

Web Services Essentials
Distributed Applications with XML-RPC, SOAP, UDDI & WSDL

Ethan Cerami

Publisher: O'Reilly

First Edition February 2002

ISBN: 0-596-00224-6, 304 pages

This concise book gives programmers both a concrete introduction and handy reference to
XML web services. It explains the foundations of this new breed of distributed services,
demonstrates quick ways to create services with open-source Java tools, and explores four
key emerging technologies: XML-RPC, SOAP, UDDI, and WSDL. If you want to break
through the Web Services hype and find useful information on these evolving
technologies, look no further.

Team[oR]

Table of Contents

Preface ..1
Audience ..1
Organization...2
Conventions Used in This Book ...3
Comments and Questions ...3
Acknowledgments ..4

Part I: Introduction to Web Services...5

Chapter 1. Introduction ..6

1.1 Introduction to Web Services ..6
1.2 Web Service Architecture ...10
1.3 XML Messaging ...15
1.4 Service Description: WSDL..17
1.5 Service Discovery: UDDI ...18
1.6 Service Transport..19
1.7 Security Considerations ..21
1.8 All Together Now...22
1.9 Standards and Coherence ..24

Part II: XML-RPC ...25

Chapter 2. XML-RPC Essentials ..26

2.1 XML-RPC Overview..26
2.2 Why XML-RPC?..26
2.3 XML-RPC Technical Overview..28
2.4 Developing with XML-RPC ...35
2.5 Beyond Simple Calls ..40

Part III: SOAP ...42

Chapter 3. SOAP Essentials..43

3.1 SOAP 101...43
3.2 The SOAP Message ..45
3.3 SOAP Encoding..48
3.4 SOAP via HTTP...52
3.5 SOAP and the W3C ..54
3.6 SOAP Implementations ..55

Chapter 4. Apache SOAP Quick Start ...57

4.1 Installing Apache SOAP ...57
4.2 Hello, SOAP! ...59
4.3 Deploying SOAP Services ..68
4.4 The TcpTunnelGui Tool ...72
4.5 Web Resources ...74

Chapter 5. Programming Apache SOAP..75

5.1 Working with Arrays ..75
5.2 Working with JavaBeans ..79
5.3 Working with Literal XML Documents ..88
5.4 Handling SOAP Faults..93
5.5 Maintaining Session State...98

Part IV: WSDL... 102

Chapter 6. WSDL Essentials... 103

6.1 The WSDL Specification.. 103
6.2 Basic WSDL Example: HelloService.wsdl.. 105
6.3 WSDL Invocation Tools, Part I... 111
6.4 Basic WSDL Example: XMethods eBay Price Watcher Service............................ 113
6.5 WSDL Invocation Tools, Part II ... 115
6.6 Automatically Generating WSDL Files... 118
6.7 XML Schema Data Typing ... 121

Part V: UDDI.. 134

Chapter 7. UDDI Essentials .. 135

7.1 Introduction to UDDI.. 135
7.2 Why UDDI? ... 136
7.3 UDDI Technical Overview ... 138
7.4 UDDI Data Model .. 139
7.5 Searching UDDI ... 144
7.6 Publishing to UDDI .. 157
7.7 UDDI Implementations... 169
7.8 Web Resources ... 170

Chapter 8. UDDI Inquiry API: Quick Reference... 171

8.1 The UDDI Inquiry API ... 172
8.2 Find Qualifiers.. 196

Chapter 9. UDDI 4J... 197

9.1 Getting Started.. 197
9.2 Finding and Retrieving UDDI Data... 198
9.3 Publishing UDDI Data.. 203
9.4 UDDI4J Quick Reference API .. 206

Glossary .. 270

Colophon... 282

Web Services Essentials

 1

Preface

Web services offer a new and evolving paradigm for building distributed web
applications. This book focuses on the essentials of web services and covers four main
technologies: XML-RPC, SOAP, WSDL, and UDDI. The book offers a high-level
overview of each technology. It also describes the relevant API and discusses
implementation options for each technology. The book includes a broad range of working
examples so that you can immediately see web services in action.

Audience

This book is written for developers who are new to web services. It aims to to provide you
with a "big-picture" perspective to enable you to understand the scope and extent of web
services, while also providing you with enough nuts and bolts and sample code to start
writing your own services.

When choosing between a proprietary system and an open source implementation, we tend
to favor open source implementations. When choosing among programming languages,
we tend to favor Java. To make the most of the book, you should therefore have solid Java
programming experience. If you need to brush up on Java, consider these books:

• Learning Java, by Patrick Niemeyer and Jonathan Knudsen (O'Reilly &
Associates, Inc.)

• Java in a Nutshell, Fourth Edition, by David Flanagan (O'Reilly)

A basic understanding of eXtensible Markup Language (XML) is also important. For a
solid grounding in XML, consider these books:

• Learning XML, by Erik T. Ray (O'Reilly)
• XML in a Nutshell: A Desktop Quick Reference, by Elliotte Rusty Harold and W.

Scott Means (O'Reilly)

Web Services Essentials

 2

Organization

The book is divided into five parts. Part I provides a general introduction to web services.
Part II through Part V focus on core web service technologies, including XML-RPC,
SOAP, WSDL, and UDDI. The book concludes with a glossary of common web service
terms.

Part I, Introduction to Web Services

Chapter 1 provides an overview of web services, the web service architecture, and the web
service protocol stack. It also provides a snapshot of current standardization efforts of the
World Wide Web Consortium (W3C).

Part II, XML-RPC

Chapter 2 provides a comprehensive introduction to XML-RPC. This includes a technical
overview of XML-RPC, including a detailed explanation of XML-RPC data types,
requests, and responses. This chapter also includes sample XML-RPC code, written in
Java and Perl.

Part III, SOAP

Chapter 3 provides a comprehensive introduction to SOAP. This includes overviews of
the SOAP specification, using SOAP via HTTP, and the W3C standardization effort
surrounding SOAP.

Chapter 4 provides a quick-start guide to using Apache SOAP, an open source Java
implementation of the SOAP specification. This chapter includes detailed instructions on
installing and deploying SOAP services and on writing basic service and client code.

Chapter 5 provides an in-depth guide to programming Apache SOAP. This includes an
overview of working with arrays, JavaBeans™, and literal XML documents. This chapter
also includes a discussion on handling SOAP faults and maintaining session state.

Part IV, WSDL

Chapter 6 provides a comprehensive introduction to WSDL. This includes an overview of
the specification itself, numerous WSDL examples, and an introduction to WSDL-
invocation tools.

Part V, UDDI

Chapter 7 provides a comprehensive overview of UDDI. This includes an overview of the
UDDI data model and tutorials for searching existing data and publishing new data.

Chapter 8 provides a quick reference to the UDDI Inquiry API.

Chapter 9 introduces UDDI4J, an open source Java implementation of UDDI. Example
code illustrates how to search and publish UDDI data. A complete description of the
UDDI4J API is also included.

Web Services Essentials

 3

Conventions Used in This Book

The following font conventions are used in this book:

Italic is used for:

• Pathnames, filenames, function names, and program names
• Internet addresses, such as domain names and URLs
• New terms where they are defined

Constant width is used for:

• Command lines and options that should be typed verbatim
• Names and keywords in programs, including method names, variable names, class

names, value names, and XML-RPC headers
• XML element tags

Constant width bold is used for emphasis in program code lines.

Constant width italic is used for replaceable arguments in program code.

Comments and Questions

The information in this book has been tested and verified, but you may find that features or
libraries have changed, or you may even find mistakes. You can send any errors you find,
as well as suggestions for future editions, to:

O'Reilly & Associates, Inc.

You can also send us messages electronically. To be put on the mailing list or to request a
catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future
editions. You can access this page at:

http://www.oreilly.com/catalog/webservess/

For more information abut this book and others, see the O'Reilly web site:

http://www.oreilly.com

Web Services Essentials

 4

Acknowledgments

Writing an O'Reilly book has always been a dream of mine. I certainly did not get here by
myself. Therefore, I want to thank all those who helped turned this dream into reality.

First, I want to thank Simon St.Laurent, my editor at O'Reilly. Simon ushered this book
from its very earliest stages until the very last round of copyediting. He was the first
person to bring web services to my attention and provided constant and patient guidance at
every step of the way. He also contributed Chapter 2. I also want to thank all the technical
reviewers who provided excellent feedback on early drafts of the book. Reviewers
included Leigh Dodds, Timothy J. Ewald, Martin Gudgin, Simon Horrell, and Tim
O'Reilly. Graham Glass, CEO of The Mind Electric, Inc., answered all of my many
questions regarding the GLUE platform and WSDL in general. Tony Hong, cofounder of
XMethods, Inc., also helped out with questions on SOAP interoperability and provided
permission to reprint the WSDL file for the XMethods eBay Price Watcher Service. Claire
Cloutier served as the production editor for the book and did an excellent job keeping the
book well-organized and on schedule.

Second, I want to thank Gary Lazarus, my boss at Winstar Communications. Gary was
gracious enough to provide me with a flexible schedule to complete this book. For this, I
am forever grateful.

Third, I want to thank all my friends and family. You know who you are. As always, you
have sustained and nourished me, and helped me keep a balanced life. Thank you.

Fourth, I want to thank my father-in-law, Ed Orsenigo. Your courage and determination
are an inspiration to us all.

Lastly, I want to thank my wife, Amy. In the midst of writing this book, Amy and I
actually found time to get married! September 1, 2001 was the happiest day of my life.
Thanks, Amy, for supporting me, encouraging me, and bringing joy to everyone around
you.

Web Services Essentials

 5

Part I: Introduction to Web Services

Chapter 1 - Introduction

Web Services Essentials

 6

Chapter 1. Introduction

Today, the principal use of the World Wide Web is for interactive access to
documents and applications. In almost all cases, such access is by human
users, typically working through Web browsers, audio players, or other
interactive front-end systems. The Web can grow significantly in power
and scope if it is extended to support communication between
applications,from one program to another.

- From the W3C XML ProtocolWorking Group Charter

Welcome to the world of web services. This chapter will ground you in the basics of web
service terminology and architecture. It does so by answering the most common questions,
including:

• What exactly is a web service?
• What is the web service protocol stack?
• What is XML messaging? Service description? Service discovery?
• What are XML-RPC, SOAP, WSDL, and UDDI? How do these technologies

complement each other and work together?
• What security issues are unique to web services?
• What standards currently exist?

1.1 Introduction to Web Services

A web service is any service that is available over the Internet, uses a standardized XML
messaging system, and is not tied to any one operating system or programming language.
(See Figure 1-1 .)

Figure 1-1. A basic web service

There are several alternatives for XML messaging. For example, you could use XML
Remote Procedure Calls (XML-RPC) or SOAP, both of which are described later in this
chapter. Alternatively, you could just use HTTP GET/POST and pass arbitrary XML
documents. Any of these options can work. (See Figure 1-2.)

Web Services Essentials

 7

Figure 1-2. XML messaging for web services

Although they are not required, a web service may also have two additional (and desirable)
properties:

• A web service should be self-describing. If you publish a new web service, you
should also publish a public interface to the service. At a minimum, your service
should include human-readable documentation so that other developers can more
easily integrate your service. If you have created a SOAP service, you should also
ideally include a public interface written in a common XML grammar. The XML
grammar can be used to identify all public methods, method arguments, and return
values.

• A web service should be discoverable. If you create a web service, there should be
a relatively simple mechanism for you to publish this fact. Likewise, there should
be some simple mechanism whereby interested parties can find the service and
locate its public interface. The exact mechanism could be via a completely
decentralized system or a more logically centralized registry system.

To summarize, a complete web service is, therefore, any service that:

• Is available over the Internet or private (intranet) networks
• Uses a standardized XML messaging system
• Is not tied to any one operating system or programming language
• Is self-describing via a common XML grammar
• Is discoverable via a simple find mechanism

1.1.1 The Web Today: The Human-Centric Web

To make web services more concrete, consider basic e-commerce functionality. For
example, Widgets, Inc. sells parts through its web site, enabling customers to submit
purchase orders and check on order status.

To check on the order status, a customer logs into the company web site via a web browser
and receives the results as an HTML page. (See Figure 1-3.)

Web Services Essentials

 8

Figure 1-3. The human-centric Web

This basic model illustrates a human-centric Web, where humans are the primary actors
initiating most web requests. It also represents the primary model on which most of the
Web operates today.

1.1.2 Web Services: The Application-Centric Web

With web services, we move from a human-centric Web to an application-centric Web.
This does not mean that humans are entirely out the picture! It just means that
conversations can take place directly between applications as easily as between web
browsers and servers.

For example, we can turn the order status application into a web service. Applications and
agents can then connect to the service and utilize its functionality directly. For example,
an inventory application can query Widgets, Inc. on the status of all orders. The inventory
system can then process the data, manipulate it, and integrate it into its overall supply
chain management software. (See Figure 1-4.)

Figure 1-4. The application-centric Web

There are numerous areas where an application-centric Web could prove extremely
helpful. Examples include credit card verification, package tracking, portfolio tracking,
shopping bots, currency conversion, and language translation. Other options include
centralized repositories for personal information, such as Microsoft's proposed .NET
MyServices project. .NET MyServices aims to centralize calendar, email, and credit card
information and to provide web services for sharing that data.

Web Services Essentials

 9

Web Services and the Semantic Web

Tim Berners-Lee, the original inventor of the Web, has recently argued for a
"Semantic Web." The Semantic Web vision is application-centric, and shares many
of the same ideas as web services. In fact, at the first W3C conference on web
services, Berners-Lee stated that web services are an actualization of the Semantic
Web vision. For an overview of the Semantic Web, see Berners-Lee's article in
Scientific American: http://www.sciam.com/2001/0501issue/0501berners-lee.html.

1.1.3 The Web Services Vision: The Automated Web

An application-centric Web is not a new notion. For years, developers have created CGI
programs and Java servlets designed primarily for use by other applications. For example,
companies have developed credit card services, search systems, and news retrieval
systems.

The crucial difference is that most of these systems consisted of ad hoc solutions. With
web services, we have the promise of some standardization, which should hopefully lower
the barrier to application integration.

The web service architecture provides an interesting alternative for
drastically decoupling presentation from content. For example, a site
could consist of nothing but container pages that pass parameters to
the real logic via SOAP or XML-RPC. This makes it easy to change
presentation and also lets humans and computers "share" a single web
service.

In the long term, web services also offer the promise of the automated Web. If services are
easily discoverable, self-describing, and stick to common standards, it is possible to
automate application integration. Some in the industry have referred to this as "just-in-
time" application integration.

For example, consider the case of MegaElectric (ME). ME wants to buy parts from
Widgets, Inc. and also wants to seamlessly integrate order status into a unified inventory
system. At some point in the future, ME will be able to buy software that automates this
entire process. Here's how it might work (refer to Figure 1-5):

1. The inventory application wakes up and connects to a centralized directory of web
services: "Does Widgets, Inc. provide an order status service?" The directory returns
information on Widgets, Inc.'s service and includes a pointer to the service
description.

2. The inventory application connects to Widgets, Inc. and retrieves the service
description.

3. The service description file includes complete details about how to connect to the
specified service. The inventory application can therefore automatically invoke the
order status service.

Web Services Essentials

 10

Figure 1-5. The automated Web

Is it possible to automate this process using existing web services technology? Not quite:
only parts of the process can currently be automated. For example, as we will see in
Chapter 9, it is possible to create Java programs that query service registries.
Understanding the results and choosing which service to actually use, however, still
requires some human intervention. It is also possible to automatically invoke a service,
based on a service description. For example, as we will see in Chapter 6, many automatic
invocation tools already exist and work extremely well.

Even if all these steps could be automated, there is currently no mechanism for automating
business relationships. For example, current service descriptions do not cover guarantees
on pricing, delivery schedules, or legal ramifications if deliveries are not made. Given a
service description, you also cannot assume that the service is bug-free or that the service
is available 100 percent of the time.

These types of issues are not easily solved and are not easily automated. Completely
automated web services and "just-in-time" application integration may therefore never be
realized. Nonetheless, current web service technology does take us one step closer, and
does enable us to automate portions of the process.

1.1.4 The Industry Landscape

There are currently many competing frameworks and proposals for web services. The
three main contenders are Microsoft's .NET, IBM Web Services, and Sun Open Net
Environment (ONE). While each of these frameworks has its own particular niche and
spin, they all share the basic web service definition and vision put forth here. Furthermore,
all of the frameworks share a common set of technologies, mainly SOAP, WSDL, and
UDDI.

Rather than focusing on one particular implementation or framework, this book focuses on
common definitions and technologies. Hopefully, this will better equip you to cut through
the marketing hype and understand and evaluate the current contenders.

1.2 Web Service Architecture

There are two ways to view the web service architecture. The first is to examine the
individual roles of each web service actor; the second is to examine the emerging web
service protocol stack.

Web Services Essentials

 11

1.2.1 Web Service Roles

There are three major roles within the web service architecture:

Service provider

This is the provider of the web service. The service provider implements the service
and makes it available on the Internet.

Service requestor

This is any consumer of the web service. The requestor utilizes an existing web
service by opening a network connection and sending an XML request.

Service registry

This is a logically centralized directory of services. The registry provides a central
place where developers can publish new services or find existing ones. It therefore
serves as a centralized clearinghouse for companies and their services.

Figure 1-6 shows the major web service roles and how they interact with each other.

Figure 1-6. Web service roles

1.2.2 Web Service Protocol Stack

A second option for viewing the web service architecture is to examine the emerging web
service protocol stack. The stack is still evolving, but currently has four main layers.
Following is a brief description of each layer.

Service transport

This layer is responsible for transporting messages between applications. Currently,
this layer includes hypertext transfer protocol (HTTP), Simple Mail Transfer
Protocol (SMTP), file transfer protocol (FTP), and newer protocols, such as Blocks
Extensible Exchange Protocol (BEEP).

Web Services Essentials

 12

XML messaging

This layer is responsible for encoding messages in a common XML format so that
messages can be understood at either end. Currently, this layer includes XML-RPC
and SOAP.

Service description

This layer is responsible for describing the public interface to a specific web service.
Currently, service description is handled via the Web Service Description Language
(WSDL).

Service discovery

This layer is responsible for centralizing services into a common registry, and
providing easy publish/find functionality. Currently, service discovery is handled
via Universal Description, Discovery, and Integration (UDDI).

As web services evolve, additional layers may be added, and additional technologies may
be added to each layer. Figure 1-7 summarizes the current web service protocol stack.
Each layer is described in detail later in this book.

Figure 1-7. Web service protocol stack

1.2.3 Architectural Snapshot: The IBM Web Services Browser

To gain a high-level understanding of how the protocol stack actually works, try out the
IBM Web Services Browser. The browser enables you to search for existing services,
view their service descriptions, and automatically invoke those services. This lets you see
each layer within the protocol stack without actually writing any code.

To get started, open a browser and go to http://demo.alphaworks.ibm.com/browser/. You
should see the screen depicted in Figure 1-8.

In the righthand pane, you can search a centralized registry for existing web services. (The
registry actually uses UDDI, but don't get too caught up in the details just yet.) Within the
Search box, type "IBM Web Services" and click Search. IBM will search the centralized
directory for you and display all matching results in the left pane. Select the last folder,
entitled IBM Web Services TestArea, and you will see a list of available web services.
(See Figure 1-9.)

Web Services Essentials

 13

Figure 1-8. The IBM Web Services browser

Figure 1-9. Results of web service search

Figure 1-10. Details of the IBM weather service

Web Services Essentials

 14

Click on GetWeatherService, and the right pane will display specific details about the
service. (See Figure 1-10.) The data includes binding points, which indicate URLs for
actually connecting to the service, and service description files that explain how to
interface with the service. (These are WSDL files, but again, don't get too caught up in the
details just yet.)

Click the View Page link in the left pane. The right pane will now show a simple user
interface for the weather service. Select a city and state, and IBM will automatically
invoke the service and display the current weather conditions. (See Figure 1-11.)

Figure 1-11. Invoking the IBM weather service

If you pick another service, the service is added to the bottom of the right pane. For
example, Figure 1-12 shows the stock quote service and the weather service bundled
together.

Figure 1-12. Multiple web services on a single page

Web Services Essentials

 15

The IBM browser does a good job of illustrating web services in action and highlighting
the main layers within the protocol stack. It also does a good job of illustrating the
potential of "just-in-time" application integration. Each service basically acts as an
individual building block, and you can continue stacking more and more services to the
same page. Best of all, you can do so without writing a single line of code!

1.3 XML Messaging

XML has exploded onto the computing scene in recent years. It has gained rapid
acceptance because it enables diverse computer systems to share data more easily,
regardless of operating system or programming language. There are dozens of XML tools,
including parsers and editors that are available for nearly every operating system and every
programming language, including Java, Perl, Python, C#, C, C++, and Ruby. When
developers decided to build a web service messaging system, XML was therefore a natural
choice. There are two main contenders for XML messaging: XML-RPC and SOAP. The
following sections provide descriptions of both protocols.

1.3.1 XML-RPC

XML-RPC is a simple protocol that uses XML messages to perform RPCs. Requests are
encoded in XML and sent via HTTP POST. XML responses are embedded in the body of
the HTTP response. Because XML-RPC is platform-independent, it allows diverse
applications to communicate. For example, a Java client can speak XML-RPC to a Perl
server.

To gain a high-level understanding of XML-RPC, consider a simple weather service. The
service expects a zip code and returns the current temperature for the area. Here is a
sample XML-RPC request to the weather service (HTTP headers omitted):

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodCall>
 <methodName>weather.getWeather</methodName>
 <params>
 <param><value>10016</value></param>
 </params>
</methodCall>

The request consists of a simple methodCall element that specifies the method name and
any method parameters.

Here is a sample XML-RPC response from the weather service:

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodResponse>
 <params>
 <param>
 <value><int>65</int></value>
 </param>
 </params>
</methodResponse>

The response consists of a single methodResponse element that specifies the return value.
In this case, the return value is specified as an integer.

Web Services Essentials

 16

XML-RPC is the easiest way to get started with web services. In many ways, it is simpler
than SOAP and easier to adopt. However, unlike SOAP, XML-RPC has no corresponding
service description grammar. This prevents automatic invocation of XML-RPC services -
a key ingredient for enabling just-in-time application integration. More details of XML-
RPC are covered in Chapter 2.

1.3.2 SOAP

SOAP is an XML-based protocol for exchanging information between computers.
Although SOAP can be used in a variety of messaging systems, and can be delivered via a
variety of transport protocols, the main focus of SOAP is RPCs transported via HTTP.
Like XML-RPC, SOAP is platform-independent and therefore enables diverse applications
to communicate.

To gain a high-level understanding of SOAP, let's revisit our simple weather service. Here
is a sample SOAP request (HTTP headers omitted):

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getWeather
 xmlns:ns1="urn:examples:weatherservice"
 SOAP-ENV:encodingStyle="http://www.w3.org/2001/09/soap-encoding/">
 <zipcode xsi:type="xsd:string">10016</zipcode>
 </ns1:getWeather>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

As you can see, the SOAP request is slightly more complicated than the XML-RPC
request. It makes use of both XML namespaces and XML Schemas. As in XML-RPC,
however, the body of the SOAP request specifies both a method name and a list of
parameters.

Here is a sample SOAP response from the weather service:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getWeatherResponse
 xmlns:ns1="urn:examples:weatherservice"
 SOAP-ENV:encodingStyle="http://www.w3.org/2001/09/soap-encoding/">
 <return xsi:type="xsd:int">65</return>
 </ns1:getWeatherResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The response indicates a single integer return value. Full details of SOAP are discussed in
Chapter 3.

Web Services Essentials

 17

1.4 Service Description: WSDL

WSDL currently represents the service description layer within the web service protocol
stack. In a nutshell, WSDL is an XML grammar for specifying a public interface for a
web service. This public interface can include information on all publicly available
functions, data type information for all XML messages, binding information about the
specific transport protocol to be used, and address information for locating the specified
service. WSDL is not necessarily tied to a specific XML messaging system, but it does
include built-in extensions for describing SOAP services.

Example 1-1 provides a sample WSDL file. This file describes the public interface for the
weather service we examined previously. Obviously, there are many details to consider
when looking at the example. For now, just focus on two points. First, the message
elements specify the individual XML messages that are transferred between computers. In
this case, we have a getWeatherRequest and a getWeatherResponse. Second, the service
element specifies that the service is available via SOAP at
http://localhost:8080/soap/servlet/rpcrouter.

Example 1-1. WeatherService.wsdl

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="WeatherService"
 targetNamespace="http://www.ecerami.com/wsdl/WeatherService.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ecerami.com/wsdl/WeatherService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="getWeatherRequest">
 <part name="zipcode" type="xsd:string"/>
 </message>
 <message name="getWeatherResponse">
 <part name="temperature" type="xsd:int"/>
 </message>

 <portType name="Weather_PortType">
 <operation name="getWeather">
 <input message="tns:getWeatherRequest"/>
 <output message="tns:getWeatherResponse"/>
 </operation>
 </portType>

 <binding name="Weather_Binding" type="tns:Weather_PortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getWeather">
 <soap:operation soapAction=""/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:weatherservice"
 use="encoded"/>
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:weatherservice"
 use="encoded"/>
 </output>
 </operation>
 </binding>

Web Services Essentials

 18

 <service name="Weather_Service">
 <documentation>WSDL File for Weather Service</documentation>
 <port binding="tns:Weather_Binding" name="Weather_Port">
 <soap:address
 location="http://localhost:8080/soap/servlet/rpcrouter"/>
 </port>
 </service>
</definitions>

Using WSDL, a client can locate a web service and invoke any of the publicly available
functions. With WSDL-aware tools, this process can be entirely automated, enabling
applications to easily integrate new services with little or no manual code. For example,
IBM has recently released the IBM Web Services Invocation Framework (WSIF). Using
WSIF, you can specify the WeatherService.wsdl file and automatically invoke the service
described. For example, the following command line:

java clients.DynamicInvoker http://localhost:8080/wsdl/WeatherService.wsdl
getWeather 10016

generates the following output:

Reading WSDL document from 'http://localhost:8080/wsdl/WeatherService.wsdl'
Preparing WSIF dynamic invocation
Executing operation getWeather
Result:
temperature=65
Done!

WSDL and WSDL invocation tools are covered in Chapter 6.

1.5 Service Discovery: UDDI

UDDI currently represents the discovery layer within the web service protocol stack.
UDDI was originally created by Microsoft, IBM, and Ariba, and represents a technical
specification for publishing and finding businesses and web services.

At its core, UDDI consists of two parts. First, UDDI is a technical specification for
building a distributed directory of businesses and web services. Data is stored within a
specific XML format. The UDDI specification includes API details for searching existing
data and publishing new data. Second, the UDDI Business Registry is a fully operational
implementation of the UDDI specification. Launched in May 2001 by Microsoft and IBM,
the UDDI registry now enables anyone to search existing UDDI data. It also enables any
company to register itself and its services.

The data captured within UDDI is divided into three main categories:

White pages

This category includes general information about a specific company; for example,
business name, business description, and address.

Web Services Essentials

 19

Yellow pages

This category includes general classification data for either the company or the
service offered. For example, this data may include industry, product, or geographic
codes based on standard taxonomies.

Green pages

This category includes technical information about a web service (a pointer to an
external specification and an address for invoking the web service).

Figure 1-13 shows a sample screenshot of the Microsoft UDDI site. From this site, you
can easily publish your own services or search for existing ones.

Figure 1-13. The Microsoft UDDI site: searching for XMethods, Inc.

Full details on UDDI are available in Chapter 7.

1.6 Service Transport

The bottom of the web service protocol stack is service transport. This layer is responsible
for actually transporting XML messages between two computers.

1.6.1 HTTP

Currently, HTTP is the most popular option for service transport. HTTP is simple, stable,
and widely deployed. Furthermore, most firewalls allow HTTP traffic. This allows XML-
RPC or SOAP messages to masquerade as HTTP messages. This is good if you want to
easily integrate remote applications, but it does raise a number of security concerns. (See
Section 1.7 later in this chapter.)

Web Services Essentials

 20

While HTTP does get the job done, a number of critics have argued that HTTP is not ideal
for web services. In particular, HTTP was originally designed for remote document
retrieval, and is now being reworked to support RPCs. RPCs demand greater efficiency
and reliability than document retrieval does.

There are some developers who argue that HTTP is enough of a
foundation for messaging and that the layers above HTTP are as
much a problem as a solution. For some of this perspective, called
Representational State Transfer, or REST, see
http://internet.conveyor.com/RESTwiki/moin.cgi.

1.6.2 BEEP

One promising alternative to HTTP is the Blocks Extensible Exchange Protocol (BEEP).
BEEP is a new IETF framework of best practices for building new protocols. In particular,
BEEP is layered directly on TCP and includes a number of built-in features, including an
initial handshake protocol, authentication, security, and error handling. Using BEEP, one
can create new protocols for a variety of applications, including instant messaging, file
transfer, content syndication, and network management.

SOAP is not tied to any specific transport protocol. In fact, you can use SOAP via HTTP,
SMTP, or FTP. One promising idea is therefore to use SOAP over BEEP. Doing so
provides several performance advantages over HTTP. Specifically, BEEP does require an
initial handshake, but after the handshake, the protocol requires only 30 bytes of overhead
for each message, making it much more efficient than HTTP.[1] Furthermore, BEEP
supports multiple channels of data over the same connection, providing extra efficiency
over HTTP.

[1] The overhead for each HTTP message is dependent on numerous factors, including the requested
URL, the type of client used, and the type of server information returned within the HTTP response.
Overhead for typical browser and SOAP requests can therefore vary from approximately 100 to 300
bytes for each message.

A recent proposal for using SOAP over BEEP is available at:

http://beepcore.org/beepcore/docs/beep-soap.jsp.

Another promising alternative to HTTP is Reliable HTTP (HTTP-R).
HTTP-R is being developed by IBM, which plans to submit its
proposal to the Internet Engineering Task Force (IETF). HTTP-R
enhances HTTP to ensure message reliability. For example, HTTP-R
ensures that a message gets delivered only once or gets reported as
undeliverable. This is particularly critical for e-commerce services,
such as electronic ordering systems and inventory management. A
primer on HTTP-R is available from IBM at http://www-
106.ibm.com/developerworks/webservices/library/ws-phtt/.

Web Services Essentials

 21

1.7 Security Considerations

Security is critical to web services. However, neither the XML-RPC nor SOAP
specifications make any explicit security or authentication requirements. Furthermore, the
web services community has proposed numerous security frameworks and protocols, but
has yet to reach consensus on a comprehensive security package.

Very broadly, there are three specific security issues: confidentiality, authentication, and
network security.

1.7.1 Confidentiality

If a client sends an XML request to a server, can we ensure that the communication
remains confidential?

Fortunately, both XML-RPC and SOAP run primarily on top of HTTP, and XML
communications can therefore be encrypted via the Secure Sockets Layer (SSL). SSL is a
proven technology, is widely deployed, and is therefore a very viable option for encrypting
messages.

However, a key element of web services is that a single web service may consist of a chain
of applications. For example, one large service might tie together the services of three
other applications. In this case, SSL is not adequate; the messages need to be encrypted at
each node along the service path, and each node represents a potential weak link in the
chain. Currently, there is no agreed-upon solution to this issue, but one promising solution
is the W3C XML Encryption Standard. This standard provides a framework for
encrypting and decrypting entire XML documents or just portions of an XML document,
and it is likely to receive widespread industry support. Information on the XML
Encryption Standard is available at http://www.w3.org/Encryption/.

1.7.2 Authentication

If a client connects to a web service, how do we identify the user? And is the user
authorized to use the service?

One solution is to leverage HTTP authentication. HTTP includes built-in support for
Basic and Digest authentication, and services can therefore be protected in much the same
manner as HTML documents are currently protected. Most security experts, however,
agree that HTTP authentication is a relatively weak option.

As with encryption, there is no clear consensus on a strong authentication scheme, but
there are several frameworks under consideration. The first is SOAP Security Extensions:
Digital Signature (SOAP-DSIG). DSIG leverages public key cryptography to digitally
sign SOAP messages. This enables the client or server to validate the identity of the other
party. DSIG has been submitted to the W3C and is available at
http://www.w3.org/TR/SOAP-dsig/.

Web Services Essentials

 22

Second, the Organization for the Advancement of Structured Information Standards
(OASIS) is working on the Security Assertion Markup Language (SAML). SAML is
designed to facilitate the exchange of authentication and authorization information
between business partners. Information is available online at http://www.oasis-
open.org/committees/security/.

In a related effort, several companies have put forth the XML Key Management Services
(XKMS). XKMS defines a series of services for distributing and managing public keys
and certificates. The protocol itself is built on SOAP and WSDL, and it is therefore an
excellent example of a web service. The specification is available online at
http://www.w3.org/TR/xkms/.

1.7.3 Network Security

In June 2000, Bruce Schneier, a noted computer expert, flatly stated that "SOAP is going
to open up a whole new avenue for security vulnerabilities."[2] Schneier's basic argument is
that HTTP was made for document retrieval. Extending HTTP via SOAP enables remote
clients to invoke commands and procedures, something that firewalls are explicitly
designed to prevent.

[2] Crypto-Gram Newsletter, June 15, 2000 (http://www.counterpane.com/crypto-gram-0006.html).

You could argue that CGI applications and servlets present the same security
vulnerabilities. After all, these programs also enable remote applications to invoke
commands and procedures. As SOAP becomes more widely deployed, however,
Schneier's argument becomes more compelling. There is currently no easy answer to this
problem, and it has been the subject of much debate. For now, if you are truly intent on
filtering out SOAP or XML-RPC messages, one possibility is to filter out all HTTP POST
requests that set their content type to text/xml (a requirement of both specifications).
Another alternative is to filter for the SOAPAction HTTP header attribute (see Chapter 3 for
details). Firewall vendors are also currently developing tools explicitly designed to filter
web service traffic.

1.8 All Together Now

Once you understand each layer in the web service protocol stack, the next important step
is to understand how all the pieces fit together. There are two ways of approaching the
issue, either from the service requestor perspective or the service provider perspective. In
this section, we examine both perspectives and look at a typical development plan for
each.

Web Services Essentials

 23

1.8.1 Service Request Perspective

The service requestor is any consumer of web services. Here is a typical development plan
for a service requestor:

1. First, you must identify and discover those services that are relevant to your
application. This first step therefore usually involves searching the UDDI Business
Directory for partners and services.

2. Once you have identified the service you want, the next step is to locate a service
description. If this is a SOAP service, you are likely to find a WSDL document. If
this is an XML-RPC service, you are likely to find some human-readable
instructions for integration.

3. Third, you must create a client application. For example, you may create an XML-
RPC or SOAP client in the language of your choice. If the service has a WSDL file,
you also have the option of automatically creating client code via a WSDL
invocation tool.

4. Finally, run your client application to actually invoke the web service.

A snapshot of the service requestor perspective is provided in Figure 1-14.

Figure 1-14. Developing web services: the service requestor perspective

1.8.2 Service Provider Perspective

The service provider is any provider of one or more web services. Here is a typical
development plan for a service provider:

1. First, you must develop the core functionality of your service. This is usually the
hardest part, as your application may connect to databases, Enterprise JavaBeans™
(EJBs), COM objects, or legacy applications.

2. Second, you must develop a service wrapper to your core functionality. This could
be an XML-RPC or a SOAP service wrapper. This is usually a relatively simple step,
as you are merely wrapping existing functionality into a larger framework.

3. Next, you should provide a service description. If you are creating a SOAP
application, you should create a WSDL file. If you are creating an XML-RPC
service, you should consider creating some human-readable instructions.

4. Fourth, you need to deploy the service. Depending on your needs, this could mean
installing and running a standalone server or integrating with an existing web server.

5. Fifth, you need to publish the existence and specifications of your new service. This
usually means publishing data to a global UDDI directory or perhaps a private UDDI
directory specific to your company.

Web Services Essentials

 24

A snapshot of the service provider perspective is provided in Figure 1-15.

Figure 1-15. Developing web services: the service provider perspective

1.9 Standards and Coherence

Web services are still in their infancy, but they are poised to make great inroads in the
world of distributed application development. The most crucial elements to the long-term
success of web services, however, will be standardization and the coherency of those
standards. Currently, none of the web service technologies described in this book has any
official standing with the W3C or the IETF. SOAP and WSDL have both been submitted
to the W3C, but have no official recommendation status. XML-RPC has not been
submitted to any standards body. UDDI is currently under the purview of an industry
consortium and will probably go through several more iterations before being handed over
to a standards body.

In September 2000, the W3C created an XML Protocol Group. This group represented the
W3C's first official foray into the world of web services. Its first task was to create an
official recommendation for SOAP, and the group is currently finalizing a SOAP 1.2
specification. In January 2002, the W3C incorporated the XML Protocol Group into a
more general Web Services Activity. The new Activity adds Working Groups for Web
Services Architecutre and Web Services Description.

Information about the W3C Web Services Activity is available at
http://www.w3.org/2002/ws/.

Most people new to web services are initially overwhelmed by the long list of proposed
standards and the complex interactions between each. Standardizing each layer in the web
service protocol stack will be a major challenge. Making sure all the layers fit together
and make coherent sense to developers will be an even greater challenge.

Web Services Essentials

 25

Part II: XML-RPC

Chapter 2 - XML-RPC Essentials

Web Services Essentials

 26

Chapter 2. XML-RPC Essentials

XML-RPC provides an XML- and HTTP-based mechanism for making method or
function calls across a network. XML-RPC offers a very simple, but frequently useful, set
of tools for connecting disparate systems and for publishing machine-readable
information. This chapter provides a complete overview of XML-RPC, covering the
following topics:

• An introduction to the main concepts and history of XML-RPC
• An exploration of XML-RPC usage scenarios, examining its use in glue code and

information publishing
• A technical overview of XML-RPC, including a detailed explanation of XML-RPC

data types, requests, and responses
• An example demonstrating the use of XML-RPC to connect programs written in

Java and Perl

2.1 XML-RPC Overview

XML-RPC permits programs to make function or procedure calls across a network. XML-
RPC uses the HTTP protocol to pass information from a client computer to a server
computer, describing the nature of requests and responses with a small XML vocabulary.
Clients specify a procedure name and parameters in the XML request, and the server
returns either a fault or a response in the XML response. XML-RPC parameters are a
simple list of types and content - structs and arrays are the most complex types available.
XML-RPC has no notion of objects and no mechanism for including information that uses
other XML vocabularies. Despite those limitations, it has proven capable of a wide variety
of tasks.

XML-RPC emerged in early 1998; it was published by UserLand Software and initially
implemented in their Frontier product. It has remained largely stable since then.[1] The
XML-RPC specification is available at http://www.xmlrpc.com/spec, and a list of
implementations (55 at this writing, in a wide variety of languages) is available at
http://www.xmlrpc.com/directory/1568/.

[1] For additional information on the early history of XML-RPC, explaining the roles of UserLand
and Microsoft, see http://davenet.userland.com/1999/01/29/microsoftXmlRpc. The "snapshot of the
spec we were working on with Microsoft" became XML-RPC, while the rest of the spec went on to
become SOAP.

2.2 Why XML-RPC?

In a programming universe seemingly obsessed with objects, XML-RPC may seem too
limited for many applications. While XML-RPC certainly has limitations, its inherent
simplicity gives it some significant advantages when developers need to integrate systems
of very different types. XML-RPC's selection of data types is relatively small, but
provides enough granularity that developers can express information in forms any
programming language can use.

Web Services Essentials

 27

XML-RPC is used in two main areas, which overlap at times. Systems integrators and
programmers building distributed systems often use XML-RPC as glue code, connecting
disparate parts inside a private network. By using XML-RPC, developers can focus on the
interfaces between systems, not the protocol used to connect those interfaces. Developers
building public services can also use XML-RPC, defining an interface and implementing it
in the language of their choice. Once that service is published to the Web, any XML-RPC-
capable client can connect to that service, and developers can create their own applications
that use that service.

2.2.1 Scenario 1: Glue Code with XML-RPC

As distributed systems have become more and more common (by design or by accident),
developers have had to address integration problems more and more frequently. Systems
that originally ran their own show have to work with other systems as organizations try to
rationalize their information management and reduce duplication. This often means that
Unix systems need to speak with Windows, which needs to speak with Linux, which needs
to speak with mainframes. A lot of programmers have spent a lot of time building custom
protocols and formats to let different systems speak to each other.

Instead of creating custom systems that need extensive testing, documentation, and
debugging, developers can use XML-RPC to connect programs running on different
systems and environments. Using this approach, developers can use existing APIs and add
connections to those APIs as necessary. Some problems can be solved with a single
procedure, while others require more complex interactions, but the overall approach is
much like developing any other set of interfaces. In glue code situations, the distinction
between client and server isn't especially significant - the terms only identify the program
making the request and the program responding. The same program may have both client
and server implementations, allowing it to use XML-RPC for both incoming and outgoing
requests.

2.2.2 Scenario 2: Publishing Services with XML-RPC

XML-RPC can be used to publish information to the world, providing a computer-readable
interface to information. The infrastructure for this use of XML-RPC is much like
traditional web publishing to humans, with pretty much the same security and architecture
issues, but it allows information recipients to be any kind of client that understands the
XML-RPC interface. As in web publishing, XML-RPC publishing means that developers
have control over the server, but not necessarily the client.

The O'Reilly Network's Meerkat headline syndicator, for example, presents both a human-
readable interface (at http://meerkat.oreillynet.com) and an XML-RPC interface
(documented at http://www.oreillynet.com/pub/a/rss/2000/11/14/meerkat_xmlrpc.html) to
the world. Casual readers can use the forms-based interface to query the headlines, while
developers who need to present the headline information in other forms can use XML-
RPC. This makes it easy to separate content from presentation while still working in a
Web-centric environment.

Web Services Essentials

 28

2.3 XML-RPC Technical Overview

XML-RPC consists of three relatively small parts:

XML-RPC data model

A set of types for use in passing parameters, return values, and faults (error
messages)

XML-RPC request structures

An HTTP POST request containing method and parameter information

XML-RPC response structures

An HTTP response that contains return values or fault information

The data structures are used by both the request and response structures. The combination
of the three parts defines a complete Remote Procedure Call.

It's entirely possible to use XML-RPC without getting into the
markup details presented later in this chapter. Even if you plan to
stay above the details, however, you probably should read the
following sections to understand the nature of the information you'll
be passing across the network.

2.3.1 XML-RPC Data Model

The XML-RPC specification defines six basic data types and two compound data types
that represent combinations of types. While this is a much more restricted set of types than
many programming languages provide, it's enough to represent many kinds of information,
and it seems to have hit the lowest common denominator for many kinds of program-to-
program communications.

All of the basic types are represented by simple XML elements whose content provides the
value. For example, to define a string whose value is "Hello World!", you'd write:

<string>Hello World!</string>

For more information on how Base 64 encoding works, see section
6.8 of RFC 2045, "Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies", available at
http://www.ietf.org/rfc/rfc2045.txt. Base 64 is not considered an
efficient encoding format, but it does simplify the enclosure of binary
information within XML documents. For best results, use it
sparingly.

Web Services Essentials

 29

The basic types for XML-RPC are listed in Table 2-1.

Table 2-1. Basic data types in XML-RPC

Type Value Examples

int or i4
32-bit integers between -
2,147,483,648 and
2,147,483,647.

<int>27</int>
<i4>27</i4>

double 64-bit floating-point numbers <double>27.31415</double>
<double>-1.1465</double>

Boolean true (1) or false (0) <boolean>1</boolean>
<boolean>0</boolean>

string ASCII text, though many
implementations support Unicode

<string>Hello</string>
<string>bonkers! @</string>

dateTime.iso8601 Dates in ISO8601 format:
CCYYMMDDTHH:MM:SS

<dateTime.iso8601>20021125T02:20:04
 </dateTime.iso8601>
<dateTime.iso8601>20020104T17:27:30
 </dateTime.iso8601>

base64 Binary information encoded as
Base 64, as defined in RFC 2045

<base64>SGVsbG8sIFdvcmxkIQ==
 </base64>

These basic types are always enclosed in value elements. Strings (and only strings) may
be enclosed in a value element but omit the string element. These basic types may be
combined into two more complex types, arrays and structs. Arrays represent sequential
information, while structs represent name-value pairs, much like hashtables, associative
arrays, or properties.

Arrays are indicated by the array element, which contains a data element holding the list
of values. Like other data types, the array element must be enclosed in a value element.
For example, the following array contains four strings:

<value>
 <array>
 <data>
 <value><string>This </string></value>
 <value><string>is </string></value>
 <value><string>an </string></value>
 <value><string>array.</string></value>
 </data>
 </array>
</value>

The following array contains four integers:

<value>
 <array>
 <data>
 <value><int>7</int></value>
 <value><int>1247</int></value>
 <value><int>-91</int></value>
 <value><int>42</int></value>
 </data>
 </array>
</value>

Web Services Essentials

 30

Arrays can also contain mixtures of different types, as shown here:

<value>
 <array>
 <data>
 <value><boolean>1</boolean></value>
 <value><string>Chaotic collection, eh?</string></value>
 <value><int>-91</int></value>
 <value><double>42.14159265</double></value>
 </data>
 </array>
</value>

Creating multidimensional arrays is simple - just add an array inside of an array:

<value>
 <array>
 <data>
 <value>
 <array>
 <data>
 <value><int>10</int></value>
 <value><int>20</int></value>
 <value><int>30</int></value>
 </data>
 </array>
 </value>
 <value>
 <array>
 <data>
 <value><int>15</int></value>
 <value><int>25</int></value>
 <value><int>35</int></value>
 </data>
 </array>
 </value>
 </data>
 </array>
</value>

It's a lot of markup, but for the most part, XML-RPC developers won't have to deal with
this markup directly.

XML-RPC won't do anything to guarantee that arrays have a
consistent number or type of values. You'll need to make sure that
you write code that consistently generates the right number and type
of output values if consistency is necessary for your application.

Structs contain unordered content, identified by name. Names are strings, though you
don't have to enclose them in string elements. Each struct element contains a list of
member elements. Member elements each contain one name element and one value element.
The order of members is not considered important. While the specification doesn't require
names to be unique, you'll probably want to make sure they are unique for consistency.

Web Services Essentials

 31

A simple struct might look like:

<value>
 <struct>
 <member>
 <name>givenName</name>
 <value><string>Joseph</string></value>
 </member>
 <member>
 <name>familyName</name>
 <value><string>DiNardo</string></value>
 </member>
 <member>
 <name>age</name>
 <value><int>27</int></value>
 </member>
 </struct>
</value>

Structs can also contain other structs, or even arrays. For example, this struct contains a
string, a struct, and an array:

<value>
 <struct>
 <member>
 <name>name</name>
 <value><string>a</string></value>
 </member>
 <member>
 <name>attributes</name>
 <value><struct>
 <member>
 <name>href</name>
 <value><string>http://example.com</string></value>
 </member>
 <member>
 <name>target</name>
 <value><string>_top</string></value>
 </member>
 </struct></value>
 </member>
 <member>
 <name>contents</name>
 <value><array>
 <data>
 <value><string>This </string></value>
 <value><string>is </string></value>
 <value><string>an example.</string></value>
 </data>
 </array></value>
 </member>
 </struct>
</value>

Arrays can also contain structs. You can, in some cases, use these complex types to
represent object structures, but at some point you may find it easier to use SOAP for that
kind of complex transfer.

Web Services Essentials

 32

2.3.2 XML-RPC Request Structure

XML-RPC requests are a combination of XML content and HTTP headers. The XML
content uses the data typing structure to pass parameters and contains additional
information identifying which procedure is being called, while the HTTP headers provide
a wrapper for passing the request over the Web.

Each request contains a single XML document, whose root element is a methodCall
element. Each methodCall element contains a methodName element and a params element.
The methodName element identifies the name of the procedure to be called, while the params
element contains a list of parameters and their values. Each params element includes a list
of param elements which in turn contain value elements.

For example, to pass a request to a method called circleArea , which takes a Double
parameter (for the radius), the XML-RPC request would look like:

<?xml version="1.0"?>
<methodCall>
 <methodName>circleArea</methodName>
 <params>
 <param>
 <value><double>2.41</double></value>
 </param>
 </params>
</methodCall>

To pass a set of arrays to a sortArray procedure, the request might look like:

<?xml version="1.0"?>
<methodCall>
 <methodName>sortArray</methodName>
 <params>
 <param>
 <value>
 <array>
 <data>
 <value><int>10</int></value>
 <value><int>20</int></value>
 <value><int>30</int></value>
 </data>
 </array>
 </value>
 </param>
 <param>
 <value>
 <array>
 <data>
 <value><string>A</string></value>
 <value><string>C</string></value>
 <value><string>B</string></value>
 </data>
 </array>
 </value>
 </param>
 </params>
</methodCall>

Web Services Essentials

 33

The HTTP headers for these requests will reflect the senders and the content. The basic
template looks like:

POST /target HTTP 1.0
User-Agent: Identifier
Host: host.making.request
Content-Type: text/xml
Content-Length: length of request in bytes

The information in italics may change from client to client or from request to request. For
example, if the circleArea method were available from an XML-RPC server listening at
/xmlrpc, the request might look like:

POST /xmlrpc HTTP 1.0
User-Agent: myXMLRPCClient/1.0
Host: 192.168.124.2
Content-Type: text/xml
Content-Length: 169

Assembled, the entire request would look like:

POST /xmlrpc HTTP 1.0
User-Agent: myXMLRPCClient/1.0
Host: 192.168.124.2
Content-Type: text/xml
Content-Length: 169

<?xml version="1.0"?>
<methodCall>
 <methodName>circleArea</methodName>
 <params>
 <param>
 <value><double>2.41</double></value>
 </param>
 </params>
</methodCall>

It's an ordinary HTTP request, with a carefully constructed payload.

2.3.3 XML-RPC Response Structure

Responses are much like requests, with a few extra twists. If the response is successful -
the procedure was found, executed correctly, and returned results - then the XML-RPC
response will look much like a request, except that the methodCall element is replaced by a
methodResponse element and there is no methodName element:

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><double>18.24668429131</double></value>
 </param>
 </params>
</methodResponse>

Web Services Essentials

 34

The User-Agent header will typically reflect the XML-RPC library
used to assemble the request, not the particular program making the
call. This is a bit of a change from the browser world, where
"browser sniffing" using that header expects to identify the particular
program - say, Opera 6.0 for Linux - making the request.

An XML-RPC response can only contain one parameter, despite the use of the enclosing
params element. That parameter, may, of course, be an array or a struct, so it is possible to
return multiple values. Even if your method isn't designed to return a value (void methods
in C, C++, or Java, for instance) you still have to return something. A "success value" -
perhaps a boolean set to true (1) - is a typical approach to getting around this limitation.

If there was a problem in processing the XML-RPC request, the methodResponse element
will contain a fault element instead of a params element. The fault element, like the
params element, has only a single value. Instead of containing a response to the request,
however, that value indicates that something went wrong. A fault response might look
like:

<?xml version="1.0"?>
<methodResponse>
 <fault>
 <value><string>No such method!</string></value>
 </fault>
</methodResponse>

The response could also look like:

<?xml version="1.0"?>
<methodResponse>
 <fault>
 <value>
 <struct>
 <member>
 <name>code</name>
 <value><int>26</int>
 </member>
 <member>
 <name>message</name>
 <value><string>No such method!</string></value>
 </member>
 </struct>
 </value>
 </fault>
</methodResponse>

XML-RPC doesn't standardize error codes at all. You'll need to check the documentation
for particular packages to see how they handle faults.

Like requests, responses are packaged in HTTP and have HTTP headers. All XML-RPC
responses use the 200 OK response code, even if a fault is contained in the message.
Headers use a common structure similar to that of requests, and a typical set of headers
might look like:

Web Services Essentials

 35

HTTP/1.1 200 OK
Date: Sat, 06 Oct 2001 23:20:04 GMT
Server: Apache.1.3.12 (Unix)
Connection: close
Content-Type: text/xml
Content-Length: 124

XML-RPC only requires HTTP 1.0 support, but HTTP 1.1 is compatible. The Server
header indicates the kind of web server used to process requests for the XML-RPC
implementation. The header may or may not reflect the XML-RPC server implementation
that processed this particular request. The Content-Type must be set to text/xml ; the
Content-Length header specifies the length of the response in bytes. A complete response,
with both headers and a response payload, would look like:

HTTP/1.1 200 OK
Date: Sat, 06 Oct 2001 23:20:04 GMT
Server: Apache.1.3.12 (Unix)
Connection: close
Content-Type: text/xml
Content-Length: 124

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><double>18.24668429131</double></value>
 </param>
 </params>
</methodResponse>

After the response is delivered from the XML-RPC server to the XML-RPC client, the
connection is closed. Follow-up requests need to be sent as separate XML-RPC
connections.

2.4 Developing with XML-RPC

Using XML-RPC in your applications generally means adding an XML-RPC library and
making some of your function calls through that library. Creating functions that will work
smoothly with XML-RPC requires writing code that uses only the basic types XML-RPC
supports. Otherwise, there is very little fundamental need to change your coding style.
Adding XML-RPC support may require writing some wrapper code that connects your
code with the library, but this generally isn't very difficult.

As XML-RPC becomes more and more widespread, some
environments are building in XML-RPC. UserLand Frontier has
done that for years, while the Perl and Python communities are
discussing similar integration.

To demonstrate XML-RPC, we're going to create a server that uses Java to process XML-
RPC messages, and Java and Perl clients to call procedures on that server. Although this
demonstration is simple, it illustrates the connections needed to establish communications
between programs using XML-RPC.

Web Services Essentials

 36

The Java side of the conversation uses the Apache XML Project's Apache XML-RPC,
available at http://xml.apache.org/xmlrpc/. The Apache package includes a few key pieces
that make integrating XML-RPC with Java easier:

• An automated registration process for adding methods to the XML-RPC server
• A built-in server that only speaks XML-RPC, reducing the need to create full-

blown servlets
• A client package that makes calling remote methods fairly simple

This demonstration will use a procedure registered with the built-in server of the Apache
package and a client for testing the procedure.

For much more information about the Apache XML-RPC package,
including data type details and information about creating servlets for
XML-RPC processing, see Chapter 3 of Programming Web Services
with XML-RPC (O'Reilly), by Simon St.Laurent, Edd Dumbill, and
Joe Johnston, available online at
http://www.oreilly.com/catalog/progxmlrpc/chapter/ch03.html.

The procedure that we'll test returns the area of a circle and is defined in a class called
AreaHandler , as shown in Example 2-1.

Example 2-1. A simple Java procedure

package com.ecerami.xmlrpc;

public class AreaHandler {

 public double circleArea(double radius) {
 double value=(radius*radius*Math.PI);
 return value;
 }
}

The circleArea method of the AreaHandler class takes a double value representing the
radius, and returns a double value representing the area of a circle that has that radius.
There's nothing in the AreaHandler class that is specific to XML-RPC at all.

Making the circleArea method available via XML-RPC requires two steps. The method
must be registered with the XML-RPC package, and some kind of server must make the
package accessible via HTTP. The AreaServer class shown in Example 2-2 performs both
these steps.

Example 2-2. Setting up a Java XML-RPC server

package com.ecerami.xmlrpc;

import java.io.IOException;
import org.apache.xmlrpc.WebServer;
import org.apache.xmlrpc.XmlRpc;

public class AreaServer {

 public static void main(String[] args) {

Web Services Essentials

 37

 if (args.length < 1) {
 System.out.println("Usage: java AreaServer [port]");
 System.exit(-1);
 }

 try {
 startServer(args);
 } catch (IOException e) {
 System.out.println("Could not start server: " +
 e.getMessage());
 }
 }

 public static void startServer(String[] args) throws IOException {
 // Start the server, using built-in version
 System.out.println("Attempting to start XML-RPC Server...");
 WebServer server = new WebServer(Integer.parseInt(args[0]));

 System.out.println("Started successfully.");

 // Register our handler class as area
 server.addHandler("area", new AreaHandler());
 System.out.println("Registered AreaHandler class to area.");

 System.out.println("Now accepting requests. (Halt program to stop.)");

 }
}

The main method checks that there is an argument on the command line specifying on
which port to run the server. The method then passes that information to startServer ,
which starts the built-in server. Once the server is started (it begins running when created),
the program calls the addHandler method to register an instance of the AreaHandler class
under the name area. The org.apache.xmlrpc.XmlRpc class deals with all of the method
signature details, making it possible to start an XML-RPC service in about two lines of
critical code. To fire up the server, just execute com.ecerami.xmlrpc.AreaServer from the
command line, specifying a port.

C:\ora\xmlrpc\java>java com.ecerami.xmlrpc.AreaServer 8899
Attempting to start XML-RPC Server...
Started successfully.
Registered AreaHandler class to area.
Now accepting requests. (Halt program to stop.)

The AreaClient class shown in Example 2-3 tests the AreaServer , once started, from the
command line. The AreaClient class also uses the XML-RPC library and only needs to
use a few lines of code (in the areaCircle method) to make the actual call.

Example 2-3. A Java client to test the XML-RPC server

package com.ecerami.xmlrpc;

import java.io.IOException;
import java.util.Vector;
import org.apache.xmlrpc.XmlRpc;
import org.apache.xmlrpc.XmlRpcClient;
import org.apache.xmlrpc.XmlRpcException;

public class AreaClient {

 public static void main(String args[]) {
 if (args.length < 1) {

Web Services Essentials

 38

 System.out.println(
 "Usage: java AreaClient [radius]");
 System.exit(-1);
 }
 AreaClient client = new AreaClient();
 double radius = Double.parseDouble(args[0]);

 try {
 double area = client.areaCircle(radius);
 // Report the results
 System.out.println("The area of the circle would be: " + area);

 } catch (IOException e) {
 System.out.println("IO Exception: " + e.getMessage());
 } catch (XmlRpcException e) {
 System.out.println("Exception within XML-RPC: " + e.getMessage());
 }
 }

 public double areaCircle (double radius)
 throws IOException, XmlRpcException {

 // Create the client, identifying the server
 XmlRpcClient client =
 new XmlRpcClient("http://localhost:8899/");

 // Create the request parameters using user input
 Vector params = new Vector();
 params.addElement(new Double (radius));

 // Issue a request
 Object result = client.execute("area.circleArea", params);

 String resultStr = result.toString();
 double area = Double.parseDouble(resultStr);
 return area;
 }
}

The main method parses the command line and reports results to the user, but the
areaCircle method handles all of the interaction with the XML-RPC service. Unlike the
server, which runs continuously, the client runs once in order to get a particular result. The
same request may be reused or modified, but each request is a separate event. For this
application, we just need to make one request, using the value from the command line as
an argument. The client constructor takes a URL as an argument, identifying which server
it should contact with requests.

Making requests also requires additional setup work that wasn't necessary in creating the
server. While the server could rely on method signatures to figure out which parameters
went to which methods, the client doesn't have any such information. The Apache
implementation takes arguments in a Vector object, which requires using the Java wrapper
classes (like the Double object for double primitives) around the arguments. Once that
Vector has been constructed, it is fed to the execute method along with the name of the
procedure being called. In this case, the name of the method is area.circleArea ,
reflecting that the AreaHandler class was registered on the server with the name area and
that it contains a method called circleArea.

When the execute method is called, the client makes an XML-RPC request to the server
specified in its constructor. The request calls the method identified by the first argument,

Web Services Essentials

 39

area.circleArea in this case, and passes the contents of the second argument as
parameters. This produces the following HTTP response.

POST / HTTP/1.1
Content-Length: 175
Content-Type: text/xml
User-Agent: Java1.3.0
Host: localhost:8899
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodCall><methodName>area.circleArea</methodName>
<params>
<param><value><double>3.0</double></value></param>
</params>
</methodCall>

The server responds with a methodResponse , which the execute function reports as an
Object. Although the XML-RPC response will provide type information about that Object
, and the underlying content will conform to that type, Object is as specific a type as the
execute function can generally return while still conforming to Java's strong type-
checking.

The result of all this work looks pretty simple:

C:\ora\xmlrpc\java>java com.ecerami.xmlrpc.AreaClient 3
The area of the circle would be: 28.274333882308138

C:\ora\xmlrpc\java>java com.ecerami.xmlrpc.AreaClient 4
The area of the circle would be: 50.26548245743669

Using XML-RPC to connect Java programs to Java programs isn't especially exciting,
however. It certainly works - and it can be a great convenience when the only public
access to a Java method is through XML-RPC - but much of XML-RPC's potential lies in
connecting other environments. To demonstrate that this works with a broader array of
environments, we'll create a Perl client that calls the same function.

The Perl client will use the Frontier::RPC module, an implementation of XML-RPC
created by Ken MacLeod. (When MacLeod created this library, XML-RPC was primarily
a part of UserLand Frontier.) The client component of the Frontier::RPC module is called
Frontier::Client.

Frontier::RPC and all of the modules it uses are available from CPAN
at http://www.cpan.org.

The logic for the Perl version of the XML-RPC call is much like that of the Java version,
except that Perl's flexibility allows us to skip packaging parameters into a vector. The
program shown in Example 2-4 accepts a radius value from the command line, creates a
new XML-RPC connection, and passes the radius value as a double to the
area.circleArea method. Then the program prints the result.

Web Services Essentials

 40

Example 2-4. An XML-RPC client in Perl

use Frontier::Client;

$radius=@ARGV[0];

print "for radius: ", $radius, "\n";

my $client=Frontier::Client->new(url=>"http://127.0.0.1:8899");

print " The area of the circle would be: ", $client->call('area.circleArea',
 Frontier::RPC2::Double->new($radius)), "\n";

The trickiest part of the procedure call is the casting that needs to be done to ensure that
the number is interpreted as a double. Without Frontier::RPC2::Double->new($radius) ,
the Frontier::RPC module will interpret the radius as a string or an integer unless it has a
decimal value. Frontier::RPC provides a set of modules that performs this work on Perl
values in order to map Perl's loosely typed values to the explicit typing required by XML-
RPC. When used on the command line, the Perl procedure call produces results much like
those of the Java client:

C:\ora\xmlrpc\perl>perl circle.pl 3
for radius: 3
The area of the circle would be: 28.274333882308138

C:\ora\xmlrpc\perl>perl circle.pl 4
for radius: 4
The area of the circle would be: 50.26548245743669

For more information on both the Java and Perl implementations of
XML-RPC, as well as implementations in Python, PHP, and Active
Server Pages, see Programming Web Services with XML-RPC
(O'Reilly).

2.5 Beyond Simple Calls

XML-RPC is a very simple concept with a limited set of capabilities. Those limitations are
in many ways the most attractive feature of XML-RPC, as they substantially reduce the
difficulty of implementing the protocol and testing its interoperability. While XML-RPC
is simple, the creative application of simple tools can create sophisticated and powerful
architectures. In cases where a wide variety of different systems need to communicate,
XML-RPC may be the most appropriate lowest common denominator.

Some use cases only require basic functionality, like the library-style functionality
described earlier. XML-RPC can support much richer development than these examples
show, using combinations of arrays and structs to pass complex sets of information. While
calculating the area of a circle may not be very exciting, working with matrices or
processing sets of strings may be more immediately worthwhile. XML-RPC itself doesn't
provide support for state management, but applications can use parameters to sustain
conversations beyond a single request-response cycle, much as web developers use
cookies to keep track of extended conversations.

Web Services Essentials

 41

Servers may be able to use XML-RPC to deliver information requested by clients,
providing a window on a large collection of information. The O'Reilly Network's Meerkat
uses XML-RPC this way, letting clients specify the information they need to receive
through XML-RPC procedures. XML-RPC can also be very useful in cases where a client
needs to deliver information to a server, both for logging-style operations and operations
where the client needs to set properties on a server program. The richness of the interface
is up to the developer, but the possibilities are definitely there.

Web Services Essentials

 42

Part III: SOAP

Chapter 3 - SOAP Essentials

Chapter 4 - Apache SOAP Quick Start

Chapter 5 - Programming Apache SOAP

Web Services Essentials

 43

Chapter 3. SOAP Essentials

SOAP is an XML-based protocol for exchanging information between computers.
Although SOAP can be used in a variety of messaging systems and can be delivered via a
variety of transport protocols, the initial focus of SOAP is remote procedure calls
transported via HTTP. SOAP therefore enables client applications to easily connect to
remote services and invoke remote methods. For example (as we shall soon see), a client
application can immediately add language translation to its feature set by locating the
correct SOAP service and invoking the correct method.

Other frameworks, including CORBA, DCOM, and Java RMI, provide similar
functionality to SOAP, but SOAP messages are written entirely in XML and are therefore
uniquely platform- and language-independent. For example, a SOAP Java client running
on Linux or a Perl client running on Solaris can connect to a Microsoft SOAP server
running on Windows 2000.

SOAP therefore represents a cornerstone of the web service architecture, enabling diverse
applications to easily exchange services and data.

Although still in its infancy, SOAP has received widespread industry support. Dozens of
SOAP implementations now exist, including implementations for Java, COM, Perl, C#,
and Python. At the same time, hundreds of SOAP services are blossoming across the
Web.

This chapter aims to provide you with the essentials of SOAP. The following topics are
covered:

• A quick overview of the SOAP protocol and a sample SOAP conversation
• Details about the SOAP XML Message specification
• An overview of the SOAP encoding rules, including rules for simple types, arrays,

and structs
• Details about using SOAP via HTTP
• An overview of the W3C activities related to SOAP
• An overview of the four main SOAP implementations and a description of the

main SOAP interoperability issues

3.1 SOAP 101

The SOAP specification defines three major parts:

SOAP envelope specification

The SOAP XML Envelope defines specific rules for encapsulating data being
transferred between computers. This includes application-specific data, such as the
method name to invoke, method parameters, or return values. It can also include
information about who should process the envelope contents and, in the event of
failure, how to encode error messages.

Web Services Essentials

 44

Data encoding rules

To exchange data, computers must agree on rules for encoding specific data types.
For example, two computers that process stock quotes need an agreed-upon rule for
encoding float data types; likewise, two computers that process multiple stock quotes
need an agreed-upon rule for encoding arrays. SOAP therefore includes its own set
of conventions for encoding data types. Most of these conventions are based on the
W3C XML Schema specification.

RPC conventions

SOAP can be used in a variety of messaging systems, including one-way and two-
way messaging. For two-way messaging, SOAP defines a simple convention for
representing remote procedure calls and responses. This enables a client application
to specify a remote method name, include any number of parameters, and receive a
response from the server.

To examine the specifics of the SOAP protocol, we begin by presenting a sample SOAP
conversation. XMethods.net provides a simple weather service, listing current temperature
by zip code. (See Figure 3-1.) The service method, getTemp , requires a zip code string and
returns a single float value.

Figure 3-1. SOAP in action: connecting to the XMethods weather service

3.1.1 The SOAP Request

The client request must include the name of the method to invoke and any required
parameters. Here is a sample client request sent to XMethods:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getTemp
 xmlns:ns1="urn:xmethods-Temperature"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <zipcode xsi:type="xsd:string">10016</zipcode>
 </ns1:getTemp>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Web Services Essentials

 45

There are a couple of important elements to note here. First, the request includes a single
mandatory Envelope element, which in turn includes a mandatory Body element.

Second, a total of four XML namespaces are defined. Namespaces are used to
disambiguate XML elements and attributes, and are often used to reference external
schemas. In our sample SOAP request, we'll use namespaces to disambiguate identifiers
associated with the SOAP Envelope (http://schemas.xmlsoap.org/soap/envelope/), data
encoding via XML Schemas (http://www.w3.org/2001/XMLSchema-instance and
http://www.w3.org/2001/XMLSchema), and application identifiers specific to XMethods
(urn:xmethods-Temperature). This enables application modularity, while also providing
maximum flexibility for future changes to the specifications.

The Body element encapsulates the main "payload" of the SOAP message. The only
element is getTemp , which is tied to the XMethods namespace and corresponds to the
remote method name. Each parameter to the method appears as a subelement. In our case,
we have a single zip code element, which is assigned to the XML Schema xsd:string data
type and set to 10016. If additional parameters are required, each can have its own data
type.

3.1.2 The SOAP Response

Here is the SOAP response from XMethods:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getTempResponse
 xmlns:ns1="urn:xmethods-Temperature"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <return xsi:type="xsd:float">71.0</return>
 </ns1:getTempResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Just like the request, the response includes Envelope and Body elements, and the same four
XML namespaces. This time, however, the Body element includes a single
getTempResponse element, corresponding to our initial request. The response element
includes a single return element, indicating an xsd:float data type. As of this writing, the
temperature for zip code 10016 is 71 degrees Fahrenheit.

3.2 The SOAP Message

If you are eager to start coding your own SOAP applications, you may want to skip ahead
to the Section 3.6 section, later in this chapter. Otherwise, the following section provides
additional details regarding the SOAP specification itself.

A one-way message, a request from a client, or a response from a server is officially
referred to as a SOAP message. Every SOAP message has a mandatory Envelope element,
an optional Header element, and a mandatory Body element. (See Figure 3-2.) Each of

Web Services Essentials

 46

these elements has an associated set of rules, and understanding the rules will help you
debug your own SOAP applications.

Figure 3-2. Main elements of the XML SOAP message

3.2.1 Envelope

Every SOAP message has a root Envelope element. In contrast to other specifications,
such as HTTP and XML, SOAP does not define a traditional versioning model based on
major and minor release numbers (e.g., HTTP 1.0 versus HTTP 1.1). Rather, SOAP uses
XML namespaces to differentiate versions. The version must be referenced within the
Envelope element. For example:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

The SOAP 1.1 namespace URI is http://schemas.xmlsoap.org/soap/envelope/, whereas the
SOAP 1.2 namespace URI is http://www.w3.org/2001/09/soap-envelope. [1] If the Envelope
is in any other namespace, it is considered a versioning error.

[1] The exact value of the SOAP 1.2 envelope namespace will likely change to reflect the final date of
the SOAP 1.2 release. The value, http://www.w3.org/2001/09/soap-envelope reflects the
specification from September, 2001.

3.2.2 Header

The optional Header element offers a flexible framework for specifying additional
application-level requirements. For example, the Header element can be used to specify a
digital signature for password-protected services; likewise, it can be used to specify an
account number for pay-per-use SOAP services. Many current SOAP services do not
utilize the Header element, but as SOAP services mature, the Header framework provides
an open mechanism for authentication, transaction management, and payment
authorization.

The details of the Header element are intentionally open-ended, thereby providing
maximum flexibility for application providers. The protocol does, however, specify two
header attributes:

Web Services Essentials

 47

Actor attribute

The SOAP protocol defines a message path as a list of SOAP service nodes. Each of
these intermediate nodes can perform some processing and then forward the message
to the next node in the chain. By setting the Actor attribute, the client can specify the
recipient of the SOAP header.

MustUnderstand attribute

Indicates whether a Header element is optional or mandatory. If set to true ,[2] the
recipient must understand and process the Header attribute according to its defined
semantics, or return a fault. (See Table 3-2 for the MustUnderstand fault code.)

[2] SOAP 1.1 uses integer values of 1/0 for the MustUnderstand attribute; SOAP 1.2 uses
Boolean values of true/1/false/0.

The Header specifies a payment account, which must be understood and processed by the
SOAP server. Here is an example Header :

<SOAP-ENV:Header>
 <ns1:PaymentAccount xmlns:ns1="urn:ecerami" SOAP-ENV: mustUnderstand="true">
 orsenigo473
 </ns1:PaymentAccount >
</SOAP-ENV:Header>

3.2.3 Body

The Body element is mandatory for all SOAP messages. As we have already seen, typical
uses of the Body element include RPC requests and responses.

3.2.4 Fault

In the event of an error, the Body element will include a Fault element. The fault
subelements are defined in Table 3-1 and include the faultCode , faultString , faultActor
, and detail elements. Predefined SOAP fault codes are defined in Table 3-2. The
following code is a sample Fault. The client has requested a method named
ValidateCreditCard , but the service does not support such a method. This represents a
client request error, and the server returns the following SOAP response:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode xsi:type="xsd:string">SOAP-ENV:Client</faultcode>
 <faultstring xsi:type="xsd:string">
 Failed to locate method (ValidateCreditCard) in class
 (examplesCreditCard) at /usr/local/ActivePerl-5.6/lib/
 site_perl/5.6.0/SOAP/Lite.pm line 1555.
 </faultstring>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Web Services Essentials

 48

Table 3-1. SOAP fault subelements

Element name Description

faultCode A text code used to indicate a class of errors. See Table 3-2 for a listing of
predefined fault codes.

faultString A human-readable explanation of the error.

faultActor

A text string indicating who caused the fault. This is useful if the SOAP
message travels through several nodes in the SOAP message path, and the
client needs to know which node caused the error. A node that does not act
as the ultimate destination must include a faultActor element.

detail An element used to carry application-specific error messages. The detail
element can contain child elements, called detail entries.

Table 3-2. SOAP fault codes

Name Description

SOAP-
ENV:VersionMismatch

Indicates that the SOAP Envelope element included an invalid
namespace, signifying a version mismatch.

SOAP-
ENV:MustUnderstand

Indicates that the recipient is unable to properly process a Header
element with a mustUnderstand attribute set to true. This ensures
that mustUnderstand elements are not silently ignored.

SOAP-ENV:Client
Indicates that the client request contained an error. For example,
the client has specified a nonexistent method name, or has
supplied the incorrect parameters to the method.

SOAP-ENV:Server
Indicates that the server is unable to process the client request. For
example, a service providing product data may be unable to
connect to the database.

 3.3 SOAP Encoding

SOAP includes a built-in set of rules for encoding data types. This enables the SOAP
message to indicate specific data types, such as integers, floats, doubles, or arrays. Most
of the time, the encoding rules are implemented directly by the SOAP toolkit you choose,
and are therefore hidden from you. It is nonetheless useful to understand the basics of
SOAP encoding, particularly if you are intercepting SOAP messages and trying to debug
an application. Note also that while the W3C specification encourages the use of SOAP
encoding rules, these rules are not required; this enables you to choose a different encoding
schema, should the need arise.

When exploring the SOAP encoding rules, it is important to note that the XML 1.0
specification does not include rules for encoding data types. The original SOAP
specification therefore had to define its own data encoding rules. Subsequent to early
drafts of the SOAP specification, the W3C released the XML Schema specification. The
XML Schema Part 2: Datatypes specification provides a standard framework for encoding
data types within XML documents. The SOAP specification therefore adopted the XML
Schema conventions. However, even though the latest SOAP specification adopts all the

Web Services Essentials

 49

built-in types defined by XML Schema, it still maintains its own convention for defining
constructs not standardized by XML Schema, such as arrays and references. Arrays are
discussed in detail in the Section 3.3.2 section, later in this chapter.

SOAP data types are divided into two broad categories: scalar types and compound types.
Scalar types contain exactly one value, such as a last name, price, or product description.
Compound types contain multiple values, such as a purchase order or a list of stock quotes.
Compound types are further subdivided into arrays and structs. Arrays contain multiple
values, each of which is specified by an ordinal position. Structs also contain multiple
values, but each element is specified by an accessor name.

The encoding style for a SOAP message is set via the SOAP-ENV:encodingStyle attribute.
To use SOAP 1.1 encoding, use the value http://schemas.xmlsoap.org/soap/encoding/.
To use SOAP 1.2 encoding, use the value http://www.w3.org/2001/09/soap-encoding.

3.3.1 Scalar Types

For scalar types, SOAP adopts all the built-in simple types specified by the XML Schema
specification. This includes strings, floats, doubles, and integers. Table 3-3 lists the main
simple types, excerpted from the XML Schema Part 0: Primer
(http://www.w3.org/TR/2000/WD-xmlschema-0-20000407/).

Table 3-3. A list of the main XML Schema built-in simple types

Simple type Example(s)

string Web services

Boolean true, false, 1, 0

float -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN

double -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN

decimal -1.23, 0, 123.4, 1000.00

binary 100010

integer -126789, -1, 0, 1, 126789

nonPositiveInteger -126789, -1, 0

negativeInteger -126789, -1

long -1, 12678967543233

int -1, 126789675

short -1, 12678

byte -1, 126

nonNegativeInteger 0, 1, 126789

unsignedLong 0, 12678967543233

unsignedInt 0, 1267896754

Web Services Essentials

 50

Simple type Example(s)

unsignedShort 0, 12678

unsignedByte 0, 126

positiveInteger 1, 126789

date 1999-05-31

time 13:20:00.000, 13:20:00.000-05:00

For example, here is a SOAP response with a double data type:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getPriceResponse
 xmlns:ns1="urn:examples:priceservice"
 SOAP-ENV:encodingStyle="http://www.w3.org/2001/09/soap-encoding">
 <return xsi:type="xsd:double">54.99</return>
 </ns1:getPriceResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

As you can see, the xsi:type attribute is set to xsd:double , indicating a return double
value.

The SOAP specification provides several options for indicating the data type of a specific
XML element. The first option is to specify an xsi:type attribute for each element. The
second option is to store data type information within an external XML Schema or even
within human-readable documentation. SOAP toolkits vary in their implementation of this
requirement. The Apache SOAP toolkit, for example, automatically includes an xsi:type
attribute with every element, whereas the Microsoft SOAP toolkit omits the xsi:type
attribute and assumes an external XML Schema definition. The examples within this
chapter are derived from Apache SOAP and therefore use the xsi:type attribute. See the
Section 3.6.1 section, later in this chapter, for additional details.

3.3.2 Compound Types

SOAP arrays have a very specific set of rules, which require that you specify both the
element type and array size. SOAP also supports multidimensional arrays, but not all
SOAP implementations support multidimensional functionality. (Check your chosen
SOAP toolkit for details.)

To create an array, you must specify it as an xsi:type of Array. The array must also
include an arrayType attribute. This attribute is required to specify the data type for the
contained elements and the dimension(s) of the array. For example, the following attribute
specifies an array of 10 double values: arrayType="xsd:double[10]". In contrast, the
following attribute specifies a two-dimensional array of strings:
arrayType="xsd:string[5,5]".

Web Services Essentials

 51

Here is a sample SOAP response with an array of double values:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getPriceListResponse
 xmlns:ns1="urn:examples:pricelistservice"
 SOAP-ENV:encodingStyle="http://www.w3.org/2001/09/soap-encoding">
 <return
 xmlns:ns2="http://www.w3.org/2001/09/soap-encoding"
 xsi:type="ns2:Array" ns2:arrayType="xsd:double[2]">
 <item xsi:type="xsd:double">54.99</item>
 <item xsi:type="xsd:double">19.99</item>
 </return>
 </ns1:getPriceListResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note that the arrayType is set to xsd:double[2]. Each element in the array is specified as
an item element.

In contrast to arrays, structs contain multiple values, but each element is specified with a
unique accessor element. For example, consider an item within a product catalog. In this
case, the struct might contain a product SKU, product name, description, and price. Here
is how such a struct would be represented in a SOAP message:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getProductResponse
 xmlns:ns1="urn:examples:productservice"
 SOAP-ENV:encodingStyle="http://www.w3.org/2001/09/soap-encoding">
 <return xmlns:ns2="urn:examples" xsi:type="ns2:product">
 <name xsi:type="xsd:string">Red Hat Linux</name>
 <price xsi:type="xsd:double">54.99</price>
 <description xsi:type="xsd:string">
 Red Hat Linux Operating System
 </description>
 <SKU xsi:type="xsd:string">A358185</SKU>
 </return>
 </ns1:getProductResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Each element in a struct is specified with a unique accessor name. For example, the
message above includes four accessor elements: name , price , description , and SKU. Each
element can have its own data type; for example, name is specified as a string , whereas
price is specified as a double.

All of the sample SOAP messages (including arrays, structs, and
literal XML documents) within this section were created with the
Apache SOAP toolkit. See Chapter 5 for complete details.

Web Services Essentials

 52

3.3.3 Literal Encoding

As previously noted, you are not required to use the SOAP encoding style. In fact,
occasionally you may want to ignore the SOAP encoding rules completely and embed an
entire XML document (or just a portion of the document) directly into your SOAP
message. Doing so is referred to as literal XML encoding, and it requires that you specify
a literal XML encoding style. Within Apache SOAP, the literal XML style is specified
with the namespace http://xml.apache.org/xml-soap/literalxml.

For example, the following is a second option for encoding product information. Rather
than encoding the product as a SOAP struct, the data is encoded as a literal XML
document:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getProductResponse
 xmlns:ns1="urn:examples:XMLproductservice"
 SOAP-ENV:encodingStyle=
 "http://xml.apache.org/xml-soap/literalxml">
 <return>
 <product sku="A358185">
 <name>Red Hat Linux</name>
 <description>Red Hat Linux Operating System</description>
 <price>54.99</price></product>
 </return>
 </ns1:getProductResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

For a more extensive discussion of SOAP encoding rules, refer to
Programming Web Services with SOAP by James Snell, Doug
Tidwell, and Pavel Kulchenko (O'Reilly).

3.4 SOAP via HTTP

SOAP is not tied to any one transport protocol. In fact, SOAP can be transported via
SMTP, FTP, IBM's MQSeries, or Microsoft Message Queuing (MSMQ). However, the
SOAP specification includes details on HTTP only, and HTTP remains the most popular
SOAP transport protocol.

Quite logically, SOAP requests are sent via an HTTP request and SOAP responses are
returned within the content of the HTTP response. While SOAP requests can be sent via
an HTTP GET, the specification includes details on HTTP POST only. (HTTP POST is
preferred because most servers place a character limit on GET requests.) Additionally,
both HTTP requests and responses are required to set their content type to text/xml.

As an additional requirement, clients must specify a SOAPAction header. The SOAPAction
header is a server-specific URI used to indicate the intent of the request. This makes it
possible to quickly determine the nature of the SOAP request, without actually examining

Web Services Essentials

 53

the SOAP message payload. In practice, the header is frequently used by firewalls as a
mechanism for blocking out SOAP requests or for quickly dispatching SOAP messages to
specific SOAP servers.

The SOAP specification mandates that the client must provide a SOAPAction header, but
the actual value of the SOAPAction header is dependent on the SOAP server
implementation. For example, to access the AltaVista BabelFish Translation service,
hosted by XMethods, you must specify the urn:xmethodsBabelFish#BabelFish as the
SOAPAction header. Even if the server does not require a full SOAPAction header, the client
must specify an empty string (""), or a null value. For example:

SOAPAction: ""
SOAPAction:

Here is a sample request sent via HTTP to the XMethods Babelfish Translation service:

POST /perl/soaplite.cgi HTTP/1.0
Host: services.xmethods.com
Content-Type: text/xml; charset=utf-8
Content-Length: 538
SOAPAction: "urn:xmethodsBabelFish#BabelFish"

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:BabelFish
 xmlns:ns1="urn:xmethodsBabelFish"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <translationmode xsi:type="xsd:string">en_fr</translationmode>
 <sourcedata xsi:type="xsd:string">Hello, world!</sourcedata>
 </ns1:BabelFish>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note the content type and the SOAPAction header. Also note that the BabelFish method
requires two String parameters. The translation mode en_fr will translate from English to
French.

Here is the response from XMethods:

HTTP/1.1 200 OK
Date: Sat, 09 Jun 2001 15:01:55 GMT
Server: Apache/1.3.14 (Unix) tomcat/1.0 PHP/4.0.1pl2
SOAPServer: SOAP::Lite/Perl/0.50
Cache-Control: s-maxage=60, proxy-revalidate
Content-Length: 539
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <namesp1:BabelFishResponse xmlns:namesp1="urn:xmethodsBabelFish">
 <return xsi:type="xsd:string">Bonjour, monde!</return>

Web Services Essentials

 54

 </namesp1:BabelFishResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP responses delivered via HTTP are required to follow the same HTTP status codes.
For example, a status code of 200 OK indicates a successful response. A status code of 500
Internal Server Error indicates that there is a server error and that the SOAP response
includes a Fault element.

Many people, including members of the W3C XML Protocol
Working Group, have argued that the meaning and use of the
SOAPAction header is extremely vague. As a result, SOAP 1.2 has
changed the status of SOAPAction from required to optional. Future
versions of the specification may maintain the header, but deprecate
it, in order to ensure backward compatibility.

3.5 SOAP and the W3C

SOAP 1.1 was originally submitted to the W3C in May 2000. Official submitters included
large companies, such as Microsoft, IBM, and Ariba, and smaller companies, such as
UserLand Software and DevelopMentor.

In September 2000, the W3C created a new XML Protocol Working Group. The goal of
the group is to hammer out an XML protocol for information exchange and recommend
the protocol as an official W3C recommendation.

In July 2001, the XML Protocol Working Group released a "working draft" of SOAP 1.2.
Within the W3C, this document is officially a work in progress, meaning that the
document is likely to be updated many times before it is finalized. However, so far, SOAP
1.2 does not represent a radical departure from SOAP 1.1 and is primarily aimed at
clarifying ambiguous issues within the SOAP 1.1 specification. Most developers should
therefore find the transition from 1.1 to 1.2 relatively painless.

The W3C has broken the SOAP 1.2 specification into two parts. Part
I describes the SOAP messaging framework and envelope
specification. Part II describes the SOAP encoding rules, the SOAP-
RPC convention, and HTTP binding details.

Once finalized, SOAP may work its way up to official W3C recommendation status. Until
that time, however, it is important to note that SOAP has no official commitment from the
W3C. Even SOAP 1.1 has a status of "Note", meaning that it is currently open to the W3C
membership for discussion.

For the latest details on the XML Protocol Working Group, go to
http://www.w3.org/2000/xp/Group/. The working group also hosts a public email
discussion list, available at xml-dist-app@w3.org.

Web Services Essentials

 55

SOAP originally stood for Simple Object Access Protocol. The W3C
was uncomfortable with maintaining this definition, primarily
because the specification does not actually mandate the use of
objects. On the other hand, the W3C was also reluctant to define a
new name, such as XML Protocol, or XML-P, primarily because the
term SOAP was already well established among developers. Hence,
in a bizarre twist of fate, the name SOAP stays, but the W3C now
says it no longer stands for anything.

SOAP Version 1.1 is available online at
http://www.w3.org/TR/SOAP/. The working draft of SOAP Version
1.2 is available at http://www.w3.org/TR/soap12/. Note that the
W3C also hosts a submission for "SOAP Messages with
Attachments", which separates from the core SOAP specification.
This specification enables SOAP messages to include binary
attachments, such as images and sound files. For full details, see the
W3C Note at http://www.w3.org/TR/SOAP-attachments.

3.6 SOAP Implementations

Dozens of SOAP implementations now freely exist on the Internet. In fact, as of this
writing, SOAPWare.org has referenced a total of 65 implementations. Here are four of the
most popular and widely cited implementations.

Apache SOAP (http://xml.apache.org/soap/)

Open source Java implementation of the SOAP protocol; based on the IBM SOAP4J
implementation

Microsoft SOAP ToolKit 2.0 (http://msdn.microsoft.com/soap/default.asp)

COM implementation of the SOAP protocol for C#, C++, Visual Basic, or other
COM-compliant languages

SOAP::Lite for Perl (http://www.soaplite.com/)

Perl implementation of the SOAP protocol, written by Paul Kulchenko, that includes
support for WSDL and UDDI

GLUE from the Mind Electric (http://www.themindelectric.com)

Java implementation of the SOAP protocol that includes support for WSDL and
UDDI

Web Services Essentials

 56

Complete information on Apache SOAP is provided in Chapter 4 and Chapter 5.
SOAP::Lite and GLUE are discussed briefly in Chapter 6. For a more complete list, or to
find a SOAP implementation for your language or platform of choice, check out
http://www.soapware.org/directory/4/implementations.

3.6.1 SOAP Interoperability

SOAP was specifically designed to solve platform and language interoperability
problems. It is therefore ironic that SOAP itself has its own interoperability problems, but
alas, this is currently true. For example, as of this writing, there are known interoperability
issues between Apache SOAP, SOAP::Lite for Perl, and the Microsoft SOAP ToolKit.
Apache SOAP requires all parameters to be typed via the xsi:type attribute, whereas the
Microsoft SOAP ToolKit does not require this; each implementation provides different
levels of enforcement for the mustUnderstand attribute; and Microsoft SOAP supports
multidimensional arrays, whereas Apache SOAP and SOAP::Lite for Perl support only
one-dimensional arrays.

The interoperability problems stem from two main issues. First, and foremost, SOAP is
still in its infancy. SOAP was submitted to the W3C in May 2000 and has yet to receive a
formal recommendation from the W3C. Second, dozens of SOAP implementations
currently exist, and it will take much effort to ensure that they all interoperate with each
other.

Hopefully, all the interoperability issues will be worked out soon. The implementations
themselves will mature and the SOAP specification will also mature as it makes its way
through the W3C process. For additional information on SOAP interoperability, check out
the Microsoft Interoperability Site (http://www.mssoapinterop.org) or the XMethods
Interoperability Lab (http://www.xmethods.net/ilab/). Each of these sites provides a suite
of interoperability tests and includes updated results for most of the major SOAP
implementations.

Web Services Essentials

 57

Chapter 4. Apache SOAP Quick Start

Apache SOAP is an open source Java implementation of the SOAP specification. The
original Apache code is based on IBM's SOAP4J, which IBM donated to the Apache open
source community. Like all Apache projects, Apache SOAP is free for both
noncommercial and commercial purposes. The source code is readily available, and an
active group of programmers is busy adding new features for future releases.

This chapter provides a quick start introduction to using Apache SOAP. The goal is to
present the most important essentials so that you can start coding and get to work. Four
specific topics will be covered:

• Installation instructions for using Apache SOAP with the open source Jakarta
Tomcat server

• A "Hello, SOAP!" client/service application for demonstrating basic SOAP RPC
coding

• An overview of deploying and managing SOAP services via the web-based
administration tool and the command-line ServiceManagerClient tool

• Tips for viewing live SOAP conversations using the TcpTunnelGui tool

4.1 Installing Apache SOAP

If you are only creating SOAP clients, all you need to do is download the correct suite of
files and include the relevant JAR files within your CLASSPATH (details to follow). If,
however, you are creating SOAP services, you need the right files plus a Java servlet
engine. For example, you can install Apache SOAP to BEA WebLogic Application
Server, IBM WebSphere, or Allaire JRun. This section includes specific instructions for
installing to the open source Apache Jakarta Tomcat 3.2 server. Tomcat is free, easy to set
up, and gets you running in just a few minutes.

4.1.1 Downloading the Required Java Files

To install Apache SOAP to Jakarta Tomcat, you need to download five distribution files.
First, download the Tomcat and Apache SOAP distributions:

• Apache Jakarta Tomcat: http://jakarta.apache.org/tomcat/
• Apache SOAP: http://xml.apache.org/soap/

Then, download the Xerces Java Parser, Java Mail, and JavaBeans Activation Framework
distributions:

• Xerces Java Parser (v1.1.2 or higher): http://xml.apache.org/xerces-j/index.html
• Java Mail: http://java.sun.com/products/javamail/
• JavaBeans Activation Framework:

http://java.sun.com/products/javabeans/glasgow/jaf.html

Web Services Essentials

 58

You need a Java servlet engine to set up SOAP services because the
Apache SOAP service, called rpcrouter , is really just a Java servlet
that has been configured to receive SOAP requests.

4.1.2 Setting Up the Tomcat CLASSPATH

Next, you need to set the CLASSPATH for Jakarta Tomcat. Specifically, you must
include the following JAR files and directories:

• soap.jar
• xerces.jar
• mail.jar
• activation.jar
• Directory for your SOAP application class files

To set the Tomcat CLASSPATH, edit the server startup file (on Windows, this file is
tomcat.bat; on Unix, it is tomcat.sh). For example, I added the following lines to the
section entitled "Set Up the Runtime Classpath" in my tomcat.bat file:

echo Adding xerces.jar to beginning of CLASSPATH
set CP=c:\web_services\lib\xerces.jar;%CP%
echo Adding soap.jar to CLASSPATH
set CP=%CP%;C:\web_services\lib\soap.jar
echo Adding mail.jar and activation.jar to CLASSPATH
set CP=%CP%;c:\web_services\lib\mail.jar;c:\web_services\lib\activation.jar
echo Adding SOAP Examples Directory
set CP=%CP%;c:\web_services\examples\classes

Note that the Tomcat distribution includes its own XML parser, but the built-in parser is
not namespace-aware and therefore will not work with Apache SOAP. Hence, you need to
force Tomcat to use Xerces (1.1.2 or higher) by prepending xerces.jar to the very
beginning of your CLASSPATH. For example:

set CP=c:\web_services\lib\xerces.jar;%CP%

4.1.3 Configuring Tomcat

As the final step, you must register the Apache SOAP service with Tomcat. To do so, just
add the following lines to the Tomcat configuration file (conf/server.xml):

<Context path="/soap" docBase="C:\web_services\soap-2_2\webapps\soap"
 debug="1" reloadable="true">
</Context>

Make sure to set the correct docBase to reflect your local installation.

4.1.4 Starting Tomcat

You are now ready to start the Tomcat server. On Windows, run the startup.bat file. On
Unix, run startup.sh. If you are running Windows, you should see the startup window in
Figure 4-1. By default, Tomcat will start on port 8080, and you should see the text
"Starting HttpConnectionHandler on 8080" within the startup window.

Web Services Essentials

 59

Figure 4-1. Starting Tomcat

4.1.5 Running the SOAP Administrator

With Tomcat running, you can now access the SOAP Administrator. Open a browser
window, and go to http://localhost:8080/soap. If you see the welcome screen in Figure 4-
2 , everything is installed correctly, and you can start deploying your own SOAP services.

Figure 4-2. Apache SOAP welcome screen

4.2 Hello, SOAP!

With Apache SOAP now installed, we're ready to tackle our first SOAP application,
"Hello, SOAP!" The "Hello, SOAP!" service provides a single sayHello() method, which
accepts a first-name parameter and returns a personalized greeting. We'll begin by
exploring the general architecture outlined in Figure 4-3. This diagram includes all the
elements responsible for processing data and traces the steps of a sample "Hello, SOAP!"
conversation.

1. The Apache SOAP client generates a SOAP request and sends the request via an
HTTP POST. The client request specifies the helloservice service and the
sayHello method. The request also includes a single parameter called firstName.

2. The Jakarta Tomcat server receives the incoming request and forwards it to the
Apache rpcrouter servlet.

Web Services Essentials

 60

3. The rpcrouter looks up the requested helloservice, instantiates a HelloService
object, and invokes the sayHello() method.

4. The HelloService object extracts the firstName parameter (e.g., "Amy") and
returns a greeting (e.g., "Hello, Amy!").

5. The rpcrouter captures the greeting, packages the result into a SOAP response,
and returns the response to the client.

Figure 4-3. Apache SOAP architecture

4.2.1 Service Code

We will examine the service-side code first. (See Example 4-1 .) The most striking aspect
of the service code is that this is just a regular Java class. There is no need to import any
Apache SOAP-specific libraries or to implement any SOAP-specific interfaces. Rather,
you just need to implement the methods supported by your service. In Example 4-1 , we
provide an implementation of the sayHello() method. This method takes a single String
parameter, firstName , and returns a greeting. That's all there is to it!

Example 4-1. HelloService.java

package com.ecerami.soap;

/**
 * "Hello, SOAP!" SOAP Service
 * Provides a personalized greeting to any client application
 */
public class HelloService {

 /**
 * Says Hello to Client
 */
 public String sayHello (String firstName) {
 return new String ("Hello, "+firstName+"!");
 }
}

Web Services Essentials

 61

4.2.2 Client Code

In contrast to the service code, writing client code does require interfacing with the Apache
SOAP API. Regardless of the complexity, however, client code generally follows the
same five steps:

1. Create an RPC Call object. The Call object encapsulates all the details for
invoking a remote SOAP service. For example, it includes the SOAP service name
and the method name to invoke.

2. Build a list of parameters to pass to the remote service. Apache SOAP includes
built-in support for passing a large number of data types, including primitive data
types, strings, vectors, and arrays. As we will see in Chapter 5, Apache SOAP also
supports the passing of JavaBeans and literal XML documents.

3. Invoke the remote method. Behind the scenes, the client packages the relevant
data into a SOAP request, sends it to the SOAP server, and receives and parses the
SOAP response.

4. Check for any errors within the SOAP response.
5. Extract the return value from the SOAP response.

The complete client code for the "Hello, SOAP!" application is shown in Example 4-2.

Example 4-2. HelloClient.java

package com.ecerami.soap;

/**
 * "Hello, SOAP!" SOAP Client
 * usage: java HelloClient first_name
*/
import java.net.*;
import java.util.Vector;
import org.apache.soap.SOAPException;
import org.apache.soap.Fault;
import org.apache.soap.Constants;
import org.apache.soap.rpc.Call;
import org.apache.soap.rpc.Parameter;
import org.apache.soap.rpc.Response;

public class HelloClient {
 /**
 * Static Main method
 */
 public static void main (String[] args) {
 String firstName = args[0];
 System.out.println ("Hello SOAP Client");
 HelloClient helloClient = new HelloClient();
 try {
 String greeting = helloClient.getGreeting(firstName);
 System.out.print (greeting);
 } catch (SOAPException e) {
 String faultCode = e.getFaultCode();
 String faultMsg = e.getMessage();
 System.err.println ("SOAPException Thrown (details below):");
 System.err.println ("FaultCode: "+faultCode);
 System.err.println ("FaultMessage: "+faultMsg);
 } catch (MalformedURLException e) {
 System.err.println (e);
 }
 }

Web Services Essentials

 62

 /**
 * getGreeting Method
 */
 public String getGreeting (String firstName)
 throws SOAPException, MalformedURLException {

 // Create SOAP RPC Call Object
 Call call = new Call ();

 // Set Encoding Style to standard SOAP encoding
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);

 // Set Object URI and Method Name
 call.setTargetObjectURI ("urn:examples:helloservice");
 call.setMethodName ("sayHello");

 // Set Method Parameters
 Parameter param = new Parameter("firstName", String.class,
 firstName, Constants.NS_URI_SOAP_ENC);

 Vector paramList = new Vector ();
 paramList.addElement (param);
 call.setParams (paramList);

 // Set the URL for the Web Service
 URL url = new URL ("http://localhost:8080/soap/servlet/rpcrouter");

 // Invoke the Service
 Response resp = call.invoke (url, "");

 // Check for Faults
 if (!resp.generatedFault()) {
 // Extract Return value
 Parameter result = resp.getReturnValue ();
 String greeting = (String) result.getValue();
 return greeting;
 }
 else {
 // Extract Fault Code and String
 Fault f = resp.getFault();
 String faultCode = f.getFaultCode();
 String faultString = f.getFaultString();
 System.err.println("Fault Occurred (details follow):");
 System.err.println("Fault Code: "+faultCode);
 System.err.println("Fault String: "+faultString);
 return new String ("Fault Occurred. No greeting for you!");
 }
 }
}

This code expects a single command-line argument, indicating a first name. For example,
the command line:

java com.ecerami.soap.HelloClient Amy

will generate the following output:

Hello SOAP Client
Hello, Amy!

The bulk of the SOAP-specific code occurs in the getGreeting() method. So we'll begin
our code dissection there.

Web Services Essentials

 63

4.2.2.1 The RPC Call object

To generate a SOAP request, you first instantiate an org.apache.soap.rpc.Call object:

Call call = new Call ();

The Call object encapsulates all the details of your SOAP request. For example, we need
to set the SOAP encoding style. For the default SOAP encoding style, use
Constants.NS_URI_SOAP_ENC :

call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);

Other encoding styles will be discussed in Chapter 5. The Call object also encapsulates
the URI of the desired SOAP service and the method name to invoke:

call.setTargetObjectURI ("urn:examples:helloservice");
call.setMethodName ("sayHello");

4.2.2.2 Setting parameters

To pass data to a remote method, you must create one or more parameters. For each
parameter, you must instantiate an org.apache.soap.rpc.Parameter object. The Parameter
constructor expects four arguments:

• Parameter name.
• Class type; for example, String.class , Integer.class , or Double.class.
• Parameter value.
• Encoding style. If set to null , the parameter will use the encoding style of the

Class object.

API:org.apache.soap.rpc.Parameter
Parameter (String name, Class type, Object value, String encodingStyleURI)

Constructs a new Parameter object. Takes the following parameters:
name

The parameter name.
type

The Java class type; for example, String.class, Double.class, or String[].class.
value

The parameter value.
encodingStyleURI

The encoding-style URI for the parameter. If set to null , the parameter will
default to the style specified for the Call object.

public java.lang.Object getValue()

Retrieves the value of the Parameter object.

Web Services Essentials

 64

API: org.apache.soap.rpc.Call
void setEncodingStyleURI(String encodingStyleURI)

Sets the encoding style URI for the parameters passed inside the SOAP
Envelope. Takes the following parameter:
encodingStyleURI

The encoding style URI. Use Constants.NS_URI_SOAP_ENC for the default
encoding style: http://schemas.xmlsoap.org/soap/encoding/. Use
Constants.NS_URI_LITERAL_XML for passing literal XML documents.

void setTargetObjectURI(String targetObjectURI)

Sets the target object URI. Takes the following parameter:
targetObjectURI

The URI of the remote service. This is usually the URN of the service to be
invoked; for example, urn:examples:helloservice.

void setMethodName(String methodName)

Sets the remote method name. Takes the following parameter:
methodName

The name of the remote method; for example, sayHello .
void setParams(Vector params)

Sets the vector of parameters that will be passed from client to server. Takes the
following parameter:
params

The vector of parameters. The vector must consist of
org.apache.soap.rpc.Parameter objects.

Response invoke(URL url, String SOAPActionURI) throws SOAPException

Invokes the remote method. Behind the scenes, the method will connect to the
specified server, send the SOAP request, and retrieve and parse the SOAP
response. In the event of fatal errors, including failed network connections or
violations of the SOAP protocol, the method will throw a SOAPException. Takes
the following parameter:
url

The absolute URL of the SOAP server.
SOAPActionURI

Optional SOAPAction HTTP header. SOAPAction is generally used to indicate the
URI for the SOAP service. An empty string ("") indicates that the SOAP target
is specified in the HTTP request URI.

Web Services Essentials

 65

For example, we add a single String parameter:

Parameter param = new Parameter("firstName", String.class,
 firstName, Constants.NS_URI_SOAP_ENC);

Passing primitive data types (e.g., ints , doubles , or floats) follows an identical process.
The only difference is that you must specify the object wrapper, such as Integer , Double ,
or Float. For example, the following code creates a Double parameter:

discountParam = new Parameter ("discount", Double.class,
 discount, Constants.NS_URI_SOAP_ENC);

Each parameter is added to a Vector object, and this entire Vector object is then passed to
the Call object via the setParams() method:

Vector paramList = new Vector ();
paramList.addElement (param);
call.setParams (paramList);

When you create parameters, each parameter has a name/value pair, but the order of the
parameters is critical. Upon receiving your method call, the rpcrouter will unpack each
parameter in the exact order in which it was received and attempt to find a matching
method signature. For example, a SOAP request with two parameters, String firstName
and int age , will attempt to find methodName (String, int). If the client reverses the
parameter order, a "no signature match" error will occur.

4.2.2.3 Invoking a remote service

Once the Call object is set, we are ready to execute the remote service via the invoke()
method. The invoke() method takes two parameters:

The URL of the SOAP server

For the Apache distribution, this is the absolute URL to the rpcrouter servlet; for
example, http://localhost:8080/soap/servlet/rpcrouter.

The SOAPAction header

According to the SOAP specification, the SOAPAction header is a required HTTP
header for client applications sending SOAP requests via HTTP. SOAPAction is
generally used to indicate the URI for the SOAP service. Nonetheless, an empty
string ("") indicates that the SOAP target is specified in the HTTP request URI. The
Apache SOAP server implementation requires that you specify a SOAPAction header,
but it will ignore the actual value. You can therefore safely use an empty string or a
null value.

Our client code specifies the localhost Apache server and an empty string SOAPAction
header:

URL url = new URL ("http://localhost:8080/soap/servlet/rpcrouter");
Response resp = call.invoke (url, "");

Web Services Essentials

 66

If all goes well, the invoke() method will return an org.apache.soap.rpc.Response object.
The Response object encapsulates all data regarding the server SOAP response, including
any return parameters or fault conditions.

4.2.2.4 Checking for errors

Distributed computing that is enabled by SOAP is inherently vulnerable to multiple points
of failure. For example:

• The SOAP server may be down or unable to keep up with a high volume of
transactions.

• The SOAP server may be unable to complete the requested service.
• The SOAP client may be unable to open a network connection.
• The SOAP client may be incompatible with the SOAP server.

There are two groups of SOAP errors: SOAPExceptions and SOAP faults. SOAPExceptions
refer to fatal errors in network connectivity or violations of the SOAP protocol. For
example, if a SOAP server returns a SOAP response, but neglects to include the required
Body element, the client will detect the protocol violation and immediately throw a
SOAPException. In contrast, SOAP faults refer to errors at the application layer. For
example, if a client requests a nonexistent service or method, the SOAP server will
generate a fault and will propagate the fault back to the client. If a remote service method
is unable to complete execution, it too can trigger a fault.

SOAPExceptions are thrown by the Call.invoke() method, whereas SOAP faults are
embedded in the Response object and need to be explicitly extracted.

API: org.apache.soap.SOAPException
String getFaultCode()

Returns the SOAP fault code, identifying the primary origin of the error. A
return value of SOAP-ENV:Client indicates that the client caused the error. A
return value of SOAP-ENV:Server indicates that the server caused the error.

String getMessage()

Returns a human-readable explanation of the error.

API: org.apache.soap.Fault
String getFaultCode()

Returns the SOAP fault code, identifying the primary origin of the error. A
return value of SOAP-ENV:Client indicates that the client caused the error. A
return value of SOAP-ENV:Server indicates that the server caused the error.

String getFaultString()

Returns a human-readable explanation of the error.

Web Services Essentials

 67

HelloClient.java includes code for capturing both SOAPExceptions and SOAP faults. For
example, the main() method captures the SOAPException and displays the cause of the
error:

catch (SOAPException e) {
 String faultCode = e.getFaultCode();
 String faultMsg = e.getMessage();
 System.err.println ("SOAPException Thrown (details below):");
 System.err.println ("FaultCode: "+faultCode);
 System.err.println ("FaultMessage: "+faultMsg);
}

The fault code indicates the origin of the error. A return value of SOAP-ENV: Client
indicates that the client caused the error. A return value of SOAP-ENV: Server indicates that
the server caused the error.

HelloClient.java also checks for SOAP faults by checking the
Response.generatedFault() method. If this method returns true , the code extracts the
Fault object and queries it for details:

Fault f = resp.getFault();
String faultCode = f.getFaultCode();
String faultString = f.getFaultString();
System.err.println("Fault Occurred (details follow):");
System.err.println("Fault Code: "+faultCode);
System.err.println("Fault String: "+faultString);

4.2.2.5 Extracting the return value

For the final step, we extract the return value. To do so, call the
Response.getReturnValue() method. Then call Parameter.getValue() and cast to the
expected class:

if (!resp.generatedFault()) {
 // Extract Return value
 Parameter result = resp.getReturnValue();
 String greeting = (String) result.getValue();
 return greeting;
}

API: org.apache.soap.rpc.Response
boolean generatedFault()

Indicates whether a fault was generated. If this method returns true , use
getFault() to retrieve the embedded fault.

Fault getFault()

Retrieves the embedded Fault object.
Parameter getReturnValue()

Retrieves the return parameter.

Web Services Essentials

 68

4.3 Deploying SOAP Services

There are two ways to deploy new SOAP services. The first option is to use the web-
based administrator. The second is to use the command-line tool.

4.3.1 Web-Based Administrator

To use the web-based administrator, open a new browser, go to http://localhost:8080/soap,
and click the Run the Admin Client link. This screen (see Figure 4-4) provides three basic
tools:

List

To obtain a complete list of all deployed services

Deploy

To deploy a new SOAP service

UnDeploy

To undeploy an existing SOAP service

Figure 4-4. Apache SOAP administration client

To deploy the HelloService class, click the Deploy button.

The Deploy a Service page contains half a dozen fields for deploying your web service.
(See Figure 4-5.)

Web Services Essentials

 69

Uniform Resource Names (URNs)

A Uniform Resource Name (URN) is a Uniform Resource Identifier (URI) that is
both persistent and location-independent. The official URN syntax as detailed in
IETF RFC 2141 is:

<URN> ::= "urn:" <NID> ":" <NSS>

where <NID> is the namespace identifier and <NSS> is the namespace-specific string.
For example, urn:isbn:0596000588 refers to the O'Reilly book, XML in a Nutshell.

Figure 4-5. Apache SOAP: Deploy a Service page

Let's focus on the most important fields:

ID

This field sets the name of your SOAP service. It is recommended that you use the
URN syntax when naming your SOAP service (see the earlier sidebar for details
regarding URNs). For our first example, set the ID to urn:examples:helloservice.

Scope

Each time a SOAP service is invoked, a specific server object handles the request.
Scope defines the lifetime of this instantiated object. Request indicates that the
object will exist during the lifetime of one SOAP request/response cycle. Session
indicates that the object will exist during the entire session between client and server,
and will therefore be maintained across multiple request/response conversations.
Application indicates that only one object is instantiated and will process all
incoming requests. For our first example, set the scope to Request.

Web Services Essentials

 70

Methods

This field includes a complete list of all methods supported by your service.
Methods are separated by whitespace characters. The HelloService class only
supports one method: sayHello.

Java provider

The Java provider is the completely qualified name of the Java service class that will
handle incoming SOAP requests. For "Hello, World!", set the Java provider to
com.ecerami.soap.HelloService. Note that this class must be available via the
Tomcat CLASSPATH. The Static field indicates whether the specified methods are
static. If set to Yes , the object will not be instantiated. The sayHello() method is
not static, and we therefore keep the Static field set to the default of No.

Once you have completed these four fields, click the Deploy button. To verify that your
service has indeed been deployed, click the List button, and you should see your service
displayed. (See Figure 4-6 .)

Figure 4-6. Apache SOAP: Service Listing page

4.3.2 ServiceManagerClient Command-Line Tool

To deploy a new SOAP service, you can also use the Apache command-line tool,
ServiceManagerClient. The command-line tool has the following usage:

Usage: java org.apache.soap.server.ServiceManagerClient
[-auth username:password] url operation arguments

Web Services Essentials

 71

The following operations are supported:

list

Provides a complete list of existing SOAP services

deploy deployment-descriptor-file.xml

Deploys the SOAP service specified in the deployment descriptor file

query servicename

Displays the deployment descriptor of the specified service

undeploy service-name

Undeploys the specified service

To deploy a new SOAP service, you must specify a deployment descriptor file. The
deployment descriptor file contains all the information for your deployed service,
including the service URN, list of service methods, scope, and Java provider. For
example, here is the deployment descriptor for the "Hello, SOAP!" service:

<isd:service
 xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:examples:helloservice" checkMustUnderstands="false">
 <isd:provider type="java" scope="Request" methods="sayHello">
 <isd:java class="com.ecerami.soap.HelloService" static="false"/>
 </isd:provider>
</isd:service>

Note that there is a one-to-one correspondence between the elements and attributes
specified in the deployment descriptor and the HTML form fields of the web
administration tool:

Service element

Specifies the URN for the SOAP service

Provider element

Specifies the service provider type, scope, methods, and Java class

To deploy the "Hello, SOAP!" service via the command-line tool, use the following
command:

java org.apache.soap.server.ServiceManagerClient http://localhost:8080/soap/
 servlet/rpcrouter deploy helloservice.xml

To verify that the service was indeed registered, use the list operation:

java org.apache.soap.server.ServiceManagerClient http://localhost:8080/soap/
 servlet/rpcrouter list

Web Services Essentials

 72

You should see the following output:

Deployed Services:
urn:examples:helloservice

To retrieve the deployment descriptor of an existing service, use the query operation. For
example, the following command:

java org.apache.soap.server.ServiceManagerClient http://localhost:8080/soap/
 servlet/rpcrouter query urn:examples:helloservice

will display the helloservice deployment descriptor.

4.4 The TcpTunnelGui Tool

It is often quite useful to view the actual SOAP conversation between client and server.
This can aid in understanding the intricacies of the SOAP protocol and in debugging live
applications. To help you along, the Apache SOAP distribution includes a handy
TcpTunnelGui tool. The tool requires three command-line parameters:

listenport

The TcpTunnelGui tool will intercept and display all messages going to the
listenport.

tunnelhost

The tunnel hostname. For local installations, set this to localhost.

tunnelport

The TcpTunnelGui tool will intercept all messages and forward them to the
tunnelport. For Jakarta Tomcat, set this to 8080.

For example, the following command line will intercept all messages going to port 8070
and forward them to the localhost , port 8080:

java org.apache.soap.util.net.TcpTunnelGui 8070 localhost 8080

To view your actual SOAP conversation, you must modify the client code to use port
8070. For example:

URL url = new URL ("http://localhost:8070/soap/servlet/rpcrouter");
Response resp = call.invoke (url, "");

A sample screenshot of the "Hello, SOAP!" conversation is provided in Figure 4-7.
Messages from the client are displayed in the left column; messages from the server are
displayed in the right column.

Web Services Essentials

 73

Figure 4-7. The TcpTunnelGui tool in action

Here is the full text of a sample request message:

POST /soap/servlet/rpcrouter HTTP/1.0
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: 464
SOAPAction: ""

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:sayHello
 xmlns:ns1="urn:examples:helloservice"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <firstName xsi:type="xsd:string">Amy</firstName>
 </ns1:sayHello>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Here is the full text of a sample response message:

HTTP/1.0 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 484
Set-Cookie2: JSESSIONID=810j57jod1;Version=1;Discard;Path="/soap"
Set-Cookie: JSESSIONID=810j57jod1;Path=/soap
Servlet-Engine: Tomcat Web Server/3.2.1
(JSP 1.1; Servlet 2.2; Java 1.3.0; Windows 2000 5.0 x86;
java.vendor=Sun Microsystems Inc.)

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:sayHelloResponse
 xmlns:ns1="urn:examples:helloservice"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <return xsi:type="xsd:string">Hello, Amy!</return>
 </ns1:sayHelloResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Web Services Essentials

 74

4.5 Web Resources

Here are some web resources that provide more information about Apache SOAP.

• Apache SOAP web site: http://xml.apache.org/soap/.
• Mailing-list archives: Apache SOAP maintains a "soap-user" mailing list.

Complete archives are available at http://marc.theaimsgroup.com/?l=soap-user.

Web Services Essentials

 75

Chapter 5. Programming Apache SOAP

With a basic understanding of Apache SOAP, we are now ready for more in-depth
coverage of select topics. These topics include:

• Passing arrays between client and server
• Passing JavaBeans between client and server
• Registering new type mappings
• Working with literal XML documents
• Handling SOAP faults and exceptions
• Maintaining session state

This chapter is built around a series of five example SOAP applications that will help
explain these topics. The first four applications illustrate services provided by a fictional
e-commerce company that sells software over the Web. The final application provides a
simple counting service that illustrates the creation of stateful SOAP services. Each
application includes full client code, service code, and a description of relevant APIs.

Apache SOAP can use SMTP for the transport of SOAP messages.
Nonetheless, all examples within this chapter assume the (more
popular) use of HTTP.

5.1 Working with Arrays

The "Hello, SOAP!" application from Chapter 4 illustrated the passing of strings and
primitive data types. The next step up the SOAP ladder is working with arrays.
Fortunately, Apache SOAP provides built-in support for arrays, making this task relatively
painless.

To illustrate the basic concepts, we will create a simple e-commerce product catalog.
Clients can connect to the catalog service and send a list of stockkeeping units (SKUs).
The catalog service looks up each SKU and returns a list of current prices. Behind the
scenes, the client passes an array of strings to the server, and the server returns an array of
doubles.

5.1.1 Service Code

We will examine the service code first. (See Example 5-1.) The PriceListService
constructor creates a product hashtable of two current products. To keep the code simple,
the prices are hardcoded. The getPriceList() method expects an array of string SKUs and
generates a corresponding array of doubles. We assume that the client always requests
current, valid SKUs.

Web Services Essentials

 76

Example 5-1. PriceListService.java

package com.ecerami.soap;

import java.util.Hashtable;

/**
 * A Sample SOAP Service
 * Provides a Price List for specified list of SKUs
 */
public class PriceListService {
 protected Hashtable products; // Product "Database"

 /**
 * Zero Argument Constructor
 * Load product database with two sample products
 */
 public PriceListService () {
 products = new Hashtable();
 // Red Hat Linux
 products.put("A358185", new Double (54.99));
 // McAfee PGP Personal Privacy
 products.put("A358565", new Double (19.99));
 }

 /**
 * Provides Price List for specified SKUs.
 * We assume that the client always specifies valid, current SKUs
 */
 public double[] getPriceList (String sku[]) {
 double prices[] = new double [sku.length];
 for (int i=0; i<sku.length; i++) {
 Double price = (Double) products.get(sku[i]);
 prices[i] = price.doubleValue();
 }
 return prices;
 }
}

5.1.2 Client Code

The client code is shown in Example 5-2 , later in this section. When invoking the client
application, you can specify as many SKUs as you like on the command line. For
example, the following command line:

java com.ecerami.soap.PriceListClient A358185 A358565

will generate the following output:

Price List Checker: SOAP Client
SKU: A358185 --> 54.99
SKU: A358565 --> 19.99

In examining the client code, first note the TargetObjectURI and method name:

call.setTargetObjectURI ("urn:examples:pricelistservice");
call.setMethodName ("getPriceList");

Web Services Essentials

 77

Here, we are assuming that the pricelistservice has already been deployed via the web
administrator tool. Alternatively, you could use the command-line tool and the following
deployment descriptor:

<isd:service
 xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:examples:pricelistservice" checkMustUnderstands="false">
 <isd:provider type="java" scope="Request" methods="getPriceList">
 <isd:java class="com.ecerami.soap.PriceListService" static="false"/>
 </isd:provider>
</isd:service>

To pass an array from client to server, you must create a new Parameter object. The
important distinction is that you must specify an array class, such as String[].class or
Double[].class , to the Parameter constructor. For example, our new client creates an
array parameter of string SKUs:

Parameter param = new Parameter("sku", String[].class,
skus, Constants.NS_URI_SOAP_ENC);

The array parameter is then added to a Vector of parameters, and the Vector is passed to
the Call object, just as in our "Hello, SOAP!" application.

To extract an array from the Response object, you just need to cast to the appropriate array
type. For example, the PriceListClient code expects an array of doubles:

Parameter result = resp.getReturnValue ();
double priceList[] = (double []) result.getValue();

In conclusion, there is really nothing special about passing arrays. Note, however, that the
current version of Apache SOAP only supports one-dimensional arrays. Additional
dimensions may be supported in the near future. Check the Apache SOAP web site for
current release notes.

Example 5-2. PriceListClient.java

package com.ecerami.soap;

/**
 * A Sample SOAP Client
 * Retrieves Price List for Specified SKUs
 * usage: java PriceClient sku#1 sku#2 sku#N
*/
import java.net.*;
import java.util.Vector;
import org.apache.soap.*;
import org.apache.soap.rpc.*;

public class PriceListClient {

 /**
 * Static Main method
 */
 public static void main (String[] args) {
 System.out.println ("Price List Checker: SOAP Client");
 String skus[] = new String [args.length];
 for (int i=0; i<args.length; i++)
 skus[i] = new String (args[i]);

Web Services Essentials

 78

 PriceListClient priceListClient = new PriceListClient();
 try {
 double price[] = priceListClient.getPriceList(skus);
 for (int i=0; i<price.length; i++) {
 System.out.print ("SKU: "+skus[i]);
 System.out.println (" --> "+price[i]);
 }
 } catch (SOAPException e) {
 System.err.println (e);
 } catch (MalformedURLException e) {
 System.err.println (e);
 }
 }

 /**
 * getPriceList Method
 */
 public double[] getPriceList (String skus[])
 throws SOAPException, MalformedURLException {
 Parameter skuParam;

 // Create SOAP RPC Call Object
 Call call = new Call ();

 // Set Encoding Style to standard SOAP encoding
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);

 // Set Object URI and Method Name
 call.setTargetObjectURI ("urn:examples:pricelistservice");
 call.setMethodName ("getPriceList");

 // Set Method Parameters
 Vector paramList = new Vector ();
 Parameter param = new Parameter("sku", String[].class,
 skus, Constants.NS_URI_SOAP_ENC);
 paramList.addElement (param);
 call.setParams (paramList);

 // Set the URL for the Web Service
 URL url = new URL ("http://localhost:8080/soap/servlet/rpcrouter");

 // Invoke the Service
 Response resp = call.invoke (url, null);

 // Check for Success
 if (!resp.generatedFault()) {
 // Extract Return value
 Parameter result = resp.getReturnValue ();
 double priceList[] = (double []) result.getValue();
 return priceList;
 }
 // Check for Faults
 else {
 // Extract Fault Code and String
 Fault f = resp.getFault();
 String faultCode = f.getFaultCode();
 String faultString = f.getFaultString();
 System.err.println("Fault Occurred (details follow):");
 System.err.println("Fault Code: "+faultCode);
 System.err.println("Fault String: "+faultString);
 return null;
 }
 }
}

Web Services Essentials

 79

For reference, here is the full text of a sample SOAP request (HTTP headers are not
included). Note the array encoding:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
<ns1:getPriceList
 xmlns:ns1="urn:examples:pricelistservice"
 SOAP-ENV:encodingStyle="http://www.w3.org/2001/09/soap-encoding">
<sku
 xmlns:ns2="http://www.w3.org/2001/09/soap-encoding"
 xsi:type="ns2:Array" ns2:arrayType="xsd:string[2]">
 <item xsi:type="xsd:string">A358185</item>
 <item xsi:type="xsd:string">A358565</item>
</sku>
</ns1:getPriceList>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Here is a complete SOAP response:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getPriceListResponse
 xmlns:ns1="urn:examples:pricelistservice"
 SOAP-ENV:encodingStyle="http://www.w3.org/2001/09/soap-encoding">
 <return
 xmlns:ns2="http://www.w3.org/2001/09/soap-encoding"
 xsi:type="ns2:Array" ns2:arrayType="xsd:double[2]">
 <item xsi:type="xsd:double">54.99</item>
 <item xsi:type="xsd:double">19.99</item>
 </return>
 </ns1:getPriceListResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

5.2 Working with JavaBeans

Working with strings, primitive data types, and arrays will only get you so far.
Fortunately, Apache SOAP also includes support for JavaBeans and literal XML
documents. According to the official JavaSoft documentation, a JavaBean is a reusable
software component that can be visually manipulated within any building tool. More
generally, however, a JavaBean is any Java class that follows the JavaBean naming
convention. This convention requires that all accessible properties be made available via
get /set methods. For example, a Color property must have a corresponding pair of
getColor() /setColor() methods. The only exceptions to this rule are boolean properties
that require an is /set naming convention. The JavaBean convention also requires that
you provide a zero-argument constructor.

Web Services Essentials

 80

By using Java reflection, a visual tool can determine the available Bean properties and
make these properties available via easy-to-use text boxes or radio buttons. Along the
same lines, Apache SOAP's built-in BeanSerializer class can, by using reflection,
transform any JavaBean into an XML element or receive an XML element and
automatically build a corresponding JavaBean. This requires that both the client and
service code have access to the class file for the JavaBean. The SOAP call does not
actually download the code for the JavaBean, only the state of the JavaBean.
Understanding how this works requires a more detailed understanding of Java-to-XML
transformation and the SOAP service deployment options.

5.2.1 The ProductBean

To illustrate the most important JavaBean concepts, our second SOAP example enables the
retrieval of the complete state of a JavaBean. We now want more than just the product
price. Rather, we want to retrieve the product name, description, and price, and we want
all this data encapsulated into one JavaBean. For example, given the following command
line:

java com.ecerami.soap.ProductClient A358565

the program will generate the following output:

Product Checker: SOAP Client
SKU: A358565
Name: McAfee PGP
Description: McAfee PGP Personal Privacy
Price: 19.99

The first step is to create a product JavaBean, called ProductBean. (See Example 5-3.) The
ProductBean has four properties: name, description, price, and SKU. Each property has a
get /set method, and we also provide a zero-argument constructor, making this a valid
JavaBean.

Example 5-3. ProductBean.java

package com.ecerami.soap;

/**
 * A Product Bean
 * Encapsulates data regarding one product
*/

public class ProductBean {
 private String name; // Product Name
 private String description; // Product Description
 private double price; // Product Price
 private String sku; // Product SKU

 /**
 * Zero-argument Constructor
 */
 public ProductBean () { }

 /**
 * Constructor with full arguments
 */
 public ProductBean (String name, String description, double price,
 String sku) {

Web Services Essentials

 81

 this.name = name;
 this.description = description;
 this.price = price;
 this.sku = sku;
 }

 // Setters
 public void setName (String name) {
 this.name = name;
 }

 public void setDescription (String description) {
 this.description = description;
 }

 public void setPrice (double price) {
 this.price = price;
 }

 public void setSKU (String sku) {
 this.sku = sku;
 }

 // Getters
 public String getName () { return name; }
 public String getDescription () { return description; }
 public double getPrice () { return price; }
 public String getSKU () { return sku; }
}

5.2.2 Service Code

The next step is to write the service code. (See Example 5-4.) The ProductService
constructor creates two sample ProductBeans and loads these into the product hashtable.
The getProduct() method searches for a specific SKU string and returns the corresponding
ProductBean. Again, we assume that the user always specifies a valid, current SKU.

Example 5-4. ProductService.java

package com.ecerami.soap;

import java.util.Hashtable;

/**
 * A Sample SOAP Service
 * Provides Product Information for requested Stockkeeping Unit (SKU)
 */
public class ProductService {
 protected Hashtable products; // Product "Database"

 /**
 * Constructor
 * Load product database with two sample products
 */
 public ProductService () {
 products = new Hashtable();
 ProductBean product1 = new ProductBean
 ("Red Hat Linux", "Red Hat Linux Operating System",
 54.99, "A358185");
 ProductBean product2 = new ProductBean
 ("McAfee PGP", "McAfee PGP Personal Privacy",
 19.99, "A358565");
 products.put(product1.getSKU(), product1);
 products.put(product2.getSKU(), product2);
 }

Web Services Essentials

 82

 /**
 * Provides Product Info for requested SKU.
 * We assume that the client always specifies a valid, current SKU
 */
 public ProductBean getProduct (String sku) {
 ProductBean product = (ProductBean) products.get(sku);
 return product;
 }
}

You can deploy the ProductService in the same manner as in the previous examples.
Nonetheless, you will need to fill in a few additional fields of information for the type-
mapping registry. The Apache SOAP type-mapping registry provides a way to map XML
Schema data types to Java classes and vice versa. By default, the registry is prepopulated
with basic data types, including primitive data types, strings, vectors, dates, and arrays. If
you are passing a new data type, you need to explicitly register the new type and indicate
which Java classes will be responsible for serializing and deserializing your new type.

To register a new mapping, scroll down to the bottom of the Deploy a Service page. (See
Figure 5-1.)

Figure 5-1. Deploying a SOAP service with a new type-mapping entry

Next to Number of mappings, enter the total number of new mappings. For each mapping,
enter the correct data into the form fields. Alternatively, you can deploy the service via the
command-line tool. To set type mappings within a deployment descriptor file, use the
isd:mappings element. The isd:mappings element requires a single isd:map element,
which includes a number of attributes. The attributes correspond exactly to the web
administration tool. These attributes are described in the following table.

Web Services Essentials

 83

Web
administration
field

isd:map attribute Description

Encoding style encodingStyle

This is the encoding style for your new data type. For
example:

encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/"

For JavaBeans, use the default SOAP encoding style.

Element type:
namespace URI

xmlns:x

If you are strictly following the URN syntax, this is the URN
namespace identifier. For example, if you are using
urn:examples:productservice , this field should be set to
urn:examples.

Element type:
local part

qname
This is the name of your new data type. The name should be
descriptive enough to convey the encapsulated data. For our
example, set this field to product.

Java type javaType
This is the fully qualified name of your new Java class. In our
example, this is the ProductBean :
com.ecerami.soap.ProductBean.

Java-to- XML
serializer

java2XMLClassName

This is the fully qualified name of the Java class responsible
for converting your Java class into XML. As noted
previously, Apache SOAP includes a built-in
BeanSerializer capable of serializing any arbitrary
JavaBean. The fully qualified name is
org.apache.soap.encoding.soapenc.BeanSerializer.

XML-to-Java
deserializer

xml2JavaClassName

This is the fully qualified name of the Java class responsible
for taking an XML element and reconstructing your Java
object. The Apache BeanSerializer is also capable of
deserializing. Hence, for JavaBeans, these last two fields are
usually set to the same value.

If you choose to deploy a SOAP service via the command-line tool, here is the complete
deployment descriptor file:

<isd:service
 xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:examples:productservice" checkMustUnderstands="false">
 <isd:provider type="java" scope="Request" methods="getProduct">
 <isd:java class="com.ecerami.soap.ProductService" static="false"/>
 </isd:provider>
 <isd:mappings defaultRegistryClass="">
 <isd:map
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:x="urn:examples"
 qname="x:product"
 javaType="com.ecerami.soap.ProductBean"
 xml2JavaClassName="org.apache.soap.encoding.soapenc.BeanSerializer"
 java2XMLClassName=
 "org.apache.soap.encoding.soapenc.BeanSerializer"/>
 </isd:mappings>
</isd:service>

Web Services Essentials

 84

If you choose to deploy your service via the web administration tool, verify that your new
mappings have been registered. Click List services, then click on the productservice link.
At the bottom of the service details page, you should see the new type mapping. (See
Figure 5-2.)

Figure 5-2. The new registered type mapping

5.2.3 Client Code

In the same way that we registered a new type mapping for the server code, we must now
register a new type mapping within our client code. Unfortunately, this adds to the
complexity of the client code, but remember that registering a new mapping is the same for
server or client code. The only difference is that for server code, you can easily add new
mappings via the simple web deployment tool, whereas the client code requires a more
intimate knowledge of the SOAP API.

The complete client code is available in Example 5-5 , shown later in this section. After
setting the TargetObjectURI and method name, we set out to register a new type mapping.

First, we instantiate a new BeanSerializer object:

BeanSerializer bSerializer = new BeanSerializer();

This is the same class we used when deploying the server code. It is responsible for Java-
to-XML serialization and XML-to-Java deserialization.

Second, we need to create a new SOAP mapping registry:

SOAPMappingRegistry registry = new SOAPMappingRegistry();

This creates a default registry object, which is already prepopulated with the mappings for
strings, primitive data types, and arrays.

Web Services Essentials

 85

Third, we must create a Qualified Namespace object. This object must match the
namespace URI and local part fields specified for the service deployment. In the case of
our product parameter, the fields do indeed match up:

QName qname = new QName ("urn:examples", "product");

Fourth, we must register our new mapping for the ProductBean by calling the mapTypes()
method:

registry.mapTypes (Constants.NS_URI_SOAP_ENC, qname,
 com.ecerami.soap.ProductBean.class, bSerializer,
 bSerializer);

The arguments to the mapTypes() method correspond exactly to the fields on the Deploy a
Service page. These fields include the encoding type, qualified name, Java-to-XML
serializer, and XML-to-Java deserializer.

The fifth and final step in registering a new type is to associate our new SOAP mapping
registry with the current Call object:

call.setSOAPMappingRegistry(registry);

Once registered, any XML elements corresponding to urn:examples:product will be
automatically reconstructed into the corresponding ProductBean. By casting properly, the
ProductBean can then be retrieved from the Response object:

Parameter result = resp.getReturnValue ();
ProductBean product = (ProductBean) result.getValue();

Example 5-5. ProductClient.java

package com.ecerami.soap;

/**
 * A Sample SOAP Client
 * Retrieves Product Info for Specified Stockkeeping Unit (SKU)
 * usage: java ProductClient sku#
*/
import java.net.*;
import java.util.Vector;
import org.apache.soap.*;
import org.apache.soap.rpc.*;
import org.apache.soap.encoding.soapenc.BeanSerializer;
import org.apache.soap.encoding.SOAPMappingRegistry;
import org.apache.soap.util.xml.QName;

public class ProductClient {

 /**
 * Static Main method
 */
 public static void main (String[] args) {
 String sku = args[0];
 System.out.println ("Product Checker: SOAP Client");
 ProductClient productClient = new ProductClient();
 try {
 ProductBean product = productClient.getProduct (sku);
 System.out.println ("SKU: "+product.getSKU());
 System.out.println ("Name: "+product.getName());
 System.out.println ("Description: "+product.getDescription());

Web Services Essentials

 86

 System.out.println ("Price: "+product.getPrice());
 } catch (SOAPException e) {
 System.err.println (e);
 } catch (MalformedURLException e) {
 System.err.println (e);
 }
 }

 /**
 * getProduct Method
 */
 public ProductBean getProduct (String sku)
 throws SOAPException, MalformedURLException {
 Parameter skuParam;

 // Create SOAP RPC Call Object
 Call call = new Call ();

 // Set Encoding Style to standard SOAP encoding
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);

 // Set Object URI and Method Name
 call.setTargetObjectURI ("urn:examples:productservice");
 call.setMethodName ("getProduct");

 // Add JavaXML Mapping for Product Bean
 // First, Create a Bean Serializer
 BeanSerializer bSerializer = new BeanSerializer();

 // Second, Get the current SOAPMappingRegistry
 // This object is pre-registered with basic mappings
 SOAPMappingRegistry registry = new SOAPMappingRegistry();

 // Third, Create a new Qualified Namespace for Product Bean
 QName qname = new QName ("urn:examples", "product");

 // Fourth, Register new mapping for ProductBean
 registry.mapTypes (Constants.NS_URI_SOAP_ENC, qname,
 com.ecerami.soap.ProductBean.class, bSerializer,
 bSerializer);

 // Fifth, Set MappingRegistry for the Call object
 call.setSOAPMappingRegistry(registry);

 // Set Method Parameters
 Vector paramList = new Vector ();
 skuParam = new Parameter("sku", String.class,
 sku, Constants.NS_URI_SOAP_ENC);
 paramList.addElement (skuParam);
 call.setParams (paramList);

 // Set the URL for the Web Service
 URL url = new URL ("http://localhost:8080/soap/servlet/rpcrouter");

 // Invoke the Service
 Response resp = call.invoke (url, null);

 // Check for Success
 if (!resp.generatedFault()) {
 // Extract Return value
 Parameter result = resp.getReturnValue ();
 ProductBean product = (ProductBean) result.getValue();
 return product;
 }
 // Check for Faults
 else {
 // Extract Fault Code and String
 Fault f = resp.getFault();

Web Services Essentials

 87

 String faultCode = f.getFaultCode();
 String faultString = f.getFaultString();
 System.err.println("Fault Occurred (details follow):");
 System.err.println("Fault Code: "+faultCode);
 System.err.println("Fault String: "+faultString);
 return null;
 }
 }
}

For reference, here is the full text of a sample SOAP request (HTTP headers are not
included):

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getProduct
 xmlns:ns1="urn:examples:productservice"
 SOAP-ENV:encodingStyle="http://www.w3.org/2001/09/soap-encoding">
 <sku xsi:type="xsd:string">A358185</sku>
 </ns1:getProduct>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Here is a sample SOAP response:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getProductResponse
 xmlns:ns1="urn:examples:productservice"
 SOAP-ENV:encodingStyle="http://www.w3.org/2001/09/soap-encoding">
 <return xmlns:ns2="urn:examples" xsi:type="ns2:product">
 <name xsi:type="xsd:string">Red Hat Linux</name>
 <price xsi:type="xsd:double">54.99</price>
 <description xsi:type="xsd:string">
 Red Hat Linux Operating System
 </description>
 <SKU xsi:type="xsd:string">A358185</SKU>
 </return>
 </ns1:getProductResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Web Services Essentials

 88

API: org.apache.soap.rpc.Call
void setSOAPMappingRegistry(SOAPMappingRegistry smr)

Sets the SOAP mapping registry. This is useful if you need to
serialize/deserialize your own Java classes. Takes the following parameter:
smr

The SOAP mapping registry.

API: org.apache.soap.encoding.
SOAPMappingRegistry

SOAPMappingRegistry()

Constructs a new SOAPMappingRegistry object. The object will be
prepopulated with mappings for basic data types, including primitive data
types, strings, vectors, dates, and arrays.

void mapTypes(String encodingStyleURI, QName elementType, Class javaType,
Serializer s, Deserializer ds) ()

Registers a new type mapping. Takes the following parameters:
encodingStyleURI

The encoding style for your new data type. To use the default SOAP
encoding style, use Constants.NS_URI_SOAP_ENC .
name

The qualified name for your new data type.
javaType

The Java class type; for example, ProductBean.class .
s

The Java class responsible for serializing your Java class into XML. Use
BeanSerializer for JavaBeans.
ds

The Java class responsible for deserializing XML into Java. Use
BeanSerializer for JavaBeans.

Web Services Essentials

 89

5.3 Working with Literal XML Documents

In addition to JavaBeans, Apache SOAP also supports the passing of literal XML
documents. Our third example demonstrates the main concepts. The client code will send
a product query by sending a product element with a SKU attribute. For example:

<product sku="A358185"/>

The server will respond with a complete product XML document. For example, the
following command line:

java com.ecerami.soap.ProductXMLClient A358185

will generate this XML response:

<product sku="A358185">
 <name>Red Hat Linux</name>
 <description>Red Hat Linux Operating System</description>
 <price>54.99</price>
</product>

Working with literal XML documents requires some knowledge of the XML Document
Object Model (DOM) API. Even if you are not familiar with the DOM API, however, you
should be able to follow the general flow of the example code.

5.3.1 Service Code

The full service code is shown in Example 5-6. Note that the ProductXMLService class
extends ProductService from the previous example and therefore utilizes the same product
hashtable. Note also that the new getProduct() method accepts a DOM Element and
returns a DOM Element. Within the method, we'll first extract the SKU attribute code:

String sku = request.getAttribute("sku");

We will then search the product hashtable. If a match is found, we can build an entire
XML document via the DOM API. As a shortcut, we can use the Apache utility method to
retrieve a DocumentBuilder object:

DocumentBuilder docBuilder = XMLParserUtils.getXMLDocBuilder();
Document doc = docBuilder.newDocument();

With the document in hand, we can then proceed to add the proper hierarchy of XML
elements. For example, the following code creates a product name element with the
corresponding text subelement:

Text productNameText = doc.createTextNode(product.getName());
Element nameNode = doc.createElement("name");
nameNode.appendChild(productNameText);

Web Services Essentials

 90

Example 5-6. ProductXMLService.java

package com.ecerami.soap;

import java.util.Hashtable;
import org.w3c.dom.*;
import javax.xml.parsers.DocumentBuilder;
import org.apache.soap.util.xml.XMLParserUtils;

/**
 * A Sample SOAP Service
 * Provides Product Name for requested Stockkeeping Unit (SKU)
 * Information is passed as Literal XML Documents.
 */
public class ProductXMLService extends ProductService{

 /**
 * Provides Product Info for requested XML document.
 */
 public Element getProduct (Element request)
 throws ProductNotFoundException {
 // Extract sku attribute
 String sku = request.getAttribute("sku");
 ProductBean product = (ProductBean) products.get(sku);

 // Create XML Document to store Product data
 DocumentBuilder docBuilder = XMLParserUtils.getXMLDocBuilder();
 Document doc = docBuilder.newDocument();

 // Create Product Name Element
 Text productNameText = doc.createTextNode(product.getName());
 Element nameNode = doc.createElement("name");
 nameNode.appendChild(productNameText);

 // Create Product Description Element
 Text productDescriptionText =
 doc.createTextNode(product.getDescription());
 Element descriptionNode = doc.createElement("description");
 descriptionNode.appendChild(productDescriptionText);

 // Create Product Name Element
 Text productPriceText = doc.createTextNode(
 Double.toString(product.getPrice()));
 Element priceNode = doc.createElement("price");
 priceNode.appendChild(productPriceText);

 // Create Root Product Element
 Element productNode = doc.createElement("product");
 productNode.setAttribute("sku", sku);
 productNode.appendChild(nameNode);
 productNode.appendChild(descriptionNode);
 productNode.appendChild(priceNode);
 return productNode;
 }
}

5.3.2 Client Code

The full client code is shown in Example 5-7. Fortunately, most of the code is similar to
that in the previous three examples. As in the service code, we'll also utilize the DOM API
to build a new XML document.

Web Services Essentials

 91

First, we'll set the encoding style to XML literal:

call.setEncodingStyleURI(Constants.NS_URI_LITERAL_XML);

This enables the passing of whole XML documents within the SOAP request.

Second, we'll create a new XML document. We'll use the same technique that we used to
write the server code, with the goal of creating a single product element (e.g., <product
sku="A358185"/>). With the element in hand, we will then create a new Parameter object:

skuParam = new Parameter("productNode", org.w3c.dom.Element.class,
productNode, Constants.NS_URI_LITERAL_XML);

Note that we will again set the encoding style to XML literal.

As usual, the final step is to cast the return value correctly. In this case, we'll cast to the
DOM Element class:

Parameter result = resp.getReturnValue ();
Element xmlResult = (Element) result.getValue();

We can then print out the Element string using Apache's handy DOM2Writer :

DOM2Writer domWriter = new DOM2Writer();
System.out.println ("Server Response: ");
System.out.println (domWriter.nodeToString(product));

Example 5-7. ProductXMLClient.java

package com.ecerami.soap;

/**
 * A Sample SOAP Client
 * Retrieves Product Info for Specified Stockkeeping Unit (SKU)
 * Data is returned as an XML Literal Document
 * usage: java ProductXMLClient sku#
*/
import java.net.*;
import java.util.Vector;
import org.w3c.dom.*;
import org.apache.soap.*;
import org.apache.soap.rpc.*;
import javax.xml.parsers.DocumentBuilder;
import org.apache.soap.util.xml.XMLParserUtils;
import org.apache.soap.util.xml.DOM2Writer;

public class ProductXMLClient {

 /**
 * Static Main method
 */
 public static void main (String[] args) {
 String sku = args[0];
 System.out.println ("XML Product Checker: SOAP Client");
 ProductXMLClient productXMLClient = new ProductXMLClient();
 try {
 Element product = productXMLClient.getProduct (sku);
 DOM2Writer domWriter = new DOM2Writer();
 System.out.println ("Server Response: ");
 System.out.println (domWriter.nodeToString(product));
 } catch (SOAPException e) {

Web Services Essentials

 92

 System.err.println (e);
 } catch (MalformedURLException e) {
 System.err.println (e);
 }
 }

 /**
 * getProduct Method
 */
 public Element getProduct (String sku)
 throws SOAPException, MalformedURLException {
 Parameter skuParam;

 // Create SOAP RPC Call Object
 Call call = new Call ();

 // Set Encoding Style to XML Literal
 call.setEncodingStyleURI(Constants.NS_URI_LITERAL_XML);

 // Set Object URI and Method Name
 call.setTargetObjectURI ("urn:examples:XMLproductservice");
 call.setMethodName ("getProduct");

 // Set Method Parameters
 Vector paramList = new Vector ();

 // Create XML Document to store SKU
 DocumentBuilder docBuilder = XMLParserUtils.getXMLDocBuilder();
 Document doc = docBuilder.newDocument();

 // Create product element with sku attribute
 Element productNode = doc.createElement("product");
 productNode.setAttribute("sku", sku);

 skuParam = new Parameter("productNode", org.w3c.dom.Element.class,
 productNode, Constants.NS_URI_LITERAL_XML);
 paramList.addElement (skuParam);
 call.setParams (paramList);

 // Set the URL for the Web Service
 URL url = new URL ("http://localhost:8080/soap/servlet/rpcrouter");

 // Invoke the Service
 Response resp = call.invoke (url, null);

 // Check for Success
 if (!resp.generatedFault()) {
 // Extract Return value
 Parameter result = resp.getReturnValue ();
 Element xmlResult = (Element) result.getValue();
 return xmlResult;
 }
 // Check for Faults
 else {
 // Extract Fault Code and String
 Fault f = resp.getFault();
 String faultCode = f.getFaultCode();
 String faultString = f.getFaultString();
 System.err.println("Fault Occurred (details follow):");
 System.err.println("Fault Code: "+faultCode);
 System.err.println("Fault String: "+faultString);
 return null;
 }
 }
}

Web Services Essentials

 93

For reference, here is a complete SOAP request:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getProduct
 xmlns:ns1="urn:examples:XMLproductservice"
 SOAP-ENV:encodingStyle=
 "http://xml.apache.org/xml-soap/literalxml">
 <productNode>
 <product sku="A358185"/>
 </productNode>
 </ns1:getProduct>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Here is a sample SOAP response:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getProductResponse
 xmlns:ns1="urn:examples:XMLproductservice"
 SOAP-ENV:encodingStyle=
 "http://xml.apache.org/xml-soap/literalxml">
 <return>
 <product sku="A358185">
 <name>Red Hat Linux</name>
 <description>Red Hat Linux Operating System</description>
 <price>54.99</price></product>
 </return>
 </ns1:getProductResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

5.4 Handling SOAP Faults

As explained in Chapter 4, SOAP faults indicate errors at the application level. For
example, a request for a nonexistent service or method name will trigger a fault. Service
objects can also trigger faults, providing a means of propagating errors back to the client.
Propagating exceptions and errors back to the client is particularly critical for building
robust applications. For example, in the catalog applications we have created so far, we
have assumed that the user will always pass a valid, current SKU. What happens when the
user requests a SKU for a nonexistent product? To explore this question, and thereby
illustrate several fault-handling options, let's examine an updated version of the
ProductService example.

Web Services Essentials

 94

5.4.1 Service Code

The complete service code is presented in Example 5-8. The ProductService2 class
extends the original ProductService class and uses the same product hashtable. The new
getProductInfo() method receives a String SKU parameter and checks the product
hashtable.

Example 5-8. ProductService2.java

package com.ecerami.soap;

import java.util.Hashtable;

/**
 * A Sample SOAP Service
 * Provides Product Information for requested Stockkeeping Unit (SKU)
 */
public class ProductService2 extends ProductService {

 /**
 * Provides Product Info for requested SKU.
 * If SKU is not found, method throws a ProductNotFoundException
 */
 public ProductBean getProductInfo (String sku)
 throws ProductNotFoundException {
 ProductBean product = (ProductBean) products.get(sku);
 if (product==null)
 throw new ProductNotFoundException ("SKU Not Found: "+sku);
 return product;
 }
}

If a match is found, the method returns the correct ProductBean. Otherwise, the method
throws a ProductNotFoundException. The ProductNotFoundException code is presented in
Example 5-9.

Example 5-9. ProductNotFoundException.java

package com.ecerami.soap;

import org.apache.soap.Fault;

/**
 * ProductNotFoundException
 * Encapsulates any exceptions related to retrieving
 * product/price for Specified Stockkeeping Unit (SKU)
*/
public class ProductNotFoundException extends Exception {
 private Fault fault;

 public ProductNotFoundException (String faultString) {
 super (faultString);
 }

 public ProductNotFoundException (String faultString, Fault fault) {
 super (faultString);
 this.fault = fault;
 }

 public Fault getFault () { return fault; }
}

Web Services Essentials

 95

5.4.2 Client Code

The revised client code is presented in Example 5-10. Most of the getProduct() method is
the same as in the original ProductClient code, and therefore I have only included those
pieces that illustrate the new fault-handling capability. First, if a fault is detected, the
client code extracts the Fault object and embeds it into a ProductNotFoundException :

Fault fault = resp.getFault();
String faultString = fault.getFaultString();
throw new ProductNotFoundException (faultString, fault);

This enables us to examine the Fault object later. Second, the main() method includes a
new printFaultDetails() method for printing out any fault details embedded in the
Response object. Before we examine this method, however, we'll test the code by sending a
nonexistent SKU. Let's try the SKU number Z358185. If you are using the TcpTunnelGui
tool, you will see the following response from the SOAP server:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>
 Exception from service object: SKU Not Found: Z358185
 </faultstring>
 <faultactor>/soap/servlet/rpcrouter</faultactor>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

As you can see, ProductNotFoundException is not propagated directly back to the client.
Rather, the rpcrouter captures the exception, generates a SOAP Fault element, and inserts
the embedded ProductNotFoundException message inside the faultstring subelement. On
the client end, we capture the fault and throw our own ProductNotFoundException.

The SOAP specification also allows for the SOAP response to include fault details. Fault
details can provide a finer-grained description of errors and thereby aid in debugging. To
access the list of fault details, use the Fault getDetailEntries() method. This will return
a vector of DOM Elements. You can then query each element for its name and value:

for (int i=0; i< detailEntries.size(); i++) {
 Element detail = (Element) detailEntries.elementAt(i);
 String name = detail.getNodeName();
 String value = DOMUtils.getChildCharacterData(detail);
 System.err.println (name);
 System.err.println (value);
}

No fault details are normally included in the SOAP response, and this method will not
print anything. Nonetheless, Apache SOAP does provide two built-in fault listeners that
provide very helpful fault details. The first, DOMFaultListener , will insert the entire stack
trace for any exception thrown within the service object. The second,
ExceptionFaultListener , will insert the name of the thrown exception. Unfortunately,
you cannot set fault listeners via the web administration tool. You therefore must use the

Web Services Essentials

 96

command-line tool and the isd:faultListener element. For example, the following
addition to the deployment descriptor file will add the DomFaultListener :

<isd:faultListener>
 org.apache.soap.server.DOMFaultListener
</isd:faultListener>

With the DOMFaultListener in place, the server will now generate errors like this:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance" xmlns:xsd="http://www.
 w3.org/1999/XMLSchema">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>Exception from service object: SKU Not Found: Z358185</
 faultstring>
<faultactor>/soap/servlet/rpcrouter</faultactor>
<detail>
<stackTrace>com.ecerami.soap.ProductNotFoundException: SKU Not Found:
 Z358185
 at com.ecerami.soap.ProductService2.getProductInfo(ProductService2.java:
 26)
 at java.lang.reflect.Method.invoke(Native Method)
 at org.apache.soap.server.RPCRouter.invoke(RPCRouter.java:146)
 at org.apache.soap.providers.RPCJavaProvider.invoke(RPCJavaProvider.
 java:129)
 at org.apache.soap.server.http.RPCRouterServlet.doPost(RPCRouterServlet.
 java:286)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:760)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)
 at org.apache.tomcat.core.ServletWrapper.doService(ServletWrapper.java:
 404)
 at org.apache.tomcat.core.Handler.service(Handler.java:286)
 at org.apache.tomcat.core.ServletWrapper.service(ServletWrapper.java:
 372)
 at org.apache.tomcat.core.ContextManager.internalService(ContextManager.
 java:797)
 at org.apache.tomcat.core.ContextManager.service(ContextManager.java:
 743)
 at org.apache.tomcat.service.http.HttpConnectionHandler.
 processConnection(HttpConnectionHandler.java:210)
 at org.apache.tomcat.service.TcpWorkerThread.runIt(PoolTcpEndpoint.java:
 416)
 at org.apache.tomcat.util.ThreadPool$ControlRunnable.run(ThreadPool.
 java:498)
 at java.lang.Thread.run(Thread.java:484)
</stackTrace>
</detail>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

As you can see, the detail element is now included, and it contains a single stackTrace
element. The printFaultDetails() method, using the code shown in Example 5-10 , will
now detect a detail entry and print out the entire stack trace.

Web Services Essentials

 97

Example 5-10. ProductClient2.java

package com.ecerami.soap;

/**
 * A Sample SOAP Client
 * Retrieves Product Info for Specified Stockkeeping Unit (SKU)
 * usage: java ProductClient sku#
*/
import java.net.*;
import java.util.Vector;
import org.apache.soap.*;
import org.apache.soap.rpc.*;
import org.apache.soap.encoding.soapenc.BeanSerializer;
import org.apache.soap.encoding.SOAPMappingRegistry;
import org.apache.soap.util.xml.QName;
import org.w3c.dom.Element;
import org.apache.soap.util.xml.DOMUtils;

public class ProductClient2 {

 /**
 * Static Main method
 */
 public static void main (String[] args) {
 String sku = args[0];
 System.out.println ("Product Checker: SOAP Client");
 ProductClient2 productClient2 = new ProductClient2();
 try {
 ProductBean product = productClient2.getProduct (sku);
 System.out.println ("SKU: "+product.getSKU());
 System.out.println ("Name: "+product.getName());
 System.out.println ("Description: "+product.getDescription());
 System.out.println ("Price: "+product.getPrice());
 } catch (ProductNotFoundException e) {
 System.err.println (e);
 printFaultDetails (e.getFault());
 } catch (SOAPException e) {
 System.err.println (e);
 } catch (MalformedURLException e) {
 System.err.println (e);
 }
 }

 /**
 * Extract and Print Fault Details
 */
 public static void printFaultDetails (Fault fault) {
 // Extract Detail Entries
 Vector detailEntries = fault.getDetailEntries();
 if (detailEntries != null) {
 // Print each Detail Entry
 for (int i=0; i< detailEntries.size(); i++) {
 Element detail = (Element) detailEntries.elementAt(i);
 String name = detail.getNodeName();
 String value = DOMUtils.getChildCharacterData(detail);
 System.err.println (name);
 System.err.println (value);
 }
 }
 }

 /**
 * getProduct Method
 */
 public ProductBean getProduct (String sku)
 throws SOAPException,MalformedURLException,ProductNotFoundException {
 Parameter skuParam;

Web Services Essentials

 98

 ... Same as ProductClient.java

 // Check for Success
 if (!resp.generatedFault()) {
 // Extract Return value
 Parameter result = resp.getReturnValue ();
 ProductBean product = (ProductBean) result.getValue();
 return product;
 }
 // Check for Faults
 else {
 // Extract Fault Code and String
 Fault fault = resp.getFault();
 String faultString = fault.getFaultString();
 throw new ProductNotFoundException (faultString, fault);
 }
 }
}

5.5 Maintaining Session State

Our final topic is the maintenance of session state. As you may recall from Chapter 4,
each deployed SOAP service has an associated Scope property. Each time a service is
invoked, the rpcrouter servlet will invoke the remote service object. The Scope property
defines the lifetime of this remote object.

Request

Indicates that the object will exist during the lifetime of one SOAP request/response
cycle

Session

Indicates that the rpcrouter will instantiate one object per client, and will maintain
these objects across multiple request/response conversations

Application

Indicates that only one object is instantiated, and this one object will process all
incoming requests

To make the Scope property more concrete, our final example illustrates a session-counting
service. The server code keeps a current counter in memory and returns this value to the
client. When Scope is set to Session , the rpcrouter will instantiate a new service object
for each client. The server is therefore able to maintain individual session counts for each
client. When Scope is set to Application , the rpcrouter will instantiate only one service
object; the server therefore counts the total number of requests from all clients.

5.5.1 Service Code

The complete service code is shown in Example 5-11. The code maintains a single
instance variable, called counter. For each client request, counter is incremented.

Web Services Essentials

 99

Example 5-11. CounterService.java

package com.ecerami.soap;

/**
 * A Sample SOAP Service
 * Illustrates Session v. Application Scope
 *
 * When this service is deployed with Scope="Session",
 * server will instantiate one instance of CounterService
 * per client. CounterService will then maintain total
 * number of requests per session.
 *
 * When this service is deployed with Scope="Application",
 * server will instantiate just one instance of CounterService.
 * CounterService will then maintain total number of requests
 * across all sessions.
 *
 */
public class CounterService {
 private int counter; // Number of requests

 /**
 * Constructor
 */
 public CounterService () { counter = 0; }

 /**
 * Return number of requests
 */
 public int getCounter () { return ++counter; }
}

5.5.2 Client Code

The complete client code is shown in Example 5-12. The goal of the client code is to call
the remote getCounter() method and retrieve the current count value.

Example 5-12. CounterClient.java

package com.ecerami.soap;

/**
 * A Sample SOAP Client
 * Retrieves Current Counter value from CounterService
 * Illustrates Session v. Application Scope
*/
import java.util.*;
import java.net.*;
import org.apache.soap.*;
import org.apache.soap.rpc.*;

public class CounterClient {
 private Call call; // Reusable Call Object

 /**
 * Static Main method
 */
 public static void main (String[] args) {
 System.out.println ("Session/Application Counter: SOAP Client");
 CounterClient counterClient = new CounterClient();
 counterClient.process();
 }

 /**

Web Services Essentials

 100

 * Constructor
 * Create reusable Call object
 */
 public CounterClient () {
 call = new Call();
 }

 /**
 * Start counting
 */
 public void process () {
 try {
 for (int i=0; i<5; i++) {
 int counter = getCounter ();
 System.out.println ("Counter: "+counter);
 }
 } catch (CounterException e) {
 System.err.println (e);
 } catch (SOAPException e) {
 System.err.println (e);
 } catch (MalformedURLException e) {
 System.err.println (e);
 }
 }

 /**
 * getCounter Method
 */
 public int getCounter ()
 throws SOAPException, MalformedURLException,
 CounterException {

 // Set Encoding Style to standard SOAP encoding
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);

 // Set Object URI and Method Name
 call.setTargetObjectURI ("urn:examples:counterservice");
 call.setMethodName ("getCounter");

 // Set the URL for the Web Service
 URL url = new URL ("http://localhost:8080/soap/servlet/rpcrouter");

 // Invoke the Service
 Response resp = call.invoke (url, null);

 // Check for Success
 if (!resp.generatedFault()) {
 // Extract Return value
 Parameter result = resp.getReturnValue ();
 Integer counter = (Integer) result.getValue();
 return counter.intValue();
 }
 // Check for Faults
 else {
 // Extract Fault Code and String
 Fault f = resp.getFault();
 String faultCode = f.getFaultCode();
 String faultString = f.getFaultString();
 throw new CounterException (faultCode+": "+faultString);
 }
 }

 /**
 * CounterException
 * Encapsulates any exceptions related to retrieving
 * application/session counter.
 */
 class CounterException extends Exception {

Web Services Essentials

 101

 private String msg;

 public CounterException (String msg) {
 super(msg);
 }
 }
}

Behind the scenes, Apache SOAP uses cookies to differentiate client requests. For
example, the first request to the CounterService generates the following HTTP response:

HTTP/1.0 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 477
Set-Cookie2: JSESSIONID=tfr2ps35b1;Version=1;Discard;Path="/soap"
Set-Cookie: JSESSIONID=tfr2ps35b1;Path=/soap
Servlet-Engine: Tomcat Web Server/3.2.1 (JSP 1.1; Servlet 2.2; Java 1.3.0;
 Windows 2000 5.0 x86; java.vendor=Sun Microsystems Inc.)
<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getCounterResponse
 xmlns:ns1="urn:examples:counterservice"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <return xsi:type="xsd:int">1</return>
 </ns1:getCounterResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The fifth and sixth lines of the HTTP response set a Jakarta Tomcat session cookie, called
JSESSIONID. Clients can use this cookie to maintain session state across multiple calls to
the server.

By default, the SOAP Call object recognizes cookies and will automatically send them
back to the server. The only requirement is that you reuse the same Call object across all
requests within the same session. For example, our client code creates a reusable Call
object within the constructor:

public CounterClient () {
 call = new Call();
}

To maintain session, the code just reuses the same Call object. The Call object
automatically returns any session cookies, and the server is able to maintain a separate
counter for each client.

Web Services Essentials

 102

Part IV: WSDL

Chapter 6

Web Services Essentials

 103

Chapter 6. WSDL Essentials

WSDL is a specification defining how to describe web services in a common XML
grammar. WSDL describes four critical pieces of data:

• Interface information describing all publicly available functions
• Data type information for all message requests and message responses
• Binding information about the transport protocol to be used
• Address information for locating the specified service

In a nutshell, WSDL represents a contract between the service requestor and the service
provider, in much the same way that a Java interface represents a contract between client
code and the actual Java object. The crucial difference is that WSDL is platform- and
language-independent and is used primarily (although not exclusively) to describe SOAP
services.

Using WSDL, a client can locate a web service and invoke any of its publicly available
functions. With WSDL-aware tools, you can also automate this process, enabling
applications to easily integrate new services with little or no manual code. WSDL
therefore represents a cornerstone of the web service architecture, because it provides a
common language for describing services and a platform for automatically integrating
those services.

This chapter covers all aspects of WSDL, including the following topics:

• An overview of the WSDL specification, complete with detailed explanations of
the major WSDL elements

• Two basic WSDL examples to get you started
• A brief survey of WSDL invocation tools, including the IBM Web Services

Invocation Framework (WSIF), SOAP::Lite, and The Mind Electric's GLUE
platform

• A discussion of how to automatically generate WSDL files from existing SOAP
services

• An overview of using XML Schema types within WSDL, including the use of
arrays and complex types

6.1 The WSDL Specification

WSDL is an XML grammar for describing web services. The specification itself is
divided into six major elements:

definitions

The definitions element must be the root element of all WSDL documents. It
defines the name of the web service, declares multiple namespaces used throughout
the remainder of the document, and contains all the service elements described here.

Web Services Essentials

 104

types

The types element describes all the data types used between the client and server.
WSDL is not tied exclusively to a specific typing system, but it uses the W3C XML
Schema specification as its default choice. If the service uses only XML Schema
built-in simple types, such as strings and integers, the types element is not required.
A full discussion of the types element and XML Schema is deferred to the end of the
chapter.

message

The message element describes a one-way message, whether it is a single message
request or a single message response. It defines the name of the message and
contains zero or more message part elements, which can refer to message
parameters or message return values.

portType

The portType element combines multiple message elements to form a complete one-
way or round-trip operation. For example, a portType can combine one request and
one response message into a single request/response operation, most commonly used
in SOAP services. Note that a portType can (and frequently does) define multiple
operations.

binding

The binding element describes the concrete specifics of how the service will be
implemented on the wire. WSDL includes built-in extensions for defining SOAP
services, and SOAP-specific information therefore goes here.

service

The service element defines the address for invoking the specified service. Most
commonly, this includes a URL for invoking the SOAP service.

To help you keep the meaning of each element clear, Figure 6-1 offers a concise
representation of the WSDL specification. As you continue reading the remainder of the
chapter, you may wish to refer back to this diagram.

Figure 6-1. The WSDL specification in a nutshell

Web Services Essentials

 105

In addition to the six major elements, the WSDL specification also defines the following
utility elements:

documentation

The documentation element is used to provide human-readable documentation and
can be included inside any other WSDL element.

import

The import element is used to import other WSDL documents or XML Schemas.
This enables more modular WSDL documents. For example, two WSDL documents
can import the same basic elements and yet include their own service elements to
make the same service available at two physical addresses. Note, however, that not
all WSDL tools support the import functionality as of yet.

WSDL is not an official recommendation of the W3C and, as such,
has no official status within the W3C. WSDL Version 1.1 was
submitted to the W3C in March 2001. Original submitters included
IBM, Microsoft, Ariba, and a half dozen other companies. Most
probably, WSDL will be placed under the consideration of the new
W3C Web Services Activity's Web Services Description Working
Group, which will decide if the specification advances to an official
recommendation status. The WSDL Version 1.1 specification is
available online at http://www.w3.org/TR/wsdl.

6.2 Basic WSDL Example: HelloService.wsdl

To make the previously described WSDL concepts as concrete as possible, let's examine
our first sample WSDL file.

Example 6-1 provides a sample HelloService.wsdl document. The document describes the
HelloService from Chapter 4.

As you may recall, the service provides a single publicly available function, called
sayHello. The function expects a single string parameter, and returns a single string
greeting. For example, if you pass the parameter world , the service returns the greeting,
"Hello, world!"

Example 6-1. HelloService.wsdl

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloService"
 targetNamespace="http://www.ecerami.com/wsdl/HelloService.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ecerami.com/wsdl/HelloService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="SayHelloRequest">
 <part name="firstName" type="xsd:string"/>
 </message>

Web Services Essentials

 106

 <message name="SayHelloResponse">
 <part name="greeting" type="xsd:string"/>
 </message>

 <portType name="Hello_PortType">
 <operation name="sayHello">
 <input message="tns:SayHelloRequest"/>
 <output message="tns:SayHelloResponse"/>
 </operation>
 </portType>

 <binding name="Hello_Binding" type="tns:Hello_PortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHello">
 <soap:operation soapAction="sayHello"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:helloservice"
 use="encoded"/>
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:helloservice"
 use="encoded"/>
 </output>
 </operation>
 </binding>

 <service name="Hello_Service">
 <documentation>WSDL File for HelloService</documentation>
 <port binding="tns:Hello_Binding" name="Hello_Port">
 <soap:address
 location="http://localhost:8080/soap/servlet/rpcrouter"/>
 </port>
 </service>
</definitions>

The WSDL elements are discussed in the next section of this chapter. As you examine
each element in detail, you may want to refer to Figure 6-2 , which summarizes the most
important aspects of Example 6-1.

Figure 6-2. A bird's-eye view of HelloService.wsdl

Web Services Essentials

 107

6.2.1 definitions

The definitions element specifies that this document is the HelloService. It also specifies
numerous namespaces that will be used throughout the remainder of the document:

<definitions name="HelloService"
 targetNamespace="http://www.ecerami.com/wsdl/HelloService.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ecerami.com/wsdl/HelloService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

The use of namespaces is important for differentiating elements, and it enables the
document to reference multiple external specifications, including the WSDL specification,
the SOAP specification, and the XML Schema specification.

The definitions element also specifies a targetNamespace attribute. The targetNamespace
is a convention of XML Schema that enables the WSDL document to refer to itself. In
Example 6-1, we specified a targetNamespace of http://www.ecerami.com/wsdl/
HelloService.wsdl. Note, however, that the namespace specification does not require that
the document actually exist at this location; the important point is that you specify a value
that is unique, different from all other namespaces that are defined.

Finally, the definitions element specifies a default namespace:
xmlns=http://schemas.xmlsoap.org/wsdl/. All elements without a namespace prefix, such
as message or portType , are therefore assumed to be part of the default WSDL namespace.

6.2.2 message

Two message elements are defined. The first represents a request message,
SayHelloRequest, and the second represents a response message, SayHelloResponse:

<message name="SayHelloRequest">
 <part name="firstName" type="xsd:string"/>
</message>
<message name="SayHelloResponse">
 <part name="greeting" type="xsd:string"/>
</message>

Each of these messages contains a single part element. For the request, the part specifies
the function parameters; in this case, we specify a single firstName parameter. For the
response, the part specifies the function return values; in this case, we specify a single
greeting return value.

The part element's type attribute specifies an XML Schema data type. The value of the
type attribute must be specified as an XML Schema QName - this means that the value of
the attribute must be namespace-qualified. For example, the firstName type attribute is set
to xsd:string ; the xsd prefix references the namespace for XML Schema, defined earlier
within the definitions element.

If the function expects multiple arguments or returns multiple values, you can specify
multiple part elements.

Web Services Essentials

 108

6.2.3 portType

The portType element defines a single operation, called sayHello. The operation itself
consists of a single input message (SayHelloRequest) and a single output message
(SayHelloResponse):

<portType name="Hello_PortType">
 <operation name="sayHello">
 <input message="tns:SayHelloRequest"/>
 <output message="tns:SayHelloResponse"/>
 </operation>
</portType>

Much like the type attribute defined earlier, the message attribute must be specified as an
XML Schema QName. This means that the value of the attribute must be namespace-
qualified. For example, the input element specifies a message attribute of
tns:SayHelloRequest ; the tns prefix references the targetNamespace defined earlier within
the definitions element.

WSDL supports four basic patterns of operation:

One-way

The service receives a message. The operation therefore has a single input element.

Request-response

The service receives a message and sends a response. The operation therefore has
one input element, followed by one output element (illustrated previously in
Example 6-1). To encapsulate errors, an optional fault element can also be
specified.

Solicit-response

The service sends a message and receives a response. The operation therefore has
one output element, followed by one input element. To encapsulate errors, an
optional fault element can also be specified.

Notification

The service sends a message. The operation therefore has a single output element.

These patterns of operation are also shown in Figure 6-3. The request-response pattern is
most commonly used in SOAP services.

Web Services Essentials

 109

Figure 6-3. Operation patterns supported by WSDL 1.1

6.2.4 binding

The binding element provides specific details on how a portType operation will actually be
transmitted over the wire. Bindings can be made available via multiple transports,
including HTTP GET, HTTP POST, or SOAP. In fact, you can specify multiple bindings
for a single portType.

The binding element itself specifies name and type attributes:

<binding name="Hello_Binding" type="tns:Hello_PortType">

The type attribute references the portType defined earlier in the document. In our case, the
binding element therefore references tns:Hello_PortType , defined earlier in the
document. The binding element is therefore saying, "I will provide specific details on how
the sayHello operation will be transported over the Internet."

6.2.4.1 SOAP binding

WSDL 1.1 includes built-in extensions for SOAP 1.1. This enables you to specify SOAP-
specific details, including SOAP headers, SOAP encoding styles, and the SOAPAction
HTTP header. The SOAP extension elements include:

soap:binding

This element indicates that the binding will be made available via SOAP. The style
attribute indicates the overall style of the SOAP message format. A style value of
rpc specifies an RPC format. This means that the body of the SOAP request will
include a wrapper XML element indicating the function name. Function parameters

Web Services Essentials

 110

are then embedded inside the wrapper element. Likewise, the body of the SOAP
response will include a wrapper XML element that mirrors the function request.
Return values are then embedded inside the response wrapper element.

A style value of document specifies an XML document call format. This means that
the request and response messages will consist simply of XML documents. The
document style is flatter than the rpc style and does not require the use of wrapper
elements. (See the upcoming note for additional details.)

The transport attribute indicates the transport of the SOAP messages. The value
http://schemas.xmlsoap.org/soap/http indicates the SOAP HTTP transport,
whereas http://schemas.xmlsoap.org/soap/smtp indicates the SOAP SMTP
transport.

soap:operation

This element indicates the binding of a specific operation to a specific SOAP
implementation. The soapAction attribute specifies that the SOAPAction HTTP
header be used for identifying the service. (See Chapter 3 for details on the
SOAPAction header.)

soap:body

This element enables you to specify the details of the input and output messages. In
the case of HelloWorld, the body element specifies the SOAP encoding style and the
namespace URN associated with the specified service.

The choice between the rpc style and the document style is
controversial. The topic has been hotly debated on the WSDL
newsgroup (http://groups.yahoo.com/group/wsdl). The debate is
further complicated because not all WSDL-aware tools even
differentiate between the two styles. Because the rpc style is more in
line with the SOAP examples from previous chapters, I have chosen
to stick with the rpc style for all the examples within this chapter.
Note, however, that most Microsoft .NET WSDL files use the
document style.

6.2.5 service

The service element specifies the location of the service. Because this is a SOAP service,
we use the soap:address element, and specify the local host address for the Apache SOAP
rpcrouter servlet: http://localhost:8080/soap/servlet/rpcrouter.

Note that the service element includes a documentation element to provide human-readable
documentation.

Web Services Essentials

 111

6.3 WSDL Invocation Tools, Part I

Given the WSDL file in Example 6-1 , you could manually create a SOAP client to invoke
the service. A better alternative is to automatically invoke the service via a WSDL
invocation tool. (See Figure 6-4 .)

Figure 6-4. WSDL invocation tools

Many WSDL invocation tools already exist. This section provides a brief overview of
three invocation tools.

6.3.1 GLUE

The Mind Electric provides a complete web service platform called GLUE (available at
http://www.themindelectric.com). The platform itself provides extensive support for
SOAP, WSDL, and UDDI. Some of its advanced functionality, including support for
complex data types, will be explored later in this chapter.

For now, you can try out the GLUE invoke command-line tool. Here is the command-line
usage:

usage: invoke URL method arg1 arg2 arg3...

For example, to invoke the HelloService, make sure that your Apache Tomcat server is
running, and place the HelloService.wsdl file within a publicly available directory. Then,
issue the following command:

invoke http://localhost:8080/wsdl/HelloService.wsdl sayHello World

Once invoked, GLUE will immediately download the specified WSDL file, invoke the
sayHello method, and pass World as a parameter. GLUE will then automatically display
the server response:

Output: result = Hello, World!

That's all there is to it!

GLUE also supports an excellent logging facility that enables you to easily view all SOAP
messages. To activate the logging facility, set the electric.logging system property. The
easiest option is to modify the invoke.bat file. The original file looks like this:

call java electric.glue.tools.Invoke %1 %2 %3 %4 %5 %6 %7 %8 %9

Web Services Essentials

 112

Modify the file to include the logging property via the -D option to the Java interpreter:

call java -Delectric.logging="SOAP" electric.glue.tools.Invoke %1 %2 %3 %4
 %5 %6 %7 %8 %9

When you invoke the HelloService, GLUE now generates the following output:

LOG.SOAP: request to http://207.237.201.187:8080/soap/servlet/rpcrouter
<?xml version='1.0' encoding='UTF-8'?>
<soap:Envelope
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:soap='http://schemas.xmlsoap.org/soap/
 envelope/' xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/'
 soap:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'>
 <soap:Body>
 <n:sayHello xmlns:n='urn:examples:helloservice'>
 <firstName xsi:type='xsd:string'>World</firstName>
 </n:sayHello>
 </soap:Body>
</soap:Envelope>

LOG.SOAP: response from http://207.237.201.187:8080/soap/servlet/rpcrouter
<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:xsi='http://www.w3.org/1999/XMLSchema-instance'
 xmlns:xsd='http://www.w3.org/1999/XMLSchema'>
 <SOAP-ENV:Body>
 <ns1:sayHelloResponse
 xmlns:ns1='urn:examples:helloservice'
 SOAP-ENV:encodingStyle=
 'http://schemas.xmlsoap.org/soap/encoding/'>
 <return xsi:type='xsd:string'>Hello, World!</return>
 </ns1:sayHelloResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
result = Hello, World!

To view additional HTTP information, just set electric.logging to SOAP,HTTP.

6.3.2 SOAP::Lite for Perl

SOAP::Lite for Perl, written by Paul Kulchenko, also provides limited support for WSDL.
The package is available at http://www.soaplite.com.

Example 6-2 provides a complete Perl program for invoking the HelloService.

Example 6-2. Hello_Service.pl

use SOAP::Lite;

print "Connecting to Hello Service...\n";
print SOAP::Lite
 -> service('http://localhost:8080/wsdl/HelloService.wsdl')
 -> sayHello ('World');

The program generates the following output:

Connecting to Hello Service...
Hello, World!

Web Services Essentials

 113

6.3.3 IBM Web Services Invocation Framework (WSIF)

Finally, IBM has recently released WSIF. The package is available at
http://www.alphaworks.ibm.com/tech/wsif.

Much like GLUE, WSIF provides a simple command-line option for automatically
invoking WSDL services. For example, the following command:

java clients.DynamicInvoker http://localhost:8080/wsdl/HelloService.wsdl
 sayHello World

generates the following output:

Reading WSDL document from 'http://localhost:8080/wsdl/HelloService.wsdl'
Preparing WSIF dynamic invocation
Executing operation sayHello
Result:
greeting=Hello, World!
Done!

6.4 Basic WSDL Example: XMethods eBay Price Watcher Service

Before moving on to more complicated WSDL examples, let's examine another relatively
simple one. Example 6-3 provides a WSDL file for the XMethods eBay Price Watcher
Service. The service takes an existing eBay auction ID, and returns the value of the
current bid.

Example 6-3. eBayWatcherService.wsdl (reprinted with permission of XMethods, Inc.)

<?xml version="1.0"?>
<definitions name="eBayWatcherService"
 targetNamespace=
 "http://www.xmethods.net/sd/eBayWatcherService.wsdl"
 xmlns:tns="http://www.xmethods.net/sd/eBayWatcherService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="getCurrentPriceRequest">
 <part name="auction_id" type = "xsd:string"/>
 </message>
 <message name="getCurrentPriceResponse">
 <part name="return" type = "xsd:float"/>
 </message>

 <portType name="eBayWatcherPortType">
 <operation name="getCurrentPrice">
 <input
 message="tns:getCurrentPriceRequest"
 name="getCurrentPrice"/>
 <output
 message="tns:getCurrentPriceResponse"
 name="getCurrentPriceResponse"/>
 </operation>
 </portType>

 <binding name="eBayWatcherBinding" type="tns:eBayWatcherPortType">
 <soap:binding
 style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getCurrentPrice">

Web Services Essentials

 114

 <soap:operation soapAction=""/>
 <input name="getCurrentPrice">
 <soap:body
 use="encoded"
 namespace="urn:xmethods-EbayWatcher"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output name="getCurrentPriceResponse">
 <soap:body
 use="encoded"
 namespace="urn:xmethods-EbayWatcher"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>

 <service name="eBayWatcherService">
 <documentation>
 Checks current high bid for an eBay auction
 </documentation>
 <port name="eBayWatcherPort" binding="tns:eBayWatcherBinding">
 <soap:address
 location="http://services.xmethods.net:80/soap/servlet/rpcrouter"/>
 </port>
 </service>
</definitions>

Here is an overview of the main WSDL elements:

messages

Two messages are defined: getCurrentPriceRequest and getCurrentPriceResponse.
The request message contains a single string parameter; the response message
contains a single float parameter.

portType

A single operation, getCurrentPrice , is defined. Again, we see the request/response
operation pattern.

binding

The binding element specifies HTTP SOAP as the transport. The soapAction
attribute is left as an empty string ("").

service

This element specifies that the service is available at
http://services.xmethods.net:80/soap/servlet/rpcrouter.

To access the eBay watcher service, you can use any of the WSDL invocation tools
defined earlier. For example, the following call to GLUE:

invoke http://www.xmethods.net/sd/2001/EBayWatcherService.wsdl
 getCurrentPrice 1271062297

retrieves the current bid price for a Handspring Visor Deluxe:

result = 103.5

Web Services Essentials

 115

The XMethods web site (http://www.xmethods.net) provides dozens
of sample SOAP and .NET services. Nearly all of these services
include WSDL files and therefore provide an excellent opportunity
for learning WSDL in detail. As you browse the XMethods
directory, try interfacing with the specified services via any of the
WSDL invocation tools described here. Quite likely, you will be
amazed at how easy it is to integrate and invoke new services.

6.5 WSDL Invocation Tools, Part II

Our initial discussion of WSDL invocation tools focused on programming and command-
line invocation tools. We now move on to even simpler tools that are entirely driven by a
web-based interface.

6.5.1 The GLUE Console

In addition to supporting a number of command-line tools, the GLUE platform also
supports a very intuitive web interface for deploying new services and connecting to
existing services.

To start the GLUE console, just type:

console

This will automatically start the GLUE console on the default port 8100. Open a web
browser and you will see the GLUE console home page. (See Figure 6-5 .)

Figure 6-5. The GLUE console: index page

In the text box entitled WSDL, you can enter the URL for any WSDL file. For example,
try entering the URL for the eBay Price Watcher Service,
http://www.xmethods.net/sd/2001/EBayWatcherService.wsdl.

Web Services Essentials

 116

Click the WSDL button, and you will see the Web Service overview page. (See Figure 6-
6.) This page includes a description of the specified service (extracted from the WSDL
document element) and a list of public operations. In the case of the eBay service, you
should see a single getCurrentPrice method.

Figure 6-6. The GLUE console: Web Service overview page for the eBay Price Watcher
Service

Click the getCurrentPrice method, and you will see the Web Method overview page. (See
Figure 6-7 .) This page includes a text box where you can specify the input auction ID.

Figure 6-7. The GLUE console: Web Method overview page for the getCurrentPrice method

Enter an auction ID, click the Send button, and GLUE will automatically invoke the
remote method and display the results at the bottom of the page. For example, Figure 6-8
shows the current bid price for the Handspring Visor Deluxe. Note that the price has
already gone up $10 since invoking the service via the GLUE command-line tool!

Web Services Essentials

 117

Figure 6-8. The GLUE console: invoking the getCurrentPrice method (results of the
invocation are displayed at the bottom of the screen)

6.5.2 SOAPClient.com

If you would like to try out a web-based interface similar to GLUE, but don't want to
bother downloading the GLUE package, consider the Generic SOAP Client available at
SOAPClient.com.

Figure 6-9 shows the opening screen to the Generic SOAP Client. Much like the GLUE
console, you can specify the address for a WSDL file in this screen.

Figure 6-9. The Generic SOAP Client, available from SOAPClient.com

Specify the same eBay Price Watcher Service WSDL file, and the SOAP Client will
display a text box for entering the auction ID. (See Figure 6-10 .)

Web Services Essentials

 118

Figure 6-10. The Generic SOAP Client: Displaying information on the XMethods eBay Price
Watcher Service

Figure 6-11 displays the result of the eBay service invocation. The Handspring Visor is up
another $4!

Figure 6-11. The Generic SOAP Client: Response from the XMethods eBay Price Watcher
Service

6.6 Automatically Generating WSDL Files

One of the best aspects of WSDL is that you rarely have to create WSDL files from
scratch. A whole host of tools currently exists for transforming existing services into
WSDL descriptions. You can then choose to use these WSDL files as is or manually
tweak them with your favorite text editor. In the discussion that follows, we explore the
WSDL generation tool provided by GLUE.

If you create WSDL files from scratch or tweak WSDL files
generated by a tool, it is a good idea to validate your final WSDL
documents. You can download a WSDL validator from
http://pocketsoap.com/wsdl/. This package requires that you have an
XSLT engine and the zvonSchematron (http://www.zvon.org), but
installation only takes a few minutes. Once installed, the validator is
well worth the effort and creates nicely formatted HTML reports
indicating WSDL errors and warnings.

Web Services Essentials

 119

6.6.1 GLUE java2wsdl Tool

The GLUE platform includes a java2wsdl command-line tool for transforming Java
services into WSDL descriptions. The command-line usage is as follows:

usage: java2wsdl <arguments>

where valid arguments are:
 classname name of java class
 -d directory output directory
 -e url endpoint of service
 -g include GET/POST binding
 -m map-file read mapping instructions
 -n namespace namespace for service
 -r description description of service
 -s include SOAP binding
 -x command-file command file to execute

Complete information on each argument is available online within the GLUE User Guide
at http://www.themindelectric.com/products/glue/releases/GLUE-
1.1/docs/guide/index.html. For now, we will focus on the most basic arguments.

For example, consider the PriceService class in Example 6-4. The service provides a
single getPrice() method.

Example 6-4. PriceService.java

package com.ecerami.soap.examples;

import java.util.Hashtable;
/**
 * A Sample SOAP Service
 * Provides Current Price for requested Stockkeeping Unit (SKU)
 */
public class PriceService {
 protected Hashtable products;

 /**
 * Zero Argument Constructor
 * Load product database with two sample products
 */
 public PriceService () {
 products = new Hashtable();
 // Red Hat Linux
 products.put("A358185", new Double (54.99));
 // McAfee PGP Personal Privacy
 products.put("A358565", new Double (19.99));
 }
 /**
 * Provides Current Price for requested SKU
 * In a real-setup, this method would connect to
 * a price database. If SKU is not found, method
 * will throw a PriceException.
 */
 public double getPrice (String sku)
 throws ProductNotFoundException {
 Double price = (Double) products.get(sku);
 if (price == null) {
 throw new ProductNotFoundException ("SKU: "+sku+" not found");
 }
 return price.doubleValue();
 }
}

Web Services Essentials

 120

To generate a WSDL file for this class, run the following command:

java2wsdl com.ecerami.soap.examples.PriceService -s -e http://localhost:
 8080/soap/servlet/rpcrouter -n urn:examples:priceservice

The -s option directs GLUE to create a SOAP binding; the -e option specifies the address
of our service; and the -n option specifies the namespace URN for the service. GLUE will
generate a PriceService.wsdl file. (See Example 6-5 .)

If your service is defined via a Java interface and you include your
source files within your CLASSPATH, GLUE will extract your
Javadoc comments, and turn these into WSDL documentation
elements.

Example 6-5. PriceService.wsdl (automatically generated by GLUE)

<?xml version='1.0' encoding='UTF-8'?>
<!--generated by GLUE-->
<definitions name='com.ecerami.soap.examples.PriceService'
 targetNamespace='http://www.themindelectric.com/wsdl/com.ecerami.soap.

 xmlns:tns='http://www.themindelectric.com/wsdl/com.ecerami.soap.
 examples.PriceService/'
 xmlns:electric='http://www.themindelectric.com/'
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'
 xmlns:http='http://schemas.xmlsoap.org/wsdl/http/'
 xmlns:mime='http://schemas.xmlsoap.org/wsdl/mime/'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'
 xmlns='http://schemas.xmlsoap.org/wsdl/'>
 <message name='getPrice0SoapIn'>
 <part name='sku' type='xsd:string'/>
 </message>
 <message name='getPrice0SoapOut'>
 <part name='Result' type='xsd:double'/>
 </message>
 <portType name='com.ecerami.soap.examples.PriceServiceSoap'>
 <operation name='getPrice' parameterOrder='sku'>
 <input name='getPrice0SoapIn' message='tns:getPrice0SoapIn'/>
 <output name='getPrice0SoapOut' message='tns:getPrice0SoapOut'/>
 </operation>
 </portType>
 <binding name='com.ecerami.soap.examples.PriceServiceSoap'
 type='tns:com.ecerami.soap.examples.PriceServiceSoap'>
 <soap:binding style='rpc'
 transport='http://schemas.xmlsoap.org/soap/http'/>
 <operation name='getPrice'>
 <soap:operation soapAction='getPrice' style='rpc'/>
 <input name='getPrice0SoapIn'>
 <soap:body use='encoded'
 namespace='urn:examples:priceservice'
 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'/>
 </input>
 <output name='getPrice0SoapOut'>
 <soap:body use='encoded'
 namespace='urn:examples:priceservice'
 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'/>
 </output>
 </operation>
 </binding>

Web Services Essentials

 121

 <service name='com.ecerami.soap.examples.PriceService'>
 <port name='com.ecerami.soap.examples.PriceServiceSoap'
 binding='tns:com.ecerami.soap.examples.PriceServiceSoap'>
 <soap:address location='http://207.237.201.187:8080
 /soap/servlet/ rpcrouter'/>
 </port>
 </service>
</definitions>

You can then invoke the service via SOAP::Lite:

use SOAP::Lite;

print "Connecting to Price Service...\n";
print SOAP::Lite
 -> service('http://localhost:8080/wsdl/PriceService.wsdl')
 -> getPrice ('A358185');

Hopefully, this example illustrates the great promise of web service interoperability. We
have a WSDL file generated by GLUE, a server running Java, and a client running Perl,
and they all work seamlessly together.

Connecting to Price Service...
54.99

The IBM Web Services Toolkit (available at
http://www.alphaworks.ibm.com/tech/webservicestoolkit) provides a
WSDL generation tool called wsdlgen. This tool can take existing
Java classes, Enterprise JavaBeans, and Microsoft COM objects and
automatically generate corresponding WSDL files. However, as this
book goes to press, the wsdlgen tool creates files based on the 1999
version of the W3C XML Schema. The WSDL files are therefore
incompatible with other WSDL invocation tools, such as SOAP::Lite
and GLUE. If you choose to use the IBM tool, make sure to
manually update your WSDL files to reflect the latest version of
XML Schema (http://www.w3.org/2001/XMLSchema).

6.7 XML Schema Data Typing

In order for a SOAP client to communicate effectively with a SOAP server, the client and
server must agree on a data type system. By default, XML 1.0 does not provide a data
type system. In contrast, every programming language provides some basic facility for
declaring data types, such as integers, floats, doubles, and strings. One of the greatest
challenges in building web services is therefore creating a common data type system that
can be used by a diverse set of programming languages running on a diverse set of
operating systems.

WSDL does not aim to create a standard for XML data typing. In fact, WSDL is
specifically designed for maximum flexibility and is therefore not tied exclusively to any
one data type system. Nonetheless, WSDL does default to the W3C XML Schema
specification. The XML Schema specification is also currently the most widely used
specification for data typing.

Web Services Essentials

 122

The more you know about XML Schemas, the better you can understand complex WSDL
files. A full discussion of XML Schemas is beyond the scope of this chapter. However,
two facts are crucially important.

First, the XML Schema specification includes a basic type system for encoding most data
types. This type system includes a long list of built-in simple types, including strings,
floats, doubles, integers, time, and date. This list, shown in Table 6-1 , is excerpted from
the XML Schema Part 0: Primer
(http://www.w3.org/TR/2000/WD=xmlschema=0=20000407/). If your application sticks
to these simple data types, there is no need to include the WSDL types element, and the
resulting WSDL file is extremely simple. For example, our first two WSDL files use only
strings and floats.

Table 6-1. A list of the main XML Schema built-in simple types

Simple type Example(s)

string Web Services

Boolean true, false, 1, 0

float -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN

double -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN

decimal -1.23, 0, 123.4, 1000.00

binary 100010

integer -126789, -1, 0, 1, 126789

nonPositiveInteger -126789, -1, 0

negativeInteger -126789, -1

long -1, 12678967543233

int -1, 126789675

short -1, 12678

byte -1, 126

nonNegativeInteger 0, 1, 126789

unsignedLong 0, 12678967543233

unsignedInt 0, 1267896754

unsignedShort 0, 12678

unsignedByte 0, 126

positiveInteger 1, 126789

date 1999-05-31

time 13:20:00.000, 13:20:00.000-05:00

Web Services Essentials

 123

Second, the XML Schema specification provides a facility for creating new data types.
This is important if you want to create data types that go beyond what is already defined
within the Schema. For example, a service might return an array of floats or a more
complex stock quote object containing the high, low, and volume figures for a specific
stock. Whenever your service goes beyond the simple XML Schema data types, you must
declare these new data types within the WSDL types element.

In the next two sections of this chapter, we present two specific examples of using XML
Schemas to create new data types. The first focuses on arrays; the second focuses on a
more complex data type for encapsulating product information.

6.7.1 Arrays

Example 6-6 , shown later in this section, is a sample WSDL file that illustrates the use of
arrays. This is the Price List Service we created in Chapter 5. The service has one public
method, called getPriceList , which expects an array of string SKU values and returns an
array of double price values.

The WSDL file now includes a types element. Inside this element, we have defined two
new complex types. Very broadly, the XML Schema defines simple types and complex
types. Simple types cannot have element children or attributes, whereas complex types
can have element children and attributes. We have declared complex types in our WSDL
file, because an array may have multiple elements, one for each value in the array.

The XML Schema requires that any new type you create be based on some existing data
type. This existing base type is specified via the base attribute. You can then choose to
modify this base type using one of two main methods: extension or restriction.
Extension simply means that your new data type will have all the properties of the base
type plus some extra functionality. Restriction means that your new data type will have all
the properties of the base data type, but may have additional restrictions placed on the data.

In Example 6-6 , we'll create two new complex types via restriction. For example:

<complexType name="ArrayOfString">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType"
 wsdl:arrayType="string[]"/>
 </restriction>
 </complexContent>
</complexType>

Example 6-6. PriceListService.wsdl

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="PriceListService"
 targetNamespace="http://www.ecerami.com/wsdl/PriceListService.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ecerami.com/wsdl/PriceListService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://www.ecerami.com/schema">

Web Services Essentials

 124

 <types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.ecerami.com/schema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

 <complexType name="ArrayOfString">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType"
 wsdl:arrayType="string[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="ArrayOfDouble">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType"
 wsdl:arrayType="double[]"/>
 </restriction>
 </complexContent>
 </complexType>
 </schema>
 </types>

 <message name="PriceListRequest">
 <part name="sku_list" type="xsd1:ArrayOfString"/>
 </message>

 <message name="PriceListResponse">
 <part name="price_list" type="xsd1:ArrayOfDouble"/>
 </message>

 <portType name="PriceList_PortType">
 <operation name="getPriceList">
 <input message="tns:PriceListRequest"/>
 <output message="tns:PriceListResponse"/>
 </operation>
 </portType>

 <binding name="PriceList_Binding" type="tns:PriceList_PortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getPriceList">
 <soap:operation soapAction="urn:examples:pricelistservice"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:pricelistservice"
 use="encoded"/>
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:pricelistservice" use="encoded"/>
 </output>
 </operation>
 </binding>

 <service name="PriceList_Service">
 <port name="PriceList_Port" binding="tns:PriceList_Binding">
 <soap:address location="http://localhost:8080/soap/servlet/rpcrouter"/>
 </port>
 </service>
</definitions>

Web Services Essentials

 125

The WSDL specification requires that arrays be based on the SOAP 1.1 encoding schema.
It also requires that arrays use the name ArrayOfXXX , where XXX is the type of item in the
array. The previous example therefore creates a new type called ArrayOfString. This new
type is based on the SOAP array data type, but it is restricted to holding only string
values. Likewise, the ArrayOfDouble data type creates a new array type containing only
double values.

When using the WSDL types element, you need to be particularly aware of XML
namespace issues. First, note that the root schema element must include a namespace
declaration for the SOAP encoding specification
(http://schemas.xmlsoap.org/soap/encoding/). This is required because our new data types
extend the array definition specified by SOAP.

Second, the root schema element must specify a targetNamespace attribute. Any newly
defined elements, such as our new array data types, will belong to the specified
targetNamespace. To reference these data types later in the document, you must refer back
to the same targetNamespace. Hence, our definitions element includes a new namespace
declaration:

xmlns:xsd1="http://www.ecerami.com/schema">

xsd1 matches the targetNamespace and therefore enables us to reference the new data types
later in the document. For example, the message element references the
xsd1:ArrayOfString data type:

<message name="PriceListRequest">
 <part name="sku_list" type="xsd1:ArrayOfString"/>
</message>

For an excellent and concise overview of W3C Schema complex
types and their derivation via extension and restriction, see Donald
Smith's article on "Understanding W3C Schema Complex Types."
The article is available online at
http://www.xml.com/pub/a/2001/08/22/easyschema.html.

6.7.1.1 Automatically invoking array services

Once you move beyond basic data types, the simple WSDL invocation methods described
previously in this chapter no longer work quite as easily. For example, you cannot simply
open the GLUE console, pass an array of strings, and hope to receive back an array of
doubles. Additional work is necessary, and some manual code is required. Nonetheless,
the additional work is minimal, and the discussion that follows focuses on the GLUE
platform. We have chosen to focus on the GLUE platform because it represents the most
elegant platform for working with complex data types; other tools, such as the IBM Web
Services Toolkit, do, however, provide similar functionality.

Web Services Essentials

 126

To get started, you should become familiar with the GLUE wsdl2java command-line tool.
The tool takes in a WSDL file and generates a suite of Java class files to automatically
interface with the specified service. You can then write your own Java class to invoke the
specified service. Best of all, the code you write is minimally simple, and all SOAP-
specific details are completely hidden from your view. (See Figure 6-12 .)

Figure 6-12. The GLUE wsdl2java tool and the GLUE architecture

Here is the wsdl2java command-line usage:

usage: wsdl2java <arguments>

where valid arguments are:
 http://host:port/filename URL of WSDL
 -c checked exceptions
 -d directory output directory for files
 -l user password realm login credentials
 -m map-file read mapping instructions
 -p package set default package
 -v verbose
 -x command-file command file to execute

Complete information on each argument is available online within the GLUE User Guide
at http://www.themindelectric.com/products/glue/releases/GLUE-
1.1/docs/guide/index.html. For now, we will focus on the most basic arguments. For
example, to generate Java class files for the PriceListService.wsdl file, first make sure that
the WSDL file is available publicly on a web site or locally via a web server such as
Tomcat. Then, issue the following command:

wsdl2java.bat http://localhost:8080/wsdl/PriceListService.wsdl -p com.
 ecerami.wsdl.glue

The first argument specifies the location of the WSDL file; the second argument specifies
that the generated files should be placed in the package com.ecerami.wsdl.glue.

GLUE will automatically download the specified WSDL file and generate two Java class
files:

write file IPriceList_Service.java
write file PriceList_ServiceHelper.java

Web Services Essentials

 127

The first file, IPriceList_Service.java, is shown in Example 6-7. This file represents a Java
interface that mirrors the public methods exposed by the WSDL file. Specifically, the
interface shows a getPriceList() method that receives an array of String values, and
returns an array of double values.

Example 6-7. IPriceList_Service.java

// generated by GLUE

package com.ecerami.wsdl.glue;

public interface IPriceList_Service
 {
 double[] getPriceList(String[] sku_list);
 }

The second file, PriceList_ServiceHelper.java, is shown in Example 6-8. This is known as
a GLUE helper file, and it can dynamically bind to the service specified by the WSDL
file. To access the service, simply call the static bind() method.

Example 6-8. PriceList_ServiceHelper.java

// generated by GLUE

package com.ecerami.wsdl.glue;

import electric.registry.Registry;
import electric.registry.RegistryException;

public class PriceList_ServiceHelper
 {
 public static IPriceList_Service bind() throws RegistryException
 {
 return bind("http://localhost:8080/wsdl/PriceListService.wsdl");
 }

 public static IPriceList_Service bind(String url)
 throws RegistryException
 {
 return (IPriceList_Service)
 Registry.bind(url, IPriceList_Service.class);
 }
 }

Once GLUE has generated the interface and helper files, you just need to write your own
class that actually invokes the service. Example 6-9 shows a sample application that
invokes the Price List Service. The code first calls PriceList_ServiceHelper.bind() ,
which then returns an IPriceList_Service object. All subsequent code behaves as if the
Price List Service is a local object, and all SOAP-specific details are completely hidden
from the developer.

Here is a sample output of the Invoke_PriceList application:

Product Catalog
SKU: A358185 --> Price: 54.99
SKU: A358565 --> Price: 19.99

Web Services Essentials

 128

Example 6-9. Invoke_PriceList.java

package com.ecerami.wsdl;

import com.ecerami.wsdl.glue.*;

/**
 * SOAP Invoker. Uses the PriceListServiceHelper to invoke
 * SOAP service. PriceListServiceHelper and IPriceListService
 * are automatically generated by GLUE.
*/
public class Invoke_PriceList {

 /**
 * Get Product List via SOAP
 */
 public double[] getPrices (String skus[]) throws Exception {
 IPriceList_Service priceListService = PriceList_ServiceHelper.bind();
 double[] prices = priceListService.getPriceList(skus);
 return prices;
 }

 /**
 * Main Method
 */
 public static void main (String[] args) throws Exception {
 Invoke_PriceList invoker = new Invoke_PriceList();
 System.out.println ("Product Catalog");
 String skus[] = {"A358185", "A358565" };
 double[] prices = invoker.getPrices (skus);
 for (int i=0; i<prices.length; i++) {
 System.out.print ("SKU: "+skus[i]);
 System.out.println (" --> Price: "+prices[i]);
 }
 }

}

6.7.2 Complex Types

Our final topic is the use of complex data types. For example, consider a home monitoring
service that provides a concise update on your home. The data returned could include
multiple data elements, such as the current temperature, security status, and whether the
garage door is open or closed. Encoding this data into WSDL requires additional
knowledge of XML Schemas, which reinforces the main precept that the more you know
about XML Schemas, the better you will understand complex WSDL files.

To explore complex types, consider the WSDL file in Example 6-10. This WSDL file
describes our Product Service from Chapter 5. The complex types are indicated in bold.

Example 6-10. ProductService.wsdl

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="ProductService"
 targetNamespace="http://www.ecerami.com/wsdl/ProductService.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ecerami.com/wsdl/ProductService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://www.ecerami.com/schema">

Web Services Essentials

 129

 <types>
 <xsd:schema
 targetNamespace="http://www.ecerami.com/schema"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="product">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="description" type="xsd:string"/>
 <xsd:element name="price" type="xsd:double"/>
 <xsd:element name="SKU" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </types>

 <message name="getProductRequest">
 <part name="sku" type="xsd:string"/>
 </message>

 <message name="getProductResponse">
 <part name="product" type="xsd1:product"/>
 </message>

 <portType name="Product_PortType">
 <operation name="getProduct">
 <input message="tns:getProductRequest"/>
 <output message="tns:getProductResponse"/>
 </operation>
 </portType>

 <binding name="Product_Binding" type="tns:Product_PortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getProduct">
 <soap:operation soapAction="urn:examples:productservice"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:productservice"
 use="encoded"/>
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:productservice" use="encoded"/>
 </output>
 </operation>
 </binding>

 <service name="Product_Service">
 <port name="Product_Port" binding="tns:Product_Binding">
 <soap:address location="http://localhost:8080/soap/servlet/rpcrouter"/>
 </port>
 </service>
</definitions>

The service in Example 6-10 describes a getProduct operation that returns a complex
product type for encapsulating product information, including product name, description,
price, and SKU number.

The new product type is defined in much the same manner as the array definition from the
previous example. The main difference is that we are now using the sequence element.
The sequence element specifies a list of subelements and requires that these elements
appear in the order specified. XML Schemas also enable you to specify cardinality via the

Web Services Essentials

 130

minOccurs and maxOccurs attributes. If these attributes are absent (as in our example), they
default to 1 , requiring that each subelement must occur exactly one time.

Each subelement can also have its own data type, and you can see that we have mixed and
matched string data types with double data types in our example.

6.7.2.1 Automatically invoking complex type services

To automatically invoke the Product Service, we return to the GLUE wsdl2java tool. This
time around, GLUE will generate a Java interface class and a Java helper class, along with
two additional files for handling the new complex type.

For example, the following command:

wsdl2java.bat http://localhost:8080/wsdl/ProductService.wsdl -p com.ecerami.
 wsdl.glue

generates the following output:

write file IProduct_Service.java
write file Product_ServiceHelper.java
write file product.java
write file Product_Service.map

The first two files in the output listing are familiar. The first file is a Java interface
mirroring the service; the second file is a helper class for dynamically binding to the
specified service. (See Example 6-11 and Example 6-12 .)

Example 6-11. IProduct_Service.java

// generated by GLUE

package com.ecerami.wsdl.glue;

public interface IProduct_Service
 {
 product getProduct(String sku);
 }

Example 6-12. Product_ServiceHelper.java

// generated by GLUE

package com.ecerami.wsdl.glue;

import electric.registry.Registry;
import electric.registry.RegistryException;

public class Product_ServiceHelper
 {
 public static IProduct_Service bind() throws RegistryException
 {
 return bind("http://localhost:8080/wsdl/ProductService.wsdl");
 }

 public static IProduct_Service bind(String url)
 throws RegistryException
 {
 return (IProduct_Service)

Web Services Essentials

 131

 Registry.bind(url, IProduct_Service.class);
 }
 }

The third file in the output listing, product.java, represents a simple container class for
encapsulating product data. (See Example 6-13.) GLUE essentially takes all the complex
types defined within the WSDL file and creates a container class for each type. Each
subelement is then transformed into a public variable for easy access. For example, the
product class has four public variables, name , description , price , and SKU ,
corresponding to our new complex data type. Note also that the public variables match the
XML Schema types specified within the WSDL file; for example, name is declared as a
String , whereas price is declared as a double.

Example 6-13. product.java

// generated by GLUE

package com.ecerami.wsdl.glue;

public class product
 {
 public java.lang.String name;

 public java.lang.String description;

 public double price;

 public java.lang.String SKU;
 }

Finally, GLUE generates a Java-to-XML Schema mapping file. (See Example 6-14 .) The
file itself is extremely concise and is responsible for converting Java to XML Schema
types and vice versa. (See Figure 6-13 .) The root complexType element indicates that
elements of type product should be transformed into the product class located in
com.ecerami.wsdl.glue. Inside the root complex type, there is a one-to-one mapping
between the XML Schema type and the public Java variable. For example, the element
name is mapped to the product.name variable, and the type is specified as string.
Likewise, the element price is mapped to the product.price variable, and the type is
specified as double.

Figure 6-13. The GLUE Java-to-XML Schema mapping file

Example 6-14. Product_Service.map

<?xml version='1.0' encoding='UTF-8'?>
<!--generated by GLUE-->
<mappings xmlns='http://www.themindelectric.com/schema/'>
 <schema
 xmlns='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.ecerami.com/schema'
 xmlns:electric='http://www.themindelectric.com/schema/'>
 <complexType name='product' electric:class='com.ecerami.wsdl.glue.product'>
 <sequence>
 <element name='name' electric:field='name' type='string'/>

Web Services Essentials

 132

 <element name='description'
 electric:field='description' type='string'/>
 <element name='price' electric:field='price' type='double'/>
 <element name='SKU' electric:field='SKU' type='string'/>
 </sequence>
 </complexType>
 </schema>
</mappings>

To invoke the Product Service, you must first explicitly load the mapping file via the
GLUE Mappings class:

Mappings.readMappings("Product_Service.map");

You can then access the service just like in the previous example. See Example 6-15 for
the complete invocation program. Here is some sample output:

Product Service
Name: Red Hat Linux
Description: Red Hat Linux Operating System
Price: 54.99

Example 6-15. Invoke_Product.java

package com.ecerami.wsdl;

import java.io.IOException;
import electric.xml.io.Mappings;
import electric.xml.ParseException;
import electric.registry.RegistryException;
import com.ecerami.wsdl.glue.*;

/**
 * SOAP Invoker. Uses the Product_ServiceHelper to invoke the Product
 * SOAP service. All other .java files are automatically generated
 * by GLUE.
*/
public class Invoke_Product {

 /**
 * Get Product via SOAP Service
 */
 public product getProduct (String sku) throws Exception {
 // Load Java <--> XML Mapping
 Mappings.readMappings("Product_Service.map");
 // Invoke Service
 IProduct_Service service = Product_ServiceHelper.bind();
 product prod = service.getProduct(sku);
 return prod;
 }

 /**
 * Main Method
 */
 public static void main (String[] args) throws Exception {
 Invoke_Product invoker = new Invoke_Product();
 System.out.println ("Product Service");
 product prod = invoker.getProduct("A358185");
 System.out.println ("Name: "+prod.name);
 System.out.println ("Description: "+prod.description);
 System.out.println ("Price: "+prod.price);
 }
}

Web Services Essentials

 133

This is a very small amount of code, but it is capable of doing very real work. Be sure to
check The Mind Electric web site (http://themindelectric.com) for new releases of the
GLUE product.

Web Services Essentials

 134

Part V: UDDI

Chapter 7

Chapter 8 - UDDI Inquiry API: Quick Reference

Chapter 9

Web Services Essentials

 135

Chapter 7. UDDI Essentials

UDDI is a technical specification for describing, discovering, and integrating web
services. UDDI is therefore a critical part of the emerging web service protocol stack,
enabling companies to both publish and find web services. This chapter provides a
complete overview of UDDI and covers the following topics:

• The main concepts and history of UDDI
• The main uses of UDDI, such as its potential impact within the field of supply-

chain management
• The technical aspects of UDDI, including a detailed explanation of the UDDI data

model
• How to search UDDI via a web-based interface and how to use the UDDI

programmatic API
• How to publish new companies and services to UDDI
• Popular UDDI implementations for Java, Perl, and Microsoft COM

7.1 Introduction to UDDI

At its core, UDDI consists of two parts. First, UDDI is a technical specification for
building a distributed directory of businesses and web services. Data is stored within a
specific XML format, and the UDDI specification includes API details for searching
existing data and publishing new data. Second, the UDDI Business Registry (also
frequently referred to as the UDDI "cloud services") is a fully operational implementation
of the UDDI specification. Launched in May 2001 by Microsoft and IBM, the UDDI
registry now enables anyone to search existing UDDI data. It also enables any company to
register itself and its services.

The data captured within UDDI is divided into three main categories:

White pages

This includes general information about a specific company - for example, business
name, business description, contact information, address and phone numbers. It can
also include unique business identifiers, such as a Dun & Bradstreet D-U-N-S®
Number.

Yellow pages

This includes general classification data for either the company or the service
offered. For example, this data may include industry, product, or geographic codes
based on standard taxonomies.

Web Services Essentials

 136

Green pages

This category contains technical information about a web service. Generally, this
includes a pointer to an external specification and an address for invoking the web
service. UDDI is not restricted to describing web services based on SOAP. Rather,
UDDI can be used to describe any service, from a single web page or email address
all the way up to SOAP, CORBA, and Java RMI services.

7.1.1 A Brief History of UDDI

UDDI 1.0 was originally announced by Microsoft, IBM, and Ariba in September 2000.
Since the initial announcement, the UDDI initiative has grown to include more than 280
companies. (A complete list of UDDI members is available at
http://www.uddi.org/community.html.)

In May 2001, Microsoft and IBM launched the first UDDI operator sites and turned the
UDDI registry live. In June 2001, UDDI announced Version 2.0. New features include:

• Improved support for internationalization. For example, businesses can describe
themselves and their services in multiple languages.

• Improved support for describing complex organizations. For example, a business
can publish business units, departments, or divisions and tie them together under
one umbrella.

• An improved set of search options.

As of this writing, the Microsoft and IBM sites implement the 1.0 specification and plan
2.0 support in the near future. According to the original plan, the UDDI group will release
three versions of UDDI and then turn the specification over to an appropriate standards
body.

7.2 Why UDDI?

At first glance, UDDI appears extremely simple. Nonetheless, it includes some subtle
points that are easily overlooked. Let's therefore begin by examining the future impact of
UDDI within a specific industry.

To make the concepts as concrete as possible, consider the semiconductor industry.
Currently, approximately 400 companies in the information technology, electronic
component, and semiconductor manufacturing industries are members of an industry
consortium called RosettaNet. RosettaNet is focused on creating standard processes and
interfaces for e-business and supply-chain management. One of RosettaNet's main
accomplishments is the creation of Partner Interface Processes (PIPs). PIPs are XML-
based interfaces that enable two trading partners to exchange data. Dozens of PIPs already
exist. For example:

PIP2A2

Enables a partner to query another for product information

Web Services Essentials

 137

PIP3A2

Enables a partner to query the price and availability of specific products

PIP3A4

Enables a partner to submit an electronic purchase order and receive
acknowledgment of the order

PIP3A3

Enables a partner to transfer the contents of an electronic shopping cart

PIP3B4

Enables a partner to query status on a specific shipment

By accelerating the adoption of PIPs, RosettaNet will dramatically increase
interoperability between trading partners and enable more flexible supply- chain
management. This increases overall efficiency and drives down costs. Each of the
participating companies therefore has a direct incentive to adhere to the PIP standards.

Additional information regarding RosettaNet is available at
http://www.rosettanet.org.

In April 2001, RosettaNet registered 83 individual PIPs within UDDI. Let's consider two
fictional companies and examine how each may leverage UDDI in the near future.

7.2.1 Scenario 1: Publishing to UDDI

First, consider Acme Parts, a supplier of generic semiconductor widgets. Acme is a
member of the RosettaNet consortium and has recently upgraded its e-business services to
adhere to a subset of the RosettaNet specification. For example, Acme now enables
partners to query for specific product information, product availability, and pricing. It also
enables partners to submit electronic purchase orders and to constantly track the status of
those orders.

Acme is eager to integrate into existing supply chains. It therefore registers itself within
UDDI. It also registers each of its e-business services. For each service, it notes the
technical specification implemented. For example, the Acme Parts: Submit Purchase
Order is noted to adhere to RosettaNet PIP3A4.

By registering within UDDI, Acme advertises its services and enables buyers to easily
discover the technical standards used. In the future, you can also imagine that Acme will
purchase new UDDI-aware e-commerce software. The software will know the UDDI
protocol and will be able to automatically register the company and its services.

Web Services Essentials

 138

7.2.2 Scenario 2: Searching UDDI

Next, consider United Semiconductor, a buyer of parts from Acme Parts and dozens of
other suppliers. To drive down costs, United wants to integrate all its suppliers into one
coherent system.

United has two options. First, let's assume that United and Acme are already well-
established partners. United can therefore look up Acme within the UDDI Business
Registry, determine which services are available from Acme, and determine whether those
services adhere to the same RosettaNet standards. For each service, United can also
determine the exact binding points. For example, the Acme Parts: Submit Purchase Order
service is available at http://www.acmeparts.com/services/po. United therefore has all the
information necessary to seamlessly add Acme to its supply chain and immediately start
submitting electronic purchase orders.

As a second option, United could also look up other suppliers. Or it could look up all
companies that implement the specific PIP for submitting electronic purchase orders.

7.3 UDDI Technical Overview

The UDDI technical architecture consists of three parts:

UDDI data model

An XML Schema for describing businesses and web services. The data model is
described in detail in the "UDDI Data Model" section, later in this chapter.

UDDI API

A SOAP-based API for searching and publishing UDDI data.

UDDI cloud services

Operator sites that provide implementations of the UDDI specification and
synchronize all data on a scheduled basis.

UDDI cloud services are currently provided by Microsoft and IBM. Ariba had originally
planned to offer an operator as well, but has since backed away from the commitment.
Additional operators from other companies, including Hewlett-Packard, are planned for
the near future. (For an updated list of operator sites, go to
http://www.uddi.org/register.html.)

The current cloud services provide a logically centralized, but physically distributed,
directory. This means that data submitted to one root node will automatically be replicated
across all the other root nodes. Currently, data replication occurs every 24 hours.

It is also possible to set up private UDDI registries. For example, a large company may set
up its own private UDDI registry for registering all internal web services. As these
registries are not automatically synchronized with the root UDDI nodes, they are not
considered part of the UDDI cloud.

Web Services Essentials

 139

7.4 UDDI Data Model

UDDI includes an XML Schema that describes four core types of information:

• businessEntity
• businessService
• bindingTemplate
• tModel

These core data elements are described in the following sections. Figure 7-1 illustrates the
containment hierarchy. (This diagram is based on Figure 1 from the "UDDI Data Structure
Reference V1.0", available at http://www.uddi.org/pubs/DataStructure-V1.00-Open-
20000930_2.doc.) You may be tempted to rush ahead and try the web-based UDDI
interface, but taking the time to understand these core elements now will help immensely
when you're trying to make sense of both the web-based interface and the programmatic
API.

The actual UDDI XML Schemas are available online at the following
URLs: http://www.uddi.org/schema/2001/uddi_v1.xsd (UDDI 1.0)
and http://www.uddi.org/schema/uddi_v2.xsd (UDDI 2.0).

Figure 7-1. The UDDI data model

7.4.1 The businessEntity

The businessEntity element includes information about the actual business. This includes
business name, description, address, and contact information. For example, here is an
excerpt from the Microsoft businessEntity record:

<businessEntity
 businessKey="0076b468-eb27-42e5-ac09-9955cff462a3"
 operator="Microsoft Corporation" authorizedName="Martin Kohlleppel">
 <name>Microsoft Corporation</name>
 <description xml:lang="en">Empowering people through great software
 - any time, any place and on any device is Microsoft's vision. As the
 worldwide leader in software for personal and business computing, we
 strive to produce innovative products and services that meet our
 customer's...
 </description>

Web Services Essentials

 140

 <contacts>
 <contact useType="Corporate Addresses and telephone">
 <description xml:lang="en">Corporate Mailing Addresses</
 description>
 <personName />
 <phone useType="Corporate Headquarters">(425) 882-8080</phone>
 <address sortCode="~" useType="Corporate Headquarters">
 <addressLine>Microsoft Corporation</addressLine>
 <addressLine>One Microsoft Way</addressLine>
 <addressLine>Redmond, WA 98052-6399</addressLine>
 <addressLine>USA</addressLine>
 </address>
 </contact>
 <contact useType="Technical Contact - Corporate UD">
 <description xml:lang="en">World Wide Operations</description>
 <personName>Martin Kohlleppel</personName>
 <email>martink@microsoft.com</email>
 </contact>
 </contacts>
 <identifierBag>
 <keyedReference
 tModelKey="uuid:8609c81e-ee1f-4d5a-b202-3eb13ad01823"
 keyName="D-U-N-S" keyValue="08-146-6849" />
 </identifierBag>
 <categoryBag>
 <keyedReference
 tModelKey="uuid:c0b9fe13-179f-413d-8a5b-5004db8e5bb2"
 keyName="NAICS: Software Publisher" keyValue="51121" />
 </categoryBag>
</businessEntity>

Upon registering, each business receives a unique businessKey value. For example, the
businessKey for Microsoft is 0076b468-eb27-42e5-ac09-9955cff462a3. As we shall soon
see, the key is used to tie a business to its published services.

In addition to basic contact information, the businessEntity record can include optional
business identifiers and business categories. Identifiers can represent any unique value
that identifies the company. For example, UDDI is currently set up to accept both Dun &
Bradstreet D-U-N-S® Numbers and Thomas Registry Supplier IDs. (See Table 7-1 and
Table 7-2 for details.)

Table 7-1. Dun & Bradstreet D-U-N-S® Number

Name dnb-com:D-U-N-S

Description Dun & Bradstreet D-U-N-S® Number

UUID uuid:8609C81E-EE1F-4D5A-B202-3EB13AD01823

Details

The Dun & Bradstreet D-U-N-S® (Data Universal Numbering System) Number is a
nine-digit identification number used to identify businesses and subsidiaries. Over 62
million D-U-N-S numbers currently exist. Information is available at
http://www.dnb.com/english/duns/.

Web Services Essentials

 141

Table 7-2. Thomas Register Supplier ID

Name thomasregister-com:supplierID

Description Thomas Register Supplier ID

UUID uuid:B1B1BAF5-2329-43E6-AE13-BA8E97195039

Details
The Thomas Register of American Manufacturers provides a unique supplier ID for over
168,000 American and Canadian companies. Information is available at
http://www.thomasregister.com/.

As you can see from our first example, the Microsoft businessEntity record includes the
Microsoft D&B D-U-N-S® Number. To include multiple values, note that the
businessEntity element includes an element named identifierBag. Here, the term "bag"
indicates a generic container of multiple values, and enables a company to register
multiple business identifiers.

Businesses can also register multiple business categories. This can include industry,
product, service, or geographic codes based on standard taxonomies. UDDI is currently
prepopulated with the following three business categories:

NAICS
The North American Industry Classification System (NAICS) provides industry
classification. (See Table 7-3 for details.)

UNSPSC
The Universal Standard Products and Service Classification (UNSPSC) provides
product and service classification. (See Table 7-4 for details.)

ISO 3166
The International Organization for Standardization (ISO) maintains ISO 3166, a
standard taxonomy for world geography. (See Table 7-5 for details.)

As you can see from our first example, the Microsoft record includes an NAICS
classification for "NAICS: Software Publisher".

Table 7-3. NAICS

Name ntis-gov:naics:1997

Description Business Taxonomy: NAICS (1997 Release)

UUID uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2

Details

NAICS provides a six-digit industry code for more than 19,000 industries. NAICS was
created jointly by the governments of Canada, Mexico, and the U.S. to provide a
standard system for statistical reporting throughout the North American Free Trade
Association (NAFTA). Beginning in 1997, NAICS replaced the previous Standard
Industry Classification (SIC). Additional information is available at
http://www.naics.com/. To look up your NAICS code, go to
http://www.naics.com/search.htm.

Web Services Essentials

 142

Table 7-4. UNSPSC

Name unspsc-org:unspsc:3-1

Description Product Taxonomy: UNSPSC (Version 3.1)

UUID uuid:DB77450D-9FA8-45D4-A7BC-04411D14E384

Details

UNSPSC provides standard codes for classifying products and services. The standard
was developed in 1998 and is currently maintained by the nonprofit Electronic
Commerce Code Management Association (ECCMA). UNSPSC provides coverage of 54
industries and includes over 12,000 codes for every product and service imaginable. For
example: the code 50131601 denotes "Fresh eggs", whereas the code 50131602 denotes
"Egg substitutes"! Additional information is available at http://www.unspsc.org.

Table 7-5. ISO 3166

Name uddi-org:iso-ch:3166:1999

Description UDDI Geographic Taxonomy, ISO 3166

UUID uuid:61668105-B6B6-425C-914B-409FB252C36D

Details

ISO maintains ISO 3166, a list of 237 country codes. For example, China has the code
CN, whereas the U.S. has the code US. By using ISO 3166, companies registered with
UDDI can identify their geographic headquarters or their main geographic areas of
business. ISO 3166 is also used for top-level Internet domain country codes. Additional
information is available at http://www.din.de/gremien/nas/nabd/iso3166ma/index.html.

7.4.2 The businessService

The businessService element includes information about a single web service or a group
of related web services. This includes name, description, and an optional list of
bindingTemplates (described in the next section of this chapter). For example, here is a
sample businessService record for the XMethods.net Delayed Stock Quote Service:

<businessService
 serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Delayed Stock Quotes</name>
 <description xml:lang="en">20-minute delayed stock quotes</description>
 <bindingTemplates>
 <bindingTemplate
 serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 bindingKey="d594a970-3e16-11d5-98bf-002035229c64">
 <description xml:lang="en">
 SOAP binding for delayed stock quotes service
 </description>
 <accessPoint URLType="http">
 http://services.xmethods.net:80/soap
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uuid:0e727db0-3e14-11d5-98bf-002035229c64" />
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
</businessService>

Like the businessEntity , each businessService has a unique serviceKey.

Web Services Essentials

 143

7.4.3 The bindingTemplate

The bindingTemplate element includes information about how and where to access a
specific web service. For example, in the previous XMethods record above, we can see
that the Stock Quote Service is available via SOAP at
http://services.xmethods.net:80/soap. Bindings need not refer only to HTTP-based
services. In fact, UDDI bindings can point to email-based services, fax-based services,
FTP-based services, or even telephone-based services. (See Table 7-6 for details.)

Table 7-6. UDDI binding options

Name Description UUID Details

uddi-org:smtp Email-based
service

uuid:93335D49-3EFB-
48A0-ACEA-
EA102B60DDC6

Identifies a service that is invoked via
SMTP email. For example, this could
specify a person's email address or an
SMTP-based SOAP service.

uddi-org:fax Fax-based
service

uuid:1A2B00BE-6E2C-
42F5-875B-
56F32686E0E7

Identifies a service that is invoked via fax
transmissions.

uddi-org:ftp FTP-based
service

uuid:1A2B00BE-6E2C-
42F5-875B-
56F32686E0E7

Identifies a service that is invoked via
FTP.

uddi-
org:telephone

Telephone-
based service

uuid:38E12427-5536-
4260-A6F9-
B5B530E63A07

Identifies a service that is invoked via a
telephone call. This could include
interaction by voice and/or touch-tone.

uddi-org:http HTTP-based
service

uuid:68DE9E80-AD09-
469D-8A37-
088422BFBC36

Identifies a web service that is invoked
via the HTTP protocol. This could
reference a simple web page or a more
complex HTTP-based SOAP application.

uddi-
org:homepage

HTTP web
homepage
URL

uuid:4CEC1CEF-1F68-
4B23-8CB7-
8BAA763AEB89

Identifies a web home page.

7.4.4 The tModel

The tModel is the last core data type, but potentially the most difficult to grasp. tModel
stands for technical model. tModels are primarily used to provide pointers to external
technical specifications. For example, the bindingTemplate for the XMethods Stock Quote
Service provides information about where to access the SOAP binding, but it does not
provide information about how to interface with it. The tModel element fills this gap by
providing a pointer to an external specification. For example, here is the tModel referenced
by the XMethods Stock Quote binding:

<tModel
 tModelKey="uuid:0e727db0-3e14-11d5-98bf-002035229c64"
 operator="www.ibm.com/services/uddi" authorizedName="0100001QS1">
 <name>XMethods Simple Stock Quote</name>
 <description xml:lang="en">Simple stock quote interface</description>
 <overviewDoc>
 <description xml:lang="en">wsdl link</description>
 <overviewURL>

Web Services Essentials

 144

 http://www.xmethods.net/tmodels/SimpleStockQuote.wsdl
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"
 keyName="uddi-org:types" keyValue="wsdlSpec" />
 </categoryBag>
</tModel>

The overview document provides the pointer to the external specification. In this record,
XMethods has followed the best practice of specifying the SOAP interface using WSDL,
and has provided a pointer to the actual WSDL file. You need not always specify a WSDL
file; you can, for example, specify a generic web page with detailed instructions on
interfacing with the service.

The terms tModel and service type are frequently used
interchangeably. For example, the Microsoft UDDI site enables one
to "search service type by name." This is equivalent to searching
tModels by name.

tModels are vitally important because they enable you to identify the technical
specifications implemented. More importantly, if two companies reference the same
tModel , you can be assured that both companies implement the same specification.

As a final note, it is important to mention that tModels are not reserved for technical
specifications of web services. In fact, tModels are used whenever it is necessary to point
to any external specification. For example, all the previously described business
identifiers and classifications have been registered as tModels. Specifically, the D&B D-
U-N-S® Number references an external standard created by Dun & Bradstreet and has
therefore been registered as a unique tModel (uuid:8609C81E-EE1F-4D5A-B202-
3EB13AD01823).

tModels can also reference other tModels. For example, the XMethods tModel references
the tModel for uddi-org:types. The types tModel provides a mechanism to categorize
specifications; in our case, XMethods has identified the wsdlSpec category.

7.5 Searching UDDI

With a firm grasp of the UDDI data model, we now turn to the mechanics of searching the
UDDI Business Registry. Most users who are new to UDDI are likely to begin with the
web-based UDDI interface. The following section therefore traces a sample search on the
Microsoft UDDI Operator site. We'll then retrace the same search via the programmatic
UDDI API.

Web Services Essentials

 145

7.5.1 Web-Based Searching

There are three options for searching UDDI:

• Internet Explorer now supports UDDI name resolution via the Real Names
Keyword System. Just type "uddi" in the Internet Explorer address bar, followed
by the name of the target company. For example, type "uddi ariba".

• You may also go directly to the Microsoft UDDI site at http://uddi.microsoft.com.
• Or you can go directly to the IBM UDDI site at http://www-

3.ibm.com/services/uddi/.

A sample screenshot of the Microsoft UDDI site is displayed in Figure 7-2. The Search
box in the upper left enables you to search by business name.

Figure 7-2. The Microsoft UDDI home page; note the Search box in the upper left corner

To explore each of the core UDDI data types, let us consider a common search path. We'll
begin by searching for a specific business, selecting a business service, drilling down to a
binding template, and finally retrieving the tModel technical specification. The search path
is summarized as follows:

BusinessEntity
 --> BusinessService
 --> BindingTemplate
 --> tModel record

To begin, type "XMethods" in the Search box. A list of matching results is displayed in
Figure 7-3.

Web Services Essentials

 146

Figure 7-3. Searching for XMethods

When you click on the XMethods link, the complete XMethods businessEntity record is
displayed, as shown in Figure 7-4.

Figure 7-4. The XMethods businessEntity record

If you scroll down the page, you will see a complete listing of all services offered by
XMethods. Click the link for XMethods Delayed Stock Quotes. Figure 7-5 displays the
full businessService record.

Web Services Essentials

 147

Figure 7-5. The XMethods Delayed Stock Quotes businessService record

Figure 7-5 displays a single bindingTemplate , and we can see the URL for accessing the
Stock Quote Service. If you click the Details link under Bindings, Figure 7-6 will display
additional details regarding the bindingTemplate.

Figure 7-6. The XMethods bindingTemplate record

Under Specification signature, we can see that the binding references a tModel named
XMethods Simple Stock Quote. Click on the tModel record, and the results are displayed
in Figure 7-7.

Web Services Essentials

 148

Figure 7-7. The "XMethods Simple Stock Quote" tModel record

From Figure 7-7 , you can now retrieve the XMethods WSDL specification file.

It is important to note that the Microsoft Advanced Search enables you to search by
multiple criteria, including NAICS code, UNSPSC code, or ISO 3166 country code. For
example, Figure 7-8 shows a sample search for the NAICS code for software publishers.

Figure 7-8. Advanced search: searching by NAICS code

If you are curious to browse the UDDI registry from a different perspective, try the Visual
UDDI Map provided by Antarcti.ca (http://uddi.antarcti.ca). The visual map enables you
to drill down by category. For example, Figure 7-9 and Figure 7-10 demonstrate drilling
down by NAICS code.

Web Services Essentials

 149

As an alternative to the Microsoft UDDI browser, try the UDDI
browser available at Soapclient.com
(http://www.soapclient.com/uddisearch.html). This service enables
you to search the Microsoft and IBM sites and to intuitively drill all
the way down to the tModel record.

Figure 7-9. Visual UDDI Map hosted by Antarcti.ca - NAICS view

Figure 7-10. Visual UDDI Map hosted by Antarcti.ca - NAICS Manufacturing view

Web Services Essentials

 150

7.5.2 The UDDI Inquiry API

The UDDI API is a SOAP-based protocol for interfacing with the UDDI Business
Registry. Very broadly, the API is divided into two parts: the Inquiry API provides search
and retrieval functionality, whereas the Publisher API provides insert and update
functionality.

Table 7-7 provides an overview of the main UDDI inquiry functions. Inquiry functions are
further subdivided into two groups: find_xxx functions provide general search
functionality, whereas get_xxx functions retrieve full records based on unique key values.

Table 7-7. Main functions of the UDDI Inquiry API

Function name Description

find_xxx Functions

find_binding Searches for bindings associated with a specified service

find_business Searches for businesses that match the specified criteria

find_service Searches for services associated with a specified business

find_tModel Searches for tModels that match the specified criteria

get_xxx Functions

get_bindingDetail Retrieves a complete bindingTemplate record

get_businessDetail Retrieves a complete businessEntity record

get_serviceDetail Retrieves a complete businessService record

get_tModelDetail Retrieves a complete tModel record

Inquiry interfaces are provided at the following URLs:

• Microsoft: http://uddi.microsoft.com/inquire
• IBM: http://www-3.ibm.com/services/uddi/inquiryapi

To send inquiry functions, you can send a SOAP request directly to either of these URLs.
Alternatively, you can try one of the UDDI implementations described later in this chapter.

To learn the mechanics of the UDDI API, the simplest option is to set up a web-based
interface for submitting UDDI queries directly. To facilitate this, I have set up a UDDI
test bed at http://ecerami.com/uddi/. Figure 7-11 provides a screenshot of this test bed.
You can enter any UDDI function in the text box on the right. When you click Submit,
your query is routed to the Microsoft site, and the XML results are displayed. If you do
not want to type the full query, you can select one of the links for a predefined query.
Predefined queries are available for each of the query functions that were described earlier
in Table 7-7.

Web Services Essentials

 151

Figure 7-11. The UDDI test bed: a simple interface for trying out sample UDDI queries

Given the table of query functions, let's try to retrace the search path described in the web-
based searching interface shown in Figure 7-11. For each of the following examples, we
have included a sample request and response. To keep the examples more concise, we have
also stripped out the SOAP-specific details.

7.5.2.1 The find_business function

Let's begin with the find_business function. The complete API specification for this and
all other inquiry functions is provided in Chapter 8. Here is a sample find_business query
to search for XMethods:

<find_business generic="1.0" xmlns="urn:uddi-org:api">
 <name>XMethods</name>
</find_business>

Note that the request specifies UDDI Version 1.0, as indicated by the generic attribute.
Within the find_business function, we specify a name element, set to the value XMethods.
By default, UDDI will ignore case, and perform a strict left-to-right lexical search. Use
the % character to specify wildcard options; for example, %data% will find all companies
containing the word "data".

Microsoft returns the following response:

<businessList generic="1.0" operator="Microsoft Corporation"
 truncated="false" xmlns="urn:uddi-org:api">
 <businessInfos>
 <businessInfo businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods</name>
 <description xml:lang="en">Web services resource site</description>
 <serviceInfos>
 <serviceInfo
 serviceKey="d5b180a0-4342-11d5-bd6c-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Barnes and Noble Quote</name>
 </serviceInfo>

Web Services Essentials

 152

 <serviceInfo
 serviceKey="ed85f000-4345-11d5-bd6c-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Pacific Bell SMS Service</name>
 </serviceInfo>
 <serviceInfo
 serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Delayed Stock Quotes</name>
 </serviceInfo>
 <serviceInfo
 serviceKey="618167a0-3e64-11d5-98bf-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Currency Exchange Rates</name>
 </serviceInfo>
 </serviceInfos>
 </businessInfo>
 </businessInfos>
</businessList>

The response includes a root businessList element, and one businessInfo element for
each matching company. If the UDDI operator returns only a partial list of matching
results, the businessList element's truncated attribute will be set to true. If no matches
are found, a businessList element with zero sub-elements is returned. In our case,
Microsoft has identified one match for XMethods and has indicated its unique
businessKey.

7.5.2.2 The get_businessDetail function

Having obtained the unique businessKey , we can query Microsoft again for the complete
businessEntity record. This is accomplished via the get_businessDetail function:

<get_businessDetail generic="1.0" xmlns="urn:uddi-org:api">
 <businessKey>ba744ed0-3aaf-11d5-80dc-002035229c64</businessKey>
</get_businessDetail>

This method retrieves the complete businessEntity record for each specified businessKey.
(You can specify multiple businessKeys , if you like.)

Microsoft responds as follows:

<businessDetail generic="1.0" operator="Microsoft Corporation"
 truncated="false" xmlns="urn:uddi-org:api">
 <businessEntity
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64"
 operator="www.ibm.com/services/uddi" authorizedName="0100001QS1">
 <discoveryURLs>
 <discoveryURL useType="businessEntity">
 http://www.ibm.com/services/uddi/uddiget?
 businessKey=BA744ED0-3AAF-11D5-80DC-002035229C64
 </discoveryURL>
 </discoveryURLs>
 <name>XMethods</name>
 <description xml:lang="en">Web services resource site</description>
 <contacts>
 <contact useType="Founder">
 <description xml:lang="en" />
 <personName>Tony Hong</personName>
 <phone useType="Founder" />
 <email useType="Founder">thong@xmethods.net</email>
 <address>

Web Services Essentials

 153

 <addressLine />
 <addressLine />
 <addressLine />
 <addressLine />
 <addressLine />
 </address>
 </contact>
 </contacts>
 <businessServices>
 [... Information about Business Services goes here...]
 </businessServices>
 </businessEntity>
</businessDetail>

The response includes a root businessDetail element, and one businessEntity element for
each matching business. If no matches are found, an E_invalidKeyPassed error is
returned. (Error handling will be discussed shortly.)

7.5.2.3 The find_service function

Given a businessKey , one can also query for all of its associated services. This is
accomplished via the find_service function:

<find_service generic="1.0" xmlns="urn:uddi-org:api"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
</find_service>

Microsoft responds as follows:

<serviceList generic="1.0" operator="Microsoft Corporation"
 truncated="false" xmlns="urn:uddi-org:api">
 <serviceInfos>
 <serviceInfo
 serviceKey="618167a0-3e64-11d5-98bf-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Currency Exchange Rates</name>
 </serviceInfo>
 <serviceInfo
 serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Delayed Stock Quotes</name>
 </serviceInfo>
 <serviceInfo
 serviceKey="ed85f000-4345-11d5-bd6c-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Pacific Bell SMS Service</name>
 </serviceInfo>
 <serviceInfo
 serviceKey="d5b180a0-4342-11d5-bd6c-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Barnes and Noble Quote</name>
 </serviceInfo>
 </serviceInfos>
</serviceList>

The response includes a root serviceList element, and one serviceInfo element for each
matching company. If no matches are found, a serviceList element with zero
subelements is returned.

Web Services Essentials

 154

If you want to narrow your search, you can specify an optional name element. For
example, the following query searches for all XMethods services containing the word
"Quote".

<find_service generic="1.0" xmlns="urn:uddi-org:api"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>%Quote%</name>
</find_service>

7.5.2.4 The get_serviceDetail function

Given a unique serviceKey , one can retrieve the complete businessService record. This
is accomplished via the get_serviceDetail function. For example, the following query
retrieves the XMethods Delayed Stock Quotes Service:

<get_serviceDetail generic="1.0" xmlns="urn:uddi-org:api">
 <serviceKey>d5921160-3e16-11d5-98bf-002035229c64</serviceKey>
</get_serviceDetail>

Microsoft responds as follows:

<serviceDetail generic="1.0" operator="Microsoft Corporation"
 truncated="false" xmlns="urn:uddi-org:api">
 <businessService
 serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Delayed Stock Quotes</name>
 <description xml:lang="en">
 20-minute delayed stock quotes
 </description>
 <bindingTemplates>
 <bindingTemplate
 serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 bindingKey="d594a970-3e16-11d5-98bf-002035229c64">
 <description xml:lang="en">
 SOAP binding for delayed stock quotes service
 </description>
 <accessPoint URLType="http">
 http://services.xmethods.net:80/soap
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uuid:0e727db0-3e14-11d5-98bf-002035229c64" />
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 </businessService>
</serviceDetail>

The response includes a root serviceDetail element and one businessService element for
each matching service. If no matches are found, an E_invalidKeyPassed error is returned.

7.5.2.5 The get_bindingDetail function

You may have noticed that the get_serviceDetail function returns complete details
regarding all bindingTemplates. (See the example response in the previous section.) If you
only want binding details, you can use the get_bindingDetail function. For example, the
following query retrieves the SOAP binding for the XMethods Stock Quote service:

Web Services Essentials

 155

<get_bindingDetail generic="1.0" xmlns="urn:uddi-org:api">
 <bindingKey>d594a970-3e16-11d5-98bf-002035229c64</bindingKey>
</get_bindingDetail>

Here, you can specify one or more unique bindingKey values. Microsoft returns the full
bindingTemplate record:

<bindingDetail generic="1.0" operator="Microsoft Corporation"
 truncated="false" xmlns="urn:uddi-org:api">
 <bindingTemplate
 serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 bindingKey="d594a970-3e16-11d5-98bf-002035229c64">
 <description xml:lang="en">
 SOAP binding for delayed stock quotes service
 </description>
 <accessPoint URLType="http">
 http://services.xmethods.net:80/soap
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uuid:0e727db0-3e14-11d5-98bf-002035229c64" />
 </tModelInstanceDetails>
 </bindingTemplate>
</bindingDetail>

Querying for a live binding via a programmatic API represents one of the potential
strengths of UDDI. For example, consider a UDDI-aware software application that
attempts to connect to a web service. If access fails, the software can query UDDI for
fresh binding information and attempt to reconnect at a new access point. This may be
particularly useful for disaster recovery or connecting to backup systems.

7.5.2.6 The get_tModelDetail function

Finally, given a tModelKey , one can retrieve the full tModel record. This is accomplished
via the get_tModelDetail function. For example, the following query retrieves the tModel
record referenced by the XMethods SOAP bindingTemplate :

<get_tModelDetail generic="1.0" xmlns="urn:uddi-org:api">
 <tModelKey>uuid:0e727db0-3e14-11d5-98bf-002035229c64</tModelKey>
</get_tModelDetail>

Microsoft returns the following response:

<tModelDetail generic="1.0" operator="Microsoft Corporation"
 truncated="false" xmlns="urn:uddi-org:api">
 <tModel
 tModelKey="uuid:0e727db0-3e14-11d5-98bf-002035229c64"
 operator="www.ibm.com/services/uddi" authorizedName="0100001QS1">
 <name>XMethods Simple Stock Quote</name>
 <description xml:lang="en">Simple stock quote interface</description>
 <overviewDoc>
 <description xml:lang="en">wsdl link</description>
 <overviewURL>
 http://www.xmethods.net/tmodels/SimpleStockQuote.wsdl
 </overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference
 tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"
 keyName="uddi-org:types" keyValue="wsdlSpec" />
 </categoryBag>

Web Services Essentials

 156

 </tModel>
</tModelDetail>

The response includes a root tModelDetail element, and one tModel element for each
matching tModel. If no matches are found, an E_invalidKeyPassed error is returned.

7.5.2.7 Error handling

In the event of an error, the UDDI operator will return a disposition report. The
disposition report includes specific details on the cause of the error. For example, the
following query is invalid because it references an illegal company element, instead of the
expected name element:

<find_business generic="1.0" xmlns="urn:uddi-org:api">
 <company>XMethods</company>
</find_business>

Microsoft responds by returning a full disposition report:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Client</faultcode>
 <faultstring>System.Web.Services.Protocols.SoapException --->
 System.Xml.Schema.XmlSchemaException: Element 'urn:uddi-org:api:
 find_business' has invalid content. Expected 'urn:uddi-org:api:
 findQualifiers urn:uddi-org:api:name urn:uddi-org:api:identifierBag
 urn:uddi-org:api:categoryBag urn:uddi-org:api:tModelBag
 urn:uddi-org:api:discoveryURLs'. An error occurred at (4, 2).
 at System.Xml.XmlValidatingReader.InternalValidationCallback
 (Object sender, ValidationEventArgs e)
 [Full Stack Trace here...]
 <detail>
 <dispositionReport
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" generic="1.0"
 operator="Microsoft Corporation" xmlns="urn:uddi-org:api">
 <result errno="10500">
 <errInfo errCode="E_fatalError">
 Element 'urn:uddi-org:api:find_business' has
 invalid content. Expected 'urn:uddi-org:api:
 findQualifiers urn:uddi-org:api:name urn:uddi-org:
 api:identifierBag urn:uddi-org:api:categoryBag
 urn:uddi-org:api:tModelBag urn:uddi-org:api:
 discoveryURLs'. An error occurred at (4, 2).
 </errInfo>
 </result>
 </dispositionReport>
 </detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

The UDDI operator uses the SOAP Fault element to return errors, and inserts the
disposition report inside the SOAP detail element. This follows the general SOAP error-
handling pattern. (See Chapter 3 for details).

Web Services Essentials

 157

7.6 Publishing to UDDI

Having covered the details of searching UDDI, the next step is publishing to UDDI. Again,
you have the option of using a web-based interface or a programmatic API. Both
Microsoft and IBM provide test registries where you can experiment with publishing new
data. It is highly recommended that you experiment with these test registries first, prior to
publishing data to live servers.

7.6.1 Web-Based Publishing

To access the web-based test registries, use the following URLs:

• Microsoft: https://test.uddi.microsoft.com
• IBM: https://www-3.ibm.com/services/uddi/testregistry/protect/

For the production registries, use the same URLs referenced in the "Searching UDDI"
section, earlier in this chapter.

7.6.1.1 Security and user authentication

All inserts and updates to the UDDI registry require user authentication and must be
transported via SSL. According to the UDDI specification, however, each operator site is
free to implement its own user authentication scheme. Because of this, each business must
select one operator site for all publishing transactions. Data from this site will always
propagate to other root nodes, but all updates and inserts must be performed at the
originally selected site.

Microsoft provides user authentication via Microsoft Passport. See Figure 7-12 for a
sample login screen. To publish UDDI data, you can either register a new Passport
account or enter the login and password for an existing Passport account.

Figure 7-12. Microsoft Passport login screen

Web Services Essentials

 158

7.6.1.2 Publishing a business entity

In the sample screenshots that follow, we return to the case of Acme Parts, which was
discussed earlier in this chapter. To recap, Acme Parts has just released its Acme Parts:
Submit Purchase Order Service. The service adheres to RosettaNet PIP3A4, and Acme
wants to register its business and its new service within UDDI.

Once you have logged in via Microsoft Passport, you will see the general UDDI
administration screen. See Figure 7-13 for a sample screenshot. To add a new business,
click the Add a New Business link.

Figure 7-13. The UDDI administration screen

Figure 7-14 shows the initial fields required for publishing a new business entity. Fill in
the name and description for Acme Parts and click the Save button.

Figure 7-14. Adding a new business

Web Services Essentials

 159

Figure 7-15 shows the Edit Business page. From the Edit Business page, you can add
contact information, business identifiers, and business classifications.

Figure 7-15. The Edit Business page

For example, if you click Add a classification, you can drill down to your specific business
classification. See Figure 7-16 for a sample screenshot.

Figure 7-16. Adding a business classification

Microsoft provides drill-down support for the core UDDI taxonomies: NAICS, UNSPSC,
and ISO 3166. It also provides support for two additional taxonomies: the Standard
Industry Classification (SIC) and the Microsoft GeoWeb geographic classification. Figure
7-17 shows a sample screenshot of the NAICS drill-down functionality.

Web Services Essentials

 160

Figure 7-17. Adding an NAICS code

Once you have added any contacts, identifications, or classifications, make sure to select
the Publish button. Your data will not be saved to the registry without this final step.

7.6.1.3 Publishing a business service

To add a business service, return to the administration home page. You should now see
your published business entity. (See Figure 7-18 .) To add a service, select Edit business,
then click Add a Service.

Figure 7-18. The UDDI administration page displays the newly published business entity

Web Services Essentials

 161

Figure 7-19 shows the initial fields required for publishing a new service.Enter the service
name and description, and click the Continue button.

Figure 7-19. Adding a new service

Figure 7-20 shows the Edit Service page. From the Edit Service page, click Define new
binding.

Figure 7-20. The Edit Service page

Figure 7-21 shows the initial fields required to create a new binding. For each binding,
you must enter an access point, a URL type (HTTP, HTTPS, FTP, mailto, fax, phone, or
other), and an optional description.

In the case of Acme Parts, I have entered a fictional URL for a SOAP binding interface.
Click the Continue button and the Edit Bindings page will be refreshed with a new section
for adding specification signatures. See Figure 7-22 for details.

Web Services Essentials

 162

Figure 7-21. The Edit Bindings page

Figure 7-22. The Edit Bindings page, continued

The final step is to add your specification signature. Unfortunately, there is not much
consistency in labeling tModel records - on the Microsoft site, the terms service type and
specification signature both refer to tModel records. In the case of Acme Parts, we want to
reference the RosettaNet PIP3A4. To begin, click the link for Add Specification
Signature.

You will be prompted with a Find dialog screen for searching all registered tModel
records. See Figure 7-23 for details. Enter the word "RosettaNet" and click Continue.
Figure 7-24 shows a list of matching results. .

Web Services Essentials

 163

Figure 7-23. Searching for preregistered tModel records

Figure 7-24. tModel search results for "RosettaNet"

Figure 7-25. The Edit Specification Signature page

Web Services Essentials

 164

Unfortunately, RosettaNet has not registered all of its PIPs within the test registry. If this
were the production registry, you could scroll down and find an exact match for PIP3A4.
For now, select the closest match, and click on the first item named
RosettaNet.Order.Management. Click Continue. Figure 7-25 shows the Edit Specification
Signature page.

All the fields on this page are optional. However, if you wish to add additional details for
this tModel record, you may do so here. Then, click the Continue button several times,
until you reach the Publish button. Just like when adding a new business record, your
record will not be saved until you actually choose to publish it.

7.6.1.4 Publishing a tModel record

The most difficult aspect of publishing a new service is determining which technical
specification it implements. The most useful web services will be those that implement
public specifications. For example, your e-commerce service may implement a RosettaNet
standard or an OAGIS standard. (See the sidebar Open Applications Group , later in this
chapter.) As web services mature, more and more standards bodies will define interfaces
for a diverse set of applications. Perhaps there will one day be standards for financial
transactions, weather information, sports updates, headline news distribution, and online
auctions.

When building a web service, the first step is to determine if any standards exist for your
application and whether it makes sense to implement any of these standards. If no such
standards exist or you want to publish your own specification, you will need to register
your own tModel record. For example, Acme Parts may offer a Product Availability
Service. This specific implementation is not covered by RosettaNet, and Acme Parts has
decided to publish a WSDL file describing the interface.

To add a new service type, go back to the main administration page, and select Add a New
Service Type. Figure 7-26 shows the required fields.

Figure 7-26. Adding a new service type

Web Services Essentials

 165

In the case of Acme Parts, I have added a reference to a sample WSDL file that describes
the SOAP binding.

Open Applications Group

The Open Applications Group (OAG) is a nonprofit consortium focused on e-
business integration. Much like RosettaNet, OAG has published its own
specification, the Open Applications Group Integration Specification (OAGIS). A
sampling of OAGIS interfaces includes:

get_catalog

Enables catalog synchronization between two partners

get_pricelist

Enables one partner to request a current price list from another partner

get_prodavail

Enables one partner to query for product availability

sync_exchangerate

Enables two partners to synchronize foreign exchange rates

Like RosettaNet, the OAGIS specification has been registered with UDDI.
Additional information is available at http://www.openapplications.org.

7.6.2 The UDDI Publishing API

Publishing to UDDI usually takes place via a web-based interface. Nonetheless, there are
certain instances when you may want direct access to the publishing API. For example,
you may be building web services software that automatically registers new web services,
or you may need an automatic method of updating binding access URLs, in the event of
disaster recovery.

Publishing requests must be sent to a secure URL that is distinct from the Inquiry API
URL. To publish to the test registries, use the following URLs:

• Microsoft: https://test.uddi.microsoft.com/publish
• IBM: https://www.ibm.com/services/uddi/testregistry/protect/publish

To publish to the production registries, use these URLs:

• Microsoft: https://uddi.microsoft.com/publish
• IBM: https://www.ibm.com/services/uddi/protect/publish

Web Services Essentials

 166

Table 7-8 provides an overview of the main UDDI publishing functions. The publishing
API is divided into three main subsections: authenticating users, saving data, and deleting
data. In the sections that follow, we will see examples from each of the three subsections.

Table 7-8. Main functions of the UDDI publishing API

Function name Description

Authentication
functions

get_authToken
Requests an authentication token from the operator site. An
authentication token is required for all subsequent save_xxx and
delete_xxx functions.

discard_authToken Requests that the specified authentication token be discarded and
invalidated.

save_xxx functions

save_binding Inserts or updates a bindingTemplate record.

save_business Inserts or updates a businessEntity record.

save_service Inserts or updates a businessService record.

save_tModel Inserts or updates a tModel record.

delete_xxx
functions

delete_binding Deletes the bindingTemplate record specified by the bindingKey.

delete_business Deletes the businessEntity record specified by the businessKey.

delete_service Deletes the businessService record specified by the serviceKey.

delete_tModel

Hides the tModel record specified by the tModelKey. A hidden tModel
record can still be referenced by another UDDI record (e.g., a
bindingTemplate record), but it will be excluded from search results
generated by the find_tModel function. tModel records cannot be
deleted.

7.6.2.1 Authenticating users

Publishing UDDI data can only be performed by authorized users. As indicated
previously, each operator site is free to implement its own user authentication scheme.

When sending save or delete requests, the UDDI API requires that the request include an
authentication token. To obtain a token, you must first make a get_authToken request.
The function requires that you specify a user ID and password. For example, the following
request attempts to authenticate a user at Acme Parts:

<get_authToken generic="1.0" xmlns="urn:uddi-org:api"
 userID="boss@acmeparts.com" cred="theBoss ">
</get_authToken>

Web Services Essentials

 167

If the user is not recognized, the operator site will return an E_unknownUser error.
Otherwise, the operator site will return an authentication token. For example, Microsoft
returns the following response:

<authToken generic="1.0" xmlns="urn:uddi-org:api"
operator="http://uddi.microsoft.com">
 <authInfo>1BAAAAAAAHmykB2ylo*pV*pnrFoS4a*IblrgZSlpa
 jYC853wq9HIfsbaozLxYpG2Bo;1AAAAAAAAAKZi8QkOJ8BJfnMc
 *HeQCtOTHvu3TDkPEogcauDpvtHyxQGczEE0cj9bdl7C48RRyrK
 H7ReaF8OHivQEMltSEhgD8RNhmt0rHFdZoWkANFe*uSLmab4VvA
 FKLHFouvDh3MJ*9VK9YMLl4dg$$
 </authInfo>
</authToken>

All subsequent calls to save or delete data will require the use of this token. When you
have completed your publishing requests, you have the option of discarding the token by
calling the discard_authToken function. For example:

<discard_authToken generic="1.0" xmlns="urn:uddi-org:api">
 <authInfo>1BAAAAAAAHmykB2ylo*pV*pnrFoS4a*IblrgZSlpa
 jYC853wq9HIfsbaozLxYpG2Bo;1AAAAAAAAAKZi8QkOJ8BJfnMc
 *HeQCtOTHvu3TDkPEogcauDpvtHyxQGczEE0cj9bdl7C48RRyrK
 H7ReaF8OHivQEMltSEhgD8RNhmt0rHFdZoWkANFe*uSLmab4VvA
 FKLHFouvDh3MJ*9VK9YMLl4dg$$
 </authInfo>
</discard_authToken>

If successful, the operator site will return an E_success status code. For example:

<dispositionReport generic="1.0"
 operator="Microsoft Corporation" xmlns="urn:uddi-org:api">
 <result errno="0">
 <errInfo errCode="E_success"></errInfo>
 </result>
</dispositionReport>

If you do decide to discard an authorization token, you can always get a new one by
calling the get_authToken function again.

7.6.2.2 Saving UDDI data

The publishing API enables you to insert new data or update existing data. For example,
let's say that we have already registered our business but want to update the business
description. To save general business entity data, use the save_business function.

<save_business generic="1.0" xmlns="urn:uddi-org:api">
 <authInfo>1BAAAAAAAHmykB2ylo*pV*pnrFoS4a*IblrgZSlpa
 jYC853wq9HIfsbaozLxYpG2Bo;1AAAAAAAAAKZi8QkOJ8BJfnMc
 *HeQCtOTHvu3TDkPEogcauDpvtHyxQGczEE0cj9bdl7C48RRyrK
 H7ReaF8OHivQEMltSEhgD8RNhmt0rHFdZoWkANFe*uSLmab4VvA
 FKLHFouvDh3MJ*9VK9YMLl4dg$$
 </authInfo>
 <businessEntity
 businessKey="03754729-3D3C-48E0-854A-1C1FD576CA5B">
 <name>Acme Parts</name>
 <description xml:lang="en">
 Supplier of fine semiconductor parts and Integrated Circuits
 </description>
 </businessEntity>
</save_business>

Web Services Essentials

 168

In this example, note the use of the authorization token. Also note the updated business
description. In general, the value of the unique key - in this case, the businessKey -
determines whether this is an update or an insert. If the unique key is specified as an
empty string (e.g., businessKey=""), this is an insert for a new record. Otherwise, this is a
request to update the record indicated by the unique key.

In response, the UDDI operator will echo back the newly saved data. For example,
Microsoft returns the following:

<businessDetail generic="1.0" operator="Microsoft Corporation"
truncated="false" xmlns="urn:uddi-org:api">
 <businessEntity
 authorizedName="Ethan Cerami"
 businessKey="03754729-3D3C-48E0-854A-1C1FD576CA5B"
 operator="Microsoft Corporation">
 <discoveryURLs>
 <discoveryURL useType="businessEntity">
 http://test.uddi.microsoft.com/discovery?businessKey=0375
 4729-3D3C-48E0-854A-1C1FD576CA5B
 </discoveryURL>
 </discoveryURLs>
 <name>Acme Parts</name>
 <description xml:lang="en">
 Supplier of fine semiconductor parts and Integrated Circuits
 </description>
 </businessEntity>
</businessDetail>

To insert an entirely new record, consider using the save_tModel function:

<save_tModel generic="1.0" xmlns="urn:uddi-org:api">
 <authInfo>1BAAAAAAAHmykB2ylo*pV*pnrFoS4a*IblrgZSlpa
 jYC853wq9HIfsbaozLxYpG2Bo;1AAAAAAAAAKZi8QkOJ8BJfnMc
 *HeQCtOTHvu3TDkPEogcauDpvtHyxQGczEE0cj9bdl7C48RRyrK
 H7ReaF8OHivQEMltSEhgD8RNhmt0rHFdZoWkANFe*uSLmab4VvA
 FKLHFouvDh3MJ*9VK9YMLl4dg$$
 </authInfo>
 <tModel tModelKey="">
 <name>Price Query Interface</name>
 <description xml:lang="en">
 SOAP Interface for querying product prices
 </description>
 <overviewDoc>
 <description xml:lang="en">
 WSDL File
 </description>
 <overviewURL>
 http://www.acmeparts.com/services/query_price.wsdl
 </overviewURL>
 </overviewDoc>
 </tModel>
</save_tModel>

Here, we have registered a new tModel record for the Acme Price Query interface.
Because the tModelKey is set to the empty string, the UDDI operator considers this an
insert. Microsoft returns the following response:

<tModelDetail generic="1.0" operator="Microsoft Corporation"
truncated="false" xmlns="urn:uddi-org:api">
 <tModel authorizedName="Ethan Cerami" operator="Microsoft Corporation"
 tModelKey="uuid:01EBBD03-324D-4D7C-97EA-79B9C396D6EA">
 <name>Price Query Interface</name>

Web Services Essentials

 169

 <description xml:lang="en">
 SOAP Interface for querying product prices
 </description>
 <overviewDoc>
 <description xml:lang="en">WSDL File</description>
 <overviewURL>
 http://www.acmeparts.com/services/query_price.wsdl
 </overviewURL>
 </overviewDoc>
 </tModel>
</tModelDetail>

Note that the tModel record has now been assigned its own unique ID.

7.6.2.3 Deleting/hiding UDDI data

Deleting data is generally very straightforward and only requires that you specify the
unique key value. For example, the following request hides the newly created tModel
record:

<delete_tModel generic="1.0" xmlns="urn:uddi-org:api">
 <authInfo>1BAAAAAAAHmykB2ylo*pV*pnrFoS4a*IblrgZSlpa
 jYC853wq9HIfsbaozLxYpG2Bo;1AAAAAAAAAKZi8QkOJ8BJfnMc
 *HeQCtOTHvu3TDkPEogcauDpvtHyxQGczEE0cj9bdl7C48RRyrK
 H7ReaF8OHivQEMltSEhgD8RNhmt0rHFdZoWkANFe*uSLmab4VvA
 FKLHFouvDh3MJ*9VK9YMLl4dg$$</authInfo>
 <tModelKey>uuid:01EBBD03-324D-4D7C-97EA-79B9C396D6EA"</tModelKey>
</delete_tModel>

A hidden tModel record can still be referenced by another UDDI record (e.g., a
bindingTemplate record), but it will be excluded from search results generated by the
find_tModel function. Therefore, unlike businessEntity , businessService , or
bindingTemplate records, tModel records cannot actually be deleted.

7.7 UDDI Implementations

A number of UDDI implementations are currently available. These implementations make
it easier to search or publish UDDI data, without getting mired in the complexities of the
UDDI API. Here is a brief synopsis of the main UDDI implementations available.

7.7.1 Java

There are two UDDI implementations for Java.

UDDI4J (UDDI for Java) (http://oss.software.ibm.com/developerworks/projects/uddi4j/)

UDDI4J was originally created by IBM. In January 2001, IBM turned over the code
to its own open source site. Details are available in Chapter 9.

jUDDI (http://www.juddi.org/)

jUDDI is an open source Java implementation of a UDDI registry and a toolkit for
accessing UDDI services. Initially developed by Bowstreet, Inc., jUDDI is now
hosted on the SourceForge open source development site.

Web Services Essentials

 170

7.7.2 Microsoft COM

There is one UDDI implementation for Microsoft.com.

UDDI Software Development Kit (SDK) (http://uddi.microsoft.com/developer/)

The Microsoft UDDI Software Development Kit (SDK) provides a COM-based API
for accessing UDDI services.

7.7.3 Perl

There is one UDDI implementation for Perl.

SOAP::Lite (http://www.soaplite.com)

SOAP::Lite provides a basic UDDI client for inquiry and publishing.

7.8 Web Resources

For additional details regarding UDDI, the following web resources are extremely useful.

http://www.uddi.org/

The official UDDI site. The site includes a useful UDDI technical white paper, a list
of participating UDDI organizations, press releases, a complete archive of all
technical specifications, and the official UDDI FAQ.

http://groups.yahoo.com/group/uddi-technical

A UDDI technical newsgroup. The newsgroup provides an active forum for UDDI
technical issues and the UDDI API. For the general UDDI newsgroup, go to
http://groups.yahoo.com/group/uddi-general.

http://www.uddicentral.com

A web site devoted to UDDI information and news.

Web Services Essentials

 171

Chapter 8. UDDI Inquiry API: Quick Reference

This chapter provides a quick reference to the UDDI Inquiry API. The Inquiry API
enables you to search existing data or retrieve specific records from a UDDI operator site.
For an overview of the API and the UDDI Data Model, refer to Chapter 7.

A snapshot of each UDDI inquiry function is provided in Table 8-1. Later in this chapter,
we examine the functions in detail, providing the following information about each
function:

• A brief description
• The language syntax for UDDI 1.0 and 2.0
• Descriptions of all function arguments
• A list of possible error values

When possible, we also include one or more UDDI 1.0 examples for each function. Each
of the examples was verified against the Microsoft UDDI Operator site. The chapter
concludes with a brief overview of the UDDI find qualifiers, which enable more precise
search criteria.

Table 8-1. The UDDI Inquiry API

Inquiry API Description UDDI
version

find_binding Searches for template bindings associated with a
specified service 1.0, 2.0

find_business Searches for businesses that match the specified criteria 1.0, 2.0

find_relatedBusinesses Discovers businesses that have been related via the
uddi-org:relationships model 2.0

find_service Searches for services associated with a specified
business 1.0, 2.0

find_tModel Searches for tModel records that match the specified
criteria 1.0, 2.0

get_bindingDetail Retrieves the complete bindingTemplate for each
specified bindingKey 1.0, 2.0

get_businessDetail Retrieves the complete businessEntity for each
specified businessKey 1.0, 2.0

get_businessDetailExt Retrieves the extended businessEntity for each
specified businessKey 1.0, 2.0

get_serviceDetail Retrieves the businessService record for each specified
serviceKey 1.0, 2.0

get_tModelDetail Retrieves the tModel record for each specified
tModelKey 1.0, 2.0

Web Services Essentials

 172

8.1 The UDDI Inquiry API

find_bindings

The find_bindings function searches for template binding records associated with a
specified service and the specified tModel record(s). The response includes a root
bindingDetail element and one bindingTemplate element for each matching binding. If the
UDDI operator returns only a partial list of matching results, the bindingDetail element's
truncated attribute will be set to true. If no matches are found, a bindingDetail element
with zero subelements is returned.

Version: 1.0 and 2.0

1.0 syntax:

<find_binding serviceKey="uuid_key" generic="1.0"
 [maxRows="nn"] xmlns="urn:uddi-org:api">
 [<findQualifiers/>]
 <tModelBag/>
</find_binding>

2.0 syntax:

<find_binding serviceKey="uuid_key" [maxRows="nn"] generic="2.0"
 xmlns="urn:uddi-org:api_v2">
 [<findQualifiers/>]
 <tModelBag/>
</find_binding>

Arguments:

serviceKey

Required uuid_key attribute specifying the associated businessService.

maxRows

Optional attribute to specify the maximum number of rows to be returned; if maxRows
is exceeded, the bindingDetail element's truncated attribute will be set to true.

findQualifiers

Optional element to override the default search functionality. For additional details,
see the "Find Qualifiers" section, later in this chapter.

tModelBag

Required uuid_key element to specify tModel records. If more than one tModel is
specified, the search is performed via a logical AND.

Web Services Essentials

 173

Example:

The following UDDI 1.0 example searches for all SOAP bindings associated with the
XMethods Delayed Stock Quote Service. The XMethods Stock Quote Service is specified
by the serviceKey d5921160-3e16-11d5-98bf-002035229c64 , and the WSDL specification
for the SOAP interface is referenced by the tModel record uuid:0e727db0-3e14-11d5-98bf-
002035229c64.

<find_binding serviceKey="d5921160-3e16-11d5-98bf-002035229c64" generic="1.0"
 xmlns="urn:uddi-org:api">
 <tModelBag>
 <tModelKey>
 uuid:0e727db0-3e14-11d5-98bf-002035229c64
 </tModelKey>
 </tModelBag>
</find_binding>

Here is a response to the query:

<bindingDetail generic="1.0" operator="Microsoft Corporation"
 truncated="false" xmlns="urn:uddi-org:api">
 <bindingTemplate serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 bindingKey="d594a970-3e16-11d5-98bf-002035229c64">
 <description xml:lang="en">
 SOAP binding for delayed stock quotes service
 </description>
 <accessPoint URLType="http">
 http://services.xmethods.net:80/soap
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uuid:0e727db0-3e14-11d5-98bf-002035229c64" />
 </tModelInstanceDetails>
 </bindingTemplate>
</bindingDetail>

Errors:

E_invalidKeyPassed

An invalid serviceKey attribute was specified.

E_tooManyOptions

Too many search options were specified (UDDI 1.0 only).

E_unsupported

The specified findQualifier is not supported.

Web Services Essentials

 174

find_business

The find_business function searches for businesses that match the specified criteria. The
response includes a root businessList element, and one businessInfo element for each
matching company. If the UDDI operator returns only a partial list of matching results, the
businessList element's truncated attribute will be set to true. If no matches are found, a
businessList element with zero subelements is returned.

Version: 1.0 and 2.0

1.0 syntax:

<find_business generic="1.0" [maxRows="nn"]
 xmlns="urn:uddi-org:api">
 [<findQualifiers/>]
 [<name/>]
 [<identifierBag/>]
 [<categoryBag/>]
 [<tModelBag/>]
 [<discoveryURLs>]
</find_business>

2.0 syntax:

<find_business generic="2.0" [maxRows="nn"]
 xmlns="urn:uddi-org:api_v2">
 [<findQualifiers/>]
 [<name/> [<name/>]...]
 [<discoveryURLs/>]
 [<identifierBag/>]
 [<categoryBag/>]
 [<tModelBag/>]
</find_business>

Arguments:

maxRows

Optional attribute to specify the maximum number of rows to be returned; if maxRows
is exceeded, the businessList element's truncated attribute will be set to true.

findQualifiers

Optional element to override the default search functionality. For example, the find
qualifier exactNameMatch will match exact business names.For details, see the "Find
Qualifiers" section, later in this chapter.

name

The full or partial name of the business. UDDI 2.0 enables you to specify up to five
business names. The default behavior is to perform an exact left-to-right lexical
search. Use % to specify wildcard options; for example, %data% will find all
companies containing the word "data".

Web Services Essentials

 175

discoveryURLs

Optional element to search by discovery URLs. If more than one discoveryURL is
specified, the search is performed via a logical OR.

identifierBag

Optional element to search by identifier. For example, you can search by Dun &
Bradstreet D-U-N-S® Number. If more than one identifier is specified, the search is
performed via a logical OR.

categoryBag

Optional element to search by category. For example, you can search by NAICS
codes. If more than one category is specified, the search is performed via a logical
AND.

tModelBag

Optional element to search by tModel records. If more than one tModel is specified,
the search is performed via a logical AND.

Examples:

Here are three example 1.0 queries:

• Search for all businesses beginning with the word "XMethods":

 <find_business generic="1.0" xmlns="urn:uddi-org:api">
 <name>XMethods</name>

</find_business>

• Search for all businesses with the specified Dun & Bradstreet D-U-N-S® number:

 <find_business generic="1.0" xmlns="urn:uddi-org:api">
 <identifierBag>
 <keyedReference tModelKey="uuid:8609c81e-ee1f-4d5a-b202-3eb13ad01823"
 keyName="dnb-com:D-U-N-S" keyValue="04-693-3052" />
 </identifierBag>

</find_business>

• Search for all businesses registered with the NAICS code for Advertising:

 <find_business generic="1.0" xmlns="urn:uddi-org:api">
 <categoryBag>
 <keyedReference tModelKey="uuid:70a80f61-77bc-4821-a5e2-
 2a406acc35dd"
 keyName="Advertising" keyValue="7310" />
 </categoryBag>

</find_business>

Web Services Essentials

 176

Here is a response to the first example query (search for the word "XMethods"):

<businessList generic="1.0" operator="Microsoft Corporation"
 truncated="false" xmlns="urn:uddi-org:api">
 <businessInfos>
 <businessInfo businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods</name>
 <description xml:lang="en">Web services resource site</description>
 <serviceInfos>
 <serviceInfo serviceKey="d5b180a0-4342-11d5-bd6c-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Barnes and Noble Quote</name>
 </serviceInfo>
 <serviceInfo serviceKey="ed85f000-4345-11d5-bd6c-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Pacific Bell SMS Service</name>
 </serviceInfo>
 <serviceInfo serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Delayed Stock Quotes</name>
 </serviceInfo>
 <serviceInfo serviceKey="618167a0-3e64-11d5-98bf-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Currency Exchange Rates</name>
 </serviceInfo>
 </serviceInfos>
 </businessInfo>
 </businessInfos>
</businessList>

Errors:

E_nameTooLong

The business name is too long.

E_unsupported

The specified findQualifier is not supported.

E_tooManyOptions

Too many search options were specified.

Web Services Essentials

 177

find_relatedBusinesses

The find_relatedBusinesses function searches for businesses related to the specified
businessKey. UDDI 2.0 provides improved support for describing complex organizations.
For example, a business can publish business units, departments, or divisions and tie them
together under one umbrella. Business relationships are created via the uddi-
org:relationships tModel record (uuid:807A2C6A-EE22-470D-ADC7-E0424A337C03). UDDI
2.0 supports three relationship values:

parent-child

Used to indicate a parent-child relationship. For example, a holding company that
owns a subsidiary may choose to publish a parent-child relationship.

peer-peer

Used to indicate two peer entities. For example, two divisions within one company
may choose to publish a peer-peer relationship.

identity

Used to indicate that two entities represent the same organization.

The find_relatedBusinesses function is used to discover businesses that have been related
via the uddi-org:relationships model. The response includes a root
relatedBusinessesList element. If the UDDI operator returns only a partial list of
matching results, the relatedBusinessesList element's truncated attribute will be set to
true. If no matches are found, a relatedBusinessesList element with zero subelements is
returned.

Version: 2.0

2.0 syntax:

<find_relatedBusinesses generic="2.0" xmlns="urn:uddi-org:api_v2">
 [<findQualifiers/>]
 <businessKey/>
 [<keyedReference/>]
</find_relatedBusinesses>

Web Services Essentials

 178

Arguments:

findQualifiers

Optional element to override the default search functionality. For additional details,
see the "Find Qualifiers" section, later in this chapter.

businessKey

Required uuid_key specifying the businessEntity.

keyedReference

Optional element used to specify a uddi-org:relationship value. A keyedReference
requires three attributes: tModelKey , keyName , and keyValue. For example, to
retrieve businesses entity records that have a peer-peer relationship with the
specified businessKey , use the following keyedReference :

<keyedReference
 tModelKey="uuid:807A2C6A-EE22-470D-ADC7-E0424A337C03"
 keyName="uddi-org:relationships"
 keyValue="peer-peer" />

Errors:

E_invalidKeyPassed

An invalid businessKey attribute was specified.

E_unsupported

The specified findQualifier is not supported.

Web Services Essentials

 179

find_service

The find_service function searches for services associated with a specified business. The
response includes a root serviceList element, and one serviceInfo element for each
matching company. If the UDDI operator returns only a partial list of matching results, the
serviceList element's truncated attribute will be set to true. If no matches are found, a
serviceList element with zero subelements is returned.

Version: 1.0 and 2.0

1.0 syntax:

<find_service businessKey="uuid_key" generic="1.0" [maxRows="nn"]
 xmlns="urn:uddi-org:api">
 [<findQualifiers/>]
 [<name/>]
 [<categoryBag/>]
 [<tModelBag/>]
</find_service>

2.0 syntax:

<find_service businessKey="uuid_key" generic="2.0" [maxRows="nn"]
 xmlns="urn:uddi-org:api_v2">
 [<findQualifiers/>]
 [<name/> [<name/>]...]
 [<categoryBag/>]
 [<tModelBag/>]
</find_service>

Arguments:

businessKey

Required uuid_key attribute specifying the associated businessEntity.

maxRows

Optional attribute to specify the maximum number of rows to be returned. If
maxRows is exceeded, the serviceList element's truncated attribute will be set to
true.

findQualifiers

Optional element to override the default search functionality. For example, the find
qualifier exactNameMatch will match exact service names. For additional details, see
the "Find Qualifiers" section, later in this chapter.

Web Services Essentials

 180

name

The full or partial name of the service. UDDI 2.0 allows you to specify up to five
service names. The default behavior is to perform an exact left-to-right lexical
search. Use % to specify wildcard options; for example, %quote% will find all services
containing the word "quote".

categoryBag

Optional element to search by category. If more than one category is specified, the
search is performed via a logical AND.

tModelBag

Optional element to search by tModels. If more than one tModel is specified, the
search is performed via a logical AND.

Examples:

Here are two example 1.0 queries:

• Search for all services provided by XMethods:

 <find_service generic="1.0" xmlns="urn:uddi-org:api"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">

</find_service>

• Search for all services provided by XMethods that contain the word "quote":

 <find_service generic="1.0" xmlns="urn:uddi-org:api"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>%Quote%</name>

</find_service>

Here is a response to the second example query:

<serviceList generic="1.0" operator="Microsoft Corporation"
 truncated="false" xmlns="urn:uddi-org:api">
 <serviceInfos>
 <serviceInfo serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Delayed Stock Quotes</name>
 </serviceInfo>
 <serviceInfo serviceKey="d5b180a0-4342-11d5-bd6c-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Barnes and Noble Quote</name>
 </serviceInfo>
 </serviceInfos>
</serviceList>

Web Services Essentials

 181

Errors:

E_invalidKeyPassed

An invalid businessKey attribute was specified.

E_nameTooLong

The service name is too long.

E_tooManyOptions

Too many search options were specified (UDDI 1.0 only).

E_unsupported

The specified findQualifier is not supported.

Web Services Essentials

 182

find_tModel

The find_tModel function searches for tModel records that match the specified criteria.
The response includes a root tModelList element and one tModelInfo element for each
matching company. If the UDDI operator returns only a partial list of matching results, the
tModelList element's truncated attribute will be set to true. If no matches are found, a
tModelList element with zero subelements is returned.

Version: 1.0 and 2.0

1.0 syntax:

<find_tModel generic="1.0" [maxRows="nn"] xmlns="urn:uddi-org:api">
 [<findQualifiers/>]
 [<name/>]
 [<identifierBag/>]
 [<categoryBag/>]
</find_tModel>

2.0 syntax:

<find_tModel generic="2.0" [maxRows="nn"] xmlns="urn:uddi-org:api_v2">
 [<findQualifiers/>]
 [<name/>]
 [<identifierBag/>]
 [<categoryBag/>]
</find_tModel>

Arguments:

maxRows

Optional attribute to specify the maximum number of rows to be returned. If
maxRows is exceeded, the tModelList element's truncated attribute will be set to true.

findQualifiers

Optional element to override the default search functionality. For example, the find
qualifier exactNameMatch will match exact tModel names. For additional details, see
the "Find Qualifiers" section, later in this chapter.

name

The full or partial name of the tModel. The default behavior is to perform an exact
left-to-right lexical search. Use % to specify wildcard options; for example,
%shipping% will find all tModels containing the word "shipping".

identifierBag

Optional element to search by identifier. If more than one identifier is specified, the
search is performed via a logical OR.

Web Services Essentials

 183

categoryBag

Optional element to search by category. If more than one category is specified, the
search is performed via a logical AND.

Examples:

Here are two example 1.0 queries:

• Search for all tModel records registered with OAGIS:

 <find_tModel generic="1.0" xmlns="urn:uddi-org:api">
 <name>OAGIS%</name>

</find_tModel>

• Search for all tModel records that are registered with the RosettaNet specification
and that contain the word "Shipment".

 <find_tModel generic="1.0" xmlns="urn:uddi-org:api">
 <name>RosettaNet%Shipment%</name>

</find_tModel>

Here is a response to the second example query:

<tModelList generic="1.0" operator="Microsoft Corporation"
 truncated="false" xmlns="urn:uddi-org:api">
 <tModelInfos>
 <tModelInfo tModelKey="uuid:e13fbf58-f69a-4c8a-a2f5-aecc5cca75e1">
 <name>Rosettanet-org:PIP4B2:NotifyOfShipmentReceipt:v1.0</name>
 </tModelInfo>
 <tModelInfo tModelKey="uuid:7b15e1a7-bbe7-4c32-8f44-64662a555b7c">
 <name>Rosettanet-org:PIP3B5:ChangeShipment:v01.00.00</name>
 </tModelInfo>
 <tModelInfo tModelKey="uuid:87c133f5-f521-420a-8316-9ff37e292796">
 <name>Rosettanet-org:PIP3B4:QueryShipmentStatus:v01.00.00</name>
 </tModelInfo>
 <tModelInfo tModelKey="uuid:cf073d7c-e297-470f-b7de-4ae18bd72ca9">
 <name>Rosettanet-org:PIP3B3:DistributeShipmentStatus:v01.00.00</name>
 </tModelInfo>
 <tModelInfo tModelKey="uuid:7c60881c-ad6c-4520-955b-49fe75b71d53">
 <name>Rosettanet-org:PIP3B2:NotifyOfAdvanceShipment:v01.00.00</name>
 </tModelInfo>
 <tModelInfo tModelKey="uuid:05b548d8-0c23-4249-8a68-b653f7c97d8a">
 <name>Rosettanet-org:PIP3B2:NotifyOfAdvanceShipment:v01.01.00</name>
 </tModelInfo>
 </tModelInfos>
</tModelList>

For more information on OAGIS or RosettaNet, refer to Chapter 7.

Web Services Essentials

 184

Errors:

E_nameTooLong

The tModel name is too long.

E_tooManyOptions

Too many search options were specified (UDDI 1.0 only).

E_unsupported

The specified findQualifier is not supported.

Web Services Essentials

 185

get_bindingDetail

The get_bindingDetail function retrieves the complete bindingTemplate for each specified
bindingKey. The response includes a root bindingDetail element, and one
bindingTemplate element for each matching binding. If the UDDI operator returns only a
partial list of matching results, the bindingDetail element's truncated attribute will be set
to true. If no matches are found, an E_invalidKeyPassed error is returned.

Version: 1.0 and 2.0

1.0 syntax:

<get_bindingDetail generic="1.0" xmlns="urn:uddi-org:api">
 <bindingKey/>
 [<bindingKey/> ...]
</get_bindingDetail>

2.0 syntax:

<get_bindingDetail generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <bindingKey/>
 [<bindingKey/> ...]
</get_bindingDetail>

Argument:

bindingKey

Required uuid_key specifying the bindingTemplate

Example:

The following UDDI 1.0 example retrieves a bindingTemplate associated with the
XMethods Stock Quote Service:

<get_bindingDetail generic="1.0" xmlns="urn:uddi-org:api">
 <bindingKey>d594a970-3e16-11d5-98bf-002035229c64</bindingKey>
</get_bindingDetail>

Here is a response to the query:

<bindingDetail generic="1.0" operator="Microsoft Corporation"
 truncated="false" xmlns="urn:uddi-org:api">
 <bindingTemplate serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 bindingKey="d594a970-3e16-11d5-98bf-002035229c64">
 <description xml:lang="en">
 SOAP binding for delayed stock quotes service
 </description>
 <accessPoint URLType="http">
 http://services.xmethods.net:80/soap
 </accessPoint>

Web Services Essentials

 186

 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uuid:0e727db0-3e14-11d5-98bf-002035229c64" />
 </tModelInstanceDetails>
 </bindingTemplate>
</bindingDetail>

Error:

E_invalidKeyPassed

An invalid bindingKey was specified.

Web Services Essentials

 187

get_businessDetail

The get_businessDetail function retrieves the complete businessEntity for each specified
businessKey. The response includes a root businessDetail element, and one
businessEntity element for each matching business. If the UDDI operator returns only a
partial list of matching results, the businessDetail truncated attribute will be set to true.
If no matches are found, an E_invalidKeyPassed error is returned.

Version: 1.0 and 2.0

1.0 Syntax:

<get_businessDetail generic="1.0" xmlns="urn:uddi-org:api">
 <businessKey/>
 [<businessKey/> ...]
</get_businessDetail>

2.0 Syntax:

<get_businessDetail generic="2.0" xmlns="urn:uddi-org:api_v2">
 <businessKey/>
 [<businessKey/> ...]
</get_businessDetail>

Argument:

businessKey

Required uuid_key specifying the businessEntity. You can specify multiple
businessKeys.

Example:

The following UDDI 1.0 example retrieves the businessEntity record for XMethods, Inc:

<get_businessDetail generic="1.0" xmlns="urn:uddi-org:api">
 <businessKey>ba744ed0-3aaf-11d5-80dc-002035229c64</businessKey>
</get_businessDetail>

Here is a complete response to the query:

<businessDetail generic="1.0" operator="Microsoft Corporation"
 truncated="false" xmlns="urn:uddi-org:api">
 <businessEntity
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64"
 operator="www.ibm.com/services/uddi" authorizedName="0100001QS1">
 <discoveryURLs>
 <discoveryURL useType="businessEntity">
 http://www.ibm.com/services/uddi/uddiget?businessKey=
 BA744ED0-3AAF-11D5-80DC-002035229C64
 </discoveryURL>
 </discoveryURLs>
 <name>XMethods</name>
 <description xml:lang="en">Web services resource site</description>
 <contacts>

Web Services Essentials

 188

 <contact useType="Founder">
 <description xml:lang="en" />
 <personName>Tony Hong</personName>
 <phone useType="Founder" />
 <email useType="Founder">thong@xmethods.net</email>
 <address>
 <addressLine />
 <addressLine />
 <addressLine />
 <addressLine />
 <addressLine />
 </address>
 </contact>
 </contacts>
 <businessServices>
 <businessService
 serviceKey="d5b180a0-4342-11d5-bd6c-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Barnes and Noble Quote</name>
 <description xml:lang="en">
 Returns book price from Barnes and Noble online store, given
 ISBN
 </description>
 <bindingTemplates>
 <bindingTemplate
 serviceKey="d5b180a0-4342-11d5-bd6c-002035229c64"
 bindingKey="d5b61480-4342-11d5-bd6c-002035229c64">
 <description xml:lang="en">
 SOAP Binding for tmodel:XMethods Book Quote
 </description>
 <accessPoint URLType="http">
 http://services.xmethods.net:80/soap/servlet/rpcrouter
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uuid:26d3abd0-433d-11d5-bd6c-
 002035229c64" />
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 </businessService>
 <businessService serviceKey="ed85f000-4345-11d5-bd6c-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Pacific Bell SMS Service</name>
 <description xml:lang="en">
 Sends a text message to a subscriber on the PacBell SMS
 network
 </description>
 <bindingTemplates>
 <bindingTemplate
 serviceKey="ed85f000-4345-11d5-bd6c-002035229c64"
 bindingKey="ed8d1bf0-4345-11d5-bd6c-002035229c64">
 <description xml:lang="en">
 SOAP Binding for tmodel:XMethods SMS
 </description>
 <accessPoint URLType="http">
 http://services.xmethods.net:80/perl/soaplite.cgi
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uuid:33f24880-433d-11d5-bd6c-
 002035229c64" />
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 </businessService>
 <businessService
 serviceKey="d5921160-3e16-11d5-98bf-002035229c64"

Web Services Essentials

 189

 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Delayed Stock Quotes</name>
 <description xml:lang="en">
 20-minute delayed stock quotes
 </description>
 <bindingTemplates>
 <bindingTemplate
 serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 bindingKey="d594a970-3e16-11d5-98bf-002035229c64">
 <description xml:lang="en">
 SOAP binding for delayed stock quotes service
 </description>
 <accessPoint URLType="http">
 http://services.xmethods.net:80/soap
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uuid:0e727db0-3e14-11d5-98bf-
 002035229c64" />
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 </businessService>
 <businessService
 serviceKey="618167a0-3e64-11d5-98bf-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Currency Exchange Rates</name>
 <description xml:lang="en">
 Returns exchange rates between 2 countries' currencies
 </description>
 <bindingTemplates>
 <bindingTemplate
 serviceKey="618167a0-3e64-11d5-98bf-002035229c64"
 bindingKey="618474e0-3e64-11d5-98bf-002035229c64">
 <description xml:lang="en">
 SOAP binding for currency exchange rates service
 </description>
 <accessPoint URLType="http">
 http://services.xmethods.net:80/soap
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uuid:e092f730-3e63-11d5-98bf-
 002035229c64" />
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 </businessService>
 </businessServices>
 </businessEntity>
</businessDetail>

Error:

E_invalidKeyPassed

An invalid businessKey was specified.

Web Services Essentials

 190

get_businessDetailExt

The get_businessDetailExt function retrieves the extended businessEntity for each
specified businessKey. The response includes a root businessDetailExt element, and one
businessEntityExt element for each matching business. If the operator returns only a
partial list of matching results, the businessDetailExt element's truncated attribute will be
set to true. If no matches are found, an E_invalidKeyPassed error is returned. This
function is useful for querying external UDDI registries that are not part of the UDDI
cloud services and that may contain extra business registration information. When
querying a UDDI operator site, this method returns the exact same results as
get_businessDetail.

Version: 1.0 and 2.0

1.0 syntax:

<get_businessDetailExt generic="1.0" xmlns="urn:uddi-org:api" >
 <businessKey/>
 [<businessKey/> ...]
</get_businessDetailExt>

2.0 syntax:

<get_businessDetailExt generic="2.0" xmlns="urn:uddi-org:api_v2" >
 <businessKey/>
 [<businessKey/> ...]
</get_businessDetailExt>

Argument:

businessKey

Required uuid_key specifying the businessEntity. You can specify multiple
businessKeys.

Example:

The following UDDI 1.0 example retrieves the external businessEntity record for
XMethods, Inc.

<get_businessDetailExt generic="1.0" xmlns="urn:uddi-org:api">
 <businessKey>ba744ed0-3aaf-11d5-80dc-002035229c64</businessKey>
</get_businessDetailExt>

When querying a UDDI Operator site, this query returns the exact same result noted in the
get_businessDetail example earlier in this chapter.

Web Services Essentials

 191

Errors:

E_invalidKeyPassed

An invalid businessKey was specified.

E_unsupported

The query is not supported. If this occurs, use the get_businessDetail query.

Web Services Essentials

 192

get_serviceDetail

The get_serviceDetail function retrieves the businessService record for each specified
serviceKey. The response includes a root serviceDetail element, and one
businessService element for each matching service. If the UDDI operator returns only a
partial list of matching results, the serviceDetail element's truncated attribute will be set
to true. If no matches are found, an E_invalidKeyPassed error is returned.

Version: 1.0 and 2.0

1.0 syntax:

<get_serviceDetail generic="1.0" xmlns="urn:uddi-org:api" >
 <serviceKey/>
 [<serviceKey/> ...]
</get_serviceDetail>

2.0 syntax:

<get_serviceDetail generic="2.0" xmlns="urn:uddi-org:api_v2">
 <serviceKey/>
 [<serviceKey/> ...]
</get_serviceDetail>

Argument:

serviceKey

Required uuid_key specifying the serviceDetail. You can specify multiple
serviceKeys.

Example:

The following UDDI 1.0 example retrieves the service details for the XMethods Stock
Quote service:

<get_serviceDetail generic="1.0" xmlns="urn:uddi-org:api">
 <serviceKey>d5921160-3e16-11d5-98bf-002035229c64</serviceKey>
</get_serviceDetail>

Here is a complete response to the query:

<serviceDetail generic="1.0" operator="Microsoft Corporation"
 truncated="false" xmlns="urn:uddi-org:api">
 <businessService
 serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 businessKey="ba744ed0-3aaf-11d5-80dc-002035229c64">
 <name>XMethods Delayed Stock Quotes</name>
 <description xml:lang="en">
 20-minute delayed stock quotes
 </description>
 <bindingTemplates>
 <bindingTemplate
 serviceKey="d5921160-3e16-11d5-98bf-002035229c64"
 bindingKey="d594a970-3e16-11d5-98bf-002035229c64">

Web Services Essentials

 193

 <description xml:lang="en">
 SOAP binding for delayed stock quotes service
 </description>
 <accessPoint URLType="http">
 http://services.xmethods.net:80/soap
 </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uuid:0e727db0-3e14-11d5-98bf-002035229c64" />
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 </businessService>
</serviceDetail>

Error:

E_invalidKeyPassed

An invalid serviceKey was specified.

Web Services Essentials

 194

get_tModelDetail

The get_tModelDetail function retrieves the tModel record for each specified tModelKey.
The response includes a root tModelDetail element, and one tModel element for each
matching tModel. If the UDDI operator returns only a partial list of matching results, the
tModelDetail element's truncated attribute will be set to true. If no matches are found, an
E_invalidKeyPassed error is returned.

Version: 1.0 and 2.0

1.0 syntax:

<get_tModelDetail generic="1.0" xmlns="urn:uddi-org:api">
 <tModelKey/>
 [<tModelKey/> ...]
</get_tModelDetail>

2.0 syntax:

<get_tModelDetail generic="2.0" xmlns="urn:uddi-org:api_v2">
 <tModelKey/>
 [<tModelKey/> ...]
</get_tModelDetail>

Argument:

tModelKey

Required uuid_key specifying the tModel. You can specify multiple tModelKeys.

Example:

The following UDDI 1.0 example retrieves the tModel record for the RosettaNet Partner
Interface Process (PIP) for "Query Shipment Status":

<get_tModelDetail generic="1.0" xmlns="urn:uddi-org:api">
 <tModelKey>uuid:87c133f5-f521-420a-8316-9ff37e292796</tModelKey>
</get_tModelDetail>

Following is a complete response to the query:

<tModelDetail generic="1.0" operator="Microsoft Corporation"
 truncated="false" xmlns="urn:uddi-org:api">
 <tModel tModelKey="uuid:87c133f5-f521-420a-8316-9ff37e292796"
 operator="Microsoft Corporation" authorizedName="Suhayl Masud">
 <name>Rosettanet-org:PIP3B4:QueryShipmentStatus:v01.00.00</name>
 <description xml:lang="en">
 Enables in-transit information users to query shipment status,
 and allows transport service providers to respond with shipment
 status notifications
 </description>
 <overviewDoc>
 <description xml:lang="en">
 This is the compressed file that contains the specification
 in a word document, the html message guideline document and

Web Services Essentials

 195

 the xml dtds
 </description>
 <overviewURL>
 http://www.rosettanet.org/rosettanet/Doc/0/
 CG0J24SOSBA13FCD0282FOPTD8/3B4_QueryShipment
 Status_R01_00_00.zip
 </overviewURL>
 </overviewDoc>
 </tModel>
</tModelDetail>

Errors:

E_invalidKeyPassed

An invalid tModelKey was specified.

E_keyRetired

The specified tModelKey is no longer active.

Web Services Essentials

 196

8.2 Find Qualifiers

Each of the find functions can take an optional list of UDDI find qualifiers, which enable
more precise search criteria. Table 8-2 provides a list of the most frequently used UDDI
find qualifiers.

Table 8-2. Most frequently used UDDI find qualifiers

Find qualifier Description

exactNameMatch Mandates an exact name match

caseSensitiveMatch Mandates that the search be case-sensitive

sortByNameAsc Sorts results by name in ascending alphabetic order

sortByNameDesc Sorts results by name in descending alphabetic order

sortByDateAsc Sorts results by date last updated in ascending chronological order

sortByDateDesc Sorts results by date last updated in descending chronological order

soundex Mandates a sound-alike search for the specified name (UDDI 2.0 only)

The following example illustrates the use of the exactNameMatch qualifier:

<find_business generic="1.0" xmlns="urn:uddi-org:api">
 <findQualifiers>
 <findQualifier>exactNameMatch</findQualifier>
 </findQualifiers>
 <name>Ariba, Inc</name>
</find_business>

UDDI's search facilities are fairly comprehensive and may be enhanced in future versions.

Web Services Essentials

 197

Chapter 9. UDDI 4J

UDDI for Java (UDDI4J) is a Java client toolkit for retrieving and publishing UDDI data.
IBM originally created UDDI4J; in January 2001, it turned the code over to its own
developerWorks open source site (http://www-124.ibm.com/developerworks/oss/).

This chapter provides a complete overview of UDDI4J, including:

• The technical aspects of using the UDDI4J API
• Three sample applications, including two applications that use the UDDI Inquiry

API and one that uses the UDDI Publishing API
• A quick-reference guide to the complete UDDI4J API

9.1 Getting Started

To get started, you must first download the UDDI4J distribution. The distribution is
available at http://oss.software.ibm.com/developerworks/projects/uddi4j/.

You will also need the following additional software:

• The complete Apache SOAP distribution, including the prerequisite software, such
as the Xerces XML Parser and the JavaMail API. See Chapter 3 for complete
details.

• The Java Secure Socket Extension (JSSE), available at
http://java.sun.com/products/jsse/index.html. JSSE is required if you plan to
publish UDDI data.

9.1.1 Technical Overview

The UDDI4J API provides a direct mapping of the UDDI Data Model and the UDDI
Programming API. (See Chapter 7 for details.) The most important class is the UDDIProxy
class. This class provides centralized access to all inquiry and publishing functions
included in the UDDI 1.0 Programming API. To perform inquiry functions, you must
provide an inquiry URL for a UDDI operator site via the setInquiryURL() method. To
perform publishing functions, you must specify an HTTPS URL via the setPublishURL()
method.

Each of the UDDI Programming API functions is directly available via the UDDIProxy
class. For example, the UDDIProxy class has inquiry methods for find_business() ,
get_businessDetail() , get_TModelDetail() , etc. It also has publishing methods for
save_business() , save_service() , delete_business() , etc.

Depending on the method call, the UDDIProxy object will generate a SOAP request, send
the request to the specified UDDI operator site, and make the response data available via
intermediate objects. Most of these intermediate objects are available in the
com.ibm.uddi.datatype package. For example, the com.ibm.uddi.datatype.business
package contains classes for extracting business entity information, such as the business
name, description, and contact information.

Web Services Essentials

 198

In the event of an error, the UDDIProxy class will throw a UDDIException. Depending on the
type of error, the UDDIException may contain a DispositionReport object containing
detailed information about the cause of the error.

9.2 Finding and Retrieving UDDI Data

UDDI lets you search for information about businesses and business entities, using slightly
different APIs.

9.2.1 Searching for Businesses

Our first example runs the UDDIProxy find_business() method and prints out the matching
results. The program expects a single command-line argument, in which you specify the
name of a business. For example, the following command line:

java com.ecerami.uddi.findBusiness Micro

generates the following output:

Searching for Businesses: Micro
Microtrack, Inc.: f53480ab-be29-4090-9239-f4c4a7cf71c6
Microform Reading Room: 622a4879-dcaa-4bab-9aec-6e6bfb858067
Micro Informatica LLC: dce959cf-200d-4d9e-beee-ede770299212
Microsoft Corporation: 0076b468-eb27-42e5-ac09-9955cff462a3
Micromotor: 11bb5410-61d7-11d5-b286-002035229c64
MicroVideo Learning Systems: 8995b9f7-0043-4eb0-adaf-2aa81ad387e4
MicroApplications, Inc.: a23c901e-834c-4b8a-bf38-3f96fedc349a
MicroLink LLC: fb5783d6-4ba4-4bce-b181-4d3cd9f35e3d
MicroMain Corporation: 1e6c5410-00e7-4aee-acfb-fb59f3896322
Micro Motion Inc.: d4e4b830-f19e-4edf-9f44-8936e53d9a33

The complete code is shown in Example 9-1. First, note that the findBusinessByName()
method creates a new UDDIProxy object and specifies the inquiry URL for the Microsoft
UDDI site. (For a complete list of inquiry and publishing URLs, refer to Chapter 7.)

The code then calls the proxy's find_business() method:

BusinessList businessList = proxy.find_business(businessName, null, 0);

This method expects three arguments: a business name, a FindQualifier object, and a
maximum number of records to return. In our case, we have no find qualifiers and
therefore pass a null value. (See the "Find Qualifiers" section later in this chapter for
details regarding the use of find qualifiers.) We also specify a 0 value for maximum
number of records; 0 is a reserved value that indicates no restrictions on the number of
rows returned.

The find_business() method returns a BusinessList object. The code then navigates
through the BusinessList object to obtain the matching businesses. For complete details
on navigating through the business data hierarchy, refer to the
com.ibm.uddi.datatype.business package in the Quick Reference API.

In the event of a UDDIException , the code attempts to extract the DispositionReport object
and display the cause of the error.

Web Services Essentials

 199

Example 9-1. findBusiness.java

package com.ecerami.uddi;

import java.util.*;
import com.ibm.uddi.UDDIException;
import com.ibm.uddi.client.UDDIProxy;
import com.ibm.uddi.response.*;
import java.net.MalformedURLException;
import org.apache.soap.SOAPException;

/**
 * Sample UDDI Program: searches for all companies that
 * match the first command line argument.
 * Example usage: java findBusiness XMethods
 */
public class findBusiness {

 /**
 * Main method
 */
 public static void main (String args[]) {
 findBusiness inquiry = new findBusiness();

 try {
 // Search for Specified Business Name
 String businessName = args[0];
 System.out.println ("Searching for Businesses: "+businessName);
 Vector businessInfoVector = inquiry.findBusinessByName (businessName);

 // Print name and business key for each matching business
 for (int i=0; i<businessInfoVector.size(); i++) {
 BusinessInfo businessInfo =
 (BusinessInfo) businessInfoVector.elementAt(i);
 String name = businessInfo.getNameString();
 String businessKey = businessInfo.getBusinessKey();
 System.out.println (name+": "+businessKey);
 }
 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (SOAPException e) {
 e.printStackTrace();
 } catch (UDDIException e) {
 // Extract UDDI Disposition Report
 DispositionReport dr = e.getDispositionReport();
 if (dr!=null) {
 System.out.println("UDDIException faultCode:" +
 e.getFaultCode() +
 "\n errno:" + dr.getErrno() +
 "\n errCode:" + dr.getErrCode() +
 "\n errInfoText:" + dr.getErrInfoText());
 }
 e.printStackTrace();
 }
 }

 /**
 * Find Business by Name
 * @param businessName Business Name Target
 * @return Vector of BusinessInfo objects
 */
 public Vector findBusinessByName (String businessName)
 throws MalformedURLException, SOAPException, UDDIException {
 // Create UDDI Proxy Object
 UDDIProxy proxy = new UDDIProxy();

 // Point to Microsoft Inquiry URL
 proxy.setInquiryURL("http://uddi.microsoft.com/inquire");

Web Services Essentials

 200

 // Find Matching Businesses
 BusinessList businessList = proxy.find_business(businessName, null, 0);

 // Process UDDI Response
 BusinessInfos businessInfos = businessList.getBusinessInfos();
 Vector businessInfoVector = businessInfos.getBusinessInfoVector();
 return businessInfoVector;
 }
}

9.2.1.1 FindQualifiers

You can use the FindQualifiers object to specify more precise control over the search
criteria. For example, the following code searches for exact name matches:

Vector fqs = new Vector();
FindQualifiers findQualifiers = new FindQualifiers ();
FindQualifier fq = new FindQualifier(FindQualifier.exactNameMatch);
fqs.addElement(fq);
findQualifiers.setFindQualifierVector(fqs);
BusinessList bl = proxy.find_business("Microsoft Corporation",
 findQualifiers, 0);

For more complete details, refer to the com.ibm.uddi.util package in the Quick Reference
API.

9.2.1.2 IdentifierBag

You can use the IdentifierBag object to perform searches indexed by one or more UDDI
identifiers. For example, the following code attempts to locate the business record
associated with the specified Dun & Bradstreet D-U-N-S® Number:

Vector keyedReferenceVector = new Vector();
KeyedReference keyedRef = new KeyedReference
 ("dnb-com:D-U-N-S", "04-693-3052");
keyedRef.setTModelKey ("uuid:8609c81e-ee1f-4d5a-b202-3eb13ad01823");
keyedReferenceVector.addElement (keyedRef);
IdentifierBag idBag = new IdentifierBag ();
idBag.setKeyedReferenceVector(keyedReferenceVector);
BusinessList bl = proxy.find_business(idBag, null, 0);

For details regarding UDDI identifiers, refer to Chapter 7.

9.2.1.3 CategoryBag

You can use the CategoryBag object to perform searches indexed by one or more UDDI
categorizations. For example, the following code searches for all businesses registered
with the NAICS code for software publisher:

keyedReferenceVector = new Vector();
keyedRef = new KeyedReference ("ntis-gov:naics:1997", "51121");
keyedRef.setTModelKey ("uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2");
keyedReferenceVector.addElement (keyedRef);
CategoryBag categoryBag = new CategoryBag ();
categoryBag.setKeyedReferenceVector(keyedReferenceVector);
BusinessList bl = proxy.find_business(categoryBag, null, 0);

Web Services Essentials

 201

For details regarding preregistered UDDI taxonomies and categorizations, refer to Chapter
7.

9.2.2 Retrieving a businessEntity Record

Our second example runs the proxy get_businessDetail() method and prints out portions
of the full businessEntity record. The program expects a single command-line argument,
in which you can specify the businessKey for a business.

For example, the following command line:

java com.ecerami.uddi.getBusinessDetail 0076b468-eb27-42e5-ac09-9955cff462a3

generates the following output:

Business Name: Microsoft Corporation
Description: Empowering people through great software - any time, any place
and on any device is Microsoft's vision. As the worldwide leader in software
for personal and business computing, we strive to produce innovative products and
services that meet our customer's
Contact: Corporate Mailing Addresses
Address: Microsoft Corporation
Address: One Microsoft Way
Address: Redmond, WA 98052-6399
Address: USA
Contact: World Wide Operations
Email: martink@microsoft.com

The complete code is shown in Example 9-2. Note that the get_businessDetail() method
returns a BusinessDetail object. You can then navigate through the BusinessDetail object
to display any portion of the record you want. In this case, the code displays the business
name, description, and contact information. For details on navigating through the
BusinessDetail object, refer to the com.ibm.uddi.datatype.business package in the Quick
Reference API (discussed in Chapter 8).

Example 9-2. getBusinessDetail.java

package com.ecerami.uddi;

/**
 * Sample UDDI Program: retrieves the businessEntity
 * specified by the first command line argument.
 * Example usage:
 * java getBusinessDetail ba744ed0-3aaf-11d5-80dc-002035229c64
 */
import java.util.*;
import com.ibm.uddi.client.UDDIProxy;
import com.ibm.uddi.UDDIException;
import com.ibm.uddi.response.DispositionReport;
import com.ibm.uddi.response.BusinessDetail;
import com.ibm.uddi.datatype.business.*;
import java.net.MalformedURLException;
import org.apache.soap.SOAPException;

public class getBusinessDetail {

 /**
 * Main Method
 */
 public static void main (String args[]) {

Web Services Essentials

 202

 try {
 getBusinessDetail inquiry = new getBusinessDetail();
 BusinessDetail businessDetail = inquiry.getBusinessDetail (args[0]);
 inquiry.print_businessDetail (businessDetail);
 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (SOAPException e) {
 e.printStackTrace();
 } catch (UDDIException e) {
 // Extract UDDI Disposition Report
 DispositionReport dr = e.getDispositionReport();
 if (dr!=null) {
 System.out.println("UDDIException faultCode:" +
 e.getFaultCode() +
 "\n errno:" + dr.getErrno() +
 "\n errCode:" + dr.getErrCode() +
 "\n errInfoText:" + dr.getErrInfoText());
 }
 e.printStackTrace();
 }
 }

 /**
 * Retrieve Business Detail Record
 * @param businessKey UDDI Business Key
 * @return UDDI Business Detail record
 */
 public BusinessDetail getBusinessDetail (String businessKey)
 throws MalformedURLException, SOAPException, UDDIException {
 // Create UDDI Proxy Object
 UDDIProxy proxy = new UDDIProxy();
 // Point to Microsoft Inquiry URL
 proxy.setInquiryURL("http://uddi.microsoft.com/inquire");

 // Retrieve BusinessDetail record
 BusinessDetail businessDetail = proxy.get_businessDetail(businessKey);
 return businessDetail;
 }

 /**
 * Print Business Entity Data
 * @param businessDetail UDDI Business Detail Record
 */
 private void print_businessDetail (BusinessDetail businessDetail) {
 Vector businessEntityVector = businessDetail.getBusinessEntityVector();
 for (int i = 0; i < businessEntityVector.size(); i++) {
 BusinessEntity businessEntity =
 (BusinessEntity) businessEntityVector.elementAt(i);
 String name = businessEntity.getNameString();
 String description = businessEntity.getDefaultDescriptionString();
 System.out.println ("Business Name: "+name);
 System.out.println ("Description: "+description);
 Contacts contacts = businessEntity.getContacts();
 print_contacts (contacts);
 }
 }

 /**
 * Print Contact Data
 * @param contacts UDDI Contacts Information
 */
 private void print_contacts (Contacts contacts) {
 Vector contactVector = contacts.getContactVector();
 for (int j=0; j< contactVector.size(); j++) {
 Contact contact = (Contact) contactVector.elementAt (j);
 String description = contact.getDefaultDescriptionString();
 Vector addressVector = contact.getAddressVector();
 Vector emailVector = contact.getEmailVector();

Web Services Essentials

 203

 System.out.println ("Contact: "+ description);
 print_addressVector (addressVector);
 print_emailVector (emailVector);
 }
 }

 /**
 * Print Address Data
 * @param addressVector Vector of UDDI Address Records
 */
 private void print_addressVector (Vector addressVector) {
 for (int i=0; i< addressVector.size(); i++) {
 Address address = (Address) addressVector.elementAt(i);
 Vector addressLines = address.getAddressLineVector();
 for (int j=0; j<addressLines.size(); j++) {
 AddressLine addressLine = (AddressLine) addressLines.elementAt(j);
 String addressText = addressLine.getText();
 System.out.println("Address: "+addressText);
 }
 }
 }

 /**
 * Print Email Data
 * @param emailVector Vector of UDDI Email Objects
 */
 private void print_emailVector (Vector emailVector) {
 for (int i=0; i< emailVector.size(); i++) {
 Email email = (Email) emailVector.elementAt(i);
 String emailText = email.getText();
 System.out.println ("Email: "+emailText);
 }
 }
}

9.3 Publishing UDDI Data

UDDI publishing requests must be sent via an SSL connection and are restricted to
authorized users only. To specify an HTTPS URL, use the setPublishURL() method. To
obtain user authorization, you must use the proxy get_authToken() method. This method
requires a username and password and returns an authentication token, which must be
passed to all subsequent publishing methods.

Our final example illustrates how to save a new businessEntity record, and also illustrates
the generic technique for obtaining a user authentication token. The code creates a new
businessEntity record for Acme Parts, then confirms that the record was published by
extracting and displaying the new businessKey.

The program expects two command-line arguments, in which you can specify a username
and password. For example, the following command line:

java com.ecerami.uddi.saveBusiness ethan@ecerami.com oreilly

generates the following output:

Saving New Business: Acme Parts
Authentication Token:1IbuzUmG2DuPzkcoUd1I6iy*BqWwxPhuFWf2!ggowk*6Kiznlu4sjQeJT
OnuL2c1Smm8m28aogU!I6ZL73yROf3Q$$;1IbuzUmG2AoqvPmRavvTeO1UsaVLQk0AmGYVyyxwk3
 2Kb4
c3jMROMo4Rlp7kaQYRCXu9!95wQ8FZTIjE!47uKC9NPCCryf0Yh!IltwfYMCaPKTq*R0rTWMrzcg
 UWEt

Web Services Essentials

 204

!g859iKxlE*w7QPIx8n8aYWs8WCkAn7UHwyb
Published Business Key: 3deafa60-0023-4220-b3e0-0c87cb34526a

Example 9-3 includes a UDDIUtil class that is responsible for authenticating users. Note
that the class specifies an SSL provider:

System.setProperty("java.protocol.handler.pkgs",
 "com.sun.net.ssl.internal.www.protocol");
Security.addProvider (new com.sun.net.ssl.internal.ssl.Provider());

These two lines are required for transferring information via SSL.

Note that the proxy get_authToken() method requires a username and password and
returns an AuthToken object. The AuthToken object can then be used in all subsequent
publishing requests.

The remainder of the code is shown in Example 9-3. Within this code, we save a new
BusinessEntity object with a new name, description, and contact information. Note in
particular the instantiation of the BusinessEntity object:

BusinessEntity businessEntity = new BusinessEntity("", "Acme Parts");

The code passes an empty businessKey string to the constructor, indicating that this is a
new record. The proxy's save_business() method echoes back a BusinessDetail object,
enabling us to extract the newly assigned businessKey value.

Example 9-3. saveBusiness.java

package com.ecerami.uddi;

/**
 * UDDI Program: publishes a new UDDI BusinessEntity
 * record. Specify username and password on command line.
 * Example usage:
 * java saveBusiness ethan@ecerami.com password
 */
import com.ibm.uddi.*;
import com.ibm.uddi.client.*;
import com.ibm.uddi.datatype.business.*;
import com.ibm.uddi.response.*;
import java.util.Vector;
import java.net.MalformedURLException;
import org.apache.soap.SOAPException;

public class saveBusiness {
 private AuthToken token;
 private UDDIProxy proxy;

 /**
 * Main Method
 */
 public static void main (String args[]) {
 saveBusiness publish = null;
 try {
 System.out.println("Saving New Business: Acme Parts");
 AuthToken token = UDDIUtil.get_authentication_token(args[0], args[1]);
 System.out.println("Authentication Token: "+token.getAuthInfoString());
 publish = new saveBusiness(token);
 String businessKey = publish.save_business();
 System.out.println("Published Business Key: "+businessKey);

Web Services Essentials

 205

 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (SOAPException e) {
 e.printStackTrace();
 } catch (UDDIException e) {
 DispositionReport dr = e.getDispositionReport();
 UDDIUtil.printDispositionReport (dr);
 e.printStackTrace();
 }
 }

 /**
 * Constructor
 * @param token UDDI Authentication Token
 */
 public saveBusiness (AuthToken token) {
 this.token = token;
 }

 /**
 * Save New Business Entity
 */
 public String save_business ()
 throws MalformedURLException, SOAPException, UDDIException {
 String businessKey = null;

 // Point to Microsoft Test Publish URL (SSL)
 proxy = new UDDIProxy();
 proxy.setPublishURL("https://test.uddi.microsoft.com/publish");

 // Create Sample Business Entity Record
 BusinessEntity businessEntity = create_business ();
 Vector businessEntityVector = new Vector();
 businessEntityVector.addElement(businessEntity);

 // Publish new Business Record
 BusinessDetail businessDetail =
 proxy.save_business(token.getAuthInfoString(), businessEntityVector);

 // Verify publication by extracting new business key
 Vector businessEntities = businessDetail.getBusinessEntityVector();
 if (businessEntities.size() > 0) {
 BusinessEntity returnedBusinessEntity =
 (BusinessEntity)(businessEntities.elementAt(0));
 businessKey = returnedBusinessEntity.getBusinessKey();
 }
 return businessKey;
 }

 /**
 * Create new sample Business Entity record
 */
 private BusinessEntity create_business() {
 Vector businessEntities = new Vector();
 BusinessEntity businessEntity = new BusinessEntity("", "Acme Parts");

 // Set Business Description
 businessEntity.setDefaultDescriptionString
 ("Maker of fine semiconductor parts");

 // Set Contact Name and Email
 Contact contact = new Contact ("Ethan Cerami");
 Email email = new Email("cerami@cs.nyu.edu");
 Vector emailVector = new Vector();
 emailVector.addElement(email);
 contact.setEmailVector(emailVector);
 Contacts contacts = new Contacts();
 Vector contactVector = new Vector();

Web Services Essentials

 206

 contactVector.addElement(contact);
 contacts.setContactVector(contactVector);
 businessEntity.setContacts(contacts);
 return businessEntity;
 }
}

9.4 UDDI4J Quick Reference API

This section includes a quick-reference guide to the UDDI4J API. All packages within the
API are included except for com.ibm.uddi.request , which client applications do not
typically use directly.

Web Services Essentials

 207

9.4.1 The com.ibm.uddi Package

com.ibm.uddi.UDDIElement

This is the base class for all UDDI elements.

Synopsis

public abstract class UDDIElement extends Object {
 // Constructors
 public UDDIElement();
 public UDDIElement(Element el) throws UDDIException;
 // Field Summary
 protected Element base;
 public static String GENERIC;
 public static String XMLNS;
 // Public Methods
 public NodeList getChildElementsByTagName(Element el, String tag);
 abstract public void saveToXML(Element base);
 // Protected Methods
 protected String getText(Node el);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement

Web Services Essentials

 208

com.ibm.uddi.UDDIException

This class encapsulates UDDI related errors. A UDDIException object may include a
DispositionReport object, containing detailed information about the cause of the error.

Synopsis

public class UDDIException extends Exception {
 // Constructors
 public UDDIException();
 public UDDIException(Element el, boolean createDispositionReport);
 // Public Methods
 public String getDetail();
 public Element getDetailElement();
 public DispositionReport getDispositionReport();
 public String getFaultActor();
 public String getFaultCode();
 public String getFaultString();
 public boolean isValidElement(Element el);
 public String toString();
 // Protected Methods
 protected String getText(Node el);
}

Hierarchy

java.lang.Object --> java.lang.Throwable --> java.lang.Exception -->
com.ibm.uddi.UDDIException

Web Services Essentials

 209

com.ibm.uddi.VectorNodeList

This utility class provides an implementation of the org.w3c.dom.NodeList interface, but it
is not typically used directly by UDDI client code.

Synopsis

public class VectorNodeList extends Object implements NodeList {
 // Constructors
 public VectorNodeList(Vector v);
 // Public Methods
 public int getLength();
 public Vector getVector();
 public Node item(int index);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.VectorNodeList

Web Services Essentials

 210

9.4.2 The com.ibm.uddi.client Package

com.ibm.uddi.client.UDDIProxy

This class provides centralized access to all inquiry and publishing functions provided by
the UDDI 1.0 Programming API. To perform inquiry functions, you must set the inquiry
URL via the setInquiryURL() method; to perform publishing functions, you must set an
HTTPS URL via the setPublishURL() method. All publishing requests, such as
save_xxx() and delete_xxx() , require an authentication token; to obtain an authentication
token, use the get_authToken() method and specify a username and password.

Synopsis

public class UDDIProxy extends Object {
 // Constructors
 public UDDIProxy();
 public UDDIProxy(URL inquiryURL, URL publishURL,
 SOAPTransport transport);
 // Public Methods
 public DispositionReport delete_binding(String authInfo,
 String bindingKey) throws UDDIException, SOAPException;
 public DispositionReport delete_binding(String authInfo,
 Vector bindingKeyStrings) throws UDDIException, SOAPException;
 public DispositionReport delete_business(String authInfo,
 String businessKey) throws UDDIException, SOAPException;
 public DispositionReport delete_business(String authInfo,
 Vector businessKeyStrings) throws UDDIException, SOAPException;
 public DispositionReport delete_service(String authInfo,
 String serviceKey) throws UDDIException, SOAPException;
 public DispositionReport delete_service(String authInfo,
 Vector serviceKeyStrings) throws UDDIException, SOAPException;
 public DispositionReport delete_tModel(String authInfo,
 String tModelKey) throws UDDIException, SOAPException;
 public DispositionReport delete_tModel(String authInfo,
 Vector tModelKeyStrings) throws UDDIException, SOAPException;
 public DispositionReport discard_authToken(AuthInfo authInfo)
 throws UDDIException, SOAPException;
 public BindingDetail find_binding(FindQualifiers findQualifiers,
 String serviceKey, TModelBag tmodelbag, int maxRows)
 throws UDDIException, SOAPException;
 public BusinessList find_business(CategoryBag bag, FindQualifiers
 findQualifiers, int maxRows) throws UDDIException, SOAPException;
 public BusinessList find_business(DiscoveryURLs bag, FindQualifiers
 findQualifiers, int maxRows) throws UDDIException, SOAPException;
 public BusinessList find_business(IdentifierBag bag, FindQualifiers
 findQualifiers, int maxRows) throws UDDIException, SOAPException;
 public BusinessList find_business(String name, FindQualifiers
 findQualifiers, int maxRows) throws UDDIException, SOAPException;
 public BusinessList find_business(TModelBag bag, FindQualifiers
 findQualifiers, int maxRows) throws UDDIException, SOAPException;
 public ServiceList find_service(String businessKey, CategoryBag bag,
 FindQualifiers findQualifiers, int maxRows) throws UDDIException,
 SOAPException;
 public ServiceList find_service(String businessKey, String name,
 FindQualifiers findQualifiers, int maxRows) throws UDDIException,
 SOAPException;
 public ServiceList find_service(String businessKey, TModelBag bag,
 FindQualifiers findQualifiers, int maxRows) throws UDDIException,
 SOAPException;

Web Services Essentials

 211

 public TModelList find_tModel(CategoryBag bag, FindQualifiers
 findQualifiers, int maxRows) throws UDDIException, SOAPException;
 public TModelList find_tModel(IdentifierBag identifierBag,
 FindQualifiers findQualifiers, int maxRows) throws UDDIException,
 SOAPException;
 public TModelList find_tModel(String name, FindQualifiers
 findQualifiers,int maxRows) throws UDDIException, SOAPException;
 public AuthToken get_authToken(String userid, String cred)
 throws UDDIException, SOAPException;
 public BindingDetail get_bindingDetail(String bindingKey)
 throws UDDIException, SOAPException;
 public BindingDetail get_bindingDetail(Vector bindingKeyStrings)
 throws UDDIException, SOAPException;
 public BusinessDetail get_businessDetail(String businessKey)
 throws UDDIException, SOAPException;
 public BusinessDetail get_businessDetail(Vector businessKeyStrings)
 throws UDDIException, SOAPException;
 public BusinessDetailExt get_businessDetailExt(String businessKey)
 throws UDDIException, SOAPException;
 public BusinessDetailExt get_businessDetailExt(Vector
 businessKeyStrings) throws UDDIException, SOAPException;
 public RegisteredInfo get_registeredInfo(String authInfo)
 throws UDDIException, SOAPException;
 public ServiceDetail get_serviceDetail(String serviceKey)
 throws UDDIException, SOAPException;
 public ServiceDetail get_serviceDetail(Vector serviceKeyStrings)
 throws UDDIException, SOAPException;
 public TModelDetail get_tModelDetail(String tModelKey)
 throws UDDIException, SOAPException;
 public TModelDetail get_tModelDetail(Vector tModelKeyStrings)
 throws UDDIException, SOAPException;
 public BindingDetail save_binding(String authInfo,
 Vector bindingTemplates) throws UDDIException, SOAPException;
 public BusinessDetail save_business(String authInfo,
 UploadRegister[] uploadRegisters) throws UDDIException,
 SOAPException;
 public BusinessDetail save_business(String authInfo,
 Vector businessEntities) throws UDDIException, SOAPException;
 public ServiceDetail save_service(String authInfo,
 Vector businessServices) throws UDDIException, SOAPException;
 public TModelDetail save_tModel(String authInfo, UploadRegister[]
 uploadRegisters) throws UDDIException, SOAPException;
 public TModelDetail save_tModel(String authInfo, Vector tModels)
 throws UDDIException, SOAPException;
 public Element send(Element el, boolean inquiry)
 throws SOAPException;
 public Element send(UDDIElement el, boolean inquiry)
 throws SOAPException;
 public void setInquiryURL(String url) throws MalformedURLException;
 public void setPublishURL(String url) throws MalformedURLException;
 public void setTransport(SOAPTransport transport);
 public DispositionReport validate_categorization(String tModelKey,
 String keyValueString, BusinessEntity businessEntity)
 throws UDDIException, SOAPException;
 public DispositionReport validate_categorization(String tModelKey,
 String keyValueString, BusinessService businessService)
 throws UDDIException, SOAPException;
 public DispositionReport validate_categorization(String tModelKey,
 String keyValueString, TModel tModel) throws UDDIException,
 SOAPException;
}

Hierarchy

java.lang.Object --> com.ibm.uddi.client.UDDIProxy

Web Services Essentials

 212

9.4.3 The com.ibm.uddi.datatype Package

com.ibm.uddi.datatype.Description

This class encapsulates a textual description associated with multiple UDDI data type
objects, including BindingTemplate , BusinessEntity , BusinessService , and TModel.

Synopsis

public class Description extends UDDIElement {
 // Constructors
 public Description();
 public Description(String value);
 public Description(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getLang();
 public String getText();
 public void saveToXML(Element parent);
 public void setLang(String s);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.Description

Web Services Essentials

 213

com.ibm.uddi.datatype.Name

This class encapsulates a textual name associated with multiple UDDI data type objects,
including BusinessEntity , BusinessService , and TModel.

Synopsis

public class Name extends UDDIElement {
 // Constructors
 public Name();
 public Name(String value);
 public Name(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public void saveToXML(Element parent);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.Name

Web Services Essentials

 214

com.ibm.uddi.datatype.OverviewDoc

This class encapsulates an external overview document associated with multiple UDDI
data type objects, including TModel and InstanceDetails.

Synopsis

public class OverviewDoc extends UDDIElement {
 // Constructors
 public OverviewDoc();
 public OverviewDoc(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getDefaultDescriptionString();
 public Vector getDescriptionVector();
 public OverviewURL getOverviewURL();
 public String getOverviewURLString();
 public void saveToXML(Element parent);
 public void setDefaultDescriptionString(String s);
 public void setDescriptionVector(Vector s);
 public void setOverviewURL(OverviewURL s);
 public void setOverviewURL(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.OverviewDoc

Web Services Essentials

 215

com.ibm.uddi.datatype.OverviewURL

This class encapsulates the URL for an external overview document.

Synopsis

public class OverviewURL extends UDDIElement {
 // Constructors
 public OverviewURL();
 public OverviewURL(String value);
 public OverviewURL(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public void saveToXML(Element parent);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.OverviewURL

Web Services Essentials

 216

9.4.4 The com.ibm.uddi.datatype.binding Package

com.ibm.uddi.datatype.binding.AccessPoint

This class encapsulates information for a UDDI accessPoint record.

Synopsis

public class AccessPoint extends UDDIElement {
 // Constructors
 public AccessPoint();
 public AccessPoint(String value, String URLType);
 public AccessPoint(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public String getURLType();
 public void saveToXML(Element parent);
 public void setText(String s);
 public void setURLType(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.binding.AccessPoint

Web Services Essentials

 217

com.ibm.uddi.datatype.binding.BindingTemplate

This class encapsulates information for a UDDI bindingTemplate record.

Synopsis

public class BindingTemplate extends UDDIElement {
 // Constructors
 public BindingTemplate();
 public BindingTemplate(String bindingKey, TModelInstanceDetails
 tModelInstanceDetails);
 public BindingTemplate(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public AccessPoint getAccessPoint();
 public String getBindingKey();
 public String getDefaultDescriptionString();
 public Vector getDescriptionVector();
 public HostingRedirector getHostingRedirector();
 public String getServiceKey();
 public TModelInstanceDetails getTModelInstanceDetails();
 public void saveToXML(Element parent);
 public void setAccessPoint(AccessPoint s);
 public void setBindingKey(String s);
 public void setDefaultDescriptionString(String s);
 public void setDescriptionVector(Vector s);
 public void setHostingRedirector(HostingRedirector s);
 public void setServiceKey(String s);
 public void setTModelInstanceDetails(TModelInstanceDetails s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.binding.BindingTemplate

Web Services Essentials

 218

com.ibm.uddi.datatype.binding.BindingTemplates

This class encapsulates multiple BindingTemplate objects.

Synopsis

public class BindingTemplates extends UDDIElement {
 // Constructors
 public BindingTemplates();
 public BindingTemplates(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getBindingTemplateVector();
 public void saveToXML(Element parent);
 public void setBindingTemplateVector(Vector s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.binding.BindingTemplates

Web Services Essentials

 219

com.ibm.uddi.datatype.binding.HostingRedirector

This class encapsulates information for a UDDI hostingRedirector record.

Synopsis

public class HostingRedirector extends UDDIElement {
 // Constructors
 public HostingRedirector();
 public HostingRedirector(String bindingKey);
 public HostingRedirector(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getBindingKey();
 public void saveToXML(Element parent);
 public void setBindingKey(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.binding.HostingRedirector

Web Services Essentials

 220

com.ibm.uddi.datatype.binding.InstanceDetails

This class encapsulates information for the instance details of a bindingTemplate record.

Synopsis

public class InstanceDetails extends UDDIElement {
 // Constructors
 public InstanceDetails();
 public InstanceDetails(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getDefaultDescriptionString();
 public Vector getDescriptionVector();
 public InstanceParms getInstanceParms();
 public OverviewDoc getOverviewDoc();
 public void saveToXML(Element parent);
 public void setDefaultDescriptionString(String s);
 public void setDescriptionVector(Vector s);
 public void setInstanceParms(InstanceParms s);
 public void setOverviewDoc(OverviewDoc s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.binding.InstanceDetails

Web Services Essentials

 221

com.ibm.uddi.datatype.binding.InstanceParms

This class encapsulates information for the settings file or the instance parameters of a
bindingTemplate record.

Synopsis

public class InstanceParms extends UDDIElement {
 // Constructors
 public InstanceParms();
 public InstanceParms(String value);
 public InstanceParms(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public void saveToXML(Element parent);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.binding.InstanceParms

Web Services Essentials

 222

com.ibm.uddi.datatype.binding.TModelInstanceDetails

This class encapsulates multiple TModelInstanceInfo objects.

Synopsis

public class TModelInstanceDetails extends UDDIElement {
 // Constructors
 public TModelInstanceDetails();
 public TModelInstanceDetails(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getTModelInstanceInfoVector();
 public void saveToXML(Element parent);
 public void setTModelInstanceInfoVector(Vector s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.binding.TModelInstanceDetails

Web Services Essentials

 223

com.ibm.uddi.datatype.binding.TModelInstanceInfo

This class encapsulates information for the instance details of a UDDI tModel record.

Synopsis

public class TModelInstanceInfo extends UDDIElement {
 // Constructors
 public TModelInstanceInfo();
 public TModelInstanceInfo(String tModelKey);
 public TModelInstanceInfo(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getDefaultDescriptionString();
 public Vector getDescriptionVector();
 public InstanceDetails getInstanceDetails();
 public String getTModelKey();
 public void saveToXML(Element parent);
 public void setDefaultDescriptionString(String s);
 public void setDescriptionVector(Vector s);
 public void setInstanceDetails(InstanceDetails s);
 public void setTModelKey(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.binding.TModelInstanceInfo

Web Services Essentials

 224

9.4.5 The com.ibm.uddi.datatype.business Package

com.ibm.uddi.datatype.business.Address

This class encapsulates information about a business address. Refer also to the
com.ibm.uddi.datatype.business.AddressLine class, which is discussed in the following
section.

Synopsis

public class Address extends UDDIElement {
 // Constructors
 public Address();
 public Address(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getAddressLineStrings();
 public Vector getAddressLineVector();
 public String getSortCode();
 public String getUseType();
 public void saveToXML(Element parent);
 public void setAddressLineStrings(Vector s);
 public void setAddressLineVector(Vector s);
 public void setSortCode(String s);
 public void setUseType(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.business.Address

Web Services Essentials

 225

com.ibm.uddi.datatype.business.AddressLine

This class encapsulates a single line within a business address.

Synopsis

public class AddressLine extends UDDIElement {
 // Constructors
 public AddressLine();
 public AddressLine(String value);
 public AddressLine(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public void saveToXML(Element parent);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.business.AddressLine

Web Services Essentials

 226

com.ibm.uddi.datatype.business.BusinessEntity

This class encapsulates all information for a UDDI businessEntity record. This includes
the business name, description, contacts, businessKey , and any business identifiers or
business taxonomy categorizations.

Synopsis

public class BusinessEntity extends UDDIElement {
 // Constructors
 public BusinessEntity();
 public BusinessEntity(String businessKey, String name);
 public BusinessEntity(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getAuthorizedName();
 public String getBusinessKey();
 public BusinessServices getBusinessServices();
 public CategoryBag getCategoryBag();
 public Contacts getContacts();
 public String getDefaultDescriptionString();
 public Vector getDescriptionVector();
 public DiscoveryURLs getDiscoveryURLs();
 public IdentifierBag getIdentifierBag();
 public Name getName();
 public String getNameString();
 public String getOperator();
 public void saveToXML(Element parent);
 public void setAuthorizedName(String s);
 public void setBusinessKey(String s);
 public void setBusinessServices(BusinessServices s);
 public void setCategoryBag(CategoryBag s);
 public void setContacts(Contacts s);
 public void setDefaultDescriptionString(String s);
 public void setDescriptionVector(Vector s);
 public void setDiscoveryURLs(DiscoveryURLs s);
 public void setIdentifierBag(IdentifierBag s);
 public void setName(Name s);
 public void setName(String s);
 public void setOperator(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.business.BusinessEntity

Web Services Essentials

 227

com.ibm.uddi.datatype.business.Contact

This class encapsulates information about a business contact. This includes the person's
name, one or more business addresses, email addresses, and telephone numbers.

Synopsis

public class Contact extends UDDIElement {
 // Constructors
 public Contact();
 public Contact(String personName);
 public Contact(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getAddressVector();
 public String getDefaultDescriptionString();
 public Vector getDescriptionVector();
 public Vector getEmailVector();
 public PersonName getPersonName();
 public String getPersonNameString();
 public Vector getPhoneVector();
 public String getUseType();
 public void saveToXML(Element parent);
 public void setAddressVector(Vector s);
 public void setDefaultDescriptionString(String s);
 public void setDescriptionVector(Vector s);
 public void setEmailVector(Vector s);
 public void setPersonName(PersonName s);
 public void setPersonName(String s);
 public void setPhoneVector(Vector s);
 public void setUseType(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.business.Contact

Web Services Essentials

 228

com.ibm.uddi.datatype.business.Contacts

This class encapsulates multiple Contact objects.

Synopsis

public class Contacts extends UDDIElement {
 // Constructors
 public Contacts();
 public Contacts(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getContactVector();
 public void saveToXML(Element parent);
 public void setContactVector(Vector s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.business.Contacts

Web Services Essentials

 229

com.ibm.uddi.datatype.business.Email

This class encapsulates a single email address.

Synopsis

public class Email extends UDDIElement {
 // Constructors
 public Email();
 public Email(String value);
 public Email(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public String getUseType();
 public void saveToXML(Element parent);
 public void setText(String s);
 public void setUseType(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.business.Email

Web Services Essentials

 230

com.ibm.uddi.datatype.business.PersonName

This class encapsulates a single person's name.

Synopsis

public class PersonName extends UDDIElement {
 // Constructors
 public PersonName();
 public PersonName(String value);
 public PersonName(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public void saveToXML(Element parent);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.business.PersonName

Web Services Essentials

 231

com.ibm.uddi.datatype.business.Phone

This class encapsulates a single telephone number.

Synopsis

public class Phone extends UDDIElement {
 // Constructors
 public Phone();
 public Phone(String value);
 public Phone(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public String getUseType();
 public void saveToXML(Element parent);
 public void setText(String s);
 public void setUseType(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.business.Phone

Web Services Essentials

 232

9.4.6 The com.ibm.uddi.datatype.service Package

com.ibm.uddi.datatype.service.BusinessService

This class encapsulates all information for a UDDI businessService record.

Synopsis

public class BusinessService extends UDDIElement {
 // Constructors
 public BusinessService();
 public BusinessService(String serviceKey, String name,
 BindingTemplates bindingTemplates);
 public BusinessService(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public BindingTemplates getBindingTemplates();
 public String getBusinessKey();
 public CategoryBag getCategoryBag();
 public String getDefaultDescriptionString();
 public Vector getDescriptionVector();
 public Name getName();
 public String getNameString();
 public String getServiceKey();
 public void saveToXML(Element parent);
 public void setBindingTemplates(BindingTemplates s);
 public void setBusinessKey(String s);
 public void setCategoryBag(CategoryBag s);
 public void setDefaultDescriptionString(String s);
 public void setDescriptionVector(Vector s);
 public void setName(Name s);
 public void setName(String s);
 public void setServiceKey(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.service.BusinessService

Web Services Essentials

 233

com.ibm.uddi.datatype.service.BusinessServices

This class encapsulates multiple BusinessService objects.

Synopsis

public class BusinessServices extends UDDIElement {
 // Constructors
 public BusinessServices();
 public BusinessServices(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getBusinessServiceVector();
 public void saveToXML(Element parent);
 public void setBusinessServiceVector(Vector s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.service.BusinessServices

Web Services Essentials

 234

9.4.7 The com.ibm.uddi.datatype.tmodel Package

com.ibm.uddi.datatype.tmodel.TModel

This class encapsulates all information for a UDDI tModel record.

Synopsis

public class TModel extends UDDIElement {
 // Constructors
 public TModel();
 public TModel(String tModelKey, String name);
 public TModel(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String NAICS_TMODEL_KEY;
 public static final String UDDI_TAG;
 public static final String UNSPSC_TMODEL_KEY;
 // Public Methods
 public String getAuthorizedName();
 public CategoryBag getCategoryBag();
 public String getDefaultDescriptionString();
 public Vector getDescriptionVector();
 public IdentifierBag getIdentifierBag();
 public Name getName();
 public String getNameString();
 public String getOperator();
 public OverviewDoc getOverviewDoc();
 public String getTModelKey();
 public void saveToXML(Element parent);
 public void setAuthorizedName(String s);
 public void setCategoryBag(CategoryBag s);
 public void setDefaultDescriptionString(String s);
 public void setDescriptionVector(Vector s);
 public void setIdentifierBag(IdentifierBag s);
 public void setName(Name s);
 public void setName(String s);
 public void setOperator(String s);
 public void setOverviewDoc(OverviewDoc s);
 public void setTModelKey(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.datatype.tmodel.TModel

Web Services Essentials

 235

9.4.8 The com.ibm.uddi.response Package

com.ibm.uddi.response.AuthToken

This class encapsulates the UDDI operator response for a get_authToken() query. Use the
getAuthInfoString() method to retrieve the actual authentication token value.

Synopsis

public class AuthToken extends UDDIElement {
 // Constructors
 public AuthToken();
 public AuthToken(String operator, String authInfo);
 public AuthToken(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public AuthInfo getAuthInfo();
 public String getAuthInfoString();
 public String getOperator();
 public void saveToXML(Element parent);
 public void setAuthInfo(AuthInfo s);
 public void setAuthInfo(String s);
 public void setOperator(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement --> com.ibm.uddi.response.AuthToken

Web Services Essentials

 236

com.ibm.uddi.response.BindingDetail

This class encapsulates the UDDI operator response for a get_bindingDetail() query, a
find_binding() query, or a save_binding() publishing request. Use the
getBindingTemplateVector() method to extract a Vector of BindingTemplate objects.

Synopsis

public class BindingDetail extends UDDIElement {
 // Constructors
 public BindingDetail();
 public BindingDetail(String operator);
 public BindingDetail(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getBindingTemplateVector();
 public String getOperator();
 public String getTruncated();
 public boolean getTruncatedBoolean();
 public void saveToXML(Element parent);
 public void setBindingTemplateVector(Vector s);
 public void setOperator(String s);
 public void setTruncated(boolean s);
 public void setTruncated(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.BindingDetail

Web Services Essentials

 237

com.ibm.uddi.response.BusinessDetail

This class encapsulates the UDDI operator response for a get_businessDetail() query or a
save_business() publishing request. Use the getBusinessEntityVector() method to
extract a Vector of BusinessEntity objects.

Synopsis

public class BusinessDetail extends UDDIElement {
 // Constructors
 public BusinessDetail();
 public BusinessDetail(String operator);
 public BusinessDetail(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getBusinessEntityVector();
 public String getOperator();
 public String getTruncated();
 public boolean getTruncatedBoolean();
 public void saveToXML(Element parent);
 public void setBusinessEntityVector(Vector s);
 public void setOperator(String s);
 public void setTruncated(boolean s);
 public void setTruncated(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.BusinessDetail

Web Services Essentials

 238

com.ibm.uddi.response.BusinessDetailExt

This class encapsulates the UDDI operator response for a get_businessDetailExt()
query. Use the getBusinessEntityExtVector() method to extract a Vector of
BusinessEntityExt objects.

Synopsis

public class BusinessDetailExt extends UDDIElement {
 // Constructors
 public BusinessDetailExt();
 public BusinessDetailExt(String operator, Vector businessEntityExt);
 public BusinessDetailExt(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getBusinessEntityExtVector();
 public String getOperator();
 public String getTruncated();
 public boolean getTruncatedBoolean();
 public void saveToXML(Element parent);
 public void setBusinessEntityExtVector(Vector s);
 public void setOperator(String s);
 public void setTruncated(boolean s);
 public void setTruncated(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.BusinessDetailExt

Web Services Essentials

 239

com.ibm.uddi.response.BusinessEntityExt

This class encapsulates information for a UDDI businessEntityExt record.

Synopsis

public class BusinessEntityExt extends UDDIElement {
 // Constructors
 public BusinessEntityExt();
 public BusinessEntityExt(BusinessEntity businessEntity);
 public BusinessEntityExt(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public BusinessEntity getBusinessEntity();
 public void saveToXML(Element parent);
 public void setBusinessEntity(BusinessEntity s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.BusinessEntityExt

Web Services Essentials

 240

com.ibm.uddi.response.BusinessInfo

This class encapsulates brief information for a UDDI businessEntity record. This
includes the businessKey , business name, and description. Use getServiceInfos() to
retrieve a list of services offered by the business.

Synopsis

public class BusinessInfo extends UDDIElement {
 // Constructors
 public BusinessInfo();
 public BusinessInfo(String businessKey, String name, ServiceInfos
 serviceInfos);
 public BusinessInfo(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getBusinessKey();
 public String getDefaultDescriptionString();
 public Vector getDescriptionVector();
 public Name getName();
 public String getNameString();
 public ServiceInfos getServiceInfos();
 public void saveToXML(Element parent);
 public void setBusinessKey(String s);
 public void setDefaultDescriptionString(String s);
 public void setDescriptionVector(Vector s);
 public void setName(Name s);
 public void setName(String s);
 public void setServiceInfos(ServiceInfos s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.BusinessInfo

Web Services Essentials

 241

com.ibm.uddi.response.BusinessInfos

This class encapsulates multiple BusinessInfo objects. Use the getBusinessInfoVector()
method to retrieve a Vector of BusinessInfo objects.

Synopsis

public class BusinessInfos extends UDDIElement {
 // Constructors
 public BusinessInfos();
 public BusinessInfos(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getBusinessInfoVector();
 public void saveToXML(Element parent);
 public void setBusinessInfoVector(Vector s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.BusinessInfos

Web Services Essentials

 242

com.ibm.uddi.response.BusinessList

This class encapsulates the UDDI operator response for a find_business() query. Use the
getBusinessInfos() method to retrieve a BusinessInfo object.

Synopsis

public class BusinessList extends UDDIElement {
 // Constructors
 public BusinessList();
 public BusinessList(String operator, BusinessInfos businessInfos);
 public BusinessList(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public BusinessInfos getBusinessInfos();
 public String getOperator();
 public String getTruncated();
 public boolean getTruncatedBoolean();
 public void saveToXML(Element parent);
 public void setBusinessInfos(BusinessInfos s);
 public void setOperator(String s);
 public void setTruncated(boolean s);
 public void setTruncated(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.BusinessList

Web Services Essentials

 243

com.ibm.uddi.response.DispositionReport

This class encapsulates a UDDI disposition report. Depending on the API call, the
DispositionReport may contain error information or a success flag. For example, a call to
the get_businessDetail() query that fails will trigger a UDDIException with an embedded
DispositionReport object. A call to delete_business() will return a DispositionReport
object directly; if the deletion was successful, the success flag will be set to true. Use
getErrCode() to retrieve the UDDI error code (e.g., E_invalidKeyPassed , E_fatalError);
use getErrno() to retrieve the UDDI error code number (e.g., 10210 , 10500); or use
getErroInfoText() to retrieve a more complete description of the error. Use the success()
method to retrieve the success flag. Use getGeneric() to retrieve the UDDI version
number of the UDDI operator site.

Synopsis

public class DispositionReport extends UDDIElement {
 // Constructors
 public DispositionReport(Element el) throws UDDIException;
 // Field Summary
 public static final String E_accountLimitExceeded;
 public static final String E_authTokenExpired;
 public static final String E_authTokenRequired;
 public static final String E_categorizationNotAllowed;
 public static final String E_invalidCategory;
 public static final String E_invalidKeyPassed;
 public static final String E_invalidURLPassed;
 public static final String E_keyRetired;
 public static final String E_operatorMismatch;
 public static final String E_userMismatch;
 public static String UDDI_TAG;
 // Public Methods
 public String getErrCode();
 public String getErrInfoText();
 public int getErrno();
 public String getGeneric();
 public String getOperator();
 public boolean isValidElement(Element el);
 public void saveToXML(Element el);
 public boolean success();
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.DispositionReport

Web Services Essentials

 244

com.ibm.uddi.response.ErrInfo

This class encapsulates information regarding a UDDI disposition report. The class is not
typically used directly by UDDI client code.

Synopsis

public class ErrInfo extends UDDIElement {
 // Constructors
 public ErrInfo();
 public ErrInfo(String value, String errCode);
 public ErrInfo(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getErrCode();
 public String getText();
 public void saveToXML(Element parent);
 public void setErrCode(String s);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement --> com.ibm.uddi.response.ErrInfo

Web Services Essentials

 245

com.ibm.uddi.response.RegisteredInfo

This class encapsulates the UDDI operator response for a get_registeredInfo() query.
The object includes a list of all businessEntity keys and tModel keys that are controlled by
the specified authentication token.

Synopsis

public class RegisteredInfo extends UDDIElement {
 // Constructors
 public RegisteredInfo();
 public RegisteredInfo(String operator, BusinessInfos businessInfos,
 TModelInfos tModelInfos);
 public RegisteredInfo(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public BusinessInfos getBusinessInfos();
 public String getOperator();
 public TModelInfos getTModelInfos();
 public String getTruncated();
 public boolean getTruncatedBoolean();
 public void saveToXML(Element parent);
 public void setBusinessInfos(BusinessInfos s);
 public void setOperator(String s);
 public void setTModelInfos(TModelInfos s);
 public void setTruncated(boolean s);
 public void setTruncated(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.RegisteredInfo

Web Services Essentials

 246

com.ibm.uddi.response.Result

This class encapsulates information regarding a UDDI disposition report. The class is not
typically used directly by UDDI client code.

Synopsis

public class Result extends UDDIElement {
 // Constructors
 public Result();
 public Result(String errno);
 public Result(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public ErrInfo getErrInfo();
 public String getErrno();
 public String getKeyType();
 public void saveToXML(Element parent);
 public void setErrInfo(ErrInfo s);
 public void setErrno(String s);
 public void setKeyType(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement --> com.ibm.uddi.response.Result

Web Services Essentials

 247

com.ibm.uddi.response.ServiceDetail

This class encapsulates the UDDI operator response for a get_serviceDetail() query or a
save_service() publishing request. Use the getBusinessServiceVector() method to
retrieve a Vector of BusinessService objects.

Synopsis

public class ServiceDetail extends UDDIElement {
 // Constructors
 public ServiceDetail();
 public ServiceDetail(String operator);
 public ServiceDetail(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getBusinessServiceVector();
 public String getOperator();
 public String getTruncated();
 public boolean getTruncatedBoolean();
 public void saveToXML(Element parent);
 public void setBusinessServiceVector(Vector s);
 public void setOperator(String s);
 public void setTruncated(boolean s);
 public void setTruncated(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.ServiceDetail

Web Services Essentials

 248

com.ibm.uddi.response.ServiceInfo

This class encapsulates brief information for a UDDI businessService record. This
information includes service name, serviceKey , and associated businessKeys.

Synopsis

public class ServiceInfo extends UDDIElement {
 // Constructors
 public ServiceInfo();
 public ServiceInfo(String serviceKey, String name);
 public ServiceInfo(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getBusinessKey();
 public Name getName();
 public String getNameString();
 public String getServiceKey();
 public void saveToXML(Element parent);
 public void setBusinessKey(String s);
 public void setName(Name s);
 public void setName(String s);
 public void setServiceKey(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.ServiceInfo

Web Services Essentials

 249

com.ibm.uddi.response.ServiceInfos

This class encapsulates multiple ServiceInfo objects. Use the getServiceInfoVector()
method to retrieve a Vector of ServiceInfo objects.

Synopsis

public class ServiceInfos extends UDDIElement {
 // Constructors
 public ServiceInfos();
 public ServiceInfos(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getServiceInfoVector();
 public void saveToXML(Element parent);
 public void setServiceInfoVector(Vector s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.ServiceInfos

Web Services Essentials

 250

com.ibm.uddi.response.ServiceList

This class encapsulates the UDDI operator response for a find_service() query. Use the
getServiceInfos() method to retrieve a ServiceInfos object.

Synopsis

public class ServiceList extends UDDIElement {
 // Constructors
 public ServiceList();
 public ServiceList(String operator, ServiceInfos serviceInfos);
 public ServiceList(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getOperator();
 public ServiceInfos getServiceInfos();
 public String getTruncated();
 public boolean getTruncatedBoolean();
 public void saveToXML(Element parent);
 public void setOperator(String s);
 public void setServiceInfos(ServiceInfos s);
 public void setTruncated(boolean s);
 public void setTruncated(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.ServiceList

Web Services Essentials

 251

com.ibm.uddi.response.TModelDetail

This class encapsulates the UDDI operator response for a get_tModelDetail() query or a
save_tModel() publishing request. Use the getTModelVector() method to retrieve a
Vector of TModel objects.

Synopsis

public class TModelDetail extends UDDIElement {
 // Constructors
 public TModelDetail();
 public TModelDetail(String operator, Vector tModel);
 public TModelDetail(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getOperator();
 public Vector getTModelVector();
 public String getTruncated();
 public boolean getTruncatedBoolean();
 public void saveToXML(Element parent);
 public void setOperator(String s);
 public void setTModelVector(Vector s);
 public void setTruncated(boolean s);
 public void setTruncated(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.TModelDetail

Web Services Essentials

 252

com.ibm.uddi.response.TModelInfo

This class encapsulates brief information for a UDDI tModel record. The information
includes the tModel name and the tModelKey.

Synopsis

public class TModelInfo extends UDDIElement {
 // Constructors
 public TModelInfo();
 public TModelInfo(String tModelKey, String name);
 public TModelInfo(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Name getName();
 public String getNameString();
 public String getTModelKey();
 public void saveToXML(Element parent);
 public void setName(Name s);
 public void setName(String s);
 public void setTModelKey(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.TModelInfo

Web Services Essentials

 253

com.ibm.uddi.response.TModelInfos

This class encapsulates multiple TModelInfo objects. Use the getTModelInfoVector()
method to retrieve a Vector of TModelInfo objects.

Synopsis

public class TModelInfos extends UDDIElement {
 // Constructors
 public TModelInfos();
 public TModelInfos(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getTModelInfoVector();
 public void saveToXML(Element parent);
 public void setTModelInfoVector(Vector s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.TModelInfos

Web Services Essentials

 254

com.ibm.uddi.response.TModelList

This class encapsulates the UDDI operator response for a find_tModel() query. Use the
getTModelInfos() method to retrieve a TModelInfo object.

Synopsis

public class TModelList extends UDDIElement {
 // Constructors
 public TModelList();
 public TModelList(String operator, TModelInfos tModelInfos);
 public TModelList(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getOperator();
 public TModelInfos getTModelInfos();
 public String getTruncated();
 public boolean getTruncatedBoolean();
 public void saveToXML(Element parent);
 public void setOperator(String s);
 public void setTModelInfos(TModelInfos s);
 public void setTruncated(boolean s);
 public void setTruncated(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.response.TModelList

Web Services Essentials

 255

9.4.9 The com.ibm.uddi.util Package

com.ibm.uddi.util.AuthInfo

This class encapsulates the UDDI authentication token. Use the getText() method to
retrieve the actual authentication token value.

Synopsis

public class AuthInfo extends UDDIElement {
 // Constructors
 public AuthInfo();
 public AuthInfo(String value);
 public AuthInfo(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public void saveToXML(Element parent);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement --> com.ibm.uddi.util.AuthInfo

Web Services Essentials

 256

com.ibm.uddi.util.BindingKey

This class encapsulates information regarding a UDDI BindingKey , but is not typically
used by client code directly.

Synopsis

public class BindingKey extends UDDIElement {
 // Constructors
 public BindingKey();
 public BindingKey(String value);
 public BindingKey(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public void saveToXML(Element parent);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement --> com.ibm.uddi.util.BindingKey

Web Services Essentials

 257

com.ibm.uddi.util.BusinessKey

This class encapsulates information regarding a UDDI BusinessKey , but is not typically
used by client code directly.

Synopsis

public class BusinessKey extends UDDIElement {
 // Constructors
 public BusinessKey();
 public BusinessKey(String value);
 public BusinessKey(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public void saveToXML(Element parent);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement --> com.ibm.uddi.util.BusinessKey

Web Services Essentials

 258

com.ibm.uddi.util.CategoryBag

This class encapsulates multiple KeyedReference objects, each of which indicates a UDDI
categorization. For example, a CategoryBag object may contain one or more NAICS
codes. The class is usually passed as an argument to any of the find_xxx() functions.

Synopsis

public class CategoryBag extends UDDIElement {
 // Constructors
 public CategoryBag();
 public CategoryBag(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getKeyedReferenceVector();
 public void saveToXML(Element parent);
 public void setKeyedReferenceVector(Vector s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement --> com.ibm.uddi.util.CategoryBag

Web Services Essentials

 259

com.ibm.uddi.util.DiscoveryURL

This class encapsulates the information for a UDDI DiscoveryURL.

Synopsis

public class DiscoveryURL extends UDDIElement {
 // Constructors
 public DiscoveryURL();
 public DiscoveryURL(String value, String useType);
 public DiscoveryURL(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public String getUseType();
 public void saveToXML(Element parent);
 public void setText(String s);
 public void setUseType(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement --> com.ibm.uddi.util.DiscoveryURL

Web Services Essentials

 260

com.ibm.uddi.util.DiscoveryURLs

This class encapsulates multiple DiscoveryURL objects.

Synopsis

public class DiscoveryURLs extends UDDIElement {
 // Constructors
 public DiscoveryURLs();
 public DiscoveryURLs(Vector discoveryURL);
 public DiscoveryURLs(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getDiscoveryURLVector();
 public void saveToXML(Element parent);
 public void setDiscoveryURLVector(Vector s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement --> com.ibm.uddi.util.DiscoveryURLs

Web Services Essentials

 261

com.ibm.uddi.util.FindQualifier

This class encapsulates a single UDDI FindQualifier , used to specify more precise search
criteria. For example, a FindQualifier set to exactNameMatch mandates that only exact
name matches be returned from a find_xxx() function call.

Synopsis

public class FindQualifier extends UDDIElement {
 // Constructors
 public FindQualifier();
 public FindQualifier(String value);
 public FindQualifier(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String caseSensitiveMatch;
 public static final String exactNameMatch;
 public static final String sortByDateAsc;
 public static final String sortByDateDesc;
 public static final String sortByNameAsc;
 public static final String sortByNameDesc;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public void saveToXML(Element parent);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement --> com.ibm.uddi.util.FindQualifier

Web Services Essentials

 262

com.ibm.uddi.util.FindQualifiers

This class encapsulates multiple FindQualifier objects. The class is usually passed as an
argument to any of the find_xxx() function calls.

Synopsis

public class FindQualifiers extends UDDIElement {
 // Constructors
 public FindQualifiers();
 public FindQualifiers(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getFindQualifierVector();
 public void saveToXML(Element parent);
 public void setFindQualifierVector(Vector s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.util.FindQualifiers

Web Services Essentials

 263

com.ibm.uddi.util.IdentifierBag

This class encapsulates multiple KeyedReference objects, each of which indicates a UDDI
identifier. For example, an IdentifierBag object may contain one or more Dun &
Bradstreet D-U-N-S® Numbers. The class is usually passed as an argument to any of the
find_xxx() function calls.

Synopsis

public class IdentifierBag extends UDDIElement {
 // Constructors
 public IdentifierBag();
 public IdentifierBag(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getKeyedReferenceVector();
 public void saveToXML(Element parent);
 public void setKeyedReferenceVector(Vector s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement --> com.ibm.uddi.util.IdentifierBag

Web Services Essentials

 264

com.ibm.uddi.util.KeyedReference

This class encapsulates a single UDDI keyedReference record. See CategoryBag and
IdentifierBag for additional details.

Synopsis

public class KeyedReference extends UDDIElement {
 // Constructors
 public KeyedReference();
 public KeyedReference(String keyName, String keyValue);
 public KeyedReference(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getKeyName();
 public String getKeyValue();
 public String getTModelKey();
 public void saveToXML(Element parent);
 public void setKeyName(String s);
 public void setKeyValue(String s);
 public void setTModelKey(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.util.KeyedReference

Web Services Essentials

 265

com.ibm.uddi.util.KeyValue

This class encapsulates information regarding a UDDI KeyValue , but is not typically used
by client code directly.

Synopsis

public class KeyValue extends UDDIElement {
 // Constructors
 public KeyValue();
 public KeyValue(String value);
 public KeyValue(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public void saveToXML(Element parent);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.util.KeyValue

Web Services Essentials

 266

com.ibm.uddi.util.ServiceKey

This class encapsulates information regarding a UDDI ServiceKey , but is not typically
used by client code directly.

Synopsis

public class ServiceKey extends UDDIElement {
 // Constructors
 public ServiceKey();
 public ServiceKey(String value);
 public ServiceKey(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public void saveToXML(Element parent);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement --> com.ibm.uddi.util.ServiceKey

Web Services Essentials

 267

com.ibm.uddi.util.TModelBag

This class encapsulates multiple TModelKey objects.

Synopsis

public class TModelBag extends UDDIElement {
 // Constructors
 public TModelBag();
 public TModelBag(Vector tModelKeyStrings);
 public TModelBag(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public Vector getTModelKeyStrings();
 public Vector getTModelKeyVector();
 public void saveToXML(Element parent);
 public void setTModelKeyStrings(Vector s);
 public void setTModelKeyVector(Vector s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement --> com.ibm.uddi.util.TModelBag

Web Services Essentials

 268

com.ibm.uddi.util.TModelKey

This class encapsulates a single UDDI tModelKey.

Synopsis

public class TModelKey extends UDDIElement {
 // Constructors
 public TModelKey();
 public TModelKey(String value);
 public TModelKey(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public void saveToXML(Element parent);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement --> com.ibm.uddi.util.TModelKey

Web Services Essentials

 269

com.ibm.uddi.util.UploadRegister

This class encapsulates a single UDDI UploadRegister. UploadRegisters indicate the
URL for a complete XML document and can be passed to several of the save_xxx()
functions. For example, an UploadRegister may indicate the URL for a UDDI
businessEntity record; to publish the record, use the save_business(String authInfo,
UploadRegister[] uploadRegisters) method. Note that not all UDDI operator sites
support the UploadRegister facility.

Synopsis

public class UploadRegister extends UDDIElement {
 // Constructors
 public UploadRegister();
 public UploadRegister(String value);
 public UploadRegister(Element base) throws UDDIException;
 // Field Summary
 protected Element base;
 public static final String UDDI_TAG;
 // Public Methods
 public String getText();
 public void saveToXML(Element parent);
 public void setText(String s);
}

Hierarchy

java.lang.Object --> com.ibm.uddi.UDDIElement -->
com.ibm.uddi.util.UploadRegister

Web Services Essentials

 270

Glossary

A

Apache SOAP

Open source Java implementation of the SOAP protocol. Hosted by the Apache
Software Foundation.

B

BEEP

Blocks Extensible Exchange Protocol. Developed by Marshall Rose, and now an
official IETF specification, BEEP is a framework of best practices for building new
application protocols. BEEP is layered directly on TCP and includes a number of
built-in features, such as an initial handshake protocol, authentication, security, and
error handling. Currently, BEEP is not widely deployed, but it has the potential to
replace HTTP as a viable protocol for remote procedure calls. See also HTTP.

binding element

The WSDL binding element specifies the implementation details for the XML
messaging layer of a web service. WSDL includes built-in binding extensions for
defining SOAP services.

bindingTemplate

A UDDI XML element that includes information about how and where to access a
specific web service. See also businessService and tModel.

businessEntity

A UDDI XML element that includes information about a registered business, such as
business name, description, address, and contact information.

Web Services Essentials

 271

businessService

A UDDI XML element that includes information about a registered web service or a
group of related web services. This includes name, description, and an optional list
of bindingTemplates. See also bindingTemplate.

D

deployment descriptor file

An XML file used by Apache SOAP to define and deploy a specific SOAP service.
It contains the service URN, a list of service methods, application scope, Java
provider, and Java-to-XML type mappings.

deserialize

A generic technique for receiving data over a network connection and reconstructing
the specified variable or object. For example, a Java SOAP client might receive
XML messages over a network connection and use the messages to reconstruct the
correct Java objects. See also serialize , XML data type , and type mapping registry.

disposition report

A UDDI XML element that indicates the success or failure of a UDDI operation. In
the event of failure, the disposition report will include a human-readable explanation
of the error.

DNS

Domain Name System. A distributed system for translating domain names to IP
addresses. See also IP address.

G

GLUE

Web services platform created by The Mind Electric, Inc. Includes support for
SOAP, WSDL, and UDDI.

Web Services Essentials

 272

green pages

A generic category of data used within UDDI to specify technical information about
a web service. Generally, this includes a pointer to an external specification and an
address for invoking the web service. See also bindingTemplate and tModel.

H

HTTP

Hypertext Transfer Protocol. HTTP is the main protocol for exchanging data
between web browsers and web servers. HTTP was originally designed for remote
document retrieval, but is now used by SOAP and XML-RPC for remote procedure
calls. See also BEEP.

I

IETF

Internet Engineering Task Force. The IETF is the main standards body for Internet
protocols, including HTTP and BEEP.

IP

Internet Protocol. This is the main protocol used to route packets of data throughout
the Internet. See also TCP.

IP address

A unique 32-bit address that identifies a machine on the Internet.

ISO 3166

A standard taxonomy of country codes maintained by the International Organization
for Standardization (ISO). For example, China has the code CN, whereas the United
States has the code US. Using ISO 3166, companies registered with UDDI can
identify their geographic headquarters or their main geographic areas of business.
ISO 3166 is also used for top-level Internet domain country codes.

Web Services Essentials

 273

M

MIME

Multi-Purpose Internet Mail Extensions. MIME is a standard technique for
transmitting or attaching binary data, such as images, audio, and video.

mustUnderstand

A SOAP Header attribute, which indicates whether a specified header is optional or
mandatory. If set to true , the recipient must understand and process the Header
attribute. Otherwise, it must discard the message and return a Fault. See also SOAP
Header.

N

NAICS

North American Industry Classification System. NAICS provides a six- digit
industry code for more than 19,000 industries. Beginning in 1997, NAICS replaced
the previous Standard Industry Classification (SIC). NAICS is used within UDDI as
a standard taxonomy for classifying businesses and business services.

P

port

A logical connection place where TCP/IP servers listen for client requests. HTTP
uses port 80.

portType

The WSDL portType element combines multiple message elements to form a
complete one-way or roundtrip operation. For example, a portType can combine a
request message and a response message into a single request/response operation,
such as are commonly used in SOAP services.

Web Services Essentials

 274

R

remote procedure calls

A generic technique whereby one application can connect over a network to a second
application, invoke one of its functions, and receive the results of the call. Remote
procedure calls (RPCs) are used in many distributed application frameworks,
including CORBA, Distributed COM, Java RMI, SOAP, and XML-RPC.

rpcrouter

Apache SOAP servlet that receives SOAP requests and routes them to the
appropriate service classes for processing.

S

SAML

Security Assertion Markup Language. Developed by the Organization for the
Advancement of Structured Information Standards (OASIS), SAML facilitates the
exchange of authentication and authorization information between business partners.

Semantic Web

A term coined by Tim Berners-Lee, the original inventor of the World Wide Web.
Very broadly, the Semantic Web envisions a world in which applications can use and
understand the Web as easily as humans now browse the Web. Berners-Lee has
indicated that web services are an important actualization of his Semantic Web
vision.

serialize

A generic technique for transforming a variable or object into a standard format for
transmission across a network. For example, a Java SOAP client will serialize Java
objects to a standard XML format and then transmit the XML over the network. See
also deserialize , XML data type , and type mapping registry.

service description

Layer within the web service protocol stack that is responsible for describing the
public interface to a specific web service. See also WSDL.

Web Services Essentials

 275

service provider

Within the web service architecture, the service provider is any host that implements
a web service and makes it available on the Internet. Traditionally, this is the same as
a server in a client/server architecture.

service registry

Within the web service architecture, the service registry is a logically centralized
directory of services. Developers can connect to a service registry and publish new
services or find existing ones. See also UDDI.

service requestor

Within the web service architecture, the service requestor is any consumer of a web
service. The requestor utilizes an existing web service by opening a network
connection and sending an XML request. Traditionally, this is the same as a client in
a client/server architecture.

service type

See tModel .

SOAP

SOAP is an XML-based protocol for exchanging information between computers.
Although SOAP can be used in a variety of messaging systems and can be delivered
via a variety of transport protocols, the main focus of SOAP is remote procedure
calls (RPCs) transported via HTTP. Like XML-RPC, SOAP is platform-
independent. It therefore enables diverse applications to communicate with one
another over a network connection.

SOAP Body

The SOAP Body element encapsulates the main "payload" of the SOAP message.
The payload includes details regarding the remote procedure call, including the
method name to invoke, method parameters, or return values. The Body element can
also include an optional Fault element for specifying error conditions.

Web Services Essentials

 276

SOAP Envelope

The SOAP XML Envelope element encapsulates a single XML message being
transferred via SOAP. The Envelope specifies the SOAP version, and consists of one
optional SOAP Header and a required SOAP Body. See also SOAP Header and
SOAP Body.

SOAP Header

The optional SOAP Header element provides a flexible framework for specifying
additional application-level attributes for a specific SOAP message. The Header
framework can be used in a diverse set of applications, including user authentication,
transaction management, or payment authorization. See also SOAP Envelope and
mustUnderstand.

SOAP::Lite for Perl

The SOAP library for Perl. Includes support for SOAP, XML-RPC, WSDL, and
UDDI.

SOAPAction Header

The HTTP Header that can be used to indicate the intent of a SOAP message. Some
SOAP servers require that clients specify a full SOAPAction value, such as the
following: SOAPAction: "urn:xmethodsBabelFish#BabelFish". But other SOAP
servers, including Apache SOAP, only require that clients specify a blank
SOAPAction (e.g., SOAPAction: ""). The SOAPAction Header is required under
SOAP 1.1, but is optional under SOAP 1.2.

SOAP-DSIG

SOAP Security Extensions: Digital Signature. SOAP-DSIG uses public key
cryptography to enable digital signing of SOAP messages. This enables the client or
server to validate the identity of the other party. SOAP-DSIG has been submitted to
the W3C.

Web Services Essentials

 277

socket

A programming abstraction that facilitates network programming by insulating the
programmer from the details of the underlying network protocol.

T

targetNamespace

A convention of XML Schema that enables an XML document to refer to itself. Any
newly defined elements will belong to the specified targetNamespace. See also XML
Schema.

TCP

Transmission Control Protocol. TCP is primarily responsible for breaking messages
into individual IP packets and then reassembling those packets at the destination.
See also IP.

TcpTunnelGui

A tool bundled with Apache SOAP that enables you to easily intercept and view
SOAP requests and responses. A great tool for debugging SOAP applications.

tModel

Technical model. A UDDI XML element used to provide pointers to external
technical specifications. Also referred to as a service type.

type mapping registry

Within Apache SOAP, the type mapping registry maps XML elements to Java
classes and vice versa. By default, the registry is prepopulated with basic data types,
including strings, vectors, dates, and arrays. If you are passing new data types, you
need to explicitly register the new type and indicate which Java classes will be
responsible for serializing and deserializing your new type. See also serialize and
deserialize.

Web Services Essentials

 278

U

UDDI

Universal Description, Discovery, and Integration. UDDI currently represents the
discovery layer within the web service protocol stack. UDDI was originally created
by Microsoft, IBM, and Ariba, and represents a technical specification for publishing
and finding businesses and web services. See also UDDI cloud services.

UDDI Business Registry

See UDDI cloud services .

UDDI cloud services

Also known as the UDDI Business Registry, UDDI cloud services represent a fully
operational implementation of the UDDI specification. Launched in May 2001 by
Microsoft and IBM, UDDI cloud services now enable anyone to search existing
UDDI data or to publish new business and service data.

UDDI4J

An open source UDDI library developed by IBM.

UNSPSC

Universal Standard Products and Service Classification. UNSPSC provides standard
codes for classifying products and services. The standard was developed in 1998
and is currently maintained by the nonprofit Electronic Commerce Code
Management Association (ECCMA). UNSPSC provides coverage of 54 industries
and includes over 12,000 codes for products and services. UNSPSC is used within
UDDI as a standard taxonomy for classifying businesses and business services.

URN

Uniform Resource Name. A URN is a Uniform Resource Identifier (URI) that is
both persistent and location-independent. For example, urn:isbn:0596000588 refers
to the book XML in Nutshell (O'Reilly). URNs are frequently used to identify SOAP
services.

Web Services Essentials

 279

W

W3C

World Wide Web Consortium. The W3C is the main standards body for web
protocols and specifications, including HTML, XML, XML Schema, SOAP, and
XML Encryption. See also W3C XML Protocol Group.

W3C XML Protocol Group

Created in September 2000, the W3C XML Protocol Group aims to standardize web
service protocols. Its first goal is to create an official specification for SOAP.

W3C Web Services Activity

Created in January 2002, this Activity includes the W3C XML Protocol Working
Group, as well as groups for Architecture and Description.

web service

A web service is any service that is available over the Internet, uses a standardized
XML messaging system, and is not tied to any one operating system or programming
language. Although not required, web services should also be self-describing via a
common XML format and discoverable via a simple find mechanism.

web service protocol stack

An emerging stack of protocols used to create and describe web services. The
current web service protocol stack consists of four layers: service transport (HTTP,
FTP, BEEP, etc.), XML messaging (XML-RPC, SOAP), service description
(WSDL), and service discovery (UDDI).

white pages

A generic category of data used within UDDI to specify business information,
including business name, business description, and address. See also businessEntity.

Web Services Essentials

 280

WSDL

Web Services Description Language. WSDL currently represents the service
description layer within the web service protocol stack. WSDL is an XML grammar
for specifying a public interface for a web service. This public interface can include
information on all publicly available functions, data type information for all XML
messages, binding information about the specific transport protocol to be used, and
address information for locating the specified service. WSDL is not necessarily tied
to a specific XML messaging system, but it does include built-in extensions for
describing SOAP services.

WSIF

Web Services Invocation Framework. WSIF is a framework created by IBM that
enables a programmer to invoke a SOAP service without actually writing any SOAP-
specific code. It also enables automatic invocation of SOAP services, based on
WSDL files.

X

XKMS

XML Key Management Services is a proposed web service specification for
distributing and managing public keys and certificates. XKMS has been submitted
to the W3C.

XML

eXtensible Markup Language. An official recommendation of the W3C, XML
represents a flexible framework for organizing and sharing data. XML is used
heavily within the XML messaging, service description, and service discovery layers
of the web service protocol stack.

XML data type

Indicates the type of data that may be placed inside a particular XML element. XML
Schema includes built-in support for basic data types. including strings, integers,
floats, and doubles. See also XML Schema and type mapping registry.

Web Services Essentials

 281

XML Encryption Standard

A proposed W3C framework for encrypting/decrypting entire XML documents or
just portions of an XML document.

XML namespaces

Provides a standard mechanism for disambiguating XML elements and attributes that
have the same name. The SOAP specification makes heavy use of XML
namespaces.

XML Schema

A framework for defining rules for XML documents. XML Schema includes the
ability to specify data types for individual elements, a key ingredient for remote
procedure calls (RPCs).

XML-RPC

A protocol that uses XML messages to perform RPCs via HTTP. Like SOAP,
XML-RPC is platform-independent, and it therefore enables diverse applications to
communicate with each other over a network connection.

yellow pages

A generic category of data used within UDDI to classify companies or services
offered. Data may include industry, product, or geographic codes based on standard
taxonomies. See also ISO 3166, NAICS , tModel , and UNSPSC.

Web Services Essentials

 282

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Web Services Essentials is a spiny lobster (also known as a
rock lobster). There are about 45 species of spiny lobster worldwide, ranging in size from
2 to 26 pounds. Spiny lobsters have spine-studded shells and long antennae. However,
unlike American lobsters, they have no large front claws. Spiny lobsters also have larger
tails than American lobsters. They are colorfully marked with bright green, blue, and
yellow spots on an orange or brown shell. Spiny lobsters inhabit shallow-watered, rocky
environments in tropical and subtropical waters worldwide, as well as in cold waters of the
southern hemisphere. Spiny lobsters usually remain concealed in rock crevices during the
day and come out to feed at night. They eat a wide variety of foods, including shellfish,
crabs, small fish, sea urchins, and sometimes algae and seaweed. They reach sexual
maturity at 7 to 10 years and can live for over 30 years.

Although they are reclusive, spiny lobsters seem to be more social than American lobsters
and often share their dens in coral reefs. One of the stranger sights reported by fishermen
and divers is the so-called "March of the Spinys," which is a mass migration of hundreds
or even thousands of spiny lobsters that often takes place in October or November, usually
after a period of prolonged storminess. During this time, spiny lobsters swim in single-file
columns, moving from shallow to deeper waters. Although the lobsters are nocturnal
creatures, these marches sometimes occur in broad daylight. To date, there is no scientific
explanation for this phenomenon.

Claire Cloutier was the production editor and copyeditor for Web Services Essentials.
Rachel Wheeler was the proofreader. Sarah Sherman and Jeffrey Holcomb provided
quality control. Phil Dangler, Edie Shapiro, Sarah Sherman, and Derek Di Matteo
provided composition assistance. Nancy Crumpton wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Emma Colby produced the cover layout with QuarkXPress 4.1, using Adobe's
ITC Garamond font.

David Futato designed the interior layout. Mihaela Maier and Neil Walls converted the
files from Microsoft Word to FrameMaker 5.5.6, using tools created by Mike Sierra. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book
were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Rachel Wheeler.

	Cover
	Table of Contents
	Preface
	Audience
	Organization
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Part I: Introduction to Web Services
	1. Introduction
	1.1 Introduction to Web Services
	1.2 Web Service Architecture
	1.3 XML Messaging
	1.4 Service Description: WSDL
	1.5 Service Discovery: UDDI
	1.6 Service Transport
	1.7 Security Considerations
	1.8 All Together Now
	1.9 Standards and Coherence

	Part II: XML-RPC
	2. XML-RPC Essentials
	2.1 XML-RPC Overview
	2.2 Why XML-RPC?
	2.3 XML-RPC Technical Overview
	2.4 Developing with XML-RPC
	2.5 Beyond Simple Calls

	Part III: SOAP
	3. SOAP Essentials
	3.1 SOAP 101
	3.2 The SOAP Message
	3.3 SOAP Encoding
	3.4 SOAP via HTTP
	3.5 SOAP and the W3C
	3.6 SOAP Implementations

	4. Apache SOAP Quick Start
	4.1 Installing Apache SOAP
	4.2 Hello, SOAP!
	4.3 Deploying SOAP Services
	4.4 The TcpTunnelGui Tool
	4.5 Web Resources

	5. Programming Apache SOAP
	5.1 Working with Arrays
	5.2 Working with JavaBeans
	5.3 Working with Literal XML Documents
	5.4 Handling SOAP Faults
	5.5 Maintaining Session State

	Part IV: WSDL
	6. WSDL Essentials
	6.1 The WSDL Specification
	6.2 Basic WSDL Example: HelloService.wsdl
	6.3 WSDL Invocation Tools, Part I
	6.4 Basic WSDL Example: XMethods eBay Price Watcher Service
	6.5 WSDL Invocation Tools, Part II
	6.6 Automatically Generating WSDL Files
	6.7 XML Schema Data Typing

	Part V: UDDI
	7. UDDI Essentials
	7.1 Introduction to UDDI
	7.2 Why UDDI?
	7.3 UDDI Technical Overview
	7.4 UDDI Data Model
	7.5 Searching UDDI
	7.6 Publishing to UDDI
	7.7 UDDI Implementations
	7.8 Web Resources

	8. UDDI Inquiry API: Quick Reference
	8.1 The UDDI Inquiry API
	8.2 Find Qualifiers

	9. UDDI 4J
	9.1 Getting Started
	9.2 Finding and Retrieving UDDI Data
	9.3 Publishing UDDI Data
	9.4 UDDI4J Quick Reference API

	Glossary
	Colophon

