e |
Building NT File System Drivers

\ NG \
AR
\\\\m\“‘\\ \J\\ \\\m\\\ \\\\\ "
M N \Q\ \
\\\ \ \\\\\
. § \\\\\\ \\\ \\ ‘\\ \ \\\,
R N SN
. 3;@\\“\\\\\N o

Windows NT

File Syte

Internals

A Developer’s Guide

O'RElLLYm Rajeev Nagar

Windows NT FHle System Internals

This book is dedicated to:
My parents, Maya and Yogesh
My wife and bestfriend, Priya
Our beautiful daughters, Sana and Ria

For it istheir faith, support, and encouragement
that inspires me to keep striving

Table of Contents

PrEFBCE .o IX
[, OVEIVIBW .o sssssssimssnss I
1. WindowsNT System COMPONENLScccurmrerreeiririninininieineeesesesesenenens 3

THE BBSICS ..oviiiiiieiteciiee ittt bbbt 3
The WIindows NT Kemel ... 9
TheWindowWSNT EXECULIVE........ccooiiiiiiiiiiiii et 15
2. File System, Driver DevelOpment...........ccoceeerrereeeeiseneneneeeseinenens 20
What AreFi € SYSIEMDIIVEIS? ...ttt 21
What ATEFTITEr DIIVEIS?. ...t 33
CommonDriver DevelOpMENtISSUES.vuuiieeiiiiiiiiis e 36
Windows NT Object NamMe SPECEcccovereeerererieieeeeer s 56
Filename Handling for Network Redirectorscccvvvieiiiiiieiiieeeeins 60
3. StructuredDriver DevelOpmeNt...........ccoveerererenneneseseeeseee s 65
Exception DispatChing SUPPOITcooveiiiierieieieseseeeeeee e 66
Structured Exception Handling (SEH)ooooreiiiiiiiii 74
EVENE LOGGING -.veveteitieiieieieie sttt 86
Driver SynchronizationMechanisms. ... 93
SUPPOrtiNGROULINES(RTLS) ..ottt 112

Vii

viii

Table of Contents

TREMANAGEL'S ...ooovrririvesrsssssssssssssmssssssssssssssssssssssssssssees 115
4. TheNTIH/OMAaNAGEN ... 117
TheNT /O SUBSYSIEIM ...t 118
ComMONDAELASIIUCIUIES.ceeiiiiieeeeeeee e 735
[/OREQUESES: A DISCUSSION ...eeeieieeeeeiei ettt e e e e e 180
System BOOt SEQUENCEcceeiviiieiciiiieee e 185
5. TheNT Virtual Memory Manager ..., 194
Functionalitycccoeeeveieneienecneene et b 195
Process AdreSs SPACEcovoiiiiiiiieie e 196
Physical Memory Management ... 201
Virtual AdreSS SUPPOITeeeeieiieiiie et 204
Shared Memory and Memory-Mapped File SUppOrtccccceeeeennenenenennns 213
ModifiedandMapped PageWITercooviiiiiiiiiiiiieeee e 224
Page Fault Handling ... e 230
Interactionswith File SyStEMDIiVErS........cooiiiiiiiieiieeeeee e 233
6. TheNT CacheManager | ... 243
FUNCEIONAIITY ..o 244
FIE SITEAIMS ..o 245
Virtual BIOCK CaChingccocooiiiiiiiiiieice e 246
Caching During Read and Wt OperationSooeveveeviviiii e 248
Cache Manager INtErfaces ... 255
Cache Manager ClENS ..ot 258
SOmelMPOortant DAtaStrUCIUIES.c.vvviie e 250
File Size CONSIAEIatioNScoeiiiiiiiieieiie e 257
7. TheNT CacheManager [l ... 270
Cache Manager SIFUCIUIEScoveieiiiiiiieieieeie e 271
Interaction with Clients (File Systems and Network Redirectors) 273
Cache Manager INLEITACESccoceoiiiiieiee e 293
8. TheNT CacheManager Hl ... 325
FlushingtheCathe.ouueiiii e 325
Terminationof CaChiNg..........eviiiiiiiiiii e 328
Miscellaneous File Stream Manipulation FUNCHIONScooovvieiieiiniiiiiinnns 334
Interactions With the VMM ... 344
Interactionswiththe [/OMaNagErc.eoivieiiiiieee e 348
TheRead-AheadMOdUIE...........ccuviiiiiiiie e 349

Lazy-WHTeFUNCHONAIITYcoeiiiiiiie e 2

Table of Contents iX

10.

11.

12.

ThE DIIVEI'S .. 357
Writing a File System DIIVES 1., 359
File System DESIGN ...coiiiieece e 360
REGISITY INLEIACIION ...ovviiiiiiiee e 365
Data SITUCLUIES ... 367
Dispatch RoUtiNg: Driver ENLIY ..o...oiiiiiiiii e 390
Dispatch ROULINE: Createcoccvcviieiieiiieice e 3
Dispatch ROUtINE REAHccoceiiiiiiiicesecees e 424
Dispatch ROULINE: WITEo.viiieiiiii e 437
Writing A File System Driver [......ccceeeennnserrssssseseseseenes 449
[/0 Revisited: WhO Called?oooiiiiiiiiiiii e 449
AsyNchronous [/O PrOCESSINGcvoouiiiieiiieiieiie e 464
Dispatch Routine: File Informationccoooviiiiiiiiiiiiicc e 476
Dispatch Routine: Directory CONtrolooieuiiiiiiieiiiiaiieee e e 503
Dispatch Routing: CleanUpccvciviieiiiieiiiice e 525
Dispatch ROULINE: ClOSEcvcviiiiiicecce e 529
Writing a File System Driver Hl ..., 532
Handling Fast 1/O ..o 532
Callback EXAMPIE ..ovoiiieiiee s 552
Dispatch Routing: FIuSh FIleBUFfers.........cooeuuiiiiiiiiii e 554
DispatchRoutine: Volumelnformationcovevvvieieiiiiinieiiin e 556
DispatchRoutine: Byte-RaNgeLOCKS.uvieiiiiiieeciieeceiee e 562
OpPOrtUNIStIC LOCKING ...viiviiieieiieiieie et 57/
Dispatch Routine: File System and Device Controlccoevviveviiiiieennn, 584
File System RECOGNIZENSccccceiveiiieeiesc e 599
FITEr DITVEL'S ..ottt 615
WhHY USEFIIEr DIIVEIS? ..ttt e e e e e e e 6/5
Basic Steps in FIENNG ..o 622

SomeDosand DoN'tSINFIENINGcoovviiiiiiii e e 663

X

Table of Contents

V' The APPENAIXES ..ot 669
A WINAOWSNT SYStEMSENVICES ... 671
B, MPR SUPPOI.....coiciiicirieeirtere et 729
C. Building Kernel-Mode DrivVErS ..., 736
D. Debugging SUPPOIT ..o sssssssssenens 741
E. Recommended Readings and Referencescccccveeveicnicenen. 747
E Additional Sourcesfor HElP ..o 750
INTEX. ... rvvvseesseerssesss s 753

Preface

Over the past three years, Windows NT has come to be regarded as a serious,
stable, viable, and highly competitive alternative to most other commercially avail-
able operating systems. It is aso one of the very few new commercialy released
operating systems that has been developed more or less from scratch in the last
15 years, and can clam to have achieved a significant amount of success.
However, Microsoft has not yet documented, in any substantial manner, the guts
of this increasingly important platform. This has resulted in a dearth of reliable
information available on the internals of the Windows NT operating system.

This book focuses on explaining the internals of the Windows NT /O subsystem,

the Windows NT Cache Manager, and the Windows NT Virtual Memory Manager.

In particular, it focuses on file system driver and filter driver implementation for
the Windows NT platform, which often requires detailed information about the
above-mentioned components.

|ntended Audience

This book is intended for those who have a need today for understanding a signif-
icant portion of the Windows NT operating system, and aso for those among us
who simply are curious about what makes Windows NT tick.

Typically, the book should be interesting and useful to you if you design or imple-
ment kernel-mode software, such as file system or device drivers. It should also
be interesting to those of you who are studying or teaching operating system
design and wish to understand the Windows NT operating system a little bit
better. Finaly, if you are a system administrator who really wants to know what it
is that you have just spent the vast majority of your annual budget on (operating

xi

xii Preface

system licenses, additional third-party driver licenses for virus-checking software,
and so on), this book should help satisfy your curiosity.

The approach taken in writing this book is that the information provided should
give you more than what you can get from any other documentation that is
currently available. Therefore, | expend a lot of effort discussing the whys and
hows that underlie the design and implementation of the Windows NT 1/O
subsystem, Virtual Memory Manager, and Cache Manager. For those of you who
need to implement a file system or filter driver module right this minute, there is a
substantial amount of code included that should get you well along on your way.

Above al, this book is intended as a guide and reference to assist you in under-
standing a major portion of the Windows NT operating system better than you do
today. | hope it will help to make you more informed about the operating system
itself, which in turn should help you exploit the operating-system-provided func-
tionality in an optima manner.

Windows NT File System Internals was written with certain assumptions in mind: |
assume that you understand the fundamentals of operating systems and therefore,
do not need me to explain what an operating system is, at the same time, | do
not assume that you understand file system technology (especially on the
Windows NT platform) in any great detail, athough such understanding will
undoubtedly help you if and when you decide to design and implement a file
system yourself. | further assume that you know how to develop programs using
a high-level language such as C. Findly, | assume that you have some interest in
the subject matter of this book; otherwise, | find it hard to imagine why anyone
would want to subject themselves to more than 700 pages of excruciatingly
detailed information about the 1/0O subsystem and associated components.

Book Contents and Organization

In order to design and develop complex software such as file system drivers or
other kernel-mode drivers, it becomes necessary to first understand the operating
system environment thoroughly. At the same time, | adways find it useful to have
sample code to play with that can assst me when | start designing and devel-
oping my own software modules. Therefore, | have organized this book along the
following lines.

Part 1: Overview

This part of the book provides you with the required background material that is
essential to successfully designing and developing Windows NT kernel-mode
drivers. This portion of the book should be of particular interest to those of you

Preface Xiii

who intend to actually develop kernel-mode software for the Windows NT
platform.

Chapter 1, Windows NT System Components
This chapter provides an introduction to the various components that together
constitute the kernel-mode portion of the Windows NT operating system. The
overal architecture of the operating system is discussed, followed by a brief
discusson on the Windows NT Kernd and the Windows NT Executive
components.

Chapter 2, File System Driver Development

This chapter provides an introduction to file system and filter drivers. Some
common driver development issues that arise when designing for the
Windows NT platform are adso discussed here, including a discussion on alo-
cating and freeing kernel memory, working efficiently with linked lists of
structures, and using Unicode strings in your driver. Finally, discussions on
the Windows NT object name space and the MUP and MPR components,
which are of interest to developers who wish to design network redirectors,
are presented in this chapter.

Chapter 3, Structured Driver Devel opment

Designing well-behaved kernel-mode software is the focus of this chapter.
Exception dispatching support provided by the operating system is discussed
here; the section on structured exception handling discusses how you can
develop robust kernel-mode software. There is dso a detailed discussion of
the various synchronization primitives that are available to kernel-mode devel-
opers, and which are essential to writing correct system software. The
synchronization primitives discussed here include spin locks, dispatcher
objects, and read-write locks.

Part 2. The Managers

Part 2 of this book describes the Windows NT 1/O Manager, the Windows NT
Virtual Memory Manager, and the Windows NT Cache Manager in considerable
detail from the perspective of a developer who wishes to design and implement
file system drivers. Regardless of whether or not you eventually choose to design
and implement kernel-mode software for the Windows NT platform, these chap-
ters should be useful to you and will provide you with a detailed understanding
of some important and complex Windows NT operating system software modules.

Chapter 4, The NT /O Manager
This chapter takes a detailed look at the Windows NT 1/O Manager. The
components of the 1/O subsystem, as well as the desgn principles that
guided the development of the I/O Manager and I/O subsystem components,
are discussed here; 0 is the concept of thread-context, which is extremely

Xtv Preface

important for kernel-mode driver developers. This chapter dso provides a
description of some of the more important system data structures and of
handling synchronous and asynchronous 1/O requests. Finally, a high-level
overview of the operating system boot sequence is included.

Chapter 5, The NT Virtual Memory Manager

Topics discussed in this chapter include the functionality provided by the
VMM, process address space layout, physical memory management and
virtual address space manipulation support provided by the Virtua Memory
Manager, and memory-mapped file support. This chapter provides an over-
view on how page fault handling is provided by the VMM, on the workings
of the modified page writer, and finally, on the interactions of the Virtua
Memory Manager with file system drivers.

Chapter 6, The NT Cache Manager |

This chapter provides an introduction to the Windows NT Cache Manager.
The functionality provided by the Cache Manager is discussed here, followed
by a discusson on how cached read and write 1/O requests are jointly
handled by the I/O Manager, file system drivers, and the Cache Manager. The
various Cache Manager interfaces are introduced, followed by a discussion on
the clients that typically request services from the Windows NT Cache
Manager. Some important data structures required for successful interaction
with the Cache Manager are dso described. Findly, there is a discusson on
how file size manipulation can be successfully performed for cached files.

Chapter 7, The NT Cache Manager |1
This chapter provides an overview of how the Windows NT Cache Manager
uses internal data structures to provide caching services to the rest of the
system. File system drivers must be cognizant of certain requirements that
they must fulfill to interact successfully with the Cache Manager; these require-
ments are discussed here. This chapter also has details of each of the various
interfaces (function calls) that are available to Cache Manager clients.

Chapters, The NT Cache Manager 111
Topics discussed in this chapter include flushing the sysem cache, termi-
nating caching for a file, descriptions of certain miscellaneous Cache-Manager-
provided function calls, and the interactions of the Cache Manager with the
/O Manager, and the Virtua Memory Manager. Finally, read-ahead and
delayed-write functionality, provided by the Windows NT Cache Manager, is
discussed.

Part3: TheDrivers

Part 3 describes how to use the information provided in Parts 1 and 2 of this
book. This portion of the book focuses exclusively on actual design and develop-

Preface XV

ment of two types of kernel-mode drivers. It could also be used as a reference in
understanding how the various Windows NT file systems process user requests
for file 1/O and as an aid to understanding what is actually going on in the system
when you debug any lower-level kernel-mode driver that you may have
devel oped.

Chapter 9, Writing a File System Driver |
This chapter provides an introduction to file system design and also describes
how to configure (via Registry entries) your file system driver implementation
on a Windows NT system. A comprehensive description of the important data
structures that you should implement in order to develop a Windows NT file
system driver is also provided. Details on how you can implement the create/
open, read, and write dispatch routines in your file system driver are included.

Chapter 10, Writing A File System Driver I
This chapter contains discussions of some important concepts that you should
understand when trying to design a Windows NT file system driver; these
include the concept of the top-level component for an IRP and how to imple-
ment support for asynchronous 1/O requests in your file system driver. A
description of how to implement support for processing the directory control,
cleanup, and close requests is aso provided.

Chapter 11, Writing a File System Driver 111

Topics discussed in this chapter include the fast 1/0 method for data access,
implementing callback routines in your FSD for use by the Windows NT
Cache Manager and Virtual Memory Manager, dispaich routines including
flushing file buffers, getting and setting volume information, implementing
byte-range lock support, supporting opportunistic locking, and implementing
support for file system control and device 1/0 control requests (including a
detailed discussion on handling mounting and verification regquests for logica
volumes). Finally, there is a detailed discussion of how to implement a mini-
file system recognizer driver for your file system driver product.

Chapter 12, Filter Drivers
A description of the functionality that can be provided by a filter driver is
followed by some examples of customer requirements where filter driver
development can be useful. Topics discussed here include getting a pointer to
the appropriate target device, attaching to the target device object, the conse-
gquences of executing an attach operation, and the various I/O-Manager-
provided support functions available for use by a filter driver.

XVi Preface

Appendixes

Appendix A, Windows NT System Services
This appendix contains a detailed listing of the major Windows NT 1/O
Manager-provided native sysem cals.

Appendix B, MPR Support
This appendix describes functions that network redirectors should implement
to provide M PR support.

Appendix C, Building Kernel-Mode Drivers

This appendix provides an overview of the build process used to create
kernel-mode drivers.

Appendix D, Debugging Support
An introduction to the Microsoft WinDbg source-level debugger is provided.

Appendix E, Recommended Readings and References
A list of recommended readings is provided for your benefit if you wish to
delve further into or get more detailed information on some of the topics
discussed in this book.

Appendix F, Additional Sourcesfor Help
This appendix lists some online sources and other resources that you can
explore for more information on kernel-mode development for Windows NT.

| would suggest that the chapters be read in the sequence in which they are orga
nized. However, advanced readers who understand the basic kernel-mode
environment on the Windows NT platform may wish to skip directly to Part 2 of
this book. Throughout this book, an effort has been made to avoid forward refer-
ences to undefined terms; however, such references are flagged whenever they
cannot be avoided.

Accompanying Diskette

A diskette accompanies this book and is often referred to in various chapters of
the book. This diskette contains source code for the following:*

Afile system driver template
Note carefully that this is smply a skeleton driver that does not provide for
most of the functionality typicaly implemented by file system drivers. The
code has been compiled for the Intel x86 platform. The code has not been
tested, however, and should never be used as is without major enhancement
and testing efforts on your part.

* Many of the file system dispatch routines arc also documented and discussed in the text.

Preface XVii

This driver source is provided as a framework for you to use to design and
implement a real file system driver for the Windows NT environment.

Afilter driver implementation
The filter driver for which source has been provided intercepts al 1/0
requests targeted to a specified mounted logica volume. You can extend this

filter driver source code to implement any value-added functionality you wish
to provide to your customers.

If you intend to develop kernel-mode software for the Windows NT platform, |
strongly recommend that you obtain a least a Professional Level SQubscription to
the Microsoft Developer's Network (MSDN). This subscription will provide you
with access to the Windows NT Device Driver's Kit (DDK), associated documenta-
tion, and a reasonable number of additional benefits. Contact the Microsoft
Developer's Network at http://www.microsoft.com/msdn for additional details.

Note that the source code provided on the accompanying disk has only been
compiled using the Microsoft Visua C++ compiler (Verson 4.2). This compiler
can be purchased directly from Microsoft. They can be reached on the World
Wide Web at http://mww.microsoft.com/visualc.

Finally, you should note that successful compilation of the file system driver
source requires a header file (ntifs.h) that is currently only available from
Microsoft by purchasing a Windows NT IPS kit. This kit was released in April 1997
and is sold as a separate product by Microsoft from the MSDN subscription. You
can obtain more information about this product at http://mwwv.microsoft.comy
hwdev/ntifskit. Although many of the structure, constant, and type definitions
contained in the header file have been provided in this book, they are subject to
frequent change, and | would encourage you to carefully evaluate your require-
ments and try to purchase this product if at dl possible.

Conventions Used in This Book

This book uses the following font conventions:

Italic
is used for World Wide Web URL addresses, to display email addresses, to
display Usenet newsgroup addresses, and to highlight special terms the first
time they are defined.

Constant Wdth

is used to display command names, filenames, field names, constant defini-
tions, type (structure) definitions, and in code examples.

Xviii Preface

Acknowledgments

| consider myself extremely fortunate to have known, studied under, and worked
with some of the most exceptional minds in the field of computer science. |
would like to especiadly thank the following individuals. for introducing me to
synchronization primitives and serving as an advisor to a much-harried and peren-
nially late-to-complete-thesis graduate student, Dr. Sheau-Dong Lang at the
University of Central Florida. Also, Dr. Ronad Dutton of the University of Central
Florida for teaching me the fundamentals of algorithm design and analysis, and
supporting me through one of the mogt difficult periods in my academic life. |
would like to acknowledge the trust, support, and friendship of Robert Smith,
whom | consider a mentor and friend and who entrusted me, a rookie engineer,
to write his first commercia file system driver. | would dso like to thank my
colleagues at each of the companies | have worked at, namely, Micro Design Inter-
national, Inc., Transarc Inc., and Hewlett-Packard Inc., for their support and
advice. My grateful thanks to our technical reviewers. Mike Kazar, Derrel Blain,
and David J. Van Maren who took time from their busy schedules to review this
book.

Many thanks to the people at O'Reilly and Associates who have contributed to
this effort: Mary Anne Weeks Mayo was the production project manager and
quality was assured by Ellie Fountain Maden, John Files, Nicole Gipson Arigo,
and Sheryl Avruch. Seth Maidlin wrote the index. Madeline Newell and Colleen
Micdli lent critical freelance support. Mike Sierra contributed his FrameMaker tool-
tweaking prowess. Chris Reilley and Robert Romano were responsible for the
crisp illustrations you see in the book. The book's interior was designed by Nancy
Priest, Edie Freedman designed the front cover, and Hanna Dyer designed the
back cover.

Finally, many thanks to Robert Denn for his editorial support over the past year
and, most importantly, for his patience and trust that | would eventually complete
this effort. It has been a pleasure working with him.

Overview

Part | introduces the Windows NT Operating System and some of the issues of file
system driver development.

e Chapter 1, Windows NT System Components
» Chapter 2, File System Driver Development
» Chapter 3, Structured Driver Development

_In ibis chapter:

_+ TheBasics

« The WindowsNT
 Kernel

* The Windows NT
 Executive

Windows NT System
Components

The focus of this book is the Windows NT file system and the interaction of the
file system with the other core operating system components. If you are interested
in providing value-added software for the Windows NT platform, the topics on
filter driver design and development should provide you with a good under-
standing of some of the mechanics involved in designing such software.

File systems and filter drivers don't exist in a vacuum, but interact heavily with the
rest of the operating system. This chapter provides an overview of the main
components of the Windows NT operating system.

The Basics

Operating systems deal with issues that users prefer to forget, including initial-
izing processor states, coordinating multiple CPUs, maintaining CPU cache
coherency, managing the local bus, managing physical memory, providing virtual
memory support, dealing with external devices, defining and scheduling user
processes/threads, managing user data stored on external devices, and providing
the foundation for an easily manageable and user-friendly computing system.
Above all, the operating system must be perceived as reliable and efficient, since
any perceived lack of these qualities will almost certainly result in the universal
rejection and thereby in the quick death of the operating system.

Contrary to what you may have heard, Windows NT is not a state-of-the-art oper-
ating system by any means. It employs concepts and principles that have been
known for years and have actually been implemented in many other commercial
operating systems. You can envision the Windows NT platform as the result of a
confluence of ideas, principles, and practices obtained from a wide variety of

4 Chapter 1: Windows NT System Components

sources, from both commercial products and research projects conducted by
universities.

Design principles and methodologies from the venerable UNIX and OpenVMS
operating system platforms, as well as the MACH operating system developed at
CMU, are obvious in Windows NT. You can also see the influence of less sophisti-
cated systems, such as MS-DOS and OS/2. However, do not be misled into
thinking that Windows NT can be dismissed as just another conglomeration of
rehashed design principles and ideas. The fact that the designers of Windows NT
were willing to learn from their own experiences in designing other operating
systems and the experiences of others has led to the development of a fairly
stable and serious computing platform.

The Core Architecture

Certain philosophies derived from the MACH operating system are visible in the
design of Windows NT. These include an effort to minimize the size of the kernel
and to implement parts of the operating system using the client-server model,
with a message-passing method to transfer information between modules. Further-
more, the designers have tried to implement a layered operating system, where
each component interacts with other layers via a well-defined interface.

The operating system was designed specifically to run in both single-processor
and symmetric multiprocessor environments.

Finally, one of the primary goals was to make the operating system easily
portable across many different hardware architectures. The designers tried to
achieve this goal by using an object-based model to design operating system
components and by abstracting out those small pieces of the operating system
that are hardware-dependent and therefore need to be reimplemented for each
supported platform; the more portable components can, theoretically, simply be
recompiled for the different architectures.

Figure 1-1 illustrates how the Windows NT operating system is structured. The
figure shows that Windows NT can be broadly divided into two main compo-
nents: user mode and kernel mode.

User mode

The operating system provides support for protected subsystems. Each protected
subsystem resides in its own process with its memory protected from other
subsystems. Memory protection support is provided by the Windows NT Virtual
Memory Manager.

The Basics 5

Glient Process ° !
e @& % % %
other processes

® B B %
other subsytems

Ll
- invokinga |
system H
service i
resultsina |
trap to :
kernel mode ':

'
1
1
1
]
[}
e
i
]
|
|
i
i
1
1
1
1
1
1

User Mode

_ System Services

Windows NT Executive
_ (Object Manager, Virtual Memory Manager, /0 Manager, Process Manager...)

Windows NT Kernel
(core OS structures, and services)

Hardware Abstraction Layer
(handles CPU, bus, device specific details)

Hardware

Figure 1-1. Overview ofthe Windows NT operating system environment

The subsystems provide well-defined Application Programming Interfaces (APIS)
that can be used by user-mode processes to obtain desired functionality. The
subsystems then communicate with the kernel-mode portion of the operating
system using well-defined system service calls.

6 Chapter 1: Windows NT System Components

NOTE Microsoft has never really documented the operating-system-provid-
ed system-service calls. They instead encourage application develop-
ers for the Windows NT platform to use the services of one of the
subsystems provided by the operating system environment.

By not documenting the native Windows NT system service APIs,
the designers have tried to maintain an abstract view of the operat-
ing system. Therefore, applications only interact with their preferred
native subsystem, leaving the subsystem to interact with the operat-
ing system. The benefit to Microsoft of using this philosophy is to
tie most applications to the easily portable Win32 subsystem (the
subsystem of choice and, sometimes, the subsystem of necessity),
and also to allow the operating system to evolve more easily than
would be possible if major applications depended on certain specif-
ic native Windows NT system services.

However, it is sometimes more efficient (or necessary) for Windows
NT applications and kernel-mode driver developers to be able to ac-
cess the system services directly. In Appendix A, Windows NT Sys-
tem Services, you'll find a list of the system services provided by the
Windows NT I/O Manager to perform file 1/0 operations.

Environment subsystems provide an APl and an execution environment to user
processes that emulates some specific operating system (e.g., an OS/2 or UNIX or
Windows 3.x operating system). Think of a subsystem as the personality of the
operating system as viewed by a user process. The process can execute comfort-
ably within the safe and nurturing environment provided by the specific
subsystem without having to worry about the capabilities, programming inter-
faces, and requirements of the core Windows NT operating system.

The following environment subsystems are provided with Windows NT:

Win32
The native execution environment for Windows NT. Microsoft actively encour-
ages application developers to use the Win32 API in their software to obtain
operating system services.

This subsystem is also more privileged than the others.* It is solely respon-
sible for managing the devices used to interact with users; the monitor,
keyboard, and mouse are all controlled by the Win32 subsystem. It is also the

* In reality, this is the only subsystem that is actively encouraged by Microsoft for use by third-party ap-
plication program designers. The other subsystems work (more often than not) but seem to exist only as
checklist items. If, for example, you decided to develop an application using the POSIX subsystem in-
stead, you will undoubtedly encounter limitations and frustrations due to the very visible lack of commit-
ment on behalf of Microsoft in making the subsystem fully functional and full featured.

The Basics 7

sole Window Manager for the system and defines the policies that control the
appearance of graphical user interfaces.

POSIX
This exists to provide support to applications conforming to the POSIX 1003.1
source-code standard. If you have applications that were developed to use
the APIs defined in that standard, you should theoretically be able to compile,
link, and execute them on a Windows NT platform.

There are severe restrictions on functionality provided by the POSIX
subsystem that your applications must be prepared to accept. For example,
no networking support is provided by the POSIX subsystem.

0S/2

Provides API support for 16-bit OS/2 applications on the Intel x86 hardware
platform.

WOW (Windows on Windows)
This provides support for 16-bit Windows 3.x applications. Note, however,
that 16-bit applications that try to control or access hardware directly will not
execute on Windows NT platforms.

VDM (Virtual DOS Machine)
Provided to support execution of 16-bit DOS applications. As in the case of
16-bit Windows 3.x applications, any process attempting to directly control or
access system hardware will not execute on Windows NT.

Integral subsystems extend the operating system into user space and provide
important system functionality. These include the user-space components of the
Security subsystem (e.g., the Local Service Authority); the user-space components
of the Windows NT LAN Manager Networking software; and the Service Control
Manager responsible for loading, unloading, and managing kernel-mode drivers
and system services, among others.

Kernel mode

The difference between executing code in kernel mode and in user mode is the
hardware privilege level at which the CPU is executing the code.

Most CPU architectures provide at least two hardware privilege levels, and many
provide multiple levels. The hardware privilege level of the CPU determines the
possible set of instructions that code can execute. For example, when executing
in user mode, processes cannot directly modify or access CPU registers or page-
tables used for virtual memory management. Allowing all user processes access to
such privileges would quickly result in chaos and would preclude any serious
tasks from being performed on the CPU.

8 Chapter 1: Windows NT System Components

Windows NT uses a simplified hardware privilege model that has two privilege
levels: kernel mode, which allows code to do anything necessary on the
processor;* and user mode, where the process is tightly constrained in the range
of allowed operations.

If you're familiar with the Intel x86 architecture set, kernel mode is equivalent to
the Ring 0 privilege level for processors in the set and user mode to Ring 3-

The terms kernel mode and user mode, although often used to describe code
(functions), are actually privilege levels associated with the processor. Therefore,
the term kernel-mode code simply means that the CPU will always be in kernel-
mode privilege level when it executes that particular code, and the term user-
mode code means that the CPU will execute the code at user-mode privilege level.

Typically, as a third-party developer, you cannot execute Windows NT programs
while the CPU is at kernel-mode privilege level unless you design and develop
Windows NT kernel-mode drivers.

The kernel-mode portion of Windows NT is composed of the following:

The Hardware Abstraction Layer (HAL)

The Windows NT operating system was designed to be portable across
multiple architectures. In fact, you can run Windows NT on Intel x86 plat-
forms, DEC Alpha platforms, and also the MIPS-based platforms (although
support for this architecture has recently been discontinued by Microsoft).
Furthermore, there are many kinds of external buses that you could use with
Windows NT, including (but not limited to) ISA, EISA, VL-Bus, and PCI bus
architectures. The Windows NT developers created the HAL to isolate hard-
ware-specific code. The HAL is a relatively thin layer of software that
interfaces directly with the CPU and other hardware system components and
is responsible for providing appropriate abstractions to the rest of the system.

The rest of the Windows NT Kernel sees an idealized view of the hardware,
as presented by the HAL. All differences across multiple hardware architec-
tures are managed internally by the HAL. The set of functions exported by the
HAL are invoked by both the core operating system components (e.g., the
Windows NT Kernel component), and device drivers added to the operating
system.

The HAL exports functions that allow access to system timers, 1/O buses,
DMA and Interrupt controllers, device registers, and so on.

* Code that executes in kernel mode can do virtually anything with the system. This includes crashing
the system or corrupting user data. Therefore, with the flexibility of kernel-mode privileges comes a lot
of responsibility that kernel-mode designers must be aware of.

The Windows NT Kernel 9

The Windows NT Kernel

The Windows NT Kernel provides the fundamental operating system function-
ality that is used by the rest of the operating system. Think of the kernel as
the module responsible for providing the building blocks that can subse-
quently be used by the Windows NT Executive to provide all of the powerful
functionality offered by the operating system. The kernel is responsible for
providing process and thread scheduling support, support for multiprocessor
synchronization via spin lock structures, interrupt handling and dispatching,
and other such functionality.

The Windows NT Kernel is described further in the next section.

The Windows NT Executive

The Executive comprises the largest portion of Windows NT. It uses the
services of the kernel and the HAL, and is therefore highly portable across
architectures and hardware platforms. It provides a rich set of system services
to the various subsystems, allowing them to access the operating system
functionality.

The major components of the Windows NT Executive include the Object
Manager, the Virtual Memory Manager, the Process Manager, the /O
Manager, the Security Reference Monitor, the Local Procedure Call facility, the
Configuration Manager, and the Cache Manager.

File systems, device drivers, and intermediate drivers form a part of the 1/O
subsystem that is managed by the I/O Manager and are part of the Windows
NT Executive.

The Windows NT Kernel

The Windows NT Kernel has been described as the heart of the operating system,
although it is quite small compared to the Windows NT Executive. The kernel is
responsible for providing the following basic functionality:

Support for kernel objects

Thread dispatching

Multiprocessor synchronization
Hardware exception handling
Interrupt handling and dispatching
Trap handling

Other hardware specific functionality

10 Chapter 1: Windows NT System Components

The Windows NT Kernel code executes at the highest privilege level on the
processor.* It is designed to execute concurrently on multiple processors in a
symmetric multiprocessing environment.

The kernel cannot take page faults; therefore, all of the code and data for the
kernel is always resident in system memory. Furthermore, the kernel code cannot
be preempted; therefore, context switches are not allowed when a processor
executes code belonging to the kernel. However, all code executing on any
processor can always be interrupted, provided the interrupt level is higher than
the level at which the code is executing.

IRQ Levels

The Windows NT Kernel defines and uses Interrupt Request Levels (IRQLs) to
prioritize execution of kernel-mode components. The particular IRQL at which a
piece of kernel-mode code executes determines its hardware priority. All inter-
rupts with an IRQL that is less than or equal to the IRQL of the currently
executing kernel-mode code are masked off (i.e., disabled) by the Windows NT
Kernel. However, the currently executing code on a processor can be interrupted
by any software or hardware interrupt with an IRQL greater than that of the
executing code. IRQLs are hierarchically ordered and are defined as follows (in
increasing order of priority):

PASSIVE_LEVEL
Normal thread execution interrupt levels. Most file system drivers are asked to
provide functionality by a thread executing at IRQL PASSIVE_LEVEL,
though this is not guaranteed. Most lower-level drivers, such as device
drivers, are invoked at a higher IRQL than PASSIVE_LEVEL.

This IRQL is also known as LOW_LEVEL.

APC_LEVEL
Asynchronous Procedure Call (APC) interrupt level. Asynchronous Procedure
Calls are invoked by a software interrupt, and affect the control flow for a
target thread. The thread to which an APC is directed will be interrupted, and
the procedure specified when creating the APC will be executed in the
context of the interrupted thread at APC_LEVEL IRQL.

DISPATCH_LEVEL
Thread dispatch (scheduling) and Deferred Procedure Call (DPC) interrupt
level. DPCs are defined in Chapter 3, Structured Driver Development. Once a

* The highest privilege level is defined as the level at which the operating system software has complete
and unrestricted access to all capabilities provided by the underlying CPU architecture.

The Windows NT Kernel 11

thread IRQL has been raised to DPC level or greater, thread scheduling is
automatically suspended.

Device Interrupt Levels (DIRQLS)
Platform-specific number and values of the device IRQ levels.

PROFILE_LEVEL
Timer used for profiling.

CLOCK1 LEVEL
Interval timer clock 1.

CLOCK2_ LEVEL
Interval timer clock 2.

IPI_LEVEL
Interprocessor interrupt level used only on multiprocessor systems.

POWER_LEVEL
Power failure interrupt.

HIGHEST_LEVEL
Typically used for machine check and bus errors.

APC_LEVEL and DISPATCH_LEVEL interrupts are software interrupts. They are
requested by the kernel-mode code and are lower in priority than any of the hard-
ware interrupt levels. The interrupts in the range CLOCK1 LEVEL to HIGH_
LEVEL are the most time-critical interrupts, and they are therefore the highest
priority levels for thread execution.

Supportfor Kernel Objects

The Windows NT Kernel also tries to maintain an object-based environment. It
provides a core set of objects that can be used by the Windows NT Executive and
also provides functions to access and manipulate such objects. Note that the
Windows NT Kernel does not depend upon the Object Manager (which forms
part of the Executive) to manage the kernel-defined object types.

The Windows NT Executive uses objects exported by the kernel to construct even
more complex objects made available to users.

Kernel objects are of the following two types:

Dispatcher objects
These objects control the synchronization and dispatching of system threads.
Dispatcher objects include thread, event, timer, mutex, and semaphore object
types. You will find a description of most of these object types in Chapter 3.

12 Chapter 1: Windows NT System Components

Control objects
These objects affect the operation of kernel-mode code but do not affect
dispatching or synchronization. Control objects include APC objects, DPC
objects, interrupt objects, process objects, and device queue objects.

The Windows NT Kernel also maintains the following data structures:

Interrupt Dispatcher Table
This is a table maintained by the kernel to associate interrupt sources with
appropriate Interrupt Service Routines.

Processor Control Blocks (PRCBS)
There is one PRCB for each processor on the system. This structure contains
all sorts of processor-specific information, including pointers to the thread
currently scheduled for execution, the next thread to be scheduled, and the
idle thread.

NOTE Each processor has an idle thread that executes swhenever no other
thread is available. The idle thread has a priority below that of all
other threads on the system. The idle thread continuously loops
looking for work such as processing the DPC queue and initiating a
context switch whenever another thread becomes ready to execute
on the processor.

Processor Control Region
This is a hardware architecture-specific kernel structure that contains pointers
to the PRCB structure, the Global Descriptor Table (GOT), the Interrupt
Descriptor Table (IDT), and other information.

DPC queue
This global queue contains a list of procedures to be invoked whenever the
IRQL on a processor falls below IRQL DISPATCH_LEVEL.

Timer queue
A global timer queue is also maintained by the NT Kernel. This queue
contains the list of timers that are scheduled to expire at some future time.

Dispatcher database

The thread dispatcher module maintains a database containing the execution
state of all processors and threads on the system. This database is used by the
dispatcher module to schedule thread execution.

In addition to the object types mentioned above, the Windows NT Kernel main-
tains device queues, power notification queues, processor requester queues, and
other such data structures required for the correct functioning of the kernel itself.

The Windows NT Kernel 13

Processes and Threads

A process is an object* that represents an instance of an executing program. In
Windows NT, each process must have at least one thread of execution. The
process abstraction is composed of the process-private virtual address space for
the process, the code and data that is private to the process and contained within
the virtual address space, and system resources that have been allocated to the
process during the course of execution.

Note that process objects are not schedulable entities in themselves. Therefore
you cannot actually schedule a process to execute. However, each process
contains one or more schedulable threads of execution.

Each thread object executes program code for the process and is therefore sched-
uled for execution by the Windows NT Kernel. As noted above, more than one
thread can be associated with any process, and each thread is scheduled for
execution individually.

The context of a thread object consists of user- and kernel-stack pointers for the
thread, a program counter for the thread indicating the current instruction being
executed, system registers (including integer and floating-point registers)
containing state information, and other processor status maintained while the
thread is executing.

Each thread has a scheduling state associated with it. The possible states are
initialized, ready-to-run, standby, running, waiting, and terminated. Only one
thread can be in the running state on any processor at any given instant, though
multiple threads can be in this state on multiprocessor systems (one per
processor).

Threads have execution priority levels associated with them; higher priority
threads are always given preference during scheduling decisions and always
preempt the execution of lower priority threads. Priority levels are categorized
into the real-time priority class and the variable priority class.

* The Windows NT Kernel defines the fundamental thread and process objects. The Windows NT Exec-
utive uses the core structures defined by the kernel to define Executive thread and process object abstrac-
tions.

14 7 7 Chapter 1: Windows NT System Components

NOTE It is possible to encounter situations of priority-inversion on Win-
dows NT systems, where a lower-priority thread may be holding a
critical resource required by a higher-priority thread (even a thread
executing with real-time priority). Any thread that is of higher-priori-
ty than the one holding the critical resource would then get the op-
portunity to execute even if it has a priority lower than that of the
thread waiting for the resource.*

The scenario described above violates the assumption that higher
priority threads will always preempt and execute before any lower
priority threads are allowed to execute. This could lead to incorrect
behavior, especially in situations where thread priorities must be
maintained (e.g., for real-time processes). Kernel-mode designers
must anticipate and understand that these situations can occur un-
less they ensure that resource acquisition hierarchies are correctly
defined and maintained.

Windows NT does not provide support for features such as priority
inheritance that could automatically help avoid the priority inver-
sion problem.

Most kernel-provided routines for programmatically manipulating or accessing
thread or process structures are not exposed to third-party driver developers.

Thread Context and Traps

A trap is the processor-provided mechanism for capturing the context of an
executing thread when certain events occur. Events that cause a trap include inter-
rupts, exception conditions (described in Chapter 3), or a system service call
causing a change in processor mode from user mode to kernel mode of execution.

When a trap condition occurs, the operating system trap handler is invoked.t The
Windows NT trap handler code saves the information for an executing thread in
the form of a call frame before invoking an appropriate routine to process the
trap condition. Here are two components of a call frame:

A trapframe
This contains the volatile register state.

* Priority inversion requires three threads to be running concurrently: the high-priority thread that re-
quires the critical resource, the low-priority thread that has the resource acquired, and the intermediate-
priority thread that does not want or need the resource and therefore gets the opportunity to preempt the
low-priority thread (because it has a higher relative priority) but also (in the process) prevents the high-
priority thread from executing even though it has a relatively lower priority.

t The trap handler is written in assembly, is highly processor- and architecture-specific, and is a core
piece of functionality provided by the Windows NT Kernel.

The Windows NT Executive 75

An exception frame
When exception conditions occur that cause the trap handler to be invoked,
the nonvolatile register state is also saved.

In addition, the trap handler also saves the previous machine state and any infor-
mation that will allow the thread to resume execution after the trap condition has
been processed appropriately.

The Windows NT Executive

The Windows NT Executive is composed of distinct modules, or subsystems, each
of which assumes responsibility for a primary piece of functionality. Typically,
references to Windows NT kernel-mode code actually refer to modules in the
Executive.

The Executive provides a rich set of system service calls (an API) for subsystems
to access its services. In addition, the Executive also provides comprehensive
support to developers who wish to extend the existing functionality. Develop-
ment is usually in the form of third-party device drivers, installable file system
drivers, and other intermediate and filter drivers used to provide value-added
services.

The various components that comprise the Windows NT Executive maintain more
or less strict boundaries around themselves. Once again, the object-based nature
of the operating system manifests itself in the prolific use of abstract data types
and methods. Modules do not directly access the internal data structures of other
modules; note that, although the designers have managed to stick to well-defined
interfaces internally, modules still make many assumptions when they invoke
each other. The assumptions are often in the form of expectations of what
processing the called module will perform and how error conditions will be
handled and/or reported. Finally, as you will observe later in this book, the
synchronization hierarchy employed by the Executive components when they
recursively invoke each other is more than just a little complicated.

The Windows NT Object Manager

All components of the Windows NT Executive that export data types for use by
other kernel-mode modules use the services of the Object Manager to define,
create, and manage the data types, as well as instances of the data types.

The NT Object Manager manages objects. An object is defined as an opaque data
structure implemented and manipulated by a specific kernel-mode (Executive)
component. Each object may have a set of operations defined for it; these include

16 : Chapter 1: Windows NT System Components

operations to create an instance of the object, delete an instance of the object,
wait for the object to be signaled, and signal the object.

The Object Manager provides the capabilities to do the following:

* Add new object types to the system dynamically (note that the Object Man-
ager does not concern itself with the internal data structure of the object).

e Allow modules to specify security and protection for instances of the object
type.
» Provide methods to create and delete object instances.

» Allow the module defining an object type to provide its own methods (such
as methods for create, close, and delete operations) to manipulate instances
of object types.

» Provide a consistent methodology to maintain references of instances of the
object type.

» Provide a global naming hierarchy based upon the more commonly used file
system hierarchy inverted-tree format.

The Object Manager maintains a global name space for Windows NT. All named
objects in the system can be accessed via this name space. The object name space
is modeled on normal filenaming conventions. Therefore, there is a global root
directory named "\" created by the Object Manager during system initialization.
Executive components can create directories and subdirectories under the root
directory and then create instances of defined object types under any such direc-
tory. Whenever an object is created or inserted (even for file-system-defined
objects such as files and directories), parsing of the object name begins at the root
of the Object-Manager-maintained name space. If an object type has a parse
method defined for it (as for example, file objects representing open file system
files and directories), the Object Manager invokes the parse method for the object.
Chapter 2, File System Driver Development, provides additional information on
how the Object Manager handles requests to open or create on-disk file or direc-
tory objects.

The object type structure maintained by the NT Object Manager contains informa-
tion such as the type of memory pool from which instances of the object type
should be allocated, the valid access types for the object, pointers to procedures
associated with the object (these are optional and could include pointers to
create, open, close, delete, and other such procedures), and some synchroniza-
tion structure maintained by the Object Manager for all object instances of the
particular type. '

Each object instance has a standard object header and an object-type-specific
object body associated with it. The standard object header contains information

The Windows NT Executive 17

such as pointers to the name of the object (if any), a security descriptor associated
with the object (if any), the access mode for the object, reference counts for the
object, a pointer to the object type (to which the object instance belongs), and
other attributes associated with the object.

Whenever a thread successfully opens an instance of a particular object type, the
NT Object Manager returns to the requesting thread an opaque handle to the
object instance. Note that there can be more than one handle to any object
instance at any given point in time. For example, object handles can potentially
be inherited.

The Object Manager maintains information associated with each object handle,
including a pointer to the object instance, the access information for the open
operation, and other attributes for the handle. Note that there is no direct relation-
ship between the handle and the pointer to the open instance of the object type.
The handle is typically an index into an object table, which is composed of an
array of object table entries.

WARNING Handles are specific to a process. Therefore, if a thread successfully
performs a create and open operation and obtains a handle in re-
turn, all threads for the particular process can use that handle.

However, if the same handle is used in the context of a thread asso-
ciated -with any other process, you will receive an error code indicat-
ing that the handle is invalid.*

Other Windows NT Executive Components

As mentioned earlier, the other major components of the Windows NT Executive
are as follows:

The Process Manager
This component is responsible for the creation and deletion of processes and
threads. It uses the services provided by the Windows NT Kernel to perform
tasks such as suspending an executing process, resuming execution of a
process, providing process information, and so on.

* Although this may not make sense to you yet, this error is a leading cause of frustration to driver de-
velopers who open a resource in their DriverEntry () routine and then try to use the returned handle
in some other dispatch routine, which is typically executed in the context of another thread (and process).

18 Chapter 1: Windows NT System Components

The Local Procedure Call (LPC)facility
This facility is the mechanism by which messages can be passed between two
processes on the same node.* The client process typically passes parameters
to a server process and requests some services. In return, it may receive some
processed data back from the server process.

The client's call to the server is intercepted by a stub in the client process that
packages the parameters being sent to the server procedure. Then the LPC
facility provides the mechanism for the client process to transmit the data to
the server and then wait for a response back from the server. This is done
using a Port object, defined and created by the LPC facility.

The LPC facility is modeled on the Remote Procedure Call mechanism used to
implement the client-server model across machines connected by a local or
wide area network. The LPC facility is better optimized for communication
within a node where all processes have access to the same physical memory.

Security Reference Monitor
This module is responsible for enforcing security policy on the local node. It
also provides object auditing facilities.

Virtual Memory Manager
The Windows NT Virtual Memory Manager (VMM) manages all available phys-
ical memory on the local node. It is also responsible for providing virtual
memory management functionality to the rest of the operating system, as well
as to all applications that execute on the node.

Almost all kernel-mode and user-mode modules must interact with the Virtual
Memory Manager component. Most modules are clients of the Virtual Memory
Manager and therefore depend on the VMM to provide memory management
services. File systems, however, are special, because they must often provide
services to the VMM (e.g., for reading or writing page files). File system
designers must understand thoroughly the interactions of file system drivers
with the VMM module. The VMM is discussed in greater detail in Chapter 5,
The NT Virtual Memory Manager.

Cache Manager
The Windows NT Executive contains a dedicated caching module to provide
virtual block caching functionality (in system memory) for file data stored on
secondary storage media. The Cache Manager uses the services of the
Windows NT Virtual Memory Manager to provide caching functionality. All of
the native NT file system driver implementations use the services of the Cache

* A single node can be defined as a computer containing either a single processor or multiple processors.
Multiple nodes can potentially be networked together to create a Windows NT cluster.

The Windows NT Executive 19

Manager. The Windows NT Cache Manager is discussed in detail in Chapters
6-8.

I/0 Manager
The Windows NT 1/O Manager defines and manages the framework within
which all kernel-mode drivers (including file system, network, disk, interme-
diate, and filter drivers) can reside. The 1/O Manager is described in detail in
Chapter 4, The NTI/O Manager.

In this chapter:

» What Are File System
Drivers?

» WhatAre Filter
Drivers?

e Common Driver
Development Issues

* Windows NT Object

File System Driver Nae Space

 Filename Handling

Development Redrecons

The focus of this book is on kernel-mode file system driver and filter driver devel-
opment for the Windows NT operating system. However, before beginning a
discussion on how to design and implement a kernel-mode file system or filter
driver, you need a good understanding of just what the file system and filter
drivers do. Knowing what these drivers can and cannot do will help you decide
whether it is worth all the trouble to design one.

In this chapter, 1 will briefly discuss the various types of file system drivers and
filter drivers to give you some idea of the functionality that is traditionally
expected from them. I will also discuss some common concepts used during the
design and implementation of kernel-mode drivers in Windows NT. Topics
discussed here include how to make portions of your kernel-mode driver page-
able, how to allocate and free kernel memory required during execution, how to
use some of the system-defined structures and functions to create linked lists, and
how to troubleshoot and debug your driver. It may be best for you to skim
through this material initially, then refer back to it once you have read some of
the succeeding chapters and have begun the process of designing and developing
your kernel-mode file system or filter driver.

One of the challenges | faced when trying to design a file system driver for
Windows NT was understanding how user-specified filenames are treated. | will
discuss this as part of a larger discussion on the name space, which is managed
by the Windows NT Object Manager. | will also discuss the roles played by the
Multiple Provider Router (MPR) component and the Multiple UNC Provider (MUP)
in supporting network file system drivers, which must be integrated with the
name space on the local node. Chapters following this one examine some of the
topics presented here in considerable depth.

20

What Are File System Drivers? 21

What Are File System Drivers?

A file system driver is a component of the storage management subsystem. It
provides the means for users to store information to and retrieve it from nonvola-
tile media such as disks or tapes.

Functionality Provided by a File System Driver

A file system driver implementation typically provides the following functionality
to the user:*

» Ability to create, modify, and delete filest

» Ability to share files and transfer information between them easily, though in
a secure and controlled manner

« Ability to structure the contents of a file in a manner appropriate to the appli-
cation

» Ability to identify stored files by their symbolic/logical names, instead of speci-
fying the physical device name

» Ability to view the data logically, rather than dealing with a more detailed
physical view

The above functionality is provided by all commercially available local (disk
based) file system driver implementations. In addition to this functionality, remote
file systems, both networked and distributed, provide the following functionality,
to some degree or another, depending upon the sophistication of the file system
used:

* Network transparency

» Location transparency

* Location independence

* User mobility

» File mobility

Not all of the functionality listed here provided by all remote file system imple-

mentations. However, as file system technology evolves, more and more
sophisticated network file systems meet or exceed many of these goals.

* See the book An Introduction To Operating Systems by Harvey Deitel. Consult Appendix E, Recom-
mended Readings and References, for more information.

t A.file is a named collection of user data stored on secondary storage devices (e.g., disk drives).

22 Chapter 2: File System Driver Development

Types ofFile System Drivers

There are different kinds of file system driver implementations that you can

design, implement, and install. They include local file systems, network filesys-
tems, and distributed file systems.

Disk (local) file system drivers

Local file systems manage data stored on disks connected directly to a host
computer.

The file system driver receives requests to open, create, read, write, and close
files stored on such disks. These requests typically originate in user processes and
are dispatched to the file system via the 1/O subsystem manager. Figure 2-1 illus-
trates how a local file system driver provides services to a user thread.

User Space

ko

1/0 Subsytem Manager

(responsible for routing request to file system)

File System Driver
(responsible for managing disk layout)

Intermediate and Disk Drivers
(responsible for transferring data to/from disk)

Figure 2-1. Local file system

In the figure, the disk driver transfers data to and from a logical disk connected to
the system. The logical disk is simply a storage abstraction; from the perspective
of the file system, it is a linear sequence of fixed-size, randomly accessible blocks
of storage. In reality, a logical disk could be a portion of a physical disk
(commonly known as a partition), or it could be an entire physical disk, or it
could even be some combination of partitions residing across multiple physical
disks (known as a logical volume). Software modules called logical volume

What Are File System Drivers? 23

managers allow the file system driver to see a contiguous sequence of available
disk space and hide all of the details of mapping logical blocks to the correct
physical blocks.

Logical volume management software often provides features such as software
mirroring of data, striping across multiple physical disks, as well as capabilities to
resize logical volumes dynamically. Therefore, you will often see such software
advertised as fault-tolerant software.

To be managed by a local file system driver, each logical volume must have a
valid file system layout. The file system layout includes appropriate file system
metadata information, specific to the type of file system driver used. For example,
the FASTFAT file system driver requires a completely different on-disk layout than
the NTFS file system driver. It uses structures very different from those used by
NTFS to store user data.

On Windows NT systems, whenever you use the format utility on a logical
volume, you are actually creating the file system metadata (management) struc-
tures that will later be used by the file system driver to provide functionality such
as allocating space for user data storage, associating stored user data with the user-
specified filename, and creating catalogs (directory structures) used in retrieving
user files.

Before a user can begin accessing data stored on logical volumes, the logical
volume must be mounted on the system. When a logical volume is mounted, a
file system driver verifies the metadata and begins managing the volume, using
the metadata stored on the volume and setting up appropriate in-memory data
structures based on the metadata.

Local file systems provide a single name space for each mounted logical volume.
Most commercially available, modern file system implementations provide a hierar-
chical, tree-structured layout. This tree structure consists of directories (container
objects), and files (named user data objects) contained within directories. Each
directory, as well as each file contained within a directory, has a unique filename
associated with it. The valid character set that can be used to construct a filename
is dependent upon the specific file system implementation. For example, the
native NTFS file system allows some characters that the FASTFAT file system typi-
cally disallows. Most file systems and the 1/0 subsystem explicitly disallow certain
characters. For example, the "\" character is used on Windows NT-based systems
as a path separator and cannot be part of a valid filename.

Figure 2-2 shows a hierarchical file system name space as presented by a local file
system driver. Each object in this file system can be uniquely identified by a
name, starting with the root of the file system. The important thing to note is that

24 Chapter 2: File System Driver Development

each mounted logical volume has its own hierarchical tree structure with a unique
root directory serving as the top-level container object for that logical volume.

Mounted Logical Volume (e.g. C:)

Ditectmv : E

suppliers

Figure 2-2. Hierarchical name spacefor directories andfiles

The user of a mounted logical volume is always aware of the particular mounted
logical volume that she is accessing. If she wishes to access a file that does not
reside on the currently mounted logical volume, she has to ensure that the logical
volume on which the file resides is both accessible and mounted. Then she can
specify the complete file pathname identifying the file, beginning at the root of
the logical volume on which the file resides, to access the contents of the file.

Network file systems

As the name suggests, network file systems allow users to share locally connected
disks with other users over a local or wide area network. For example, say you
have a physical disk C: connected to your machine. Now you may want to allow
me direct access to the files and directories stored under the accounting subdirec-
tory on your C: local drive. To do this, both you and | would have to use the
services of a network file system. This network file system would allow me to
access the shared files on your disk, just as if | were accessing my own local disk.

There are two components to each network file system implementation:

The client-side redirector
There must be a software component, executing on my node, that will take
my requests for accessing files stored in your C:\accounting directory and
transfer them across the network to be processed on your machine. Further-
more, this software component must be capable of receiving data from your
machine and handing it back to me.

The sewer on the node where the disk is being shared
Once the redirector on the client sends a request across the network, a soft-
ware component on the server system must respond to this request.

What Are File System Drivers? 25

The server component then has two major tasks to perform; the first is to
interface with the remote client using a well-defined protocol, and the second
is to interface with the local file systems to obtain data on behalf of the client
node.

Figure 2-3 shows the client and server components of the network file system
implementation.

Node 1 (client node) Node 2 (server node)

i/0 Manager

Drivers

to Logical Volume

Figure 2-3. Remote (network)file system

The most common example of a remote file system to NT users is the LAN
Manager Network, which supports the sharing of directories, logical volumes,
printers, and other remote resources. The LAN Manager Network consists of the
LAN Manager Redirector component executing in the kernel on client nodes and
the LAN Manager Server software executing in the kernel on server nodes
exporting local file systems or other resources such as printers and the 8MB

(Server Message Block) network protocol used by the two components to transfer
data across the network.

26 Chapter 2: File System Driver Development

NOTE In 1996, Microsoft submitted a networking protocol specification
called the Common Internet File System (CIFS) 1.0 to the Internet
Engineering Task Force as an Internet-Draft document. Microsoft
has since been working with other parties to get CIFS published as
an Informational RFC. CIFS is the latest incarnation of the 8MB pro-
tocol specification and is expected to be a part of future updates to
"Windows NT 4.x and Windows 95. Throughout this book, | use the
term 8MB to refer to the networking protocol implementation used
by the Microsoft LAN Manager Redirector and Server components;
however, you can easily substitute the term CIFS for SMB.

Note that the redirector is the component that presents itself as a file system on
the client node. This allows users to request access to remote data just as they
would request data from her local file system. The redirector handles all of the
mechanics of getting the data for users from across the network. Although
networks are inherently unreliable (especially wide area networks), it is the
responsibility of the redirector to try to reestablish lost connections transparently,
or to return appropriate errors so that the application can retry the request if
required.

The server does not need to present a file-system-like interface, because clients
on the server node can use the services of the local file system directly to access
data stored on the disk drives local to the server.

Both the redirector and the server use a transport protocol to transfer data and
commands across the network. There are many transport protocols, such as the
TCP/IP protocol, the UDP/IP, and Microsoft-specific protocols such as NetBIOS.
The transport protocols may be connection-oriented (e.g., TCP/IP, NetBIOS), so
that they provide a virtual circuit to the redirector and server software, or connec-
tionless (e.g., UDP/IP).

Figure 2-4 illustrates how a server node can share a particular directory with
clients across the network. To the client node, the shared directory forms the root
of a distinct logical volume. Requests from the client node to the networked
volume are handled by the redirector, which is responsible for transmitting the
request across the network to the server node. The network server software on
the server node processes the request, utilizing the local file system on the server
node to access and manipulate the shared volume. Finally, the server returns the
results of the operation to the remote client.

In the case of network file systems, the client is aware of the fact that the user is
accessing data residing on the server node. Therefore, although all of the
mechanics of data transfer are hidden from the user of the file system, the user is

What Are File System Drivers:’ 27

\accounting

suppliers suppliers

from-france from-france

Figure 2-4. Sharing a directory across the network

always aware of which data is stored locally and which is obtained from a remote
server node.

Finally, you should note that applications on the server node use local file system
services to access file data residing on the shared logical volumes. In certain
cases, this may lead to data consistency problems if file data from shared logical
volumes is also cached on client nodes. Local (disk-based) file system drivers are
often expected to cooperate with network server software to help avoid such data
consistency problems whenever possible.

Distributed file systems

Distributed file systems have evolved from standard network file systems. They
present a single name space to the user and completely hide the actual physical
location of the data from the user of the file system.

This means that a user supplies a single pathname to identify the required file,
regardless of the physical location of the file. Therefore, a user can access
resources residing on a remote server machine without even realizing it.

Architecturally, distributed file systems look very much like network file systems,
since they also have client software executing on client nodes and server software
executing on remote nodes to make their resources available across the network.
The primary difference, however, is the single name space provided by distrib-
uted file systems over and above what is offered by simpler network file systems.
Note that both client and server software could be concurrently executing on any
node that participates in the implementation of the distributed file system.

28 Chapter 2: File System Driver Development

Figure 2-5 illustrates how a distributed file system presents a single name space to
the user of the file system. A client of the file system on node 1 can access all of
the files and directories that constitute the file system without regard for where
they physically reside. There is a single (virtual) global root directory for the file
system tree. Although not illustrated in the figure, any point in the global name
space could in actuality be a mountpoint for a remotely exported subtree.

Global name-space /\/
seen by user.

accounting payroll personnel

usa-personnel

_ foreign-employees

Figure 2-5- Global name space presented by distributed file systems

NOTE A mountpoint is simply a named directory in the file system name
space to which a remotely exported subtree can be grafted. In
Figure 2-5 above, you can see that the accounting, payroll, and per-
sonnel directories are mount points for the distributed file system.
The accounting directory has a subtree from node 1 grafted on, the
payroll directory allows access to data stored on node 2, while the
personnel directory allows access to data stored on node 3- Any user
of this file system can now transparently access a file or a directory
without regard for where the data actually resides. The user simply
sees a single name space for the entire distributed file system.

When a user tries to access anything below a mount point, the cli-
ent software on the node must forward the request to the remote
server that is actually exporting the contents below the accessed
mount point, allowing the server to process the user request.

Many distributed file systems use another approach to access data
stored remotely. The client software often transfers data from the re-
mote server on behalf of the requesting process and caches it local-
ly. This obviates the need to contact a remote server every time a
user asks for previously requested data stored there. However, so-
phisticated client-server cache consistency processes are required to
maintain data coherency across the entire network.

What Are File System Drivers? 29

Sometimes, distributed file systems provide global data consistency guarantees
exceeding those provided by the network file system implementations. For
example, a distributed file system could guarantee that all users of the file system
would always see the same view of a file's contents even if they were concur-
rently accessing and modifying the file on multiple (geographically distributed)
client nodes.

Special (pseudo)file systems

Often, you will encounter kernel-mode software that presents a file-system-like
interface to the user but actually does something completely different when the
interface calls are exercised. For example, the /proc file system on UNIX systems
actually allows a user to access and potentially modify the address space of a
running process.

Basically, any kernel-mode driver that presents a file-system-like interface but
performs special functionality (different from the traditional task of managing data
stored on physical devices) can be considered a special file system
implementation.

Other examples of special file system implementations include kernel-mode
drivers that provide hierarchical storage management (HSM) functionality, or
drivers that present virtual file systems (e.g., some commercially available source
code control systems).

Windows NT and File System Drivers

File system drivers are a component of the I/O subsystem on the Windows NT
platform and therefore must conform to the interface defined by the NT 1/O
Manager.

The Windows NT I/O Manager has defined a standard interface to which all
kernel-mode drivers must conform. This interface applies equally to local file
system drivers, network and distributed file system redirector software, interme-
diate drivers, filter drivers, and device drivers. File system drivers can be loaded
dynamically under Windows NT and can theoretically also be unloaded
dynamically.*

The Windows NT/ I/O Manager provides a comprehensive set of support routines
for file system driver designers to use. These routines allow the new file system to
utilize common services and behave consistently (just as the native file systems

* In practice, it is very difficult to implement a file system that can be dynamically unloaded. It is possible,
though, with a lot of foresight and care in the design and implementation of the file system driver. Most
people, however, do not find the result worth all of the effort required.

30 Chapter 2: File System Driver Development

do) on Windows NT machines. Furthermore, there is a well-defined, although
poorly documented,* set of interfaces that the file system driver designer must
conform to, in order to interact successfully with the Windows NT Virtual Memory
Manager and the Windows NT Cache Manager.

Using a File System

There are two ways in which a user can take advantage of the services provided
by a file system driver:

Invoke standard system service calls
This is by far the most commonly used method of requesting access to files
and directories. The user process simply invokes standard system service calls

to request operations such as opening or creating a file, reading or writing file
data, and closing the file.

Use 1/0O control requests sent to afile system driver
Sometimes, applications need to request specific services that cannot be
requested using one of the canned system service calls. In these situations, as
long as a file system can do the desired operation, a user can send the

request and data directly to the file system driver via the File System Control
CFSCTL) interface.

A typical example of using standard system services to request access to a file is
when a process must read the contents of file C:\payroll\june-97. The sequence

of operations executed by a typical application process using the Win32
subsystem is as follows:

1. Open the file.

The requesting process will typically invoke the Win32 CreateFile ()
service routines, specifying the name of the file to be opened, the access
mode desired for the open file, and other related arguments. Internally, the
Win32 subsystem invokes the NtCreateFileO system service call to
request the open operation on behalf of the caller.t

At this point, the CPU switches to kernel-mode privilege level. The code imple-
menting the system call NtCreateFile() is implemented by the 1/O
Manager, which is a component of the Windows NT Executive, and the kernel-
mode privilege level is required to run functions implemented by the I/O
Manager. The open/create request meanders around the NT Executive,

* Until this book was written.

t Any user-space process can directly invoke the NtCreateFile () system service routine. Unfortunate-
ly, these system service routines have not been well documented by Microsoft. Appendix A, Windows NT
System Services, has a comprehensive list of the available system services.

What Are File System Drivers? 31

dispatched first to the I/O Manager via the NtCreateFile () invocation,
then to the NT Object Manager to parse the user-supplied name, and finally
back into the 1/O Manager to identify the file system driver managing the
mounted logical volume C:. Once the file system driver has been identified,
the 1/0O Manager invokes the file system driver create/open dispatch entry
point to process the user request.

Finally, the file system driver performs appropriate processing and returns the
results of the create/open operation to the 1/O Manager, which in turn returns
the results to the Win32 subsystem (the privilege level switches back to user-
mode), and the Win32 subsystem eventually returns the results to the
requesting process.

2. Read the file data.

If the open operation succeeds, a handle is returned back to the requesting
process. The requesting process now asks to read data in the file, specifying
the starting offset and the number of bytes to be read. Typically, the Read-
File () function call provided by the Win32 subsystem invokes the
NtReadFile () system service routine on behalf of the requesting process.

The NtReadFile () routine is also implemented by the NT 1/O Manager.
Because the requesting process must supply a valid file handle, obtained from
a previous successful create operation, to request a read, the 1/O Manager can
easily identify an internal data structure corresponding to the open operation
performed earlier. This internal data structure, called a file object, will be
comprehensively described later in this book. From the file object structure,
the 1/0 Manager can determine the logical volume that contains the open file
and will then forward the read request to the file system driver for further
processing.

The file system driver will return as much of the user-requested data as it can
and will return the results of the operation back to the I/O Manager. Eventu-
ally, the results of the read request will be returned back to the requesting
process via the Win32 subsystem.

3. Close the file.

Once the requesting process has finished processing the contents of the file, it
performs a close operation for the file handle received from the previously
executed open request. The close handle operation informs the system that
the process no longer needs to access the file data.

The close file process invokes the Win32 CloseHandle () function to close
the open file handle. The Win32 subsystem in turn invokes the NtClose ()
system service routine.

32 Chapter 2: File System Driver Development

The file system is notified by the I/O Manager that the user process has
closed the file handle, and the file system is free to dispose of any state infor-
mation it may have maintained for the open file.

There are many file operations that can be requested by a user in addition to the
three described here. However, the basic methodology is the same: a process or
thread opens or creates a file, performs some operations on the file, and finally
closes the open file handle. Note that the NT system services are available to all
threads executing on a Windows NT system, including user-mode threads and
kernel-mode threads. Furthermore, the NT system services are available regardless
of the subsystem (Win32, POSIX, 0OS/2) used by a requesting process.

NOTE The system service routines provided by the NT I/O Manager are ge-
neric and very comprehensive. They have to be generic because, as
mentioned earlier, the services must be capable of supporting re-
quests generated by a user from any one of the supported Windows
NT subsystems, which are quite diverse in themselves.

As a matter of fact some of the most powerful functionality provid-
ed by the 1/0 Manager and the file system drivers is often not avail-
able (or provided) by the Windows NT subsystems and the only
way to request the desired functionality is to invoke the system ser-
vices directly. Therefore, it is more of a pity that Microsoft does not
do a better job documenting the available Windows NT system ser-
vice calls.

Support provided for file system control requests by file system drivers is
described in detail later in this book.

The File System Driver Interface

A well-defined interface between the file system driver code and the rest of the
operating system must exist, if the operating system is to support multiple file
system drivers, including those developed by third-party companies. This interface
should clearly document the various interactions between the components
involved in satisfying a user request to access file data; the description must also
provide for suitable abstractions so that the many varied types of file systems can
be successfully integrated into the rest of the operating system.

The goal should be to create modularized components that can be easily substi-
tuted and extended without requiring extensive, complicated, and expensive
redesign of the entire system. It seems as though the designers of the 1/0O
subsystem started out trying to meet exactly these goals. Therefore, there are well-
defined methods for a file system to install, load, and register itself with the rest of

What Are Filter Drivers? 33

the operating system. The I/O Manager also sends very well defined 1/0 request
packets describing user requests to a file system driver for further processing.
Last, but not least, there is a fairly comprehensive list of supporting routines that a
file system designer can use to make life easier and to better integrate the new
file system with the rest of the system.

Unfortunately, things tend to become more than a little messy when you consider
the different ways the file system and the operating system interact. Sometimes, as
a result of these complex interactions, the abstractions that system designers try to
maintain start to break down. The situation is made much worse when the oper-
ating system and the file system are jointly responsible to provide support for
cached data, and also for supporting memory-mapped files. In Windows NT, for
example, the Virtual Memory Manager depends on the file system to provide
support for page files used to implement virtual memory support. However, the
file system, in turn, depends upon the Virtual Memory Manager for allocation of
memory required to process file system requests. This recursive relationship tends
to make life even more complicated.

Although the designers at Microsoft who developed the Windows NT operating
system seem to have made a strong effort to maintain a clean demarcation
between the file system and the rest of the operating system, it seems as though,
over time, the lines have gotten more than a little blurred and that more and more
implicit behaviors and functionality have become ingrained in the system. This
leads to more complicated design and code, and requires extensive documenta-
tion from Microsoft for third-party file system designers to develop a successful
and robust file system driver.

The sort of documentation that third-party developers would like to have access
to was not available when this book went to press. This book will help you under-
stand the system better and give you a starting point to achieve your desired goals.

What Are Filter Drivers?

A filter driver is an intermediate driver that intercepts requests targeted to some
existing software module (e.g., the file system or a disk driver). By intercepting
the request before it reaches its intended target, the filter driver has the opportu-
nity to either extend, or simply replace, the functionality provided by the original
recipient of the request.

34 Chapter 2: File System Driver Development

NOTE It isn't required that the filter driver always supplant the existing
driver; that would simply become a case of unnecessarily reinvent-
ing the wheel. The filter driver can instead focus on providing what-
ever specialized functionality it needs to implement, while still
allowing the existing code to perform what it does best, provide the
original functionality.

For example, consider the existing file systems shipped with the Windows NT
operating system. They consist of the FASTFAT (the legacy FAT file system
support) file system, the NTFS (log-based) file system, the CDFS file system for
CD-ROM media, the LAN Manager Redirector to access remote shared drives, and
so on. None of the file systems, however, currently provides support for online
encryption and decryption of stored data.

Now suppose that you are a security expert who knows how to design and imple-
ment an incredibly secure encryption algorithm. You wish to develop and sell
software that would encrypt user data before it ever got stored on disk, and auto-
matically decrypt it before giving it back to an authorized user. So how would
you go about designing your software?

You certainly do not want to write a completely new file system driver, because
that would be too time consuming, and it would not really provide any added
value to the end user. What you really want to do is design a filter driver that
intercepts requests in either of the following places:

Above thefile system

To allow your code to intercept the user request before the file system driver
ever gets the opportunity to see it.

Below thefile system
To allow your driver to perform any required processing after the file system
has finished its tasks. However, your driver can do whatever you need before
the request is received by a disk driver, or by a network driver that is asked

by the file system to obtain data from secondary storage devices or from
across the network.

In this scenario, you can perform your magic somewhere along the way
before the data either is written to the disk or returned to the user.

Figure 2-6 illustrates two different places where you can insert your filter driver
software.

Once you have inserted your filter driver at an appropriate place in the driver hier-
archy, you can intercept 1/0O requests from the user, perform your magic, and
then forward the request to the existing module (either the file system or the disk

What Are Filter Drivers? 35

User Space

. F:iter drivers aan be stacked
 virtually anywhere in the driv
. hjerarchy. They are optional
. Software, and there ¢ ‘uid b
. multiple such drivers. They
b inserted easily into the ¢
- hierarchy because the.
~ Windows NT 1/0 subsystem
 uUses a layered driver approac

NTFS or FAY or CDFS, elc

Disk Driver
(or some other filter driver)

Figure 2-6. Filter drivers in the driver hierarchy

driver) so that they can continue to provide functionality, such as managing the
mounted logical volume or transferring data to or from the physical disks.

So if you insert your filter driver so that it intercepts 1/0O requests dispatched to a
file system driver, you can encrypt the data before it is passed into the file system
for transfer to secondary storage, and you can decrypt it after the file system has
retrieved the encrypted data from secondary storage, before it sends the data back
to the user.

If, however, you decide to intercept requests below the file system, then you
would follow the same methodology, except that now you would get a chance to
modify the buffer only after it had passed through the file system and either
before it is written out to disk (or across the network), or immediately after it has
been retrieved from disk (or from across the network), but before it is returned to
the file system.

It is relatively easy to insert a filter driver into the existing driver hierarchy in
either of these two places, without having to redesign all other existing Windows
NT file system, disk, and other intermediate drivers, because all drivers in the 1/O
subsystem must conform to a well-defined, layered driver interface.

This means, for example, that all drivers must respond to a standard set of
requests that the 1/O Manager could issue. Furthermore, there is a standard
method by which a kernel-mode driver (or the I/O Manager itself) requests the
services provided by another driver in the calling hierarchy. Every driver in the

36 Chapter 2: File System Driver Development

hierarchy must also respond to an 1/O request in the expected manner, regardless
of the caller.

NOTE The 1/0 subsystem does not mandate that all drivers implement
their dispatch routines in exactly the same way; the only condition
is that the drivers are aware of their own response to standard 1/0
Manager requests and are therefore aware of the impact they have
by inserting themselves into the driver hierarchy.

Although everything seems to be just perfect for you to immediately begin
designing your incredibly secure encryption/decryption algorithm for the
Windows NT platform, there are some details that you will unfortunately have to
consider. Ideally, the Windows NT 1/O subsystem would be so modular that
implementing your functionality should be a piece of cake. In reality, you must
understand some subtle interactions that manifest themselves, depending on
where in the driver hierarchy you decide to insert your filter driver. Chapter 12,
Filter Drivers, focuses exclusively on the issues involved in designing a filter
driver for the Windows NT platform.

Common Driver Development Issues

This book discusses many issues that kernel-mode file system and filter driver
designers should understand thoroughly. There are some common development
issues, however, that | would like to briefly discuss in this section. These include
how to allocate and free memory in your kernel-mode driver, and how to imple-
ment some rudimentary debugging support in your driver.

Consult the Microsoft Driver Development Kit (DDK) documentation for addi-
tional details on some of the functions described here. Some of the material in
this section uses terms that will be defined later in the book. Therefore, skim
through the material during your first reading of this book and then come back to
reread it after you have read through at least Chapter 4, The NT'l/O Manager.

Working with Kernel Memory

In Chapter 5, The NT Virtual Memory Manager, you will read about the NT VMM
in considerable detail. However, there are some fairly common issues involved
with driver development and the need for kernel memory that | will describe
here. The code fragments presented later in this book assume that you have a
good understanding of how to allocate and free kernel memory.

Common Driver Development Issues 37

You must answer the following questions as you begin designing a kernel-mode
driver:

« Does my driver occupy paged or nonpaged memory?
e Can | page out driver code?

* How do I allocate kernel memory on demand?

* How do I free previously allocated memory?

» Are there any issues | must be aware of when attempting to acquire or free
kernel memory?

Pageable kernel-mode drivers

By default, the kernel loader will load all driver executables and any global data
that you may have defined in your driver into nonpaged memory. Therefore, if
you want your driver to reside in nonpaged memory, there is nothing further you
need to do besides compiling, linking, and loading the driver.

Furthermore, the kernel loads the entire driver executable (and any associated
dynamic link libraries) all at once, before invoking any driver initialization
routines. Although it may not make much sense to you at this time, after loading
the executable into memory, the kernel loader closes the executable file, allowing
a user to delete even the currently executing driver image.

It is possible to specify to the loader the portions of your driver that you wish to
make pageable. This can be done by using the following compiler directive in
your driver code:*

~ifdef ALLOC_PRAGMA

epragma alloc_text(PAGE, function_namel)

#pragma alloc_text(PAGE, function_name2)

// You can list additional functions at this point just as the two
// functions are listed above ...

eendif // ALLOC_PRAGMA

Be careful, though, that you never allow any routine that could possibly be
invoked at a high IRQL to be paged out. File system drivers can never allow any
code or data to be paged out that might be required to satisfy page fault requests
from the NT Virtual Memory Manager.

It is also possible for a kernel-mode driver to determine at run-time whether
certain sections of driver code and/or data should be paged out or locked into
memory. To do this, the driver must perform the following actions:

* The functions referenced in a pragma statement must he defined in the same compilation unit as the
pragma.

38 Chapter 2: File System Driver Development

« To make a code section pageable, use the following compiler directive in
your code,

#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGExxxx, function_namel)
#pragma alloc_text(PAGExxxx, function_name2)

fendif
where xxxx is an optional, four-character, unique identifier for the driver's
pageable section.

« To make a data section pageable, use the following compiler directive in your
code:
#ifdef ALLOC_PRAGMA
#pragma data_seg(PAGE)...
// Define your pageable data section module here.
#pragma data_seg() // Ends the pageable data section.

e Invoke MmLockPagableCodeSection() and MmLockPagableCodeSec-
tionByHandle () to lock code sections that were marked as pageable in
memory.

e Invoke MmLockPagableDataSection() and MmLockPagableDataSec-
tionByHandle () to lock data sections that were marked as pageable.

* Invoke MmUnlockPagablelmageSection() to unlock any code or data
section that may have been locked using the functions listed above.

There are two additional routines provided by the VMM that you should be aware
of (and look up in the DDK documentation) if you wish to page out the entire
driver or reset paging attributes back to their original settings:

MmPageEntireDriver()

This routine will make the entire driver pageable, overriding any section page
attributes that were declared earlier using compiler directives.

MmResetDriverPaging()

This function will reset the paging attributes back to the initially declared
attributes.

Finally, to automatically have the Memory Manager discard sections of code that
you won't need once the driver has been initialized, use the following compiler
directives:

~ifdef ALLOC_PRAGMA
epragma alloc_text(INIT, DriverEntry)
epragma alloc_text(INIT, functionl_called by driver_entry)

=endif // ALLOC_PRAGMA

Common Driver Development Issues 39

Be careful to specify only those functions that can be safely discarded and will
never again be required once the driver initialization has been completed.

Allocating kernel memory

Every kernel-mode driver requires memory to store private data. Typically, your
driver will request memory from the NT Virtual Memory Manager. Whenever your
driver requests memory, it must determine whether it needs paged or nonpaged
memory. If your driver can afford to incur page faults during execution when
accessing allocated memory, try to use paged memory whenever possible.

NOTE Most lower-level disk and network drivers typically can't use page-
able data because their code often executes at high IRQ levels that
do not allow page faults.* However, file systems (which are often
considerably larger and more resource intensive than disk drivers)
do sometimes have the opportunity to allocate certain memory from
the paged pool. If you can use pageable memory in your driver, al-
ways take the extra effort to identify the memory that could be page-
able and specify the paged pool type when requesting memory
from the Virtual Memory Manager.

Nonpaged memory is a limited resource available to the entire system. Though
the amount of memory reserved for nonpaged pool depends upon the type of
system used (and the amount of physical memory available on the system), it is
definitely something to be conservatively used.t

The following support routines are provided by the Windows NT Executive to
kernel-mode drivers for allocating memory:

< ExAllocatePool)

< ExAllocatePoolWithQuota()

. ExAllocatePoolWithTag()

< ExAllocatePoolWithQuotaTagO

* See Chapter 5 for a detailed discussion on page fault handling performed by the Windows NT Virtual
Memory Manager. This chapter also further explains why kernel-moede drivers must not incur page faults
at high IRQ levels.

+ The NT Virtual Memory Manager uses a private algorithm to determine the total amount of nonpaged
pool reserved on a node. This algorithm uses the total amount of physical memory on the system as the
determining factor to compute the amount of nonpaged pool. The Virtual Memory Manager also attempts
to increase the amount of nonpaged pool (if required) up to a precomputed maximum value. Finally,
although the initially allocated nonpaged pool is contiguous, it tends to get fragmented, and the Virtual
Memory Manager makes no attempts to ensure that the pool stays contiguous when expanding it.

40 Chapte?: File System Driver Development

Note that all of the pool allocation support routines are nonblocking in Windows
NT. In other words, the memory allocation function invoked will return memory
if it is currently available; otherwise, the functions will return NULL (indicating
that memory could not be allocated). On many other operating system platforms
(e.g., many UNIX derivatives), kernel-mode components are allowed to specify
whether the memory allocation function should block (wait) for memory to
become available, or return failure immediately.

Whenever your driver invokes one of these functions to request memory, it must
specify the type of memory required:

NonPagedPool
The pool allocation package will return either a pointer to nonpageable
memory or NULL.

PagedPool
Always specify this type if your application can handle a page fault when
accessing the allocated memory. Never allocate paged memory if you have
any synchronization structures (described in the next chapter) contained
within the allocated memory.

NonPagedPoo IMustSucceed

If all else fails and you simply must get memory immediately, use this pool
type. Note that the memory reserved for this type is an extremely scarce
resource. It may be as low as 16KB on a system, though the amount is vari-
able. If you request pool of this type (and only do that if you failed to get
memory any other way), and if the Virtual Memory Manager cannot provide
you with the requested memory, it will bugcheck the system (described later
inthis chapter) with an error code of MUST_SUCCEED_POOL_EMPTY.

NonPagedPoolCacheAl igned
This allocates nonpaged memory that is aligned on a CPU-specific boundary,
determined by the data cache line size. Note that this option defaults to the
NonPagedPool allocation type on Intel platforms.

PagedPoolCacheAl igned
A request to allocate pageable memory aligned along the CPU data cache line
size.

NonPagedPoolCacheAl ignedMustSucceed
Once again, use this option to request nonpaged memory only as a last resort.

The pool allocation package initializes several lists, each containing blocks of a
certain fixed size. Whenever you request memory using one of the ExAllocate-
Pool () functions listed above, the support routine will try to allocate a fixed-size
block that is closest in size (greater than or equal to) the requested amount.

Common Driver Development Issues 47

If your request exceeds a page, however, or if the requested amount exceeds the
size of the largest-size block in the various lists, or if there is no available block of
the appropriate size in the preallocated lists, the Virtual Memory Manager will allo-
cate the requested amount from any available system memory of the appropriate

type.

NOTE When the lists of preallocated blocks are empty, the Virtual Memory
Manager will allocate at least one page of memory, split it up, and
put any remaining amount (after returning the requested amount of
memory to the caller) on the appropriate block list.

Unfortunately, however, for requests for nonpaged pool where the
requested amount is greater than PAGE_SIZE, the pool allocation
support routine will not attempt to split up any unused amount.
This wastes precious nonpaged memory, another reason why you
should be extremely conservative in your requests for this type of
memory.

If there is simply no memory available of the requested type, the Virtual Memory
Manager will return NULL to the caller or bugcheck* if you request memory from
the must-succeed pool.

It is also possible for your driver to use one of MmAIllocateNonCached-
Memory() or MmAIllocateContiguousMemory ()t to request nonpaged, or
physically contiguous, memory, respectively. These routines are not typically used
by file system or filter drivers, which use either the Executive pool routines or
other constructs, such as zones or lookaside lists (described below), for memory
management.

Using zones

Kernel-mode drivers can fragment the physical memory available to the system if
they repeatedly allocate and free small amounts of memory (less than 1 PAGE_
SIZE). This can cause all sorts of problems for the rest of the system, including
degradation of system performance.

* To bugcheck the system is to bring down (halt) the system in a controlled manner. Typically, the Ke-
BugCheck () function is used, which will bring clown the system while displaying the bugcheck code
and possibly more information on the reason for the bugcheck operation. You should bugcheck a system
only when your driver discovers an unrecoverable inconsistency that will corrupt the system.

t The contiguous memory is allocated from the list of nonpaged memory pages reserved at system ini-
tialization time. Note that there is no way to ensure that the system will have the amount of contiguous
memory requested, because the nonpaged pool tends to become fragmented due to expansion and us-
age. The only advice typically given to kernel-mode driver designers that develop drivers requiring con-
tiguous nonpaged memory is to load the memory early in the system boot cycle and to retain the
contiguous memory given to the driver by the Virtual Memory Manager.

42 Chapter 2: File System Driver Development

One way you can avoid this situation of fragmenting system memory is by preallo-
cating a reasonably sized chunk of memory and then doing some of your own
memory management, allocating and freeing smaller-sized blocks from this preal-
located chunk as necessary. This method avoids system fragmentation, because
the Virtual Memory Manager is usually out of the picture once you have preallo-
cated your fixed-sized chunk. You only need to go back to the Virtual Memory
Manager when you run out of memory in your chunk and need to expand its size.

To help you incorporate this method of memory management into your driver,
the Windows NT Executive provides a set of support utilities. These functions
work on a zone, for which your driver must have preallocated memory. Another
requirement is that the size of each block that can be allocated from the zone is
fixed at the time of zone initialization. Therefore, if you have a fixed-size data
structure that is smaller than the size of one page, and if you know that you will
be repeatedly allocating and freeing memory for structures of this type, you
should seriously consider using the zone method (or the lookaside list discussed
later) to perform the memory allocation and deallocation.

Note that the method used here requires your driver to retain a preallocated piece
of memory. The trade-off is a possible waste of kernel memory, since you would
typically allocate the chunk at driver-initialization time (especially when your
driver does not require the memory for a long time), against the possibility of frag-
menting the kernel pool of available pages.

Here is the sequence of operations you must follow to use the zones method:

1. Determine the size of the memory chunk you are likely to need.

Be careful not to allocate either too much or too little memory for the zone.
Allocating too much memory is simply being wasteful, and allocating too little
will result in having to allocate more, leading to memory fragmentation, some-
thing you wish to avoid.

TIP Determining the optimal amount of memory that should be preallo-
cated for a zone is often an iterative task. However, as a general
rule, you should be conservative with the amount of memory re-
served for a zone. If you allocate too little memory, under most cir-
cumstances the worst-case scenario will be that your driver has to
go back to the VMM for more memory at run-time. If you allocate
too much memory (more than you will ever use), you will have ef-
fectively denied access to the excess memory to all components in
the system and could thereby even cause some components to fail.

2. Allocate the zone using one of the ExAllocatePool () routines listed
previously.

Common Driver Development Issues 43

You have a choice of allocating from nonpaged or paged pool. Note that the
base address of your piece of memory must be aligned on a 8-byte boundary
(i.e., the base address should be a multiple of 8).

3. Allocate and initialize a spin lock or use some other synchronization mecha-
nism to protect modifications to the list.

Synchronization structures, including Executive spin locks, are discussed
extensively in the next chapter.

4. Define a structure of type ZONE_HEADER somewhere in global memory (or
in a driver object extension).

Driver object extensions are discussed in Chapter 4. The ZONE_HEADER struc-
ture serves as a control structure for the zone, used by the zone management
support routines to allocate and free entries from the zone.

5. Invoke ExInitializeZone () to initialize the zone header.

You will also have to pass in (as arguments to the routine) a pointer to the
zone you allocated in Step 2 and the size of the structures that you expect to
allocate from the zone. The size of the structures you expect to allocate must
be aligned on a 8-byte boundary.

Also note that a ZONE_SEGMENT_HEADER-sized block of memory from the
chunk of memory you supply will be used by the zone manipulation routines
to maintain some additional control information. The rest of the preallocated
memory will be carved out into the fixed-size blocks (of the size specified by
you) for use by your driver.

Now the zone is ready for use by your driver. Whenever you need a new structure
from the zone, use either the ExAllocateFromZone () or the ExlInter-
lockedAllocateFromZone () functions. The only difference between these
two functions is that the interlocked version accepts a pointer to the Executive spin
lock structure that you previously initialized, and will automatically guarantee list
consistency by using the spin lock to provide synchronization. If you decide to use
the noninterlocked version instead, you are responsible for ensuring that the list
does not get corrupted due to concurrent access and modification by multiple
threads. Therefore, you must use some appropriate synchronization method in your
driver.

To return a previously allocated structure to a zone, use either the ExFreeTo-
Zone () or the ExInterlockedFreeToZone () support routines provided.

Do not use the zone manipulation routines at an IRQL greater than DISPATCH_
LEVEL, because you will not be able to use the synchronization structures (spin
locks or another) at a higher IRQL.

44 Chapter 2: file System Driver Development

In the event that you do need to extend the size of a zone, you must use the
ExExtendZone () function provided. Once again, you must pass a newly allo-
cated chunk of memory that will be used to extend the zone. Remember that the
base address of this memory must also be aligned along a 8-byte boundary.

Unfortunately, there is no routine provided that decreases the size of a previously
extended zone. Therefore, any chunk allocated and used when you initialize or
extend the zone will be unavailable to the rest of the system until the machine is
rebooted. This places the responsibility on your driver to ensure that you are
fairly accurate in your estimates of how much memory should be reserved for the
zone.

The file system example code provided in Part 3 uses zones for memory manage-
ment. Examine the source code for the sample file system driver on the
accompanying diskette for examples of using this method in your driver.

Using lookaside lists

Although using zones helps to reduce fragmentation of system memory, there are
some disadvantages you must be aware of when you use zones.

* Your driver must preallocate the memory for the zone, usually at driver initial-
ization time, even though this memory may not be used until much later.

* You must be fairly accurate about your memory requirements; you cannot
release any excess memory that you may have allocated during peak driver
utilization.

When you design and use your driver, you will see that there are periods
when your driver is simply overwhelmed with requests. At such times, natu-
rally, your memory requirements will increase. If you use zones, there is a dis-
tinct probability that your zone will get depleted at such times. Then, you
must either allocate memory directly from the system or extend the zone.

Extending the zone means that the newly allocated memory cannot be
released until a system reboot—not a very appealing prospect. Allocating
directly from the system means that you have to maintain some sort of flag in
your allocated structure indicating where the memory came from so that you
could release it appropriately (either back to the zone if it came from the
zone, or back to the system if you allocated using a direct invocation to an
ExAllocatePool () routine).

* You must use either some private synchronization mechanism or, more typi-
cally, a spin lock to synchronize access to the zone.

The lookaside list is a new structure defined in Windows NT 4.0, and with the
associated support routines, it addresses the limitations of the zone method.

Common Driver Development Issues 45

When vyou invoke the ExInitializeNPagedLookasidelList () or the
ExInitializePagedlookasideL.ist () functions to initialize the list, no
memory is preallocated. Instead, entries are allocated on an as-needed basis when
you actually require the memory. Although your driver is free to supply pointers
to your driver-specific allocate and free functions when initializing the list header,
this is optional and the Windows NT Executive pool management package will
use the ExAllocatePoolWithTag() function (and the corresponding free
routine) by default. '

Second, you are required to specify a list depth at initialization time. This depth
specifies the maximum number of entries of the desired size that will be queued
on the list. Note that the list becomes populated with available entries as you allo-
cate and then subsequently free the memory.

Therefore, when you start requiring memory and the package begins allocating
some on your behalf, any freed entries will not be given back to the system but
will instead be queued onto the list head until the depth number of entries have
been queued. Any entries allocated and released beyond this value will automati-
cally be returned to the system.

This allows your driver to increase your memory consumption during peak usage
periods without having either to retain the memory until the next boot cycle or
maintain the state information (using flags) in your allocated structures to deter-
mine where to return the memory when you release it.

Finally, on architectures that provide Windows NT with the appropriate instruction
support, the ExAllocateFromNPagedLookasideList() (or the ExAllo-
cateFromPagedLookasideList ()) function and the corresponding release
functions will use an atomic 8-byte compare-exchange operation to synchronize
access to the list instead of using the FAST_MUTEX or KSPIN_LOCK (described in
the next chapter) associated with the list. This is a considerably more efficient method
of synchronization.

Remember to always allocate the NPAGED_LOOKASIDE_LIST list header or the
PAGED_LOOKASIDE_LIIST list header from nonpaged memory.

Available kernel stack

Each thread executing on the Windows NT platform has both a user stack, used
when the thread is executing in user mode, and a kernel stack, used only when
the thread is executing in kernel mode.

Whenever a thread requests system services causing a switch to kernel mode, the
trap mechanism always switches stacks and replaces the user-space stack with the
kernel-space stack allocated for the thread. This kernel stack is of fixed size and is
therefore a limited resource. On Windows NT 3.51 and earlier, the kernel stack

46 Chapter 2: File System Driver Development

was limited to two pages of memory; therefore, on Intel architectures, each thread
was restricted to an 8KB kernel stack. Beginning with Windows NT 4.0, the kernel
stack size has been increased to 12KB. However, this is not sufficient in itself for
your driver to be extravagant in its use of available stack space.

There is a lot of recursive behavior exhibited by the higher level drivers in
Windows NT, especially with the file system drivers, the NT Virtual Memory
Manager, and the NT Cache Manager. This can lead to situations where the kernel
stack gets depleted rather rapidly. Furthermore, the highly layered model of
drivers within the 1/0 subsystem can cause the kernel stack to be depleted if the
driver hierarchy becomes too deep and if one or more drivers in the hierarchy are
not careful about their stack usage.

Be warned that the kernel stack cannot be increased dynamically. Therefore,
always be prudent in your usage of local variables that reside on the stack. If you
develop a filter driver that inserts itself into a driver hierarchy, be extremely frugal
with your usage of the stack space, because you may inadvertently push the stack
consumption beyond the limit and bring down the system unexpectedly.

Working with Unicode Strings

All character strings are represented internally by the Windows NT operating
system as Unicode (16-bit wide) characters (also called wide characters). This
allows the system to more easily accommodate and work with languages not
based on the Latin alphabet.

When you design your driver, be prepared to receive strings in Unicode and to be
able to manipulate such strings. Each Unicode string is represented using the
UNICODE_STRING structure defined by the system. This structure consists of the
following fields:

Length
This is the length of the string in bytes (not characters). It does not include
the terminating NULL character if the string is null-terminated.
MaximumLength
This is the actual length of the buffer in bytes. Note that it is possible to have
a maximum length that is much greater than the Length field.
Buffer
The is a pointer to the actual wide-character string constant. Wide-character

strings do not necessarily have to be null terminated since the Length field
above describes the number of valid bytes contained in the string.

Any string you wish to store in the associated Buffer must have a length (in
bytes) that is less than or equal to the MaximumLength.

Common Driver Development Issues _ o) 47

NOTE To use a null-terminated wide-character string in a UNICODE_
STRING structure, initialize the Length field to the number of
bytes contained in the wide-character string constant, excluding the
UNICODE_NULL character; initialize the MaximumLength field to
the size of the string constant (this should include the entire buffer
including the space allocated for the UNICODE_NULL character).

There are a variety of support routines provided to facilitate manipulation of
Unicode strings. The DDK header files contain the function declarations:

RtlInitUnicodeString
This function initializes a counted Unicode string. You can either pass in an
optional wide-character null-terminated source string or NULL. The target
Unicode string Buffer will either be initialized to point to the Buffer field
in the null-terminated source string (if supplied) or will be initialized to NULL.
The Length and MaximumLength fields will be appropriately initialized.*

RtlAnsiStringToUnicodeString

Given a source ANSI string, this routine will convert the string to Unicode and
initialize the contents of the target string to contain the converted character
string. You can either request the routine to allocate memory for the target
wide-character string or supply the memory yourself by initializing Maximum-
Length in the target Unicode string structure to the length of your passed-in
buffer. If you do request that the routine allocate memory for you, then
remember to free the memory by invoking the RtIFreeUnicodeStringO
function (see below).

RtlUnicodeStringToAnsiString
This routine converts a source Unicode string to a target ANSI string.

RtlCompareUnicodeString
A case-sensitive or case-insensitive comparison of two Unicode strings is
performed. This function returns O if the strings are equal, a value less than 0
if the first Unicode string is less than the second one, and a value greater than
0 if the first Unicode string is greater than the second.

RtlEqualUnicodeString
This function performs either a case-sensitive or a case-insensitive comparison
of two Unicode strings. TRUE is returned if the strings are equal and FALSE
otherwise.

* If a source wide-character string constant is supplied, the Length of the target string will be set to the
number of non-null characters in the source string multiplied by sizeof (WCHAR). The Maximum-
Length field will be initialized to the value contained in the Length field + sizeof (UNICODE_NULL).

48 Chapter 2: File System Driver Development

RtIPrefixUnicodeString
This function is defined as follows:

BOOLEAN
RtlIPrefixUnicodeString(

IN PUNICODE_STRING stringl,

IN PUNICODE_STRING String2,

IN BOOLEAN CaselnSensitive
)

This function will return TRUE if Stringl is a prefix of the counted string
String2. If both strings are equal, this function will return TRUE.

RtlUpcaseUnicodeString
This function converts a copy of the source string into upper case Unicode
characters and writes out the resulting string into the target string argument. It
will also allocate memory for the target string if you request it to; otherwise
you must pass in a target string with memory already allocated.

Use the RtlIFreeUnicodeString () function to free the memory allocated
for you by this function.

RtlDowncaseUnicodeString

This routine performs the converse of the RtlUpcaseUnicodeString ()
function above.

RtlCopyUnicodeString
A copy of the source Unicode string is put into the target string. As many
Unicode characters as possible will be copied, given the MaximumLength
field of the target string. The caller is always responsible for preallocating
memory for the target of the copy operation.

RtlAppendUnicodeStringToString
This function will concatenate two Unicode strings. If the contents of the
Length field in the target plus the Length of the source is greater than the
value contained in the MaximumLength field in the target, the function will
return STATUS_BUFFER_TOO_SMALL.

RtlAppendUnicodeToString
This is similar to the RtlAppendUnicodeStringToString () function
except that the source Unicode string is simply a wide-character string instead of
a buffered Unicode string.

RtlFreeUnicodeString

Any memory allocated by a previous invocation to RtlAnsiStringToUni-
codeString() or RtlUpcaseUnicodeString () is released.

Declaring a wide-character (16-bit character set) string constant is a simple matter
of appending an L before the string constant. For example, the ANSI string
constant "This is a string" could easily be declared as a wide-character

Common Driver Development Issues 49

string as L"This is a string". The size of each character comprising a wide-
character string is computed as sizeof (WCHAR). The wide-character string
constant can then be used to create a UNICODE_STRING structure by initializing
the Buffer field to point to the wide-character string constant and initializing the
Length and MaximumLength fields appropriately.

Be careful not to treat Unicode characters as if they were simple ANSI. For
example, you cannot assume that there is any kind of relationship between
upper- and lowercase Unicode characters. Therefore, some of your assumptions
(including allocating a fixed-sized table to contain the character set) will no
longer be valid with respect to Unicode strings.

Linked-List Manipulation

Most drivers need to link together internal data structures, or create driver-specific
queues. Typically, you will use linked lists to perform such functionality. The
Windows NT Executive provides system-defined data structures and support func-
tions for manipulating linked lists.

There are three types of linked list support functions and structures defined by
the Windows NT DDK:

Singly linked lists

The DDK provides a predefined structure to use to create your own singly
linked lists. The structure is defined as follows:
typedef struct _SINGLE_LIST_ENTRY {

struct _SINGLE LIST_ENTRY *Next;
3} SINGLE_LIST_ENTRY, *PSINGLE_LIST_ENTRY;
You should declare a variable of this type to serve as the list anchor. Initialize
the Next field to NULL in the list anchor before attempting to use it. For
example, you can have a field either in your driver extension structure or in
global memory associated with the driver that is declared as follows:

SINGLE_LIST_ENTRY PrivateListHead;

Each structure that you wish to link together using this list entry type should
also contain a field of type SINGLE_LIST_ENTRY. For example, if you wish
to queue structures of type SFsdPrivateDataStructure, you would
define the data structure as follows:
typedef SFsdPrivateDataStructure {

// Define all sorts of fields...

SINGLE_LIST_ENTRY NextPrivateStructure;
// All sorts of other fields...

50 Chapter 2: File System Driver Development

Now, whenever you wish to queue an instance of the SFsdPrivateData-
Structure onto a linked list, use either of the following routines:

- PushEntryListQ)

This function takes two arguments: a pointer to the list anchor for the
linked list and a pointer to the field of type SINGLE_LIST_ENTRY in
your data structure that you wish to queue. Therefore, if you have a vari-
able called SFsdAPrivateStructure of type SFsdPrivateData-
Structure, you can invoke this routine as follows:
PushEntryList(&PrivatelListHead,

& (SFgdAPrivateStructure.NextPrivateStructure));
You must ensure that this invocation is protected by some sort of internal
synchronization mechanism that your driver uses.

— ExInterlockedPushEntryList()

The only difference between this function call and the PushEntry-
List () function is that you must supply a pointer to an initialized variable
of type KSPIN_LOCK when you invoke this function. Synchronization is

automatically provided by the ExInterlockedPushEntryList () func-
tion via the spin lock that you provide.

Note that you must ensure that all of the list entry structures you pass in
to the ExInterlockedPushEntryList () have been allocated from

nonpaged pool, because the system cannot take a page fault once a spin
lock has been acquired.

Corresponding routines that unlink the first entry from the list are the PopEn-
tryListO and the ExInterlockedPopEntryL.ist () functions.

Doubly linked lists

The following structure type is predefined by the Windows NT operating
system for supporting doubly linked lists:
typedef struct _LIST_ENTRY {

struct _LIST_ENTRY * volatile Flink;

struct _LIST ENTRY * volatile Blink;
} LIST_ENTRY, *PLIST_ENTRY, *RESTRICTED_POINTER PRLIST_ENTRY;
Just as in the case of singly linked lists, you must define a variable of type
LIST_ENTRY to serve as your list anchor. You should use the Initialize-
ListHead(&SFsdListAnchorOfTypeListEntry) macro to initialize the
forward and backward pointers in the list anchor variable. Note that the
forward and backward pointers are initialized to point to the list anchor; there-
fore, never expect to get a NULL list entry pointer when you traverse the list
(the doubly linked list is organized as a circular list).

Common Driver Development Issues 57

If you wish to link together structures of a particular type, ensure that a field
of type LIST_ENTRY is associated with (typically contained in) the structure
definition. For example, you can define a structure called SFsdPrivate-
DataStructure as follows:
typedef SFsdPrivateDataStructure {

// Define all sorts of fields...

LIST_ENTRY NextPrivateStructure;
// All sorts of other fields...

3
To queue an instance of a structure of type SFsdPrivateDataStructure,

you can now use the following macros/functions:
— InsertHeadList()

This macro takes as arguments a pointer to the list anchor (which must
have been initialized using InitializeListHead() described above)
and a pointer to the field of type LIST_ENTRY in the structure to be
queued, and inserts the entry at the head of the list.

For example, you can invoke this macro, as shown here, to queue an
instance called SFsdAPrivateStructure of the SFsdPrivateData-
Structure structure type:
InsertHeadList(&SFsdListAnchorOfTypeListEntry,
&(SFsdAPrivateStructure .NextPrivateStructure));
— InsertTailList(Q)

Similar to the InsertHeadL.ist described above except that it inserts
the entry at the tail of the list.

— RemoveHeadList() orRemoveTailList()

These macros simply require a pointer to the list anchor. The former will
return a pointer to the entry removed from the head of the list and the lat-
ter will return a pointer to the entry removed from the tail of the list.

— RemoveEntryList()

This macro takes as an argument a pointer to the LIST_ENTRY field in
the structure to be removed.

There are interlocked versions (written as functions) of the macros described
above. These functions take as an additional argument a pointer to an initial-
ized variable of type KSPIN_LOCK, which is used to synchronize access to
the list. The list entries must always be allocated from non-paged pool if you
wish to use the interlocked functions to manipulate the linked list.

You should use the IsListEmpty () macro to determine whether a doubly
linked list is empty. This macro returns TRUE if the Flink and Blink fields

52 Chapter 2: File System Driver Development

in the list anchor structure both point to the list anchor. Otherwise, the macro
returns FALSE.

S-Lists
This is a new structure introduced in Windows NT 4.0 to support interlocked,

singly linked lists efficiently. To use this structure, you should define a list
anchor of the following type:

typedef union _SLIST_HEADER {
ULONGLONG Alignment;

struct {
SINGLE_LIST_ENTRY Next;
USHORT Depth;
USHORT Sequence;
}.

3} SLIST_HEADER, *PSLIST HEADER;

The ExInitializeSListHeadO function can be used to initialize a S-List
linked list anchor. Your driver must supply a pointer to the list anchor struc-
ture when invoking this function. Ensure that the list anchor is allocated from
nonpaged pool. Furthermore, you should allocate and initialize a spin lock to
be used when you add or remove entries from the list.

The ExInterlockedPushEntrySList() and the ExInterlockedPop-
EntrySList () functions that are provided to add and remove list entries
may not use the spin lock but may instead try to use an 8-byte atomic
compare-exchange instruction on those architectures that support it.

All entries for the S-List linked list must be allocated from nonpaged pool.

You can also use the ExQueryDepthSListHead() to determine the
number of entries currently on the list. This is convenient, since you no
longer have to maintain a separate count of the number of entries (as you

might have to if you use an anchor of type SINGLE_LIST_ENTRY structure
instead).

Using the CONTAINING_RECORD macro

The Windows NT DDK provides the following macro, which is very useful to all
kernel-mode driver developers:

#define CONTAINING_RECORD(address, type, Tield) \

((type*) ((PCHAR) (address) - (PCHAR)(&((type *)0)->Field)))
This macro can be used to get the base address of any in-memory structure, as
long as you know the address of the field contained in the structure. The macro
definition is quite simple: your driver supplies the address to a field in the struc-
ture, the structure type, and the field name; the macro will compute the field
offset (in bytes) for the supplied field in the structure and subtract the computed

Common Driver Development Issues 53

offset number of bytes from the supplied field pointer address to get the base
address of the structure itself.

The CONTAINING_RECORD macro allows you the flexibility to place fields of
type LIST_ENTRY and SINGLE_LIST_ENTRY anywhere in the containing data
structure. You can use this macro whenever you need to determine the address of
an in-memory data structure, if you know the address of a field contained in the
structure.

As an example of how the CONTAINING_RECORD macro can be used by your
driver, consider the following structure defined by a kernel-mode file system
driver:

typedef struct _SFsdFileControlBlock {
// Some fields that will be expanded upon later in this book.

// To be able to access all open file(s) for a volume, we will
// link all FCB structures for a logical volume together
LIST_ENTRY NextFCB;

} SFsdFCB, *PtrSFsdFCB;

LIST_ENTRY SFsdAl ILinkedFCBs;

The interesting field in the SFsdFCB structure is the NextFCB field. This field is
of type LIST_ENTRY and will presumably be used to insert FCB structures onto a
doubly linked list. The global variable SFsdAllLinkedFCBs is used to serve as
the list anchor.

The interesting point to note is that the NextFCB field is not the first field in the
SFsdFCB structure.* Rather, it is somewhere in the middle of the structure defini-
tion. However, given the address of the NextFCB field, the CONTAINING_
RECORD macro is used to determine the address of the FCB structure itself. The
following code fragment traverses and processes all FCB structures that are linked
to the SFsdAllLinkedFCBs global variable:t

LIST_ENTRY TmpListEntryPtr = NULL;
PtrSFsdFCB PErFCB = NULL;

TmpListEntryPtr = SFsdAlLLinkedFCBs._Flink;

while (TmpListEntryPtr != &SFsdAllLinkedFCBs) {
PtrFCB = CONTAINING_RECORD(TmpListEntryPtr, SFsdFCB, NextFCB);
// Process the FCB now.

// Get a pointer to the next list entry.

* A common method of manipulating linked lists of structures is to place link pointers at the head of the
structure and to cast the link pointer to the structure type when following pointers in the linked list.

t | have deliberately omitted any synchronization code to simply illustrate the use of the CONTAINING_
RECORD macro.

54 Chapter 2: File System Driver Development

TmpListEntryPtr = TmpListEntryPtr->Flink;
}
Therefore, note once again that your driver is not required to place fields of type
LIST_ ENTRY and SINGLE_LIST ENTRY at the head of the containing data
structures, as long as you use the CONTAINING_RECORD (or some equivalent)
macro to get a pointer to the base structure.

Preparing to Debug the Driver

Here are some simple points to keep in mind when designing your kernel-mode
driver:

Insert debug breakpoints
Appendix D, Debugging Support, describes debugging the kernel-mode driver
in greater detail. Note for now that if you have a debugger attached to your
target machine, you can insert the DbgBreakPoint () function call in your
code to break into the debugger when certain conditions occur.

Be careful to place appropriate #ifdef statements around your debug break-
point statements so you can easily disable the break statements in a
nondebug build of the driver. Here's a method I've used:

#iT DBG

#define SFsdBreakPoint() DbgBreakPoint()
#else

#define SFsdBreakPoint()

#endif

The DBG variable has a value of 1 when you compile your driver using a
checked build environment. In this case, any SFsdBreakPoint () state-
ments in your driver will be activated. The expectation is that you will only
execute the debug version of your driver during the development and test
phase and that you will always have a debug host node connected to the
target machine executing your driver. However, if you compile the driver
using the free (nondebug) build environment, the SFsdBreakPoint () state-
ment will be rendered harmless.

The Windows NT DDK also provides a KdBreakPoint () function that is
defined exactly as the SFsdBreakPoint () function described here. There-
fore, you may choose to simply use KdBreakPoint () in your code and be
assured that the breakpoint will be automatically rendered harmless in a non-
debug build.

Insert debug print statements
You can use the KdPrint () macro that is defined to DbgPrint () in a
debug version of the driver code. You can supply a formatted string to this
function just as you would do with a printf () function call.

—

Common Driver Development Issues 55

The KdPrint{) macro automatically becomes non-operational in the
nondebug version of the driver executable.

Insert bugcheck (panic) calls in your driver
Never bring down the system unless you absolutely have to. And there are
very few reasons indeed to bring down a live production system executing
your code.* Instead, explore every alternative available if you detect inconsis-
tencies in your code. Try to disable your driver if you can, stop processing
requests, shut down the offending module, anything to avoid halting the
system.

But there still might be situations (especially during development) when you
may wish to bugcheck the system. There are two alternative function calls
that you can invoke to bring down the system immediately in a controlled
manner:

— KeBugCheck()

This function takes a single unsigned long argument (the BugCheck-
Code), which can be the reason that you have decided to terminate sys-

tem execution. Internally, KeBugCheck () simply invokes
KeBugCheckEx () described below.
— KeBugCheckEx()

This function takes a maximum of five possible arguments. The first is the
BugCheckCode, the remaining four are optional arguments (each of
type unsigned long) you may supply that provide more information
to the user of the system and can possibly assist in postmortem analysis
of the cause for the bugcheck.

There are no restrictions mandated by the system as to what the values of
these four optional arguments should be.

If there is no debugger connected to the system, the system will do the
following:

— Disable all interrupts on the node.
— Ask all other nodes (in a multiprocessor system) to stop execution.
— Use HalDisplayString () to print a message.

The user will see the infamous blue screen of death (BSOD) on their moni-
tor. The message

STOP: Ox%IX (Ox%IX, Ox%IX, Ox%IX, Ox%IX)

* Some exceptions that immediately come to mind are if continuing system execution could cause system
security to be compromised or would lead to user data corruption. In such situations, it is preferable to
bugcheck the system rather than to continue running.

56 Chapter 2: File System Driver Development

will be displayed, with the bugcheck code displayed first, followed by
each of the optional arguments supplied to KeBugCheckEx () .

— If a message can be associated with the bugcheck code, invoke HalDis-
playString () to print the descriptive message.

— The KeBugCheckEx () function will then attempt to dump the machine
state.

If any of the bugcheck arguments is a valid code address, the system will
try to print the name of the image file that contains the code address.

The routine prints the version of the operating system executing on the
node and then attempts to display the list of the node's loaded modules.
The number of loaded module names displayed depends upon the num-
ber of lines of text that can be displayed on your monitor. Finally, the
function will try to dump out some of the current stack frame. The system
will then stop execution.

If, however, a debugger is connected to the system, the KeBugCheckEx ()
function will display the message

Fatal System Error: Ox%IX (Ox%IX, Ox%IX, Ox%IX, Ox%IX)

on your debug host node, using the DbgPrint () function call. Then, the
system will break into the debugger using the DbgBreakPoint () function
call. You now have the opportunity to examine the system state to determine
the cause of the error. If you ask the system to continue, the code sequence
described above is executed.

Windows NT Object Name Space

As described in Chapter 1, Windows NT System Components, the designers of
Windows NT have tried hard to make it an object-based system. There is a
comprehensive set of object types that are defined by the system, and each object
type has appropriate methods (or functions) associated with it to allow kernel-
mode components to access and modify objects of the type.

Windows NT object types include adapter objects, controller objects, process
objects, thread objects, driver objects, device objects, file objects, timer objects,
and so on. One such special object type is the directory object. This object is
simply a container object that, in turn, contains objects of other types.

The Object Manager allows each object to have an optional name associated with
it. This facilitates the sharing of objects across processes, since more than one
process can potentially open the same named object of a particular type. The
Object Manager therefore manages a single, global name space for a node
running the Windows NT operating system.

Windows NT Object Name Space 57

Following in the footsteps of most modern-day commercial file system implemen-
tations, the NT Object Manager presents a hierarchical name space to the rest of
the system. There is a root directory object called \ for this global name space.
All named objects can be located by specifying an absolute pathname for the
object starting at the root of the object nhame space. Note that the Object Manager
allows the creation of named object directories contained within directory objects,
thereby providing a multilevel tree hierarchy.

The Object Manager also supports a special object type called the symbolic link
object type. A symbolic link is simply an alias for another named object.

Figure 2-7 shows a typical name space presented by the NT Object Manager:

L 1 , I 1
Device Fat t

Floppy0 § Harddisk0

4

Figure 2-7. Name space presented by the Object Manager

The NT Object Manager defines object types when requested by other NT compo-
nents. Certain object types are predefined by the Windows NT Object Manager.
Whenever a Windows NT Executive component requests a new type to be
defined by the NT Object Manager, the component has the option of providing
pointers to the parse, close, and delete callback functions to be associated with all
object instances of that particular type. The Object Manager remembers these func-
tion pointers and invokes the callback functions whenever a parse, close, or
cleanup operation is being performed on an object instance of the particular type.

Whenever a user process or an application tries to open an object, it must supply
an absolute pathname to the NT Object Manager. The Object Manager begins
parsing the name, one token at a time. Whenever the Object Manager encounters
an object that has a parsing callback function associated with it, the Object
Manager suspends its own parsing of the name, and invokes the parsing function

5S Chapter 2: File System Driver Development

supplied for the object, passing it the remainder of the user-supplied pathname
(the portion that has not yet been parsed).

So how is all of this relevant to file system drivers or network redirectors?

Consider what happens when a wuser process tries to open the file
C:\accounting\june-97.

The user's open request is submitted to the Win32 subsystem, which translates the
C: portion of the name to the string \DosDevices\C: before forwarding the request
to the Windows NT Executive for further processing.* The complete name sent to
the Windows NT kernel is \DosDevices\C:\accounting\june-97.

All create and open requests are directed initially to the NT Object Manager. The
Object Manager receives the open request and begins parsing the filename. The
first thing it notices is that the object \DosDevices\C: is really a symbolic link
object (the \DosDevices portion of the name refers to a directory object type).
Since symbolic link object types contain the name of the object they are linked to,
the Object Manager replaces the symbolic link name (i.e., \DosDevices\C:)with
the name of the linked object (i.e., \Device\HarddiskO\PartitionT).

NOTE Under Windows NT 4.0, the \DosDevices object type is itself a sym-
bolic link to the directory object \??. Therefore, under Windows NT
4.0, the Object Manager will first replace the \DosDevices symbolic
link name with \.”’and then restart parsing of the name.

The complete name is now \Device\HarddiskO\Partitionl\accounting\june-97.
Once the Object Manager has performed the name replacement, it begins the
parsing of the pathname once again, beginning at the root of the object name,
space. The object name space, including the portion managed by the file system
is illustrated in Figure 2-8.

Now, the Object Manager traverses the global object name space until it encoun-
ters the Partitionl device object. This is a device object type defined by the
Windows NT I/O Manager. The I/O Manager also supplies a parsing routine
when creating this object type. Therefore, the Object Manager stops any further
parsing of the pathname and instead forwards the open request to the Windows

* Note that the C: drive letter name is simply a shortcut provided by the Win32 subsystem to the \Dos-
Devices\C: symbolic: link object type in the Windows NT object name space. Therefore, the Win32 sub-
system is responsible for expanding the name before forwarding the request to the Windows NT
Executive. This is also the reason why you cannot use the C:\. . . pathname if you try to open or create
a filename from within the NT Executive (for example, from within your driver). You must instead use
the Windows NT Object Manager rccognizable pathname, beginning at the root of the Object Manager
name space.

V

Windows NT Object Name Space 59

Partion
managed by
Object Manager

o oo om0

. accounting payroll

Figure 2-8. Object name space

NT I/O Manager's parsing routine. The string passed to the Windows NT 1/O
Manager is that portion of the pathname that has not yet been parsed by the
Object Manager, namely \accounting\june-97. When invoking the parsing
routine, the Object Manager also passes a pointer to the Partitionl device object
to the NT I/O Manager.

The Windows NT I/O Manager now executes a reasonably complicated sequence
of instructions to perform the open operation on behalf of the caller. This
sequence is described in considerable detail in subsequent chapters. For now,
you should note that the 1/O Manager will typically identify the file system driver
that is currently managing the mounted logical volume for the physical disk repre-
sented by Partitionl, the named device object. Once it has identified the
appropriate file system driver, the I/O Manager will simply forward the open
request to the file system driver's create/open dispatch routine.

Now, it is the responsibility of the file system driver to process the user request.
Note that the filename passed to the file system driver is the portion that was not
parsed by the NT Object Manager: \accounting\june-97.

This is how user open/create requests end up in a file system driver. Under-
standing the sequence of operations that lead to the invoking of the file system

60 Chapter 2: File System Driver Development

create/open dispatch entry point will be quite valuable when we begin to explore
the implementation of the file system create/open dispatch entry point and the
file system mount logical volume implementation in greater detail.

Filename Handling for Network
Redirectors

Earlier in this chapter, we saw how a network redirector is a kernel-mode soft-
ware module that presents a file system interface to local users, but in reality
communicates with server modules on remote nodes to obtain data from the
remote shared logical volumes.

The Multiple Provider Router (MPR) and the Multiple Universal Naming Conven-
tion Provider (MUP) modules interact with the network redirector to present the
appearance of a local file system to the user on the client machine. These compo-
nents, in conjunction with a kernel-mode network redirector module, have the
responsibility of integrating the name space of the remote (shared) logical volume
file system into the local name space on the client node. Therefore, to design and
develop a network redirector module for the Windows NT operating system, you
will have to understand both of these components fairly well.

Multiple Provider Router (MPR)

The MPR module is a user-mode DLL executing on client nodes. It serves as a
buffer between the common application utilities that are network-aware and the
multiple network providers that may execute on the client node.

NOTE A network provider is a software module designed to work in close
cooperation with the network redirector. The network provider
serves as a sort of interface to the rest of the system, allowing net-
work-aware applications to request some common functionality
from the network redirector in a standard fashion, without having to
develop code specific to each type of redirector that may be in-
stalled on the client node.

You may be wondering how there can be multiple network redirectors on a
single client node. Having multiple redirectors installed and running on a client
node is not really an unusual condition if you stop to think about it. The
Windows NT operating system ships with the LAN Manager Redirector that is
supplied with the operating system itself. In addition, there are commercially avail-
able implementations of the Network File System (NFS) protocol as well as the

Filename Handling for Network Redirectors 67

Distributed File System (DPS) protocol that are also implemented as network redi-
rectors. Then, think about all of the third-party developers like yourself who
design and implement a network file system, and you could easily end up with a
situation where a client node will have more than one network redirector installed.

So what exactly does the MPR do? Consider the net command that is available
on your Windows NT client node. This command allows the user to create a new
connection to a shared, remote network drive. Furthermore, it allows the user to
obtain information about the connection to the remote node, browse shared
network resources on remote nodes, delete the connection when it's no longer
needed, and perform other similar tasks. As the user of the network or as an appli-
cation developer who wishes to interact with the multiple network redirectors that
may be installed on the machine, you would prefer to interact with the network
redirectors in some standard manner, without dealing with the peculiarities of any
particular network.

This is exactly what the MPR attempts to facilitate. The MPR has defined two sets
of routines, each belonging to a distinct, well-defined interface. There is a set of
network-independent APIs that are supported by the MPR DLL and are available
to all Win32 application developers who wish to request services from a network
redirector/provider. Similarly, there is another set of provider APIs that are
invoked by the MPR DLL and must be implemented by the various network
redirectors.

Therefore, a Win32 application trying to create a new network connection (for
example) would invoke a standard Win32 API routine called WNetAddConnec-
tion()or WNetAddConnection2(). These functions are implemented within
the MPR DLL. Upon receiving this request, the MPR DLL will invoke the NPAdd-
Connection () or an equivalent routine that must be provided by each network
provider DLL that has registered itself with the MPR. Once such a request is
received by the network provider DLL, the network provider can determine
whether it will process the request, returning the results of the operation back to
the MPR for subsequent forwarding onto the original requesting process, or
whether it will allow the MPR to do the work. Note that in order to process
requests, the network provider DLL will often invoke the kernel-mode network
redirector software using file system control requests. Chapter 11, Writing a File
System Driver Ill, explains how file system control requests are processed by the
file system driver (redirector).

62 Chapter 2: File System Driver Development

NOTE To register a network provider DLL with the MPR, the Registry on
the client node must be modified. If you design and implement a
network redirector and also decide to ship a network provider DLL
with it, your installation program will probably perform all the ap-
propriate modifications for you.

Appendix B, MPR Support, describes the modifications that must be
made to the Registry in order to install your network provider DLL.

The order in which the various network provider DLLs are invoked is dependent
upon the order in which the providers are listed in the Registry on the client node.

In the case of the NPAddConnection() request issued by the MPR to the
network provider DLL, the DLL most likely submits the request to the kernel-
mode redirector. The redirector attempts to contact the remote node specified in
the arguments to the request, tries to locate the shared resource on the remote
node, and also tries to make the connection on behalf of the requesting process.

If the request succeeds, and if the requesting process had specified it, the
network provider DLL may also try to create a symbolic link as a drive letter (e.g.,
X)) to represent the newly created connection to the remote shared resource
object. The symbolic link may refer either to a new device object created by the
kernel-mode redirector, representing the new connection, or to the common redi-
rector device object itself.* In either case, whenever the user's process attempts to
access the name space below the X: drive letter, the request will be redirected by
the 1/0 Manager to the network redirector in the kernel for further processing.

Consult Appendix B for a description of the functions that your network provider
must implement in order to support the common Windows NT network-aware
applications. If you implement a network provider DLL that supports the func-
tions described, your network redirector will be able to take advantage of system-
supplied utilities, such as the net command to add/delete/query connections to
remote (shared) resources.

Multiple UNC Provider

The Windows NT platform also allows users to access remote (shared) resources
using the Universal Naming Convention (UNC). This convention is pretty simple

* The network-provided DLL typically uses the Win32 function DefineDosDevices () to create the
drive letter (symbolic link object type). Also note that most file systems and network redirectors create a
named device object representing the file system device or the redirector device. Often, drive letters (sym-
bolic links) for remote shared network drives refer to the network redirector device object.

Filename Handling for Network Redirectors 63

in its design: each shared remote resource can be uniquely identified by the name
\\server_name\shared_resource_name.

There are very few restrictions on the characters that can be used in either the
server name and the shared resource name. You cannot use the "\" character as
part of either the server name or the shared resource name, but most other
common characters are allowed. The other restriction that you must be aware of
is that the total length of the UNC name (including the name of the remote server
and the name of the shared resource) cannot exceed 255 characters.

So when a user tries to access a remote shared resource by using a UNC name,
how does the name get resolved?

Since UNC is Win32-specific, the Win32 subsystem is always looking for UNC
names specified by a user process. Upon encountering such a name, the Win32
subsystem replaces the "\\" characters with the name \Device\UNC and then
submits the request to the Windows NT Executive.

The \Device\UNC object type is really a symbolic link to the object
\Device\Mup. The MUP driver is an extremely simple kernel-mode driver
module (unlike the MPR module discussed above, which resides in user space)
that has been described as a resource locator and is typically loaded automatically
at system boot time. It creates a device object of type FILE_DEVICE_MULTI_
UNC_PROVIDER during the driver initialization.* It also implements a create/open
dispatch routine that is invoked whenever a create/open request targeted to the
MUP driver is received, as in the case described above.

After the open request is received by the MUP driver, the MUP sends a special
input/output control (IOCTL) to each network redirector that has registered itself
with the MUP, asking the redirector whether it recognizes (and is willing to claim)
some subset of the caller supplied name (i.e.,, \server_name\shared_
resource_name\. . .).

Any redirector (or even more than one) can claim a portion of the remote
resource name. The redirector recognizing the name must inform the MUP about
the number of characters in the name string that it recognizes as a unique, valid,
remote resource identifier. The first redirector that registers itself with the MUP
has a higher priority than the next one to do so, and this ordering determines
which redirector gets to process the user request, if more than one redirector
recognizes the remote shared resource name.

* You will read in much greater detail about creating device objects and about device objects in general
later in this book.

64 Chapter 2: File System Driver Development

When any one redirector recognizes the name, the MUP prepends the name of
the device object for the network redirector to the pathname string, replaces the
name in the file object, and returns STATUS REPARSE to the Object Manager.
This time around, the request is directed to the network redirector that claimed
the name for further processing. Now the MUP is completely out of the picture
and will no longer be invoked for any operations pertaining to that particular
create/open request.

The only other optimization performed by the MUP is to cache the portion of the
name recognized by the redirector. The next time an open request is received
beginning with the same string, the MUP checks its cache to see if the name is
present, and if so, directly reroutes the request to the target network redirector
device object without performing the tedious polling that it had done the first
time around. Names are automatically discarded from the cache after some period
of inactivity (typically if 15 minutes have elapsed since the name was last used in
an open operation).

To work in conjunction with the MUP, your network redirector must do two
things:

* Register itself with the MUP, using a system-supplied support routine called
FsRtIRegisterUncProvider () . This typically is done by your driver at
initialization.

e Respond to the special device control request issued by the MUP, asking your
driver to check whether it recognizes a name.

Example code fragments are provided later in this book.

The next chapter discusses how you can incorporate structured exception
handling and the various synchronization primitives available under Windows NT
in your driver.

_In this chapter:

« Structured Exception

Event Logging ~ |
Driver
. Syncbhronization

e Structured Driver
el Development

(RTLs)

Writing a kernel-mode driver is not easy. Unfortunately, installing a new kernel-
mode driver on your production system is sometimes even worse. Drivers that
execute as part of the NT Executive could potentially crash your system and do so
in a way that makes it extremely hard to identify the responsible module. Further-
more, system crashes could occur with a certain regularity, or they might occur
only occasionally (typically, it seems, when you are praying hard that they do not
occur because you are doing something extremely important). Worse, a kernel-
mode driver could corrupt your data, and do so in such a way that by the time
you discover the corruption is taking place, it is too late to recover your data.

Therefore, if you are installing a new kernel-mode driver, there are certain expec-
tations that you would have from such a driver, such as:

e The driver should not cause data corruption. This is a fundamental responsi-
bility for kernel-mode driver designers and developers, and unfortunately, it is
the hardest characteristic to evaluate objectively.*

e The driver should not cause system crashes. The objective is to ensure that
even under adverse circumstances, when externally connected devices (such
as disk drives or network cards) are not functioning correctly, the drivers
must manage such errors gracefully. Note that the definition of handling an
error gracefully is slightly nebulous: it might mean that the driver should be
able to work around the situation if possible, or it might mean that the driver
should (at the very least) be able to shut itself down (i.e., not provide the

" Therefore, it's rare that good system administrators take new drivers and install them in production en-
vironments immediately. A wise alternative would be to try out the driver on noncritical machines and
evaluate its behavior over a reasonably long period of time. Unfortunately, the trial environment will
probably not be an exact duplicate of the environment on the production machines, and the system ad-
ministrator still can't be certain that the driver won't corrupt data in high-load, production environments.

65

66 Chapter 3: Structured Driver Development

associated functionality), but still allow the rest of the system to continue func-
tioning normally.

» Expanding on the preceding point, software errors present in the driver code
(which inevitably occur even when exceptional care is taken by developers)
should not cause the system to crash. This might seem paradoxical since
bugs, by definition, are unexpected and hence difficult to predict and man-
age. However, in many cases it is possible for kernel-mode driver developers
to prepare for the eventuality that software errors might creep into the code
and might not all be discovered during in-house testing. If the resulting driver
is implemented correctly, it is indeed possible to ensure that, in most cases,
such bugs do not result in system crashes.

e The driver should be able to provide adequate status reports to the system
administrator. For example, if an error condition occurs, a clear, concise
description of the problem should be conveyed by the driver to the adminis-
trator, allowing the administrator to try to rectify the problem if possible, or to
be aware that certain loss of functionality has either already occurred or might
occur shortly. Even when the driver and its devices are functioning correctly,
there might be situations in which clear, concise status reports should be pro-
vided to system administrators. Data provided by drivers during error condi-
tions could include information on recovered errors, certain performance-
related statistics, or the values of automatically tuned driver parameters. This
would allow administrators to understand the behavior and limitations of the
system and might also afford them the opportunity to modify the work load
or to further fine-tune driver parameters based on expected usage patterns.

The responsibility of achieving the expectations of the user falls squarely upon
the kernel-mode driver designers and developers. The good news, however, is
that it is possible to develop software for the Windows NT platform that meets the
expectations listed here; indeed, the operating system provides ample support for
developers to allow them to incorporate such desired features into their drivers.

Exception Dispatching Support

An exception is an atypical event that occurs due to the execution of some instruc-
tion by a thread. Exceptions are processed synchronously in the context of the
thread that caused the exception condition. Since exception conditions are
synchronous events that occur as a direct result of the execution of an instruction,
they can be reproduced, provided that exactly the same conditions can be regen-
erated and the instruction is retried. The Windows NT Kernel provides support for
exception dispatching when an exception is encountered.

68 Chapter 3-' Structured Driver Development

1. Creates a trap frame for the thread. This trap frame contains the contents of
all the volatile registers, i.e., registers with contents that might get overwritten
as a result of processing the exception condition.

2. Optionally creates an exception frame, which contains the contents of other
nonvolatile registers. The trap handler module always creates an exception
frame when processing an exception condition.

3. Creates an exception record structure, which contains the exception code
describing the exception that occurred, the exception flags, the address in the
code at which the exception occurred, and any other parameters that might
be associated with the specific exception condition. The only value that is
currently legal for the exception flags field is EXCEPTION_NONCONTINU-
ABLE, indicating that this is a fatal exception and further processing should
be terminated.

Some exceptions may have additional parameters that are supplied by the
trap handler to provide more information about the exception condition. The
only such exception condition that has additional parameters supplied is
EXCEPTION_ACCESS _VIOLATION, which provides two associated argu-
ments, one indicating whether it was a read or a write operation that caused
the access violation, and the other is the virtual address that was inaccessible.

4. Transfers control to the Windows NT kernel exception dispatcher module.*
The exception dispatcher module in the Windows NT Kernel is called
KiDispatchException().

Possible Outcomesfrom Processing an Exception

The exception dispatcher module in the kernel determines the processor mode in
which the exception condition occurred. User-mode exceptions and kernel-mode
exceptions are handled slightly differently, but the basic philosophy is the same.
Before we go through the steps that the exception handler undertakes in
processing the exception condition, we will first discuss briefly the possible
outcomes from processing an exception condition.

Each exception condition can be processed by the exception handler module in
one of three ways:

e The exception handler changes one or more of the conditions that caused the
problem and then directs the exception dispatcher to retry the instruction.

* Some exception conditions are automatically handled by the trap handler and do not require transfer
of control to the exception dispatcher module. For example, debugger breakpoints are handled by direct-
ly invoking the debugger.

—

Exception Dispatching Support 69

For example, consider an exception that indicates a page fault occurred. The
exception handler will invoke the page fault handler to bring the contents of
the page into system memory from some secondary storage device or from
across a network. The memory access is then retried and should now succeed.

Another example is when a code segment tries to allocate some memory and
subsequently tries to access it. If the original memory allocation failed, access-
ing a pointer to that memory block results in a memory access violation. The
following example illustrates such a condition:

int *SomePtr = NULL;

// allocate 4K bytes
SomePtr = ExAllocatePool (PagedPool, 4096);

// Normally, the memory allocation request will succeed and SomePtr
// will contain a valid pointer address. However, it is possible that
// the request may occasionally fail. For the sake of discussion,

// assume that in the particular instance described below, the

// memory allocation request does fail and therefore ExAllocatePool()
// returns NULL.

// Although I personally recommend always checking the value of the
// returned pointer value above, many other designers might argue
// that structured exception handling allows for more readable

// code by avoiding unnecessary, multiple, if (...) {}, kind of

// statements.

RtlZeroMemory(SomePtr, 4096);

// 1T SomePtr was NULL, we"ll get an exception in the statement above.
Invoking RtlZeroMemory () with a NULL pointer results in the
EXCEPTION_ACCESS VTOLATION exception being raised. In this case, the
exception handler can set the value of SomePtr to point to some preallo-
cated memory and retry the instruction.

WARNING Retrying the assembly code that corresponds to RtlZeroMemo-
ry () (in this case) could lead to unexpected error conditions. Un-
less the compiled assembly code is closely examined, you can't be
sure the modification of SomePtr in the exception handler results
in the expected behavior, e.g., the compiler might have initialized a
register with the initial value of SomePtr, which was NULL. Now,
the value contained in the register will always be reused because
the instruction that was retried might be a move memory instruction
following the one that initialized the register. This means the reini-
tialization of SomePtr in the exception handler won't take effect,
and the exception condition simply reoccurs in an infinite loop.
Therefore, retrying of instructions that have led to an exception con-
dition is a tricky proposition at best.

70

Chapter 3-' Structured Driver Development

If desired, exception handlers can return a specific return code, indicating
that the instruction resulting in the exception condition should be retried.
Note that the constant value is actually unimportant but the fact that such a
value is returned is noteworthy.

The exception handler decides that the exception condition is one it does not
wish to process.

If this happens, an appropriate value is returned indicating that the exception
should be propagated. Therefore, the exception dispatcher will continue
searching for other handlers that might wish to process this exception.

For example, imagine that a particular exception handler can process only
one type of exception condition, say EXCEPTION_ACCESS_VIOLATION. If
an exception indicating data misalignment is encountered, this particular
exception handler will return a value indicating that it could not process the
specific exception condition and that the dispatcher should continue travers-
ing the call frames, looking for an exception handler that is prepared to pro-
cess this specific exception.

The exception handler executes a specific block of code, which processes the
exception condition and then indicates to the caller that execution should
resume following the exception handler code.

In this case, the exception handler does not retry the instruction that caused
the original exception condition, but instead tries to resume execution at the
instruction immediately following the exception handler code.

This method of processing the exception condition is substantially different
from simply modifying some condition and retrying the instruction as
described previously. Here, the exception handler performs some processing
and then wants the instruction execution to resume immediately following the
exception handler code. In the case where some condition causing the excep-
tion was modified (described earlier), the exception handler wanted execu-
tion to commence at the same instruction that caused the exception condition
in the first place.

It is not necessary that the exception handler reside in the same function or proce-
dure in which the exception condition occurred. It could have been in any of the
routines that comprised the calling hierarchy.

For example, consider a situation in which procedure_A invokes procedure B,
which in turn invokes procedure_C. Further, imagine that an exception condition
(say EXCEPTION_ACCESS_VIOLATION) was encountered at an instruction in
procedure_C. It is quite possible that neither procedure_ B nor procedurejC have
an exception handler that is prepared to process the exception condition.

> cllB

Exception Dispatching Support 71

If an exception handler resides in procedure_A, and if the exception handler in
procedure_A handles the exception condition, execution flow will resume in
procedure_A at the instruction immediately following the exception handler code.
The stack frames for procedure_ C and procedure B will be automatically
unwound in order to resume execution in procedure_A. Figure 3-1 illustrates this.

Figure 3-1- Flow ofexecution when an exception handler handles an exception

As you see, there are three different ways in which an exception handler might
respond if called upon to process a particular exception condition.

As will be discussed later, part of unwinding the stack frames for procedure_C
and procedure_B will cause any appropriate termination handlers to be invoked.
This allows for systematic unwinding in those procedures and thereby prevents
nasty side-effects such as deadlock conditions which might otherwise occur due
to this unexpected transfer of flow of control from procedure_C to procedure_A.

Dispatching Kernel-Mode Exceptions

Given these different ways in which an exception handler might process an excep-
tion condition, it is useful to understand what the exception dispatcher code in the
i NT kernel, KiDispatchException(), actually does to process the exception
condition. The following sequence of steps listed is executed by KiDispatchEx-

ception () when it's invoked for an exception condition caused by a thread
executing kernel-mode code:

72

Chapter 3-' Structured Driver Development

1. First, the exception dispatcher checks to see if a debugger is active, and if so,

it transfers control to the debugger.

The debugger will indicate either that the exception has been processed by
returning TRUE, or that the exception was not processed and the search for
another handler should proceed.

Note that the debugger may have modified the current instruction pointer and/
or the current stack pointer obtained from the execution context structure
passed to it. Therefore, if the exception is processed by the debugger, execu-
tion will not necessarily resume at the same instruction that caused the
exception condition.

If the debugger returns TRUE, indicating that it has processed the exception,
KiDispatchException() returns control back to the thread that caused

the exception via the trap handler, which was responsible for invoking the
dispatcher routine.

. If a debugger is not present or if the debugger returns FALSE, indicating that

it did not process the exception, the dispatcher attempts to invoke any call
frame-based exception handlers.

Invocation of a call frame-based exception handler is performed via an RTL func-
tion call, RtIDispatchException(). This routine is not typically exposed to
third-party driver developers.

The RtIDispatchException() function searches backward through the
stack-based call frames looking for an exception handler prepared to process
the exception. This search continues until either some exception handler
returns a code indicating that the instruction that caused the exception condi-
tion should be retried, or the entire call hierarchy has been examined for
possible appropriate exception handlers and none were found.

Compilers for the Windows NT platform that support structured exception
handling register exception handlers with the RTL, on behalf of executing
threads. Unfortunately, the functions used to register and deregister exception
handlers are not ordinarily exposed to third-party developers. The good
news, however, is that it would be rare for a kernel-mode driver to need to
access these routines directly, since the compiler typically provides structured
handling support and performs the dirty work for you.

The RTL package also provides an interface for compiler developers to
register termination handlers on behalf of executing threads. Termination
handlers are described later in this chapter.

. In Step 2, a call frame-based exception handler may or may not be found.

Even if one or more exception handlers were identified, these exception
handlers might not be prepared to process the specific exception condition.

ol

Exception Dispatching Support 73

As described later in this section, structured exception handling allows you to
check the type of exception condition and determine whether you wish to
handle the exception in your exception handler or whether you wish to prop-
agate the exception condition to the next possible exception handler.

If the return code from RtIDispatchException() is FALSE, indicating
that the exception has not been processed, the exception dispatcher once
again attempts to invoke any debugger that may be executing. This is called
second chance processing and the actions undertaken at this time are the
same as would be taken had a recursive exception been encountered.

If a debugger is connected, it has a final opportunity to keep the system alive.
However, if no debugger is connected or if the debugger once again returns
FALSE, the exception dispatcher will invoke KeBugCheck () and halt the
entire system, resulting in the dreaded blue screen of death.

The reason for the system crash will be given as KMODE_EXCEPTION_NOT _
HANDLED. This indicates that no exception handler was found that would
process the exception that occurred during kernel-mode execution. Unless
extreme measures are called for, your code (if you happen to write a kernel-
mode driver) should never, ever, cause such a blue screen.

Exception dispatching support, as well as support for registering call frame-based
exception handlers, is provided by the Windows NT operating system and is not a
function of (or dependent upon) any specific compiler. That said, you might note
that unless you use a compiler that supports and uses the Windows NT exception
handling model, you cannot develop code that can take advantage of the excep-
tion handling features provided by the operating system. The Microsoft C/C++
compiler provides structured exception handling support to both user-mode and
kernel-mode code.

The Exception Dispatcher: User Mode Exceptions

The direct invocation of RtIDispatchException() by KiDispatchExcep-
tion () is done only for exceptions that occur while code is executing in kernel
mode. If the exception occurs in user mode, KiDispatchException()
performs slightly different processing.

A message is sent to the process's debug port using LPC (the local procedure call
interface). If the port processes the exception, there is no further work for
KiDispatchException().

Consider the case, however, where the debug port for the process fails to handle
the exception. Attempting to execute user-mode exception handlers in the kernel
would not be a wise thing to do. At the very least, it would introduce a large secu-
rity hole in the operating system. Therefore, the KiDispatchException ()

74 Chapted-' Structured Driver Developn

function prepares to transfer control to a corresponding user-space excepi
dispatcher module.

The dispatcher function pushes the trap frame, the exception frame, and
exception record on the user space stack. Then, KiDispatchExecutioi
modifies the exception record such that, once control is returned from the exc
tion dispatcher and the trap handler, a special user-space routine will be invo
that will further process the exception condition by invoking any user-mi
exception handlers. Note that the modification performed here involves chang
the instruction pointer value in the exception record to point to the user-sp
exception dispatcher function.

Treatment of user-mode exception handlers is similar in that the calling hierar
is examined to see if any exception handler can be found that is preparec
process the exception. If none of the user-mode exception handlers process
exception condition, the process containing the thread that caused the excep
condition is typically terminated. Termination of the user-space thread is genet
done by the default exception handler, which is usually installed by the Wi
(and other) subsystems.

Now that you understand the sequence of actions that take place when an exc
tion condition occurs, the next logical question to ask is: How do | write ¢
that would be able to process unexpected events, such as exception conditi
Good question, and the next section provides you with one answer.

Structured Exception Handling (SEH)

The Windows NT Executive makes extensive use of structured excep
handling. Each of the NT kernel-mode components tries to prepare for the eve:
ality that unexpected error situations might occur as a result of executing a
and these modules work hard to ensure that any unexpected error conditions
not bring down the entire system. It is extremely good practice for indepen
driver developers to also implement structured exception handling in their dr
implementations. This results in more robust kernel-mode drivers, leading t
more stable Windows NT system, which in turn results in happier customers.

T

Structured Exception Handling (SEH) 75

TIP As a kernel-mode driver designer, you can choose to avoid using
structured exception handling in your driver. Many kernel-mode
drivers do this and get away with it. However, if you develop file
system drivers, | strongly urge you to use SEH in your driver, not
only because it's the right thing to do, but also because some of the
Windows NT Cache Manager support routines and some of the Vir-
tual Memory Manager functions will raise exceptions, instead of re-
turning errors under certain conditions that aren't catastrophic and
shouldn't result in a system panic. The expectation is that the file
system driver will handle such exceptions and treat them as regular
error conditions.

If your driver uses structured exception handling, you can handle
such exceptions gracefully; failure to use structured exception han-
dling will result in an otherwise avoidable bugcheck condition.

Before we discuss what structured exception handling (SEH) is and the benefits

that SEH can provide, let me tell you what structured exception handling cannot
provide.

Structured exception handling is not a panacea for bad driver design or shoddy
implementation. If you do not take care during driver design and development,
no amount of structured exception handling is going to rectify the situation. Simi-
larly, SEH cannot ensure that system crashes can be completely avoided; trying to
access paged memory within code that executes at an IRQ level greater than or
equal to IRQL DISPATCH_LEVEL will result in a guaranteed system crash,
despite the presence of exception handlers.

Finally, SEH should become pervasive throughout the driver implementation in
order to have substantial benefits from its usage. If exception handling is not
implemented systematically throughout the driver code base, the implementation
will still be vulnerable to unexpected error conditions in the portions of the code
that are not protected by exception handlers.

Structured exception handling is a methodology by which a developer or designer
can provide exception handlers that can process exception conditions, avoiding
the default processing performed by KiDispatchException(), namely, the
call to KeBugCheck ().

NOTE No default handler exists to catch all kernel-mode exception condi-
tions. Therefore, if your file system or filter driver causes an excep-
tion to occur but does not provide any exception handler to process
such exceptions, you will bring down the system.

76 Chapter 3-' Structured Driver Development

Furthermore, structured exception handling allows the designer to provide a
systematic method for unwinding from within a specific block of code. This
systematic unwinding can help ensure that exception conditions do not result in
deadlocks or hangs or other similar nasty conditions because the thread cannot

perform adequate cleanup processing when trying to recover from an unexpected
error condition.

SEH requires compiler support; on Windows NT, a compiler that provides support
for SEH is the Microsoft C/C++ compiler.

As | mentioned earlier in this chapter, an exception condition results in control
being transferred to the kernel trap handler. The trap handler might resolve
certain obvious exception conditions or it may in turn transfer control to KiDis-
patchException(), the exception dispatcher code within the NT kernel.
KiDispatchException() in turn invokes RtIDispatchExceptionO to
invoke any exception handlers that the developer might have provided. Your
exception handler must be registered with the run-time library for it to be
invoked. This registration is performed transparently by the Microsoft C/C™
compiler, which generates appropriate code to achieve this whenever it encoun-
ters the try-except construct (described below) in your code. Similarly,
automatic unwinding of your stack-based call frame is performed whenever an
exception condition occurs and you have used the try-finally construct in
your code. The C/C++ compiler, cooperating with the run-time library, generates
appropriate code for unwinding the call frame.

Here are the two primary constructs of structured exception handling:

e The try-except construct allows you to create code that can handle unex-
pected events or exception conditions cleanly, and is defined as follows:
try {

// Execute any code here.
} except (/* call an exception Filter here. */) {

// Code executed only if the exception Filter returns

//a code of EXCEPTION_EXECUTE HANDLER.

// This code is called the exception handler code.

// Once this code is executed, control is transferred to
// the next instruction following the try-except construct.

}

This construct consists of three parts: the try construct that allows you to
define a block of code that is protected by your exception handler; the excep-
tionfilter allows you to specify whether you wish to handle a specific excep-

Structured Exception Handling (SEH) 77

tion condition; and the exception handler performs any exception condition-
related processing.

e The try-finally construct allows you to specify a termination handler for
a specific block of code. By doing so, you can ensure that correct cleanup-
related processing is always performed, regardless of the method chosen to
exit from the specific block of code. This construct is defined as follows:

try {
// Execute any code here.

} finally {
// Perform any cleanup here. The code within the finally
// construct (also called the termination handler) will be
// executed irrespective of the method chosen to exit from
// the block of code protected by the try construct above.

¥

The try-finally construct consists of two parts: the try construct that
allows you to define a block of code that is protected by the termination han-
dler, and the finally construct, which contains the code comprising the ter-
mination handler itself.

The try-except Construct

The try-except construct allows you to protect a block of code such that, if an
exception occurs within the protected block of code, control is transferred (by the
RtIDispatchException() routine) to your exception handler. In order for
this transfer of control to take place, the compiler and the Windows NT Kernel
have to cooperate.

The compiler, upon encountering a try-except construct, automatically inserts
additional code that registers an exception handler for that particular block of
code (called a frame) with the NT Kernel. As described earlier in this chapter, the
kernel is then responsible for assuming control when an exception condition
occurs, and subsequently, the kernel allows your exception handler to take a
crack at handling the exception.

Every exception that occurs as a direct result of executing code within the frame
protected by the exception handler results in an eventual transfer of control to the
exception handler code, unless the exception is handled by the attached
debugger. However, you may not want your exception handler to handle all
possible exception conditions; therefore, you can utilize an exception filter to
determine whether your code should handle the exception or not.

The exception filter is the portion of code that is bracketed following the except
keyword. Note that the exception filter can be fairly complex and you can actu-

78 Chapter 3-' Structured Driver Developme

ally invoke a function called the exception filter function to perform ai
processing that is part of your exception filter. The exception filter can return 01
of three values:

« EXCEPTION_EXECUTE_HANDLER
« EXCEPTION_CONTINUE_SEARCH
= EXCEPTION_CONTINUE_EXECUTION

The EXCEPTION_EXECUTE_HANDLER return code value causes the excepti<
handler to be executed. After the exception handler has completed its processir
execution flow resumes at the first instruction immediately following the exce
tion handler. To understand this better, consider these sample routines:

NTSTATUS MyProcedure A (

int *Somevariable)

{
char *APtrThatWasNotInitialized = NULL;
int Another InaneVariable = 0;

NTSTATUS RC = STATUS_SUCCESS ;

try {
*SomeVariable = MyProcedure_B(APtrThatWasNotInitialized) ;

// The following line is not executed if an exception occurred
// in the procedure call.
Another InaneVariable = 5;

} except (EXCEPTION EXECUTE HANDLER) {

RC = GetExceptionCode () ;

DbgPrint ("Exception encountered with value = Ox%x\n", RC) ;
}

// Execution flow resumes here once the exception has been handled.
AnotherlnaneVariable = 10;

return(RC);
}

int MyProcedure B (
char *IHopeThisPtriWasInitialized)

{
char ACharThatlWillTryToReturn = 'A?;

/] Exception occurs in the following line if "IHopeThisPtrWaslnitializec
// is invalid.
*IHopeThisPtrWasInitialized = ACharThatIWillTryToReturn;

// The following code is never executed if an exception occurred abov
ACharThatlWillTryToReturn = 'B';

return(0);

-

Structured Exception Handling (SEH) 79

As you can see in the code fragment, an exception condition will occur when
MyProcedure_B attempts to copy a character using the input argument char-
acter pointer. Since MyProcedure_B does not have an exception handler, the
handler in the calling function (MyProcedure_A) will be invoked. The excep-
tion filter in MyProcedure_A is trivial, it immediately returns EXCEPTION_
EXECUTE_HANDLER. This results in the exception handler being invoked, which
simply obtains the exception code (STATUS_ACCESS_VTOLATION) and issues a
debug print call.

The interesting point to note is that execution flow (after the exception handler
code has executed) resumes at the statement AnotherlnaneVariable = 10
in MyProcedure_A. All statements following the one that caused the exception
in MyProcedure_B are skipped and so are any statements that follow the invoca-
tion of MyProcedure_B within the function MyProcedure_A. This resumption
of execution at the instruction immediately after the exception handler code is
achieved by unwinding of the stack-based call frames.

Although the exception filter was extremely trivial in the preceding example, it
can potentially be quite complex. You can invoke a separate filter function to
determine what you wish to do with the exception condition, but remember that
the filter function must return one of the three status codes listed above. As an
argument to the filter function, you can pass the exception code using the GetEx-
ceptionCode () intrinsic ~ function call or you can use the
GetExceptionIinformation() intrinsic function call to pass even more infor-
mation, such as the thread context represented by the contents of the processors'
registers.

The GetExceptionCode () intrinsic function returns the exception code value;*
this function can be invoked either within the exception filter or within the excep-
tion handler, while the GetExceptionInformation() intrinsic function can
only be invoked within the exception filter.

Typically, your exception filter (or any filter function that you use) will not
require the additional information contained in the EXCEPTION_POINTERS struc-
ture, returned by the GetExceptionlnformation() function. Although it is
theoretically possible to modify the contents of individual registers contained
within this structure, doing so results in extremely nonportable, and probably
nonmaintainable, code; | would highly discourage it.

Note that neither the GetExceptionCode () function call nor the GetExcep-
tionInformation () call can be invoked from the exception filter function.

* It actually returns the same value that you could obtain from the ExceptionCode field in the
EXCEPTION_RECORD structure defined later.

SO Chapter 3: Structured Driver Development

The following code fragment demonstrates the use of the exception filter function:
NTSTATUS MyProcedure A (

int *SomeVariable)

{
char *APtrThatWasNotinitialized = NULL;
int Another InaneVariable = 0;
NTSTATUS RC = STATUS_SUCCESS ;
try{

*SomeVariable = MyProcedure_B (APtrThatWasNotInitialized) ;

// The following line is not executed if an exception occurs
//in the procedure call.
AnotherlnaneVariable = 5;

} except (MyExceptionFilter (GetExceptionCodeO ,
GetExceptionlnformation())){
RC = GetExceptionCode () ;
DbgPr int ("Exception with value = Ox%x\n", RC) ;
}

// Execution flow resumes here once the exception has been handled.
AnotherlInaneVariable = 10;

return (RC) ;
}

int MyProcedure_B (
char *1HopeThisPtriasInitialized)

{
char ACharThatIWillTryToReturn = "A! ;

// Exception occurs in the next statement if the value of
// IHopeThisPtrWaslInitialized is invalid.
*IHopeThisPtriasInitialized = ACharThatlWillTryToReturn;

// The following code is never executed if an exception occurred above.
ACharThatlWillTryToReturn = "B";

return(0) ;
}

unsigned int MyExceptionFilter (

unsigned int ExceptionCode,
PEXCEPTION_POINTERS ExceptionPointers)
{

// Assume we cannot handle this exception.
unsigned int RC = EXCEPTION_CONTINUE_SEARCH;

// This function is my exception filter function. It must return
// one of three values viz. EXCEPTION_EXECUTE_HANDLER,

V4 EXCEPTION_CONTINUE_SEARCH, or EXCEPTION_CONTINUE_EXECOTION.
// In our example here, we decide to handle access violations only.

v

Structured Exception Handling (SEH) 81

switch (ExceptionCode) {
case STATUS_ACCESS VIOLATION :

RC = EXCEPTION_EXECUTE_HANDLER;
break ;

default:
break;
}

// IT you wish, you could further analyze the exception condition by
// examining the ExceptionPointers structure.

ASSERT ((RC == EXCEPTION_EXECUTE_HANDLER) ||
(RC == EXCEPTION_CONTINUE_SEARCH) | |
(RC == EXCEPTION_CONT INUE_EXECUTION)) ;

return(RC) ;
3

Exception handlers can be nested, either across procedure calls or even within
the same function. Note that certain exception conditions are fatal errors (e.g.,
accessing paged memory that causes a page fault at an IRQL greater than or equal
to DISPATCH_LEVEL) and will result in a system panic,* regardless of the fact
that you had inserted exception handlers in your code. Therefore, as mentioned

earlier in this chapter, do not assume that using exception handlers will guarantee
that all error conditions can be effectively trapped.

The try-finally Construct

The try-finally construct represents a termination handler and is used to
ensure consistent unwinding from within a block of code, even when exception
conditions cause abrupt transfer of control to some other call frame. The concept
here is very simple: consider a block of code protected within a try-finally
construct. Before control is transferred to any instruction outside of the try-

finally construct, statements enclosed within the finally portion of the
construct are executed.

This simple example illustrates the point:

NTSTATUS MyProcedure_A (

int *SomeVariable,

int AnotherVariable)

{
char *APtrThatWasNotInitialized = NULL;
int Another InaneVariable = 0;
int AnotherlnaneVariable2 = 0;
NTSTATUS RC = STATUS_SUCCESS;

* The VMM will bugcheck the system when it notices that the page fault was incurred at high IRQL.

82

}

Chapter 3-' Structured Driver Devel opnent

try {

if (1Anothervariable) {
AnotherlnaneVariable = 7;
}

*SomeVariable = MyProcedure_B (APtrThatWasNotInitialized,
&AnotherlnaneVariable) ;

// The following line is not executed if an exception occurs
//in the procedure call above.
AnotherlnaneVariable2 = 5;

} except (MyExceptionFilter (GetExceptionCode () ,

}

GetExceptionInformation())) {

// Even if an exception condition got us here, the value of
// AnotherlnaneVariable MUST be 15 since the statements within
// the finally portion in MyProcedure B get executed before we
// start executing any code within the exception handler.
ASSERT (AnotherlnaneVariable == 15);

RC = GetExceptionCode () ;

DbgPrint(“"Exception with value = Ox%x\n", RC) ;

/71 will assert that AnotherlnaneVariable is set to 15 because the
// assignment is within the "finally" construct in MyProcedure B and hence
// the assignment operation MUST have been performed.

ASSERT (AnotherlnaneVariable == 15);

// Execution Flow resumes here once the exception has been handled.
AnotherlnaneVariable = 10;

return(RC) ;

int MyProcedure B (

char *IHopeThisPtrasInitialized,

int *AnotherlnaneVariable)

{
char ACharThatiWillTryToReturn = "A%;
try {

if (*AnotherlnaneVariable ==7) {
// This is a BAD thing to do if you value system performance.
// However, 1 am executing a return here to illustrate that the
// code within the "finally" below will get executed even though
// 1 am abruptly returning from this function call.
return(1);

}

// Exception occurs here if IHopeThisPtriasinitialized is invalid.
*IHopeThisPtriasInitialized = ACharThatIWillTryToReturn;

i

v

}

Structured Exception Handling (SEN) 83

11 The following code is never executed if an exception occurs
// above .

ACharThatiWillTryToReturn = 'B';

} finally {
// \hatever happens above, i.e., whether a retum statement was executed
//0or whether an exception condition occurred, the following code will
// get executed. Note that if an exception did occur, the following
// code will get executed BEFORE the code within the exception
// handler in MyProcedure A gets executed.
*AnotherlnaneVariable = 15;

}

return(0);

Code for the exception filter function MyExceptionFilter () was presented
earlier while discussing the try-except construct.

There are three different ways that flow of control can be transferred out of
MyProcedure_B:

It is possible that the return statement within the try-finally construct
does not get executed and no exception condition occurs.

This would happen if, for example, AnotherVariable is initialized to a
valid value.

In this case, all of the statements between the try and the finally key-
words will get executed; then the code within the finally construct that
comprises the termination handler will execute and then return control to
MyProcedure_A via the return (0) statement.

Consider the case where AnotherVariable is set to 0. Now, the
return (1) statement within MyProcedure_B will return control back to
MyProcedure_A. However, due to the presence of the try-finally con-
struct, the code within the finally portion will get executed before the
return (1) statement is processed. Therefore, the value of *Another-
InaneVariable will be set to 15.

Now, consider the case where AnotherVariable is not set to 0, and
APtrThatWasNotlnitialized is set to NULL. We know that this will
result in an exception condition (STATUS ACCESS VIOLATION) in
MyProcedure_B. You are also aware that MyProcedure_A has an excep-
tion handler that will process this exception since the exception filter used by
MyProcedure_A is willing to handle exceptions of this type.

However, before the exception handler gets executed in MyProcedure A,
the kernel unwinds the stack-based call frames. Part of this unwinding
involves execution of any statements within the termination handlers* that pro-

84 Chapter 3-' Structured Driver Development

tect any of the frames comprising the calling hierarchy between
MyProcedure_A and MyProcedure_B.

In our example, MyProcedure_A directly invokes MyProcedure_B and so
there is only one frame to unwind from and one corresponding termination
handler.

Since the affected block of code (in which the exception occurred) is pro-
tected by a termination handler, the statements within the finally portion
will be executed before statements comprising the exception handler in
MyProcedure_A are executed. Therefore, the value of *Anotherlnane-
Variable will be set to 15 and we have an ASSERT in the exception han-
dler in MyProcedure_A to check for this fact.

Typically, termination handlers are not used to perform the kind of simple initial-
ization shown in the example. Rather, termination handlers are used to ensure
that any necessary cleanup is performed before transferring control to some other
module. For example, if memory had been allocated for some temporary
purpose, freeing of this memory can be done within the termination handler
(some BOOLEAN variable can be checked to see if memory had indeed been allo-
cated or the value of the pointer itself can be checked if the pointer is always
guaranteed to have been initialized to NULL).

Similarly, if any locks had been acquired (e.g., some ERESOURCE type of
resource or some MUTEX had been acquired), the lock can be released from
within the termination handler. Therefore, the termination handler is a powerful
tool that can ensure that all required cleanup is performed in a consistent fashion
and is guaranteed to be done, regardless of the method used to exit from the
protected module.

A word of caution

In the preceding example, | placed a return (1) statement in the middle of
MyProcedure_B in a block of code protected by a termination handler. The
purpose of using this return statement was to demonstrate that even if such
statements are used to exit the protected frame, the termination handler will dtill
be automatically executed due to the stack-based call frame unwinding that takes
place. This concept applies to other C statements, such as break and continue,
which cause a transfer of control to some other statement. If this transfer of

* It is possible to prevent call frame unwinding in certain cases by inserting a return statement within
the termination handler. However, this could result in completely indecipherable and unmaintainable |
code, and | strongly urge you not to even consider such esoteric usage and implementation of termination
handlers.

T

Structured Exception Handling (SEH) &5

control is to an instruction outside of the protected frame, the termination handler
will always get executed before such a transfer of control takes place.

However, if you care about the performance exhibited by your driver, you should
try never to use such statements in any frame that is protected by a termination
handler. The reason for this is simple: call frame unwinding is an expensive opera-
tion in terms of execution time. In fact, on some processor architectures,
unwinding can result in the execution of literally hundreds of extra assembly
instructions. Therefore, you should try to avoid such unwinding, unless it
happens because of some exception condition.

NOTE Exception conditions are, by definition, atypical events. Therefore,
the prime consideration in dealing with an exception condition is to
recover as gracefully as possible; performance considerations are
secondary.

You might be concerned that avoiding the return statement in code that is
protected by a termination handler could be very limiting. | would agree with that
analysis; therefore, 1 will recommend that you use the following method to work
around this limitation:

// Who says gotos are always bad ?7?7??
// Define the following macro in some global header file.
#define try_return(S) { (S) ; goto try exit; }

NTSTATUS AnotherProcedureThatUsesATerminationHandler (void)

NTSTATUS RC = STATUS_SUCCESS ;

try {

if (INT_SUCCESS(RC)) {
// Assume for example that some memory allocation failed above
// and that normal execution cannot continue.
// Use the try_return MACRO here instead of a simple return
// statement.

// Note that any legitimate C statement can be executed as part of
// the macro itself.
try_return(RC);

try_exit: NOTHING;
} finally {

¥
return(RC);

86 Chapter 3: Structured Driver Development

The try_return macro simply performs a jump to the end of the function (actu-
ally, it should cause a jump to the block of code just before the termination
handler as illustrated in the code fragment). Additionally, it allows you to execute
any legitimate C statement before the jump is performed. By using try_return
instead of directly using a return statement, you can avoid the overhead of
having the compiler perform call frame unwinding (to ensure that the termination
handler code is executed) on your behalf.

By consistently utilizing the try_ return macro in your code and also using
termination handlers systematically, you can take complete advantage of the
powerful functionality that termination handlers provide (especially with regard to
consistent clean-up after error conditions that cause a premature exit from the
frame) and yet not suffer from the performance degradation associated with call-
frame unwinding.

Using both exception handlers and termination handlers together

Using both types of handlers together is the right way to both protect your code
from unexpected exception conditions and also to ensure consistent clean-up
within the frame. Typically, the following method can be employed:

NTSTATUS AProcedureForDemonstrationPurposes (void)
{
NTSTATUS RC = STATUS_SUCCESS ;

// The outer exception handler ensures that all exceptions will first
// be directed to us.

try {
// The inner termination handler is our guarantee that we will always
// get an opportunity to clean-up after ourselves.
try {

try_exi t: NOTHING;

} finally {
// Clean-up code goes here.

¥
} except (/* the exception filter goes here */) {
/ /My exception handler goes here.

b
return(RC);
}

Event Logging

Often, kernel-mode drivers need to convey information to the system adminis-
trator or to the user of the host machine. This information could include error

p—

Event Logging S7

messages possibly caused by software or malfunctioning of attached hardware
peripherals, warning messages that might indicate recovered errors or the possi-
bility of an impending error, and informational (or status) messages indicating that
some important activity had transpired.

The Windows NT Event Log serves as a central repository for messages sent by
various software modules on that machine. The event log is a database containing
event records that have a fixed, defined format. A user can either use the system-
supplied event log viewer to extract information from the event log database or
use the API supplied by the Win32 subsystem environment to obtain such data.

NOTE Although it might be possible to decipher the actual record structure
of an event log entry in the file, if you wish to develop your own
event log viewer, you might be better off simply using the Win32-
based supplied API to access the event log file. This API includes
calls to open the file, obtain individual records, and close the file.

The concept underlying the usage of the event logging facility in Windows NT is
fairly simple. The kernel-mode driver logs an event indicating that something
significant has occurred. Each event, which must be defined in a message file, has
a unique event identifier associated with it. The event identifier has the same
format as other NTSTATUS type of status codes (the format is described later).
The logged event contains information such as the event identifier, the name of
the component logging the event, or any strings or other binary data that should
be associated with the event. The event log also allows the kernel module to
include other pertinent information for events indicating an error condition, such
as the number of times the operation has been retried (prior to logging the
event), an offset in the device where the error occurred, the status that was
returned by the driver to the 1/O Manager in the 1/0O Request Packet (IRP), and
other similar information.

Event identifiers have replacement strings associated with them. For example, the
system-defined error IO_ERR_PARITY has the following replacement string asso-

ciated with it (this string is typically read from the file
%SystemRoot%\system32\iologmsg.dIl)’

A\ parity error was detected on %1 .t

* Note that %SystemRoot% is replaced by the location of the Windows NT installation of the host machine.

t This message also demonstrates the use of insertion strings. An insertion string is a string supplied by
the driver when it records an event record. The first insertion string is represented as %1, the second as
962, and so on. The driver supplied insertion strings are automatically inserted into the text message by
the event log viewer (which obtains the insertion strings from the event record).

88 Chapter 3: Structured Driver Development

The format of status codes returned by the system and of event identifiers created
by independent drivers follows the figure below.

31 30 29 28 27 I 1615 0

e S = Severity Code (2 bits). This can assume the following values:
— 00 = Success
— 01 = Informational
— 10 = Warning
— 11 = Error
e C = Customer Code Flag (1 bit). This bit should be set to 1 for status codes/

event identifiers defined by third-party drivers (which means that it should be
set to 1 for any privately defined status codes in your driver).

* R = Reserved Bit (1 bit). Microsoft recommends that this bit be set to 0.

» Facility (12 bits). This indicates a group to which the error/status code
belongs and can have one of the following values:

— FACILITY_NONE (defined as 0x0)

— FACILITY_RPC_RUNTIME (defined as 0x2)
— FACILITY_RPC_STUBS (defined as 0x3)

— FACILITY_IO_ERROR_CODE (defined as 0x4)

If you develop file system or filter drivers or other such kernel-mode drivers,

you will typically set the value of Facility to OxO or to 0x4 for any status codes
defined by you.

e The Code (16 bits). This can be set to any unique value for each status code
defined in your driver. A typical error code your driver might define follows:

—define MYDRIVER _ERROR_CODE_I0_FAILED (OXE0047801)

If we expand the error code, we get the binary value 1110 0000 0000 0100
0111 1000 0000 0001.

This corresponds to the fact that this is an error condition (bit positions 30
and 31 are set to 1), this is a customer defined error (bit position 29 is set to
1), the reserved bit is set to 0, the facility that this error belongs to is
FACILITY_IO_ERROR_CODE (since Facility is set to Ox4—bit positions 16 -
through 27), and the privately defined error code is 0x7801 (bit positions O
through 15). Note that the privately defined error code can be any 16-it

Event Logging 89

value, as long as all such error codes defined by your driver are unique
within your driver.*

So that the event viewer application (or any application that interprets the error
log) can associate a textual description with your event identifier, your driver will
have to supply a message file that contains the text associated with each partic-
ular event ID. For example, a typical text message that might be identified with
our error defined previously could be as follows:

The driver tried to perform an 1/0 operation on the device. This 1/0
operation failed due to a time-out condition (device did not respond
within the specified time-out period).

As you can see, providing the user with a clear explanation of the probable cause
of failure is quite helpful. The system administrator might be able to use the error
message supplied by you as a starting point to diagnose and rectify the cause for
the failure. An appropriate message file can be created using the resource
compiler used by your driver. Consult the documentation supplied with your
resource compiler to determine how to create the message file.t Here is an
example message file:

;Sample Message File.
:Filename: myeventfile.mc
;Module Name: mydriver_event.h

:#ifndef _MYDRIVER_EVENT H_

:#define _MYDRIVER_EVENT_H_

;Notes:

; This file is generated by the MC tool from the mydriver_event.me file.

;0sed from kernel mode. Do NOT use %1 for insertion strings since
;the 1/O Manager automatically inserts the driver/device name as the
; first string.

MessageldTypedef=ULONG

SeverityNames=(Success=Ox0O:STATUS_SEVERITY_SUCCESS
Informational=0xI:STATUS_SEVERITY_INFORMATIONAL
Warning=0x2:STATUS_SEVERITY_WARNING
Error=0x3:STATUS_SEVERITY_ERROR)

* Although the error code defined by your driver might also be (coincidentally) defined by some other
driver in the system, event identifiers are uniquely identified as a tuple eonsisting of (source, event ID).
Therefore, as long as all identifiers within your driver are unique, you should not be concerned about
providing unique values with respect to all other drivers in the system.

t Note that your resource compiler, while processing your input file, can create both the output message
file as well as a header file that you can use with your driver. Therefore, you should have to define the
event identifiers (and the associated text) in only one place, the input file to your resource compiler. This
will help prevent discrepancies between any header files that your driver might use and the message file
that eventually ships with your driver.

.90 Chapter 3: Structured Driver Development

Faci l ityNames=(10=0x004)

Messageld=0x7800 Facility=10 Severity=Informational

Symbol i cName=MYDRIVER_INFO_DEBUG_SUPPORT

Language=English

This message and accompanying data is for DEBUG support only.

Messageld=0x7801 Facility=10 Severity=Error

Symbol icName=MYDRIVER_ERROR_CODE_10_FAILED

Language=English

The driver tried to perform an 1/0 operation on the device. This 1/0
operation failed due to a time-out condition (device did not respond
within the specified time-out period).

;Use the above entries as a template in creating your owmn message file.

s#endif // _MYDRIVER EVENT H

It is possible to have insertion strings within text messages associated with event
identifiers. Placeholders are denoted as %1, %2, etc. If you specify placeholders in
your message, the driver can supply the strings to be inserted when writing the
event log entry.However, note that the 1/O Manager always inserts the device/
driver name as the first insertion string with every recorded event record. Even if
the driver supplies insertion strings, they are placed after the device/driver name.
The net result is that using %1 as a placeholder for an insertion string in your text
(associated with an event identifier) will always result in the device/driver name
being placed there, instead of the first driver-supplied insertion string. To obtain
the first driver-supplied insertion string, use %2 as the placeholder; to get the
second driver supplied insertion string, use %3, and so on.

How the Event Log Viewer Finds a Message File

For the event log viewer to be able to find your message file, your driver (or more
likely, the application that installs your driver) will have to modify the Registry on
the target machine. Typically, users will use the Win32 subsystem as their native
subsystem. In this case, a unique subkey should be created by the installation utility
under the Registry path: CurrentControlSet\Services\EventLog\System.'

* Note that there are three possible locations under the EventLog key where your subkey could poten-
tially be located: Application (for applications or user-mode drivers), Security, and System (for system-

supplied and kernel-mode drivers). As kernel-mode driver developers, the logical and correct choice for
your entry is under the System key.

p—

Event Logging 91

This unique subkey should have the same name as the driver executable. For
example, the subkey for the system-supplied AT disk driver is atdisk, which is the
same as the name of the driver executable file (atdisk.sys). Within this subkey, at
least two value entries must be created:

EventMessageFile
This value is of type REG_EXPAND_SZ and contains the complete path and
filename for the message file that contains the text messages corresponding to
each event identifier. An example of a complete pathname and filename
might be %SystemRoot%\MyDriverDirectory\message.dII.

TypesSupported
This value is of type REG_DWORD and should be set to Ox7 for your driver,
indicating that your driver supports events of type EVENTLOG_ERROR_TYPE

(defined as Oxl), EVENTLOG_WARNING_TYPE (defined as 0x2), and
EVENTLOG_INFORMATION_TYPE (defined as Ox4).

Once you have created the appropriate Registry entries and your installation
program has copied the appropriate message file (in our example: message.dll~) to
the correct directory, the event log viewer application should be able to find and
use the contents of your message file.

Recording Event Log Entries

Now that you have defined the appropriate event identifiers specific to your
driver, you can use these event identifiers to record event log entries using

support routines provided by the I/O Manager. Logging an event is performed in
two steps:

1. Anevent/error log entry is allocated with loAllocateErrorLogEntry ().

2. After the error log entry has been initialized, the event can be logged with
loWriteErrorLogEntry().

The routine used to allocate an event log entry, so it can subsequently be
recorded, is defined as follows:

PVOID

loAllocateErrorLogEntry(
IN PVOID loObject,
IN UCHAR EntrySize

92 Chapter 3: Structured Driver Development

Parameters:

loObject
This must point either to the device object* representing the device for which

the error/event is being logged or to a driver object representing the driver
controlling a device for which the event is being logged.

EntrySize
The size of the object to be allocated. Since you as the developer can log
binary data with the event log record, and you can also supply insertion
strings that augment your message, the size of the entry should be calculated
as follows,

sizeof(10_ERROR_LOG_PACKET) + (n * sizeof(ULONG) +
sizeof(InsertionStrings))

where n = number of words of data to be dumped with the event record.

Functionality Provided:

The IoAllocateErrorLogEntry () will allocate an entry for your use. You
can then initialize this entry and invoke IoWriteErrorLogEntry () to write to
the event log. This routine returns a NULL pointer if it cannot allocate an entry for
your use. In this case, you should not write the event at this time and wait for the
next occurrence of the error, then you can retry this operation.

One note of caution: this routine references the device/driver object passed in as
the loObject argument. Therefore, once you invoke this routine, you must
invoke the IoWriteErrorLogEntry () routine, which will dereference the
object and release the memory allocated for the error log entry.

Initialization of the error log entry is quite simple and is well documented in the
device driver reference supplied by Microsoft.

Once an event log entry has been obtained, you must invoke the loWriteEr-

rorLogEntry () routine to write the record to the event log. This routine is
defined as follows:

VOID
IoWriteErrorLogEntry (

IN PVOID EIEntry
)

Parameters:

ElIEntry
The initialized event log entry to be recorded.

* See Chapter 4, '/"he NT I/O Manager, for a discussion on device object and driver object structures.

n il

Driver Synchronization Mechanisms 93

Functionality Provided:

The loWriteErrorLogEntry () queues the initialized event log entry to be
written out. The actual write operation will be performed asynchronously by a
system worker thread. Note that since this routine returns immediately after
queuing the entry, the device/driver object will not yet have been dereferenced.
The dereference will only occur after the entry has been asynchronously written
to the event log.

NOTE The -way that the entry is asynchronously written to the event log
file is also interesting. The system worker thread dequeues the
event log record, inserts the device/driver name strings and then
uses LPC (a local procedure call) to write the record to a special
port where another user space thread writes the entry to the event
log file. The system worker thread continues writing out all records
until it encounters an error condition or until all the pending event
log records have been sent to the port handler.

Driver Synchronization Mechanisms

One of the primary functions of a driver is to prevent data corruption. A principal
cause of data corruption is a lack of synchronization between two or more concur-
rent threads of execution that manipulate the same data structures. Since
Windows NT can execute on both uniprocessor as well as on symmetric multipro-
cessor machines, it becomes especially important for kernel-mode drivers to use
synchronization primitives carefully. If you develop device drivers, take care
when manipulating data structures shared by Interrupt Service Routines (ISRs) and
threads that execute at normal IRQ level.

As discussed in Chapter 1, Windows NT System Components, the Windows NT
kernel-mode environment contains the Executive as well as the Windows NT
Kernel. The Executive is preemptible and parts of it are also pageable. The
Kernel, however, is neither preemptible nor pageable. Although not preemptible,
on multiprocessor machines, the kernel can execute concurrently on each
processor.

In this section, we'll see the various synchronization primitives available to drivers
forming part of the NT Executive. These synchronization primitives are either
exported by the NT Kernel itself or by the NT Executive; the Executive uses the
basic primitives supplied by the Kernel to construct more complex synchroniza-
tion primitives. My intent is to provide an introduction to the different primitives
available and to explain where each can be used. The sample code in the

94 Chapter 3-" Structured Driver Development

remainder of this book, especially file system and filter driver code, will make
extensive use of some of these synchronization primitives. For further information
on the syntax for calling the supporting routines mentioned in this section,
consult the Microsoft Device Drivers Kit (DDK) documentation.

Spin Locks

The kernel spin lock structure is fundamental to providing synchronization across
processors in a multiprocessor environment. Spin locks are used to provide
mutual exclusion, i.e., a spin lock is used to ensure that only one thread
executing on one processor can access the shared data protected by the spin
lock. The sequence of instructions executed after acquiring the spin lock is also
known as a critical region. The critical region ends when the spin lock is released.

When a thread on a processor acquires a spin lock, context switching (preemp-
tion of the thread) is disabled until the thread releases the spin lock. Similarly,
any other thread, executing on another processor, will continuously try to gain
access to the spin lock, making no progress until it succeeds. This method of
busy-waiting (i.e., continuously attempting to check to see if the spin lock has
become available) is also called spinning for the lock, hence leading to the name
spin lock.*

The exact method used by the kernel to implement a spin lock is processor
dependent; typically, however, an atomic test-and-set assembly instruction is used
to implement the spin lock. The software tests the state of the lock variable and if
it's free, sets it to the busy state. If the lock state is busy, the software keeps
repeating execution of the test-and-set instruction.

NOTE Often, to reduce bus contention, the test-and-set operation is not
used continuously in the implementation of the spin lock. Rather,
the operating system uses the test-and-set instruction once, and if it
finds the lock state set to busy, then ordinary polling instructions
are used until the lock state is found to be free. At this time, the test-
and-set instruction is retried to obtain the lock.

Spin locks must be acquired by the thread executing on a processor at the highest
IRQL at which all other attempts to acquire the same spin lock will be made.

Follow these few, simple rules to ensure correct behavior of your spin locks:

* The thread that is spinning for the loek cannot be preempted (just as the thread that has acquired the
lock). However, these threads can be interrupted by an interrupt at a higher IRQL than the one at which
they execute.

>~

Driver Synchronization Mechanisms 95

* Never refer to any pageable data once your code acquires a spin lock. Simi-
larly, all code that executes once a spin lock is acquired must be nonpage-
able code.

The reason for this restriction is that the system cannot service any page faults
at an IRQL greater than or equal to the DISPATCH_LEVEL. Therefore, when
a page fault occurs at a high IRQL, the system checks for pageable code and
issues a KeBugCheck (), assuming that the condition is a direct result of a
programming/design error.

e Try not to call other functions once you have acquired a spin lock. If you do
need to call another function, be sure that none of the functions called refer
to any pageable code or data.

e Because spin locks must be shared by all processors on a node, keep the
spin lock for the minimum amount of time possible, then release it to allow
another processor to acquire it.

It is possible to design and implement code in which a sequence of spin locks are
acquired, i.e., you acquire spin lock #\ followed by a call to acquire spin lock #2,
and so on. Or else, you might implement code in which you acquire a spin lock
and then follow this up with one or more calls to acquire other synchronization
primitives (e.g., mutexes). This could cause a deadlock condition. There is no
, deadlock checking performed when a processor acquires multiple spin locks and
r since dispatching or preemption is disabled once any spin lock is acquired, it is
quite possible to create a system deadlock.

There are two types of spin locks that exist on Windows NT platforms:

Interrupt spin locks
These spin locks synchronize access to device driver data structures. They are
acquired and released at the IRQL associated with the particular device
managed by the device driver. The device driver usually does not allocate
memory for spin locks itself, neither does it explicitly acquire or release inter-
rupt spin lock structures. As a matter of fact, the kernel automatically acquires
the spin lock associated with the interrupt before invoking the Interrupt
Service Routine (ISR) for the interrupt, and releases it after the ISR execution

i has been completed.

The KeSynchronizeExecution() function, documented in the DDK, can
be used to synchronize the execution of a device driver routine with the
execution of an ISR for a specific interrupt. This function acquires the inter-
rupt spin lock associated with the interrupt pointer, supplied as an argument
to the routine after raising the IRQL for the thread to the DIRQL for the inter-
rupt. KeSynchronizeExecution() then invokes the specified routine

96

Chapter 3: Structured Driver Development

whose execution has to be synchronized with that of the ISR and finally
releases the spin lock before returning to the caller.

Interrupt spin locks must always be used whenever a lower level driver
wishes to synchronize the execution of a module with the ISR for the driver.
Attempting to use an Executive spin lock will undoubtedly lead to data
corruption and/or system deadlock situations.

Executive spin locks

Executive spin locks can only be acquired from threads executing at IRQL
PASSIVE_LEVEL, APC_LEVEL, or DISPATCH_LEVEL. Therefore, they are
typically used by higher level drivers such as file system drivers to synchro-
nize access in multiprocessor environments. They can certainly be used by
device driver developers, as long as they are not used to synchronize execu-
tion with the ISR for the drive driver.

The rest of this discussion assumes that you are using Executive spin locks to
synchronize data access.

For the remainder of this book, we will focus on the usage of Executive spin
locks.

To use Executive spin locks, you must first allocate enough storage for a spin lock
structure. The storage for a spin lock must be allocated from nonpaged pool. Typi-
cally, your driver should either embed the spin lock definition in the driver
extension, which is always allocated from nonpaged memory, or use a global defi-
nition, since all global variables within a kernel-mode driver are typically not
pageable; or use an allocation function (e.g., ExAllocatePool (NonPaged-
Pool, sizeof (struct KSPIN_LOCK))).

WARNING If you happen to allocate a dispatcher object from paged pool in-

stead of nonpaged pool, you will see some unexpected system
bugchecks occur. Your driver might be working fine, but occasional-
ly the system will bugcheck with an exception indicating that paged
memory was accessed at high IRQL. The stack trace that you might
obtain will not even point to your driver. This is because the kernel
stores all threads waiting for active dispatcher objects on global
linked lists. Each of these linked lists is protected by a spin lock.
When the kernel traverses such a linked list with the spin lock ac-
quired, and the object on the list happens to be paged out, you will
encounter a system bugcheck. Note that the object might not always
be paged out of memory, so your system might work fine, some-
times, though not always.

The following kernel support routines are available to you for manipulating an
Executive spin lock:

Driver Synchronization Mechanisms 97

KelnitializeSpinlock()

This routine accepts a pointer to the allocated spin lock structure. It will initial-
ize the spin lock, and must be invoked before trying to acquire the spin lock
for the first time.

KeAcguireSpinLock() /KeAcguireSpinLockAtDpcLevel ()

These routines will spin trying to acquire the spin lock. A pointer to the spin
lock to be acquired must be passed in as an argument. When either of these
routines returns, the spin lock will have been acquired. The only difference
between the two routines is that the KeAccruireSpinLock() routine will
first raise the IRQL for the processor to DISPATCH_LEVEL and therefore
return the old IRQL to the caller, to be used in releasing the spin lock, while
KeAcquireSpinLockAtDpcLevel () assumes that the current IRQL s
already at DISPATCH_LEVEL.

NOTE On uniprocessor systems, the KeAcquireSpinLockAtDpcLev-
el () doesn't do anything, i.e., it immediately returns control to the
caller. Therefore, invoking this function (if appropriate) will result in
a slight performance gain for your driver on uniprocessor systems.

KeReleaseSpinLock() /KeReleaseSpinLockFromDpcLevel{)

These routines allow you to release a previously acquired spin lock. KeRe-
leaseSpinLock () expects an additional parameter: the old IRQL returned
from the previous call to KeAcquireSpinLock(). The processor is
returned to the old IRQL, once the spin lock is released.

A spin lock should be used whenever synchronization is required across multiple
processors, in arbitrary thread contexts, when processing interrupts, and when
context switching has to be prevented. Furthermore, all the rules mentioned
earlier should be followed whenever spin locks are used. If, however, you wish
to provide synchronization across multiple processors in the context of some
thread and you do not mind context switching occurring, then other Executive
dispatcher objects (described in the next section) can be used.

Note the words in arbitrary thread contexts in the preceding paragraph. Spin
locks can be used even by device drivers, whose entry points (such as read/write)
are typically executed in the context of some arbitrary thread. It is even probable
that such entry points for device drivers might be executed at high IRQL. Spin
locks can be used freely by such drivers, while other dispatcher objects (such as
mutexes or event objects) can only be used in a nonarbitrary thread context, i.e.,
the other dispatcher objects are used by file system drivers or filter drivers that sit
above the file system.

98 Chapter 3: Structured Driver Development

NOTE File system driver dispatch routines (e.g., read/write routines) are
typically executed in the context of a system worker thread for asyn-
chronous operations or in the context of the user thread initiated by
an 1/0O request (e.g., a user application invoked the ReadFileO
call). Since this is a nonarbitrary thread context, file systems are free
to wait for dispatcher objects to be set to the signaled state.

Device drivers, on the other hand, have IRPs (I/O Request Packets)
queued. Each 1/0 Request Packet for a driver dispatch routine is
subsequently dequeued (and the request initiated), in the context of
whichever thread happens to be currently executing on that proces-
sor. Therefore, since the dispatch routine for the device driver exe-
cutes in the context of an arbitrary, unknown thread, ewaiting for
dispatcher objects to be signaled is not allowed. Thread context is
discussed in detail later in this book.

Dispatcher Objects

Kernel dispatcher objects are a set of abstractions, provided by the kernel to the
Executive, to support synchronization. These objects control dispatching and
synchronization of system operations. Dispatcher objects can be in one of two
states:

« Signaled state, in which no thread is currently accessing the shared data pro-
tected by the dispatcher objects or no other thread is currently within the criti-
cal section of the code.

» Not-signaled state, indicating that a thread is accessing shared data protected
by the dispatcher objects and/or executing the critical region of the code.

Since your driver forms part of the NT Executive, you can use these dispatcher
objects to provide synchronization within your driver implementation. Note that
dispatcher objects provided by the kernel must be treated as opaque data struc-
tures. The kernel provides all functions that you might need to initialize, query
the state, set the state, and clear the state for these objects. You must provide the
storage needed to contain these objects. This storage must be provided from
nonpaged pool (similar to that provided for spin locks) and can be provided from
the driver extension structure, as a global variable, or as memory that is allocated
dynamically.

The method used to synchronize access to shared data or to control execution
within a critical region of code follows:

A

gl

Driver Synchronization Mechanisms 59

1. A thread needs to access a shared data resource (i.e., access some shared data
or execute code within a critical region, so it invokes a Kernel Wait Routine).

The wait routines that the thread can invoke are:
— KeWaitForSingleObject()

— KeWaitForMultipleObjects() or
— KeWaitForMutexObj ect()

If the objects being waited for are in the signaled state, the wait will be satis-
fied and control will return to the waiting thread. Note that before the wait is
satisfied, the objects that were being waited for will be set to the not-signaled
state, preventing any other thread, which might concurrently invoke a wait
routine, from simultaneously getting access to the shared data resource.

2. Any other thread invoking a wait routine for one of the objects set to the not-
signaled state in Step 1 will be suspended.

3. When the first thread completes processing the shared data resource, it will
invoke an appropriate routine, depending upon the object used to achieve
synchronization, KeReleaseMutexO or KeSetEvent (), to release the
dispatcher objects and set the state of the dispatcher object to Signaled.

4. Now that the first thread has released the dispatcher objects, one of the

threads waiting for the dispatcher objects, to gain access to the shared data
resource, will be awakened.

This thread will now be permitted access to the shared data resource.

NOTE In the case of some synchronization objects, multiple threads will
be awakened concurrently. However, only one of them will subse-
quently be able to acquire the synchronization object.

5. Steps 1 to 4 are repeated every time a thread wishes to access the shared data
resource.

If a thread cannot gain access to the shared data resource (i.e., if the dispatcher
object is in the not-signaled state because another thread is actively accessing the
shared data or executing code within the critical region), the thread will be
suspended or blocked, awaiting the release of the dispatcher object. This allows
other threads in the system to continue executing and is very different from a spin
lock, where the thread will be in a busy-wait state until it gains access. Dispatcher
objects are therefore more conducive to better system performance.

As mentioned earlier in the discussion on spin locks, driver dispatch routines that
execute in an arbitrary thread context cannot wait for dispatcher objects to be

100 Chapter 3-' Structured Driver Development

signaled. Also, it is considered a fatal error to wait for a nonzero time interval on
a dispatcher object at IRQL that is greater than PASSIVE_LEVEL. Therefore, most
device driver designers will not use dispatcher objects for mutual exclusion, but
file system developers or developers of filter drivers that sit above the file system
in the calling hierarchy can potentially use dispatcher objects.

Finally, note that when a thread invokes the kernel routine to wait for a
dispatcher object (e.g., KeWaitForSingleObject ()), the thread can specify a
TimeOut interval. If the dispatcher object does not get signaled within the speci-
fied TimeOut interval, the thread will be awakened with a special status code of
STATUS_TIMEOUT. This allows the thread to ensure that the wait will be a
bounded one. If a TimeOut interval of O is supplied, the thread will never be put
to sleep; the state of the object will be checked and if not-signaled, control will
immediately be returned to the thread with the status of STATUS_TIMEOUT.

The following dispatcher objects are available to designers and developers of
kernel-mode drivers:

« Event objects

e Timer objects

e Mutual exclusion objects
» Semaphore objects

In addition to the dispatcher objects listed here, threads can also wait for process,
thread, and file object structures.

Event objects

Event objects are used to synchronize execution between multiple threads. They
record the occurrence of an event that determines execution flow. Consider a
producer-consumer relationship between two threads: producer thread A creates
data to be processed while consumer thread B processes data whenever it
becomes available. Since thread B does not know when data will become avail-
able, it has two options:

« Keep inquiring from thread A whether data is available for processing. This is
not conducive to good system performance, since valuable processor cycles |
get consumed in this kind of busy-wait mode.

« Wiait for thread A to inform it whenever data is made available.
Since the second option is clearly superior, it is most often used in such situations.

To implement this notification, an event object can be used.*

* Note that a counting semaphore (discussed later) could he used equally well for this purpose.

Driver Synchronization Mechanisms 101

The event object must be initialized before it can be used. Initially, the event
object would be set to the not-signaled state. Thread B would then invoke a wait
call on this event object and would be suspended from execution until the wait
can be satisfied. When thread A has data available for processing, it could invoke
the KeSetEvent () call to signal the event object. This would result in thread B
being inserted into the queue of threads that can be scheduled for execution. At
some point, the system scheduler schedules thread B for execution, and thread B
processes the data. This method can be repeated as often as required.

There are two types of event objects:

Notification event objects
In this type of event object, every thread that is waiting for the event object is
scheduled for execution once the event object is signaled. Also, the state of
the event object, when signaled, is not automatically reset to the not-signaled
state. Therefore, an explicit call to KeResetEvent () will have to be made
by some thread to set the state of the event object to the not-signaled state.

This type of event object is typically used when a single occurrence of an
event, resulting in the event object being set to the signaled state, triggers
execution by any other thread waiting for that event to occur. For example,
consider the analogy of a car race: when the start signal is given, all cars in
the competition take off, each trying to get to the finish line.

Synchronization event objects
This type of event object is our producer-consumer example. Here, when the
event object is set to the signaled state, only one waiting thread will be sched-
uled for execution and the event object is then automatically reset to the not-
signaled state. This type of object ensures that only one thread accesses the
shared data resource at any point in time.

The following kernel-mode support routines are available for interacting with
event objects:

KelnitializeEvent()

Your driver must allocate storage for the event object from nonpaged pool.
Once you have allocated the storage, you must invoke this routine to
initialize the event object before any thread attempts to wait for, signal, or
reset it. When this routine is invoked, you can specify whether the event
object should be a notification type object or a synchronization type object.
You can also specify the initial state of the event object, signaled or not-
signaled.

loCreateSynchronizationEvent()
Note that this is not strictly a kernel support routine, but one provided by the
I/0O Manager. This routine is only available in the Windows NT 4.0 and later

102 Chapter 3: Structured Driver Development

releases and allows your driver to request that a nhamed synchronization event
object be created or opened. Since this event object has a name, multiple
drivers can now use the same event object to synchronize access to a shared
data resource.*

This routine will either create a named event object, if no such event object
exists (and also initialize the event object to the signaled state), or open a
previously created event object. It returns two values, a pointer to and a
handle for the event object. All the calls to manipulate event objects, listed
below, can be used on the returned event object pointer. When your driver
no longer needs to use this object, it should invoke the ZwClose () routine
to close the returned handle.

KeSetEvent ()
This routine allows you to set the state of the event object to the signaled
state. One or more threads that are waiting for the object to be signaled will
get scheduled for execution.

Consider the following pseudocode fragment:

thread A {
while (TRUE) {
create new data;
signal event object 1;
wait for event object 2 to be signaled;

}

thread_B {

while (TRE) {
wait for event object 1 to be signaled;
process data;
signal event object 2;
}
}

This code describes a typical producer-consumer relationship. Here we see
that each thread performs a wait operation immediately after signaling an
event object.

Signaling an event object is one point when the system scheduler might
perform a context switch. However, since our threads will voluntarily put
themselves to sleep following the signal operation, it seems redundant for
them to be scheduled out, only to be rescheduled some time later and imme-
diately put to sleep. It would be more efficient, instead, if they were allowed

* The event objects that you otherwise allocate storage for from within your driver are only accessible to
your driver unless you implement some horrendous method of passing pointers between drivers, using
a private IOCTL. Therefore, it was quite difficult for two or more drivers in Windows NT Version 351 and
earlier versions to synchronize access to a shared data resource using event objects.

Driver Synchronization Mechanisms 103

to continue executing after the signal operation so that they could put them-
selves to sleep and avoid the extra overhead of one unnecessary context

switch. This can be achieved by specifying the Wait argument to
KeSetEventO as TRUE.

NOTE Implementation of POSIX threads-style condition variables requires
the capability to atomically release a mutex object and then put the
thread that released the mutex to sleep. This can be achieved easily
by specifying the Wait argument in KeSetEvent () as TRUE.

KeResetEvent () /KeClearEvent)

Both routines allows you to set the state of the object to the not-signaled
state. KeResetEvent () also returns the previous state of the event object.

KeReadStateEvent()

This routine gives you the current value of the event object (signaled or not-
signaled).

Timer objects

Timer objects are used to record the passage of time. If a thread wishes to
perform a task after some time has elapsed or at a specified time value, it should
use a timer object. The timer object has a state associated with it, either signaled
or not-signaled. When the desired time interval passes, the timer object is set to
the signaled state and all threads waiting for the timer object will have their wait
satisfied and will be scheduled for execution.

Just as with other dispatcher objects, storage for the timer object must be

provided in nonpaged memory by the driver. The timer object must be initialized
to the not-signaled state.

There are two ways your driver can use a timer object:

e A thread in your driver might initialize a timer object and then invoke a wait
routine (e.g., KeWaitForSingleObject ()) to suspend execution until the

timer object is set to the signaled state (after the specified time interval has
elapsed).

» Alternatively, when setting the timer object to expire after the time period has
elapsed, a Deferred Procedure Call (DPC) might be specified. When the time
period expires, the DPC routine will be scheduled for execution, and any
required processing could be performed within that DPC routine.

104 Chapter 3-' Structured Driver Development

NOTE Deferred Procedure Calls are another way of influencing the opera-
tion of the kernel. The DPC provides the capability of breaking into
the execution of the currently running thread (via a software inter-
rupt), and executing a specified procedure at IRQL DISPATCH_
LEVEL. No system services can be invoked when executing the
DPC procedure and page faults are not tolerated. Furthermore,
DPCs are not targeted to a specific thread like Asynchronous Proce-
dure Calls. Whenever the current IRQL falls below DISPATCH_LEV-
EL, a software interrupt will happen and the DPC dispatcher
invoked. Typically, DPCs are used by device drivers to complete in-
terrupt-handling-related processing.

On any single processor, only one DPC can be executing at any giv-
en instant in time. However, on multiprocessor systems, there could
potentially be a DPC executing on each processor concurrently.
Thread scheduling on the processor is suspended while the DPC is
executing at IRQL DISPATCH_LEVEL

With the release of Windows NT 4.0, two types of timer objects are available:*

Notification timer object
When this type of timer object is signaled, all threads that were waiting for
this object have their waits satisfied. These threads will all get scheduled for
execution.

Synchronization timer object
When this type of timer object is signaled, only one thread waiting for the
timer object will have its wait satisfied. The timer object will automatically be
reset to the not-signaled state.

One further enhancement made in Windows NT 4.0 to timer objects is that you
can now specify periodic (recurring) timer objects. These timer objects will auto-
matically be reinserted into the active timer list, as many times as specified in the
Period argument when setting the timer object.

The following kernel-mode support routines are available for interacting with
timer objects:

KelnitializeTimer()/KelnitializeTimeEx()
The latter version is only available on the Windows NT 4.0 and subsequent
releases. This routine expects a pointer to a timer object allocated in
nonpaged memory. It will initialize the value of the timer object to the not-
signaled state. With the Kelnitialize TimeEXx() routine, you can specify
the type of the timer object (Synchronization type or Notification type).

* Windows NT 3.51 and earlier versions only supported the notifieation type of timer object.

) ol

Driver Synchronization Mechanisms 705

KeSetTimer ()/KeSetTimerEx ()
This routine allows you to set a timer object. The time value is specified in
system time units (100-nanosecond intervals). You have two choices: if you
supply a negative time unit value, the value will be interpreted relative to the
current time when the routine was invoked. If a positive value is supplied, it
is interpreted as an absolute value; the time that the system was booted is
taken as time unit 0.

The KeSetTimerEx () routine became available with the release of Win-
dows NT 4.0 and it allows you to specify the number of times you wish the
timer to be reactivated.

Note that you can specify a DPC routine to be invoked once the timer is set
to the signaled state.

KeReadStateTimer()
This routine returns the current state of the timer (signaled or not-signaled).

KeCancelTimer()

This routine cancels a previously set timer if it has not yet expired. If there is
an associated DPC routine, it is canceled too.

Two points should be noted here. First, canceling a timer does not set the
state of the timer to the signaled state. Second, if the timer had previously
expired and the associated DPC routine is in the queue, that DPC routine will
not get canceled. Only if the timer had not previously expired will the associ-
ated DPC routine not get queued.

Mutex objects (mutual exclusion)

Mutex objects are similar to spin locks in that they allow only one thread to access
a shared data resource at any given instant in time. Any other thread that attempts
to acquire the same mutex object will be suspended until the first thread releases
the mutex object. The fact that a thread will be suspended awaiting the mutex

object to be signaled is the distinguishing feature between spin locks and mutex
objects.

Storage for mutex objects must be provided by the driver from nonpaged pool.
Also, the driver must ensure that any code executed once a mutex is acquired is
not pageable. Mutex objects come in two varieties:

Fast mutex objects
A fast mutex is simply a wrapped-up event dispatcher object. It provides
mutual exclusion semantics by allowing only one thread to acquire the mutex
at any instant. When the mutex object is released (i.e., its corresponding
event is signaled), only one other thread from those waiting for the mutex
object will be scheduled for execution. Therefore, the concepts underlying

106 Chapter 3-' Structured Driver Development

the fast mutex data structure are the same as those for synchronization type
event object structures.

Fast mutex objects do not provide any form of deadlock prevention support.
Also, fast mutex objects cannot be recursively acquired. Therefore, if you
implement code in which one thread tries to acquire fast mutex #\ followed
by fast mutex #2 while another thread does so in the reverse order, you will
get a deadlock situation. Similarly, any thread that tries to recursively obtain a
fast mutex will deadlock with itself.

Support for fast mutex objects is provided by the NT Executive, because fast
mutex objects are not among the primitive synchronization mechanisms
exported by the Windows NT Kernel. Using fast mutexes is faster (hence the
name) than using the normal mutex structures supported by the kernel. The
routines to manipulate fast mutex objects follow:

ExInitializeFastMutex()
Initializes the passed-in fast mutex structure. This is actually a macro that
simply initializes the event object that comprises the fast mutex structure.

ExAcquireFastMutex()/ExAcquireFastMutexUnsafe()
If the fast mutex is not currently acquired by another thread, this thread
will be allowed to acquire the fast mutex. Any other thread that subse-
quently attempts to acquire this mutex will be suspended until the mutex
is released.

If the mutex had already been acquired by some other thread, the current
thread will be blocked until the fast mutex becomes available.

The difference between the two invocations is simple: if ExAcquire-
FastMutex () is used, the Executive disables delivery of Asynchronous
Procedure Calls (APCs) to the thread that has acquired the fast mutex. If
ExAcquireFastMutexUnsafe () is used instead, the Executive
assumes that the call is protected within a critical region* and hence does
not bother to disable APCs.

* Highest level drivers such as file system drivers can invoke KeEnterCriticalRegion() and Ke-
LeaveCriticalRegion () to note that the current thread is entering or leaving a critical region. Invok-
ing KeEnterCriticalRegion() disables kernel-mode APCs. KeLeaveCriticalRegion()
reenables delivery of kernel-mode APCs to the calling thread. The KeEnterCriticalRegion () macro
should be invoked whenever your driver would find it awkward to be interrupted from its processing to
receive a kernel-mode APC.

Driver Synchronization Mechanisms__ 7 707

NOTE Asynchronous Procedure Calls are a method by which control flow
for a thread can be affected. An APC must be targeted toward a spe-
cific thread. This is in contrast to a DPC, which executes in the con-
text of any arbitrary thread currently executing on the processor.

The thread to which an APC is directed will be interrupted (via a
software interrupt), and the procedure specified when creating the
APC will be executed in the context of the interrupted thread at a
special IRQL, APC_LEVEL.

APCs can be delivered both in user mode and in kernel mode. Ker-
nel-mode APCs come in two flavors: normal and special. Normal
APCs can be disabled by a kernel-mode driver by invoking KeEn-
terCriticalregionO. However, special APCs cannot be dis-
abled. Consult the DDK for more information on Asynchronous
Procedure Calls.

ExReleaseFastMutex()/ExReleaseFastMutexUnsafe()
These calls release a previously acquired fast rnutex. Note that the appro-
priate call to be used depends on which call was invoked to acquire the
fast mutex, ExAcquireFastMutex({) or EXxAccruireFastMutex-
Unsafe().

ExTryToAcguireFastMutex()
This routine will attempt to acquire the fast mutex. If it is successful, it
will return TRUE (and will have blocked kernel-mode APCs). If it could
not acquire the fast mutex, it will return FALSE. The caller then has the
option of retrying immediately (polling) or retrying after some period of
time.

Mutex objects
Mutex objects are similar to their fast mutex counterparts. However, mutex
objects are supported by the NT Kernel, and they have the following addi-
tional features missing in the fast mutex implementations:

— Your driver can associate a level with each mutex object that it initializes.*

The kernel checks the level of the mutex being acquired to ensure that all
previously acquired mutexes are at a level strictly less than the level of
the current mutex (unless the same mutex is being acquired recursively).

— Mutex objects can be acquired recursively.

' The level associated with a mutex object should correspond to your locking hierarchy. For example, if
your locking hierarchy dictates that mutex #1 is always acquired before mutex #2, then you should asso-
ciate a lower level (lower nonzero numerical value) with mutex #1 and a higher level (higher nonzero
numerical value) with mutex #2.

108 Chapter 3: Structured Driver Development

Therefore, a thread in your driver can safely reacquire the same mutex
object multiple times. The only restriction is that the mutex should be
released exactly the same number of times that it was acquired.

— When a thread in your driver has a wait on a mutex object satisfied, the
priority of the thread is boosted to the lowest real-time priority in the
system.

This priority will subsequently automatically be lowered when the mutex
object is released.

— The owning process (for the thread that acquires the mutex) will not be
paged out to secondary storage.

The following routines are provided by the NT Kernel to support mutex
objects:

KelnitializeMutex(Q)
Your driver must specify a valid nonzero Level argument if it needs to
acquire multiple mutex objects concurrently (if you specify 0 as the value
for Level for each mutex that you initialize, trying to acquire multiple
mutex objects concurrently will result in a system bugcheck).

KeReadStateMutex()
This routine returns the current state of the mutex (signaled or not
signaled).

KeReleaseMutex()
This routine is used to release a previously acquired mutex. If the thread
releasing the mutex expects to immediately execute a call to a kernel wait
routine (e.g., KeWaitForSingleObject ()), it should supply the Wait
argument as TRUE. This will avoid an unnecessary context switch.

Semaphore objects

Semaphore objects (counting semaphores) allow one or a specific number of
threads to concurrently access a shared data resource. They can be used to
provide mutual exclusion (similar to mutex objects) by specifying that only one
thread should be allowed access to the shared object at any point in time. By
allowing the flexibility of specifying the exact number of threads that can concur-
rently access shared data, they are ideal in situations where the amount of
parallelism needs to be tightly controlled. Semaphores should be viewed as gates. |
As long as the gate is open, concurrent access to the shared data resource is
allowed. Once the gate is shut, no more threads will be allowed access to the
shared data resource.

Although similar to mutex objects, semaphores do not provide the deadlock
checking facility provided by mutex objects. Acquisition of a semaphore does not

Driver Synchronization Mechanisms 109

result in disabling kernel-mode APCs. Note that storage for semaphore objects
must be provided by your driver and should always be allocated from non-paged
memory.

Here's how semaphores work. Each semaphore has an associated Count value. If
the Count associated with the semaphore object is zero, any thread that waits for
the semaphore object will be suspended. Whenever a thread that acquired the
semaphore object releases the semaphore, the Count gets incremented by a speci-
fied amount (the Adjustment argument specified when releasing the
semaphore). If incrementing the Count results in a transition from 0 to a non-
zero value, then a certain number of waiting threads will have their wait satisfied.

Each time a wait is satisfied the Count gets decremented by 1; therefore, the
number of waits that will get satisfied on a transition from 0 to a nonzero value
will be equal to the value of the nonzero Count. The net result is that a fixed
number of threads (bounded by the Limit value specified when initializing the
semaphore) can concurrently acquire the semaphore and thereby concurrently
access the shared resource.

The following routines are provided by the NT Kernel to support counting sema-
phore objects:

KelnitializeSemaphore()
You can specify the initial value of the Count associated with the sema-
phore. If the Count is nonzero, the semaphore will be set to the signaled
state. You must also specify the maximum count that will be allowed for the
semaphore. This Limit argument bounds the number of concurrent accesses
to the shared data resource protected by the semaphore.

KeReleaseSemaphore{)

When releasing a semaphore, your driver can specify the Argument, which
is the amount by which the Count associated with the semaphore should be
incremented. This might result in satisfying one or more waiting threads. Note
that if incrementing the count by the supplied Argument value results in
exceeding the original Limit value (specified when initializing the sema-
phore), or if you specify a negative value for the Argument variable, the
thread performing the release will encounter an exception of STATUS_
SEMAPHORE_LIMIT_EXCEEDED.

KeReadStateSemaphore()
This routine returns the current value of the Count associated with the sema-
phore. This value should be interpreted as the number of waits that will be
immediately satisfied for the semaphore object.

110 Chapter 3-' Structured Driver Development

ERESOURCE Objects (Read/Write Locks)

The Windows NT Executive provides an important additional synchronization
mechanism extensively used by file system drivers. The ERESOURCE structure is a
primitive that provides single writer (exclusive access), multiple reader (shared
access) semantics. Therefore, each thread has the flexibility of determining the
type of access to request from the resource structure.

When a thread needs to modify the shared data protected by the resource, it must
request the read/write lock exclusively. However, if the thread just needs to read
the contents of the shared data protected by the resource, it will typically acquire
the resource shared, allowing other threads to concurrently read the same shared
data. If any thread acquires the resource exclusively, of course, no other thread
can acquire it.

Storage for these read/write locks must be provided by the driver from nonpaged
pool.

The ERESOURCE structure has the concept of an owning thread for the resource
(multiple reader threads could concurrently own the same resource shared). Addi-
tionally, these read/write locks provide recursive acquisition functionality.
However, the thread must release the lock as many times as it was acquired.

A note of caution: none of the dispatcher synchronization primitives discussed in
this chapter needs to be uninitialized when a driver determines that the primitive
is no longer needed and deallocates the memory reserved for the synchronization
primitive. However, ERESOURCE structures must be uninitialized (or deleted from
the global linked list of resources) before memory allocated for these structures
can be deallocated.

Finally, all the resource manipulation routines require that the IRQL of the
processor be less than or equal to DISPATCH_LEVEL.

NOTE The ERESOURCE structure uses an Executive spin lock to protect in-
ternal fields within the resource structure. When acquiring this spin
lock, the Executive raises the IRQL for the processor to DISPATCH_
LEVEL. Therefore, invoking any of the routines at an IRQL greater
than DISPATCH_ LEVEL could lead to a deadlock condition.

The following routines are provided by the NT Executive to support ERESOURCE
structures:

Driver Synchronization Mechanisms 111

ExInitializeResourceL.ite()
This simple routine initializes the resource structure allocated by the driver.
The resource is added to a global linked list of resource structures, and there-
fore, it is important that the driver uninitialize the resource before freeing
memory allocated to it.

ExDeleteResourceLite()
This routine unlinks the resource from the global linked list of resources. The
memory reserved for this resource structure can subsequently be released.

ExAcquireResourceExclusiveLite()
This routine will attempt to acquire the resource structure exclusively (for
write access). The thread requesting exclusive access can specify whether it
wishes to wait (block) for the resource to become available. If the thread is
not prepared to block, and if some other thread has the resource acquired
shared or exclusively, this routine will return FALSE, indicating that the
request to acquire the resource was unsuccessful.

ExTryToAcquireResourceExclusiveLite()
This routine is functionally equivalent to invoking ExAcquireResourceEx-
clusiveL.ite () with the Wait argument set to FALSE. However, Microsoft
literature claims that this call is more efficient.

ExAcquireResourceSharedlite()
This routine will attempt to acquire the resource structure shared (for read
access). The thread requesting exclusive access can specify whether it wishes
to wait (block) for the resource to become available. If the thread is not
prepared to block and if some other thread has the resource acquired exclu-
sively, this routine will return FALSE, indicating that the request to acquire the
resource was unsuccessful. If other threads have this resource acquired

shared, the current request for shared access will be successful and will return
TRUE.

ExReleaseResourceForThreadLite()
Invoke this function to release a previously acquired resource. The thread ID
(identifying the thread that is performing this operation) must be passed in as
an argument to this routine. This thread ID can be obtained by a call to
ExGetCurrentResourceThread().

ExAcquireSharedStarveExclusive()
Typically, requests for resource acquisition are managed so that threads
requesting exclusive access are not starved out. Starvation can occur under
the following scenario:
A thread has the resource acquired shared. Subsequently, a request for exclu-
sive acquisition arrives with the Wait argument set to TRUE. This request is

112

Chapter 3: Structured Driver Development

therefore queued. Before the thread that has the resource shared releases the
resource, another shared acquisition request is also received. If the NT Execu-
tive keeps satisfying the requests for shared acquisition while making the
request for exclusive access wait, it is possible that the request for exclusive
activation will get starved (i.e., will never be completed).

Therefore, the NT Executive will typically not satisfy a new request for shared
access if a previous request for exclusive access is already queued.*

By using this call however, a thread deliberately requests that its request for
shared access be given preference over any preexisting queued requests for
exclusive access.

ExAcquireSharedWaitForExclusive()

Supporting Routines (RTLS)

The Windows NT Executive provides a substantial amount of support to kernel-
mode driver developers via the run-time library and the filesystem run-time
library.t These libraries should be explored thoroughly if you wish to develop
kernel-mode drivers.

The run-time library consists of sets of routines that do the following:

This routine is the inverse of the previous one. Here, a shared access
requester explicitly states that preference should be given to exclusive access
requests even if such requests arrive after the current one. Therefore, the
current request will only be satisfied if there are no pending exclusive
requests for the resource (unless this is a recursive acquisition request).

Manipulate doubly linked lists
Query the Windows NT Registry and write information to the Registry

Execute type conversion routines (character to string, etc.)

Execute string manipulation routines for ASCII and Unicode strings (including
conversion from ASCII to Unicode and vice versa)

Copy, zero, move, fill, and compare memory blocks

Perform 32-bit integer arithmetic and 64-bit large integer and long arithmetic
(including conversion between types)

* Note that if a requesting thread already owns the resource exclusively and asks for shared access to the
resource (recursively), the request is always granted.

t The file system run-time library (FSRTL) functions and structure headers are not declared in the DDK
(although some of the RTL functions are exposed). However, throughout the course of this book, | will
present important routines and structures defined in the file system run-time library. Microsoft released a
Windows NT Installable File Systems (IFS) Developers Kit in April 1997. From all available informational
the time of writing this book, the header files for structure definitions and function declarations contained
within the FSRTL are only available as part of the Installable File Systems (IFS) kit from Microsoft fora
sum of money in addition to the amount paid for the Device Driver's Kit (DDK).

Supporting Routines (RTLS) 113

» Perform time conversion and manipulation routines
» Create and manipulate security descriptors

Although routines contained in these two libraries are not discussed in detail here
(see Chapter 2, File System Driver Development, for a discussion of some of them),
example code throughout this book will use one or more of the functions, struc-
ture definitions, and macros contained within these libraries.

Run-time library functions can be easily identified by the prefix Rtl prepended to
all function declarations. Similarly filesystem run-time library routines can be iden-
tified by the FsRtl prefix prepended to function declarations.

I highly recommend you familiarize yourself with the functionality provided by
these two libraries, and that you use these routines in your driver whenever the
need arises. You should use run-time library routines when you would have other-
wise used standard C library routines, e.g., instead of using the memcpy () library
call, try to use the RtlCopyMemory () supporting routine. This will ensure
correct behavior of your driver on all platforms.

Although header files for both of these libraries must be purchased from Microsoft
as part of an IPS Kkit, this book will provide descriptions and sample usage of
important structure definitions and function declarations provided by each of
these libraries.

hal

In this chapter:
e The NT I/O Subsystem

e« Common Data
Structures

* 1/0 Requests: A
Discussion

* System Boot
Sequence

The NT I/O Manager

Successfully interfacing with external devices is essential for any computing
system. A general-purpose commercial operating system like Windows NT must
also interact with a variety of peripherals, the common ones most of us use each
day, as well as the more uncommon external devices that might be useful in
some specific settings. For example, we expect the NT operating system to
provide us with built-in support for our hard disks, keyboard, mouse, and video
monitor. If, however, I wish to attach a programmable toaster device to my
system (my new invention), and | would like to control this device using my
computer, which is running Windows NT, I suspect that | will have to develop a
driver to control the device. Furthermore, if | expect to be successful in devel-
oping this driver, | will obviously have to look to the operating system to provide
an appropriate environment and support structure that makes developing,
installing, testing, and using this driver a task that might be difficult but not
insurmountable.

Although some might argue that such expectations of support from an operating
system are unreasonable, the Windows NT operating system does provide such a
framework, so that mere mortals like you and me can develop necessary drivers
to control such esoteric devices as a programmable toaster. In fact, the NT oper-
ating system provides a consistent, well-defined 1/0 subsystem within which all
code required to interface with external devices can reside. The 1/O subsystem is
extensive, encompassing file system drivers, intermediate drivers, device drivers,
and services to support and interface with such drivers. It is also consistent in its
treatment of external devices.

In this chapter, | will present an introduction to the NT I/O Manager, the compo-
nent responsible for creating, maintaining, and managing the NT 1/O subsystem.
To develop any kind of driver for the Windows NT operating system, an under-

117

118 Chapter 4: The NT I/O Manager

standing of the framework provided by the 1/O Manager is extremely important.
First, 1 will describe some of the services provided by the 1/O Manager. Next, |
will present an overview of the components comprising the 1/O subsystem,
including a discussion of the various types of drivers that can exist within the 1/0
subsystem. | will then describe some common data structures that kernel-mode
developers should be familiar with. Following this is a discussion on some
common issues involving 1/O requests sent to kernel-mode drivers. Finally, 1 will
present a description of the system boot sequence, with emphasis on the activities
of the 1/0O Manager and the drivers within the kernel.

The NT 1/0O Subsystem

The NT I/O subsystem is the framework within which all kernel-mode drivers
controlling and interfacing with peripheral devices reside. This subsystem is
composed of the following components (see Figure 4-1):

e The NT I/O Manager, which defines and manages the entire framework.

File system drivers that are responsible for local, disk-based file systems.

» Network redirectors that accept 1/O requests and issue them over the network

to a file server. The redirectors are implemented similarly to other file system
drivers.

« Network file servers that accept requests sent to them by redirectors on other
nodes, and reissue these requests to local file system drivers. Although file
servers do not need to be implemented as kernel-mode drivers, typically they
are implemented as such for performance reasons.

* Intermediate drivers, such as SCSI class drivers. These drivers provide generic
functionality that is common to a set of devices. Intermediate drivers also
include drivers that provide added functionality, such as software mirroring or
fault tolerance, by using the services of device drivers.

« Device drivers that interface directly with hardware, such as controller cards,
network interface cards, and disk drives. These are typically the lowest-level
kernel-mode drivers.

» Filter drivers that insert themselves into the driver hierarchy to perform func-
tionality that is not directly available using the existing set of drivers. For
example, a filter driver can layer itself above a file system driver, intercepting
all requests that are issued to the file system driver. A filter driver could just
as well layer itself below the file system driver, but above a device driver,
intercepting all requests targeted to the device driver. Note that conceptually,
the only tangible difference between filter drivers and other intermediate driv-
ers is that filter drivers typically intercept requests targeted to some existing

v

TheNT I/O Subsystem 119

User Mode

, TR . ., D B

- Kemel Mode

Process
Manager

kMem'ury

Manager
Cache

Manager

Objest
Manager

Security
Monitor
Lacai IPC
Services

rdware Abstract
Hardware
(e.g. processors, controllers cards, adapter cards, disk drives)

Figure 4-1. Kernel-mode components, including the I/O subsystem

device and then provide their own functionality, either in lieu of or in addi-
tion to the functionality provided by the driver that was the original recipient
of the request.

Functionality Provided by the NT I/O Manager

The NT I/O Manager oversees the NT 1/O subsystem. The following is a list of
some of the functionality provided by the I/O Manager:

e The I/O Manager defines and supports a framework that allows the operating
system to use peripherals connected to the system.

The type and number of peripherals that can potentially be used with a Win-
dows NT system is not limited, since new types of peripheral devices are con-

118 Chapter 4: The NT I/O Manager

standing of the framework provided by the 1/O Manager is extremely important.
First, 1 will describe some of the services provided by the I/O Manager. Next, |
will present an overview of the components comprising the 1/O subsystem,
including a discussion of the various types of drivers that can exist within the 1/O
subsystem. | will then describe some common data structures that kernel-mode
developers should be familiar with. Following this is a discussion on some
common issues involving 1/O requests sent to kernel-mode drivers. Finally, 1 will
present a description of the system boot sequence, with emphasis on the activities
of the 1/0 Manager and the drivers within the kernel.

The NT I/O Subsystem

The NT I/O subsystem is the framework within which all kernel-mode drivers
controlling and interfacing with peripheral devices reside. This subsystem is
composed of the following components (see Figure 4-1):

« The NT I/O Manager, which defines and manages the entire framework.
» File system drivers that are responsible for local, disk-based file systems.

« Network redirectors that accept 1/0 requests and issue them over the network
to a file server. The redirectors are implemented similarly to other file system
drivers.

* Network file servers that accept requests sent to them by redirectors on other
nodes, and reissue these requests to local file system drivers. Although file
servers do not need to be implemented as kernel-mode drivers, typically they
are implemented as such for performance reasons.

* Intermediate drivers, such as SCSI class drivers. These drivers provide generic
functionality that is common to a set of devices. Intermediate drivers also
include drivers that provide added functionality, such as software mirroring or
fault tolerance, by using the services of device drivers.

» Device drivers that interface directly with hardware, such as controller cards,
network interface cards, and disk drives. These are typically the lowest-level
kernel-mode drivers.

» Filter drivers that insert themselves into the driver hierarchy to perform func-
tionality that is not directly available using the existing set of drivers. For
example, a filter driver can layer itself above a file system driver, intercepting
all requests that are issued to the file system driver. A filter driver could just
as well layer itself below the file system driver, but above a device driver,
intercepting all requests targeted to the device driver. Note that conceptually,
the only tangible difference between filter drivers and other intermediate driv-
ers is that filter drivers typically intercept requests targeted to some existing

TheNT I/OSubsystem 119

User Mode

W S A G SO SO TN N O S NN, WA R T S SRS G D TR DU O U DD S G S M TSI D S T U, WD, GO W B

Sl : Kernel m&le

Process
Manager

Memory

~ Manager

Security
Maoniter

 Local IPC
Services

Hardware
(e.g. processors, controllers cards, adapter cards, disk drives)

Figure 4-1. Kernel-mode components, including the 1/0 subsystem

device and then provide their own functionality, either in lieu of or in addi-
tion to the functionality provided by the driver that was the original recipient
of the request.

Functionality Provided by the NT I/O Manager

The NT I/O Manager oversees the NT 1/O subsystem. The following is a list of
some of the functionality provided by the 1/O Manager:

e The I/0O Manager defines and supports a framework that allows the operating
system to use peripherals connected to the system.

The type and number of peripherals that can potentially be used with a Win-
dows NT system is not limited, since new types of peripheral devices are con-

120 Chapter 4: The NT I/O Manager

tinuously being designed and developed. Therefore, the 1/0 subsystem for a
commercial operating system like Windows NT must be well-designed and
extensible, such that it can easily accommodate the myriad devices, each with
its own set of unique characteristics, that could be used.

e The NT I/O Manager provides a comprehensive set of generic system services
used by the various subsystems to actually perform 1/O or request other ser-
vices from kernel-mode drivers.

Consider a read request initiated by a user process. This read request is
directed to the controlling subsystem, such as the Win32 subsystem. Note that .
the Win32 subsystem does not actually direct the read request to the file sys- ;
tem driver or device driver itself; instead it invokes a system service called
NtReadFileO , supplied by the I/O Manager. The NtReadFileO system
service then assumes the responsibility for directing the request to the appro-
priate driver and conveying the results to the Win32 subsystem. Also note that
the buffer supplied by the user process requesting the read operation usually
cannot be used directly by the kernel-mode drivers that will eventually satisfy
the request. The I/O Manager provides the support to automatically perform
the necessary operations that would allow the kernel-mode drivers to use a
buffer address that is accessible in kernel-mode. Later in this chapter, 1 will
describe this operation of manipulating user-mode buffers in further detail.

Although the native NT system services are very poorly documented (if at all),
you can find a detailed description of these services in Appendix A, Windows
NT System Services, in this book.

e The NT I/O Manager defines a single 1/0O model that all drivers in the system
must conform to. As mentioned above, this model consists of objects and a
set of associated methods used to manipulate the objects. Kernel-mode driv-
ers do not need to be concerned with the originator of an 1/O request, since
they respond to all I/O requests in the same manner.

This results in a consistent interface provided to users of the 1/0O subsystem,
such as the Win32 or POSIX subsystem, and also protects the kernel-mode
drivers from having to worry about the vagaries associated with the particular
subsystem that issued the 1/O request.

Furthermore, since every kernel-mode driver must conform to this single 1/0
model, kernel-mode drivers can use services provided by each other, since a
kernel-mode driver does not really care whether the 1/O request originates in
kernel-mode or user-mode. That said, if you do invoke the services of
another kernel-mode driver from your kernel-mode driver, there are certain
considerations that you must be aware of. These will be described later in this
chapter.

TheNT I/O Subsystem 121

Finally, the single 1/0O model allows for the implementation of layered kernel-
mode drivers, which are supported by the NT 1/O Manager. Each kernel-
mode driver in a layered hierarchy can utilize the services of the underlying
driver to complete a specific operation. In turn, the underlying driver can sat-
isfy the issued request without concerning itself with whether the request
came to it directly from some user process or from a driver that resides above
it in the hierarchy of layered drivers.

The I/0O Manager supports installable file system implementations that use the
peripheral devices connected to the system.

The NT operating system includes support for the CD-ROM file system, the
NTFS log-based file system, the legacy FAT file system, the LAN Manager File
System Redirector, as well as the HPFS file system. In addition to supporting
such native local- and network-based file systems, the I/O Manager provides
the infrastructure for development of external, installable file systems, i.e., file
system implementations from third-party vendors. You can purchase commer-
cial implementations of NFS (the Network File System), DPS (the Distributed
File System), and other file system and network redirector implementations.

The NT I/O Manager supports dynamically loadable kernel-mode drivers.

The 1/0O Manager provides support for device-independent services that can
be utilized by other components of the NT operating system, as well as by
kernel-mode drivers that are implemented by third-party vendors.

If a kernel-mode driver needs to invoke the dispatch routine for another ker-
nel-mode driver, it can use the loCallDriver () service provided by the
I/0 Manager. Similarly, if a kernel-mode driver has to allocate a Memory
Descriptor List (MDL) structure, the loAllocateMdl () routine, can be
used. There are other such services that are commonly used by kernel-mode
components (including kernel-mode drivers), provided by the NT I/O Man-
ager. The list of services is available in the Windows NT Device Drivers Kit
(DDK).

The NT I/O Manager interacts with the NT Cache Manager to support virtual
block caching of file data.

Later in this book, you will learn more about the functionality provided by
the NT Cache Manager.

The NT I/O Manager interacts with the NT Virtual Memory Manager and file
system implementations to support memory-mapped files.

In the next chapter, you will read in detail about memory-mapped files. Sup-
port for memory-mapped files is provided jointly by the NT 1/O Manager, the
NT Virtual Memory Manager, and the appropriate file system driver.

122 Chapter 4: The NT I/O Manager

If you wish to develop kernel-mode drivers for Windows NT, your driver must
conform to the specifications provided by the NT I/O Manager. This includes
creating and maintaining some data structures defined by the I/O Manager and
also supplying the methods that manipulate such objects. Furthermore, your
driver must respond appropriately to requests issued by the NT I/O Manager, and
your driver must return results of each operation back to the 1/0O Manager. It is
extremely unlikely that you can successfully develop a kernel-mode driver that
does not use any of the services provided by the NT 1/O Manager. Therefore, you
will need to understand well the framework provided by the NT 1/O Manager.
The remainder of this chapter addresses some of these issues in further detail.

Concepts in I/0O Manager Design

The design of the NT 1/O subsystem exhibits a number of characteristics
described in the following sections.

Packet-based 1/0

The 1/0 subsystem is packet-based; i.e., all 1/O requests are submitted using 1/O
Request Packets (IRPs). IRPs are typically constructed by the I/O Manager in
response to user requests and sent to the targeted kernel-mode driver. However,
any kernel-mode component can create an IRP and issue it to a kernel-mode
driver using the loAllocatelrp() and loCallDriver () 1/0O Manager
routines described in the DDK.

The 1/0 Request Packet is the only method you can use to request services from
an 1/O subsystem driver. By strictly conforming to this packet-based I/O model,
the NT 1/O Manager ensures consistency across the 1/O subsystem and enables
the layered driver model, described later in this section.

Each IRP sent to a kernel-mode driver represents a pending 1/O request to that
driver. An IRP will continue to be outstanding until the recipient of the IRP
invokes the loCompleteRequest () service routine for that particular IRP.
Invoking loCompleteRequest () results in that I/O operation being marked as
completed, and the 1/O Manager then triggers any post-completion processing
that was awaiting completion of the I/O request. A particular IRP can be
completed only once; i.e., only one kernel-mode driver can invoke loComple-
teRequest () for any outstanding IRP in the system.

You should be aware that, although packet-based 1/O is the rule in Windows NT,
the NT 1/O Manager, NT Cache Manager, and the various NT file system imple-
mentations collaborate to implement functionality called the fast 1/0 path, which
is an exception to this rule. The fast 1/O method of I/O operations is only valid
for file system drivers. These operations are implemented using direct function

v

TheNTI/OSubsystem 123

calls into the file system drivers and the NT Cache Manager instead of using the
normal IRP method. The fast 1/O path is described in detail later in this book.

NT object model

The 1/0 Manager conforms to the NT Object Model defined and implemented by
the Object Manager component of the NT Executive.

Kernel-mode drivers, peripheral devices, controller cards, adapter cards, inter-
rupts, and instances of open files are all represented in memory as objects that
can be manipulated. These objects also have a set of methods, a set of operations
that can be performed on the object, associated with them. For example, each
controller card in the system is represented by a controller object, while each
instance of an open file is represented by the file object data structure. The
controller object can only be accessed using one of the methods associated with
the object. This same restriction also applies to the file object structure, as well as
to all other object types defined by the 1/0 Manager.

Note that kernel-mode drivers developed for Windows NT have to conform to
this object-based model along with the rest of the 1/O subsystem. All drivers must
initialize a driver object structure representing the loaded instance of the device
driver itself. In addition, if the driver manages devices or peripherals attached to
the system, it must create and initialize one or more device object structures.

Since the I/O Manager uses the NT object model, it can also use the services of
the Security Subsystem to control access to objects. The 1/O Manager supports
named object structures. For example, file objects have a name associated with
them indicating the on-disk file that they represent. You can also create other
named objects, such as device objects, that can then be opened by other
processes or kernel-mode drivers.

Layered drivers

The 1/O Manager supports layered kernel-mode drivers. Each driver in the hier-
archy accepts an 1/0 Request Packet, processes it, and then invokes the next
driver in the hierarchy.

Drivers lower in the hierarchy are closer to the actual hardware. However, only
the lowest drivers typically interact directly with hardware devices or cards. The
layered driver model is a boon to designers who wish to provide value-added
functionality not supplied with the base operating system. This feature enables
intermediate and filter drivers to be inserted into the driver hierarchy whenever
required, and therefore allows new functionality to be easily added to the system.
Furthermore, since each driver in the hierarchy interacts with drivers above and
below it in a consistent fashion, development, debugging, and maintenance of

124 Chapter 4: The NI 1/0O Manager

kernel-mode drivers is a lot easier than on most other operating system
implementations

Asynchronous 1/0

The NT 1/O Manager supports asynchronous I/O* allowing a thread to request
I/0 operations and continue performing other computational tasks until the previ-
ously requested 1/0O operations have been completed. This makes for greater
parallelism in completing computational tasks as opposed to the purely sequential
model in which a thread must wait for an 1/O operation to proceed before it
proceeds with other activity.

Figure 4-2 graphically illustrates the sequence of activities that occur when
performing synchronous and asynchronous I/O operations. As you can see from
the illustration, the thread using asynchronous 1/O can continue performing
computational activity in parallel with the servicing of the 1/0O request that it has
initiated. This results in higher performance and higher net throughput for the
system. Note that the default I/O mechanism is the synchronous model.

Preemptible and interruptible

The 1/0O subsystem is preemptible and interruptible. It is extremely important for
all kernel-mode driver developers to understand these two concepts.

Every thread executing in kernel mode executes at a certain system-defined Inter-
rupt Request Level (IRQL). Each IRQL has an interrupt vector assigned to it by the
system, and there are a total of 32 different IRQLs defined by Windows NT. Any
thread can have its execution interrupted due to an interrupt at a higher IRQL
than the IRQL at which that thread is executing. When such an interrupt occurs,
the Interrupt Service Routines (ISRs) associated with that particular interrupt are
executed in the context of the currently executing thread. This results in a suspen-
sion of the current flow of execution so that thread can execute the ISR code.t

IRQ levels range from PASSIVE_LEVEL (defined as numeric value 0), which is
the default level at which all user threads and system worker threads execute, to
IRQL HIGH_LEVEL (defined as numeric value 31), which is the highest possible
hardware IRQL in the system. Most file system dispatch routines are executed at
IRQL PASSIVE_LEVEL. However, most lower-level device driver routines (for
example, SCSI class driver read/write dispatch entry points) are executed at
higher IRQ levels — typically at IRQL DISPATCH_LEVEL (defined as numeric
value 2).

* The term overlapped 1/0 used by the Win32 subsystem refers to the same coneept as that of asynchro-
nous 1/0 supported by the NT I/0 Manager.

t ISR execution can be interrupted as well if another, even higher-level interrupt occurs.

vr

The NTI/O Subsystem 125

Synchronous {/0 Operation

Thread performing Thread execution is stalled awaiting Thread performing
normal processing completion of I/0 operation normal processing

1 l i
[1 I]

T /0 subsystem hard at work,.. T

/0 Request initiated by the thread. /0 Request completes and control
Control not returned to thread. and status are returned.

Asynchronous 1/0 Operation

Thread performing Thread execution continues normally. Thread can choose to check
normal processing status of operation at any time (via state of object to be signaled).
| |
f H |
T /o subsystem hard at work... T
1/0 Request initiated by the /0 Request completes and status
thread. Control is immediately is returned. Thread is notified by
returned to thread. signaling a designated object.

Time

Figure 4-2. Synchronous/asynchronous processing

Since all code in the 1/O subsystem is interruptible, drivers developed for the NT
operating system must use appropriate synchronization and protection mecha-
nisms to prevent data corruption for data accessed at different IRQ levels. For
example, if your kernel-mode driver accesses a data structure at IRQL PASSIVE_
LEVEL in the context of a system worker thread, and if this driver also needs to
access this same data structure at IRQL DISPATCH_LEVEL when servicing an
interrupt request, the driver will have to use a spin lock that is always acquired at
IRQL DISPATCH_LEVEL, which is the highest-level IRQL at which the spin lock
could possibly be acquired, to provide mutually exclusive access to the data
structure.*

Threads executing 1/0 subsystem code in the kernel are also preemptible. The
Windows NT operating system associates execution priorities with threads. These
priorities are typically variable, and most user-level threads and system worker

* Chapter 3, Structured Driver Development, provides a description of the available locking and synchro-
nization primitives in the Windows NT kernel environment.

126 Chapter 4: The NT I/0 Manager

threads execute at relatively lower priorities, which allow them to be preempted
by the NT scheduling code (in the NT Kernel) when a higher-priority thread is
scheduled to run.

The fact that such threads could be preempted while executing kernel-mode code
also necessitates synchronization mechanisms to ensure data consistency. This
requirement is not present in other operating systems, such as the Windows 3.1
operating environment, or some versions of UNIX (e.g., HPUX, or SunOS), which
currently do not allow preemption of threads or processes executing in kernel
mode.

Kernel-mode driver designers must be extremely careful when acquiring common
resources (e.g., read/write locks, semaphores) from within the context of different
threads, because the Windows NT Kernel does not provide any built-in safe-
guards against programming errors resulting in situations like the priority
inversion scenario described in Chapter 1, Windows NT System Components.

If you develop a driver that needs to acquire more than one synchronization
resource at an IRQL that is less than or equal to DISPATCH_LEVEL, you must
also be careful to define a strict locking hierarchy. For example, assume that your
kernel-mode driver has to lock two FAST_MUTEX objects, fast mutex_| and fast_
mutex_2. You must define the order in which all threads in your driver can
acquire both of these mutex objects. This order could be "acquire fast_mutex |
followed by fast_ mutex_2 or vice-versa. The reason for strictly defining and main-
taining a locking hierarchy is to avoid a situation like one where thread-a
acquired fast_mutex I, wants to acquire fast mutex 2, and gets preempted.
Thread-b in the meantime gets scheduled to execute, acquires fast mutex 2, and
now needs to acquire fast mutex |. This scenario would cause a deadlock
condition.

Portable and hardware independent

The 1/O subsystem is portable and hardware independent. Kernel-mode drivers
developed for Windows NT environments are also required to be portable and
hardware independent.

The NT Hardware Abstraction Layer (HAL) is responsible for providing an abstrac-
tion of the underlying processor and bus characteristics to the rest of the system.
NT drivers must be careful to use the appropriate HAL, NT Executive, and I/O
Manager support routines to ensure portability across Alpha, MIPS, PowerPC, and
Intel platforms.

The vast majority of the code in the NT 1/O subsystem is written in C, a high-level
and portable language. NT currently also requires kernel-mode driver developers
to write their code in the C language, though it is possible with some extra work

TheNT1/O Subsystem 127

to write and link drivers in assembly. However, development in low-level
languages, such as assembly, is highly discouraged, because assembly languages
are inherently processor/architecture specific, and therefore such drivers cannot
execute on more than one type of processor architecture.

Multiprocessor safe

The 1/O subsystem is multiprocessor safe. Windows NT was designed from the
ground up to be able to execute on symmetric multiprocessing environments.

Execution of NT kernel-mode code and drivers on multiprocessor machines
requires careful synchronization by kernel designers to avoid data consistency
problems. For example, on uniprocessor machines, a common practice used to
avoid data consistency problems while servicing an interrupt is to disable all other
interrupts on the same machine (e.g., via a cli assembly instruction on x86 archi-
tectures). However, this same mechanism will fail on symmetric multiprocessor
systems, because it is possible to encounter an interrupt on another processor,
even though all interrupts had been disabled on the current processor. Similarly,
on uniprocessor systems, it can be guaranteed (e.g., via usage of a critical section)
that only one thread at a time can access a particular data structure. However, on
symmetric multiprocessor architectures, even if preemption of a thread from a
single processor were temporarily suspended, other threads executing on other
processors could conceivably try to simultaneously access the same data structure.

Typically, spin locks and other higher level (Executive) synchronization mecha-
nisms must be used consistently and correctly in Windows NT drivers to ensure
correct functionality on multiprocessor systems.

Modular

The NT I/O subsystem is modular. Any driver within the NT I/O subsystem can
be easily replaced by another driver that provides support for the same dispatch
entry points supported by the original driver. The use of I/O Request Packets to
submit 1/O requests and an object-based model where all 1/O operations are
invoked via standard methods (or well-defined dispatch routine entry points)
allows easy replacement of one kernel-mode driver with another that responds
appropriately to the same dispatch routines.

All drivers also invoke the services of the I1/O Manager using a well-defined and
consistent set of service and utility functions. Theoretically, therefore, the 1/O
Manager is also easily replaceable. In practice, however, the I/O Manager is an
extremely complex and integral component of the core NT operating system, and

* There are third-party-provided libraries that claim to assist you in developing Windows NT device driv-
ers in C++.

128 Chapter 4: The NT I/O Manager

would be extremely difficult to replace easily, even by developers at Microsoft
itself.

One obvious benefit of the modularity in the 1/O subsystem, however, is the rela-
tive ease with which I/0O Manager support functions and driver functionality can
be reimplemented without affecting any clients that use the services of the 1/O
Manager or such drivers. As long as the interfaces are maintained consistently, the
internals of any implementation can be changed whenever required.

Configurable

All components of the 1/0O subsystem are configurable. The 1/O Manager and all
components that comprise the 1/O subsystem try to maximize run-time config-
urability. The NT I/O Manager works with the HAL to determine the set of
peripherals connected to the system at boot time. It then initializes the appro-
priate data structures to support these connected devices. This process avoids any
requirements for hardcoding device configurations into the operating system.
Windows NT does not as yet support true plug-and-play, though it should in the
near future.

Kernel-mode drivers can be developed to manipulate devices; each driver is
dynamically loadable and unloadable, minimizing unnecessary kernel overhead.
The 1/0O Manager determines the drivers to be loaded, and the order in which
they should be loaded, based upon the entries in the Windows NT Registry. 1/O
Manager configuration parameters, as well as those required by kernel-mode
drivers, are obtained from the Windows NT Registry.

Any drivers that you develop should be as configurable as possible. This includes
avoiding any hardcoded values in the driver code and instead obtaining these
values from the system Registry, maximizing user configurability.

Process and Thread Context

Before discussing other details specific to the 1/O Manager and the 1/O
subsystem, it would be useful for you to understand the concepts underlying
thread/process contexts and to realize why a good grasp of these concepts is
essential to understanding the operation of the various components in the
Windows NT Kernel. To design and develop kernel-mode drivers under Windows
NT successfully, you will need a solid grasp of these issues.

Every process in a Windows NT operating environment is represented by a
process object structure and has an execution context that is unique to that
process. The execution context for the process includes the process virtual
address space (described in greater detail in the next chapter), a set of resources
visible to that process, and a set of threads that belong to the process. Examples

w

@w B » U

TheNT1/OSubsystem 129

of resources owned by a process include file handles for files opened by that
process, any synchronization objects created by that process, and any other
objects that are created either by the process or on behalf of that process. Each
process has at least one thread that is created and belongs to the process,
although the process certainly could have numerous threads that belong to it.
Note that in Windows NT, the fundamental scheduleable entity is a thread object
and not the process object.

Each process is described internally by the Windows NT Kernel by a Process Envi-
ronment Block (PEB) structure, which is opaque to the rest of the system. The
PEB contains process global context, such as startup parameters, image base
address, synchronization objects for process-wide synchronization, and loader
data structures. Upon creation, the process is also assigned an access token called
the primary token of the process. This token is used, by default, by threads associ-
ated with the process to validate themselves when they access any Windows NT
object.

An object table is created for each new process object structure. This object table
is either empty or a clone of the parent process object table, depending upon the
arguments supplied to the system's create process routine and the inheritance
attributes (OBJ_INHERIT) for each of the objects contained within the object
table for the parent process. The default access token and the base priority for a
new process is the same as that of the parent process.

A thread object is the entity that actually executes program code and is scheduled
for execution by the Windows NT Kernel. Every thread object is associated with a
process object; several threads can be associated with a single process object,
which enables concurrent execution of multiple threads in a single address space.
On uniprocessor systems, threads can never be executed concurrently; however,
on multiprocessor systems, concurrent execution is possible and does occur.

Each thread object has a thread context unique to it. This context is architecture-
dependent and is typically composed of the following:

» Distinct user and kernel stacks for the thread, identified by a user stack
pointer and a kernel stack pointer

* Program counter

* Processor status

» Integer and floating-point registers

» Architecture-dependent registers

You will notice that object handles and other related information about open

object structures stored in the process' object table are global to all threads associ-
ated with the process. Therefore, all threads in a process can access all open

130 Chapter 4: The NT I/O Manager

handles for the process, even those opened by other threads within the process.
Threads belonging to other processes can only access objects that belong to the
process to which they are affiliated; any attempt to access a resource owned by
another process will result in an error returned by the Object Manager component
inWindowsNT.*

Threads are typically referred to as user-mode or kernel-mode threads. Note that
there is no difference in the internal representation of such threads, as far as the
Windows NT operating system is concerned. The only conceptual difference
between such threads is the mode of the processor when the thread typically
executes code, and the virtual address range that is therefore accessible by the
thread. For example, a Win32 application process contains threads that execute
code while the processor is in user mode and therefore are referred to as user-
mode threads. On the other hand, there is a global pool of worker threads
created by the Windows NT Executive in the context of a special system process
that are used to execute operating system or driver code when the processor is in
kernel mode; these threads are typically referred to as kernel-mode threads.

Although user-mode threads typically execute code with the processor in user
mode, they often request system services, such as file 1/0O, which result in the
processor executing a trap and entering kernel mode to execute the file system
code that will service the 1/O request. Notice that the user-mode thread is now
executing operating system (file system driver) code with the processor in kernel
mode, with all the rights and privileges that exist while the processor in this state.
While executing in kernel mode, the thread can access kernel virtual addresses
and perform operations that are otherwise always denied while the processor is in
user mode.

Execution contexts

Consider a kernel-mode driver that you develop. The fact that this is a kernel-
mode driver tells us that, while the code is being executed, the processor will be
in kernel mode and will therefore be able to access the kernel virtual address
range. You might wonder which set of threads will execute the code that you
develop. Will it be some special thread that you would have to create, or will it
be a user-mode thread that requests services from your driver, or will it be a
thread on loan from the pool of system worker threads | referred to earlier?

The answer is, it depends. Your driver might always execute code in the context
of a special thread that you may have created at driver initialization time, or it

* Typically, if you write a kernel-mode driver that attempts to use a handle that is not valid within the
execution context of the currently executing process, you will see an error status of STATUS_INVALID_
HANDLE returned to you.

The NT I/O Subsystem 131

might execute code in the context of a user thread that has requested 1/O
services, or it might be invoked in the context of system worker threads. It is
quite possible that, if you develop a file system driver, your driver will execute
code in the context of all three types of threads. Furthermore, if you develop
device drivers or other lower-level drivers that have their dispatch routines
invoked in response to interrupts, your code will execute in the context of which-
ever thread was executing on that processor at the particular instant when the
interrupt occurs. This is referred to as execution of code in the context of an arbi-
trary thread, i.e., a thread whose context is unknown to your driver. The
operating system temporarily "borrows" the execution context of this thread to
execute your driver routines simply because this thread happened to be executing
code on the processor at the time the interrupt occurred.

As a kernel-mode driver designer, you must, therefore, always be aware of the
execution context in which your code will execute. This execution context is
always one of the following:

The context ofa user-mode thread that has requested system services
If you develop a file system driver or a filter driver that resides above the file
system in the driver hierarchy, then your code will often execute in the
context of the user-mode thread that requested, say, a read operation. Your
code will then be able to access the kernel virtual address range, as well as
the virtual addresses in the lower 2GB of the virtual address space belonging
to the user-mode process to which the requesting user-mode thread belongs.*

Typically, only file system drivers or filter drivers that intercept file system
requests should expect that their dispatch routinest will be executed directly
in the context of user-mode threads. Other drivers cannot expect this, simply
because higher-level drivers might have posted the user request to be
executed asynchronously in the context of a worker thread, or your driver
code might be executed in response to an interrupt as discussed previously.

The context ofa dedicated worker thread created by your driver or by some kernel-
mode component (typically a component belonging to the I/O subsystem)
File system drivers sometimes create special threads in the context of the
system process (using the PsCreateSystemThread() system service
routine described in the DDK) that they subsequently use to perform opera-
tions that cannot otherwise be performed in the context of user-mode threads
requesting 1/0O services. Filter drivers might also choose to create such dedi-

* See the next chapter for a detailed discussion on virtual address spaces.

t Dispatch routines are the entry points into a kernel-mode driver. Later in this chapter, | will describe-
the possible dispatch routines that a kernel-mode driver could have.

Chapter 4: The NT I/O Manager

cated worker threads; or for that matter, any kernel-mode component can
choose to create one or more worker threads.

If you write a file system driver, you might occasionally request that certain
operations be carried out by such threads created by you. Your code will
then execute in the context of your special threads. If, however, you write
lower-level drivers, and if the file system uses a special thread to process 1/0
requests, your driver might now be invoked in the context of the special
thread created by the file system driver. Either way, you can see that the code
executes in the context of specially created threads belonging to the system
process.

The context of system worker threads specially created by the I/O Manager to serve
1/0 subsystem components

It is possible for certain 1/O operations to be performed in the context of
system worker threads that are created by the I/O Manager. These worker
threads are often used by file system driver implementations, or by device
drivers or other kernel-mode components that need thread context to perform
their operations. For example, consider asynchronous 1/O requests from user-
mode applications. Typically, a file system driver will service such a request
by "posting” the request to be picked up and handled by a system worker
thread. Control is immediately returned to the calling application once the
request has been posted, and the 1/O Manager will notify the application
once the request has been serviced in the context of the system worker
thread. In such a situation, all lower-level drivers will have their dispatch
routines invoked in the context of the system worker thread. Note that a
system worker thread belongs to the system process, just like the dedicated
worker threads created by kernel-mode components described earlier.

The important point to note here is that once the request has been posted to
the system worker thread, the virtual address space now accessible in the
context of the system worker thread is not the same as the virtual address
space that was accessible in the context of the original, user-mode thread that
requested the 1/O operation. Similarly, the resources that were valid in the
context of the original user-mode thread are no longer valid in the context of
the system worker thread. The reason for this is obvious: the system worker
thread executes in the context of the system process, and the user-mode
thread that requested the 1/O operation belongs to a distinct application
process with its own object table, virtual address space, and process environ-
ment block.

The context ofsome arbitrary thread

Consider now a device driver able to service one IRP at any given point in
time. Typically, most device drivers respond to I/O requests by queuing the

Yr

TheNTI1/O Subsystem 733

IRP for delayed processing, and by returning control immediately to the
driver above it in the hierarchy. The IRP will be processed later when the
driver can get to it, which is when 1/O Request Packets before it in the queue
have been processed.

So how is an IRP taken off the queue? Once the current I/O operation is
completed by the target device, the device informs the operating system via a
hardware interrupt. The operating system responds to this interrupt by
invoking the Interrupt Service Routines that various drivers have associated
with that specific interrupt. One of these Interrupt Service Routines will be
the ISR specified by your driver. As part of ISR execution, the current IRP will
complete, and the next IRP will be taken off the device queue and scheduled
for actual 1/0.*

The point to note here is that the ISR is executed asynchronously, in the
context of the currently executing thread—an arbitrary thread. Therefore,
when responding to such an interrupt, the driver cannot assume that the
virtual address space accessible to it is the same as that of the user thread that
requested the IRP now being completed. Resources associated with that
thread are not available to the driver code either, because the driver does not
know which thread's context is being borrowed to execute the ISR code.

Importance of thread and process contexts

Your kernel-mode driver code will be invoked in one of the execution contexts
described previously. The code you develop should be aware of the execution
context in which it will be invoked, since that determines the restrictions under
which your driver must operate.

Consider the case where you develop a kernel-mode driver that needs to open
some object; for example, your driver may perform file 1/O itself and may there-
fore open a file and receive a file handle in return.t If you open this file in your
driver initialization code (the DriverEntry () routine that every kernel-mode
driver must have), you should be aware that this handle will only be valid in the

* If you do develop device drivers, you will note that most processing described above is actually per-
formed as a Deferred Procedure Call (DPC) initiated by the ISR. However, the DPC is also executed in
the context of an arbitrary thread. Although I will not focus on DPCs and device driver development in
this hook, you can consult the DDK for more information.

t Although it may seem strange that a kernel-mode driver might want to perform file I/O, there are filter
drivers that provide functionality that requires such capabilities. A strength of the object-based, layered
model followed by Windows NT components is that kernel-mode drivers have a tremendous amount of
flexibility in terms of services available to them. This leads to the design of very robust, and useful, kernel-
mode drivers.

134 Chapter 4: The NT I/O Manager

context of the kernel process and the threads associated with the kernel process.
So, if you use this handle in the context of system worker threads, the handle will
be valid. However, if you attempt to use the handle in the context of a user
thread, or an arbitrary thread context, your handle will not be valid. Similarly, if
your driver opens an object while servicing a read request in the context of a user
thread, the handle can be used only in the context of that thread. Any attempt to
use the handle in the context of a system worker thread, for example, will result
in an error.

You must be also be aware of when you can safely use the user buffer address,
passed to your driver, for a read or write 1/O operation. The user specifies a
virtual address pointer that is perfectly valid in the context of that particular user
thread. However, if the I/O operation is not performed in the context of that user
thread (e.g., the 1/O operation is performed asynchronously), the virtual address
passed in by the user application will no longer be valid and therefore cannot be
used by the kernel-mode driver. The I/O Manager provides support for accessing
user buffers in other contexts besides that of the requesting thread. I will discuss
this support in detail later in this chapter.

As discussed above, there are certain restrictions on the resources that can be
used by your driver, depending on the thread context in which your code
executes. This thread context depends on the circumstances under which your
code is invoked, and this context will determine the resources that your driver
can utilize.

Objects and handles

All objects created by kernel-mode components in the Windows NT Executive
can be referred to in two ways, either by using an object handle returned by the
NT Object Manager when the object is created or opened, or by using a pointer
to the object. Note that the pointer to an object allocated by a kernel-mode
component will typically be valid in all execution contexts, because the virtual
address referring to the object will be from the kernel virtual address range (more
on this in the next chapter). However, as mentioned earlier, object handles are
specific to the execution context in which the handle is obtained and hence are
valid only in that particular execution context.

Remember that each object created by the NT Object Manager has a reference
count associated with it. When the object is initially created, this reference count
is set to 1. The reference count is incremented whenever a kernel-mode compo-
nent requests the Object Manager to do so, typically via an invocation of
ObReferenceObjectByHandle (), which is described in the DDK. The refer-
ence count is decremented whenever a close operation is performed on the
object handle. Kernel-mode drivers use the ZwClose () system service routine to

’88,

iser
1Iser
‘€ss
- be
sing
cuss

1 be
code
your
iriver

-utive
y the
ointer
mode
virtual
(more
es are
ce are

‘erence
» count
~ompo-
tion of
e refer-
on the
utine to

Common Data Structures 135

close a handle to any system-created object. The reference count is also decre-
mented when a kernel-mode component invokes ObDereferenceObject (),
which requires the object pointer to be passed in. When the object count goes to
zero, the object will be deleted by the NT Object Manager.

In the course of this book, you will often find places where we open an object
and receive a handle, then obtain a pointer to the object and stash it away some-

place (possibly in global memory), reference the object, and close the handle.
This allows us two advantages:

By saving a pointer to the object, we can always reobtain a handle to the
same object in the context of a thread other than the one that originally
opened the object. You can find concrete examples of this later in the book.

By referencing the object and closing the original handle, we are assured the
object will not be deleted (until we finally dereference it for the last time), yet

we are also assured that, once the last dereference operation is performed,
the object will automatically be deleted.

Keep the above discussion in mind as you go through the discussion and code
presented throughout this book. This methodology of working with objects and

object handles will probably be used extensively by you when you develop your
own kernel-mode driver.

Common Data Structures

Data structures are the heart of any computer application or operating system.
The NT 1/0O Manager defines certain data structures that are important to kernel-
mode driver designers and developers. Often, your driver will have to create and
maintain one or more instances of these data structures to provide driver function-
ality. In this section, | will briefly discuss the structure and uses of some of the
data structures that are important to file system driver and filter driver developers.
Note that all of these structures are well documented in the Windows NT DDK.
However, our objective here is to understand the reason for creating and working

with these data structures, as well as to get a good understanding of the important
fields that comprise these data structures.

Driver Object

The DRIVER_OBJECT structure represents an instance of a loaded driver in
memory. Note that a kernel-mode driver can only be loaded once; i.e., multiple

instances of the same driver will not be loaded by the Windows NT I/O Manager.
The driver object structure is defined as follows:

136 Chapter 4: The NT I/O Manager

typedef struct DRIVER OBJECT {

CSHORT Type ;

CSHORT Size;

/* a linked list of all device objects created by the driver */
PDEVICE_OBJECT DeviceObject;

ULONG Flags;

PVOID DriverStart;

ULONG DriverSize;

PVOID DriverSection;

/***i***********

the following field is provided only in NT Version 4.0 and later
**/
PDRIVER_EXTENSION DriverExtension;

/ RS E RS EREESEREEEEEEEEREERSEEEEESEEEEREESEEEES SRR EEEEES

the following field is only provided in NT Version 3.51 and before

**/

ULONG Count;
/***/
UNICODE_STRING DriverName;

PUNICODE_STRING HardwareDatabase;

PFAST 10 _DISPATCH FastloDispatch;

PDRIVER_INITIALIZE Driverlnit;

PDRIVER_STARTIO DriverStartlo;

PDRIVER_UNLOAD DriverUnload;

PDRIVER_DI SPATCH Maj orFunction [IRP_MJ_MAXIMUM_FUNCTION + 11;

} DRIVER_OBJECT;

Earlier in this chapter, | discussed the NT packet-based I/O model. Each 1/O
Request Packet describes an I/O request. The major function of an 1/O request
packet is to request functionality from a driver.

We know that the IRPs will have to be dispatched to some I/O driver routines. If
you examine the driver object structure, you will notice that it contains memory
allocated for an array of function pointers called the Maj orFunction array. It is
the responsibility of the kernel-mode driver to initialize the contents of this array
for each major function that the kernel-mode driver supports. There are no restric-
tions on the number of functions that your driver must support, nor are there any
restrictions specifying that each function pointer should point to a unique func-
tion; you could initialize the entry points for all major functions to point to a
single routine and this would work perfectly (as long as your driver routine
handled all the IRPs that would be directed to it). If you develop a kernel-mode
driver, you will probably support at least one major function and should therefore
initialize the function pointers appropriately.

The DriverStartlo and the DriverUnload fields are also left for the driver
to initialize. Lower-level Windows NT drivers typically provide a Startle func-
tion, which is invoked either when an IRP is dispatched to the driver, or when an
IRP has just been popped off a queue. The DriverStartlo field is initialized
by lower-level drivers to point to this driver-supplied StartlO function. Typi-

Common Data Structures 737

cally, as you will see in code presented later in this book, file system drivers and
filter drivers will not need a DriverStartlo routine, because such drivers
manage their pending 1/0 Request Packets via other internal queue management
implementations. The DriverUnload field should point to a routine that is
executed just before the driver is unloaded. This allows your kernel-mode driver
an opportunity to ensure that any on-disk information is in a consistent state, as
well as to allow lower-level drivers to put the device(s) they control into a known
state. Note that it is not required that your driver be unloadable; in particular, file
system drivers are extremely difficult to design so that they can be unloaded on
demand. If your driver cannot be unloaded, you must not initialize the Driv-
erUnload field in the driver object structure (the field is initialized to NULL by
the 1/O Manager and therefore your driver entry routine need not do anything to
this field).

Many kernel-mode drivers create one or more device object structures. These
structures are linked in the DeviceObject field in the driver object structure. At
driver load time, this linked list is empty. However, the NT 1/O Manager fills the
list with pointers to device objects created by your driver as such device objects
are created using the loCreateDevice () service routine.

To load a driver, the 1/0 Manager executes an internal routine called lopLoad-
Driver () . This routine performs the following functionality:

e Determines the name of the driver to be loaded and checks whether the
driver has already been loaded by the system.

The I/0 Manager checks to see whether the driver has already been loaded
by examining a global linked list of loaded kernel modules. If the driver is
already loaded, the I/O Manager immediately returns success; otherwise, it
continues with the process of loading the driver. To have your driver loaded,
your installation utility must have created an appropriate entry in the Registry.
See Part 3 for more information on how the Registry must be configured for
kernel-mode file system and filter drivers.

e If the driver is not loaded, the I/O Manager requests the Virtual Memory Man-
ager (VMM) to map in the driver executable. As part of mapping in the driver
code, the VMM checks to see that the file contains a valid Windows NT exe-
cutable format. If the driver was built incorrectly, the VMM will fail the map
request and the 1/O Manager, in turn, will fail the driver load request.

 Now the I/O Manager invokes the Object Manager, requesting that a new
driver object be created. Note that the DRIVER_OBJECT type is an I/0O Man-
ager-defined object type, which was previously created by the 1/O Manager at
system initialization time; it is therefore recognized as a valid object type by
the NT Object Manager. Note also that the returned driver object structure is

138 Chapter 4: The NT I/O Manager

allocated from nonpaged system memory and is, therefore, accessible at all
IRQ levels.

The I/O Manager zeroes out the driver object structure returned by the Object
Manager. Each entry in the MajorFunction array is initialized to lopln-
validDeviceRequest (). This is the default dispatch routine for the vari-
ous entry points. This routine simply sets a return status of STATUS_
INVALID_DEVICE_REQUEST and returns control to the calling process.

The 1/0 Manager initializes the Driverlnit field to refer to the initialization
routine in your driver (the DriverEntry routine). DriverSection is ini-
tialized to the section object pointer* for the mapped executable, Driver-
Start is initialized to the base address to which the driver image was
mapped, and DriverSize is initialized to the size of the driver image.

The 1/0O Manager requests that the object be inserted into the linked list of
driver objects maintained by the NT Object Manager. In return, the I/O Man-
ager gets a handle to the object. This handle is referenced by the 1/O Man-
ager and closed, thereby ensuring that the object will be deleted when
dereferenced at driver unload time.

The HardwareDatabase field is initialized with a pointer to the Configura-
tion Manager's hardware configuration information; this field could be used
by lower-level drivers to determine the hardware configuration for the current
boot cycle. The I/O Manager also initializes the DriverName field so that it
can be used by the error logging component when required.

Finally, the 1/O Manager invokes the driver initialization routine, which is
where your driver gets the opportunity to initialize itself, including initializing
the function pointers in the driver object structure. You should note that your
driver initialization routine is always invoked at IRQL PASSIVE_LEVEL,
allowing you to use pretty much all of the system services available. Further-
more, your initialization routine will be invoked in the context of the system
process; this is especially important to keep in mind if you open any objects
or create any objects resulting in a handle being returned to you. Any such
handles will only be valid in the context of the system process. In order to be
able to use such objects in the context of other threads, you will have to use
the methodology described earlier in the chapter, where you obtain a pointer
to the object and then subsequently obtain handles in the context of other
threads as and when required.

If your driver fails the initialization routine it will automatically be unloaded
by the Windows NT 1/O Manager. Remember to deallocate any allocated

* Chapter 5, The NT Virtual Memory Manager, explains section objects and the process of mappinf files
in greater detail.

Common Data Structures 139

memory prior to returning control to the 1/0O Manager and also to close and
dereference any open objects, or else you will leave a trail behind you that
could lead to degraded or impaired system behavior.

The driver entry routine is the initialization routine for a kernel-mode driver and
is invoked by the I/O Manager. Each kernel-mode driver can also register a re-
initialization routine that is invoked after all other drivers have been loaded and
the rest of the 1/0 subsystem, as well as other kernel-mode components, have
been initialized. In NT 3.51 and earlier, the Count field in the driver object struc-
ture contained a count of the number of times the reinitialization routine had
been invoked.

Beginning with NT 4.0 and later, the NT I/O Manager allocates an additional struc-
ture that is an extension of the original driver object structure. This driver
extension structure is defined below and contains fields to support plug-and-play
for lower-level drivers that manage hardware devices and peripherals. The Count
field has been moved to the driver extension structure with the new release;
however, it still provides the same functionality as it did in earlier releases. Plug-
and-play support is provided by lower-level drivers and will not be covered in
this book.

typedef struct _DRIVER EXTENSION {
// back pointer to driver object

struct _DRIVER_OBJECT *DriverObject;

// driver routine invoked when new device added
PDRIVER_ADD_DEVICE AddDevice;

ULONG Count;
UNICODE_STRING ServiceKeyName;

) DRIVER_EXTENSION, *PDRIVER_EXTENSION;

Finally, notice that there is a pointer to a fast I/O dispatch table in the driver entry
structure. Currently, only file system driver implementations provide support via the
fast 1/O path. Essentially, the fast path is simply a way to avoid the abstract, clean,
modular, yet relatively slow method of using packet-based 1/0. Using the function
pointers provided by the file system driver in this structure, the NT I/O Manager
can either directly invoke the file system dispatch routines or call directly into the
NT Cache Manager to request I/0O without having to set up an IRP structure. The
FastloDispatch field should be initialized by the driver entry routine to refer to
an appropriate structure containing initialized file system entry points. In the
coverage of the NT Cache Manager, provided later in this book, you will see a
detailed discussion of the entry points that comprise the fast I/0 method of 1/O.

Device Object

Device object structures are created by kernel-mode drivers to represent logical,
virtual, or physical devices. For example, a physical device, such as a disk drive,

140 Chapter 4: The NT I/O Manager

is represented in memory by a device object. Similarly, consider the situation
where you develop an intermediate driver that presents a large physical disk as
three smaller disks or partitions. Now, there will be one device object, repre-
senting a large physical disk, that is created by the lower-level disk driver, and
your intermediate driver should create three additional device objects, each of
which represents a virtual disk. Finally, a driver might choose to create a device
object to represent a logical device; for example, the file system drivers create a
device object to represent the file system implementation. This device object can
be opened by other processes and can be used to send specific commands
targeted to the file system driver itself.

Without a device object, a kernel-mode driver will not receive any 1/O requests,
since there must be a target device for every I/O request dispatched by the 1/0
Manager. For example, if you develop a disk driver and do not create a device
object structure representing this particular disk device, no user process can
access this disk. Once you do create a device object for the disk, however, file
system drivers can potentially mount any volumes present on the physical media
and user-mode processes can try to read and write data from the disk.

Unnamed device objects are rarely created by kernel-mode drivers, since such
device objects are not easily accessible to other kernel-mode or user-mode compo-
nents. If you create an unnamed device object, none of the other components in
the system will be able to open it, and therefore, no component will direct any
I/O to it. However, one common example of unnamed device objects are those
created by file system drivers to represent mounted file system volumes. In this
case, there is a device object, created by the disk driver representing the physical
or virtual disk, on which the file system volume resides, and a Volume Parameter
Block (VPB) structure (described later) performs the association between the
named physical disk device object and the unnamed logical volume device object
created by the file system driver. 1/O requests are sent to the device object repre-
senting the physical disk. However, the I/O Manger checks to see whether the
disk has a mounted volume on it (mounted volumes are identified by an appro-
priate flag in the VPB structure for the device object that represents the physical
disk), and if so, it redirects the 1/O to the unnamed device object representing the
instance of the mounted volume.

When your driver issues a call to loCreateDevice () to request creation of a
device object, it can specify an additional amount of nonpaged memory to be allo-
cated and associated with the newly created device object. The reason is to have
a global memory area reserved for and associated with that particular device
object. This memory is called the device object extension and will be allocated by
the 1/0O Manager on behalf of your driver. The 1/O Manager initializes the Devi-
ceExtension field to point to this allocated memory. There are no constraints

A umn

Con
mar
you:
exte
pote
glob
with
acqu
spec

Any
Win‘
parti
obje:
tures
static
nong
able

static
drive
certaj

The ¢

(34
J
1]
O

o un®nntan

Common Data Structures 141

mandated by the 1/O Manager on how this memory object should be used by
your driver. You may wonder what the difference is between requesting a device
extension and declaring global static variables. The answer can be summed up as
potentially cleaner code design. Another important benefit is that device-specific
global variables stored in a device object extension become logically associated
with the device object immediately, and therefore you can avoid unnecessary

acquisition of synchronization resources before accessing this device-object-
specific data.

Any static variables declared by your kernel-mode driver are global to the entire
Windows NT operating system. They are also not logically associated with any
particular device object, so if your driver creates and manages multiple device
object structures, you will have to design some method where the global struc-
tures can be associated with specific device objects. Note, however, that both
statically declared global variables and the device extensions are allocated from
nonpaged pool, although you can request that your static variables be made page-
able (typically, this is never done). Many kernel-mode drivers make use of both
statically declared global variables that are required by the entire driver, and a
driver extension containing global variables that are specific to the context of a
certain device object structure.

The device object structure is defined as follows:

typedef struct _DEVICE_OBJECT {

CSHORT Type;
USHORT Size;
LONG ReferenceCount ;
struct _DRIVER _OBJECT *DriverObject;
struct _DEVICE_OBJECT *NextDevice ;
struct _DEVICE_OBJECT *AttachedDevice ;
struct _IRP *Currentlrp;
P10_TIMER Timer;
ULONG Flags;
ULONG Characteristics ;
PVPB Vpb;
PVOID DeviceExtension;
DEVICE_TYPE DeviceType;
CCHAR StackSize;
union {

LIST_ENTRY ListEntry;

WAIT_CONTEXT_BLOCK Web;
} Queue;
ULONG AlignmentRequirement;
KDEVICE_QUEUE DeviceQueue;
KDPC Dpc;
ULONG ActiveThreadCount ;

PSECURITY_DESCRIPTOR
KEVENT
USHORT

SecurityDescriptor ;
Devicelock;
SectorSize;

142

Chapter 4: The NT I/O Manager

USHORT Sparel ;

/**

the following fields only exist in NT 4.0 and later
**/
struct _DEVOBJ EXTENSION *DeviceObjectExtension;
PVOID Reserved;

/**

the following field only exists in NT 3.51 and earlier versions

**/

LARGE_INTEGER Spare2;

} DEVICE_OBJECT;

Any kernel-mode driver can direct the I/O Manager to create a device object
using the loCreateDevice () routine. This routine, if successful, will return a
pointer to the device object structure that is allocated from nonpaged memory.
Many of the fields in the device object structure are reserved for use by the 1/0O
Manager. A brief description of the important fields is given below:

As long as the ReferenceCount field is nonnull, two invariants hold true.
First, the device object will never be deleted. Second, the driver object repre-
senting the driver that created this device object will never be deleted (i.e.,
the driver will never be unloaded as long as any of the device objects created
by the driver has a positive reference count). The ReferenceCount field is
manipulated at various times by the 1/O Manager and can also be manipu-
lated by the driver.* An example of this field being incremented by the 1/0
Manager is whenever a new file stream is opened on a mounted volume; the
reference count for the device object representing the mounted volume is
incremented by 1 to ensure that the volume is not dismounted as long as any
file is open. This also ensures that the file system driver is not unloaded as
long as any file is open, since unloading the driver could lead to a system
crash. Similarly, whenever a new volume is mounted, the device object repre-
senting the logical volume has its reference count incremented to ensure that
both the device object and the corresponding driver object are not deleted.

The 1/O Manager initializes the DriverObject field to refer to the driver
object representing the loaded instance of the kernel-mode driver that
invoked the loCreateDevice () routine.

All device objects created by a kernel-mode driver are linked together using
the NextDevice field in the device object. Note that there is no particular
order in which a kernel-mode driver, traversing this linked list, should expect
to find created device objects. As it happens, the 1/0 Manager adds new

* Be careful if your driver manipulates the ReferenceCount field in the device object, because there
is no method with which you can synchronize your operation with that of the 1/0 Manager. This could
lead to inconsistent behavior.

Ty—

Common Data Structures 143

device objects to the head of the linked list; therefore, you will probably find
the last device object inserted at the beginning of the list.

* In this chapter, as well as in Chapter 12, Filter Drivers, you will be exposed to
more detail about how filter drivers can be developed for Windows NT envi-
ronments. These filter drivers are intermediate-level drivers that intercept 1/0
requests targeted to certain device objects by interjecting themselves into the
driver hierarchy and by attaching themselves to the target device objects. The
concept of attaching to a device object is simple, as illustrated in Figure 4-3.

IRP sent by I/0
Manager to Manager to
device object device object

IRP sent by I/0

 Device Object#1 |

(originat target of IRF) § Device Object #2

o - attaches itself to —
Device Object #1

Figure 4-3. lllustration ofa device object being attached to another

When a device object is attached to another (via the 1/O-Manager-provided
loAttachDevice () or the loAttachDeviceByPointer () routines), the
AttachedDevice field in the device being attached to (device object #\ in
Figure 4-3) will be set to the address of the device object being attached
(device object #2).

e The Currentlrp field is of interest to designers of device drivers or other
lower-level drivers. Such drivers typically use the 1/O-manager-supplied
loStartNextPacket () or loStartPacket () routines to queue and
dequeue an IRP from the driver queue of pending IRPs. Once the I/O man-
ager dequeues a new IRP, it makes the dequeued IRP the current IRP to be
processed by the driver. To do this, it inserts the IRP pointer in the Current-
Irp field of the device object. The 1/O manager subsequently passes a
pointer to DeviceObject->Currentlrp when invoking the device driver
Startlo () dispatch routine.

This field is typically not of much interest to higher-level drivers.

144 Chapter 4: The NT 1/0 Manager

e The Timer field is initialized when the driver invokes lolnitialize-
Timer (). This allows the 1/0 Manager to invoke the driver-supplied timer
routine every second.

e The device object Characteristics field describes some additional
attributes for the physical, logical, or virtual device that the object represents.
The possible values are FILE_REMOVABLE_MEDIA, FILE_READ_ONLY_
DISK, FILE_FLOPPY_DISK, FILE_WRITE_ONCE_MEDIA, FILE_REMOTE_
DEVICE, FILE_DEVICE_IS_MOUNTED, or FILE_VIRTUAL_VOLUME. This
field is manipulated by the I/0 Manager, as well as by the file system or ker-
nel-mode driver that manages the device object.

e The DevicelLock is a synchronization-type event object allocated by the 1/0
Manager. Currently, this object is acquired by the 1/O Manager prior to dis-
patching a mount request to a file system driver. This allows synchronization
of multiple requests to mount the volume. You should only be concerned
with this event object if you design a file system driver that uses the 1/0-Man-
ager-supplied loVerifyVVolume () routine (described in Part 3). In that
case, you should be careful not to invoke that routine when you get a mount
request from the I/O Manager, since the DeviceLock would have been pre-
viously acquired by the 1/O Manager prior to sending you the mount IRP;
invoking the verify routine would cause the I/O Manager to try to reacquire
this resource and cause a deadlock.

e The I/O Manager allocates memory for the device extension and initializes
the DeviceExtension field to point to this allocated memory.

I/0 Request Packets (IRP)

As described earlier, the Windows NT 1/O subsystem is packet-based. Kernel-
mode drivers that comprise the 1/0 subsystem receive I/0O Request Packets (IRP),
which contain details of the operation being requested. The recipient of the IRP is
responsible for processing the IRP, and either forwarding it on to another kernel-
mode driver for additional processing, or completing the IRP, indicating that
processing of the request described in the IRP has been terminated.

IRP allocation

All 1/O requests are routed through the NT I/O Manager. Most often, a user
process executes a Win32- or other subsystem-specific 1/0O request (e.g., Create-
File ()), and this request gets translated to an NT system service call to the 1/0O
Manager. Upon receiving the 1/O request, the I/O Manager identifies the driver
that should service the I/O request. Most likely, this will be a file system driver
that will have mounted the file system on the physical device to which the 1/0
request is targeted.

Common Data Structures 145

To dispatch the request to the kernel-mode driver, the 1/O Manager allocates an
I/0 Request Packet using the routine loAllocatelrp () .* This structure is
always allocated from nonpaged pool. The method of allocation'differs slightly in
the various versions of Windows NT.

NOTE A zone is a system-defined structure supported by the Windows NT
Executive and is used to efficiently manage allocation and dealloca-
tion of fixed-sized chunks of memory. Allocating and freeing memo-
ry using zones is more efficient than asking for small chunks of
memory from the VMM, which could also lead to some internal
memory fragmentation. Using a zone requires your driver to per-
form two steps: first, allocate the memory that will comprise the
zone and inform the NT Executive about this allocated pool, as well
as the size of entries you will allocate from the zone; second, use
the available ExAllocateFromZone () and other related support
routines to allocate and free entries using the zone.

Read Chapter 2, File System Driver Development, for a discussion on
how to use zones in your driver.

In NT version 3.51 and earlier, the 1/O Manager first attempts to allocate the IRP
from a zone composed of fixed-sized IRP structures. As you will read later in this
discussion of IRPs, the size of the IRP depends upon the number of stack loca-
tions that are required for the IRP. Therefore, the I/O Manager keeps two zones
available, one for IRPs with relatively fewer stack locations, and the other for 1/0
Request Packets with a larger number of stack locations. If the zone from which
allocation is attempted is found empty (this can happen in high-load situations
where an extremely large amount of concurrent 1/O is in progress), the 1/0O
Manager requests memory for the IRP directly from the VMM (actually, the 1/O
Manager uses the ExAllocatePool () support routine provided by the NT Exec-
utive). For 1/0 requests that originate in user-mode, if no memory is currently
available, an error is returned to the user application indicating that the system is
out of available resources. However, for 1/O requests that originate in kernel-
mode, the I/O Manager attempts to allocate memory for the IRP from the
NonPagedPoolMustSucceed memory pool. If this memory allocation request
does not succeed, the attempt will result in a system bugcheck.

The methodology used in NT version 4.0 is similar with one slight variation: the
I/0 Manager uses lookaside lists, a new structure used to manage fixed-sized
pools of memory introduced in this new release, instead of zones. The reason for

* The loAllocatelrp () routine is documented in the DDK. It can also be used by other kernel-mode
drivers to request an IRP to be allocated. Supply a FALSE for the ChargeQuota argument required with
this routine invocation.

146 Chapter 4: The NT 1/0 Manager

this new structure is to gain some efficiency, because lookaside lists do not
always use spin locks to perform synchronization; instead they use an atomic 8-
byte compare exchange instruction on architectures where such support is
possible.

Other kernel-mode components besides the 1/O Manager can use the 1/O-
Manager-supplied routine loAllocatelrp () to request a new IRP structure.
This IRP can subsequently be used to send a I/O request to a kernel-mode driver.
Other routines provided by the 1/0 Manager that also use loAllocatelrp () to
obtain a new IRP structure and then return these newly allocated IRPs after the
initialization of certain fields are loMakeAssociatedlrp (), loBuildSyn-
chronousFsdRequest () , loBuildDeviceloControlRecjuest() , and lo-
BuildAsynchronousFsdRecruest (). Consult the DDK for more information
on these routines. Part 3 also uses some of these routines in implementing filter
drivers.

IRP structure
Logically, each 1/0O Request Packet is composed of the following:

e The IRP header
» 1/O Stack Locations

The IRP header contains general information about the I/O request, useful to the
I/0 Manager as well as to the kernel-mode driver that is the target of the request.
Many of the fields in the IRP header can be accessed by a kernel-mode driver;
other fields exist solely for the convenience of the I/O Manager and should be
considered off-limits by the drivers processing the IRP.

Here is a brief explanation of important fields that comprise the IRP header:

MdIAddress
A Memory Descriptor List (MDL) is a system-defined structure that describes a
buffer in terms of the physical memory pages that back up the virtual address
range comprising the buffer. There are different ways in which buffers used
for 1/0 request handling can be passed down to the kernel-mode driver.
Descriptions for the three methods will appear shortly. Remember for now,
though, that if the Directlo method is used, the MdIAddress field will
contain a pointer to the MDL structure that can then be used in data transfer

operations.
Associatedlrp
This field is an union of three elements, defined as follows:
union {
struct _IRP *Masterlrp;

LONG IrpCount;

Common Data Structures 147

PVOID SystemBuffer;

} Associatedlrp;

Any IRP structure that has been allocated can be categorized as either a
master IRP or an associated IRP. An associated IRP is, by definition, associ-
ated with some master IRP, and can be created only by a higher-level kernel-
mode driver. By creating one or more associated IRPs, the highest-level driver
can split up the original 1/0 request and send each associated IRP to lower-
level drivers in the hierarchy for further processing.

For example, higher-level drivers sometimes execute the following loop:

while (more processing is required) {
create an associated IRP using loMakeAssociatedlirp () ;
send the associated IRP to a lower-level driver using
loCallDriver();
iT (STATUS_PENDING is returned) {
wait on an event for the completion of the associated IRP;
} else {
associated IRP was completed;
check result and determine whether to continue;
}
}

For an associated IRP, the union described here contains a pointer to the
master IRP. For a master IRP, however, this union contains the count of the
number of associated IRPs for this master IRP; or, if no associated IRPs have
been created, the SystemBuffer pointer might be initialized to a buffer allo-
cated in kernel virtual address space for data transfer. System buffers are
allocated by the 1/0 Manager when a kernel-mode driver requests buffered
1/0 (described later in this book).

Note that the IrpCount field is manipulated under the protection of an
internal 1/0 Manager resource. Therefore, external kernel-mode drivers must
not attempt to manipulate or access the contents of this field directly.

ThreadListEntry

This field is typically manipulated by the 1/0O Manager. Before invoking a
driver dispatch routine via loCallDriver (), all 1/0 Manager routines
insert the IRP into a linked list of IRPs for the thread in whose context the 1/0
operation is taking place. For example, if a user thread invokes a read
request, the I/O Manager will allocate a new IRP structure, and insert it into
the list of IRPs being processed by the user thread prior to invoking the file
system read dispatch routine.

148 Chapter 4: The NT I/O Manager

NOTE There is a field in each thread structure called IrpList, which

serves as the head of a linked list of pending I/O Request Packets.
The ThreadListEntry field, described earlier, is used to queue
the IRP to this linked list. This list is used to track all pending 1/O
Request Packets for the thread in question; this is especially useful
when the /O subsystem tries to cancel IRPs for a particular thread.

Note that the loAllocatelrp () routine does not queue the re-
turned IRP to the linked list of outstanding IRPs for the current
thread. Therefore, when a cancel request is posted, that IRP will not
be found among the list of IRPs for the thread.

loStatus

This field should be appropriately updated by your kernel-mode driver before
completing the I/0 Request Packet. A description of the structure is provided
later in this chapter. Note that this field is part of the IRP structure, and not
part of the I/O status block structure passed in to the I/O Manager by the
thread requesting the 1/O operation. It is the 1/0O Manager's responsibility to
transfer the results of the 1/O operation from this field to the I/O status struc-
ture submitted by the requesting thread. This operation is performed by the
I/O Manager as part of the postprocessing of the IRP, once the IRP has been
completed by kernel-mode drivers.

RequestorMode

When code in your driver is executed, it would be useful if you knew
whether the caller was a user-mode thread (e.g., an application requesting an
I/O operation), or if the caller was a kernel component (some other driver
requesting your services in the context of a system worker thread).

You may wonder why such information could be useful. Think about the
case where the caller is a user-mode thread; you know then that you cannot
blindly assume that the arguments passed in to your driver are legitimate. If
your driver uses the direct-lO method of passing buffer pointers (explained
later), you will need to convert the passed-in addresses to something usable
by your kernel-mode code. This is especially true if the request will be
handled asynchronously by your driver.

On the other hand, if your driver is invoked from a system worker thread,
you could bypass these argument checks, because you could assume that
addresses passed in to you are legitimate and usable directly by your driver.

Similarly, the NT 1/O Manager, as well as other kernel components such as
the Virtual Memory Manager, need to identify and differentiate whether
clients of their services are executing kernel-mode (operating system) code,
or whether the request came from a user-space component. This information

M (U e = Y

it

18
2r

m

Common Data Structures 149

is used to check the legitimacy of the arguments passed in to these kernel-
mode components.*

The solution used throughout the NT Executive is to identify the processor
mode in which the calling thread executed prior to invoking the services of
the kernel-mode component. Note that the key concept here is that the
previous mode of the calling thread is important; the very fact that the thread
is executing kernel-mode code at the instant when the check is made tells us
that the current mode will always be kernel mode. To obtain the previous
mode information, the 1/0O Manager directly accesses a field in the thread
structure. The ExGetPreviousMode () function, declared in the DDK,
provides the same functionality to third-party driver developers. This routine
returns the previous mode of the thread being checked: user or kernel mode.

The 1/O Manager puts the information about the previous mode of the
requesting thread into the RequestorMode field prior to invoking the
loCallDriver () routine, which, in turn, invokes one of your driver
dispatch routines. You should use this information both internally in your
driver, as well as in invocations to system service routines such as
MmProbeAndLockPages().

PendingReturned
Each IRP is typically handled by more than one driver in the hierarchy. To

process an IRP asynchronously, a kernel-mode driver must execute the
following steps:

a. Mark the IRP pending by invoking the loMarklrpPending () function.
b. Queue the IRP internally.

Lower-level drivers may use a Startlo () function instead.
c. Return a status code of STATUS_PENDING.

The loMarklrpPending () call (implemented as a macro) simply sets
the SL_PENDING_RETURNED flag in the Control field of the current
I/0O stack location.t

At the time of IRP completion processing, during the execution of the loCom-
pleteRequest () function, the 1/O Manager traverses each stack location
that had been used by drivers in the hierarchy, looking for any completion
routines that may need to be invoked. This traversal of stack locations
happens in reverse order from that used in processing the IRP. The most
recently used stack location is processed first (the one used by the lowest-

* If the 1/0 Manager read system service (NtReadFile ()) blindly assumed that the passed-in buffer
address was a legitimate kernel-mode usable address, malicious users could have a field day overwriting
operating system data with their own!

t Stack locations are discussed in detail later in this chapter. You may skip this discussion for the moment
and come back to it after you have read that section.

750 Chapter 4: The NT I/O Manager

level driver in the hierarchy that processed the IRP), followed by the next
one, and so on.

As each stack location is unwound, the 1/O Manager notes whether the SL_
PENDING_RETUKNED flag had been set in the I/O stack location, and sets
the PendingReturned flag to TRUE if the flag had been set. However, if
the flag was not set in the stack location, the 1/O Manager sets the Pending- ;
Returned field to FALSE.

WARNING The value of the PendingReturned field may change as the 1/0
stack locations are being traversed, -while the 1/0 Manager looks for
completion routines that may need to be invoked.

So why is the value of this field important? Well, later on in the loCom-
pleteReqguest () function, the I/O Manager checks the value of the Pend-
ingReturned field to determine whether or not to queue a special kernel
Asynchronous Procedure Call (APC) to the thread that originally requested the
I/0 operation. Your file system or filter driver will have to cooperate with the
I/0 Manager to ensure that the right course of action is adopted. You will see
how your driver's actions affect the behavior of the I/O Manager later in this
chapter.

Cancel, Cancellrgl, andCancelRoutine

Kernel-mode drivers that process I/O Request Packets that might potentially
require an indefinite time interval to be completed should provide appro-
priate IRP cancellation support. Our perspective is that of a file system driver
or that of a filter driver. We would need to provide this functionality if we do
not pass on IRPs to lower-level disk or network drivers but perform our own
processing instead. Note that all three fields listed above are manipulated by
either the driver or the I/O Manager to provide the capability to cancel
pending 1/0 Request Packets when required.

ApcEnvironment
When an IRP is completed, the 1/O Manager performs postprocessing on the
IRP, the details of which are given below. The ApcEnvironment field is
used internally by the 1/O Manager in performing postprocessing on the IRP
in the context of the thread that originally requested the 1/O operation. This
field is initialized by the 1/0 Manager when allocating the IRP and should not
be accessed by driver designers.

Zoned/AllocationFlags
The Zoned field was replaced with the AllocationFlags field in NT
version 4.0. Fundamentally, the field (called by whatever name) records

Common Data Structures 151

internal bookkeeping information used by the 1/O Manager during IRP
completion to determine whether the IRP was allocated from a zone/looka-
side list, or from system nonpaged pool, or from system nonpaged-must-
succeed pool. This information is not useful from the kernel driver's perspec-
tive, except when debugging the driver and trying to locate all IRP structures
allocated out of the global lookaside list or zone.

Caller-supplied arguments
The following are part of the IRP:

P10_STATUS_BLOCK Userlosb;
PREVENT UserEvent;
union {
struct {
P10_APC_ROUTINE UserApcRoutine;
PVOID UserApcContext;
} AsynchronousParameters;
LARGE_INTEGER " AllocationSize;
} Overlay;

The Userlosb field in the IRP is set by the 1/0O Manager to point to the 1/0
status block supplied by the thread requesting 1/0. As part of the postpro-
cessing performed by the NT 1/O Manager upon completion of an IRP, the
I/0 Manager copies the contents of the loStatus field to the I/O status
block pointed to by the Userlosb field.

Most NT 1/O system service routines (documented in Appendix A) accept an
optional event argument. This argument (if supplied by the caller) is initial-
ized by the NT I/O Manager to the not-signaled state and is set to the
signaled state by the 1/0O Manager upon completion of I/O. The I/O Manager
fills in the UserEvent field with the address of the caller-supplied event
object.

The AllocationSize field in the Overlay structure is only valid for file
create requests. The user is allowed to specify an optional initial size for a file
being created. The I/O Manager initializes the AllocationSize field with
this caller-supplied size prior to invoking the file system driver create/open
dispatch routine.

Many of the NT system services provided for 1/O operations by the NT 1/O
Manager allow asynchronous operations. The caller thread can request that
I/0 be performed asynchronously and can also specify an APC to be invoked
upon completion of the IRP. For these system services, the I/O Manager duti-
fully invokes the user-supplied APC, passing it the supplied APC context, as
part of the postprocessing performed by the I/O Manager upon completion of
the IRP by a kernel-mode driver. The I/O Manager stores the calling-thread-
supplied APC function pointer in the UserApcRoutine field. The context is

154 Chapter 4: The NT 1/O Manager

this point, none of the 1/O Manager routines use this field to pass information
to a kernel-mode driver.*

The CurrentStackLocation field is simply a pointer to the current stack
location for the IRP. Stack locations are discussed later in this chapter. The
important point to note for kernel-mode drivers is to always use I/0O Manager-
provided access functions to get the pointer to the current and the next stack
locations in the IRP. To maintain portability, your driver should never try to
access the contents of this field directly.

The OriginalFileObject field is initialized by the 1/0O Manager to the
address of the file object to which an I/O operation is being targeted. The
same information is available to the highest-level driver (typically, the file
system driver) to which the 1/O operation is sent from the current stack loca-
tion. However, the 1/O Manager keeps this information in the IRP header and
can therefore access it independently of the manner in which stack locations
are manipulated by lower-level drivers. The file object is used in the postpro-
cessing of the IRP after it has been completed. For example, if the file object
pointer is not NULL (i.e., the OriginalFileObject field is initialized at
IRP allocation), the I/O Manager checks whether it needs to send a message
to a completion portt or dereference any event objects, or perform any
similar notification or cleanup operation related to that file object. It is legiti-
mate for this field to be NULL, in which case the I/O Manager will skip some
of the postprocessing that it would otherwise perform.

The Ape field is used internally by the I/O Manager after the IRP has been
completed, to queue an APC request for final postprocessing of the IRP in the
context of the thread that issued the I/O request.

As mentioned earlier, each 1/0O Request Packet is composed of the IRP header,
and the stack locations for that IRP. Some of the fields in the IRP structure such as
StackCount, CurrentLocation, and CurrentStackLocation are related
to stack location manipulation. IRP stack locations are discussed next.

Stack locations and reusing IRP structures

Windows NT 1/O request packets are reusable. In a layered driver environment,
such as in the Windows NT 1/O subsystem, each higher-level driver in the hier-
archy invokes the next lower-level driver, until some driver actually completes the

* If you write a file system driver, you might notice the value of this field is nonnull for directory-control
IRPs. However, the same buffer pointer containing the directory name is accessible via the information
obtained from the current stack location for the IRP, stored in the Parameters. QueryDirecto-
ry.FileName field.

t Consult the Win32 SDK for further information about 1/0 Completion Ports.

g

Common Data Structures 155

original IRP. It is quite possible, and is often the case, that the same IRP is passed
down from driver to driver until it is completed.

Completing the IRP requires invoking ToCompleteRequest (); after such a call
is issued, no component, other than the 1/0 Manager, can touch that IRP, since it
can be deallocated at any time.

So how can a single IRP structure be reused cleanly? The solution provided by the
NT I/O Manager is to use stack locations that contain descriptions of the 1/0
requests to the target device objects. When initially dispatching the IRP to a
kernel-mode driver, the 1/0 Manager fills in one stack location with the parame-
ters for the desired operation. Later, the driver to which the IRP is sent determines
whether it can complete the IRP itself, or whether it needs to invoke another
driver lower in the hierarchy. If it needs to invoke a lower-level driver, the current
holder of the IRP can simply initialize the next IRP stack location, and then
invoke the lower-level driver via loCallDriver (), passing it the IRP. This
process is repeated until a driver in the chain performs all of the required
processing and decides to complete the IRP.

The NT I/O Manager allocates space for multiple associated stack locations when
an IRP structure is allocated. Each of these stack locations can contain a complete
description of an 1/0O request. For example, an IRP allocated for a read request
should contain the following information:

« A function code, which will be examined by the kernel-mode driver to deter-
mine the type of request issued. In this example, the function code indicates
a read request.

» An offset from which data should be read.
» The number of bytes that are requested.
e A pointer to the output buffer.

In addition to the above, other information relevant to the read request might also
be passed to the driver that manages the device object that is the target of the
read operation. All of this information is encapsulated into a single stack location
structure.

The number of stack locations allocated for an IRP depends upon the Stack-
Size field in the target device object to which the IRP is being issued. The
StackSize field is initialized to 1 when the device object is created; it can then
be set to any value by the driver managing the device object. The StackSize
field is also changed when a device object is attached to another device object. As
part of the attach process, the StackSize value is set to the value obtained
from the device object being attached to, incremented by 1. The logic here is
simple: an IRP sent to a device object needs one stack location for the initial

156 Chapter 4: The NT I/O Manager

target device object; it also needs one stack location for each filter and/or driver
in the hierarchy that will perform some processing on the 1/O Request Packet.

As shown in Figure 4-4, if a read request is sent to the file system driver that has a
volume mounted on disk A, the I/O Manager will allocate four stack locations
when creating the read IRP. These stack locations are used in reverse order,
similar to the last-in-first-out usage of a stack structure. When invoking a driver,
the I/0 Manager always pushes the stack location pointer to point to the next
stack location; when the called driver releases the IRP, the stack location pointer
is popped to once again point to the previous stack location. Therefore, when
invoking the filter driver dispatch routine in Figure 4-4 below, the 1/O Manager
uses stack location #4, the last stack location allocated.

~ Filter Driver (above file system)

File System Driver

 StackLocation1 < Last stack location used
l Stéfik’LOcation 2 ; b« 377 stack location used
" Stack Location3 ~ §~— 2" stack location used

Stack Locationd < 15! stack location used

Figure 4-4. IRP stack locations usedfor a driver hierarchy

The NT 1/O Manager initializes the StackCount field in the IRP header with the
total number of stack locations allocated for that IRP. The CurrentLocation
field in IRP header is initialized by the I/0 Manager to (StackCount + 1). This
value is decremented each time a driver dispatch routine is invoked via
loCallDriver().

Therefore, if the StackCount is 4, the initial value of CurrentLocation is set
to 5, which is an invalid stack location pointer value. The reason for this,
however, is that to dispatch an IRP to the next driver in the hierarchy, the kernel
component must always get a pointer to the next stack location and then fill in
appropriate parameters for the request.

When an IRP is being dispatched to the first driver in the hierarchy, the next stack
location will be (CurrentStackLocation—1) equal to 4, the correct value for
the stack location used for the filter driver above.

T —

Cor

The
IRP
IoC
fielc
then
the
Dri:
were
and
MOR?

NOTE

————

The I/
the Cv
in the
contair
the coj
fields t
pointer
Locat.
IrpsSt:
locatior
ToSetr

The sta
that are
location

MajorFr
The
a ge
iden

* That beir
these fields
ager'SUppli‘

Common Data Structures 157

The 1/0 Manager often performs sanity checks using this value to ensure that the
IRP is being routed correctly through the 1/O subsystem. For example, in
loCallDriver (), the 1/O Manager first decrements the CurrentLocation
field (since a new driver is being invoked, it requires the next IRP stack location),
then checks to see if the CurrentLocation value is less than or equal to 0. If
the value does become less than or equal to O, it is obvious that loCall-
Driver () is being invoked once too often for the number of stack locations that
were initially allocated (or that there is some stray pointer corrupting memory),
and therefore the I/0O Manager performs a bugcheck with the error code of NO_
MORE IRP STACK_LOCATIONS.

NOTE The reason for a bugcheck is that, by the time the loCallDriv-
er () is invoked, critical damage may have already been done,
since the caller will in all likelihood have filled in the contents of
the next stack location for the use of the driver being called. Howev-
er, in this situation, the next stack location is some unallocated mem-
ory at the end of the IRP structure, which could literally be anything.

Continuing execution at this time could lead to all sorts of prob-
lems, including the possible corruption of user data.

The 1/0O Manager maintains a pointer to the current stack location, in addition to
the CurrentLocation value mentioned previously. This pointer is maintained
in the CurrentStacklLocation field in the Tail.Overlay structure that is
contained in the IRP header. Kernel-mode drivers should never try to manipulate
the contents of either the CurrentLocation or the CurrentStackLocation
fields themselves.* The 1/O Manager does provide routines for a driver to get a
pointer to the current stack location, via a call to loGetCurrentlrpStack-
Location (), to get a pointer to the next stack location using loGetNext-
IrpStackLocation () so that the driver can set up the contents of the stack
location appropriately for the next driver in the hierarchy, and in rare cases to use
loSetNextlrpStackLocation() to set the stack location value.

The stack location structure defined in the NT DDK is composed of some fields
that are independent of the nature of the 1/O request being described by the stack
location. Here are these fields:

MajorFunction
The NT I/O Manager defines a set of major functions, each of which identifies
a generic function that a kernel-mode driver can implement. Functions are
identified by function codes or numbers, and the set of functions is deliber-

* That being said, it is true that NT file systems themselves perform some underhanded operations on
these fields. However, for most kernel-mode drivers, it is far more preferable to stick with the 1/0O Man-
ager-supplied aeeess methods to view and modify the contents of these fields.

Chapter 4: The NT I/O Manager

ately comprehensive, since the function codes serve all types of NT kernel-
mode drivers, including file system drivers, intermediate drivers, device
drivers, and other lower level drivers.

When an IRP is delivered to a kernel-mode driver, the driver must examine
the MajorFunction field in the current stack location to find out the func-

tionality expected from the driver. The possible major function codes are
shown below:

#define IRP_MJ_CREATE 0x00
tdefine IRP_MJ_CREATE_NAMED_ PIPE 0x01

tdefine IRP_MJ_CLOSE 0x02
tdefine IRP_MJ_READ 0x03
tdefine IRP_MJ_WRITE 0x04
tdefine IRP_MJ_QUERY_INFORMATION 0x05
tdefine IRP_MJ_SET_INFORMATION 0x06
tdefine IRP_MJ QUERY_EA ox07
#define IRP_MJ_SET EA 0ox08
ttdefine IRP_MJ_FLUSH_BUFFERS 0x09

tdefine IRP_MJ_QUERY_ VOLUME_INFORMATION OxOa
#define IRP_MJ_SET VOLUME_INFORMATION OxOb

#define IRP_MJ_DIRECTORY_CONTROL 0Ox0c
#define IRP_MJ_FILE_SYSTEM_CONTROL oxod
tdefine IRP_MJ DEVICE_CONTROL Ox0e
tdefine IRP_MJ_INTERNAL_DEVICE_CONTROL OxOf
tdefine IRP_MJ_SHUTDOWN 0x10
tdefine IRP_MJ_LOCK_CONTROL ox11
tdefine IRP_MJ_CLEANUP 0x12
tdefine IRP_MJ_CREATE_MAILSLOT 0x13
tdefine IRP_MJ_QUERY_SECURITY 0ox14
tdefine IRP_MJ_SET_SECURITY 0x15
tdefine IRP_MJ_QUERY_POWER 0x16
tdefine IRP_MJ_SET_POWER 0x17
tdefine IRP_MJ_DEVICE_CHANGE 0x18
tdefine IRP_MJ QUERY_QUOTA 0x19
tdefine IRP_MJ_SET_QUOTA Oxla
tdefine IRP_MJ_PNP_POWER OxIb
tdefine IRP_MJ_MAXIMUM_FUNCTION Oxlc

Function codes beginning at IRP_MJ DEVICE_CHANGE and higher were
introduced in NT version 4.0. Also, not all of the major function codes are
implemented yet; for example, the quota-related function codes do not yet
have any support from native NT file system drivers.

None of the major functions listed above is mandatory for a kernel-mode
driver to implement, except for the ability to open and close objects managed
by the driver. Open and close operations are very important because, if open
operations fail, no 1/0 requests can be submitted, since there does not exist
any object that would be the target of the requests. Similarly, if opens suc-
ceed, the close operations will eventually be invoked, and close operations
cannot fail (the 1/0 Manager does not check the return code from a close

?

Common Data Structures 159

operation). Therefore, if you do not implement a close operation to comple-
ment your open, the system might eventually run out of resources, depending
on what operations were previously performed during the open, and also
depending on the data structures created during the open operation.

The major function codes in the context of a file system driver and a filter
driver are discussed in Part 3-

MinorFunction

Minor function codes provide more information specific to the major function
code in the 1/O stack location. For example, consider the IRP_MJ_
DIRECTORY_CONTROL major function code above. An IRP containing this
major function code is sent by the I/O Manager to file system drivers. The
intent is to perform some file directory operation. The question, however, is
what directory control operation does the 1/O Manager want the file system
driver to perform?

The available operations include obtaining information about directory
contents (IRP_MN_QUERY_DIRECTORY) and notifying the 1/O Manager
when certain attributes of files or directories contained within the target direc-
torychange(IRP_MN_NOTIFY_CHANGE_DIRECTORY).

Currently, only a few of the major functions have minor functions associated
with them. However, for those few, the kernel-mode driver developer must
examine this field to correctly determine the functionality it is expected to
provide.

Flags
The Flags field also provides additional information that qualifies the function-
ality expected from the target driver. For example, consider the IRP_MJ_
r DIRECTORY_CONTROL major function code previously discussed. If the minor
function is IRP_MN_QUERY_DIRECTORY, the Flags field could contain addi-
tional information that might cause the file system to behave differently when
returning the contents of the directory being queried.

For example, if the SL_RESTART_SCAN flag is set, the file system driver will
restart the scan from the beginning of the directory being queried. Or if the
SL_RETURN_SINGLE_ENTRY flag is set, the file system driver will return
only the first entry matching the specified search criteria.

Lower-level drivers also have an interest in the settings for this flag. For
example, removable media drivers will perform a read request dispatched to
them from a file system driver if the SL_OVERRIDE_VERIFY_VOLUME flag
has been set. If, however, the flag has not been set, and the device driver has
recognized a media change (and informed the file system about it), it will fail
all 1/0 requests, including all read requests.

160 Chapter 4: The NT I/0O Manager

Control

When a kernel-mode driver must process an IRP asynchronously, the driver
can queue the IRP, mark it "pending" via a call to loMarklrpPending()
and subsequently return control back to the caller. The call to loMarklrp-
Pending () simply sets the SL_PENDING_RETUKNED flag in the Control
field for the current stack location. Any kernel-mode driver can examine the
Control field for the existence of this flag.

This flag is also used internally by the NT 1I/O Manager to store information
about whether a completion routine associated with the current stack location
should be invoked if the return code supplied at IRP completion indicates a
success, a failure, or a cancel operation. These flags are designated as SL_
INVOKE_ON_SUCCESS, SL_INVOKE_ON_FAILURE, and SL_INVOKE_ON_
CANCEL. Kernel-mode drivers typically should not need to be directly
concerned with the state of these flags.

DeviceObject

This field is set by the NT 1/O Manager as part of the processing performed in
the loCallDriver () routine. The contents are set to the device object
pointer for the target device object (i.e., the device object to which the IRP is
being dispatched).

FileObject

The I/O Manager sets this field to point to the file object that is the target of
an 1/O operation. Note that just calling loAllocatelrpO from your driver
will not result in this field being set. If you intend to use the returned IRP for
an operation on a specific file object, your driver must set the field itself.

CompletionRoutine

The contents of this field are set by the 1/O Manager when the loSetCom- f
pletionRoutine () macro is invoked. The 1/O Manager checks for a <
completion routine as part of the postprocessing performed during IRP L
completion. If a completion routine is specified, the routine is invoked in the o
context of the thread performing the postprocessing; typically this is in the o
context of the thread that invoked the loCompleteRequest () routine. p
Since IRP completion is often performed by lower level drivers at a high ar
IRQL, it is quite likely that the completion routine will be invoked at some a
high IRQL. p1
You should also note that completion routines are invoked in a last-specified- Al
first-invoked order. Therefore, the highest-level driver's completion routine Re
will be invoked after all other completion routines have been invoked. If any ag
driver returns STATUS_MORE_PROCESSING_REQUIRED from an invocation

to the driver-supplied completion routine, the 1/O Manager immediately stops Fig
all postprocessing of the IRP. Freeing the memory for that IRP will then to

ger

of
er
or

Common Data Structures 161

become the responsibility of the driver that returns the STATUS_MORE_
PROCESSING_REQUIRED status.

If you develop a higher-level driver, like a file system driver or a filter driver,
and if you specify a completion routine, always execute the following
sequence of code in your completion routine:

if (PtrIrp->PendingReturned) {
loMarklrpPending(Ptrirp);
by

If you fail to do this and if there are other drivers layered above yours in the
calling hierarchy, the IRP may be processed incorrectly and you could experi-
ence a driver or process hang. The reason for the potential hang will be
further explained later in this chapter.

Context
This field contains the context supplied by the kernel-mode driver when it
specifies a completion routine for the IRP. »

If you develop an intermediate driver, you will have to be careful about copying
some of the values contained in the current 1/0 stack location into the next 1/O
stack location when you prepare to forward the IRP to the next driver in the hier-
archy. For example, you must copy the contents of the Flags field, so the lower-
level driver will know that it should perform an I/O read operation requested by
a file system even though it had previously informed the file system about a
media change.

Processing an IRP

Handling an IRP sent to your driver can be quite straightforward. The next four
figures illustrate some of the common methods employed to handle an IRP
dispatched to a kernel-mode driver.

In Figure 4-5, you can see that the target kernel-mode driver receives an IRP,
obtains a pointer to the current stack location, performs some processing based
on the contents of the 1/0O stack location, and, finally, completes the 1/O request
packet. Note, however, that there could be a delay between receiving the request
and beginning the processing, since the driver might queue the IRP if it is
currently busy processing other requests. The queued IRP would subsequently get
processed asynchronously in the context of a worker thread.

Also note that once the driver gets control back from an invocation to loComplete-
Request (), it must not touch the IRP or any of the fields contained within the IRP
again. Doing so could lead to data corruption and system crashes.

Figure 4-6 illustrates how a kernel-mode driver receives an IRP, obtains a pointer
to the current stack location, and performs processing based upon the contents of

162 Chapter 4: The NT I/O Manager

/0 Manager or some
higher level driver sends Obtain a pointer
/0 Request Packet to —» to the current
driver, Driver dispatch stack location

routine is invoked.

Perform any
0 processing required

Once all processing has based on contents
been complete, invoke of stack location.
IoCompleteRequest ()
to complete the IRP.

Figure 4-5. Simple IRP processing where invoked driver completes the IRP

the stack location. However, the driver might need to invoke the services of a
lower-level driver before the requested functionality is declared completed. There-
fore, the recipient of the IRP can initialize the next stack location in the IRP and
forward the IRP to the next kernel-mode driver in the layered driver hierarchy.

/0 Manager or some

higher level driver sends Obtain a pointer

/0 Request Packet to —» to the current

driver. Driver dispatch stack location

routine is invoked.
Perform any

: " e processing required
i Once all Jocal processing has been completed, | based on contents
i fillin contents of next stack location and | of stack location

forward the IRP to lower level driver using | (4}
: IoCallDrivexr(). = !
\ Set completion routine if required to perform '
i post-processing when IRP is completed. - ;

Figure 4-6. IRPprocessing where IRP is reused and sent to lower-level driver

If your driver forwards an IRP to another driver, it is no longer allowed to try to
access that IRP, since it does not know when the lower-level driver will complete
that particular IRP. Typically, forwarding of the IRP is done via a call to loCall-
Driver (). The I/0O Manager will invoke the lower-level driver in the context of
the thread that makes the call to loCallDriver (); however, the lower-level
driver that now receives the IRP might return STATUS_PENDING and complete
the IRP asynchronously.

Figure 4-7 illustrates a sequence where a higher-level kernel-mode driver (e.g., a
file system driver) uses associated 1/0 request packets to issue 1/O requests to
other lower-level drivers. This might be done if, for example, the higher-level

Common Data Structures 163

driver wishes to split up an I/O request; it might even be required if the higher-
level driver needs processing to be performed by more than one set of lower-
level drivers.

/0 Manager or some
higher level driver sends Obtain a pointer
/0 Request Packet to ~» to the current
driver. Driver dispatch stack location
routine is invoked.
Perform any

e processing required
based on contents
of stack location

t Original AP will be atomatically |

i completed by the I/0 Manager once e
i all associated /0 Request Packets |

: have been completed. - é o

Create associated /0 request packel(s). lnvoke
i ToCallDriver()
to dispatch the associated IRPs. Set up
. completion routine(s) if driver wishes to i
perform post-processing once associated lRPs
; have been completed.

Figure 4- 7. Using associated IRP structures to process an IRP

Note that the higher-level driver does not need to invoke loComplete-
Reguest () on the original IRP; the 1/O Manager will automatically complete the
original IRP once all associated IRPs have been completed by lower-level drivers.
However, the higher-level driver can request that a completion routine be
invoked when the associated IRP completes, thereby giving it the opportunity to
perform some postprocessing, and also allowing itself the opportunity to
complete the original IRP at its own convenience.

Figure 4-8 illustrates a variation of the method using associated IRPs; here the
kernel-mode driver uses one of the 1/O Manager-supplied functions to create new
I/0 Request Packets, which are then dispatched to other kernel-mode drivers.
Once the newly created 1/0 Request Packets have been completed, the original
IRP can be redispatched to lower-level drivers for further processing, or it can be
immediately completed.

IRP completion and deallocation

Every 1/0 Request Packet must be completed in order for the 1/O Manager to be
informed that the request contained within the IRP has been completely
processed. To complete an IRP, a kernel-mode driver has to invoke the loCom-
pleteRequest () 1/0 Manager support routine.

Dol

164 Chapter 4: The NT I/O Manager Commor,
PRO
" post
1 /0 Manager or some
1/0 Manager higher level driver sends Obtain a pointer ple
or other kernel- /0 Request Packet to —» to the current STA
mode driver. - driver. Driver dispatch stack location
: routing is invoked. 3.1f th
Perform any] men:
o processing required ‘ Man:
; p based on contents
i Either complete the IRP by invoking : of stack location mem
! IoCompleteRequest() | alloc
i once all subordinate IRPs have been | IRP
i completed or forward the IRPto | (4] Toc
. i , . o]
some lower level drfver Create new 1/0 request packet(s). invoke - ¢
IoAllocateIrp() \ 4. A lo
or similar routines. Inveke - : conte
IoCallpriver() : this
to dispatch the subordinate IRPs. Set up ’
completion routine(s) if Griver wishes to exect
perform post-processing once newly created canne
IRPs have been completed.
types
Figure 4-8. Using newly allocated IRPs to help in processing ofan IRP Close
A
Once this routine is invoked, the NT I/O Manager performs some postprocessing ¢
on the 1/0O request packet being completed, as follows: k
1. The 1/O Manager performs some basic checks to ensure that the IRP is in a ; 5t
valid state. The value of the current stack location pointer is verified to ensure ‘ at
that it is less than or equal to (total number of stacks + 1). If the value is not | M
valid, the system will bugcheck with an error code of MULTIPLE_IRP_ I
COMPLETE_REQUESTS. If you install the debug build of the operating ar
system, the I/O Manager will execute some additional assertions, such as &
checking for a returned status code of STATUS_PENDING when completing ﬂ cc
the IRP, and checking other invalid return codes from the driver. oy
. . . . re
2. Now, the I/0O Manager starts scanning through all stack locations contained in wi
the IRP looking for completion routines that need to be invoked. Each stack rel
location can have a completion routine associated with it, which should be Ic
called depending on whether the final return code was a success or a failure,
or if the IRP was canceled. The I/O stack locations are scanned in reverse
order, with the highest-valued 1/0O stack location being checked first. This o
results in completion routines invoked such that a completion routine * The DDK a
supplied by a disk driver (the lowest-level driver) will be invoked first, while | mode drivers
. . . R . . driver from re
the completion routine for the highest-level driver (typically, the file system Manager. The
driver) will be invoked last. ' been abruptly
)))) driver will the
Completion routines are invoked in the context of the same thread that calls a trivial task.
loCompleteRequest (). If any completion routine returns STATUS_MORE_

|

Common Data Structures 165

PROCESSING_REQUIRED, the 1/0 Manager immediately stops all further
postprocessing and returns control back to the routine that invoked loCom-
pleteRequest (). Now, it is the responsibility of the driver that returned
STATUS_MORE_PROCESSING_REQUIRED to invoke loFreelrp () later.*

3. If the IRP being completed is an associated IRP, the I/O Manager will decre-
ment the Associatedlrp. IrpCount field in the master IRP. Then, the 1/O
Manager invokes an internal routine, lopFreelrpAndMdls (), to free up
memory allocated for the associated IRP and also to free any MDL structures
allocated for the associated IRP. Finally, if this happens to be the last associated
IRP outstanding for the master IRP, the I/O Manager recursively invokes
loCompleteRequest () on the master IRP itself.

4. A lot of the postprocessing performed by the 1/O Manager occurs in the
context of the thread that had originally requested the I/O operation. To do
this, the 1/O Manager queues a kernel-mode APC, which is subsequently
executed in the context of the requesting thread. However, this methodology
cannot be employed for certain types of IRP structures, used for the following
types of operations:

Close operations

An IRP describing a close operation is generated by the I/0 Manager and
sent to the affected kernel-mode driver whenever the last reference to a
kernel-mode object is removed. This might just as well occur while a
special kernel-mode APC was already executing. To perform a close oper-
ation on objects defined by the I/O Manager, a special internal 1/O
Manager routine called lopCloseFile() is always invoked.
lopCloseFile () is synchronous and therefore blocking. It allocates
and issues a close IRP to the target kernel-mode driver and waits for an
event object to complete the close operation. Therefore, when
completing an IRP for a close operation, the 1/O Manager simply copies
over the return status (which incidentally is never checked by the
requesting thread for a close operation), signals the event object for
which the thread executing lopCloseFile () is waiting, and then
returns control immediately. The IRP is subsequently deleted in
lopCloseFile().

' The DDK assumes that STATUS_MORE_PROCESSING_REQUIRED will only be invoked by kernel-
mode drivers for associated IRPs that they have created. There is nothing, however, that prevents your
driver from returning this status code for a normal IRP request that was dispatched to you by the 1/O
Manager. The problem, though, is that there is a lot of postprocessing required on that IRP that will have
been abruptly interrupted due to your returning such a status code from your completion routine. Your
driver will then have to devise a method whereby such postprocessing can be resumed later; this is not
atrivial task.

166 Chapter 4: The NT I/O Manager

Paging 1/0 requests

Paging 1/0 requests are issued on behalf of the NT Virtual Memory
Manager (VMM). In Chapters 58, you will read about the functionality
provided by the NT VMM and the NT Cache Manager. For now, simply
understand that the 1/0 Manager cannot afford to incur a page fault while
completing a paging I/O request. That would cause a system crash. There-
fore, the 1/O Manager will do one of two things when completing a
paging 1/O request:

— For a synchronous paging 1/0 request, the 1/0O Manager will copy the
returned 1/O status into the caller-supplied 1/O status block structure,
signal the kernel event object for which the caller might be waiting,
then free the IRP and return control, since there is no additional post-
processing to be performed.

— For an asynchronous paging 1/O request, the 1/O Manager will queue
a special kernel APC to be executed in the context of the thread that
requested paging 1/0. This is the Modified Page Writer (MPW)
thread, which is a component of the VMM subsystem. In the next
chapter you will read a lot more about the MPW thread. For now, it
is enough for you to know that the routine that executes in the
context of the MPW thread (once the APC has been delivered),
copies the status from the paging read operation to the 1/O status
block provided by the modified page writer, and subsequently
invokes an MPW completion routine using another kernel APC.

Later, you will see that the 1/0O Manager typically frees up any Memory
Descriptor Lists that are associated with the IRP, before freeing up the IRP
itself. However, for paging 1/O operations, the MDL structures that are
used belong to the VMM (i.e., they are allocated by the VMM and will
therefore be freed only by the VMM upon completion of 1/0). That is the
reason why the I/O Manager does not free up the MDL structures used in
paging 1/O requests.

Mount requests

If you examine the flags supplied in the NT DDK, indicating paging 1/O
requests and mount requests (IRP_PAGING_IO and IRP_MOTJINT_
COMPLETION, respectively), you will notice that they are both defined
to the same value. This is because the I/O Manager treats the mount
request exactly the same as a synchronous, paging 1/O read request.
Therefore, the 1/0 Manager performs exactly the same postprocessing for
mount requests as described for a synchronous, paging 1/0 request.

5. If the IRP did not describe either a paging 1/0, a close, or a mount request, !
the 1/O Manager next unlocks any locked pages described by Memory

Common Data Structures 167

Descriptor Lists (MDLs) associated with the 1/0 Request Packet. Note that the
' ; MDL structures are not freed at this time; they are freed as part of the postpro-
4 ‘ cessing performed in the context of the requesting thread.

6. At this point, the I/O Manager has completed as much of the postprocessing
- ' it can, without being in the context of the requesting thread. Therefore, the
I/0 Manager queues a special kernel APC to the thread that requested the 1/
O operation. The internal 1/0 Manager routine that is invoked in the context
of the calling thread is called lopCompleteRecjuest (). It could happen,

2 however, that there might not be any thread context to send the APC request
: to. This happens if the thread exited after starting an asynchronous I/O opera-
I tion, the request had already been initiated by the lower level driver, and the

[~ \ driver could not complete the request within a fixed time-out period. In this
scenario, the I/O Manager has given up on the request, and therefore, it

e simply frees up the memory allocated for the IRP at this point since no further
it postprocessing can be performed.
) For synchronous /O operations, the I/0O Manager does not queue the special
Kt ‘ kernel APC but simply returns control immediately at this point. These IRP
it structures have the IRP_DEFER _I0_COMPLETTON flag set in the Flags
1e field in the IRP. Examples of IRP major functions for which IRP completion
D, can be deferred are directory control operations, read operations, write opera-
s tions, create/open requests, query file information, and set file information
ly : requests. By returning control immediately, the I/O Manager avoids the over-
head associated with queuing kernel-mode APCs and the overhead of serving
1y ' APC interrupts. Instead, the thread that originally requested the I/O operation
P by invoking loCallDriver () invokes lopCompleteRequest () directly
e once control is returned to it. This is simply an optimization performed by the
All NT I/O Manager.
he ‘ Note that the 1/0 Manager will perform two checks to determine whether the
in APC should be queued or not for the above situation:

— The IRP_DEFER_IO_COMPLETION flag should be set to TRUE.
— The Irp->PendingReturned field should be set to FALSE.

/O

T Only if both of the conditions above are TRUE will the I/O Manager simply

le:i] return from the loCompleteRequest () function at this stage.

ant The following situation may result in a problem if you are not careful in your

ast. driver:

for — Your driver specifies a completion routine before forwarding a request to
a lower-level driver.

est,

168 Chapter 4: The NT I/O Manager

— There is a driver layered above you in the calling hierarchy (e.g., a filter/
intermediate driver).

— Your driver does not execute the instructions listed earlier about invoking
loMarklrpPending () if Irp->PendingReturned is set to TRUE.

Now the I/O Manager may incorrectly believe that an APC should not be s
queued (thinking that the completion was being performed in the context of {
the requesting thread) and the original thread will stay blocked forever.

The other situation where the 1/O Manager does not queue an APC is if the {
file object has a completion port associated with it, in which case the 1/O
Manager sends a message to this completion port instead.

At this time, all processing that could have been performed in loComplete-
Request () is complete.

The remaining steps described below occur in the context of the thread that had
originally requested the I/O operation. The NT 1/O Manager routine that performs :
these steps is the lopCompleteRequest () routine previously mentioned.

1. For buffered 1/0 operations, the I/O Manager copies any data returned as a
result of the successful execution of the 1/O request back into the caller's
buffer. Details of buffered 1/0 operations are provided later in this chapter;
however, note for now that if the driver returns an error or if the driver
returns a code indicating that a verify operation is required in the IRP
loStatus structure, no copy will be performed.*

Also, the number of bytes copied into the caller's buffer equals the value of
the Information field in the loStatus structure; therefore, if that field is
not set correctly, the caller will not get back all or any of the returned data.

The 1/0O Manager-allocated buffer is also deallocated once the copy operation
is performed.

2. Any Memory Descriptor Lists associated with the IRP are freed at this time.

* You should understand that the NT 1/O Manager treats warning status codes as if the operation suc-
ceeded; i.e., the 1/0O Manager will copy data into the caller's buffer even if the status code was not
STATUS_SUCCESS, as long as it does not indicate an error.

Common Data Structures 169

TIP It is possible for a file system driver to deliberately return a pointer
to an MDL allocated by the Cache Manager when requested to do
so by a caller for either a read or a write 1/O request. Such requests
are distinguished by the presence of the IRP_MN_MDL flag in the
MinorFunction field of the IRP stack location in the IRP sent to
the file system driver. Since all MDLs associated -with an IRP are
blindly freed at this point, it appears that there is not much point to
a file system driver returning an MDL to the caller. However, current-
ly the only kernel-mode client using the IRP_MN_MDL flag is the
LAN Manager Server module, and this module typically circumvents
the problem by returning STATUS_MORE_PROCESSING_RE-
QUIRED from a completion routine. See Chapter 9, Writing a File
System Driver I, for a discussion on how the file system driver pro-
cesses MDL-read and MDL-write requests.

3. The 1/O Manager copies the Status and Information fields into the
caller-supplied 1/O status block structure.

4. If the caller supplied an event object to be signaled, the 1/O Manager signals
that event object. The I/O Manager signals the event object in the Event
field for any file object associated with the 1/O Request Packet if either no
event object was supplied by the caller or the 1/O operation was executed
synchronously because the file object was opened for synchronous access
only.

5. Typically, the NT I/O Manager increments the reference count of any caller-
supplied event object or any file object associated with an IRP before
forwarding the IRP to a driver for processing. At this time, the I/O Manager
dereferences both of these objects if they had been referenced before.

6. The 1/0 Manager dequeues the IRP from the list of 1/O Request Packets
pending for the current thread.

7. Memory for the 1/O Request Packet is finally freed; if the 1/O Request Packet
has been allocated from a zone/lookaside list, memory for that packet is
returned to the zone/lookaside list for reuse; otherwise, memory is returned
back to the system.

Working with 1/O request packets

There are a few key concepts that you must understand very well with regard to

handling 1/0 Request Packets sent to your kernel-mode driver:

« Once your driver receives the IRP, no other component in the system, includ-
ing the 1/0O Manager, can be concurrently accessing the same IRP. Until your
driver either forwards the IRP to another kernel-mode driver, or completes

170 Chapter 4: The NT 1/0 Manager

the IRP, processing of the request described by the 1/0O Request Packet is
solely the responsibility of your driver.

e« Once your driver completes the IRP, or forwards it to another kernel-mode
driver, your driver must give up control of the IRP and not attempt to access
any of the fields contained within it again. The only time you can touch that
IRP again is if you had specified a completion routine prior to forwarding the
IRP. In that case, the 1/O Manager will invoke your completion routine as part
of its postprocessing performed during IRP completion.

« If you specify a completion routine to be invoked at the time of IRP comple-
tion, it can perform any postprocessing necessary. Keep in mind, though, that
your completion routine might be called at an IRQL less than or equal to
DISPATCH_LEVEL. If your completion routine is invoked at a high IRQL,
you cannot incur any page faults while your code is executing. You do have
the option of stopping any postprocessing of the IRP by returning STATUS
MORE_PROCESSING_REQUIRED from your completion routine. Be careful,
though, when doing this, especially from a lower-level driver, because some
of the completion routines specified by other drivers higher in the chain,
which normally would be invoked, will now not be called unless you play
some tricks with the IRP later.

» No IRP can be completed more than once.* If you do try to do this either
deliberately or erroneously, you might cause data corruption and/or system
crashes. Although the I/0O Manager checks for the possibility that an IRP is
being completed more than once, the check is not completely foolproof, so
be aware of this requirement when designing your driver.

e Your driver cannot blindly assume that it is being invoked to process an IRP
in the context of the thread that originally requested the I/O operation. As a
matter of fact, lower-level drivers, such as intermediate drivers and device
drivers, will probably never have their dispatch routines invoked in the con-
text of the issuing thread. Therefore, your driver must be careful when trying
to access objects, handles, resources, and memory when processing the 1/0
Request Packet. Understand the context in which your dispatch routines can
be invoked and only use resources that are available to you and that are valid
in that particular context.

e Kernel-mode drivers have tremendous freedom in what they are able to do.
At the same time, the responsibilities that are placed upon kernel-mode code
are greater than for user-space applications. If your driver uses pointers to

* It is possible for a completion routine to return STATUS_MORE_PROCESSING_REQUIRED, perform
some specialized postprocessing with the IRP, and then reissue the loCompleteReguest () function
on the IRP to make the 1/0 Manager correctly dispose of the IRP. This is the single exception to the rule
mentioned above and results in the situation where an IRP is completed more than once.

-

v

Common Data Structures 171

buffers sent by user-space code, be careful about how you use such buffers.
It is possible for kernel-mode drivers to easily compromise system integrity by
misusing, or not carefully validating, any buffers and data contained within
them, sent by unprotected, user-mode applications. Determine the mode of
the caller in deciding whether or not to validate pointers sent to you. Use the
previous mode of the caller in making your decision on whether or not to val-
idate user-supplied buffers.

» Use only the I/O Manager-provided access methods to manipulate stack loca-
tions in an IRP. It is possible for a kernel-mode driver to modify IRP stack
locations, which can affect both how IRP processing is done initially, as well
as how IRP postprocessing is performed once the IRP has been completed.
Try to resist the temptation to manipulate the contents of the stack locations
in any undocumented fashion.

¢ Use your own I/0 Request Packets if you wish to utilize services of other driv-
ers above or below you in the hierarchy. Avoid using private communication
channels that are not extensible. To create IRP structures, use one of the 1/O
Manager-supplied support routines (i.e., loAllocatelrp(), loBuildSyn-
chronousFsdRequest (), loBuildAsynchronou.sFsdRecru.est (), lo-
BuildDeviceloControlRequest(), and loMakeAssociatedlrp()).
Use lolnitializelrp (), in conjunction with loAllocatelrpO, to ini-
tialize the common fields in the IRP header. Be careful, and reread the previ-
ous section to determine which additional fields you might wish to initialize.
Also, realize that loFreelrp () may or may not need to be invoked, depend-
ing on the status code you return from any completion routine you may have
specified.

» Some kernel-mode components, such as the LAN Manager server, allocate 1/0
Request Packets from internal pools, instead of requesting them from the NT
I/0 Manager. Be aware that these components may use some of the fields in
the IRP in a manner different from the standard manner in which those fields
are manipulated by the 1/0 Manager. Therefore, be careful when depending
upon the contents of fields that the 1/O Manager wants to keep private and

l that are not documented in the DDK, since there are no guarantees made by

the system that the fields will always contain consistent values.

Furthermore, components like the LAN Manager server often have a
maximum number of stack locations that they typically allocate for an 1/O
Request Packet. If you add one or more additional filter or intermediate
drivers to the driver hierarchy, the number of stack locations required may
then exceed the maximum that the LAN Manager server can deal with. There
is a workaround to this problem, where you can instruct the user to specify

172 Chapter 4: The NT 1/0 Manager

additional stack locations that the LAN Manager server should allocate via a
Registry parameter.

Volume Parameter Block (VPB)

The VPB is the link between the file system device object representing the
mounted volume and the device object representing the physical or virtual disk
that contains the physical file system data structures. Each time a file open request
for an on-disk file stream is sent to a device object for a physical or virtual
device,* the 1/O Manager invokes an internal routine called lopCheckVpb-
Mounted (). This routine is responsible for initiating a logical volume mount
operation, if the VPB associated with the physical/virtual device that is the target
of the request indicates that the volume has not been mounted. If, however, the
volume is previously mounted, the 1/O Manager redirects the open operation to
the device object whose pointer is obtained using the DeviceObject field in
the VPB.

Memory for a volume parameter block is automatically allocated from nonpaged
pool by the Windows NT I/O Manager when a device object is created through a
loCreateDevice () call or when a file system driver invokes the loVerify-
Volume () call, for the following types of device objects:

- FILE_DEVICE_DISK
- FILE_DEVICE_CD_ROM
- FILE_DEVICE_TAPE

* FILE_DEVICE_VTRTUAL_DISK (used for RAM disks or any similar virtual
disk structures that can hold a mountable volume)

Note that each of the these types of device objects can have a logical volume
present on the device object, and each of these device objects typically also repre-
sents a single mountable partition for a device. The volume parameter block is
used to map the file system (logical) volume device object to the physical device
also represented by a device object. This structure is initially zeroed by the 1/0
Manager upon allocation. The following definition describes the VPB:

* Since the most commonly used subsystem on Windows NT platforms is the Win32 subsystem, consider
the case when a user performs a file open operation on a file stream on drive letter C:. This drive letter
is nothing but a Win32 subsystem-visible name that is actually a symbolic link to a Windows NT name,
such as \Device\HardDiskO\Partitionl. Therefore, accessing a file stream on C: is the same as accessing
an on-disk file stream on the physical disk device object with the name \Device\HardDiskO\Partitionl.
Note that the Windows NT named object is not the device object representing the mounted volume; rath-
er, it is the device object representing the physical/virtual disk drive. The VPB is used to perform the
association between the named physical/virtual disk device object and the unnamed logical volume de-
vice object.

rer

11

)

~ b »w

Common Data Structures 173

typedef struct _VPB {

CSHORT Type;

CSHORT Size;

USHORT Flags;

USHORT VolumeLabelLength; // in bytes

struct _DEVICE_OBJECT *DeviceObject;

struct _DEVICE_OBJECT *RealDevice;

ULONG SerialNumber;

ULONG ReferenceCount;

WCHAR VolumeLabe l [MAXIMUM_VOLUME_LABEL_LENGTH / sizeof(WCHAR)];
} VPB, *PVPB;

Each mounted volume can have a label associated with it with a maximum length
of 32 characters. The VolumeLabellLength field is initialized by file system
drivers to the actual length of the label for the volume, which is stored in the
VolumeLabel field. Each file system volume can also have a serial number asso-
ciated with it that should be read off the volume by the file system driver and
placed in the SerialNumber field. As long as the reference count for the VPB
is nonzero, the I/0O Manager will not deallocate the VPB structure. The RealDe-
vice field is initialized by the 1/O Manager to point to the physical or virtual
device object that contains the mountable logical volume. The DeviceObject
field is initialized by the file system driver whenever a mount operation takes
place. This field contains the address of the device object of type FILE_DEVICE_
DISK_FILE_SYSTEM, created by the file system to represent the mounted
volume.

The Flags field in the VPB can have one of three values:

VPB_MOUNTED
This bit is set by the 1/O Manager once a file system mounts the logical
volume represented by the VPB. This happens after a file system driver
returns STATUS_SUCCESS from an IRP sent to it with a major function of
IRP_MOUNT_COMPLETION.

VPB_LOCKED

This field can be set or cleared by the file system driver that has mounted the
logical volume represented by the VPB. While this field is set, the NT 1/O
Manager will fail all subsequent open/create requests targeted to that logical
volume. File systems may choose to set this field in response to application
requests to lock the logical volume, or if they temporarily wish to prevent any
create/open requests from proceeding. The FASTFAT file system responds to
application IOCTL requests to lock a volume (FSCTL_LOCK_VOLUME) by
setting this field in the VPB.

174 Chapter 4: The NT 1/O Manager

VPB_PERSISTENT

This field is also manipulated by file system drivers. If this field is set, the I/O
Manager will not delete the VPB structure, even if the ReferenceCount in
the VPB is 0.

The NT 1/0O Manager provides two routines that should be used by filter drivers
and file system drivers to synchronize access to a VPB structure. These support
routines are defined as follows:

VOID

loAcquireVpbSpinLock

OUT PKIRQL Irgl
)i

VOID
loReleaseVpbSpinLock (
IN KIRQL gl

);
Parameters:

Irgl
For the loAcquireVpbSpinLock () routine, this is a pointer that, upon
return, will contain the IRQL to which the thread must be restored when the
corresponding release function is invoked.

For the routine loReleaseVpbSpinLock (), this argument contains the
IRQL value returned when the spin lock was acquired.

Functionality Provided:

There is a global spin lock structure that is acquired by the 1/O Manager internally
while manipulating contents of the VPB. If your driver wishes to check or manipu-
late the Flags, DeviceObject, or ReferenceCount fields in any VPB, you
should first invoke the loAcquireVVpbSpinLock () support routine to ensure
data consistency. Note that this is a global spin lock and that, while this spin lock
is acquired, not many I/O operations can continue (e.g., new create and open
operations will be blocked). Therefore, be careful to acquire the lock only for the
short period required while accessing the specified fields.

For more detailed information on the flow of execution leading to a mount opera-
tion, as well as for a detailed explanation of handling VPB structures for volumes
mounted on removable media, consult Part 3-

I/0 Status Block

The 1/0O Status Block is used to convey the results of an I/O operation. This struc-
ture is defined as follows:

v

Common Data Structures 175

typedef struct _I0_STATUS BLOCK {
NTSTATUS Status;
ULONG Information;

} 10_STATUS_BLOCK, *PIO_STATUS_BLOCK;

Every 1/0 Request Packet (IRP) has an I/O Status Block associated with it. A
kernel-mode driver should always insert the return code describing the results of
processing the request in the Status field in the 1/O status block structure. This
field will, therefore, contain a return code denoting success (STATUS_SUCCESS),
a return code denoting a warning, an informational message, or an error. Error
status codes also include those indicating that an exception (which was handled
by the driver) occurred while processing an I/O request. Consult the previous
chapter for a discussion of the structure of NT return codes.

The Information field is typically filled with any additional information related
to the requested 1/O operation. For example, for a read request of 1024 bytes, the
Information field upon return will contain the actual number of bytes read
even if the Status field indicates STATUS SUCCESS. Therefore, the Informa-
tion field in this case would contain a value between 0 and 1024 bytes.

File Object

If you develop file system drivers in Windows NT, or if you develop filter drivers
that reside above the file system driver in the driver hierarchy, you should
become very familiar with the structure of a file object. A file object is the 1/O
Manager's in-memory representation of an open object. For example, if an open
operation is successfully performed on an on-disk file, the 1/O Manager creates a
file object structure to represent that particular instance of the open operation. If
another open operation is performed on the same file stream, the 1/O Manager
will allocate a new file object to represent this second open operation, even

though both open operations were performed on the same underlying, on-disk
file stream.

You should conceptualize a file object as the kernel equivalent of a handle
created as a result of a successful open/create request. File objects are not limited
to representing open file streams; rather, they are an abstraction used to represent
any object opened by the NT I/O Manager. Therefore, if you open a logical
volume or a disk drive device object, the open operation will result in the
creation and initialization of a file object data structure.

All 1/O operations targeted to on-disk file streams or logical volumes require a file
object structure as the target for the request (you cannot perform a read request in a
vacuum; you must have a target file object representing a previous successful open
operation to which you can direct the read operation). The responsibility for

176 Chapter 4: The NT I/O Manager

creating and maintaining a file object data structure is jointly shared by the NT 1/O
Manager and the file system driver.

The file object structure is allocated by the I/O Manager before it passes the open
or a create request to a kernel-mode file system driver. The create/open IRP
contains a pointer to this newly allocated file object structure; it is the responsi-
bility of the kernel-mode file system driver that processes the create/open request
to initialize certain fields in the file object structure.

The file object structure is defined by the NT 1/O Manager:
typedef struct _FILE OBJECT {

CSHORT Type;

CSHORT Size;
PDEVICE_OBJECT DeviceObject;

PVPB Vpb;

PVOID FsContext;

PVOID FsContext2;
PSECTION_OBJECT_POINTERS SectionObjectPointer;
PVOID PrivateCacheMap;
NTSTATUS FinalStatus;
Struct _FILE_OBJECT *RelatedFileObject;
BOOLEAN LockOperation;
BOOLEAN DeletePending;
BOOLEAN ReadAccess;
BOOLEAN WriteAccess;
BOOLEAN DeleteAccess;
BOOLEAN SharedRead;
BOOLEAN SharedWrite;
BOOLEAN SharedDelete;
ULONG Flags;
UNICODE_STRING FileName;

LARGE_ INTEGER CurrentByteOffset;
ULONG Waiters;

ULONG Busy ;

PVOID LastlLock;

KEVENT Lock;

KEVENT Event;
P10_COMPLETION_CONTEXT CompletionContext;

} FILE_OBJECT;

The DeviceObject and Vpb fields in the file object structure are initialized by
the 1/0 Manager before sending a create or an open request to the file system
driver. The DeviceObject is initialized to the address of the target physical or
virtual device object to which the request is directed. The Vpb field is initialized
to the mounted VPB associated with the target device object.

The FsContext, FsContext2, SectionObjectPointer, and Private-
CacheMap fields are initialized and/or maintained by the file system driver
implementation and the NT Cache Manager. They will be discussed in greater
detail later in this book. The NT I/O Manager does not maintain the contents of

Comm

these
field; 1

The F
file, v
pathn:
ence
pointe
suppli
the fil
Objec
the co

The
object
curren
compl

The C
messa
Delet
receiv

The L
owns
while
object

The v
are se
fields
fields
subsec
procese
There
which
file sy:

Later i
ations
to imp
tions |
synchi
in the
part ol

red by
system
iical or
tialized

.vate-
~ driver

greater
tents of

Common Data Structures 177

these fields, though it does check for and use the contents of the FsContext
field; this will be discussed in Part 3.

The FileName field is initialized by the 1/O manager to a string representing the
file, volume, or physical device to be opened. This name can either be a relative
pathname or an absolute pathname. A relative pathname is indicated by the pres-
ence of a nonnull value in the RelatedFileObject field. This field contains a
pointer to a previously opened file object data structure. The relative pathname
supplied in the FileName field must now be considered relative to the name of
the file represented by the RelatedFileObject. Note that the RelatedFile-
Object field is only valid in the context of a create request. At all other times,
the contents of this field are undefined.

The CurrentByteOffset field is maintained by file systems for those file
objects that were opened for synchronous access only. This field contains the
current pointer position for the file stream, which is updated upon the successful
completion of read and/or write 1/O operations.

The CompletionContext field is used by the NT I/O Manager to send a
message to a Local Procedure Call (LPC) port upon completion of an IRP. The
DeletePending flag is set in the file object structure when a file system
receives a set information IRP specifying that the file stream should be deleted.

The LockOperation field is set to TRUE by the 1/O Manager if the thread that
owns the file object structure invoked a byte-range lock operation at least once
while the file was open. This field is later checked when the thread closes the file
object to determine whether or not to send an unlock IRP to the file system driver.

The various access fields (ReadAccess, WriteAccess, and DeleteAccess)
are set and cleared by the 1/O Manager. So are the various share access related
fiells (SharedRead, SharedWrite, and SharedDelete). The state of these
fields determines how the file is currently opened and also determines whether
subsequent opens requesting certain specific types of access will be allowed to
proceed or will be denied with an error code of STATUS_SHARING_VIOLATION.
There exists an 1/O Manager support routine called loCheckShareAccess (),
which maintains the state of these fields. This routine is typically only invoked by
file system drivers and will be described later in this book.

Later in this chapter, you will read about synchronous and asynchronous 1/O oper-
ations from the perspective of the file system drivers that must provide the code
to implement such requests. A user can open a file object specifying that all opera-
tions performed on the opened object by that particular file object be executed
synchronously. This is indicated by the presence of a FO_SYNCHRONOUS_FLAG
in the Flags field of the file object structure, which is set by the I/O Manager as
part of the create/open request. One of the effects of requesting synchronous 1/0

178 Chapter 4: The NT l/0 Manager |

operations is that the 1/0 Manager always serializes all 1/0O operations performed
using that particular file object. To implement this sequential behavior, the NT 1/O
Manager uses the Busy and the Waiters fields in the file object data structure,
The Busy field is set when an 1/O operation using that particular file object is in
progress. The Waiters field denotes the number of threads waiting to perform
I/0 operations using the same file object. These fields should not be of much
interest to other kernel-mode drivers.

The file object is a waitable kernel-mode object, i.e., threads can request asynchro-
nous 1/O, and subsequently wait for the completion of the 1/O operation. The
Event field in the file object is used by the I/O Manager to maintain the state of
the wait object. This event object is set to the not-signaled state by the 1/O
Manager when an 1/0O operation begins using that file object. It is subsequently
set to be signaled once the I/O is completed, though only if the caller had not
explicitly supplied another event object to wait for.

The Flags field can reflect many values, one of has been described here, and
each describes a state associated with the file object structure. 1 will defer discus-
sion of each of the possible values of this field until later in the book, when the
field is actually used in our code.

Determining Which Objects to Use

Here are a few simple rules to "put everything together" when developing your
driver:

« When your driver loads, a driver object will be created and sent to your initial-
ization routine by the I/O Manager. You must fill in certain fields in the driver
object, such as the various dispatch routine function pointers, for the function-
ality you wish to support. If you do not fill in the function pointers, your
driver will not receive any requests, because all requests will be handled by
the default routine (loplnvalidDeviceRequest ()).

e In order to provide any functionality, you will probably create at least one
device object. More than likely, you will create one device object representing
your driver and subsequent other device objects representing other virtual
and/or physical devices you support. Most of the device objects you create
will be named, unless you develop a file system driver, in which case, most
of the device objects will represent logical volumes and will therefore be
unnamed. When requesting a create operation for a device object, you should
also specify a device extension in which you can store global data associated
with each new device object.

» If you write a filter driver, you will create one device object for each target
device object whose 1/O requests you wish to intercept. You will then attach

e

TS W Py W

18

ur

Common Data Structures 179

your device object to the target device object. This procedure of attaching to
the target will actually cause all 1/O requests directed to the target to be re-
routed to your device object.*

» If you develop a file system driver, you will have to manipulate the Volume
Parameter Block (VPB) for the physical device object on which you perform a
mount operation. Performing a mount will cause the 1/O Manager to make
the physical device object accessible for read/write requests and those

requests will be sent to your device object representing the mounted logical
volume.

» Once you make a device object available for receiving I/O requests, requests
will be sent to you in the form of I/O Request Packets (IRPs). If you develop

a file system driver, you will also receive requests via the fast path (more on
that later in this book).

» When you receive an IRP, you will determine the nature of the I/O operation
your driver is being asked to perform. To do this, you should get a pointer to
the current stack location in the IRP and use it to extract information pertain-
ing to the 1/O request. Your driver will then perform appropriate processing
of the IRP, either synchronously or asynchronously.

* Your driver may be able to complete the IRP, or it might determine that the
IRP needs to be forwarded to a driver that is lower in the hierarchy for some
additional processing. In the latter case, you should obtain a pointer to the
next stack location in the IRP and fill in the information that the next driver in

the hierarchy can subsequently extract to determine the nature of processing
it has to perform.

« If your driver will complete the IRP, it must return results of the 1/0O operation
in the 1/O status block structure. The Status field should contain the result,
while the Information field should contain any additional information you
wish to return to the caller.

e Last, but not least, if you develop a file system driver, you will access and pos-
sibly modify the file object structure as part of processing an open request
(and subsequently when processing most IRPs). Each such structure repre-
sents an instance of a successful open operation.

In addition to the objects mentioned in this chapter, if you develop a device
driver, you will be concerned with other objects as well, including controller
objects, adapter objects, and interrupt objects.

Furthermore, your driver will undoubtedly create one or more object types of its
own. For example, file system drivers will create some internal representation of a

* The process of attaching to a target device object is described in detail in Chapter 12.

180 Chapter 4: The NT I/O Manager |

file stream in memory. For those familiar with UNIX operating system environ- |
ments, think about the vnode structure that is created and maintained by all file]
systems. The NT equivalent of this structure is a File Control Block, an object we
will discuss at length in Part 3. In addition, file systems will create a context to |
internally represent an instance of a file open operation (similar to the system-
defined file object structure). In Windows NT parlance, this structure is called a
Context Control Block.

Once you start using these objects in your code development, they should
become second nature to you and you will no longer have to spend time trying
to figure out what a device object represents. |

I/0O Requests: A Discussion

The following discussion provides some additional information that you should §
keep in mind as we develop a higher-level kernel-mode driver. This information
will be used not only in the sample drivers provided in this book, but also in any |
commercial kernel-mode drivers you design and develop.

Synchronous/Asynchronous Operations

Some /O operations are always performed synchronously; therefore, any fie
system driver that you develop only has to design a synchronous method of 1
processing IRPs for such types of requests. Other operations can be handled!
either synchronously or asynchronously; your file system driver must, therefore, |
provide both synchronous and asynchronous code paths for processing such 1/O j
request packets. '

How does a kernel-mode driver determine whether an IRP should be handled!
synchronously or asynchronously?

Before we address that question, it might be useful to see why handling asynchro-
nous requests correctly is important. Consider a file system driver that you desig;
that does not honor asynchronous requests but performs all requests synchro-!
nously. Your implementation should work correctly most of the time. The onel
problem that might occur is when your driver receives asynchronous paging 1/0J
write requests. These requests typically originate from the NT Modified Pag;
Writer. The number of worker threads available to the Modified Page Writer is]
fixed. It may be that the MPW uses only two threads to perform such paging 1/0,J
one to the page files and the other to memory-mapped files.]

In low-memory and high-stress situations, the VMM tries to quickly flush modified
pages out to secondary storage to make room for other data in the systeis
memory. The MPW does this by rapidly issuing asynchronous page write request

1ge
ris
/O,

fied
tem
ests

1/0 Requests: A Discussion 181

to file systems that manage one or more of the modified pages, either in mapped
files or in page files. If your driver blocks the MPW thread until the 1/O is
completed, it slows down the whole process of flushing data out to disk, which
can result in unacceptably long delays to the users of the system.

Therefore, if you develop a higher level kernel-mode driver, it would be prudent
to provide support for asynchronous 1/0O operations.

Only some 1/O system services can be processed asynchronously:

* Read requests

* Write requests

» Directory control requests

» Byte range lock/unlock requests

» Device I/O control requests

» File system 1/O control requests

As you may have noticed, all of the types of requests listed above can potentially
take a significant amount of time to complete. Therefore, it is logical that the

caller be allowed to request asynchronous processing for such requests. All of the
other IRP major functions should complete reasonably quickly.

Therefore, if your file system or higher-level filter driver (layered above a file
system) receives an IRP with a major function other than the ones listed here, you
can assume that you are allowed to block in the context of the calling thread.

For the major functions listed, the caller has the option of specifying whether the
request should be performed synchronously or asynchronously. To find out what

the caller wants, your kernel-mode driver can invoke the following 1/O Manager
support routine:

BOOLEAN
lolsOperationSynchronous (
IN PIRP Ip

)i
Parameters:
Irp

The 1/0 request packet sent to your driver. This IRP has flags set by the 1/O
Manager that determine whether the IRP can be processed synchronously or
asynchronously. Note that asynchronous operations can always be performed
synchronously (with the slight caveat discussed above); however, even if your
driver performs a synchronous operation asynchronously and therefore
returns STATUS_PENDING to the 1/O Manager, the NT I/O Manager will
perform a wait operation in the kernel on behalf of the calling thread.

182 Chapter 4: The NT 1/0 Manager

Functionality Provided:
This simple function call performs the following checks:

o If the IRP_SYNCHRONOUS_IRP flag has been set, the IRP should be exe-
cuted synchronously. All IRP structures that describe major functions other
than the ones listed above will have this flag set in the IRP. The presence of
this flag causes ToIsOperationSynchronous () to return TRUE,

e As described earlier in this chapter, the caller may have opened the target file ¢
object for synchronous access only. This is denoted by the FO_ a
SYNCHRONOUS _I0 flag being set in the file object data structure; the pres- t
ence of this flag causes the lolsOperationSynchronous () routine to k
return TRUE. I

e The IRP may be a paging 1/O read or write request, denoted by the IRP_ E
PAGING_IO flag in the IRP. Furthermore, even paging I/O requests can be tc
synchronous or asynchronous. Synchronous paging 1/0O requests are indicated C
by the presence of the IRP_SYNCHRONOUS_PAGING_IO flag in the IRP. If si
the latter flag is not set, the I/O Manager knows that this is an asynchronous
paging 1/O request and returns FALSE; otherwise, the 1/0 Manager identifies A
the request as a synchronous paging 1/0O request and returns TRUE. u

The NT I/O Manager provides different methods of informing callers when asyn- IC;

chronous 1/O operations have been completed. Here are the possible methods:

» The file object structure is a waitable object in Windows NT. When an 1/O Z
operation is initiated on a file object, the object is initially set to the not-sig- to
naled state; when the 1/O operation completes, the file object is set to the sig- of
naled state. by

e The asynchronous NT system services provided by the I/O Manager accept an Tt
optional Event object that is initially set to the not-signaled state and is sig- sy
naled when the I/O operation is completed. In the discussion on IRP comple- re
tion, I mentioned that the I/O Manager signals a user-supplied event object us
when performing the final postprocessing upon IRP completion in the context fill
of the calling thread. Note, however, that if an event object is supplied, the file
file object will not be signaled. sy

e Asynchronous NT system services provided by the 1/O Manager also accept on
an optional caller-supplied APC routine. This routine is invoked via an Asyn- (n¢
chronous Procedure Call by the 1/O Manager as part of the postprocessing op
performed in the context of the calling thread.

One final note about synchronous requests; all synchronous requests made using . A

the same file object structure are serialized, regardless of whether they are made sine

by the same thread or by other threads that are part of the same process. The file 1§ glfec
L

—y e—

w W

1/0 Requests: A Discussion 183

system driver also has the responsibility of maintaining a current position pointer

for each file object that is updated whenever a file object is opened for synchro-
nous 1/0.

Handling User-Space Buffer Pointers

When you create a device object that can receive and serve 1/O requests, your
driver gets the opportunity to specify how it will handle user-supplied buffer
address pointers. You won't fully understand why this information is necessary
until you read the next chapter on the NT Virtual Memory Manager. For now,
however, note that the range of addresses that a user-mode thread can access is
limited to the lower 2GB of the 4GB address space accessible to any process
under Windows NT. Furthermore, this 2GB range of virtual address space is
unique per process (i.e., the addresses used by thread-A do not necessarily refer
to the same physical memory location as do similar addresses used by thread-B).

Of course, threads belonging to the same process do share the same address
space.

A user-mode application typically performs I/O to and from secondary storage
using temporary buffers it has allocated in its own thread context. We will
currently ignore the alternative method used by applications, which involves
using shared memory or memory-mapped files.

For example, consider an application that needs to read some data for a file from
disk. This application will typically allocate a buffer that should be large enough
to contain the amount of requested data. The application will then invoke a read
operation on the open file from which it wishes to obtain data, specifying the
byte offset to read from and the amount of information to be read.

The read request from the application will eventually be translated into an NT
system service call provided by the NT 1/O Manager. Among the arguments
received by the 1/0O Manager will be the pointer to the buffer, supplied by the
user-mode application. This read request now is sent by the I/O Manager to the
file system driver that manages the mounted logical volume on which the open
file object resides.* It is at this point that the I/O Manager finds out how the file
system driver will deal with the user-supplied buffer pointer. This buffer is valid
only in the context of the user-mode thread and does not refer to locked

(nonpaged) memory. The file system can choose from the following possible
options:

" As you go through the rest of the book, you will find out that this statement is not completely true,
since often the I/O Manager bypasses the file system driver completely and instead gets data directly from

the system cache. Let us keep things simple and straightforward for now, though, and ignore that method
of data transfer.

184 Chapter 4: The NT I/O Manager

* Request that the 1/O Manager always allocates a nonpaged system buffer that
will subsequently be used by the file system driver in the data transfer. It
would then be the responsibility of the I/O Manager to copy any data being
written out to disk from the user-supplied buffer to the system buffer before
dispatching the IRP to the file system driver. Similarly, for 1/O operations
where the user-mode application needs to obtain information from the file sys-
tem driver or to read data from disk, the 1/O Manager would have to copy
the data back from the system buffer to the user-allocated buffer once the IRP
had been completed.

* This method of handling user-mode buffers by instructing the 1/0 Manager to
always allocate a corresponding system buffer is called the Buffered I/O method.

The system buffer pointer is passed down to your driver in the Associated-
Irp.SystemBuffer field in the IRP. Note that the I/O Manager will also
often initialize the UserBuffer field in the IRP with the address of the
caller-supplied buffer. Do not attempt to use the contents of this field in your
kernel-mode driver, though, because the SystemBuffer field already con-
tains the system buffer pointer you can use.

The disadvantage of using buffered 1/O is the requirement for extra memory
copies to be performed by the I/O Manager. This is not desirable when you
wish to maximize system performance. However, buffered I/O is the simplest
and therefore most widely utilized method of handling user-supplied buffers.

Another disadvantage of using the buffered 1/O method is that the memory
for the system buffer allocated by the I/O Manager is not paged. This results

in unnecessary depletion of the nonpaged pool of memory reserved for the g
system. A third problem is that, although the memory is not paged out, if you (
wish to use Direct Memory Access to transfer data directly to/from memory s
and peripheral devices, a Memory Descriptor List will have to be created by

either your driver or a lower-level driver to describe the physical pages that S
back the allocated buffer.

« |If your driver wishes to avoid the overhead of allocating and copying data to B
and from a system buffer, you can instead specify that your driver will use the u
direct I/0 method. If this method is specified, the 1/O Manager will request an W
MDL from the VMM that describes the user buffer directly, and it will also cC
request the VMM to allocate and lock physical pages for the user buffer. The Tt
resulting MDL pointer will be passed to your driver in the MdIAddress field de
in the IRP. ca.
The direct I/0O method is more efficient than the allocation of an extra buffer bo
and the resulting copy operations that must be performed. The downside is tur
that your driver must be capable of working with the MDL directly; i.e., there to
is no virtual address pointer that your driver can use when transferring data. Sys

P T T S Y

System Boot Sequence 185

Now, this works fine when you simply pass the MDL down to a lower-level
driver, which subsequently uses it in a DMA data transfer. However, if you
need a virtual address pointer that is accessible in the context of the thread
you process the IRP in, your driver will have to use the MmGetSystemAd-
dressForMdl () support routine from the VMM. You must be careful when
using this routine; freeing the Memory Descriptor List will cause all processors
in the system to flush their caches. The reason for this is complex; simply
stated though, obtaining a system virtual address for the MDL is done by dou-
bly mapping the physical pages. This is also known as aliasing, a technique
which, if not handled correctly, causes many cache consistency problems and
resulting headaches for the VMM. If your driver does use the direct 1/O
method for handling user-supplied buffers, try to avoid using the MmGetSys-
temAddressForMdl () routine whenever possible.

e The third method is not to specify either direct I/O or buffered 1/0 as the pre-
ferred method for handling user-supplied buffers. If you do not specify either
of these two methods, the I/O Manager will simply pass down the user
address to your driver in the UserBuffer field in the IRP.

The responsibility for manipulating the user buffer is on your driver if you
choose this method. File system drivers often use this method, and then make
a decision in their dispatch routines whether they will create an MDL them-
selves or internally allocate a system buffer they can use while processing the
request. Most lower-level drivers, however, prefer to use the direct I/O
method described above.

These methods do not apply to buffers passed in for device or file system IOCTL
(I/O Control) requests. | will discuss IOCTL requests and the buffer manipulation
performed by the 1/0 Manager for such requests in Part 3.

System Boot Sequence

Before you proceed to the remaining chapters in this book, it might be useful to
understand the steps that are executed from the time you power-on your
Windows NT system until the point where you see the logon screen on the
console.

This information can prove quite useful when you design your driver, because it
determines when your driver will be loaded and what part your driver might be
called upon to play during this process. However, you should also note that the
boot process is highly system-, processor-, operating-system-version-, and architec-
ture-dependent, and the sole objective in listing some of the steps below is simply
to provide you with generic information about "what really happens" when the
system boots, not to prepare you to be able to adapt the boot sequence to a new

186 Chapter 4: The NT I/O Manager

processor architecture.* Therefore, be warned that the following description is
highly simplified, though mostly correct.

The main problem in examining the system boot sequence is to determine the
starting point. For the purposes of this section, our "beginning" will be the point
at which code provided by Microsoft as part of the NT operating system gets
executed:

1. The NT system startup routine is invoked by the system start-up module. This
routine is passed a BootRecord structure, which contains basic machine
and environment information used later by the OS Loader component.

The NT system startup routine performs some global initialization and deter-
mines the disk drive and partition that the system is booting from. Part of the
global initialization involves initializing memory descriptors for use during this
initial system boot-up stage. The system startup routine also invokes a boot
loader heap initialization routine, which sets up memory descriptors appropri-
ately so that the boot loader can subsequently use that memory during the
system load process.

The boot sequence described so far comprises Phase 1 of the eight phases in
the NT system boot process.

2. The boot loader startup routine is now invoked by the system startup routine.
Note that system startup routine does not expect that the call to the boot
loader startup routine will ever return, since that would indicate that system
boot sequence has failed. However, if this does happen, you will probably
see a hung system, where a hard power reset might be required to restart.

The boot loader startup routine opens the boot partition, which had been
previously identified by the caller, and reads the boot.ini file off it. As part of
attempting to read this file, the boot loader startup routine uses code that has
been compiled in to determine whether the boot partition contains an NTFS,
CDFS, FAT, or HPFS partition. Note that the standard file system drivers have
not been loaded yet, and the boot loader startup routine uses hardcoded
support for only those file systems that Microsoft has chosen to provide boot
support for; these happen to be the standard NT file system implementations.
Since support for boot file systems has to be built into the NT boot loader
startup code, providing a third-party bootable file system implementation is
close to impossible without the active assistance of Microsoft.

* | have described the sequence that executes on the x86 processor architecture. Despite my warnings
above, much of the code executed during system startup has been designed to be relatively portable
across different architectures; therefore, the methodology and principles used are pretty much the same.

System Boot Sequence 187

At this point, the boot loader startup routine makes a real-mode BIOS inter-
rupt call to set the video adapter to 80*50, 16-color, alphanumeric mode. It
also clears the display by writing blanks out to the screen.

The boot loader startup routine reads the entire contents of the boot.ini file
and presents the list of bootable kernels available to the user, as listed in the
boot.ini file. To read the file, the boot loader startup routine once again
employs routines that can recognize NTFS, FAT, CDFS, and HPFS data struc-
tures, and can navigate successfully through the on-disk file system layout. If
the boot.ini file is empty, the default option presented is NT (default) and the
default directory path to boot from is C:\winnt*

The boot loader startup routine now attempts to match the default boot loca-
tion provided by the user in the [boot loader] section of the boot.ini file,
with the options read from the [operating systems] section of the file.
If no default option was specified, the default directory path is searched for.
If the boot loader startup routine does not find a match between the default
boot option and those options listed in the [operating systems] section,
the default boot location chosen is C:\winnt.

The default boot location and the possible options are presented by the boot
loader startup routine to the user using video display support routines. If the
boot kernel path location selected by the user is C:\, the NT loader startup
code assumes that the user wishes to boot into DOS, Windows 3.x, Windows
95, or 0OS/2; therefore, it attempts to read in the bootsect.dos file and then
reboots the machine into whichever alternative operating system is present.

If the boot location indicates that the user wishes to boot into Windows NT
(this can happen because of a time-out in the selection process, or because of
the user selecting a specific boot system), the boot loader startup routine
attempts to read in the ntdetect.com executable from the root directory of the
boot partition. If ntdetect.com is not found, or if the size of the file seems
incorrect, or if any of the other consistency checks made by the OS loader
startup code fail, the boot process will fail and you will have to reboot the sys-
tem. If, however, a valid executable is found, it is read into memory, and the
system attempts to use the services provided by the hardware manufacturer to
detect the current hardware configuration.

Note that we are well into Phase 2 of the system boot initialization at this
point. The OS loader startup routine now initializes the SCSI boot driver if
required. The ntldr.exe OS loader is now loaded into memory.

* Note that the hoot loader startup routine currently has a bug in that it cannot handle more than 10 en-
tries in the boot.inifile. All entries exceeding this limit are simply ignored. Apparently, this bug has existed
since Windows NT Version 3.5 (and probably since well before that).

188 Chapter 4: The NT 1/O Manager

3. The OS loader opens the console input and output devices, and also the
system and boot partitions. It also displays the OS loader identification
message on the console, OS Loader V4. 0.

The loader uses the boot partition information to generate a complete path-
name for the ntoskrnl.exe NT kernel system image file. Note that the system
always expects to find this file in the System32 directory under the boot parti-
tion location. Once the system image has been loaded into memory, the OS
loader loads into memory the hal.dll system file. The HAL (Hardware Abstrac-
tion Layer) isolates platform dependent functionality for the rest of the
Windows NT Executive.

At this point, all DLLs imported by the two loaded system files are identified
and loaded into memory. Now, the OS loader attempts to load the SYSTEM
hive from the NT Registry. At this time, the loader has already made the deter-
mination whether it should load the LastKnownGood control set or the
Default control set from the Registry. This determination is important because
the control set determines the set of boot drivers that will be loaded into the i
system.

To load the SYSTEM hive into memory, the OS loader attempts to open and
read the SYSTEM file from the System32\config directory on the boot parti-
tion. If the attempt to open and read in the SYSTEM file fails, an attempt is
made to read in the SYSTEM.ALTfile. If neither of these attempts succeed, the
OS loader fails the boot attempt. If the file can be successfully read, the
contents of the file are verified, and in-memory data structures are initialized
to reflect the contents of the on-disk file. Also, note that the system loader
block, which is eventually passed to the loaded system image, is appropri-
ately modified to point to the in-memory copy of the SYSTEM hive.

At this time, the OS Loader determines the list of boot drivers that need to be
loaded into memory. Included among this list is the driver responsible for the
boot partition file system. Note that boot drivers are identified by the Start
value entry (should be equal to 0) associated with the driver's key in the !
control set that was loaded into memory. Once the list of boot drivers has |
been identified, the OS Loader sorts these drivers based upon the Service- |
GroupOrder specified in the Registry; subsequent drivers within a group are !
sorted based on the GroupOrderList specified in the Registry and the Tag
value entry associated with each driver key in the Registry.

Once the driver load order has been determined, all boot drivers are loaded.

In the event of an error while loading boot drivers, the ErrorControl value -
entry associated with the driver in the Registry is examined. If the driver was ini
marked as a critical driver for the system boot process, the current boot fails;

otherwise, the OS loader continues loading other boot drivers.

*

System Boot Sequence 189

Finally, the OS Loader prepares to execute the loaded system image and trans-
fers control to the entry point in the NT kernel.

4. During Phases 3-5 of the system boot process, the various NT Executive
components and the NT kernel are initialized. Drivers that should be automati-

cally loaded with a Start value entry of 1 are also loaded during Phase 5 of
the system boot process.

The NT kernel initialization routine, KilnitializeKernel (), is invoked
during Phase 3 initialization by the kernel system startup routine (which is the
entry point into the system image that was loaded into memory by the NT OS
loader). This routine initializes the processor control block data structure, the
kernel data structures, and the idle thread and process objects, and invokes

{ the NT Executive initialization routine. Various spin locks protecting kernel

data structures and kernel linked list structures are initialized here. The
> various kernel linked list heads (DPC queue list head, timer notification list
2 head, various thread table lists, and other similar kernel data structures) are
2 also initialized here.

Once the kernel idle thread structure has been initialized, the Executive initial-
5| ization routine is now invoked in the context of this idle thread. Initialization
- of the NT Executive and the various subcomponents of the Executive takes
s place in two phases.* During Phase O of the Executive initialization, the
e following subcomponents initialize their internal states:
€ — The Hardware Abstraction Layer (HAL)

d .
o — The NT Executive component
i — The Virtual Memory Manager (VMM)

Memory Manager paged and nonpaged pools, the page frame database
e (explained in the next chapter), Page Table Entry (PTE) management
e structures, and various VMM resources, such as mutex and spin lock data
£ structures, are initialized at this time. The VMM also initializes the NT sys-
e tem-cache-related data structures at this time, including the system cache
as working set and the various VMM data structures used to manage the sys-
3 tem cache.
re — The NT Object Manager
= — The Security subsystem
:d.
ue

* Do not confuse these phases with the system boot sequence Phases 1 through 8. These two phases are

7as internal and specific to the initialization of the NT Executive and its various subcomponents.

ils;

190

Chapter 4: The NT 1/0 Manager

— The Process Manager

During Phase 0 initialization of the NT Executive, the initial system pro-
cess is created. Note that the idle process was hand crafted by the NT ker-
nel before any of the Executive initialization began. The system process
created at this time is distinct from the idle process that was created ear-
lier. A system thread is also created in the context of the initial system
process at this time. Phase 1, or the remainder of the NT Executive initial-
ization, is now performed in the context of this newly created thread
belonging to the initial system process.

During Phase 1 initialization of the NT Executive and various subcomponents,
all interrupts are disabled and the priority of the thread in whose context the
initialization is performed is raised to a high priority, effectively disabling any

preemption. Also, during Phase 1 of the Executive initialization, the system is
considered fully functional and subcomponents are now allowed to perform
all required operations to complete their initialization. The following subcom-
ponents are invoked (or their operations performed) during Phase 1 initializa-
tion of the NT Executive:

The Hardware Abstraction Layer (HAL) is invoked to complete
initialization.

The system date and time are initialized.

On an multiprocessor system, other processors are started at this time.

The Object Manager, Executive subsystem, and the Security subsystem
are invoked to perform the remainder of their initialization.

The Virtual Memory Manager (VMM) Phase 1 initialization is performed.

At this time, the memory mapping functionality is initialized and becomes |
available to the rest of the system. VMM threads are also started now. The |
VMM can be considered fully functional and ready to service the remain-
der of the system after Phase 1 initialization.

The NT Cache Manager is initialized after the VMM initialization has been
completed.

You will read more about the NT Cache Manager and the functionality
provided by it later in this book. Note for now, that during Cache Man- 1‘
ager initialization, the number of worker threads required for asynchro- |
nous operations is determined and created, and the Cache Manager |
linked list structures and synchronization resources are initialized.

The Configuration Manager is invoked to begin its initialization.

The Configuration Manager manages the NT Registry. During this phase |
of initialization, the Configuration Manager (CM) makes available the |

ger

its,

\ny
L is

ete

€n

ase
the

System Boot Sequence 191

\REGISTRY\MACHINE\SYSTEM and the \REGISTRY\MACHINE\HARD-
WARE hives in the registry. To do this, all of the information obtained by
ntdetect.com earlier, as well as information read into memory by the OS
loader is filled into appropriate entries in the SYSTEM or HARDWARE
hives. Once this phase of initialization has been completed, part of the
Registry name space is available to other system components, particularly
kernel-mode drivers that will soon be loaded; however, the CM will not
write out modifications to the Registry at this time. The kernel-mode driv-
ers that will soon be called upon to perform driver-specific initialization
can use the standard Registry routines to access this information.

The NT 1/O Manager is called upon to perform its initialization.

The 1/0 Manager first initializes internal state objects, including synchroni-
zation data structures, linked lists, and memory pools (e.g., the IRP zone/
lookaside lists). Then, the I/O Manager registers all of its internally
defined object types (i.e. adapter objects, controller objects, device
objects, driver objects, I/O completion objects, and file objects) with the
Object Manager using an internal routine called ObCreateObject-
Type () .* The 1/0O Manager also creates the \Device, \DosDevices, and
the \Driverroot directories in the object name-space at this time.

Next, the boot drivers loaded by the OS loader are initialized by the 1/0
Manager. This includes invoking the driver entry routines for each of
these drivers to perform driver-specific initialization. The raw file system
driver is also loaded at this time. The only other file system driver loaded
is the bootfile system driver. Drivers must adhere to the restrictions on
interacting with the NT Registry. Finally, the drivers with a Start value
entry value of 1 are loaded and their driver entry routines invoked for
driver-specific initialization.

Driver reinitialization routines are subsequently invoked for all loaded
drivers that have requested reinitialization. Following this, the NT 1/O
Manager assigns drive letters to recognized disk partitions. The drive let-
ters A: and B: are reserved for floppy drives. The I/O Manager examines
the registry for any "sticky" drive letter assignments that need to be main-
tained for CD-ROM drives and for hard disk drive partitions. These drive-
letter assignments are internally reserved so that they will not be used
subsequently when determining dynamic DOS drive letter assignments.

' Note that the Object Manager is not aware of these object types otherwise (i.e., information about 1/0
Manager-defined objects is not coded into the Object Manager design). This illustrates the philosophy of
a layered and object-based system, followed by the NT development team.

192 Chapter 4: The NT I/O Manager

Note that before reserving a drive letter for each of the hard disk drives,
the 1I/O Manager performs an open operation on the physical drive.
Therefore, if you develop a hard disk device driver or a lower-level filter
or intermediate driver, you should expect an open request at this time. If
the open request succeeds, a symbolic link to the device object is created
in NT object name space; the name assigned to this link is of the form
\DosDevices\PhysicalDrive®/od where %d represents the disk drive num-
ber in sequence. The NT I/O Manager also queries partition information
from the disk driver at this time. The following method is used by the 1/0
Manager to determine the order in which drive letters are assigned to
fixed disk partitions:

— The NT I/O Manager queries the Registry for any "sticky" drive letter
assignments that need to be maintained.

— Bootable partitions are first assigned dynamic DOS-compatible drive
letters (i.e., a symbolic link is created to the device object repre-
senting the partition, with the name \DosDevices\%c: where %c
represents the drive letter chosen by the NT I/O Manager for the
partition).

— Primary partitions are next chosen for dynamically assigned drive
letters.

— Extended partitions are subsequently assigned DOS drive letters.

— Other (enhanced) partitions are now assigned DOS drive letters. After
drive letters have been assigned to hard disk drive and removable
drive partitions, the NT 1/O Manager assigns drive letters to all CD-
ROM drives that were identified during hardware detection.

— The Local Procedure Call (LPC) subsystem and the Process Manager
subsystem now complete their initialization.

— The Reference Monitor and Session Manager subsystem are invoked
next to complete their initialization.

5. At this point, Phases 3-5 of the system boot process have been completed.
Remember that NT Executive components were initialized in the context of
the system worker thread belonging to the system process, which was created
by the NT kernel. This thread now assumes the role of the Memory Manager
zero page thread; this is a very low-priority thread used to asynchronously
zero out pages that are placed on the free list by the VMM. As you will read
in the next chapter, all pages need to be zeroed out before they can be
reused to make the system conform to C2 security defined by the US Depart-
ment Of Defense (DOD).

ive

fter
ible
CD-

ager

ked

eted.
xt of
»ated
yager
ously
read
in be
spart-

System Boot Sequence 193

6. The system has been initialized at this point. During Phases 6-8 of the system
boot process, the various subsystems are initialized and other services are
loaded by the Service Controller Manager. This includes the loading of kernel-
mode drivers with a Startvalue of 2 in the Registry.

We have finished our bird's-eye view of the NT system boot process. This should
have given you a reasonable understanding of the steps executed to bring the NT
system to a stable state so that it can begin responding to user requests.

This chapter has introduced you to the Windows NT I/O Manager and the
Windows NT I/O subsystem. Another important component of the NT Executive
is the NT Virtual Memory Manager, which is the topic of the next chapter.

In this chapter:

* Functionality

* Process Address Space

* Physical Memory
Management

"Virtual Address -
Support o

The NT Virtual e
Memory Manager Modified and

 Mapped PageWriterg
» Page FaultHandling
« Interactions with

File System Drivers

An important functionality provided by modern day operating systems is the
management of physical memory on the node. Typically, the amount of available
volatile RAM on a machine is less than that required by all the applications and
by the operating system itself. Therefore, the operating system has to intervene
and facilitate sharing this limited memory resource, given the often conflicting
demands placed by all components on the node.

Furthermore, with multiple applications executing concurrently on the same
machine, the operating system has the task of ensuring that these applications can
perform their tasks independently of each other. Therefore, code and data struc-
tures for each of the applications must be managed such that they do not interfere
with code and data from any other application. The operating system must also
protect its own in-memory resources (both code and data), used to manage the
system, from all of the applications executing on the system. This is required to
guarantee the integrity and security of the machine itself. Finally, sophisticated
applications on the same machine (and sometimes on networked clusters of
machines) often need to share in-memory data with each other. The operating
system has to facilitate orderly sharing of data such that only those applications
that are given permission to access the shared data are allowed to do so.

The Virtual Memory Manager (VMM) has the responsibility for providing all of this
functionality. The VMM is so named because it helps provide an abstraction to
each application executing on the system: each application can perform its tasks
believing all of the memory resources on that system are available for the sole use
of that application. Furthermore, the application can execute believing that it has

194

Functionality 195

an infinite amount of memory resource available to it. This abstraction of an infi-
nite amount of memory reserved solely for the use of a specific application is
called virtual memory. The VMM is the kernel-mode component responsible for
providing this abstraction.

Functionality

The NT VMM provides the following functionality to the other components of the
system:

The Virtual Memory Manager provides a demand-paged (with clustering sup-
port), virtual memory system. Each process has a private virtual address space
associated with it.* This virtual address space is backed by physical pages,
allocated on demand from the total pool of physical pages available on the
machine.

Management of the virtual address space associated with a process is sepa-
rated from the manipulation of physical pages. The VMM provides support for
application control of the virtual address space allocation, commitment,
manipulation, and deallocation.

Virtual memory support is provided with the help of the local file systems. In
order to provide the illusion of a large amount of available memory (greater
than the amount of actual RAM), the contents of memory are backed-up to
storage allocated on secondary storage media. Memory backed by on-disk
storage is called committed memory. Committed memory is backed either by
page files, which can be dynamically resized, or by data/image files on sec-
ondary storage.

The VMM provides support for memory-mapped files. These files can be arbi-

trarily large; files larger than 2GB can be mapped using partial views of the
file.

It supports sharing memory between different processes on the system. This
is also used as a method of interprocess communication.

It implements per-process quotas.

It determines the policies for working-set management of physical memory
allocated to processes.

* Currently (for Windows NT Version 4.0 and earlier), the Virtual Address Space associated with a process
is limited to 4 GB. It is inevitable that this support will be extended to 2 bytes when Windows NT be-
comes a true 64-bit operating system. At the time this book went to press, Microsoft announced its inten-
tion to support a 64-bit address space with Version 5.0 of the operating system.

196 Chapter 5: The NT Virtual Memory Manager

Furthermore, all physical memory allocation/deallocation decisions are per-
formed by the NT VMM. This is done irrespective of whether memory is allo-
cated to user-mode applications or for kernel-mode file data caching.

It provides support for the protection of memory using Access Control Lists
(ACLs).

» It provides support for the POSIX fork and exec operations, thereby enabling
compliance with the POSIX standard.

e It provides support for copy-on-write pages. It has the ability to establish
guard pages and to set page level protection.*

Process Address Space

An address is simply a value that points to a memory location contained within

fOSNNT 2 VN S NTAN BN XN S v b A —— PO RGN

In this chapter:
v I/O Revisited: Who
Called?
s Asynchronous 1/0
Processing

* Dispatch Routine:
File Information

* Dispatch Routine:

. Directory Control Ty .
» Disr;athRout:'ne: Wth z ng A F Zle

Cleanup

S Cuctomr Mvinior IT .,
on the machine is typically much less than 4GB. Assume that each element of the
virtual address space really mapped to an equivalent physical address. Therefore,
each system would have to install 4GB of memory for each process that would
run on that system. Instead, the VMM tricks each process into believing that it has
4GB of addressable memory available for its usage. The process takes this proposi-
tion at face value and tries to access memory using the range of available virtual
addresses. It is the responsibility of the VMM to translate (or map) each virtual
address into a corresponding physical address.

Why does a process need to access memory? In order to provide any useful func-
tionality, each process has most of the following components associated with it:

Close

> ol

Process Address Space 75*7

» Uninitialized global data

» Heap (dynamically allocated memory)
e Shared memory

» Shared libraries

These components must be stored somewhere in physical memory, though not all
of these components need to always exist in physical memory all of the time. If
these components are brought into physical memory when needed, the process
must have some way of accessing the memory locations where this information is
stored. Therefore, an address space (or a range of addresses) must be associated
with each process.

Some amount of physical memory in the system must also be devoted to the oper-
ating system code and data. So now, not only does the VMM have to provide
virtual addresses for process-specific information, it must provide virtual addresses
to refer to operating system components, including addresses that refer to its own
code used to manage the memory in the system. This is achieved by the creation
of a special system process, which, like any other process, has 4GB of virtual
memory available to it. However, creation of the system process is not sufficient
in itself.

You know that user processes executing on the system often have to request
services from the operating system. These requests might be related to 1/0 opera-
tions, allocation and manipulation of memory, creation of new processes and
other similar operations. The NT operating system provides system services that
receive user requests and execute code in kernel mode to handle such requests.
This leads to the situation where operating system code executing in kernel mode
must perform some tasks in the context of the user process that issued the request.

Figure 5-1 illustrates a typical process address space on an Intel x86 hardware
platform.*

To perform such tasks, operating system code and data must be addressable from
within the context of the user process; i.e., there must be a range of virtual
addresses that refer to operating system code and data, but actually "reside”
within the 4GB limit set by the underlying hardware. To achieve this, the NT
VMM divides the 4GB range of addresses allocated to each process into two
halves, a 2GB range dedicated to user-mode virtual addresses, called user space (a

* Some hardware platforms support a segmented addressing scheme, which divides physical memory into
contiguous chunks known as segments. However, the view presented by the NT VMM to the entire system
is that of a linear (or aflat) virtual address space. Any segmentation issues (if they exist on a particular
architecture) are handled transparently by the VMM.

198 Chapter 5: The NT Virtual Memory Manager

g OXFFFFFFFF

0xE1000000
Kernel space—accessible
only when executing
kernel mode code —
(e.g., the operating system
code or drivers, etc.)

512 MB (typically)

4 MB (typically)

-

0x80000000

User space—accessible by
applications executing in
user mode or by kernel
maode code executing in the
context of the user thread

0x00000000

Figure 5-1. Virtual address spacefor a typical process

user process executing in user mode can only access this 2GB range) and another
2GB range containing kernel-mode virtual addresses, called kernel space.

NOTE Let me reiterate the following concept: a processor can execute code
in user mode (typically Ring 3 on Intel x86 architectures) or it can ex-
ecute code in kernel/privileged mode (typically Ring 0 on Intel x86 ar-
chitectures). Therefore, although stated otherwise, user-mode or
kernel-mode states are associated with a processor, not with any code
(or process) executing on that processor. The distinction, though sub-
tle, must be well understood by all kernel developers.

Although the 2GB of user-mode virtual addresses refer to process-private data
(not accessible by other processes in the system), the 2GB of kernel-mode
addresses always refer to the same physical pages* on the system (regardless of
the thread context in which they are accessed) containing operating system code
and data.

* Pages are explained later in this chapter.

> quul

Process Address Space 199

Another concept that you should understand is that of a hyperspace area within
the 4GB virtual address space associated with each process. This hyperspace area
is a range of virtual addresses actually reserved from within the 2GB kernel space
area, but specially designated, since it typically contains process-specific internal
data structures maintained by the NT VMM. Whenever a context switch occurs,
the VMM refreshes this virtual address space to refer to information specific to the
new process. These data structures include page table pages for the process, w,
and other such VMM data structures.

If you develop kernel-mode drivers, you always have to be aware of the thread
context in which your code operates. For example, if you design a file system
driver, your dispatch entry points will typically be executed in the context of the
user process that invoked the corresponding system call.* If this is the case, your
driver can use addresses (passed in the IRP) within the lower 2GB of the
process's virtual address space to refer to user-space memory (e.g., user buffers).
However, if you write intermediate or lower-level drivers (e.g., device drivers),
your dispatch routines will typically be invoked in the context of an arbitrary
thread, defined as the thread that is executing on that processor at that particular
time. In this case, you cannot assume that any user-space virtual addresses that
might be contained in the I/0O Request Packet are still valid, because your code is
not executing in the context of the user thread originating the request; hence the
lower 2GB of the virtual address space now map to physical pages belonging to
some other Pprocess.

On the other hand, if you develop a kernel-mode driver and allocate memory, the
returned memory pointer will typically be a virtual address in kernel space. Since
the kernel-space virtual address is the same for all processes in the system, the
allocated memory can be referred to (using the returned pointer) in the context of
any thread in which your code might be executing.

How do you ensure that a user-space buffer pointer passed in via an IRP is acces-
sible from within your driver, if code within your driver might execute in an
arbitrary thread context? The VMM provides support to map user-space memory
into kernel virtual address space precisely for this purpose
(MmGetSystemAddressForMdlI ()).t

One final point: it might be necessary for your kernel-mode driver to occasionally
access the virtual address space of some other process. One of the ways that this

* This is not always true. Sometimes, the subsystem (e.g., the Win32 subsystem) will invoke file system
entry points in the context of a worker thread belonging to some Win32-specific process. Furthermore,
the NT VMM and the NT Cache Manager often originate calls into the file system read/write routines in
the context of a thread belonging to the system process.

t This routine is described in further detail later in this chapter.

200 Chapter 5: The NT Virtual Memory Manager

can be accomplished is by using the KeAttachProcess () kernel support
routine. This routine is not documented in the Windows NT DDK, but is defined
as follows:

VOID

KeAttachProcess (

IN PEPROCESS Process
)

Parameters:

Process
A pointer to the process you wish to attach to. This can be obtained by an
invocation to loGetCurrentProcess () .

Functionality Provided:

The KeAttachProcess () call allows your kernel-mode thread to attach itself to
the target process. Then your thread will execute in the context of that process,
allowing it to access the entire virtual address space and all other resources
belonging to that process.

NOTE A reason you might wish to access the virtual address space of an-
other process is if memory had been mapped into the virtual ad-
dress space of the target process and you need to access it. Another
reason is if you need to use any resources (e.g., file handles) that be-
long to the target process.

Be very careful though, since attaching to another process is an ex-
tremely expensive operation and will result in two context switches,
at the very least, if the target process has been swapped out. Fur-
thermore, it will probably result in flushing of Translation Lookaside
Buffers on all processors in a symmetric multiprocessor (SMP) sys-
tem, which can be detrimental to system performance.

Do not invoke this routine at an IRQL greater than DISPATCH_LEVEL. An execu-
tive spin lock used to protect internal data structures in the implementation of this
routine is acquired at IRQL DISPATCH_LEVEL; therefore, invoking this function
at a higher IRQL could lead to a deadlock scenario. Also, do not attempt to attach
to a second process if you have already invoked the KeAttachProcess () func-
tion without invoking the corresponding detach routine, described next, or a
bugcheck will occur.

The corresponding routine to detach from a process to which your thread is
attached is defined as follows:

VOID
KeDetachProcess (

(

Physical Memory Management 207

VOID
)
Parameters:

None.
Functionality Provided:

The KeDetachProcess () function allows your kernel mode thread to detach
itself from a previously attached process. Do not invoke this routine at an IRQL
greater than DISPATCH_LEVEL.

Physical Memory Management

To write a kernel-mode driver (especially a file system driver), it helps to broadly
understand the method used by the memory manager to manage physical
memory. Once you understand how physical memory is manipulated, 1 will
describe how virtual addresses are mapped to physical addresses. This knowledge
can be invaluable when debugging NT systems and when attempting to under-
stand why certain things work the way they do.

Page Frames and the Page Frame Database

The NT VMM must manage the available physical memory in the system. The
method used by the VMM is the standard page-based scheme used by modern
day commercial operating systems such as Solaris, HPUX, or other System V Revi-
sion 4 (SVR4)-based UNIX implementations.

The NT VMM divides the available RAM into fixed-size pageframes. The size of
the page frame (page size) supported can vary from 4K to 64K; on Intel x86 archi-
tectures, it is currently set to 4K bytes.* Each page frame is represented by an
entry in a structure called the page frame database (PFN database).t The page
frame database is simply an array of entries allocated in nonpaged system
memory, one for each page frame of physical memory. For each page frame, the
following information is maintained:

* Windows NT and most other commercial operation systems currently use fixed-sized pages. However,
a considerable amount of research has been performed on the implementation of support for variable-
sized pages by the underlying hardware architecture and the operating system. Support for variable-sized
pages might someday be implemented in commercial operating systems, though one might conjecture
that UNIX platforms are likely to implement it sooner than NT. With Windows NT Version 4.0, Microsoft
does use 4 MB-sized pages (supported by the Intel Pentium processor extensions) to contain kernel mode
code on Intel platforms. However, as stated here, truly variable-sized pages are not yet supported by the
Windows NT platform.

t This is similar to the core map structure on 4.3 BSD-based systems.

202 Chapter 5: The NT Virtual Memory Manager

* A physical address for the page frame represented by the entry in the PFN
database. This physical address is currently limited to a 20-bit field. When
combined with a 12-bit page offset, you can see that the resulting 32-bit quan-
tity is limited to supporting a 4GB physical memory system.

» A set of attributes associated with the page frame. These are:

— A modified bit that indicates whether the contents of the page frame were
modified

— Status indicating whether a read or write operation is underway for the
page frame

— A page color associated with the page (on some platforms)

NOTE On systems that have a physically indexed direct-mapped cache,
poor allocation of virtual addresses to physical addresses within
page frames can lead to contention for the same cache line (i.e., 2
physical pages hash to the same cache line) and hence always
cause cache misses if the pages happen to be part of the working
set for one process or for two or more processes executing concur-
rently. Page coloring attempts to address this problem in software.
Note that page coloring support is not provided by the NT VMM on
x86 based machines. However, such support is provided, for exam-
ple, for the MIPS R4000 processor.

— Information on whether this page frame contains a shared page or a
private page for a process

e A back pointer to the Page Table Entry/Prototype Page Table Entry (PTE/
PPTE)* that points to this page. This pointer is used to perform a reverse map-
ping from a physical address to the corresponding virtual address.

» Reference count for the page. The reference count value indicates to the
VMM whether any PTE refers to the page in the page frame database.

* Forward and backward pointers for any hash lists on which the page frame
might be linked.

* An event pointer that refers to an event whenever a paging 1/0O read opera-
tion is in progress; i.e., data is being brought into memory from secondary
storage.

Valid page frames are those that have a nonzero reference count. These page
frames contain a page of information actively being used by some process (or by
the operating system). When a page frame is no longer pointed to by a PTE, the

* Page Table Entries and Prototype Page Table Entries are described in more detail later in this chapter.

Physical Memory Management 203

reference count is decremented. When the reference count is zero, the page
frame is considered unused. Each unused page frame is on one of five different
lists, reflecting the state of the page frame:

The bad page list, linking together page frames that have parity (ECC) errors

The free list, indicating pages that are available for immediate reuse but have
not yet been zeroed

The NT VMM (in order to conform to C2 level security as defined by the US
DOD) will not reuse a page frame unless the contents have been zeroed.
However, in the interest of keeping low overhead, pages are not zeroed each
time they are freed. Once a critical mass of free and not-zeroed pages has
been reached, a system worker thread is awakened to asynchronously zero
pages on the free list.

The zeroed list, linking page frames that are available for immediate reuse

The modified list, linking page frames that are no longer referenced but can-
not be reclaimed until the contents of the page have been written to second-
ary storage

Writing modified pages to secondary storage is typically performed asynchro-
nously by the Modified Page Writer/Mapped Page Writer, a component that |
will discuss in detail later in this chapter.

The standby list, containing page frames with pages that were removed from
the process's working set

The NT VMM aggressively tries to decrease the number of page frames allo-
cated to a given process, based upon the access pattern of the process. This
number of pages allocated to the process at any given instant is called the
working set for the process. By automatically trimming the working set for a
process, the NT VMM tries to make better use of the physical memory. How-
ever, if a page frame allocated to a process is stolen due to this trimming of
the working set, the VMM does not immediately reclaim the page frame.
Instead, by placing the page frame on this standby list, the VMM delays the
reuse of the page frame, giving the process an opportunity to regain the page
frame by accessing an address contained within it. While a page frame is on
this list, it is marked as being in a transitional state, since it is not yet free, nor
does it really belong to a process.

The NT VMM keeps both a minimum and a maximum for the total of free and
standby page frames on the system. Whenever a page frame is linked to the free
or standby list and the total is below the minimum or above the maximum, an
appropriate VMM global event is signaled. These events are used by the VMM to
determine whether sufficient number of pages are available in the system.

204 Chapter 5: The NT Virtual Memory Manager

Often, the VMM invokes an internal routine to check whether memory is available
for a certain operation. For example, your driver might invoke a system routine
called MmAllocateNonCachedMemory (). This routine needs free pages that it
can allocate to your driver and therefore invokes an internal routine (not directly
available to kernel developers) called MiEnsureAvailablePageOrWait () to
check whether the number of required pages are available from either the free or
the standby list. If not available, the MiEnsureAvailablePageOrWait ()
routine will block on the two events waiting for sufficient pages to become avail-
able. If neither of the two events is set within a fixed period of time, the system
will panic by invoking KeBugCheck () .

Note that manipulation of the page frame database is a frequent operation. There
has been considerable research on how VMM implementations can achieve
greater concurrency by using fine-grained locking for the page frame database (or
whatever the equivalent structure is called on some specific platform). However,
the NT VMM does not follow any such model of using fine-grained locking. There
is a global lock, an Executive spin lock, for the entire page frame database. This
spin lock is acquired at an appropriate IRQL (APC_LEVEL or DISPATCH_
LEVEL) when the PFN database is accessed. This might reduce concurrency,
since it forces single threading whenever the PFN database must be accessed, but
it definitely simplifies the code. Note that no 1/O is ever performed (indeed no
routine outside the VMM module is ever invoked) with the PFN lock acquired.
However, since the lock is acquired at DISPATCH_LEVEL or less, you can now
be completely convinced that any page fault by your code at a higher IRQL will
lead to a system panic.

Virtual Address Support

The NT Virtual Memory Manager provides virtual address support to the
remainder of the system:

* Virtual address ranges can be manipulated independently of the physical
memory on the system.

e If a virtual address is backed by either physical memory or on-disk storage,
the NT VMM assists the processor hardware in transparently translating the vir-
tual address into the corresponding physical address.

» If the page containing the translated physical address needs to be read from
secondary storage, the NT VMM initiates and manages the 1/0O operation.

To achieve this transfer of data from disk to memory, the NT VMM uses the
support of the appropriate file system driver.

—

Virtual Address Support 205

e The VMM determines the paging policies used to control the transfer of infor-
mation to and from disk and main memory to maximize system throughput.

As noted earlier in this chapter, the VMM provides each process with an address
space larger than the amount of physical memory available on the system. Virtual
addresses must eventually refer to some code or data residing in physical RAM on
the system. Therefore, in order to support this large address space, the VMM and
the system hardware must transparently translate virtual addresses into physical
addresses. Furthermore, since the total memory requirements of all processes
executing on the system will typically be in excess of the total physical memory
available, the VMM must be able to move data and code to and from secondary
storage as required.

The NT VMM is a core component that determines the perceived performance
and cost of the system. RAM, although getting cheaper every day, is still not a
costless component. At the same time, users are very demanding of their
machines and a poor implementation of the VMM can significantly degrade the
overall system throughput. Therefore, the VMM is extremely sensitive to the
minimum memory requirements it imposes upon the system. As is the case with
every design decision, certain tradeoffs have to be made. Later in this chapter, |
will discuss an explicit tradeoff made by the designers of the NT VMM, resulting
in problems for implementations of distributed file systems in the NT environment.

Virtual Address Manipulation

To provide a separate virtual address space for a process, the NT VMM maintains
a self-balancing binary tree (splay tree) of Virtual Address Descriptors (VADs) for
each process in the system. Every block of memory allocated for a process is
represented by a VAD structure inserted into this tree. A pointer to the root of this
tree is inserted into the process structure. A virtual address descriptor structure
contains the following information:
» The starting virtual address for the range represented by the VAD
* The ending virtual address for the VAD range
» Pointers to other VAD structures in the splay tree
e Attributes determining the nature of the allocated virtual address range

These attributes contain the following information:

— Information on whether allocated memory has been committed

For committed memory, the VMM allocates storage space from a page file
to back up the allocated memory whenever it needs to be swapped to
disk.

206 Chapter 5: The NT Virtual Memory Manager

— Information specifying whether the range of allocated virtual addresses
are private to the process, or whether the virtual address range is shared

— Bits describing the protection associated with the memory backing a
range of virtual addresses

The protection is composed of combinations of primitive protection
attributes: PAGE_NOACCESS, PAGE_READONLY, PAGE_READWRITE,
PAGE_WRITECOPY, PAGE EXECUTE, PAGE EXECUTE_READ, PAGE_
EXECUTE_READWRITE, PAGE_EXECUTE_WRITECOPY, PAGE_GUARD,
and PAGE_NOCACHE.

— Whether copy-on-write has been enabled for the range of pages

The copy-on-write feature allows efficient support for POSIX-style
fork () operations, in which the address space is initially shared by par-
ent and child processes. If, however, either the parent or children try to
modify a page, a private copy is created for the process performing the
modification.

— Whether this range should be shared by a child process when a fork ()
occurs (VIEW_UNMAP = do not share, VIEW_SHARE = shared by parent
and child)

This information is valid only for mapped views of a file, which are dis-
cussed later in this chapter.

— Whether the VAD represents a mapped view of a section object
— The amount of committed memory associated with the VAD

Whenever memory is allocated on behalf of a process or whenever a process
maps a view of a file into its virtual address space, the NT VMM allocates a VAD
structure and inserts it into the splay tree. At allocation time, a process can specify
whether it requires committed memory, or whether it simply needs to reserve a
range of virtual addresses. Allocating committed memory results in the amount of
memory requested being charged against the quota allocated to the process.
Reserving a virtual address range, however, is a benign operation in that only a
VAD structure is created and inserted into the splay tree, and the starting virtual
address is returned to the requesting process. Note that memory must be
committed before it is actually used.

The NT VMM allows a process to allocate and deallocate purely virtual address
spaces, i.e., the memory need never be committed. If a process allocates a virtual
range of addresses and subsequently discovers that it needs to commit only a
subset of the range, the NT VMM also allows the process to do so.

Virtual Address Support 207

There is a native allocation routine supplied by the NT VMM called NtAllocate-
VirtualMemory (), which is not available to kernel developers. Kernel-mode
drivers have access to the following routine instead:

NTSTATUS

ZwAllocateVirtualMemory(
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN ULONG ZeroBits,
IN OUT PULONG RegionSize,
IN ULONG AllocationType,
IN ULONG Protect

):

Parameters:

ProcessHandle

An open handle to the process in whose context the memory is being allo-
cated. For NT kernel-mode drivers that call this routine, it is the context of the
system process (e.g., at driver initialization time). You can use the macro
NtCurrentProcess () , which simply returns a special handle value of (-1)
which identifies the current process as the system process. Note that if you
ask for memory to be allocated within the context of a process other than
your current process, the NtAllocateVirtualMemory () routine will use
the KeAttachProcess () routine described earlier, to attach your process
to the target process before allocating the range of virtual addresses.

BaseAddress

Upon a successful return from this routine, the BaseAddress argument will
contain the starting virtual address for the allocated memory.

If you supply a nonnull initial value, the VMM will attempt to allocate the
memory at the address supplied by you, after rounding it down to a multiple
of the page size. If, however, you supply a null initial value, the VMM will
simply pick a base address for you.

Note that if the VMM cannot allocate memory at the base address supplied by
you (the address has already been used or not enough contiguous memory is
available beginning at that address), and if you have specified MEM_RESERVE
as AllocationType (defined later), an error will be returned (STATUS_
CONFLICTING_ADDRESSES). The same error will be returned if you
supplied a base address without previously reserving it (using this same
routine).

Finally, you cannot specify a base address greater than 2GB, and your speci-
fied range cannot exceed the 2GB virtual address limit. The important point
to note, then, is that if you use this call, you will get a kernel-mode address
that will not be valid in the context of any process except the process passed

208 Chapter 5: The NT Virtual Memory Manager

in (via the handle argument). This call is, therefore, not the preferred way to
get kernel memory for your driver (use the ExAllocatePool () routines
instead).

ZeroBits
This argument is only valid if the BaseAddress argument discussed above
was passed in initialized to NULL (the VMM gets to pick the base address).
You can specify the number of high-order bits that must be zero for the base
address of the allocated memory.

By doing this, you can ensure that the returned starting address is below a
specific value. This argument cannot be greater than 21 (since that would
make the starting address less than 4096 bytes). A value of 0 is treated (at
least) as a value of 2, since the returned virtual address will always be within
the user-space-addressable 2GB of virtual address space.

RegionSize
Note that this is a pointer argument. You must supply the number of bytes to
be allocated. You will receive the actual number of bytes allocated, which
will be your number rounded up to a multiple of the page size.

AllocationType

You have a choice of MEM_COMMIT, MEM_RESERVE, or MEM_TOP_DOWN.
The first option indicates that you wish space to be reserved in the page file
(this memory is committed and therefore usable). The second option says that
you simply want the virtual address range and that you might commit the
memory later. The first two options are therefore mutually exclusive. The
third option can be combined with either of the first two and it states that you
want the highest possible starting virtual address allocated, given the
constraints specified by the ZeroBits argument.

Protect
Your options are one or more of the following primitive protections: PAGE_
NOACCESS, PAGE_READONLY, PAGE_READWRITE, PAGE_NOCACHE (cannot
be placed into the data cache, this is not allowed for mapped pages), and
PAGE_EXECUTE.

Functionality Provided:

This routine can only be used to allocate memory within the lower 2GB of the
process virtual address space (even for the system process). Therefore, it is typi-
cally not used by kernel-mode drivers, unless you are quite sure that you will to
access the memory only in the context of the specified process. If you need to
allocate memory that is accessible within the context of any process, use the
ExAllocatePool () routines instead.

This routine allows you to do one of three things:

Y

Virtual Address Support 209

» Reserve a range of virtual addresses but not commit them
* Reserve and commit a range of virtual addresses (in one call)

e Commit a previously reserved range of virtual addresses

The corresponding routine to free the allocated range is defined as follows:

NTSTATUS

NTAPI1

ZwFreeVirtualMemory(
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN OUT PULONG RegionSize,
IN ULONG FreeType

):

Parameters:

ProcessHandle
An open handle to the process in whose context previously allocated memory
is being freed.

BaseAddress
The first address of the virtual address range being freed. This value is
rounded down to a multiple of the page size.

RegionSize
Note that this is a pointer argument. You must supply the number of bytes to
be freed. You will receive the actual number of bytes freed, rounded up to a
multiple of the page size.

FreeType

Your options are one of the following: MEM_DECOMMIT or MEM_RELEASE.
These are mutually exclusive.

Functionality Provided:
You can use this routine to do the following:

e Decommit previously committed pages (but retain the virtual address range
allocation)

* Release both the committed memory as well as the virtual address range that
was previously allocated

This routine is fairly flexible, in the sense that it allows you to modify a subset of
the address range previously allocated by you. Note, however, that you cannot
expect to be able to free or release a range that spans two previous invocations to
ZwAllocateVirtualMemory () ; i.e., the entire range that you specify must be
contained within a single, previously allocated VAD. If you specify a Region-
Size value equal to 0, the VMM interprets this to mean that the entire VAD must

210 Chapter 5: The NT Virtual Memory Manager

be freed/decommited. However, in this case, you must specify the correct
BaseAddress (equal to the starting BaseAddress of the VAD, or the Base-
Address specified when you allocated the range earlier).

It might sound strange but there is a possibility that you might get an error indi-
cating that you exceeded your quota for the target process if you try to free a
subset of a previously allocated range. The reason for this is that the VMM splits a
VAD, if required, into two VADs in order to accommodate your request to free up
a range contained within the original allocated range. Of course, this requires allo-
cating a new VAD structure which is charged to the quota assigned to the target
process. If this pushes the allocated memory for that process to an amount greater
than what is allowed, you will get an error returned.

Translation of Virtual Addresses

In this section, | will briefly discuss virtual to physical address translation. This
topic is covered very well in the literature, and | recommend that you consult
Appendix E, Recommended Readings and References, for further information.

Each virtual address in Windows NT is currently a 32-bit quantity. This virtual
address must be transparently translated to refer to some physical byte in
memory.* Two system components work together to achieve this translation:

e The Memory Management Unit (MMU) provided in hardware by the processor

» The Virtual Memory Manager implemented by the operating system in soft-
ware

Translation is not necessarily performed only in one direction, for example, from
virtual memory addresses to physical memory addresses. The VMM must also be
able to translate in the reverse direction, from a physical address to any corre-
sponding virtual addresses.t Whenever the contents of a physical page are written
out to secondary storage to make room for some other data, the corresponding
virtual addresses must be marked as "no longer valid in memory." This requires
that the physical address be translated back to its corresponding virtual address.

Virtual address translation is typically performed by the MMU in hardware. The
VMM is responsible for maintaining appropriate translation maps or page tables
that can subsequently be used by the MMU to do the actual translation. Broadly

* Memory-mapped 1/O device registers are also addressable via the virtual address space. Therefore, a
virtual address could be translated to a physical address that actually corresponds to a mapped register
on an 1/0 bus.

t It is possible for an operating system to implement aliasing, where more than one virtual address refers
to the same physical address.

Virtual Address Support 211

speaking, the following sequence of operations is typically performed to translate
a physical address:

1. As part of the context switch procedure that causes a process to begin
executing, the VMM sets up appropriate page tables that contain virtual-to-
physical address translation information specific to that process.

2. When the executing process accesses a virtual address, the MMU attempts to
perform virtual to physical address translation by either using a cache called
the Translation Lookaside Buffer (TLB) or, if an entry is not found in the TLB,
using the page tables set up by the VMM. Each translated address must be
contained within a page that, in turn, might be present in one of the page
frames on the system.

NOTE Translating from a virtual to a physical address is a time-consuming
operation. Since this operation must be performed for every memo-
ry access, most architectures provide efficient translation. One way
of speeding up this process is by using an associative cache such as
a Translation Lookaside Buffer (TLB). The TLB contains a list of the
most recently performed translations, tagged by the process ID.
Therefore, if a virtual address is located in the TLB, the correspond-
ing physical address can be immediately obtained and the contents
of that address are guaranteed to be in main memory. Software ma-
nipulation of the TLB is architecture dependent; some architectures
allow the VMM to explicitly load, unload, and flush TLB entries (ei-
ther one entry at a time or the entire TLB), while other architectures
simply load or unload the TLB as a by-product of certain execution
sequences.

3. If the byte referenced by the translated physical address is currently in main
memory, the process is allowed access to the data.

4. If, however, the contents of the page are not contained within a page frame
in memory, an exception is raised, a page fault occurs, and control is trans-
ferred to the VMM page fault handler that brings the appropriate data into the
system memory. An exception could also be raised by hardware if the page
protection conflicts with the attempted mode of access or for other similar
reasons.

Note that the design of the MMU has far-reaching implications on the design of
the VMM subsystem. Naturally, the portion of the VMM subsystem that interfaces
with the MMU is very architecture-specific and inherently nonportable.

As described earlier, the VMM maintains a page frame database in nonpaged pool
to manage the physical memory available on the system. This database is
composed of page frame entries where each page frame represents a chunk of

212 Chapter 5: The NT Virtual Memory Manager

contiguous physical memory. Since each physical page frame in the system is
numbered sequentially (from page frame 0 to page frame (n-1) for n page frames
of physical RAM), computing the PFN database entry for a page frame is relatively
trivial. Once a virtual address has been translated into a physical address
(composed of a page frame and an offset into the frame), the page frame number
is multiplied by the size of the PFN database entry and the resulting address is
added to the physical base address assigned to the PFN database. The net result is
a physical address pointer to the start of the entry describing the page frame in
the PFN database for the translated physical address.

Consider the 32-bit virtual address on a Windows NT platform. Since the page
size is 4096 bytes, computing an offset into a page requires 12 bits (the least signif-
icant 12 bits). This leaves the MMU with 20 bits to uniquely identify a page frame.
Page frames are uniquely identifiable via Page Table Entries (PTES) in a page
table, where a page table is simply an array of PTEs. Note that many architectures
(including the Intel x86 architecture) clearly define the structure of a PTE.*

On the Intel platform, each PTE must be 32 bits (or 4 bytes) wide. Given that
there are a total of 2> (1 million) possible PTEs and each PTE has a size of 22
bytes, the amount of memory required to store translation information for a single
4GB virtual address space is 2% bytes (4MB). Since each page table can itself store
one page-size worth of information (2~ bytes), 1024 page frames would be
required simply to contain all the PTEs for the virtual address space for a single
process.t

To avoid consuming this significant amount of memory for translation informa-
tion,# page tables are also paged in and out of memory. To do this, the x86
processor defines a two-level page table scheme. Each process has a page direc-
tory that contains PTEs for page tables. This directory is a single page in size and
therefore can contain 1024 PTEs, each referencing a page table. A typical virtual

* Other architectures, such as the MIPS R3000, provide no hardware support for page tables. Therefore,
the MIPS R3000 does not mandate the structure of PTEs either, since the entire responsibility of translating
virtual to physical addresses lies with the VMM.

1 Note that the Intel x86 architecture is segmented, where a virtual address is actually composed of a
segment and an offset. The Intel hardware converts this virtual address into a 32-bit linear address, which
is subsequently translated into a physical address using the method described in this section. Since the
Windows NT VMM presents a flat memory model to the system (hiding the segmentation details), we will
neglect the virtual to linear address conversion process and assume that user addresses are virtual ad-
dresses that simply require a 1-step conversion to a physical address.

+ Note that rarely will 4GB of virtual address space need to be completely translated, since most address
spaces are sparse in nature, i.e., there exist gaps in the virtual address space for addresses that are never
used. Reserving memory for PTEs that will probably never be utilized is therefore quite unnecessary.

Shared Memory and Memory-Mapped File Support 213

address for a process has 10 bits reserved to identify a page table from a page
directory associated with the process, 10 bits to identify a page frame given a
page table, and 12 bits to get to the desired offset within a page.

Figure 5-2 graphically illustrates how virtual to physical address translation is
performed on Windows NT systems. Note that even on systems such as the MIPS
R3000 where the architecture places no limitations on the structure of the PTEs
(and correspondingly provides no hardware virtual address translation support
except for TLB lookups), the VMM maintains a similar set of data structures to
simplify the design and maintenance of the VMM subsystem.

Everything so far seems to be relatively straightforward. The MMU checks the TLB
and if it gets a TLB hit, it simply returns the translated physical address. On the
other hand, if it gets a TLB miss, it must check the page tables for the process to
locate the corresponding PTE that determines the physical page frame that might
contain the accessed address. Now, if the PTE indicates that the page is resident
in memory and the protection attributes match the access mode, the MMU allows
the access to continue. Otherwise, an appropriate exception (page-fault or protec-
tion-violation) is raised and control transfers to the VMM. However, the observant
reader must have noticed the presence of an additional table called the Prototype
Page Table in Figure 5-2. So where exactly does the PPT fit into this clean model
we understand so well by now?

Prototype Page Tables are used to contain page table entries for page frames that
contain pages shared by more than one process. Sharing of pages and page
frames occurs when more than one process maps in the same byte range for the
same mapped object. Therefore, to understand the PPT, you must first understand
the concept of shared memory and memory mapped files.

Shared Memory and Memory-Mapped
File Support

Accessing memory seems so convenient to application developers these days. An
application process can simply issue a malloc call (or its equivalent), receive a
virtual address from the VMM, and begin using this virtual address to access the
allocated block of memory. The operating system is responsible, along with the
hardware, for managing physical memory and maintaining the appropriate transla-
tion between virtual addresses and physical addresses. Furthermore, the operating
system can observe the behavior of all processes executing on the system,
allowing it to make rational decisions concerning the allocation of physical
memory to specific processes.

214 Chapter 5: The NT Virtual Memory Manager

Virtual Address (32 pits)

31 2N 2 1 0

12 bits determine the offset
into the appropriate page.

10 bits determine the page
table to be accessed.

10 bits determine the page table
entry (PTE) to be accessed.

Page Tables @

POE PTE

 Page Directory Entries... Page Table Entries... |

CPDE m

v

Page Page Page Page All simifar entries are Page Page

Frame Frame Frame Frame linked together. There Frame Frame [
Database | Database | Database | Database exists a back pointer to Database | Database §

Entry Entry Entry Entry either the PTE or PPTE. Entry Entry

Page Frame Database (# entries corresponds to # page frames)

Figure 5-2. Virtual to physical address translation

At the same time, most applications must do other things besides computational
activities requiring memory. Notably, all applications need to perform some 1/O to
and from secondary storage. In addition, sophisticated applications sometimes
wish to share in-memory data with each other.

Traditionally, 1/0 has been performed via read/write system calls handled by the
appropriate file system. Servicing these calls requires the execution of a system
trap to switch the processor from user mode to kernel mode and vice versa. For a

v

Sared Memory and Memory-Mapped File Support 215

read request, the file system must first read data into system memory and then
copy it into buffers allocated by the application. For a write request, the operating
system must first copy data from the application's buffers into system memory.
This copying of data to and from system buffers, combined with the overhead of
making system calls for 1/O requests, can lead to substantial execution overhead
for application processes.

Consider now the case where two processes on the same system are accessing
the same file. These processes might be accessing the same byte range, but since
they have their own private buffers containing the data, where each buffer is
backed by physical pages different from those backing the other buffer, each
process has potentially a different view of the same data. Process-1 might have
read the data into memory and modified it but not yet written it out to disk; if
process-2 reads the same byte range, it will not see the modified data but will
instead be given the original data obtained from disk. This can be a deterrent to
efficient sharing of data between the two processes, because each process would
have to ensure that its modifications are written out to disk before the other
process reads-in the byte range.

Imagine now if each process could simply map the on-disk file into their virtual
address space. The VMM provides virtual memory support by swapping data to
and from an on-disk page file whenever required. An application allocates some
memory, tries to access it and possibly gets a page fault. The page fault is
resolved (we will see how later in this chapter), and magically the application can
now access some physical memory reserved solely for its use.

Now consider the case where the data is originally read from an on-disk file and
is destined to be written out to the same on-disk file. In this case, why not use
the file itself as the backing store for data instead of a page file? Instead of making
the application issue read/write system calls to access the data, simply let the
application reserve a virtual address range associated with an on-disk byte range,
try to access this memory (in reality, access the byte range with which the virtual
addresses are associated) represented by the virtual address range, get a page
fault, and then the operating system will resolve the page fault by allocating some
physical memory and obtaining the appropriate data from the on-disk file. Simi-
larly, the application can simply modify the data in-memory and the operating
system will—whenever required—write out the modified data to the on-disk file
and, possibly, release the physical memory to make room for another process.

The above method of mapping in a file has one additional benefit; all applications
that try to map in the same file can now have their respective virtual addresses
backed by the same physical pages, so all applications will always see a consis-

216 Chapter 5: The NT Virtual Memory Manager

tent view of the data, regardless of the fact that any application could modify the
data at any time.*

The NT VMM supports file mapping. The mapped object is the on-disk file. When
you execute a file (say Microsoft Word), the executable (the mapped object in this
case) is mapped into your process's virtual address space and instructions are
executed. Now, if some other user, on the same machine, tries to execute
Microsoft Word as well, the same executable is mapped into his or her virtual
address space, and since the physical pages backing the VADs are probably
already in memory, the other user should see a relatively fast response time. See
Figure 5-3 for an illustration of file mapping.

Page Tables for Page Tables for 1

Process B

Secondary
Storage Device

Page Frame
(contains shared data)

Figure 53. Two processes mapping the same page into their virtual address space

Note that file mapping is not the only way to share physical memory between
two processes. Since Virtual Address Descriptors (VADs) are manipulated sepa-
rately from the physical page frames backing the virtual addresses, it is entirely
possible for the VMM to allow processes to share memory by simply ensuring that
appropriate VADs for the two processes are backed by the same physical page
frames. File mapping is simply an extension of this concept wherein the shared

* Each application must synchronize its changes, so that there are no unexpected consequences.

Shared Memory and Memory-MappedFile Support 277

memory object is actually backed by an on-disk, permanent file object, instead of
a page file. Just as you can create file-backed shared memory objects, it is also
possible to create shared memory objects that will later be backed by one of the
system page files. This is typically done when you wish to share memory
between two modules or processes in the system. Often, kernel-driver designers
need to share memory between some user-space helper processes and the kernel
driver. The shared memory support provided by the VMM allows this function-
ality. When a shared memory object is created (one that is not backed by an on-
disk file), the starting virtual address associated with the object represents offset 0
into the shared object. Therefore, all processes sharing this object can index into
the appropriate byte offset and manipulate data. You must note, however, that
modifications to shared memory objects that are not backed by an on-disk file
will not be permanent; i.e., such modifications will be lost once the shared object
is closed by all processes using this object.

So how does mapping actually work? What data structures are created by the
VMM to support mapped/shared objects. Before | address these questions, let me
revisit the issue of the Prototype Page Table described back in Figure 5-2.

Prototype Page Table

Page frames that contain shared (mapped in) pages are described by a special
structure—the Prototype Page Table (PPT). This structure can be allocated from
paged or nonpaged memory.

Whenever the VMM creates a mapping or a shared object for a process, it allo-
cates Prototype Page Table Entries (PPTES) to describe the physical page frames
that will back the file mapping. The PPT for a mapped object is shared by all
processes that map in the same object. Each PPTE refers to a page that may or
may not be present in memory; i.e., the page may be contained within a physical
page frame, or it may need to be brought in from secondary storage when
accessed. Since all processes have to use the same PPT (and corresponding
PPTEs), it follows that all processes use the same physical page frame and there-
fore see the same view of the mapped data.

Whenever a page frame is assigned to a PPTE, the PPTE is marked as valid. The
page frame entry within the PEN database is then initialized to point back to the
PPTE. Note that neither the Intel x86 MMU nor the MIPS R3000 or similar architec-
tures support prototype page tables. How does the VMM arrange things such that
the MMU can work with shared memory?

Consider the Intel x86 architecture. The Intel x86 MMU strictly defines the struc-
ture of page tables and PTEs. The VMM creates a PPT (with PPTESs) in allocated
memory whenever a process creates a file mapping. Imagine now that the

218 Chapter 5: The NT Virtual Memory Manager

process tries to access a virtual address that is part of a range backed by a
mapped file object. The MMU will translate the virtual address into a page direc-
tory table offset and then offset into an appropriate page table. On the first access
to this virtual address, the page table entry will indicate that the page is not
backed by any physical memory.

This will result in a page fault and control will transfer to the VMM page fault
handler. The page fault handler notices that the VAD containing the accessed
virtual address is marked as being backed by a mapped object. The VMM can
then find the appropriate PPTE and fault the page in. At this point, the PPTE is
marked as valid and refers to a PFN database entry and correspondingly, a PFN
database entry points back to the PPTE. At the same time, the VMM initializes the
PTE as valid and makes it refer to the appropriate physical address. The net result
is that both the PPTE and the PTE contain information about the physical address,
but the corresponding PFN database entry only points back to the PPTE. Now,
the memory access is retried, and, since the MMU finds the PTE initialized
correctly (it does not know nor does it care about PPTES), the translation from
virtual address to a physical address can be performed.

A Small Problem with the PPT Design

You must note that, since the PFN database entry never refers back to the PTE,
the VMM has no way of finding, from a PFN database entry, all the PTEs for all
the processes that have mapped that shared object into their virtual address
space. The best that the VMM can do is find the PPTE that refers to the PFN data-
base entry (using the back pointer) and thereby manipulate the contents of the
PPTE.

There is one serious flaw with this design: imagine that a kernel-mode compo-
nent wanted to request the VMM to purge certain pages from physical memory,'
Normally (for nonshared files), you can certainly ask the VMM to do this and the
VMM will respond by marking the PFN database entry invalid. Furthermore, the
VMM will use the information stored in the PFN database entry to find the appro-
priate PTE in the address space of some process that is currently referring to the |
PFN database entry. It will mark the PTE entry not valid, ensuring that the MMU
will have to fault the page back in on the next access to an address contained
within the page.

* You might ask why would anyone want to do this? Suppose you were implementing some complicated
distributed data access method across multiple nodes where all consistency guarantees were maintained
by your modules. Now, if some process on a remote machine modified shared data that was mapped in
on a local node, you might wish to ensure that all nodes accessing this data refreshed their memory with
the latest copy of the data. This is precisely what distributed file systems such as the OSF DPS attempt to
do. There could be other similar scenarios that might be needed to support certain complicated function-
ality on distributed architectures.

Shared Memory and Memory-Mapped File Support 219

However, if the page belongs to a mapped object, the VMM has no way of
accessing all the PTEs that refer to the page frame containing the shared page.
Therefore, if you requested that the VMM purge such a page from memory, the
VMM will return an error saying that this functionality is not possible for mapped
objects. This is a serious problem for any third-party developer that counts on
being able to purge pages from system memory on demand.

Sections and Views

The Windows NT system tends to be strongly object-centric; i.e., most function-
ality is provided in the form of objects and methods that manipulate such objects.
File mappings are created and accessed as a two-step process:

1. A section object is created by the VMM in response to a request for a file
mapping or a shared memory object.

2. When the process actually needs to access a byte range for a mapped file or a
shared memory object, the caller must request the VMM to map a view into
the file. Conceptually, this view is like a window into the file, allowing access
to a limited byte range. Of course, it is possible for a process to request
multiple views for the same file concurrently, just as it is possible for multiple
processes to have different views concurrently into the same mapped file.

Note that section objects have a set of protection attributes associated with them,
just as all other objects in the Windows NT environment can. By specifying a set
of protection attributes for the section object, a process can define the manner in
which this object (and any data for a file object that might be mapped in and
represented by the section object) is manipulated.

Section objects backed by on-disk files fall into two categories:

» Executable image file mappings
* File (nonimage) mappings

When you tell the VMM to create a section object representing a mapped file, you
can specify how the mapped file should be treated. The system loader uses file
mapping to run executables and specifies that the file mapping be treated as an
executable image file mapping. However, it is entirely your prerogative to request
that an executable (say, a copy of Microsoft Word) be mapped in as a nonimage
file mapping.

Note that the VMM performs tests to verify that any section object created for an
executable image file mapping actually does map in a valid executable. If you try
to map in a simple text file as an executable image file mapping, you will get an
error from the VMM. Also, it is entirely possible for the same executable file to be
mapped both as an executable image file and as a simple file mapping; the

220 Chapter 5: The NT Virtual Memory Manager

address alignments for each of these mappings will probably be quite different
though.

A major difference between how executable image file mappings and nonimage
file mappings (or simple shared memory) are handled is in how modifications to
the mapped range are managed by the VMM. When a nonimage file mapping is
modified by a process, the modification is immediately seen by all processes
mapping in the same file, because the contents of the shared physical page are
changed by the VMM. These modifications will eventually be reflected in the on-
disk mapped object when the modifications are flushed to secondary storage.
However, when an image file mapping is modified, a private copy of the page is
made for the process making the modification. This private page will now be
backed by a page file, since the modifications to an image file mapping are never
written out to the mapped object (the on-disk file). These modifications are even-
tually discarded when the process unmaps the file.

To create a shared memory object (a section object), the NT VMM provides a
routine called NtCreateSection (). Though this routine is not exported to
kernel developers, the ZwCreateSection () routine can be used instead. This
routine is defined as follows:

NTSTATUS

NTAPI

ZwCreateSection (
OUT PHANDLE SectionHandle,
IN ACCESS MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
IN PLARGE_INTEGER MaximumSize OPTIONAL,
IN ULONG SectionPageProtection,
IN ULONG AllocationAttributes,
IN HANDLE FileHandle OPTIONAL

)i

Parameters:

Sect!onHandle

If this routine returns a success status, a handle to the created section object is
returned in this argument. Note that this handle is only valid in the context of
the process that creates the section object. If you wish to access the section
object in the context of other processes as well, you must use the ObRefer-
enceObjectByHandle () object manager routine (described in the DDK) to
get a pointer to the actual section object. Subsequently, you can use the
ObOpenObj ectByPointer () routine to get a handle in the context of some
other process.

DesiredAccess

This argument allows you to specify the access desired to the section object:
SECTION_MAP_EXECUTE, SECTTON_MAP_READ, or SECTION_MAP_WRITE.

Y

Shared Memory and Memory-Mapped File Support 221

Obj ectAttributes

This can be NULL, or you can specify an initialized structure (use the
InitializeObjectAttributes () macro to do this). Note that if you
need to share a piece of memory between two processes (or share memory
between a module executed in user mode and a kernel-mode driver), you
can use this structure to supply a name for the section object. This named
section object can subsequently be opened by other processes, and thus
sharing of in-memory data can be achieved without having to use a named
file from secondary storage.

This structure can also be used to supply a security descriptor for the section
object, which allows you to protect the section object appropriately.

MaximumSize
For a page-file-based section (i.e., you simply wish to create a shared
memory object), this value cannot be NULL, since it represents the size of the
section.

For a mapped file, it represents the maximum size to which the section might
be extended. If the section is for a mapped file and the size of the file is less
than this value, the file size is extended at this time.*

Note that any value supplied by you is rounded up to a multiple of the host
page size. Finally, if this value is set to NULL for mapped files, the VMM will
set the value to the end-of-file at that time (appropriately rounded up).

Sect ionPageProtection
This defines the protection to be placed on each page contained in the
section. Here are the appropriate values:

— PAGE_READONLY
— PAGE_READWRITE
— PAGE_EXECUTE

— PAGE_WRITECOPY

AllocationAttributes
These attributes allow the caller to inform the VMM if this section object repre-
sents a shared piece of memory (backed by the page file), a file mapping for

* This is a very important point to note for developers of file systems, since you should he prepared to
receive a request for extending the file size when the memory manager is in the process of creating a file
mapping. | will discuss this more later in this chapter.

222 Chapter 5: The NT Virtual Memory Manager

an executable, or a file mapping for some other type of file. Here are the
options to use:*

— SEC_IMAGE, indicating that an executable is being mapped into a
process virtual address space

— SEC_FILE, indicating that the supplied file handle refers to an open file
that must be treated as a regular (nonimage) file mapping

— SEC_RESERVE, indicating that all pages allocated to the section object
must be placed into the reserved state (only valid for a shared memory
object not backed by an on-disk file)

— SEC_COMMIT, indicating that all pages allocated to the section object
must be placed into the committed state (must also be set if SEC_FILE
is set or if the shared memory object is not an executable image file
mapping)

FileHandle

This optional argument indicates that the section object represents a mapped

file (the handle must refer to an open file). Otherwise, the VMM will simply

create a section object backed by a page file (simple piece of shared memory).

Functionality Provided:

This routine can be used by kernel-mode drivers to create a shared memory
object (named or anonymous) or to create a file mapping for an on-disk file. Even
if you are a file system driver developer implementing an on-disk or a network
file system, you can use this call to create a shared memory object or mapped file
object (do not try to create a mapped file object on your own file system using
this call unless you really know what you are doing).

Sometimes, kernel-mode driver developers wish to share in-memory data with
user-space modules. Or, if you design a kernel-mode driver that obtains data from
across the network or transfers data across the network using the services of a
user process, you may use this call to create either a simple shared memory
object or a file-backed shared memory object in order to facilitate easy and effi-
cient data transfer between the kernel driver and the user-space process (consider
using a named object to allow for easy opening of the object by the user-mode
service).

* These symbolic definitions do not exist in any of the supplied DDK inelude files, but you can use the
symbolic names (or the actual values) in the winnt.h include file provided with the Win32 SDK. Since
this routine is not documented by Microsoft, they must have figured that it was not necessary to define
these symbols in any DDK header file.

nd

Shared Memory and Memory-Mapped File Support

223

TIP

In the description of the ZwCreateSection() routine, I men-
tioned the existence of an Object Manager routine that can be used
to obtain a handle to an object in the context of any arbitrary pro-
cess, given a pointer to that object. This routine is called ObOpe-
nObjectByPointer () and is defined as follows (note that this
routine is not ordinarily documented in the DDK):

NTSTATUS
ObOpenObj ectByPointer(
IN PVOID Object,
IN ULONG HandleAttributes,
IN PACCESS_STATE PassedAccessState OPTIONAL,
IN ACCESS_MASK DesiredAccess OPTIONAL,
IN POBJECT_TYPE ObjectType OPTIONAL,
IN KPROCESSOR_MODE AccessMode,
OUT PHANDLE Handle
)

Typically, you can pass in NULL for Passed AccessState and for
the ObjectType. Be careful to request only the type of access in
the DesiredAccess argument permitted by the original open op-
eration (from which you obtained a pointer to the object). The Han-
dleAttributes can be obtained from the previous invocation to
ObReferenceObjectByHandle () . That routine returns Han-
dleInformation, which in turn contains the returned Handle-
Attributes.

There is also a routine called ObReferenceObjectByPoint-
er (), which simply increments the object reference count for the
specified object. This function is defined in the Windows NT IPS kit
as follows:

NTSTATUS
ObReferenceObjectByPointer(
IN PVOID Object,
IN ACCESS_MASK DesiredAccess OPTIONAL,
IN POBJECT_TYPE ObjectType OPTIONAL,
IN KPROCESSOR_MODE AccessMode,

There are other routines, well documented in the DDK, to open and close a previ-
ously created section object and to map and unmap a view using a section object.

Consult the available documentation for the following system support routines:
ZwOpenSection()
ZwMapViewOfSection()
ZwUnmapViewOfSection()

224 Chapter 5: The NT Virtual Memory Manager

File-Mapping Structures

When a process creates a file mapping, the process must specify whether an
executable file or another type of file is being mapped. Although both types of
file mappings eventually result in the file contents being mapped into the virtual
address space of a process, the NT VMM treats the map requests differently.

As mentioned earlier, any modifications made to pages belonging to image file
mappings will not be reflected in the on-disk mapped executable. The page will
be backed by a page file instead, and all changes made to the page will be
discarded once the mapping is closed.

Internally, the NT VMM maintains two types of section objects (and associated
data structures) for each mapped file object. For each type of mapping, the VMM
maintains a SEGMENT data structure that describes the mapping. Therefore, there
are two possible segment data structures associated with each mapped file: the
image segment and the data segment. Each segment data structure, in turn, points
to the prototype page table for a mapped object.

Although the segment data structure is opaque to kernel-mode developers, the
point to note here is that both types of mappings can exist concurrently. An
executable can be mapped both as an image file and as a nonimage file. For each
type of mapping, the VMM will create and maintain a segment data structure asso-
ciated with the representation of the file in memory. Because there are two
separate data structures created, depending on the type of mapping performed,
the same byte range in a file contained within a page could exist in two separate
page frames concurrently in memory! This is possible because each type of
mapping has its own segment data structure and its own prototype page tables
with different PPTEs.

Modified and Mapped Page Writer

As discussed earlier, the NT Virtual Memory Manager has the task of presenting
the illusion of a large amount of available virtual memory to each process, even
though the amount of physical memory on the system is limited. To perform this
task, the NT VMM must use secondary storage devices as a backing store for in-
memory data and page data in and out. This paging is performed transparently to
the processes executing on the system.

The NT VMM automatically flushes dirty or modified pages to secondary storage
to reclaim page frames for use by other threads in the system. Modified data
within a page frame will be written either to one of the 16 possible page files, or
to a named file on disk if the page frame was allocated to a mapped section

Modified and Mapped Page Writer 225

object. Unless modified page frames are flushed to disk, the NT VMM cannot
reuse the page frames, as doing so would cause data loss.

In order to ensure that sufficient RAM is available whenever required, the NT
VMM always keeps a certain number of page frames available. These page frames
must not contain any modified data and therefore, they can be reallocated when-
ever the VMM decides to do so. If the VMM did not maintain this pool of
available page frames, it might need to make processes block, waiting for modi-
fied data to be flushed to secondary storage before it could reassign page frames
to them. Making processes block is not conducive to good system performance.

Therefore, the NT VMM creates at least two special dedicated threads called Modi-
fied and Mapped Page Writer threads. Note that it is quite possible that the
number of threads created could be greater than two. At least one modifier page
writer thread is created to asynchronously write modified page frames to the page
files. At least one other thread, called the mapped page writer thread, is assigned
to asynchronously write out modified page frames to mapped files. Both of these
threads essentially perform the same functionality and therefore throughout this
book, the terms mapped page writer thread and modified page writer thread are
used interchangeably.

The sole purpose of these dedicated threads is to flush modified page frames out
to secondary storage, thereby keeping a certain number of page frames available
for reassignment. Each of these threads is a real-time thread with a priority set to
at least LOW_REALTIME_PRIORITY + 1

The algorithm used by the modified page writer threads is shown below. Note
that the following pseudocode is based on the operations performed by the
mapped and modified page writer threads flushing page frames to memory-
mapped or page files; differences in operations between these two threads is
clearly indicated whenever required:

// The following routine summarizes the MPW code executed by a dedicated
// worker thread. Note, however, that although the specific method used
// in various versions of the operating system might be different, the
// fundamental methodology described here should be consistent.
MiModifiedPageWriterWorker() {
for (G:){
// Wait for event to get set, indicating that insufficient "free"
// (not modified) pages exist. This event is set when the system
// is running low on available pages and the VMM wants some
// modified pages written out so they can be reassigned.
// This event is also set when the total number of modified pages
// in the system becomes greater than a pre-determined
// threshold value (the "threshold value™ in turn depends on
// whether the system is configured as a workstation or as a server
// and on how much RAM is present on the system).
KeWaitForSingleObject(ModifiedPageWriterEvent, ...);

226 Chapter 5: The NT Virtual Memory Manager

11 Now, lock the PFN database.

for(G:D{

// The event was set indicating that some pages need to

// be Fflushed. Pick a page frame to be flushed (the Ffirst on
// the modified pages list from the PFN database?) and invoke
// an appropriate routine.

MiGatherMappedPages (PageFramelndex, ...) ;

// The above routine is responsible for the actual flush.
// To perform the flush 1/0, the PFN database
/7 lock will have been dropped and reacquired by the
// MiGatherMappedPages() routine. Therefore, check whether
// adequate clean pages are now available and if so, stop
// Tlushing.
it (enough free pages are available) {

// Unlock PFN database.

break;

}
} /7 End of loop in which the MPW thread flushed modified pages to
// disk.

} 7/ End of infinite loop awaiting event to be set so that the
// MPW thread can begin flushing pages.

} /7 end of MiModifiedPageWriterWorker() routine

// The following routine is responsible for collecting a bunch of
// contiguous modified pages and writing them out to the page file.
// The similar routine responsible for writing out mapped file pages is
// called MiGatherMappedPages() .-
MiGatherMappedPages (...) 7 MiGatherPageFilePages (..) {
// Find a paging file for page file backed pages only.
if (paging file not available) {
// Nothing can be done as some 1/0 is already in progress
// to all paging files.
return;

// Find a contiguous chunk of available paging file space using a
// bitmap per paging Ffile.

// OR

// IT this is a mapped file, ensure that the mapped file is not an
// image file.

// Initialize a MDL (Memory descriptor List) to be used in the
// 1/0 operation

// Scan both backward and forward, starting from the sent-in page frame

Modifiedand Mapped Page Writer 227

/7
//

}

index, to find a contiguous set of modified pages that can be

written out to the page file or to the mapped file.
for (each candidate PTE) {

if (PTE is modified and backed by the page file or by the mapped

file) {
// Increment reference count on this PTE
PTE->ref erence_count++ ;

// Mark this PTE as "not modified," anticipating that our write
// will succeed.
PTE->modified = FALSE;

// Mark the fact that this PTE is being flushed. Any flush
// requests for this PTE (say from a file system or from the
// Cache Manager will be blocked until this 1/0 completes) .
PTE->being_flushed = TRUE;

// Put the page file page address into the PTE.
// Add this page frame into the physical page list described by
// the MDL.

// OK, so now we have a list of page frames that we wish to flush.

if

}

(number of pages reserved in the page file > number of contiguous

//
//

modified page frames encountered) {
Release extra space pre-allocated from the page file
(fany) .

// Unlock the PFN database lock.

/

// NOTE: IF this were the routine handling mapped files, some
// additional processing would be performed here. This processing is
//as follows:

{

Only for mapped files.

(this file is marked as '"fail all i/0, " forget it and return) {
return;

Make a callback into the file system advising the file system
that a paging 1/0 is on its way.

THIS IS VERY IMPORTANT:

The file system must - in response to this callback - acquire
all resources that might be needed to satisfy the paging-10
operation. We will cover this call-back in detail later in
this chapter and in Part 3 of this book.
(FsRtlAcquireFileForModWrite (--.)) {

// Call-back succeeded, issue 1/0 here

228

Chapter 5: The NT Virtual Memory Manager

IoAsynchronousPageWrite (..)
} else {
// Call-back failed.
// Return error locally = STATUS FILE LOCK_CONFLICT;
// Note that pages will stay marked dirty and the operation
// will be retried sometime later.
}

// Return

} 7/ End of code that is executed only for mapped files.

/* Hk * *k *k Hk *k Hk * Hk Hk *k Hk * *% [

// NOTE: The following code is only executed for pagefile backed pages

{
// Perform an asynchronous, paging-10 operation. This operation is
// a special request handled by the 1/0 manager who quickly
// redirects it to the appropriate file system on which the page
// file is located . . .
loAsynchronousPagelWrite (.)

// Return;
} // end of code executed only for page files.

/***/

// Lock the page frame database lock.

} //mend of MiGatherPageFilePages () 7/ MiGatherMappedPages O

// The following routine is invoked as an Asynchronous Procedure Call

//

(APC) when the asynchronous paging 1/0 is completed by the file system.

// Note that the file system might choose to handle the 1/0
// synchronously though that is not recommended ...

MiWriteComplete (Context, StatusOfOperation, Reserved) {

BOOLEAN FailAllloWasSet = FALSE;

// The Context is actually the MDL that was sent to the file system
MdIPointer = Context;

7/ Lock the PFN database

for (each page that comprised the MDL that was written out) {

// Set write-in-progress to false
PTE->being_flushed = FALSE;

// 1T an error was encountered ...
if (error AND this was a write to a mapped file AND the mapped
file belongs to a networked file system) {

Modified and Mapped Page Writer 229

// THIS IS IMPORTANT TO FILE SYSTEM DEVELOPERS WRITING
// REDIRECTORS.
// The VMM assumes that if a paging 1/0 to a file across the
// network has failed, the network MUST BE DOWN.
// In this case, the VMM marks the file as "fail all 1/0" and
// all modified data to the file will now be discarded!
FailAllIOWasSet = TRUE;

}

// Dereference the page.
PTE->reference_count—;

if (error AND not file on networked file system) {
// Mark page as modified once again so write will be retried
// later.
PTE->modified = TRUE;

¥
} // Loop for each page.

// FOR MAPPED FILES ONLY ..
ReleaseFileResources(); // Resources acquired using file system
// callback

// Unlock PFN database.

if (FailAlllOWasSet) {
// The user sees the famous error message
// "system lost write-behind data™ now.
IoRaiselnformationalHardError (STATUS_LOST_WRITE_BEHIND_DATA,
FileName, Status);

¥
} 7/ end of MiWriteComplete()

Note that in this pseudocode, the VMM uses an I/O Manager function loAsyn-
chronousPageWrite () to flush modified data to secondary storage. This call
will be quickly routed by the 1/O Manager to the file system driver managing the
mounted file system on which the target page file or mapped file resides.

The file system driver can easily recognize that the write request is a paging 1/0
request because the 1/0O Request Packet sent to the file system has the IRP_
PAGING_IO and the IRP_NOCACHE flags set. Note that the file system is not
permitted to take another page fault while resolving the paging I/O write request.
The I/0O Manager handles asynchronous page writes differently when performing
postprocessing on IRP structures that described such paging 1/0O requests. Essen-
tially, the 1/0 Manager invokes the MiWriteComplete () routine by means of a
kernel APC upon completion of the asynchronous paging I/0 IRP. The routine is
invoked in the context of the MPW thread.

230 Chapter 5: The NT Virtual Memory Manager

Page Fault Handling

The NT VMM s responsible for handling the case when contents referred to by a
virtual address are not present in physical memory. Although the hardware MMU
typically translates virtual addresses into physical addresses, when the MMU
discovers that the PTE indicates that the page is not in memory, the MMU will
turn the problem over to the VMM for resolution. The VMM routine invoked
when a page fault occurs, either in kernel mode or in user mode, is called MmAc-
cessFault (). This routine takes three arguments:

» The virtual address that caused the page fault

e A boolean argument that indicates whether a store/write operation caused the
page fault (a FALSE value indicates that this was a read/load operation)

e The mode (kernel or user) in which the fault occurred

First, the MInAccessFault () routine checks the current IRQL. If it is greater than
APC_LEVEL, and if either the page directory or the Page Table Entry indicates
that the page is not valid, the VMM will bugcheck the system and the following
message will be printed on your debugger screen:

MM:***PAGE FAULT AT IRQL > 1 Va %x, IRQL %x

The routine within the VMM that resolves page faults is appropriately called
MiDispatchFault () . The MmAccessFault () routine invokes MiDispatch-
Fault () to resolve the fault and make the contents of the page frame valid. This
routine handles page faults for access to addresses in both system address space
(the upper 2GB of the virtual address space) and in user process address space.
Faults are dispatched for further processing to an appropriate subroutine based
upon the nature of the faulting address:

» If the faulting address is backed by a page file, the routine MiResolvePage-
FileFault () is invoked.

This routine performs the following tasks:

— Allocate enough page frames in memory so that data can be read from
the page file.

— Note that this routine uses the MiEnsureAvailablePageOrWait ()
routine mentioned earlier in this chapter.

— Figure out the page file to which the read operation should be directed
from the PTE.

— Build a Memory Descriptor List (MDL) containing the list of available
physical pages.

Page Fault Handling 231

— Mark the PTEs for the pages being brought into memory as being "in
transition."”

— Return a special status OxC0033333 to the caller, MiDispatchFault ().

Because MiResolvePageFileFault () returned a status of OxC0033333,
MiDispatchFault () will then invoke a paging 1/O read operation using
the loPageRead() call exported by the 1/O Manager. Just as in the case of
the paging I/O write request described in the Modified Page Writer discus-
sion, the file system driver invoked by the 1/O Manager to satisfy the page
read request will recognize the request as a paging read, because of the pres-
ence of the IRP_PAGING_IO and the IRP_NOCACHE flags. Note that the file

system cannot incur any page faults while trying to satisfy the paging 1/0
read request.

The VMM then waits for the page fault read request to be completed, and if
successful, adds the page to the working set of the active process.

« If the PTE for the faulting address indicates that the page is in transition, then
the MiResolveTransitionFault () routine is invoked. A transition page
is marked as being in-transition for one of the following reasons:

— The page frame contains valid data, but the page was placed on the free
list because it was automatically trimmed.

— The page frame contains valid data, but it was placed on the modified list

as a result of being automatically trimmed from the working set of a
process.

— The page is being actively read from secondary storage; this is a collided
page fault.

This routine performs the following tasks:

— For pages that are being actively read from secondary storage, the Mi-
ResolveTransitionFault () routine will block, awaiting 1/0 comple-
tion. If an error occurs, it will mark the PTE invalid and return success,
forcing the caller to undergo another page fault, for which the PTE will
now no longer be marked as in-transition.

— Otherwise, this routine will mark the transition PTE valid and will add it
to the working set for the current process.

Note that this routine will not return the status OxCO0033333 since there is no
page read operation to be initiated by MiDispatchFault ().

* The MmAccessFault () routine invokes MiDispatchFault () with a pro-
totype PTE (PPTE) to fault into memory if the faulting virtual address belongs
to a shared memory range or to a memory-mapped file. In this case, MiDis-

232 Chapteb: The NT Virtual Memory Manager

patchFault () invokes the MiResolveProtoPteFau.lt () subroutine,
which in turn performs the following tasks:

— If the PPTE belongs to a mapped file, the MiResolveMappedFile-
Fault () routine is invoked to determine the set of pages to be faulted
into memory, allocate an MDL and return OxC0033333. Note that the
VMM attempts to cluster pages together to improve performance.

— If the PPTE was created to back up shared memory contained within a
page file, the MiResolvePageFileFault () routine is invoked. This
routine determines the page file number from which to perform the
paging 1/O read operation, builds an MDL structure that will subsequently
be used to perform the read, and returns OxC0033333.

— If the PPTE indicates that it is in transition, this routine will itself invoke
the MiResolveTransitionFault () subroutine discussed above.

— If a zeroed page is required, the MiResolveDemandZeroFault ()
subroutine is invoked.

Once an appropriate subroutine has been invoked successfully, the Mi-
ResolveProtoPteFault () routine will make the PTE reflect the contents
of the PPTE. Now the PTE for the process will refer to the PEN database entry
for the page frame whose contents either will be read in (if OxC0033333 is
returned) or are already valid if a transition fault was resolved.

e Sometimes, the VMM simply needs to materialize a page frame containing
zeroes in response to a page fault. This may happen when a thread tries to
extend a file on disk, or if a thread tries to access some newly allocated, com-
mitted memory. In this case, the MiDispatchFault () routine simply
invokes the MiResolveDemandZeroFault () subroutine, which in turn
allocates a zeroed page frame from the list of available page frames. If such a
page frame is not available, the MiResolveDemandZeroFault () routine
returns OxC7303001, which simply causes the fault to recur and at that time a
page should become available (remember that the MPW thread is always try-
ing to ensure that there are enough free and unmodified page frames avail-
able to be reallocated).

As you can see, the NT VMM supports the MMU in resolving virtual addresses to
physical addresses by faulting in pages that are not present in system memory. If
you develop a kernel-mode driver that takes a page fault at an IRQL greater than
or equal to DISPATCH_LEVEL, you will cause the system to bugcheck, since the
VMM will not satisfy page faults at such a high IRQL. Ensure that all code and
data that is accessed at high IRQLs has been previously locked into nonpageable
system memory.

Interactions with File System Drivers 233

Interactions with File System Drivers

The NT Virtual Memory Manager and file system drivers have mutual dependen-
cies between them. The VMM depends on file system drivers to provide support
for page file 1/0O and also to provide support for section objects representing
memory-mapped files. The file system, in turn, depends upon the NT VMM to
resolve page faults that occur within the file system driver; to manipulate user and
system buffers; to be able to allocate, manipulate, and deallocate memory; and to
help cache file stream data.*

Here is a list of functionality provided by the VMM to the file system drivers on
NT platforms:

» The file system driver is an executable, dynamically loadable driver that is
loaded into system virtual address space with the assistance of the VMM and
the file system driver that contains the executable. By default, code for the file
system and other kernel-mode drivers is not pageable; i.e., these drivers
reside in RAM as long as they are loaded. Similarly, all global memory associ-
ated with kernel-mode drivers is never paged-out by default. There is a com-
piler directive that your driver can specify that will cause portions of the
driver code to be marked as pageable. This pragma is defined with any NT
compatible compiler as follows:

#pragma alloc_text (PAGEXxxX, NameOfRoutine)

Note that xxxx should be a unique sequence of four characters that identifies
a pageable portion (also referred to a pageable section) of code. Furthermore,
at run-time, it is possible for your driver to invoke the MmLockPageable-
DataSection() or the MmLockPageableCodeSection () routines to
dynamically lock code or data. These routines and the corresponding unlock
routines are well documented in the DDK documentation. Some information
on making drivers pageable is also provided in Chapter 2, File System Driver
Development.

R SIS o | swr%gxmggrp\@.lmt df'“ZP'IS,,,:?,ﬁd,,!,']P‘"f"—‘e,,,dﬂuess‘,,,,ﬂ]l connd seamscmmn ot s weaay o
- tney allocate at run-time. Typlcally, your driver will invoke a version of the

ExAllocatePoolWithTag() routine to request pageable, nonpageable, or

cache-aligned memory. You can even request memory with the condition that

failure to allocate memory should result in an automatic system panic.

Although the Executive support routines manage these pools from which your

driver obtains memory, the physical memory and its manipulation is per-

formed only by the VMM. Any virtual address pointers (for memory) returned

* Chapter 6, The NT Cache Manager |, defines file streams more formally. For now, you can substitute the
word file for file stream if you like.

234 Chapteb: The NT Virtual Memory Manager

using one of the ExAllocatePool () routines is guaranteed to be in kernel
virtual address space.

Note that your driver can also invoke the ZwAllocateVirtualMemoryO
routine to directly request memory from the VMM, although the returned vir-
tual address will be in the lower 2GB of the process virtual address space;
therefore, such memory will only be accessible in the context of the allocat-
ing thread/process.

« Since your kernel-mode driver must be accessible while executing in the con-
text of any process in the system, the VMM manipulates the virtual address
space of every process in the system such that the lower 2GB are unique
(and private) to that process while the upper 2GB are reserved as the system
virtual address space and are mapped to the same physical addresses in the
context of all processes executing on the system.

e As a file system or as a kernel-mode driver, your code will often need to use
buffers that are passed in from user-mode code (e.g., a thread that executes
in user mode allocates memory and passes this buffer down to your driver).
Your driver must use this buffer to transfer data either into or out of the
buffer. However, there are two problems here that your kernel-mode driver
must address:

— Unless your driver is always guaranteed to execute in the context of the
user-mode thread, your driver cannot use the virtual addresses passed in
by the user-space thread, since they are only valid in that particular
thread's context.

— Sometimes, your driver might need to access the passed in buffer at an
IRQL greater than APC_LEVEL. In this case, you must ensure that the
buffer is backed by locked physical pages, because a page fault will
certainly result in a system crash.

The VMM assists you in addressing both of the issues listed. Any buffer can
have its associated physical pages locked in memory by invoking any of the
VMM routines such as MmProbeAndLockPages(), MmBuildMdlI (), and
other similar routines. These request the VMM to create a Memory Descriptor
List (MDL), an opaque structure that describes the list of physical page frames
backing your allocated virtual address range. Optionally, depending upon the
VMM routine invoked, the pages will also be locked in memory; the page
frames allocated to the buffer will not be reclaimed until they are unlocked. If
you need to map the passed in addresses into system virtual address space,
you can use the MmGetSystemAddressForMdl () VMM routine.

Interactions with File System Drivers 235

TIP

A Memory Descriptor List (MDL) is a system-defined structure that
describes a virtual address range (buffer) in terms of physical pages.
It contains an array, each element of which refers to a page frame
index for the frame backing the virtual address range. The array is
allocated immediately after the MDL structure; i.e., the MDL struc-
ture and the array (both of which are allocated from nonpaged
pool) are physically contiguous in memory.

Typically, your kernel-mode driver will often request the VMM to
create such an MDL for a user buffer and will usually map the buff-
er to system virtual address space. This ensures that the pages stay
locked until you have finished processing them and that you can ac-
cess the virtual addresses in the context of any arbitrary process.

The ntddk.h include file, supplied as part of the DDK, contains the
description of the MDL data structure. Note that your driver ideally
must not access the fields within the data structure directly, since
they could be changed by the system.

The VMM manages the stack frames allocated to all threads executing in the
system. The stack allocated to a thread executing in kernel mode is of fixed
length. In NT 3.51 and previous versions, this stack was limited to two page-
frames. In Windows NT 4.0, the stack has been expanded to three 4KB pages
of RAM (12288 bytes).

The VMM assists the file system (and the NT Cache Manager) in caching file
data. All of the physical memory manipulation is concentrated in the NT
VMM. Therefore, the support of the VMM is actively required in using physi-

cal memory to cache byte streams, which eventually enhances system through-
put.

The VMM provides support for clustering when satisfying page faults, which
helps improve system performance.

Typically, the VMM tries to cluster 1/O operations into groups of 16 pages. On
Intel x86 platforms, this leads to a 64KB 1/O size, while on Alpha machines,
this translates to 128KB 1/O operations.

Sometimes, filter drivers need to do unusual things, like caching data to a file
on a local file system. Or, user-mode code and kernel-mode drivers might
need to pass data buffers between them. To solve problems like these, kernel-
mode drivers and user-mode applications can use the services of the VMM to
create shared memory objects or memory-mapped files.

236 Chapter 5: The NT Virtual Memory Manager

TIP

Although the focus of the book is not on designing and developing
NT device drivers, you should be aware that the NT VMM utility rou-
tines and data structures (the MDL data structure and routines that
manipulate it) are also applicable to device driver designers. There
are other supporting routines that the VMM provides to device driv-
er developers, most notably MmMaploSpace (), which maps a giv-
en physical address range into nonpaged system space. Consult the
DDK for additional documentation on this routine as well as other
supporting routines provided by the Hardware Abstraction Layer
(HAL).

Remember, however, that regardless of the nature of the kernel-

mode driver that you develop, you -will need to understand the con-
tents of this chapter.

The NT Virtual Memory Manager provides the MmQuerySystemSize () sup-
port routine that can sometimes be useful to file system drivers.

The MmQuerySystemSize () function takes no arguments. It simply returns
an enumerated type result that can take one of the following values:

— MmSmall System (enumerated type value = 0)
— MmMediumSystem (enumerated type value = 1)
— MmLargeSystem (enumerated type value = 2)

The value returned depends upon the amount of physical memory configured
on the system. The VMM initializes a global variable, MmSystemSize, to one
of these three values at system initialization time, after determining the
amount of physical memory available on the node. MmQuerySystemSizeO
returns the contents of this global variable.

The actual amount of RAM that may result in one value being returned
instead of another is subject to change between different versions of Win-
dows NT. For example, if your system has less than 12MB of physical mem-
ory, you could expect to get back the MmSmallSystem value when you
invoke the MmQuerySystemSize () function. Similarly, if you have less

than 20MB of available physical memory, you could expect to get MmMedium-
System returned.

The MmQuerySystemSize () function call is typically made by kernel-mode
components to guide them in making resource allocation decisions. For exam-
ple, consider the case when the MmSmallSystem value is returned as a
result of calling this function. Now your file system driver may not know
exactly what a "small system™ really means, but you can infer that, relatively
speaking, the amount of available physical memory is less than what it would
be on medium or large systems. Therefore, your driver could preallocate

v

Interactions with File System, Drivers 237

smaller-sized zones, or create fewer worker threads as compared to what it
may do on medium or large systems. Use this routine to get additional infor-
mation about the system to help determine the resource utilization within
your driver.

There will undoubtedly be other factors that your driver will consider in mak-

ing the final determination about the amount of resources (physical memory)
your driver should consume.

The NT VMM also depends on the file system for the following functionality:

Page files are created and manipulated on mounted file systems. Therefore, to
implement virtual memory support, the VMM needs the file system to perform
paging 1/0O read and write operations.

As illustrated by sample code in Part 3, the file system driver must completely
rely on the VMM when receiving 1/O requests directed to a page file. There-
fore, the file system should avoid acquiring any resources (to provide any syn-
chronization), should never incur a page fault in processing the read/write
request, should never defer the request for asynchronous processing, and
should never block the request for any reason. It should simply forward the
request immediately (after determining the on-disk parameters for the
request) to the appropriate lower-level device drivers.

In order to provide support for shared memory or for memory-mapped files,
the VMM needs the active support of the underlying file system. First, the
VMM requires that the file system provide appropriate callbacks to help main-
tain the locking hierarchy in the NT system. In addition, the VMM requires
that the file system be prepared to receive page faults that occur as a direct
consequence of the user process accessing mapped memory.

The callbacks that must be implemented by the file system driver are the
AcquireFileForNTCreateSection() and ReleaseFileForNtCrea-
teSection(). The file system is expected to acquire all resources that
might be needed while the NT VMM executes code in support of a create

section request. I will discuss the implementation of these callbacks in detail
in Part 3.

Support Routines Providedfor FSD Implementations

The VMM provides two specific routines, MmFlushimageSection() and
MmCanFileBeTruncated(), that are very important for file system designers,
but they are not well documented. Part 3 has examples using these routines.

238 Chapter 5: The NT Virtual Memory Manager

MmFlushimageSection ()

This function is used by a file system driver to ask the VMM to discard pages in
memory containing information associated with a specified image section object.
For example, consider a copy of the Microsoft Word executable file that a user
mapped in to memory and now wishes to delete, maybe to upgrade the copy to a
later version of the software. The file system driver must ensure, before actually
deleting the file, that all pages containing file data are flushed (discarded). During
normal execution, these pages may contain file stream data even after all user
handles to the file have been closed. However, the file system cannot allow such
information to stay around in memory if it plans to delete the file stream.

NOTE Note that the VMM enforces a restriction that a file can't be deleted
as long as any user has actively mapped in the file stream; if the file
is currently being executed, it cannot be deleted. However, from the
discussions presented in this chapter, you have learned that the
VMM keeps file data around in memory even after all handles to the
mapped file stream have been closed, as long as it does not really
need to reuse the physical memory. This helps achieve faster re-
sponse if the user closes the file handle but reopens it soon after.

It is precisely during these situations that the file system driver must
flush the system pages before proceeding with the delete operation.

This function is also invoked by a file system driver before allowing a thread to
open a file stream for write access. Also, the VMM will typically not