentif ier .NodeSize =

SFsdQuadAlign(sizeof (SFsdlrpContext)) ;

PtrIrpContext->Irp = Irp;
PtrIrpContext->TargetDeviceObject = PtrTargetDeviceObject;

// copy over some fields from the IRP and set appropriate flag values
if (Irp) {

PtrloStackLocation = loGetCurrentlrpStackLocation(Irp);
ASSERT(PtrloStackLocation);

PtrIrpContext->MajorFunction = PtrloStackLocation->MajorFunction;
PtrIrpContext->MinorFunction = PtrIoStackLocation->MinorFunction;

// Often, an FSD cannot honor a request for asynchronous processing
// of certain critical requests. For example, a "close" request on
// a file object can typically never be deferred. Therefore, do not
// be surprised if sometimes your FSD (just like all other FSD
// implementations on the Windows NT system) has to override the
// flag below.
if (XoIsOperationSynchronous(Irp)) {

Asynchronous I/O Processing ___________________________________ 469

SFsdSetFlag (PtrIrpContext->IrpContextFlags ,
SFSD_IRP_CONTEXT_CAN_BLOCK) ;

if (lAllocatedFromZone) {
SFsdSetFlag (PtrIrpContext->IrpContextFlags,

SFSD_IRP_CONTEXT_NOT_FROM_ZONE) ;

// Are we top-level? This information is used by the dispatching code
// later (and also by the FSD dispatch routine)
if (loGetTopLevellrpO != Irp) {

// We are not top-level. Note this fact in the context structure
SFsdSetFlag (PtrIrpContext->IrpContextFlags,

SFSD_I RP_CONTEXT_NOT_TOP_LEVEL) ;

return (PtrlrpContext) ;
}
The IrpContext allocation routine determines whether the FSD can be consid-
ered top-level for the original invocation of the FSD dispatch routine and
remembers this fact by setting an appropriate flag value.

A work queue item must be initialized by the FSD to post a request for deferred
processing. This initialization can be performed by using the Exlnitialize-
Workltem() Executive support function, which accepts the following arguments:

• A pointer to the work item to be initiated
You can pass in a pointer to the WorkQueueltem field in the IrpContext
structure.

• A pointer to the callback function

Note that the sample FSD implementation uses a common callback function
called SFsdAsyncDispatch() , shown later.

• A context for which you should simply pass in the pointer to the IRP context
structure itself

The following expanded code fragment from the SFsdCommonRead () function,
originally presented in the previous chapter, illustrates how the FSD can post an
item for subsequent (deferred) processing:

NTSTATUS SFsdCommonRead (
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp)
{

// Declarations go here ...

try {

470__________________________Chapter 10: Writing A File System Driver II

II Chapter 9 has more information on processing performed here.

// Acquire the appropriate FCB resource shared.
if (Paginglo) {

// Try to acquire the FCB PagingloResource shared
if (!ExAcquireResourceSharedLite(&(PtrReqdFCB->

PagingloResource) ,
CanWait)) {

Completelrp = FALSE;

// This is one instance where we have decided to defer
// processing . . .
PostRequest = TRUE;
try_return(RC = STATUS_PENDING) ;

}
// Remember the resource that was acquired.

PtrResourceAcquired = & (PtrReqdFCB->PagingIoResource) ;
} else {

// Try to acquire the FCB MainResource shared.
if (! ExAcquireResourceSharedLite (& (PtrReqdFCB->MainResource) ,

CanWait)) {
Completelrp = FALSE;

// Defer processing . . .
PostRequest = TRUE;
try_return(RC = STATUS_PENDING) ;

}
// Remember the resource that was acquired.

PtrResourceAcquired = & (PtrReqdFCB->MainResource) ;

// There are other situations that could require us to post
// the request.

try_exi t : NOTHING ;

} finally {
// Post IRP if required.
if (PostRequest) {

// Release any resources acquired here ...
if (PtrResourceAcquired) {

SFSdReleaseResource (PtrResourceAcquired)

// Implement a routine that will queue up the request to be
// executed later (asynchronously) in the context of a system
// worker thread.

// Lock the caller's buffer here. Then invoke a common routine
//to perform the post operation.

Asynchronous I/O Processing ___________________________________ 471

if (! (PtrIoStackLocation->MinorFunction & IRP_MN_MDL)) {
RC = SFsdLockCallersBuffer (Ptrlrp, TRUE, ReadLength) ;
ASSERT (NT_SUCCESS (RC)) ;

// Perform the post operation, which will mark the IRP pending
// and will return STATUS_PENDING back to us.
RC = SFsdPostRequest (PtrlrpContext, Ptrlrp);

} else if (Completelrp && ! (RC == STATUS_PENDING)) {

// More information in Chapter 9 ...

} // can we complete the IRP?
} // end of "finally" processing.

return (RC) ;
}
In this code fragment, you can see that the request is posted for deferred
processing if appropriate resources cannot be acquired without blocking and if
the caller had specified no blocking. Before sending the request to be queued,
the FSD is careful to create a memory descriptor list (MDL), describing the caller-
supplied buffer and also to lock the pages comprising this MDL. Then, the FSD
invokes the SFsdPostRequest () routine to post the request. This routine is
shown below:

NTSTATUS SFsdPostRequest (
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp)
{

NTSTATUS RC = STATUS_PENDING ;

// mark the IRP pending; a flag SL_PENDING_RETURNED is set in the
// current stack location.
loMarklrpPending (Ptrlrp) ;

// queue up the request.
ExInitializeWorkItem(& (PtrIrpContext->WorkQueueItem) ,

SFsdCommonDi spatch ,
PtrlrpContext) ,-

ExQueueWorkItem(& (PtrIrpContext->WorkQueueItem) , CriticalWorkQueue) ;

// return status pending.
return(RC) ;

}
The SFsdPostRequest () function shown here is very simple; it marks the I/O
Request Packet pending, queues the request for processing by a system worker
thread, and returns the STATUS_PENDING code to the caller. Each of these steps

412___________________________Chapter 10: Writing A File System Driver II

is important to successfully process the request asynchronously. Here's what each
of the steps in the SFsdPostRequest () routine achieves:

• The I/O Manager checks for the presence of the SL_PENDING_RETURNED
flag when the IRP is eventually completed.

This flag is an indicator to the I/O Manager that your driver must have
returned STATUS_PENDING to the caller of a dispatch routine, and that the
IRP could have been processed asynchronously.
If this flag is set in the current stack location (the stack location of the driver
that invokes loCompleteRequest ()) , the I/O Manager remembers not to
take the shortcut method, described in Chapter 4, The NT I/O Manager, of per-
forming IRP completion postprocessing directly in the context of the thread
that originated the I/O request; instead, the I/O Manager queues a kernel
asynchronous procedure call to the originating thread and performs the requi-
site postprocessing when the APC is delivered.

• Invoking ExQueueWorkltemO queues the request in a global system
queue for asynchronous handling by an available worker thread.

• Returning STATUS_PENDING informs the caller that your driver will process
the request asynchronously.

When the caller receives this return status, it knows that the request will be
completed asynchronously and that the caller can wait for the request comple-
tion immediately, or after performing some concurrent processing. It is quite
possible that the request can be completed even before your STATUS_PEND-
ING gets returned to the caller if the thread that invoked your FSD dispatch
routine is preempted. However, that is not a race condition that you have to
worry about. The pseudocode below demonstrates how FSD dispatch rou-
tines are invoked:
// The FSD dispatch routine is invoked as shown here:
RC = loCallDriver(PtrDeviceObject, Ptrlrp);
if (RC != STATUS_PENDING) {

// Check the return status and react appropriately, since the
// request has been processed synchronously.

} else {
//We received a STATUS_PENDING. Optionally, perform some

processing
// and then wait for the request completion.

KeWaitForSingleObject(...);
// Now, the wait was completed; therefore loCompleteRequest()
// must have been invoked on the IRP.

Asynchronous I/O Processing ___________________________________ 473

In this pseudocode, the caller simply waits for an event object to be signaled
when STATUS_PENDING is returned. The worst that could happen if the
request gets completed before the caller begins the wait is that the event
object may have already been signaled (when loCompleteRequest () was
processed), and the caller will find the event object in the signaled state in
the KeWaitForSingleObject () function call; this will result in no wait
actually being performed.

Once the request has been posted by the FSD, a system worker thread picks up
the request from the appropriate queue. There is a fixed pool of system worker
threads, and they exist for the sole purpose of performing work for the different
Windows NT Executive components. When your FSD initializes the work item for
subsequent queuing, it specifies a function that the worker thread must execute.
The sample FSD supplies a pointer to the SFsdCommonDispatchO routine.
Also note that the sample FSD uses a pointer to the IrpContext structure as the
context to be supplied to the callback routine. This is convenient, since the
IrpContext structure contains a pointer to the original IRP, and also additional
information, such as whether the FSD was top-level for the IRP request to be
processed. The following code fragment demonstrates a typical callback dispatch
routine that your FSD could implement:

void SFsdCommonDispatch(
void *Context) // actually a SFsdlrpContext

// structure
{

NTSTATUS RC = STATUS_SUCCESS ;
PtrSFsdlrpContext PtrlrpContext = NULL;
PIRP Ptrlrp = NULL;

// The context must be a pointer to an IrpContext structure.
PtrlrpContext = (PtrSFsdlrpContext) Context;
ASSERT (PtrlrpContext) ;

// Assert that the context is legitimate.
if ((PtrIrpContext->NodeIdentifier .NodeType !=

SFSD_NODE_TYPE_IRP_CONTEXT)
|| (PtrIrpContext->NodeIdentif ier .NodeSize !=

SFsdQuadAlign(sizeof (SFsdlrpContext)))) {
// This does not look good!
SFsdPanic (SFSD_ERROR_INTERNAL_ERROR ,

PtrIrpContext->NodeIdentif ier .NodeType,
PtrIrpContext->NodeIdent if ier. NodeSize) ;

// Get a pointer to the IRP structure.
Ptrlrp = PtrIrpContext->Irp;
ASSERT (Ptrlrp) ;

// Now, check if the FSD was top level when the IRP was originally

474 ___________________________ Chapter 10: Writing A File System Driver II

II invoked and set the thread context (for the worker thread)
// appropriately.
if (PtrIrpContext->IrpContextFlags & SFSD_IRP_CONTEXT_NOT_TOP_LEVEL) {

// The FSD is not top-level for the original request.
// Set a constant value in the TLS to reflect this fact.
ZoSetTopLevellrp ((PIRP) FSRTL_FSP_TOP_LEVEL_IRP) ;

// Since the FSD routine will now be invoked in the context of this
// worker thread, we should inform the FSD that it is perfectly OK to
// block in the context of this thread.
SFsdSetFlag (Ptr IrpContext->IrpContextFlags ,

SFSD_IRP_CONTEXT_CAN_BLOCK) ;

FsRtlEnterFileSystem() ;

try {

// Preprocessing has been completed; check the Major Function code
// value either in the IrpContext (copied from the IRP) , or
// directly from the IRP itself (we will need a pointer to the
// stack location to do that) .
// Then, switch, based on the value on the Major Function code.
switch (PtrIrpContext->MajorFunction) {
case IRP_MJ_CREATE :

// Invoke the common create routine.
(void) SFsdCommonCreate(Ptr IrpContext, Ptrlrp) ;
break;

case IRP_MJ_READ:
// Invoke the common read routine.
(void) SFsdCommonRead(Ptr IrpContext, Ptrlrp) ;
break;

// Continue with the remaining possible dispatch routines.
default :

// This is the case where we have an invalid major function.
PtrIrp->IoStatus. Status = STATUS_INVALID_DEVICE_REQUEST;
PtrIrp->IoStatus. Information = 0;

loCompleteRequest (Ptrlrp, IO_NO_INCREMENT) ;
break ;

}
} except (SFsdExceptionFilter (PtrlrpContext,

GetExceptionlnformationl))) {

RC = SFsdExceptionHandler (PtrlrpContext, Ptrlrp);

SFsdLogEvent (SFSD_ERROR_INTERNAL_ERROR , RC) ;

// Enable preemption
FsRtlExitFileSystemO;

Asynchronous I/O Processing___________________ _______________475

// Ensure that the top-level field is cleared.
loSetTopLevellrp(NULL);

return;
}
The callback routine shown here performs some simple preprocessing before
forwarding the request to the appropriate FSD dispatch routine, including indi-
cating to the FSD (via a flag in the IrpContext structure) that it can now block
in the context of the worker thread. Furthermore, if the FSD was not top-level
when the IRP was originally dispatched to the driver, the worker thread callback
routine indicates this by setting the FSRTL_FSP_TOP_LEVEL_IRP flag in the
TLS for the system worker thread.

There is one additional, and extremely important, point you must be aware of
when determining whether to post a request for asynchronous processing.
Synchronous I/O requests for which the FSD is not top-level and recursive I/O
requests should typically never be posted by the FSD, since attempting to acquire
FSD resources when processing the request in a worker thread context could lead
to a system deadlock (because resources would have been preacquired in the
context of the original thread that initiated the request). If you do decide to
handle such requests asynchronously, your FSD must be capable of some pretty
sophisticated processing in the dispatch routines (e.g., SFsdCommonRead ()) to
determine if it is allowed to acquire resources or to skip such acquisition. Modi-
fied/mapped page writer requests can therefore never be posted, although they
are asynchronous requests. However, you can be assured that your FSD will
never block on file system resources for such requests, since the VMM preac-
quires these resources.

Here are a few specific dispatch entry points for which the FSD should be able to
provide asynchronous processing capabilities:

• Read file stream

• Write file stream

• Query directory contents

• Notify when directory contents are changed

• Byte-range lock/unlock requests

• Device IOCTL requests

• File system IOCTL requests

All of the other possible FSD requests are inherently synchronous. Remember that
the caller must use the API provided by the NT I/O Manager (or native NT I/O
services like NtReadFile ()) to obtain and modify file system data. The NT I/O
Manager classifies all APIs, excluding the ones corresponding to the listed request

476__________________________Chapter 10: Writing A File System Driver II

types, as synchronous APIs and will therefore perform a wait in the invoking
thread's context, even if the caller has requested asynchronous processing. There-
fore, the file system can process these other types of requests in the context of
the invoking thread.

For synchronous I/O requests, the NT I/O Manager serializes the I/O. Therefore,
if thread-A requests synchronous I/O using a file object opened for synchronous
I/O, and concurrently, thread-B issues an I/O request using the same file object,
the I/O request arriving later in the I/O Manager (say, thread-OS's request) will be
forced to wait by the I/O Manager until the first request has been completed.

Typically, a thread issuing asynchronous I/O requests can synchronize with the
completion of the request using one of the three methods listed below:

Waiting for the file object handle itself
The NT I/O Manager sets the file object handle to a not-signaled state when
the I/O is requested and then signals the file object after loComplete-
Request () has been invoked for the IRP representing the I/O request. This
method is not error-proof, however, because if two asynchronous I/O
requests are issued concurrently, the file handle is signaled when one of them
finishes, and it is then not possible for the caller to determine which of the
two requests actually completed.

Waiting for an event object supplied by the caller when requesting the I/O
This method is mutually exclusive with waiting for the file object (i.e., if the
caller supplies an event object when requesting the I/O, the NT I/O Manager
will signal the event instead of signaling the file object). This method is more
robust if multiple, concurrent, asynchronous I/O requests will be issued.

Specifying an APC to be invoked when the I/O is completed
Each of the potentially asynchronous I/O APIs listed accepts the address of an
optional APC routine that will be invoked by the I/O Manager after the IRP
has been completed. This APC is invoked with the caller-supplied context
and the address of the I/O status block containing the results of the I/O
operation.

Now that you have a fairly good understanding of how to determine the top-level
component for a request and how to asynchronously process FSD requests, we'll
discuss other important FSD dispatch routine implementations. Let's start with the
set and query file information requests.

Dispatch Routine: File Information
It is quite typical for a user to want to query and manipulate information about
file streams such as the current file size, the date that the file stream was last

Dispatch Routine: File Information 477

accessed, the date that the file stream was last modified, the number of links to
the data associated with the filename entry, and other similar information.

Since a filename entry in a directory is considered an attribute associated with the
file stream data, the Windows NT operating system allows the user to delete and
add filename entries (links) to the file stream via the set file information routine.
In fact, the only method allowed by the NT I/O Manager to delete filenames is to
open the file stream, modify the file attributes by specifying that the filename
entry be deleted using the set file information dispatch routine, and then closing
the file handle.*

One of the peculiarities of the Windows NT I/O Manager and FSD interface is the
method mandated by the I/O subsystem in processing user requests to rename
file streams. A rename operation can be logically decomposed into the following
two steps:

1. Remove the original filename entry from the source directory.

2. Add a new filename entry to the destination directory; this entry must refer to
the same on-disk data stream that was pointed to by the original (source)
filename.

As you can see, there are four objects that potentially need to be manipulated in a
rename operation (if the source and target directories are the same, then you
have only three objects to worry about):

• The filename being deleted
• The source directory that contains the filename being deleted

• The filename being added
• The target directory, which will contain the new filename entry

In the case where the source and target directories are different, the NT I/O
Manager performs the following sequence of operations:

1. First, request the FSD to open the target directory and determine whether the
target filename exists.
This special create request sent to the FSD is recognizable by the presence of
the SL_OPEN_TARGET_DIRECTORY flag in the Flags field of the current
I/O stack location of the create IRP. In Chapter 9, you saw the response from
the FSD in the create dispatch routine entry point.

' This sequence is performed transparently by Windows NT subsystems when a user application process
requests that the file entry be deleted. The actual deletion of the file name entry is only performed by the
FSD in the cleanup dispatch routine, which in turn is invoked after all of the user handles corresponding
to a particular file object have been closed. You will see this in the description for the cleanup dispatch
routine entry point provided later in this chapter.

478 __________________________ Chapter 10: Writing A File System Driver II

The FSD is expected to respond by determining whether the target filename
exists or not, and then by opening the parent directory of the target file. The
FSD must also replace the name supplied in the create request (which is the
complete path and filename leading to the target file) with only the name of
the target file itself. For example, if the I/O Manager supplies a pathname
\directoryl\directory2\directory3\source_dir\foo, the FSD should replace
this name with the name foo in the FileName field of the file object struc-
ture created by the I/O Manager.

The following code fragment from the create dispatch routine entry point,
describing the steps listed previously, was originally presented in Chapter 9
and is expanded upon and included here for completeness:
// Now we are down to the last component, check it out to see if it
// exists . . .
// Even for the "open target directory" case below, it is important
// to know whether the final component specified exists (or not) .

// If "open target directory" was specified:
if (OpenTargetDirectory) {

if (NT_SUCCESS(RC)) {
// file exists, set this information in the Information
// field.
Returnedlnformation = FILE_EXISTS;

} else {
RC = STATUS_SUCCESS ;
// Tell the I/O Manager that file does not exit.
Returnedlnformation = FILE_DOES_NOT_EXIST;

// Now, do the following:
// (a) Replace the string in the FileName field in the
// PtrNewFileObject to identify the target name
// only (i.e. the final component string without the path
// leading to the object) .

unsigned int Index =
((AbsolutePathName. Length / sizeof (WCHAR)) - 1) ;

// Back up until we come to the last '\' .
// But first, skip any trailing '\' characters.

while (AbsolutePathName. Buffer! Index] == L'\\') {
ASSERT(Index >= sizeof (WCHAR));
Index -= sizeof (WCHAR) ;
// Skip this length also.
PtrNewFileObject->FileName. Length -= sizeof (WCHAR)

while (AbsolutePathName. Buffer [Index] != L'\V)
// Keep backing up until we hit one.

Dispatch Routine: File Information 479

ASSERT(index >= sizeof(WCHAR));
Index -= sizeof(WCHAR);

//We must be at a 'V character.
ASSERT(AbsolutePathName.Buffer[Index] == L'\\');
Index++;

//We can now determine the new length of the filename
// and copy the name over.
PtrNewFileObject->FileName.Length -=

(unsigned short)(Index*sizeof(WCHAR));
RtlCopyMemory(&(PtrNewFileObject->FileName.Buffer[0]),

&(PtrNewFileObject->FileName.Buffer[Index]),
PtrNewFileObject->FileName.Length);

// (b) Return with the target's parent directory opened.
// (c) Update the file object FsContext and KsContext2 fields
// to reflect the fact that the parent directory of the
// target has been opened.

try_return(RC);

2. If the FSD returns FILE_EXISTS, and the original rename request does not
request file replacement, the I/O Manager will return a STATUS_OBJECT_
NAME_COLLISION error to the caller.

3. Now, the I/O Manager issues the IRP_MJ_SET_INFORMATION request to
the FSD, passing in the target directory file object pointer, the full pathname
of the source file, and the request to rename the file.
A description of the processing performed by the FSD upon receiving the
IRP_MJ_SET_INFORMATION request is described later in this chapter.

NOTE You may be wondering why the I/O Manager issues the "open tar-
get directory" request to the FSD prior to issuing the rename (and
also link) IRPs. Remember that, in order to issue the IRP_MJ_SET_
INFORMATION request, the I/O Manager requires an open file ob-
ject pointer. Therefore, the logical choice for file stream to be
opened (for which a file object will be created) is the target (parent)
directory in which the rename (or link) -will be performed since this
is the directory whose contents will definitely be modified as a re-
sult of processing the rename/link request.

You should note that the method used by the I/O Manager to create a new hard
link for a file stream across directories is exactly the same as the rename opera-
tion previously described.

480__________________________Chapter 10: Writing A File System Driver II

It is not required that an FSD use the same dispatch routine for both the IRP_MJ_
QUERY_INFORMATION and the IRP_MJ_SET_INFORMATION major functions.
However, that is the approach taken by the sample FSD driver. It can be easily
changed, if you so desire, in your driver implementation.

Logical Steps Involved
The I/O stack location contains the following structures relevant to processing the
query file information and the set file information requests issued to a FSD:

typedef struct _IO_STACK_LOCATION {

union {

// System service parameters for: NtQuerylnformationFile
struct {

ULONG Length;
FILE_INFORMATION_CLASS FilelnformationClass;

} QueryFile;

// System service parameters for: NtSetlnformationFile
struct {

ULONG Length;
FILE_INFORMATION_CLASS FilelnformationClass;
PFILE_OBJECT FileObject;
union {

struct {
BOOLEAN ReplacelfExists;
BOOLEAN AdvanceOnly;

};
ULONG ClusterCount;
HANDLE DeleteHandle;

};
} SetFile;

// . .
} Parameters;

IO_STACK_LOCATION, *PIO_STACK_LOCATION;

The following logical steps are executed by the FSD upon receiving a query/set
file information IRP. Note that to query or modify file attribute information, the
caller must have previously opened the file stream. Therefore, the FSD is guaran-
teed to receive a pointer to a file object that was created during the open

Dispatch Routine: File Information_____________________________ 481

operation, from which it can obtain pointers to the internal associated CCB and
FCB data structures.

If your FSD does not support any of the query/set file information types described
below, the FSD should return STATUS_INVALID_PARAMETER when asked to
process the unsupported type.

IRP_MJ_QUERY_INFORMATION

The I/O Manager can request different types of information about the file stream.
The Parameters .Query-Directory. FilelnformationClass field in the
current I/O stack location in the IRP contains the type of information requested
by the caller. The information requested is one of the following:

FileBasicInformation (FILE_BASIC_INFORMATION)
typedef struct _FILE_BASIC_INFORMATION {

LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
ULONG FileAttributes;

} FILE_BASIC_INFORMATION, *PFILE_BASIC_INFORMATION;
The possible file attribute values that your FSD might return will be one or
more of FILE_ATTRIBUTE_READONLY, FILE_ATTRIBUTE_HIDDEN,
FILE_ATTRIBUTE_DIRECTORY (to indicate a directory type file stream),
and other similar values defined in the DDK.

Fundamentally, the basic information requested includes the various time
attributes associated with the file stream, as well as information on the type of
the file. If your FSD does not support certain time values requested (e.g., your
FSD may not support the concept of a separate CreationTime for the file
stream), you should return a 0 value in the corresponding field.

The CreationTime is defined as the date and time that the file stream was
created. The LastAccessTime specifies the date and time that the contents
of the file stream were last accessed, the LastWriteTime specifies the date
and time that the file stream was last written to, and the ChangeTime speci-
fies the date and time that one or more attributes of the file stream were
changed.

All time values are specified in the standard Windows NT system-time format,
in which the absolute system time is the number of 100 nanosecond intervals
since January 1, 1601.

The LastAccessTime value is initialized when a file stream is created. It is
typically updated when the file data is read. For directories, this value is
updated when query directory requests are received by the FSD.

482___________________________Chapter 10: Writing A File System Driver II

The LastwriteTime is initialized when a file stream is created, superseded,
or overwritten (during a create operation). For an ordinary file, it is typically
updated when write requests are received by the FSD. For directories, the
value is updated when a new file is created or superseded in a directory, or
when a set file information request is received that affects the contents of the
directory. These requests include the FileDispositionlnformation,
FileRenamelnformation (affects the LastwriteTime for both the
source and target directories), and the FileLinklnf ormation request.

The ChangeTime is initialized when a file stream is created. It is modified
whenever the LastwriteTime for a file stream is modified. In addition, the
ChangeTime should be updated when a set file information request of type
FileAllocationlnformation or FileEndOfFilelnformation is
received for an ordinary file. The FileDispositionlnformation request
(if successful) results in the ChangeTime being updated for the affected file
as well as the directory containing the file; the FileRenamelnformation
type request results in the change time being modified for both the source
and target directories, and the FileLinklnformation request results in
the ChangeTime being modified for the file being linked to as well as the
directory containing the file.

FileStandardlnformation (FILE_STANDARD_INFORMATION)
typedef struct _FILE_STANDARD_INFORMATION {

LARGE_INTEGER AllocationSize;
LARGE_INTEGER EndOfFile;
ULONG NumberOfLinks;
BOOLEAN DeletePending;
BOOLEAN Directory;

} FILE_STANDARD_INFORMATION, *PFILE_STANDARD_INFORMATION;

The structure shown here is mostly self-explanatory. The NumberOfLinks
field refers to the number of directory entries that point to the data for the file
stream. This field has a value that is typically set to 1 but can have a value
greater than 1 if your FSD supports multiply linked file streams. The Delete-
Pending field is set to TRUE if some thread had previously invoked the set
file information dispatch entry point, requesting that the file be marked for
deletion. The AllocationSize and the EndOfFile size definitions were
introduced in Chapter 6.

FileNetworkOpenlnformation (FILE_NETWORK_OPEN_INFORMATION)
typedef struct _FILE_NETWORK_OPEN_INFORMATION {

LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastwriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER AllocationSize;
LARGE_INTEGER EndOfFile;
ULONG FileAttributes;

} FILE_NETWORK_OPEN_INFORMATION, *PFILE_NETWORK_OPEN_INFORMATION;

Dispatch Routine: File Information 483

This particular form of file information request was added with Windows NT
version 4.0 to speed-up network file information requests served by the LAN
Manager Server. The Server Message Block (SMB) protocol, used by the LAN
Manager Server and the LAN Manager Redirectors, contains a request to get
standard information about a file stream. This standard information structure,
as defined in the SMB protocol, consists of both the information obtained via
FILE_BASIC_INFORMATION and the file size values normally obtained by
issuing a second request for FILE_STANDARD_INFORMATTON. To avoid
making two separate trips through the I/O Manager to the FSD, the Windows
NT operating system designers decided to add this optimization of having a
single call provide the necessary information in Version 4.0.

Filelnternallnformation (FILE_INTERNAL_INFORMATION)
typedef struct _FILE_INTERNAL_INFORMATION {

LARGE_INTEGER IndexNumber;
) FILE_INTERNAL_INFORMATION, *PFILE_INTERNAL_INFORMATION;

If your FSD can associate a unique numerical value with a particular file
stream, you should return this value when file internal information is
requested from you. The native FASTFAT implementation returns the cluster
number index value in the logical volume for the on-disk FCB structure. The
native NTFS implementation returns the on-disk index entry (record index) in
the Master File Table (MFT) for the file stream.
The caller can subsequently supply the file identifier in a create/open request
sent to your FSD, instead of a complete pathname leading to the file to be
created. Your FSD should then be capable of identifying the file to be opened
using the file identifier value. NTFS, for example, reads the particular MFT
record identified by the file identifier into memory, and then continues
processing the create/open request. Note that opening a file stream using the
file identifier can be a lot quicker than doing so by supplying the entire path-
name to be traversed.

FileEalnformation (FILE_EA_INFORMATION)
typedef struct _FILE_EA_INFORMATION {

ULONG EaSize;
} FILE_EA_INFORMATION, *PFILE_EA_INFORMATION;

If your FSD supports extended attributes associated with a file stream, you
should return the size of these extended attributes. Return 0 if no extended
attributes are associated with the particular file stream.

FileNamelnformation/FileAlternateNamelnformation
(FILE_NAME_INFORMATION)

typedef struct _FILE_NAME_INFORMATION {
ULONG FileNameLength;
WCHAR FileName[1];

} FILE_NAME_INFORMATION, *PFILE_NAME_INFORMATION;

484__________________________Chapter 10: Writing A File System Driver II

Your FSD must return the complete pathname for the open file stream (the
name beginning with the root directory in the logical volume on which the
file stream resides). If your FSD supports the DOS-style 8.3 names on-disk (in
addition to the regular, long filename), and if the request is for FileAlter-
nateNamelnformation, you should return that name instead. However, it
is not required that all FSD implementations support an alternate name for a
file stream.

FileCompressionlnformation (FILE_COMPRESSION_INFORMATION)
typedef struct _FILE_COMPRESSION_INFOKMATION {

LARGE_INTEGER CompressedFileSize;
} FILE_COMPRESSION_INFORMATION, *PFILE_COMPRESSION_INFORMATION;
If your FSD supports compressed file streams, here is your opportunity to
return the true on-disk size (compressed size) for the file.

FilePositionlnformation (FILE_POSITION_INFORMATION)
typedef struct _FILE_POSITION_INFORMATION

LARGE_INTEGER CurrentByteOffset
} FILE_POSITION_INFORMATION, *PFILE_POSITION_INFORMATION;
If the file object was opened for synchronous I/O, the I/O Manager does not
even bother to call the FSD when file position information is requested, but
instead fills in the information directly from the CurrentByteOf f set field
in the file object data structure. If, however, the file object was not opened
for synchronous I/O, the I/O Manager invokes the FSD to satisfy the request.
Unfortunately, though, the caller is not guaranteed, in this case, to have any
valid information returned to it, unless the file position had been explicitly set
at some prior time. The reason is that all of the current NT FSD implementa-
tions also appear to obtain the current file position from the file object
structure; however, this structure is only guaranteed to be updated during
synchronous I/O operations, and therefore contains a valid current file posi-
tion value only if the file object had been opened for synchronous I/O.

FileAllInformation (FILE_ALL_INFORMATION)
typedef struct _FILE_ALL_INFORMATION {

FILE_BASIC_INFORMATION Basiclnformation;
FILE_STANDARD_INFORMATION Standardlnformation;
FILE_INTERNAL_INFORMATION Internallnformation;
FILE_EA_INFORMATION Ealnformation;
FILE_ACCESS_INFORMATION Accesslnformation;
FILE_POSITION_INFORMATION Positionlnf ormation;
FILE_MODE_INFORMATION Modelnformation;
FILE_ALIGNMENT_INFORMATION Alignmentlnformation;
FILE_NAME_INFORMATION Namelnformation;

} FILE_ALL_INFORMATION, *PFILE_ALL_INFORMATION;

The FSD combines information that might otherwise be requested separately
and returns it in this call. Take note of the fact that you do not need to worry
about the Accesslnformation, Modelnformation, and Alignmentln-

Dispatch Routine: File Information_______________________________485

formation requested. See the note below on how this information is filled
into the user-supplied buffer.

FileStreamlnformation (FILE_STREAM_INFORMATION)
typedef struct _FILE_STREAM_INFORMATION {

ULONG NextEntryOffset;
ULONG StreamNameLength;
LARGE_INTEGER StreamSize;
LARGE_INTEGER StreamAllocations!ze;
WCHAR StreamName[l];

} FILE_STREAM_INFORMATION, *PFILE_STREAM_INFORMATION;
This particular type of query file information call is supported only by NTFS,
out of all the native file systems supported under Windows NT. The NTFS
implementation supports multiple named/unnamed data streams for any on-
disk file. This particular call can be used by the caller to obtain name and
stream-length information for all the data streams for a named file object. The
caller typically supplies a buffer that is of some appropriate size. NTFS deter-
mines all of the valid data streams for the file represented by the FCB and fills
in information (using the structure defined previously) for each such stream
into the caller-supplied buffer. If the buffer turns out to be too small to
contain information on all streams, an appropriate error (STATUS_BUFFER_
OVERFLOW) is returned to the caller. Each entry in the buffer contains informa-
tion for a data stream, is quad-aligned (4 byte aligned), and contains the
offset in the NextEntryOffset field for the next entry. The last entry
contains a value of 0 in the NextEntryOffset field. Typically, a named
data stream supported by NTFS has a name such as Joes_Book:$DATA, while
an unnamed data stream will have a name such as ::$DATA. If your FSD
supports multiple byte streams, then you should also implement support for
this query information call.

In addition to the information types previously described, a user may request
FileAccessInformation (for information on the type of access to the file
stream granted via the file object), FileModelnformation (information on
whether the file object was opened with write-through specified, whether no inter-
mediate buffering had been requested during the open, and so on), or
FileAlignmentlnformation (for the alignment mandated by the device
object for the logical volume on which the file stream resided). This kind of
requested information is considered FSD-independent by the I/O Manager, since
it can be immediately obtained by the I/O Manager without having to invoke the
FSD. Therefore, the NT I/O Manager fills in this information itself and returns
control to the caller. In the case of FileAllInf ormation, the I/O Manager fills
in the information contained in these FSD-independent categories and then
forwards the request to the FSD.

486__________________________Chapter 10: Writing A File System Driver II

When the FSD receives an IRP requesting information for the file stream, it
performs the following simple logical steps to process the request:

• Obtain a pointer to the I/O-Manager-supplied system buffer

• Acquire the MainResource shared, to synchronize with any user requested
changes

• Determine the type of information requested and copy it over into the sup-
plied buffer

Note that the information requested is typically available immediately in memory
from the file control block structure for the file stream. Most file system driver
implementations update their FCB with the on-disk metadata associated with the
file stream when it is first opened, and then subsequently keep the information
updated in memory as long as the FCB is retained.

IRP_MJ_SET_INFORMATION

The following types of requests can be issued to modify file attributes:

FileBasicInformation (FILE_BASIC_INFORMATION)
This request type is used to modify file time and dates. Your FSD must deter-
mine whether to use caller-supplied values or values determined by your
driver based upon any I/O performed by the caller.

FileDispositionlnformation (FILE_DISPOSITION_INFORMATION)
typedef struct _FILE_DISPOSITION_INFORMATION {

BOOLEAN DeleteFile;
} FILE_DISPOSITION_INFOKMATION, *PFILE_DISPOSITION_INFORMATION;
This structure is used to mark a filename entry for deletion. Note that in the
Windows NT I/O subsystem model, the caller must open a file stream using a
link (name) associated with the file stream, mark the file name (link) for dele-
tion using this set file information request, and then close the file handle.
When the last IRP_MJ_CLEANUP request is received by the FSD (only after
all user handles have been closed), the filename directory entry will actually
be deleted. This means that any directory query operations issued in the
interim will continue to see the filename entry.*

FilePositionlnformation (FILE_POSITION_INFORMATION)
This request is issued to set the byte offset field in the file object structure.
The byte offset is used by the FSD to determine the position to read/write for
file objects that are opened for synchronous access. Note that the FSD must

" Readers who have a UNIX file system background, or even those who have used UNIX file systems,
will recognize that this is different from the method used there. In UNIX file systems, the filename direc-
tory entry is immediately removed when an unlink () operation is performed on the directory entry.

Dispatch Routine: File Information_______________________________487

check for and deny any requests to set the byte offset to a value that is not
aligned appropriately for the physical device object on which the logical
volume resides, if the file object was opened with no intermediate buffering
specified.

FileAllocationlnformation (FILE_ALLOCATION_INFORMATION)
typedef struct _FILE_ALLOCATION_INFORMATION {

LARGE_INTEGER AllocationSize;
} FILE_ALLOCATION_INFORMATION, *PFILE_ALLOCATION_INFORMATION;
This request is used by the caller to increase or decrease the allocation size of
a file stream. Note that this request does not affect the end-of-file position for
the file stream. Increasing the allocation size does not pose any problems;
your FSD can do whatever it needs in order to reserve additional on-disk
space for the file stream.

Decreasing the file stream allocation size requires a little bit more effort on
the part of the FSD. The NT VMM does not allow file size decreases if any
process has mapped the file stream into its virtual address space; this,
however, does not apply to the mapping performed by the NT Cache
Manager. Therefore, before attempting to decrease the allocation size for a
file stream, the FSD must first request permission to proceed from the VMM.
If the VMM agrees, then the file size modification can proceed; otherwise, the
FSD is required to fail the request.

Whenever the allocation size is changed, the FSD must be careful to immedi-
ately inform the NT Cache Manager of any such changes.

FileEndOfFilelnformation (FILE_END_OF_FILE_INFORMATION)
typedef struct _FILE_END_OF_FILE_INFORMATION {

LARGE_INTEGER EndOfFile;
} FILE_END_OF_FILE_INFORMATION, *PFILE_END_OF_FILE_INFORMATION;
A change in the end-of-file position implies that the allocation size for the file
stream could also be changed. Specifically, if the new end-of-file has a value
that is larger than the current allocation size for the file stream, most FSD
implementations will change the allocation size as well and reserve additional
on-disk space at this time. It is not mandated by the NT I/O Manager that you
do this; however, it would be prudent to avoid a nasty situation where your
FSD successfully extends the current end-of-file, does not prereserve new
space corresponding to the extended file stream, and later gets and returns a
disk out-of-space error when the user actually attempts to write to the file.*

* In general, it is wise to report error conditions to users when they expect errors and are able to respond
to them sensibly. In the scenario described above, a user of the FSD can possibly try to workaround the
error condition if you return an out-of-disk-space error when the caller attempts to extend the file size.
Not doing so at this time, but failing a subsequent write request because the space is simply not available
on disk will lead to a very confused caller (since the caller probably deduced from the success of the file
extend operation that sufficient disk space should be available).

488__________________ ______Chapter 10: Writing A File System Driver II

The FSD must follow the rule described earlier when truncating the file
stream. The FSD must first request permission from the NT VMM before
proceeding; if such permission is denied because another process has the file
stream mapped in its virtual address space, the NT VMM will deny the request.

FileRenamelnformation/FileLinklnformation
(FILE_RENAME_INFORMATION/FILE_LINK_INFORMATION)

typedef struct _FILE_LINK_INFORMATION {
BOOLEAN ReplacelfExists;
HANDLE RootDirectory;
ULONG FileNameLength;
WCHAR FileName[l];

} FILE_LINK_INFORMATION, *PFILE_LINK_INFORMATION;

typedef struct _FILE_RENAME_INFORMATION {
BOOLEAN ReplacelfExists;
HANDLE RootDirectory;
ULONG FileNameLength;
WCHAR FileName[1];

} FILE_RENAME_INFORMATION, *PFILE_RENAME_INFORMATION;
Both the rename and the link operations are fairly complex to implement.
The following steps must be taken to successfully process a rename or a link
request:*

a. First, the source directory must be opened.

b. The I/O Manager supplies the file object pointer representing the opened
target directory. The FSD should once again check whether the target file-
name already exists, and reject the request if it does and if the caller did
not request replacement of the target filename.

c. The source filename directory entry must be deleted in the case of a
rename operation (this is not required for link operations).

d. The new filename entry must then be added.

When the FSD receives an IRP requesting modifications to the file metadata, it
performs the following logical steps to process the request:

• Obtain a pointer to the I/O-Manager-supplied system buffer containing the
parameters defining the request.

• If the FSD supports opportunistic locking (described in the next chapter),
check whether the caller can be allowed to proceed based upon the state of
the oplocks for the file stream.

* The FASTFAT implementation supplied with the Windows NT operating system does not support mul-
tiple links to a file stream. NTFS does, however. Whether you have to worry about link requests depends
upon the capabilities provided by your file system.

Dispatch Routine: File Information 489

• Acquire the MainResource for the FCB exclusively, to synchronize with
other threads.

• Determine whether any other resources need to be acquired for operations
such as rename/link on the file stream (typically, your FSD will acquire the
VCB resource exclusively and the PagingloResource for the FCB exclu-
sively as well).

• Determine the nature of the request and invoke an appropriate routine to per-
form the requested functionality.

Code Fragment
NTSTATUS SFsdCommonFileInfo(
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp)

/ / Declarations go here . . .

try {
// First, get a pointer to the current I/O stack location.
PtrloStackLocation = IoGetCurrentIrpStackLocation(Ptrlrp);
ASSERT(PtrloStackLocation);

PtrFileObject = PtrIoStackLocation->FileObject;
ASSERT(PtrFileObject);

// Get the FCB and CCB pointers.
PtrCCB = (PtrSFsdCCB)(PtrFileObject->FsContext2);
ASSERT(PtrCCB);
PtrFCB = PtrCCB->PtrFCB;
ASSERT(PtrFCB);
PtrReqdFCB = &(PtrFCB->NTRequiredFCB);

CanWait = ((PtrIrpContext->IrpContextFlags
& SFSD_IRP_CONTEXT_CAN_BLOCK)

? TRUE : FALSE);

// If the caller has opened a logical volume and is attempting to
// query information for it as a file stream, return an error,
if (PtrFCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_VCB) {

// This is not allowed. Caller must use get/set volume
// information instead.
RC = STATUS_INVALID_PARAMETER;
try_return(RC);

ASSERT(PtrFCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_FCB);

// The NT I/O Manager always allocates and supplies a system
// buffer for query and set file information calls.
// Copying information to/from the user buffer and the system

490 Chapter 10: Writing A File System Driver II

II buffer is performed by the I/O Manager and the FSD need not
// worry about it.
PtrSystemBuffer = PtrIrp->AssociatedIrp.SystemBuffer;

if (PtrIoStackLocation->MajorFunction == IRP_MJ_QUERY_INFOKMATION)
{

// Now, obtain some parameters.
BufferLength = PtrIoStackLocation->Parameters.QueryFile.Length;

FunctionalityRequested =
PtrIoStackLocation->Parameters.QueryFile.FilelnformationClass;

// Acquire the MainResource shared (NOTE: for paging I/O on a
// page file, we should avoid acquiring any resources and
// simply trust the VMM to do the right thing, or else we
// could possibly run into deadlocks).
if (!(PtrFCB->FCBFlags & SFSD_FCB_PAGE_FILE)) {

// Acquire the MainResource shared,
if (!ExAcquireResourceSharedLite(&(PtrReqdFCB->

MainResource),
CanWait)) {

PostRequest = TRUE;
try_return(RC = STATUS_PENDING);

}
MainResourceAcquired = TRUE;

// Do whatever the caller asked us to do.
switch (FunctionalityRequested) {
case FileBasicInformation:

RC = SFsdGetBasicInformation(PtrFCB,
(PFILE_BASIC_INFORMATION)PtrSystemBuffer,
&BufferLength);

break;
case FileStandardlnformation:

// RC = SFsdGetStandardInformation(PtrFCB, PtrCCB, . ..1,-
break;

// Similarly, implement all of the other query information
// routines that your FSD can support.

#ifdef _NT_VER_40_PLUS_
case FileNetworkOpenlnformation:

// RC = SFsdGetNetworkOpenlnformation(. . .) ;
break;

tendif // _NT_VER_40_PLUS_
case Filelnternallnformation:

// RC = SFsdGetlnternallnformation(...);
break;

case FileEalnformation:
// RC = SFsdGetEalnformation(...);
break;

case FileNamelnformation:
// RC = SFsdGetFullNamelnformation(...);
break;

case FileAlternateNamelnformation:
// RC = SFsdGetAltNamelnformation(...);

Dispatch Routine: File Information_______________________________491

break;
case FileCompressionlnfomnation:

// RC = SFsdGetCompressionlnformation(...);
break;

case FilePositionlnformation:
// This is fairly simple. Copy over the information from
// the file object.
{

PFILE_POSITION_INFORMATION PtrFilelnfoBuffer;

PtrFilelnfoBuffer =
(PFILE_POSITION_INFORMATION)PtrSystemBuffer;

ASSERT(BufferLength >=
sizeof(FILE_POSITION_INFORMATION));

PtrFileInfoBuffer->CurrentByteOffset =
PtrFileObject->CurrentByteOffset;

// Modify the local variable for BufferLength
// appropriately.
BufferLength -= sizeof(FILE_POSITION_INFORMATION);

}
break;

case FileStreamlnformation:
// RC = SFsdGetFileStreamlnformationf. . .) ;
break;

case FileAllInformation:
// The I/O Manager supplies the Mode, Access, and Alignment
// information. The rest is up to us to provide.
// Therefore, decrement the BufferLength appropriately
// (assuming that the above 3 types of information are
// already in the buffer)
{

PFILE_POSITION_INFORMATION PtrFilelnfoBuffer;
PFILE_ALL_INFORMATION PtrAllInfo =

(PFILE_ALL_INFORMATION)PtrSystemBuffer;

BufferLength -= (sizeof(FILE_MODE_INFORMATION) +
sizeof(FILE_ACCESS_INFORMATION) +

sizeof(FILE_ALIGNMENT_INFORMATION));

// Fill in the position information.

PtrFilelnfoBuffer = (PFILE_POSITION_INFORMATION)
&(PtrAllInfo->Position!nformation);

PtrFilelnfoBuffer->CurrentByteOffset =
PtrFileObject->CurrentByteOffset;

// Modify the local variable for BufferLength
// appropriately.
ASSERT(BufferLength >=

sizeof(FILE_POSITION_INFORMATION));
BufferLength -= sizeof(FILE_POSITION_INFORMATION);

492 __________________________ Chapter 10: Writing A File System Driver II

II Get the remaining stuff.
if (!NT_SUCCESS(RC =

SFsdGetBasidnformationfPtrFCB,
(PFILE_BASIC_INFORMATION)

&(PtrAllInfo->Basidnformation) ,
&Buf ferLength))) {

// Another method you may wish to use to avoid the
// multiple checks for success/failure is to have
// the called routine simply raise an exception
// instead.
try_return(RC) ;

}
// Similarly, get all of the others . . .

}
break ;

default:
RC = STATUS_INVALID_PARAMETER;
try_return(RC) ;

// If we completed successfully, return the amount of
// information transferred.
if (NT_SUCCESS(RC)) {

PtrIrp->IoStatus . Information =
PtrIoStackLocation->Parameters.QueryFile. Length

- Buf ferLength;
} else {

PtrIrp->IoStatus . Information = 0;

} else {
ASSERT (PtrIoStackLocation->MajorFunction ==

IRP_MJ_SET_INFORMATION) ;

// Now, obtain some parameters.
FunctionalityRequested =

PtrIoStackLocation->Parameters . SetFile . Filelnf ormationclass ;

// If your FSD supports opportunistic locking (described in
// Chapter 11) , then you should check whether the oplock state
// allows the caller to proceed.

// Rename and link operations require creation of a directory
// entry and possibly deletion of another directory entry.
// Since, we acquire the VCB resource exclusively during
// create operations, we should acquire it exclusively for
// link and/or rename operations as well.
// Similarly, marking a directory entry for deletion should
// cause us to acquire the VCB exclusively as well.
if ((FunctionalityRequested == FileDispositionlnformation) | |

(FunctionalityRequested == FileRenamelnf ormation) | |
(FunctionalityRequested == FileLinklnformation)) {

if (!ExAcquireResourceExclusiveLite(& (PtrVCB->
VCBResource) ,

Dispatch Routine: File Information 493

CanWait)) {
PostRequest = TRUE;
try_return(RC = STATUS_PENDING);

}
// We have the VCB acquired exclusively.
VCBResourceAcquired = TRUE;

// Unless this is an operation on a page file, we should
// acquire the FCB exclusively at this time. Note that we will
// pretty much block out anything being done to the FCB from
// this point on.
if (!(PtrFCB->FCBFlags & SFSD_FCB_PAGE_FILE)) {

// Acquire the MainResource exclusively,
if (!ExAcquireResourceExclusiveLite(&(PtrReqdFCB->

MainResource),
CanWait)) {

PostRequest = TRUE;
try_return(RC = STATUS_PENDING);

MainResourceAcquired = TRUE;

// The only operations that could conceivably proceed from
// this point on are paging I/O read/write operations. For
// delete link (rename) , set allocation size, and set EOF,
// should also acquire the paging I/O resource, thereby
// synchronizing with paging I/O requests. In your FSD, you
// should ideally acquire the resource only when processing
// such requests; here, however, I will block out all paging I/
// O operations at this time (for convenience) . However, be
// careful when doing this, since if your callback for
// NtCreateSection() (described in the next chapter), does not
// also acquire the paging I/O resource appropriately, you
// could cause a deadlock situation.*
if (lExAcquireResourceExclusiveLite (& (PtrReqdFCB->

PagingloResource) ,
CanWait)) {

PostRequest = TRUE;
try_return(RC = STATUS_PENDING) ;

//Do whatever the caller asked us to do
switch (FunctionalityRequested) {
case FileBasicInformation:

RC = SFsdSetBasicInformation(PtrFCB, PtrCCB, PtrFileObject ,
(PFILE_BASIC_INFORMATION) PtrSystemBuf f er) ;

break ;

* It is unlikely that a deadlock would occur even in such a situation because the paging I/O resource is
typically designated as an end-resource (by definition, your driver must not attempt to acquire any other
resource object once an end-resource has been acquired) and should ideally not be held by any thread
for a long period of time. However, it might be better to be prudent and understand the ramifications of
this particular resource acquisition method shown in the code sample.

Chapter 10: Writing A File System Driver II

case FilePositionlnf ormation:
// Check if no intermediate buffering has been
// specified. If it was specified, do not allow nonaligned
// set file position requests to succeed.
{

PFILE_POSITION_INFORMATION PtrFilelnf oBuf f er ;

PtrFilelnf oBuf f er =
(PFILE_POSITION_INFOEMATION)PtrSystemBuffer;

if (PtrFileObject->Flags &
FO_NO_INTERMEDIATE_BUFFERING) {

if (PtrFilelnf oBuf fer->CurrentByteOf f set. LowPart &
PtrIoStackLocation->DeviceObject->

AlignmentRequirement) {
// Invalid alignment.
try_return(RC = STATUS_INVALID_PARAMETER) ;

PtrFileObject->CurrentByteOf fset =
PtrFilelnf oBuf fer->CurrentByteOf f set;

}
break;

case FileDispositionlnf ormation:
RC = SFsdSetDispositionInformation(PtrFCB, PtrCCB, PtrVCB,

PtrFileObject, PtrlrpContext, Ptrlrp,
(PFILE_DISPOSITION_INFORMATION) PtrSystemBuf f er) ;

break ;
case FileRenamelnf ormation:
case FileLinklnf ormation:

// When you implement your rename/ link routine, be careful
// to check the following two arguments:
// TargetFileObject =
/ / Ptr IoStackLocation->Parameters . SetFile . FileOb j ect ;
// ReplaceExistingFile =
// PtrIoStackLocation->Parameters. SetFile. Replacelf Exists;

// The TargetFileObject argument is a pointer to the
// "target directory" file object obtained during the
// "create" routine invoked by the NT I/O Manager with the
// SL_OPEN_TARGET_DIRECTORY flag specified. Remember that
// it is quite possible that if the rename/link is
// contained within a single directory, the target and
// source directories will be the same. The
// ReplaceExistingFile argument should be used by you to
// determine if the caller wishes to replace the target
// (if it currently exists) with the new link/renamed
// file. If this value is FALSE, and if the target
// directory entry (being renamed-to, or the target of the
// link) exists, you shouldreturn a STATUS_OBJECT_NAME_
// COLLISION error to the caller.

// RC = SFsdRenameOrLinkFile(PtrFCB, PtrCCB, PtrFileObject,

T Dispatch Routine: File Information 495

II PtrlrpContext,
// Ptrlrp, (PFILE_RENAME_INFORMATION)PtrSystemBuffer);

// Once you have completed the rename/link operation, do
// not forget to notify any "notify IRPs" about the
// actions you have performed.
//An example is if you renamed across directories, you
// should report that a new entry was added with the
// FILE_ACTION_ADDED action type. The actual modification
// would then be reported as either
// FILE_NOTIFY_CHANGE_FILE_NAME (if a file was renamed) or
// FILE_NOTIFY_CHANGE_DIR_NAME (if a directory was
// renamed).
break;

case FileAllocationlnformation:
RC = SFsdSetAllocationInformation(PtrFCB, PtrCCB, PtrVCB,

PtrFileObject,
PtrlrpContext, Ptrlrp, PtrSystemBuffer);

break;
case FileEndOfFilelnformation:

// RC = SFsdSetEOF(...);
break;

default:
RC = STATUS_INVALID_PARAMETER;
try_return(RC);

try_exit:

} finally {

NOTHING;

if (PagingloResourceAcquired) {
SFSdReleaseResource (& (PtrReqdFCB->PagingIoResource)) ;
PagingloResourceAcquired = FALSE;

if (MainResourceAcquired) {
SFSdReleaseResource (&(PtrReqdFCB->MainResource))
MainResourceAcquired = FALSE;

if (VCBResourceAcquired) {
SFSdReleaseResource (& (PtrVCB->VCBResource))
VCBResourceAcquired = FALSE;

// Post IRP if required
if (PostRequest) {

// Since, the I/O Manager gave us a system buffer, we do not
// need to "lock" anything.

// Perform the post operation which will mark the IRP pending

496 __________________________ Chapter 10: Writing A File System Driver II

II and will return STATUS_PENDING back to us
RC = SFsdPostRequest (PtrlrpContext, Ptrlrp);

} else {

// Can complete the IRP here if no exception was encountered
if (! (PtrIrpContext->IrpContextFlags

& SFSD_IRP_CONTEXT_EXCEPTION)) {
PtrIrp->IoStatus. Status = RC;

// Free up the Irp Context
SFsdReleaselrpContext (PtrlrpContext) ;

// complete the IRP
loCompleteRequest (Ptrlrp, IO_DISK_INCREMENT) ;

}
} // can we complete the IRP ?

} // end of "finally" processing

return (RC) ;

NTSTATUS SFsdGetBasicInf ormation (
PtrSFsdFCB PtrFCB,
PFILE_BASIC_INFORMATION PtrBuffer,
long *PtrReturnedLength)
{

NTSTATUS RC = STATUS_SUCCESS;

try {
if (*PtrReturnedLength < sizeof (FILE_BASIC_INFORMATION)) {

try_return(RC = STATUS_BUFFER_OVERFLOW) ;

// Zero-out the supplied buffer.
RtlZeroMemory(PtrBuffer, sizeof (FILE_BASIC_INFORMATION)) ;

// Note: If your FSD needs to be even more precise about time
// stamps, you may wish to consider the effects of fast I/O on the
// file stream. Typically, the FSD/FSRTL package simply sets a flag
// indicating that fast I/O read/write has occurred. Time stamps
// are then updated when a cleanup is received for the file
// stream. However, if the user performs fast I/O and subsequently
// issues a request to query basic information, your FSD could
// query the current system time using KeQuerySystemTime () , and
// update the FCB time stamps before returning the values to the
// caller. This gives the caller a slightly more accurate value.

// Get information from the FCB.
PtrBuf fer->CreationTime = PtrFCB->CreationTime;
PtrBuf fer->LastAccessTime = PtrFCB->LastAccessTime;
PtrBuf fer->LastWriteTime = PtrFCB->LastWriteTime;
// Assume that the sample FSD does not support a "change time. "

Dispatch Routine: File Information 497

II Now fill in the attributes.
PtrBuffer->FileAttributes = FILE_ATTRIBUTE_NORMAL;

if (PtrFCB->FCBFlags & SFSD_FCB_DIRECTORY) {
PtrBuf fer->FileAttributes |= FILE_ATTRIBUTE_DIRECTORY;

// Similarly, fill in attributes indicating a hidden file, system
// file, compressed file, temporary file, etc. if your FSD supports
// such file attribute values.

try_exit: NOTHING;
} finally {

if (NT_SUCCESS(RC)) {
// Return the amount of information filled in.
*PtrReturnedLength -= sizeof (FILE_BASIC_INFORMATION) ;

return(RC) ;

NTSTATUS SFsdSetBasicInformation(
PtrSFsdFCB PtrFCB,
PtrSFsdCCB PtrCCB,
PFILE_OBJECT PtrFileObject,
PFILE_BASIC_INFORMATION PtrBuffer)

NTSTATUS
BOOLEAN
BOOLEAN

try {

RC = STATUS_SUCCESS;
CreationTimeChanged = FALSE;
AttributesChanged = FALSE;

// Obtain a pointer to the directory entry associated with
// the FCB being modified. The directory entry is
// part of the data associated with the parent directory that
// contains this particular file stream.
// Note that no other modifications
// are currently allowed to the directory entry, because we have
// the VCB resource exclusively acquired (as a matter of fact,
// NO directory on the logical volume can be currently modified).
// PtrDirectoryEntry = SFsdGetDirectoryEntryPtr(...);

if (RtlLargelntegerNotEqualTozero(PtrBuffer->CreationTime)) {
// Modify the directory entry time stamp.

// Also note that fact that the time stamp has changed
// so that any directory notifications can be performed.
CreationTimeChanged = TRUE;

// The interesting thing here is that the user has set certain
// time fields. However, before doing this, the user may have
// performed I/O, which in turn could have caused your FSD to

498 __________________________ Chapter 10: Writing A File System Driver II

II mark the fact that write/access time should be modified at
// cleanup (this is especially true for fast I/O read/write
// operations) . You might wish to mark the fact that such
// updates are no longer required since the user has
// explicitly specified the values to be associated with the
// file stream.
SFsdSetFlag(PtrCCB->CCBFlags, SFSD_CCB_CREATE_TIME_SET) ;

// Similarly, check for all the time stamp values that your
// FSD cares about. Ignore the ones that you do not support.

// Now come the attributes.
if (PtrBuffer->FileAttributes) {

// We have a nonzero attribute value.
// The presence of a particular attribute indicates that the
// user wishes to set the attribute value. The absence
// indicates the user wishes to clear the particular attribute.

// Before we start examining attribute values, you may wish
//to clear any unsupported attribute flags to reduce
// confusion.

SFsdClearFlag(PtrBuffer->FileAttributes,
~FILE_ATTRIBUTE_VALID_SET_FLAGS) ;

SFsdClearFlag(PtrBuffer->FileAttributes,
FILE_ATTRIBUTE_NOKMAL);

// Similarly, you should pick out other invalid flag values.
// SFsdClearFlag(PtrBuffer->FileAttributes,
/ / FILE_ATTRIBUTE_DIRECTORY I FILE_ATTRIBUTE_ATOMIC_WRITE . . .) ;

if (PtrBuffer->FileAttributes & FILE_ATTRIBUTE_TEMPORARY) {
SFsdSetFlag(PtrFileObject->Flags, FO_TEMPORARY_FILE) ;

} else {
SFsdClearFlag(PtrFileObject->Flags, FO_TEMPORARY_FILE) ;

// If your FSD supports file compression, you may wish to
// note the user's preferences for compressing/not compressing
// the file at this time. If the user requests that the file
//be compressed and the file is currently not compressed,
// your FSD will probably have to initiate a fairly complex
// execution sequence at this time.

try_exi t: NOTHING;
} finally {

return(RC);

Dispatch Routine: File Information 499

NTSTATUS SFsdSetDispositionlnf ormation (
PtrSFsdFCB PtrFCB,
PtrSFsdCCB PtrCCB,
PtrSFsdVCB PtrVCB,
PFILE_OBJECT
PtrSFsdlrpContext
PIRP
PFILE_DISPOSITION_INFORMATION

PtrFileObj ect ,
PtrlrpContext ,
Ptrlrp,
PtrBuffer)

NTSTATUS RC = STATUS_SUCCESS;

try {
if (!PtrBuffer->DeleteFile) {

// "un-delete" the file.
SFsdClearFlag(PtrFCB->FCBFlags, SFSD_FCB_DELETE_ON_CLOSE);
PtrFileObject->DeletePending = FALSE;
try_return(RC);

}

// The easy part is over. Now, we know that the user wishes to
// delete the corresponding directory entry (if this
// is the only link to the file stream, any on-disk storage space
// associated with the file stream will also be released when the
// only link is deleted.)

//Do some checking to see if the file can even be deleted.

if (PtrFCB->FCBFlags
// All done.
try_return(RC);

& SFSD_FCB_DELETE_ON_CLOSE) {

if (PtrFCB->FCBFlags & SFSD_FCB_READ_ONLY) {
try_return(RC = STATUS_CANNOT_DELETE) ;

if (PtrVCB->VCBFlags & SFSD_VCB_FLAGS_VOLUME_READ_ONLY) {
try_return(RC = STATUS_CANNOT_DELETE) ;

// An important step is to check if the file stream has been
// mapped by any process. The delete cannot be allowed to proceed
// in this case.
if (!MmFlushImageSection(& (PtrFCB->NTRequiredFCB.SectionObject) ,

MmFlushForDelete)) {
try_return(RC = STATUS_CANNOT_DELETE) ;

// It would not be prudent to allow deletion of either a root
// directory or a directory that is not empty,
if (PtrFCB->FCBFlags & SFSD_FCB_ROOT_DIRECTORY) {

try_return(RC = STATUS_CANNOT_DELETE);

500 ___________________________ Chapter 10: Writing A File System Driver II

if (PtrFCB->FCBFlags & SFSD_FCB_DIRECTORY) {
// Perform your check to determine whether the directory
// is empty or not.
// if (! SFsdlsDirectoryEmpty (PtrFCB, PtrCCB, PtrlrpContext)) {
// try_return(RC = STATUS_DIRECTORY_NOT_EMPTY) ;

// Set a flag to indicate that this directory entry will become
// history at cleanup.
SFsdSetFlag(PtrFCB->FCBFlags, SFSD_FCB_DELETE_ON_CLOSE) ;
PtrFileObject->DeletePending = TRUE;

try_exit: NOTHING;
} finally {

return (RC) ;

NTSTATUS SFsdSetAllocationlnf ormation (
PtrSFsdFCB PtrFCB,
PtrSFsdCCB PtrCCB,
PtrSFsdVCB PtrVCB,
PFILE_OBJECT PtrFileObject ,
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp,
PFILE_ALLOCATION_INFORMATION PtrBuffer)
{

NTSTATUS RC = STATUS_SUCCESS;
BOOLEAN TruncatedFile = FALSE;
BOOLEAN ModifiedAllocSize = FALSE;

try {
// Increasing the allocation size associated with a file stream
// is relatively easy. All you have to do is execute some FSD-
// specific code to check whether you have enough space available
// (and if your FSD supports user/volume quotas, whether the user
//is not exceeding quota) , and then increase the file size in the
// corresponding on-disk and in-memory structures.
// Then, all you should do is inform the Cache Manager about the
// increased allocation size.

// First, do whatever error checking is appropriate here (e.g.,
// whether the caller is trying the change size for a directory,
// etc.) .

// Are we increasing the allocation size?
if (RtlLargeIntegerLessThan(

PtrFCB- >NTRequiredFCB.CommonFCBHeader.AllocationSize,
PtrBuf fer->AllocationSize)) {

// Yes. Do the FSD-specific stuff; i.e., increase reserved
// space on disk.

Dispatch Routine: File Information _______________________________ 501

II RC = SFsdTruncateFileAllocationSize (. . .)

ModifiedAllocSize = TRUE;

} else if (RtlLargeIntegerGreaterThan(
PtrFCB->NTRequiredFCB.CoiranonFCBHeader .Allocations! ze,

PtrBuffer->AllocationSize)) {
// This is the painful part. See if the VMM will allow us to
// proceed. The VMM will deny the request if:
// (a) any image section exists OR
// (b) a data section exists and the size of the user mapped
// view is greater than the new size
// Otherwise, the VMM should allow the request to proceed.
if (!MmCanFileBeTruncated(&:(PtrFCB->

NTRequiredFCB.SectionObject) ,
&(PtrBuf fer->AllocationSize))) {

// VMM said no way!
try_return(RC = STATUS_USER_MAPPED_FILE) ;

// Perform your directory entry modifications. Release any on-
// disk space you may need to in the process.
// RC = SFsdTruncateFileAllocationSize (. . .) ,-

ModifiedAllocSize = TRUE;
TruncatedFile = TRUE;

try_exit :

// This is a good place to check if we have performed a
// truncate operation. If we have performed a truncate
// (whether we extended or reduced file size) , you should
// update file time stamps.

// Last, but not the least, you must inform the Cache Manager
// of file size changes.
if (ModifiedAllocSize && NT_SUCCESS (RC)) {

// Update the FCB Header with the new allocation size.
PtrFCB->NTRequiredFCB.CommonFCBHeader.AllocationSize =

PtrBuf fer->AllocationSize;

// If we decreased the allocation size to less than the
// current file size, modify the file size value.
// Similarly, if we decreased the value to less than the
// current valid data length, modify that value as well.
if (TruncatedFile) {

if (RtlLargeIntegerLessThan(
PtrFCB->NTRequiredFCB.CommonFCBHeader .FileSize,
PtrBuffer->AllocationSize)) {

// Decrease the file size value.
PtrFCB->NTRequiredFCB.CommonFCBHeader .FileSize =

PtrBuf fer->AllocationSize;

502___________________________Chapter 10: Writing A File System Driver II

if (RtlLargeIntegerLessThan(
PtrFCB->

NTRequiredFCB.CommonFCBHeader.ValidDataLength,
PtrBuffer->AllocationSize)) {

// Decrease the valid data length value.
PtrFCB->

NTRequiredFCB.CommonFCBHeader.ValidDataLength =
PtrBuffer->AllocationSize;

// If the FCB has not had caching initiated, it is still
// valid for you to invoke the NT Cache Manager. It is
// possible in such situations for the call to be no-op ' ed
// (unless some user has mapped in the file) .

// NOTE: The invocation to CcSetFileSizes () will quite
// possibly result in a recursive call back into the file
// system. This is because the NT Cache Manager will
// typically perform a flush before telling the VMM to
// purge pages, especially when caching has not been
// initiated on the file stream, but the user has mapped
// the file into the process's virtual address space.
CcSetFileSizes (PtrFileObject,

(PCC_FILE_SIZES)
&(PtrFCB->

NTRequiredFCB. CommonFCBHeader .AllocationSize)) ;

// Inform any pending IRPs (notify change directory) .
}

} finally {

}
return (RC) ;

Notes
Read the comments provided above for information on the approach taken to
implement some of the set/query file information routines.

An interesting point, not illustrated in the code example, pertains to the File-
EndOfFilelnformation request. In earlier chapters, we saw that the NT
Cache Manager issues this call if the ValidDataLength for the file stream has
been extended (due to a user writing beyond the current valid data length). This
call can be distinguished by the fact that the AdvanceOnly field will be set to
TRUE. When your FSD receives this special set end-of-file file information call, it
should change the directory entry (on-disk) valid data length for the file stream

Dispatch Routine: Directory Control_______________________________503

only if the new valid data length value is greater than the current value. This type
of request is only utilized by the NT Cache Manager.

You should also be aware that both the query and the set file information calls
can and do originate in the NT VMM when a process tries to create a section
object for a file stream to prepare to map-in views for the file. Before issuing
these calls, though, the NT VMM will invoke the FSD callback routine to acquire
FSD resources for the FCB. An example of providing support for such a callback
routine is given later in the next chapter.

Dispatch Routine: Directory Control
There are two kinds of directory control requests that are issued to a file system
driver:

• Requests to obtain the contents of a directory

• Requests to inform the caller when specified changes occur to the files/direc-
tories contained within a directory (and in all directories recursively below
the target directory)

The first type of request is by far the most common operation for which an FSD
provides support. Users of file system routinely ask for a listing of the contents of
a target directory. The type of information that a caller might be interested in is
quite varied though; some callers may wish to find out all metadata information
for all of the files and directories contained in the target directory, while other
callers may be looking for a specific directory entry, and /or may wish to get
some specific information only for objects that they search for in a directory.

The other type of directory control operation is the notify change directory
request. This request is relatively uncommon and provides a transparent method
for callers (both in kernel and user mode) to monitor a directory tree for specific
actions that they might be interested in. As an example, consider the Windows
Explorer utility provided with Windows NT. This application attempts to always
list the most updated contents of a particular directory that might be actively
accessed. If any changes occur (e.g., file additions, deletions, rename operations,
and so on) while a user is browsing the contents of a directory, the application
automatically updates the information presented to the user. In order to avoid
having to constantly poll the file system to determine whether a directory tree has
been modified, the Windows NT operating system instead provides the notifica-
tion method where the caller can simply request that a specific callback be issued
when the interesting changes occur.

Providing support for the notify change directory control request is not mandatory
for a file system; and it is quite possible for a file system to return a STATUS_

504 ___________________________ Chapter 10: Writing A File System Driver II

NOT_IMPLEMENTED error upon receiving the notify change directory control
request; however, it is a rather nice feature to support from the user's perspective.

Both the query directory contents and the notify change directory control requests
are issued to the same dispatch routine servicing the IRP_MJ_DIRECTORY_
CONTROL I/O request packet. However, the specific functionality requested can
be determined by the minor function code that is supplied in the IRP. The IRP_
MN_QUERY_DIRECTORY minor function value clearly indicates that the caller
wishes to obtain some information on entries contained within the target direc-
tory, whereas the IRP_MN_NOTTFY_CHANGE_DIRECTORY minor function
indicates that the caller is interested in monitoring events that affect the contents
of the directory.

Logical Steps Involved
The I/O stack location contains the following structures relevant to processing the
directory control request issued to an FSD:

typedef struct _IO_STACK_LOCATION {

union {

// System service parameters for: NtQueryDirectoryFile
struct {

ULONG Length;
PSTRING FileName;
FILE_INFORMATION_CLASS Filelnf ormationClass ;
ULONG Filelndex;

} QueryDirectory;

// System service parameters for: NtNotifyChangeDirectoryFile
struct {

ULONG Length;
ULONG CompletionFilter;

} NotifyDirectory;

} Parameters;

IO_STACK_LOCATION, *PIO_STACK_LOCATION;

The following logical steps are executed by the FSD upon receiving a directory
control IRP. The caller must supply a valid file object pointer to a directory that
was previously opened.

Dispatch Routine: Directory Control ___________________________505

IRP_MN_QUERY_DIRECTORY

Conceptually, this routine is extremely simple to understand. The caller supplies a
pointer to a file object for an open target directory, a search pattern that could be
used when listing the contents of a target directory, and a specification on the
type of information requested. The FSD is expected to simply perform a search of
the directory for all entries that match the caller-supplied search pattern, and
return information on one or more matching entries in the caller's buffer.

The following types of information can be requested by the caller:*

FileDirectorylnformation (FILE_DIRECTORY_INFORMATION)t
typedef struct _FILE_DIRECTORY_INFORMATION {

ULONG NextEntryOffset;
ULONG Filelndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
WCHAR FileName[1];

} FILE_DIRECTORY_INFORMATION, *PFILE_DIRECTORY_INFORMATION;
For each of the directory entries that match the user-supplied search pattern,
the FSD is expected to return all of the information defined by the FILE_
DIRECTORY_INFORMATTON structure. You may notice that the information
requested is a combination of the FILE_BASIC_INFORMATION and the
FILE_STANDARD_INFORMATION query file information structures. The
FileName field should contain the name of the entry contained in the target
directory.

When information on multiple directory entries is returned by the FSD in the
caller-supplied buffer, the FSD is expected to align each returned entry on a 8-
byte (quadword-aligned) boundary. The NextEntryOffset field should
contain either 0, indicating that there are no more entries in the buffer, or the
byte offset to the next FILE_DIRECTORY_INFORMATION entry in the caller-
supplied buffer.

* For eaeh type of information requested, the caller may request information on a single entry in the di-
rectory (that matches the optional search pattern supplied) or on multiple entries, limited by the size of
the buffer supplied and the size of the directory itself.
t If you develop a distributed/networked file system, it would be advisable if your distributed protocol
supported bulk slat features, for obtaining detailed information on multiple directory entries. The alter-
native of individually querying properties for each directory entry could become quite time consuming.

506__________________________Chapter 10: Writing A File System Driver II

The Filelndex field should contain the index of the entry within the direc-
tory. Note that the FileNameLength field should contain the length of the
filename in bytes; the FileName field expects a name in the UNICODE char-
acter set. The FileName should simply be appended to the end of the FILE_
DIRECTORY_INFORMATTON structure and the length of the filename appro-
priately filled in.

NOTE The Filelndex is simply an FSD-specific value that your FSD can
subsequently use (in the next request to get directory contents) to
determine the offset from which to begin scanning the target directo-
ry. As an example, you could return the byte offset of the next entry
in the directory and use this byte offset to begin searching the direc-
tory when the next query directory request is received.

FileFullDirectorylnformation (FILE_FULL_DIR_INFORMATION)
typedef struct _FILE_FULL_DIR_INFORMATION {

ULONG NextEntryOffset;
ULONG Filelndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaSize;
WCHAR FileName[1];

} FILE_FULL_DIR_INFORMATION, *PFILE_FULL_DIR_INFORMATION;

This request is similar to the FILE_DIRECTORY_INFOKMATION request; the
only additional information requested is the total length of the extended
attributes associated with the file stream (if any). For most third-party file
systems, this request will be returned with the EaSize field set to 0.

FileBothDirectorylnformation (FILE_BOTH_DIR_INFORMATION)
typedef struct _FILE_BOTH_DIR_INFORMATION {

ULONG NextEntryOffset;
ULONG Filelndex;
LARGE__INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaSize;
CCHAR ShortNameLength;

Dispatch Routine: Directory Control_______________________________507

WCHAR ShortName[12];
WCHAR FileName[1];

} FILE_BOTH_DIR_INFORMATION, *PFILE_BOTH_DIR_INFORMATION;
This request is a superset of the FileFullDirectorylnformation
request. Note that although native Windows NT applications support long file-
names (255 characters or less), the older DOS-based applications often have
difficulty with filenames that do not fit into the 8.3 format* mandated by that
operating environment. The Windows NT I/O Manager attempts to support
such legacy applications by working in tandem with file systems sensitive to
their needs, which are prepared to maintain an abbreviated, unique alternate
name that fits into the 8.3 format and can therefore be used by the older appli-
cations. The native NT file system implementations do support these alternate
names and will provide such an alternate name in the FILE_BOTH_DIR_
INFORMATION structure, in the ShortName field.

Note that it is not required that a file system support alternate names for direc-
tory entries.

FileNamesInformation (FILE_NAMES_INFORMATION)
typedef struct _FILE_NAMES_INFORMATION {

ULONG NextEntryOffset;
ULONG Filelndex;
ULONG FileNameLength;
WCHAR FileName[1];

} FILE_NAMES_INFORMATION, *PFILE_NAMES_INFORMATION;
This request type requires the least amount of information for each directory
entry. The FSD simply has to supply the Filelndex for each entry in the
directory, and the name for that entry. This is typically invoked in response to
a DOS dir/w command.

All disk-based file systems, and for that matter, even networked file systems, have
some internal representation of a directory entry structure (i.e., a structure that
describes the on-disk or network-protocol-defined format representing a directory
entry). When a directory control request is received by the FSD, your file system
should obtain the contents of the directory, either by reading them from
secondary storage, or by obtaining them from a server node across the network.
Then it becomes a relatively simple matter of searching (typically sequentially)
through all entries in the directory, looking for a match with the specified search
pattern. Information on the matching entry can then be provided to the caller by

* For those readers that have somehow (luckily) managed to avoid using the DOS system, you may be
amused to note that it could only support filenames that had a maximum name length of 8 characters,
followed by an optional period, followed by an optional suffix that had a maximum length of 3 characters.
This peculiar filename format has become well-known as the DOS 8.3 filename format.

508__________________________Chapter 10: Writing A File System Driver II

converting the internal directory entry representation to one of the NT-defined
structures described previously.*

NOTE Many current Windows NT file system implementations use the NT
Cache Manager to cache directory contents just as file data is normal-
ly cached. To achieve this, they use the loCreateStreamFileOb-
j ec t () routine. This routine accepts two arguments (you need to
supply just one of the two and the other can be NULL): a pointer to
a file object structure and a pointer to a device object. Note that the
pointer to the device object is ignored (and a device object pointer
is obtained from the file object supplied) if a file object pointer is
provided.
The implementation of the loCreateStreamFileObject () rou-
tine is quite simple: it creates and initializes a new file object struc-
ture, just as would have been created had an open operation been
performed on the directory. As a side effect, it increments the Ref-
erenceCount in the VPB structure associated with the device ob-
ject to ensure that the logical volume cannot be dismounted as long
as the stream file object is kept open.
Once a stream file object has been created representing the directo-
ry, the native NT file systems initialize it with appropriate pointers
to the CCB and FCB structures for the directory. Now, caching can
be initiated on this file object; typically, this is done by specifying
PinAccess set to TRUE. This allows the FSD to read the directory
contents directly into the system cache and access them using a vir-
tual address pointer and appropriate offsets into the byte stream
based on the internal directory entry representation. Furthermore,
since the data in pinned into the system cache, the FSD is guaran-
teed that the information •will always be accessible and will not be
discarded.
The stream file object can be closed by simply performing an Ob-
Deref erenceObject () operation on the file object structure.
The FSD will receive a close request at this time on the file object
that was dereferenced.

* There are some file systems that I have worked with, and that readers may he aware of, that do not
store file attributes such as the file date and time stamps in the directory entry along with the file name.
In these file system layouts, the FSD must obtain the address of the on-disk sector from the directory entry
that contains it and read this information into memory to fill in the caller-supplied buffer. There is a large
performance penalty due to the extra read operation for each directory entry for which information has
to be returned. Such file systems cache a lot of information to avoid being discarded because of such poor
on-disk file system layouts.

Dispatch Routine: Directory Control_______________________________509

1RP_MN_NOTIFY_CHANGE_DIRECTORY

As described earlier, this functionality is not really mandated for an NT FSD.
However, for users of the file system, this is a rather nice feature that file systems
may be able to support.* This functionality allows file system users to specify that
they be told when certain events occur to change the contents of a directory in
some specified manner. For example, the caller may wish to be notified if file foo
in directory dirl is deleted. Or, the user may wish to be notified if any file in
directory dirl is deleted, or even if any file in the directory dirl or any directory
under it is deleted or modified in some manner. Therefore, as you can see, this
functionality can be a very powerful tool for file system clients who wish to
monitor the file system.

Although it may seem a little difficult to implement, the Windows NT File System
Runtime Library (FSRTL) does a rather nice job of providing supporting routines
that your FSD can use.

WARNING The FSRTL routines providing support for the directory change noti-
fy support have not been officially exported by Microsoft. The func-
tion prototypes described here can be changed by Microsoft at will.
Therefore, you could decide to use the routines described below or
you can examine the description of the routines listed below to de-
termine how to develop your own supporting routines that provide
similar functionality.
The native NT FSD implementations have the support of the FSRTL
package, however, and utilize the routines described below.

Basically, your FSD is responsible for executing the following steps to support this
feature:

• When your FSD receives such a request, and after it has validated the user's
request, it must invoke the FsRtlNotifyFullChangeDirectory () func-
tion to queue the user request. The FSD should then return STATUS_PEND-
ING to the caller, which indicates that the IRP has been queued and will be
completed when the desired event occurs.

* For distributed or networked file systems, it becomes practically impossible to support this feature, un-
less the networked/distributed protocol supports something that can be adapted to provide such func-
tionality. The reason is simple: users can make directory changes from any node in a distributed file
system. If the clients and servers do not have some means of being notified when specific changes occur,
redirectors on the Windows NT client systems cannot possibly accurately support the notify change di-
rectory functionality (without resorting to extremely inefficient polling methods).

510___________________________Chapter 10: Writing A File System Driver H

The implication is that notify change directory IRPs are held by the FSD (or
the FSRTL package) until an event occurs that causes the FSD to report a mon-
itored change to the caller.

• When changes occur to any directory, the FSD should invoke the FsRtlNo-
tifyFullReportChange () FSRTL support routine to inform the library
about the changes. The library routine is then responsible for scanning
through all the notify requests that have been queued up and performing
appropriate processing for those waiting for the occurrence of the particular
event.

• Whenever a cleanup is performed on a particular file object (indicating that
all user handles corresponding to the file object have been closed), the FSD
should notify the FSRTL using the FsRtlNotifyCleanup () routine. The
library routine will then dequeue and complete any IRPs that were using the
particular file object.
One of the peculiarities of the notify change directory request type is that it is
a one-shot kind of request. Therefore, if an application wants to continuously
monitor changes to a directory tree, it must keep reissuing the request when-
ever the request is satisfied because a watched-for modification occurs. How-
ever, it is possible for changes to occur to a directory in the period between
the time when a notify change directory IRP is completed and the next notify
change directory request arrives. In order not to lose information about such
changes, the FSD (or the FSRTL package, if you use it) is responsible for keep-
ing information about changes to the directory (or directory tree) during the
period between completion of a notify change directory request and the
arrival of the next such IRP.

To achieve this objective, either the FSD or the FSRTL package allocates an
internal buffer and associates it with the file object structure (using appropri-
ate internal structures) to keep information about any changes that may
occur. This buffer is only released (and monitoring consequently terminated)
after the cleanup operation is received for the file object, indicating that all
user handles have been closed.

The run-time library needs a list anchor from which it can queue all of the
pending IRPs. The expectation is that the FSD will use one such list head for each
mounted logical volume on which notify change directory requests could be
issued. Furthermore, for synchronization, the library requires that the FSD allocate
and initialize one MUTEX structure associated with the list head on which the
notify requests can be queued.

VOID
FsRtlNotifyFullChangeDirectory (
IN PNOTIFY_SYNC NotifySync,

Dispatch Routine: Directory Control 511

IN PLIST_ENTRY
IN PVOID
IN PSTRING
IN BOOLEAN
IN BOOLEAN
IN ULONG
IN PIRP
IN PCHECK_FOR_TRAVERSE_ACCESS
IN PSECURITY_SUBJECT_CONTEXT

NotifyList,
FsContext,
FullDirectoryName,
WatchTree,
IgnoreBuffer,
CompletionFilter,
Notifylrp,
TraverseCallback OPTIONAL,
SubjectContext OPTIONAL

where

typedef PVOID PNOTIFY_SYNC;

typedef
BOOLEAN (*PCHECK_FOR_TRAVERSE_ACCESS) (
IN PVOID NotifyContext,
IN PVOID TargetContext,
IN PSECURITY_SUBJECT_CONTEXT SubjectContext

Resource Acquisition Constraints:

None. Typically, though, you should acquire the FCB MainResource shared (at
least) before invoking this routine.

Parameters:

NotifySync
This should be a pointer to a FSD-allocated KMUTEX structure. The sample
FSD volume control block (VCB) structure has a field called NotifylRP-
Mutex that is used for this purpose. This mutex should be used to protect the
list of queued notify requests for the logical volume. Do not be misled into
thinking that this can be any other synchronization object because of the defi-
nition of PNOTIFY_SYNC.

NotifyList
This should be a pointer to the list head for queued notify IRP structures. The
library expects that you maintain one such list for each mounted logical
volume. The sample FSD uses the NextNotifyIRP field for this purpose.

FsContext
This is determined by the FSD and is used to uniquely identify the notify
structure. You should use the CCB pointer as the argument for this particular
field. This becomes particularly useful when a cleanup is received on the file
object, and the FSD can supply the CCB pointer to the run-time library to
notify it to complete all pending requests for the file object.

512___________________________Chapter 10: Writing A File System Driver II

FullDirectoryName
Exactly as its name implies, this is a complete pathname for the directory the
caller wishes to monitor. Do not deallocate the memory for this string until
the pending request has been completed. The FSRTL routine accepts either a
Unicode or ASCII name string.

WatchTree
To monitor all directories that are children of the directory being monitored,
set this variable to TRUE.

The FSD can determine whether the caller wishes to monitor the directory
tree by checking for the presence of the SL_WATCH_TREE flag in the IRP
flags field.

IgnoreBuffar
When a user asks to be notified of specific changes to the contents of a direc-
tory, the caller can also supply a buffer to contain the specific changes that
occurred. (For example, the user process may be monitoring for any file entry
that is deleted; when such a deletion occurs, it would like to know which
directory entry was deleted.) The other option for the caller is simply to
request to be notified whenever some change occurs, without requiring the
FSD to list the specific changes that caused the notification. The caller will
subsequently reenumerate the directory contents.

Providing a list of changes is slower than simply telling the user to reenu-
merate the directory upon being notified. The FSRTL routine allows the FSD
to decide whether it wishes to speed up operations by setting the Ignore-
Buf fer value to TRUE and forcing the user to reenumerate the directory.

CompletionFilter
The CompletionFilter is provided by the caller issuing the notify change
directory request and is invoked when the monitored event occurs.

TraverseCallback
Remember that the caller has the option of specifying that all subdirectories
within a directory also be monitored for changes. If your FSD is security
conscious like NTFS, you would want to ensure that the caller has appro-
priate permissions to monitor changes in a specific subdirectory. Therefore,
your FSD has the option of supplying a callback function that is invoked by
the runtime library before notifying the caller. If your callback returns FALSE,
the runtime library will not notify the user of the changes that have occurred.

Subj ectContext
If your FSD supplies a TraverseCallback function pointer, you need to
know what the calling process is in order to check whether it has appropriate
privileges. The Subj ectContext is one of the arguments passed in to your

Dispatch Routine: Directory Control_______________________________513

callback routine and you can obtain it (when queuing the notify request) by
using the SeCaptureSecurityContext () function, which takes a pointer
to an FSD-allocated SECURITY_SUBJECT_CONTEXT structure.*

Functionality Provided:

This routine will enqueue the IRP in the list of pending notify structures, if no
such notify request already exists (remember that notify requests are uniquely
identified by the FsContext field). Here is a logical list of steps that this func-
tion goes through:

• The FsRtlNotifyFullChangeDirectory () routine obtains the current
stack location pointer from the IRP and also obtains a pointer to the file
object structure used in the current request.

• It then waits to acquire the supplied KMUTEX object to ensure synchronization.

• If the file object has already undergone cleanup (while the runtime library
was waiting), then it immediately completes the IRP with a STATUS_
NOTTFY_CLEANUP return code. The runtime library checks for the presence
of the FO_CLEANUP_COMPLETE flag in the file object structure to determine
whether the file object has undergone cleanup.

• If there is a notify pending, then it completes the IRP.

As mentioned earlier, once the first notify change directory request has been
received for a specific file object, it becomes the responsibility of the FSD (or
the FSRTL package in the case when the FSD uses it) to maintain information
about changes to the directory being monitored, even if there is no current
notify change directory request pending. This is because the FSD expects that
the caller will soon reissue the notify request and therefore does not want to
lose any intermediate changes between the time when the last request was
completed and a new request is received. Therefore, the FsRtlNotify-
FullChangeDirectory () maintains state about whether any changes had
occurred and immediately completes the new notify change directory request
if information about any intermediate changes is already present in its internal
buffer.

• If the IRP has been canceled, then it completes the IRP.

• Otherwise, if no other notify structure exists in the queue, it queues up this
request.

Note that the implication is that a thread can only have one pending notify IRP
per file object.

* This .structure is defined in the DDK.

514 Chapter 10: Writing A File System Driver II

The FsRtlNotifyFullReportChange () routine is defined as follows:

VOID
FsRtlNotifyFullReportChange (
IN PNOTIFY_SYNC NotifySync,
IN PLIST_ENTRY NotifyList,
IN PSTRING FullTargetName,
IN USHORT TargetNameOffset,
IN PSTRING StreaniName OPTIONAL,
IN PSTRING NormalizedParentName OPTIONAL,
IN ULONG FilterMatch,
IN ULONG Action,
IN PVOID TargetContext
) ;
where Action is one of the following:

tdefine FILE_ACTION_ADDED 0x00000001
tdefine FILE_ACTION_REMOVED 0x00000002
tdefine FILE_ACTION_MODIFIED 0x00000003
tdefine FILE_ACTION_RENAMED_OLD_NAME 0x00000004
#define FILE_ACTION_RENAMED_NEW_NAME 0x00000005
#define FILE_ACTION_ADDED_STREAM 0x00000006
tdefine FILE_ACTION_REMOVED_STREAM 0x00000007
tdefine FILE_ACTION_MODIFIED_STREAM 0x00000008

and FilterMatch is one of the following:

ttdefine FILE_NOTIFY_CHANGE_FILE_NAME 0x00000001
tdefine FILE_NOTIFY_CHANGE_DIR_NAME 0x00000002
tdefine FILE_NOTIFY_CHANGE_NAME 0x00000003
tdefine FILE_NOTIFY_CHANGE_ATTRIBUTES 0x00000004
tdefine FILE_NOTIFY_CHANGE_SIZE 0x00000008
tdefine FILE_NOTIFY_CHANGE_LAST_WRITE 0x00000010
tdefine FILE_NOTIFY_CHANGE_LAST_ACCESS 0x00000020
tdefine FILE_NOTIFY_CHANGE_CREATION 0x00000040
tdefine FILE_NOTIFY_CHANGE_EA 0x00000080
tdefine FILE_NOTIFY_CHANGE_SECURITY 0x00000100
tdefine FILE_NOTIFY_CHANGE_STREAM_NAME 0x00000200
tdefine FILE_NOTIFY_CHANGE_STREAM_SIZE 0x00000400
tdefine FILE_NOTIFY_CHANGE_STREAM_WRITE 0x00000800
tdefine FILE_NOTIFY_VALID_MASK OxOOOOOfff
Resource Acquisition Constraints:

None.

Parameters:

NotifySync
This should be a pointer to the FSD-allocated KMUTEX structure used in the
preceding FsRtlNotifyFullChangeDirectory {) routine.

Dispatch Routine: Directory Control_______________________________5/5

NotifyList
This is a pointer to the list head for all pending notify IRPs for the mounted
logical volume.

FullTargetName
This is the name of the target file or directory that had its attributes modified.

TargetNameOffset
This is the byte offset of the last component in the name supplied in the
FullTargetName field. The notify change directory call returns only the
relative target name (relative to the directory on which the notify change
directory IRP is pending).

StreamName
This optional argument can be used to supply a stream name in addition to
the filename. This is used by FSDs that support multiple data streams for a
named file object. If supplied, the FSRTL package appends the StreamName
to the stored target name.

NormalizedParentName
This is the name of the parent directory for the target file or directory
(optional argument).

FilterMatch
FilterMatch can have any one or more of the values listed above to indi-
cate what directory actions have occurred. This field is compared with the
CompletionFilter field in the pending notify IRP structures. If any of the
bit positions match, then the caller for that pending IRP is notified.

Action
If a user buffer was supplied with the pending IRP, this Action value will be
stored there along with the relative file/directory name for the object modified.

TargetContext
The second argument to be passed to the FSD in the traverse access check
callback.

Functionality Provided:

This routine performs the following functionality. It walks through the list of
pending notify IRP structures, searching for one that matches the FilterMatch
argument supplied (i.e., one or more bit values are the same), and checking
whether the found entry is an exact match or an ancestor of the target file/direc-
tory name.*

* Either the matching entry has a directory name that matches the parent directory name for the target
file, or the matching entry has a directory name that is some ancestor of the target file.

516__________________________Chapter 10: Writing A File System Driver II

The caller of a notify change directory request has two options:

• All pending notify IRP structures that match the above criteria are completed
at this time.

• Supply a buffer in which the names of the modified objects and actions per-
formed on them will be returned.

Not supply any buffer, in which case the notify change directory IRP will simply
be completed with the STATUS_NOTTFY_ENUM_DIR status.*

The FsRtlNotifyFullReportChange () routine simply completes a
matching, pending IRP with the STATUS_NOTIFY_ENUM_DIR status immediately
if no buffer was provided by the caller.

NOTE Note that since the FSD (or the FSRTL package) must maintain infor-
mation about a directory, even if no pending IRPs exist (as long as
one instance of a notify change directory request was received), the
FSD/FSRTL package maintains state about whether the caller had
supplied a buffer the first time the notify request is made for a file
object. Even if subsequent requests do not supply a buffer, the FSD/
FSRTL package will continue to maintain an internally allocated buff-
er with information on changes to objects in the directory tree being
monitored.

If the caller has supplied a buffer, however, the caller expects to receive informa-
tion about objects that have changed and the actual changes performed on the
modified objects. Once again, though, if the changes are numerous and cannot fit
into the buffer, the FSD/FSRTL package always has the option of returning
STATUS_NOTIFY_ENUM_DIR to the caller.

If you do decide to develop your own notify change directory support routines,
be extremely careful about handling user-supplied buffers correctly, you should
have your FSD create a memory descriptor list to describe the user buffer and
obtain a system address for the MDL before queuing the IRP and returning
STATUS__PENDING to the caller. This will allow your FSD to copy information
into the user's buffer in the context of any thread (typically the one performing
the modifications leading to the completion of the pending notify change direc-
tory IRP).

The structure returned by the FSD to the caller of the notify change directory
request is defined below:

* If you check the actual value of this symbolic name, you will see that the NT_SUCCESS () macro will
treat this value equivalent to STATUS_SUCCESS.

Dispatch Routine: Directory Control_________________________________5/7

typedef struct __FILE_NOTIFY_INFORMATION {
ULONG NextEntryOffset;
ULONG Action;
ULONG FileNameLength;
WCHAR FileName[1];

} FILE_NOTIFY_INFORMATION, *PFILE_NOTIFY_INFORMATION;

The fields in the FILE_NOTIFY_INFORMATION structure shown here are fairly
self-explanatory. Note that there are no special alignment restrictions on the
entries returned in the user buffer (i.e., none of the returned entries require any
padding bytes).

Some explanation is probably in order for two of the notify actions listed, namely,
FILE_ACTION_RENAMED_OLD_NAME and FILE_ACTION_RENAMED_NEW_
NAME. These two notify actions are reported by the file system driver when
processing a rename operation. The rules used in reporting these events are as
follows:

• The FSD reports two notification events as part of processing the rename
operation:

— The first event is reported when the source directory entry is deleted for
the object being renamed.

— The second event is reported when the target directory entry is added,
i.e., the rename has been completed.

• When the first notification event has to be reported, the FSD has a choice of
reporting either the FILE_ACTION_RENAMED_OLD_NAME action type or sim-
ply FILE_ACTION_REMOVED.

If the rename operation will be performed within the same directory and if
the target of the rename operation does not exist, the FSD should report
FILE_ACTION_RENAMED_OLD_FILE, else the FSD should report FILE_
ACTION_REMOVED.*

• When the second notification event has to be reported, the FSD has a choice
between FILE_ACTION_RENAMED_NEW_NAME, FILE_ACTION_MODIFIED,
and FILE_ACTION_ADDED.

If the target file name existed before the rename operation and was replaced
as a result of the rename, the FSD should report FILE_ACTION_MODIFIED
for the target of the rename operation. Otherwise, if the rename operation
was performed across directories, the FSD should report FILE_ACTION_

I * I did not make the rules here but am simply reporting them! The reason for giving you this information
' is to simply assist you in reporting events in a manner similar to that employed by the existing Windows
j NT FSD implementations.

518__________________________Chapter 10: Writing A File System Driver II

ADDED. Finally, if neither of the above conditions holds TRUE, the FSD
should report FILE_ACTION_RENAMED_NEW_NAME.

The FsRtlNotifyCleanup () routine is defined as follows:

VOID
FsRtlNotifyCleanup (
IN PNOTIFY_SYNC NotifySync,
IN PLIST_ENTRY NotifyList,
IN PVOID FsContext
) ;
Resource Acquisition Constraints:

None.

Parameters:

NotifySync
This should be a pointer to the FSD allocated KMUTEX structure used in the
FsRtlNotifyFullChangeDirectory() routine.

NotifyList
This is a pointer to the list head for all pending notify IRPs for the mounted
logical volume.

FsContext
This is the unique identifier used to locate all pending notify IRP structures.
Typically, this is a pointer to the CCB structure.

Functionality Provided:

This routine simply walks the list of pending notify IRP structures, finds those that
match the supplied FsContext value, and processes these IRPs. The processing
consists of removing any cancel routine that the FSRTL package may have set,
and completing the IRP with a status of STATUS_NOTIFY_CLEANUP.

Code sample

Here is a code fragment from the sample FSD that illustrates how an FSD
processes a directory control request (notify change directory requests, illustrated
later, use the routines exported by the FSRTL package):

NTSTATUS SFsdCommonDirControl(
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp)
{

// Declarations go here .. .

// First, get a pointer to the current I/O stack location
PtrloStackLocation = loGetCurrentlrpStackLocation(Ptrlrp);
ASSERT(PtrloStackLocation);

Dispatch Routine: Directory Control_______________________________519

PtrFileObject = PtrIoStackLocation->FileObject;
ASSERT(PtrFileObject);

// Get the FCB and CCB pointers
PtrCCB = (PtrSFsdCCB)(PtrFileObject->FsContext2);
ASSERT(PtrCCB);
PtrFCB = PtrCCB->PtrFCB;
ASSERT(PtrFCB);

// Get some of the parameters supplied to us
switch (PtrIoStackLocation->MinorFunction) {
case IRP_MN_QUERY_DIRECTORY:

RC = SFSdQueryDirectory(Ptrlrpcontext, Ptrlrp,
PtrloStackLocation,
PtrFileObject, PtrFCB, PtrCCB);

break;
case IRP_MN_NOTIFY_CHANGE_DIRECTORY:

RC = SFsdNotifyChangeDirectory(Ptrlrpcontext, Ptrlrp,
PtrloStackLocation,
PtrFileObject, PtrFCB, PtrCCB);

break;
default:

// This should not happen.
RC = STATUS_INVALID_DEVICE_REQUEST;
PtrIrp->IoStatus.Status = RC;
PtrIrp->IoStatus.Information = 0;

// Free up the Irp Context
SFsdReleaselrpContext (Ptrlrpcontext) ,-

// complete the IRP
loCompleteRequest(Ptrlrp, IO_NO_INCREMENT);
break;

return(RC);

NTSTATUS SFSdQueryDirectory(
PtrSFsdlrpContext Ptrlrpcontext,
PIRP Ptrlrp,
PIO_STACK_LOCATION PtrloStackLocation,
PFILE_OBJECT PtrFileObject,
PtrSFsdFCB PtrFCB,
PtrSFsdCCB PtrCCB)

// Declarations go here ...

try {

// Validate the sent-in FCB
if ((PtrFCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_VCB)

!(PtrFCB->FCBFlags & SFSD_FCB_DIRECTORY)) {
//We will only allow notify requests on directories.

520 _____________________________ Chapter 10: Writing A File System Driver II

RC = STATUS_INVALID_PARAMETER;

PtrReqdFCB = & (PtrFCB->NTReguiredFCB) ;
CanWait = ((PtrIrpContext->IrpContextFlags

& SFSD_IRP_CONTEXT_CAN_BLOCK)
? TRUE : FALSE) ;

PtrVCB = PtrFCB->PtrVCB;

// If the caller does not wish to block, it would be easier to
// simply post the request now.
if (! CanWait) {

PostRequest = TRUE;
try_return(RC = STATUS_PENDING) ;

// Obtain the caller's parameters
BufferLength =

PtrIoStackLocation->Parameters . QueryDirectory .Length ;
PtrSearchPattern =

PtrIoStackLocation->Parameters.QueryDirectory.FileName;
FilelnformationClass =

PtrIoStackLocation->
Parameters .QueryDirectory. FilelnformationClass;

Filelndex =
PtrloStackLocat ion- >Parameters. QueryDirectory. Filelndex;

// Some additional arguments that affect the FSD behavior
RestartScan = (PtrIoStackLocation->Flags & SL_RESTART_SCAN) ;
ReturnSingleEntry = (PtrIoStackLocation->Flags

& SL_RETURN_SINGLE_ENTRY) ;
IndexSpecified = (PtrIoStackLocation->Flags

& SL_INDEX_SPECIFIED) ;

// I will acquire exclusive access to the FCB.
// This is not mandatory, however, and your FSD could choose to
// acquire the resource shared for increased parallelism.
ExAcquireResourceExclusiveLite (& (PtrReqdFCB->MainResource) , TRUE) ;
AcquiredFCB = TRUE;

// We must determine the buffer pointer to be used. Since this
// routine could be invoked directly either in the context of the
// calling thread or in the context of a worker thread, here is
//a general way of determining what we should use.
if (PtrIrp->MdlAddress) {

Buffer = MmGetSystemAddressForMdl (PtrIrp->MdlAddress) ;
} else {

Buffer = PtrIrp->UserBuf fer;

// The method of determining where to look from and what to look
// for is unfortunately extremely confusing. However, here is a
// methodology you can broadly adopt:
// (a) You have to maintain a search buffer per CCB structure.

Dispatch Routine: Directory Control _______________________________ 521

II (b) This search buffer is initialized the very first time
// a query directory operation is performed using the file
// object.
// (For the sample FSD, the search buffer is stored in the
// DirectorySearchPattern field)
// However, the caller still has the option of "overriding" this
// stored search pattern by supplying a new one in a query
// directory operation.
//
if (PtrSearchPattern == NULL) {

// User has supplied a search pattern
// Now validate that the search pattern is legitimate; this is
// dependent upon the character set acceptable to your FSD.

// Once you have validated the search pattern, you must
// check whether you need to store this search pattern in
// the CCB.
if (PtrCCB->DirectorySearchPattern == NULL) {

// This must be the very first query request.
FirstTimeQuery = TRUE;

// Now, allocate enough memory to contain the caller-
// supplied search pattern and fill in the
// DirectorySearchPattern field in the CCB
// PtrCCB->DirectorySearchPattern = ExAllocatePool (. . .) ;

} else {
//We should ignore the search pattern in the CCB and
// instead use the user-supplied pattern for this
// particular query directory request.

} else if (PtrCCB->DirectorySearchPattern == NULL) {
// This MUST be the first directory query operation (else the
// DirectorySearchPattern field would never be NULL. Also, the
// caller has neglected to provide a pattern so we MUST invent
// one. Use "*" (following NT conventions) as your search
// pattern and store it in the PtrCCB->DirectorySearchPattern
// field.

PtrCCB->DirectorySearchPattern = ExAllocatePool (PagedPool,
sizeof (L" *")) ;

ASSERT (PtrCCB->DirectorySearchPattern) ;

FirstTimeQuery = TRUE;
} else {

// The caller has not supplied any search pattern that we are
// forced to use. However, the caller had previously supplied
// a pattern (or we must have invented one) and we will use it.
// This is definitely not the first query operation on this
// directory using this particular file object.

PtrSearchPattern = PtrCCB->DirectorySearchPattern,-

522 ___________________________ Chapter 10: Writing A File System Driver II

II There is one other piece of information that your FSD must store
//in the CCB structure for query directory support. This is the
// index value (i.e., the offset in your on-disk directory
// structure) from which you should start searching.
// However, the flags supplied with the IRP can make us override
// this as well.

if (Filelndex) {
// Caller has told us where to begin.
// You may need to round this to an appropriate directory
// entry alignment value.

StartinglndexForSearch = Filelndex;
} else if (RestartScan) {
StartinglndexForSearch = 0 ;
} else {

// Get the starting offset from the CCB.
// Remember to update this value on your way out from this
// function. But, do not update the CCB CurrentByteOf f set
// field if you reach the end of the directory (or get an
// error reading the directory) while performing the search.

StartinglndexForSearch = PtrCCB->CurrentByteOf f set .LowPart;

// Now, your FSD must determine the best way to read the directory
// contents from disk and search through them.

// If ReturnSingleEntry is TRUE, please return information on only
// one matching entry.

// One final note though:
// If you do not find a directory entry OR while searching you
// reach the end of the directory, then the return code should be
// set as follows:

// (a) If any files have been returned (i.e., ReturnSingleEntry
// was FALSE and you did find at least one match) , then return
/ / STATUS_SUCCESS
// (b) If no entry is being returned then:
// (i) If this is the first query, i.e., FirstTimeQuery is TRUE
// then return STATUS_NO_SUCH_FILE
// (ii) Otherwise, return STATUS_NO_MORE_FILES

try_exi t : NOTHING ;

// Remember to update the CurrentByteOf f set field in the CCB if
// required.

// You should also set a flag in the FCB indicating that the
// directory contents were accessed.

} finally {
if (PostRequest) {

if (AcquiredFCB) {
SFsdReleaseResource(&(PtrReqdFCB->MainResource)) ;

Dispatch Routine: Directory Control 523

II Map the user's buffer and then post the request.
RC = SFsdLockCallersBuffer (Ptrlrp, TRUE, Buf f erLength) ,
ASSERT (NT_SUCCESS(RC)) ;

RC = SFsdPostRequest (PtrlrpContext, Ptrlrp);

} else if (! (PtrIrpContext->IrpContextFlags &
SFSD_IRP_CONTEXT_EXCEPTION)) {

if (AcguiredFCB) {
SFsdReleaseResource (& (PtrReqdFCB->MainResource)) ;

// Complete the request.
PtrIrp->IoStatus. Status = RC;
PtrIrp->IoStatus . Information = BytesReturned;

// Free up the Irp Context
SFsdReleaselrpContext (PtrlrpContext) ;

// complete the IRP
loCompleteRequest(Ptrlrp, IO_DISK_INCREMENT);

return(RC);

NTSTATUS SFsdNotifyChangeDirectory (
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp,
PIO_STACK_LOCATION PtrloStackLocation,
PFILE_OBJECT PtrFileObject,
PtrSFsdFCB PtrFCB,
PtrSFsdCCB PtrCCB)
{

// Declarations go here . . .

try {

// Validate the sent-in FCB
if ((PtrFCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_VCB)

!(PtrFCB->FCBFlags & SFSD_FCB_DIRECTORY)) {
//We will only allow notify requests on directories.
RC = STATUS_INVALID_PARAMETER;
CompleteRequest = TRUE;

PtrReqdFCB = &(PtrFCB->NTRequiredFCB);
CanWait = ((PtrIrpContext->IrpContextFlags &

SFSD_IRP_CONTEXT_CAN_BLOCK)
? TRUE : FALSE);

PtrVCB = PtrFCB->PtrVCB;

// Acquire the FCB resource shared

524 ___________________________ Chapter 10: Writing A File System Driver II

if (!ExAcquireResourceSharedLite(&(PtrReqdFCB->MainResource) ,
CanWait)) {

PostReguest = TRUE;
try_return(RC = STATUS_PENDING) ;

}
AcquiredFCB = TRUE;

// Obtain some parameters sent by the caller
CompletionFilter =

PtrIoStackLocation->Parameters.NotifyDirectory. CompletionFilter;
WatchTree = (PtrIoStackLocation->Flags

& SL_WATCH_TREE ? TRUE : FALSE) ;

// If you wish to capture the subject context, you can do so as
// follows:
// {
// PSECURITY_SUBJECT_CONTEXT SubjectContext;
// SubjectContext = ExAllocatePool (PagedPool,
// sizeof (SECURITY_SUBJECT_CONTEXT)) ;
// SeCaptureSubjectContext (SubjectContext) ;

FsRtlNotifyFullChangeDirectory(&(PtrVCB->NotifyIRPMutex) ,
&(PtrVCB->NextNotifyIRP) ,
(void *)PtrCCB,
(PSTRING) (PtrFCB->FCBName->ObjectName. Buffer) ,
WatchTree, FALSE, CompletionFilter, Ptrlrp,
NULL, // SFsdTraverseAccessCheck(. . .) ?
NULL) ; // SubjectContext?

RC = STATUS_PENDING;

try_exit: NOTHING;

} finally {

if (PostRequest) {
// Perform appropriate post-related processing here
if (AcquiredFCB) {

SFsdReleaseResource(&(PtrReqdFCB->MainResource)) ;
AcquiredFCB = FALSE;

}
RC = SFsdPostRequest (PtrlrpContext, Ptrlrp);

} else if (CompleteRequest) {
PtrIrp->IoStatus .Status = RC;
PtrIrp->IoStatus. Information = 0 ;

// Free up the Irp Context
SFsdReleaselrpContext (PtrlrpContext) ;

// complete the IRP
loCompleteRequest (Ptrlrp, IO_DISK_INCREMENT) ;

} else {
// Simply free up the IrpContext, since the IRP has been queued

Dispatch Routine: Cleanup 525

SFsdReleaselrpContext(PtrlrpContext)

// Release the FCB resources if acquired.
if (AcquiredFCB) {

SFsdReleaseResource(&(PtrReqdFCB->MainResource) ;
AcquiredFCB = FALSE;

return(RC);

Dispatch Routine: Cleanup
The cleanup dispatch routine entry point is invoked for each file object created as
part of a successful create/open request. Therefore, for each create/open opera-
tion that succeeds, your FSD will receive a corresponding cleanup request.

Invoking the FSD Cleanup Entry Point
The cleanup entry point is invoked by the NT I/O Manager. Threads executing on
the Windows NT platform cannot really invoke the cleanup routine directly; all
they can do is open or close handles to file streams, or reference/dereference file
objects that are the I/O-Manager-created structures representing open file streams.

In Chapter 4, we discussed file object structures in detail. You may recall that file
object structures are managed by the NT Object Manager. One question that may
occur to you is how does that Object Manager know about I/O-Manager-defined
structures, such as the file object structure?

The answer is: at system initialization time, the NT I/O Manager registers all the
different I/O Manager objects (including the file object structure) with the NT
Object Manager. The ObCreateObjectType () Object Manager routine is used
for this purpose. Although this routine is not exposed by the NT Executive, it
serves to make the NT Object Manager aware of a new object type. When
invoking this routine, the I/O Manager also supplies the functions that must be
invoked by the Object Manager to manipulate the object being defined. For file
object structures, the I/O Manager supplies an internal routine called lopClose-
File() to be invoked whenever any handle associated with the file object has
been closed.

The lopCloseFile () routine is fairly simple in its implementation. It performs
the following logical steps whenever invoked (i.e., whenever a handle to the file
object is closed).

526__________________________Chapter 10: Writing A File System Driver II

• If the process closing the handle has other handles open for the file object,
the I/O Manager does not do anything, but simply returns.*

• The I/O Manager checks whether it needs to issue a request to the FSD to
unlock any byte-range locks obtained by the current process.

It is possible that the process performing the close handle operation may
have requested byte-range locks on the file stream associated with the file
object structure. In the next chapter, we'll discuss byte-range locking in more
detail, but note for now that the I/O Manager remembers when a process has
requested byte-range locks and uses this information when the process is clos-
ing the last handle to the file object structure. The I/O Manager then creates a
IRP_MJ_LOCK_CONTROL IRP, with a minor function of IRP_MN_UNLOCK_
ALL, requesting the FSD to unlock any byte ranges locked by the particular
process.t

Note that the I/O Manager issues this request to unlock all byte ranges previ-
ously locked by the process only if other processes in the system still have
open handles to the file object structure. If all handles to the file object have
been closed, the I/O Manager does not explicitly issue an unlock request, but
instead directly issues an IRP_MJ_CLEANUP request. The implicit expecta-
tion is that, as part of performing cleanup-related processing, the FSD will
unlock any byte-range locks acquired by the current process.

• Now, if all handles to the file object have been closed (the system-wide han-
dle count for the file object is 0), the I/O Manager creates an IRP with a major
function of IRP_MJ_CLEANUP and invokes the FSD entry point.

Note that the I/O Manager does not really care about the results of a cleanup
request, except to perform a wait in the context of the thread closing the han-
dle if the FSD returns STATUS_PENDING. Therefore, a cleanup request is an
inherently synchronous request. Even if your FSD returns an error code from
the cleanup routine, the I/O manager will ignore the error and proceed.
Remember that cleanup operations must continue even in the face of errors;
there are no second chances here!

* There is a handle count associated with a file object structure that is specific to each process that has
an open handle to the file object. Also, there is a system-wide handle count, which is the sum of all pro-
cess-specific handle counts. Here, the I/O Manager checks whether the process-specific handle count is
equal to 0, or whether the process still has other open handles for the file object.
t Actually, the I/O Manager will first attempt to use the fast I/O path to issue this request and will use an
IRP if the fast I/O method does not work.

Dispatch Routine: Cleanup____________________________________527

Logical Steps Involved
Now that you know how the cleanup routine is invoked in your file system
driver, here are the steps that most FSD implementations take in processing such
a request:

• Synchronize cleanup requests with create requests by acquiring the volume
control block resource exclusively during a cleanup operation.

This also serializes all cleanup requests for the particular logical volume. If
the VCB resource cannot be acquired immediately, the FSD can post the
request for asynchronous processing (remember that the I/O Manager will
still be waiting for the cleanup operation to complete in the context of the
requesting thread).

• Your FSD should also acquire the MainResource for the file object exclu-
sively to synchronize with other user-initiated I/O operations on the file
stream (remember that other processes may still have open references/han-
dles to the file stream).

If you cannot acquire the MainResource for the FCB, you should post the
request to be handled asynchronously.

• If the cleanup request is for a regular file and if your FSD supports opportunis-
tic locking, you should invoke the FSRTL-supplied oplock package, informing
it about the cleanup request, thereby allowing it to perform any cleanup that
it needs to at this time.

• If the cleanup operation is for a directory, the cleanup routine now invokes
the FsRtlNotifyCleanup () routine, described earlier, to complete any
pending notify IRPs for the file object.

• For cleanup operations on files, the FSD must now unlock any byte-range
locks acquired by the process in whose context the cleanup routine was
invoked.

• If the file was accessed or modified, your FSD should update appropriate
time stamp values for the file stream (in the directory entry for the file stream)
at this time. You may also need to update the file size value in the directory
entry if it has changed and the directory entry does not reflect the current
value for the file stream.
Note that your FSD may use a different approach to updating time stamp val-
ues (e.g., your FSD might update time stamp values at the time when the
access/modification actually occurred, in which case you would not need to
do anything at cleanup time). If, however, you do change some time stamp
values, you should invoke the FSRTL FsRtlNotifyFullReport-

528__________________________Chapter 10: Writing A File System Driver II

Change () routine once all the modifications have been done locally in the
FCB/directory entry for the file stream.

Note that for fast I/O read/write operations, your FSD may not have had the
opportunity to update the access/modify/change time stamp values. How-
ever, you can determine that such I/O occurred by the presence of the F0_
FILE_FAST_IO_READ flag in the file object structure (indicating that at least
one fast I/O read operation was processed), or by the presence of FO_FILE_
MODIFIED (some thread performed a modification, implying that the modifi-
cation time should be updated), and/or by the presence of the FO_FILE_
SIZE_CHANGED flag (indicating that the file size was changed in the FCB
header, and the FSD might need to modify the directory entry for the file
stream appropriately).

• If this is the last cleanup request that you expect for the file stream, you
should check for any pending file stream truncate requests.
Remember that with the NT I/O Manager—mandated model for file stream
deletion (for directories as well as for regular files), the FSD actually deletes
the directory entry for a file stream only when the last user handle has been
closed. In this case, if the link count for the file stream is also 0 (if your FSD
does not support multiply linked files, then any delete operation will always
cause the link count to equal 0), the FSD must also free up all of the on-disk
space for the file stream. Therefore, the FSD must do two things if the file has
been marked for deletion:
— Check if the link count is equal to 0. If so, then acquire the Pagin-

gloResource exclusively (blocking if you have to in the process), and
set the file size and valid data length fields to 0.

Now, the FSD can release the PagingloResource, and release the on-
disk space reserved for the file stream. However, there is one important
step that the FSD must perform before actually deallocating the on-disk
space reserved for the file stream; the FSD must invoke MmFlushlmage-
Section() to ensure that the VMM purges any pages containing
mapped data for the file stream.

— If the current link is being deleted, the FSD should remove the directory
entry corresponding to the current link at this time.
Remember to invoke the FsRtlNotifyFullReportChange () routine
to notify pending IRPs about the fact that an entry has been deleted.

• Decrement the OpenHandleCount in the FCB structure.

• Invoke CcUninitializeCacheMap() for all FCB structures, regardless of
whether or not caching had been initiated using the file object on which the
cleanup is being performed.

Dispatch Routine: Close______________________ _______________529

If the file stream was truncated, supply the new size for the file stream in the
TruncateSize argument to the CcUninitializeCacheMap () function
call. This will result in the Cache Manage purging the truncated pages from
the system cache.

• Be sure to set the FO_CLEANUP_COMPLETE flag in the Flags field of the
file object structure.

• Invoke the I/O Manager routine loRemoveShareAccess () to update the
share access associated with the FCB.
The reason for updating the share access at cleanup time instead of in a close
operation, is because the close could theoretically take a very long time to be
issued, and it would be unfriendly to prevent fresh user open operations sim-
ply because of some stale, conflicting share access value set in the FCB.

Note that the loRemoveShareAccess () routine accepts two arguments: a
pointer to the file object structure on which the cleanup is being performed
and a pointer to the unique share access value stored in the FCB structure
(the address of the FCBShareAccess field in the sample FSD).

The steps listed here are simply a checklist of items that the FSD is expected to
perform as part of processing a cleanup request. Many sophisticated file systems
may need to perform additional operations to ensure data consistency on disk.
For example, some file systems may make certain guarantees about the validity of
the on-disk data once a file handle has been closed, and therefore they will
undoubtedly have file-system-specific operations to perform, including flushing
file data and/or writing log files to disk at this time.

I have not provided a code fragment for the cleanup or close routine, since they
are quite FSD-specific. However, as long as your FSD follows the steps listed
here, you should be able to derive such a routine successfully.

Dispatch Routine: Close
Just as a cleanup request will always be issued for a file object structure repre-
senting an open file stream, a close request will always be issued for the file
object some time after the cleanup has been processed.

The fundamental rule is that the file object is not really closed until the IRP_MJ_
CLOSE is received. The IRP_MJ_CLEANUP means that all user file handles for
the file object have been closed; however, if the file object has any references
pending, then the IRP_MJ_CLOSE will be delayed until the reference count on
the file object structure (maintained by the NT Object Manager) is equal to 0.

530___________________________Chapter 10: Writing A File System Driver II

Invoking the FSD Close Entry Point
Just as is the case for the cleanup request, the close entry point is invoked by the
NT I/O Manager. Threads executing on the Windows NT platform cannot directly
issue a close request to the FSD; the best they can do is to dereference a file
object structure that they might have previously referenced. Note that there are
two methods exposed by the Object Manager to reference a file object, and corre-
spondingly, there are two methods to dereference the file object. To reference a
file object, a thread can create a file handle for the file object either by opening
the file object, (NtCreateFile (), NtOpenFile (), ZwCreateFile ()) , or by
requesting a new handle from the file object pointer (ObReferenceObjectBy-
Handle ()) . Similarly, the thread can also cause the reference count on the file
object to be incremented by invoking the ObReferenceObjectByPointer ()
routine (described in Chapter 5).

To dereference a previously referenced file object, the thread can either close a
file handle using ZwClose () or NtClose (), or dereference the file object
directly by invoking ObDeref erenceObject () on the file object pointer.

Whenever a user closes a file handle, the NT Object Manager invokes the
IopCloseFile() routine for the particular file object structure on which that
close has been invoked. From the previous discussion, you know that the
IopCloseFile() routine could lead to an IRP_MJ_CLEANUP being issued to
the FSD. Once the I/O Manager returns control back to the Object Manager, it
invokes ObDeref erenceObject () internally. The ObDeref erenceOb-
ject () routine decrements the reference count in the object header by 1, and
invokes the delete routine associated with the object, if such a routine has been
provided and if the reference count maintained by the Object Manager is equal to
0. In the case of file object structures, the I/O Manager supplies an internal (not
exposed) delete routine called lopDeleteFile ().

The lopDeleteFile () routine performs the following operations:

• It creates an IRP with a major function of IRP_MJ_CLOSE and invokes the
FSD close dispatch routine.

• Once the FSD returns control from the close dispatch routine, the I/O Man-
ager frees any file name string allocated for the file object structure.

• The I/O Manager closes any completion ports associated with the file object.

• The I/O Manager decrements a reference count on the FSD driver object (the
count is incremented by the I/O Manager as part of processing a create/open
request, to ensure that the driver can't be unloaded while open file objects
are present).

Dispatch Routine: Close______________________________________531

• If the driver reference count is equal to 0 and if the driver had an unload
operation pending, the driver is unloaded at this time.

Just as in the case of a cleanup request, the I/O Manager doesn't expect an FSD
close routine to return any errors. Also, it's important to note that the I/O
Manager doesn't expect close requests to return STATUS_PENDING (i.e., the I/O
Manager expects the close operation to be performed synchronously).*

Logical Steps Involved
Here are the steps most FSD implementations take in processing an IRP_MJ_
CLOSE request:

• Obtain a pointer to the FCB and CCB structures.

• Synchronize with other close/create/cleanup requests by acquiring the VCB
resource exclusively.

• Delete the CCB structure and free any other associated memory objects.

• If this is the last close operation for the file, delete the in-memory FCB struc-
ture as well.

These steps are extremely simplified, although accurate. Close requests can often
occur at some inconvenient moments, and it is quite probable that your FSD may
not be able to acquire the required resources without blocking. However,
blocking a close request will lead to some very unexpected deadlock conditions.
Therefore, you should, as a rule, never make a close request block, waiting for
resources to be acquired. The best thing to do in such situations is to simply
obtain any necessary information from the file object structure, make a local copy
of such information, and post a request to perform the close asynchronously.
Your FSD can then immediately return success to the caller.

Note that if you do such asynchronous processing of a close request, you should
be extremely careful when creating new FCB structures later to ensure that any
subsequent create/open operations are well synchronized with the asynchronous
delayed close operations. Similarly, if a user requests that a volume be
dismounted and if the dismount is pending because of open file streams, your
FSD should be able to perform appropriate processing when the last file object is
closed for the last time to perform the dismount operation.

Note again that it is not a wise decision to post a close request and if your FSD
expects to perform some sophisticated processing during a close operation, you
should try to do it asynchronously.

* If you have to do something that can't he done synchronously, you will have to perform the operation
asynchronously after obtaining whatever context is required from the file object structure; remember,
though, that you simply must return STATUS_SUCCESS to the I/O Manager.

Writing a File
System Driver III

In this chapter:
• Handling Fast I/O
• Callback Example
• Dispatch Routine:

Flush File Buffers
• Dispatch Routine:

Volume Information
• Dispatch Routine:

Byte-Range Locks
• Opportunistic

Locking
• Dispatch Routine:

File System and
Device Control

• File System
Recognizers

Before continuing with some of the remaining file system dispatch routines, it
would be useful to understand the fast I/O execution path defined by the NT I/O
Manager. Because the FSD must provide support for callback routines that allow
other NT components to preacquire FSD resources, an example of such a callback
routine is provided and discussed in this chapter. Then, we'll discuss some of the
remaining FSD dispatch routines that you should become familiar with before
designing your file system, including the flush file entry point, get/set volume
information support, support for byte-range locks on a file stream, and file system
IOCTL support. We'll also see the NT LAN Manager opportunistic locking
protocol, which you may wish to support in your FSD. I will conclude this
chapter with a short overview of the file system driver load process, implemented
by using a file system recognizer module.

Handling Fast I/O
The fast I/O execution path was apparently developed in response to a recogni-
tion by NT file system driver and I/O subsystem designers that the normal IRP
dispatch mechanism did not meet some of the performance criteria they had set
out to achieve. Although it was originally conceived to handle user read/write
requests more efficiently, the fast I/O method has evolved to encompass the
many different FSD requests that a user could issue, including requests to get or
set file information, request byte-range locks, and request device lOCTLs. It has
also become somewhat of a catch-all mechanism for issuing requests to pre-

532

Handling Fast I/O__533

acquire FSD resources, although this does not appear to be part of the original
fast I/O design.

Chapter 7, The NT Cache Manager II, provides an introduction to the fast I/O
method of data access. Refer to that chapter before proceeding with the following
discussion.

Why Fast I/O?
Let's recall how a typical file system buffered I/O (read/write) request is handled:

1. First, the I/O Manager creates an IRP describing the request.

2. This IRP is dispatched to the appropriate FSD entry point, where the driver
extracts the various parameters that define the I/O request (e.g., the buffer
pointer supplied by the caller and the amount of data requested) and vali-
dates them.

3. The FSD acquires appropriate resources to provide synchronization across
concurrent I/O requests and checks whether the request is for buffered or
nonbuffered I/O.

4. Buffered I/O requests are sent by the FSD to the NT Cache Manager.
5. If required, the FSD initiates caching before dispatching the request to the NT

Cache Manager.

6. The NT Cache Manager attempts to transfer data to/from the system cache.
7. If a page fault is incurred by the NT Cache Manager, the request will recurse

back into the FSD read/write entry point as a paging I/O request.
You should note, that in order to resolve a page fault, the NT VMM issues a
paging I/O request to the I/O Manager, which creates a new IRP structure
(marked for noncached, paging I/O) and dispatches it to the FSD. The orig-
inal IRP is not used to perform the paging I/O.

8. The FSD receives the new IRP describing the paging I/O request and transfers
the requested byte range to/from secondary storage.
Lower-level disk drivers assist the FSD in this transfer.

There were two observations that NT designers made that will help explain the
evolution of the fast I/O method:

• Most user I/O requests are synchronous and blocking (i.e., the caller does not
mind waiting until the data transfer has been achieved).

• Most I/O requests to read/write data can be satisfied directly by transferring
data from/to the system cache.

534__________________________Chapter 11: Writing a File System Driver III

Once they had made the two observations listed, the NT I/O Manager developers
decided that the sequence of operations used in a typical I/O request could be
further streamlined to help achieve better performance. Certain operations
appeared to be redundant and could probably be discarded in order to make user
I/O processing more efficient. Specifically, the following steps seemed
unnecessary:

Creating an IRP structure to describe the original user request, especially if the IRP
was not required for reuse

Assuming that the request would typically be satisfied directly from the
system cache, it is apparent that the original IRP structure, with its multiple
stack locations and with all of the associated overhead in setting up the I/O
request packet, is not really required or fully utilized. It seems to make more
sense to dispense with this operation altogether and simply pass the I/O
request parameters directly to the layer that would handle the request.

Invoking the FSD
This may seem a little strange to you but a legitimate observation made by
the NT designers was that, for most synchronous cached requests, it seems to
be redundant to get the FSD involved at all in processing the I/O transfer.
After all, if all that an FSD did was route the request to the NT Cache
Manager, it seemed to be more efficient to have the I/O Manager directly
invoke the NT Cache Manager and bypass the FSD completely.
This can only be done if caching is initiated on the file stream, so that the
Cache Manager is prepared to handle the buffered I/O request.

Becoming Efficient: the Fast I/O Solution
Presumably, after pondering the observations listed here, NT I/O designers
decided that the new, more efficient sequence of steps in processing user I/O
requests should be as follows:

1. The I/O Manager receives the user request and checks if the operation is
synchronous.

2. If the user request is synchronous, the I/O Manager determines whether
caching has been initiated for the file object being used to request the I/O
operation.*

* The check made by the I/O Manager is simply whether the PrivateCacheMap field in the file object
structure is nonnull. This field is set to a nonnull value by the Cache Manager as part of initializing caching
for the particular file object structure.

Handling Fast I/O_________________________________ _______535

For asynchronous operations, the I/O Manager follows the normal method of
creating an IRP and invoking the driver dispatch routine to process the I/O
request.

3. If caching has been initiated for the file object as determined in Step 2, the
I/O Manager invokes the appropriate fast I/O entry point.

The important point to note here is that the I/O Manager assumes that the
fast I/O entry point must have been initialized if the FSD supports cached file
streams. If you install a debug version of the operating system, you will actu-
ally see an assertion failure if the fast I/O function pointer is NULL.

Note that a pointer to the fast I/O dispatch table is obtained by the I/O
Manager from the FastloDispatch field in the driver object data structure.

4. The I/O Manager checks the return code from the fast I/O routine previously
invoked.

A TRUE return code value from the fast I/O dispatch routine indicates to the
I/O Manager that the request was successfully processed via the fast I/O path.
Note that the return code value TRUE does not indicate whether the request
succeeded or failed; all it does is indicate whether the request was processed
or not. The I/O Manager must examine the loStatus argument supplied to
the fast I/O routine to find out if the request succeeded or failed.

A return code of FALSE indicates that the request could not be processed via
the fast I/O path. The I/O Manager accepts this return code value and, in
response, simply reverts to the more traditional method of creating an IRP
and dispatching it to the FSD.

This point is very important for you to understand. The NT I/O subsystem
designers did not wish to force an FSD to have to support the fast I/O
method of obtaining data. Therefore, the I/O Manager allows the FSD to
return FALSE from a fast I/O routine invocation and simply reissues the
request using an IRP instead.

5. If the fast I/O routine returned success, the I/O Manager updates the
CurrentByteOffset field in the file object structure (since this is a
synchronous I/O operation) and returns the status code to the caller.

The advantage of using the new sequence of operations is that synchronous I/O
requests can be processed without having to incur the overhead of either building
an IRP structure (and the associated overhead of completion processing for the
IRP), or routing the request via the FSD dispatch entry point.

536__________________________Chapter 11: Writing a File System Driver III

Possible Problems in Bypassing the FSD
Not all file system implementations are alike; as a matter of fact, nearly all file
systems have unique characteristics, requirements, and processing needs, specific
to the particular implementation. Therefore, although bypassing the FSD
completely and directly obtaining data from the Cache Manager appears, on the
surface, to be a highly efficient method of data transfer, the following issues must
be considered:

Acquiring FSD resources
It would be nice not to have to worry about FSD resources and simply obtain
data from the Cache Manager. However, as you well know, the FSD tries to
ensure data consistency usually by providing a shared (multiple) reader and
single writer model to file system clients. To do this, the FSD typically
acquires the MainResource either shared or exclusively, and in some cases
(especially if the file size is to be modified), also synchronizes with paging
I/O requests by acquiring the PagingloResource exclusively.
Even if the I/O Manager does bypass the FSD dispatch entry point when
performing fast I/O, appropriate FSD resources should always be somehow
acquired.

Presence of byte-range locks
This is a very obvious problem in the implementation and support of fast I/O
routines that bypass the FSD dispatch entry points. In Chapter 9, Writing a
File System Driver /, the code fragments presented for read/write operations
noted that the FSD dispatch entry points always check to see whether the
caller should be allowed to proceed with the I/O operation, or whether the
operation should be denied, because some or all of the byte range being
accessed/modified has a byte-range lock associated with it.

Since the typical Windows NT byte-range locking model implements manda-
tory byte-range locks, such checks should also be performed in the fast I/O
case. The other alternative is to prevent fast I/O operations if the file stream
has any byte-range locks associated with it.

Opportunistic locks
Opportunistic locking support is discussed in greater detail later in this
chapter. However, just as in the case of byte-range locks, the FSD may wish
to be careful about allowing fast I/O operations to proceed, depending on
the state of the oplocks associated with the file stream.

Other FSD-specific issues
Consider a file system that must perform certain preprocessing before
allowing file write operations to proceed on the file stream. For example,
certain distributed file systems (e.g., DPS) may employ token-based or other

Handling Fast I/O__537

similar methods of ensuring data consistency across geographically dispersed
nodes. For such complex file system implementations, the FSD may not allow
fast I/O support without ensuring that the requisite preprocessing has been
performed.

The first three concerns listed here can be placed into two categories:

• Ensuring acquisition of file system resources for the file stream being accessed

• Allowing the FSD to determine whether fast I/O should be allowed to pro-
ceed on a file stream or not

NT I/O subsystem designers seem to have thought through these issues and have
provided support to FSD designers to address such problems. The solutions
include providing generic fast I/O intermediate routines in the FSRTL package that
always acquire appropriate FSD resources, and also allowing the FSD to specify,
on a per-file-stream basis, whether fast I/O should be allowed for the file stream.

However, for more complex FSD implementations that always need to perform
preprocessing before allowing any sort of I/O to proceed, the FSD designer must
devise an FSD-specific method to also allow fast I/O access to file streams. There
is no easy solution in such a situation.

Ensuring Correct FSD Resource Acquisition
You should either initialize the fast I/O dispatch routine function pointers in the
fast I/O dispatch table to point to intermediate routines in your driver that
perform appropriate FCB acquisition, or use the Windows NT FSRTL-provided
generic routines instead.

In the sample FSD initialization code presented in Chapter 9, you will notice that I
have initialized the fast I/O dispatch routine function pointers to sample FSD-
provided routines (e.g., SFsdFastIoRead(), SFsdFastloWrite () , and so
on). The theory is that these intermediate routines will not allow the I/O Manager
to bypass the FSD completely, but instead will perform any required pre-
processing, such as resource acquisition, before passing the request on to the
Cache Manager (if appropriate).

You will find that this is still a lower overhead I/O operation (even though the
FSD is not being completely bypassed) than the corresponding IRP-based I/O
operation.

There are also some FSRTL-provided intermediate support routines that perform
appropriate FSD resource acquisition and forward the fast I/O request to the NT
Cache Manager. The two most widely used (and Microsoft recommended) are the
FsRtlCopyRead() and FsRtlCopyWrite () utility functions described later. If

538__________________________Chapter 11: Writing a File System Driver III

you decide to use these functions, you should understand the assumptions made
by them and the nature of the processing that they perform. Some file systems
that have a lot of complex preprocessing required before they forward a request
to the Cache Manager may wish to use a combination of their own fast I/O
dispatch routines and the FSRTL-provided functions (one way of doing this is to
have your FSD's fast I/O dispatch routine perform appropriate preprocessing, and
then invoke the FSRTL routine).

Allowing Fast I/O on a File Stream
You must set the IsFastloPossible field, in the CommonFCBHeader for the
file stream, appropriately. You should also provide a callback function and
initialize the FastloChecklfPossible function pointer field in the Common-
FCBHeader to invoke this callback function when required.

One of the methods for an FSD to disable the fast I/O method for a specific file
stream is by initializing the IsFastloPossible field in the CommonFCB-
Header to FastloIsNotPossible. The other method is to set
IsFastloPossible to FastloIsQuestionable, and then, after appropriate
processing, return FALSE from the FastloChecklf Possible () function call-
back invocation.

Here are the three enumerated type values the IsFastloPossible field can
contain:

• FastloIsPossible (enumerated type value = 0)

• FastloIsNotPossible (enumerated type value = 1)
• FastloIsQuestionable (enumerated type value = 2)

The FastloIsNotPossible value results in fast I/O being disabled for the
particular file stream until the contents of the IsFastloPossible field are
changed.

If the IsFastloPossible field is initialized to FastloIsPossible, the inter-
mediate routine (whether your own or that provided by the FSRTL) proceeds with
fast I/O processing for the request. If, however, the IsFastloPossible field is
initialized to FastloIsQuestionable, then the FSRTL-provided intermediate
routine issues a callback to the FSD to determine whether the fast I/O operation
should be allowed to proceed or not (your internal intermediate routine can
follow the same model). The callback function must be provided by the FSD and
the callback function address must be initialized in the FastloChecklf Pos-
sible field of the fast I/O dispatch table (the sample FSD initializes this value to
the SFsdFastloChecklf Possible () function address).

Handling Fast I/O 539

The FSD can determine, in the callback routine, whether the fast I/O operation
should be allowed to proceed. If the FSD returns FALSE from the FastloCheck-
IfPossible field, the FSRTL-provided intermediate routines (and also your
own) will stop processing the fast I/O request and return FALSE to the NT I/O
Manager; otherwise, the intermediate function will continue with processing the
fast I/O request (since the FSD has essentially granted permission for the current
fast I/O operation to proceed).

The following code fragment illustrates the implementation of a typical Fastlo-
Checklf Possible function callback implementation:

BOOLEAN SFsdFastloChecklfPossible(
IN PFILE_OBJECT
IN PLARGE_INTEGER
IN ULONG
IN BOOLEAN
IN ULONG
IN BOOLEAN
OUT PIO_STATUS_BLOCK
IN PDEVICE_OBJECT
{

BOOLEAN
PtrSFsdFCB
PtrSFsdCCB
LARGE INTEGER

FileObject,
FileOffset,
Length,
Wait,
LockKey,
CheckForReadOperat ion,
loStatus,
DeviceObject)

ReturnedStatus = FALSE;
PtrFCB = NULL;
PtrCCB = NULL;
loLength;

// Obtain a pointer to the FCB and CCB for the file stream.
PtrCCB = (PtrSFsdCCB)(FileObject->FsContext2);
ASSERT(PtrCCB);
PtrFCB = PtrCCB->PtrFCB;
ASSERT(PtrFCB);

// Validate that this is a fast I/O request to a regular file.
// The sample FSD, for example, will not allow fast I/O requests
// to volume objects or to directories.
if ((PtrFCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_VCB) / /

(PtrFCB->FCBFlags & SFSD_FCB_DIRECTORY)) {
// This is not allowed.
return(ReturnedStatus);

loLength = RtlConvertUlongToLargelnteger(Length);

// Your FSD can determine the checks that it needs to perform.
// Typically, an FSD will check whether there are any byte-range
// locks that would prevent a fast I/O operation from proceeding.

// ... (FSD specific checks go here).

if (CheckForReadOperation) {
// It would be nice to be able to use the FSRTL's services
// for file lock operations. However, this chapter describes how

540 __________________________ Chapter 11: Writing a File System Driver III

II to design and implement your own file lock support routines.
// Check here whether or not the read I/O can be allowed.
ReturnedStatus = SFsdCheckLockReadAllowed(& (PtrFCB->

FCBByteRangeLock) ,
FileOffset, &IoLength, LockKey, FileObject,
PsGetCurrentProcess ()) ;

} else {
// This is a write request. Invoke the appropriate support routine
// to see if the write should be allowed to proceed.
ReturnedStatus =

SFsdCheckLockWriteAllowed(& (PtrFCB->FCBByteRangeLock) ,
FileOffset, &IoLength, LockKey, FileObject,
PsGetCurrentProcess ()) ;

return (ReturnedStatus) ;
}
A legitimate question that you should have is, when should you modify/update
the IsFastloPossible field in the CommonFCBHeader?

The answer is — it depends. You should initialize the field when creating the FCB
for the file stream, which is when the first open operation is performed on the file
stream. Subsequent updates should always be made after acquiring the MainRe-
source for the file stream exclusively. Typically, if byte-range locks have been
granted on the file stream, or if opportunistic locks have been granted such that
they would prevent fast I/O access, then you should set the IsFastloPos-
sible field value to either FastloIsNotPossible or Fastlols-
Questionable.

A common method that sets the IsFastloPossible field is shown in this
pseudocode fragment:

if ((no opportunistic locks have been granted for the file stream) | |
(if the caller has an exclusive opportunistic lock on the stream) | |
(if my FSD-specific checks tell me that fast I/O is not a good

idea)) {
if ((there are any byte-range file locks) | |

(if my FSD-specific checks tell me that fast I/O is
questionable)) {

/ / Force the FSD to be queried for permission before fast
/ / I /O is allowed to proceed.
IsFastloPossible = FastloIsQuestionable;

} else {
// Fast I/O seems safe at this time.
IsFastloPossible = FastloIsPossible;

}
} else {

// Allowing fast I/O would not be a good idea. Force the IRP route
/ / instead.
IsFastloPossible = FastloIsNotPossible;

Handling Fast I/O__541

Note that there are no set rules that an FSD must follow in determining whether
to allow fast I/O operations or not; the issue is highly FSD-specific. If, however,
you do plan to use the methodology presented here, as opposed to simply
refusing fast I/O outright, then there are a multitude of occasions during file
system execution that you will have to execute the fragment and reevaluate if fast
I/O should be allowed to proceed without question, allowed on a per-occasion
basis, or never allowed.

The specific occasions on which you should reevaluate the status of fast I/O for a
specific file stream include the following:

• At file stream open time

• Whenever read or write requests are dispatched to the file system

• Whenever byte-range lock/unlock requests are processed by the FSD

• Whenever file stream attributes are modified via a set file information request

• Whenever opportunistic locks are granted/broken

• At file stream cleanup

• For removable media, whenever a volume needs to be reverified due to
media change

Of course, your FSD may have some very specific situations, in addition to those
listed, when it may need to reevaluate the status of fast I/O vis-a-vis a specific file
stream.

FSRTL Support for Fast I/O
The NT I/O subsystem designers recommend that FSD implementations use
FSRTL-supplied routines to perform appropriate preprocessing (including
acquiring FSD resources), before invoking the NT Cache Manager to complete a
fast I/O read/write request. Specifically, the following generic support routines
have been provided:*

• FsRtlCopyRead()
• FsRtlCopyWriteO

There are other fast I/O support routines that the NT FSRTL provides (e.g.,
FsRtlQueryBasicInformation(), FsRtlQueryStandardlnforma-
tion (), and so on). The NT IPS kit lists all of the fast I/O support routines that

* The native NT file system implementations follow recommendations and use these FSRTL routines to
perform fast I/O related preprocessing. Therefore, during file system initialization, they initialize the Fas-
tloRead and FastloWrite (function pointer) fields in the fast I/O dispatch table with FsRtlCopy-
Read () and FsRtlCopyWrite () , respectively.

542 ________________________Chapter 11: Writing a File System Driver III

your FSD can use. We will discuss the two I/O-related routines in greater detail
here, because they encapsulate some of the most complex processing related to
fast I/O support. The FSRTL routines provided for file-lock support are also
discussed later in this chapter.

In the initialization code for the sample FSD implementation provided in Chapter
9, you will have noticed that the FastloRead function pointer is initialized to
SFsdFastIoRead(), and the FastIoWrite() function pointer is initialized to
SFsdFastloWrite () . This is not in keeping with the recommendation made
by the NT I/O subsystem designers that these function pointers should be directly
initialized to FsRtlCopyRead() and FsRtlCopyWrite () . The reason for not
following these recommendations is simply to illustrate to the reader that it is
possible for more complex file system implementations to perform any required
pre-processing in their own routines (e.g., SFsdFastIoRead() for the sample
FSD implementation), and then invoke the appropriate FSRTL routine directly
from the FSD fast I/O function. This method is especially useful for more complex
file system implementations such as distributed/networked file system drivers.

Of course, for your FSD implementation, you may choose to initialize the function
pointers with the appropriate FSRTL routines directly.

The FsRtlCopyRead() function is defined as follows:

BOOLEAN
FsRtlCopyRead (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN ULONG LockKey,
OUT PVOID Buffer,
OUT PIO_STATUS_BLOCK loStatus,
IN PDEVICE_OBJECT DeviceObject
) ;
The arguments accepted by the FsRtlCopyRead () function match those
required in the function type definition for a fast I/O read function defined in the
NT DDK. Notice that all of the relevant parameters supplied by the user thread
when invoking the NtReadFileO system service routine are passed directly to
the fast I/O (FSRTL) read routine instead of being inserted into an IRP structure.*

Functionality Provided:

The FsRtlCopyRead () routine executes the following steps:

* Although I did not talk about the LockKey user-supplied argument in Chapter 9 when discussing read/
write dispatch entry point implementations, note for now that it is possible for a user to read/write a
locked byte range if the locker had associated a key with the byte-range lock, and if the reader/writer
knows the key value. Byte-range locks are discussed in greater detail later in this chapter.

Handling Fast I/O__543

• It attempts to acquire the MainResource for the file stream shared.
In case you are wondering how the FSRTL can get to the FCB MainRe-
source pointer, remember that the FsContext field in the file object struc-
ture is always initialized to point to a common FCB header structure of type
FSRTL_COMMON_FCB_HEADER. This structure contains the Resource field,
which is initialized by the FSD to the address of the MainResource (ERE-
SOURCE type) structure.

If the caller is not prepared to block (i.e., the Wait argument has been set to
FALSE), and if the MainResource cannot be acquired immediately without
blocking, the FSRTL routine will simply return FALSE. The I/O Manager will
then reissue the read request to the FSD via the traditional IRP method.

• If the IsFastloPossible field in the CommonFCBHeader is set to Fast-
loIsNotPossible, the FsRtlCopyRead() routine returns FALSE to the
I/O Manager.

• If the IsFastloPossible field in the CommonFCBHeader is set to Fast-
loIsQuestionable, the FsRtlCopyRead() routine queries the FSD (as
described earlier in this chapter) whether it should proceed with fast I/O or
return FALSE to the caller.

• Once the FsRtlCopyRead() has determined that it is safe to proceed, it
invokes the CcCopyReadf)/CcFastCopyRead() function to transfer data
to/from the system cache.
The FSRTL is careful about setting itself as the top-level component for the
request. It sets the TopLevellrp field in the TLS to the FSRTL_FAST_IO_
TOP_LEVEL_IRP constant value. Once the read operation has completed,
the FsRtlCopyRead() function sets the FO_FILE_FAST_IO_READ flag in
the file object structure.

• The FsRtlCopyRead() function releases the MainResource for the file
stream and returns TRUE to the I/O Manager.

The I/O Manager performs appropriate postprocessing (described earlier in
this chapter) and returns control to the caller.

The FsRtlCopyWrite () function is defined as follows:

BOOLEAN
FsRtlCopyWrite (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN ULONG LockKey,
IN PVOID Buffer,
OUT PIO_STATUS_BLOCK loStatus,
IN PDEVICE_OBJECT DeviceObject

544__________________________Chapter 11: Writing a File System Driver III

Functionality Provided:

The FsRtlCopyWrite () routine executes the following steps:

• If the file object has been opened with write-through specified, or if the
Cache Manager CcCanlWrite () function call returns FALSE, this routine
returns FALSE immediately.

The I/O Manager will reissue the write request via the normal IRP method.

• The FsRtlCopyWrite () routine acquires the FCB MainResource either
shared or exclusive.

This routine acquires the MainResource shared, unless the caller wishes to
append to the file stream, or if the write will extend the valid data length for
the file stream. If the FsRtlCopyWrite () routine cannot acquire the Main-
Resource immediately and if Wait is set to FALSE, this routine returns
FALSE to the NT I/O Manager.

• A check is made to determine whether fast I/O write should even be
attempted.

Just as in the case of the FsRtlCopyRead() routine, this function invokes
the FSD to make the final determination on whether fast I/O should be
attempted if IsFastloPossible is set to FastloIsQuestionable.

• The FsRtlCopyWrite () routine also returns FALSE immediately to the I/O
Manager if the file is being extended such that the new file size would exceed
the current allocation size for the file stream, or if the new file size results in a
wrap-around of the allocation size for the file stream from a 32-bit value to a
64-bit value.*

• If the file size is being extended, the FsRtlCopyWrite () routine will
acquire the PagingloResource exclusively, modify the file size in the Com-
monFCBHeader, and release the paging I/O resource.

• A CcZeroData () is performed, if required (i.e., if the current write opera-
tion results in a hole between the current valid data length before the new
write operation was attempted and the starting offset of the new write
request).

* There are valid reasons for these checks. First, allowing a write to proceed without having adequate
disk space preallocated could result in an unexpected out-of-disk-space error code being returned during
a subsequent lazy-write/modified page write operation; this could even happen well after a user process
had closed the file handle and exited, expecting that all of the data had made it (or would.) to secondary
storage. Second, some file systems (e.g., FASTFAT) do not currently support 64-bit file sizes, while others
(e.g., NTFS) do; therefore, the FSRTL package is unsure whether to allow such file I/O operations to pro-
ceed or not.

Handling Fast I/O__545

• The FsRtlCopyWrite() request issues a CcCopyWrite ()/CcFastCopy-
Write () request to actually transfer the data to the system cache.

Just as in the case of the fast I/O read operation, the FsRtlCopyWrite ()
routine is careful to mark itself as the top-level component for the write
request.

• Once the write operation has completed, the FsRtlCopyWrite () routine
marks the fact that a fast I/O write operation was performed by setting the
FO_FILE_MODIFIED flag in the file object structure.

If the file was extended, or if valid data length was changed, the routine also
sets the FO_FILE_SIZE_CHANGED flag in the file object structure.

• The FsRtlCopyWrite () function releases the MainResource for the file
stream and returns TRUE to the I/O Manager.

The I/O Manager performs appropriate postprocessing (described earlier in
this chapter) and returns control to the caller.

Rolling Your Own Fast I/O Routine
Now that you understand the methodology used by the FSRTL in providing
generic fast I/O read/write support routines, you should be able to easily replace
them with your own if required, and also supplement them with appropriate
routines to support the other fast I/O entry points.

There are a couple of issues you should keep in mind when developing your
own fast I/O support routines:

• It would be prudent for your driver to provide appropriate exception han-
dling in your fast I/O routines.

The FsRtlCopyRead() and the FsRtlCopyWrite () functions do provide
exception handlers since it is quite possible for a malicious user thread (or
even a carelessly written application) to send in an invalid buffer, or to deallo-
cate the buffer while the I/O is in progress using another thread, or to change
the buffer permissions in such a way so as to cause an access violation error
condition when the data transfer is attempted by the Cache Manager. Failure
on your part to provide an exception handler could cause the system to crash.

• Your routine should encapsulate the fast I/O support within FsRtlEnter-
FileSystemO and FsRtlExitFileSystem() calls.
This is simply a reminder to you that, just as in the case of the regular IRP dis-
patch routines, your FSD should not allow kernel-mode APCs to be delivered
while executing file system code. This will prevent nasty priority inversion sit-
uations, which could lead to a system deadlock.

546 _________________________Chapter 11: Writing a File System Driver III

NOTE The FsRtlEnterFileSystemf) macro is simply defined to KeEn-
terCriticalRegion(), while the FsRtlExitFileSystem()
macro is defined to KeLeaveCriticalRegion () .

Also remember that the fast I/O path started off as a more efficient method to
transfer data; if you find that certain situations would result in your fast I/O
routine having to perform an inordinate amount of extraneous processing simply
to support this method of data transfer, it could be more efficient to just return
FALSE from the fast I/O routine, since the I/O Manager will then issue a regular
IRP-based request back to your driver.

The Pseudo Fast I/O Routines
You may have rightly noticed that the fast I/O dispatch table contains entries such
as FastloQueryBasicInfo, FastloQueryStandardlnfo, and others that
do not quite follow the original fast I/O model of bypassing the FSD and
obtaining data from the NT Cache Manager. As explained earlier, there were two
goals that the fast I/O method was designed to accomplish: avoiding the over-
head associated with the creation and completion of an IRP structure and
attempting to obtain data directly from the best source for the data, the NT Cache
Manager.

The basic design goal for the fast I/O method is to achieve faster (better) perfor-
mance. To achieve this goal, NT I/O subsystem designers seem to be providing
fast entry points for some of the most frequently used FSD entry points. This is
the reason behind the inclusion of most of the (non-I/O) fast I/O entries,
including those previously listed.

There are also certain callbacks that have been lumped together with the regular
fast I/O entry points in the fast I/O dispatch table, simply because the table
seemed like a good, extensible container for these callback routines. Here are the
specific callbacks:

• AcquireFileForNtCreateSection and ReleaseFileForNtCreate-
Section

• FastloDetachDevice
• AccjuireForModWrite and ReleaseForModWrite
• AccfuireForCcFlush and ReleaseForCcFlush
Only the first pair of callbacks, acquire/release for create section, existed in
Windows NT Version 3.51. The others have been added with Version 4.0.

Handling Fast I/O__547

I presume it's harder for the NT designers to justify the inclusion of these call-
backs in the fast I/O dispatch table. The only rational explanation for including
them where they currently reside is that these seem to be last-minute solutions to
synchronization/deadlock-related problems encountered during late testing, and
the only extensible place where such callbacks could possibly reside, without
breaking existing file system drivers, seemed to be the fast I/O dispatch table.

NOTE Recall from earlier chapters that the fast I/O dispatch table contains
a field called SizeOfFastloDispatch, which is initialized by an
FSD to the size of the structure it knows about (when the driver
was implemented). Since new fast I/O entry points are always add-
ed at the end of the dispatch table (thereby increasing its size), it is
relatively easy for the caller of a fast I/O routine to check whether
the underlying FSD knows about the new entries, by comparing the
size of the dispatch table with the new entries in it to the size value
initialized by the FSD. If the FSD specifies a size that -would include
the particular fast I/O entry, the caller can proceed with the fast I/O
operation; otherwise, the caller can assume that it is dealing with an
older driver and simply skip the particular fast I/O call.
Unfortunately, this isn't a method your driver can use to skip fast
I/O support altogether, since a basic assumption made by the NT
I/O Manager is that your driver at least knows the initial fast I/O ta-
ble, introduced with Version 3.51 of the operating system.

AcquireFileForNtCreateSection/ReleaseFileForNtCreateSection

To map a file stream into its virtual address space, a process must first create a
section object for the file by invoking the NtCreateSection() system call.*
This call is provided by the NT VMM, which performs all of the required
processing to create the appropriate image/data section object for the caller.

The process requesting the create section operation specifies the length (in bytes)
of the section object to be created. As part of processing the request, the VMM
must query the FSD for the current file size associated with the file stream, and
modify the file size as well, if the requested length is greater than the current end-
of-file position. There are other operations that the VMM must perform, which
could also cause the VMM to issue I/O requests to the underlying FSD managing
the mounted logical volume on which the file stream resides.

When issuing file system get/set file size requests, the MmExtendSection ()
internal routine in the VMM acquires certain VMM resources, in order to synchro-

* This routine (actually the kernel-equivalent, ZwCreateSection()) is explained in detail in Chapter
5, 'l"he NT Virtual Memory Manager.

548__________________________Chapter 11: Writing a File System Driver III

nize with other threads trying to perform another create section operation
concurrently.

Unfortunately, though, it is still quite possible for another user thread to concur-
rently issue a cached read request for which the file system initiates caching,
which, in turn, results in the CcInitializeCacheMap () routine in the Cache
Manager possibly invoking the MmExtendSection () internal support routine
provided by the VMM.

Similarly, other user threads trying to change the file size concurrently could
invoke the set file information dispatch routine in the FSD; the FSD, in turn,
would issue a CcSetFileSizes () request, and the Cache Manager would
possibly invoke the MmExtendSection () routine internally.

Here, the stage is being set for a classic deadlock situation. For the thread
performing the create section request, the VMM has acquired some global internal
resources preventing other concurrent operations that could possibly result in any
modifications to the section object. Then, the VMM invokes the FSD get/set file
information entry point. As part of processing this request, the FSD attempts to
acquire the MainResource exclusively, and later, tries to acquire the Paging-
loResource. However, the FSD can be forced to block when attempting the
acquisition of the MainResource if some other thread either performing cached
I/O or changing the file length acquired it first.

The thread performing a cached I/O or file size modification operation would, in
turn, be blocked in the VMM on the same resource that the MmExtendSec-
t ion() routine acquired to prevent concurrent modifications to the file stream
size.

The result is deadlock; the reason is simply because the VMM broke the resource
acquisition hierarchy of acquiring FSD resources for the file object first, before
acquiring its internal resources.

After the NT I/O subsystem designers encountered this problem, they added the
two callbacks to the fast I/O dispatch table. Now the VMM invokes the FSD
AcquireForNtCreateSection () callback before acquiring its internal
resources when processing a create section request. After all of the processing
requiring interaction with the FSD has been completed, the VMM invokes the
ReleaseForNtCreateSection () callback, to request the FSD to release FCB
resources.

Here is the code fragment illustrating the implementation of the AcquireForNt-
CreateSection and ReleaseForNtCreateSection in the sample FSD:

void SFsdFastloAcqCreateSec(
IN PFILE_OBJECT FileObject)

Handling Fast I/O 549

PtrSFsdFCB
PtrSFsdCCB
PtrSFsdNTRequiredFCB

PtrFCB = NULL;
PtrCCB = NULL;
PtrReqdFCB = NULL;

// Obtain a pointer to the FCB and CCB for the file stream.
PtrCCB = (PtrSFsdCCB)(FileObject->FsContext2);
ASSERT(PtrCCB) ;
PtrFCB = PtrCCB->PtrFCB;
ASSERT(PtrFCB);
PtrReqdFCB = &(PtrFCB->NTRequiredFCB);

// Acquire the MainResource exclusively for the file stream
ExAcquireResourceExclusiveLite(&(PtrReqdFCB->MainResource), TRUE);

// Although this is typically not required, the sample FSD will
// also acquire the PagingloResource exclusively at this time
// to conform with the resource acquisition described in the set
// file information routine.
ExAcquireResourceExclusiveLite(&(PtrReqdFCB->PagingIoResource), TRUE);

return;

void SFsdFastloRelCreateSec(
IN PFILE OBJECT FileObject)

PtrSFsdFCB
PtrSFsdCCB
PtrSFsdNTRequiredFCB

PtrFCB = NULL;
PtrCCB = NULL;
PtrReqdFCB = NULL;

// Obtain a pointer to the FCB and CCB for the file stream.
PtrCCB = (PtrSFsdCCB)(FileObject->FsContext2);
ASSERT(PtrCCB) ;
PtrFCB = PtrCCB->PtrFCB;
ASSERT(PtrFCB);
PtrReqdFCB = &(PtrFCB->NTRequiredFCB);

// Release the PagingloResource for the file stream
SFsdReleaseResource(&(PtrReqdFCB->PagingIoResource));

// Release the MainResource for the file stream
SFsdReleaseResource(&(PtrReqdFCB->MainResource));

return;

The FastloDetachDevice callback will be covered in the next chapter when
we discuss filter driver design and implementation.

AcquireForModWrite/ReleaseForModWrite

Before NT Version 4.0 was released, this callback did not exist. As discussed in
detail in earlier chapters, it is extremely important for the NT VMM, the NT Cache

550_______________ __________Chapter 11: Writing a File System Driver III

Manager, and the FSD implementations to ensure that resources are acquired in
the correct order. This callback exists precisely to ensure that the resource acquisi-
tion hierarchy is maintained.

In Chapter 5, we discussed the design and philosophy of the modified/mapped
page writer threads used by the NT VMM to asynchronously flush dirty pages,
allowing the VMM to reuse these pages for other applications. When an asynchro-
nous I/O request is issued to the FSD, the file system implementation may need
to acquire the MainResource and/or the PagingloResource. To pre-acquire
the appropriate resources and maintain the locking hierarchy across modules, the
NT VMM issues a call to the FSRTL FsRtlAcquireFileForModWrite ()
support routine.

In Windows NT Version 3-51, the FSRTL routine simply acquired the file resources
directly. In order to determine which resource to acquire (MainResource or
PagingloResource) and if the resource needed to be acquired shared or exclu-
sively, the FSRTL package depended on the following flag values set by the FSD
in the CommonFCBHeader associated with the file stream:

#define FSRTL_FLAG_ACQUIRE_MAIN_RSRC_EX (0x08)
#define FSRTL_FLAG_ACQUIRE_MAIN_RSRC_SH (0x10)

If the flag FSRTL_FLAG_ACQUIRE_MAIN_RSRC_EX is set by an FSD in the
CommonFCBHeader for the file stream, the FsRtlAcquireFileForMod-
Write() routine acquires the MainResource exclusively; a flag value of
FSRTL_FLAG_ACQUIRE_MAIN_RSRC_SH results in the routine acquiring the
MainResource shared. If neither flag is set, the routine acquires the Paging-
loResource shared if the a resource is present. Finally, in the most degenerate
case of no flag having been set and the PagingloResource pointer in the
CommonFCBHeader being NULL, the routine does not acquire any resource at all.

The fundamental rule that an FSD is supposed to follow in setting appropriate
flag values is that the flag value cannot be changed unless the FSD acquired both
resources before attempting the change; or in other words, if the FSRTL package
managed to acquire either of the two resources, it is guaranteed that the flag
value would stay constant.

You may wish to note that the FASTFAT file system does not appear to set any
flag values at all in Version 3.51, (preferring to rely on the default behavior
instead), and the only native FSD implementation that seems to care about these
flag values and actively modify them is the NTFS file system. Furthermore, it
should not surprise you to know the FsRtlAcquireFileForModWrite ()
jumps through a lot of hoops to acquire the right resource. It initially examines
the flag values in an unsafe fashion and attempts to acquire the designated
resource (without waiting). Once a resource is acquired, it reexamines the flag

Handling Fast I/O__551

values—since they could have changed between the time they were examined in
an unsafe fashion and when the resource was actually acquired—and retries the
resource acquisition after releasing the original resource, if the flag values have
changed. All of this is done within a while (TRUE) { . . . } loop construct.

There were other problems with this implementation as well. It was sometimes
possible for the VMM to want to acquire the FSD resource for write operations
that would extend the valid data length. Unfortunately, if the FSD indicated that
the MainResource should be acquired shared, following the FSD's instructions
possibly leads to a deadlock situation when the write request is actually
dispatched to the FSD. Therefore, the FsRtlAccruirefFileForModWrite ()
routine checks for the condition where the ending offset (starting-offset + write-
length -1) exceeds the current valid data length, and internally ignores the FSD's
instructions, preferring instead to acquire the MainResource exclusively.

It appears as though with Version 4.0 of the operating system, the I/O subsystem
designers have realized just how messy, and FSD-dependent, the preceding imple-
mentation is.* Therefore, they implemented the AcquireForModWrite ()
callback, invoked by the FsRtlAccruireFileForModWrite () routine. Your
FSD should acquire the appropriate resources in response to the callback and also
return a pointer to the resource acquired in the ResourceToRelease argument
passed in to your callback. The ReleaseForModWrite () callback will be
invoked later by the VMM and your FSD can use the ResourceToRelease argu-
ment to determine which resource should be released.t

AcquireForCcFlush/ReleaseForCcFlush

This callback was added with Windows NT Version 4.0. It supports invocations to
CcFlushCache () for a file stream by a component other the FSD. As described
in Chapter 8, The NT Cache Manager III, the CcFlushCache () routine can be
invoked (by an FSD) with driver resources either acquired exclusively, or left
unowned. However, if the routine is invoked by a component other than an FSD,
the potential for deadlock exists if FSD resources are not acquired before Cache
Manager or VMM resources.

* The older method implicitly places a lot of faith in the FSRTL's judgment of what is the correct action
to take under the different scenarios in which the routine can he invoked. This is not a particularly ex-
tensible policy, especially with the development of third-party file system implementations whose require-
ments could he very different from what the FSRTL expects. Therefore, letting the FSD determine what
to do in response to the VMM request to preacquire resources is a step in the right direction.
t There is an additional benefit to having a callback into your FSD. You can now safely determine the
thread ID of the modified/mapped page writer thread when the AcquireForModWrite () callback is
issued and store it in the FCB, if you need such information.

552__________________________Chapter 11: Writing a File System Driver III

Your FSD should ensure that appropriate resources have been acquired to
support a subsequent paging I/O, synchronous write operation that will presum-
able soon follow.

Callback Example
In addition to the fast I/O dispatch routines and the fast I/O callbacks to pre-
acquire FSD resources, the FSD also provides callbacks specifically for the use of
the NT Cache Manager read-ahead thread and the lazy-writer thread. A pointer to
an initialized CACHE_MANAGER_CALLBACKS structure is passed in by the FSD
when invoking the CcInitializeCacheMap () routine (described earlier in
Chapter 8). The callback's structure is defined as follows:

typedef struct _CACHE_MANAGER_CALLBACKS {
PACQUIRE_FOR_LAZY_WRITE AcquireForLazyWrite;
PRELEASE_FROM_LAZY_WRITE ReleaseFromLazyWrite;
PACQUIRE_FOR_READ_AHEAD AcquireForReadAhead;
PRELEASE_FROM_READ_AHEAD ReleaseFromReadAhead;

} CACHE_MANAGER_CALLBACKS, *PCACHE_MANAGER_CALLBACKS;

where:
typedef
BOOLEAN (*PACQUIRE_FOR_LAZY_WRITE) (

IN PVOID Context,
IN BOOLEAN Wait

typedef
VOID (*PRELEASE_FROM_LAZY_WRITE) (

IN PVOID Context

typedef
BOOLEAN (*PACQUIRE_FOR_READ_AHEAD) (

IN PVOID Context,
IN BOOLEAN Wait

typedef
VOID (*PRELEASE_FROM_READ_AHEAD) (

IN PVOID Context
) ;
The AcquireForLazyWrite and ReleaseFromLazyWrite callbacks are
invoked by the NT Cache Manager lazy-writer thread to maintain resource acquisi-
tion hierarchy across the Cache Manager and the FSD modules. Similarly, the
AcquireForReadAhead and ReleaseFromReadAhead callbacks are invoked
by the read-ahead component of the NT Cache Manager.

Callback Example _______ _________________________________ 553

By now, you should have a very good understanding of the motivating forces
behind the design and implementation of these callback functions (i.e., to avoid
deadlock situations due to the incorrect sequence of resource acquisitions). Here
are examples of the AcquireForLazyWrite and ReleaseFromLazyWrite
callback functions for the sample FSD:

BOOLEAN SFsdAcqLazyWrite (
IN PVOID Context,
IN BOOLEAN Wait)
{

BOOLEAN ReturnedStatus = TRUE;

PtrSFsdFCB PtrFCB = NULL;
PtrSFsdCCB PtrCCB = NULL;
PtrSFsdNTRequiredFCB PtrReqdFCB = NULL;

// The context is whatever we passed to the Cache Manager when invoking
// the CcInitializeCacheMaps () function. In the case of the sample FSD
// implementation, this context is a pointer to the CCB structure.

ASSERT (Context) ;
PtrCCB = (PtrSFsdCCB) (Context) ;
ASSERT(PtrCCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_CCB) ;

PtrFCB = PtrCCB->PtrFCB;
ASSERT (PtrFCB) ;
PtrReqdFCB = & (PtrFCB->NTRequiredFCB) ;

// Acquire the MainResource in the FCB exclusively. Then, set the
// lazy-writer thread id in the FCB structure for identification when
// an actual write request is received by the FSD.
// Note: The lazy-writer typically always sets WAIT to TRUE.
if (!ExAcquireResourceExclusiveLite(& (PtrReqdFCB->MainResource) ,

Wait)) {
ReturnedStatus = FALSE;

} else {
// Now, set the lazy-writer thread id.
ASSERT (! (PtrFCB->LazyWriterThreadID)) ;
PtrFCB->LazyWriterThreadID = (unsigned int) (PsGetCurrentThread()) ;

// If your FSD needs to perform some special preparations in
// anticipation of receiving a lazy-writer request, do so now.

return (ReturnedStatus) ;

void SFsdRelLazyWrite(
IN PVOID Context)
{

BOOLEAN ReturnedStatus = TRUE;

PtrSFsdFCB PtrFCB = NULL;

554__________________________Chapter 11: Writing a File System Driver HI

PtrSFsdCCB PtrCCB = NULL;
PtrSFsdNTRequiredFCB PtrReqdFCB = NULL;

// The context is whatever we passed to the Cache Manager when invoking
// the CcInitializeCacheMaps() function. In the case of the sample FSD
// implementation, this context is a pointer to the CCB structure.

ASSERT(Context);
PtrCCB = (PtrSFsdCCB)(Context);
ASSERT(PtrCCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_CCB);

PtrFCB = PtrCCB->PtrFCB;
ASSERT(PtrFCB);
PtrReqdFCB = &(PtrFCB->NTRequiredFCB);

// Remove the current thread id from the FCB and release the
// MainResource.
ASSERT((PtrFCB->LazyWriterThreadID) ==

(unsigned int)PsGetCurrentThreadt));
PtrFCB->LazyWriterThreadID = 0;

// Release the acquired resource.
SFsdReleaseResource(&(PtrReqdFCB->MainResource));

// Your FSD should undo whatever else seems appropriate at this time.

return;
}
Typically, the Cache Manager lazy-writer and read-ahead threads always set Wait
to TRUE before invoking the FSD callback routines.

Dispatch Routine: Flush File Buffers
The flush file buffers dispatch routine is invoked by a user process to try to
ensure that all of the cached information for a file stream or for a group of files
has been either written out to secondary storage or flushed across the network to
the server node.

Logical Steps Involved
The following logical steps are executed by a file system upon receiving a flush
file buffers request:

1. The file system driver must obtain pointers to internal data structures for the
object on which the flush file buffers operation has been requested.

The flush file buffers invocation can be made for three types of objects:

Dispatch Routine: Flush File Buffers_______________________________555

— An open file stream (ordinary file)

— An open directory

— An open volume object representing the mounted logical volume

The FSD typically has different responses for a flush request on each of these
object types.

2. If the flush buffers request is for an open file stream, the FSD should typically
acquire the FCB exclusively and request that the Cache Manager flush the
system cache for the file stream synchronously.

3. If the flush buffers request is on an open directory object, most FSD imple-
mentations simply return success without really doing anything.

The exception to this is if the flush request is made for the root directory of
the mounted logical volume. In this case, an FSD should treat the request as if
it were a flush request for all open files on the mounted volume. The next
step outlines the FSD's response in this situation.

4. If the flush buffers request is made for an open volume object, the FSD
should try to flush all open file streams on the mounted logical volume to
secondary storage devices.

Typically, the caller would like to ensure that cached information for modi-
fied files residing on the logical volume being flushed is written out to
secondary storage before this routine returns control. This is the behavior
implemented by the native NT file system drivers as well. Note that a flush
buffers request on the root directory is always treated in the same manner as
a flush buffers request on the volume object representing a mounted logical
volume.

5. Finally, it would be prudent for the FSD to pass the flush file buffers request
on to the lower-level disk/network drivers, ensuring that any requests queued
there would be processed immediately.

The following pseudocode illustrates how your FSD could implement the flush
file buffers dispatch routine. Note that the code assumes the data structures to be
those defined by the sample FSD. You can, however, substitute your own data
structures (and associated fields) quite easily instead:

get pointer to FCB/VCB from file object;
if (VCB) {

flush the volume;
(this involves flushing all open file streams (see below for example),
updating the directory entries, updating timestamp values,
flushing directories, flushing log files, flushing bitmaps,
and any other in-memory information that you may wish to write
to disk)

} else {

556 __________________________ Chapter 11: Writing a File System Driver HI

if (PtrFCB->FCBFlags & SFSD_FCB_ROOT_DIRECTORY) {
// Treat this exactly the same as a flush volume request.
flush the volume;

} else if (! (PtrFCB->FCBFlags & SFSD_FCB_DIRECTORY)) {
// Flush the file stream from the system cache.
// Note that the following operation is inherently synchronous;
// therefore, if the caller did not wish to block, you should
// have posted the request earlier.
PtrReqdFCB = & (PtrFCB->NTRequiredFCB) ;
CcFlushCache(&(PtrReqdFCB->SectionObject) , NULL, 0,

& (PtrIrp->IoStatus)) ;
// Results of the operation are returned by the Cache Manager
//in the loStatus structure.
RC = PtrIrp->IoStatus . Status;
// All done as far as the Cache Manager is concerned.
// Now, you may wish to update the associated directory
// entry for the file stream (e.g., with the latest file
// size, timestamp values, etc.) and flush that to disk.

}
// We ignore flush requests for normal directories (just as the
// native FSD implementations do).

// Now that the FSD has completed performing its processing, you
// should forward the flush request to lower-level drivers.
// CAUTION: Some drivers will return STATUS_INVALID_DEVICE_REQUEST
// to you. You should "eat-up" that error and simply return the actual
// status from your flush attempts to the caller. To do this you will
// also have to set a completion routine before invoking the lower-level
// driver.

Dispatch Routine: Volume Information
There are two kinds of volume information requests that your FSD should handle:

• Requests to get (query) volume information

• Requests to set (modify) volume information

Let us examine the logical steps involved in processing each of these two types of
volume information requests.

Logical Steps Involved
The I/O stack location contains the following structures relevant to processing the
query volume information and the set volume information requests issued to an
FSD:

typedef struct _IO_STACK_LOCATION {

Dispatch Routine: Volume Information_____________________________557

union {

// System service parameters for: NtQueryVolumelnformationFile
struct {

ULONG Length;
FS_INFORMATION_CLASS FslnformationClass;

} QueryVolume;

// System service parameters for: NtSetVolumelnformationFile
struct {

ULONG Length;
FS_INFORMATION_CLASS FslnformationClass;

} SetVolume;

// . . .
} Parameters;

} IO_STACK_LOCATION, *PIO_STACK_LOCATION;

The type of volume information request dispatched to an FSD can be determined
by examining the major function code contained in the request packet. The two
major function codes of interest are IRP_MJ_QUERY_VOLUME_INFORMATION
and IRP_MJ_SET_VOLUME_INFORMATION. Of course, your FSD could have
separate dispatch routines to handle each kind of volume information request,
unlike the sample FSD presented in this book, in which case the appropriate
request type would be dispatched to the correct file system driver function.

IRP_MJ_QUERY_VOL UME^INFORMATION
The I/O Manager identifies the kind of information requested in the FS_
INFORMATION_CLASS enumerated type value, supplied in the current stack loca-
tion of the query volume information IRP. Note that the Windows NT I/O
subsystem allows any caller to obtain logical volume information. Furthermore,
the caller can supply a handle to any open object associated with the logical
volume (i.e., a file object representing an open instance of the logical volume
itself, a file object representing an open instance of a file or directory contained in
the logical volume, or a file object representing an open instance of the target
device on which the logical volume has been mounted).

The following volume information request types should be supported by your
FSD:

FileFsVolumelnf ormation (enumerated type value = 1)
The caller expects information about the volume to be returned in the FILE_
FS VOLUME INFORMATION structure:

558__________________________Chapter 11: Writing a File System Driver III

typedef struct _FILE_FS_VOLUME_INFORMATION {
LARGE_INTEGER VolumeCreationTime;
ULONG VolumeSerialNumber;
ULONG VolumeLabelLength;
BOOLEAN SupportsObjects;
WCHAR VolumeLabel[1];

} FILE_FS_VOLUME_INFORMATION, *PFILE_FS_VOLUME_INFORMATION;
The fields are quite self-explanatory. The serial number is expected to be a
unique integer value identifying the mounted logical volume. The volume
label can be any string identifier associated with the logical volume. Note that
it is possible that the buffer supplied by the caller may not be large enough to
contain the entire volume label, in which case your FSD should copy over as
much of the label as it can and return a status code of STATUS_BUFFER_
OVERFLOW, indicating to the caller that not all of the information could be
returned.

FileFsSizelnformation (enumerated type value = 3)
The caller expects information about the volume to be returned in the FILE_
FS_SIZE_INFORMATION structure:
typedef struct _FILE_FS_SIZE_INFORMATION {

LARGE_INTEGER TotalAllocationUnits;
LARGE_INTEGER AvailableAllocationUnits;
ULONG SectorsPerAllocationUnit;
ULONG BytesPerSector;

} FILE_FS_SIZE_INFORMATION, *PFILE_FS_SIZE_INFORMATION;
As you can see, the kind of information expected by the caller is fairly
generic and your FSD should be able to return some kind of sensible values
that can translate into a valid total volume size.*

FileFsDevicelnf ormation (enumerated type value = 4)
The caller expects to receive information about the type of physical or logical
device on which the logical volume has been mounted:
typedef struct _FILE_FS_DEVICE_INFORMATION {

DEVICE_TYPE DeviceType;
ULONG Characteristics;

} FILE_FS_DEVICE_INFORMATION, *PFILE_FS_DEVICE_INFORMATION;
The DeviceType field value can be set by your FSD to an appropriate
device type. For example, CDFS specifies the DeviceType value as FILE_
DEVICE_CD_ROM, while FASTFAT and NTFS use FILE_DEVICE_DISK
instead. For a network redirector, the DeviceType field can be set to an
appropriate value depending upon the type of connection made. If, for
example, the query volume information request is issued using a file object

* For read-only volumes (e.g., for those managed by CDFS), the AvailableAllocationUnits value
is set to 0.

Dispatch Routine: Volume Information____________ _______________555

representing an open instance of the network redirector itself, the value could
well be set to FILE_DEVICE_NETWORK_FILE_SYSTEM.

The Characteristics field should be set to an appropriate value from the
following (one or more flag values can be set):
// Volume mounted on removable media.
#define FILE_REMOVABLE_MEDIA 0x00000001
#define FILE_READ_ONLY_DEVICE 0x00000002
#define FILE_FLOPPY_DISKETTE 0x00000004
#define FILE_WRITE_ONCE_MEDIA 0x00000008
#define FILE_REMOTE_DEVICE 0x00000010
ttdefine FILE_DEVICE_IS_MOUNTED 0x00000020
tfdefine FILE_VIRTUAL_VOLUME 0x00000040
Note that if you have designed a network redirector and if you set the FILE_
REMOTE_DEVICE flag in the Characteristics field, the logical volume
cannot be reshared across the LAN Manager Network.

FileFsAttributelnformation (enumerated type value = 5)
The structure used to request file system attribute information is defined as
follows:
typedef struct _FILE_FS_ATTRIBUTE_INFORMATION {

ULONG FileSystemAttributes;
LONG MaximumComponentNameLength;
ULONG FileSystemNameLength;
WCHAR FileSystemName[l];

} FILE_FS_ATTRIBUTE_INFORMATION, *PFILE_FS_ATTRIBUTE_INFORMATION;

The file system attributes can be one or more of the following (note that addi-
tions to these values are likely with different versions of the operating system
that add additional functionality):
#define FILE_CASE_SENSITIVE_SEARCH 0x00000001
ttdefine FILE_CASE_PRESERVED_NAMES 0x00000002
#define FILE_UNICODE_ON_DISK 0x00000004
#define FILE_PERSISTENT_ACLS 0x00000008
#define FILE_FILE_COMPRESSION 0x00000010
#define FILE_VOLUME_IS_COMPRESSED 0x00008000
NTFS, for example, sets all of these attribute values except for the FILE_
VOLUME_IS_COMPRESSED.

The MaximumComponentNameLength field is typically set to 255 characters
by most native FSD implementations. Your FSD can set this field to any appro-
priate value. The FileSystemName field simply identifies the current FSD
processing the request. NTFS, for example, will set the contents of the buffer
to NTFS.

If the buffer supplied by the caller is too small to contain all of the informa-
tion your FSD wishes to return, your driver should return the STATUS_

560__________________________Chapter 11: Writing a File System Driver III

BUFFER_OVERFLOW return code and copy in as many bytes of information
as it possibly can.

There are other volume information request types that have not yet been fully
implemented by the I/O Manager, and they are not yet completely supported,
even by the native FSD implementations. For example, there are query volume
information types such as FileFsQuotaQuerylnformation (enumerated type
value = 6 in Version 3.51 and value = 7 in Version 4.0) and a corresponding
FileFsQuotaSetlnformation (enumerated type value = 7 in Version 3-51
and value = 8 in Version 4.0), which will become part of the set volume informa-
tion request. Your FSD should currently return STATUS_INVALID_PARAMETER
for all query volume information request types other those previously defined.

The sequence of steps followed in processing a query volume information request
is extremely simple:

1. Obtain a pointer to the volume control block for which the request operation
has been dispatched.

2. Acquire the VCB shared.

3. Find out the type of information requested and get a pointer to the caller-
supplied buffer from the current stack location.

The following fields give you this information:

— The Parameters.QueryVolume.FsInformationClass field from
the current stack location will tell you the type of information requested.

— The I/O Manager always supplies a system virtual address for a buffer
allocated by the I/O Manager.

A pointer to this buffer can be obtained from the Associatedlrp. Sys-
temBuf fer field in the IRP. The length of this buffer is given by the
Parameters . QueryVolume. Length field in the current stack location.

4. Ensure that the length of the buffer supplied is at least equal to the size of the
associated structure (appropriate for the type of volume information request).

If the amount of information your FSD returns exceeds the length of the
supplied buffer, then return STATUS_BUFFER_OVERFLOW after filling in as
much information as the supplied buffer can contain.

5. Complete the IRP after releasing any resources that were acquired.

IRP_MJ_SET_VOL UMEJNFORMATION
A user can also request that volume attributes should be modified. Currently, the
only set volume information type request that your FSD should consider
supporting is a request to set the label for the logical volume. This label is a string

Dispatch Routine: Volume Information_____________________________561

identifier, supplied by the user so as to be able to identify the volume more
easily. Although other set volume information request types have been defined
(e.g., FileFsQuotasetlnformation), they have not been well-defined yet,
and they are not supported by the native FSD implementations.

The sequence of steps executed in response to a set volume information request
closely mirrors those followed by the query volume information described
previously.

1. The FSD obtains a pointer to the VCB from the file object supplied with the
request.

2. The VCB should be acquired exclusively.

3. The type of request and a pointer to the caller supplied buffer can be
obtained from the IRP.

The request type for a set volume information request can be determined
from the Parameters.SetVolume.FsInformationClass field in the
current I/O stack location. Currently, the only legitimate request type is
FileFsLabellnf ormation (enumerated type value = 2). The type of struc-
ture passed in by the caller for this request type is defined as follows:
typedef struct _FILE_FS_LABEL_INFOKMATION {

ULONG VolumeLabelLength;
WCHAR VolumeLabel[1];

} FILE_FS_LABEL_INFORMATION, *PFILE_FS_LABEL_INFORMATION;

A pointer to the system buffer allocated by the I/O Manager can be obtained
from the Associatedlrp. SystemBuf fer field in the IRP. The length of
the system-allocated buffer can be obtained from the Parameters. Set-
Volume . Length field.

4. After validating that the length of the caller-supplied buffer is correct, the FSD
should perform appropriate operations to update the label (string) associated
with the logical volume.

5. If the request type is anything other than what is supported by the FSD, an
error code of STATUS_INVALID_PARAMETER should be returned to the
caller.

6. The IRP can now be completed after releasing the VCB resource.

The actual code implementing a query/set volume information request is very
similar to that shown in Chapter 10, Writing A File System Driver II, for handling
query/set file information requests. Study that code example for details on how
the FSD should structure the query/set volume information dispatch entry routine
to execute the logical steps previously detailed.

562__________________________Chapter 11: Writing a File System Driver III

Dispatch Routine: Byte-Range Locks
Windows NT supports mandatory byte-range file locks. The term mandatory
implies that it is the responsibility of the FSD to ensure that access to a byte range
by a thread during I/O operations is validated against any byte-range locks that
have been granted for the file stream. Therefore, two or more threads do not have
to actively cooperate in order to synchronize access to the file stream; as long as
one of the threads is careful about obtaining the appropriate byte-range locks on
the file, it can be ensured that data access (read or write) by any other thread
belonging to other processes will be closely monitored. If such access is not
allowed by the nature of the lock granted (and depending on the type of access
requested), the FSD will deny the I/O operation with an error code of STATUS_
FILE_LOCK_CONFLICT.

The native NT FSD implementations do not appear to check for byte-range lock
conflicts encountered during paging I/O operations. However, if your FSD is even
stricter about checking for locked byte ranges and returns the STATUS_FILE_
LOCK_CONFLICT error code to the VMM, the VMM, in turn, will either raise an
exception, informing the caller about the error, if this happened to be synchro-
nous paging I/O request; or will pop up an error message box, indicating loss of
write-behind data in the case of an asynchronous I/O write operation.

Byte-range locks in general are associated with processes and not with individual
threads within a process. Therefore, if a single thread in the process acquires a
specific byte-range lock, this will not prevent other threads within the same
process from continuing to access the locked byte range even if the type of
access performed conflicts with the nature of the granted byte-range lock. The
byte lock obtained will prevent conflicting accesses by threads belonging to
processes other than the one that obtained the lock.

NOTE It is possible for threads -within a process to obtain thread-specific
byte-range locks by specifying a Key value when performing the
lock operation. The Key argument is described later in this section.
However, you should note that this method is often employed by a
thread to ensure that the byte-range can be accessed only in a very
selective manner by other threads.

The Windows NT I/O subsystem defines the following kinds of byte-range locks:

Read locks obtained for a specific byte range
Multiple processes can potentially obtain a read lock concurrently for the
same byte range or for an overlapping byte range on the same file stream.
The read lock simply guarantees the caller that no write/modify operations

Dispatch Routine: Byte-Range Locks______________________________ 563

are allowed on the file stream as long as the read lock is maintained by the
process.

Write (exclusive) lock obtained for a byte range
Write locks are exclusive locks (i.e., once a process acquires a write lock for
a specific byte range, no other process is allowed either to read or write in
that byte range). By definition, granted write locks are non-overlapping.

Different processes can concurrently lock different byte ranges in the same file
stream. It is also quite possible (and not at all unusual) for a thread to obtain a
byte-range lock starting and/or extending well beyond the current end-of-file.
This is simply a means whereby the process can ensure that appending the file
stream can be performed in some sort of synchronized fashion.

Note that byte-range locking can possibly allow a process to synchronize access
to the byte stream even across multiple nodes, as long as the network protocol
providing remote file system access supports the byte-range locking protocol. For
example, the LAN Manager redirector client and server support the byte-range
locking protocol. The NFS (Network File System) protocol supports only advisory
byte-range locks, whereas the DPS (Distributed File System) protocol can be used
to obtain mandatory file locks.

It may be obvious to you by now that supporting byte-range file locks is not
really an FSD-specific operation. In fact, it can be implemented in a fairly generic
fashion, allowing multiple, installable file systems to take advantage of common
code. The Windows NT I/O subsystem designers recognized this and have actu-
ally implemented file-lock-supporting code in the FSRTL. These routines are used
by the native NT FSD implementations. Unfortunately, for reasons that seem
incomprehensible, the developers do not want to encourage third-party FSD
designers to take advantage of such support provided in the FSRTL. This may (I
hope) change in the future.

In this section, we saw how to provide support for file lock operations if you
have to implement such support yourself. Obviously, if any FSD-independent
code is provided by Microsoft for the support of byte-range lock requests, you
should utilize that code instead.

Type of File Lock Requests Received by an FSD
Broadly speaking, the FSD will receive two types of requests related to byte-range
lock operations:

Requests to obtain a byte-range lock for a file stream
The request could specify either a read or a write lock. Furthermore, the
caller could specify either a blocking or nonblocking lock request. If the

564__________________________Chapter 11: Writing a File System Driver III

caller agrees to block, the IRP describing this request is not completed until
the lock is granted or the IRP is canceled (which could be due to the caller
closing the file handle). If the caller does not wish to wait for the lock to be
granted and if some other thread has already acquired a conflicting lock that
would prevent the current request for a byte-range lock from being
completed successfully, an error code of STATUS_LOCK_NOT_GRANTED is
returned to the caller.

Requests to unlock one or all byte-range locks acquired by the process for a specific
file object

The caller can request that a specific, uniquely identifiable locked byte range
be unlocked, or the caller can request that all byte-range locks on the file
stream acquired using a specific file object and owned by the calling process
be unlocked.

When a process closes all open handles associated with a file object for a file
stream, if the process had ever acquired any byte range locks using that file
object on the file stream, the I/O Manager will issue an unlock-all type of
byte-range unlock request on the file stream, on behalf of the process closing
the handle to the file stream. Similarly, whenever an FSD receives a cleanup
request on a file stream for a specific file object, the FSD is expected to auto-
matically unlock all byte-range locks that may have been acquired by the
calling process using the file object for which the cleanup is being received.*

Lock requests

The lock request is dispatched to the FSD dispatch routine serving as the IRP_
MJ_LOCK_CONTROL major function entry point. The lock request is distinguished
by a minor function code of IRP_MN_LOCK. The arguments supplied to the FSD
as part of the lock request are as follows:

Pointer to the file object
The FSD can easily obtain the file object pointer from the IRP for the open
file stream on which the lock operation has been requested. Note that most
FSD implementations will reject a byte-range file lock request if the object on
which the lock has been requested is not an open, ordinary file. Therefore,
directories, open logical volumes, and other such open objects typically
cannot be locked with byte-range locks.

* There is a subtle point here that you must be aware of: the FSD must not unlock all byte-range locks
owned by the process on the file stream associated with the file object on which the cleanup request has
been received. Rather, only those byte-range locks must be unlocked for which the file object and the
process ID both match.

Dispatch Routine: Byte-Range Locks_______________________________565

ByteOffset
The starting offset for the lock request. This is contained in the Parame-
ters .LockControl .Length field in the current stack location for the I/O
request packet. As noted earlier, this offset could be well beyond the current
end-of-file.

Length
The number of bytes that should be locked for the file stream. Once again,
note that the ByteOffset value plus the Length value could extend well
beyond the current end-of-file. This is a legitimate situation for lock requests.

Key
This is an unsigned long value that the requesting thread can associate with
the lock to be granted. If the lock is granted, subsequent accesses to the byte
range will only be allowed if the process ID and the key value match. You
may recall from the discussion on read/write requests, presented in Chapter
9, Writing a File System Driver 7, that the requesting thread can supply a Key
argument with the I/O request. That argument is subsequently used when
checking whether or not the I/O request will be allowed to proceed.

This is a method where a thread in a process can potentially exclude even
other threads in the same process from accessing the locked byte range.

Process ID
Although not explicitly supplied as part of the IRP sent to the FSD, the FSD
can easily determine the current process ID for the process requesting the
lock operation, by using the loGetRequestorProcess () I/O Manager
service routine. This routine accepts a pointer to the IRP as an argument and
returns a pointer to the process structure (of type PEPROCESS).

Fai1Immediately
This BOOLEAN value can be obtained by checking for the presence of the SL_
FAIL_IMMEDIATELY flag in the Flags field of the current stack location in
the IRP. The presence of the flag indicates that Fail Immediately should
be set to TRUE, which in turn means that the caller would not like to wait if
the lock cannot be immediately granted.

The absence of the flag indicates that the caller does not mind waiting for the
lock request to be granted at some later time. In this case, set the value of
Faillmmediately to FALSE.

WriteLockRequested
The presence of the SL_EXCLUSIVE_LOCK flag in the Flags field of the
current I/O stack location indicates that the caller wishes an exclusive (write)
lock for the byte range specified. In this case, set the value of WriteLockRe-
ques ted to TRUE.

566__________________________Chapter 11: Writing a File System Driver HI

The absence of the SL_EXCLUSIVE_LOCK flag indicates that the caller
wishes to obtain a read (shared) byte-range lock only, and therefore the value
of WriteLockRequested should be set to FALSE.

Unlock requests

The unlock request is distinguished by any one of the following minor function
code values:

IRP_MN_UNLOCK_SINGLE
The FSD must unlock only one byte-range lock. The lock that would be
unlocked (if found) is the single matching lock for which all of the following
passed-in parameters match:

— Process ID associated with the lock, identifying the owner of the byte-
range lock

— File object

— Starting offset

— Length in bytes of the locked range

— Key value

If any of the parameters listed here do not match, then no unlock operation
will be performed.

IRP_MN_UNLOCK_ALL
This is the brute-force approach employed by a process to unlock all of the
byte-range locks acquired by any thread associated with the process using the
target file object. In response to this request, the FSD will unlock all byte-
range locks for which the following match:

— Process ID associated with the lock, identifying the owner of the byte-
range lock

— File object

This request is typically sent by the I/O Manager to an FSD when a process
closes all open handles associated with a file object, but there are other open
handles associated with the same file object belonging to other processes. If
all handles for a file object have been closed, the I/O Manager skips sending
the unlock-all request, since the expectation is that the FSD will generate this
request internally in response to a cleanup request received by the file system
driver.

IRP_MN_UNLOCK_ALL_BY_KEY
A thread or a process can unlock all byte-range locks for a file object owned
by all threads belonging to the process, as long as the supplied key value and
the key stored with the byte-range lock match. Typically, this method is

Dispatch Routine: Byte-Range Locks_______________________________557

slightly less brute-force than the previous one, since this can also be used by
a thread to close a specific set of byte-range locks all identified by the same
key value.

In response to this request, the FSD will unlock byte-range locks for which all
of the following match:
— Process ID associated with the lock, identifying the owner of the byte-

range lock

— File object

— Key value

In order to determine the parameters supplied with the unlock IRP, use exactly
the same fields (and methods) as described earlier for the lock request operations.

Structures Required for File Lock Support
To implement byte-range lock support in your FSD, you will typically require
some variation of the following structures:

typedef struct SFsdFileLockAnchor {
LIST_ENTRY GrantedFileLockList;
LIST_ENTRY PendingFileLockList;

} SFsdFileLockAnchor, *PtrSFsdFileLockAnchor;

typedef struct SFsdFileLocklnfo {
SFsdldentifier Nodeldentifier;
uint32 FileLockFlags;
PVOID OwningProcess;
LARGE_INTEGER StartingOffset;
LARGE_INTEGER Length;
LARGE_INTEGER EndingOffset;
ULONG Key;
BOOLEAN ExclusiveLock;
PIRP PendingIRP;
LIST_ENTRY NextFileLockEntry;

} SFsdFileLocklnfo, *PtrSFsdFileLockInfo;

ttdefine SFSD_BYTE_LOCK_NOT_FROM_ZONE (0x80000000)
•define SFSD_BYTE_LOCK_IS_PENDING (0x00000001)

Typically, you should embed an SFsdFileLockAnchor structure into the FCB
for the file stream. This structure serves as a list anchor for the following two
linked lists:

• A list containing SFsdFileLocklnfo structures, each of which represents a
granted lock for the file stream

• A list containing SFsdFileLocklnfo structures, each of which represents a
pending lock for the file stream

568 __________________________ Chapter 1 1: Writing a File System Driver III

The SFsdFileLocklnfo structure represents an instance of a granted or
pending byte-range lock request. An instance of this request is allocated when-
ever a byte-range lock request is received. The structure is freed only when the
lock is failed immediately, the IRP is canceled (or the file handle closed) while
the lock request is still queued, or an unlock operation is eventually received for
a granted file lock. The OwningProcess, StartingOf f set, Length, Key,
and ExclusiveLock fields are initialized based upon information supplied in
the byte-range lock request as described earlier.

The PendinglRP field is only valid when the request has been queued, awaiting
an unlock operation. This field then points to the IRP received containing the byte-
range lock request for which STATUS_PENDING was returned. The Ending-
Offset field contains a value that is computed and stored for convenience.

The NextFileLockEntry field is used to queue the SFsdFileLocklnfo
structure to either the GrantedFileLockList or the PendingFileLockList
in the SFsdFileLockAnchor structure contained in the FCB for the file stream
on which the lock operation has been requested.

The FileLockFlags field is used internally to determine where the structure
has been allocated from and also to mark a pending lock request for easy
identification.

Logical Steps Involved
The I/O stack location contains the following structure relevant to processing the
lock control request issued to an FSD:

typedef struct _IO_STACK_LOCATION {

union {

// System service parameters for: NtLockFile/NtUnlockFile
struct {

PLARGE_INTEGER Length;
ULONG Key;
LARGE_INTEGER ByteOffset;

} LockControl;

} Parameters ;

IO_STACK_LOCATION, *PIO_STACK_LOCATION;

Dispatch Routine: Byte-Range Locks_______________________________569

Processing a file lock or unlock request is quite a simple operation to implement.
The following steps outline the processing required for file lock operations:

1. Obtain the parameters described earlier that are supplied with a typical byte-
range lock request.

2. Obtain FSD-specific pointers to the FCB and CCB structures for the file stream.

3. Acquire the FCB MainResource exclusively.
4. Allocate and initialize a new SFsdFileLocklnfo structure to contain the

caller-supplied parameters.
5. Check if any conflicting locks have been previously granted.

For an exclusive lock request, the FSD must check if any portion of the
requested byte range overlaps with a byte range on which a file lock had
been previously granted. To check this, the FSD can simply scan through all
of the granted file locks identified by the SFsdFileLocklnfo structures
linked to the GrantedFileLockList in the FCB.
For a shared lock request, the FCB should ensure that no portion of the
requested byte range overlaps with a previously granted exclusively locked
range. Overlaps with previously granted shared byte-range locks are accept-
able if the current request also wants to obtain a lock for shared (read) access.

6. If no conflict has been found, queue the SFsdFileLocklnfo structure to
the GrantedFileLockList to indicate that a new file lock has been
granted and complete the IRP with STATUS_SUCCESS returned to the caller.

7. If a conflict is detected, check whether the caller is prepared to wait to obtain
the file lock.
If the caller is not prepared to wait (i.e., if Fail Immediately is set to
TRUE), then complete the IRP with a status code of STATUS_LOCK_NOT_
GRANTED. Otherwise, queue the IRP to the PendingFileLockList list
anchor, contained within the SFsdFileLockAnchor structure in the FCB.
To properly queue the request, initialize the PendingIRP field in the SFsd-
FileLocklnfo structure to point to the IRP sent to the FSD by the I/O
Manager for the file lock request. Also set the SFSD_BYTE_LOCK_IS_
PENDING flag value in the FileLockFlags field. Mark the IRP itself as
pending, set a cancellation routine for the IRP, and return a status code of
STATUS_PENDING to the I/O Manager.

The expectation is that for queued lock requests, the FSD will complete the
request whenever the lock is granted (i.e., whenever the conflicting condi-
tions have been removed).

570__________________________Chapter 11: Writing a File System Driver III

8. If any file locks have been granted, be sure to update the IsFastloPos-
sible field value to FastloIsNotPossible in the CommonFCBHeader
for the file stream.

9. Release the FCB MainResource and return control back to the I/O Manager.

To process a byte-range unlock request, the FSD typically performs the following
logical steps:

1. Obtain required parameters, depending upon the type of unlock request.
For example, for a IRP_MN_UNLOCK_SINGLE request, the FSD must get all
of the information, described earlier, that is required to uniquely identify the
single byte-range lock for which the unlock request has been received.
However, for the case of IRP_MN_UNLOCK_ALL, the FSD simply needs to
identify the process requesting the unlock operation and the file object for
which the unlock operation has been requested.

2. Obtain FSD-specific pointers to the FCB and CCB structures for the file stream.

3. Acquire the FCB MainResource exclusively.

4. Scan through all of the SFsdFileLocklnfo structures linked to the Grant-
edFileLockList list head in the FCB.
The intent here is simple. If any matching file-lock structures are encountered,
the unlock operation is processed for the structure. Processing the unlock
operation is simple since it only involves unlinking the structure from the
GrantedFileLockList and freeing up the allocated structure.

WARNING Whenever the unlock-all request is issued to the FSD, your driver
must perform one additional step. It must scan through the Pend-
ingFileLockList, searching for any pending, matching file-lock
requests. If such requests are found, your driver must complete the
pending IRP (waiting for the byte-range lock) after removing any
cancellation routine that may have been set, and then the FSD
should unlink the SFsdFileLocklnfo structure from the Pend-
ingFileLockList linked list and free it.

5. Go through all of the entries in the PendingFileLockList to see if any
locks can now be granted.

Since some unlock operations may have been performed in the preceding
step, the FSD should now scan through the list of pending lock requests to
see if any of them can be granted. If any such request can be granted, the
pending IRP associated with the request should be completed with STATUS_
SUCCESS after any cancellation routine that may have been specified is
unset. The SFsdFileLocklnfo structure for the pending request (that has

Opportunistic Locking________ ____ ____________ ___ ________577

now been granted) should also be moved from the PendingFileLockList
to the GrantedFileLockList (and the SFSD_BYTE_LOCK_IS_PENDING
flag should be cleared).

6. If all granted file locks have been removed, be sure to update the IsFastlo-
Possible field value to FastloIsPossible or Fastlolscruestion-
able in the CommonFCBHeader for the file stream.

Note that the actual value will depend on the state of the opportunistic locks
associated with the FCB.

7. Release the FCB MainResource and return control back to the I/O Manager.

If your FSD follows this simple sequence of steps for lock control operations, you
should be able to successfully implement byte-range lock support in your file
system driver implementation.

Opportunistic Locking
Opportunistic locks (oplocks, for short), simply stated, are guarantees made by a
network LAN Manager server node to one or more LAN Manager client nodes
about the types of file stream accesses that will be allowed on a specific file
stream. They are currently valid only within the LAN Manager network environ-
ment and allow a client to perform some type of local node caching, knowing
that it will be protected from returning stale data to the user because of the pres-
ence of these guarantees.

For example, consider a situation where a server on node sen>er_nodel shares a
local drive letter X:. Furthermore, imagine that a user on node client_nodel
connects to this shared drive letter using the LAN Manager network and opens a
regular file foo for both read and write access. In the absence of any server guar-
antees on the file stream foo, every read operation made by the user thread on
the client node would result in the LAN Manager redirector having to issue a
network read request to obtain the latest data from the server node. The LAN
Manager server software, in turn, would have to request the file data from the
local file system driver managing the shared logical volume corresponding to the
drive letter X:. As you could imagine, this would lead to extremely slow access
(and therefore a small throughput value) for the user on the client node.

Similarly, every write operation performed by the user on the client node would
result in the LAN Manager redirector having to send the updated data to the
server node across the network. The LAN Manager server software, in turn, would
have to issue the write to the local file system managing the shared logical
volume corresponding to the drive letter X: on which the file stream foo resides.

572 __ ________ Chapter 11: Writing a File System Driver HI

You can also imagine what this kind of data transfer would do in terms of satu-
rating your network.

Needless to say, the LAN Manager redirector code on the client node could not
hope to use the services of the NT Cache Manager at all, since data could never
be cached locally.

To avoid this sort of constant data transfer to and from the client and server
nodes participating in a LAN Manager network, the network protocol designers
invented a crude form of cache support built into the protocol called opportu-
nistic locking. This caching protocol allows the LAN Manager server to make one
of three kinds of guarantees to the network redirector software on one or more
client nodes:

• If an exclusive oplock is granted to a client node for a file stream, the client
node is assured that no other thread, either executing locally on the server or
on any other client node, will be allowed to access (or even open) the file
stream for which the exclusive oplock has been obtained.

Consider a client node that requests an open operation of file foo on shared
drive letter X: served (say) by the sample FSD on the server. In response to
the client node's open request made by the LAN Manager server locally on
the server node (issued on behalf of the thread of the client that has actually
requested the open), the sample FSD will create FCB and CCB structures, and
also initialize the file object structure passed in by the I/O Manager. Note that
this is no different from any other regular open operation except that the
request originates on the server node in the LAN Manager server software
(which executes in kernel mode) on behalf of a network client.

Now, also imagine that after the open operation completes, the LAN Manager
server asks the sample FSD to issue an exclusive oplock for the file stream
foo. Imagine also that the sample FSD participates in the oplock protocol
implementation, and therefore agrees to the request. Now, it is the responsibil-
ity of the sample FSD to notify the LAN Manager server whenever any thread
requests an open for the file stream foo for either read or write access.* The
reason for this is as follows: when the local FSD (in our case, the sample
FSD) grants an oplock to the LAN Manager server on the server node, the
server software, in turn, grants the oplock to the network redirector client.
For the exclusive oplock, this assures the client that no other thread is
actively reading or writing the same file stream. Now, the client software on
the remote client node can cache file stream data on the remote node without
having to worry about data consistency issues.

* For an exclusive oplock, the FSD is allowed to let threads open the file stream without breaking the
oplock if they only open the file for read attributes and/or write attribute access.

Opportunistic Locking_______________________________________573

Read caching
The network redirector client obtains file stream data from the server
node and then satisfies all read requests from the user thread locally.
Data could even be returned directly from the system cache in this
situation.

Write caching
The user thread could modify the data for the file stream and the network
redirector client would simply cache the modified data in the system
cache on the remote node, from which it would be asynchronously
written out every once in awhile.

As you can see, having an exclusive oplock on a file stream can improve net-
work throughput tremendously.

What happens when another thread, either from the same client node, from
some other client node, or locally from the server node also tries to open file
foo for read and/or write access? The local FSD that granted the oplock (in
our case, the sample FSD) will have to break the oplock (i.e., inform the LAN
Manager server that it should, in turn, inform the client that the client can no
longer run amuck with the file data). Since this is an exclusive oplock, where
the client may actually have modified data cached remotely, the local FSD
must then wait for the client node to flush (and purge) all cached information
to the server. The flush results in write requests being issued to the local FSD
from the server software on behalf of the remote client. Eventually, all of the
data is updated on the server node, and the local FSD on the server can allow
the new open to proceed. The client is also now aware that it no longer has
exclusive access to the file stream and will therefore not try to modify the
data remotely and keep it cached.

Note that the local FSD on the server node makes the new open request wait
until all of the data has been updated by the client to the server node. The
exclusive oplock is considered completely broken only after the data transfer
has been completed.

• There are also shared oplocks that can be granted by a local FSD to the
server software, which will grant the oplock to one or more network redirec-
tor clients.

Consider the situation where multiple threads, residing on one or more client
nodes, including local threads on the server node itself, have file foo open for
read and write access. Although the local FSD will no longer grant an exclu-
sive oplock to the file stream foo, it will allow client nodes to request shared
oplocks. Shared oplocks are the next best thing to exclusive oplocks because
they assure the network redirector software on the client node that as long as

574____________ _____________Chapter 11: Writing a File System Driver III

the oplock is granted, the client node can cache data remotely for read opera-
tions.

Whenever the local FSD on the server node receives a write request, it is
expected to break all of the read oplocks that were granted to all of the client
nodes concurrently accessing the file stream foo. The oplock breaks inform
the network redirector software on the client nodes that the data they have
cached may no longer be valid. The network redirector software on all the cli-
ent nodes will, in response to the oplock break, purge the system cache of all
cached data. The next read request issued by a thread on one of the remote
nodes will cause the network redirector software on that remote node to
request fresh data from the server.

• Finally, due to its DOS heritage, the LAN Manager protocol also provides for
batch oplocks to be granted to client nodes.

Consider the batch files (with extension .bat) that are simple scripts, which
can be executed by the DOS shell on any Windows NT machine. The method
used by the shell to execute the different statements in a batch file follows:

— The shell opens the batch file.

— It reads the next line to be executed.
— It closes the batch file.
This sequence is repeated in a loop until the entire batch file has been exe-
cuted. Now consider the situation where the file opened by a remote client
on the shared drive X: is called foo.bat. Furthermore, imagine that the shell
on the remote client is busily going through the loop where it opens the file
stream, reads a line, and closes the file stream. This would typically result in a
whole lot of open/close requests flying across the network.

Instead, the network redirector client typically requests a batch oplock from
the server software, which in turn requests this oplock from the FSD on the
server node. Once a batch oplock has been granted, the network redirector
software on the client node will no longer close the file handle in response to
a close performed by the user thread (the shell) on that remote node. Instead,
the network redirector will continue to keep the file open, fully expecting the
user thread to come back and rerequest an open operation, once the current
line read from the file stream has been executed. Furthermore, the grant of a
batch oplock has the same characteristics as an exclusive oplock, where the
remote client is assured that it has full and exclusive access to the file stream.

Opportunistic Locking_______________________________________575

NOTE Maintaining cache coherency across multiple nodes for shared file
objects is a difficult problem to solve. A lot of research has been
done on the subject, and you can consult some of the references
provided at the end of the book for more information.
There are also commercially available file system implementations
that do a much more sophisticated job of maintaining cache coher-
ence across nodes. An example of this is the Andrew File System
(AFS) implementation originally designed at Carnegie Mellon Univer-
sity and the OSF DPS (Distributed File System) implementation.
Although I believe that the method devised by the LAN Manager
Network protocol is crude at best, it does work and supporting this
feature could make remote accesses to shared logical volumes man-
aged by your FSD much faster.

Some Points to Remember About Oplocks
When (and if) you decide to support the oplock protocol, keep the following
points in mind:

• Oplocks are typically only requested by the LAN Manager server software on
behalf of a remote client.
There is nothing, however, to prevent some other component from request-
ing an oplock from the FSD.

• Oplocks are requested from the FSD on the server node that manages a
shared logical volume.

Although this may seem obvious, keep sight of the fact that as the FSD manag-
ing the shared logical volume on the server node, you have full control over
whether or not to support the opportunistic locking protocol. Furthermore,
under normal situations, oplock requests will only be issued to your FSD if
the logical volume that your FSD is managing has been shared across the LAN
Manager Network.

• Oplocks have funky semantics that, unfortunately, need to be maintained.
As an example, consider the case when an exclusive oplock is being broken
by the local FSD because another thread wishes to open file foo on the server
for read and/or write access. Your FSD would typically expect to block the
new open request until the client node that has the exclusive oplock com-
pletes the break by flushing all modified data back to the server.
Typically, that is exactly what your FSD should do. However, the engineers
who designed this messy protocol found that, because the LAN Manager
server software on the server node has a fixed number of worker threads that

576__________________________Chapter 11: Writing a File System Driver HI

it uses to service remote requests, it is theoretically possible that all of these
threads get blocked on servicing open requests for file streams that have
opportunistic locks acquired by some remote clients. In such situations, nei-
ther the FSD nor the server software can truly determine when the open
request would complete (with either a success or failure code), since this
would depend on how quickly the client nodes could flush the data back to
the server. It may even be possible for the server to encounter a deadlock if
all threads are blocked because of the presence of exclusive oplocks and
there are no threads available to service the client flush request required to
complete the oplock break sequence.

In typical DOS-style Microsoft fashion, the designers decided to work around
this problem by allowing the LAN Manager server to specify a special flag in
the open request. The flag value of FILE_COMPLETE_IF__OPLOCKED is spec-
ified in the Parameters .Create.Options field in the create IRP. If such
an option has been specified, the FSD is not supposed to block the current
open, even though the oplock break has not yet been completed. Instead, the
FSD must execute the open, returning the STATUS_OPLOCK_BREAK_IN_
PROGRESS return code in the Status field (provided all other conditions
would allow the open request to succeed). This code value is equivalent to
STATUS_SUCCESS (i.e., the macro NT_SUCCESS (STATUS_OPLOCK_BREAK_
IN_PROGRESS) will return TRUE).

The strange thing about the FILE_COMPLETE_IF_OPLOCKED flag is the
semantics associated with this flag value. The FSD allows the open to suc-
ceed, knowing full well that there is now nothing to prevent the caller from
violating the trust and performing read/write operations even before the
oplock break has been completed. However, the expectation is that, since the
caller could only be the LAN Manager server, it will do the right thing and not
issue any I/O requests until the client that has the exclusive/batch lock on the
file stream has flushed all its data, and the oplock break has been completed.

WARNING As an FSD designer, you can never trust any other component to do
the right thing. Therefore, do not buy into this philosophy in gener-
al and always, always, validate before allowing a caller to proceed
with a file system operation.
Unfortunately, when providing support for opportunistic locks, the
FSD may have to conform to the model determined by the I/O sub-
system designers, which requires some trust to be maintained. The
only recourse available to you in this case is not to support oplocks
(which could lead to degraded performance for users of your FSD).

Opportunistic Locking^_______________________________________577

• Your FSD does not have to support oplock requests.

If you have begun to think that oplocks are too strange for your tastes, I
would agree with you. Therefore, note that you do not have to support oppor-
tunistic locking in your FSD. However, if your FSD manages logical volumes
that could potentially be shared, supporting oplocks (oddities and all) would
be a nice feature to have.

• Even if your FSD does provide oplock support, a remote client that tries to
map the file stream in memory will not be able to enjoy any data coherency
guarantees.

As described in Chapter 5 in the discussion on the NT VMM, it is currently not
possible for an FSD (including a network redirector) to purge user-mapped
pages from the system cache. Therefore, processes on remote clients that
decide to map a file stream in memory are effectively shut out from any syn-
chronization/cache coherency guarantees provided by the LAN Manager net-
work protocol.

How Is an Oplock Granted and Broken?
The LAN Manager server issues an oplock request by utilizing the File System
Control (FSCTL) interface (described later in this chapter). Basically, your FSD will
receive FSCTL requests that indicate the server wishes to obtain an exclusive/
shared/batch oplock on a particular file stream identified by the file object used in
the file system control IRP.

If your FSD grants the oplock request, it must mark the IRP as pending and queue
the IRP internally. A return code of STATUS_PENDING to the caller of the file
system control request indicates that the oplock has been granted.*

So, once again, the rules are simple:

• When you receive an oplock request, either return a status code immediately
of STATUS_OPLOCK_NOT_GRANTED, indicating that the request was denied,
or return STATUS_PENDING, which the caller treats as success in obtaining
the oplock.

• An oplock is broken by simply completing the IRP that was queued (and
STATUS_PENDING returned) when the oplock had been previously granted.

Typically, the LAN Manager server software specifies an IRP completion rou-
tine that is invoked whenever the oplock is broken (i.e., the IRP is simply
completed by the FSD, and this is sufficient to indicate that the break has
occurred). This completion routine initiates the break processing across the

* In the wonderfully twisted world that some designers at Microsoft live in, all of this makes perfect sense.

578____ ______________ _____Chapter 11: Writing a File System Driver HI

network, which could result in I/O flush operations from the remote client
node to the FSD. Remember that the LAN Manager server software executes
in kernel mode, is very tightly integrated with the rest of the I/O subsystem,
creates and manages its own IRP structures (just as the I/O Manager does),
and is therefore capable of using all sorts of methods directly without having
to go through the NT I/O Manager.

There are a couple of other return values you should be aware of:

• The special return code status of STATUS_OPLOCK_BREAK_IN_PROGRESS
returned in response to a create/open request, indicating that a break is
underway, and the caller should wait until the break has been completed

• A value of FILE_OPBATCH_BREAK_UNDERWAY, returned sometimes in the
Information field of the loStatus structure when a create/open request
is received
This value is only returned in the Information field if the create/open
request is being denied due to a sharing violation, but your FSD wishes to
inform the caller that a break operation is underway for the file stream. The
intent here is to allow the caller to possibly modify the share access requested
and resubmit the create/open request.

• A value of FILE_OPLOCK_BROKEN_TO_LEVEL_2 (with value = 0x00000007)
returned in the Information field when an IRP is being completed to indi-
cate an oplock break

This is another one of the optimizations added by the oplock protocol design-
ers. If an exclusive or a batch file oplock is being broken, the FSD has the
option of offering a shared oplock to the thread whose exclusive/batch lock
is being broken. The idea here is that even if the original requesting network
redirector code on the remote node can no longer have the absolute power
that an exclusive/batch oplock could provide, it can at least take advantage of
the functionality (and guarantees) that come with owning a shared oplock.

Therefore, when breaking an exclusive/shared oplock, the FSD could (but is
not required to) return the FILE_OPLOCK_BROKEN_TO_LEVEL_2 value in
the Information field. In turn, the network redirector software on the cli-
ent node also has the option of either accepting this newly offered shared
oplock, or not.

• A value of FILE_OPLOCK_BROKEN_TO_NONE (with value = 0x00000008)
returned in the Information field when an IRP is being completed, to indi-
cate an oplock break.

This is the alternative Information field value returned by the FSD when-
ever an oplock is being broken, and it does not offer even a shared oplock in
return.

Opportunistic Locking_______________________________________579

Oplock Processing Sequence
The following sequence of operations is performed in granting an oplock request
from the perspective of an FSD supporting the oplock functionality:

1. The LAN Manager server requests an opportunistic lock on an open file
stream uniquely identified by a file object structure on behalf of a remote LAN
Manager redirector client.

The request is issued to the FSD in the form of a file system control (FSCTL)
IRP. FSCTL requests are discussed in more detail later in this chapter. Note for
now, however, that the major function code in the IRP is IRP_MJ_FILE_
SYSTEM_CONTROL. The minor function is IRP_MN_USER_FS_REQUEST.
The possible FSCTL code values to request an opportunistic lock are:

- FSCTL_REQUEST_OPLOCK_LEVEL_1
This is a request for a Level 1, or an exclusive oplock, on the file stream.
Here is the code value:
CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 0,

METHOD_BUFFERED, FILE_ANY_ACCESS)

- FSCTL_REQUEST_OPLOCK_LEVEL_2
This is a request for a Level 2, or a shared oplock, on the file stream.
Here is the code value:
CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 1,

METHOD_BUFFERED, FILE_ANY_ACCESS)

- FSCTL_REQUEST_BATCH_OPLOCK

This is a request for a batch oplock on the file stream. Here is the code
value:
CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 2,

METHOD_BUFFERED, FILE_ANY_ACCESS)

2. The FSD decides either to grant or deny the request for an oplock.

The rules defined to grant/deny the oplock request are as follows:

- For an exclusive lock or a batch lock:

If there is more than one open handle for the file stream (indicated by
the OpenHandleCount field in the FCB in the case of the sample FSD),
the oplock request is denied. All synchronous oplock requests are always
denied since, by the method employed to grant the oplock (i.e., return
STATUS_PENDING), it would be foolish to grant the oplock request.*

* The I/O Manager always blocks on behalf of the requesting thread for file objects opened for synchro-
nous processing. Granting an oplock in such a situation would result in the invoking thread being blocked
forever in the I/O Manager code.

580_____________ ______________Chapter 11: Writing a File System Driver III

If there is only one open handle for the file stream (representing the
open operation performed by the thread requesting the exclusive/batch
oplock), and if no exclusive/batch oplocks have currently been granted
on the file stream, the request will succeed.

If there is only one Level 2 oplock previously granted to the same thread
now requesting an exclusive oplock, the Level 2 oplock will be broken
and the new exclusive/batch oplock granted.
In any other situation, the oplock request will be denied.

— For a shared oplock:

Just as in the case of the exclusive oplock request, all synchronous
oplock requests are immediately denied. Otherwise, if there are no
oplocks currently outstanding on the file stream or if the only type of
oplocks that have been granted are shared oplocks, the request is
allowed to succeed.

Note that even if an exclusive/batch oplock is currently being broken
(break is underway), the request will be denied.

3. If a decision is made to grant the oplock, the IRP will be marked pending, a
cancellation routine will typically be set for the IRP, the IRP will be queued
by the FSD on some internal list associated with the FCB, and STATUS_
PENDING will be returned to the caller.

4. If a decision is made to deny the oplock request, the IRP will be completed
with a return code value of STATUS_OPLOCK_NOT_GRANTED.

Consider the situation when an oplock (shared/exclusive/batch) has been
granted. The following events will lead to the oplock being broken:

• An exclusive/batch oplock had been granted, and another thread decides to
open the file.

The FSD knows that it must break the exclusive/batch oplock to continue pro-
cessing the open request. The only determination to be made by the FSD at
this time is whether to offer a shared oplock in return or to simply break the
oplock completely. If the file stream is being superseded or overwritten, the
FSD will break the oplock completely, and no shared oplock will be offered.

However, if the file stream is not being overwritten or superseded, a shared
oplock will be offered in lieu of the exclusive/batch oplock that is now being
broken.

• A write request is received by the FSD, and shared oplocks had previously
been granted.

The FSD must break the shared oplocks completely.

Opportunistic Locking_______________________________________581

• A lock/unlock request is received by the FSD, and shared oplocks had previ-
ously been granted.
The FSD must break the shared oplocks completely.

• A read request is received by the FSD, and exclusive/batch oplocks had previ-
ously been granted.

The FSD must break the exclusive/batch oplock and offer a shared oplock
instead.

• A flush buffers request is received, and oplocks had previously been granted.

The FSD must break the oplock and offer a shared oplock instead.
• The end-of-file mark or allocation size value is decreased.

The FSD must break any oplocks granted completely.

• A cleanup request is received for the file object, indicating that all user han-
dles have been closed for the file object.
Any oplocks granted using the particular file object must be completely bro-
ken and outstanding IRPs completed.

• The remote client that requested the oplock no longer needs it.
The remote network redirector client that requested the oplock can request a
break of the oplock. This break notification is issued to the FSD via the LAN
Manager server in the form of a FSCTL request. The code value of the FSCTL
code is FSCTL_OPLOCK_BREAK_ACKNOWLEDGE which is defined as follows:
CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 3, METHOD_BUFFERED, FILE_ANY_ACCESS)
Note that this FSCTL is also used by a client to acknowledge an oplock break
initiated by the FSD (described later). However, an asynchronous (spontane-
ous) FSCTL from a client node with this value indicates that the caller, itself,
wants to break the oplock. When this request is received by the FSD, all it
has to do is complete the IRP that was queued when the oplock was origi-
nally granted, clean up any oplock state maintained, and complete any pend-
ing IRPs that may have been received and blocked awaiting a break.

If the LAN Manager server has requested oplocks on a file stream using a partic-
ular file object on behalf of a remote network redirector client, and the client
decided to perform I/O operations conforming with the state of the oplock that
had been granted, the oplock cannot be broken by the FSD.

Whenever the FSD decides to break an oplock before allowing the current
request to proceed, the current IRP is simply made to block until the oplock
break has been completed.

582__________________________Chapter 11: Writing a File System Driver III

Once the FSD has determined either to break or downgrade the oplock (from an
exclusive/batch oplock to a shared oplock), the following sequence of events
must be executed by the FSD (in each case, the thread that requested the oplock
broken must acknowledge the break as described later).

Oplocks that are completely broken
The FSD will complete the original IRP that was queued when granting the
oplock. The Information field value in the loStatus structure will be set
to FILE_OPLOCK_BROKEN_TO_NONE.

Oplocks that are downgraded to shared oplocks
The FSD will complete the original IRP that was queued when granting the
oplock. The Information field value in the loStatus structure will be set
to FILE_OPLOCK_BROKEN_TO_LEVEL_2.

As previously mentioned, the FSD makes the current IRP (causing the oplock
break to occur) block, awaiting acknowledgment of the oplock break notification.

To acknowledge an oplock break, the LAN Manager server issues a new FSCTL
request to the FSD. The possible FSCTL code values are as follows:

FSCTL_OPLOCK_BREAK_ACKNOWLEDGE
This FSCTL code value is used by the LAN Manager server on behalf of a
remote network redirector client to acknowledge (or initiate) an oplock break
notification.
If this FSCTL code is received by the FSD after it broke or downgraded a
Level 1 (exclusive) or batch oplock, the FSD is assured that the remote client
has completed flushing all of the dirty data that may have been cached
remotely back to the server node.

If the FSD offered a shared oplock to the client in lieu of an exclusive or
batch oplock that was being broken, receipt of this FSCTL code in the IRP
indicates to the FSD that the client node has accepted the new shared oplock
that was offered. The FSD would then perform the following steps:

a. Update internal structures to reflect the fact that the original exclusive/
batch oplock has been broken completely.

b. Process the current FSCTL IRP as if it were a request to obtain a new
shared oplock, mark the IRP pending, set a cancellation routine, and
return STATUS_PENDING to the caller, indicating that a new Level 2
(shared) oplock has been granted.

If the oplock being broken was originally a shared oplock, or if the FSD did
not offer a shared oplock in lieu of the exclusive/batch oplock being broken,
the FSD can simply update internal data structures to indicate that oplock
break processing has been completed. The FSCTL IRP should be completed

Opportunistic Locking____________ ___________ ________ _________583

with a STATUS_SUCCESS return code, and the Information field in the
loStatus structure of the FSCTL IRP should be set to FILE_OPLOCK_
BROKEN_TO_NONE.

Any IRPs that were queued by the FSD awaiting the oplock break can be
allowed to continue processing at this time.

NOTE If the FSCTL request containing the FSCTL_OPLOCK_BREAK_AC-
KNOWLEDGE FSCTL code value is issued as a synchronous I/O re-
quest, the FSD cannot grant any shared oplock and will always
complete the FSCTL IRP with status code set to STATUS_SUCCESS
and the Information field value set to FILE_OPLOCK_BROKEN_
TO_NONE.

FSCTL_OPBATCH_ACK_CLOSE_PENDING
An FSCTL IRP with this FSCTL code value is issued to the FSD by the LAN
Manager server on behalf of a remote network redirector client in response to
an oplock break notification request for either an exclusive or a batch oplock
request.

This FSCTL is issued instead of the FSCTL_OPLOCK_BREAK_ACKNOWLEDGE
FSCTL to indicate that the network redirector client does not want the shared
oplock, offered by the FSD in lieu of the exclusive/batch oplock, being
broken.

The FSD can simply clean up internal data structures to indicate that the
oplock break has been completed and complete the FSCTL IRP with status
code set to STATUS_SUCCESS.

Any IRPs that were awaiting the oplock break notification can be allowed to
proceed once this FSCTL has been processed.

There is one additional FSCTL code that your driver should expect to receive:
FSCTL_OPLOCK_BREAK_NOTTFY. The caller wants to be notified when a Level
1 oplock break operation has been completed. If no Level 1 oplock break opera-
tion is in progress when the request is received, even if there are oplocks
(exclusive/shared/batch) currently granted for the file stream, the IRP should be
immediately completed with STATUS_SUCCESS. However, if a Level 1 oplock
break operation is underway when this request is received, the IRP should be
queued and only completed when the oplock break operation has been
completed.

584__________________________Chapter 11: Writing a File System Driver III

FSRTL Support for Oplock Processing
The native Windows NT FSD implementations use common routines provided by
the FSRTL to provide oplock support. Unfortunately, Microsoft has chosen not to
encourage third-party developers to use the routines exported by the FSRTL
package. However, the description of the functionality expected from your FSD
should help you in designing and developing your own opportunistic locking
support package.

Dispatch Routine: File System and
Device Control
File system drivers receive file system control requests to perform processing that
cannot otherwise be requested via the standard dispatch entry points. Device
control requests are also directed by the I/O Manager to the file system driver that
performs a mount operation on a target physical or virtual device.

Types ofFSCTL Requests
Most file system driver implementations respond to one or more file system
control requests. The I/O Manager dispatches a file system control request (FSCTL
request) to the FSD via an IRP with a major function code value of IRP_MJ_
FILE_SYSTEM_CONTROL. There are four types of distinguishing minor function
codes that the FSD must check for whenever it receives a FSCTL request from the
Windows NT I/O Manager:

IRP_MN_USER_FS_REQUEST
This minor function code is used in the most common case, when a thread
opens a file system object (file/directory/volume/device) and issues a FSCTL
to the file system driver. There is a set of standard system-defined FSCTL
codes (defined by Microsoft) that can be used by user threads; these will be
discussed later in this section.

In addition to the Microsoft-defined FSCTL codes, it is always possible for
FSD designers to develop their own private FSCTL codes, used internally
between helper applications/user threads and the FSD itself. These can be
issued to the FSD either to request some required functionality or to transfer
data to and from the driver and the user-space application processes.

For example, your FSD may provide some special information in response to
specific FSCTL requests issued by a helper application from user space. Or,
your helper application may issue a special FSCTL request to request the FSD
to format a specific disk. To accomplish such functionality, you would typi-

Dispatch Routine: File System and Device Control_______________________585

cally define some private FSCTL codes, to be used only by your helper
applications and the FSD.

Issuing FSCTL requests is the easiest, most private, and most convenient
method of information transfer between a kernel-mode driver and a user
space thread. To use this method of data transfer, simply define a new FSCTL
code, using the guidelines extensively documented in the DDK, implement
support for the specific FSCTL in the kernel-mode FSD, and have a user-space
thread issue the FSCTL whenever required. That is all you have to do to
accomplish the data transfer, or to have the FSD perform some specific opera-
tion requested by the user thread.

IRP_MN_MOUNT_VOLUME
This special request is issued only by the I/O Manager to request a mount
operation, in response to a change in media reported by a lower-level driver
(for removable media only), or more likely, when the first user open is
received for a file/directory residing on a physical disk that has not had a
mount operation performed on it.

Later in this chapter, you can read a detailed discussion on the mount process
and the functionality provided by the FSD in response to a mount request
identified by the IRP_MN_MOUNT_VOLUME minor function code.

IRP_MN_LOAD_FILE_SYSTEM
This request originates in the I/O Manager. It is only issued by the I/O
Manager to special mini-FSD implementations, requesting them to perform a
load of the full file system driver image. Later in this chapter is a discussion
on how you can design and develop a file system recognizer for your FSD.
This FSCTL code is discussed in detail at that time.

IRP_MN_VERIFY_VOLUME
This is also a special type of FSCTL issued by the I/O Manager to an FSD
managing a mounted logical volume on removable media. This request is
issued by the I/O Manager when a lower-level disk driver indicates that the
media in the removable driver appears to have been removed or changed.
We will discuss how an FSD can develop an appropriate response to be
executed in response to this type of FSCTL request.

Methods of Data Transfer for FSCTL Requests
Each FSCTL code value (used with the IRP_MN_USER_FS_REQUEST minor func-
tion) uniquely determines the method used for data transfer for that particular
FSCTL operation, if such data transfer is requested. The two least significant bits
in the FSCTL code value are used to identify the method of data transfer for the
particular FSCTL request.

586_____________ ____________Chapter 11: Writing a File System Driver III

WARNING When a file system driver creates a device object to represent the
file system itself or to represent an instance of a mounted logical vol-
ume, it can specify whether it wishes to receive buffered I/O re-
quests (DO_BUFFERED_IO flag set in the Flags field for the
device object), direct I/O requests (DO_DIRECT__IO flag set), or the
user-supplied buffer pointer (neither of the two flags should be set).
You must note, however, that those flags are not used to determine
the method of data transfer for file system control or device control
requests. The method used in such cases is specific to each FSCTL
or IOCTL sent to the driver and is determined by the FSCTL or
IOCTL code value as described below.

The following are the available options:

• If the FSCTL code is defined with METHOD_BUFFERED, the I/O Manager allo-
cates a system buffer on behalf of the caller.

This method of data transfer can be defined by setting a value of 0 in the two
least significant bits of the FSCTL code.

The caller can supply either an input buffer only (used to transfer information
to the FSD), an output buffer only (used to receive information back from the
FSD), or both (data transfer occurs in both directions). However, the I/O Man-
ager only allocates a single system buffer for the data transfer.

The FSD can obtain the address of this single system buffer allocated by the
I/O Manager from the AssociatedIrp->SystemBuffer field in the IRP.
The Flags field in the IRP is set with the IRP_BUFFERED_IO and the IRP_
DEALLOCATE_BUFFER flag values (used internally by the I/O Manager).

If an input buffer is supplied by the caller, the I/O Manager will copy data
from the input buffer to the I/O Manager-allocated system buffer, before pass-
ing the request to the FSD. If an output buffer is supplied by the caller, the
I/O Manager will set the IRP_INPUT_OPERATION flag value in the Flags
field in the IRP. The I/O Manager will check for the existence of this flag
upon IRP completion and will copy data from the system buffer to the user-
supplied output buffer if this flag is set.

Note that, since the I/O Manager supplies a single buffer for the use of the
FSD, even in the case when a caller may have provided both an input and an
output buffer, the size of the system buffer allocated by the I/O Manager will
be the greater of the size of the input and output buffers provided by the
requesting thread. The initial contents of the I/O Manager-allocated system
buffer will be overwritten by the FSD when it returns information back to the
I/O Manager.

Dispatch Routine: File System and Device Control______________________587

• If the FSCTL code is defined with METHOD_NEITHER, the I/O Manager sim-
ply sends the user-supplied buffer pointers directly to the FSD.

This method of data transfer can be defined by setting a value of 3 in the two
least-significant bits of the FSCTL code.
If the caller provides an input buffer (i.e., a buffer in which the caller has pro-
vided data for the FSD), the I/O Manager initializes the Parameters.Devi-
celoControl .TypeSlnputBuf fer field in the current stack location with
the pointer to the caller-supplied buffer. Your FSD can obtain data provided by
the caller directly from this buffer.
If the caller also wants to receive data back from the FSD, it would provide
an output buffer pointer when invoking the NT system service routine.* In
this case, the I/O Manager initializes the UserBuffer field in the IRP with
the address of the caller-supplied output buffer. The FSD can return data to
the caller by using the address provided in this field to write to the caller-sup-
plied buffer.

Note that the user-supplied buffer pointer addresses are supplied as-is to the
FSD by the I/O Manager. No checks are performed by the I/O Manager on
the user-supplied virtual addresses for either the input or the output buffers
provided by the caller. Therefore, it is FSD's responsibility to ensure that the
virtual addresses are still valid when it tries to perform data transfer for such
requests. If the request is posted for asynchronous processing, the FSD must
lock the input and/or the output buffers itself and also obtain valid system vir-
tual addresses for each buffer.

• If the FSCTL code is defined with either the METHOD_IN_DIRECT or the
METHOD_OUT_DIRECT FSCTL codes, the I/O Manager allocates a system
buffer for the caller-supplied input buffer and creates an MDL for the caller-
supplied output buffer.

The METHOD_IN_DIRECT method of data transfer can be defined by setting
a value of 1 in the least two significant bits of the FSCTL code. The METHOD_
OUT_DIRECT method of data transfer can be defined by setting a value of 2
in the least two significant bits of the FSCTL code.
The caller can supply an input buffer and an output buffer for both types of
data transfer methods. The I/O Manager allocates a system buffer correspond-
ing to the input buffer provided by the caller and copies the caller-supplied
data from the input buffer into the I/O Manager-allocated system buffer. The

* The system service routine provided by the Windows NT I/O Manager for FSCTL requests is called Nt-
FsControlFile (). For more information on this system service, consult Appendix A. The Win32 sub-
system also provides a method of issuing device IOCTL requests to kernel-mode drivers.

588__________________________Chapter 11: Writing a File System Driver III

address of this I/O Manager-allocated system buffer can be obtained by the
FSD from the Associatedlrp. SystemBuf fer field in the IRP.

If the caller supplies an output buffer when invoking the NtFsControl-
File () system service routine, the I/O Manager creates an MDL for the out-
put buffer and also locks the pages for the MDL. The only difference between
the METHOD_IN_DIRECT and the METHOD_OUT_DIRECT methods is that
the pages locked by the I/O Manager are locked with read access specified in
the former case (for METHOD_IN_DIRECT) and write access specified in the
latter (for METHOD_OUT_DIRECT).

Note that the I/O Manager does not copy any data back into the caller-sup-
plied output buffer upon IRP completion; since the output buffer is directly
accessible to the FSD (via the MDL created by the I/O Manager), no such
copy operation is required.

Standard User File System Control Requests
The I/O stack location contains the following structure relevant to processing file
system control requests issued to an FSD:

typedef struct _IO_STACK_LOCATION {

union {

// System service parameters for: NtFsControlFile
// Note that the user's output buffer is stored in the UserBuffer field
// and the user's input buffer is stored in the SystemBuffer field,
struct {

ULONG OutputBufferLength;
ULONG InputBufferLength;
ULONG FsControlCode;
PVOID TypeSInputBuffer;

} FileSystemControl;

} Parameters;

// . . .

} IO_STACK_LOCATION, *PIO_STACK_LOCATION;

The following FSCTL code values are defined by the system and should be
supported by a disk-based FSD. For each FSCTL code mentioned below, there is a
brief description of the type of processing performed by the native FSD implemen-

Dispatch Routine: File System and Device Control_____________________ 589

tations. This should provide you with a fairly good idea of the functionality
expected from your FSD.

Note that each of these standard FSCTL requests is dispatched to the FSD in an
IRP containing a major function code of IRP_MJ_FILE_SYSTEM_CONTROL and
a minor function code of IRP_MN_USER_FS_REQUEST.

FSCTL_LOCK_VOLUME
Most NT FSD implementations typically execute the following steps:

a. If the file object supplied with the request does not refer to an open
instance of the logical volume object, deny the request with an error code
of STATUS_INVALID_PARAMETER.

b. Acquire the resource associated with your volume control block
exclusively.

c. If the VCB state indicates that it is already locked, or if there are any
open/referenced file objects for the logical volume represented by the
VCB, deny the request (complete the IRP after releasing the VCB
resource) with a STATUS_ACCESS_DENIED error code.

d. Mark the VCB as locked, preventing any new file create/open operations.

e. Flush any cached, modified metadata information about the logical
volume (e.g., bitmaps).

f. Release the VCB resource and complete the IRP with a return code of
STATUS_SUCCESS.

For the native FSD implementations, utilities such as chkdsk always lock a
logical volume before beginning processing for the volume. Some FSD imple-
mentations may actually interpret this request as the beginning of a dismount
sequence for a logical volume and prepare themselves accordingly.

FSCTL_UNLOCK_VOLUME
This simply undoes the lock operation performed with the FSCTL_LOCK_
VOLUME request and clears any flags set in the VCB indicating that the
volume has been locked.

Just as in the case of the lock volume request described, the FSD will reject
the request if the file object supplied does not refer to an open instance of
the previously locked logical volume.

FSCTL_DISMOUNT_VOLUME
The FSD will perform checks to ensure that the VCB indicates the logical
volume was previously locked after acquiring the VCB resource exclusively.
The FSD should then tear down all structures allocated to support the
mounted logical volume, including the VCB structure itself. This would also

590__________________________Chapter 11: Writing a File System Driver HI

include uninitializing any cache map for the stream file object created to
cache logical volume metadata information (see the description later in this
chapter about the volume mount sequence). Of course, your FSD should
ensure that all modified information (including log files, bitmaps, etc.) for the
logical volume have been flushed to secondary storage before discarding this
information from memory.

Also, the FSD should somehow indicate in the volume parameter block struc-
ture for the physical/virtual device object on which the volume had been
mounted that the volume is no longer mounted.

There are a variety of ways in which your FSD could accomplish this. One
way is to set the DO_VERIFY_VOLUME flag in the Flags field of VPB struc-
ture for the device object representing the physical/virtual disk. Another
method could be to simply clear the VPB_MOUNTED flag in the VPB structure
for the physical/virtual device object. Finally, your FSD could take drastic
measures and free up the VPB structure allocated for the physical/virtual
device object and replace it with a newly allocated "clean" VPB structure
(remember to allocate it from nonpaged pool).

If you wish to modify flags in the VPB structure for the real device object on
which your FSD mounted the logical volume (e.g., you decide to clear the
VPB_MOUNTED flag), you should consider acquiring a global I/O Manager
spin lock to ensure synchronized access to the structure. Here is the routine
you can invoke to acquire this global spin lock:
VOID
loAcquireVpbSpinLock(

OUT PKIRQL Irql
) ;
This routine will simply acquire the same global spin lock that the I/O
Manager acquires internally before examining any VPB (e.g., to check
whether the VPB is mounted during a create/open operation). Remember to
pass in a pointer to a KIRQL structure so that the I/O Manager can return the
IRQL at which your code was executing before it acquired the Executive spin
lock. You will need this value when you are finished modifying the VPB struc-
ture, and you invoke this corresponding release spin lock routine:
VOID
IcReleaseVpbSpinLock(

IN KIRQL Irql
) ;
Your FSD should check that this routine was invoked by a caller with appro-
priate privileges before allowing the request to be processed. Furthermore, if
the logical volume was mounted on removable media that you had locked

Dispatch Routine: File System and Device Control______________________591

into the drive, do not forget to issue an IOCTL to the removable media disk
driver unlocking the medium from the drive.

FSCTL_MARK_VOLUME_DIRTY
Your FSD should confirm that the file object passed in reflects a valid instance
of an open operation on the logical volume itself. This is simply a request to
ensure that your in-memory and on-disk data structures reflect that the system
memory may contain information that needs to be flushed out to disk. If the
system crashes before your FSD has a chance to perform a flush operation
and clear the on-disk flag reflecting the fact that the volume is dirty, you may
decide to perform the equivalent of a chkdsk operation during the next boot
cycle before allowing a logical volume mount request to complete.

Remember to acquire the VCB exclusively before modifying any in-memory
or on-disk structures indicating that the volume is dirty and needs to be
flushed to disk.

FSCTL_IS_VOLUME_MOUNTED
Ensure as before that a valid file object has been sent to you for this request.
Typically, your FSD would support this FSCTL if you support removable
media. If your FSD supports removable media and has a volume mounted on
some such removable medium, you should perform the equivalent of a verify
volume operation (described later) to ensure that everything is all right with
the volume. An appropriate status code containing the results of the verify
operation should be returned as part of completing the IRP.

F SCTL_IS_PATHNAME_VALID
The AssociatedIrp->SystemBuffer field in the FSCTL IRP will contain
a pointer to this structure:
typedef struct _PATHNAME_BUFFER {

ULONG PathNameLength;
WCHAR Name[1];

} PATHNAME_BUFFER, *PPATHNAME_BUFFER;

Your mission is to examine the characters contained in the pathname to see if
they are supported by your FSD. Return a status code of either STATUS_
OBJECT_NAME_INVALID or STATUS_SUCCESS.

FSCTL_QUERY_RETRIEVAL_POINTERS
This request will only be directed to your FSD if it manages a boot partition
on which a paging file resides. Providing a bootable FSD requires support
from Microsoft. Therefore, we will ignore this FSCTL-type request and return
STATUS_INVALID_PARAMETER to the caller.

In addition to the FSCTL codes listed, your FSD may support many privately
defined file system control codes. Furthermore, if you design a network redirector
driver, you may wish to provide functionality such as:

592__________________________Chapter 11: Writing a File System Driver III

• Starting the redirector on demand

• Binding to transports used by your redirector

• Returning statistics pertinent to your driver

• Enumerating all open connections

• Deleting specific connections to remote shared objects

• Stopping redirector activities

• Unbinding from specific transports

You must determine the sort of functionality your driver will provide and imple-
ment appropriate FSCTL support.

Verify Volume Support
If your FSD supports removable media, there may be occasions when a verify
volume request is issued to your driver. Typically, this happens whenever a user
injects media into the removable drive.

Disk driver's actions

Whenever the media status in the removable drive appears to have changed, the
disk driver performs the following actions for I/O requests targeted to the device.

1. Check if the VPB indicates whether a logical volume had been previously
mounted on the media in the removable drive.

This can be easily determined by the disk driver by the presence/absence of
the VPB_MOUNTED flag in the Flags field in the VPB structure. If the flag is
not set, no logical mount operation has been performed, and the driver
simply returns STATUS_VERIFY_REQUIRED for IRPs sent to the device.

2. If a logical volume had been mounted, indicate that the media needs to be
verified.

The disk driver will OR in the DO_VERIFY_VOLUME flag in the VPB struc-
ture. It will set the return code value for the IRP to STATUS_VERIFY_
REQUIRED. It will then invoke the IoSetHardErrorOrVeriFyDevice ()
function, which will store the pointer to the supplied device object (one of
the arguments to this well-documented function) in the Tail.Over-
lay . Thread->DeviceToVerify field of the IRP.

3. The disk driver will then complete the IRP.

Dispatch Routine: File System and Device Control______________________593

FSD response

Note that most I/O operations to a disk drive with a mounted logical volume asso-
ciated with the media in the drive originate in the FSD. Whenever an FSD gets a
STATUS_VERIFY_REQUIRED error from an I/O request sent to the target device
object for a logical volume, it performs the following actions:

1. Obtain a pointer to the target device object for the verify operation to be
performed.

The FSD should use the loGetDeviceToVerify () function call to get a
pointer to this device object. It should then reset the DeviceToVerify field
in the TLS to NULL by invoking loSetDeviceToVerify () function with
the arguments: (PsGetCurrentThread (), NULL).

2. Initiate a verify operation.

The FSD can simply invoke the loVerifyVolume () function to initiate a
verify operation:
NTSTATUS
loVerifyVolume(

IN PDEVICE_OBJECT DeviceObject,
IN BOOLEAN AllowRawMount

) ;
The FSD can pass in the pointer to the device object for the device to be veri-
fied (obtained earlier from the loGetDeviceToVerify() function call).
The AllowRawMount is typically set to FALSE, unless the user was trying to
perform a create/open operation on the physical device itself, and the FSD
encountered the verify status code when processing this request.
Note that the invocation to loVerifyVolume () will return either STATUS_
SUCCESS or STATUS_WRONG_VOLUME.

I/O manager's response

When an FSD invokes the loVerifyVolume () function call as described, the
I/O Manager will do the following:

1. If the logical volume had not been previously mounted (FALSE in the
scenario described here), simply invoke a mount sequence.

The mount sequence consists of going through the linked list of all registered,
loaded instances of file system drivers and invoking each one of them,
requesting a mount operation. Later in this chapter, you will read a detailed
discussion on how a mount request is processed by the FSD.
Note that a mount request is issued to the FSD via an FSCTL that has a minor
function value of IRP_MN_MOUNT_VOLUME.

594 __________________________ Chapter 11: Writing a File System Driver III

2. Since the logical volume had been previously mounted, issue a verify volume
FSCTL request to the FSD.

The I/O Manager will create a new IRP for the FSCTL request. The minor func-
tion code in the current I/O stack location will be set to IRP_MN_VERIFY_
VOLUME. The I/O Manager will then issue the IRP to the FSD, since it
manages the logical volume device object identified by the DeviceObject
field in the VPB structure for the device object representing the removable
drive to be verified.*

The Parameters. VerifyVolume.Vpb field in the current stack location
of the verify volume IRP dispatched to the FSD contains a pointer to the VPB,
associated with the device object representing the removable drive containing
the media to be verified. The Parameters .VerifyVolume. DeviceOb-
ject field contains a pointer to the logical volume device object created by
the FSD.

3. If the verify volume FSCTL returns STATUS_SUCCESS, there is nothing more
the I/O Manager needs to do.

4. If the verify volume FSCTL returns STATUS_WRONG_VOLUME, the I/O
Manager will initiate a fresh mount sequence for the device.

To initiate a new mount sequence, the I/O Manager will free the original VPB
structure associated with the device object on which the mount operation will
be attempted. It will allocate a new VPB structure and associate it with the
device object. It will then begin the typical mount sequence.

FSD's response to the verify volume FSCTL request

The IRP issued by the I/O Manager to verify the volume can be easily identified
by the FSD by the IRP_MN_VERIFY_VOLUME minor function code value in the
current I/O stack location.

The I/O stack location contains the following structure relevant to processing the
verify volume request issued to an FSD:

typedef struct _IO_STACK_LOCATION {

union {

// Parameters for VerifyVolume
struct {

Sorry if that sounds cryptic but it is true, I promise.

Dispatch Routine: File System and Device Control ______________________ 55*5

PVPB Vpb;
PDEVICE_OBJECT DeviceObj ect ;

} VerifyVolume;

// . . .
} Parameters;

} IO_STACK_LOCATION, *PIO_STACK_LOCATION;

The FSD performs the following sequence of actions in response to the request:

1. Post the request if required.

Note that a verify request is inherently synchronous, and the I/O Manager will
wait in the context of the thread performing the verify operation if STATUS_
PENDING is returned. Your FSD would typically post the request if the lols-
OperationSynchronous () function call returns FALSE.

2. Get a pointer to the VCB structure for the logical volume device object.

3. Acquire the VCB resource exclusively to ensure synchronized access.

4. Check if the RealDevice->Flags field is no longer marked with D0_
VERIFY_VOLUME.

Since multiple IRP requests to the disk driver could fail with a verify volume
status code, one of those requests could have already resulted in a volume
verify operation being completed. There is nothing the FSD needs to do in
this situation but return STATUS_SUCCESS.

5. Issue requests to the disk driver to obtain information from the physical
media.

The steps performed here are similar to those executed during a logical
mount operation described below. Basically, the FSD must obtain whatever
information is required from the physical media, including getting the drive
geometry by issuing IOCTL requests to the disk driver and issuing read
requests to obtain volume metadata information from disk.

In order to ensure that the disk driver does not fail the I/O requests with a
STATUS_VERIFY_VOLUME error code, the FSD must set the SL_OVERRIDE_
VERIFY_VOLUME flag in the Flags field of the stack location it sets up for
the next lower driver in the chain.

If any of the I/O operations sent to the lower-level driver fail, the FSD typi-
cally decides to return STATUS_WRONG_VOLUME. Skip directly to the step
described below detailing the preprocessing required from the FSD before
returning this error code to the I/O Manager.

596 __________________________ Chapter 11: Writing a File System Driver III

6. Check the information obtained from disk.

Your FSD may perform any appropriate checks to decide if the on-disk struc-
tures indicate the same volume as the one you had previously mounted.

7. If it determines that the volume is the same, flush and purge all cached meta-
data structures for the logical volume and reinitialize all cached information.

This is similar to performing a remount operation on the logical volume.
Once it has reinitialized cached data, your FSD should clear the DO_VERIFY_
VOLUME flag in the VPB. Then it should complete the IRP with STATUS_
SUCCESS as the return code.

8. If it decides that the volume is not the same as the one previously mounted,
throw away all cached metadata information for the volume.
Effectively, you will perform a forced dismount of the volume at this time.
You should also clear the DO_VERIFY_VOLUME flag in the VPB. Then your
FSD should complete the IRP with STATUS_WRONG_VOLUME as the return
code. Since you will return the STATUS_WRONG_VOLUME error code, the I/O
Manager will attempt a remount operation for the media.

9. Complete the FSCTL IRP with the appropriate return code value.

Handling Device IOCTL Requests
The I/O stack location contains the following structure relevant to processing the
device IOCTL request issued to an FSD:

typedef struct _IO_STACK_LOCATION {

union {

// System service parameters for: NtDeviceloControlFile
// Note that the user's output buffer is stored in the UserBuffer
// field and the user's input buffer is stored in the SystemBuffer
// field.
struct {

ULONG OutputBufferLength;
ULONG InputBuf ferLength;
ULONG loControlCode;
PVOID Type3InputBuffer;

} DeviceloControl;

} Parameters;

// ...

Dispatch Routine: File System and Device Control 597

} IO_STACK_LOCATION, *PIO_STACK_LOCATION;

Typically, the FSD should simply forward a device IOCTL request to the target
device object for the mounted logical volume. Study the following code fragment
to see how this can be done.

NTSTATUS SFsdCommonDeviceControl(
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp)

NTSTATUS
PIO_STACK_LOCATION
PIO_STACK_LOCATION
PFILE_OBJECT
PtrSFsdFCB
PtrSFsdCCB
PtrSFsdVCB
BOOLEAN
ULONG
void

RC = STATUS_SUCCESS;
PtrloStackLocation = NULL;
PtrNextloStackLocation = NULL;
PtrFileObject = NULL;
PtrFCB = NULL;
PtrCCB = NULL;
PtrVCB = NULL;
Completelrp = FALSE;
loControlCode = 0;
*BufferPointer = NULL;

try {
// First, get a pointer to the current I/O stack location
PtrloStackLocation = IoGetCurrentIrpStackLocation(Ptrlrp) ;
ASSERT (PtrloStackLocation) ;

PtrFileObject = PtrIoStackLocation->FileObject;
ASSERT (PtrFileObject) ;

PtrCCB = (PtrSFsdCCB) (PtrFileObject->FsContext2) ;
ASSERT (PtrCCB) ;
PtrFCB = PtrCCB->PtrFCB;
ASSERT (PtrFCB) ;

if (PtrFCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_VCB) {
PtrVCB = (PtrSFsdVCB) (PtrFCB) ;

} else {
PtrVCB = PtrFCB->PtrVCB;

// Get the loControlCode value
loControlCode =

Ptr IoStackLocation->Parameters . DeviceloControl . loControlCode ;

// You may wish to allow only volume open operations.

switch (loControlCode) {
#ifdef __THIS_IS_A_NETWORK_REDIR_

case IOCTL_REDIR_QUERY_PATH:
// Only for network redirectors.
BufferPointer = (void *)

(PtrIoStackLocation->
Parameters.DeviceloControl.TypeSInputBuffer),

// Invoke the handler for this IOCTL.

598__________________________Chapter 11: Writing a File System Driver III

RC = SFsdHandleQueryPath(BufferPointer);
Completelrp = TRUE;
try_return(RC);
break;

#endif // _THIS_IS_A_NETWORK_REDIR_
default:

// Invoke the lower-level driver in the chain.
PtrNextloStackLocation = loGetNextlrpStackLocation(Ptrlrp);
*PtrNextIoStackLocation = *PtrIoStackLocation;
// Set a completion routine.
loSetCompletionRoutine(Ptrlrp, SFsdDevIoctlCompletion,

NULL, TRUE, TRUE, TRUE);
// Send the request.
RC = loCallDriver(PtrVCB->TargetDeviceObject, Ptrlrp);
break;

try_exit: NOTHING;

} finally {

// Release the IRP context
if (!(PtrIrpContext->IrpContextFlags

& SFSD_IRP_CONTEXT_EXCEPTION)) {
// Free-up the Irp Context
SFsdReleaselrpContext(PtrlrpContext);

if (Completelrp) {
PtrIrp->IoStatus.Status = RC;
PtrIrp->IoStatus.Information = 0;

// complete the IRP
loCompleteRequest(Ptrlrp, IO_DISK_INCREMENT);

}
}

}

return(RC);

NTSTATUS SFsdDevIoctlCompletion (
PDEVICE_OBJECT PtrDeviceObject ,
PIRP Ptrlrp,
void *Context)
{

if (PtrIrp->PendingReturned) {
loMarklrpPending (Ptrlrp) ;

return (STATUS_SUCCESS) ;
}

This code also illustrates how z network redirector can provide support for the
IOCTL_REDIR_QUERY_PATH IOCTL issued by the MUP component (discussed

File System Recognizers ______________________________________ 599

earlier in Chapter 2, File System Driver Development). See the following code frag-
ment for a skeletal SFsdHandleQueryPath() routine example.

NTSTATUS SFsdHandleQueryPath(
void *Buf ferPointer)
C

NTSTATUS RC = STATUS_SUCCESS ;
PQUERY_PATH_REQUEST RequestBuf f er = (PQUERY_PATH_

REQUEST) Buf ferPointer ;
PQUERY_PATH_RESPONSE ReplyBuffer = (PQUERY_PATH_

RESPONSE) Buf ferPointer ;
ULONG LengthOfNameToBeMatched =

RequestBuf fer->PathNameLength;
ULONG LengthOfMatchedName = 0;
WCHAR *NameToBeMatched = RequestBuf fer->FilePathName;

// So here we are. Simply check the name supplied.
// You can use whatever algorithm you like to determine whether the
// sent-in name is acceptable.
// The first character in the name is always a "\"
// If you like the name sent-in (probably, you will like a subset
// of the name) , set the matching length value in LengthOfMatchedName.

//if (FoundMatch) {
// ReplyBuf fer->LengthAccepted = LengthOfMatchedName;
// } else {
// RC = STATUS_OB JECT_NAME__NOT_FOUND ;

return (RC) ;

The following definitions are required by the code fragment:

tdefine IOCTL_REDIR_QUERY_PATH \
CTL_CODE (FILE_DEVICE_NETWORK_FILE_SYSTEM, 99 ,

METHOD_NEITHER, FILE_ANY_ACCESS)

typedef struct _QUERY_PATH_REQUEST {
ULONG PathNameLength;
PIO_SECURITY_CONTEXT Secur ityContext ;
WCHAR FilePathName[l] ;

} QUERY_PATH_REQUEST , * PQUERY_PATH_REQUEST ;

typedef struct _QUERY_PATH_RESPONSE {
ULONG LengthAccepted;

} QUERY_PATH_RESPONSE, *PQUERY_PATH_RESPONSE;

File System Recognizers
Simply stated, a file system recognizer is a mini-FSD implementation that loads
initially instead of the full FSD.

600__________________________Chapter 11: Writing a File System Driver III

Functionality Provided by a File System Recognizer
The function of the file system recognizer driver is as follows:

• Help conserve system resources by loading the recognizer instead of the com-
plete FSD.

The mini-FSD is, by definition, a small driver providing almost no functional-
ity (except what is discussed below) and so consuming very few system
resources.

• If a valid logical volume needs to be mounted, load the full (original) FSD so
that it can proceed with mounting the volume and servicing user requests.
Once the full FSD has been successfully loaded into memory, the file system
recognizer essentially becomes dormant and stays out of the way. Because of
the low resource requirements for the mini-FSD, keeping it loaded in memory
even after the full FSD has been loaded is a small price to pay compared to
the benefits of using the mini-FSD in the first place.

Basically, the file system recognizer helps the Windows NT operating system
conserve system resources by obviating the necessity of always loading the entire
FSD even if no logical volumes belonging to the FSD are ever mounted (or used)
by users of the system. For example, consider the CD-ROM drive that exists on
your system. It is possible that you may not use the CD-ROM at all during the
current boot cycle. Or, it is quite possible that you have formatted all of your hard
disk partitions with the NTFS file system format and therefore, you never need to
use the FASTFAT file system driver on your machine until you decide to use a
diskette formatted with the FAT file system format.

In such situations, loading the entire FASTFAT and/or CDFS file system drivers
into memory is an unnecessary operation that is costly in terms of the time
required to boot-up the system as well as the memory consumption associated
with the FSD that is inevitable even for a dormant, loaded FSD.

A mini-FSD is a cost-effective method of always being prepared for the possibility
that a user may require the services of the associated FSD, while not incurring the
performance and resource penalties of actually having a fully functional FSD
loaded in memory until it becomes necessary to do so.

Steps Executed by the File System Recognizer
The mini-FSD (or the file system recognizer, as it is commonly known), executes
the following logical steps once it is loaded into memory:

File System Recognizers _ __________________________________601

1. Create a device object representing the mini-FSD in lieu of the file-system-
type device object that the full fledged FSD would create, had it been loaded.

The file system recognizer creates a device object of type FILE_DEVICE_CD_
ROM_FILE_SYSTEM (for a CD-ROM file system recognizer) or FILE_
DEVICE_DISK_FILE_SYSTEM (for the more common, disk-based file
system recognizer). As you may have noted from the initialization code
presented in Chapter 9, this is similar to the operation generally executed by
the full FSD implementation.

2. Register with the I/O Manager as a file system driver so that the mini-FSD
gets invoked whenever an I/O request is received targeted to a physical
device on which no mount operation has been performed.

Just as in the case of any other fully functional disk-based FSD (as illustrated
in Chapter 9), the mini-FSD also invokes IoRegisterFileSystem() to
inform the I/O Manager that a fully functional FSD has been loaded into
memory.

3. Upon receiving a mount request for a physical/virtual device, check the on-
disk information on the device by performing I/O operations to determine
whether the device contains a valid (recognizable) logical volume.

Recall from earlier chapters the sequence of operations undertaken by the
I/O Manager whenever it receives a create/open request for an object on a
physical/virtual device. For example, consider the situation when a user
decides to open file X:\directoryl\foo. The NT Object Manager receives the
request and translates X: (which is simply a symbolic link) to the linked
object name, e.g., \Device\PhysicalDriveO*

So the complete name of the request as determined by the NT Object
Manager is now \Device\PhysicalDriveO\directoryl\foo. Since the
\Device\PhysicalDriveO name typically corresponds to the device object for
the first partition on hard disk 0 (an object belonging to the I/O subsystem),
the Object Manager recognizes that the request should be forwarded to the
device object managed by the I/O Manager and therefore sends the request
on to the I/O Manager for further processing. The portion of the name sent to
the I/O Manager is \directoryl\foo, with the target device object for the
request being clearly identified by the NT Object Manager.

The I/O Manager, in turn, examines the volume parameter block structure
associated with the physical device object to see if any logical volume has
been mounted on the device object. The presence of a mounted logical

* The \??\... names in Windows NT Version 4.0 are simply symbolic links themselves to the correspond-
ing \I)eince\... entries.

6O2__________________________Chapter 11: Writing a File System Driver III

volume associated with a physical/virtual device object can be detected by
checking for the VPB_MOUNTED flag value in the Flags field of the VPB
structure. If a logical mount operation had been successfully performed, the
I/O Manager will send the create/open request to the FSD that manages the
logical volume (represented by a logical volume device object associated with
the physical device object) to actually process the request.

However, if the VPB indicates that no logical mount operation had been
performed for the target physical/virtual device object, the I/O Manager sends
an IRP with the IRP_MJ_FILE_SYSTEM_CONTROL major function code and
the IRP_MN_MOUNT_VOLUME minor function code to each of the registered
disk/CD-ROM file system drivers loaded in the system. The first FSD to
successfully perform the mount operation causes the I/O Manager to stop
issuing any further mount requests to the remaining FSDs.

Since the mini-FSD has registered itself as a fully functional, loaded FSD, it,
too, receives such mount requests from the I/O Manager. Upon receiving
such a mount request for the physical/virtual device (in our example, the
device object identified by \Device\PhysicalDriveO), the mini-FSD obtains the
disk geometry and device type by issuing IOCTL requests to the device driver
managing the device, and it also reads in the metadata information from
appropriate physical sectors on the media.

The mini-FSD then checks to see whether the information obtained from the
disk matches the expected information that would indicate that a valid,
supported logical volume resides on the physical media (or on the virtual
device).

4. If no valid structures are found on the target physical/virtual device, return an
error code of STATUS_UNRECOGNIZED_VOLUME to the I/O Manager, which
will cause the I/O Manager to pass on the request to the next registered file
system (or mini-FSD).

Any file system recognizer supplied along with your FSD must be capable of
detecting the presence/absence of valid metadata information on the storage
medium, to determine whether or not the disk actually contains a valid logical
volume. These checks need not be conclusive; i.e., as long as the mini-FSD
believes that a valid logical volume exists/does not exist on the disk, it can
choose a reasonable course of action to pursue.

5. If structures (metadata) on the target physical device indicate that a valid
logical volume exists on the device, then return STATUS_FS_DRIVER_
REQUIRED to the I/O Manager.

Returning STATUS_FS_DRIVER_REQUIRED to the I/O Manager results in
the I/O Manager issuing another IRP_MJ_FILE_SYSTEM_CONTROL request

File System Recognizers______________________________________603

to the file system recognizer; this time though, the minor function code will
be IRP_MN_LOAD_FILE_SYSTEM indicating that the mini-FSD should
proceed with attempting to load the full FSD implementation into memory.

6. Upon receiving the FSCTL request with a minor function of IRP_MN_LOAD_
FILE_SYSTEM, attempt to load the full FSD into memory.

This can be accomplished by using the ZwLoadDriver () support routine.
See the sample code fragment provided for an example of the usage of this
routine.

7. Remember the result of the load operation and take appropriate steps.

Typically, if the load request succeeds, the mini-FSD can render itself dormant
by simply unregistering itself from the list of registered file system implemen-
tations maintained by the I/O Manager. This ensures that the I/O Manager
will no longer send mount requests to the mini-FSD.
If the load request fails, it is recommended by the NT I/O subsystem
designers that the mini-FSD remember this failure in a device extension field
and never again (during the current boot cycle) attempt to reload the FSD.
Instead, upon receiving further mount requests, the mini-FSD should simply
reject them immediately with the return code STATUS_UNRECOGNIZED_
VOLUME. This will allow the I/O Manager to try some other loaded FSD
instead.
Note that it is not mandatory for your mini-FSD to remember a previous
failure if it believes that the next time around there is a better chance of the
load request succeeding.

You should note that file system recognizers typically exist only for disk-based
(including CD-ROM-based) file system implementations. Network redirectors typi-
cally do not use a VCB structure, and they also do not typically have mini-FSD
implementations.

The sample code fragment illustrates how you could develop your own file
system recognizer:

Code Sample
NTSTATUS DriverEntry (
PDRIVER_OBJECT DriverObject,
PUNICODE_STRING RegistryPath)
{

NTSTATUS RC = STATUS_SUCCESS;
UNICODE_STRING DriverDeviceName;
UNICODE_STRING FileSystemName;
OBJECT_ATTRIBUTES Obj ectAttributes;
HANDLE FileSystemHandle = NULL;

604 _________ _______________ Chapter 11: Writing a File System Driver III

IO_STATUS_BLOCK loStatus;
PtrSFsRecDeviceExtension PtrExtension = NULL;

try {
try {

// Initialize the IRP major function table
Dr iverObj ect->Ma j orFunc tion [IRP_MJ_FILE_SYSTEM_CONTROL] =

SFsRecFsControl ;
DriverObject->DriverUnload = SFsRecUnload;

// Before creating a device object, check whether the FSD has
// been loaded already. You should know the name of the FSD
// that this recognizer has been created for.
RtllnitUnicodeString (&FileSystemName, L" \\SampleFSD") ;
InitializeObjectAttributes (&ObjectAttributes, &FileSystemName,

OBJ_CASE_INSENSITIVE, NULL, NULL) ;
// Try to open the file system now.
RC = ZwCreateFile(&FileSystemHandle, SYNCHRONIZE,

&ObjectAttributes,
&IoStatus, NULL, 0,
FILE_SHARE_READ FILE_SHARE_WRITE,
FILE_OPEN, 0, NULL, 0) ;

if (RC != STATUS_OBJECT_NAME_NOT_FOUND) {
// The FSD must have been already loaded.
if (NT_SUCCESS(RC)) {

ZwClose (FileSystemHandle) ;
}
RC = STATUS_IMAGE_ALREADY_LOADED;
try_return(RC) ;

// Create a device object representing the file system
// recognizer. Mount requests are sent to this device object.
RtllnitUnicodeString (ScDriverDeviceName,

L"\\SampleFSDRecognizer") ;

if (!NT_SUCCESS(RC = loCreateDevice (
DriverObject, // Driver object for the file

// system rec .
sizeof (SFsRecDeviceExtension) , // Did a load fail?
&DriverDeviceName, // Name used above
FILE_DEVICE_DISK_FILE_SYSTEM,
0, //No special characteristics
FALSE ,
& (PtrFSRecDeviceObject)))) {

try_return(RC) ;

PtrExtension =
(PtrSFsRecDeviceExtension) (PtrFSRecDeviceOb j ect->

DeviceExtension) ;

PtrExtension->DidLoadFail = FALSE;

File System Recognizers 605

II Register the device object with the I/O Manager.
IoRegisterFileSystem(PtrFSRecDeviceObject) ;

} except (EXCEPTION_EXECUTE_HANDLER) {
/* we encountered an exception somewhere, eat it up */
RC = GetExceptionCode () ;

try_exit: NOTHING;
finally {
/* start unwinding if we were unsuccessful */
if (!NT_SUCCESS(RC) && PtrFSRecDeviceObject) {

IoDeleteDevice(PtrFSRecDeviceObject) ;
PtrFSRecDeviceObject = NULL;

return (RC) ;

void SFsRecUnload(
PDRIVER_OBJECT PtrFsRecDriverObject)

// Simple. Unregister the device object, and delete it.
if (PtrFSRecDeviceObject) {

loUnregisterFileSys tern (PtrFSRecDeviceObject) ;
IoDeleteDevice(PtrFSRecDeviceObject) ;

PtrFSRecDeviceObject = NULL;

return;

NTSTATUS SFsRecFsControl (
PDEVICE_OBJECT DeviceObject ,
PIRP Irp)
{

NTSTATUS
PIO_STACK_LOCATION
PtrSFsRecDeviceExtension
PDEVICE_OBJECT
UNICODE_STRING

FsRtlEnterFileSystemf) ;

RC = STATUS_UNRECOGNIZED_VOLUME;
PtrloStackLocation = NULL;
PtrExtension = NULL;
PtrTargetDeviceObject = NULL;
DriverName;

try {
try {

PtrloStackLocation = loGetCurrentlrpStackLocation(Irp) ;
ASSERT (PtrloStackLocation) ;

// Get a pointer to the device object extension.
PtrExtension =

(PtrSFsRecDeviceExtension) (PtrFSRecDeviceObject->
DeviceExtension) ,

606 __________________________ Chapter 11: Writing a File System Driver III

switch (PtrIoStackLocation->MinorFunction) {
case IRP_MN_MOUNT_VOLUME :

// Fail the request immediately if a previous load has
// failed. You are not required to do this, however, in
// your driver.
if (PtrExtension->DidLoadFail) {

try_return (RC) ;

// Get a pointer to the target physical/virtual device
// object.
PtrTargetDeviceObject =

PtrIoStackLocation->
Parameters . MountVolume . DeviceObj ect ;

// The operations that you perform here are highly FSD
// specific. Typically, you would invoke an internal
// function that would
// (a) Get the disk geometry by issuing an IOCTL
// (b) Read the first few sectors (or appropriate sectors)
// to verify the on-disk metadata information.
//To get the drive geometry, use the documented I/O
// Manager routine called ZoBuildDeviceloControlRequest ()
//to create an IRP. Supply an event with this request
// that you will wait for in case the lower-level driver
// returns STATUS_PENDING . Similarly, to actually read on-
// disk sectors, create an IRP using the
// loBuildSynchronousFsdRequest {) function call with a
// major function of IRP_MJ_READ.

// After you have obtained on-disk information, verify the
// metadata. RC =
// SFsRecGetDisklnfoAndVerify(PtrTargetDeviceObject) ;

if (NT_SUCCESS(RC)) {
// Everything looks good. Prepare to load the driver.
try_return(RC = STATUS_FS_DRIVER_REQUIRED) ;

}
break ;

case IRP_MN_LOAD_FILE_SYSTEM:
// OK. So we processed a mount request and returned
// STATUS_FS_DRIVER_REQUIRED to the I/O Manager.
// This is the result. Talk about an ungrateful I/O
// Manager making us do more work!
RtllnitUnicodeStringt&DriverName,

L" \\Registry\\Machine\\System\\CurrentControlSet\\Services\\SFsd") ;
RC = ZwLoadDriver (&DriverName) ;
if ((!NT_SUCCESS(RC)) && (RC !=

STATUS_IMAGE_ALREADY_LOADED)) {
PtrExtension->DidLoadFail = TRUE;

} else {
// Load succeeded. Mission accomplished.
loUnregisterFileSys tern (PtrFSRecDeviceObj ect) ;

File System Recognizers __ 607

break;
default:

RC = STATUS_INVALID_DEVICE_REQUEST;
break;

} except (EXCEPTION_EXECUTE_HANDLER) {
RC = GetExceptionCode () ;

try_exit: NOTHING;

} finally {
// Complete the IRP.
Irp->IoStatus. Status = RC;
loCompleteRequest (Irp, IO_NO_INCREMENT) ;

FsRtlExitFileSystem() ;

return(RC) ;
}
The following structure definitions are used by the code fragment:

typedef struct SFsRecDeviceExtension {
BOOLEAN DidLoadFail;

} SFsRecDeviceExtension, *PtrSFsRecDeviceExtension;

PDEVICE_OBJECT PtrFSRecDeviceObj ect = NULL;
unsigned int SFsRecDidLoadFail = 0;

extern NTSTATUS ZwLoadDriver (
IN PUNICODE_STRING DriverName) ;

Notes
As you can see, developing a file system recognizer (mini-FSD) is not difficult at
all. One point to note, in the event that you do provide a file system recognizer
module with your FSD implementation, is how you should configure the Registry
in order to load the recognizer automatically.

Chapter 9 lists the entries required in the Windows NT Registry to install a full
FSD. You should make the following modifications:

• Modify HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Sample-
FSD\Start to have a value of 4.

• You should also add a new entry for the file system recognizer, e.g., HKEY_
LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\SFsRec.

Chapter 11: Writing a File System Driver HI

This key should at least include the following value entries:

- ErrorControl : REG_DWORD : 0
- Group : REG_SZ : Boot File System
- Start : REG_DWORD : Oxl
- Type : REG_DWORD : 0x8

This indicates that the type of kernel service is SERVICE_RECOGNIZER_
DRIVER (a file system recognizer).

What Happens After the FSD Is Loaded?
Once a file system has been successfully loaded, the mini-FSD returns STATUS_
SUCCESS to the Windows NT I/O Manager. The I/O Manager then queries all the
loaded FSD instances once again, asking each one to mount the logical volume
on the target physical/virtual device object.

This mount request will eventually reach the newly loaded (our sample) file
system driver. The request is dispatched to the driver as a FSCTL request. The IRP
contains a major function code of IRP_MJ_FILE_SYSTEM_CONTROL and a
minor function code of IRP_MN_MOUNT_VOLUME. The Flags field in the current
I/O stack location is a value of (IRP_MOUNT_COMPLETTON | IRP_
SYNCHRONOUS_PAG ING_1 0) .

The I/O stack location contains the following structure relevant to processing the
mount request issued to an FSD:

typedef struct _IO_STACK_LOCATION {

union {

// Parameters for MountVolume
struct {

PVPB Vpb;
PDEVICE_OBJECT DeviceObj ect ;

} MountVolume;

} Parameters;

IO_STACK_LOCATION, *PIO_STACK_LOCATION;

File System Recognizers______________________________________609

The FSD must perform a logical mount operation upon receiving the mount
request. The following sequence of logical steps are typically executed by the
FSD when it receives the mount request:

1. The FSD will obtain the partition information, i.e., the driver geometry, by
building a device IOCTL IRP and issuing it to the driver managing the target
device object.
The loBuildDeviceloControlRequest () support routine, provided by
the I/O Manager, can be used to create an IRP that is then sent to the lower-
level driver. Typically, the IOCTL code used is IOCTL_DISK_GET_
PARTITION_INFO for read/write media.
Note that CDFS issues two separate IOCTL requests to the disk driver with
IOCTL codes specified as IOCTL_CDROM_CHECK_VERIFY and IOCTL_
CDROM_GET_DRIVE_GEOMETRY, respectively.

2. Once partition information has been successfully obtained, the FSD will typi-
cally create a device object representing the instance of the mounted volume.

The device object created would have a specified type of either FILE_
DEVICE_DISK_FILE_SYSTEM or FILE_DEVICE_CD_ROM_FILE_SYSTEM.

Note that the sample FSD defines a volume control block structure repre-
senting an instance of a mounted logical volume. The sample FSD
implementation allocates this VCB structure as the device extension for the
device object created to represent the mounted logical volume. Your driver
does not have to use the same methodology. However, this would be a good
place for your driver to allocate a VCB structure (from nonpaged pool) and
initialize it appropriately.

To see the kind of initialization performed by the sample FSD, consult this
code fragment:
void SFsdInitializeVCB(
PDEVICE_OBJECT PtrVolumeDeviceObj ect,
PDEVICE_OBJECT PtrTargetDeviceObj ect,
PVPB PtrVPB)
{

NTSTATUS RC = STATUS_SUCCESS ;
PtrSFsdVCB PtrVCB = NULL;
BOOLEAN VCBResourcelnitialized = FALSE;

PtrVCB = (PtrSFsdVCB)(PtrVolumeDeviceObject->DeviceExtension);

// Zero it out (typically this has already been done by the I/O
// Manager but it does not hurt to do it again).
RtlZeroMemory(PtrVCB, sizeof(SFsdVCB));

// Initialize the signature fields
PtrVCB->NodeIdentifier.NodeType = SFSD_NODE_TYPE_VCB;
PtrVCB->NodeIdentifier.NodeSize = sizeof(SFsdVCB);

610__________________________Chapter 11: Writing a File System Driver III

II Initialize the ERESOURCE object.
RC = ExInitializeResourceLite(&(PtrVCB->VCBResource));
ASSERT(NT_SUCCESS(RC));
VCBResourcelnitialized = TRUE;

// We know the target device object.
// Note that this is not necessarily a pointer to the actual
// physical/virtual device on which the logical volume should
// be mounted. This is a pointer to either the actual
// device or any device object that may have been
// attached to it. Any IRPs that we send should be sent to this
// device object. However, the "real" physical/virtual device
// object on which we perform our mount operation can be
// determined from the RealDevice field in the VPB sent to us.
PtrVCB->TargetDeviceObject = PtrTargetDeviceObject;

// We also have a pointer to the newly created device object
// representing this logical volume (remember that this VCB
// structure is simply an extension of the created device object).
PtrVCB->VCBDeviceObject = PtrVolumeDeviceObject;

//We also have the VPB pointer. This was obtained from the
// Parameters.MountVolume.Vpb field in the current I/O stack
// location for the mount IRP.
PtrVCB->PtrVPB = PtrVPB;

// Initialize the list-anchor (head) for some lists in this VCB.
InitializeListHead(&(PtrVCB->NextFCB)) ,-
InitializeListHead(&(PtrVCB->NextNotifyIRP));
InitializeListHead(&(PtrVCB->VolumeOpenListHead));

// Initialize the notify IRP list mutex
KeInitializeMutex(&(PtrVCB->NotifyIRPMutex), 0) ;

// Set the initial file size values appropriately. Note that your
// FSD may guess at the initial amount of information you would
// like to read from the disk until you have really determined
// that this a valid logical volume (on disk) that you wish to
// mount. PtrVCB->FileSize = PtrVCB->AllocationSize = ??

// You typically do not want to bother with valid data length
// callbacks from the Cache Manager for the file stream opened for
// volume metadata information
PtrVCB->ValidDataLength.LowPart = OxFFFFFFFF;
PtrVCB->ValidDataLength.HighPart = OxVFFFFFFF;

// Create a stream file object for this volume.
PtrVCB->PtrStreamFileObject = loCreateStreamFileObject(NULL,

PtrVCB->PtrVPB->RealDevice);
ASSERT(PtrVCB->PtrStreamFileObject);

// Initialize some important fields in the newly created file
// object.

File System Recognizers______________________________________611

PtrVCB->PtrStreamFileObject->FsContext = (void *)PtrVCB;
PtrVCB->PtrStreamFileObject->FsContext2 = NULL;
PtrVCB->PtrStreamFileObject->SectionObjectPointer =

&(PtrVCB->SectionObject);

PtrVCB->PtrStreamFileObject->Vpb = PtrVPB;

// Link this chap onto the global linked list of all VCB
structures.

ExAcquireResourceExclusiveLite(&(SFsdGlobalData.GlobalDataResource),
TRUE);

InsertTailList(&(SFsdGlobalData.NextVCB), &(PtrVCB->NextVCB));

// Initialize caching for the stream file object.
CcInitializeCacheMap(PtrVCB->PtrStreamFileObject,

(PCC_FILE_SIZES)(&(PtrVCB->AllocationSize)),
TRUE, // We will use pinned

// access.
&(SFsdGlobalData.CacheMgrCallBacks),
PtrVCB);

SFsdReleaseResource(&(SFsdGlobalData.GlobalDataResource));

// Mark the fact that this VCB structure is initialized.
SFsdSetFlag(PtrVCB->VCBFlags, SFSD_VCB_FLAGS_VCB_INITIALIZED);
return;

}
Remember to perform the following modifications to the device object
created to represent the mounted logical volume instance:

— Check the alignment restriction enforced by the target physical/virtual
device object.
If the alignment requirement mandated by the target device object is
greater than that specified by your FSD, modify the AlignmentRe-
quirement field in the newly created device object to reflect that of the
target device.

— Remember to clear the DO_DEVICE_INITIALIZING flag from the
Flags field in the newly created device object.

For device objects created during driver load time, the I/O Manager auto-
matically performs this task for you. If, however, you forget to clear this
flag value for device objects created by your FSD after the driver initializa-
tion has been completed, your FSD will not receive any IRPs, because the
I/O Manager will fail any requests sent to the device immediately.

— Set the StackSize value in the newly created device object to be equal
to (TargetDeviceObject->StackSize + 1).

612__________________________Chapter 11: Writing a File System Driver HI

3. Set the DeviceObject field in the PtrVPB structure, sent to the FSD as part
of the mount request to point to the new device object.

This is how a logical association is created between the VPB structure and the
logical volume device object created by your FSD. This pointer value is used
by the I/O Manager to determine the target device object whenever a create/
open request is received for a mounted logical volume.

4. Clear the DO_VERIFY_VOLUME flag (if set) in the device object for the real
(physical/virtual) device.

If you do not clear this bit, any read operations issued by your FSD to the
device will fail. Remember, though, if you clear this bit, you must reset it on
your way out of the mount routine.

5. Read in some of the information required to verify that the logical volume can
be mounted by your FSD.

You can simply use CcMapData () to map the sectors described by the on-
disk volume structures. Remember that this routine returns a pointer to a
buffer control block structure and also a buffer pointer to the mapped-in infor-
mation, which is valid as long as the range is not unpinned.

6. Verify that the structures on disk are legitimate, performing additional read
operations if required.

7. Create and initialize an FCB structure to represent the root directory.

Typically, the FSD always maintains an internal reference on the root direc-
tory FCB, to keep it around in memory as long as the volume stays mounted.
The PtrRootDirectoryFCB field in the VCB structure is initialized by the
sample FSD to point to the newly created and opened root directory for the
logical volume.

Note that opening the root directory will involve reading the root directory
contents from disk. Your FSD may use stream file objects created for internal
directory I/O operations.

By this time you should have a fairly good idea of the range that you need to
perform map operations for and you should update the file size values in the
VCB structure appropriately.

8. The native Windows NT FSD implementations appear to read the volume
label off the disk to ensure that the volume was not previously mounted.
If this happens to be a remount request for a previously mounted volume,*
the FSD must remove the newly created VCB and stream file object structures

* Any user/kernel thread with the appropriate privileges may have issued a mount request. The I/O Man-
ager will also issue a mount request if a previously issued verify volume operation (for removable media)
to the FSD had a return code of other than STATUS_SUCCESS.

File System Recognizers______________________________________613

(ensuring that any pinned ranges have been unpinned) and reinitialize the
old VCB structures appropriately. Reinitialization involves setting the
following fields:

— The 01dVCB->PtrVPB->RealDevice must be updated to point to the
PtrVPB->RealDevice field contents.

— The 01dVCB->TargetDeviceObject field must be initialized to refer
to the new TargetDeviceObject, obtained from the current I/O stack
location for the mount IRP.

— The PtrVPB->RealDevice->Vpb field must be reinitialized to
01dVCB->PtrVPB.

— The cache map for the stream file object associated with the OldVCB
must be reinitialized.

— Any other FSD-specific operations should be performed here to ensure
that any cached information from the previous mount has been discarded.

9. Now that the mount/remount operation is nearly finished, you should re-
enable volume verification if you have cleared the DO_VERIFY_VOLUME flag
from the real target device object.

10. Typically, native NT FSD implementations will issue an IOCTL request to the
target device object to lock removable media in the drive (at least, NTFS
appears to do this).

11. Set the appropriate flag value in your VCB structure to indicate that the
mount/remount operation was successful.

For example, the sample FSD will set the SFSD_VCB_FLAGS_VOLUME_
MOUNTED flag in the VCBFlags field.

12. Unpin any byte ranges that were pinned due to an invocation of CcMap-
Data () and release any resources that may have been acquired.

13. Return STATUS_SUCCESS if the mount logical volume operation succeeded.

If your FSD encounters an error during the mount process (e.g., I/O errors
encountered when attempting to read on-disk information), it should return
the appropriate error value after cleaning up any structures that may have
been allocated in processing the mount request.*

If your FSD returns STATUS_SUCCESS to the I/O Manager for the mount
request, the I/O Manager will set the VPB_MOUNTED flag in the VPB structure.

* If a mount request issued by the I/O Manager fails for the physical cleviee objeet representing the system
boot partition, the NT I/O Manager will bugcheck the system with the INACCESSIBLE_BOOT_DEVICE
bugcheck code.

614__________________________Chapter 11: Writing a File System Driver III

Once the logical volume has been mounted by a loaded FSD, the I/O Manager
will send the original create/open request that resulted in all of this processing
being performed. The create/open request will be sent to the newly created
device object representing the mounted instance of the logical volume and
referred to by the DeviceObject field in the VPB structure.

NOTE Mount operations performed on a logical volume are often very
complex, especially for more sophisticated FSD implementations
such as NTFS, which is a log-based file system driver. Therefore,
you should use the steps listed previously as a general guideline to
follow when designing the volume mount operation specific to your
file system driver.

In the next chapter, we'll see how to design and develop filter drivers that could
help provide unique value-added functionality for the Windows NT operating
system.

In this chapter:
• Why Use Filter

Drivers?
• Basic Steps in

Filtering
• Some Dos and Don 'ts

in Filtering

Filter Drivers

The Windows NT I/O subsystem was designed to be extensible. One of the ways
in which the capabilities of the I/O subsystem can be extended is by developing
filter drivers. Chapter 2, File System Driver Development, provided an introduction
to filter drivers in Windows NT. This chapter takes a detailed look at designing
and implementing filter drivers for the Windows NT operating system.

First, we'll discuss why you may want to use filter drivers to achieve some of your
objectives. This is followed by a discussion of some fundamental steps involved
in developing filter drivers, including how to attach to a target device object, how
to create your own IRP structures, how to use completion routines to perform
postprocessing upon IRP completion, and how to stop filtering by detaching from
a target device object.

We'll conclude with a discussion of some issues you should be familiar with
when attempting filter driver design and development. The diskette accompa-
nying this book provides a complete sample filter driver implementation that can
be used as a template in designing your own kernel-mode filter driver.

Why Use Filter Drivers?
The fundamental reason for any of us to design and develop kernel-mode soft-
ware for Windows NT is to provide added value beyond what is provided with
the core operating system environment. This is also the motivating factor behind
the design and development of filter drivers.

Two design principles adopted by the NT I/O Manager make developing value-
added software easier than with other operating systems.

615

616_____________________________________Chapter 12: Filter Drivers

First, the I/O Manager design implements a client-server model for the I/O
subsystem. Any user- or kernel-mode component can request the services of prac-
tically any other loaded kernel-mode driver. The requesting module is then the
client of the target driver that will satisfy the request. There are few restrictions
mandated by the I/O Manager on when a client component can invoke a driver
(the server for the request) and what kind of services can be requested.

One example of the usage of this client-server model is when file system drivers
request services from lower-level device drivers. What is more unusual, though
certainly possible, is for file systems to request services from other file system
drivers installed on the machine, or even for lower-level intermediate drivers to
request services from higher-level file system drivers.

You should give careful consideration to the following whenever you design a
driver that requests services from either other higher-level kernel-mode drivers or
kernel-mode drivers at the same level in the calling hierarchy:

• The different scenarios under which your driver can be invoked

• The different scenarios under which your driver would request services from
other kernel-mode modules

• Restrictions on when you can incur page faults within your driver module

• Assumptions made by higher-level drivers, such as file systems; the file sys-
tems adapt their behavior depending on what the top-level component is for
an I/O request

• Resource acquisition hierarchies that must be defined and strictly imple-
mented for resource acquisition across kernel-mode modules

Second, the NT I/O Manager supports a layered driver model. As each IRP is
processed, it passes through various layers of the driver hierarchy until it is finally
resolved by some driver via a call to loCompleteRequest () . Therefore, it's
easy for a third-party driver to insert itself into the existing calling hierarchy and
get the opportunity to process the I/O Request Packets.

In order to cooperate with the I/O Manager in supporting such a layered driver
module, your design must conform to the following basic requirements:

• Always invoke the services of other kernel-mode drivers in the standard man-
ner by using the loCallDriver () function.

• Once an IRP has been sent on to another driver, do not touch it.

• You can, however, register a completion routine to be invoked when the IRP
has been completed.

• Unless you develop tightly coupled drivers that use privately defined lOCTLs
to communicate with each other, you must never depend on whether the

Why Use Filter Drivers? 617

request you have forwarded goes directly to your target driver or is inter-
cepted by another filter driver module.

• The filter driver module must present the same interfaces as those presented
by the original target of the request.

• Treat other driver modules as black boxes.
• Your driver must not be dependent upon how the target driver implements

processing for your I/O request.

What Is a Filter Driver?
A filter driver is a kernel-mode driver. It is developed primarily to intercept
requests targeted to an existing kernel-mode driver, to allow the addition of new
functionality beyond what is currently available.

Figure 12-1 illustrates this concept.

Figure 12-1. Inserting a filter driver to intercept requests

As shown in Figure 12-1, I/O requests targeted to a specific driver are intercepted
by the filter driver module. The filter driver may either use the services of the orig-
inal target of the I/O request, or use the services of other user-mode or kernel-
mode software to provide value-added functionality.

618_____________________________________Chapter 12: Filter Drivers

When Can I Use a Filter Driver?
You should consider designing a filter driver whenever you wish to affect the
current flow of processing for certain I/O requests. Therefore, if you want to
provide some software that will extend, modify, or completely supplant an
existing module and if you wish to maintain complete transparency to the user
when providing your specialized functionality, consider designing a filter driver.

For example, suppose you decide to design and implement on-line encryption/
decryption functionality for the data stored on existing Windows NT file systems.
Currently, the operating system does not provide any such functionality.
However, hypothesize that you possess the technology to implement a secure
encryption algorithm. What you would really like to do is the following:

• Use the services of the Windows NT native file systems to store and retrieve
user data

It would not be cost-effective to design your own file system implementation
to store encrypted data on disk. Besides, users would typically wish to con-
tinue to use native Windows NT file system services for storing their data and
would like to use your software only to encrypt sensitive data stored on such
file systems.

• Intercept all user write requests and encrypt data being stored to disk for tar-
geted files, directories, or complete mounted logical volumes

Given that you will not design a new file system driver, you will want to inter-
cept existing file system requests so that the user can specify files, directories,
or even entire mounted logical volumes to be encrypted on-the-fly. When a
write request issued by the user is received, your software module should
somehow be able to intercept such write requests and encrypt the user-sup-
plied data before it is stored to disk.

• Intercept all user read requests and decrypt data (if required) before returning
it to the user

Now that you have successfully encrypted user-supplied data and stored it on
disk using the services of the native file systems, you must also provide the
services of decrypting the data whenever an authorized user tries to read it.

It seems obvious that a filter driver would serve your purposes admirably in the
preceding example problem. The filter driver would allow you to intercept user I/
O requests and perform your encryption/decryption processing on the data, trans-
parently to the user. Furthermore, it is not necessary to design your own file
system or special device driver to manage and transfer data on secondary storage
devices, and therefore your filter driver would continue to use the services
provided by existing drivers on the system.

Why Use Filter Drivers!' 619

More Examples of Filter Drivers
Other examples of situations where a filter driver could be used include:

To provide virus detection functionality
Imagine for a minute that you want to provide a new virus-detection module
for the Windows NT operating system. This virus-detecting module performs
its tasks in real-time; therefore, it will attempt to detect any viruses in files
being copied to a mounted logical volume and refuse the data transfer if such
a virus is found. How would you go about doing this?

Figure 12-2 illustrates how a filter driver that layers itself above a mounted
logical volume device object managed by a file system driver can perform the
virus detection functionality.

Figure 12-2. Filter driver used in virus detection

The virus detection software module can be implemented as a filter driver
that intercepts I/O targeted to one or more mounted logical volumes. When-

620_____________________________________Chapter 12: Filter Drivers

ever any user's I/O request is received by the Windows NT I/O Manager for a
file residing on a mounted logical volume, the I/O Manager normally
forwards the request to the file system driver managing the mounted logical
volume.

Before forwarding the request, however, the I/O Manager also checks to see
if any other device object has layered itself over the device object repre-
senting the mounted logical volume and redirects the request to that device
object, which is at the top of the layered list of device objects. In order to
intercept I/O requests, the virus-detecting filter driver module has to create a
device object that layers (or attaches) itself to the device object representing
the mounted logical volume.

Therefore, the filter driver module intercepts the I/O before it reaches the file
system. Now, the virus-detection module can check for any virus signatures in
the data being written out to disk. Note that in most cases, read requests can
be immediately forwarded by the filter driver to the file system.

If any virus signature is detected, the filter driver can reject the write request,
protecting the user's physical disks from possible corruption. If no virus signa-
ture is detected, the filter driver can safely forward the IRP to the file system
for further processing.

Note that the file system driver has no idea that some other filter driver is
layered above it. It behaves (as always) as if the user request has been sent
directly to it by the I/O Manager. By the same token, the filter driver must
always be cognizant of the fact that the file system does not know about its
existence and must therefore ensure that it does not do anything that would
violate any fundamental assumptions made by the FSD.

Virus-detection software must also be able to automatically check for viruses
that might be present on existing media (especially on removable media). In
most cases, virus-detection software will also provide functionality that will
scan removable media whenever they are reinserted into a drive on the
machine.

This functionality requires that your virus-detection software layer itself over
the lower-level disk driver (for the removable drive) itself, layer over the file
system (in order to accurately detect media changes), or require the software
to understand and utilize information presented in Chapter 11, Writing a File
System Driver III, on how file system drivers handle volume verification for
removable media.

Implement HSM functionality.
Hierarchical storage management (HSM) means different things to different
people. However, it often involves automatic transfer of infrequently used

Why Use Filter Drivers?__621

data to slower but cheaper secondary storage media and an automatic
transfer back to regular storage if the migrated data files are accessed. Figure
12-3 illustrates how a filter driver could be part of such an HSM solution.

Figure 12-3. HSM filter driver

Consider an HSM filter driver that migrates older, infrequently accessed files
to a slower device. If a user now wishes to access or modify the migrated file,
the HSM driver will typically transfer data back to the local file system before
forwarding the request to the FSD. In this way, the FSD can be completely
ignorant about the migration/retrieval of data performed by the HSM driver.

Often, HSM drivers leave a little stub file on the original file system as a place-
holder, once data has been migrated. The actual size of this stub file is
generally 0 bytes, although it may contain some metadata stored by the HSM
driver for administrative convenience. If a user tries to list the directory
entries for a directory whose files have been migrated, the HSM module may
have to massage the information returned by the FSD (e.g., file size) in

622_____________________________________Chapter 12: Filter Drivers

response to a file information request in order to maintain complete transpar-
ency about the migration operation that was performed. Therefore, the HSM
module may choose to register a completion routine before forwarding direc-
tory control or file information requests to the FSD, allowing it to perform
appropriate modification of the information returned by the FSD before it is
finally returned to the caller.

You could undoubtedly come up with many additional ways in which the func-
tionality provided by the I/O subsystem could be extended. The preceding
examples are simply a sample of the number of ways in which filter drivers can
help you implement your ideas for providing added value to the system.

Basic Steps in Filtering
There are a few operations that you should become familiar with when you
design and implement a new filter driver:

• Attaching to a target device object, to intercept calls directed to that object

• Building IRPs that can be dispatched to drivers managing target device objects
Note that your driver may either build associated IRPs for a master IRP sent to
you or create new master IRP structures.

• Specifying a completion routine to be invoked when an attached driver fin-
ishes processing an IRP

• Detaching from the target device object when appropriate

Attaching to a Target Device Object
Before proceeding with the discussion on how to attach to a target device object,
it is useful to understand the following terms:

• The filter driver is the kernel-mode driver that you design and implement.

• The source device object (also known as the filter-driver device object) is the
device object that you create in order to perform a logical attachment
between your driver and the original target of the I/O requests.

• The target device object is the device object, representing a physical, virtual,
or logical device, to which I/O request packets are currently directed.

Your goal is to intercept the I/O request packets sent to the target device
object.

• The target driver is the kernel-mode driver that manages (and provides the
dispatch functions for) the target device object.

Basic Steps in Filtering_______________________________________623

The process of associating a source device object created by your filter driver with
the target device object, such that the I/O Manager will automatically redirect
requests to your driver is called an attach operation.

As mentioned earlier, filter drivers provide their value-added functionality by inter-
cepting requests targeted to an existing driver. Once a filter driver has begun
intercepting all of the requests targeted to the existing driver module, it can either
augment the functionality provided by the existing driver or supplant it altogether.

There are a few simple steps your driver must perform to successfully attach to a
target device object:

1. Get a pointer to the target device object.

2. Create your own device object that will be used in the attach operation.
3. Ensure that your driver is set up to process the I/O requests, originally

directed to the target device object, that will now be redirected to it instead.
4. Ensure that the fields in your device object are set correctly to maintain

complete transparency to the modules that normally invoke the target driver.
5. Request the I/O Manager to create an attachment between the two device

objects.

Once the attach operation has been completed, the I/O Manager will begin redi-
recting I/O requests to your device object instead of forwarding them to the
driver managing the target device object.

Code Fragment
The following code fragment illustrates how the attach operation can be imple-
mented by your filter driver.

NTSTATUS SFilterAttachTarget(
PUNICODE_STRING TargetDeviceName,
ACCESS_MASK DesiredAccess,
BOOLEAN InvokedFromDriverEntry)

// Declarations ...

try {

// Get a pointer to the target device object. Read the discussion
// provided later in this chapter for information on how to
// ensure that a file system is always mounted
// before you attach to the underlying device object.
if (!NT_SUCCESS(RC = ZoGetDeviceObjectPointer(TargetDeviceName,

DesiredAccess,
&PtrTargetFileObject,
StPtrTargetDeviceObject))) {

624 _____________________________________ Chapter 12: Filter Drivers

try_return(RC) ;

// File Object has been referenced. No need to reference the
// device object, since a successful attach operation will ensure
// that the device object is not deleted without our being
// notified. Further, if you do reference the underlying device
// object, you will effectively exclude all new open operations,
// just in case the device object can be opened exclusively only
// (since the reference will count as an open operation) .

// Now, create a new device object for the attach operation.
if (!NT_SUCCESS(RC = loCreateDevice (

SFilterGlobalData.SFilterDriverObject,
sizeof (SFilterDeviceExtension) ,
NULL, // unnamed device object
PtrTargetDeviceObject->DeviceType,
PtrTargetDeviceObject->Characteristics,
FALSE ,
&(PtrNewDeviceObject)))) {

// failed to create a device object, leave.
try_return (RC) ;

// Initialize the extension for the device object. The extension
// stores any device-object-specific (global) data (e.g., a
// pointer to the device object to which you performed the attach
// operation) .
PtrDeviceExtension = (PtrSFilterDeviceExtension)

PtrNewDeviceObject->DeviceExtension;
SFilterlnitDevExtens ion (PtrDeviceExtension,

SFILTER_NODE_TYPE_ATTACHED_DEVICE) ;
InitializedDeviceObject = TRUE;

// If we were not invoked from the DriverEntry () function, mark the
// fact that this device object is no longer being initialized.
// If the device object is created during driver initialization,
// the I/O Manager will do this for us.
if (! InvokedFromDriverEntry) {

PtrNewDeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;

// Acquire the resource exclusively for our newly created device
// object to ensure that dispatch routines requests are not
// processed until we are really ready.
ExAcquireResourceExclusiveLite (

& (PtrDeviceExtension->DeviceExtensionResource) , TRUE) ;
AcquiredDeviceObject = TRUE;

// The new device object has been created. Perform the attachment.
RC = ZoAttachDeviceByPointer (PtrNewDeviceObject,

PtrTargetDeviceObject) ;
// The only reason we would fail (and possibly get STATUS_NO_SUCH_
// DEVICE)

Basic Steps in Filtering __________________ ________ ___________ 625

II is if the target was being initialized or unloaded and neither
// should be happening at this time.
ASSERT (NT_SUCCESS (RC)) ;

// Note that the AlignmentRequirement, the StackSize, and the
// SectorSize values will have been automatically initialized for
// us in the source device object (the I/O Manager does this as
// part of processing the ZoAttachDeviceByPointer () request).

// We should set the Flags values correctly to indicate whether
// direct I/O, buffered I/O, or neither is required. Typically,
// FSDs (especially native FSD implementations) do not want the I/O
// Manager to touch the user buffer at all.
PtrNewDeviceObject->Flags = (PtrTargetDeviceObject->Flags &

(DO_BUFFERED_IO | DO_DIRECT_IO)) ;

// Initialize the TargetDeviceObject field in the extension.
// This is used by us when (if) we wish to forward I/O requests
// to the target device object.
PtrDeviceExtension->TargetDeviceObj ect = PtrTargetDeviceOb j ect ;
PtrDeviceExtension->TargetDriverObject =

PtrTargetDeviceObject->DriverObject;
// Some bookkeeping.
SFilterSetFlag (PtrDeviceExtension->DeviceExtensionFlags,

SFILTER_DEV_EXT_ATTACHED) ;

// We are there now. All I/O requests will start being redirected
// to us until we detach ourselves.

try_exit: NOTHING;

} finally {
// Cleanup stuff goes here.
if (AcquiredDeviceObject) {

SFilterReleaseResource (& (PtrDeviceExtension->
DeviceExtensionResource)) ;

if (!NT_SUCCESS(RC) && PtrNewDeviceObject) {
if (InitializedDeviceObject) {

// The detach routine will take care of everything.
//A code fragment for the detach routine is provided
// later in this chapter.
SFilterDetachTarget (PtrNewDeviceObject,

PtrTargetDeviceObj ect ,
PtrDeviceExtension) ;

// Dereference the file object. Once you have done so, you can
// forget all about the target file object. But please remember to
// always do this! Failure to dereference the file object will
// result in a dangling file object structure that in turn will
// prevent unloading/dismounting of the target device object.

626 _____________________________________ Chapter 12: Filter Drivers

if (PtrTargetFileObject) {
ObDereferenceObject (PtrTargetFileObject) ;
PtrTargetFileObject = NULL;

return(RC) ;
}

The following definition of a device extension structure, as defined by the sample
filter driver code, will be useful in understanding the previous code fragment:

typedef struct _SFilterDeviceExtension {
// A signature (including device size).
SFilter Identifier Nodeldentif ier;
// This is used to synchronize access to the device extension
// structure.
ERESOURCE DeviceExtensionResource;
// The sample filter driver keeps a private doubly linked list of all
// device objects created by the driver.
LIST_ENTRY NextDeviceObject ;
// See Flag definitions below.
uint32 DeviceExtensionFlags;
// The device object we are attached to.
PDEVICE_OBJECT TargetDeviceObject ;
// Stored for convenience. A pointer to the driver object for the
// target device object (you can always obtain this information from
// the target device object) .
PDRIVER_OBJECT TargetDriverObj ect ;
// You can associate other information here.

} SFilterDeviceExtension, *PtrSFilterDeviceExtension;

#define SFILTER_DEV_EXT_RESOURCE_INITIALIZED (0x00000001)
#define SFILTER_DEV_EXT_INSERTED_GLOBAL_LIST (0x00000002)
tdefine SFILTER_DEV_EXT_ATTACHED (0x00000004)

Notes
The code fragment for the SFilterAttachTarget () function illustrates how
simple it is to perform an attachment between a device object created by your
driver and another named device object. The code fragment follows closely the
sequence of steps listed earlier for performing the attach operation.

You should note that the attachment can be performed as easily if the target
device object is not a named device object. However, you cannot open an
unnamed device object; therefore, in order to be able to attach to an unnamed
device object, your driver must have some other (driver-specific) method devised
to obtain a pointer to the target device object.

The following sections describe some of the support functions provided by the
I/O Manager that will prove useful to you in developing your filter driver (to
perform an attachment between your device object and the target device object).

Basic Steps in Filtering__627

loGetDeviceObjectPointerQ
The arguments for this function are well-described in the DDK:

NTSTATUS
ZoGetDeviceObj ectPointer(

IN PUNICODE_STRING ObjectName,
IN ACCESS_MASK DesiredAccess,
OUT PFILE_OBJECT *FileObject,
OUT PDEVICE_OBJECT *DeviceObject

) ;

The loGetDeviceObj ectPointer () function is often used by filter drivers to
obtain a pointer to a target physical/virtual device object or to the highest-layered
device object attached to the target device object. Here are the steps executed by
the I/O Manager to implement this function:

1. The I/O Manager performs an open operation on the target object, identified
by the ObjectName argument (e.g., \Device\C:).

Note that the open request will typically recurse back into the NT I/O
Manager. The DesiredAccess value determines whether or not a mount
sequence is initiated by the I/O Manager in processing the open operation;
the I/O Manager may choose to initiate a mount sequence if no logical
volume has yet been mounted on the target physical/virtual device when the
open request is being processed.

2. The I/O Manager then obtains a pointer to the file object that is created as a
result of processing the open request.

The open request (if successful) returns a file handle. The I/O Manager uses
the ObReferenceObjectByHandle () function to obtain a pointer to the
associated (referenced) file object.

3. The I/O Manager uses the loGetRelatedDeviceObject () function to get
a pointer to the highest-layered device object that may be attached to the
target device.

The argument to the loGetRelatedDeviceObject () function is the file
object pointer obtained in Step 2.

4. Finally, the I/O Manager closes the file handle obtained in Step 1 before
returning control to the caller.

The I/O Manager can safely return pointers to the file object representing the
successful open operations, as well as to the associated device object, even
though the handle obtained from the open operation has been closed, because
the file object structure is referenced in Step 2.

628_____________________________________Chapter 12: Filter Drivers

What Happens After the Attach Operation?
In order to appreciate the value of attempting an attach operation, you should
understand what happens once you have performed the attach. You know that
the I/O Manager will now reroute the IRPs destined for the target device object to
your driver (and your source device object) instead. But how does the I/O
Manager do this? To answer this question, let's look at the attach operation in
greater detail.

The attach operation

Recall from Chapter 4, The NT I/O Manager, that each device object structure has
a field called AttachedDevice. This field is used by the I/O Manager to keep
track of the linked list of attached devices for a particular target device object.
Note that I mentioned a linked list of attached device objects and not just a single
attached device object; the clear implication is that multiple filter device objects
could potentially exist that are attached to a specific target device object. There-
fore, you can conceive of a chain (or a layer) of attached filter device objects;
each of these attached device objects will have an opportunity to process IRPs
sent to the target device object.

There are three ways in which your driver can request an attach operation:

loAttachDeviceByPointer()
When your driver invokes the I/O Manager to perform an attach between the
target device object and your source device object using loAttachDevice-
ByPointer () , the I/O Manager performs the following sequence of
operations: loAttachDeviceByPointer () , loAttachDeviceToDe-
viceStack(), and loAttachDevice().

a. The I/O Manager will get a pointer to the topmost device object that had
been previously attached to the target device object.

The code used to do this is encapsulated within an I/O Manager routine
called loGetAttachedDevice () , which is available to third-party
developers as well:
PDEVICE_OBJECT
loGetAttachedDevice(

IN PDEVICE_OBJECT DeviceObject
) ;

The implementation of this function appears to be pretty trivial and is
demonstrated in this code fragment:*

* Note that the actual code implemented by the I/O Manager is probably slightly different than the frag-
ment presented here; however, the logic presented here is accurate.

Basic Steps in Filtering_______________________________________629

PDEVICE_OBJECT
IoGetAttachedDevice(PDEVICE_OBJECT TargetDeviceObject) {

PDEVICE_OBJECT ReturnedDeviceObject = TargetDeviceObject;

while (ReturnedDeviceObject->AttachedDevice) {
ReturnedDeviceObject = TargetDeviceObject->AttachedDevice;

}

return(ReturnedDeviceObject);
}
Think of the attached list of device objects as a stack-based list. The last
object inserted into the list will be at the head of the list. Extend this
analogy a bit further, and you can see that the last device object to
perform the attach operation will be the first object to get a crack at the
IRPs sent to the target device object.
In order to maintain this last-in-first-chance-at-IRP ordering, the I/O
Manager gets a pointer to the topmost device object in the linked list of
device objects in order to continue processing the attach request. If,
however, yours happens to be the first attach request for the target device
object, the I/O Manager will directly use the pointer to the target device
object (supplied by you) in the following steps.
Now, the I/O Manager will ensure that the device object you are
attempting to attach to is not being deleted.

If the device object is being deleted or if the corresponding driver has an
unload pending against it, the I/O Manager will immediately reject your
attach request. You can expect to get an error such as STATUS_NO_SUCH_
DEVICE from the I/O Manager. If everything seems to be in order, the I/O
Manager proceeds to the next step.

b. The I/O Manager will physically complete the attach operation.
The following steps are executed by the I/O Manager to complete the
attach operation:

i. The ReturnedDeviceObject->AttachedDevice field is set to
point to the source device object.

ii. The StackSize field in the source device object is set to
(ReturnedDeviceObject->StackSize + 1).
Note that once the attach has been completed, the I/O Manager will
redirect all IRPs sent to the target device object to your driver. The
I/O Manager does not know what you will do with the IRPs; it can
assume the worst case, however, (in terms of I/O stack location
usage) where you may simply perform some preprocessing or
register a completion routine and forward the IRP to the next driver

630_____________________________________Chapter 12: Filter Drivers

in the list of layered drivers. Since the attaching of your device object
could require the IRP to be routed through one more layered driver,
the I/O Manager ensures that the number of stack locations that will
be allocated for all subsequent IRPs directed to the target device
object will be enough to last through all the drivers that may process
the IRP. The I/O Manager will set the AlignmentRecruirement
field and the SectorSize field in the source device object created
by your driver to be the same as those in the target device object.

IoAttachDeviceToDeviceStack()
This function call was first made available in Windows NT Version 4.0. It is
functionally similar to the preceding loAttachDeviceByPointer ()
routine and is invoked in the same manner (i.e., your driver must supply both
the source and target device object pointer values). However, this function
performs one additional task: if the attach operation completes successfully,
IoAttachDeviceToDeviceStack() will return a pointer to the previous
highest-layered device object to which your source device object was
attached.
The returned device object pointer value can prove to be useful if your filter
driver forwards any intercepted IRPs to the next driver in the calling hierarchy.

Note that if your driver happened to be the first to perform an attach opera-
tion to the target device object, the returned device object pointer will be the
same as the target device object pointer supplied by your driver when
invoking the IoAttachDeviceToDeviceStack() function.

NOTE Prior to Version 4.0, your driver could first invoke loGetAt-
tachedDevice () followed by loAttachedDeviceByPoint-
er () to achieve practically the same functionality as is now
provided by the IoAttachDeviceToDeviceStack() function.
Also, the loGetDeviceObjectByPointer () function returns a
pointer to the highest-layered device object attached to the target de-
vice object.

loAttachDevice()
This function is defined as follows:
NTSTATUS
loAttachDevice(

IN PDEVICE_OBJECT SourceDevice,
IN PUNICODE_STRING TargetDevice,
OUT PDEVICE_OBJECT *AttachedDevice

Basic Steps in Filtering______________________________________ 631

The loAttachDevice () function also performs an attachment between
two device objects. However, this function accepts the target device name
instead of a pointer to the target device object. It will open the target device
object on behalf of your driver and use the target device object pointer to
perform the actual attach operation.

The steps executed by this function are as follows:

a. The loAttachDevice () function invokes loGetDeviceObject-
Pointer () internally, to obtain a pointer to the target device object.

The DesiredAccess value is set to FILE_READ_ATTRIBUTES.
b. The loAttachDevice () function executes the same sequence of steps

as those described earlier, in performing an attach operation between the
source device object and the target device object.

Just as in the case of the loAttachDeviceByPointer () function, the
I/O Manager initializes the StackSize, AlignmentRecruirement, and
SectorSize fields in the SourceDevice object structure.

c. The I/O Manager dereferences the file object pointer returned from the
internal call to loGetDeviceObjectPointer ().

d. A pointer to the previous highest-layered device object (for the target
device) is returned to the caller in the AttachedDevice argument.

Note that your driver must have created the source device object before you
can invoke the loAttachDevice () function.

You may be wondering whether it would be preferable to invoke loAttachDe-
vice() directly, instead of invoking loGetDeviceObjectPointer () in your
driver followed by a call to loAttachDeviceByPointer () or loAttachDev-
iceToDeviceStack().

There is one subtle difference between the two methods of performing an attach
operation. This difference is only important if your driver wishes to layer over an
FSD logical volume device object (as opposed to layering over a lower-level
device driver disk device object).

The loAttachDevice () function will always open the target device (identified
by the device name that you supply to the function) with the DesiredAccess
value set to FILE_READ_ATTRIBUTES. This type of open request will not result
in a mount operation being initiated by the I/O Manager on the target physical/
virtual/logical device if such a mount operation has not yet taken place. There-
fore, if your driver wishes to attach to the device object representing the mounted
logical volume on drive C: and if the name supplied by your driver is
\Device\C:, you cannot really be sure that loAttachDevice () will do what

632__________ __________________________Chapter 12: Filter Drivers

you expect, since you may actually end up with your source device object having
been attached to the physical device object identified by \Device\C:.

However, if your driver wishes to ensure that it is always attached to an FSD
device object representing a logical volume mounted on the target drive, then you
can invoke loGetDeviceObjectPointer () function directly from your driver
by specifying the DesiredAccess to some value like FILE_READ_ACCESS.
This type of DesiredAccess value will result in the I/O Manager initiating a
mount process (if no logical volume has yet been mounted on the target device),
and the returned device object pointer will refer to the device object representing
the mounted logical volume.* Your FSD can then request the attach by invoking
loAttachDeviceByPointer() orloAttachDeviceToDeviceStack().

Once you invoke one of preceding three functions, loAttachDevice-
ByPointer () , IoAttachDeviceToDeviceStack(), and loAttach-
Device () successfully, you can be assured that the attach operation has been
completed by the NT I/O Manager.

You must be careful whenever you request an attach operation, since all new
IRPs targeted to the target device object will immediately begin getting rerouted
to you, instead of being sent to the original target of the I/O request. Therefore,
be prepared to handle such requests immediately or block them until you
complete all your initialization.

IRP routing after the attach

Now that you have performed the attach, you should start getting first access to
all the IRPs sent to the target device object, right? Well, not quite. You may get
first chance at IRPs, or you may get called after some other driver has had its way
with the IRP, or your driver may never be called for an IRP sent to the target
device object.

Why? To understand when your filter driver is invoked (and when it is not), you
need to understand the I/O Manager-supplied utility function called loGetRe-
latedDeviceObject () . This function is also available to you when you
develop a kernel-mode driver and is defined as:

PDEVICE_OBJECT
loGetRelatedDeviceObj ect(

IN PFILE_OBJECT FileObject

* Another method that you eould use to ensure that a mount is always initiated (if required) by the I/O
Manager is to speeify a name such as \Device\C: \ instead of \Device\C: only. The trailing \ indi-
cates that you wish to open the root directory (as opposed to performing a direct device open of the target
device) and will force the I/O Manager to initiate a mount sequence.

Basic Steps in Filtering_______________________________________633

The function ZoGetRelatedDeviceObject () is always invoked internally by
the NT I/O Manager whenever it needs to determine where it should send an IRP
for a user-initiated I/O operation (e.g., the NtReadFile () function invoked by a
thread).* The following steps are executed in this function:

1. The I/O Manager checks whether the supplied FileObject has a mounted
Volume Parameter Block (VPB) associated with it.

VPB structures were discussed in detail earlier in this book. You may recall
that when a file system successfully mounts a logical volume, a pointer to the
device object (created by the FSD) representing the mounted logical volume
is stored in the VPB->DeviceObject field.
If the FileObject->Vpb field is nonnull and if the FileObject->Vpb->
DeviceObject field is nonnull, the I/O Manager will invoke the loGetAt-
tachedDevice () function for the FileObject->Vpb->DeviceObject
structure and use the returned device object pointer when invoking
loCallDriver().
The implication here is that if a logical volume has been mounted on a phys-
ical/virtual/logical device object, the I/O Manager will redirect I/O requests to
the highest-layered driver that has performed an attach operation on the
device object created by the FSD to represent the mounted logical volume.

When will the Vpb pointer for a file object not be set to NULL? Well, recall
that the Vpb pointer for a file object is set by the FSD whenever a successful
create/open operation has been performed on the file object (as was
described in Chapter 11, Writing a File System Driver III). Therefore, you
should infer that if a file stream residing on a logical volume has been success-
fully opened, and subsequently an I/O operation is received for the file
stream, this particular check made by the I/O Manager will succeed and the
IRP will be appropriately dispatched.

2. If the preceding check fails because the Vpb pointer is set to NULL, then the I/
O Manager tries harder to determine where to send the IRP.
In the previous case, the Vpb pointer was nonnull because the file stream
had been opened. However, for certain file objects, the Vpb pointer may still
be NULL. In this case, the I/O Manager checks whether the file object has an
associated device object that was mounted by some file system. This can be
done by checking the FileObject->DeviceObject field. If nonnull (indi-
cating that the file object is associated with some "real" device object), and if

* Note that the I/O Manager also uses the loGetRelatedDeviceObject () function internally when
processing a synchronous/asynchronous page write or a synchronous page read request. Therefore, filter
drivers layered over a FSD will get the opportunity to process page faults and/or paging I/O writes (in-
cluding those initiated due to memory-mapped files).

634_____________________________________Chapter 12: Filter Drivers

the FileObject->DeviceObject->Vpb->DeviceObject is nonnull
(indicating that a file system has mounted this device object), then the I/O
Manager will invoke the loGetAttachedDevice () function on the File-
Object->DeviceObject->Vpb->DeviceObject structure and use the
returned device object pointer when invoking loCallDriver ().

3. If both of these checks fail to yield a device object structure pointer, the I/O
Manager uses the device object associated with the file object.

When both the preceding checks fail, more than likely the I/O request is
being issued to an open physical/virtual/logical device that has not yet been
mounted. If an I/O operation is being issued directly to this device object
(e.g., for raw access to the device), the I/O Manager will invoke the
loGetAttachedDevice () function on the FileObject->DeviceOb-
ject structure and use the returned device object pointer when invoking
loCallDriver().

Given this information, you can see that even after you attach to a target device
object, it is not guaranteed that you will receive the IRP before any other driver in
the calling hierarchy. If some other driver has attached itself to your device object,
that driver is ahead of yours in the call chain. Then, it is no longer certain that
you will ever see the IRP, since it is left completely to the discretion of each
driver whether or not it will forward the IRP to the next driver or complete the
IRP itself.

You should also note one important point: what happens if you attach to a device
object representing a physical disk partition after a file system has mounted itself
onto the device object? Well, as you can easily infer, you will not get to process
most IRPs because the I/O Manager will always send the IRP to the file system
driver first (or rather, to the highest-layered device object attached to the file
system volume device object). The FSD, in turn, will forward the IRP (for actual,
physical I/O operations) directly to the target physical/virtual device object (to
which you have attached yourself) via an invocation to loCallDriver (). Your
device object will not even be considered to receive the IRP.

NOTE Most FSD implementations store a pointer to the target physical/vir-
tual device object when they mount a logical volume on the device
object in their VCB structure. They use this device object pointer
•when invoking loCallDriver (). They do not, however, invoke
loGetAttachedDevice () on the target device object pointer be-
fore invoking loCallDriver ().

Basic Steps in Filtering_______________________________________635

Create/open requests

The I/O Manager performs the following actions to determine the target driver to
which the create/open request should be sent, before actually forwarding the
request to a target FSD or filter driver:

• For relative create/open requests, the I/O Manager determines the target
driver from the related file object specified in the create/open request.

Recall from earlier chapters that create/open requests can be specified with a
filename relative to the name contained in the (supplied) previously open
directory file object. For relative file create/open requests, the I/O Manager
obtains a pointer to the target device object by invoking the loGetRelated-
DeviceObject () function on the related file object.

• For all other create/open requests, the I/O Manager sends the request either
to the highest-layered driver attached to the device object representing the
mounted logical volume or directly to the device object representing the tar-
get physical/virtual/logical device.
A create/open request can specify either a device open (e.g., \Device\C:)
or a file/directory on a logical volume mounted on the physical/virtual/logical
device object.
When a request is received by the I/O Manager for a direct device open oper-
ation, the I/O Manager uses the target device object supplied by the Object
Manager and forwards the create/open request to the device driver managing
this device object. Note that any filter driver attached to this target device
object will not get to intercept this create/open request.
For all other create/open requests, the I/O Manager always tries to ensure
that an FSD mounts a logical volume on the target physical/virtual/logical
device. Once an FSD has claimed the device and mounted a logical volume
on the target device object, the I/O Manager uses the loGetAttachedDe-
vice () function to get a pointer to the highest-layered device object
attached to the volume device object created by the FSD. If no filter driver
has attached itself to the volume device object, the create/open request is for-
warded directly to the responsible FSD.

If your driver wishes to intercept all create/open requests that may be sent to a
particular logical volume, ensure that your filter driver creates a device object that
attaches itself to the target device object representing the mounted logical volume
before the IRP for the mount operation is completed but after the FSD has
completed mount-related processing.

The obvious way to accomplish this is to intercept mount requests issued to the
target FSD, register a completion routine to be invoked once the mount request

63 6_____________________________________Chapter 12: Filter Drivers

(IRP) has been completed, and initiate (and complete) the attach sequence from
within your completion routine before returning control to the I/O Manager.

Building IRPs
Whether you develop a file system driver or a filter driver, you will undoubtedly
find it necessary to create IRPs that your driver will subsequently use in
dispatching I/O requests. You can either decide to allocate and initialize such
IRPs yourself, or you could decide to use one of the I/O Manager-supplied utility
functions to help you in these tasks.

The following routines can prove useful when you start creating your own I/O
request packets. Note that the Windows NT DDK also provides a description of
the functions presented here.

loAllocatelrpO
The loAllocatelrp () function is used internally by the I/O Manager to allo-
cate IRPs. It is also available to third-party driver developers. This function is
defined as follows:

PIRP
loAllocatelrp(

IN CCHAR StackSize,
IN BOOLEAN ChargeQuota

) ;
Parameters:

StackSize
The I/O Manager uses the value contained in this argument to determine the
number of I/O stack locations that could possibly be used in processing this
IRP. The I/O Manager must allocate sufficient memory to contain the speci-
fied number of I/O stack locations. Your driver can use the
TargetDeviceObject->StackSize value to pass to the loAllo-
catelrp () function.

ChargeQuota
This determines whether the memory allocated for the IRP should be charged
to the quota allocated to the requesting process. Typically, filter drivers will
set this argument to FALSE (the I/O Manager generally sets it to TRUE when
invoking the function internally to forward user I/O requests to a target FSD).

Basic Steps in Filtering______________________________ ________637

Functionality Provided:

The I/O Manager will allocate an IRP either from a zone containing preallocated
IRPs* or by directly invoking ExAllocatePoolWithQuotaTag ()/ExAllo-
catePoolWithTag () . Once this function returns a success code back to your
driver, you can check the value of the Zoned field in the IRP to determine
whether or not the IRP was allocated from a zone (if you are curious enough to
do so). All IRP structures are always allocated from nonpaged pool.

For reasons of efficiency and to avoid kernel memory fragmentation, the I/O
Manager preallocates two separate zones for IRP structures that require only a
single I/O stack location and for those that require four (or fewer) I/O stack loca-
tions. If, in an invocation to loAllocatelrp (), a thread requests more than
four I/O stack locations, the I/O Manager cannot use either of the two preallo-
cated zones. In this situation, the I/O Manager requests memory via a call to the
NT Executive ExAllocatePool () function.

Of course, in high-stress situations, it is always possible that the IRP zones may be
exhausted and the I/O Manager will resort to requesting memory from the NT
Executive pool management support package.

The loAllocatelrp () function also initializes certain fields in the IRP before
returning the IRP to your driver. Note that the entire structure is zeroed by the
I/O Manager before any fields are initialized. The initialized fields include the
Type, Size, StackCount, CurrentLocation, ApcEnvironment, and
Tail .Overlay .CurrentStackLocation fields.

The I/O Manager tries to ensure that a valid IRP pointer is returned to the thread
that invokes this function. If the IRP can be allocated from a zone, the I/O
Manager tries to get a free IRP structure from the appropriate zone. If the number
of I/O stack locations requested precludes allocation from a zone (i.e., it is greater
than 4)t or if the appropriate zone is exhausted, the I/O Manager allocates the IRP
by invoking the appropriate NT Executive function (listed previously). If no
memory is available for the IRP structure and if the previous mode of the caller is
kernel mode, the I/O Manager will request memory from the NonPagedPool-
MustSucceed memory pool. Therefore, although it is possible that the
loAllocatelrp () function will return NULL if the previous mode happened to

* Beginning with Windows NT Version 4.0, the I/O Manager may decide to use lookaside lists instead of
zones. The Zoned field in the IRP has been renamed to AllocationFlags. The flag value in this field
determines whether the IRP has been allocated from a fixed-size block of memory (e.g., a zone or looka-
side list), from the nonpaged-must-succeed pool, or from the system nonpaged pool. This change, how-
ever, does not fundamentally affect the discussion presented in the chapter.
t The number of I/O stack locations associated with preallocated IRPs is subject to change. Therefore,
your driver must never depend on the fact that the I/O Manager will allocate IRPs with a certain number
of stack locations from a zone.

638_____________________________________Chapter 12: Filter Drivers

be user mode and if system memory was seriously depleted, failure to obtain
memory for an IRP when the caller executes in the context of the system process
will result in a bugcheck.

WARNING Contrary to the documentation in the Windows NT DDK, you
should not invoke the lolnitializelrp () function (described
below) for the new IRP structure obtained by calling loAllo-
catelrp().
As a matter of fact, the lolnitializelrp () function performs ex-
actly the same initialization as will have already been performed by
IoAllocateIrp() for you. Also, part of the initialization per-
formed by lolnitializelrp () involves zeroing the entire IRP
structure. This is unfortunate for those unwary developers that do
call lolnitializelrp () on IRPs obtained via loAllo-
catelrp (), since zeroing the IRP structure will erroneously clear
the Zoned flag in the IRP and will subsequently often lead to a sys-
tem crash at very unexpected times."

lolnitializelrp Q

This function is provided to support drivers that allocate IRP structures themselves
(instead of requesting an IRP from the I/O Manager) and is defined as follows:

VOID
lolnitializelrp(

IN OUT PIRP Irp,
IN USHORT PacketSize,
IN CCHAR StackSize

) ;
Parameters:

Irp
This is the IRP structure to be initialized.

PacketSize
This is the size of the IRP to be initialized. Typically, this will be the value

computed by the ZoSizeOflrpO macro supplied in the DDK.

StackSize
This is the number of I/O stack locations for which memory has been allo-
cated by your driver.

* When the I/O Manager tries to release memory allocated for the IRP, it will check the Zoned flag value
to determine whether memory should be returned back to the zone or should be released back to the
system nonpagecl pool. Even if the IRP had been allocated from a zone, the Zoned flag will have been
cleared by lolnitializelrp () , and the I/O Manager will erroneously return the memory back to
the system nonpaged pool leading to a subsequent system crash.

Basic Steps in Filtering_______________________________________639

Functionality Provided:

Typically, your driver will invoke the lolnitializelrp () after it has allocated
an IRP by directly invoking ExAllocatePool () (or from some zone/lookaside
list maintained by your driver), instead of requesting that the I/O Manager allo-
cate the IRP structure on your behalf.

The lolnitializelrp () function initializes the Type, Size, StackCount,
CurrentLocation, ApcEnvironment, and Tail.Overlay.Current-
StackLocation fields. These are exactly the same fields as those initialized by
invoking loAllocatelrp () (described previously). The IRP is zeroed before
any fields are initialized.

Note that the IRP initialization performed by both the loAllocatelrp () and
the lolnitializelrp () functions is rudimentary. Therefore, your driver is
responsible for performing all of the additional initialization for the IRP. The
actual fields that your filter driver will initialize depends heavily upon the type of
I/O request that you are issuing and the target device object (kernel-mode driver)
to which you will be issuing the request. Read Chapter 4 to understand the nature
of the various fields in the IRP. You should also review the sample filter driver
code provided in the accompanying diskette to see how some of the fields are
initialized.

loBuildAsynchronousFsdRequestQ
PIRP
loBuildAsynchronousFsdRequest(

IN ULONG MajorFunction,
IN PDEVICE_OBJECT DeviceObject,
IN OUT PVOID Buffer OPTIONAL,
IN ULONG Length OPTIONAL,
IN PLARGE_INTEGER StartingOffset OPTIONAL,
IN PIO_STATUS_BLOCK loStatusBlock OPTIONAL

Parameters:

Maj orFunction
The I/O Manager initializes the first I/O stack location with the MajorFunc-
tion code value.

DeviceObject
This is a pointer to the device object that will be the immediate target for the
I/O request. The I/O Manager obtains the number of stack locations to be
allocated from the StackSize field in the DeviceObject structure. Further-
more, for read/write I/O requests (for which the IRP is being created), the
I/O Manager determines the type of buffering required for the target driver
(DO_DIRECT_IO, DO_BUFFERED_IO, or neither of the two).

640_____________________________________Chapter 12: Filter Drivers

Buffer
Your driver can supply the buffer pointer, which is only required for requests
of type IRP_MJ_READ and IRP_MJ_WRITE. Note that for these two Major-
Function types, the Buffer argument is not optional.

Length
This is the length of any Buffer that may have been supplied.

StartingOffset
This is the starting offset for a read/write operation.

loStatusBlock
This contains the results of the operation are returned in this structure (if
supplied).

Functionality Provided:

loBuildAsynchronousFsdRequest () will create and initialize a new IRP
that can be used by your driver to issue an IRP_MJ_READ, IRP_MJ_WRITE,
IRP_MJ_SHUTDOWN, or IRP_MJ_FLUSH_BUFFERS request to another kernel-
mode driver. This function executes the following sequence of steps:

1. It allocates a new IRP using loAllocatelrp ().
2. The MajorFunction field in the first I/O stack location is initialized to the

value supplied by your driver.

3. The Userlosb field in the IRP is initialized to the value contained in the
loStatusBlock argument.
Note that upon IRP completion, the I/O Manager uses the field (pointer)
value to return the status of the I/O operation.

4. For read/write requests, the I/O Manager performs some additional initializa-
tion of the IRP.

The I/O Manager initializes the appropriate values in the first I/O stack location
for read/write requests. For write requests, the Parameters .Write.Length
and Parameters .Write.ByteOff set fields in the first I/O stack location
are initialized to the Length and StartingOf f set arguments (respectively)
supplied by your driver, and for read requests, the Parame-
ters .Read. Length and Parameters .Read. ByteOff set fields are
initialized.

If the Flags field in the DeviceObject structure for the target device
object specifies DO_BUFFERED_IO, the I/O Manager allocates a system
buffer (of the supplied Length) and initializes the AssociatedIrp->
SystemBuffer field to refer to the newly allocated buffer. This buffer will
be automatically deallocated by the I/O Manager when the IRP has been

Basic Steps in Filtering_______________________________________641

completed (and any data obtained has been copied into the supplied Buffer
for IRP_MJ_READ I/O requests). Furthermore, the I/O Manager will copy
data from the supplied Buffer to the allocated system buffer for IRP_MJ_
WRITE requests before returning the newly allocated IRP to your driver.

If the Flags field in the target DeviceObject structure specifies D0_
DIRECT_IO instead, the I/O Manager allocates an MDL describing the
supplied Buffer. The I/O Manager also probes and locks the pages for the
MDL (for write access in the case of IRP_MJ_READ requests and for read
access otherwise). The MdlAddress field in the IRP is initialized to point to
this allocated MDL. You should note that the I/O Manager always frees all
MDLs associated with an IRP as part of the postprocessing performed in the
loCompleteRequest () function.

If neither direct I/O nor buffered I/O has been specified, the I/O Manager
will simply set the UserBuffer field in the IRP to point to the supplied
buffer.

5. The I/O Manager will initialize the Tail .Overlay.Thread field with the
value obtained from KeGetCurrentThread () .

This is required for subsequent, asynchronous processing of media-verify
requests that may be initiated by lower-level disk drivers (in the case of
removable media), or for reporting a hard error to the user.

It is important that your driver be aware of those fields in the IRP that the
loBuildAsynchronousFsdRequest () function does not initialize. The I/O
Manager expects that your driver will initialize the following fields (if appropriate):

RequestorMode
Your driver should typically set this value to KernelMode if you are
executing in the context of a system worker thread. Otherwise, your driver
can use the ExGetPreviousMode () function to determine the value to be
set in this field.

Tail.Overlay.OriginalFileObject
Set this field to point to the file object structure associated with the I/O
request. You will need to do this for all requests except the IRP_MJ_SHUT-
DOWN IRP.

FileObject
Set the field to point to the same value as Tail .Overlay .Original-
FileObject.

Your driver can invoke the loBuildAsynchronousFsdRequest () routine at
a high IRQL (e.g., IRQL DISPATCH_LEVEL). Furthermore, your driver will set a
completion routine to be invoked when the IRP completes, allowing you to

642 Chapter 12: Filter Drivers

trigger any postprocessing that may be required. You can also free the IRP using
the loFreelrp () function after you have completed postprocessing for the
request.

WARNING Remember to set a completion routine that will free the IRP allocat-
ed via a call to loBuildAsynchronousFsdRequest () . Failure
to do so will result in the I/O Manager performing normal comple-
tion-related postprocessing on the IRP (see Chapter 4 for details on
the postprocessing performed by the I/O Manager). This will lead to
unexpected system crashes, since the IRP is not typically set up cor-
rectly for such postprocessing.

loBuildSynchronousFsdRequestQ
PIRP
loBuildSynchronousFsdRequest(

IN ULONG
IN PDEVICE_OBJECT
IN OUT PVOID
IN ULONG
IN PLARGE_INTEGER
IN PREVENT
OUT PIO STATUS BLOCK

MajorFunction,
DeviceObject,
Buffer OPTIONAL,
Length OPTIONAL,
StartingOffset OPTIONAL,
Event,
loStatusBlock

Parameters:

As you can observe in the preceding function definition, this routine takes virtually
the same arguments as those expected by the loBuildAsynchronousFsd-
Request (). The only caveats that you must be aware of are as follows:

• The loStatusBlock argument is no longer optional.

The I/O Manager expects to complete any IRP allocated using loBuildSyn-
chronousFsdRecruest () . Therefore, you should provide a valid pointer to
an IO_STATUS_BLOCK structure when invoking this function. The results of
the I/O operation will be returned to you in this structure.

• Your driver must provide a pointer to an initialized Event object.

Note that by definition, the IRP created by the I/O Manager is expected to be
used for a synchronous call to a some kernel-mode driver. Therefore, the I/O
Manager expects that the caller (your driver) will wish to wait for completion
of the IRP. When the IRP is completed, the I/O Manager will signal the event
object supplied by your driver. Remember to initialize the event object before
invoking the loBuildSynchronousFsdRequest () function (and to set
the event object to the not-signaled state).

Basic Steps in Filtering_______________________________________643

Your driver may choose not to wait for the completion of the request. How-
ever, you must have some means of deallocating the event structure (and the
I/O status block) in this case.

Functionality Provided:

loBuildSynchronousFsdRequest () will create and initialize a new IRP that
can be used by your driver to issue a synchronous I/O request to another kernel-
mode driver. Internally, this routine invokes loBuildAsynchronousFsd-
Request () to do most of the work of allocating and initializing the IRP structure.

After obtaining an IRP structure from the call to IcBuildAsynchronousFsd-
Request (), this function initializes the UserEvent field in the IRP with the
supplied Event pointer value. Finally, the loBuildSynchronousFsd-
Request () function inserts the allocated IRP into the list of pending IRPs for the
current thread using the ThreadListEntry field in the IRP. The IRP is automati-
cally dequeued by the I/O Manager from the list of pending IRPs as part of the
postprocessing performed on the IRP during loCompleteRequest () .*

Your driver can associate a completion routine for synchronous I/O requests
created using the loBuildSynchronousFsdRequest () function. However,
you must be careful if you wish to prevent the I/O Manager from completing the
IRP by returning STATUS_MORE_PROCESSING_REQUIRED from your comple-
tion routine. This is because the IRP is inserted into the list of pending IRPs for
the thread that invoked loBuildSynchronousFsdRequest () and failure to
remove the IRP from this list could cause a system crash at some later time.

TIP If you need to ensure that the IRP is safely removed from the list of
pending IRPs associated with a thread, you should execute the fol-
lowing steps:
— Ensure that you perform the next step in the context of the thread identi-

fied by the Tail .Overlay .Thread field in the IRP. You can do this
by issuing a kernel-mode APC to the target thread (if required).

— At IRQL APC_LEVEL or higher, invoke the RemoveEntryList ()
macro on the Irp->ThreadListEntry field.

loBuildDeviceloControlRequestQ

This function is defined as follows (consult the DDK also for information on this
function).

* Actually, the dequeue operation takes place in the context of the thread that requested the I/O opera-
tion (when performing final postprocessing as part of the APC executed in the context of the requesting
thread). Chapter 4 describes the postprocessing performed by the I/O Manager in greater detail.

644_____________________________________Chapter 12: Filter Drivers

PIRP
loBuildDeviceloControlRequest(

IN ULONG loControlCode,
IN PDEVICE_OBJECT DeviceObject,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength,
IN BOOLEAN InternalDeviceloControl,
IN PREVENT Event,
OUT PIO_STATUS_BLOCK loStatusBlock

) ;

Parameters:

loControlCode
This is the IOCTL code value that will be placed in the Parameters .Devi-
celoControl. loControlCode field is the first I/O stack location of the
newly allocated IRP. The I/O Manager also uses this code to determine the
manner in which data should be transferred between the calling module
(your driver) and the target for the request.

DeviceObject
This is a pointer to the target device object for the request.

InputBuffer
This is used by your driver to send data to the target driver. Supplying an
input buffer is optional, unless the InputBufferLength contains a
nonzero value.

InputBufferLength
This is the length of any InputBuffer supplied by you.

OutputBuffer
Your driver can supply such a buffer to receive data from the target driver.
You can also use this buffer to send information to the target driver if the
method of data transfer is METHOD_IN_DIRECT or METHOD_OUT_DIRECT.*
You must supply a valid buffer pointer if OutputBufferLength contains a
nonzero value.

OutputBufferLength
If this field contains a nonzero value, you must supply a valid Output-
Buffer pointer. This field contains the length of the supplied
OutputBuffer (if any).

* The contents of this buffer (used to send data to the target driver) will naturally be overwritten if the
target driver returns information back to you.

Basic Steps in Filtering_______________________________________645

InternalDeviceloControl
If set to TRUE, the MajorFunction code value in the first I/O stack location
is set to IRP_MJ_INTERNAL_DEVICE_CONTROL, otherwise it is set to IRP_
MJ_DEVICE_CONTROL.

Event
IOCTL requests are considered inherently synchronous; therefore, the I/O
Manager expects you to supply a valid, initialized event object pointer. This
event will be signaled by the I/O Manager when the IRP is completed.

loStatusBlock
Upon IRP completion, the I/O Manager will return the results of the operation
in this argument, supplied by your driver.

Functionality Provided:

The loBuildDeviceloControlRequest () function allocates and initializes
an IRP that can subsequently be used to issue an IOCTL to another kernel-mode
driver. Internally, this function uses the services of loAllocatelrp () to allo-
cate a new IRP structure. This function initializes the following fields in the
allocated IRP (in addition to those initialized by loAllocatelrp ()) :

UserEvent
This field is initialized to the pointer value supplied in the Event argument.
The I/O Manager will set this event to the signaled state upon completion of
the I/O request packet.

Userlosb
This field is initialized to the passed-in loStatusBlock value.

Parameters.DeviceloControl.OutputBufferLength
This field is initialized to the value supplied in the OutputBufferLength
argument.

Parameters.DeviceloControl.InputBufferLength
This field is initialized to the value supplied in the InputBuf ferLength
argument.

Parameters.DeviceloControl.loControlCode
This field is initialized to the passed-in loControlCode value.

646_____________________________________Chapter 12: Filter Drivers

Furthermore, the loBuildDeviceloControlRequest () function also deter-
mines the method of data transfer, based upon the loControlCode value:*

• If the loControlCode indicates that the data transfer method is 0 (METHOD_
NEITHER), the I/O Manager allocates a system buffer if either Input-
Buf ferLength or OutputBuf ferLength are nonzero.

The system buffer allocated has a length that is the greater of the Input-
BufferLength and OutputBufferlength values. The loBuildDevice-
loControlRecruest () function initializes the Associated-
Irp. SystemBuf f er field in the IRP to point to the allocated system buffer.

If InputBufferLength is nonzero, the loBuildDeviceloControlRe-
quest () function will copy the contents of the InputBuf fer into the allo-
cated system buffer. If the OutputBuf ferLength is nonzero, the I/O
Manager will set the IRP_INPUT_OPERATION flag in the IRP, indicating that
the loCompleteRequest () function must copy the contents of the allo-
cated system buffer into the caller supplied output buffer.

Note that the I/O Manager keeps track of the caller-supplied output buffer by
setting the UserBuffer field in the IRP to point to the OutputBuf fer. t
The system buffer allocated by the I/O Manager is automatically deallocated
upon IRP completion.

• If the loControlCode indicates METHOD_IN_DIRECT (value = 1) or
METHOD_OUT_DIRECT (value = 2), the I/O Manager allocates a system buffer
for the InputBuffer and/or creates an MDL to describe the Output-
Buffer.

If the InputBuffer pointer is nonnull, the loBuildDeviceloControl-
Request () function allocates a system buffer of length InputBuf fer-
Length. The Associatedlrp. SystemBuf fer field in the IRP is set to
point to this allocated buffer. The I/O Manager copies the contents of the
caller-supplied InputBuffer into the allocated system buffer. Note that the
system buffer will be automatically deallocated upon IRP completion.

If the OutputBuf fer pointer is nonnull, the loBuildDeviceloControl-
Request () function will create an MDL to describe the supplied Output-

* Recall from Chapter 11, Writing a File System Driver III, that the IOCTL code value determines the meth-
od used in data transfer. The possible methods are METHOD_BUFFERED, METHOD_IN_DIRECT,
METHOD_OUT_DIRECT, or METHOD_NEITHER. The two least-significant bits in the IOCTL code deter-
mine the data transfer method.
t The target driver must not use this buffer pointer directly unless it is completely sure that it has been
invoked in the context of the original user thread. Trying to access this buffer in the context of any cither
thread will lead to system memory/data corruption and also probably a system crash. Moreover, there is
no real reason to use the pointer, since the target driver can access the caller-supplied output buffer di-
rectly via the I/O-Manager-provided MDL.

Basic Steps in Filtering_______________________________________647

Buffer. Furthermore, the I/O Manager will lock the pages described by the
MDL. The MDL will be automatically destroyed by the I/O Manager (and
pages unlocked) upon IRP completion.

• If the loControlCode indicates METHOD_NEITHER (value = 3), the I/O
Manager will initialize the IRP with the caller-supplied buffer pointer values.

The Parameters .DeviceloControl .TypeS InputBuffer field is set to
the pointer value supplied in the OutputBuffer argument. The User-
Buffer field is set to the InputBuffer value.

loMakeAssociatedlrpQ

Filter drivers and file system drivers can use this function to create one or more
associated IRPs for a given master IRP. An associated IRP is just like any other
IRP, except for the fact that it is logically associated with a single master IRP. An
associated IRP can be easily identified by checking for the presence of the IRP_
ASSOCIATED_IRP flag in the IRP.

A master IRP can potentially have several IRPs associated with it, but each associ-
ated IRP must be uniquely associated with a single master IRP (that is, there exists
a one-to-many relationship between a master IRP and its associated IRPs). Associ-
ated IRPs cannot become master IRPs themselves, so an associated IRP cannot
have other IRPs associated with it. The number of associated IRPs outstanding for
a given master IRP can be ascertained by checking the IrpCount field in the
master IRP structure.

The loMakeAssociatedlrp () function is defined as follows:

PIRP
loMakeAssociatedlrp(

IN PIRP Irp,
IN CCHAR StackSize

) ;

Parameters:

Irp
This is a pointer to the master IRP for this associated IRP (to be created).

StackSize
This is the number of stack locations to be allocated for the associated IRP.

Functionality Provided:

The loMakeAssociatedlrp () function returns a newly allocated associated
IRP to your driver. The following steps are executed by the I/O Manager when
you invoke this function.

Chapter 12: Filter Drivers

1. The I/O Manager allocates an IRP either from a zone/lookaside list or by
requesting nonpaged memory from the NT Executive pool management
package.

2. This IRP is initialized in exactly the same manner as described for
lolnitializelrp () .

3. The I/O Manager sets the IRP_ASSOCIATED_IRP flag value in the newly
created IRP.

4. The Associatedlrp.Masterlrp field is initialized to the Irp argument
supplied by your driver.

5. The Tail .Overlay .Thread field is initialized to the Irp->
Tail .Over lay. Thread field value (obtained from the master IRP structure).

If, however, the I/O Manager fails to obtain memory for an IRP structure, it will
return NULL to your driver.

Uses of associated IRP structures

Imagine that you have designed an FSD that breaks up a rather large I/O request
into fixed-sized pieces and issues the I/O requests in parallel to underlying disk
device drivers. You could then decide to simply create multiple associated IRP
structures, each describing a subset of the total I/O request, and then dispatch
them concurrently (for asynchronous I/O) to the underlying device drivers.

Another use for these structures could be an intermediate driver that provides
disk-striping functionality below the FSD. Now, whenever you receive an I/O
request from an FSD to a striped device, you will need to break up this request
into little stripes, and you would probably like to issue each of these I/O requests
concurrently (since typically, each request will be issued to a different physical
disk). Associated IRP structures are a natural choice at this time.

Note that you do not have to create associated IRP structures only when
executing multiple I/O requests concurrently. You could just as well create associ-
ated IRPs that are used in sequential processing. However, associated IRPs lend
themselves well to issuing multiple I/O requests in parallel to satisfy a specific
user request.

Restrictions on the use of associated IRP structures

If you examine the IRP structure defined in the DDK/IPS kit closely, you will
notice that information about associated IRPs is maintained in the following
structure:

union {
struct _IRP *MasterIrp;
LONG IrpCount;

Basic Steps in Filtering_______________________________________649

PVOID SystemBuffer;
} Associatedlrp;

For the master IRP, the count of associated IRPs is maintained in the IrpCount
field. For an associated IRP, a pointer leading back to the master IRP is main-
tained in the Masterlrp field. If neither of these fields are used, the
SystemBuf fer field can potentially contain a pointer to any system buffer allo-
cated by the I/O Manager for buffered I/O requests.

From the structure definition, certain restrictions can immediately be ascertained:

• If your driver supports buffered I/O and receives a system buffer allocated by
the I/O Manager, you will lose the pointer to this buffer in trying to maintain
the associated IRP count in your master IRP.

• An associated IRP cannot be dispatched to a driver that expects to receive
buffered I/O requests.

• An associated IRP cannot become a master IRP.

If you develop a filter/intermediate driver that resides below an FSD, it is
quite possible that the FSD will create an associated IRP and dispatch it to
your driver. If your code tries to create an associated IRP itself (for the IRP
received by you), you will run into all sorts of problems.

Completion of associated IRPs

The I/O Manager invokes completion routines for each of the stack locations
contained in the associated IRP structure. However, once the completion routines
have been invoked (and assuming that none of the completion routines returns
STATUS_MORE_PROCESSING_REQUIRED), the loCompleteRequest () func-
tion performs the following steps for an associated IRP structure:

• The I/O Manager obtains a pointer to the master IRP for the associated IRP
being completed.

• The Associatedlrp.Count field in the master IRP is decremented by 1.

• The memory for the associated IRP structure is freed and so are any MDLs
referred to by the associated IRP.

• If the Associatedlrp.Count field in the master IRP is equal to 0, the I/O
Manager internally invokes loCompleteRequest () on the master IRP.

As is obvious from this list, many of the steps that would normally be performed
when completing a regular IRP structure are skipped by the I/O Manager when
processing the completion for an associated IRP.

650 ___ ____ _____________________Chapter 12: Filter Drivers

NOTE As described earlier, associated IRP structures cannot be used in con-
junction with buffered I/O data transfers. Therefore, the I/O Manag-
er does not have to worry about copying over any data from a
system buffer to a driver/user-supplied buffer. Associated IRPs are
typically only used with the direct I/O method of data transfer, in
which case an MDL describing the user buffer would probably have
been utilized for the data transfer operation (if any).

There are two things your driver can do to prevent this automatic completion of
the master IRP by the I/O Manager (in case you wish to control when the master
IRP is actually freed):

• Your driver can specify a completion routine for the associated IRP.

Your driver should return STATUS_MORE_PROCESSING_REQUIRED from
this completion routine, which will cause the I/O Manager to immediately ter-
minate further processing of the associated IRP. This will prevent manipula-
tion of the associated IRP count by the I/O Manager and thereby also prevent
completion of the master IRP. Completion routines are described in greater
detail in the next section.

• Your driver can increase the Associatedlrp.Count field in the master IRP
before dispatching the associated IRP to a lower-level driver.

Although this may sound repugnant (and like bad software engineering), it
does work. Your driver can simply increase the Associatedlrp.Count
field in the master IRP by 1 before dispatching any associated IRPs that may
have been created. This will result in the count not being equal to 0, even
after IRP-completion processing of all associated IRPs has been performed by
the I/O Manager. Since the count does not equal 0, the I/O Manager will not
complete the master IRP.

Completion Routines
The I/O Manager allows kernel-mode drivers to register completion routines asso-
ciated with I/O stack locations in an IRP. This allows the kernel-mode driver the
opportunity to perform any required postprocessing on the IRP after loComple-
teRecjuest () has been invoked either by the driver itself or by some other
kernel-mode driver.*

* Completion routines are used by many types of kernel-mode drivers, including file system drivers, filter
drivers, and other intermediate drivers.

Basic Steps in Filtering 651

There can be multiple completion routines associated with each IRP, because
completion routines are associated with stack locations in the IRP (and most IRPs
have multiple stack locations). However, only one kernel-mode driver can
process any particular stack location and therefore, only one completion routine
can be associated with each such stack location.

The I/O Manager invokes completion routines in sequence in the loComple-
teRequest () function, starting with invoking the completion routine associated
with the last stack location to be processed (before loCompleteRequest ()
was invoked) and proceeding in reverse sequence until the completion routine
associated with the first I/O stack location in the IRP has been invoked. This
allows for a natural unraveling of I/O stack locations with the last-in-first-out
order being preserved.

Figure 12-4 illustrates the sequence in which completion routines are invoked for
an IRP with four stack locations.

Figure 12-4. I/O manager sequence for invoking completion routines

Specifying a completion routine for IRPs

Your driver should use the loSetCompletionRoutine () macro, which is
made available by the NT I/O Manager. Currently, this macro is defined as follows:

#define loSetCompletionRoutine(Irp, Routine, CompletionContext,
Success, Error, Cancel)

(Cancel) ? (Routine) != NULL : TRUE);
PIO_STACK_LOCATION irpSp;
ASSERT((Success) | (Error)
irpSp = IoGetNextIrpStackLocation((Irp));
irpSp->CompletionRoutine = (Routine);
irpSp->Context = (CompletionContext);
irpSp->Control = 0;
if ((Success)) { irpSp->Control = SL_INVOKE_ON_SUCCESS; }

652__Chapter 12: Filter Drivers

if ((E r r o r)) { irpSp->Control |= SL_INVOKE_ON_ERROR;} \
if ((C a n c e l)) { irpSp->Control |= SL_INVOKE_ON_CANCEL; } }

Parameters:

Irp
This is a pointer to the IRP structure.

CompletionRoutine
This is a pointer to the completion routine, supplied by your driver, of type
PIO_COMPLETION_ROUTINE. This completion function must be defined as
follows:
typedef
NTSTATUS (*PIO_COMPLETION_ROUTINE) (

IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID Context

);
CompletionContext

This is an opaque pointer value that is passed to the completion routine by
the I/O Manager.

InvokeOnSuccess
If set to TRUE and if the returned status code to loCompleteRecruest () is
STATUS_SUCCESS, the completion routine will be invoked.

InvokeOnError
If set to TRUE and if the returned status code to loCompleteRequest ()
does not evaluate to a success value, the completion routine will be invoked.

InvokeOnCancel
If set to TRUE and the IRP has been canceled (i.e., Irp->Cancel is TRUE),
the completion routine will be invoked.

Typically, your driver will request that the completion routine be invoked regard-
less of why the loCompleteRecruest () function was called. Therefore, you
should set InvokeOnSuccess, InvokeOnError, and InvokeOnCancel to
TRUE.

Notice that the completion routine information is placed in the next I/O stack loca-
tion. This is logical, since that is the I/O stack location to be initialized for the
next driver in the calling hierarchy.

Many kernel-mode drivers (especially filter drivers) execute the following steps:

• Allocate a new IRP structure using any one of the I/O Manager-supplied func-
tions described earlier in this chapter.

Basic Steps in Filtering_______________________________________653

• Initialize the first I/O stack location (obtained by using the loGetNextlrp-
StackLocation() function) with appropriate values and set a completion
routine using the loSetCompletionRoutine () function.

The problem with this approach is that when the filter driver completion routine
does get invoked, you will find that the device object pointer supplied to your
completion routine is NULL. The reason for this will become obvious as you read
the following discussion on how the I/O Manager invokes completion routines.
Basically, the problem is that your driver neglected to create a stack location for
itself in the newly allocated IRP structure, and hence the I/O Manager has no way
of determining the device object pointer it should pass on to your completion
routine.

To avoid this potential problem (especially if your driver plans to use the passed-
in device object pointer in the completion routine), ensure that your driver always
creates and initializes a stack location for itself. To do this, you must execute the
following steps after obtaining a new IRP structure:

• Use loSetCurrentStackLocation () to set the IRP pointers to the first
stack location in the IRP.

• Initialize the first stack location (use IoGetCurrentStackLocation() to
obtain a pointer to this stack location) with appropriate values. Note that the I/O
Manager will update this stack location with a pointer to your device object when
you invoke loCallDriver ().

• Use loGetNextlrpStackLocation () to get a pointer to the next stack
location (to be used by the driver you will invoke with the newly allocated IRP).

• Initialize the next IRP stack location with appropriate values and use loSet-
CompletionRoutine () to set your completion routine for the next I/O
stack location.

Invoking completion routines

Completion routines are invoked by the loCompleteRequest () function,
implemented by the I/O Manager. The loCompleteRequest () function, in
turn, is invoked by the kernel-mode driver that will complete processing for the
current IRP. The following pseudocode extract illustrates how the I/O Manager
invokes completion routines associated with the IRP being completed.

while (PtrIrp->CurrentLocation < (PtrIrp->StackCount + 1)) {
currentStackLocation = loGetCurrentlrpStackLocation(Ptrlrp);

// Prepare to process beginning at the next I/O stack location.
/ / If any completion routine returns

654_____________________________________Chapter 12: Filter Drivers

II STATUS_MORE_PROCESSING_REQUIRED and later reissues the
// loCompleteRequest() call, the I/O Manager will begin processing
// at the next stack location (which is the correct thing to do).
(PtrIrp->Tail.Overlay.CurrentStackLocation)++;
(PtrIrp->CurrentLocation)++;

if (PtrIrp->CurrentLocation == (PtrIrp->StackCount + 1)) {
// Some driver has set up a completion routine for the
// last valid I/O stack location itself (probably using an
// associated IRP).
PtrDeviceObject = NULL;

} else {
// Device Object of the driver that set the completion routine.
// Notice that PtrIrp->Tail.Overlay.CurrentStackLocation was
// incremented before we use IoGetCurrentIrpStackLocation()
// here.
PtrDeviceObject =

loGetCurrentlrpStackLocation(Ptrlrp)->DeviceObject;
}
PtrContext = currentStackLocation->Context;

if ((NT_SUCCESS(PtrIrp->IoStatus.Status) &&
currentStackLocation->Control & SL_INVOKE_ON_SUCCESS)
I I

(!NT_SUCCESS(PtrIrp->IoStatus.Status) &&
currentStackLocation->Control & SL_INVOKE_ON_FAILURE)
I I

(PtrIrp->Cancel && currentStackLocation->Control
& SL_INVOKE_ON_CANCEL)) {

// Invoke the completion routine.
RC = currentStackLocation->

CompletionRoutine(PtrDeviceObject,PtrIrp, PtrContext) ,-
if (RC == STATUS_MORE_PROCESSING_REQUIRED) {

return;

} // end of while more stack locations to process.

Notice that the flag values in the Control field for the current stack location,
when combined with state information about why the IRP was completed and the
status code saved in the IRP, determine whether or not the I/O Manager will
invoke a completion routine for that particular stack location. Also note that the
I/O Manager simply starts processing the IRP beginning at the current stack loca-
tion (i.e., the stack location for the driver that invoked loCompleteRequest ())
and continues on until all stack locations have been processed.

Basic Steps in Filtering ______ _____ ___ 655

WARNING The I/O Manager is meticulous about supplying the correct device
object pointer to the driver that sets a completion routine. If your
driver (that must have some device object created to even receive
the IRP in the first place) sets a completion routine, then your com-
pletion routine will be invoked with a pointer to your own device
object. It is possible, however, for your driver to create a new IRP
and immediately set a completion routine in the first I/O stack loca-
tion (to set up for the next driver in the calling hierarchy). In this
case, your completion routine will be invoked with the device ob-
ject pointer set to NULL (since there was no stack location set up for
your driver, there is no device object pointer that the I/O Manager
can supply to you).

Finally, you may have noticed something strange about the preceding
pseudocode fragment. If the completion routine invoked returns a special status
code (STATUS_MORE_PROCESSING_REQUIRED), the I/O Manager simply stops
postprocessing for the particular IRP and returns control immediately to the caller.
This should give you some ideas on how IRPs can be reused by a higher-level
driver even after they have been completed by a lower-level kernel-mode driver.
This issue is discussed in greater detail later in this chapter.

Be careful about a particular bug that manifests itself when your filter driver speci-
fies a completion routine in an IRP and then forwards the IRP to the next driver
in the calling hierarchy. The following code fragment illustrates a methodology
used sometimes by higher-level Windows NT drivers that can result in incorrect
execution:

PtrCurrentloStackLocation = loGetCurrentlrpStackLocation(Ptrlrp);
PtrNextloStackLocation = loGetNextlrpStackLocation(Ptrlrp);
// The following code can cause problems for the driver above
// in the calling hierarchy!!!
*PtrNextIoStackLocation = *PtrCurrentIoStackLocation;
RC = loCallDriver(...);

If you examine this code fragment carefully, you will notice that the driver
executing this code has literally copied the entire contents of the current I/O stack
location into the stack location passed on to the next driver in the calling hier-
archy. The copied data includes information contained in the Control field (the
SL_INVOKE_XXX flag values), as well as the function pointer and context
contained in the CompletionRoutine and Context fields respectively.

The net result is that the completion routine associated with the current I/O stack
location is now also associated with the next I/O stack location and will therefore

656_____________________________________Chapter 12: Filter Drivers

be invoked twice for the same IRP. Both NTFS and FASTFAT implementations in
Windows NT (up until Version 4.0 SP2) contain this bug.*

To protect yourself against such badly behaved drivers, execute the following
code sequence in your completion routine:

NTSTATUS SFilterSampleCompletionRoutine (
PDEVICE_OBJECT PtrSentDeviceObj ect;
PIRP Ptrlrp;
PVOID SFilterContext)
{

// Some declarations above.
PDEVICE_OBJECT SFilterDeviceObject = NULL;

// The following line must exist in all completion routines. Read
// Chapter 4 for more information.
if (PtrIrp->PendingReturned) {

IoMarkIrpPending(Ptrlrp) ;

//To protect myself from bugs in other drivers ... ! ! !
// Ensure that you have some way to get a pointer to your device
// object.
SFilterDeviceObject = . . . ; // assume that we get the value from

// the context.
if (PtrSentDeviceObject != SFilterDeviceObject) {

// We were called erroneously. Return control back to the I/O
/ / Manager .
return;

// Other processing goes here.

Some points to consider regarding completion routines

Completion routines are directly invoked in the context of the thread that calls
loCompleteReguest () . Since your driver cannot be sure about the thread
execution context in which the completion routine is invoked, it must be espe-
cially careful with regard to the memory accessed by the driver or other resources
(e.g., pointers, object handles) that may be accessed. Ensure that the processing
performed by the completion routine can be executed in any arbitrary thread
context.

Also note that completion routines are often invoked at a high IRQL. It is not
unusual to have your completion routine invoked at IRQL DISPATCH_LEVEL.

* It appears as though this behavior is exhibited only in the dispatch routine for IRP_MJ_DEVICE_CON-
TROL as implemented by FASTFAT and NTFS.

Basic Steps in Filtering_______________________________________657

Therefore, your completion routine code cannot be made pageable, nor can it
access paged memory.

Although you may sometimes be able to get away with invoking loCall-
Driver () from within your completion routine, many kernel-mode driver
dispatch entry points are not equipped to handle being invoked at a high IRQL.
Therefore, try to avoid invoking driver dispatch entry points directly from your
completion routine. You could, instead, initiate such processing asynchronously
using a worker thread.

WARNING In Chapter 4, we saw how your driver must always propagate the
pending returned information from your completion routine. Failure
to do this will result in unexpected system behavior, including sys-
tem hangs and crashes. Review the information provided in Chapter
4 to ensure that your completion routine does behave correctly
about propagating such information.

Using completion routines

Filter drivers often use completion routines to perform postprocessing of data
returned by the target driver. For example, an encryption module that you may
develop could decrypt data on-the-fly in a completion routine after the
compressed data has been retrieved by the file system from secondary storage.

There are less esoteric things, as well, that are done using completion routines.
For example, an intermediate driver or a file system driver could break up a rela-
tively large I/O request into more manageable pieces and issue multiple I/O
requests to lower-level disk drivers. The data returned from the disk drivers can
then be collated in a completion routine associated with each IRP sent to the
lower-level drivers.

Sometimes FSDs, filter drivers, or fault-tolerant drivers will use completion
routines to determine whether a specific I/O request must be reissued to the
lower-level driver, in case the I/O failed. This type of retry operation might make
sense under certain circumstances.

Subject to the restrictions discussed previously, the kind of processing that you
can perform in your completion routine is only limited by your imagination.

About this STATUS_MORE_PROCESSINGJREQUIRED business ...

As you must have observed from the pseudocode fragment presented earlier,
when IRP completion postprocessing is being performed by the I/O Manager, the

658_____________________________________Chapter 12: Filter Drivers

postprocessing is abruptly terminated if any completion routine invoked returns a
special return status of type STATUS_MORE_PROCESSING_REQUIRED.

This is a method provided by the I/O Manager to allow any kernel-mode driver in
the calling hierarchy to interrupt the IRP completion. It is possible for the same
IRP to be completed, via loCompleteRecjuest () , once again at some later
time, and the I/O Manager will begin processing (once again) starting at the
current I/O stack location.

By returning STATUS_MORE_PROCESSING_REQUIRED, your kernel-mode driver
essentially informs the I/O Manager that it needs to hold on to and use the IRP
for some additional time. Managing the IRP from that point onward is the respon-
sibility of your driver. This is no different from how your driver would manage an
IRP received in a dispatch routine for the very first time. The only point to note is
that the kind of processing you can perform directly in your completion routine is
limited, since the completion routine is invoked in the context of an arbitrary
thread (possibly) at a high IRQL. However, you can certainly dispatch the same
IRP to some worker thread for further asynchronous processing.

You should note that the only action performed by the I/O Manager, before it
stops the postprocessing of the IRP, is to invoke any completion routines for stack
locations lower in the calling hierarchy. Therefore, the IRP state is completely
maintained when your completion routine gains control of the IRP. The reason
that the I/O Manager terminates processing of the IRP so completely once your
driver returns STATUS_MORE_PROCESSING_REQUIRED is because the I/O
Manager has no idea what your driver intends to do to the IRP (or has already
done to the IRP). Your driver may have just freed the memory allocated for the
IRP (by invoking loFreelrp ()) before returning STATUS_MORE_PROCESSING_
REQUIRED to the I/O Manager and hence any attempt by the I/O Manager to
even read any field in the IRP structure could lead to a system crash.

Synchronous I/O requests and STATUS_MORE_PROCESSING_REQUIRED

There is one potential problem that you must understand if you expect to return
STATUS_MORE_PROCESSING_REQUIRED from a completion routine provided
by your driver. Recall from Chapter 4 that the NT I/O Manager tries to optimize
processing of user I/O requests that are considered inherently synchronous. In the
case of these types of I/O requests, the I/O Manager always blocks the invoking
thread until the request has been completed via loCompleteRequest () .
Because of this, the I/O Manager avoids issuing an APC to perform the final post-
processing in the context of the thread issuing the I/O request. Instead, the
loCompleteRequest () code simply returns control to the caller (after
performing some basic postprocessing), and the invoking thread that is blocked,

Basic Steps in Filtering_______________________________________659

awaiting completion of the request, performs the final postprocessing by invoking
lopCompleteRequest () directly.

For inherently synchronous I/O requests, the I/O Manager code that initially
creates an IRP and forwards it onward to the first kernel-mode driver (typically, a
filter driver that intercepts FSD requests or the FSD itself) executes the following
code sequence:

// Invoke the first driver in the calling hierarchy to process the IRP.
RC = loCallDriver(...);
if (RC == STATUS_PENDING) {

// Wait until the request is completed. The loCompleteRequest()
// code will now be forced to use a kernel-mode APC to complete
// the request.
KeWaitForSingleObject(...);

} else {
// This request completed synchronously. Therefore, I can safely
// assume that the IRP is no longer required. Furthermore, the
// loCompleteRequest() has not issued an APC to perform the final
// postprocessing. Therefore, let me perform such postprocessing
// by invoking the appropriate (internal) routine directly.
lopCompleteRequest(...);
// Note that the call to lopCompleteRequest() above will result in
// memory for the IRP being freed.
}

Sometimes, filter drivers that layer themselves above an FSD write code as follows:

NTSTATUS SFilterBadFSDInterceptRoutine(
...)
{

// Assume appropriate declarations, etc.

// The filter driver sets a completion routine called
// SFilterCompletionf) .
loSetCompletionRoutine (Ptrlrp, SFilterCompletion,

SFilterCompletionContext ,
TRUE, TRUE, TRUE) ;

// Now, simply dispatch the call and return whatever the FSD returns.
// The problem with this (described below) is that the FSD may not
II return STATUS_PENDING . This may cause us headaches later.
return (loCallDriver (...));

NTSTATUS SFilterCompletion(
...)
{

// Assume appropriate declarations, etc.

660_____________________________________Chapter 12: Filter Drivers

// Hardcoded return of STATUS__MORE_PROCESSING_REQUIRED.
return(STATUS_MORE_PROCESSING_REQUIRED);

}

Consider the following situation. The FSD synchronously processes the IRP and
returns an appropriate status, either STATUS_SUCCESS or an error (except
STATUS_PENDING because, from the FSD's perspective, IRP processing has
been completed synchronously). Your filter driver passes the returned status code
to the I/O Manager, believing that the completion routine will be able to intercept
IRP postprocessing by returning STATUS_MORE_PROCESSING_REQUIRED.

Unfortunately, although your filter driver believes that it has stopped IRP comple-
tion postprocessing by returning STATUS_MORE_PROCESSING_REQUIRED from
the completion routine, the previous I/O Manager code fragment will not care
about the abrupt stoppage of the IRP completion and will invoke lopComple-
teRequest () directly, which, in turn, will free the memory for the IRP. This will
lead to a system crash (or corruption) when your filter driver continues
processing the IRP.

To avoid this problem, you may consider the following guiding principles:*

• If you complete an IRP in your driver synchronously, do not invoke loMark-
IrpPendingO and do not return STATUS_PENDING from your dispatch
routine.

• If you pass the IRP to a lower layer, protect yourself from the preceding prob-
lem by always marking the IRP pending and always returning STATUS_
PENDING.

The other way of protecting yourself is to ensure that if you inadvertently for-
warded to the I/O Manager a return code of STATUS_PENDING, you cannot
return STATUS_MORE_PROCESSING_REQUIRED from your completion rou-
tine (unless you are really sure that this is not an inherently synchronous I/O
operation from the I/O Manager's perspective). The next rule formalizes this
behavior.

• If you ever return STATUS_PENDING (regardless of whether it is because
you decide to return this status code yourself or because some lower-level
driver does so and you simply pass-on the return code), you must have
marked the IRP pending.

• If you ever mark the IRP pending, you must return STATUS_PENDING.

* These ideas/guidelines came out of a discussion on a Usenet newsgroup where this topic was hotly
debated. Appendix F, Additional Sources for Help, lists some sources for help during FSD or filter driver
development, including a Usenet newsgroup.

Basic Steps in Filtering_______________________________________661

Here's a simplistic method that can be followed by any filter driver that layers
itself on top of an FSD:

NTSTATUS SFilterBetterFSDInterceptRoutine (
. . .)
{

// Assume appropriate declarations, etc.

// The filter driver sets a completion routine called
// SFilterCompletion().
ZoSetCompletionRoutine(Ptrlrp, SFilterCompletion,

SFilterCompletionContext,
TRUE, TRUE, TRUE);

// Now, invoke the lower-level driver but force synchronous requests to
// always be completed via an APC.
loMarklrpPending(Ptrlrp);
loCallDriver (...)
return(STATUS_PENDING);

}

This code will degrade performance somewhat (though whether such degradation
will be noticeable is debatable), but will always lead to correct handling of the
IRP, even if your completion routine returns STATUS_MORE_PROCESSING_
REQUIRED. As soon as you return STATUS_PENDING (after having marked the
IRP pending), the I/O Manager code invoking your driver will wait for the comple-
tion of the IRP using the KeWaitForXXX() function, and IRP completion (via
lopCompleteRecjuest ()) will only be finished when the IRP is finally
completed and no completion routine returns STATUS_MORE_PROCESSING_
REQUIRED. The downside is that the I/O Manager will be forced to issue an APC
to complete the IRP, which incurs a performance penalty even for synchronous
I/O requests.

Detaching from a Target Device Object
There will be occasions when your driver may wish to stop filtering and would
like to detach itself from the target device object. This may also happen because
the target device object could be in the process of being deleted by the driver that
created it. An example of this is when file system drivers managing removable
media delete a device object representing a mounted instance of a logical volume
because the user has replaced the media in the drive. If a user decides to format a
disk device, the FSD will dismount the logical volume mounted on the device (if
any) at the request of the user application. This will also result in deletion of the
logical volume device object and your driver must be prepared to delete the
attached device object in this case.

662_____________________________________Chapter 12: Filter Drivers

To request that your device object be detached from a target device object, use
the loDetachDevice () function (described in the DDK) supplied by the I/O
Manager. This function expects a single argument, the target device object you
wish to detach from. You must supply the target device object pointer that you
obtained when first attaching to the target.*

Note that your driver must not ever try to detach from a target device object if
another driver has layered itself on top of your device object. You can always
check for this case by examining the AttachedDevice field in your own device
object and declining to detach from the target if the field contents are nonnull.
Failure to do this will not only result in memory leaks, but will break the drivers
that are layered above yours, since their device objects will also get detached
abruptly (without their knowledge or consent). Detaching (when it is not initiated
by the I/O Manager) can only be performed safely in a last-in-first-out fashion,
starting with the highest-layered device object attached to a specific target device
object. The only exception to this rule is when the I/O Manager asks your driver
to perform the following detach.

Starting with Version 4.0 of the operating system, the I/O Manager will request
that you detach from a target device object if the driver managing the target
device object decides to delete the object for some reason. For example, as
mentioned earlier, an FSD may dismount a volume if requested to do so by a user
application and will therefore delete the device object representing the particular
instance of the mounted logical volume.t In this case, the FSD will invoke loDe-
leteDevice () to perform the delete operation. In turn, the I/O Manager will
ask the first driver that has attached a device object to the one being deleted to
detach its own device object. This call will be sent to your driver in the form of a
fast I/O function call.*

Your driver must detach its device object at this time and probably also delete it
as well. If you do choose to delete your device object using loDeleteDe-
vice (), the I/O Manager will now call any driver that has a device object
attached to your device object (being deleted) to detach itself from your device
object. Note that the fast I/O detach call does not accept failure (there is no return

* This is one reason why your driver should always store the target device address in some deviee object
extension field. Also note that the address you supply is the address of the highest-layered device object
that you received when (for example.) your driver invoked the IoAttachDeviceToDeviceStack()
function.
t In Windows NT Version 3.51 and earlier, if the I/O Manager detected a nonnull AttachedDevice
field for a device object on which loDeleteDevice () was invoked, it would bugcheck the system.
This was not very conducive to supporting filter drivers cleanly.
\ Note that I said the first driver will be asked to perform the detach and not the top-layered driver. This
is because the I/O Manager expects each driver (starting with the first one) that had attached to the target
device object to first detach itself and then invoke loDeleteDevice () on itself, resulting in a recursive
detach for the next (higher-layered) attached device and so on.

Some Dos and Don'ts in Filtering________________________________563

value for the function definition), so your driver has no choice but to do the I/O
Manager's bidding. If you fail to perform the detach operation, the I/O Manager
will bugcheck the system.

TIP Even if multiple drivers have attached themselves to a particular tar-
get device object, the method described previously allows each
such driver to cleanly detach and delete its own (attached) device
object when the target device object is being deleted. To make this
happen, however, each driver that has its fast I/O detach function in-
voked must first perform the detach operation and then immediately
perform a delete operation for its device object.

Some Dos and Don'ts in Filtering
Designing filter drivers is often an iterative process. Your filter driver is likely to
encounter unique problems and issues that are specific to the type of driver you
are trying to design and the type of target driver that your filter will attach itself
to. However, there are certain fundamental principles that you should keep in
mind when you begin the process of designing and implementing a filter driver.
Many of these principles were mentioned earlier in this chapter. Here then, is a
recap of some of the basic principles that you should always keep in mind when
designing your filter driver:

Always understand the nature of the driver you wish to filter
This may seem obvious to some of you but it cannot be stressed often
enough. There are some who believe that using a canned approach to
designing filter drivers may be adequate. This may well be the case—some-
times. However, in most cases, if you fail to understand the characteristics of
your target driver, you will end up with problems late in the cycle that could
be difficult to rectify easily.

As an example, consider the situation where you decide to filter all requests
targeted to a specific logical volume managed by a native FSD (e.g., NTFS).
You will layer your own device object over the target device object repre-
senting the mounted logical volume. So far, so good. However, you should
now understand the various ways in which the FSD gets invoked, since those
are exactly the situations in which your dispatch entry points will be invoked.

For example, in Chapter 10, Writing A File System Driver II, you read that the
FSD read/write entry points can be invoked in many different ways: via a
system call from a user application, due to a page fault on a mapped file,
from the Cache Manager due to asynchronous read/write requests, recursively
via the FSD and the Cache Manager due to cached I/O being performed by

664_____________________________________Chapter 12: Filter Drivers

the user application, and so on. The important point to note here is that in
some situations, it may be acceptable for your filter driver to post an I/O
request to be handled asynchronously, but in other situations (e.g., when
servicing a page fault), your filter driver should never try to post the request
for asynchronous handling, since this could lead to a deadlock or hang.
(Remember that the VMM or the Cache Manager may have preacquired FSD
resources.)
Similarly, you must be extremely careful about how your filter driver performs
synchronization, especially when it filters file system I/O requests. As you
read in earlier chapters, the NT VMM and the Cache Manager often preac-
quire FSD resources via fast I/O calls. This is necessary in order to maintain
the system locking hierarchy and avoid deadlock. However, if your filter
driver layers itself on top of an FSD, then by definition your filter driver
becomes part of the intertwined set of kernel modules that are affected by the
locking sequence implemented in processing I/O requests, and therefore, you
must somehow ensure that your filter driver does not violate the locking hier-
archy in any way. You could do this by ensuring that any resources acquired
when processing read/write/create/cleanup/close requests are end-resources
(i.e., you would acquire such a resource and not acquire any other until the
resource was released; furthermore, for filter drivers, you would not pass-on
an IRP unless the acquired resource was released), or you could preacquire
resources yourself in the context of the invoking Cache Manager or VMM
thread when the fast I/O call is intercepted.*

Note that in the event that your filter driver decides to filter lower-level device
objects (e.g., one representing a physical disk device), you might be able to
ignore many complicated issues that you would otherwise face when inter-
cepting file system I/O. There are other issues that a filter driver layering itself
over a disk driver must be careful of; for example, IRPs sent to a lower-level
disk driver may often be associated IRPs created by an FSD, and therefore a
filter driver layering itself over the disk driver must not try to create associated
IRPs itself. Similarly, lower-level disk drivers are often expected to complete
their processing asynchronously by queuing the request and returning control
immediately to the higher-level kernel-mode drivers. Your filter driver must
conform to such expectations or you could risk destabilizing the entire system.
In all situations, more knowledge and experience about the target driver will
prove to be better than less.

* The problem with the second approach is that replacing the lazy-write/read-ahead callbacks obtained
from the file object could turn out to be very difficult.

Some Dos and Don'ts in Filtering ________________________________ 665

Know what your driver attaches itself to
As described earlier in this chapter, your driver may try to attach to a file
system (mounted) logical volume device object but may actually end up
attaching to the physical disk device object if the volume is not mounted.
Therefore, be careful about how you open the target device as a prerequisite
to performing the attach operation.

Beware of maintaining unnecessary references
If you inadvertently maintain an extra reference on a target device object (or
file object obtained when performing the attach), you may prevent all further
open requests to the target and defeat your original goal of intercepting I/O
requests (there will be none to intercept). Furthermore, in the case of FSD-
created device/file objects, you may end up preventing a volume dismount/
lock operation because of such unnecessary references maintained by you
and prevent a user from doing useful things like reformatting a drive or
ejecting a removable piece of media.

Be careful about the thread context in which your dispatch entry point executes
This is a problem that many of us encounter when beginning to design and
implement filter drivers. You may have implemented a kernel-mode filter
driver function that executes as follows:
NTSTATUS SFilterBadFilterRead(

// Declarations, etc. go here.
IO_STATUS_BLOCK LocalloStatus ;
void *LocalBufferPointer;

// Here, I will make the caller wait until I read some data
// from another logical volume. This data will somehow help me in
// processing the caller's request. ZwReadFileO is easy to use
// and therefore I will try to use it.
ZwReadFile(GlobalFileHandle, ...,

SLocalloStatus, LocalBufferPointer, ...);

This code fragment seems reasonable, but there are two problems (at least)
with it that will result in the ZwReadFile () routine returning an error status
back to you. First, the fragment attempts to use a GlobalFileHandle that
was presumably obtained when the target of the read operation was first
opened (probably during driver initialization). Unfortunately, file handles are
process-specific, and therefore, it is highly likely that the previously described
file handle will be invalid in the context of most user threads that invoke the
system service to request I/O. Instead of using the global file handle directly,

666_____________________________________Chapter 12: Filter Drivers

you could create a new file handle in the context of the caller thread (use
ObOpenObjectByPointer () described in Chapter 5, The NT Virtual
Memory Manager, if you had previously stored a pointer to the underlying
file object), or you may open a new handle to the target object in the context
of the calling thread, or you could post the request to be handled in the
context of a thread that can use the handle, or finally, you could avoid using
ZwReadFile () and instead create IRPs that you dispatch directly to the
target of the request.

Similarly, you will notice that the code attempts to use pointers to memory
that is either off the kernel-mode stack or allocated in kernel-mode. When
you try to use ZwReadFile () , the recipient of the request will check the
previous mode of the caller (which in all likelihood is user mode) and will
reject the request if passed-in addresses are kernel-mode virtual addresses
(virtual address with a value > Ox7FFFFFFF).

The point to note, once again, is that the context of the thread in which your
filter driver dispatch routine executes must always be kept in mind as you
design and implement your driver.

Be creative
Imagine that you wish to prevent the Windows NT I/O Manager from auto-
matically assigning drive letters during system boot-up to certain drives
connected to the system.* How would you go about doing that?
If you go back and read the system boot-up sequence overview described in
Chapter 4, you will note that the I/O Manager opens the device object (repre-
senting the physical device) created by the disk device driver in order to
obtain the characteristics of the device before assigning a drive letter to it.
You can then deduce that, perhaps by designing and implementing a filter
driver that layers itself, early in the boot sequence, over the target disk device
objects, you could somehow prevent this drive letter assignment. How?
Maybe, if your driver recognized the I/O Manager open request and failed
this open operation for each target disk device object, the I/O Manager may
conclude that the disks were unusable and (hopefully) decide not to assign
drive letters to these disk drives.t

* This may be necessary if you have a large disk farm connected to the system. You know that there are
a finite number of drive letters available, and you may decide that one method to allow a user to utilize
all of the disks in this large disk farm would be to present logical groupings of disks under a single drive
letter. There are other alternatives, as well, that you may decide to implement that are beyond the scope
of this book.
t Unfortunately, it is not as easy to prevent drive letter assignment as is described here. But the descrip-
tion provided here is definitely a good starting point.

Some Dos and Don 'ts in Filtering________________________________667

There are many ways in which filter drivers can be used. Not all of these
ways have as yet been exploited. Therein lies an opportunity for you to be
creative and design stable, safe software modules that extend the capabilities
of the Windows NT I/O subsystem and provide substantial added value to
your customers.

In this chapter, we discussed filter driver design and development. In order to
understand how to design filter drivers that are reliable and useful, you should
understand the kernel-mode environment in which your filter driver will execute.
The contents of this book and the sample filter driver implementation provided
on the accompanying diskette should help you in creatively designing and imple-
menting your own value-added software for the Windows NT operating system.

Windows NT
System Services

For various reasons, Microsoft has not documented the native Windows NT I/O
services provided by the Windows NT I/O Manager. Application developers are
instead expected to use either the Win32 subsystem APIs, or the APIs provided by
one of the other supported subsystems, e.g., the POSIX subsystem.

This appendix contains a list of most of the exported, native Windows NT I/O-
Manager-provided system services. As was mentioned earlier in the book, the
Windows NT system services are quite powerful and comprehensive, and allow
the caller to more easily request certain operations that would often otherwise
require multiple Win32 API calls. The majority of the structure types and flag defi-
nitions required to use the various system services described in this appendix are
provided in the Windows NT DDK. Those definitions that are not provided in the
DDK can be obtained from the header files supplied with the Windows NT IPS
kit. Many such undefined types are described here as well.

NT System Services
The Windows NT system services allow the caller to request normal file stream
manipulation operations. These include requests to create a new file or open an
existing file stream, requests to perform I/O on the file, get and set file attributes,
map a file into a process virtual address space, and requests to close a file handle.
Nearly all of the services provided by the native system services can also be
requested using Win32 API calls or any one of the various APIs provided by the
supported subsystems. However, system and application software developers may
sometimes require functionality that may not be easily (or efficiently) provided by
any one subsystem. As an example, creating a link to an existing file cannot be
easily accomplished (if at all) using the Win32 subsystem. This functionality,
however, is more easily requested if an application were to use the POSIX

671

672___________________________Appendix A: Windows NT System Services

subsystem instead.* In such situations where you may need otherwise hard-to-
request functionality, requesting file system services by using the native system
service calls provided by the I/O Manager can be quite useful.

Kernel-mode file system and filter driver developers may also wish to scan
through the system services documented here to get a good sense of how the I/O
Manager translates user requests into corresponding file system dispatch routine
invocations, and also how user-specified arguments are eventually passed on to
the file system implementation. Descriptions of certain system services also
include comments on the responsibilities of an FSD processing such a request.

NtCreateFileQ

Parameters

FileHandle
Returned handle (created by the I/O Manager) if call succeeds.

DesiredAccess
Desired access flags can be one or more of the following:

DELETE
Required if FILE_DELETE_ON_CLOSE is set in CreateOptions below.
File can be deleted by caller.

FILE_READ_DATA

Caller can request to read data.

FILE_WRITE_DATA
Caller may write file data. The caller is also allowed to append to the file.

FILE_READ_ATTRIBUTES
File attributes flags can be read.

FILE_WRITE_ATTRIBUTES
The caller can change file attribute flag values.

FILE_APPEND_DATA
The caller can only append data to the file.t This access value is not
allowed in conjunction with the FILE_NO_INTERMEDIATE_BUFFERING
CreateOptions flag.

READ_CONTROL
ACL and ownership information for the file stream can be read.

* Multiple (hard) links to a file stream are currently supported only by the NTFS driver, out of all of the
native file system implementations provided by Microsoft for the Windows NT platform.
t Any byte offset specified in a write operation will be ignored.

NT System Services___673

WRITE_DAC
Discretionary ACL associated with the file can be written.

WRITE_OWNER
Ownership information can be written.

FILE_LIST_DIRECTORY
Caller can list files contained within the directory. Not valid for data files.

FILE_TRAVERSE
The opened directory can be in the pathname of a file. Not valid for data
files.

FILE_READ_EA
Caller can read extended attributes associated with the file.

FILE_WRITE_EA
Required if EaBuf f er is not null. Caller may write extended attributes to
the file.

SYNCHRONIZE
Caller can wait for the returned file handle for completion of asynchro-
nous I/O requests. Required if either FILE_SYNCHRONOUS_IO_ALERT
or FILE_SYNCHRONOUS_IO_NONALERT flags in CreateOptions have
been set. If this flag is not specified, I/O completion for asynchronous
I/O requests must be synchronized by either using an event or an APC
routine.

FILE_EXECUTE
File stream is an executable image. If FILE_EXECUTE is set but neither
FILE_READ_DATA nor FILE_WRITE_DATA are set, then I/O can only
be performed by mapping the file into the process virtual address space.

ObjectAttributes
The caller must allocate memory for this structure of type OBJECT_
ATTRIBUTES. Fields in the structure are initialized as follows:

Length
Size, in bytes, of the structure.

ObjectName
A Unicode string specifying the name of file. The name can be either a
relative name (RootDirectory is nonnull) or an absolute name (Root-
Directory is NULL).

RootDirectory (optional)
The previously opened handle for a directory; ObjectName will be
considered relative to this directory (if specified).

674___________________________Appendix A: Windows NT System Services

SecurityDescriptor (optional)
If nonnull, the specified ACLs will be applied only if the file is created. If
the SecurityDescriptor is NULL and if the file is created, the FSD
determines which (if any) ACLs will be associated with the file (typically,
a default ACL associated with the parent directory is propagated to the
created file).

SecurityQualityOf Service (optional)
Specifies the access a server should be given to a client's security context.
Only nonnull when a connection is being established to a protected
server.

Attributes
Combination of OBJ_INHERIT (child processes inherit open handle) and
OBJ_CASE_INSENSITIVE (lookups should be processed in a case-insen-
sitive fashion).

loStatusBlock
Caller-supplied structure to receive results of create/open request.

AllocationSize (optional)
The initial allocation size of file. Only used when the file is initially created,
overwritten, or superseded. If the FSD cannot allocate the requested disk
space for the file, the create/open request will fail.

FileAttributes
Attributes are only applied if file is newly created, superseded, or overwritten.
Any combination is allowed but all flag values override the FILE_
ATTRIBUTE_NORMAL flag. Attributes can be one or more of the following:
FILE_ATTRIBUTE_NORMAL

A normal file should be created.

FILE_ATTRIBUTE_READONLY
A read-only file should be created.

FILE_ATTRIBUTE_HIDDEN
A hidden file should be created.

FILE_ATTRIBUTE_SYSTEM
The created file should be marked as a system file.

FILE_ATTRIBUTE_ARCHIVE
Mark the file to-be-archived.

FILE_ATTRIBUTE_TEMPORARY
The file to-be-created is marked as a temporary file. Note that modified
cached data for the file is often not flushed to secondary storage for
temporary files by the Cache Manager.

NT System Services_______________________________________ 575

FILE_ATTRIBUTE_COMPRESSED
The file to be created is a compressed file.

ShareAccess
The type of share access requested by the caller. The share access can be a
combination of the following:
FILE_SHARE_READ

The file can be concurrently opened for read access by other threads.
FILE_SHARE_WRITE

Other file open operations requesting write access should be allowed.

FILE_SHARE_DELETE
Other file open operations requesting delete access should be allowed.

Note that the share access flags allow the requester to control how the file
can be shared by separate threads and processes. If none of the share values
are specified, no other subsequent open operation will be allowed to proceed
until the file handle is closed (and an IRP_MJ_CLEANUP issued to the FSD).

CreateDisposition
The disposition specified by the caller determines the actions performed by
an FSD if a file does or does not exist. Any one of the following values can
be specified:
FILE_SUPERSEDE

It the file exists, it should be superseded; if the file does not exist, it
should be created.

FILE_CREATE
If the file does not exist, it should be created; if the file exists, an error
should be returned (typically STATUS_OBJECT_NAME_COLLISION is
returned).

FILE_OPEN
If the file exists, it should be opened; if the file does not exist, an error
should be returned (often STATUS_OBJECT_NAME_NOT_FOUND is
returned).

FILE_OPEN_IF
Open the file if it exists, create the file if it does not already exist.

FILE_OVERWRITE
If the file exists, it should be opened and overwritten. If it does not exist,
the create operation should fail (often STATUS_OBJECT_NAME_NOT_
FOUND is returned).

678___________________________Appendix A: Windows NT System Services

FILE_NO_EA_KNOWLEDGE
The caller does not understand how to handle extended attributes. If
extended attributes are associated with the file being opened, the FSD
must fail the open operation.

FILE_DELETE_ON_CLOSE
The directory entry for the file being opened should be deleted when the
last handle to the file stream has been closed.

FILE_0PEN_BY_FILE_ID
The file name is actually a LARGE_INTEGER-type identifier that should
be used to locate and open the target file (see Chapter 9, Writing a File
System Driver I, for details).

FILE_OPEN_FOR_BACKUP_INTENT
The file is being opened for backup purposes, and the FSD should
initiate a check for the appropriate privileges and determine whether the
open should be allowed to proceed or be denied.

FILE_NO_COMPRESSION
The file cannot be compressed.

EaBuf fer (optional)
A caller-allocated buffer containing a list of extended attributes to be set on
the file only if the file is being created. Must be set to NULL if the file is only
being opened. The FILE_FULL_EA_INFORMATION structure defines the
format of the extended attributes in EaBuf fer. Each extended attribute entry
must be longword aligned. The NextEntryOffset field in the structures
specifies the number of bytes between the current entry and the next. For the
last entry, the NextEntryOf fset field is zero.

If extended attributes are specified and if the extended attributes for the
newly created file cannot be successfully created, the create/open request will
fail. Therefore, creation of extended attributes is an atomic operation with
respect to creation of the file.

EaLength
Value should be 0 if EaBuf fer is set to NULL. Otherwise, it contains the
length (in bytes) of the EAs listed in EaBuf fer.

Return code

STATUS_SUCCESS indicates that the operation succeeded and a valid handle is
being returned; STATUS_PENDING indicates that the operation will be performed
asynchronously by the FSD, while STATUS_REPARSE indicates that the name
should be parsed again by the object manager (e.g., a new volume has been
mounted).

,

NT System Services___ _ __ _ _____________________________________575*

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_OBJECT_TYPE_MISNATCH

• STATUS_NO_SUCH_DEVICE

• STATUS_ACCESS_DENIED (a commonly used error code value)

• STATUS_FILE_IS_A_DIRECTORY

• STATUS_NOT_A_DIRECTORY

• STATUS_INSUFFICIENT_RESOURCES

• STATUS_OBJECT_NAME_INVALID

• STATUS_DELETE_PENDING

• STATUS_SHARING_VIOLATION

• STATUS_INVALID_PARAMETER

IRP

Overlay.Allocations!ze
Set to the caller-supplied AllocationSize value (if any).

Associatedlrp.SystemBuffer
The EaBuf f er supplied by the caller (if any).

Flags
The IRP_CREATE_OPERATION, IRP_SYNCHRONOUS_API, and IRP_
DEFER_IO_COMPLETION flag values are set.

I/O stack location

Ma j orFunction
IRP_MJ_CREATE

MinorFunction
None.

Flags
One or more of SL_CASE_SENSITIVE, SL_FORCE_ACCESS_CHECK, SL_
OPEN_PAGING_FILE, and SL_OPEN_TARGET_DIRECTORY.

Control
Irrelevant from the FSD's perspective.

Parameters.Create.SecurityContext
Points to an IO_SECURITY_CONTEXT structure (allocated by the I/O
Manager) containing the AccessState and DesiredAccess (specified by

678___________________________Appendix A: Windows NT System Services

FILE_NO_EA_KNOWLEDGE
The caller does not understand how to handle extended attributes. If
extended attributes are associated with the file being opened, the FSD
must fail the open operation.

FILE_DELETE_ON_CLOSE
The directory entry for the file being opened should be deleted when the
last handle to the file stream has been closed.

FILE_OPEN_BY_FILE_ID
The file name is actually a LARGE_INTEGER-type identifier that should
be used to locate and open the target file (see Chapter 9, Writing a File
System Driver I, for details).

FILE_0PEN_FOR_BACKUP_INTENT
The file is being opened for backup purposes, and the FSD should
initiate a check for the appropriate privileges and determine whether the
open should be allowed to proceed or be denied.

FILE_NO_COMPRESSION
The file cannot be compressed.

EaBuf f er (optional)
A caller-allocated buffer containing a list of extended attributes to be set on
the file only if the file is being created. Must be set to NULL if the file is only
being opened. The FILE_FULL_EA_INFORMATION structure defines the
format of the extended attributes in EaBuf fer. Each extended attribute entry
must be longword aligned. The NextEntryOffset field in the structures
specifies the number of bytes between the current entry and the next. For the
last entry, the NextEntryOf f set field is zero.
If extended attributes are specified and if the extended attributes for the
newly created file cannot be successfully created, the create/open request will
fail. Therefore, creation of extended attributes is an atomic operation with
respect to creation of the file.

EaLength
Value should be 0 if EaBuf fer is set to NULL. Otherwise, it contains the
length (in bytes) of the EAs listed in EaBuf fer.

Return code
STATUS_SUCCESS indicates that the operation succeeded and a valid handle is
being returned; STATUS_PENDING indicates that the operation will be performed
asynchronously by the FSD, while STATUS_REPARSE indicates that the name
should be parsed again by the object manager (e.g., a new volume has been
mounted).

NT System Services 679

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_OBJECT_TYPE_MISMATCH

• STATUS_NO_SUCH_DEVICE

• STATUS_ACCESS_DENIED (a commonly used error code value)

• STATUS_FILE_IS_A_DIRECTORY

• STATUS_NOT_A_DIRECTORY

• STATUS_INSUFFICIENT_RESOURCES

• STATUS_OBJECT_NAME_INVALID

• STATUS_DELETE_PENDING

• STATUS_SHARING_VIOLATION

• STATUS_INVALID_PARAMETER

IRP

Overlay.Allocations!ze
Set to the caller-supplied AllocationSize value (if any).

Associatedlrp.SystemBuffer
The EaBuf f er supplied by the caller (if any).

Flags
The IRP_CREATE_OPERATION, IRP_SYNCHRONOUS_API, and IRP_
DEFER_IO_COMPLETION flag values are set.

I/O stack location

Ma j orFunction
IRP_MJ_CREATE

MinorFunc t i on
None.

Flags
One or more of SL_CASE_SENSITIVE, SL_FORCE_ACCESS_CHECK, SL_
OPEN_PAGING_FILE, and SL_OPEN_TARGET_DIRECTORY.

Control
Irrelevant from the FSD's perspective.

Parameters.Create.SecurityContext
Points to an IO_SECURITY_CONTEXT structure (allocated by the I/O
Manager) containing the AccessState and DesiredAccess (specified by

680___________________________Appendix A: Windows NT System Services

the caller). The FSD can validate the access requested by the caller using the
help of the security subsystem (if the FSD supports access checking).

Parameters.Create.Options
Bits 0 to 15 contain the caller-specified CreateOptions; bits 16 through 23
are reserved by the I/O Manager; and bits 24 through 31 specify the
CreateDisposition.

Parameters.Create.FileAttributes
FileAttributes specified by the caller.

Parameters.Create.ShareAccess
ShareAccess specified by the caller.

Parameters.Create.EaLength
EaLength specified by the caller (the buffer supplied—if any—is pointed to
by the Associatedlrp. SystemBuf fer field in the IRP).

DeviceObject
Points to the FSD-created device object representing either the FSD itself or
the mounted logical volume.

FileObject
A file object structure allocated by the I/O Manager for this particular create/
open request.

Notes

Create or open requests are inherently synchronous requests. Therefore, the I/O
Manager will block the calling thread until the request has been processed by the
FSD (even if STATUS_PENDING is returned by the FSD) and the IRP_DEFER_
IO_COMPLETION flag will be set in the Irp->Flags field.

The following flags are set in the FileObject->Flags field:

FO_SYNCHRONOUS_IO
Set by the I/O Manager if either FILE_SYNCHRONOUS_IO_ALERT or FILE_
SYNCHRONOUS_IO_NONALERT have been specified by the caller.

FO_ALERTABLE_IO
Set by the I/O Manager if FILE_SYNCHRONOUS_IO_ALERT is specified by
the caller.

FO_NO_INTERMEDIATE_BUFFERING
Set by the I/O Manager and by FSDs if FILE_NO_INTERMEDIATE_BUFF-
ERING is specified by the caller.

FO_WRITE_THROUGH
Set by the I/O Manager and by FSDs if FILE_WRITE_THROUGH is specified
by the caller.

I

NT System Services___681

FO_SEQUENTIAL_ONLY
Set by the I/O Manager if FILE_SEQUENTIAL_ONLY is specified by the
caller.

FO_TEMPORARY_FILE
Set by the FSD if FILE_ATTRIBUTE_TEMPORARY is specified by the caller.

FO_FILE_FAST_I0_READ
Set by the FSD if the file is successfully opened for EXECUTE access; also set
by the FSD and by the FSRTL package whenever a cached read operation
completes, indicating that time stamps for the file (directory entry) should be
updated when all handles have been closed.*

NtOpenFileQ
NTSTATUS NtOpenFile(

OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK loStatusBlock,
IN ULONG ShareAccess,
IN ULONG OpenOptions,

) ;

Parameters

FileHandle
Returned handle (created by the I/O Manager) if the call succeeds.

DesiredAccess
See the description of this argument for the NtCreateFile () system call
described above.

Obj ectAttributes
The caller must allocate memory for this structure of type OBJECT_
ATTRIBUTES. Fields in the structure are initialized as follows:

Length
The size, in bytes, of the structure.

ObjectName
A Unicode string specifying name of file. The name can be a either a rela-
tive name (RootDirectory is nonnull) or an absolute name
(RootDirectory is NULL).

* The FO_FILE_MODIFIED flag is set by the FSRTL package to indicate that time stamps should be up-
dated due to a fast I/O write request.

682___________________________Appendix A: Windows NT System Services

RootDirectory (optional)
The previously opened handle for a directory; ObjectName will be
considered relative to this directory (if specified).

SecurityDescriptor (optional)
NULL pointer.

SecurityQualityOf Service (optional)
NULL pointer.

Attributes
A combination of OBJ_INHERIT (child processes inherit open handle)
and OBJ_CASE_INSENSITIVE (lookups should be processed in a case-
insensitive fashion).

loStatusBlock
A caller-supplied structure to receive results of create/open request.

ShareAccess
The type of share access requested by the caller. The share access can be a
combination of the following:

FILE_SHARE_READ
The file can be concurrently opened for read access by other threads.

FILE_SHARE_WRITE
Other file open operations requesting write access should be allowed.

FILE_SHARE_DELETE
Other file open operations requesting delete access should be allowed.

Note that the share access flags allow the requester to control how the file
can be shared by separate threads and processes. If none of the share values
are specified, no other subsequent open operation will be allowed to proceed
until the file handle is closed (and an IRP_MJ_CLEANUP is issued to the
FSD).

OpenOptions
Options used when the file is opened. See the description for NtCreateFileO
for more details.

Return code

STATUS_SUCCESS indicates that the operation succeeded and a valid handle is
being returned, STATUS_PENDING indicates that the operation will be performed
asynchronously by the FSD, while STATUS_REPARSE indicates that the name
should be parsed again by the object manager (e.g., a new volume has been
mounted).

NT System Services 683

In the case of an error, an appropriate error code is returned. See the description
for NtCreateFile () for more details.

IRP/I/O stack location

The IRP and I/O stack location for an open request are set up in essentially the
same manner as that for a NtCreateFile () system call.

Notes

Time stamps for the file are not affected when an open request is received by the
FSD.

NtReadFileQ
NTSTATUS NtReadFilet

IN HANDLE
IN HANDLE
IN PIO_APC_ROUTINE
IN PVOID
OUT PIO_STATUS_BLOCK
OUT PVOID
IN ULONG
IN PLARGE_INTEGER
IN PULONG

FileHandle,
Event OPTIONAL,
ApcRoutine OPTIONAL,
ApcContext OPTIONAL,
loStatusBlock,
Buffer,
Length,
ByteOffset OPTIONAL,
Key OPTIONAL

Parameters

FileHandle
Returned to the caller from a previous successful NtCreateFile () or
NtOpenFile() invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous read request. The event will be signaled by
the I/O Manager when the read operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the read operation completes.

ApcContext (optional)
The caller-determined context to be passed in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBlock
The caller must supply this argument to receive the results of the read opera-
tion. The Information field in the loStatusBlock is set to the number
of bytes actually read by the FSD.

682___________________________Appendix A: Windows NT System Services

RootDirectory (optional)
The previously opened handle for a directory; ObjectName will be
considered relative to this directory (if specified).

SecurityDescriptor (optional)
NULL pointer.

SecurityQualityOf Service (optional)
NULL pointer.

Attributes
A combination of OBJ_INHERIT (child processes inherit open handle)
and OBJ_CASE_INSENSITIVE (lookups should be processed in a case-
insensitive fashion).

loStatusBlock
A caller-supplied structure to receive results of create/open request.

ShareAccess
The type of share access requested by the caller. The share access can be a
combination of the following:

FILE_SHARE_READ
The file can be concurrently opened for read access by other threads.

FILE_SHARE_WRITE
Other file open operations requesting write access should be allowed.

FILE_SHARE_DELETE
Other file open operations requesting delete access should be allowed.

Note that the share access flags allow the requester to control how the file
can be shared by separate threads and processes. If none of the share values
are specified, no other subsequent open operation will be allowed to proceed
until the file handle is closed (and an IRP_MJ_CLEANUP is issued to the
FSD).

OpenOptions
Options used when the file is opened. See the description for NtCreateFile ()
for more details.

Return code

STATUS_SUCCESS indicates that the operation succeeded and a valid handle is
being returned, STATUS_PENDING indicates that the operation will be performed
asynchronously by the FSD, while STATUS_REPARSE indicates that the name
should be parsed again by the object manager (e.g., a new volume has been
mounted).

NT System Services___683

In the case of an error, an appropriate error code is returned. See the description
for NtCreateFile () for more details.

IRP/I/O stack location

The IRP and I/O stack location for an open request are set up in essentially the
same manner as that for a NtCreateFile () system call.

Notes

Time stamps for the file are not affected when an open request is received by the
FSD.

NtReadFileQ
NTSTATUS NtReadFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK loStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL

Parameters

FileHandle
Returned to the caller from a previous successful NtCreateFile () or
NtOpenFilef) invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous read request. The event will be signaled by
the I/O Manager when the read operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the read operation completes.

ApcContext (optional)
The caller-determined context to be passed in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBlock
The caller must supply this argument to receive the results of the read opera-
tion. The Information field in the loStatusBlock is set to the number
of bytes actually read by the FSD.

684___________________________Appendix A: Windows NT System Services

Buffer
A caller-allocated buffer to receive data read from secondary storage.

Length
The size, in bytes, of the Buffer supplied by the caller.

ByteOffset
The starting byte offset where the read begins. Caller can specify FILE_USE_
FILE_POINTER_POSITION rather than an explicit byte offset or pass NULL;
in either case the FSD will perform the read from the current file pointer posi-
tion. The I/O Manager maintains the file pointer position whenever the file
stream is opened for synchronous I/O, and therefore, specifying a byte offset
effectively results in an atomic seek-and-read service for the caller.

Key (optional)
If the byte range is locked, a matching Key value (if supplied by the caller)
will result in the FSD allowing the read to proceed. This can be used to selec-
tively share data between threads belonging to the same process.

Return code

STATUS_SUCCESS indicates that the operation succeeded and some subset of
the range requested by the caller is being returned by the FSD; STATUS_
PENDING indicates that the operation will be performed asynchronously by the
FSD.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES

STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST
« STATUS_END_OF_FILE

STATUS_FILE_LOCK_CONFLICT

IRP

MdlAddress
Any MDL created by the I/O Manager (or by some other kernel-mode compo-
nent) describing the buffer in which data should be returned by the FSD.

NT System Services___685

UserBuffer
A pointer to the user-supplied buffer. This field is effectively overridden by
the presence of any MDL pointer in the MdlAddress field.*

Flags
One or both of IRP_PAGING_IO and IRP_NOCACHE may be set. IRP_
PAGING_IO is only set by the I/O Manager if the I/O request is a result of a
synchronous or an asynchronous paging I/O operation requested by the
Virtual Memory Manager.

I/O stack location

MajorFunction
IRP_MJ_READ

MinorFunction
One or more of the following:

IRP_MN_DPC
The IRP was dispatched at a high IRQL.

IRP_MN_MDL
The caller wants an MDL returned containing the requested data.

IRP_MN_COMPLETE
The caller has finished with the MDL returned from a previous call (with
IRP_MN_MDL specified).

IRP_MN_COMPRESSED
The caller does not want any compressed data decompressed.

Flags
One or more of SL_KEY_SPECIFIED and SL_OVERRIDE_VERIFY_VOLUME.

Parameters.Read.Length
The read Length specified by the caller.

Parameters.Read.Key
The Key specified by the caller.

Parameters.Read.ByteOffset
The ByteOf f set specified by the caller.

DeviceObj ect
Points to the FSD-created device object representing the mounted logical
volume.

* See Chapter 9 for details. The FSD will check for the presence of an MDL first and will use any MDL
pointed to by the MdlAddress field. If MdlAddress is set to NULL, the FSD will use the UserBuf fer
pointer directly (since typically, FSDs prefer to neither specify DO_DIRECT_IO nor DO_BUFFERED_IO
for handling user buffers).

686 Appendix A: Windows NT System Services

FileObject
The file object representing the open instance of the file to be read.

Notes

The LastAccessTime for the file stream being read is typically updated by the
FSD upon completion of the read request.

NtWriteFileQ
NTSTATUS NtWriteFile(

IN HANDLE
IN HANDLE
IN PIO_APC_ROUTINE
IN PVOID
OUT PIO_STATUS_BLOCK
OUT PVOID
IN ULONG
IN PLARGE_INTEGER
IN PULONG

FileHandle,
Event OPTIONAL,
ApcRoutine OPTIONAL,
ApcContext OPTIONAL,
loStatusBlock,
Buffer,
Length,
ByteOffset OPTIONAL,
Key OPTIONAL

Parameters

FileHandle
Returned to the caller from a previous successful NtCreateFile () or
NtOpenFile () invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous write request. The event will be signaled by
the I/O Manager when the write operation is completed.

ApcRoutine (optional)
The optional, caller-supplied APC routine invoked by the I/O Manager when
the write operation completes.

ApcContext (optional)
The caller-determined context to be passed in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBlock
The caller must supply this argument to receive the results of the write opera-
tion. The Information field in the loStatusBlock is set to the number
of bytes actually written by the FSD.

Buffer
A caller-allocated buffer containing data to be written to secondary storage.

NT System Services___687

Length
The size, in bytes, of the Buffer supplied by the caller.

ByteOffset
The starting byte offset where the write begins. Caller can specify FILE_USE_
FILE_POINTER_POSITION rather than an explicit byte offset or pass in
NULL; in either case the FSD will perform the write from the current file
pointer position. The I/O Manager maintains the file pointer position when-
ever the file stream is opened for synchronous I/O and therefore specifying a
byte offset effectively results in an atomic seek-and-write service for the caller
(the file pointer is updated appropriately according to the starting offset from
where the write begins and the number of bytes written).

In order to simply write to the current end-of-file, the caller can specify
FILE_WRITE_TO_END_OF_FILE in the ByteOffset argument.
If the file was opened for FILE_APPEND_DATA, any caller-supplied byte
offset is ignored.

Key (optional)
If the byte range is locked, a matching Key value (if supplied by the caller)
will result in the FSD allowing the write to proceed. This can be used to selec-
tively allow file modification between threads belonging to the same process.

Return code

STATUS_SUCCESS indicates that the operation succeeded and some subset of
the range requested by the caller was written by the FSD; STATUS_PENDING indi-
cates that the operation will be performed asynchronously by the FSD.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

« STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST
• STATUS_FILE_LOCK_CONFLICT

IRP

MdlAddress
Any MDL created by the I/O Manager (or by some other kernel-mode compo-
nent) describing the buffer containing data to be written. This could also be a
MDL returned from a previous write request with MinorFunction set to

688___________________________Appendix A: Windows NT System Services

IRP_MN_MDL, in which case the MDL will eventually be freed by the Cache
Manager.

UserBuffer
Pointer to the user-supplied buffer. This field is effectively overridden by the
presence of any MDL pointer in the MdlAddress field.

Flags
One or both of IRP_PAGING_IO and IRP_NOCACHE may be set.

I/O stack location

Maj orFunction
IRP_MJ_WRITE

MinorFunction
One or more of the following:

IRP_MN_DPC
The IRP was dispatched at a high IRQL.

IRP_MN_MDL
The caller wants an MDL returned, which will eventually be filled with
modified data (by the caller).

IRP_MN_COMPLETE
The caller has finished with the MDL returned from a previous call (with
IRP_MN_MDL specified).

IRP_MN_COMPRESSED
The caller is sending compressed data to the FSD.

Flags
One or more of SL_KEY_SPECIFIED and SL_WRITE_THROUGH.

Parameters.Write.Length
The number of bytes to be written specified by the caller.

Parameters.Write.Key
The Key specified by the caller.

Parameters.Write.ByteOffset
The starting ByteOff set specified by the caller.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of the file to be written.

NT System Services 689

Notes

The LastWriteTime for the file stream being written is typically updated by the
FSD upon completion of the write request. The FSD should set the SL_FT_
SEQUENTIAL_WRITE flag before forwarding a write-through write request to the
next driver in the calling hierarchy.

NtQueryDirectory File ()
NTSTATUS NtQueryDirectoryFilef

IN HANDLE
IN HANDLE
IN PIO_APC_ROUTINE
IN PVOID
OUT PIO_STATUS_BLOCK
OUT PVOID
IN ULONG
IN FILE_INFORMATION_CLASS
IN BOOLEAN
IN PUNICODE_STRING
IN BOOLEAN

FileHandle,
Event OPTIONAL,
ApcRoutine OPTIONAL,
ApcContext OPTIONAL,
loStatusBlock,
Filelnformation,
Length,
FilelnformationClass,
ReturnSingleEntry,
FileName OPTIONAL,
RestartScan

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile() or
NtOpenFile() invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous query directory request. The event will be
signaled by the I/O Manager when the query directory IRP is completed by
the FSD.

ApcRoutine (optional)
The optional, caller-supplied APC routine invoked by the I/O Manager when
the query directory operation completes.

ApcContext (optional)
The caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBlock
The caller must supply this argument to receive the results of the query direc-
tory operation. The Information field in the loStatusBlock is set to the
number of bytes returned by the FSD (in the buffer pointed to by the
Filelnf ormation argument).

690___________________________Appendix A: Windows NT System Services

Filelnformation
A caller-allocated buffer to receive information about files contained in the
directory. Alignment requirements for the buffer and the contents of the
buffer (returned by the FSD) are determined by the Filelnformation-
Class of the argument.

Note that the buffer passed to the FSD in the query directory IRP is an I/O
Manager-allocated system buffer. Copying data from the system buffer to the
actual caller-allocated buffer (pointed to by the Filelnformation argu-
ment) is performed by the I/O Manager upon completion of the IRP.

Length
The size, in bytes, of the buffer supplied by the caller in Filelnformation.

FilelnformationClass
Specifies the kind of information requested by the caller. This can be one of
the following:

FileNamelnformation
The supplied buffer must be longword-aligned, as is the returned infor-
mation. The size of the buffer must at least be equal to sizeof (FILE_
NAMES_INFORMATION). The caller expects to receive the long names of
file entries contained in the directory in the caller-supplied buffer.

The FILE_NAMES_INFORMATION structure is defined as follows:
typedef struct _FILE_NAMES_INFORMATION {

ULONG NextEntryOffset;
ULONG FileIndex;
ULONG FileNameLength;
WCHAR FileName[l];

} FILE_NAMES_INFORMATION, *PFILE_NAMES_INFORMATION;

FileDirectoryInformation
The supplied buffer must be quadword-aligned, as is the returned infor-
mation. The size of the buffer must at least be equal to sizeof (FILE_
DIRECTORY_INFORMATION). The caller expects to get basic informa-
tion (such as the filename, file attributes, various time stamps associated
with the file, and so on) for the matching directory entries.

Here is the FILE_DIRECTORY_INFORMATION structure:

typedef struct _FILE_DIRECTORY_INFORMATION {
ULONG NextEntryOffset;
ULONG Filelndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;

I

NT System Services___691

ULONG FileAttributes;
ULONG FileNameLength;
WCHAR F i1eName[1];

} FILE_DIRECTORY_INFORMATION, *PFILE_DIRECTORY_INFORMATION;

FileFullDirectoryInformation
The supplied buffer must be quadword-aligned, as is the returned infor-
mation. The size of the buffer must at least be equal to sizeof (FILE_
FULL_DIR_INFORMATION). The caller expects to get all of the informa-
tion that could be obtained via the FileDirectorylnformation
information class and in addition, expects to get back information about
extended attributes associated with the matching directory entries.

This is the FILE_FULL_DIR_INFORMATION structure:
typedef struct _FILE_FULL_DIR_INFORMATION {
ULONG NextEntryOffset;
ULONG Filelndex;
LARGE_INTEGER GreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaSize;
WCHAR F i1eName[1];
} FILE_FULL_DIR_INFORMATION, *PFILE_FULL_DIR_INFORMATION;

FileBothDirectorylnformation
The supplied buffer must be quadword-aligned, as is the returned infor-
mation. The size of the buffer must at least be equal to sizeof (FILE_
BOTH_DIR_INFORMATION). The caller expects to get all of the informa-
tion that could be obtained via the FileFullDirect-
orylnf ormation information class and in addition, expects to get back
8.3 versions of file names (if such alternate names are supported by the
FSD) for matching directory entries.*

Here is the FILE_BOTH_DIR_INFORMATION structure:
typedef struct _FILE_BOTH_DIR_INFORMATION {
ULONG NextEntryOffset;
ULONG Filelndex;
LARGE_INTEGER CreationTime;

* Note that if your FSD docs not support alternate/short (8.3) versions of filenames, the information re-
turned by your driver in the FILE_BOTH_DIR_INFORMATION structure for eaeh matching directory en-
try will essentially he the same as would he returned by your FSU in the FILE_FULL_DIR_
INFORMATION structure; the ShortNameLength field must be initialized to 0 for each entry, and the
ShortName pointer field must be initialized to NULL.

692___________________________Appendix A: Windows NT System Services

LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaSize;
CCHAR ShortNameLength;
WCHAR ShortName[12];
WCHAR FileName[l];
} FILE_BOTH_DIR_INFORMATION, *PFILE_BOTH_DIR_INFORMATION;

Once a query directory request for a particular FilelnformationClass
type is submitted by a thread using a specific file handle, the Filelnforma-
tionClass type must not change when any subsequent query directory
requests are submitted using the same file handle.

ReturnSingleEntry
If TRUE, the caller only wants information on a single matching directory
entry returned.

FileName (optional)

The search pattern, specified by the user, for the first query directory request,
issued using the particular file object (or file handle); the FSD attempts to find
matching directory entries based upon this pattern. If no name is supplied,
the FSD uses "*", a wildcard that matches any directory entry.

RestartScan
Normally, the FSD begins the search for a matching directory entry from the
last file pointer position (based upon the previous query directory request);
however, this flag allows the caller to indicate whether the search should
begin from the starting byte offset in the directory.

Return code

STATUS_SUCCESS indicates that the operation succeeded and information on at
least one directory entry is being returned by the FSD; STATUS_PENDING indi-
cates that the operation will be performed asynchronously by the FSD.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES

STATUS_INVALID_PARAMETER
. STATUS_INVALID_DEVICE_REQUEST

NT System Services 693

• STATUS_BUFFER_OVERFLOW
• STATUS_INVALID_INFO_CLASS
• STATUS_NO_SUCH_FILE
• STATUS_NO_MORE_FILES

IRP

MdlAddress
Any MDL created by the FSD, if the request is dispatched to a worker thread
for asynchronous processing.

UserBuffer
The pointer to the user-supplied buffer. This field is effectively overridden by
the presence of any MDL pointer in the MdlAddress field.

I/O stack location

Ma j orFunction
IRP_MJ_DIRECTORY_CONTROL

MinorFunc t i on
IRP_MN_QUERY_DIRECTORY

Flags
One or more of SL_RESTART_SCAN, SL_RETURN_SINGLE_ENTRY, and SL_
INDEX_SPECIFIED.

Parameters.QueryDirectory.Length
The Length specified by the caller for the buffer in which information is
received.

Parameters.QueryDirectory.FileName
The search pattern specified by the caller. The FSD must search for matching
entries in the target directory using this specified pattern. The user-specified
pattern is typically stored by the FSD in the CCB for the target directory for
the particular open operation (of the target directory), when the first such
query directory request is received. The caller can temporarily override this
search pattern in subsequent query directory requests by specifying a
different pattern than the one stored by the FSD; however, the behavior of
the FSD in response to such query directory requests containing a new search
pattern is highly FSD-specific and not well-defined by the I/O subsystem.
Some FSDs may honor the new search pattern while others may choose to
ignore it.

Parameters.QueryDirectory.FilelnformationClass
The type of information requested by the caller.

694___________________________Appendix A: Windows NT System Services

Parameters.QueryDirectory.Filelndex
Any starting index, to begin the scan from, specified by the caller.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
File object representing the open instance of the target directory.

Notes

The query directory request is an inherently synchronous request. Therefore, the
I/O Manager will block the requesting thread until the operation has been
completed by the FSD.

The FSD returns information on the following directory entries:

• Information about a single matching directory entry is returned if either
ReturnSingleEntry is TRUE or if the specified search pattern does not
contain any wildcards.

• The number of matching files for which information can be returned in the
caller-supplied buffer, constrained by the length of the buffer.

• The total number of directory entries (files or directories) in the target direc-
tory being queried.

Information on matching directory entries can be returned in any order. Most
returned entries are either quadword-aligned or longword-aligned. See Chapter
10, Writing A File System Driver II, for information on how directory control
requests are processed by the FSD. The maximum length of a file name is
constrained (on Windows NT platforms) to be less than or equal to FILE_
MAXIMUM_FILENAME_LENGTH.

If no matching entry was found for the very first query directory request received
by the FSD using the particular file object, an error code of STATUS_NO_SUCH_
FILE is returned to the caller; if no match is found for any subsequent query
directory request, the STATUS_NO_MORE_FILES error code is returned.

The FSD maintains context about the returned information in the CCB structure
associated with the specified file object. Therefore, requests to obtain directory
information from different threads sharing the same file handle (and sharing the
same file object and correspondingly the same CCB structure) will share (and
affect) the same context maintained by the FSD.

NT System Services___695

NtNotifyChangeDirectoryFileQ
NTSTATUS NtNotifyChangeDirectoryFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO__APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK loStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN ULONG CompletionFilter,
IN BOOLEAN WatchTree

Parameters

FileHandle
Returned to the caller from a previous successful NtCreateFile () or
NtOpenFileO invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous notify change directory request. The event
will be signaled by the I/O Manager when the notify change directory IRP is
completed by the FSD.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the notify change directory operation completes.

ApcContext (optional)
Caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBlock
The caller must supply this argument to receive the results of the notify
change directory operation. The Information field in the loStatus-
Block is set to the number of bytes returned by the FSD (in the buffer
pointed to by the Filelnformation argument).

If too many changes have occurred and information about such changes
cannot be returned by the FSD in the supplied buffer, the FSD will set the
Information field to 0 and the STATUS_NOTIFY_ENUM_DIR return code
will be returned in the Status field of the loStatusBlock argument.

Buffer
A caller-allocated buffer to receive information about the names of files
contained in the target directory that have been affected. The format of

696___________________________Appendix A: Windows NT System Services

returned information is defined by the FILE_NOTIFY_INFORMATION struc-
ture, which is defined as follows:
typedef struct _FILE_NOTIFY_INFORMATION {

ULONG NextEntryOffset;
ULONG Action;*
ULONG FileNameLength;
WCHAR FileNametl];

} FILE_NOTIFY_INFORMATION, *PFILE_NOTIFY_INFORMATION;

Length
The size, in bytes, of the buffer supplied by the caller.

CompletionFilter
Specifies a combination of flags that indicate the changes the caller is inter-
ested in monitoring on the target directory.

These flags can be one or more of the following (see Chapter 10 for details
on how the FSD processes the notify change directory request):

FILE_NOTIFY_CHANGE_FILE_NAME
Some file has been added, deleted, or renamed.

FILE_NOTIFY_CHANGE_DIR_NAME
Some subdirectory has been added, deleted, or renamed.

FILE_NOTIFY_CHANGE_NAME
A combination of FILE_NOTIFY_CHANGE_FILE_NAME and FILE_
NOTIFY_CHANGE_DIR_NAME.

FILE_NOTIFY_CHANGE_ATTRIBUTES
Attributes of any directory entry (representing either a file or a directory)
have been changed.

FILE_NOTIFY_CHANGE_SIZE
Allocation size or end-of-file position have been changed for any direc-
tory entry.

FILE_NOTIFY_CHANGE_LAST_WRITE
The last write time stamp value for a directory entry has been changed.

FILE_NOTTFY_CHANGE_LAST_ACCESS
The last access time stamp value for a directory entry has been changed.

FILE_NOTIFY_CHANGE_CREATION
The creation time stamp value for a directory entry has been changed.

* The possible values (hit-flags) that can be returned in this field are given in Chapter 10.

NT System Services___657

FILE_NOTIFY_CHANGE_EA
Extended attributes associated with a directory entry (file or directory)
have been changed.

FILE_NOTIFY_CHANGE_SECURITY
Security attributes associated with a directory entry have been changed.

FILE_NOTIFY_CHANGE_STREAM_NAME
Applies to FSDs that support multiple byte streams associated with files. A
new file stream may have been added, deleted, or renamed, in which
case the caller should be notified.

FILE_NOTIFY_CHANGE_STREAM_SIZE
The size of a file stream may have changed.

FILE_NOTIFY_CHANGE_STREAM_WRITE
The contents of an alternate stream have been changed (i.e., the stream
data was modified).

WatchTree
If TRUE, the caller wants to recursively monitor changes to all subdirectories
contained within the target directory.

Return code

STATUS_PENDING indicates that the IRP has been successfully queued by the
FSD and will be completed once one or more of the specified changes (being
monitored by the caller) have occurred; STATUS_SUCCESS indicates that at least
one monitored change had already occurred before the latest notify change direc-
tory IRP was even received by the FSD, and the caller is being notified of the fact.

Once STATUS_PENDING is returned by the FSD, the caller must examine the
contents of the Status field in the loStatusBlock argument to determine the
results of the notify change directory request, once the request has been
completed.

In the case of an error (or a buffer overflow condition), an appropriate error code
is returned. This includes (but is not limited to) the following return code values:

STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES
« STATUS_INVALID_PARAMETER

STATUS_INVALID_DEVICE_REQUEST
• STATUS_NOTIFY_ENUM_DIR

698___________________________Appendix A: Windows NT System Services

IRP

UserBuffer
A pointer to the user-supplied buffer. This field is effectively overridden by
the presence of any MDL pointer in the MdlAddress field. If your FSD
supports buffered I/O, then the I/O Manager will have allocated a system
buffer for your FSD, and this buffer can be accessed via the Associate-
dlrp. SystemBuf fer field in the IRP.

I/O stack location

MajorFunction
IRP_MJ_DIRECTORY_CONTROL

MinorFunction
IRP_MN_NOTIFY_CHANGE_DIRECTORY

Flags
Can be set with SL_WATCH_TREE.

Parameters.NotifyDirectory.Length
The Length, specified by the caller, for the buffer in which information is
received.

Parameters.NotifyDirectory.CompletionFilter
The type of changes being monitored by the caller.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of the target directory being
monitored.

Notes

The notify change directory request interprets a return code of STATUS_
PENDING to indicate that the IRP has been successfully queued.

NtQuerylnformationFileQ
NTSTATUS NtQueryInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,
OUT PVOID Filelnformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FilelnformationClass

NT System Services___699

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFile () invocation.

loStatusBlock
The caller must supply this argument to receive the results of the query file
information request. The Information field in the loStatusBlock is set
to the number of bytes returned by the FSD (in the buffer pointed to by the
Filelnf ormation argument).

Filelnformation
A caller-allocated buffer to receive information about the specified file. The
format of returned information is defined by the FilelnformationClass
argument.

Length
The size, in bytes, of the buffer supplied by the caller.

FilelnformationClass
Used by the caller to specify the type of information requested for the target
file. See Chapter 10 for a detailed discussion on the types of information
provided by file system drivers and for corresponding structure definitions.

Return code

STATUS_SUCCESS indicates that the operation succeeded; STATUS_PENDING
indicates that the operation will be performed asynchronously by the FSD.

In the case of an error (or a buffer overflow condition), an appropriate error code
is returned. This includes (but is not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOTJRCES

STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST
• STATUS_BUFFER_OVERFLOW

IRP

Associatedlrp.SystemBuffer
A pointer to an I/O Manager-allocated buffer. The I/O Manager always allo-
cates a system buffer to contain information returned by the FSD. Contents of
this buffer are copied to the user-supplied buffer by the I/O Manager (before
the system buffer is deallocated by the I/O Manager).

700___________________________Appendix A: Windows NT System Services

Flags
The IRP_BUFFERED_IO, IRP_DEALLOCATE_BUFFER, IRP_INPUT_OPER-
ATION, and IRP_DEFER_IO_COMPLETION flags are set. However, these are
only used internally by the I/O Manager.*

I/O stack location

MajorFunction
IRP_MJ_QUERY_INFORMATION

MinorFunction
None.

Flags
None.

Parameters.QueryFile.Length
The Length, specified by the caller, for the buffer in which information is
received.

Parameters.QueryFile.FilelnformationClass
The type of information requested by the user.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of the file for which informa-
tion has been requested.

Notes

The I/O Manager is responsible for filling in information for some of the Fileln-
f ormationClass values. See Chapter 10 for further details.

NtSetlnformationFileQ
NTSTATUS NtSetInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,
OUT PVOID Filelnformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FilelnformationClass

See Chapter 4, ~lhe NT I/O Manager, for a discussion on the IRP_DEFER_IO_COMPLETION flag.

NT System Services 701

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFile() invocation.

loStatusBlock
The caller must supply this argument to receive the results of the set file infor-
mation request. The Information field in the loStatusBlock is
initialized to the number of bytes actually set by the FSD (from the buffer
pointed to by the Filelnformation argument).

Filelnformation
A caller-allocated buffer, containing information about the modified attributes
of the target file. The format of the supplied information is defined by the
FilelnformationClass argument.

Length
The size, in bytes, of the buffer supplied by the caller.

FilelnformationClass
Used by the caller to specify the type of attributes being modified for the
target file. See Chapter 10 for a detailed discussion on the types of attributes
that can be modified by the caller and for corresponding structure definitions.

Return code

STATUS_SUCCESS indicates that the operation succeeded; STATUS_PENDING
indicates that the operation will be performed asynchronously by the FSD.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST
• STATUS_CANNOT_DELETE
« STATUS_DIRECTORY_NOT_EMPTY

IRP

Associatedlrp.SystemBuffer
Pointer to an I/O Manager-allocated buffer. The I/O Manager always allocates
a system buffer to contain a copy of the user-supplied modified attributes for

702___________________________Appendix A: Windows NT System Services

the file stream. This system buffer is deallocated by the I/O Manager after the
IRP has been completed.

Flags
The IRP_BUFFERED_IO, IRP_DEALLOCATE_BUFFER, and IRP_DEFER_IO_
COMPLETION flags are set. However, these are only used internally by the I/O
Manager.*

I/O stack location

Ma j orFunction
IRP_MJ_SET_INFORMATION

MinorFunction
None.

Flags
None.

Parameters.SetFile.Length
The Length, specified by the caller, for the buffer in which information
about modified attributes is supplied.

Parameters.SetFile.FilelnformationClass
The type of attributes for which modified information has been provided by
the user.

Parameters.SetFile.FileObj ect
The file object representing an open instance of the target directory for a
rename/link operation.

Parameters.SetFile.ReplacelfExists
Used during rename operations to reflect the value of the Replacelf Ex-
ists field in the FILE_RENAME_INFORMATION structure.

Parameters.SetFile.AdvanceOnly
This flag is set to TRUE for a special request initiated by the Windows NT
Cache Manager to indicate that the ValidDataLength for the file stream
has been changed.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of the file whose attributes are
being modified.

* Sec Chapter 4 for a discussion on the IRP_DEFER_IO_COMPLETION flag.

NT System Services 703

Notes

Some FilelnformationClass types are handled directly by the I/O Manager
(e.g., FilePositionlnformation). See Chapter 10 for further details on how
other Filelnf ormationClass types are supported by file system drivers.

NtQueryEaFileQ
NTSTATUS NtQueryEaFile(

IN HANDLE
OUT PIO_STATUS_BLOCK
OUT PVOID
IN ULONG
IN BOOLEAN
IN PVOID
IN ULONG
IN PULONG
IN BOOLEAN

FileHandle,
loStatusBlock,
Buffer,
Length,
ReturnSingleEntry,
EaList OPTIONAL,
EaLi s tLength,
Ealndex OPTIONAL,
RestartScan

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFile() invocation.

loStatusBlock
The caller must supply this argument to receive the results of the query
extended attributes operation. The Information field in the loStatus-
Block is set to the number of bytes returned by the FSD (in the buffer
pointed to by the Buffer argument).

Buffer
A caller-allocated buffer to receive information about extended attributes asso-
ciated with the target file. Information for each matching extended attribute
(returned by the FSD) is longword-aligned and is contained within a FILE_
FULL_EA_INFORMATION structure.

Only complete FILE_FULL_EA_INFORMATION structures are returned by
the FSD. The NextEntryOf f set value in the structure (if nonzero) indi-
cates the relative offset of the next entry in the buffer. Note that the FSD
maintains context to determine the next extended attribute for which informa-
tion must be returned.

Also note that the value of each named extended attribute begins after the
end of the EaName (null-terminated) field in the FILE_FULL_EA_INFORMA-
TION structure. The EaNameLength field in the structure does not include
the null-terminator for the extended attribute; therefore, the value for each of

704___________________________Appendix A: Windows NT System Services

the named extended attributes can be located by adding (EaNameLength +
1) to the address of EaName.

Length
The size, in bytes, of the buffer supplied by the caller.

ReturnSingleEntry
If TRUE, the caller only wants information on a single, matching extended
attribute returned.

EaList
This optional buffer can contain a list of named extended attributes for which
information must be returned by the FSD. The structure of each entry in this
buffer is of type FILE_GET_EA_INFORMATION and is follows:
typedef struct _FILE_GET_EA_INFORMATION {

ULONG NextEntryOffset;
UCHAR EaNameLength;
CHAR EaName[1];

} FILE_GET_EA_INFORMATION, *PFILE_GET_EA_INFORMATION;
The I/O Manager checks to ensure that the contents of the EA list are consis-
tent; each of the entries contained in the list must be longword-aligned and
each entry must either point to a complete, valid next entry in the list or the
NextEntryOffset value must be set to 0. If errors are encountered, the
I/O Manager may return a warning code of STATUS_EA_LIST_
INCONSISTENT.

EaListLength
The length of the EaList buffer if such a buffer is present; this argument
should be set to 0 if EaList is set to NULL.

Ealndex
An optional, zero-based index value specified by the caller. The FSD will
return information about extended attributes, beginning with the EA identified
by this index. If, however, EaList is nonnull, this argument will be ignored.

RestartScan
Normally, the FSD begins the scan for extended attributes from the last
extended attribute returned (based upon the immediately preceding query
extended attributes request); however, this flag allows the caller to indicate
whether the scan should begin with the first EA associated with the file
stream. This flag is ignored if either EaList or Ealndex are nonnull.

Return code

STATUS_SUCCESS indicates that the operation succeeded and information on at
least one extended attribute is being returned by the FSD; STATUS_PENDING
indicates that the operation will be performed asynchronously by the FSD.

NT System Services___705

In the case of an error, an appropriate error code or a warning is returned. This
includes (but is not limited to) the following return code values:

• STATUS_ACCESS_DENIED
« STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST
• STATUS_NO_MORE_EAS
• STATUS_INVALID_EA_NAME

STATUS_INVALID_EA_FLAG

IRP

Associatedlrp.SystemBuffer
Any system buffer allocated by the I/O Manager to receive information about
EAs from the FSD, if the FSD has specified DO_BUFFERED_IO in the device
object flags.

MdlAddress
Any MDL created by the I/O Manager if the FSD has specified DO_DIRECT_
10 in the device object flags.

UserBuffer
Pointer to the user-supplied buffer if neither DO_DIRECT_IO nor D0_
BUFFERED__IO have been specified by the FSD. This field is effectively over-
ridden by the presence of any MDL pointer in the MdlAddress field.

I/O stack location

Ma j orFunction
IRP_MJ_QUERY_EA

MinorFunc t i on
None.

Flags
One or more of SL_RESTART_SCAN, SL_RETURN_SINGLE_ENTRY, and SL_
INDEX_SPECIFIED.

Parameters.QueryEa.Length
The Length specified by the caller for the buffer in which information is
received.

Parameters.QueryEa.EaList
A list of named EAs supplied by the caller. Note that the actual buffer passed-
in to the FSD is a system buffer that was allocated by the Windows NT I/O

706___________________________Appendix A: Windows NT System Services

Manager. The I/O Manager copies the user-supplied EA list from the caller's
buffer to the system buffer before sending the IRP to the FSD.

Parameters.QueryEa.EaListLength
The EaListLength specified by the caller to NtQueryEaFile () .

Parameters.QueryEa.Ealndex
The starting index, to begin the scan from, specified by the caller.

DeviceObj ect
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
File object representing the open instance of the target file stream.

Notes

The NtQueryEaFile () is an inherently synchronous I/O operation. The I/O
Manager will block the requesting thread if STATUS_PENDING is received by the
FSD.

The FSD returns information on the following number of extended attributes:

• A single extended attribute if either ReturnSingleEntry is TRUE, or if the
supplied EaList describes only a single named extended attribute.

• The number of matching extended attributes for which full information can
be returned in the caller-supplied buffer, constrained by the length of the
buffer.

• The total number of associated extended attributes associated with the target
file stream, or the total number of matching extended attributes as described
by the caller in the EaList buffer.

If an error was encountered by the FSD (e.g., an invalid character in an EaName),
the Information field in the loStatusBlock argument contains the byte
offset to the EA entry that caused the failure, otherwise, it contains the number of
bytes of extended attributes information returned by the FSD.

NtSetEaFileQ
NTSTATUS NtSetEaFilef

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,

NT System Services___707

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFilet) invocation.

loStatusBlock
The caller must supply this argument to receive the results of the set
extended attributes operation. The Information field in the loStatus-
Block is set to the number of bytes written by the FSD from the buffer
pointed to by the Buffer argument.

Buffer
A caller-allocated buffer containing the extended attributes to be associated
with the target file. Information about each matching extended attribute must
be longword-aligned and must be contained within a FILE_FULL_EA_
INFORMATION structure. The NextEntryOf f set value in the structure (if
nonzero) must indicate the relative offset of the next entry in the buffer.

As in the case of the NtQueryEaFile () function described earlier, the
value of each named extended attribute must begin immediately after the end
of the EaName (null-terminated) field in the FILE_FULL_EA_INFORMATION
structure. The EaNameLength field in the structure should not include the
null-terminator for the extended attribute; therefore, the value for each of the
named extended attributes can be located by the FSD by adding (EaName-
Length + 1) to the address of EaName.

Length
The size, in bytes, of the buffer supplied by the caller.

Return code

STATUS_SUCCESS indicates that the operation succeeded; STATUS_PENDING
indicates that the operation will be performed asynchronously by the FSD.

In the case of an error, an appropriate error code or a warning is returned. This
includes (but is not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST
• STATUS_INVALID_EA_NAME

STATUS INVALID EA FLAG

708___________________________Appendix A: Windows NT System Services

IRP

Associatedlrp.SystemBuffer
Any system buffer, allocated by the I/O Manager, containing a copy of the
information about modified/new EAs provided by the caller if the FSD has
specified DO_BUFFERED_IO in the device object flags.

MdlAddress
Any MDL created by the I/O Manager if the FSD has specified DO_DIRECT_
10 in the device object flags.

UserBuffer
The pointer to the user-supplied buffer if neither DO_DIRECT_IO nor D0_
BUFFERED_IO have been specified by the FSD. This field is effectively over-
ridden by the presence of any MDL pointer in the MdlAddress field.

I/O stack location

Ma j orFunction
IRP_MJ_SET_EA

MinorFunction
None.

Parameters.SetEa.Length
The Length specified by the caller for the buffer in which information is
supplied.

DeviceObj ect
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of the target file stream.

Notes

The NtSetEaFile () is an inherently synchronous I/O operation. The I/O
Manager will block the requesting thread if STATUS_PENDING is received by the
FSD.

The FSD uses the following rules in applying caller-specified EAs to the target file
stream:

• If a supplied EA has a unique EaName among the existing EAs associated
with the file stream, the FSD adds the new user-supplied EA to the list of EAs
associated with the file.

NT System Services 709

• If the supplied EA has an EaName that matches an existing EA associated
with the file stream and if the supplied EaValueLength is nonzero, the FSD
will replace the existing EA with the user-supplied extended attribute.

• If the supplied EA has an EaName that matches an existing EA associated
with the file stream and if the supplied EaValueLength is zero length, the
FSD will delete the existing EA.

If an error was encountered by the FSD (e.g., an invalid character in an EaName),
the Information field in the loStatusBlock argument contains the byte
offset to the EA entry that caused the failure; otherwise, it contains the number of
bytes of extended attributes information applied by the FSD to the file stream.

NtLockFileQ
NTSTATUS NtLockFile(

IN HANDLE
IN HANDLE
IN PIO_APC_ROUTINE
IN PVOID
OUT PIO_STATUS_BLOCK
IN PLARGE_INTEGER
IN PLARGE_INTEGER
IN PULONG
IN BOOLEAN
IN BOOLEAN

FileHandle,
Event OPTIONAL,
ApcRoutine OPTIONAL,
ApcContext OPTIONAL,
loStatusBlock,
ByteOffset,
Length,
Key,
FailImmediately,
ExclusiveLock

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFileO invocation.

Event (optional)
Caller can wait for the supplied event object (created by the caller) for
completion of the lock request. The event will be signaled by the I/O
Manager when the lock-file operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the lock-file operation completes.

ApcContext (optional)
A caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

710___________________________Appendix A: Windows NT System Services

loStatusBlock
The caller must supply this argument to receive the results of the lock-file
operation. The Information field in the loStatusBlock is set to the
number of bytes locked by the FSD.

ByteOffset
The starting byte offset for the byte-range to be locked on behalf of the caller.

Length
The number of bytes to be locked.

Key
The Key is a caller-defined (opaque) value associated with the locked byte
range. This value can be used to selectively share data between threads
belonging to the same process (if a unique value is chosen by the requesting
thread).

FailImmediately
If set to TRUE and if the lock cannot be obtained immediately by the FSD for
the caller (e.g., some other thread was previously granted a conflicting lock
on an overlapping byte range), the lock request is completed with an appro-
priate error code. If, however, Faillmmediately is set to FALSE, the
request will block indefinitely until the lock can be obtained (all conflicting
locks held by other threads on overlapping byte ranges have been released).

ExclusiveLock
Specifies whether an exclusive (write) lock should be acquired or whether a
shared (read) lock is sufficient.

Return code

STATUS_SUCCESS indicates that the operation succeeded, and the lock was
granted; STATUS_PENDING is returned if the requesting thread wishes to wait for
the byte-range lock and the lock cannot be immediately obtained (the IRP is
queued by the FSD/FSRTL package).

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

« STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER

STATUS_INVALID_DEVICE_REQUEST
• STATUS LOCK NOT GRANTED

NT System Services___711

I/O stack location

Ma j orFunction
IRP_MJ_LOCK_CONTROL

MinorFunction
IRP_MN_LOCK

Flags
One or more of SL_FAIL_IMMEDIATELY and SL_EXCLUSIVE_LOCK.

Parameters.LockControl.Length
The byte-range Length specified by the caller.

Parameters.LockControl.Key
The Key specified by the caller.

Parameters.LockControl.ByteOffset
The starting ByteOf f set specified by the caller.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of the file for which a byte-
range lock has been requested.

Notes

Byte-range locks obtained by a thread on Windows NT platforms are mandatory
locks. Therefore, the FSD is responsible for enforcing the semantics associated
with the lock when subsequent I/O requests are received for the target file
stream. To check whether an I/O operation should be allowed to proceed for a
locked byte range, the FSD uses the following attributes associated with the
locked range:

• The starting byte offset for the locked range
• The number of bytes that have been locked
• The process that owns the locked range

• The Key value associated with the locked range

Byte-range locks are owned by processes and are not associated with individual
threads within a process. Therefore, to control access to locked byte-ranges by
multiple threads within the same process, a unique Key value should be associ-
ated with the locked byte range.

Exclusive locks prohibit any read or write access by any other process other than
the owning process for the locked byte range. Shared locks allow other processes

7/2___________________________Appendix A: Windows NT System Services

to continue to read the data contained within the locked range but do not allow
other processes to modify such data. Byte-range exclusive locks requested by a
process cannot overlap with any other locked range within the file.

Note that callers can request byte-range locks that start or extend beyond the
current end-of-file. This allows the requester to control who can extend the file
stream.

NtUnlockFileQ
NTSTATUS NtUnlockFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,
IN PLARGE_INTEGER ByteOffset,
IN PLARGE_INTEGER Length,
IN PULONG Key

) ;

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFileO invocation.

loStatusBlock
The caller must supply this argument to receive the results of the unlock-file
operation. The Information field in the loStatusBlock is set to the
number of bytes unlocked by the FSD.

ByteOffset
The starting byte offset for the byte range to be unlocked on behalf of the
caller. This value must match exactly the starting ByteOffset supplied in a
previous NtLockFile () request.

Length
The number of bytes to be unlocked. This value must match exactly the
Length supplied in a previous NtLockFile () request.

Key
The Key is a caller-defined (opaque) value associated with the locked byte
range. This value must match exactly the Key value supplied in a previous
NtLockFile () request.

Return code

STATUS_SUCCESS indicates that the operation succeeded and the lock was
released; STATUS_PENDING is returned if the FSD processes the request
asynchronously.

NT System Services 713

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

« STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST
« STATUS_RANGE_NOT_LOCKED

I/O stack location

Maj orFunction
IRP_MJ_LOCK_CONTROL

MinorFunc t i on
One of the following:
IRP_MN_UNLOCK_SINGLE

The single, locked byte range described in the IRP should be unlocked.

IRP_MN_UNLOCK_ALL
All previously locked byte ranges owned by the requesting process
should be unlocked.

IRP_MN_UNLOCK_ALL_BY_KEY
All previously locked byte-ranges, owned by the requesting process that
match the supplied Key value, should be unlocked.

Flags
None.

Parameters.LockControl.Length
The byte-range Length specified by the caller. This should be exactly equal
to the Length value supplied in a previous request to NtLockFile () .

Parameters.LockControl.Key
The Key specified by the caller.

Parameters.LockControl.ByteOffset
The starting ByteOffset specified by the caller. This should be exactly
equal to the ByteOffset value supplied in a previous request to
NtLockFilef).

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

714___________________________Appendix A: Windows NT System Services

FileObject
The file object representing the open instance of the file for which an unlock
operation has been requested.

Notes

Only the process that owns a particular byte-range lock can successfully request
that the lock be released. Whenever a process closes all open handles for a partic-
ular file stream, all outstanding byte-range locks owned by the process for the file
stream will be released.

NtQuery VolumelnformationFileQ
NTSTATUS NtQueryVolumelnformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,
OUT PVOID Fslnformation,
IN ULONG Length,
IN FS_INFORMATION_CLASS FslnformationClass

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile() or
NtOpenFile () invocation for any file or directory contained in the target
logical volume, or from a successful open request on either the target volume
or the underlying device object.

loStatusBlock
The caller must supply this argument to receive the results of the query
volume information operation. The Information field in the loStatus-
Block is set to the number of information bytes returned by the FSD.

Fslnformation
A caller-allocated buffer in which volume information is returned. The struc-
ture of returned information depends upon the value of the
FsInformationClass argument.

Length
The size of the Fslnformation buffer.

FsInformationClass
The type of information requested by the user. This can be one of the
following:

FileFsVolumelnformation
The following structure defines the format of the information returned by
the FSD:

NT System Services___715

typedef struct _FILE_FS_VOLUME_INFORMATION {
LARGE_INTEGER VolumeCreationTime;
ULONG VolumeSerialNumber;
ULONG VolumeLabelLength;
BOOLEAN SupportsObjects;
WCHAR VolumeLabel[1];
} FILE_FS_VOLUME_INFORMATION, *PFILE_FS_VOLUME_INFORMATION;

FileFsSizelnformation
The following structure defines the format of the information returned by
the FSD:
typedef struct _FILE_FS_SIZE_INFORMATION {
LARGE_INTEGER TotalAllocationUnits ;
LARGE_INTEGER AvailableAllocationUnits;
ULONG SectorsPerAllocationUnit;
ULONG BytesPerSector;
} FILE_FS_SIZE_INFORMATION, *PFILE_FS_SIZE_INFORMATION;

FileFsDevicelnformation
The following structure defines the format of the information returned by
the FSD:
typedef struct _FILE_FS_DEVICE_INFORMATION {
DEVICE_TYPE DeviceType;
ULONG Characteristics;
} FILE_FS_DEVICE_INFORMATION, *PFILE_FS_DEVICE_INFORMATION;

FileFsAttributelnformation
The following structure defines the format of the information returned by
the FSD:
typedef struct _FILE_FS_ATTRIBUTE_INFORMATION {
ULONG FileSystemAttributes;
LONG MaximumComponentNameLength;
ULONG FileSystemNameLength;
WCHAR FileSystemNamefl];
} FILE_FS_ATTRIBUTE_INFORMATION, *PFILE_FS_ATTRIBUTE_INFORMATION;

Return code

STATUS_SUCCESS indicates that the operation succeeded and the volume infor-
mation has been returned by the FSD; STATUS_PENDING is returned if the FSD
decides to process the request asynchronously.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER

STATUS_INVALID_DEVICE_REQTJEST

• STATUS BUFFER OVERFLOW

716___________________________Appendix A: Windows NT System Services

IRP

Associatedlrp.SystemBuffer
The I/O Manager allocates a system buffer in which the FSD can return the
requested volume information. The I/O Manager copies the returned informa-
tion into the caller's buffer once the IRP is completed by the FSD.

I/O stack location

MajorFunction
IRP_MJ_QUERY_VOLUME_INFORMATION

MinorFunction
None.

Flags
None.

Parameters.QueryVolume.Length
The Length of the buffer provided by the caller.

Parameters.QueryVolume.FslnformationClass
The FsInformationClass value specified by the caller. This determines
the type of information returned by the FSD.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of a file, directory, volume, or
device using which a query volume information operation has been requested.

Notes

Regardless of the type of access requested in the open request for a file, directory,
device, or volume, the user can always request volume information using the file
handle received from the successful open operation.

NtSetVolumelnformationFileQ
NTSTATUS NtSetVolumelnformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,
IN PVOID Fslnformation,
IN ULONG Length,
IN FS INFORMATION_CLASSFsInformationClass

NT System Services_______ __________________________________7/7

Parameters

FileHandle
Returned to the caller from a previous successful NtCreateFile () or
NtOpenFile () invocation on the target volume.

loStatusBlock
The caller must supply this argument to receive the results of the set volume
information operation. The Information field in the loStatusBlock is
set to the number of information bytes written by the FSD.

Fslnformation
A caller-allocated buffer in which volume information is supplied. The struc-
ture of supplied information depends upon the value of the
FsInformationClass argument.

Length
The size of the Fslnformation buffer.

FsInformationClass
The type of information provided by the user. Currently, this can be the
following:

FileFsLabelInformation
The following structure defines the format of the information supplied by
the user:
typedef struct _FILE_FS_LABEL_INFORMATION {

ULONG VolumeLabelLength;
WCHAR VolumeLabel[l];

} FILE_FS_LABEL_INFOKMATION, *PFILE_FS_LABEL_INFORMATION;

Return code

STATUS_SUCCESS indicates that the operation succeeded; STATUS_PENDING is
returned if the FSD decides to process the request asynchronously.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES

STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST

718___________________________Appendix A: Windows NT System Services

IRP

Associatedlrp.SystemBuffer
The I/O Manager allocates a system buffer into which the caller-provided
volume information is copied before the IRP is dispatched to the FSD.

I/O stack location

Maj orFunction
IRP_MJ_SET_VOLUME_INFORMATION

MinorFunction
None.

Flags
None.

Parameters.SetVolume.Length
The Length of the buffer provided by the caller.

Parameters.SetVolume.FslnformationClass
The FsInformationClass value specified by the caller. This determines
the type of attribute to be modified for the logical volume.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of the logical volume on which
a set volume information operation has been requested.

Notes

For the FileFsLabellnf ormation Fslnf ormation class value, a value of 0
in the VolumeLabelLength field indicates that the current volume label (if any)
should be removed. The FSD expects that any new volume label supplied by the
caller should be a wide character string.

NtFsControlFileQ
NTSTATUS NtFsControlFilef

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK loStatusBlock,
IN ULONG FsControlCode,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,

NT System Services___7/5?

OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength

) ;

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFileO invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous FSCTL request. The event will be signaled by
the I/O Manager when the FSCTL operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the FSCTL operation completes.

ApcContext (optional)
The caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBlock
The caller must supply this argument to receive the results of the FSCTL oper-
ation. The Information field in the loStatusBlock is set to the number
of bytes returned by the FSD in the OutputBuffer (if any).

FsControlCode
The FSCTL code value specifying the type of file system control function
requested.

InputBuffer
A caller-allocated buffer in which information to be sent to the FSD is
supplied.

InputBufferLength
The size of the input buffer.

OutputBuffer
A caller-allocated buffer in which the FSD returns information to the caller.

OutputBufferLength
The size of the output buffer.

Return code

STATUS_SUCCESS indicates that the operation succeeded; STATUS_PENDING is
returned if the FSD processes the request asynchronously.

720___________________________Appendix A: Windows NT System Services

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES

STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST

IRP

Associatedlrp.SystemBuffer
If the FSCTL code value specifies METHOD_BUFFERED or METHOD_IN_
DIRECT/METHOD_OUT_DIRECT, the I/O Manager initializes this field with a
pointer to a system buffer allocated by the I/O Manager. For METHOD_BUFF-
ERED, the size of the allocated system buffer is equal to the size of the larger
of the two buffers supplied by the caller (the InputBuffer and the
OutputBuffer).* For METHOD_IN_DIRECT/METHOD_OUT_DIRECT, the
I/O Manager allocates a system buffer to correspond to any InputBuffer
supplied by the caller.

MdlAddress
If the FSCTL code value specifies METHOD_IN_DIRECT/METHOD_OUT_
DIRECT and the OutputBuffer argument supplied by the requesting
thread is nonnull, the I/O Manager allocates an MDL describing the caller's
OutputBuffer and initializes the MdlAddress field with the MDL pointer
value. Note that the physical pages backing this MDL are locked into memory
by the I/O Manager.

UserBuffer
If the FSCTL code value specifies METHOD_NEITHER, the I/O Manager initial-
izes this field with the OutputBuffer pointer provided by the caller.

Flags
Set to IRP_MOUNT_COMPLETION and IRP_SYNCHRONOUS_PAGING_IO for
mount volume and verify volume FSCTL requests.

I/O stack location

Maj orFunction
IRP_MJ_FILE_SYSTEM_CONTROL

* The I/O Manager copies the contents of the InputBuffer into the system buffer before dispatching
the IRP to the FSI). When the IRP is completed and if the caller had provided an OutputBuffer, the
I/O Manager copies any information returned by the FSD back into the caller's OutputBuffer.

NT System Services___727

MinorFunc ti on
One of the following:

IRP_MN_MOUNT_VOLUME
A mount request is being issued to the FSD.

IRP_MN_LOAD_FILE_SYSTEM
The FSD is being loaded by a mini file system recognizer.

IRP_MN_VERIFY_VOLUME
A verify volume request is issued to the FSD.

IRP_MN_USERLFS_REQUEST
Set when a user FSCTL request is received by the I/O Manager, via an
invocation to NtFsControlFile (), for either a private FSCTL request
or for one of the set of public FSCTL requests supported by most FSDs
and/or network redirectors.

Flags
Set to SL_ALLOW_RAW_MOUNT if a target volume is opened for direct access
when MinorFunction is initialized to IRP_MN_VERIFY_VOLUME.

Mount requests

Parameters.MountVolume.Vpb
The VPB associated with the physical, virtual, or logical "real" device object

representing the media on which the logical volume should be mounted.

Parameters.MountVolume.DeviceObject
Pointer to the device object representing the partition on the device object on
which the logical volume should be mounted. Note that the pointer may refer
to some intermediate (filter driver) device object structure that has been
attached to the target device object.

DeviceObject
Points to the FSD-created device object representing the file system driver (or
to the highest-layered filter device object attached to the FSD device object).

FileObject
Initialized to NULL.

Load FSD request

DeviceObject
Points to the file system recognizer driver-created device object representing
the file system recognizer driver.

FileObject
Initialized to NULL.

722___________________________Appendix A: Windows NT System Services

Verify volume requests

Parameters.VerifyVolume.Vpb
The VPB associated with the physical, virtual, or logical "real" device object
representing the media on which the mounted logical volume should be
verified.

Parameters.VerifyVolume.DeviceObject
Pointer to the device object representing the media containing the mounted
logical volume to be verified.

DeviceObject
Points to the FSD-created device object representing the mounted volume to
be verified.

FileObject
Initialized to NULL.

User FSCTL requests

Parameters.FileSystemControl.OutputBufferLength
The OutputBuf f erLength specified by the caller.

Parameters.FileSystemControl.InputBufferLength
The InputBuf f erLength specified by the caller.

Parameters.FileSystemControl.FsControlCode
The FsControlCode specified by the caller.

Parameters.FileSystemControl.Type3InputBuffer
Used when the FSCTL code value specifies METHOD_NEITHER for handling
user buffers, this field contains a pointer to the user-supplied InputBuf fer.

DeviceObj ect
Points to the FSD-created device object representing the mounted volume.

FileObject
Initialized to the file object instance representing an open file/directory or
volume.

Notes

When dispatching any I/O read request to a lower-level driver while processing a
verify volume request itself, the FSD must set the SL_OVERRIDE_VERIFY_
VOLUME flag in the next I/O stack location before forwarding the IRP. See
Chapter 11 for a detailed discussion on how FSDs process FSCTL requests.

T NT System Services___723

NtDeviceloControlFileO
NTSTATUS NtDeviceIoControlFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK loStatusBlock,
IN ULONG loControlCode,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFile () invocation. The target file or device must have been opened
for Direct Access Storage Device (DASD) access.

Event (optional)
The caller can wait for the supplied event object (created by the caller), for
completion of the asynchronous IOCTL request. The event will be signaled by
the I/O Manager when the IOCTL operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the IOCTL operation completes.

ApcContext (optional)
A caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBlock
The caller must supply this argument to receive the results of the IOCTL oper-
ation. The Information field in the loStatusBlock is set to the number
of bytes returned by the FSD in the OutputBuffer (if any).

FsControlCode
The IOCTL code value specifying the type of device I/O control function
requested.

InputBuffer
A caller-allocated buffer in which information to be sent to the FSD is
supplied.

InputBufferLength
The size of the input buffer.

724____ _____________________Appendix A: Windows NT System Services

OutputBuffer
A caller-allocated buffer in which the FSD returns information to the caller.

OutputBufferLength
The size of the output buffer.

Return code

STATUS_SUCCESS indicates that the operation succeeded; STATUS_PENDING is
returned if the FSD processes the request asynchronously.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER

STATUS_INVALID_DEVICE_REQUEST

IRP

Associatedlrp.SystemBuffer
If the IOCTL code value specifies METHOD_BUFFERED or METHOD_IN_
DIRECT/METHOD_OUT_DIRECT, the I/O Manager initializes this field with a
pointer to a system buffer allocated by the I/O Manager. For METHOD_BUFF-
ERED, the size of the allocated system buffer is equal to the size of the larger
of the two buffers supplied by the caller (the InputBuffer and the
OutputBuffer).* For METHOD_IN_DIRECT/METHOD_OUT_DIRECT, the
I/O Manager allocates a system buffer to correspond to any InputBuffer
supplied by the caller.

MdlAddress
If the IOCTL code value specifies METHOD_IN_DIRECT/METHOD_OUT_
DIRECT and the OutputBuffer argument supplied by the requesting
thread is nonnull, the I/O Manager allocates an MDL describing the caller's
OutputBuffer and initializes the MdlAddress field with the MDL pointer
value. Note that the physical pages backing this MDL are locked into memory
by the I/O Manager.

UserBuffer
If the IOCTL code value specifies METHOD_NEITHER, the I/O Manager initial-
izes this field with the OutputBuffer pointer provided by the caller.

* The I/O Manager copies the contents of the InputBuffer into the system buffer before dispatching
the IRP to the FSD. When the IRP is completed and if the caller had provided an OutputBuffer, the
I/O Manager copies any information returned by the FSD back into the caller's OutputBuffer.

NT System Services___725

I/O stack location

Maj orFunction
IRP_MJ_DEVICE_CONTROL or IRP_MJ_INTERNAL_DEVICE_CONTROL

MinorFunc t i on
None.

Flags
Can be set to SL_OVERRIDE_VERIFY_VOLUME by the FSD when requesting
I/O operations from the lower-level driver while processing verify-volume
requests.

Parameters.DeviceloControl.OutputBufferLength
The OutputBuf f erLength specified by the caller.

Parameters.DeviceloControl.InputBufferLength
The InputBuf f erLength specified by the caller.

Parameters.DeviceloControl.FsControlCode
The FsControlCode specified by the caller.

Parameters.DeviceloControl.Type3InputBuffer
Used when the IOCTL code value specifies METHOD_NEITHER for handling
user buffers, this field contains a pointer to the user-supplied InputBuf fer.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume or target device.

FileObject
Initialized to the file object instance representing an open file or device.

Notes

Most device IOCTL requests are forwarded by the FSD to lower-level device
drivers managing the physical/virtual/logical device on which the volume has
been mounted. See Chapter 11 for a detailed discussion on how FSDs process
IOCTL requests.

Note that the IRP_MJ_SCSI IOCTL code has been defined to be the same as
IRP_MJ_INTERNAL_DEVICE_CONTROL control code value.

NtDeleteFileQ
NTSTATUS NtDeleteFile(

IN POBJECT_ATTRIBUTES ObjectAttributes
);
This system call is functionally equivalent to invoking NtSetlnformationFileO
with FilelnformationClass set to FileDispositionlnformation.

726 ___________________________ Appendix A: Windows NT System Services

NtFlushBuffersFileQ
NTSTATUS NtFlushBuffersFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFile() invocation.

If the supplied handle represents an open instance of either the mounted
logical volume or the root directory on the mounted logical volume, all
cached data for open files belonging to the mounted logical volume will be
flushed by the FSD. If, however, the handle refers to an instance of any other
open directory on the volume, no data will be flushed to disk.

If the handle represents an open instance of a specific file, the FSD will write
the cached data for the file to secondary storage by the FSD.

loStatusBlock
The caller must supply this argument to receive the results of the flush buffers
operation. The Information field in the loStatusBlock is set to the
number of bytes flushed to secondary storage by the FSD.

Return code

STATUS_SUCCESS indicates that the operation succeeded.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_ACCESS_DENIED
STATUS_INSUFFICIENT_RESOURCES

• STATUS_INVALID_PARAMETER
« STATUS_INVALID_DEVICE_REQUEST

I/O stack location

Ma j orFunction
IRP_MJ_FLUSH_BUFFERS

MinorFunction
None.

NT System Services___727

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
Initialized to the file object instance representing an open file, directory, or
volume.

Notes

Chapter 11 discusses how the flush file buffers IRP is handled by the FSD.

NtCancelloFileQ
NTSTATUS NtCancelIoFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,

) ;

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFile () invocation.

loStatusBlock
The caller must supply this argument to receive the results of the flush buffers
operation.

Return code

STATUS_SUCCESS indicates that the operation succeeded.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INVALID_PARAMETER

STATUS_INVALID_DEVICE_REQUEST

Notes

This system call will not return control back to the caller until all pending I/O
requests initiated by the requesting thread using the particular file handle, have
been either canceled or completed.

Requests initiated by other threads belonging to the same process or by the same
thread but using different file handles will not be affected.

728 ______________________Appendix A: Windows NT System Services

This appendix has listed some of the Windows NT I/O-Manager-provided system
services that you can use either from a user-space application or from within a
kernel-mode driver. There is a cost, however, associated with using such routines
directly. This cost (especially for user-space applications) is the potential loss of
portability that your software will suffer if and when these system services are
changed and/or made obsolete by Microsoft. The benefit is that certain function-
ality becomes easier to request by using such Windows NT system services
directly.

MPR Support

The Multiple Provider Router (MPR) exports general networking APIs in Win32
and interacts with underlying network providers to provide the exported
networking services. Applications do not interact with the network provider DLLs
directly; rather, they invoke the common networking APIs and are thereby
protected from the vagaries of specific network providers. Also, a common look
and feel is presented by the MPR to applications that request such networking
services.

If you design and implement a network redirector, you may choose to implement
a network provider dynamic link library (DLL); this will allow you to leverage
existing commands and interfaces (e.g., the net command) that users can utilize
to request services from your network redirector. Such services can include deter-
mining the capabilities of your network, establishing a connection to a remote
resource, getting information about connected resources, closing connections, and
so on.

The MPR will dynamically load your DLL and call the appropriate entry points
whenever your network is active.

Registry Modifications
The MPR examines the contents of the following key in the Registry to determine
the various network provider DLLs that are present and also to determine the
order in which these network providers should be invoked:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\NetworkProvider\order
The order key has a value-entry called ProviderOrder, which is a string-type
value. The string value is a comma-separated list of key names. Each key name

729

730_____________________________________Appendix B: MPR Support

identifies a network provider by referring to the Registry key associated with that
provider. Each key name is actually a relative path from HKEY_LOCAL_
MACHINE\System\CurrentControlSet\Services\, defining a node that
the network vendor would have created during its installation.

As an example, consider the following entry in the Registry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet \Control\NetworkProvider\
order\ProviderOrder = "LanmanWorkStation,YourNetworkServiceKeyName"

This informs the MPR that it should expect to find two specific Registry key
entries:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\LanmanWorkStation

and
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\

YourNetworkServiceKeyName

It also informs the MPR that the order in which requests should be directed to the
network providers present on the system is first, to the LAN Manager Work
Station network provider and then your network provider.

You are expected to have the following entries in the Registry associated with the
YourNetworkServiceKeyName key:

• Group:REG_SZ:NetworkProvider
• NetworkProvider (subkey)

The NetworkProvider subkey should have the following values:

Name (REG_SZj
The name of the network provider. This name is displayed to the user as
the name of the network in the browse dialogs.

ProviderPath (REG_EXPAND_SZj>
The full path of the DLL that implements the network provider. MPR will
perform a LoadLibrary () on this path.

Network Provider DLL Implementation
On Windows NT platforms, your network provider can implement one or more of
the following functions:

Function Name
NPGetConnection ()
NPGetCaps () l

NPDeviceMode ()

Ordinal Value
12

13
14

Network Provider DLL Implementation_________ ____ ____ __ 73-?

Function Name Ordinal Value
NPGetUser()
NPAddConnection()
NPCancelConnection()
NPPropertyDialog()
NPGetDirectoryType()
NPDirectoryNotify()
NPGetPropertyText()
NPOpenEnutn ()
NPEnumResource()
NPCloseEnum()
NPSearchDialog()

16
17
18
29
30
31
32
33
34
35
38

1 This is the only function that is mandatory for your network provider to implement since it is the method
by which the user (and the MPR DLL) can determine the capabilities of your network.

Note that your DLL does not need to contain stubs for those functions that are not
supported and/or implemented by your network provider.

When implementing the network provider DLL, you should keep the following
points in mind:

Speed
When your network provider DLL gets invoked, you should quickly try to
determine whether the target resource is one that belongs to you or not. If
your DLL does not own the resource, return WN_BAD_NETNAME (the list of
error code definitions is given later in this appendix) so that the MPR can
continue cycling through the list of available providers.

Validation
Your network provider DLL must validate calls using the following ordering
sequence:

a. First, check if your network has been started (or if your network redi-
rector is loaded and active).

b. Next, check if you support the requested operation.
c. If any network resources are specified, check whether you own such

resources.
d. Validate the supplied parameters to your function call (if any).

Routing
The MPR cycles through all of the network providers listed in the Registry,
until one of them accepts the request and processes it or until all of the avail-
able network providers have been invoked and none of them accepts the

732_____________________________________Appendix B: MPR Support

request. If your network provider is invoked and you do not wish to process
the request, return an appropriate error code (e.g., ERROR_BAD_NETPATH,
ERROR_BAD_NET_NAME, ERROR_INVALID_PARAMETER, ERROR_INVALID_
LEVEL). If, however, your network provider returns an error code that is a
significant error code (e.g., ERROR_INVALID_PASSWORD) that indicates that
the operation was processed unsuccessfully or if your network provider DLL
returns a success code, the MPR DLL conveys the results back to the
requesting application (and stops routing the request to any other network
providers).

Return Values/Errors
Functions implemented in your network provider DLL can return either WN_
SUCCESS or an appropriate error code. If returning an error, the function should
also invoke the WNetSetLastError () or SetLastError () function calls to
report the error. If you are returning a general error (such as insufficient
memory), simply invoke the SetLastError () function; otherwise, use the
WNetSetLastError () function:

VOID WNetSetLastError (
DWORDerror,
LPTSTRlpError,
LPTSTRlpProvider)

where the arguments are as follows:

error
The error code value. If this is a Windows-defined error code, IpError is
ignored. Otherwise, you could set this to ERROR_EXTENDED_ERROR to indi-
cate that a network-specific error is being reported.

IpError
A string describing the network-specific error.

IpProvider
A string naming the network provider that raised the error.

To report general errors, execute the following steps:

// error condition occurs that should be reported.
// error code is contained in providerError.
SetLastError(providerError);
return(providerError);

To report network-specific errors, do the following:

// IpErrorString contains the error to be reported.
WNetSetLastError(ERROR_EXTENDED_ERROR, IpErrorString, IpProviderName);
return(ERROR_EXTENDED_ERROR);

Network Provider DLL Implementation 733

Note that the NtGetCaps () function does not return any error code value;
rather, it returns a capabilities mask value.

Here are the possible status code values that can be returned (your provider,
however, is free to return any Windows-defined error code):

#define WN_SUCCESS
#define WN_NOT_SUPPORTED
#define WN_NET_ERROR
#define WN_MORE_DATA
#define WN_BAD_POINTER
#define WN_BAD_VALUE
#define WN_BAD_PAS SWORD
#define WN_ACCESS_DENIED
#define WN_FUNCTION_BUSY

#define WN_
#define WW_
#define WN_
#define WN_
#define WN_

WINDOWS_ERROR
BAD_USER
OUT_OF_MEMORY
NOT_CONNECTED
OPEN_FILES

#define WN_BAD_NETNAME

OOh // success
Olh // function not supported
02h // miscellaneous network error
03h // warning: buffer too small
04h // invalid pointer specified
05h // invalid numeric value specified
06h // incorrect password specified
07h // security violation
08h // this function cannot be reentered and

// is currently being used, OR
// the provider is still initializing and
// is not ready to be called yet.

09h //a required Windows function failed
OAh // invalid user name specified
OBh // out of memory
30h // device is not redirected
31h // connection could not be canceled

// because files are still open
32h // network name is invalid

Note that the WN_FUNCTION_BUSY code value is also used to indicate that the
network provider DLL is currently initializing itself. When this error code is
returned to the application, it is possible that the application may decide to retry
the operation.

NPGetCapsQ
This function allows your network provider DLL to specify which functions are
supported by your network from the set of functions specified by the caller. This
function is defined as follows:

DWORD NPGetCaps(
IN DWORD nlndex)

Parameters

nlndex
Capability set that the caller is interested in.

The return value is typically a bit mask, indicating which of the specified services
are supported by your network provider DLL. If you return 0, the caller will take
that to mean that none of the specified services are supported by your network.
For certain nlndex values, however, you must return a constant value instead of
a bit mask.

734_____________________________________Appendix B: MPR Support

Possible nindex values

Version information
The nindex value will be set to WNNC_SPEC_VERSION (= 0x01).

Set the high word of the return code to 4 (indicating the major version
number) and the low word to 0 (for the minor version number).

Network provider type
The nindex value will be set to WNNC_NET_TYPE (= 0x02).

The high word of the returned value should contain the provider type and
the low word should contain the subtype (if any). The following types have
been defined by Microsoft:*
#define WNNC_NET_NONE 0x00000
ttdefine WNNC_NET_MSNET 0x10000
#define WNNC_NET_LANMAN 0x20000
#define WNNC_NET_NETWARE 0x30000
#define WNNC_NET_VINES 0x40000

Network provider version
The nindex value will be set to WNNC_DRIVER_VERSION (= 0x03).

Returns your driver version number.
User information

The nindex value will be set to WNNC_USER (= 0x04).

If you support this capability, return the WNNC_USR_GETUSER (= 0x01) con-
stant value.

Connection manipulation
The nindex value will be set to WNNC_CONNECTION (= 0x06).

Set any of the following bit fields:
#define WMNC_CON_ADDCONNECTION 0x01
ttdefine WNNC_CON_CANCELCONNECTION 0x02
#define WNNC_CON_GETCONNECTIONS 0x04
Sdefine WNNC_CON_ADDCONNECTION3 0x08

Provider-specific dialogs
The nindex value will be set to WNNC_DIALOG (= 0x08).

Set any of the following bit fields:
#define WNNC_DLG_DEVICEMODE 0x01
#define WNNC_DLG_PROPERTYDIALOG 0x20 // PropertyText is also

implied.

* You can request Microsoft to assign a provider type value for your use.

Network Provider DLL Implementation_____________________________735

tdefine WNNC_DLG_SEARCHDIALOG 0x40
#define WNNC_DLG_FORMATNETWORKNAME 0x80
#define WNNC_DLG_PERMISSIONEDITOR 0x100

Administrative functionality
The nlndex value will be set to WNNC_ADMIN (= 0x09).
Set any of the following bit fields:
#define WNNC_ADM_GETDIRECTORYTYPE 0x01
#define WNNC_ADM_DIRECTORYNOTIFY 0x02

Enumeration
The nlndex value will be set to WNNC_ENUMERATION (= OxOB).

Set any of the following bit fields:
#define WNNC_ENUM_GLOBAL 0x01
#define WNNC_ENUM_LOCAL 0x02

Startup
The nlndex value will be set to WNNC_START (= OxOC).

The MPR issues this request to determine how long it should wait (.timeout
value) for network providers to start. Therefore, if your network provider is
not responding (or returns busy), the MPR may decide to retry an operation,
depending upon the current timeout value and the elapsed time interval. The
default value is set to 60 seconds for each network provider. The adminis-
trator could, however, change this default value by specifying the HKEY_
LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\NetworPro-
vider\RestoreTimeout value (type REG_DWORD), which determines the
timeout in milliseconds for all network providers.

If you return 0, the MPR will assume that your network provider is disabled.
If you return OxFFFFFFFF, the MPR interprets this to mean that you do not
know how long it will take you to start and will wait for the current default
timeout value (60 seconds or whatever is specified by the administrator).

NOTE There is a single timeout value used by the MPR for all network pro-
viders. If your network provider DLL returns a timeout value that is
greater than the current MPR default timeout (whether specified by
the administrator or not), the MPR will use your specified timeout
value. Therefore, be judicious in determining the appropriate time-
out value you decide to return.

Consult the SDK documentation, and the documentation supplied on the
Microsoft Developers Library CD-ROM for more information on how to implement
the other network provider APIs for the Windows NT operating system.I

Building Kernel-Mode
Drivers

The BUILD.EXE utility supplied with the Windows NT DDK is the Microsoft-
provided (and supported) program to assist developers in compiling and linking
Windows NT kernel-mode drivers.* BUILD automatically establishes file dependen-
cies, isolates target-dependent (e.g., header file and library include path
information, compiler names and switches, linker switches) and platform-depen-
dent information (x86, PowerPC, MIPS, Alpha platforms), and, thereby, provides a
simple method for creating kernel-mode drivers and libraries and also user-mode
applications (if you so desire).

BUILD expects you to tell it which files need to be compiled, the name and type
information for the target driver or library to be generated, information identifying
the target platform, and any special compilation and/or link options that you
would like to specify. Once you provide this information, BUILD determines the
appropriate file dependencies and uses the services of NMAKE and the installed
compiler to generate your target driver, library, or application.

Inputs
As input, BUILD expects you to supply a text file named SOURCES, in the same
directory as that containing the files to be compiled. The SOURCES file contains
information that identifies your source files, the target to be built and other rele-
vant information. BUILD also uses any environment variables that you may have
specified, and any command-line options that you provide when you invoke
BUILD. Finally, BUILD uses the platform-specific rules and other options specified

* Note once again that the Microsoft DDK does not include a compiler. You must purchase a compiler
separately.

736

Output___737

in the following files that are supplied with the DDK (in the $BASEDIR\INC
directory*):

MAKEFILE.DEF
This is the primary control file used by BUILD. You should study the contents
of this file to better understand how options specified by you can affect the
manner in which your target driver or library is created.

WARNING The MAKEFILE.DEF file is poorly documented and extremely con-
voluted. It is a prime example of how not to implement a makefile.
Unfortunately for us, it is also the only source available if we wish
to understand some of what happens when BUILD is invoked.

MAKEFILE.PLT
This file contains target-platform-specific information. The target platform is
either specified by you as a command-line option to BUILD or determined via
an environment variable.t This file is included by MAKEFILE.DEF.

I386MK.INC / ALPHAMK.INC / MIPSMK.INC / PPCMK.INC
This file contains target-platform-specific build controls and is also included
by MAKEFILE.DEF.

Output
BUILD generates the target driver, library, or application you specified in the
SOURCES file. The BUILD.LOG (containing the list of commands invoked by
BUILD and any compiler- or linker-generated statements), BUILD. WJRN (containing
warnings generated during the build process), and BUILD.EKR (containing errors
that prevent the successful completion of the build process) files are generated as
by-products of the build process.

Two types of Windows NT drivers can be built:

Free build
This is the nondebug version of your driver. This is also the version you will
typically ship to your customers. This version is normally compiled with full
optimization enabled, and I would advise that you strip the free version of all
symbolic information before shipping it.

* The BASEDIK environment variable is automatieally set up for you by the installation utility during the
DDK installation process and its value is set to the base directory path specification where you installed
the DDK.
t The BUILD_DEFAULT_TARCETSenvironment variable is typically initialized to the target platform type
value (e.g., -386).

738 __________________________ Appendix C: Building Kernel-Mode Drivers

The free build environment does not define the DBG environment variable;
therefore, any conditional debug code that you include in your driver can be
automatically filtered out during the compilation process as shown here:
—if DBG

// Include the debug code here. This code is automatically
// filtered out for the free/retail build.

—endif // DBG
Contrary to what you might expect, the free version of your driver does
contain symbolic information. To remove this symbolic information from the
free build, execute the following sequence of steps:
— Execute the command DUMPBIN /HEADERS y our -driver -

name . sys / MORE on the binary.
— Note the value associated with the "image base" in the OPTIONAL

HEADER VALUES section. This value should typically be 10000 (hex).

— Execute the command REBASE -b InitialBaseValue -x Symbol -
Dir-Name y our -driver -name . sys.

— A file by the name of your-driver-name . dbg will be created in the
specified symbol directory, and the free binary will no longer contain any
symbolic information.

Checked build
This is the debug version of your driver that you will typically build and use
during development. Assertions in the driver code, debug print statements,
debug breakpoints, and symbolic information are all compiled into the
checked binary, and optimization is disabled for the debug build.

You should never ship the checked build to your customers or attempt to
execute the checked build without having a debugger attached to the system.
Otherwise, you may experience hangs and/or system crashes when assertions
or breakpoints are hit.

To build the free, or retail, version of your driver, use the free build environment,
which is set up automatically when you invoke the Free Build Command
Window. Similarly, you should use the Checked Build Command Window to
build the checked version of your target driver.

Building Your Driver
1. In your driver source directory, create a file called MAKEFILE containing the

following:
DO NOT EDIT THIS FILE! ! ! Edit .\sources. if you want to add a new
source file to this component. This file merely indirects to the

Building Your Driver_____ _____________________________________739

real make filethat is shared by all the driver components of the
Windows NT DDK

!INCLUDE $(NTMAKEENV)\makefile.def
2. Also in your driver source directory, create a SOURCES file, specifying the

source files to be built, the target type and name, and any other additional
command-line switch values you wish to have passed-on to the compiler and
linker. The \DDK\DOC\SOURCES.TPLfi\e is a template that you should study
and use when attempting to create your own SOURCES file. Below is the
SOURCES file I used in compiling the sample file system driver:
- Execute the "build" command to make the sample FSD driver

The TARGETNAME variable is defined by the developer. It is the name
of the target (component) that is being built by this makefile. It
should NOT include any path or file extension information.

TARGETNAME=sfsd

The TARGETPATH and TARGETTYPE variables are defined by the developer.
The first specifies where the target is to be built. The second
specifies the type of target (either PROGRAM, DYNLINK, LIBRARY,
UMAPPL_NOLIB, or BOOTPGM). UMAPPL_NOLIB is used when you're only
building user-mode apps and don't need to build a library.

TARGETPATH=obj

TARGETTYPE=DRIVER

The INCLUDES variable specifies any include paths that are specific
to this source directory. Separate multiple directory paths with
singlesemicolons. Relative path specifications are okay. The
INCLUDES variable is not required. Specifying an empty INCLUDES
variable(i.e., INCLUDES=) indicates no include paths are to be
searched.
#
NOTE: The "fsdk\inc" refers to the Microsoft-supplied File Systems
Developers Kit.

INCLUDES=. .\inc; \ddk-40\inc; \fsdk\inc-40;

The SOURCES variable is defined by the developer. It is a list of
all the source files for this component. Each source file should be
on a separate line, using the line continuation character. This
will minimize merge conflicts if two developers are adding source
files to the same component. The SOURCES variable is required. If
there are no platform common sourcefiles, an empty SOURCES variable
should be used, (i.e., SOURCES=)

Source files common to multiple platforms

SOURCES=sfsdinit.c \
registry.c \

740 Appendix C: Building Kernel-Mode Drivers

create. c
misc .c
cleanup. c
close. c
read. c
write. c
f ileinfo. c
f lush.c
volinfo.c
dircntrl .c
fscntrl.c
devcntrl . c
shutdown . c
Ickcntrl .c
security. c
extattr .c
fastio.c

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

Next specify any additional options for the compiler.
Define the appropriate CPU type (and insert defines
in the appropriate header file) to get the right
values for "uintS," "uint!6," etc. typedefs.

C_DEFINES= -DUNICODE -D_CPU_X86_

The type of product being built - NT = kernel mode
UMTYPE=nt

3. Since I specified that the obj subdirectory should contain the target driver, I
have created the obj, obj\i386, obj\i386\cbecked, and obj\i386\free directo-
ries on my computer, for creating the x86 version of the driver. Similarly, you
should create the appropriate directories depending upon the target directory
you specify and the target platform that you are compiling for.*

4. Execute BUILD to create your target driver, library, or application.

For More Information
The DDK documentation provides a guide to compiling and linking your kernel-
mode drivers. Consult this documentation, the SOURCES files provided on the
diskette accompanying this book and the SOURCES files that are supplied with
sample source code provided with the DDK for more information.

* If you fail to do so, BUILD will automatically create all of the subdirectories mentioned here, except
the checked and free sub-directories, which you will have to create yourself (manually).

Debugging Support

The WINDBG.EXE debugger can be used for source-level debugging of Windows
NT kernel-mode drivers. You can use this debugger in one of two ways:

• To interactively debug a live Windows NT system

• To perform analysis of a previously obtained crash dump (also known as post-
mortem analysis)

Unfortunately, WINDBG has more than a few reliability problems (unexplained
application crashes) and also behaves in an eccentric fashion occasionally.
However, more often than not, WINDBG will work reasonably well and should be
a valuable tool in helping you debug your kernel-mode code.

Interactive Debugging of a Live System
You will need two machines, each running Windows NT, in order to use
WINDBG to debug a live system.* The machine that executes the driver(s) to be
debugged is called the target machine. The machine on which WINDBG will
execute is called the host machine. The two machines communicate using a null-
modem serial cable which you will need to purchase. One end of this null-
modem serial cable must be connected to the serial (COM) ports on each of the
two systems (the host and target). If the machines that you use have multiple
available COM ports, you can choose any one that you prefer; by default on x86
systems, WINDBG expects to use COM2 but this default can easily be overridden
using an appropriate option (/DEBUGPORT=PortWame) on the target machine
boot command line.t

* It is possible to do things such as debugging an Alpha target using an x86 machine as the host (or vice
versa). However, I have tried to avoid this whenever possible.
t You need not use the same COM port on both the host and target machines.

741

742_________________________________Appendix D: Debugging Support

Use the sequence of steps given below to quickly get started with debugging your
file system or filter driver:

1. Install either a checked or a free version of the Windows NT operating system
on the target machine.

If you install a checked build, the target machine will execute a lot slower
than it will with a free build. However, you may benefit from the assertions
and/or any debug print statements that the operating system contains.

TIP If you have sufficient space available on the boot partition of the tar-
get system, you could install both the free and the checked builds
in separate boot directories and thereby retain the flexibility to boot
using either type of operating system build.

2. Install a free version of the Windows NT operating system on the host
machine.

You should note that the version of the operating system on both the target
and host systems do not need to be the same. However, you will require the
particular version of WINDBG executing on the host supplied with the SDK
associated with the version of the operating system executing on the target.
Therefore, if you wish to debug a target machine executing Version 3-51 of
the Windows NT operating system, you must use the WINDBG application
that was supplied with the SDK for Version 3.51 of Windows NT. If, however,
you wish to debug a target machine executing Version 4.0 of the operating
system, you cannot use the same WINDBG application that you use to debug
Version 3.51; you must use the debugger supplied with the SDK for Version
4.0 of the operating system instead.

3. Install the appropriate SDKs on the host system.

If you intend to debug multiple operating system releases, install each of the
appropriate SDKs on the host system. For example, you could install the SDK
for both Version 3.51 of the operating system and Version 4.0 of the oper-
ating system on a single host system running Version 4.0. This would give
you the capability of debugging drivers on both operating system releases
using the single host system.

At the time of writing this book, I worked with both the 3.51 and 4.0 versions
of the Windows NT operating system. Therefore, on most of the host systems
that I used for debugging purposes, I created a . . . \MSTOOLS-40 directory to
contain the SDK for the 4.0 version of the operating system and a

Interactive Debugging of a Live System_____________________________743

...\MSTOOLS-351 directory to contain the SDK for the 3.51 version of the
operating system.*

4. Copy the target system's debug symbol files to the host machine.

This symbolic information is required to get meaningful stack traces on the
host system. The checked and free versions of the operating system have
different symbol files associated with them. These symbol files are supplied
with the Windows NT operating system distribution CD. They can typically be
found in the \SUPPORT\DEBUG\<platform-type>\SYMBOLS directory on the
distribution CD. I would advise that you retain the subdirectory layout used
on the distribution CD when you copy the symbol files to the host system
(use the XCOPY /S source-path target-path command to achieve
this).
In order to successfully debug both types (retail/free and checked) of oper-
ating system binaries, you can create separate CHECKED and FREE
subdirectories on the host system that can contain the appropriate symbol
files. For example, you can create the following layout:

— Create the ... \DEBUG-40\CHECKED\SYMBOLtf path to contain the
debug symbol files for the checked build of the 4.0 release of the
Windows NT operating system.

— Create the . . . \DEBUG-40\FREE\SYMBOLS path to contain the debug
symbol files for the free build of the 4.0 release of the Windows NT oper-
ating system.

— Create the ... \DEBUG-351\CHECKED\SYMBOLS path to contain the
debug symbol files for the checked build of the 3.51 release of the
Windows NT operating system.

— Create the . . . \DEBUG-351\FREE\SYMBOLS path to contain the debug
symbol files for the free build of the 3.51 release of the Windows NT
operating system.

Debug symbol files change with every new service pack of the operating
system. Be aware of this fact and copy over the appropriate new debug
symbol files whenever you install a new Windows NT service pack.

5. On the target symbol, modify the [operating systems] section of the
boot.ini file* to enable debugging of the target. Add the following options to

* You can similarly install the appropriate versions of the DDK. Since I often use the host system as a
compile-link-debug machine, installing the SDK and the DDK is a requirement for me.
t You can create this subtree anywhere you like on the host system; you can specify this search path to
WINDBG using the Options—> User DLLs—>Symbol Search Path textbox.
$ This file has the hidden and system attributes set. You will need to remove the hidden and system
attributes before you modify the file and then reset them after modifications have been completed.

744_________________________________Appendix D: Debugging Support

the appropriate boot command for either or both of the free and checked
versions you may have installed:

/DEBUG
This option enables kernel-mode debugging of the target. The /NODEBUG
option disables such debugging (and any of the options given below
such as /DEBUGPORT, /BATJDRATE, etc. are ignored).

/DEBUGPORT=FortName
You can use this option to specify an alternate COM port to which you
have connected the null-modem serial cable on the target system.*

/BAUDRATE=Baud#ate
Specify the highest available baud rate at which both the target and host
systems can communicate.

There are other options such as /SOS, /MAXMEM, and /CRASHDEBUG, which
are documented in the DDK that you can also specify. These options are not
critical, however, to enabling kernel-mode debugging of the target system.
As an example of how to set up boot commands correctly on the target
system, study the contents of the boot.ini file given below. This is a file that I
have set up on one of the target x86 systems I use to debug newly developed
kernel-mode drivers:
[boot loader]
timeout=30
default=C:\

[Operating Systems]
multi(0)disk(0)rdisk(l)partition(l)\WINNT40="Windows NT Workstation
Version 4.00"
multi(0)disk(0)rdisk(l)partition(l)\WINNT351="Windows NT Workstation
Version 3.51"
multi(0)disk(0)rdisk(2)partition(2)\WINNT40.CKD="Windows NT
Workstation Version

4.0 (Checked)" /DEBUG /DEBUGPORT=COM1 /BAUDRATE=57600
multi(0)disk(0)rdisk(2)partition(2)\WINNT351.CKD="Windows NT
Workstation

Version 3.51 (Checked)" /DEBUG /DEBUGPORT=COM1 /BAUDRATE=57600
multi(0)disk(0)rdisk(2)partition(2)\WINNT40.CKD="Windows NT Workstation

Version 4.00 - Checked"
multi(0)disk(0)rdisk(2)partition(2)\WINNT351.CKD="Windows NT
Workstation

Version 3.51 - Checked"
C:\="Microsoft Windows 95"

6. Configure the WINDBG application on the host machine.

* To specify an alternate COM port for the host system, you will need to configure the WINDBG appli-
cation settings on the host system as shown in Figure D-l.

Interactive Debugging of a Live System 745

You should configure WINDBG kernel debugger options to accurately reflect
the COM port you are using on the host machine, the baud rate at which you
want the host to communicate with the target, and whether you want the
initial breakpoint (during target machine startup) to be activated or not.
Figure D-l depicts a screen shot of a configuration I've set up.

Figure D-l. Configuring the WINDBG kernel debugger options

You may also need to specify the path where you have copied symbols on
the host system. Use the User DLLs menu option (from the Options main-
menu option list) to specify the path leading to the symbol files.

TIP Once you have configured WINDBG correctly, save the program
with an appropriate name, to allow you to simply open the same
program for subsequent debugging sessions (and avoid having to re-
configure each time).

7. Copy symbolic information {your-driver-name.dbg file or the binary itself) for
your driver to the symbol file directory on the host system.

8. Ensure that you have the source files located on the host system for use in
source-level debugging sessions.

If you use your host system as the compile machine as well, then your source
files will be easily located by WINDBG. If, however, you use some other
system to compile and link your binary, ensure that source files are copied
onto the host system at the same location where they exist on the compile
machine.

746_____ ___________________________Appendix D: Debugging Support

TIP If possible, share the source directory tree on the compile machine
and access it directly from the host system (using the same drive let-
ter as the one on which they are located on the compile machine).

9. Start WINDBG on the host system and open the appropriate program (if you
had saved your configuration earlier).

10. Boot the target system using the appropriate boot command option.

The source and target systems will connect with each other and you can proceed
with debugging your kernel-mode driver. Read the documentation on using
WINDBG that is provided with the Windows NT DDK.

Analyzing a Crash Dump
Occasionally, you may need to determine the root cause of a system crash that
may have occurred on a Windows NT system that has your driver installed (and
executing), but was not connected to any debugger at the time of the crash. As
long as you have access to the crash-dump file, you have a fighting chance of
determining the cause of the crash.

NOTE The crash dump is a file that contains the saved system state—in-
cluding the contents of physical memory—for the machine that ex-
perienced a crash.

To analyze a crash dump, configure a Windows NT system exactly as you would
otherwise configure a host system for interactive debugging (except that you do
not need to physically connect the system via a serial cable to any target
machine). Invoke WINDBG as follows:

WINDBG -y path-to-symbol-flies-directory -z path-to-crash-dump-flie

Once you invoke WINDBG as shown above, you can pretty much execute the
same sequence of steps that you would otherwise execute in debugging a live
target system during interactive debugging. The DUMPCHK utility shipped with
the DDK can be useful in checking the validity of a crash dump file before you
use it with WINDBG.

Recommended
Readings and

References
This appendix lists some books and papers that should assist you in finding addi-
tional information on the topics covered in the book.

Books on Operating Systems
Bach, Maurice. The Design of the UNIX Operating System. Englewood Cliffs, NJ:
Prentice Hall Inc., 1986.

Custer, Helen. Inside Windows NT. Redmond, WA: Microsoft Press, 1993.

Custer, Helen. Inside the Windows NT File System. Redmond, WA: Microsoft Press,
1994.

Deitel, Harvey. An Introduction to Operating Systems. Reading, MA: Addison-
Wesley Publishing Co., 1984.

Goodheart, Berny, and James Cox. The Magic Garden Explained: The Internals of
UNIX System V Release 4, An Open-Systems Design. Englewood Cliffs, NJ: Prentice
Hall Inc., 1994.

Hwang, Kai, and Faye Briggs. Computer Architecture and Parallel Processing.
Singapore: McGraw-Hill Book Co., 1985.

Mitchell, Stan. Inside the Windows 95 File System. Sebastopol, CA: O'Reilly & Asso-
ciates, Inc., 1997.

Tannenbaum, Andrew. Operating Systems: Design and Implementation. Engle-
wood Cliffs, NJ: Prentice Hall Inc., 1987.

Vahalia, Uresh. UNIX Internals: The New Frontiers. Upper Saddle River, NJ: Pren-
tice Hall Inc., 1996.

747

748____________________Appendix E: Recommended Readings and References

Books on CPU Architectures
Heinrich, Joe. MIPS R4000 User's Manual. Englewood Cliffs, NJ: Prentice Hall Inc.,
1993.

Intel Corporation. 80386 Programmer's Reference Manual. Beaverton, OR: Intel
Corporation, 1986.

Intel Corporation. Intel486 Processor Family Programmer's Reference. Beaverton,
OR: Intel Corporation, 1992.

Sites, Richard, and Richard Witek. Alpha AXP Architecture Reference Manual,
Second Edition. Newton, MA: Digital Press, 1995.

Books on Driver Development
Baker, Art. The Windows NT Device Driver Book: A Guide For Programmers.
Upper Saddle River, NJ: Prentice Hall, PTR, 1997.

Egan, Janet, and Thomas Teixeira. Writing a UNIX Device Driver, Second Edition.
John Wiley & Sons, Inc., 1992.

Selected Papers
Bach, M. J., et al. "A Remote-File Cache for RFS." USENIX 1987 Summer Confer-
ence Proceedings, June 1987.

Bershad, B. N., J. B. Chen, D. Lee, and T. H. Romer. "Avoiding Cache Misses
Dynamically in Large Direct-Mapped Caches." Proceedings of the Sixth Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, ACM, 1994.

Bershad, B. N., J. B. Chen, D. Lee, and T. H. Romer. "Dynamic Page Mapping Poli-
cies for Cache Conflict Resolution on Standard Hardware." Proceedings of the First
Symposium on Operating Systems Design and Implementation, USENIX Associa-
tion, November 1994.

Gingell, R., J. Moran, and W. Shannon. "Virtual Memory Architecture in SunOS."
USENIX Conference Proceedings, USENIX Association, Summer 1997.

Howard, J. H., M. L. Kazar, S. G. Nichols, D. A. Nichols, M. Satyanarayanan, R. N.
Sidebotham, and M. J. West. "Scale and Performance in a Distributed File System."
A CM Transactions on Computer Systems, vol. 6, no. 1, February 1988.

Kazar, M. L., Leverett et al. "Decorum File System Architectural Overview."
USENIX Conference Proceedings, June 1990.

Selected Papers__749

Kleiman, S. R. "Vnodes: an Architecture for Multiple File System Types in Sun
UNIX." USENIX Conference Proceedings, Summer 1986.

McKusick, M. K., W. N. Joy, S. J. Leffler, and R. S. Fabry. "A Fast File System For
UNIX." Transactions on Computer Systems, vol. 2, no. 3, August, 1984.

Morris, J. H., M. Satyanarayanan, M. H. Conner, J. H. Howard, D. Rosenthal, and
F. D. Smith. "Andrew: A Distributed Personal Computing Environment." Communi-
cations of the ACM, March 1986.

Patterson, D. A., G. Gibson, R. H. Katz. "A Case for Redundant Arrays of Inexpen-
sive Disks (RAID)." Proceedings ofACMSIGMOD Conference, June 1988.

Rosenthal, David. "Evolving the Vnode Interface." USENIX Conference Proceed-
ings, Summer 1990.

Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. "Design and Imple-
mentation of the Sun Network File System." USENIX Conference Proceedings,
Summer 1985.

Satyanarayanan, M., J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and D. C.
Steere. "Coda: A Highly Available File System for a Distributed Workstation Envi-
ronment." IEEE Transactions on Computers, vol. 39, no. 4, April, 1990.

Satyanarayanan, M., J. H. Howard, D. A. Nichols, R. N. Sidebotham, and A. Z.
Spector. "The ITC Distributed File System: Principles and Design." Proceedings of
the Tenth ACM Symposium on Operating Systems Principles, 1985.

Seltzer, M., K. Bostic, M. MsKusick, and C. Staelin. "An Implementation of a Log-
Structured File System for UNIX." USENIX Association Conference Proceedings,
January 1993.

Walker, B., G. Popek, R. English, C. Kline, and G. Thiel. "The LOCUS Distributed
Operating System." Proceedings of the 9th ACM Symposium on Operating System
Principles, October 1983.

Additional Sources
for Help

There are a limited number of online resources and consulting services available
for designing and developing Windows NT kernel-mode drivers. Consulting
services have begun mushrooming at a relatively rapid rate, however, in the past
few months and therefore it is becoming a little easier to get professional assis-
tance these days as compared to a few years ago.* Here is a short list of the
resources that were available at the time this book went to press.

WARNING Please note that I do not endorse any of the companies or products
mentioned here. Furthermore, I cannot accept responsibility for any
of the comments, opinions, or services that you may receive and/or
adopt as a result of using the resources listed in this appendix.

Usenet Newsgroup
comp. os. ms-windows.programmer, nt. kernel-mode

As the name suggests, this newsgroup contains postings on issues related to
kernel-mode design and implementation for the Windows NT operating
system. It is sometimes monitored by Microsoft support engineers, and a fair
number of experienced consultants in Windows NT driver development post
responses to the group.

* Note that this can also he a prohlem, since many lay claim to understanding the Windows NT operating
system, hut not all such claims are necessarily true.

750

Firms Providing Training and/or Consulting Services__________________ __ 751

Mailing Lists
ntfsd@atria.com
ntfsd-digest@atria.com

These are peer-to-peer discussion groups, established in 1994, focused on
Windows NT file systems development. To subscribe to either of these lists,
send email to majordorno@atria.com with a blank Subject line, and with a
message body consisting either of subscribe ntfsd or subscribe
ntfsd-digest.
To read back issues of the mailing list, see ftp://ftp.atria.com/archives/ntfsd.
To unsubscribe, send email to the above majordomo address with a message
body consisting either of unsubscribe ntfsd or unsubscribe ntfsd-
digest.

DDK-L Mailing List
Information about this mailing list can be obtained from http://
www.albany.net/~danorton/ddk/ddk-l/faq.shtml.

Firms Providing Training and/or
Consulting Services
• NT Core Services, Inc., http://www.ntcoresvcs.com

• Kernel Mode Systems, http://www.cmkrnl.com
• Open Systems Resources, Inc., http://www.osr.com

• INTEC, http://www.intec.es

• Tetradyne Software, Inc., http://www.tetradyne.com
• Cherry Hill Software, http://www.albany.net/~danorton

In addition to the sources of information listed in this appendix, there are many
online sites that maintain information about Windows NT kernel-mode driver
development, including FAQs, DDK documentation errata, and other NT internals
information. You should be able to easily locate such sites via a simple search
using any of the available search engines.

Index

Symbols
\ (backslash)

disallowed in filenames, 23
for root directory, 16, 57

A
absolute pathnames, file objects, 177
access

Direct Memory Access (DMA), 256
file object, 177
mount points and, 28
mounted logical volumes, 24
violations, memory and, 69
virtual address space, 196-201

AcquireFileForNtCreateSection(), 547-549
AcquireForCcFlush(), 551
AcquireForLazyWrite(), 289, 354

example of, 553-554
AcquireForModWrite(), 549-551
AcquireForReadAhead(), 289, 352
administration

event logging, 86-93
status reports to, 66

aliasing, 185
allocating, 39^1

access violations and, 69
to Cache Manager, 248-249
device objects, 140-141
dispatcher object storage, 98
ERSOURCE structures storage, 110

for event log entries, 91-92
event object storage, 101
Executive spin lock storage, 96
file objects, 176
file streams, 263, 346

changing file stream size, 487
FSD design and, 364
IRPs, 144-146, 150, 636-639
lookaside lists and, 45
MEM_ types for, 208
multiple stack locations, 155
termination handlers and, 84
virtual address spaces, 206-209
VPB structure, 369
zones, 42

ANSI strings, converting, 47
APCs (asynchronous procedure calls), 10,

107
APC_LEVEL, 10
postprocessing IRPs, 150, 151, 154

APIs (application programming
interfaces), 5

as event log viewer, 87, 90
MPR module, 61

arbitrary threads, 131-133
associated IRPs, 147, 647-650
asynchronous

file object operations, 177
I/O, 124, 458, 464-476
IRP handling, 149-150
paging I/O requests, 166

753

754 Index

asynchronous {continued)
procedure calls (see APCs)
versus synchronous, 180-183

attach operation, filter driver, 622-634
attaching threads to processes, 200
attributes

page frame, 202
VAD structure, 205-206
volume, modifying, 560-561

B
bad pages, 203
base address

allocating memory at, 207-208
determining, 52-54

batch oplocks, 574, 579-583
BCBs (buffer control blocks), 266-267,

316-318
block caching (see caching)
blue screen of death (BSOD), 55
boot file system driver, 191
boot loader startup routine, 186-187
boot sequences, 185-193
BootRecord structure, 186
breaking oplocks, 577-583
breakpoints, 54
BSOD (blue screen of death), 55
buffers

buffer address, 134
buffer cache, 246
buffered I/O requests, 184, 533-534
control blocks (BCBs), 266-267,

316-318
data buffer, 152
flush file buffers dispatch

routines, 554-556
multiple processes, same files, 215
TLB (Translation Lookaside

Buffer), 211, 213
user-space buffer pointers, 183-185

bug, specifying and forwarding
IRPs, 655-656

bugcheck calls, 55-56
BUILD.EXE utility, 736-740
byte offset, setting, 486
byte-range locks, 386-387, 536

dispatch routines for, 562-571

c
caching, 235, 243

Cache Manager, 18-19, 243-245
allocating to, 248-249
callback routines for, 289
cleanup requests and, 328-332
clients of, 258-260
close requests, 332-333
I/O Manager and, 348
initializing, 190, 345
interfaces of, 255-258, 271-293
lazy writer component, 254
logging and, 341
VCB structure and, 373-374
VMM interactions -with, 344-348
when to read-ahead, 349-351

CACHE_MANAGER_CALLBACKS
structure, 552

cache maps, 266
data structures for, 260-267, 271-272
DNLC implementation, 387
during read/write operations, 248-254
file size and, 267-269
file streams, 245
flushing the cache, 325-328
initiating, 287-293
names (MUP module), 64
page coloring and, 202
prerequisites for, 277-287
private map structure, 266, 271, 289
read-ahead (see reading, read-ahead

functionality)
resource acquisition, 274-276
shared cache map structure, 266, 272
system cache, 256
termination of, 328-333
TLB (Translation Lookaside

Buffer), 211, 213
VACB structure, 271-272
virtual block caching, 246-248
(see also memory)

call frames, 14
call frame-based exception handlers, 72
unwinding, 83-86

callback routines for Cache Manager, 289
cancelling

IRPs, 150
timer objects, 105

Index 755

capitalization, converting, 48
CCB structure, 369, 384-385
CcCanlWriteC), 300-303
CcCopyReadC), 250, 293-297
CcCopyWriteC), 254, 297-300
CcDeferWriteC), 303-304
CcFastCopyReadC), 293-297
CcFastCopyWrite(), 297-300
CcFlushCacheC), 326-327, 332, 462, 551
CcGetDirtyPagesC), 342-343
CcGetFileObjectFromBcbC), 318-319
CcGetFileObjectFromSectionPtrsQ,

339-340
CcGetLsnForFileObject(), 344
CcInitializeCacheMapC), 287-289, 345,

423, 436
CcIsThereDirtyDataC), 343-344
CcMapData(), 306-308, 374
CcMdlRead(), 257, 319-321
CcMdlReadCompleteC), 257, 321
CcMdlWriteComplete(), 257, 323-324
CcPinMappedData(), 308-310
CcPinReadO, 310-311

CcPreparePmWriteC) versus, 314
CcPrepareMdlWriteC), 257, 321-323
CcPreparePinWriteC), 313-315
CcPurgeCacheSectionC), 335-337
CcReadAheadC), 350
CcRepinBcbO, 316-317
CcScheduleReadAheadC), 305-306, 350
CcSetAdditionalCacheAttributesC), 341-342,

349, 353
CcSetDirtyPageThresholdC), 337-338
CcSetDirtyPinnedDataC), 311-313
CcSetFileSizesC), 268, 334-335
CcSetLogHandleForFileC), 340-341
CcSetReadAheadGranularityC), 304-305,

351
CcUninitializeCacheMapC), 329-331, 528
CcUnpinDataC), 315-316
CcUnpinDataForThreadC), 315-316
CcUnpinRepinnedBcK), 317-318
CcZeroDataC), 338-339
characters

character set for filenames, 23
converting case of, 48
UNC (Universal Naming

Convention), 63
Unicode, 46-49

checked build drivers, 738
CIFS protocol, 26
cleanup requests/routines, 328-332,

525-529
clients, Cache Manager, 258-260
client-side redirectors (see network

redirectors)
CLOCK1_LEVEL, CLOCK2_LEVEL, 11
CloseHandle(), 31
closing

close requests/routines, 332-333,
529-531

files, 31
IRPs for, 165
termination of caching, 328-333

CM, initializing, 190-191
code

discarding after driver initialization, 38
making pageable, 38

codes, event, 88
collided page fault, 231
comments, FSD design and, 363
committed memory, 206
Common Internet File System (CIFS), 26
CommonFCBHeader structure, 261
comparing Unicode strings, 47
completion routines, 160-161, 163-169,

650-661
associated IRPs, 649-650
invoking, 653-656
IRQLs for, 170, 656-657
specifying for IRPs, 651-653

compressed file streams, 484
COMPUTE_PAGES_SPANNED(), 295
concatenating Unicode strings, 48
configuring

CM (Configuration Manager), 190-191
I/O subsystem components, 128
WINDBG kernel, 745

connection-oriented vs. connectionless
protocols, 26

consistency of data
dispatch routines and, 425, 438
distributed file systems and, 29
I/O operations problems, 461-464
network file systems and, 27

constants, Unicode strings as, 48
container objects, 398

(see also directories)

756 Index

CONTAINING_RECORD(), 52-54
context control block (see CCB structure)
context, thread (see threads, thread

context)
control information (see metadata)
control objects, 12
control requests (see system control

requests)
controller objects, 123
converting

ANSI and Unicode strings, 47
string case, 48

copy interface, 256, 293-306
copy-on-write feature, 206
copying strings, 48
core, file system, 361
corruption of data, 65, 93
Count value, semaphores, 109
counting semaphores (see semaphore

objects)
CPU privilege levels, 7-8
crash-dump files, analyzing, 746
crashing the system, 65
create/open dispatch routines, 397-424

algorithm for, 406-407
filter drivers and, 635-636

CreateFile(), 30
critical region, 94
critical work requests, 352
customer code flag, 88

D
data

caching (see caching)
consistency of

dispatch routines and, 425, 438
distributed file systems and, 29
I/O operations problems, 461-464
network file systems and, 27

corruption of, 65, 93
encryption/decryption, 389
flushing (see flushing)
making pageable, 38
pinning/unpinning, 257-258, 306-319
reading (see reading)
shared (see synchronization)
writing (see writing)

data buffers, 152
data structures

BootRecord structure, 186
for caching, 260-267, 271-272
determining base address, 52-54
directory information, 505-507
driver extension structure, 139
ERESOURCE structure, 110-112
for exceptions, 68
file attribute modification, 486-489
for file lock support, 567-568
file object structure, 31
file stream information, 481-̂ 86
for file system drivers, 386-390
of file system, 367-390
interrupt spin locks for, 95-96
of kernel, 12
for linked lists, 49-52
list of common, 135-180
on-disk, 361, 367
UNICODE_STRING, 46
(see also objects)

DbgBreakPoint(), 54, 56
DbgPrintO, 54
deadlock condition, 95

create section requests and, 548
fast mutex locks and, 106
semaphore objects and, 108

deallocating
IRPs, 163-169
MEM_ types for, 209
virtual address spaces, 206, 209-210
(see also flushing)

debugging
analyzing crash-dump files, 746
breakpoints, 54
bugcheck calls, 55-56
checked build drivers, 738
exceptions and, 72
print statements for, 54
WINDB.EXE debugger, 741-746

declaring Unicode string constants, 48
decryption, 389
deferred procedure calls (see DPCs)
delayed work requests, 352
delayed-write functionality (see writing,

write-behind functionality)
depth, lookaside lists, 45

Index 757

designing
comments and, 363
file systems, 360-365
filter drivers, 663-667

detaching filter drivers from target, 661-663
detaching threads from processes, 200
\Device\UNC object type, 63
DeviceLock event object, 144
devices

controlling, dispatch routines
for, 584-599

device IRQLs, 11
device object extension, 140-141
device objects, 139-144, 178

attaching filter drivers to, 622-634
create/open requests for, 421
detaching filter drivers from, 661-663
representing mini-FSD, 601

interrupt spin locks and, 95-96
IOCTL requests, handling, 596-599
name in event identifier messages, 90
physical device objects, 369
unnamed device objects, 140
volume device objects, 371-372
VPB structure (see VPB structure)

DPS (see distributed file systems)
direct I/O method, 184
directories, 375-376

change notification, 388-389
control dispatch routines, 503-525
directory entries, 375
directory objects, create/open requests

for, 422
information data structures for, 505-507
in-memory abstractions (see FCB

structures)
mount points, 28
notify change directory

request, 503-504, 509-518
quotas, 387-388
sharing, 24, 26-27

DIRQLs (device interrupt request
levels), 11

dirty pages (see modified pages)
disabling read-ahead for file

streams, 341-342
disk-based drivers (see local file system

drivers)

dispatch routines, FSD
asynchronous I/O, 464-476
byte-range locks, 562-571
cleanup routines, 525-529
close routines, 529-531
create/open routines, 397-424
directory control routines, 503-525
driver entry routines, 390-397
file information routines, 476-503
file system and device control, 584-599
flush file buffers, 554-556
invoking, pseudocode for, 472^73
read routines, 424-437, 449-451
volume information, 556-561
write routines, 437-448, 449-451

DISPATCHLLEVEL, 10, 124
DPC queue for, 12

dispatcher database, 12
dispatcher objects, 11, 98-100

event objects, 100-103
mutex objects, 105-108
semaphore objects, 108-109
timer objects, 103-105

dispatching exceptions, 71-74
distributed file systems, 27-29, 360

(see also network file systems)
DMA (Direct Memory Access), 256
DNLC implementation, 387
documentation of system services, lack

of, 6
doubly linked lists, 50-52
doubly-mapping, 185
downgrading oplocks (see sharing oplocks)
DPCs (deferred procedure calls), 10, 104,

133
D,PC queue, 12

DriverEntry(), 133
drivers

allocating IRPs, 638-639
checked build, 738
development issues, 36-56
driver extension structure, 139
driver objects, 135-139, 178
entry dispatch routines, 390-397
file system (see file system drivers)
filter drivers (see filter drivers)
free build, 737-738
initializing, 138-139, 191

758 Index

drivers (continued)
initializing fast I/O support, 277-282
installing, 65-66
interface layer, 361
kernel-mode, building, 736-740
layered, 123-124
loading, 137-139
name in event identifier messages, 90
pageable, 37-39
preparing to debug, 54-56
reporting status of, 66
synchronization between, 93-112
target drivers, 622
verify volume requests, 585, 592-596

dynamic name lookup cache, 387

encryption, 389
end-of-file position, modifying, 487
environment systems, 6
ERESOURCE objects, 110-112, 275
errors

deadlock conditions, 95
in finding target objects, 400
logging (see events, logging)
networking, 732-733
page fault, 230
in read-ahead attempts, 352
reporting with top-level IRP

component, 461
system, crashing and, 66
in write-behind attempts, 355

ETHREAD structure, 453
events

event log viewers, 87
finding message file, 90
Registry key for, 366

event objects, 100-103
identifiers for, 87
logging, 86-93

ExAcquireFastMutexC), 106
ExAcquireFastMutexUnsafeC), 106
ExAcquireResourceExclusiveLiteC), 111
ExAcquireResourceSharedLiteC), 111
ExAcquireSharedStarveExclusive(), 111
ExAcquireSharedWaitForExclusiveC), 112
ExAllocateFromNPagedLookasideList(), 45
ExAllocateFromPagedLookasideList(), 45
ExAllocateFromZoneC), 43, 145

ExAllocatePool routines, 39, 234
allocating zones with, 42
ExAllocatePooK), 145
ExAllocatePoolWithTagC), 45, 233-234
ZwAllocateVirtualMemoryC) versus, 208

except clause (see try-except construct)
EXCEPTION_ACCESS_VIOLATION

exception, 69
EXCEPTION_EXECUTE_HANDLER

value, 78
EXCEPTION_POINTERS structure, 79
exceptions

call frame-based handlers, 72
dispatching, 71-74
exception filters, 77-81
exception frame, 68
exception frames, 15
FSD design and, 363
processing outcomes, 68-71
structured exception handling, 290
structured exception handling

(SEH), 74-86
termination handlers with, 86
try-except construct, 76-81
try-finally construct, 76-77, 81-86
in user mode, 73

exclusive oplocks, 572-573, 579-583
ExDeleteResourceLite(), 111
executable image file mappings, 219-220
execution context, 128, 130-134
Executive, 9, 15-19

dispatcher objects (see dispatcher
objects)

initializing components of, 189-192
RTLs (see RLTs)
synchronization and, 93

Executive spin locks, 96
ExExtendZone(), 44
ExFreeToZone(), 43
ExInitializeFastMutex(), 106
ExInitializeNPagedLookasideList(), 45
ExInitializePagedlookasideList(), 45
ExInitializeResourceLite(), 111
ExInitializeResourceLite(), 263
ExInitializeSListHead(), 52
ExInitializeWorkItem(), 469
ExInitializeZone(), 43
ExInterlockedAllocateFromZone(), 43
ExInterlockedFreeToZone(), 43

Index 759

ExInterlockedPopEntryList(), 50
ExInterlockedPopEntrySListC), 52
ExInterlockedPushEntryListC), 50
ExInterlockedPushEntrySListC), 52
ExQueryDepthSListHeadC), 52
ExQueueWorkltemC), 351-352
ExReleaseFastMutex(), 107
ExReleaseFastMutexUnsafe(), 107
ExReleaseResourceForThreadLiteC), 111
extending zones, 44
ExTryToAcquireFastMutex(), 107
ExTryToAcquireResourceExclusiveLiteC),

111

facility code, event, 88
fast I/O, 122, 277-282

dangers of, 536-537
dispatch table entry for path, 139
evolution of, 532-535
handling, 537-546
I/O Manager and, 348
pseudo, routines for, 546-552
top-level IRP component for, 460
writing custom routines, 545

FAST_IO_DISPATCH structure, 280
fast mutex objects, 105-107
FASTFAT file system, 246

file resource acquisition hierarchy, 550
file security, 368

FastloChecklfPossibleC), 538-541
"Fatal System Error" message, 56
faults (see page faults, handling)
FCB (file control block) structures, 262,

274-276, 368-369, 375-384
CcUninitializeCacheMap() and, 331
file size changes and, 268

field offset, calculating, 52
file servers, network, 118

Cache Manager and, 259
file streams, 245

allocating, 346
allowing fast I/O on, 538-541
attribute modification

structures, 486-489
byte-range lock requests for, 563
caching, 245
exclusive oplocks on, 572-573

FCB structure for, 262, 268, 274-276
file information dispatch

routines, 476-503
information data structures, 481-486
manipulation functions for, 255,

334-344
noncached requests and data

consistency, 462^464
opening, 282-287
parsing paths of, 398-399
quotas for, 387-388
read-ahead for, 341-342, 349
renaming, 477-479
time attributes, 481
truncating, 240-241
write-behind and, 353

File System Control (see FSCTL interface
requests)

file system drivers
bypassing (see fast I/O)
Cache Manager and, 258-259, 273-293
cleanup requests to, 328-332
close requests, 332-333
data structures of, 386-390
development issues, 36-56
dispatch routines

byte-range locks, 562-571
cleanup, 525-529
close, 529-531
create, 397-424
directory control, 503-525
driver entry, 390-397
file information, 476-503
file system and device

control, 584-599
flush file buffers, 554-556
read, 424-437, 449-451
volume information, 556-561
write, 437-448, 449-451

functionality of, 21
I/O Manager interface standard, 29
interactions with VMM, 233-241
interface of, 32-33
mini-FSDs (file system

recognizers), 599-614
synchronization issues, 401-405
top-level IRP components, 451-461
verify volume requests and, 593-596

760 Index

file system recognizers, 599-614
file systems

controlling, dispatch routines
for, 584-599

data structures of, 367-390
design of, 360-365
distributed (distributed file systems)
how they are used, 30-32
in-memory data structures, 367, 380
layout, logical volume, 23
network/remote (see network file

systems)
Registry interactions, 365-367
run-time library (FSRTL) routines, 454,

541-545
types of, 22-29
VMM and, 18

FILE_ device characteristics, 144
FILE_COMPLETE_IF_OPLOCKED flag, 576
FILE_OPBATCH_BREAK_UNDERWAY

value, 578
FILE_OPLOCK_BROKEN_TO_LEVEL_2

value, 578
F1LE_OPLOCK_BROKEN_TO_NONE

value, 578
FILE_WRITE_THROUGH flag, 325
filenames

long (not 8.3 format), 484, 507
network redirectors and, 60-64
structures for, 483^84
valid character set for, 23

files, 375-376
byte-range locks (see byte-range locks)
closing, 31
crash-dump, analyzing, 746
file information dispatch

routines, 476-503
file object structure, 31
file objects, 123, 175-178, 179, 386

byte offset, setting, 486
byte-range lock requests for, 564
closing, 332-333
create/open requests for, 422
fields of, Cache Manager

and, 261-266
waitability of, 178, 182

flushing buffers, dispatch routines
for, 554-556

in-memory abstractions of (see FCB
structures)

log files (see logging)
mapping, 215-217

section objects, 219-223
views into files, 219, 223
for virtual block caching, 246, 249
(see sharing memory)

multiple linked, 375
opening, 30, 58
paths to (see pathnames)
purging, 335-337
reading data from, 31
representation of in memory, 369-386
sharing, 24, 26-27
size of

Cache Manager and, 267-269
CcSetFileSizesC), 334-335
synchronizing changes to, 268
top-level IRP component

and, 459-461
stub files, 621

filter drivers, 33-36, 118, 615-618
attaching to targets, 622-632

IRP routing after, 632-634
Cache Manager and, 260
create/open requests and, 635-636
designing, 663-667
detaching from targets, 661-663
development issues, 36-56
device objects and, 143, 178
examples of, 619-622
filter-driver device objects, 622

filters, exception, 77-81
finally clause (see try-finally construct)
flushing

cache, 325-328
file buffers, dispatch routines

for, 554-556
modified (dirty) pages, 224-229
periodically (see writing, write-behind

functionality)
pinned buffers, 318

FO_CLEANUP_COMPLETE flag, 529
FO_FILE_FAST_IO_READ flag, 528
FO_FILE_MODIFIED flag, 528
FO_FILE_SIZE_CHANGED flag, 528
FO_SEQUENTIAL_ONLY flag, 351

Index 761

FO_SYNCHRONOUSJO flag, 182
fork(), 206
format utility, 23
fragmentation of system memory, 41
free build drivers, 737-738
free pages, 203
FsContext field (file object), 261-264
FSCTL interface requests, 589-592

data transfer methods, 585-588
oplock requests, 577-583
types of, 584-585

FSCTL_DISMOUNT_VOLUME
function, 589-591

FSCTL_IS_PATHNAME_VALID
function, 591

FSCTL_IS_VOLUME_MOUNTED
function, 591

FSCTL_LOCK_VOLUME function, 589
FSCTL_MARK_VOLUME_DIRTY

function, 591
FSCTL_OPBATCH_ACK_CLOSE_PENDING

code, 583
FSCTL_OPLOCK_BREAK_ACKNOWLEDGE

code, 582
FSCTL_QUERY_RETRIEVALJPOINTERS

function, 591
FSCTLJJNLOCKJVOLUME function, 589
FSDs (see file system drivers)
FSRTL_COMMON_FCB_HEADER

structure, 274, 283
FSRTL_COMMON_FCB_HEADER

type, 261-262
FSRTL_FLAG_ACQUIRE_MAIN_RSRC_EX

flag, 550
FSRTL_FLAG_ACQUIRE_MAIN_RSRC_SH

flag, 550
FsRtlAcquireFileForModWrite(), 550-551
FsRtlCopyRead(), 537, 542-543, 545
FsRtlCopyWrite(), 537, 542-545
FsRtlEnterFileSystem(), 545-546
FsRtlExitFileSystem(), 545-546
FsRtlNotifyCleanup(), 518, 527
FsRtlNotifyFullReport(), 527
FsRtlRegisterUncProvider(), 64
FSRTL-supplied routines, 454, 541-545
functions

copy interface-related, 256
defined by I/O Manager, 157-159
exception filter function, 78-81

file stream manipulation, 255, 334-344
(file system) run-time, 113
MDL interface, 256-257
names of, 363
pinning interface, 258
Unicode character manipulation, 47-48

GetExceptionCode(), 79
GetExceptionInformation(), 79
global

DPC queue, 12
name space for DFSs, 28
PFN lock, 204
root directory, 16, 57
timer queue, 12
variables, 140-141

granularity
cache map, 271
read-ahead, 304-305, 351

H
HAL (hardware abstraction layer), 8, 188
HalDisplayString(), 56
handles, 17

object, 134-135
open handle count, 381-384

handling
exceptions (see exceptions)
fast I/O (see fast I/O)
IRPs, 161-163
page faults, 230-232
termination (see termination handlers)
traps (see traps)
user-space buffer points, 183-185

hardware
abstraction layer (HAL), 188
HAL (hardware abstraction layer), 8
hardware priority, 10
independence of I/O subsystem, 126
privilege levels, 7-8

headers
IRP, 146-151
object headers, 16-17

help, 750-751
resources for further reading, 747-749

hierarchical storage management
(HSM), 29, 260

762 Index

hierarchy, drivers, 123-124
inverted-tree format, 16
logical volumes, 23-24

HIGH_LEVEL, 124
HIGHEST_LEVEL, 11
HSM (hierarchical storage

management), 29, 260
filter drivers for, 620-622

hypercritical work requests, 352
hyperspace area, 199

I/O errors (see errors)
I/O Manager, 19

allocating IRPs, 636-638
Cache Manager and, 348
filter drivers (see filter drivers)
functionality of, 119-122
functions defined by, 157-159
initializing components of, 191-192
kernel-mode drivers interface

standard, 29
mounting logical volumes and, 371
parsing object pathnames, 58-59
pathnames from, 408
reference count and, 381
system service calls of, 32
verify volume requests and, 593

I/O request packets (see IRPs)
I/O requests

breaking into associated IRPs, 648
in general, 180-185
packets of (see IRPs)
processing flow for (see filter drivers)

I/O Status Block, 174-175
I/O subsystem, NT, 117-119, 122-128

(see also I/O Manager)
identifiers for events, 87
idle thread, 12
IDT (interrupt dispatcher table), 12
*ifdef statements around breakpoints, 54
image file mappings, 219-220
image section objects, 238-240
inheritance, priority, 14
initialization

Cache Manager, 345
discarding code after, 38

initialized state, 13
InitializeListHead(), 50

initializing
Cache Manager, 190
cache operations, 255
Configuration Manager, 190-191
drivers

fast I/O, 277-282
routine for, 138-139

ERESOURCE structures, 110
event log entries, 91-92
event objects, 101
Executive components, 189-192
file object fields, by Cache

Manager, 261-266
I/O Manager components, 191-192
kernel, 189-192
link list anchors, 50, 52
spin locks, 97
Unicode strings, 47
VCB structure, 609-611
zone headers, 43

in-memory data structures, 367, 380
InsertHeadList(), 51
insertion strings in event identifier

messages, 90
InsertTailList(), 51
installing kernel-mode drivers, 65-66
integral subsystems, 7
Intel x86 MMU, 217
interactive debugging, 741-746
interface to file system drivers, 32-33
interfaces, Cache Manager, 255-258,

271-293
routine synchronization, 274
(see also under specific interface name)

intermediate drivers, 118
interrupts

APCs (see APCs)
interrupt dispatch table (see IDT)
interrupt request levels (see IRQLs)
interrupt service routines (see ISRs)
interrupt spin locks, 95-96
interruptibility of I/O

subsystem, 124-125
inversion, priority, 14
inverted-tree format, 16
IoAcquireVpbSpinLock(), 174
IoAllocateErrorLogEntry(), 91-92
IoAllocateIrp(), 122, 145, 146, 348,

636-638

Index 763

loAllocateMdK), 121, 348
loAttachDeviceC), 143, 372, 630-632
loAttachDeviceByPointerC), 143, 628-630,

632
IoAttachDeviceToDeviceStack(), 630, 632
IoBuildAsynchronousFsdRequest(), 146,

639-642
IoBuildDeviceIoControlRequest(), 146,

609, 643-647
loBuildSynchronousFsdRequestC), 146,

642-643
IoCallDriver(), 121, 122, 162, 348
loCheckShareAccessC), 424
loCompleteRequestC), 122, 155, 163-169,

651, 653-656
loCreateDeviceC), 137, 140
loCreateStreamFileObjectC), 331-332, 508
IoCreateSynchronizationEvent(), 101
IOCTL requests

building IRPs for, 645-647
handling, 596-599

loDetachDeviceC), 662
IoFreeIrp(), 171
IoGetCurrentProcess(), 200
IoGetDeviceObjectPointer(), 627, 632
loGetDeviceToVerifyC), 153, 593
IoGetRelatedDeviceObject(), 627, 632-634
IoGetTopLevelIrp(), 455
Iolnitializelrp(), 171, 638-639
loInitializeTimerC), 144
IoIsOperationSynchronous(), 181-182,

465-466
IoMakeAssociatedIrp(), 146, 647-648
IoMarkIrpPending(), 149, 160
IopCheckVpbMounted(), 172
lopCloseFileC), 165, 382, 525, 530
lopCompleteRequestC), 167-168
IopDeleteFile(), 382, 530-531
IopFreeIrpAndMdls(), 165
IopInvalidDeviceRequest(), 138
IopLoadDriver(), 137
loRaiselnformationalHardErrorC), 153,

348, 461
IoReleaseVpbSpinLock(), 174
IoRemoveShareAccess(), 529
IoSetCompletionRoutine(), 160, 651-653
IoSetDeviceToVerify(), 593
IoSetHardErrorOrVeriFvDevice(), 592
IoSetHardErrorOrVerifyDevice(), 153

IoSetTopLevelIrp(), 454-455
IoStartNextPacket(), 143, 153
loStartNextPacketByKeyC), 153
IoStartPacket(), 143, 153
loVerifyVolumeC), 144, 172, 593
loWriteErrorLogEntryC), 91-93
IPIJLEVEL, 11
IRP_DEFER_IO_COMPLETION flag, 167
IRP_MJ_ codes, 158
IRP_MJ_CLEAN function, 381
IRP_MJ_CLEANUP function, 328, 526
IRP_MJ_CLOSE function, 332, 529-531
IRP_MJ_CREATE function, 381
IRP_MJ_FILE_SYSTEM_CONTROL

function, 602-603
IRP_MJ_QUERYJNFORMATION

type, 481-486
IRP_MJ_QUERY_VOLUME_INFORMATION

function, 557-560
IRP_MJ_SET_INFORMATION type, 486-489
IRP_MJ_SET_VOLUME_INFORMATION

function, 560-561
IRP_MN_LOAD_FILE_SYSTEM

function, 585
IRP_MN_MOUNT_VOLUME function, 585
IRP_MN_NOTIFY_CHANGE_DIRECTORY

type, 509-518
IRP_MN_QUERY_DIRECTORY

type, 505-508
IRP_MN_UNLOCK_ functions, 566-567
IRP_MN_USER_FS_REQUEST function, 584
IRP_MN_VERIFY_VOLUME function, 585
IRP_NOCACHE flag, 248
IRP_PAGING_IO flag, 182
IRP_SYNCHRONOUS_IRP flag, 182
IRP_SYNCHRONOUS_PAGING_IO

flag, 182
IrpContext structure, 466-469
IRPs (I/O request packets), 98, 122

allocating, 144-146, 150
associated vs. master, 647-650
building, 636-650
completion routines, 163-169, 649-650,

650-661
handling asynchronously, 149-150
I/O Status Block, 174-175
key concepts, 169-172
master versus associated, 147
processing, 161-163

764 Index

IRPs (continued)
queuing, 132-133, 143
reusing, 154-161
routing, after filter driver

attach, 632-634
SetFilelnformation, 269
stack locations, 145, 154-161
structure of, 146-154
top-level component, 451-461

IRQLs (interrupt request levels), 10-11, 124
for completion routines, 170, 656-657
device (DIRQLs), 11
Executive spin locks and, 96
for PFN database lock, 204
zone manipulation and, 43

IsListEmptyC), 51
ISRs (interrupt service routines), 124

arbitrary thread context, 133

K
KdBreakPoint(), 54
KdPrintO, 54
KeAcquireSpinLock(), 97
KeAcquireSpinLockAtDpcLevel(), 97
KeAttachProcess(), 200
KeBugCheckC), 55, 73
KeBugCheckEx(), 55
KeCancelTimer(), 105
KeClearEventC), 103
KeDetachProcess(), 200-201
KeEnterCriticalRegion(), 546
KeEnterCriticalregionC), 107
KelnitializeEventX), 101
KeInitializeMutex(), 108
KeInitializeSemaphore(), 109
KeInitializeSpinlock(), 97
KeInitializeTimeEx(), 104
KeInitializeTimer(), 104
KeLeaveCriticalRegion(), 106, 546
KeReadStateEvent(), 103
KeReadStateMutex(), 108
KeReadStateSemaphore(), 109
KeReadStateTimerC), 105
KeReleaseMutex(), 108
KeReleaseSemaphore(), 109
KeReleaseSpinLock(), 97
KeReleaseSpinLockFromDpcLevel(), 97
KeResetEventC), 101-103

kernel, 9-15
initializing, 189-192
memory for (see memory)
objects of (see objects)
spin locks, 94-98

kernel mode, 7-9
building drivers for, 736-740
determining if requestor mode, 148-149
drivers for (see drivers)
filter drivers (see filter drivers)
kernel stack and, 45
special file system implementations, 29
threads of, 130
VMM with, 235

kernel space, 198
kernel stack, 45-46
KeSetEvent(), 101-103
KeSetTimeK), 105
KeSetTimerEx(), 105
KeSynchronizeExecution(), 95
KeWaitFor routines, 99
keys, Registry (see Registry)
KiDispatchException(), 68, 71-74
KilnitializeKerneK), 189
KMODEJEXCEPTION_NOT_HANDLED

error, 73
KSPINJ.OCK type, 51

LAN Manager
IRPs and, 171
oplocks (see opportunistic locking)
(see also networking)

LAN Manager Network, 25
layered drivers, 123-124
layered FSD design, 361-362
layout, file system, 23
lazy-write (see writing, write-behind

functionality)
libraries, run-time (see FSRTL-supplied

routines; RTLs)
linked lists, 49-54
linking device objects, 142
list depth, lookaside lists, 45
lists of page frames, 203
loading

drivers, 137-139
Windows NT, 185-193

Index 765

local file system drivers, 22-24, 27
local procedure calls (see LPC facility)
locality of reference, 350
locking

byte-range, 386-387, 536
dispatch routines for, 562-571

DeviceLock event object, 144
ERESOURCE (see ERESOURCE objects)
by file system drivers, 233
mutex objects, 105-108
opportunistic, 388, 571-584

bypassing FSD and, 536
types of oplocks, 572-574

read/write locks, 110-112
spin locks, 94-98
termination handlers and, 84
VPB structure, 173

logging
Cache Manager and, 341
for fast recovery, 389
obtaining dirty pages list, 342-343

logging events, 86-93
logical devices (see devices)
logical disks, 22
Logical Sequence Number (LSN), 312
logical volumes

create/open requests for, 421
device objects, 371-372
disallowing concurrent operations

to, 402-403
file system layout of, 23
managers of, 22-23
mounting, 371-372
quotas, 387-388
verifying, 585, 592-596
VPB structure, 172-174

long filenames, 484, 507
lookaside lists, 44-45

allocating IRPs, 145
LPC facility, 18
LSN (Logical Sequence Number), 312

M
MACH operating system, 4
mapping

cache map granularity, 271
cache maps, 266
files, 215-217

section objects, 219-223

views into files, 219, 223
for virtual block caching, 246, 249

mapped objects, 213, 216-217
mapped page threads (see MPW

threads)
private cache map structure, 266, 271,

289
shared cache map structure, 266, 272

master IRPs, 147, 647-650
MDLs (memory descriptor lists), 121,

234-235
associated with IRPs, 146, 166, 168-169
direct I/O method and, 184-185
MDL interface, 256-257, 319-324

MEM_ (de)allocation types, 208-209
memory, 36-46

access violations, 69
allocating, 39-41
allocating (see allocating)
caching (see caching)
checking for, 204
committed versus reserved, 206
descriptor lists (see MDLs)
device object extension, 140-141
file system recognizers and, 600
fragmentation of, 41
FSD design and, 364
handling page faults, 230-232
in-memory data structures, 367, 380
kernel stack, 45^t6
lookaside lists, 44-45
Management Unit (MMU), 210-211
managing (see VMM)
page frames, 201-204
paged versus nonpaged, 95
paged vs. nonpaged, 37-39
physical, managing, 201-204
purging physical, PPTs and, 218-219
remote data storage, 28
representing files in, 369-386
shared, 213-224, 237

page fault and, 231-232
TLS (thread-local storage), 453-455, 457
types of, 40
virtual address space, 196-201
zones, 41-44, 145

memory-mapped
files (see sharing memory)
I/O device registers, 210

766 Index

messages
for event identifiers, 87, 89-90
how event log viewer finds, 90
LPC facility for (see LPC facility)

metadata, 245, 376
modification requests, 488

methods, 123
MiDispatchFauW), 230-232
MiEnsureAvailablePageOrWaitC), 204
mini-FSDs (see file system recognizers)
MiResolveDemandZeroFault(), 232
MiResolvePageFileFault(), 230-231
MiResolveProtoPteFaultC), 232
MiResolveTransitionFaultC), 231
MiWriteComplete(), 228-229
MmAccessFault(), 230
MmAllocateContiguousMemory(), 41
MrnAllocateNonCachedMemoryC), 41, 204
MmCanFileBeTruncated(), 240-241
MmCheckCachedPageState(), 347
MmCreateSection(), 345
MmExtendSection(), 547
MmFlushImageSection(), 238-240
MmFlushSection(), 346
MmGetSystemAddressForMdK), 185, 199,

234, 320
MmLockPagableCodeSection(), 38
MmLockPagableCodeSectionByHandle(),

38
MmLockPagableDataSection(), 38
MmLockPagableDataSectionByHandleC),

38
MmLockPageableCodeSectionC), 233
MmLockPageableDataSection(), 233
MmMapViewInSystemCache(), 346
MmPageEntireDriver(), 38
MmPurgeSection(), 347
MmQuerySystemSizeC), 236-237, 345
MmResetDriverPagingC), 38
MmSetAddressRangeModified(), 347
MMU (Memory Management

Unit), 210-211, 217
MmUnlockPagableImageSection(), 38
MmUnmapViewInSystemCache(), 346
modified (dirty) pages, 203

Cache Manager functions for, 342-344
CcSetDirtyPinnedDataC), 311-313
flushing, 224-229
maximum number of, 337-338

MmFlushImageSection() and, 239-240
writer threads (see MPW threads)

modularity of I/O subsystem, 127-128
mounting

IRP_MN_MOUNT_VOLUME for, 585
logical volumes, 23, 371-372
mount points, 28
requests, IRPs for, 166

MPR module, 60-62, 729-735
MPW threads, 166, 225-229
multiple

Multiple Provider Router (see MPR
module)

Multiple UNC Provider (see MUP
module)

network redirectors, 60
physical disks (see logical volumes)

multiple linked files, 375
Multiple Provider Router (see MPR)
MULTIPLE_IRP_COMPLETE_REQUESTS

error, 164
multiprocessors and I/O subsystem, 127
MUP module, 62-64
MUST_SUCCEED_POOL_EMPTY error, 40
mutex objects, 105-108

TV
name space

distributed file system, 27-29
mounted logical volumes, 23-24
of Object Manager, 16, 56-60

names
DNLC implementation, 387
function, 363
path (see pathnames)
renaming file streams, 477-479
UNC (Universal Naming

Convention), 62-64
net command, 6l
network file systems, 24-27

LAN Manager Network, 25
(see also distributed file systems)

networking
error codes, 732-733
MPR for, 729-730
network file servers, 118

Cache Manager and, 259
network provider DLL, 730-735
network providers, 60

Index 767

networking {continued)
network redirectors, 24, 26, 118

Cache Manager and, 259, 273-293
handling filenames, 60-64
pathnames supplied to, 408

opportunistic locks, 388, 571-584
bypassing FSD and, 536

routing, 731
transport protocols, 26

noise bits, 351
noncached I/O requests, 250-252

data consistency and, 462-464
nonimage mappings, 219-220
nonpaged memory, 37-39

allocating, 39-41
spin locks and, 95

NonPagedPool type, 40
NonPagedPoolCacheAligned type, 40
NonPagedPoolCacheAlignedMustSucceed

type, 40
NonPagedPoolMustSucceed type, 40
notification event objects, 101
notification timer objects, 104
notify change directory request, 503-504,

509-518
not-signaled state, 98
NPAddConnection(), 61-62
NPGetCapsO, 733-735
NT (see Windows NT)
NtAllocateVirtualMemoryC), 207
NtCancelloFileC), 727
NtClose(), 31, 530
NtCreateFile(), 30, 672-681
NtCreateSectionC), 220, 345, 547
NtCurrentProcessC), 207
NtDeleteFileC), 725
NtDeviceloControlFileC), 723-725
NtFlushBuffersFileC), 726
NTFS file system, 360
NTFS implementation, 245, 246
NtFsControlFileC), 718-722
NtLockFileC), 709-712
NtNotifyChangeDirectoryFileC), 695-698
NtOpenFileC), 681-683
NtQueryDirectoryFileC), 689-694
NtQueryEaFileC), 703-706
NtQuerylnformationFileC), 698-700
NtQueryVolumelnformationFileC), 714-716
NtReadFileC), 31, 120, 683-686

NtSetEaFileC), 706-709
NtSetlnformationFileC), 700-703
NtSetVolumelnformationFileC), 716-718
NtUnlockFileC), 712-714
NtWriteFileO, 686-689

o
ObCreateObjectTypeC), 191,525
ObDereferenceObjectC), 135, 508, 530
Object File System (OFS), 360
Object Manager, 15-17

name space of, 16, 56-60
objects, 15, 123

container objects, 398
control objects, 12
controller objects, 123
device (see device objects)
dispatcher objects, 11, 98-109
driver (see drivers, driver objects)
driver extension structure, 139
ERESOURCE objects, 275
event objects, 100-103
file object (see files, file objects)
mapped, 213, 216-217
names for, 56
NT Object Model, 123
object handles (see handles)
object table, 129
overall relationships between, 178-180
persistent, 375
physical device objects, 369
process objects, 128
processes (see processes)
reference count, 134
section objects, 219-223
semaphore objects, 108-109
standard object headers, 16-17
symbolic links, 57
threads (see threads)
timer objects, 103-105
types of, 11-12
volume device objects, 371-372

ObOpenObjectByPointer(), 223
ObReferenceObjectByHandle(), 134
ObReferenceObjectByPointeK), 530
OFS (Object File System), 360
on-disk data structures, 361, 367
open handle count, 381-384

768 Index

opening
CCB structure for, 384-385
create/open dispatch routines, 397-424
file streams, 282-287
write-through requests during, 326

opening files, 30, 58
operating systems

in general, 3-9
I/O support (see I/O Manager)
interactions with FSD, 363
interface to file system driver, 32-33
memory of, 197
OS loader startup routine, 187-189
parsing file stream paths, 398-399
responding to exceptions, 67-68

opportunistic locks (oplocks), 388, 571-584
bypassing FSD and, 536
types of, 572-574

order
IRP completion routines, 160
resource acquisition, 549-551
stack locations, 156

OS loader startup, 187-189
OS/2 subsystem, 7
overlapped I/O (see asychronous I/O)
owning threads, 110

packet-based I/O, 122
(see also IRPs)

page color, 202
page faults, handling, 230-232
page file create requests, 423
page frames, 201-204

database of (PFN database), 201-202,
211-212

PPTs (prototype page tables), 202, 213,
217-219

page table entries (see PTEs)
page tables, 210-213

entries in (see PTEs)
prototype (see PPTs)

PAGE_ protection options, 208
pageable kernel-mode drivers, 37-39
paged memory, 37-39

allocating, 39^1
spin locks and, 95

PagedPool type, 40

PagedPoolCacheAligned type, 40
paging I/O requests, 166

extended valid data length, 460
noncached, 250-252
synchronizing file size changes, 268-269

panic calls (see bugcheck calls)
parse methods, 16
parsing file stream paths, 398-399
parsing object pathnames, 57-59
partitions, 22

mini-FSDs and, 609
passing messages (see messages)
PASSIVE_LEVEL, 10, 124
pathnames

distributed file systems and, 27
for file objects, 177
file stream, parsing, 398-399
for objects, 57
supplied to FSD, 408

paths, fast I/O (see fast I/O)
PEB (Process Environment Block)

structure, 129
pending IRPs, 160
performance

call frame unwinding and, 85
create/open routines and, 397
exception conditions and, 85
fast I/O, 122, 277-282, 348, 532, 534
fast versus normal mutexes, 106
file mapping and, 216
file system recognizers and, 600
logging for fast recovery, 389
network provider, 731
pinning data and, 258

periodic flushing (see writing, write-
behind functionality

periodic timer objects, 104
persistent objects, 375
PFN database, 201-202, 211-212
physical addresses, translating virtual

addresses to, 210-213
physical device object, 369
physical devices (see devices)
physical disks, 22
physical memory (see memory; VMM)
pinning interface, 257-258, 288, 306-319

buffer control blocks, 266-267
placeholders in event identifier

messages, 90

Index 769

plug-and-play support, 139
pointers, 134-135

for filter driver attach operation, 627
to PTE/PPTE, 202
user-space buffer, 183-185

pool allocation, 40-41
PopEntryListC), 50
portability, 4, 126
POSIX subsystem, 7
POWER_LEVEL, 11
PPTEs (prototype page table

entries), 217-218
PPTs (prototype page tables), 213, 217-219

page faults and, 231-232
pointer to, 202
purging physical memory and, 218-219

PRCBs (processor control blocks), 12
preemptibility of I/O subsystem, 125-126
print statements for debugging, 54
priority

IQRLs (see IRQLs)
preempting threads, 125-126
priority inheritance, 14
priority inversion, 14
thread execution, 13

private
BCB (buffer control block), 266
cache map structure, 266, 271, 289

PrivateCacheMap field (file
object), 265-266

privileged mode (see kernel mode)
privileges, hardware levels of, 7-8
processes, 13-14, 128-134

accessing memory, 196-197
execution context, 128, 130-134
PEB structure, 129
Process Manager, 17
process object structure, 128
process objects, 128
virtual address space of, 196-201
(see also threads)

processors
control blocks for (see PRCBs)
processor control region, 12

PROFILE_LEVEL, 11
protection, virtual addresses, 206, 208
prototype page tables (see PPTs)
PsCreateSystemThread(), 131
pseudo fast I/O routines, 546-552

pseudo file systems, 29
PTEs (page table entries), 212-213

pointers to, 202
public BCB, 266
purging files, 335-337
purging physical memory, 218-219
PushEntryList(), 50

Q
querying top-level IRP component

value, 453-455
queues

DPC queue, 12
event log entries, 93
of IRPs, 132-133, 143
linked lists for, 49-54
read-ahead requests in, 351-352
timer queue, 12

quotas, 387-388

R
RAM (see memory)
raw file system driver, 191
ReadFileO, 31
reading

caching during, 249-252
exclusive oplocks, 572-573
fast I/O requests (see fast I/O)
file data, 31
pinned data (see pinning interface)
read byte-range locks, 562
read dispatch routines, 424-437

building IRPs for, 640-641
ways to invoke, 449^51

read/write locks, 110-112
read-ahead functionality, 243-244, 295,

304-306, 349-352
AcquireForReadAhead(), 289
callback example for, 552-554
disabling for file streams, 341-342
granularity of, 304-305, 351

synchronizing file size changes
with, 268

ready-to-run state, 13
real-time priority, 13
recognizers, file system (mini-

FSDs), 599-614
recording in event log (see events, logging)

770 Index

recurring timer objects, 104
redirectors (see network redirectors)
redirectors, network, 118

Cache Manager and, 259, 273-293
pathnames supplied to, 408

reference count, 134, 381-384
device objects and, 142
for page frames, 202

registering
exception handlers, 76
network provider DLL, 62

Registry
configuring to load mini-FSD, 607-608
file system interaction with, 365-367
MPR, keys for, 729-730

reinitializing drivers, 191
relative pathnames, file objects, 177
ReleaseFileForNtCreateSection(), 547-549
ReleaseForCcFlushX), 551
ReleaseForModWriteC), 549-551
ReleaseFromLazyWriteC), 354

example of, 553-554
ReleaseFromReadAhead(), 352
remote

data storage, 28
file systems (see network file systems)
resources, sharing, 62-64

RemoveEntryListC), 51
RemoveHeadList(), 51
RemoveTailListC), 51
repinning/unpinning BCBs, 316-318
reporting driver status, 66
requestor mode, thread, 148-149
reserved bit, events, 88
reserved memory, 206
resources for further reading, 747-749
retrying instructions after exception, 68-70
return statement, 84
reusing IRPs, 154-161
root directory, 16, 57
routing, MPR for (see MPR)
RtlAnsiStringToUnicodeString(), 47
RtlAppendUnicodeStringToString(), 48
RtlAppendUnicodeToString(), 48
RtlCopyUnicodeString(), 48
RtlDispatchException(), 72
RtlDowncaseUnicodeString(), 48
RtlEqualUnicodeString(), 47
RtlFreeUnicodeString(), 48

RtlInitUnicodeString(), 47
RtlPrefixUnicodeString(), 48
RTLs (run-time libraries), 112-113

(see also FSRTL-supplied routines)
RtlUnicodeStringToAnsiString(), 47
RtlUpcaseUnicodeString(), 48
RtlZeroMemory(), 69
running state, 13
run-time libraries (see FSRTL-supplied

routines; RTLs)

scheduling state, thread, 13
second chance processing, 73
section objects, 219-223

discarding associated pages, 238-240
SectionObjectPointer field (file

object), 264-265, 283-284
security

dispatching user-mode exceptions, 73
encryption/decryption, 389
FASTFAT file system, 368
Security Reference Manager, 18
virus detection functionality, 619-620

segment data structure, 224
SEH (structured exception handling), 74-86

avoiding, consequences of, 75
Cache Manager with, 290

semaphore objects, 108-109
sequential-only flag, 351
Server Message Block (8MB) protocol, 483
servers, 24
service calls (see system service calls)
SetFilelnformation IRP, 269
SetLastError(), 732
severity code, event, 88
SFilterAttachTarget() (example), 623-626
SFilterBetterFSDInterceptRoutineO

(example), 66l
SFilterDeviceExtension structure

(example), 626
SFilterSampleCompletionRoutine()

(example), 656
SFsdAcqLazyWrite() (example), 553-554
SFsdAllocatelrpContextX)

(example), 467-469
SFsdBreakPoint() (example), 54
SFsdCommonDeviceControl()

(example), 597-598

Index 771

SFsdCommonDispatchC)
(example), 473-475

SFsdCommonReadC) (example), 469^71
SFsdFastIoCheckIfPossible()

(example), 539-540
SFsdFCB structure (example), 378-379
SFsdFileLockAnchor structure

(example), 567
SFsdFileLocklnfo structure (example), 567
SFsdHandleQueryPath() (example), 599
SFsdInitializeVCB() (example), 609-611
SFsdNtRequiredFCB structure

(example), 379-380
SFsdPostRequesK) (example), 471-473
SFsdRead() (example), 466
SFsdRelLazyWrite() (example), 553-554
sharing

data (see synchronization)
files/directories, 24, 26-27
memory, 213-224, 237

page faults and, 231-232
oplocks, 573-574, 579-583
resources with MUP module, 62-64
shared cache map structure, 266, 272

signaled state, 98
singly linked lists, 49-50
size

file streams, modifying, 487
of files (see files, size of)
truncate size, 330

SL_PENDING_RETURNED flag, 150
S-Lists, 52
SMB protocol, 483
software interrupts (see APCs)
source device objects, 622
special file system implementation, 29
spin locks, 94-98

for PFN database, 204
stacks

stack frames, unwinding, 71, 83-86
stack locations, 145, 154-161

allocating for multiple, 155
order of, 156

standard system services, 30-32
standby pages, 203
standby state, 13
starting up Windows NT (see system boot

sequence)
StartloC), 136

starvation, thread, 275
state

dispatcher objects, 98
event object, 102
page frame, 203

status reports, 66
STATUS_END_OF_FILE error, 268
STATUS_FILE_LOCK_CONFLICT error

code, 562
STATUS_FS_DRIVER_REQUIRED code, 602
STATUS_IN_PAGE_ERROR exception, 300
STATUS_INSUFFICIENT_RESOURCES

exception, 300
STATUS JNVALIDJJSERJBUFFER

exception, 299
STATUS_MORE_PROCESSING_REQUIRED

code, 164-165, 170
STATUSJVIORE_PROCESSING_REQUIRED

type, 657-661
STATUS_OPLOCK_BREAK_IN_PROGRESS

code, 578
STATUS_SEMAPHORE_LIMIT_EXCEEDED

exception, 109
STATUS_SHARING_VIOLATION error, 177
STATUS_UNEXPECTED_IO_ERROR

exception, 300
"STOP" message, 55
storage (see memory)
strings

with bugcheck code, 56
Unicode characters for, 46-49

structured exception handling (see SEH)
structures (see data structures)
stub files, 621
substrings, functions for, 48
subsystems, 4-7

I/O subsystem, 117-119,122-128
(see also I/O Manager)

interruptibility of, 124—125
modularity of, 127-128
portability of, 126
preemptibility of, 125-126

symbolic links, 57
synchronization, 93-112

Cache Manager interface routines, 274
create/open routines and, 401-405
determining if called, 465-466
dispatcher objects, 11,98-109
ERESOURCE-type primitives, 275

772 Index

synchronization (continued)
of file object operations, 177
file size changes, 268
filter driver design and, 664
FSD design and, 364
of I/O, 124

building IRPs for, 642-643
STATUS_MORE_PROCESSING_

REQUIRED and, 658-661
multiprocessors and, 127
of paging I/O requests, 166
spin locks, 94—98
synchronization event objects, 101
synchronization timer objects, 104
top-level IRP component and, 459
of VPB structure, 174

synchronous
versus asynchronous, 180-183

system boot sequence, 185-193
system cache, 256, 347

(see also caching)
system control requests, 30
system errors, 66
system failure, 65

quick recovery from, 389
system services

execution context and, 131
system services, list of, 671-728

target device objects, 622
attaching filter drivers to, 622-632

IRP routing after, 632-634
detaching filter drivers from, 661-663

target drivers, 622
terminated state, 13
termination handlers, 71, 81-84

exception handlers with, 86
termination of caching, 328-333
test-and-set instruction, 94
testing

executable image file mappings, 219
logical volumes, 585, 592-596
truncate operation

acceptability, 240-241
threads, 13-14, 129-134

APCs and, 107
arbitrary threads, 131-133

asynchronous I/O and, 124
asynchronous processing, 464-476
byte-range locks and, 562
determining requestor mode, 148-149
event objects to synchronize, 100-103
execution context, 130-134
idle thread, 12
kernel stack, 45^6
MPW threads, 166, 225-229
owning threads, 110
preemptibility of, 125-126
process execution context, 128
semaphore objects and, 108-109
spin locks, 94-98
synchronizing, 93-112
thread context, 13-15, 129, 133-134

process address space and, 199
thread objects, 129
thread-local storage (TLS), 453-455, 457
trapping (see traps)
user-mode versus thread-mode, 130
zero page thread, 192
(see also processes)

time attributes, file streams, 481
TimeOut interval

waiting for dispatcher objects, 100
timer objects, 103-105
timer queue, 12
TLB (Translation Lookaside Buffer), 211,

213
TLS (thread-local storage), 453-455, 457
top-level IRP component, 451^61

setting and querying value of, 453^55
top-level writers, 459^60
translation

Lookaside Buffer (see TLB)
maps (see page tables)
of virtual addresses, 210-213

transport protocols, 26
traps, 14-15

trap frame, 67-68
trap frames, 14
trap handlers, 14, 67-68, 76

tree structure (see hierarchy, drivers)
truncate operation acceptability,

testing, 240-241
try-except construct, 76-81
try-finally construct, 76-77, 81-86
try_return macro, 86

Index 773

u
UNC (Universal Naming Convention)

MUP module, 62-64
Unicode characters, 46-49
UNICODE_STRING structure, 46
unlock requests, 566-567, 570-571

(see also locking)
unnamed device objects, 140
unpinning BCBs, 316-318
unpinning data, 258, 306, 315-316
unwinding stack frames, 71,83-86
user mode, 4-7

determining if requestor mode, 148-149
exceptions in, 73
threads of, 130-131
VMM with, 235

user space, 197
user stack

switch to kernel mode and, 45
user-space buffer pointers, 183-185

V
VACB structure, 271-272
VADs (virtual address

descriptors), 205-206, 216
validation, network provider DLL, 731
variable priority, 13
VCB structure, 373-375

initializing, 609-611
VDM subsystem, 7
veneer, file system, 361
views into files, 219, 223
virtual addresses, 196, 204-213

address space, 196-201
control block (see VACB)
descriptors for (VADs), 205-206
manipulating, 205-210
translating, 210-213

virtual block caching, 246-248
virtual devices (see devices)
virtual DOS machine (see VDM subsystem)
Virtual Memory Manager (see VMM)
virus detection functionality, 619-620
VMM (Virtual Memory Manager), 18,

194-196
Cache Manager and, 344-348
file mapping, 215-217
handling page faults, 230-232

initialization of internal states, 189
interactions with file system

drivers, 233-241
mapping in driver code, 137
paging drivers, routines for, 38
paging I/O requests, 166
physical memory management, 201-204
virtual addresses, 196, 204-213

vnodes (see FCB structures)
volume device objects, 371-372
volume information requests, 556-561
Volume Parameter Block (see VPB

structure)
VPB structure, 140, 172-174, 179, 369,

372-373
VPB structures

routing IRPs after filter driver
attach, 633

w
wait routines, 99
waiting state, 13

file objects in, 178, 182
Win32 subsystem, 6-7
WINDBG.EXE debugger, 741-746
Windows NT

boot sequence of, 185-193
Cache Manager (see caching, Cache

Manager)
core architecture of, 4-9
Event Log (see events, logging)
Executive (see Executive)
I/O Manager (see I/O Manager)
I/O subsystem, 117-119, 122-128
Kernel (see kernel)
modes of, 4-9
Object Manager (see Object Manager)
Object Model, 123
Registry (see Registry)
system services, list of, 671-728
Virtual Memory Manager (see VMM)

Windows on Windows, 7
wise characters (see Unicode characters)
WNetAddConnection(), 6l
WNetAddConnection2(), 6l
WNetSetlastErrorO, 732
worker threads (see threads)
WOW subsystem, 7

774 Index

writing
caching during, 252-254
copy-on-write feature, 206
in event log (see events, logging)
exclusive oplocks, 572-573
fast I/O requests (see fast I/O)
pinned data (see pinning interface)
read/write locks, 110-112
synchronizing file size changes

with, 268
top-level writers, 459-460
write-behind functionality, 243, 245,

352-355
AcquireForLazyWrite(), 289, 354
Cache Manager component for, 254
call back example for, 552-554
CcSetDirtyPinnedData()

and, 312-313
FSRTL_FLAG2_DO_MODIFIED_

WRITE flag, 262
ReleaseFromLazyWrite(), 354

write byte-range locks, 563

write dispatch routines, 437-448
building IRPs for, 640-641
ways to invoke, 449^51

write throttling, 256
write-through operations, 325-326
(see also designing; reading)

zero page thread, 192
zeroed pages, 203

MiResolveDemandZeroFault(), 232
zeroing file stream bytes, 338-339
zones, 41-44, 145

disadvantages to, 44
extending, 44
ZONEJHEADER structure, 43

ZwAllocateVirtualMemory(), 207-209
as direct driver request, 234

ZwClose(), 134, 530
ZwCreateSection(), 220-223, 345
ZwFreeVirtualMemory(), 209-210
ZwMapViewOfSection(), 223
ZwOpenSection(), 223
ZwUnmapViewOfSection(), 223

About the Author
Rajeev Nagar has been working on operating systems (specifically storage manage-
ment systems) for the past six years. He has designed and implemented kernel
software for the Windows NT, AIX, HPUX, and SunOS platforms. His file system
development work has included local, disk-based file systems, networked file
systems, and distributed file systems. His undergraduate degree is in computer
engineering, and he has a master's degree in computer science. Rajeev has imple-
mented an OSF distributed file system client on the Windows NT platform, as well
as other filter drivers for storage management products.

Colophon
A vulture is featured on the cover of Windows NT File System Internals. Vultures
are divided into two famlies—New World vultures, a family that includes the
majestic but near-extinct California condor, and Old World vultures. Both families
are closely related to eagles and hawks, but, unlike their relatives, vultures are
carrion eaters, not hunters. A vulture will rarely kill for food. Instead, they sit by
and wait for another animal to die before starting to dine. Vultures often live in
open country where herds of large mammals, such as cattle, can be found. They
fly in slow circles, searching the ground for dead, sick, or injured animals. They
also watch for running packs of jackals or hyenas, who often lead them to food.
When food has been spotted, the vulture swoops down to the ground, and other
circling vultures follow.

Both Old World and New World vultures have heads and necks that are almost
bare, covered only by a thin layer of down. Many vultures have a thick ruff of
feathers around their neck. These adaptations allow the vulture to place its head
deep inside carcasses without soiling its plumage. The digestive enzymes of the
vulture allow it to survive on decaying meat that would be toxic to other animals.

Although the modern view of vultures is often one of disgust and comtempt,
some ancient cultures revered them as embodiments of immortality.

Edie Freedman designed the cover of this book, using a 19th-century engraving
from the Dover Pictorial Archive. The cover layout was produced with Quark
XPress 3-3 using the ITC Garamond font. Whenever possible, our books use Rep-
Kover™, a durable and flexible lay-flat binding. If the page count exceeds Rep-
Kover's limit, perfect binding is used.

The inside layout was designed by Nancy Priest and implemented in FrameMaker
5.0 by Mike Sierra. The text and heading fonts are ITC Garamond Light and Gara-
mond Book. The illustrations that appear in the book were created in
Macromedia Freehand 7.0 by Robert Romano. This colophon was written by
Clairemarie Fisher O'Leary.

	Start.pdf
	Chapter1.pdf
	Chapter2.pdf
	Chapter3.pdf
	Chapter4.pdf
	Chapter5.pdf
	Chapter6.pdf
	Chapter7.pdf
	Chapter8.pdf
	Chapter9.pdf
	Chapter10.pdf
	Chapter11.pdf
	Chapter12.pdf
	AppendixA.pdf
	AppendixB.pdf
	AppendixC.pdf
	AppendixD.pdf
	AppendixE.pdf
	AppendixF.pdf
	BookIndex.pdf

