Lhistvilntted Appligtetions it XML-RFC,
SOAFAUDLY & WEL

Services

Essentials
O,R.E“-LY. Etbetny Creami

Web Services Essentials
Distributed Applicationswith XML-RPC, SOAP, UDDI & WSDL

Ethan Cerami
Publisher: O'Reilly
First Edition February 2002
ISBN: 0-596-00224-6, 304 pages
This concise book gives programmers both a concrete introduction and handy reference to
XML web services. It explains the foundations of this new breed of distributed services,
demonstrates quick ways to create services with open-source Java tools, and explores four
key emerging technologies: XML-RPC, SOAP, UDDI, and WSDL. If you want to break
through the Web Services hype and find useful information on these evolving
technologies, look no further.

Team[oOR]

Table of Contents

PIEIACE ...t be e ne e 1
AUGIBNCE ...ttt b et e s h e e bt e et e e s b b e e be e e b e e saeeebeesnne e e 1
(@072 2= 1 Lo o FOU USSP 2
Conventions Used iN ThiS BOOKcccuiiiiiiiiiiiesiie st 3
CommeENtS aNd QUESTIONSccveeeiciiieeeiieeeieeesee e s e e s stee e st ee e e sseeeessaeeesseeeessseeesssneesnneeens 3
ACKNOWIEAGMENTS. ... b e 4

Part I: Introduction t0 WED SErVICES.........ooiiiiieiiicee e 5

Chapter 1. INtrOQUCTIONcoieieiieeie et n e snn e niee s 6
1.1 Introduction t0 WED SEIVICES.......cc.uiiiieiiieiie ettt 6
1.2 WeED Service ArChITECTUN......coieiiiieee et 10
1.3 XML MESSAGING .. tteeuteeeutieeiteesteeeteesise e st et e st e e sbe e beessb e e bt e esbeessneenbeeenbeessneeseeennes 15
1.4 Service DesCription: WSDLc.eiiiieiiieiie ettt 17
1.5 Service DISCOVENY: UDDIcooiiiiiiiiieiee et 18
1.6 SEIVICE TIANSPOM. ...ttt ettt sttt ettt sttt e et e e an e e nbe e e b e e ssneeneeennes 19
1.7 SECUrity CONSIAEIELIONSeeeieiiiieeie ettt ettt n e seeeenns 21
1.8 All TOQEINEr NOW ...ttt et e e enns 22
1.9 Standards and CONEIENCE........cceiiiieieie e 24

Part [1: XIML-RPC ...ttt sttt sae e eneeenes 25

Chapter 2. XML-RPC ESSENTIAIS.....ccicuiiiiiiiieiieeiee e 26
2L XML-RPC OVEIVIBW ...ttt ettt sttt sttt sneesneeeneesnne e 26
2.2 WhHY XIML=RPC?......eiiieee ettt st enes 26
2.3 XML-RPC TeChNICal OVEIVIEWeeeiiiiiiesiieesiie ettt 28
2.4 Developing With XML-RPCooiiiiiiie e 35
2.5Beyond SIMPIE CallScoovieieeiee e 40

T I I O SRR 42

Chapter 3. SOAP ESSENTIAIS.c.eiiiiiiiieiie et 43
130 S 7L i RSP 43
3.2 ThE SOAP IMESSAOE......eeiiivieiee ettt ettt ettt sbe et e e neesnne e 45
3.3 SOAP ENCOAING. ...ccttietieiiiesiie ettt sttt et st b e s nbe e b e e e e neesnne e 48
A SOAP VIAHTTP .ttt 52
3.5 SOAP AN tNEW3C ...t 54
3.6 SOAP IMPIEMENLALIONSeoiueiiiieiiiesiie ettt sb e sreesane e 55

Chapter 4. Apache SOAP QUICK SEAITooveiiiieiieeie e s 57
4.1 Installing APaChe SOAPco i 57
A2 HEIO, SOAPY ...ttt ettt st et b e nnee s 59
4.3 DEPIOYIiNG SOAP SEIVICESviiieiiiie ittt ettt ae e nnee s 68
4.4 The TePTUNNEIGUI TOOooiieieiiiiiie e 72

A S NN D RESOUICES ... et e e e e e e et e e e e et e e e e e e aaeeeeeaaaeeeeeneeeeeenaeseeennaeserennaneees 74

Chapter 5. Programming APache SOAP........coi e 75

5.1 WOIKIiNG WITN ATTEYSeeeiiieiiie ettt ettt ne e 75
5.2 Working With JAVABEANScoouiiiiieiii et 79
5.3 Working with Literal XML DOCUMENLSceeruiiiieeiiieniie e 88
5.4 Handling SOAP FAUITS........coouiiiiiiiieiie ettt 93
5.5 MaintaiNiNg SESSION SLALE........coiueiiiieiie ittt 98
PAT TV WSDL ..ttt sttt et e s e st e nte et e eneeeneenneenneas 102
Chapter 6. WSDL ESSENTIAIS.......coiiiiiiiiiie et 103
6.1 The WSDL SPECITICALION........eiiiiiiiieiiieriee ettt 103
6.2 Basic WSDL Example: HeElloServiceWsdl...........oovviieiiiiniiniieseeee e 105
6.3 WSDL INvocation TOOIS, Part |.........ccoiiiiiii e 111
6.4 Basic WSDL Example: XMethods eBay Price Watcher Service.........cccoovevveennens 113
6.5 WSDL Invocation TOOIS, Part 11 ... 115
6.6 Automatically Generating WSDL Fil€S........c.coiiiiiiiiiiiceeeree e 118
6.7 XML SChema Data TYPINGcooeeeueeriierieeeieestee st e st sineeneee s 121
PArT Vi UDDI ..ttt sttt et e et ente et e entesneenneenneas 134
Chapter 7. UDDI ESSENTIAIS....cccuiiiiiieiiie ettt 135
7.1 1Ntroduction 10 UDDI.........oiiiiiiiiiiie et 135
T2 WHY UDDI7? ...ttt sttt sttt e et e seesreenteenee e 136
7.3 UDDI TEChNICAl OVEIVIEWcoueiiiiiiiieeiiie ettt naee s 138
7.4 UDDI Daa MOooiiiiiiiiiie et naee s 139
7.5 SEarChiNG UDDIooiiiiie ettt 144
7.6 PUDIISHING O UDDI ... 157
7.7 UDDI IMPleMENTELIONS.oiuviiiieiiieiieesiee ettt nnee s 169
7.8 WED RESOUICES. ...ttt sttt ettt st nbe e b snneennee s 170
Chapter 8. UDDI Inquiry API: Quick Reference.........ccccevevviieeiie e 171
8.1 The UDDI INQUITY AP ... 172
8.2 FING QUAITIEIS.eeeieiie ettt et e e e et e e e nee e s s e e e snaeeennaeeennneeennnnnens 196
Chapter 9. UDDI 4J.......ooiiiiiiee ettt e e neesnne e 197
0.1 GELING SEAIEU. ... ceiueeeieeeeee ettt b e nneeenns 197
9.2 Finding and Retrieving UDDI DalaL..........ccoieiiiieiiienieeiee e 198
9.3 PUDIISNING UDDI DALcciuieiiiieiieeiie sttt sttt 203
9.4 UDDI4J QUICK REFEIENCE APl ...ttt e e 206
(€ L0155 T PSP RRUPPRTOPRP 270

Web Services Essentials

Preface

Web services offer a new and evolving paradigm for building distributed web
applications. This book focuses on the essentials of web services and covers four main
technologies: XML-RPC, SOAP, WSDL, and UDDI. The book offers a high-level
overview of each technology. It aso describes the relevant APl and discusses
implementation options for each technology. The book includes a broad range of working
examples so that you can immediately see web servicesin action.

Audience

This book iswritten for developers who are new to web services. It aimsto to provide you
with a "big-picture" perspective to enable you to understand the scope and extent of web
services, while also providing you with enough nuts and bolts and sample code to start
writing your own services.

When choosing between a proprietary system and an open source implementation, we tend
to favor open source implementations. When choosing among programming languages,
we tend to favor Java. To make the most of the book, you should therefore have solid Java
programming experience. If you need to brush up on Java, consider these books:

Learning Java, by Patrick Niemeyer and Jonathan Knudsen (O'Reilly &
Associates, Inc.)
Java in a Nutshell, Fourth Edition, by David Flanagan (O'Rellly)

A basic understanding of eXtensible Markup Language (XML) is aso important. For a
solid grounding in XML, consider these books:

Learning XML, by Erik T. Ray (O'Rellly)
XML in a Nutshell: A Desktop Quick Reference, by Elliotte Rusty Harold and W.
Scott Means (O'Reilly)

Web Services Essentials

Organization

The book is divided into five parts. Part | provides a general introduction to web services.
Part Il through Part V focus on core web service technologies, including XML-RPC,
SOAP, WSDL, and UDDI. The book concludes with a glossary of common web service
terms.

Part I, Introduction to Web Services

Chapter 1 provides an overview of web services, the web service architecture, and the web
service protocol stack. It also provides a snapshot of current standardization efforts of the
World Wide Web Consortium (W3C).

Part Il, XML-RPC

Chapter 2 provides a comprehensive introduction to XML-RPC. This includes a technical
overview of XML-RPC, including a detailed explanation of XML-RPC data types,
requests, and responses. This chapter aso includes sample XML-RPC code, written in
Java and Perl.

Part Ill, SOAP

Chapter 3 provides a comprehensive introduction to SOAP. This includes overviews of
the SOAP specification, using SOAP via HTTP, and the W3C standardization effort
surrounding SOAP.

Chapter 4 provides a quick-start guide to using Apache SOAP, an open source Java
implementation of the SOAP specification. This chapter includes detailed instructions on
installing and deploying SOAP services and on writing basic service and client code.

Chapter 5 provides an in-depth guide to programming Apache SOAP. This includes an
overview of working with arrays, JavaBeans™, and literal XML documents. This chapter
also includes a discussion on handling SOAP faults and maintaining session state.

Part IV, WSDL

Chapter 6 provides a comprehensive introduction to WSDL. Thisincludes an overview of
the specification itself, numerous WSDL examples, and an introduction to WSDL-
invocation tools.

Part V, UDDI

Chapter 7 provides a comprehensive overview of UDDI. Thisincludes an overview of the
UDDI data model and tutorials for searching existing data and publishing new data.

Chapter 8 provides a quick reference to the UDDI Inquiry API.
Chapter 9 introduces UDDI4J, an open source Java implementation of UDDI. Example

code illustrates how to search and publish UDDI data. A complete description of the
UDDI4J APl is aso included.

Web Services Essentials

Conventions Used in This Book
The following font conventions are used in this book:
Italic is used for:
Pathnames, filenames, function names, and program names
Internet addresses, such as domain names and URLs
New terms where they are defined
Const ant wi dt h isused for:
Command lines and options that should be typed verbatim
Names and keywords in programs, including method names, variable names, class
names, value names, and XML-RPC headers
XML element tags
Constant wi dth bol d isused for emphasisin program code lines.
Constant width italic isused for replaceable argumentsin program code.
Comments and Questions
The information in this book has been tested and verified, but you may find that features or
libraries have changed, or you may even find mistakes. Y ou can send any errors you find,
as well as suggestions for future editions, to:

O'Reilly & Associates, Inc.

Y ou can also send us messages electronically. To be put on the mailing list or to request a
catalog, send email to:

info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have aweb site for the book, where welll list examples, errata, and any plans for future
editions. Y ou can access this page at:

http://www.oreilly.com/catal og/webservess/
For more information abut this book and others, see the O'Rellly web site:

http://www.oreilly.com

Web Services Essentials

Acknowledgments

Writing an O'Reilly book has always been a dream of mine. | certainly did not get here by
myself. Therefore, | want to thank all those who helped turned this dream into reality.

First, I want to thank Simon St.Laurent, my editor at O'Reilly. Simon ushered this book
from its very earliest stages until the very last round of copyediting. He was the first
person to bring web services to my attention and provided constant and patient guidance at
every step of the way. He also contributed Chapter 2. | also want to thank all the technical
reviewers who provided excellent feedback on early drafts of the book. Reviewers
included Leigh Dodds, Timothy J. Ewald, Martin Gudgin, Simon Horrell, and Tim
ORelilly. Graham Glass, CEO of The Mind Electric, Inc., answered al of my many
guestions regarding the GLUE platform and WSDL in general. Tony Hong, cofounder of
XMethods, Inc., also helped out with questions on SOAP interoperability and provided
permission to reprint the WSDL file for the XMethods eBay Price Watcher Service. Claire
Cloutier served as the production editor for the book and did an excellent job keeping the
book well-organized and on schedule.

Second, | want to thank Gary Lazarus, my boss at Winstar Communications. Gary was
gracious enough to provide me with a flexible schedule to complete this book. For this, |
am forever grateful.

Third, | want to thank al my friends and family. Y ou know who you are. As always, you
have sustained and nourished me, and helped me keep a balanced life. Thank you.

Fourth, 1 want to thank my father-in-law, Ed Orsenigo. Your courage and determination
arean inspiration to us all.

Lastly, | want to thank my wife, Amy. In the midst of writing this book, Amy and |
actually found time to get married! September 1, 2001 was the happiest day of my life.
Thanks, Amy, for supporting me, encouraging me, and bringing joy to everyone around
you.

Web Services Essentials

Part |: Introduction to Web Services

Chapter 1 - Introduction

Web Services Essentials

Chapter 1. Introduction

Today, the principal use of the World Wide Web is for interactive access to
documents and applications. In almost all cases, such access is by human
users, typically working through Web browsers, audio players, or other
interactive front-end systems. The Web can grow significantly in power
and scope if it is extended to support communication between
applications,from one program to ancther.

- From the W3C XML ProtocolWorking Group Charter

Welcome to the world of web services. This chapter will ground you in the basics of web
service terminology and architecture. 1t does so by answering the most common questions,
including:

What exactly is aweb service?

What is the web service protocol stack?

What is XML messaging? Service description? Service discovery?

What are XML-RPC, SOAP, WSDL, and UDDI? How do these technologies
complement each other and work together?

What security issues are unique to web services?

What standards currently exist?

1.1 Introduction to Web Services

A web service is any service that is available over the Internet, uses a standardized XML
messaging system, and is not tied to any one operating System or programming language.
(See Figure 1-1)

Figure 1-1. A basic web service

XML
XML

Computerd (emputer B
Lamquage: Ferl Language: Jjovd
Operating system: Windows 2000 Operating systerm: Linuy

There are several aternatives for XML messaging. For example, you could use XML
Remote Procedure Calls (XML-RPC) or SOAP, both of which are described later in this
chapter. Alternatively, you could just use HTTP GET/POST and pass arbitrary XML
documents. Any of these options can work. (See Figure 1-2.)

Web Services Essentials

Figure 1-2. XML messaging for web services

R

| F—

e

Lo

=

L
XML document

Although they are not required, aweb service may also have two additional (and desirable)
properties:

A web service should be self-describing. If you publish a new web service, you
should aso publish a public interface to the service. At a minimum, your service
should include human-readable documentation so that other developers can more
easily integrate your service. If you have created a SOAP service, you should also
ideally include a public interface written in a common XML grammar. The XML
grammar can be used to identify all public methods, method arguments, and return
values.

A web service should be discoverable. If you create a web service, there should be
a relatively smple mechanism for you to publish this fact. Likewise, there should
be some simple mechanism whereby interested parties can find the service and
locate its public interface. The exact mechanism could be via a completely
decentralized system or amore logically centralized registry system.

To summarize, a complete web service is, therefore, any service that:

Is available over the Internet or private (intranet) networks

Uses a standardized XML messaging system

Is not tied to any one operating system or programming language
|s self-describing viaacommon XML grammar

Is discoverable via a simple find mechanism

1.1.1 The Web Today: The Human-Centric Web
To make web services more concrete, consider basic e-commerce functionality. For
example, Widgets, Inc. sells parts through its web site, enabling customers to submit

purchase orders and check on order status.

To check on the order status, a customer logs into the company web site via a web browser
and receives the results asan HTML page. (See Figure 1-3.)

Web Services Essentials

Figure 1-3. The human-centric Web

HTTP GET:
“What is the status of my ovder?”

l

& .A,E',,';u.rui: = =-15E].
J\.\I .. o Tome _.'-
i |

.Eu iy Sy L5 HTTP response with HTML page: ~

] “Leaving the wareharse at Zpm tday,”

This basic model illustrates a human-centric Web, where humans are the primary actors
initiating most web requests. It also represents the primary model on which most of the
Web operates today .

Wab browser Web server

1.1.2 Web Services: The Application-Centric Web

With web services, we move from a human-centric Web to an application-centric Web.
This does not mean that humans are entirely out the picture! It just means that
conversations can take place directly between applications as easily as between web
browsers and servers.

For example, we can turn the order status application into a web service. Applications and
agents can then connect to the service and utilize its functionality directly. For example,
an inventory application can query Widgets, Inc. on the status of al orders. The inventory
system can then process the data, manipulate it, and integrate it into its overal supply
chain management software. (See Figure 1-4.)

Figure 1-4. The application-centric Web

EML request:
“Hebar s the status of my ovder?
B o Inventory
| | | 0 f i wsers | Application
I ML response; -~
T-I i “Leaving the warehouse of 3pm. foday.”
R — .
O to other applications Web server

There are numerous areas where an application-centric Web could prove extremely
helpful. Examples include credit card verification, package tracking, portfolio tracking,
shopping bots, currency conversion, and language translation. Other options include
centralized repositories for persona information, such as Microsoft's proposed .NET
MyServices project. .NET MyServices ams to centralize calendar, email, and credit card
information and to provide web services for sharing that data.

Web Services Essentials

Web Services and the Semantic Web

Tim Berners-Lee, the original inventor of the Web, has recently argued for a
"Semantic Web." The Semantic Web vision is application-centric, and shares many
of the same ideas as web services. In fact, at the first W3C conference on web
services, Berners-Lee stated that web services are an actualization of the Semantic
Web vision. For an overview of the Semantic Web, see Berners-Le€'s article in
Scientific American: http://www.sciam.com/2001/0501issue/0501berners-lee.html.

1.1.3 The Web Services Vision: The Automated Web

An application-centric Web is not a new notion. For years, developers have created CGlI
programs and Java servlets designed primarily for use by other applications. For example,
companies have developed credit card services, search systems, and news retrieval
systems.

The crucial difference is that most of these systems consisted of ad hoc solutions. With
web services, we have the promise of some standardization, which should hopefully lower
the barrier to application integration.

’ The web service architecture provides an interesting alternative for
as drastically decoupling presentation from content. For example, a site
g+ could consist of nothing but container pages that pass parameters to
the real logic via SOAP or XML-RPC. This makes it easy to change
presentation and also lets humans and computers "share" a single web
service.

In the long term, web services also offer the promise of the automated Web. If services are
easily discoverable, self-describing, and stick to common standards, it is possible to
automate application integration. Some in the industry have referred to this as "just-in-
time" application integration.

For example, consider the case of MegaElectric (ME). ME wants to buy parts from
Widgets, Inc. and also wants to seamlessly integrate order status into a unified inventory
system. At some point in the future, ME will be able to buy software that automates this
entire process. Here's how it might work (refer to Figure 1-5):

1. The inventory application wakes up and connects to a centralized directory of web
services: "Does Widgets, Inc. provide an order status service?' The directory returns
information on Widgets, Inc.'s service and includes a pointer to the service
description.

2. The inventory application connects to Widgets, Inc. and retrieves the service
description.

3. The service description file includes complete details about how to connect to the
specified service. The inventory application can therefore automatically invoke the
order status service.

Web Services Essentials

Figure 1-5. The automated Web

Service
" e reqistry
oiﬁscm-er Larvices
fetrieve senage
H description Web server
[nventary Service description

application

""""""""" 0" Order status service

Is it possible to automate this process using existing web services technology? Not quite:
only parts of the process can currently be automated. For example, as we will see in
Chapter 9, it is possible to create Java programs that query service registries.
Understanding the results and choosing which service to actualy use, however, still
requires some human intervention. It is aso possible to automaticaly invoke a service,
based on a service description. For example, as we will see in Chapter 6, many automatic
invocation tools already exist and work extremely well.

Even if al these steps could be automated, there is currently no mechanism for automating
business relationships. For example, current service descriptions do not cover guarantees
on pricing, delivery schedules, or legal ramifications if deliveries are not made. Given a
service description, you also cannot assume that the service is bug-free or that the service
is available 100 percent of the time.

These types of issues are not easily solved and are not easily automated. Completely
automated web services and "just-in-time" application integration may therefore never be
realized. Nonetheless, current web service technology does take us one step closer, and
does enable us to automate portions of the process.

1.1.4 The Industry Landscape

There are currently many competing frameworks and proposals for web services. The
three main contenders are Microsoft's .NET, IBM Web Services, and Sun Open Net
Environment (ONE). While each of these frameworks has its own particular niche and
spin, they all share the basic web service definition and vision put forth here. Furthermore,
al of the frameworks share a common set of technologies, mainly SOAP, WSDL, and
UDDI.

Rather than focusing on one particular implementation or framework, this book focuses on
common definitions and technologies. Hopefully, this will better equip you to cut through
the marketing hype and understand and evaluate the current contenders.

1.2 Web Service Architecture

There are two ways to view the web service architecture. The first is to examine the

individual roles of each web service actor; the second is to examine the emerging web
service protocol stack.

10

Web Services Essentials

1.2.1 Web Service Roles
There are three major roles within the web service architecture:
Service provider

This is the provider of the web service. The service provider implements the service
and makes it available on the Internet.

Service requestor

This is any consumer of the web service. The requestor utilizes an existing web
service by opening a network connection and sending an XML request.

Serviceregistry
Thisis alogicaly centralized directory of services. The registry provides a central
place where developers can publish new services or find existing ones. It therefore

serves as a centralized clearinghouse for companies and their services.

Figure 1-6 shows the major web service roles and how they interact with each other.

Figure 1-6. Web service roles

e | Serice
i reqistry
on.is.mrersn. vices
voke service
Service | o ________________ | Emice
requestor provider

1.2.2 Web Service Protocol Stack

A second option for viewing the web service architecture is to examine the emerging web
service protocol stack. The stack is till evolving, but currently has four main layers.
Following is a brief description of each layer.

Service transport
This layer is responsible for transporting messages between applications. Currently,
this layer includes hypertext transfer protocol (HTTP), Simple Mail Transfer

Protocol (SMTP), file transfer protocol (FTP), and newer protocols, such as Blocks
Extensible Exchange Protocol (BEEP).

11

Web Services Essentials

XML messaging

This layer is responsible for encoding messages in a common XML format so that
messages can be understood at either end. Currently, this layer includes XML-RPC
and SOAP.

Service description
Thislayer isresponsible for describing the public interface to a specific web service.
Currently, service description is handled via the Web Service Description Language
(WSDL).
Service discovery
This layer is responsible for centralizing services into a common registry, and
providing easy publish/find functionality. Currently, service discovery is handled
viaUniversal Description, Discovery, and Integration (UDDI).
As web services evolve, additional layers may be added, and additional technologies may
be added to each layer. Figure 1-7 summarizes the current web service protocol stack.
Each layer is described in detail later in this book.

Figure 1-7. Web service protocol stack

Discovery woni
Description wsbL
XML messaging XML-RPC, SOAP, XML
Transpart HTTP, SMTP, FTP. BEEP

1.2.3 Architectural Snapshot: The IBM Web Services Browser

To gain a high-level understanding of how the protocol stack actually works, try out the
IBM Web Services Browser. The browser enables you to search for existing services,
view their service descriptions, and automatically invoke those services. This lets you see
each layer within the protocol stack without actually writing any code.

To get started, open a browser and go to http://demo.al phaworks.ibm.com/browser/. Y ou
should see the screen depicted in Figure 1-8.

In the righthand pane, you can search a centralized registry for existing web services. (The
registry actually uses UDDI, but don't get too caught up in the details just yet.) Within the
Search box, type "IBM Web Services' and click Search. IBM will search the centralized
directory for you and display all matching results in the left pane. Select the last folder,
entitled IBM Web Services TestArea, and you will see a list of available web services.

(See Figure 1-9.)

12

Web Services Essentials

Figure 1-8. The IBM Web Services browser

Emar emness name o thon prass Smd o ooabe res x|
o pawrgls, "BM Vsl Senicen TenthaT)

e [B Temems
ST e T pee

L L
[. R

Tader vl % spomruirg 7 wsowdig

Srarcn Gemerl | Contacty Categories ldentifers

Erer e nes s ra e A e pre s Ao 1 Kocats resumE)
o meanphs, TEH Wik Services TedAsaT)

Verwr [Ed s Saricer
O Basingzse
|~ bl e Srvicma L S F e 7 oo
- D e T
e B Todt Mt Boaciimcar [
[e o B 13y ¥

e e ey [Dmrrorem

UDD Service Detaliz

Eervie wia fior Cal'Weatbwider

s AT

o B

[o e b Bl m i

Ty D8 ek Servcmn Tand Area

AT —

b e S e ol
A MO ALY

Binding Temalates

WIDL Iwplem entation Fies

13

Web Services Essentials

Click on GetWeatherService, and the right pane will display specific details about the
service. (See Figure 1-10.) The data includes binding points, which indicate URLSs for
actually connecting to the service, and service description files that explain how to
interface with the service. (These are WSDL files, but again, don't get too caught up in the

detailsjust yet.)

Click the View Page link in the left pane. The right pane will nhow show a simple user
interface for the weather service. Select a city and state, and IBM will automatically
invoke the service and display the current weather conditions. (See Figure 1-11.)

Figure 1-11. Invoking the IBM weather service

B Dl e Bpecie e

B, v Sk Dt [Reotw ey L
AT] N0y e i i g e |

WebServices
Tast Area

Browss View Page

Capzafur seCdensdol emion

& Capes adedamig
5 -

8)] o g i W, i b b comlicsnl.

Freasune 5 54 i Hg (8013 B

o iy Ve

il i B v

e o R s

=18

=

o i

If you pick another service, the service is added to the bottom of the right pane. For
example, Figure 1-12 shows the stock quote service and the weather service bundled

together.

Figure 1-12. Multiple web services on a single page

| bl e - oorid| Mk Lo

B B e Fpceie e

Bk T o B = e
AT T 0y v ey g i

WebServices
Test Area

Browss View Page

1 ey s ity Ve, diphaerts ber s brosssed,

Priasune 26 54 in - (0EE RR)

Dw Sl 00 F OB CS

[P
il I i v
S 0N CRAM T8 1T
Dipim Liw
nm e

| e

ol

=t
ligh
&

14

Web Services Essentials

The IBM browser does a good job of illustrating web services in action and highlighting
the main layers within the protocol stack. It also does a good job of illustrating the
potential of "just-in-time" application integration. Each service basically acts as an
individual building block, and you can continue stacking more and more services to the
same page. Best of all, you can do so without writing a single line of code!

1.3 XML Messaging

XML has exploded onto the computing scene in recent years. It has gained rapid
acceptance because it enables diverse computer systems to share data more easily,
regardless of operating system or programming language. There are dozens of XML tools,
including parsers and editors that are available for nearly every operating system and every
programming language, including Java, Perl, Python, C#, C, C++, and Ruby. When
developers decided to build aweb service messaging system, XML was therefore a natural
choice. There are two main contenders for XML messaging: XML-RPC and SOAP. The
following sections provide descriptions of both protocols.

1.3.1 XML-RPC

XML-RPC is a simple protocol that uses XML messages to perform RPCs. Requests are
encoded in XML and sent viaHTTP POST. XML responses are embedded in the body of
the HTTP response. Because XML-RPC is platform-independent, it allows diverse
applications to communicate. For example, a Java client can speak XML-RPC to a Perl
server.

To gain a high-level understanding of XML-RPC, consider a simple weather service. The
service expects a zip code and returns the current temperature for the area. Here is a
sample XML-RPC request to the weather service (HT TP headers omitted):

<?xm version="1.0" encodi ng="1S0O 8859-1"?>
<met hodCal | >
<met hodNanme>weat her . get Weat her </ met hodNane>
<par ans>
<par anp<val ue>10016</ val ue></ par an»
</ par ans>
</ met hodCal | >

The request consists of a simple net hodcal | element that specifies the method name and
any method parameters.

Here is a sample XML-RPC response from the weather service:

<?xm version="1.0" encodi ng="1S0O 8859-1"?>
<met hodResponse>
<par ans>
<par an®
<val ue><i nt >65</i nt ></ val ue>
</ par an®»
</ par ans>
</ met hodResponse>

The response consists of a single net hodResponse element that specifies the return value.
In this case, the return value is specified as an integer.

15

Web Services Essentials

XML-RPC is the easiest way to get started with web services. In many ways, it is ssmpler
than SOAP and easier to adopt. However, unlike SOAP, XML-RPC has no corresponding
service description grammar. This prevents automatic invocation of XML-RPC services -
a key ingredient for enabling just-in-time application integration. More details of XML-
RPC are covered in Chapter 2.

1.3.2 SOAP

SOAP is an XML-based protocol for exchanging information between computers.
Although SOAP can be used in a variety of messaging systems, and can be delivered viaa
variety of transport protocols, the main focus of SOAP is RPCs transported via HTTP.
Like XML-RPC, SOAP is platform-independent and therefore enables diverse applications
to communicate.

To gain ahigh-level understanding of SOAP, let's revisit our simple weather service. Here
isasample SOAP request (HTTP headers omitted):

<?xm version='"1.0" encodi ng=" UTF-8' ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. w3. or g/ 2001/ 09/ soap- envel ope/ "
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_.Schena" >
<SQAP- ENV: Body>
<nsl: get Weat her
xm ns: ns1="urn: exanpl es: weat her servi ce"
SQOAP- ENV: encodi ngStyl e="ht t p: / / www. w3. or g/ 2001/ 09/ soap- encodi ng/ ">
<zi pcode xsi:type="xsd:string">10016</zi pcode>
</ nsl: get Wat her >
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

As you can see, the SOAP request is dlightly more complicated than the XML-RPC
request. It makes use of both XML namespaces and XML Schemas. Asin XML-RPC,
however, the body of the SOAP request specifies both a method name and a list of
parameters.

Here is a sample SOAP response from the weather service:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. w3. or g/ 2001/ 09/ soap- envel ope/ "
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_.Schena" >
<SQAP- ENV: Body>
<nsl: get \\eat her Response
xm ns: ns1="urn: exanpl es: weat her servi ce"
SQOAP- ENV: encodi ngStyl e="ht t p: / / www. w3. or g/ 2001/ 09/ soap- encodi ng/ ">
<return xsi:type="xsd:int">65</return>
</ nsl: get Wat her Response>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

The response indicates a single integer return value. Full details of SOAP are discussed in
Chapter 3.

16

Web Services Essentials

1.4 Service Description: WSDL

WSDL currently represents the service description layer within the web service protocol
stack. In a nutshell, WSDL is an XML grammar for specifying a public interface for a
web service. This public interface can include information on al publicly available
functions, data type information for al XML messages, binding information about the
specific transport protocol to be used, and address information for locating the specified
service. WSDL is not necessarily tied to a specific XML messaging system, but it does
include built-in extensions for describing SOAP services.

Example 1-1 provides a sample WSDL file. This file describes the public interface for the
weather service we examined previously. Obviously, there are many details to consider
when looking at the example. For now, just focus on two points. First, the nessage
elements specify the individual XML messages that are transferred between computers. In
this case, we have a get \\eat her Request and a get Weat her Response. Second, the servi ce
element specifies that the service is avalable via SOAP a
http://local host: 8080/soap/ser viet/r pcrouter .

Example 1-1. WeatherService.wsdl

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions name="Wat her Servi ce"
t ar get Nanespace="htt p: // ww. ecer am . comf wsdl / Weat her Servi ce. wsdl "
xm ns="http://schemas. xm soap. or g/ wsdl /"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns:tns="http://ww. eceramn . conl wsdl / Weat her Ser vi ce. wsdl "
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena" >

<nessage nane="get \Wat her Request " >

<part nane="zi pcode" type="xsd:string"/>
</ nessage>
<nessage nane="get \\eat her Response" >

<part name="tenperature" type="xsd:int"/>
</ message>

<port Type nane="Weat her _Port Type">
<operation nanme="get Weat her ">
<i nput nessage="tns: get Weat her Request "/ >
<out put message="t ns: get Weat her Response"/ >
</ operati on>
</ port Type>

<bi ndi ng nane="Weat her _Bi ndi ng" type="tns: Weat her _Port Type" >
<soap: bi ndi ng styl e="rpc"
transport="http://schenmas. xm soap. org/ soap/ http"/>
<operation nanme="get Weat her ">
<soap: operation soapAction=""/>
<i nput >
<soap: body
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="ur n: exanpl es: weat her servi ce"
use="encoded"/ >
</i nput >
<out put >
<soap: body
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="ur n: exanpl es: weat her servi ce"
use="encoded"/ >
</ out put >
</ operati on>
</ bi ndi ng>

17

Web Services Essentials

<servi ce nane="Wat her_Servi ce">
<docunent ati on>WEDL File for Wat her Service</docunentation>
<port bindi ng="t ns: Wat her _Bi ndi ng" nane="\Wat her _Port" >

<soap: addr ess
| ocati on="http://1ocal host: 8080/ soap/ servl et/rpcrouter"/>

</ port >

</ service>

</ definitions>

Using WSDL, a client can locate a web service and invoke any of the publicly available
functions. With WSDL-aware tools, this process can be entirely automated, enabling
applications to easily integrate new services with little or no manua code. For example,
IBM has recently released the IBM Web Services Invocation Framework (WSIF). Using
WSIF, you can specify the Weather Service.wsdl file and automatically invoke the service
described. For example, the following command line;

java clients. Dynamni cl nvoker http://1ocal host: 8080/ wsdl / Weat her Ser vi ce. wsdl
get Weat her 10016

generates the following output:

Readi ng WSDL document from ' http://1 ocal host: 8080/ wsdl / Weat her Servi ce. wsdl '
Preparing Wl F dynam c invocation

Executing operation get\Wat her

Resul t:

t enper at ur e=65

Done!

WSDL and WSDL invocation tools are covered in Chapter 6.

1.5 Service Discovery: UDDI

UDDI currently represents the discovery layer within the web service protocol stack.
UDDI was originally created by Microsoft, IBM, and Ariba, and represents a technical
specification for publishing and finding businesses and web services.

At its core, UDDI consists of two parts. First, UDDI is a technical specification for
building a distributed directory of businesses and web services. Data is stored within a
specific XML format. The UDDI specification includes API details for searching existing
data and publishing new data. Second, the UDDI Business Registry is a fully operational
implementation of the UDDI specification. Launched in May 2001 by Microsoft and IBM,
the UDDI registry now enables anyone to search existing UDDI data. It also enables any
company to register itself and its services.

The data captured within UDDI is divided into three main categories:
White pages

This category includes general information about a specific company; for example,
business name, business description, and address.

18

Web Services Essentials

Yellow pages
This category includes general classification data for either the company or the
service offered. For example, this data may include industry, product, or geographic
codes based on standard taxonomies.

Green pages

This category includes technical information about a web service (a pointer to an
external specification and an address for invoking the web service).

Figure 1-13 shows a sample screenshot of the Microsoft UDDI site. From this site, you
can easily publish your own services or search for existing ones.

Figure 1-13. The Microsoft UDDI site: searching for XMethods, Inc.

Lt sed B v, D vy o [ad s - sl Kkl fiphorer -8l H|

Bl G pee Ppaosl D B u

Pk T e B T e s =1

i o) horp e o, e s ey Ty e o e (e Tl]_tcnch e 0l Ty g pel = ra

PR NN T |

i - . 1
wudde e

Soarch ps pesses ran DIFEWER trtis s Srmbimley Clmafii st pafars Tiarsslars Tukbas b b Fissatis otun

LLLLL ddvanced Search
ok oy p—— B B naan Rerd
B

el o e

Full detailson UDDI are available in Chapter 7.

1.6 Service Transport

The bottom of the web service protocol stack is service transport. This layer is responsible
for actually transporting XML messages between two computers.

1.6.1 HTTP

Currently, HTTP is the most popular option for service transport. HTTP is simple, stable,
and widely deployed. Furthermore, most firewalls allow HTTP traffic. Thisalows XML-
RPC or SOAP messages to masquerade as HTTP messages. This is good if you want to
easily integrate remote applications, but it does raise a number of security concerns. (See
Section 1.7 later in this chapter.)

19

Web Services Essentials

While HTTP does get the job done, a number of critics have argued that HTTP is not ideal
for web services. In particular, HTTP was originally designed for remote document
retrieval, and is now being reworked to support RPCs. RPCs demand greater efficiency
and reliability than document retrieval does.

s There are some developers who argue that HTTP is enough of a
as foundation for messaging and that the layers above HTTP are as
. M . . .
g+ much a problem as a solution. For some of this perspective, called
Representational State Transfer, or REST, See
http://internet.conveyor.com/RESTwiki/moin.cgi.
1.6.2 BEEP

One promising alternative to HTTP is the Blocks Extensible Exchange Protocol (BEEP).
BEEP isanew IETF framework of best practices for building new protocols. In particular,
BEEP is layered directly on TCP and includes a number of built-in features, including an
initial handshake protocol, authentication, security, and error handling. Using BEEP, one
can create new protocols for a variety of applications, including instant messaging, file
transfer, content syndication, and network management.

SOAP is not tied to any specific transport protocol. In fact, you can use SOAP viaHTTP,
SMTP, or FTP. One promising idea is therefore to use SOAP over BEEP. Doing so
provides severa performance advantages over HTTP. Specifically, BEEP does require an
initial handshake, but after the handshake, the protocol requires only 30 bytes of overhead
for each message, making it much more efficient than HTTP.” Furthermore, BEEP
supports multiple channels of data over the same connection, providing extra efficiency
over HTTP.

I The overhead for each HTTP message is dependent on numerous factors, including the requested
URL, the type of client used, and the type of server information returned within the HTTP response.
Overhead for typical browser and SOAP requests can therefore vary from approximately 100 to 300
bytes for each message.

A recent proposal for using SOAP over BEEP is available at:

http://beepcore.org/beepcore/docs/beep-soap.| sp.

s Another promising alternativeto HTTP is Reliable HTTP (HTTP-R).
. HTTP-R is being developed by IBM, which plans to submit its
" 4 proposa to the Internet Engineering Task Force (IETF). HTTP-R

enhances HTTP to ensure message reliability. For example, HTTP-R
ensures that a message gets delivered only once or gets reported as
undeliverable. This is particularly critical for e-commerce services,
such as electronic ordering systems and inventory management. A
primer on HTTP-R is avalable from IBM at http://www-
106.ibm.com/devel operworks/webserviced/library/ws-phtt/.

20

Web Services Essentials

1.7 Security Considerations

Security is critical to web services. However, neither the XML-RPC nor SOAP
specifications make any explicit security or authentication requirements. Furthermore, the
web services community has proposed numerous security frameworks and protocols, but
has yet to reach consensus on a comprehensive security package.

Very broadly, there are three specific security issues. confidentiality, authentication, and
network security.

1.7.1 Confidentiality

If a client sends an XML request to a server, can we ensure that the communication
remains confidential ?

Fortunately, both XML-RPC and SOAP run primarily on top of HTTP, and XML
communications can therefore be encrypted via the Secure Sockets Layer (SSL). SSL isa
proven technology, is widely deployed, and is therefore a very viable option for encrypting

messages.

However, a key element of web servicesisthat a single web service may consist of achain
of applications. For example, one large service might tie together the services of three
other applications. In this case, SSL is not adequate; the messages need to be encrypted at
each node along the service path, and each node represents a potential weak link in the
chain. Currently, there is no agreed-upon solution to thisissue, but one promising solution
is the W3C XML Encryption Standard. This standard provides a framework for
encrypting and decrypting entire XML documents or just portions of an XML document,
and it is likely to receive widespread industry support. Information on the XML
Encryption Standard is available at http://www.w3.org/Encryption/.

1.7.2 Authentication

If a client connects to a web service, how do we identify the user? And is the user
authorized to use the service?

One solution is to leverage HTTP authentication. HTTP includes built-in support for
Basic and Digest authentication, and services can therefore be protected in much the same
manner as HTML documents are currently protected. Most security experts, however,
agree that HTTP authentication is arelatively weak option.

As with encryption, there is no clear consensus on a strong authentication scheme, but
there are several frameworks under consideration. The first is SOAP Security Extensions:
Digital Signature (SOAP-DSIG). DSIG leverages public key cryptography to digitally
sign SOAP messages. This enables the client or server to validate the identity of the other
paty. DSIG has been submitted to the W3C and is avalable at
http://www.w3.0rg/TR/SOAP-dsig/.

21

Web Services Essentials

Second, the Organization for the Advancement of Structured Information Standards
(OASIS) is working on the Security Assertion Markup Language (SAML). SAML is
designed to facilitate the exchange of authentication and authorization information
between business partners. Information is avallable online at http://www.oass-
open.org/committees/security/.

In a related effort, severa companies have put forth the XML Key Management Services
(XKMS). XKMS defines a series of services for distributing and managing public keys
and certificates. The protocol itself is built on SOAP and WSDL, and it is therefore an
excellent example of a web servicee The specification is available online at
http://Amww.w3.0org/TR/xkms/.

1.7.3 Network Security

In June 2000, Bruce Schneier, a noted computer expert, flatly stated that "SOAP is going
to open up a whole new avenue for security vulnerabilities."@ Schneier's basic argument is
that HTTP was made for document retrieval. Extending HTTP via SOAP enables remote
clients to invoke commands and procedures, something that firewalls are explicitly
designed to prevent.

12 Crypto-Gram Newsletter, June 15, 2000 (http: //www.counter pane.convcrypto-gram-0006.htm).

You could argue that CGI applications and servlets present the same security
vulnerabilities. After all, these programs aso enable remote applications to invoke
commands and procedures. As SOAP becomes more widely deployed, however,
Schneier's argument becomes more compelling. There is currently no easy answer to this
problem, and it has been the subject of much debate. For now, if you are truly intent on
filtering out SOAP or XML-RPC messages, one possibility isto filter out all HTTP POST
requests that set their content type to text/xnm (@ requirement of both specifications).
Another alternative is to filter for the soapAct i on HTTP header attribute (see Chapter 3 for
details). Firewall vendors are also currently developing tools explicitly designed to filter
web service traffic.

1.8 All Together Now

Once you understand each layer in the web service protocol stack, the next important step
is to understand how all the pieces fit together. There are two ways of approaching the
issue, either from the service requestor perspective or the service provider perspective. In
this section, we examine both perspectives and look at a typical development plan for
each.

22

Web Services Essentials

1.8.1 Service Request Perspective

The service requestor is any consumer of web services. Hereisatypical development plan
for a service requestor:

1. First, you must identify and discover those services that are relevant to your
application. This first step therefore usually involves searching the UDDI Business
Directory for partners and services.

2. Once you have identified the service you want, the next step is to locate a service
description. If thisis a SOAP service, you are likely to find a WSDL document. |If
this is an XML-RPC service, you are likely to find some human-readable
instructions for integration.

3. Third, you must create a client application. For example, you may create an XML-
RPC or SOAP client in the language of your choice. If the service hasa WSDL file,
you also have the option of automatically creating client code via a WSDL
invocation tool.

4. Finally, run your client application to actually invoke the web service.

A snapshot of the service requestor perspective is provided in Figure 1-14.

Figure 1-14. Developing web services: the service requestor perspective

Step 1: Fird services wia UOOI
N e
LD‘ Step 3: Create XML-RFC or SOAP client
Lb Step 4: Inwake remote service

1.8.2 Service Provider Perspective

The service provider is any provider of one or more web services. Here is a typical
development plan for a service provider:

1. First, you must develop the core functionality of your service. This is usually the
hardest part, as your application may connect to databases, Enterprise JavaBeans™
(EJBs), COM objects, or legacy applications.

2. Second, you must develop a service wrapper to your core functionality. This could
be an XML-RPC or a SOAP service wrapper. Thisis usualy arelatively simple step,
as you are merely wrapping existing functionality into a larger framework.

3. Next, you should provide a service description. If you are creating a SOAP
application, you should create a WSDL file. If you are creating an XML-RPC
service, you should consider creating some human-readable instructions.

4. Fourth, you need to deploy the service. Depending on your needs, this could mean
installing and running a standalone server or integrating with an existing web server.

5. Fifth, you need to publish the existence and specifications of your new service. This
usually means publishing data to a global UDDI directory or perhaps a private UDDI
directory specific to your company.

23

Web Services Essentials

A snapshot of the service provider perspectiveis provided in Figure 1-15.

Figure 1-15. Developing web services: the service provider perspective

Step 1: Create core functionalicy
N
Lo Sp B
Lr Step 4: Deploy service
L" Step 5: Rieqtster rews service via UDDI

1.9 Standards and Coherence

Web services are still in their infancy, but they are poised to make great inroads in the
world of distributed application development. The most crucial elements to the long-term
success of web services, however, will be standardization and the coherency of those
standards. Currently, none of the web service technologies described in this book has any
official standing with the W3C or the IETF. SOAP and WSDL have both been submitted
to the W3C, but have no official recommendation status. XML-RPC has not been
submitted to any standards body. UDDI is currently under the purview of an industry
consortium and will probably go through several more iterations before being handed over
to a standards body.

In September 2000, the W3C created an XML Protocol Group. This group represented the
W3C's first official foray into the world of web services. Its first task was to create an
official recommendation for SOAP, and the group is currently finalizing a SOAP 1.2
specification. In January 2002, the W3C incorporated the XML Protocol Group into a
more general Web Services Activity. The new Activity adds Working Groups for Web
Services Architecutre and Web Services Description.

- Information about the W3C Web Services Activity is available at
http://www.w3.0rg/2002/ws/.

Most people new to web services are initially overwhelmed by the long list of proposed
standards and the complex interactions between each. Standardizing each layer in the web
service protocol stack will be a major challenge. Making sure al the layers fit together
and make coherent sense to developers will be an even greater challenge.

24

Web Services Essentials

Part Il: XML-RPC

Chapter 2 - XML-RPC Essentias

25

Web Services Essentials

Chapter 2. XML-RPC Essentials

XML-RPC provides an XML- and HTTP-based mechanism for making method or
function calls across a network. XML-RPC offers a very simple, but frequently useful, set
of tools for connecting disparate systems and for publishing machine-readable
information. This chapter provides a complete overview of XML-RPC, covering the
following topics:

An introduction to the main concepts and history of XML-RPC

An exploration of XML-RPC usage scenarios, examining its use in glue code and
information publishing

A technical overview of XML-RPC, including a detailed explanation of XML-RPC
data types, requests, and responses

An example demonstrating the use of XML-RPC to connect programs written in
Java and Perl

2.1 XML-RPC Overview

XML-RPC permits programs to make function or procedure calls across a network. XML-
RPC uses the HTTP protocol to pass information from a client computer to a server
computer, describing the nature of requests and responses with a small XML vocabulary.
Clients specify a procedure name and parameters in the XML request, and the server
returns either a fault or a response in the XML response. XML-RPC parameters are a
simple list of types and content - structs and arrays are the most complex types available.
XML-RPC has no notion of objects and no mechanism for including information that uses
other XML vocabularies. Despite those limitations, it has proven capable of awide variety
of tasks.

XML-RPC emerged in early 1998; it was published by UserLand Software and initially
implemented in their Frontier product. It has remained largely stable since then. The
XML-RPC specification is available at http://www.xmlrpc.com/spec, and a list of
implementations (55 at this writing, in a wide variety of languages) is available at
http://www.xmlrpc.com/directory/1568/.

(4 For additional information on the early history of XML-RPC, explaining the roles of UserLand
and Microsoft, see http://davenet.userland.conv1999/01/29/microsoftXmlRpc. The "snapshot of the
spec we were working on with Microsoft” became XML-RPC, while the rest of the spec went on to
become SOAP.

2.2 Why XML-RPC?

In a programming universe seemingly obsessed with objects, XML-RPC may seem too
limited for many applications. While XML-RPC certainly has limitations, its inherent
simplicity gives it some significant advantages when developers need to integrate systems
of very different types. XML-RPC's selection of data types is relatively small, but
provides enough granularity that developers can express information in forms any
programming language can use.

26

Web Services Essentials

XML-RPC is used in two main areas, which overlap at times. Systems integrators and
programmers building distributed systems often use XML-RPC as glue code, connecting
disparate parts inside a private network. By using XML-RPC, developers can focus on the
interfaces between systems, not the protocol used to connect those interfaces. Developers
building public services can also use XML-RPC, defining an interface and implementing it
in the language of their choice. Once that service is published to the Web, any XML-RPC-
capable client can connect to that service, and developers can create their own applications
that use that service.

2.2.1 Scenario 1;: Glue Code with XML-RPC

As distributed systems have become more and more common (by design or by accident),
developers have had to address integration problems more and more frequently. Systems
that originally ran their own show have to work with other systems as organizations try to
rationalize their information management and reduce duplication. This often means that
Unix systems need to speak with Windows, which needs to speak with Linux, which needs
to speak with mainframes. A lot of programmers have spent alot of time building custom
protocols and formats to let different systems speak to each other.

Instead of creating custom systems that need extensive testing, documentation, and
debugging, developers can use XML-RPC to connect programs running on different
systems and environments. Using this approach, developers can use existing APIs and add
connections to those APIs as necessary. Some problems can be solved with a single
procedure, while others require more complex interactions, but the overall approach is
much like developing any other set of interfaces. In glue code situations, the distinction
between client and server isn't especially significant - the terms only identify the program
making the request and the program responding. The same program may have both client
and server implementations, alowing it to use XML-RPC for both incoming and outgoing
requests.

2.2.2 Scenario 2: Publishing Services with XML-RPC

XML-RPC can be used to publish information to the world, providing a computer-readable
interface to information. The infrastructure for this use of XML-RPC is much like
traditional web publishing to humans, with pretty much the same security and architecture
issues, but it allows information recipients to be any kind of client that understands the
XML-RPC interface. Asin web publishing, XML-RPC publishing means that developers
have control over the server, but not necessarily the client.

The O'Reilly Network's Meerkat headline syndicator, for example, presents both a human-
readable interface (at http://meerkat.orelllynet.com) and an XML-RPC interface
(documented at http://www.oreillynet.com/pub/alrss/2000/11/14/meerkat_xmlrpc.html) to
the world. Casual readers can use the forms-based interface to query the headlines, while
developers who need to present the headline information in other forms can use XML-
RPC. This makes it easy to separate content from presentation while still working in a
Web-centric environment.

27

Web Services Essentials

2.3 XML-RPC Technical Overview
XML-RPC consists of three relatively small parts:
XML-RPC data model

A set of types for use in passing parameters, return values, and faults (error
messages)

XML-RPC request structures

An HTTP POST request containing method and parameter information
XML-RPC response structures

An HTTP response that contains return values or fault information

The data structures are used by both the request and response structures. The combination
of the three parts defines a complete Remote Procedure Call.

- It's entirely possible to use XML-RPC without getting into the

markup details presented later in this chapter. Even if you plan to

Js: stay above the details, however, you probably should read the
following sections to understand the nature of the information you'll
be passing across the network.

2.3.1 XML-RPC Data Model

The XML-RPC specification defines six basic data types and two compound data types
that represent combinations of types. While thisis a much more restricted set of types than
many programming languages provide, it's enough to represent many kinds of information,
and it seems to have hit the lowest common denominator for many kinds of program-to-
program communications.

All of the basic types are represented by simple XML elements whose content provides the
value. For example, to definea st ri ng whose value is "Hello World!", you'd write:

<string>Hell o World!</string>

o For more information on how Base 64 encoding works, see section
s | 6.8 of RFC 2045, "Multipurpose Internet Mail Extensions (MIME)
" 4¢ Pat One. Format of Internet Message Bodies', available at

http://www.ietf.org/rfc/rfc2045.txt. Base 64 is not considered an
efficient encoding format, but it does ssmplify the enclosure of binary
information within XML documents. For best results, use it

sparingly.

28

Web Services Essentials

The basic types for XML-RPC are listed in Table 2-1.

Table 2-1. Basic data types in XML-RPC

Type Value Examples
32-bit integers between - 27l e

int oria 2,147,483,648 and - 2>27<, e
2,147,483,647.

doubl e 64-bit floating-point numbers | S501P| S727- 314155 doubl &>

<bool ean>1</ bool ean>

Bool ean true (1) or false (0) <bool ean>0</ bool ean>

ASCII text, though many <string>Hel | o</ string>

string implementations support Unicode | <string>bonkers! @/ string>

. <dat eTi me. i s08601>20021125T02: 20: 04
Datesin 1SO8601 format: </ dat eTi ne. i s08601>

CCYYMMDDTHH:MM:SS <dat eTi nme. i s08601>20020104T17: 27: 30
</ dat eTi ne. i s08601>

dat eTi ne. i s08601

Binary information encoded as <base64>SGVsh&Bs| Fdvcmkkl Q==

paseod Base 64, as defined in RFC 2045 </ base64>

These basic types are aways enclosed in val ue elements. Strings (and only strings) may
be enclosed in a val ue element but omit the st ri ng element. These basic types may be
combined into two more complex types, arrays and structs. Arrays represent sequential
information, while structs represent name-value pairs, much like hashtables, associative
arrays, or properties.

Arrays are indicated by the arr ay element, which contains a dat a element holding the list
of values. Like other data types, the array element must be enclosed in a val ue element.
For example, the following ar r ay contains four strings:

<val ue>
<array>
<dat a>
<val ue><string>This </string></val ue>
<val ue><string> s </string></val ue>
<val ue><string>an </string></val ue>
<val ue><string>array. </ string></val ue>
</ dat a>
</ array>
</ val ue>

The following ar r ay contains four integers:

<val ue>
<array>
<dat a>
<val ue><i nt >7</i nt ></ val ue>
<val ue><i nt >1247</ i nt ></ val ue>
<val ue><i nt >-91</ i nt ></ val ue>
<val ue><i nt >42</ i nt ></ val ue>
</ dat a>
</ array>
</ val ue>

29

Arrays can aso contain mixtures of different types, as shown here:

<val ue>
<array>
<dat a>

<val ue><bool ean>1</ bool ean></ val ue>

<val ue><string>Chaotic collection
<val ue><i nt >-91</ i nt ></ val ue>

<val ue><doubl e>42. 14159265</ doubl e></ val ue>

</ dat a>
</ array>
</ val ue>

Creating multidimensional arraysis simple - just add an array inside of an array:

<val ue>
<array>
<dat a>
<val ue>
<array>
<dat a>
<val ue><
<val ue><
<val ue><
</ dat a>
</array>
</val ue>
<val ue>
<array>
<dat a>
<val ue><
<val ue><
<val ue><

nt >10</i
nt >20</i
nt >30</i

nt >15</i
nt >25</ i
nt >35</i

nt ></ val ue>
nt ></ val ue>
nt ></ val ue>

nt ></ val ue>
nt ></ val ue>
nt ></ val ue>

eh?</ string></val ue>

Web Services Essentials

</ dat a>
</ array>
</val ue>
</ dat a>
</ array>
</ val ue>

It's alot of markup, but for the most part, XML-RPC developers won't have to deal with
this markup directly.

XML-RPC won't do anything to guarantee that arrays have a
N consistent number or type of values. You'll need to make sure that
you write code that consistently generates the right number and type
of output values if consistency is necessary for your application.

Structs contain unordered content, identified by name. Names are strings, though you
don't have to enclose them in string elements. Each struct element contains a list of
menber elements. venber elements each contain one nane element and one val ue element.
The order of membersis not considered important. While the specification doesn't require
names to be unique, you'll probably want to make sure they are unique for consistency.

30

Web Services Essentials

A simple struct might look like:

<val ue>
<struct>
<menber >
<nane>gi venNane</ nane>
<val ue><stri ng>Joseph</string></val ue>
</ nmenber >
<menber >
<nanme>f am | yNanme</ nane>
<val ue><stri ng>Di Nar do</ stri ng></val ue>
</ nenber >
<menber >
<nane>age</ nane>
<val ue><i nt >27</i nt ></ val ue>
</ nenber >
</struct>
</val ue>

Structs can also contain other structs, or even arrays. For example, this struct contains a
string, a struct, and an array:

<val ue>
<struct>
<menber >
<name>nane</ hame>
<val ue><stri ng>a</ string></val ue>
</ nenber >
<menber >
<name>at tri but es</ nane>
<val ue><struct >
<nmenber >
<nane>hr ef </ nanme>
<val ue><string>http://exanpl e. conx/ string></val ue>
</ menber >
<nmenber >
<nane>t ar get </ nane>
<val ue><string>_t op</string></val ue>
</ menber >
</ struct ></val ue>
</ nenber >
<menber >
<name>cont ent s</ nanme>
<val ue><array>
<dat a>
<val ue><string>This </string></val ue>
<val ue><string>is </string></val ue>
<val ue><string>an exanpl e. </ string></val ue>
</ dat a>
</ array></val ue>
</ menber >
</ struct>
</ val ue>

Arrays can aso contain structs. You can, in some cases, use these complex types to

represent object structures, but at some point you may find it easier to use SOAP for that
kind of complex transfer.

31

2.3.2 XML-RPC Request Structure

Web Services Essentials

XML-RPC requests are a combination of XML content and HTTP headers. The XML
content uses the data typing structure to pass parameters and contains additional
information identifying which procedure is being called, while the HTTP headers provide

awrapper for passing the request over the Web.

Each request contains a single XML document, whose root element is a net hodcal |
element. Each net hodcal | €lement contains a et hodNare element and a par ans €lement.
The net hodnarre €lement identifies the name of the procedure to be called, while the par ans
element contains alist of parameters and their values. Each par arms element includes a list

of par ameélements which in turn contain val ue elements.

For example, to pass a request to a method called circl eArea , which takes a poubl e

parameter (for the radius), the XML-RPC request would look like:

<?xm version="1.0"?>
<net hodCal | >
<net hodNane>ci r cl eAr ea</ net hodNane>
<par ans>
<par anp
<val ue><doubl e>2. 41</ doubl e></ val ue>
</ par ane
</ par ans>
</ met hodCal | >

To pass aset of arraysto asort Array procedure, the request might look like:

<?xm version="1.0""?>
<met hodCal | >
<met hodNanme>sort Arr ay</ met hodNanme>
<par ans>
<par ane
<val ue>
<array>
<dat a>
<val ue><i nt >10</i nt ></ val ue>
<val ue><i nt >20</i nt ></ val ue>
<val ue><i nt >30</i nt ></ val ue>
</ dat a>
</array>
</val ue>
</ par ane
<par ane
<val ue>
<array>
<dat a>
<val ue><stri ng>A</string></val ue>
<val ue><stri ng>C</ stri ng></val ue>
<val ue><stri ng>B</ stri ng></val ue>
</ dat a>
</ array>
</ val ue>
</ par ane
</ par ans>
</ net hodCal | >

32

Web Services Essentials

The HTTP headers for these requests will reflect the senders and the content. The basic
template looks like:

POST /target HTTP 1.0

User-Agent: ldentifier

Host: host. naki ng. request

Content - Type: text/xm

Content-Length: |length of request in bytes

The information in italics may change from client to client or from request to request. For
example, if the circl eArea method were available from an XML-RPC server listening at
Ixmirpc, the request might look like:

POST /xm rpc HTTP 1.0

User - Agent: nyXMLRPCO ient/1.0
Host: 192.168.124.2

Content - Type: text/xm

Content - Lengt h: 169

Assembled, the entire request would look like:

POST /xm rpc HTTP 1.0

User - Agent: nyXMLRPCO ient/1.0
Host: 192.168.124.2

Content - Type: text/xm

Content - Lengt h: 169

<?xm version="1.0"?>
<net hodCal | >
<nmet hodNane>ci r cl eAr ea</ net hodNane>
<par ans>
<par an®
<val ue><doubl e>2. 41</ doubl e></ val ue>
</ par ane
</ par ans>
</ met hodCal | >

It's an ordinary HT TP request, with a carefully constructed payload.
2.3.3 XML-RPC Response Structure

Responses are much like requests, with a few extra twists. If the response is successful -
the procedure was found, executed correctly, and returned results - then the XML-RPC
response will look much like a request, except that the ret hodcal | element is replaced by a
net hodResponse element and there is no net hodNane element:

<?xm version="1.0"?>
<met hodResponse>
<par ans>
<par ane
<val ue><doubl e>18. 24668429131</ doubl e></ val ue>
</ par ane
</ par ans>
</ met hodResponse>

33

Web Services Essentials

s The user- Agent header will typically reflect the XML-RPC library
. used to assemble the request, not the particular program making the
"4 cal. This is a bit of a change from the browser world, where

"browser sniffing” using that header expects to identify the particular
program - say, Opera 6.0 for Linux - making the request.

An XML-RPC response can only contain one parameter, despite the use of the enclosing
params element. That parameter, may, of course, be an array or a struct, so it is possible to
return multiple values. Even if your method isn't designed to return avalue (voi d methods
in C, C++, or Java, for instance) you still have to return something. A "success value" -
perhaps a boolean set to true (1) - isatypical approach to getting around this limitation.

If there was a problem in processing the XML-RPC request, the net hodresponse element
will contain a fault €element instead of a parans element. The fault element, like the
params element, has only a single value. Instead of containing a response to the request,
however, that value indicates that something went wrong. A fault response might look
like:

<?xm version="1.0"?>
<met hodResponse>
<faul t>
<val ue><string>No such mnet hod! </ string></val ue>
</faul t>
</ met hodResponse>

The response could also ook like:

<?xm version="1.0"?>
<met hodResponse>
<faul t>
<val ue>
<struct>
<nenber >
<nane>code</ nane>
<val ue><i nt >26</i nt >
</ menber >
<nenber >
<nanme>nessage</ nane>
<val ue><string>No such nethod! </ string></val ue>
</ menber >
</ struct>
</val ue>
</faul t>
</ met hodResponse>

XML-RPC doesn't standardize error codes at all. You'll need to check the documentation
for particular packages to see how they handle faults.

Like requests, responses are packaged in HTTP and have HTTP headers. All XML-RPC
responses use the 200 o response code, even if a fault is contained in the message.

Headers use a common structure similar to that of requests, and a typical set of headers
might look like:

Web Services Essentials

HTTP/ 1.1 200 XK

Date: Sat, 06 Cct 2001 23:20:04 GVII
Server: Apache.1.3.12 (Unix)
Connection: close

Content - Type: text/xm
Content-Length: 124

XML-RPC only requires HTTP 1.0 support, but HTTP 1.1 is compatible. The server
header indicates the kind of web server used to process requests for the XML-RPC
implementation. The header may or may not reflect the XML-RPC server implementation
that processed this particular request. The Content- Type must be set to text/xni ; the
Cont ent - Lengt h header specifies the length of the response in bytes. A complete response,
with both headers and a response payload, would look like:

HTTP/ 1.1 200 K

Date: Sat, 06 Cct 2001 23:20:04 GvVII
Server: Apache.1.3.12 (Unix)
Connection: close

Content - Type: text/xm
Content-Length: 124

<?xm version="1.0"?>
<met hodResponse>
<par ans>
<par an®
<val ue><doubl e>18. 24668429131</ doubl e></ val ue>
</ par ane
</ par ans>
</ met hodResponse>

After the response is delivered from the XML-RPC server to the XML-RPC client, the
connection is closed. Follow-up requests need to be sent as separate XML-RPC
connections.

2.4 Developing with XML-RPC

Using XML-RPC in your applications generally means adding an XML-RPC library and
making some of your function calls through that library. Creating functions that will work
smoothly with XML-RPC requires writing code that uses only the basic types XML-RPC
supports. Otherwise, there is very little fundamental need to change your coding style.

Adding XML-RPC support may require writing some wrapper code that connects your
code with the library, but this generally isn't very difficult.

- As XML-RPC becomes more and more widespread, some
. environments are building in XML-RPC. UserLand Frontier has
" 4 done that for years, while the Perl and Python communities are

discussing similar integration.

To demonstrate XML-RPC, we're going to create a server that uses Java to process XML-
RPC messages, and Java and Perl clients to call procedures on that server. Although this
demonstration is simple, it illustrates the connections needed to establish communications
between programs using XML-RPC.

35

Web Services Essentials

The Java side of the conversation uses the Apache XML Project's Apache XML-RPC,
available at http://xml.apache.org/xmirpc/. The Apache package includes afew key pieces
that make integrating XML-RPC with Java easier:

An automated registration process for adding methods to the XML-RPC server

A built-in server that only speaks XML-RPC, reducing the need to create full-
blown servlets

A client package that makes calling remote methods fairly simple

This demonstration will use a procedure registered with the built-in server of the Apache
package and a client for testing the procedure.

s For much more information about the Apache XML-RPC package,
s | including data type details and information about creating servlets for
" 4 XML-RPC processing, see Chapter 3 of Programming Web Services

with XML-RPC (O'Reilly), by Simon St.Laurent, Edd Dumbill, and
Joe Johnston, available online a
http://www.oreilly.com/catal og/progxmlrpc/chapter/ch03.html.

The procedure that well test returns the area of a circle and is defined in a class called
AreaHand! er , @ shown in Example 2-1.

Example 2-1. A simple Java procedure

package com eceram . xm rpc;
public class AreaHandl er {
publi ¢ doubl e circl eArea(doubl e radius) {

doubl e val ue=(radi us*radi us*Math. PI');
return val ue;

}

The circl earea method of the AreaHandl er class takes a doubl e value representing the
radius, and returns a doubl e value representing the area of a circle that has that radius.
There's nothing in the Ar eaHandl er classthat is specific to XML-RPC at all.

Making the ci rcl eArea method available via XML-RPC requires two steps. The method
must be registered with the XML-RPC package, and some kind of server must make the
package accessible viaHTTP. The Areaserver class shown in Example 2-2 performs both
these steps.

Example 2-2. Setting up a Java XML-RPC server

package com eceram . xm rpc;

i mport java.io.lOException;

i mport org.apache. xm rpc. WebSer ver;
i nport org.apache. xm rpc. Xm Rpc;

public class AreaServer {

public static void main(String[] args) {

36

Web Services Essentials

if (args.length < 1) {
Systemout. println("Usage: java AreaServer [port]");
Systemexit(-1);
}

try {
start Server(args);

} catch (1 CException e) {
Systemout.println("Could not start server: " +
e. get Message());
}
}

public static void startServer(String[] args) throws | COException {
/'l Start the server, using built-in version
Systemout.printin("Attenpting to start XM.-RPC Server...");
WebServer server = new WebServer (I nteger.parselnt(args[0]));

Systemout.printIn("Started successfully.");

/'l Register our handler class as area
server. addHandl er ("area", new AreaHandler());
Systemout. println("Regi stered AreaHandl er class to area.");

System out. println("Now accepting requests. (Halt programto stop.)");

The mai n method checks that there is an argument on the command line specifying on
which port to run the server. The method then passes that information to st art Server ,
which starts the built-in server. Once the server is started (it begins running when created),
the program calls the addHandl er method to register an instance of the AreaHandl er class
under the name area. The org. apache. xni rpc. Xm Rpc class deals with all of the method
signature details, making it possible to start an XML-RPC service in about two lines of
critical code. To fire up the server, just execute com ecerani . xni r pc. AreaSer ver from the
command line, specifying a port.

C:\ora\xm rpc\java>j ava com ecerami . xm rpc. AreaServer 8899
Attenpting to start XM.-RPC Server...

Started successfully.

Regi stered AreaHandl er class to area.

Now accepting requests. (Halt programto stop.)

The Aread i ent class shown in Example 2-3 tests the Areaserver , once started, from the
command line. The Aread ient class aso uses the XML-RPC library and only needs to
use afew lines of code (in the ar ead r cl e method) to make the actual call.

Example 2-3. A Java client to test the XML-RPC server

package com eceram . xm rpc;

i mport java.io.|OException;

i mport java.util.Vector;

i mport org.apache. xm rpc. Xm Rpc;

i nport org. apache. xm rpc. Xm RpcC i ent;

i nport org. apache. xm rpc. Xm RpcExcepti on;

public class Areadient {

public static void main(String args[]) {
if (args.length < 1) {

37

Web Services Essentials

Systemout. printl n(
"Usage: java AreaCient [radius]");
Systemexit(-1);
}

AreaClient client = new AreaClient();
doubl e radi us = Doubl e. parsebDoubl e(args[0]);

try {
doubl e area = client.areaG rcle(radius);

/1l Report the results
Systemout.println("The area of the circle would be: " + area);

} catch (I Oexception e) {

Systemout.println("lO Exception: " + e.getMessage());
} catch (Xm RpcException e) {

Systemout. println("Exception within XM.-RPC. " + e.getMessage());
}

}

public doubl e areaCircle (double radius)
throws | CException, Xm RpcException {

/] Create the client, identifying the server
Xm RpcClient client =
new Xm RpcCient("http://1ocal host:8899/");

/'l Create the request parameters using user input
Vector parans = new Vector();
par ans. addEl ement (new Doubl e (radi us));

/1 1ssue a request
oj ect result = client.execute("area.circleArea", parans);

String resultStr = result.toString();
doubl e area = Doubl e. parseDoubl e(resul tStr);
return area,;

}

The nein method parses the command line and reports results to the user, but the
areaCircl e method handles al of the interaction with the XML-RPC service. Unlike the
server, which runs continuously, the client runs once in order to get a particular result. The
same request may be reused or modified, but each request is a separate event. For this
application, we just need to make one request, using the value from the command line as
an argument. The client constructor takes a URL as an argument, identifying which server
it should contact with requests.

Making requests also requires additional setup work that wasn't necessary in creating the
server. While the server could rely on method signatures to figure out which parameters
went to which methods, the client doesn't have any such information. The Apache
implementation takes argumentsin a vect or object, which requires using the Java wrapper
classes (like the Doubl e Object for doubl e primitives) around the arguments. Once that
vect or has been constructed, it is fed to the execut e method along with the name of the
procedure being called. In this case, the name of the method is area.circleArea ,
reflecting that the Arearandl er class was registered on the server with the name area and
that it contains amethod called ci r cl eAr ea.

When the execut e method is called, the client makes an XML-RPC request to the server
specified in its constructor. The request calls the method identified by the first argument,

38

Web Services Essentials

area.circleArea In this case, and passes the contents of the second argument as
parameters. This produces the following HTTP response.

POST / HTTP/ 1.1

Content-Length: 175

Content - Type: text/xm

User - Agent: Javal. 3.0

Host: | ocal host: 8899

Accept: text/htm, inmage/gif, image/jpeg, *; g=.2, */*;, q=.2
Connection: keep-alive

<?xm version="1.0" encodi ng="1S0O 8859-1"?>

<met hodCal | ><nret hodNane>ar ea. ci r cl eAr ea</ nmet hodNane>
<par ans>

<par anp<val ue><doubl e>3. 0</ doubl e></ val ue></ par an»
</ par ans>

</ met hodCal | >

The server responds with a et hodresponse , which the execute function reports as an
vj ect . Although the XML-RPC response will provide type information about that oo ect
, and the underlying content will conform to that type, oj ect is as specific a type as the
execute function can generaly return while till conforming to Javas strong type-
checking.

The result of al this work looks pretty simple:

C:\ora\xm rpc\java>j ava comeceram .xmrpc. AreaCient 3
The area of the circle would be: 28.274333882308138

C:\ora\xm rpc\java>j ava comeceram .xmrpc. AreaCient 4
The area of the circle would be: 50.26548245743669

Using XML-RPC to connect Java programs to Java programs isn't especialy exciting,
however. It certainly works - and it can be a great convenience when the only public
access to a Java method is through XML-RPC - but much of XML-RPC's potential liesin
connecting other environments. To demonstrate that this works with a broader array of
environments, we'll create a Perl client that calls the same function.

The Perl client will use the Frontier::RPC module, an implementation of XML-RPC
created by Ken MacLeod. (When MacLeod created this library, XML-RPC was primarily
a part of UserLand Frontier.) The client component of the Frontier::RPC module is called
Frontier::Client.

Frontier::RPC and all of the modules it uses are available from CPAN
at http://www.cpan.org.

oA
=
o
wh
L

B

The logic for the Perl version of the XML-RPC call is much like that of the Java version,
except that Perl's flexibility alows us to skip packaging parameters into a vector. The
program shown in Example 2-4 accepts a r adi us value from the command line, creates a
new XML-RPC connection, and passes the radius value as a double to the
area. circl eArea method. Then the program prints the result.

39

Web Services Essentials

Example 2-4. An XML-RPC client in Perl

use Frontier::dient;

$r adi us=@\RGV[0] ;

print "for radius: ", $radius, "\n";

ny $client=Frontier::Cient->newurl=>"http://127.0.0.1:8899");

print " The area of the circle would be: ", $client->call('area.circleArea',
Frontier:: RPC2: : Doubl e- >new($radi us)), "\n";

The trickiest part of the procedure call is the casting that needs to be done to ensure that
the number is interpreted as a double. Without Frontier:: RPC2: : Doubl e- >new($r adi us) ,
the Frontier::RPC module will interpret the radius as a string or an integer unless it has a
decimal value. Frontier::RPC provides a set of modules that performs this work on Perl
values in order to map Perl's loosely typed values to the explicit typing required by XML-
RPC. When used on the command line, the Perl procedure call produces results much like
those of the Java client:

C:\ora\xm rpc\perl>perl circle.pl 3
for radius: 3
The area of the circle would be: 28.274333882308138

C:\ora\xm rpc\perl>perl circle.pl 4
for radius: 4
The area of the circle would be: 50.26548245743669

s For more information on both the Java and Perl implementations of
. XML-RPC, as well as implementations in Python, PHP, and Active
" 4 Server Pages, see Programming Web Services with XML-RPC

(O'Reilly).

2.5 Beyond Simple Calls

XML-RPC is avery smple concept with a limited set of capabilities. Those limitations are
in many ways the most attractive feature of XML-RPC, as they substantially reduce the
difficulty of implementing the protocol and testing its interoperability. While XML-RPC
is simple, the creative application of simple tools can create sophisticated and powerful
architectures. In cases where a wide variety of different systems need to communicate,
XML-RPC may be the most appropriate lowest common denominator.

Some use cases only require basic functionality, like the library-style functionality
described earlier. XML-RPC can support much richer development than these examples
show, using combinations of arrays and structs to pass complex sets of information. While
calculating the area of a circle may not be very exciting, working with matrices or
processing sets of strings may be more immediately worthwhile. XML-RPC itself doesn't
provide support for state management, but applications can use parameters to sustain
conversations beyond a single request-response cycle, much as web developers use
cookies to keep track of extended conversations.

40

Web Services Essentials

Servers may be able to use XML-RPC to deliver information requested by clients,
providing a window on a large collection of information. The O'Reilly Network's Meerkat
uses XML-RPC this way, letting clients specify the information they need to receive
through XML-RPC procedures. XML-RPC can also be very useful in cases where a client
needs to deliver information to a server, both for logging-style operations and operations
where the client needs to set properties on a server program. The richness of the interface
is up to the developer, but the possibilities are definitely there.

41

Web Services Essentials

Part Ill: SOAP

Chapter 3 - SOAP Essentials
Chapter 4 - Apache SOAP Quick Start

Chapter 5 - Programming Apache SOAP

42

Web Services Essentials

Chapter 3. SOAP Essentials

SOAP is an XML-based protocol for exchanging information between computers.
Although SOAP can be used in a variety of messaging systems and can be delivered viaa
variety of transport protocols, the initial focus of SOAP is remote procedure calls
transported via HTTP. SOAP therefore enables client applications to easily connect to
remote services and invoke remote methods. For example (as we shall soon see), a client
application can immediately add language trandation to its feature set by locating the
correct SOAP service and invoking the correct method.

Other frameworks, including CORBA, DCOM, and Java RMI, provide similar
functionality to SOAP, but SOAP messages are written entirely in XML and are therefore
uniquely platform- and language-independent. For example, a SOAP Java client running
on Linux or a Perl client running on Solaris can connect to a Microsoft SOAP server
running on Windows 2000.

SOAP therefore represents a cornerstone of the web service architecture, enabling diverse
applications to easily exchange services and data.

Although till in its infancy, SOAP has received widespread industry support. Dozens of
SOAP implementations now exist, including implementations for Java, COM, Perl, C#,
and Python. At the same time, hundreds of SOAP services are blossoming across the
Web.

This chapter aims to provide you with the essentials of SOAP. The following topics are
covered:

A quick overview of the SOAP protocol and a sample SOAP conversation

Details about the SOAP XML Message specification

An overview of the SOAP encoding rules, including rules for simple types, arrays,
and structs

Details about using SOAP viaHTTP

An overview of the W3C activities related to SOAP

An overview of the four main SOAP implementations and a description of the
main SOAP interoperability issues

3.1 SOAP 101

The SOAP specification defines three major parts:

SOAP envel ope specification
The SOAP XML Envelope defines specific rules for encapsulating data being
transferred between computers. This includes application-specific data, such as the
method name to invoke, method parameters, or return values. It can aso include

information about who should process the envelope contents and, in the event of
failure, how to encode error messages.

43

Web Services Essentials

Data encoding rules

To exchange data, computers must agree on rules for encoding specific data types.

For example, two computers that process stock quotes need an agreed-upon rule for
encoding float datatypes; likewise, two computers that process multiple stock quotes
need an agreed-upon rule for encoding arrays. SOAP therefore includes its own set
of conventions for encoding data types. Most of these conventions are based on the
W3C XML Schema specification.

RPC conventions

SOAP can be used in a variety of messaging systems, including one-way and two-
way messaging. For two-way messaging, SOAP defines a smple convention for
representing remote procedure calls and responses. This enables a client application
to specify a remote method name, include any number of parameters, and receive a
response from the server.

To examine the specifics of the SOAP protocol, we begin by presenting a sample SOAP
conversation. XMethods.net provides a simple weather service, listing current temperature
by zip code. (SeeFigure 3-1.) The service method, get Tenp , requires a zip code string and
returns asingle float value.

Figure 3-1. SOAP in action: connecting to the XMethods weather service

SOUP request:
seovame | WRAES He FEmPEITRAES frossssasvinsenssmnnsnaseiny

: for2ip eode: 100762
HTTP ;
Y
SOAP SOAP
dlient dient
A
: HTTP
o eeeseseesmamssessesser oo SOAPresponse: | i
71 Degrees Fafrenfrelt”

3.1.1 The SOAP Request

The client request must include the name of the method to invoke and any required
parameters. Hereisasample client request sent to XMethods:

<?xm version='"1.0" encodi ng=" UTF-8' ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_.Schena" >
<SQAP- ENV: Body>
<nsl: get Tenp
xm ns: ns1="urn: xnet hods- Tenper at ur e"
SOAP- ENV: encodi ngStyl e="htt p: //schenas. xnm soap. or g/ soap/ encodi ng/ ">
<zi pcode xsi:type="xsd: string">10016</zi pcode>
</ nsl: get Tenp>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

Web Services Essentials

There are a couple of important elements to note here. First, the request includes a single
mandatory Envel ope element, which in turn includes a mandatory Body €l ement.

Second, a total of four XML namespaces are defined. Namespaces are used to
disambiguate XML elements and attributes, and are often used to reference externa
schemas. In our sample SOAP request, we'll use namespaces to disambiguate identifiers
associated with the SOAP Envelope (http://schemas.xmlsoap.org/soap/envelope/), data
encoding via XML Schemas (http://www.w3.org/2001/XMLSchema-instance and
http://mww.w3.0rg/2001/XMLSchema), and application identifiers specific to XMethods
(urn:xmethods-Temperature). This enables application modularity, while also providing
maximum flexibility for future changes to the specifications.

The Body element encapsulates the main "payload” of the SOAP message. The only
element is get Tenp , Which is tied to the XMethods namespace and corresponds to the
remote method name. Each parameter to the method appears as a subelement. In our case,
we have a single zip code element, which is assigned to the XML Schema xsd: st ri ng data
type and set to 10016. If additional parameters are required, each can have its own data

type.
3.1.2 The SOAP Response

Here is the SOAP response from XMethods:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" >
<SQOAP- ENV: Body>
<nsl: get TenpResponse
xm ns: ns1="urn: xmet hods- Tenper at ur e"
SOAP- ENV: encodi ngStyl e="htt p: //schenas. xn soap. or g/ soap/ encodi ng/ ">
<return xsi:type="xsd:float">71. 0</return>
</ nsl: get TenpResponse>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

Just like the request, the response includes Envel ope and Body elements, and the same four
XML namespaces. This time, however, the Body element includes a single
get TenpResponse element, corresponding to our initial request. The response element
includes a single return element, indicating an xsd: f | oat datatype. As of thiswriting, the
temperature for zip code 10016 is 71 degrees Fahrenheit.

3.2 The SOAP Message

If you are eager to start coding your own SOAP applications, you may want to skip ahead
to the Section 3.6 section, later in this chapter. Otherwise, the following section provides
additional details regarding the SOAP specification itself.

A one-way message, a request from a client, or a response from a server is officialy

referred to as a SOAP message. Every SOAP message has a mandatory Envel ope element,
an optiona Header element, and a mandatory Body element. (See Figure 3-2.) Each of

45

Web Services Essentials

these elements has an associated set of rules, and understanding the rules will help you
debug your own SOAP applications.

Figure 3-2. Main elements of the XML SOAP message

SOAP message

Envelape {required)

Header (optional)

Body (required)

Fault (optional)

3.2.1 Envelope

Every SOAP message has a root Envel ope element. In contrast to other specifications,
such as HTTP and XML, SOAP does not define a traditional versioning model based on
major and minor release numbers (e.g., HTTP 1.0 versus HTTP 1.1). Rather, SOAP uses
XML namespaces to differentiate versions. The version must be referenced within the
Envel ope element. For example:

<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ "

The SOAP 1.1 namespace URI is http://schemas.xmlsoap.or g/soap/envel ope/, whereas the
SOAP 1.2 namespace URI is http://mwww.w3.0rg/2001/09/soap-envelope. ™ If the Envel ope
isin any other namespace, it is considered a versioning error.

[The exact val ue of the SOAP 1.2 envelope namespace will likely change to reflect the final date of
the SOAP 1.2 release. The value, http://mww.w3.0rg/2001/09/soap-envelope reflects the
specification from September, 2001.

3.2.2 Header

The optional Header element offers a flexible framework for specifying additional
application-level requirements. For example, the Header element can be used to specify a
digital signature for password-protected services; likewise, it can be used to specify an
account number for pay-per-use SOAP services. Many current SOAP services do not
utilize the Header element, but as SOAP services mature, the Header framework provides
an open mechanism for authentication, transaction management, and payment
authorization.

The details of the Header element are intentionally open-ended, thereby providing

maximum flexibility for application providers. The protocol does, however, specify two
header attributes:

46

Web Services Essentials

Actor attribute

The SOAP protocol defines a message path as alist of SOAP service nodes. Each of
these intermediate nodes can perform some processing and then forward the message
to the next node in the chain. By setting the Act or attribute, the client can specify the
recipient of the SOAP header.

MustUnderstand attribute

Indicates whether a Header element is optional or mandatory. If set to true ,? the
recipient must understand and process the Header attribute according to its defined
semantics, or return afault. (See Table 3-2 for the must Under st and fault code.)

[30AP 1.1 uses integer values of 1/0 for the Must Under st and attribute; SOAP 1.2 uses
Boolean values of true/1/fal se/0.

The Header specifies a payment account, which must be understood and processed by the
SOAP server. Hereis an example Header

<SOAP- ENV: Header >
<nsl: Payment Account xm ns: nsl="urn:eceram " SOAP-ENV: nust Understand="true">
or seni go473
</ nsl: Paynent Account >
</ SOAP- ENV: Header >

3.2.3 Body

The Body element is mandatory for al SOAP messages. As we have already seen, typical
uses of the Body element include RPC requests and responses.

3.2.4 Fault

In the event of an error, the Body element will include a Fault element. The fault
subelements are defined in Table 3-1 and include the f aul t Code , faul t String , f aul t Act or
, and detai| elements. Predefined SOAP fault codes are defined in Table 3-2. The
following code is a sample Fault. The client has requested a method named
val i dat eCredi t card , but the service does not support such a method. This represents a
client request error, and the server returns the following SOAP response:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/"
xm ns: xsi ="http://ww. w3. org/ 1999/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 1999/ XM_.Schena" >
<SQAP- ENV: Body>
<SQAP- ENV: Faul t >
<faul t code xsi:type="xsd:string">SOAP- ENV: i ent </faul t code>
<faultstring xsi:type="xsd:string">
Failed to locate nmethod (ValidateCreditCard) in class
(exanpl esCreditCard) at /usr/local/ActivePerl-5.6/1ib/
site_perl/5.6.0/ SOAP/ Lite. pm|ine 1555.
</faul tstring>
</ SCAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

47

Web Services Essentials

Table 3-1. SOAP fault subelements

Element name | Description

f aul t Code

A text code used to indicate a class of errors. See Table 3-2 for alisting of
predefined fault codes.

faul t String A human-readable explanation of the error.

faul t Act or

A text string indicating who caused the fault. Thisis useful if the SOAP
message travel s through several nodes in the SOAP message path, and the
client needs to know which node caused the error. A node that does not act
as the ultimate destination must include a f aul t Act or element.

An element used to carry application-specific error messages. The det ai |

det ai | .)))
el element can contain child elements, called detail entries.
Table 3-2. SOAP fault codes
Name Description
SOAP- Indicates that the SOAP Envel ope € ement included an invalid

ENV:VersionMismatch

namespace, signifying a version mismatch.

SOAP-
ENV:MustUnderstand

Indicates that the recipient is unable to properly process a Header
element with anust Under st and attribute set tot rue. This ensures

that nust Under st and elements are not silently ignored.

Indicates that the client request contained an error. For example,
SOAP-ENV:Client the client has specified a nonexistent method name, or has
supplied the incorrect parameters to the method.

Indicates that the server is unable to process the client request. For
SOAP-ENV:Server example, a service providing product data may be unable to
connect to the database.

3.3 SOAP Encoding

SOAP includes a built-in set of rules for encoding data types. This enables the SOAP
message to indicate specific data types, such as integers, floats, doubles, or arrays. Most
of the time, the encoding rules are implemented directly by the SOAP toolkit you choose,
and are therefore hidden from you. It is nonetheless useful to understand the basics of
SOAP encoding, particularly if you are intercepting SOAP messages and trying to debug
an application. Note also that while the W3C specification encourages the use of SOAP
encoding rules, these rules are not required; this enables you to choose a different encoding
schema, should the need arise.

When exploring the SOAP encoding rules, it is important to note that the XML 1.0
specification does not include rules for encoding data types. The origina SOAP
specification therefore had to define its own data encoding rules. Subsequent to early
drafts of the SOAP specification, the W3C released the XML Schema specification. The
XML Schema Part 2: Datatypes specification provides a standard framework for encoding
data types within XML documents. The SOAP specification therefore adopted the XML
Schema conventions. However, even though the latest SOAP specification adopts all the

48

Web Services Essentials

built-in types defined by XML Schema, it till maintains its own convention for defining
constructs not standardized by XML Schema, such as arrays and references. Arrays are
discussed in detail in the Section 3.3.2 section, later in this chapter.

SOAP data types are divided into two broad categories. scalar types and compound types.
Scalar types contain exactly one value, such as a last name, price, or product description.
Compound types contain multiple values, such as a purchase order or alist of stock quotes.
Compound types are further subdivided into arrays and structs. Arrays contain multiple
values, each of which is specified by an ordinal position. Structs also contain multiple
values, but each element is specified by an accessor name.

The encoding style for a SOAP message is set via the soaP- ENV: encodi ngSt yl e attribute.
To use SOAP 1.1 encoding, use the value ht t p: // schenas. xm soap. or g/ soap/ encodi ng/ .
To use SOAP 1.2 encoding, use the value ht t p: / / www. w8. or g/ 2001/ 09/ soap- encodi ng.

3.3.1 Scalar Types
For scalar types, SOAP adopts al the built-in ssmple types specified by the XML Schema
specification. This includes strings, floats, doubles, and integers. Table 3-3 lists the main

simple types, excerpted from the XML Schema Pat 0. Primer
(http://lwww.w3.0rg/TR/2000/WD-xmlschema-0-20000407/).

Table 3-3. A list of the main XML Schema built-in simple types

Simple type Example(s)

string Web services

Boolean true, false, 1, 0

float -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN
double -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN
decimal -1.23, 0, 123.4, 1000.00

binary 100010

integer -126789, -1, 0, 1, 126789

nonPositivel nteger -126789, -1, 0

negativel nteger -126789, -1

long -1, 12678967543233

int -1, 126789675

short -1, 12678

byte -1, 126

nonNegativel nteger 0, 1, 126789

unsignedLong 0, 12678967543233

unsignedint 0, 1267896754

49

Web Services Essentials

Simpletype Example(s)

unsignedShort 0, 12678

unsignedByte 0, 126

positivel nteger 1, 126789

date 1999-05-31

time 13:20:00.000, 13:20:00.000-05:00

For example, here is a SOAP response with a double data type:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. wW3. or g/ 2001/ 09/ soap- envel ope"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_.Schena" >
<SQAP- ENV: Body>
<nsl: get Pri ceResponse
xm ns: ns1="urn: exanpl es: pri ceservi ce"
SQOAP- ENV: encodi ngStyl e="ht t p: // www. w3. or g/ 2001/ 09/ soap- encodi ng" >
<return xsi:type="xsd: doubl e">54.99</return>
</ nsl: get Pri ceResponse>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

As you can see, the xsi:type atribute is set to xsd: doubl e , indicating a return double
vaue.

The SOAP specification provides several options for indicating the data type of a specific
XML element. The first option is to specify an xsi : t ype attribute for each element. The
second option is to store data type information within an external XML Schema or even
within human-readable documentation. SOAP toolkits vary in their implementation of this
requirement. The Apache SOAP toolkit, for example, automatically includes an xsi : t ype
attribute with every element, whereas the Microsoft SOAP toolkit omits the xsi: type
attribute and assumes an externa XML Schema definition. The examples within this
chapter are derived from Apache SOAP and therefore use the xsi : t ype attribute. See the
Section 3.6.1 section, later in this chapter, for additional details.

3.3.2 Compound Types

SOAP arrays have a very specific set of rules, which require that you specify both the
element type and array size. SOAP aso supports multidimensional arrays, but not all
SOAP implementations support multidimensional functionality. (Check your chosen
SOAP toolkit for details.)

To create an array, you must specify it as an xsi:type of Array. The array must aso
include an arrayType attribute. This attribute is required to specify the data type for the
contained elements and the dimension(s) of the array. For example, the following attribute
specifies an array of 10 double values: arrayType="xsd: doubl e[10]". In contrast, the
following attribute specifies a two-dimensiona aray of strings:
arrayType="xsd:string[5,5]".

50

Web Services Essentials

Here is a sample SOAP response with an array of double values:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. wW3. or g/ 2001/ 09/ soap- envel ope"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena" >
<SQAP- ENV: Body>
<nsl: get PricelLi st Response
xm ns: nsl1="urn: exanpl es: pricelistservice"
SOAP- ENV: encodi ngStyl e="htt p: / / wwv. wW3. or g/ 2001/ 09/ soap- encodi ng" >
<return
xm ns: ns2="http://ww. W3. or g/ 2001/ 09/ soap- encodi ng"
Xsi:type="ns2: Array" ns2:arrayType="xsd: doubl e[2] ">
<item xsi:type="xsd: doubl e">54. 99</i tenv
<item xsi:type="xsd: doubl e">19. 99</i t en®
</return>
</ nsl:getPriceli st Response>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

Note that the arrayType iS Set to xsd: doubl e[2] . Each element in the array is specified as
anit emelement.

In contrast to arrays, structs contain multiple values, but each element is specified with a
unique accessor element. For example, consider an item within a product catalog. In this
case, the struct might contain a product SKU, product name, description, and price. Here
is how such a struct would be represented in a SOAP message:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOQAP- ENV="ht t p: / / www. wW3. or g/ 2001/ 09/ soap- envel ope"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_.Schena" >
<SQAP- ENV: Body>
<nsl: get Product Response
xm ns: ns1="urn: exanpl es: product servi ce"
SOAP- ENV: encodi ngStyl e="htt p: / / wwv. wW3. or g/ 2001/ 09/ soap- encodi ng" >
<return xm ns:ns2="urn: exanpl es" xsi:type="ns2: product">
<name Xxsi:type="xsd:string">Red Hat Li nux</nane>
<price xsi:type="xsd: doubl e">54. 99</pri ce>
<description xsi:type="xsd:string">
Red Hat Linux Operating System
</ descri ption>
<SKU xsi : type="xsd: string">A358185</ SKU>
</return>
</ nsl: get Product Response>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

Each element in a struct is specified with a unique accessor name. For example, the
message above includes four accessor elements: nare , price , description , and sku. Each
element can have its own data type; for example, nane is specified as astring , whereas
pri ce isspecified asadoubl e.

s All of the sample SOAP messages (including arrays, structs, and
. literal XML documents) within this section were created with the
" 4 Apache SOAP toolkit. See Chapter 5 for complete details.

51

Web Services Essentials

3.3.3 Literal Encoding

As previously noted, you are not required to use the SOAP encoding style. In fact,
occasionally you may want to ignore the SOAP encoding rules completely and embed an
entire XML document (or just a portion of the document) directly into your SOAP
message. Doing so isreferred to as literal XML encoding, and it requires that you specify
a literal XML encoding style. Within Apache SOAP, the literal XML style is specified
with the namespace http://xml.apache.org/xml-soap/literalxml.

For example, the following is a second option for encoding product information. Rather
than encoding the product as a SOAP struct, the data is encoded as a literal XML
document:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. wW3. or g/ 2001/ 09/ soap- envel ope"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_.Schena" >
<SQAP- ENV: Body>
<nsl: get Product Response
xm ns: ns1="urn: exanpl es: XMLpr oduct servi ce"
SQOAP- ENV: encodi ngSt yl e=
"http://xm .apache. org/ xm -soap/literal xm ">
<return>
<product sku="A358185">
<nanme>Red Hat Li nux</name>
<descri pti on>Red Hat Linux Operating Systenx/description>
<pri ce>54.99</pri ce></ product >
</return>
</ nsl: get Product Response>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

For a more extensive discussion of SOAP encoding rules, refer to
Programming Web Services with SOAP by James Snell, Doug
% Tidwell, and Pavel Kulchenko (O'Reilly).

&
T
-

-
.

-
wh

=

3.4 SOAP via HTTP

SOAP is not tied to any one transport protocol. In fact, SOAP can be transported via
SMTP, FTP, IBM's MQSeries, or Microsoft Message Queuing (MSMQ). However, the
SOAP specification includes details on HTTP only, and HTTP remains the most popular
SOAP transport protocol.

Quite logically, SOAP requests are sent via an HTTP request and SOAP responses are
returned within the content of the HTTP response. While SOAP requests can be sent via
an HTTP GET, the specification includes details on HTTP POST only. (HTTP POST is
preferred because most servers place a character limit on GET requests.) Additionally,
both HTTP requests and responses are required to set their content typetot ext / xni .

As an additional requirement, clients must specify a soapActi on header. The soapActi on

header is a server-specific URI used to indicate the intent of the request. This makes it
possible to quickly determine the nature of the SOAP request, without actually examining

52

Web Services Essentials

the SOAP message payload. In practice, the header is frequently used by firewalls as a
mechanism for blocking out SOAP requests or for quickly dispatching SOAP messages to
specific SOAP servers.

The SOAP specification mandates that the client must provide a soaPAct i on header, but
the actual value of the soapAction header is dependent on the SOAP server
implementation. For example, to access the AltaVista BabelFish Tranglation service,
hosted by XMethods, you must specify the urn: xnet hodsBabel Fi sh#Babel Fi sh as the
soaPAct i on header. Even if the server does not require a full soapAct i on header, the client
must specify an empty string (), or anull value. For example:

SOAPAct i on:
SOAPAct i on:

Hereis a sample request sent viaHTTP to the XMethods Babelfish Trandation service:

PCST /perl/soaplite.cgi HTTP/ 1.0

Host: services. xnet hods. com

Content-Type: text/xm; charset=utf-8

Cont ent - Lengt h: 538

SQAPAct i on: "urn: xmet hodsBabel Fi sh#Babel Fi sh"

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/"
xm ns: xsi ="http://ww. w3. org/ 1999/ XM_Schenma- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 1999/ XM_Schena" >
<SQAP- ENV: Body>

<ns1l: Babel Fi sh

xm ns: ns1="urn: xmet hodsBabel Fi sh"

SQAP- ENV: encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ " >
<transl ati onnbode xsi:type="xsd:string">en_fr</transl ati onnode>
<sourcedata xsi:type="xsd:string">Hello, world!</sourcedata>

</ nsl: Babel Fi sh>

</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

Note the content type and the soarActi on header. Also note that the Babel Fi sh method
requirestwo st ri ng parameters. The trandation mode en_fr will translate from English to
French.

Here is the response from XMethods:

HTTP/ 1.1 200 OK

Date: Sat, 09 Jun 2001 15:01:55 GVII

Server: Apache/1.3.14 (Unix) tonctat/1.0 PHP/4.0. 1pl 2
SQAPServer: SOAP::Lite/ Perl/0.50

Cache-Control : s-nmaxage=60, proxy-revalidate

Cont ent - Lengt h: 539

Cont ent - Type: text/xm

<?xm version="1.0" encodi ng="UTF-8"?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENC="ht t p: / / schemas. xm soap. or g/ soap/ encodi ng/ "
SOAP- ENV: encodi ngStyl e="htt p: // schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns: xsi ="http://ww. w3. org/ 1999/ XM_Schena- i nst ance"
xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/"
xm ns: xsd="http://ww. w3. or g/ 1999/ XM_Schena" >
<SQAP- ENV: Body>
<nanespl: Babel Fi shResponse xm ns: nanmespl="ur n: xnet hodsBabel Fi sh">
<return xsi:type="xsd:string">Bonjour, nonde!</return>

53

Web Services Essentials

</ nanmespl: Babel Fi shResponse>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

SOAP responses delivered via HTTP are required to follow the same HTTP status codes.
For example, a status code of 200 o« indicates a successful response. A status code of 500
Internal Server Error indicates that there is a server error and that the SOAP response
includesaraul t element.

Many people, including members of the W3C XML Protocol
Working Group, have argued that the meaning and use of the
di soaPAction header is extremely vague. As a result, SOAP 1.2 has
changed the status of soapAction from required to optional. Future
versions of the specification may maintain the header, but deprecate
it, in order to ensure backward compatibility.

3.5 SOAP and the W3C

SOAP 1.1 was originally submitted to the W3C in May 2000. Official submittersincluded
large companies, such as Microsoft, IBM, and Ariba, and smaller companies, such as
UserLand Software and DevelopMentor.

In September 2000, the W3C created a new XML Protocol Working Group. The goal of
the group is to hammer out an XML protocol for information exchange and recommend
the protocol as an official W3C recommendation.

In July 2001, the XML Protocol Working Group released a "working draft" of SOAP 1.2.

Within the W3C, this document is officially a work in progress, meaning that the
document is likely to be updated many times before it is finalized. However, so far, SOAP
1.2 does not represent a radical departure from SOAP 1.1 and is primarily amed at
clarifying ambiguous issues within the SOAP 1.1 specification. Most developers should
therefore find the transition from 1.1 to 1.2 relatively painless.

s The W3C has broken the SOAP 1.2 specification into two parts. Part
. | describes the SOAP messaging framework and envelope
" 4+ specification. Part |1 describes the SOAP encoding rules, the SOAP-

RPC convention, and HTTP binding details.

Once finalized, SOAP may work its way up to official W3C recommendation status. Until
that time, however, it isimportant to note that SOAP has no official commitment from the
W3C. Even SOAP 1.1 has astatus of "Note", meaning that it is currently open to the W3C
membership for discussion.

For the latest details on the XML Protocol Working Group, go to
http://www.w3.0rg/2000/xp/Group/. The working group aso hosts a public email
discussion list, available at xml-dist-app@w3.0rg.

Web Services Essentials

s SOAP originaly stood for Simple Object Access Protocol. The W3C

was uncomfortable with maintaining this definition, primarily

J¥: because the specification does not actually mandate the use of
objects. On the other hand, the W3C was also reluctant to define a
new name, such as XML Protocol, or XML-P, primarily because the
term SOAP was already well established among developers. Hence,
in a bizarre twist of fate, the name SOAP stays, but the W3C now
saysit no longer stands for anything.

o SOAP Version 11 is available online at
.2 http://www.w3.org/TR/SOAP/. The working draft of SOAP Version
"4 1.2 is available at http://www.w3.0org/TR/soapl2/. Note that the

W3C aso hosts a submisson for "SOAP Messages with
Attachments’, which separates from the core SOAP specification.
This specification enables SOAP messages to include binary
attachments, such as images and sound files. For full details, see the
W3C Note at http://www.w3.0rg/TR/SOA P-attachments.

3.6 SOAP Implementations

Dozens of SOAP implementations now freely exist on the Internet. In fact, as of this
writing, SOAPWare.org has referenced atotal of 65 implementations. Here are four of the
most popular and widely cited implementations.

Apache SOAP (http://xml.apache.org/soap/)

Open source Java implementation of the SOAP protocol; based on the IBM SOAPAJ]
implementation

Microsoft SOAP ToolKit 2.0 (http://msdn.microsoft.com/soap/default.asp)

COM implementation of the SOAP protocol for C#, C++, Visua Basic, or other
COM-compliant languages

SOAP::Lite for Perl (http://www.soaplite.com/)

Perl implementation of the SOAP protocol, written by Paul Kulchenko, that includes
support for WSDL and UDDI

GLUE from the Mind Electric (http://www.themindelectric.com)

Java implementation of the SOAP protocol that includes support for WSDL and
UDDI

55

Web Services Essentials

Complete information on Apache SOAP is provided in Chapter 4 and Chapter 5.
SOAP::Lite and GLUE are discussed briefly in Chapter 6. For a more complete list, or to
find a SOAP implementation for your language or platform of choice, check out
http://www.soapware.org/directory/4/implementations.

3.6.1 SOAP Interoperability

SOAP was specifically designed to solve platform and language interoperability
problems. It istherefore ironic that SOAP itself has its own interoperability problems, but
alas, thisis currently true. For example, as of this writing, there are known interoperability
issues between Apache SOAP, SOAP::Lite for Perl, and the Microsoft SOAP ToolKit.
Apache SOAP requires all parameters to be typed viathe xsi : t ype attribute, whereas the
Microsoft SOAP ToolKit does not require this; each implementation provides different
levels of enforcement for the nust Understand attribute; and Microsoft SOAP supports
multidimensional arrays, whereas Apache SOAP and SOAP::Lite for Perl support only
one-dimensiona arrays.

The interoperability problems stem from two main issues. First, and foremost, SOAP is
still initsinfancy. SOAP was submitted to the W3C in May 2000 and has yet to receive a
forma recommendation from the W3C. Second, dozens of SOAP implementations
currently exist, and it will take much effort to ensure that they all interoperate with each
other.

Hopefully, al the interoperability issues will be worked out soon. The implementations
themselves will mature and the SOAP specification will also mature as it makes its way
through the W3C process. For additional information on SOAP interoperability, check out
the Microsoft Interoperability Site (http://www.mssoapinterop.org) or the XMethods
Interoperability Lab (http://www.xmethods.net/ilab/). Each of these sites provides a suite
of interoperability tests and includes updated results for most of the major SOAP
implementations.

56

Web Services Essentials

Chapter 4. Apache SOAP Quick Start

Apache SOAP is an open source Java implementation of the SOAP specification. The
original Apache code is based on IBM's SOAP4J, which IBM donated to the Apache open
source community. Like all Apache projects, Apache SOAP is free for both
noncommercial and commercia purposes. The source code is readily available, and an
active group of programmers is busy adding new features for future releases.

This chapter provides a quick start introduction to using Apache SOAP. The godl is to
present the most important essentials so that you can start coding and get to work. Four
specific topics will be covered:

Installation instructions for using Apache SOAP with the open source Jakarta
Tomcat server

A "Hello, SOAP!" client/service application for demonstrating basic SOAP RPC
coding

An overview of deploying and managing SOAP services via the web-based
administration tool and the command-line ser vi cevanager @ i ent tool

Tips for viewing live SOAP conversations using the TcpTunnel cui tool

4.1 Installing Apache SOAP

If you are only creating SOAP clients, all you need to do is download the correct suite of
files and include the relevant JAR files within your CLASSPATH (details to follow). If,
however, you are creating SOAP services, you need the right files plus a Java serviet
engine. For example, you can install Apache SOAP to BEA WebLogic Application
Server, IBM WebSphere, or Allaire JRun. This section includes specific instructions for
installing to the open source Apache Jakarta Tomcat 3.2 server. Tomcat is free, easy to set
up, and gets you running in just afew minutes.

4.1.1 Downloading the Required Java Files

To install Apache SOAP to Jakarta Tomcat, you need to download five distribution files.
First, download the Tomcat and Apache SOAP distributions:

Apache Jakarta Tomcat: http://jakarta.apache.org/tomcat/
Apache SOAP: http://xml.apache.org/soap/

Then, download the Xerces Java Parser, Java Mail, and JavaBeans Activation Framework
distributions:

Xerces Java Parser (v1.1.2 or higher): http://xml.apache.org/xerces-j/index.html
JavaMail: http://java.sun.com/products/javamail/

JavaBeans Activation Framework:
http://java.sun.com/products/javabeans/glasgow/jaf .html

57

Web Services Essentials

s You need a Java servlet engine to set up SOAP services because the
a2, Apache SOAP service, called rpcrouter , isredly just a Java serviet
" 4 that has been configured to receive SOAP requests.

=

4.1.2 Setting Up the Tomcat CLASSPATH

Next, you need to set the CLASSPATH for Jakarta Tomcat. Specifically, you must
include the following JAR files and directories:

soap.jar

Xerces,jar

mail .jar

activation.jar

Directory for your SOAP application class files

To set the Tomcat CLASSPATH, edit the server startup file (on Windows, this file is
tomcat.bat; on Unix, it is tomcat.sh). For example, | added the following lines to the
section entitled " Set Up the Runtime Classpath” in my tomcat.bat file:

echo Addi ng xerces.jar to beginning of CLASSPATH

set CP=c:\web_services\lib\xerces.jar; %P%

echo Addi ng soap.jar to CLASSPATH

set CP=%P% C. \web_services\|ib\soap.jar

echo Adding mail.jar and activation.jar to CLASSPATH

set CP=%P%c:\web_services\lib\nail.jar;c:\web_services\l|ib\activation.jar
echo Addi ng SOAP Exanpl es Directory

set CP=%P% c: \web_servi ces\ exanpl es\ cl asses

Note that the Tomcat distribution includes its own XML parser, but the built-in parser is
not namespace-aware and therefore will not work with Apache SOAP. Hence, you need to
force Tomcat to use Xerces (1.1.2 or higher) by prepending xercesjar to the very
beginning of your CLASSPATH. For example:

set CP=c:\web_services\lib\xerces.jar; %P%
4.1.3 Configuring Tomcat

Asthefina step, you must register the Apache SOAP service with Tomcat. To do so, just
add the following lines to the Tomcat configuration file (conf/server.xml):

<Cont ext pat h="/soap" docBase="C:\web_servi ces\ soap-2_2\ webapps\ soap"
debug="1" rel oadabl e="true">
</ Cont ext >

Make sure to set the correct docBase to reflect your local installation.

4.1.4 Starting Tomcat

You are now ready to start the Tomcat server. On Windows, run the startup.bat file. On
Unix, run startup.sh. If you are running Windows, you should see the startup window in

Figure 4-1. By default, Tomcat will start on port 8080, and you should see the text
"Starting HttpConnectionHandler on 8080" within the startup window.

58

Web Services Essentials

Figure 4-1. Starting Tomcat

[+ Tamcat 3.2

4.1.5 Running the SOAP Administrator

With Tomcat running, you can now access the SOAP Administrator. Open a browser
window, and go to http://localhost: 8080/soap. If you see the welcome screen in Figure 4-
2, everything isinstalled correctly, and you can start deploying your own SOAP services.

Figure 4-2. Apache SOAP welcome screen

A htkp:/ Mocalhost B0 c bt =10 x|
File Edit Wiew Favortes Tools Help ﬂ
W Back - D [H] A Dhsearch [jFevorites - #History | She b S e ®
Address |£] hitp: flocahost:8080soagfinde: bt x| om0

2

Apache-SOAP

Hello! Welcome to Apache-20AF
What de yeu want to do today?

« fun the admin client
s it the SOAP BPC router TTEL for thas SOAF server

£] Done (1 Local intranet

4.2 Hello, SOAP!

With Apache SOAP now installed, were ready to tackle our first SOAP application,
"Hello, SOAP!" The "Hello, SOAP!" service provides asingle say+el | o() method, which
accepts a first-name parameter and returns a personalized greeting. Well begin by
exploring the general architecture outlined in Figure 4-3. This diagram includes al the
elements responsible for processing data and traces the steps of a sample "Hello, SOAP!"
conversation.

1. The Apache SOAP client generates a SOAP request and sends the request via an
HTTP POST. The client request specifies the helloservice service and the
sayHel | o method. The request also includes a single parameter called firstName.

2. The Jakarta Tomcat server receives the incoming request and forwards it to the
Apacherpcrouter serviet.

59

Web Services Essentials

3. The rpcrouter looks up the requested helloservice, instantiates a Hel | oSer vi ce
object, and invokes the sayHel | o() method.

4. The Helloservice object extracts the firstnane parameter (e.g., "Amy") and
returns a greeting (e.g., "Hello, Amy!").

5. The rpcrouter captures the greeting, packages the result into a SOAP response,
and returns the response to the client.

Figure 4-3. Apache SOAP architecture

Apache SOAF
Seryice:
HelloAervice,java

“Hedle, Aray!™
sapHeia Amy©)
Apache S0AP
Apache SOAP client: mcrouter serlet 1
HelloClient java T .,

4

SOAP request:
Service mame: hekip service
Mathadame:soyileRs - Jakarta Tomcat
Favameter: fratName="dmy" il

. SOAF response;
Betiirsy viuie: “Helly, Amyt*

4.2.1 Service Code

We will examine the service-side code first. (See Example 4-1 .) The most striking aspect
of the service code is that thisis just a regular Java class. There is no need to import any
Apache SOAP-specific libraries or to implement any SOAP-specific interfaces. Rather,
you just need to implement the methods supported by your service. In Example 4-1 , we
provide an implementation of the sayrHel | o() method. This method takes asingle string
parameter, fi rst Nane , and returns a greeting. That's all thereisto it!

Example 4-1. HelloService.java

package com ecerani . soap;

/**
* "Hell o, SOAP!'" SQAP Service
* Provides a personalized greeting to any client application
*/

public class HelloService {

/**
* Says Hello to dient
*
/
public String sayHello (String firstNanme) {
return new String ("Hello, "+firstName+"!");
}
}

60

Web Services Essentials

4.2.2 Client Code

In contrast to the service code, writing client code does require interfacing with the Apache
SOAP API. Regardless of the complexity, however, client code generaly follows the
same five steps.

1. Create an RPC cal| object. The call object encapsulates all the details for
invoking aremote SOAP service. For example, it includes the SOAP service name
and the method name to invoke.

2. Build alist of parameters to pass to the remote service. Apache SOAP includes
built-in support for passing a large number of data types, including primitive data
types, strings, vectors, and arrays. Aswe will seein Chapter 5, Apache SOAP also
supports the passing of JavaBeans and literal XML documents.

3. Invoke the remote method. Behind the scenes, the client packages the relevant
datainto a SOAP request, sends it to the SOAP server, and receives and parses the
SOAP response.

4. Check for any errors within the SOAP response.

5. Extract the return value from the SOAP response.

The complete client code for the "Hello, SOAP!" application is shown in Example 4-2.

Example 4-2. HelloClient.java

package com ecerani . soap;

/**

* "Hell o, SQAP!" SOAP di ent

* usage: java HelloCient first_name
*/
i nport java.net.*;
i mport java.util.Vector;
i mport org.apache. soap. SOAPExcepti on;
i mport org.apache. soap. Faul t;
i nport org. apache. soap. Const ant s;
i mport org.apache. soap.rpc. Cal l;
i nport org. apache. soap. rpc. Par aneter;
i nport org.apache. soap. rpc. Response;

public class HelloQient {
/**
* Static Main nethod
*/
public static void nmain (String[] args) {
String firstName = args[0];
Systemout.println ("Hello SOCAP dient");
HelloClient helloCient = new HelloQient();
try {
String greeting = helloCient.getGeeting(firstNane);
Systemout.print (greeting);
} catch (SOAPException e) {
String faultCode = e.getFault Code();
String faultMsg = e.get Message();
Systemerr.println ("SOAPExcepti on Thrown (details below):");
Systemerr.println ("Faul t Code: "+faultCode);
Systemerr.println ("Faul t Message: "+faultMsg);
} catch (Ml formedURLException e) {
Systemerr.println (e);

61

Web Services Essentials

/**

* get Greeting Method

*/
public String getGeeting (String firstNane)

}
}

t hrows SOAPException, MalformedURLException {

[/l Create SOAP RPC Call Object
Call call =newCall ();

/1 Set Encoding Style to standard SOAP encodi ng
cal | . set Encodi ngStyl eURI (Const ants. NS_URI _SQOAP_ENC) ;

/1 Set Object URI and Met hod Nane
call.set Target Obj ect URI ("urn: exanpl es: hel | oservice");
cal |l . set Met hodNanme ("sayHel |l o");

/1 Set Method Paraneters
Par anet er param = new Paraneter("firstName", String.class,
firstName, Constants.NS_UR _SOAP_ENC);

Vect or paranList = new Vector ();
par amnli st. addEl enent (param;
cal |l . set Parans (paraniist);

/1 Set the URL for the Wb Service
URL url = new URL ("http://local host: 8080/ soap/ servlet/rpcrouter");

/1 I nvoke the Service
Response resp = cal |l .invoke (url, "");

/'l Check for Faults

if (!resp.generatedFault()) {
/1 Extract Return val ue
Parameter result = resp.getReturnValue ();
String greeting = (String) result.getValue();
return greeting;

el se {
/'l Extract Fault Code and String
Fault f = resp.getFault();
String faultCode = f.getFaultCode();
String faultString = f.getFaultString();
Systemerr.println("Fault Cccurred (details follow:");
Systemerr.println("Fault Code: "+faultCode);
Systemerr.printin("Fault String: "+faultString);
return new String ("Fault Cccurred. No greeting for you!");

}

This code expects a single command-line argument, indicating a first name. For example,
the command line:

java com eceram . soap. Hel | oC i ent Any

will generate the following output:

Hel l o SOAP Client
Hel l o, Any!

The bulk of the SOAP-specific code occurs in the get Greeti ng() method. So we'll begin
our code dissection there.

62

Web Services Essentials

4.2.2.1 The RPC Call object

To generate a SOAP request, you first instantiate an or g. apache. soap. rpc. Cal | Object:

Call call =newCall ();

The cal I object encapsulates all the details of your SOAP request. For example, we need
to set the SOAP encoding style. For the default SOAP encoding style, use
Constants. NS_URI _SOAP_ENC .

cal | . set Encodi ngSt yl eURI (Const ants. NS_URI _SQAP_ENC) ;

Other encoding styles will be discussed in Chapter 5. The cal | object also encapsulates
the URI of the desired SOAP service and the method name to invoke:

cal | . set Target Obj ect URI ("urn: exanpl es: hel | oservi ce");
cal | . set Met hodNane ("sayHello0");

4.2.2.2 Setting parameters

To pass data to a remote method, you must create one or more parameters. For each
parameter, you must instantiate an or g. apache. soap. r pc. Par anet er object. The Par anet er
constructor expects four arguments:

Parameter name.

Classtype; for example, string. cl ass , I nteger.cl ass , Of Doubl e. cl ass.
Parameter value.

Encoding style. If set to nul| , the parameter will use the encoding style of the
d ass Object.

APl.org.apache.soap.rpc.Parameter

Paranmeter (Stringname, C ass type, Object value, String encodi ngStyl eURl)
Constructs anew par anet er Object. Takes the following parameters:
nane
The parameter name.
type
The Java class type; for example, st ring. cl ass, Doubl e. cl ass, OF String[].class.
val ue
The parameter value.
encodi ngStyl eURI

The encoding-style URI for the parameter. If set to nul | , the parameter will
default to the style specified for the cal | object.

public java.lang. Obj ect get Val ue()

Retrievesthe value of the Par amet er Object.

63

Web Services Essentials

API. org.apache.soap.rpc.Call

voi d set Encodi ngStyl eURI (String encodi ngStyl eURI)
Sets the encoding style URI for the parameters passed inside the SOAP
Envelope. Takesthe following parameter:
encodi ngStyl eURI
The encoding style URI. Use const ants. NS_URI_soap_ENC for the default

encoding style: http://schemas.xmlsoap.org/soap/encoding/. Use
Const ants. NS_URI _LI TERAL_XMW. for passing literal XML documents.

voi d set Target Cbj ect URI (String target Cbject URI)

Setsthe target object URI. Takes the following parameter:
t ar get bj ect URI
The URI of the remote service. Thisisusually the URN of the service to be
invoked; for example, urn:examples: helloservice.
voi d set Met hodNane(String nmet hodNane)

Sets the remote method name. Takes the following parameter:
nmet hodNane

The name of the remote method; for example, saytel | o .

voi d set Parans(Vect or parans)
Sets the vector of parameters that will be passed from client to server. Takesthe
following parameter:
par ans
The vector of parameters. The vector must consist of
or g. apache. soap. r pc. Par anet er objects.

Response invoke(URL url, String SQAPActi onURI') throws SOAPExcepti on
Invokes the remote method. Behind the scenes, the method will connect to the
specified server, send the SOAP request, and retrieve and parse the SOAP
response. In the event of fata errors, including failed network connections or

violations of the SOAP protocol, the method will throw a soaPExcept i on. Takes
the following parameter:

url
The absolute URL of the SOAP server.
SOAPAct i onURI
Optional soapActi on HTTP header. soapActi on is generally used to indicate the

URI for the SOAP service. An empty string (") indicates that the SOAP target
is specified in the HTTP request URI.

Web Services Essentials

For example, we add asingle st ri ng parameter:

Par anmet er param = new Paraneter ("firstNane", String.class,
firstName, Constants.NS_URI _SOAP_ENC);

Passing primitive data types (e.g., i nts , doubl es , Of | oat s) follows an identical process.
The only difference is that you must specify the object wrapper, such as | nt eger , Doubl e ,
or Fl oat . For example, the following code creates a boubl e parameter:

di scount Param = new Paraneter ("discount", Double.class,
di scount, Constants.NS_URI _SOAP_ENC);

Each parameter is added to a vect or object, and this entire vect or object is then passed to
the cal I object viathe set Par ans() method:

Vect or paranii st = new Vector ();
par amnli st. addEl enent (param;
call.setParans (paraniist);

When you create parameters, each parameter has a name/value pair, but the order of the
parameters is critical. Upon receiving your method call, the rpcrout er will unpack each
parameter in the exact order in which it was received and attempt to find a matching
method signature. For example, a SOAP request with two parameters, string firstNane
and i nt age , will attempt to find net hodNane (String, int). If the client reverses the
parameter order, a"no signature match" error will occur.

4.2.2.3 Invoking a remote service

Once the cal | object is set, we are ready to execute the remote service via the i nvoke()
method. Thei nvoke() method takes two parameters:

The URL of the SOAP server

For the Apache distribution, this is the absolute URL to the rpcrouter serviet; for
example, http://local host: 8080/soap/serviet/rpcrouter.

The SOAPAction header

According to the SOAP specification, the soapActi on header is a required HTTP
header for client applications sending SOAP requests via HTTP. soaPAction IS
generaly used to indicate the URI for the SOAP service. Nonetheless, an empty
string (") indicates that the SOAP target is specified in the HTTP request URI. The
Apache SOAP server implementation requires that you specify a soapAct i on header,
but it will ignore the actual value. Y ou can therefore safely use an empty string or a
nul | value.

Our client code specifies the | ocal host Apache server and an empty string SoAPAct i on
header:

URL url = new URL ("http://local host:8080/soap/servlet/rpcrouter”);
Response resp = call.invoke (url, "");

65

Web Services Essentials

If all goeswell, the i nvoke() method will return an or g. apache. soap. r pc. Response object.
The response object encapsulates al data regarding the server SOAP response, including
any return parameters or fault conditions.

4.2.2.4 Checking for errors

Distributed computing that is enabled by SOAP is inherently vulnerable to multiple points
of failure. For example:

The SOAP server may be down or unable to keep up with a high volume of
transactions.

The SOAP server may be unable to complete the requested service.

The SOAP client may be unable to open a network connection.

The SOAP client may be incompatible with the SOAP server.

There are two groups of SOAP errors. soaPExcept i ons and SOAP faults. soaPExcept i ons
refer to fatal errors in network connectivity or violations of the SOAP protocol. For
example, if a SOAP server returns a SOAP response, but neglects to include the required
Body element, the client will detect the protocol violation and immediately throw a
soaPException. In contrast, SOAP faults refer to errors at the application layer. For
example, if a client requests a nonexistent service or method, the SOAP server will
generate a fault and will propagate the fault back to the client. If aremote service method
is unable to complete execution, it too can trigger afault.

SOAPExceptions are thrown by the call.invoke() method, whereas SOAP faults are
embedded in the rResponse object and need to be explicitly extracted.

API. org.apache.soap.SOAPEXxception

String get Faul t Code()

Returns the SOAP fault code, identifying the primary origin of the error. A
return value of soar- ENv: d i ent indicates that the client caused the error. A
return value of soapr- ENv: Ser ver indicates that the server caused the error.

String get Message()
Returns a human-readabl e explanation of the error.

API. org.apache.soap.Fault

String get Faul t Code()

Returns the SOAP fault code, identifying the primary origin of the error. A
return value of soar- ENv: d i ent indicates that the client caused the error. A
return value of soapP- ENv: Ser ver indicates that the server caused the error.

String getFaul tString()
Returns a human-readable explanation of the error.

66

Web Services Essentials

Hel | oCl i ent . j ava includes code for capturing both soapExcepti ons and SOAP faults. For
example, the nei n() method captures the soapexception and displays the cause of the
error:

catch (SOAPException e) {
String faultCode = e.getFaultCode();
String faultMsg = e. get Message();
Systemerr.println ("SOAPExcepti on Thrown (details below):");
Systemerr.println ("Fault Code: "+faultCode);
Systemerr.println ("Faul t Message: "+faul t Ms5Q);

}

The fault code indicates the origin of the error. A return value of soap-ENv: dient
indicates that the client caused the error. A return value of soar- ENv: server indicates that
the server caused the error.

Hellodient.java aso checks for SOAP faults by checking the
Response. gener at edFaul t () method. If this method returns true , the code extracts the
Faul t object and queriesit for details:

Fault f = resp.getFault();

String faultCode = f.getFaultCode();

String faultString = f.getFaultString();
Systemerr.println("Fault Cccurred (details follow:");
Systemerr.println("Fault Code: "+faultCode);
Systemerr.println("Fault String: "+faultString);

4.2.2.5 Extracting the return value

For the fina step, we extract the return valuee To do so, cal the
Response. get Ret urnval ue() method. Then cal Paraneter. get value() and cast to the
expected class:

if (!resp.generatedFault()) {
/1 Extract Return val ue
Parameter result = resp.getReturnValue();
String greeting = (String) result.getValue();
return greeting;

API: org.apache.soap.rpc.Response

bool ean generat edFaul t ()

Indicates whether afault was generated. If this method returns r ue , use
get Faul t () to retrieve the embedded fault.

Faul t get Faul t ()
Retrieves the embedded Faul t object.

Par anmet er get Ret urnVal ue()

Retrieves the return parameter.

67

Web Services Essentials

4.3 Deploying SOAP Services

There are two ways to deploy new SOAP services. The first option is to use the web-
based administrator. The second is to use the command-line tool.

4.3.1 Web-Based Administrator
To use the web-based administrator, open a new browser, go to http://localhost: 8080/soap,
and click the Run the Admin Client link. This screen (see Figure 4-4) provides three basic
tools:
List
To obtain acomplete list of all deployed services
Deploy
To deploy anew SOAP service
UnDeploy
To undeploy an existing SOAP service

Figure 4-4. Apache SOAP administration client

T Apache SOAR Admin Tool - Microsalt Intermet Expla = o x|
Fi= Edit ew Favortes Toos Help “I
S - D A Dseach byFavorbes | PHstory | B S8 B - o] 2w
| e e Y-

A

What do you want to do today?

LLL

[Locdl intranst
To deploy the Hel | oser vi ce class, click the Deploy button.

The Deploy a Service page contains half a dozen fields for deploying your web service.
(See Figure 4-5.)

68

Web Services Essentials

Uniform Resource Names (URNS)

A Uniform Resource Name (URN) is a Uniform Resource Identifier (URI) that is
both persistent and location-independent. The official URN syntax as detailed in
IETF RFC 2141 is:

<URN> ::= "urn:" <NID> ":" <NSS>

where <NI D> is the namespace identifier and <Nss> is the namespace-specific string.
For example, urn: i sbn: 0596000588 refers to the O'Reilly book, XML in a Nutshell.

Figure 4-5. Apache SOAP: Deploy a Service page

3 - i Tood - “icrosolt Internet Explorer =10 x|
fl= Dt Bew Faworkss Tools Help n
deback = v) Y| Dewch ifavorkes deetory | e b D v 5] 3w
Agrkess iiﬂ Ptk (s albwaat SN doaE dakvir (i e, it = 50

e 1

Deploy a Service

Service Deployment Descriptor Templ:

Property Dretails
m [uneeamples nelosendca -
Soope ||:--:-l.|ul:"sl j

[-:-:l-.-‘HcII:
{(Whitespace separated bst of method names)

il

Tdethads

af
£100ne (2 Local nkrarst

I=

Let's focus on the most important fields:

ID
This field sets the name of your SOAP service. It is recommended that you use the
URN syntax when naming your SOAP service (see the earlier sidebar for details
regarding URNS). For our first example, set the ID to ur n: exanpl es: hel | oser vi ce.
Scope

Each time a SOAP service is invoked, a specific server object handles the request.
scope defines the lifetime of this instantiated object. Request indicates that the
object will exist during the lifetime of one SOAP request/response cycle. Sessi on
indicates that the object will exist during the entire session between client and server,
and will therefore be maintained across multiple request/response conversations.

Application indicates that only one object is instantiated and will process all
incoming requests. For our first example, set the scope to rRequest .

69

Web Services Essentials

Methods

This field includes a complete list of all methods supported by your service.
Methods are separated by whitespace characters. The Hel | oService class only
supports one method: sayHel | o.

Java provider

The Java provider is the completely qualified name of the Java service class that will
handle incoming SOAP requests. For "Hello, World!", set the Java provider to
com ecerani . soap. Hel | oServi ce. Note that this class must be available via the
Tomcat CLASSPATH. The st ati ¢ field indicates whether the specified methods are
dtatic. If set to ves , the object will not be instantiated. The sayHel | o() method is
not static, and we therefore keep the st at i ¢ field set to the default of No.

Once you have completed these four fields, click the Deploy button. To verify that your
service has indeed been deployed, click the List button, and you should see your service
displayed. (See Figure4-6.)

Figure 4-6. Apache SOAP: Service Listing page

3 apaeche SOAP Admin Tool - Sicrosolt Intermet Explores =10 x|

Di= Dt Wew Fawerkss Tools Help “
Arfiack, = O A A Qe igPavarbes | iistory __"‘|‘ 5 R P e B]
Pgdrress (2] hatec Vs e oot S0 50 oan advan nd i, htrd ka 50

i

Service Listing
Here aze the deployed sermces [select one to see detads)

&

il

£ 0o ZE Lowdl lriet

4.3.2 ServiceManagerClient Command-Line Tool

To deploy a new SOAP service, you can aso use the Apache command-line tool,
Servi ceManager d i ent . The command-line tool has the following usage:

Usage: java org.apache. soap. server. Servi ceManager C i ent
[-auth usernane: password] url operation argunents

70

Web Services Essentials

The following operations are supported:
l'ist
Provides a complete list of existing SOAP services

depl oy depl oynment -descriptor-file.xm

Deploys the SOAP service specified in the deployment descriptor file

query servi cenane

Displays the deployment descriptor of the specified service

undepl oy service-nane
Undeploys the specified service

To deploy a new SOAP service, you must specify a deployment descriptor file. The
deployment descriptor file contains all the information for your deployed service,
including the service URN, list of service methods, scope, and Java provider. For
example, here is the deployment descriptor for the "Hello, SOAP!" service:

<i sd: service
xm ns:isd="http://xm .apache. org/ xm - soap/ depl oynent "
i d="urn: exanpl es: hel | oservi ce" checkMist Under st ands="f al se">
<i sd: provi der type="java" scope="Request" nethods="sayHello">
<i sd:java class="com ecerani.soap. Hel | oService" static="fal se"/>
</isd: provi der>
</isd:service>

Note that there is a one-to-one correspondence between the elements and attributes

specified in the deployment descriptor and the HTML form fields of the web
administration tool:

Service element
Specifies the URN for the SOAP service
Provider element
Specifies the service provider type, scope, methods, and Java class

To deploy the "Hello, SOAP!" service via the command-line tool, use the following
command:

java org. apache. soap. server. Servi ceManagerC ient http://Iocal host: 8080/ soap/
servlet/rpcrouter deploy helloservice.xm

To verify that the service was indeed registered, usethe i st operation:

java org. apache. soap. server. Servi ceManagerC ient http://|ocal host: 8080/ soap/
servlet/rpcrouter |ist

71

Web Services Essentials

Y ou should see the following output:

Depl oyed Services
ur n: exanpl es: hel | oservi ce

To retrieve the deployment descriptor of an existing service, use the query operation. For
example, the following command:

java org. apache. soap. server. Servi ceManagerC ient http://Iocal host: 8080/ soap/
servlet/rpcrouter query urn:exanpl es: hell oservice

will display the hel | oser vi ce deployment descriptor.
4.4 The TcpTunnelGui Tool

It is often quite useful to view the actual SOAP conversation between client and server.
This can aid in understanding the intricacies of the SOAP protocol and in debugging live
applications. To help you along, the Apache SOAP distribution includes a handy
TepTunnel Gui tool. The tool requires three command-line parameters:

| i stenport

The TcpTunnel cui tool will intercept and display al messages going to the

i stenport.

t unnel host

The tunnel hostname. For local installations, set thisto | ocal host .

t unnel port

The TcpTunnel cui tool will intercept al messages and forward them to the
t unnel port. For Jakarta Tomcat, set thisto 80s0.

For example, the following command line will intercept al messages going to port 8070
and forward them to the | ocal host , port 8080:

java org. apache. soap. util.net. TcpTunnel Gui 8070 | ocal host 8080

To view your actua SOAP conversation, you must modify the client code to use port
8070. For example:

URL url = new URL ("http://local host: 8070/ soap/servlet/rpcrouter")
Response resp = call.invoke (url, "");

A sample screenshot of the "Hello, SOAP!" conversation is provided in Figure 4-7.

Messages from the client are displayed in the left column; messages from the server are
displayed in the right column.

72

Web Services Essentials

Figure 4-7. The TcpTunnelGui tool in action

ey TEP Tuninel Monikor! Tunneling localbast=5078 ta lacalhost:B080 =10 =
o localtstB070 ot |oC-a st G000
FOET Ispapsardalimorouter HTTRA D J HTTAN 0 200 QK d
Host localhos] Comlanl-Type: e, charsel=ulf-3

Confent-Tpe: teslfaml, charsstzulf-& Comznl-Lergin 484

Coment-LangT: 464 et Cookiek JEESEOKIC=ApE0 Inwd Version=1;Desand
SCmPAction: = Sed Cookie: JEESSI0MID=npad ol Pati=leoap

Sentet-Enging: Tomcat Web Serven3 31 WEF 1.7, Sandet .
=Taml varsion="1 .0’ encoding=LTF-8"7=
=S0AF-ENY Ervalops smirs S0AP-ERV=Tnip ¥schemas.x |« faalvarsion=".0" encoding=JTF-07=

«E0AP-ENY Bosdy= =5 0aP-ERV Ervilope xmilas SOAP-ERV="hitlp Jschemas &
sns1 sayHalln xmin s ns1="um srampl&s hellosence™ 500 =ECWAP-EMY Baordys

<frsIMama x5l ype="ysd slring *Amy<Mirsthlamas <nz 1 asyHelloResponss eming ns1="urEmmpleshallos
ngiatialio =peduim Exinpe="asdsring" = Hello, Arp<reme
SE0AP-ENY Bodye =inzl saHelloRespanges

=200P- BNV Envelope=
<BOAF-ENY Baty=
<JBOAF-ENV Ervelope=

‘ oy o
[ciwa]

Lgtening fgr conneclions on portEOT0 .

Hereisthe full text of a sample request message:

PCST /soap/ servl et/ rpcrouter HTTP/ 1.0
Host: | ocal host

Content-Type: text/xm; charset=utf-8
Cont ent - Lengt h: 464

SQAPActi on: "

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="htt p: / / schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. org/ 1999/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 1999/ XM_.Schena" >
<SQAP- ENV: Body>
<nsl:sayHell o
xm ns: ns1="urn: exanpl es: hel | oservi ce"
SOAP- ENV: encodi ngStyl e="htt p://schemas. xm soap. or g/ soap/ encodi ng/ " >
<firstName xsi:type="xsd:string">Any</firstNanme>
</ nsl: sayHel | o>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

Hereisthe full text of a sample response message:

HTTP/ 1.0 200 OK

Content-Type: text/xm; charset=utf-8

Cont ent - Lengt h: 484

Set - Cooki e2: JSESSI ONl D=810j 57 od1; Ver si on=1; Di scar d; Pat h="/ soap"
Set - Cooki e: JSESSI ONIl D=810j 57j od1; Pat h=/ soap

Servl et- Engi ne: Tontat Wb Server/3.2.1

(JSP 1.1; Servlet 2.2; Java 1.3.0; Wndows 2000 5.0 x86;

j ava. vendor=Sun M crosystens Inc.)

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. org/ 1999/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 1999/ XM_.Schena" >
<SQAP- ENV: Body>
<nsl: sayHel | oResponse
xm ns: nsl1="urn: exanpl es: hel | oservi ce"
SOAP- ENV: encodi ngSt yl e="htt p: // schermas. xm soap. or g/ soap/ encodi ng/ " >
<return xsi:type="xsd:string">Hello, Amy!</return>
</ nsl: sayHel | oResponse>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

73

Web Services Essentials

4.5 Web Resources
Here are some web resources that provide more information about Apache SOAP.
Apache SOAP web site: http://xml.apache.org/soap/.

Mailing-list archives. Apache SOAP maintains a "soap-user” mailing list.
Complete archives are available at http://marc.theaimsgroup.com/?=soap-user.

74

Web Services Essentials

Chapter 5. Programming Apache SOAP

With a basic understanding of Apache SOAP, we are now ready for more in-depth
coverage of select topics. These topics include:

Passing arrays between client and server
Passing JavaBeans between client and server
Registering new type mappings

Working with literal XML documents
Handling SOAP faults and exceptions
Maintaining session state

This chapter is built around a series of five example SOAP applications that will help
explain these topics. The first four applications illustrate services provided by a fictional
e-commerce company that sells software over the Web. The final application provides a
simple counting service that illustrates the creation of stateful SOAP services. Each
application includes full client code, service code, and a description of relevant APIs.

Apache SOAP can use SMTP for the transport of SOAP messages.
Nonetheless, all examples within this chapter assume the (more
% popular) use of HTTP.

=

5.1 Working with Arrays

The "Hello, SOAP!" application from Chapter 4 illustrated the passing of strings and
primitive data types. The next step up the SOAP ladder is working with arrays.
Fortunately, Apache SOAP provides built-in support for arrays, making this task relatively
painless.

To illustrate the basic concepts, we will create a simple e-commerce product catalog.
Clients can connect to the catalog service and send a list of stockkeeping units (SKUSs).
The catalog service looks up each SKU and returns a list of current prices. Behind the
scenes, the client passes an array of strings to the server, and the server returns an array of
doubles.

5.1.1 Service Code

We will examine the service code first. (See Example 5-1.) The pricelLi st Service
constructor creates a product hashtable of two current products. To keep the code simple,
the prices are hardcoded. The get Pri celLi st () method expects an array of string SKUs and
generates a corresponding array of doubles. We assume that the client always requests
current, valid SKUs.

75

Web Services Essentials

Example 5-1. PriceListService.java

package com eceram . soap;

i mport java.util.Hashtable;

/**
* A Sanpl e SOAP Service
* Provides a Price List for specified list of SKUs
*/
public class PricelistService {
protected Hashtabl e products; /1 Product "Database"

/**
* Zero Argunent Constructor
* Load product database with two sanple products
*/
public PriceListService () {
products = new Hashtable();
/1 Red Hat Linux
product s. put (" A358185", new Doubl e (54.99));
Il MAfee PGP Personal Privacy
product s. put (" A358565", new Doubl e (19.99));
}

/**

* Provides Price List for specified SKUs.
* W assune that the client always specifies valid, current SKUs
*/
public double[] getPriceList (String sku[]) {
doubl e prices[] = new double [sku.length];
for (int i=0; i<sku.length; i++) {
Doubl e price = (Doubl e) products.get(sku[i]);
prices[i] = price.doubleValue();

return prices;

}
}

5.1.2 Client Code

The client code is shown in Example 5-2 , later in this section. When invoking the client
application, you can specify as many SKUs as you like on the command line. For
example, the following command line:

java com eceram . soap. PriceListdient A358185 A358565

will generate the following output:

Price List Checker: SOAP dient
SKU: A358185 --> 54.99
SKU: A358565 --> 19.99

In examining the client code, first note the Tar get j ect URI and method name:

call.set Target Ovj ect URI ("urn:exanpl es: pricelistservice");
cal |l .set Met hodNane ("getPricelList");

76

Web Services Essentials

Here, we are assuming that the pri cel i stservi ce has aready been deployed via the web
administrator tool. Alternatively, you could use the command-line tool and the following
deployment descriptor:

<i sd: service
xm ns:isd="http://xm .apache. org/ xm - soap/ depl oynent "
i d="urn: exanpl es: pricelistservice" checkMist Under st ands="fal se">
<i sd: provi der type="java" scope="Request" nethods="getPricelList">
<isd:java class="com eceram .soap. PricelListService" static="fal se"/>
</isd: provi der>
</isd: service>

To pass an array from client to server, you must create a new paraneter object. The
important distinction is that you must specify an array class, such as string[].class Or
Doubl e[].class , tO the Paraneter constructor. For example, our new client creates an
array parameter of string SKUs:

Par amet er param = new Paraneter ("sku", String[].class,
skus, Constants. NS _URI _SCQAP_ENC);

The array parameter is then added to a vect or of parameters, and the vect or is passed to
the cal | object, just asin our "Hello, SOAP!" application.

To extract an array from the rResponse object, you just need to cast to the appropriate array
type. For example, the pri celi st dient code expects an array of doubles:

Par anet er result

= resp.getReturnvalue ();
doubl e priceList[] =

(double []) result.getValue();

In conclusion, there is really nothing special about passing arrays. Note, however, that the
current version of Apache SOAP only supports one-dimensional arrays. Additional
dimensions may be supported in the near future. Check the Apache SOAP web site for
current rel ease notes.

Example 5-2. PriceListClient.java

package com ecerani . soap;

/**
* A Sanple SOAP dient
* Retrieves Price List for Specified SKUs
* usage: java PriceCient sku#l sku#2 sku#N
*/
i mport java.net.*;
i nport java.util.Vector;
i mport org.apache. soap. *;
i mport org.apache. soap.rpc.*;

public class PriceListdient {

/**
* Static Main nethod
*
/
public static void nmain (String[] args) {
Systemout.println ("Price List Checker: SOAP Cient");
String skus[] = new String [args.|length];
for (int i=0; i<args.length; i++)
skus[i] = new String (args[i]);

77

PriceListClient priceListCient = new PriceListCient();

try {
doubl e price[] = priceListCient.getPriceList(skus);
for (int i=0; i<price.length; i++) {
Systemout.print ("SKU "+skus[i]);
Systemout.println (" --> "+price[i]);

}

} catch (SQAPException e) {
Systemerr.println (e);

} catch (Ml fornedURLException e) {
Systemerr.println (e);

}
}

/**
* getPricelList Method
*/
public double[] getPriceList (String skus[])

t hrows SOQAPException, MalformedURLException {
Par amet er skuPar am

[/l Create SOAP RPC Call Object
Call call = newCall ();

/1 Set Encoding Style to standard SOAP encodi ng
cal | . set Encodi ngStyl eURI (Const ants. NS_URI _SQAP_ENC) ;

/1 Set Object URI and Met hod Nane

call.setTarget Ooj ect URI ("urn:exanpl es: pricelistservice");

call.set Met hodNane ("getPricelList");

/1 Set Method Paraneters

Vect or paraniist = new Vector ();

Par amet er param = new Paraneter ("sku", String[].class,
skus, Constants.NS_URI _SOAP_ENC);

par amnli st. addEl enent (param;

call.setParans (paraniist);

/1 Set the URL for the Wb Service

Web Services Essentials

URL url = new URL ("http://Ilocal host: 8080/ soap/servlet/rpcrouter");

/'l Invoke the Service
Response resp = call.invoke (url, null);

/'l Check for Success
if (!resp.generatedFault()) {
/'l Extract Return val ue
Parameter result = resp.getReturnValue ();
doubl e priceList[] = (double []) result.getValue();
return priceList;

}

/1 Check for Faults

el se {
/1 Extract Fault Code and String
Fault f = resp.getFault();
String faultCode = f.getFaultCode();
String faultString = f.getFaultString();
Systemerr.printin("Fault Cccurred (details follow):");
Systemerr.println("Fault Code: "+faultCode);
Systemerr.println("Fault String: "+faultString);
return null;

78

Web Services Essentials

For reference, here is the full text of a sample SOAP request (HTTP headers are not
included). Note the array encoding:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>

<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. wW3. or g/ 2001/ 09/ soap- envel ope"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_.Schenma" >

<SOAP- ENV: Body>

<nsl:get Priceli st
xm ns: ns1="urn: exanpl es: pricelistservice"
SOAP- ENV: encodi ngStyl e="htt p: / / wawv. W3. or g/ 2001/ 09/ soap- encodi ng" >

<sku
xm ns: ns2="http://ww. w3. or g/ 2001/ 09/ soap- encodi ng"
Xsi:type="ns2: Array" ns2:arrayType="xsd:string[2]">
<item xsi:type="xsd:string">A358185</itenr
<item xsi:type="xsd: string">A358565</itenr

</ sku>

</ nsl:getPricelList>

</ SCAP- ENV: Body>

</ SCAP- ENV: Envel ope>

Here is a complete SOAP response:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. wW3. or g/ 2001/ 09/ soap- envel ope"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_.Schema" >
<SQAP- ENV: Body>
<nsl: get PricelLi st Response
xm ns: nsl1="urn: exanpl es: pricelistservice"
SOAP- ENV: encodi ngStyl e="htt p: / / wwv. wW3. or g/ 2001/ 09/ soap- encodi ng" >
<return
xm ns: ns2="http://ww. W3. or g/ 2001/ 09/ soap- encodi ng"
xsi:type="ns2: Array" ns2:arrayType="xsd: doubl e[2] ">
<item xsi:type="xsd: doubl e">54. 99</i tenv
<item xsi:type="xsd: doubl e">19. 99</i t en®
</return>
</ nsl:getPriceli st Response>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

5.2 Working with JavaBeans

Working with strings, primitive data types, and arrays will only get you so far.
Fortunately, Apache SOAP aso includes support for JavaBeans and litera XML
documents. According to the official JavaSoft documentation, a JavaBean is a reusable
software component that can be visually manipulated within any building tool. More
generaly, however, a JavaBean is any Java class that follows the JavaBean naming
convention. This convention requires that all accessible properties be made available via
get /set methods. For example, a col or property must have a corresponding pair of
get Col or () /set Col or () methods. The only exceptions to this rule are bool ean properties
that require an i s /set naming convention. The JavaBean convention also requires that
you provide a zero-argument constructor.

79

Web Services Essentials

By using Java reflection, a visua tool can determine the available Bean properties and
make these properties available via easy-to-use text boxes or radio buttons. Along the
same lines, Apache SOAP's built-in Beanserializer class can, by using reflection,
transform any JavaBean into an XML element or receive an XML element and
automatically build a corresponding JavaBean. This requires that both the client and
service code have access to the class file for the JavaBean. The SOAP call does not
actually download the code for the JavaBean, only the state of the JavaBean.
Understanding how this works requires a more detailed understanding of Java-to-XML
transformation and the SOAP service deployment options.

5.2.1 The ProductBean

To illustrate the most important JavaBean concepts, our second SOAP example enables the
retrieval of the complete state of a JavaBean. We now want more than just the product
price. Rather, we want to retrieve the product name, description, and price, and we want
all this data encapsulated into one JavaBean. For example, given the following command
line:

java com eceram . soap. Product C i ent A358565

the program will generate the following outpuit:

Product Checker: SOAP dient

SKU. A358565

Nane: MAfee PGP

Description: MAfee PGP Personal Privacy
Price: 19.99

Thefirst step isto create a product JavaBean, called product Bean. (See Example 5-3.) The
Product Bean has four properties. name, description, price, and SKU. Each property has a
get /set method, and we also provide a zero-argument constructor, making this a valid
JavaBean.

Example 5-3. ProductBean.java

package com ecerani . soap;

/‘k‘k

* A Product Bean
* Encapsul ates data regardi ng one product
*/

public class ProductBean {

private String nane; /1 Product Nane
private String description; /1 Product Description
private double price; /1 Product Price
private String sku; /1 Product SKU

/**

* Zero-argunent Constructor

*/

public ProductBean () { }

/**

* Constructor with full argunents

*/

public ProductBean (String name, String description, double price,
String sku) {

80

Web Services Essentials

t hi s. name = nane;
this.description = description;
this.price = price;

this.sku = sku;

}

/1l Setters
public void setName (String nane) ({
thi s. name = nane;

}

public void setDescription (String description) {
this.description = description;
}

public void setPrice (double price) {
this.price = price;

}

public void setSKU (String sku) {
this.sku = sku;

}

Il GCetters

public String getNane () { return nane; }

public String getDescription () { return description; }
public double getPrice () { return price; }

public String getSKU () { return sku; }

}

5.2.2 Service Code

The next step is to write the service code. (See Example 5-4.) The product Service
constructor creates two sample Product Beans and loads these into the product hashtable.

The get Product () method searches for a specific SKU string and returns the corresponding
Product Bean. Again, we assume that the user always specifies avalid, current SKU.

Example 5-4. ProductService.java

package com eceram . soap;

i mport java.util.Hashtabl e;

/**

* A Sanpl e SOAP Service
* Provides Product Information for requested Stockkeeping Unit (SKU)
*/
public class ProductService {
protected Hashtabl e products; /1 Product "Database"

/**

* Constructor

* Load product database with two sanple products
*/

public ProductService () {

products = new Hashtable();

Pr oduct Bean productl = new Product Bean
("Red Hat Linux", "Red Hat Linux Operating Systent,
54.99, "A358185");

Pr oduct Bean product2 = new Product Bean
("McAfee PGP, "MAfee PGP Personal Privacy",
19.99, "A358565");

product s. put (product 1. get SKU(), productl);

product s. put (product 2. get SKU(), product?2);

}

81

Web Services Essentials

/‘k*k

* Provides Product Info for requested SKU.
* W assune that the client always specifies a valid, current SKU
*/
public Product Bean get Product (String sku) {
Product Bean product = (ProductBean) products. get(sku);
return product;

}
}

You can deploy the Product Service in the same manner as in the previous examples.
Nonetheless, you will need to fill in a few additional fields of information for the type-
mapping registry. The Apache SOAP type-mapping registry provides a way to map XML
Schema data types to Java classes and vice versa. By default, the registry is prepopulated
with basic data types, including primitive data types, strings, vectors, dates, and arrays. |If
you are passing a new data type, you need to explicitly register the new type and indicate
which Java classes will be responsible for serializing and deserializing your new type.

To register a new mapping, scroll down to the bottom of the Deploy a Service page. (See
Figure 5-1.)

Figure 5-1. Deploying a SOAP service with a new type-mapping entry

3 Apache SOAP Admin Tool - Microsaft Internst Ex =loi =j|
Fi= Edit iew Favortes Toos Help
Bak - 2 [A Dsearch jFavorkes JfHstor | 2h- S8 - 5] S0 e |
T |t‘;hrtc'-h!hnstfnmmx'ah-rrnd*hlm B (7

0

; Husnber of mappangs 1 |
Elesreet Type ?

E":j "'_‘_l“lg el Tava Thpe |

afye Mamegpace UFL Local Part

R |=.‘.0A-—"j lumm esmrrpnled |praduct 0 BRI Boa)
] e [Soeesl] | =4
b Mappings [Soee | [: |

s [am 1 | LI:

&) Dore [Lecdl intranst

Next to Number of mappings, enter the total number of new mappings. For each mapping,
enter the correct data into the form fields. Alternatively, you can deploy the service via the
command-line tool. To set type mappings within a deployment descriptor file, use the
i sd: mappi ngs €lement. The i sd: mappi ngs element requires a single i sd: map €element,
which includes a number of attributes. The attributes correspond exactly to the web
administration tool. These attributes are described in the following table.

82

Web Services Essentials

Web
administration
field

i sd: map attribute

Description

Thisis the encoding style for your new datatype. For
example:

Encoding style |encodingStyle encodi ngStyl e="ht t p: // schenas. xm soap. or g/
soap/ encodi ng/ "
For JavaBeans, use the default SOAP encoding style.
If you are strictly following the URN syntax, thisisthe URN
Element type: i ns: x namespace identifier. For example, if you are using
namespace URI ’ ur n: exanpl es: product servi ce , thisfield should be set to
ur n: exanpl es.
Element tvoe: Thisis the name of your new datatype. The name should be
local ar';[yp " |gnane descriptive enough to convey the encapsulated data. For our
P example, set thisfield to pr oduct .
Thisisthe fully qualified name of your new Javaclass. Inour
Javatype javaType example, thisisthe Product Bean :
com ecer am . soap. Product Bean.
Thisisthe fully qualified name of the Java class responsible
for converting your Java classinto XML. Asnoted
Jav_a—;o— XML | ava2XM.O assNane pre\nous!y, Apache SOAP |nclqd§gbU|It-|n .
serializer BeanSeri al i zer capable of serializing any arbitrary
JavaBean. The fully qualified nameis
or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer.
Thisisthe fully qualified name of the Java class responsible
for taking an XML element and reconstructing your Java
XML-to-Java m . o .
deserializer xni 2JavaCl assName | object. The Apache BeansSeri al i zer isalso capable of

deserializing. Hence, for JavaBeans, these last two fields are
usually set to the same value.

If you choose to deploy a SOAP service via the command-line tool, here is the complete
deployment descriptor file:

<i sd: service

xm ns:isd="http://xm .apache. org/ xm - soap/ depl oynent "

i d="urn: exanpl es: product servi ce"
<i sd: provi der type="java" scope="Request"

checkMust Under st ands="f al se" >
net hods="get Product " >

<isd:java class="com eceram . soap. Product Servi ce" static="fal se"/>
</isd: provi der>
<i sd: mappi ngs defaul t Regi stryd ass="">

<i sd: map

encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "
xm ns: x="ur n: exanpl es"
gnanme="x: product"
j avaType="com ecer am . soap. Product Bean"
xm 2Javad assNane="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer"
j ava2XM.C assNane=
"org. apache. soap. encodi ng. soapenc. BeanSeri al i zer"/ >
</i sd: mappi ngs>
</isd:service>

83

Web Services Essentials

If you choose to deploy your service via the web administration tool, verify that your new
mappings have been registered. Click List services, then click on the product ser vi ce link.
At the bottom of the service details page, you should see the new type mapping. (See
Figure 5-2.)

Figure 5-2. The new registered type mapping

G apache SOAF Admin Tool - Microsalt Entermet Explo =104 =}
Fi= Edit ew Favort=s Toos Help “
Back - D H A Dseach bjFavorbes | PHstory | S S8 B - o] 2w
] T e -

e

Stabic false

Clase

Methad: |getProduce

Type [Typelappog {
Mappings encodingStyle=htp fschemas =mlzoap crgsoaplencoding! element’ |
Diwtault E
Mapping

Bregstry

Clage

5.2.3 Client Code

In the same way that we registered a new type mapping for the server code, we must now
register a new type mapping within our client code. Unfortunately, this adds to the
complexity of the client code, but remember that registering a new mapping is the same for
server or client code. The only difference is that for server code, you can easily add new
mappings via the simple web deployment tool, whereas the client code requires a more
intimate knowledge of the SOAP API.

The complete client code is available in Example 5-5 , shown later in this section. After
Setting the Tar get Obj ect URI and method name, we set out to register a new type mapping.

First, we instantiate a new BeanSeri al i zer object:
BeanSeri al i zer bSerializer = new BeanSerializer();

This is the same class we used when deploying the server code. It isresponsible for Java-
to-XML serialization and XML-to-Java deseriaization.

Second, we need to create a new SOAP mapping registry:
SOAPMappi ngRegi stry regi stry = new SOAPMappi ngRegi stry();

This creates a default registry object, which is aready prepopulated with the mappings for
strings, primitive data types, and arrays.

Web Services Essentials

Third, we must create a Qualified Nanespace Object. This object must match the
namespace URI and local part fields specified for the service deployment. In the case of
our product parameter, the fields do indeed match up:

Q\anme gnane = new QNanme ("urn:exanples", "product");

Fourth, we must register our new mapping for the product Bean by calling the napTypes()
method:

regi stry. mpTypes (Constants. NS _UR _SOAP_ENC, gnane,
com eceram . soap. Product Bean. cl ass, bSerializer,
bSeri alizer);

The arguments to the mapTypes() method correspond exactly to the fields on the Deploy a
Service page. These fields include the encoding type, qualified name, Java-to-XML
serializer, and XML-to-Java deserializer.

The fifth and final step in registering a new type is to associate our new SOAP mapping
registry with the current cal I object:

cal | . set SOAPMappi ngRegi stry(registry);

Once registered, any XML elements corresponding to urn: exanpl es: product Will be
automatically reconstructed into the corresponding product Bean. By casting properly, the
Product Bean can then be retrieved from the rResponse object:

Parameter result = resp.getReturnValue ();
Pr oduct Bean product = (ProductBean) result.getValue();

Example 5-5. ProductClient.java

package com ecerani . soap;

/**
* A Sanple SOAP dient
* Retrieves Product Info for Specified Stockkeeping Unit (SKU)
* usage: java Productdient sku#
*/
i mport java.net.*;
i mport java.util.Vector;
i mport org.apache. soap. *;
i mport org.apache. soap.rpc. *;
i mport org.apache. soap. encodi ng. soapenc. BeanSeri al i zer;
i nport org. apache. soap. encodi ng. SOAPMappi ngRegi st ry;
i nport org.apache. soap. util.xm . Q\ane;

public class Productdient {

/**
* Static Main nethod
*
/
public static void main (String[] args) {
String sku = args[0];
Systemout.println ("Product Checker: SCAP Cient");
Productd ient productdient = new ProductCient();
try {
Product Bean product = productCient. getProduct (sku);
Systemout.println ("SKU. "+product.getSKU());
Systemout.println ("Nane: "+product.getName());
Systemout.println ("Description: "+product.getDescription());

85

}

Systemout.println ("Price: "+product.getPrice(

} catch (SQAPException e) {
Systemerr.println (e);

} catch (Mal fornedURLException e) {
Systemerr.println (e);

}

/**

* get Product Met hod
*
/

publi ¢ Product Bean get Product (String sku)

t hrows SQAPException, MalformedURLException {
Par amet er skuPar am

[/l Create SOAP RPC Call Object
Call call = newCall ();

/1 Set Encoding Style to standard SOAP encodi ng
cal | . set Encodi ngStyl eURI (Const ants. NS_URI _SQAP_ENC) ;

/1 Set Object URI and Met hod Nane

call.set Target Oj ect URI ("urn: exanpl es: product servi ce");

cal |l .set Met hodNane ("getProduct");

/1 Add JavaXM. Mapping for Product Bean
/1l First, Create a Bean Serializer

BeanSeri al i zer bSerializer = new BeanSerializer(

/1 Second, Get the current SOAPMappi ngRegi stry

))s

/1 This object is pre-registered with basic mappi ngs

SQAPMappi ngRegi stry regi stry = new SOAPMappi ngRegi st ry(

/1 Third, Create a new Qualified Namespace for
QNanme gnane = new QNane ("urn:exanpl es", "product");

/1 Fourth, Register new mapping for ProductBean
regi stry. mapTypes (Constants. NS _UR _SOAP_ENC, gnane,
com eceram . soap. Product Bean. cl ass, bSerializer,

bSerializer);

/1 Fifth, Set MappingRegistry for the Call object

cal | . set SOAPMappi ngRegi stry(regi stry);

/1 Set Method Paraneters

Vect or paranii st = new Vector ();

skuParam = new Paraneter ("sku", String.class,
sku, Constants.NS_URI _SOAP_ENC);

par anli st . addEl enent (skuParan;

call.setParans (paraniist);

/1 Set the URL for the Wb Service

Product Bean

Web Services Essentials

URL url = new URL ("http://Ilocal host: 8080/ soap/servlet/rpcrouter");

/'l Invoke the Service
Response resp = call.invoke (url, null);

/1 Check for Success
if (!resp.generatedFault()) {
/1 Extract Return val ue
Parameter result = resp.getReturnValue ();

Product Bean product = (ProductBean) result.getVal ue(

return product;

}

/1 Check for Faults

el se {
/'l Extract Fault Code and String
Fault f = resp.getFault();

86

Web Services Essentials

String faultCode = f.getFaultCode();
String faultString = f.getFaultString();
Systemerr.printIn("Fault Cccurred (details follow):");
Systemerr.println("Fault Code: "+faultCode);
Systemerr.println("Fault String: "+faultString);
return null;
}
}
}

For reference, here is the full text of a sample SOAP request (HTTP headers are not
included):

<?xm version='"1.0" encodi ng=" UTF-8' ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. wW3. or g/ 2001/ 09/ soap- envel ope"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena" >
<SQAP- ENV: Body>
<nsl: get Product
xm ns: ns1="urn: exanpl es: product servi ce"
SQAP- ENV: encodi ngStyl e="htt p: / / wwv. wW3. or g/ 2001/ 09/ soap- encodi ng" >
<sku xsi:type="xsd: string">A358185</ sku>
</ nsl: get Product >
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

Here is a sample SOAP response:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. wW3. or g/ 2001/ 09/ soap- envel ope"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena" >
<SQAP- ENV: Body>
<nsl: get Product Response
xm ns: ns1="urn: exanpl es: product servi ce"
SOAP- ENV: encodi ngStyl e="ht t p: / / wwv. wW3. or g/ 2001/ 09/ soap- encodi ng" >
<return xm ns: ns2="urn: exanpl es" xsi:type="ns2: product">
<name Xxsi:type="xsd:string">Red Hat Li nux</nane>
<price xsi:type="xsd: doubl e">54. 99</ pri ce>
<description xsi:type="xsd:string">
Red Hat Linux COperating System
</ descri ption>
<SKU xsi :type="xsd: string">A358185</ SKU>
</return>
</ nsl: get Product Response>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

87

Web Services Essentials

API. org.apache.soap.rpc.Call

voi d set SOAPMappi ngRegi st ry(SOAPMappi ngRegi stry snr)

Sets the SOAP mapping registry. Thisis useful if you need to
serialize/deserialize your own Java classes. Takes the following parameter:

snr

The SOAP mapping registry.

API. org.apache.soap.encoding.
SOAPMappingRegistry

SOAPMappi ngRegi stry()

Constructs a new soaPvappi ngRegi st ry object. The object will be
prepopulated with mappings for basic data types, including primitive data
types, strings, vectors, dates, and arrays.

voi d mapTypes(String encodi ngStyl eURI, QNane el enent Type, Cd ass javaType,
Serializer s, Deserializer ds) ()

Registers a new type mapping. Takes the following parameters:
encodi ngStyl eURI

The encoding style for your new datatype. To use the default SOAP
encoding style, use Const ants. NS_URI _SOAP_ENC .

nanme

The qualified name for your new data type.

j avaType

The Java class type; for example, Product Bean. cl ass .

S

The Java class responsible for serializing your Java classinto XML. Use
BeanSeri al i zer for JavaBeans.
ds

The Java class responsible for deserializing XML into Java. Use
BeanSeri al i zer for JavaBeans.

88

Web Services Essentials

5.3 Working with Literal XML Documents

In addition to JavaBeans, Apache SOAP aso supports the passing of literal XML
documents. Our third example demonstrates the main concepts. The client code will send
aproduct query by sending a product element with a SKU attribute. For example:

<product sku="A358185"/>

The server will respond with a complete product XML document. For example, the
following command line;

java com eceram . soap. Product XM_Cl i ent A358185

will generate this XML response:

<pr oduct sku="A358185">
<nane>Red Hat Li nux</nane>
<description>Red Hat Linux Operating Systenx/description>
<price>54.99</ price>

</ pr oduct >

Working with literal XML documents requires some knowledge of the XML Document
Object Model (DOM) API. Even if you are not familiar with the DOM API, however, you
should be able to follow the general flow of the example code.

5.3.1 Service Code

The full service code is shown in Example 5-6. Note that the Product xM.Servi ce class
extends pr oduct Ser vi ce from the previous example and therefore utilizes the same product
hashtable. Note also that the new get Product () method accepts a DOM El erent and
returnsaDOM &l enent . Within the method, we'll first extract the SKU attribute code:

String sku = request.getAttribute("sku");

We will then search the product hashtable. If a match is found, we can build an entire
XML document viathe DOM API. As ashortcut, we can use the Apache utility method to
retrieve a Docunent Bui | der object:

Docunent Bui | der docBui |l der = XM_Parser Uil s. get XM_.DocBui | der ();
Docunment doc = docBui | der. newDocunent ();

With the document in hand, we can then proceed to add the proper hierarchy of XML
elements. For example, the following code creates a product name element with the
corresponding text subelement:

Text product NanmeText = doc. creat eText Node(product. get Name());
El enrent naneNode = doc. creat eEl ement (" nane");
nameNode. appendChi | d(product NanmeText) ;

89

Web Services Essentials

Example 5-6. ProductXMLService.java

package com eceram . soap;

i mport java.util.Hashtabl e;

i mport org.w3c.dom *;

i nport javax.xm . parsers. Docunent Bui | der;

i nport org.apache. soap. util.xm.XMParserUils;

/**
*
*

*

*/

A Sanpl e SOAP Service
Provi des Product Name for requested Stockkeeping Unit (SKU)
Information is passed as Literal XM. Docunents.

public class Product XM_Servi ce extends Product Servi ce{

/

*

*

* *

Provi des Product Info for requested XM. docunent.
/

public El enent getProduct (Elenent request)

}
}

t hrows Product Not FoundException {

/1 Extract sku attribute

String sku = request.getAttribute("sku");

Product Bean product = (ProductBean) products. get(sku);

/1l Create XML Docunent to store Product data
Documnent Bui | der docBui | der = XM_Parser Uil s. get XM_.DocBui | der();
Docunent doc = docBui | der. newDocunent ();

/'l Create Product Nane El enment

Text product NameText = doc. creat eText Node(product. getNane());
El enent naneNode = doc. creat eEl enent (" nane");

nanmeNode. appendChi | d(pr oduct NanmeText) ;

/1 Create Product Description El enment
Text productDescriptionText =
doc. creat eText Node(product . get Description());
El enent descripti onNode = doc. creat eEl enent ("description");
descri pti onNode. appendChi | d(product Descri ptionText);

/'l Create Product Nane El enment

Text productPriceText = doc. creat eText Node(
Doubl e. toString(product.getPrice()));

El enent priceNode = doc. createEl ement ("price");

pri ceNode. appendChi | d(product Pri ceText);

/'l Create Root Product El enent

El enent product Node = doc. creat eEl ement (" product™);
product Node. set Attri bute("sku", sku);

pr oduct Node. appendChi | d(naneNode) ;

product Node. appendChi | d(descri pti onNode) ;

pr oduct Node. appendChi | d(pri ceNode) ;

return product Node;

5.3.2 Client Code

The full client code is shown in Example 5-7. Fortunately, most of the code is similar to
that in the previous three examples. Asin the service code, we'll also utilize the DOM API
to build anew XML document.

Web Services Essentials

First, we'll set the encoding style to XML literal:

cal | . set Encodi ngStyl eURI (Constants. NS_URI _LI TERAL_XM.) ;
This enables the passing of whole XML documents within the SOAP request.

Second, well create a new XML document. We'll use the same technique that we used to
write the server code, with the goal of creating a single product element (e.g., <pr oduct
sku="A358185"/>). With the element in hand, we will then create anew par anet er Object:

skuParam = new Par anet er (" product Node", org.w3c.dom El enent. cl ass,
product Node, Constants.NS_URI LI TERAL_XM.);

Note that we will again set the encoding styleto XML literal.

As usual, the final step is to cast the return value correctly. In this case, well cast to the
DOM El enent class:

Paranmeter result = resp.getReturnValue ();
El enent xm Result = (Elenent) result.getValue();

We can then print out the el enent string using Apache's handy povew i ter :

DOVeWiter domWiter = new DOMRWiter();
Systemout.println ("Server Response: ");
Systemout.println (donWiter.nodeToString(product));

Example 5-7. ProductXMLClient.java

package com eceram . soap;

/**

* A Sanple SCAP Cient
* Retrieves Product Info for Specified Stockkeeping Unit (SKU)
* Data is returned as an XM. Literal Docunent
* usage: java Product XMLCOient sku#

*/

i mport java.net.*;

i mport java.util.Vector;

i mport org.w3c.dom *;

i mport org.apache. soap. *;

i mport org.apache. soap.rpc. *;

i mport javax.xm . parsers. Docunent Bui | der;

i nport org.apache. soap.util.xm . XMParserUtils;

i mport org.apache. soap.util.xmnm . DOVWIiter;

public class Product XMLClient {

/**

* Static Main nethod
*/
public static void main (String[] args) {
String sku = args[O0];
Systemout.println ("XM. Product Checker: SCAP Cient");
Product XMLCl i ent product XM_Cl i ent = new Product XM_Client();
try {
El enent product = product XMLCl i ent. get Product (sku);
DOVWiter domNiter = new DOVBWiter();
Systemout.println ("Server Response: ");
Systemout.println (domWiter.nodeToString(product));
} catch (SOAPException e) {

91

Web Services Essentials

Systemerr.println (e);
} catch (Ml fornedURLException e) {
Systemerr.println (e);
}
}

/**

* get Product Met hod

*

/

public El enent getProduct (String sku)

t hrows SOQAPException, MalformedURLException {
Par amet er skuPar am

[/l Create SOAP RPC Call Object
Call call = newCall ();

/1 Set Encoding Style to XML Literal
cal | . set Encodi ngStyl eURI (Constants. NS_URI _LI TERAL_XM.) ;

/1 Set Object URI and Met hod Nane
cal |l .set Target Obj ect URI ("urn: exanpl es: XM_pr oduct service");
cal |l .set Met hodNane ("getProduct");

/1 Set Method Paraneters
Vector paranii st = new Vector ();

/1 Create XM. Docunent to store SKU
Docurnent Bui | der docBui |l der = XM_Parser Uil s. get XM_.DocBui | der ();
Docunent doc = docBui | der. newDocunent ();

/1l Create product elenent with sku attribute
El enent product Node = doc. creat eEl ement (" product™);
product Node. set Attri but e("sku", sku);

skuParam = new Par anet er (" product Node", org.w3c.dom El enent. cl ass,
product Node, Constants.NS_URI _LI TERAL_XM.) ;

par amnli st . addEl enent (skuParan;

call.setParans (paranlist);

/1 Set the URL for the Wb Service
URL url = new URL ("http://local host: 8080/ soap/servlet/rpcrouter");

/'l Invoke the Service
Response resp = call.invoke (url, null);

/1 Check for Success
if (!resp.generatedFault()) {
/1 Extract Return val ue
Parameter result = resp.getReturnValue ();
El enent xm Result = (El enent) result.getValue();
return xm Resul t;

}

/1 Check for Faults

el se {
/1 Extract Fault Code and String
Fault f = resp.getFault();
String faultCode = f.getFaul t Code();
String faultString = f.getFaultString();
Systemerr.printin("Fault Cccurred (details follow):");
Systemerr.println("Fault Code: "+faultCode);
Systemerr.printin("Fault String: "+faultString);
return null;

92

Web Services Essentials

For reference, here is a complete SOAP request:

<?xm version="1.0" encodi ng=" UTF-8' ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. wW3. or g/ 2001/ 09/ soap- envel ope"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_.Schena" >
<SQAP- ENV: Body>
<nsl: get Product
xm ns: ns1="urn: exanpl es: XM.pr oduct servi ce"
SQOAP- ENV: encodi ngSt yl e=
"http://xm .apache. org/ xm -soap/literal xm ">
<pr oduct Node>
<product sku="A358185"/>
</ pr oduct Node>
</ nsl: get Product >
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

Here is a sample SOAP response:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. W3. or g/ 2001/ 09/ soap- envel ope"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_.Schena" >
<SQAP- ENV: Body>
<nsl: get Product Response
xm ns: ns1="urn: exanpl es: XM.pr oduct servi ce"
SOAP- ENV: encodi ngSt yl e=
"http://xm .apache. org/ xm -soap/literal xm ">
<return>
<product sku="A358185">
<nane>Red Hat Li nux</ nane>
<descri pti on>Red Hat Linux Operating Systenx/description>
<pri ce>54.99</ pri ce></ product >
</return>
</ nsl: get Product Response>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

5.4 Handling SOAP Faults

As explained in Chapter 4, SOAP faults indicate errors at the application level. For
example, a request for a nonexistent service or method name will trigger a fault. Service
objects can aso trigger faults, providing a means of propagating errors back to the client.
Propagating exceptions and errors back to the client is particularly critical for building
robust applications. For example, in the catalog applications we have created so far, we
have assumed that the user will always pass a valid, current SKU. What happens when the
user requests a SKU for a nonexistent product? To explore this question, and thereby
illustrate several fault-handling options, let's examine an updated version of the
Product Servi ce example.

93

Web Services Essentials

5.4.1 Service Code

The complete service code is presented in Example 5-8. The Product Service2 class
extends the original product Servi ce class and uses the same product hashtable. The new
get Product I nfo() method receives a string SKU parameter and checks the product
hashtable.

Example 5-8. ProductService2.java

package com eceram . soap;

i mport java.util.Hashtabl e;

/**

* A Sanpl e SOAP Service

* Provides Product Information for requested Stockkeeping Unit (SKU)
*/

public class Product Service2 extends Product Service {

/**
* Provides Product Info for requested SKU.
* |f SKUis not found, nethod throws a Product Not FoundExcepti on
*/
public Product Bean get Productlnfo (String sku)
throws Product Not FoundExcepti on {
Product Bean product = (ProductBean) products. get(sku);
i f (product==null)
t hrow new Product Not FoundException ("SKU Not Found: "+sku);
return product;

}
}

If a match is found, the method returns the correct product Bean. Otherwise, the method
throws a Pr oduct Not FoundExcept i on. The Product Not FoundExcept i on code is presented in
Example 5-9.

Example 5-9. ProductNotFoundException.java

package com eceram . soap;

i mport org.apache. soap. Faul t;

/**
* Product Not FoundExcepti on
* Encapsul ates any exceptions related to retrieving
* product/price for Specified Stockkeeping Unit (SKU)
*/
public class Product Not FoundException extends Exception {
private Fault fault;

publ i ¢ Product Not FoundException (String faultString) {
super (faultString);
}

publ i ¢ Product Not FoundException (String faultString, Fault fault) {
super (faultString);
this.fault = fault;

}

public Fault getFault () { return fault; }

94

Web Services Essentials

5.4.2 Client Code

The revised client code is presented in Example 5-10. Most of the get Product () method is
the same as in the original Product ¢ i ent code, and therefore | have only included those
pieces that illustrate the new fault-handling capability. First, if a fault is detected, the
client code extracts the Faul t object and embeds it into a Pr oduct Not FoundExcept i on :

Fault fault = resp.getFault();
String faultString = fault.getFaultString();
t hrow new Product Not FoundException (faultString, fault);

This enables us to examine the Faul t object later. Second, the nei n() method includes a
new printFaul t Detai | s() method for printing out any fault details embedded in the
Response Object. Before we examine this method, however, we'll test the code by sending a
nonexistent SKU. Let's try the SKU number Z358185. If you are using the TcpTunnel Gui
tool, you will see the following response from the SOAP server:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. org/ 1999/ XM_Schena- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 1999/ XM_.Schena" >
<SQAP- ENV: Body>
<SQAP- ENV: Faul t >
<f aul t code>SOAP- ENV: Ser ver </ f aul t code>
<faul tstring>
Exception from service object: SKU Not Found: Z358185
</faul tstring>
<faul tact or >/ soap/ servl et/ rpcrouter</faultactor>
</ SCAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

As you can see, Product Not FoundExcept i on IS not propagated directly back to the client.
Rather, the r pcrout er captures the exception, generates a SOAP Faul t element, and inserts
the embedded Pr oduct Not FoundExcept i on message inside the f aul t st ri ng subelement. On
the client end, we capture the fault and throw our own Pr oduct Not FoundExcept i on.

The SOAP specification also allows for the SOAP response to include fault details. Fault
details can provide a finer-grained description of errors and thereby aid in debugging. To
access the list of fault details, use the Faul t get Detai |l Entries() method. Thiswill return
avector of DOM El enents. You can then query each element for its name and value:

for (int i=0; i< detail Entries.size(); i++) {
El ement detail = (Elenent) detail Entries.elementAt(i);
String nane = detail.get NodeNane();
String value = DOMUJti | s. get Chi | dChar act er Dat a(detail);
Systemerr.println (nane);
Systemerr.println (val ue);

}

No fault details are normally included in the SOAP response, and this method will not
print anything. Nonetheless, Apache SOAP does provide two built-in fault listeners that
provide very helpful fault details. The first, bovFaul t Li st ener , will insert the entire stack
trace for any exception thrown within the service object. The second,
ExceptionFaul t Li stener , Will insert the name of the thrown exception. Unfortunately,
you cannot set fault listeners via the web administration tool. Y ou therefore must use the

95

Web Services Essentials

command-line tool and the isd:faultListener element. For example, the following
addition to the deployment descriptor file will add the bonfaul t Li st ener :

<i sd: faul tLi st ener>
or g. apache. soap. server. DOVFaul t Li st ener
</isd: faul tListener>

With the povraul t Li st ener in place, the server will now generate errors like this:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: // schermas. xm soap. or g/ soap/ envel ope/ "

xm ns: xsi ="http://ww. w3. org/ 1999/ XM_Schene- i nst ance" xm ns: xsd="http://wwv.
w3. or g/ 1999/ XMLSchema" >

<SQAP- ENV: Body>

<SOAP- ENV: Faul t >

<f aul t code>SOAP- ENV: Ser ver </ f aul t code>

<faul tstring>Exception fromservice object: SKU Not Found: Z358185</
faul tstring>

<faul tactor>/soap/ servl et/ rpcrouter</faultactor>

<detai |l >
<st ackTrace>com ecer am . soap. Product Not FoundExcepti on: SKU Not Found:
7358185
at com ecerani . soap. Product Servi ce2. get Product | nf o(Product Servi ce2. j ava:
26)

at java.lang.refl ect. Met hod. i nvoke(Native Mt hod)

at org. apache. soap. server. RPCRout er. i nvoke(RPCRout er . j ava: 146)

at org. apache. soap. provi ders. RPCJavaPr ovi der . i nvoke(RPClavaPr ovi der.
java: 129)

at org. apache. soap. server. http. RPCRout er Ser vl et . doPost (RPCRout er Servl et .
j ava: 286)

at javax.servlet.http. HtpServlet.service(HtpServlet.java: 760)

at javax.servlet.http. HtpServlet.service(HtpServlet.java: 853)

at org.apache.tontat. core. Servl et Wapper. doServi ce(Servl et Wapper.java:
404)

at org.apache.tontat. core. Handl er. servi ce(Handl er. j ava: 286)

at org.apache.toncat. core. Servl et Wapper. servi ce(Servl et Wapper.java:

372)

at org. apache. tontat. core. Cont ext Manager . i nt er nal Servi ce(Cont ext Manager .
java: 797)

at org.apache. tontat. core. Cont ext Manager . servi ce(Cont ext Manager . j ava:
743)

at org.apache.tontat. service. http. H t pConnecti onHandl er.
processConnecti on(Ht t pConnecti onHandl er. j ava: 210)
at org.apache.tontat. servi ce. TcpWr ker Thr ead. runl t (Pool TcpEndpoi nt . j ava:
416)
at org.apache.tontat. util.ThreadPool $Cont r ol Runnabl e. run(Thr eadPool .
j ava: 498)
at java.lang. Thread. run(Thread. j ava: 484)
</ stackTrace>
</detail >
</ SOAP- ENV: Faul t >
</ SCAP- ENV: Body>
</ SCAP- ENV: Envel ope>

As you can see, the det ai | element is now included, and it contains a single st ackTrace

element. The print Faul t Det ai | s() method, using the code shown in Example 510 , will
now detect a detail entry and print out the entire stack trace.

96

Web Services Essentials

Example 5-10. ProductClient2.java

package com eceramni . soap;

/**

* A Sanple SCAP Cient
* Retrieves Product Info for Specified Stockkeeping Unit (SKU)
* usage: java Productdient sku#
*/
i mport java.net.*;
i mport java.util.Vector;
i mport org.apache. soap. *;
i mport org.apache. soap.rpc.*;
i mport org.apache. soap. encodi ng. soapenc. BeanSeri al i zer;
i nport org. apache. soap. encodi ng. SOAPMappi ngRegi stry;
i mport org.apache. soap. util.xnm . Q\ane;
i mport org.w3c.dom El enment;
i mport org.apache.soap.util.xm.DOMULIils;

public class ProductCient2 {

/**

* Static Main nethod
*/
public static void main (String[] args) {
String sku = args[O0];
Systemout.println ("Product Checker: SCAP Cient");
Productdient2 productCient2 = new ProductCient2();
try {
Pr oduct Bean product = productdient?2. get Product (sku);
Systemout.println ("SKU "+product.getSKU));
Systemout.println ("Nane: "+product.getName());
Systemout.println ("Description: "+product.getDescription());
Systemout.println ("Price: "+product.getPrice());
} catch (Product Not FoundException e) {
Systemerr.println (e);
printFaultDetails (e.getFault());
} catch (SQAPException e) {
Systemerr.println (e);
} catch (Ml fornedURLException e) {
Systemerr.println (e);

}
/**
* Extract and Print Fault Details
*/
public static void printFaultDetails (Fault fault) {
/'l Extract Detail Entries
Vector detail Entries = fault.getDetail Entries();
if (detail Entries !'= null) {
/1l Print each Detail Entry
for (int i=0; i< detail Entries.size(); i++) {
El ement detail = (Elenent) detail Entries.elenmentAt(i);
String nane = detail.get NodeNane();
String value = DOMUti | s. get Chil dCharact erDat a(detail);
Systemerr.println (nane);
Systemerr.println (val ue);
}
}
}

/**

* get Product Met hod

*

/

publi ¢ Product Bean get Product (String sku)

t hrows SOAPExcepti on, Mal f or medURLExcepti on, Product Not FoundExcepti on {
Par amet er skuPar am

97

Web Services Essentials

Same as ProductCient.java

/'l Check for Success
if (!resp.generatedFault()) {
/'l Extract Return val ue
Paranmeter result = resp.getReturnValue ();
Product Bean product = (ProductBean) result.getValue();
return product;

}
/1 Check for Faults

el se {
/'l Extract Fault Code and String
Fault fault = resp.getFault();
String faultString = fault.getFaultString();
t hrow new Product Not FoundException (faultString, fault);

}
}
}

5.5 Maintaining Session State

Our fina topic is the maintenance of session state. As you may recall from Chapter 4,
each deployed SOAP service has an associated scope property. Each time a service is
invoked, the rpcrout er servlet will invoke the remote service object. The scope property
defines the lifetime of this remote object.

Request

Indicates that the object will exist during the lifetime of one SOAP request/response
cycle

Session
Indicates that the rpcrout er will instantiate one object per client, and will maintain
these objects across multiple request/response conversations

Application

Indicates that only one object is instantiated, and this one object will process all
incoming requests

To make the scope property more concrete, our final example illustrates a session-counting
service. The server code keeps a current counter in memory and returns this value to the
client. When scope is set to Session , the rpcrout er Will instantiate a new service object
for each client. The server istherefore able to maintain individual session counts for each
client. When scope is set to Appl i cation , the rpcrouter will instantiate only one service
object; the server therefore counts the total number of requests from al clients.

5.5.1 Service Code

The complete service code is shown in Example 5-11. The code maintains a single
instance variable, called count er. For each client request, count er isincremented.

98

Web Services Essentials

Example 5-11. CounterService.java

package com eceram . soap;

~
*

EE T S T . T S

~

-_>

Sanpl e SOAP Service

I lustrates Session v. Application Scope

When this service is deployed with Scope="Session",
server will instantiate one instance of CounterService
per client. CounterService will then maintain total
nunber of requests per session.

When this service is deployed with Scope="Application",
server will instantiate just one instance of CounterService.
CounterService will then rmaintain total nunmber of requests
across all sessions.

public class CounterService {

private int counter; /'l Nunmber of requests
/**

* Constructor

*/

public CounterService () { counter = 0; }
/**

* Return nunber of requests

*/

public int getCounter () { return ++counter; }

5.5.2 Client Code

The complete client code is shown in Example 5-12. The goal of the client code is to call
the remote get count er () method and retrieve the current count value.

Example 5-12. CounterClient.java

package com eceram . soap;

/**
* A Sanple SOAP dient
* Retrieves Current Counter value from CounterService
* |llustrates Session v. Application Scope

*/

i mport java.util.*;

i mport java.net.*;

i mport org.apache. soap. *;

i mport org.apache. soap.rpc. *;

public class Counterdient {

private Call call; /' Reusable Call Object
/**

* Static Main nethod

*/

public static void main (String[] args) {
Systemout.println ("Session/Application Counter: SOAP Cient");
CounterCient counterCient = new CounterCient();
counterdient.process();

}

/**

99

Web Services Essentials

* Constructor
* Create reusable Call object

*/

public Counterdient () {
call = newCall();

}

/**

* Start counting

*/

public void process () {
try {

for (int i=0; i<5; i++) {
int counter = getCounter ();
Systemout.println ("Counter: "+counter);

}

} catch (CounterException e) {
Systemerr.println (e);

} catch (SQAPException e) {
Systemerr.println (e);

} catch (Ml fornedURLException e) {
Systemerr.println (e);

}

/**

* get Count er Met hod

*/

public int getCounter ()

t hrows SOAPException, MalfornedURLExcepti on,
Count er Excepti on {

/1 Set Encoding Style to standard SOAP encodi ng
cal | . set Encodi ngSt yl eURI (Const ants. NS_URI _SOAP_ENC) ;

/1 Set Object URI and Met hod Nane
call.set Target Ooj ect URI ("urn: exanpl es: count erservice");
call.set Met hodNane ("getCounter");

/1 Set the URL for the Wb Service
URL url = new URL ("http://local host: 8080/ soap/servlet/rpcrouter");

/'l Invoke the Service
Response resp = call.invoke (url, null);

/'l Check for Success

if (!resp.generatedFault()) {
/1 Extract Return val ue
Parameter result = resp.getReturnValue ();
Integer counter = (Integer) result.getValue();
return counter.intValue();

}
/1 Check for Faults
el se {
/1 Extract Fault Code and String
Fault f = resp.getFault();
String faultCode = f.getFaultCode();
String faultString = f.getFaultString();
t hrow new Count er Exception (faultCode+": "+faultString);
}
}

/**

* Count er Excepti on

* Encapsul ates any exceptions related to retrieving
* application/session counter.

*/

cl ass Count er Exception extends Exception {

100

Web Services Essentials

private String nsg;

publ i c CounterException (String nsg) {
super (sg) ;
}
}
}

Behind the scenes, Apache SOAP uses cookies to differentiate client requests. For
example, the first request to the count er Ser vi ce generates the following HT TP response:

HTTP/ 1.0 200 OK
Content- Type: text/xm; charset=utf-8
Content - Lengt h: 477
Set - Cooki e2: JSESSI ONl D=t f r 2ps35b1; Ver si on=1; Di scar d; Pat h="/ soap"
Set - Cooki e: JSESSI ONI D=t f r 2ps35b1; Pat h=/ soap
Servl et - Engi ne: Tontat Wb Server/3.2.1 (JSP 1.1; Servlet 2.2; Java 1.3.0;
W ndows 2000 5.0 x86; java.vendor=Sun M crosystens Inc.)
<?xm version='"1.0" encodi ng=" UTF-8' ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. org/ 1999/ XM_Schena- i nst ance"
xm ns: xsd="http://wwmw. w3. or g/ 1999/ XM_.Schena" >
<SQAP- ENV: Body>
<nsl: get Count er Response
xm ns: nsl1="urn: exanpl es: count er servi ce"
SQOAP- ENV: encodi ngSt yl e=
"http://schenmas. xm soap. or g/ soap/ encodi ng/ " >
<return xsi:type="xsd:int">1</return>
</ nsl: get Count er Response>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>

The fifth and sixth lines of the HTTP response set a Jakarta Tomcat session cookie, called
Jsessi oni b, Clients can use this cookie to maintain session state across multiple calls to
the server.

By default, the SOAP cal I object recognizes cookies and will automatically send them
back to the server. The only requirement is that you reuse the same cal | object across all
reguests within the same session. For example, our client code creates a reusable cal |
object within the constructor:

public CounterCient () {
call =new Call();
}

To maintain session, the code just reuses the same cal|l object. The call object
automatically returns any session cookies, and the server is able to maintain a separate
counter for each client.

101

Web Services Essentials

Part IV: WSDL

Chapter 6

102

Web Services Essentials

Chapter 6. WSDL Essentials

WSDL is a specification defining how to describe web services in a common XML
grammar. WSDL describes four critical pieces of data:

Interface information describing all publicly available functions

Data type information for all message requests and message responses
Binding information about the transport protocol to be used

Address information for locating the specified service

In a nutshell, WSDL represents a contract between the service requestor and the service
provider, in much the same way that a Java interface represents a contract between client
code and the actual Java object. The crucia difference is that WSDL is platform- and
language-independent and is used primarily (although not exclusively) to describe SOAP
services.

Using WSDL, a client can locate a web service and invoke any of its publicly available
functions. With WSDL-aware tools, you can also automate this process, enabling
applications to easily integrate new services with little or no manual code. WSDL
therefore represents a cornerstone of the web service architecture, because it provides a
common language for describing services and a platform for automatically integrating
those services.

This chapter covers all aspects of WSDL, including the following topics:

An overview of the WSDL specification, complete with detailed explanations of
the mgjor WSDL elements

Two basic WSDL examples to get you started

A brief survey of WSDL invocation tools, including the IBM Web Services
Invocation Framework (WSIF), SOAP::Lite, and The Mind Electric's GLUE
platform

A discussion of how to automatically generate WSDL files from existing SOAP
services

An overview of using XML Schema types within WSDL, including the use of
arrays and complex types

6.1 The WSDL Specification

WSDL is an XML grammar for describing web services. The specification itself is
divided into six major elements:

definitions
The definitions element must be the root eement of all WSDL documents. It

defines the name of the web service, declares multiple namespaces used throughout
the remainder of the document, and contains all the service elements described here.

103

Web Services Essentials

types

The t ypes element describes all the data types used between the client and server.
WSDL is not tied exclusively to a specific typing system, but it uses the W3C XML
Schema specification as its default choice. If the service uses only XML Schema
built-in simple types, such as strings and integers, the t ypes element is not required.
A full discussion of thet ypes element and XML Schemais deferred to the end of the
chapter.

nmessage

The nessage element describes a one-way message, whether it is a single message
request or a single message response. It defines the name of the message and
contains zero or more message part elements, which can refer to message
parameters or message return values.

port Type

The port Type element combines multiple nessage elements to form a complete one-
way or round-trip operation. For example, a port Type can combine one request and
one response message into a single request/response operation, most commonly used
in SOAP services. Note that a port Type can (and frequently does) define multiple
operations.

bi ndi ng

The bi ndi ng element describes the concrete specifics of how the service will be
implemented on the wire. WSDL includes built-in extensions for defining SOAP
services, and SOAP-specific information therefore goes here.

service

The service element defines the address for invoking the specified service. Most
commonly, thisincludes a URL for invoking the SOAP service.

To help you keep the meaning of each element clear, Figure 6-1 offers a concise
representation of the WSDL specification. As you continue reading the remainder of the
chapter, you may wish to refer back to this diagram.

Figure 6-1. The WSDL specification in a nutshell

<definitions=: Foot Wikl Element

<typess:What data types will be transmitted!

<messages: What messages will be transmitted?

<portType=: What operations (functions) will be supportad?

<hinding=: How will the messages be transmitted on the wired
What S0AP-specific details are there?

<gprvice: Whers & the service located!

104

Web Services Essentials

In addition to the six major elements, the WSDL specification also defines the following
utility elements:

docunent ati on

The docunent ati on element is used to provide human-readable documentation and
can be included inside any other WSDL element.

i mport

The i nport element is used to import other WSDL documents or XML Schemas.

This enables more modular WSDL documents. For example, two WSDL documents
can import the same basic elements and yet include their own servi ce eements to
make the same service available at two physical addresses. Note, however, that not
all WSDL tools support the import functionality as of yet.

- WSDL is not an official recommendation of the W3C and, as such,
s | has no officia status within the W3C. WSDL Version 1.1 was
" 4+ submitted to the W3C in March 2001. Original submitters included

IBM, Microsoft, Ariba, and a half dozen other companies. Most
probably, WSDL will be placed under the consideration of the new
W3C Web Services Activity's Web Services Description Working
Group, which will decide if the specification advances to an official
recommendation status. The WSDL Version 1.1 specification is
available online at http://www.w3.org/TR/wsdl.

6.2 Basic WSDL Example: HelloService.wsdl

To make the previously described WSDL concepts as concrete as possible, let's examine
our first sample WSDL file.

Example 6-1 provides a sample HelloService.wsdl document. The document describes the
HelloService from Chapter 4.

As you may recall, the service provides a single publicly available function, called
sayHello. The function expects a single string parameter, and returns a single string
greeting. For example, if you pass the parameter wor | d , the service returns the greeting,
"Hello, world!"

Example 6-1. HelloService.wsdl

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions name="Hel | oService"
t ar get Nanmespace="htt p: // ww. eceram . coml wsdl / Hel | oServi ce. wsdl "
xm ns="http://schemas. xn soap. or g/ wsdl /"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns:tns="http://ww. eceram .confwsdl/Hell oService.wsdl"
xm ns: xsd="ht t p: // www. W3. or g/ 2001/ XM_Schena" >

<nessage nanme="SayHel | oRequest" >

<part name="firstNane" type="xsd:string"/>
</ message>

105

Web Services Essentials

<nessage nane="SayHel | oResponse" >
<part nane="greeting" type="xsd:string"/>
</ message>

<port Type nane="Hel | o_Port Type" >
<operation name="sayHel | 0" >
<i nput nessage="tns: SayHel | oRequest"/ >
<out put nessage="tns: SayHel | oResponse"/ >
</ operati on>
</ port Type>

<bi ndi ng nanme="Hel | o_Bi ndi ng" type="tns: Hell o_Port Type">
<soap: bi ndi ng styl e="rpc"
transport="http://schenmas. xm soap. org/ soap/ http"/>
<operation name="sayHel | 0" >
<soap: oper ati on soapAction="sayHel | 0"/ >
<i nput >
<soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
namespace="ur n: exanpl es: hel | oservi ce"
use="encoded"/ >
</i nput >
<out put >
<soap: body
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "
namespace="ur n: exanpl es: hel | oservi ce"
use="encoded"/ >
</ out put >
</ operati on>
</ bi ndi ng>

<servi ce nanme="Hel | o_Service">
<docunentati on>WSDL File for Hell oService</docunentation>
<port binding="tns: Hello_Binding" nane="Hell o_Port">
<soap: addr ess
| ocation="http://|ocal host: 8080/ soap/servlet/rpcrouter"/>
</ port >
</ service>

</definitions>

The WSDL elements are discussed in the next section of this chapter. As you examine
each element in detail, you may want to refer to Figure 6-2 , which summarizes the most
important aspects of Example 6-1.

Figure 6-2. A bird's-eye view of HelloService.wsdl

<definitions=: The Hello5erice

<MASSAgE=:
1) sayHelleRequest: firsthame parameter
) sayHelleResponse: greating retum value

<portType=: sayHello aperation that consists of a
FEUEstTEspamse service

<hindingz: irection t use the S0AF HTTF transpaort protocal,

<servhee=: Service available at: hitp:/localhost: 3080/ s0ap
{servist/morouter

106

Web Services Essentials

6.2.1 definitions

The def i ni ti ons element specifies that this document is the HelloService. It also specifies
numerous namespaces that will be used throughout the remainder of the document:

<definitions name="Hel | oService"
t ar get Nanespace="http://ww. eceramni . com wsdl / Hel | oServi ce. wsdl "
xm ns="http://schemas. xn soap. or g/ wsdl /"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns:tns="http://ww. eceram .coniwsdl/Hel | oService.wsdl"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_.Schena" >

The use of namespaces is important for differentiating elements, and it enables the
document to reference multiple external specifications, including the WSDL specification,
the SOAP specification, and the XML Schema specification.

Thedefinitions element also specifiesat ar get Nanespace attribute. Thet ar get Namespace
is a convention of XML Schema that enables the WSDL document to refer to itself. In
Example 6-1, we specified a targetNanespace Of http://www.ecerami.com/wsdl/
HelloServicewsdl. Note, however, that the namespace specification does not require that
the document actually exist at this location; the important point is that you specify a value
that is unique, different from all other namespaces that are defined.

Finally, the definitions element gpecifies a default namespace:
xmlns=http://schemas.xmisoap.org/wsdl/. All elements without a namespace prefix, such
asnessage Or port Type , are therefore assumed to be part of the default WSDL namespace.

6.2.2 message

Two ressage €elements are defined. The first represents a request message,
SayHelloRequest, and the second represents a response message, SayHelloResponse:

<nmessage nane="SayHel | oRequest ">

<part name="firstNane" type="xsd:string"/>
</ message>
<message nane="SayHel | oResponse" >

<part nane="greeting" type="xsd:string"/>
</ message>

Each of these messages contains a single part element. For the request, the part specifies
the function parameters; in this case, we specify a single i rst Nane parameter. For the
response, the part specifies the function return values; in this case, we specify a single
greet i ng return value.

The part element's t ype attribute specifies an XML Schema data type. The value of the
type attribute must be specified as an XML Schema QName - this means that the value of
the attribute must be namespace-qualified. For example, thefirst Nane type atribute is set
to xsd: string ; the xsd prefix references the namespace for XML Schema, defined earlier
within the defini ti ons element.

If the function expects multiple arguments or returns multiple values, you can specify
multiple part elements.

107

Web Services Essentials

6.2.3 portType

The port Type element defines a single operation, called sayHello. The operation itself
consists of a single i nput message (SayHelloRequest) and a single out put message
(SayHelloResponse):

<port Type nane="Hel | o_Port Type" >
<operation nane="sayHel | 0" >
<i nput nessage="tns: SayHel | oRequest "/ >
<out put nessage="t ns: SayHel | oResponse"/ >
</ operati on>
</ port Type>

Much like the t ype attribute defined earlier, the nessage attribute must be specified as an
XML Schema QName. This means that the value of the attribute must be namespace-
qgualified. For example, the input element specifies a nessage attribute of
tns: SayHel | oRequest ; the t ns prefix referencesthe t ar get Nanespace defined earlier within
the def i ni ti ons element.
WSDL supports four basic patterns of operation:
One-way
The service receives amessage. The operation therefore hasasinglei nput element.
Request-response
The service receives a message and sends a response. The operation therefore has
one input element, followed by one output element (illustrated previously in
Example 6-1). To encapsulate errors, an optiona fault element can aso be
specified.
Solicit-response
The service sends a message and receives a response. The operation therefore has
one out put element, followed by one i nput element. To encapsulate errors, an
optional f aul t element can also be specified.
Notification

The service sends a message. The operation therefore has asingle out put element.

These patterns of operation are also shown in Figure 6-3. The request-response pattern is
most commonly used in SOAP services.

108

Web Services Essentials

Figure 6-3. Operation patterns supported by WSDL 1.1

One-way
CliEI'It ‘{Illlplt? [F— SE'W.“E
Reguest-respovise
................ ":i“p.t} o..... -
Client Service
e M {ﬂltpl.lt}&
Soficit-response
i {ﬂltplt?o'
Client Service
<input> 9 >
Kafification
Client e GUEPEES] SETViCE

6.2.4 binding

The bi ndi ng element provides specific details on how aport Type operation will actually be
transmitted over the wire. Bindings can be made available via multiple transports,
including HTTP GET, HTTP POST, or SOAP. In fact, you can specify multiple bindings
for asingle port Type.

The bi ndi ng element itself specifies nane and t ype attributes:

<bi ndi ng nanme="Hel | o_Bi ndi ng" type="tns: Hell o_Port Type">

Thetype attribute references the por t Type defined earlier in the document. In our case, the
bi nding element therefore references tns:Hello Port Type , defined earlier in the
document. The binding element is therefore saying, "I will provide specific details on how
the sayHello operation will be transported over the Internet.”

6.2.4.1 SOAP binding

WSDL 1.1 includes built-in extensions for SOAP 1.1. This enables you to specify SOAP-
specific details, including SOAP headers, SOAP encoding styles, and the soaPAction
HTTP header. The SOAP extension elements include:

soap: bi ndi ng

This element indicates that the binding will be made available via SOAP. Thestyle
attribute indicates the overall style of the SOAP message format. A styl e value of
rpc Specifies an RPC format. This means that the body of the SOAP request will
include a wrapper XML element indicating the function name. Function parameters

109

Web Services Essentials

are then embedded inside the wrapper element. Likewise, the body of the SOAP
response will include a wrapper XML element that mirrors the function request.
Return values are then embedded inside the response wrapper element.

A styl e value of docunent specifies an XML document call format. This means that
the request and response messages will consist simply of XML documents. The
document style is flatter than the r pc style and does not require the use of wrapper
elements. (See the upcoming note for additional details.)

The transport attribute indicates the transport of the SOAP messages. The value
http://schemas. xni soap. org/ soap/ http indicates the SOAP HTTP transport,
whereas http://schemas. xnl soap. org/ soap/ sntp indicates the SOAP SMTP
transport.

soap: operation

This element indicates the binding of a specific operation to a specific SOAP
implementation. The soapAction attribute specifies that the soapaction HTTP
header be used for identifying the service. (See Chapter 3 for details on the
soAPAct i on header.)

soap: body

This element enables you to specify the details of the input and output messages. In
the case of HelloWorld, the body element specifies the SOAP encoding style and the
namespace URN associated with the specified service.

The choice between the rpc style and the docunent style is
controversial. The topic has been hotly debated on the WSDL
g+ newsgroup (http://groups.yahoo.com/group/wsdl). The debate is
further complicated because not al WSDL-aware tools even
differentiate between the two styles. Because the rpc styleismorein
line with the SOAP examples from previous chapters, | have chosen
to stick with the rpc style for al the examples within this chapter.
Note, however, that most Microsoft .NET WSDL files use the
docunent Style.

6.2.5 service
The servi ce element specifies the location of the service. Because thisis a SOAP service,
we use the soap: addr ess element, and specify the local host address for the Apache SOAP

rpcrouter serviet: htt p://1 ocal host: 8080/ soap/ servl et/ rpcrouter.

Note that the service element includes a docunent at i on element to provide human-readable
documentation.

110

Web Services Essentials

6.3 WSDL Invocation Tools, Part |

Given the WSDL filein Example 6-1 , you could manually create a SOAP client to invoke
the service. A better aternative is to automatically invoke the service via a WSDL
invocation tool. (See Figure6-4 .)

Figure 6-4. WSDL invocation tools

ereewSDifle 1 wsot
document
L Auromuatically lovoke sence
WSDL invecation

brece (1B WSIF, GLUE, SOAP service
RN Lt I R 5 S ——

Many WSDL invocation tools aready exist. This section provides a brief overview of
three invocation tools.

6.3.1 GLUE

The Mind Electric provides a complete web service platform called GLUE (available at
http://www.themindelectric.com). The platform itself provides extensive support for
SOAP, WSDL, and UDDI. Some of its advanced functionality, including support for
complex data types, will be explored later in this chapter.

For now, you can try out the GLUE i nvoke command-line tool. Here is the command-line
usage:

usage: invoke URL nethod argl arg2 arg3...

For example, to invoke the HelloService, make sure that your Apache Tomcat server is
running, and place the HelloService.wsdl file within a publicly available directory. Then,
issue the following command:

i nvoke http://1ocal host: 8080/ wsdl /Hel | oServi ce. wsdl sayHello Wrld

Once invoked, GLUE will immediately download the specified WSDL file, invoke the
sayHello method, and pass vor | d as a parameter. GLUE will then automatically display
the server response:

Qutput: result = Hello, Wrld!
That's dl thereistoit!
GLUE also supports an excellent logging facility that enables you to easily view all SOAP

messages. To activate the logging facility, set the el ectri c. | oggi ng System property. The
easiest option isto modify the invoke.bat file. The original file looks like this:

call java electric.glue.tools.Invoke %4 %2 93 % % % % 98 %0

111

Web Services Essentials

Modify the file to include the logging property viathe - D option to the Java interpreter:

call java -Delectric.logging="SOAP" electric.glue.tools.Invoke %4 %R %3 %!
% %6 % 9B 9B

When you invoke the HelloService, GLUE now generates the following output:

LOG SOAP: request to http://207.237.201.187: 8080/ soap/ servl et/ rpcrouter
<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<soap: Envel ope
xm ns: xsi =" http://ww. w3. org/ 2001/ XM_Schena- i nst ance
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schemna
xm ns: soap=" http://schenmas. xm soap. or g/ soap/
envel ope/' xm ns:soapenc="http://schenmas. xm soap. or g/ soap/ encodi ng/
soap: encodi ngStyl e=' http://schenmas. xm soap. or g/ soap/ encodi ng/ "' >
<soap: Body>
<n:sayHel |l o xm ns: n="urn: exanpl es: hel | oservi ce' >
<firstName xsi:type='xsd:string >Wrld</firstNanme>
</ n:sayHel | 0>
</ soap: Body>
</ soap: Envel ope>

LOG SQAP: response fromhttp://207.237.201.187: 8080/ soap/ servl et/ rpcrouter
<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV=' htt p: // schemas. xm soap. or g/ soap/ envel ope/
xm ns: xsi ="http://ww. w3. org/ 1999/ XM_Schena- i nst ance
xm ns: xsd="http://ww. w3. or g/ 1999/ XM_.Schena' >
<SQAP- ENV: Body>
<nsl: sayHel | oResponse
xm ns: nsl1="urn: exanpl es: hel | oservi ce
SOAP- ENV: encodi ngSt yl e=
"http://schenas. xm soap. or g/ soap/ encodi ng/"' >
<return xsi:type='xsd:string >Hello, World!</return>
</ nsl: sayHel | oResponse>
</ SOAP- ENV: Body>
</ SCAP- ENV: Envel ope>
result = Hello, Wrld

To view additional HTTP information, just Set el ectri c. | oggi ng tO SOAP, HTTP.
6.3.2 SOAP::Lite for Perl

SOAP::Lite for Perl, written by Paul Kulchenko, also provides limited support for WSDL.
The package is available at http://www.soaplite.com.

Example 6-2 provides a complete Perl program for invoking the HelloService.

Example 6-2. Hello_Service.pl

use SOAP::Lite
print "Connecting to Hello Service...\n";
print SOAP::Lite

-> service(' http://1ocal host: 8080/ wsdl /Hel | oService.wsdl ")
-> sayHello ("World);

The program generates the following output:

Connecting to Hello Service..
Hel l o, World

112

Web Services Essentials

6.3.3 IBM Web Services Invocation Framework (WSIF)

Finally, IBM has recently released WSIF. The package is available at
http://www.a phaworks.ibm.com/tech/wsif.

Much like GLUE, WSIF provides a simple command-line option for automatically
invoking WSDL services. For example, the following command:

java clients. Dynam cl nvoker http://local host: 8080/ wsdl/Hel | oServi ce. wsdl
sayHel lo World

generates the following output:

Readi ng WBDL docunent from ' http://|ocal host: 8080/ wsdl / Hel | oServi ce. wsdl
Preparing WSl F dynani c invocation

Executing operation sayHello

Resul t:

greeting=Hel l o, Wrld

Done

6.4 Basic WSDL Example: XMethods eBay Price Watcher Service

Before moving on to more complicated WSDL examples, let's examine another relatively
simple one. Example 6-3 provides a WSDL file for the XMethods eBay Price Watcher
Service. The service takes an existing eBay auction ID, and returns the value of the
current bid.

Example 6-3. eBayWatcherService.wsdl (reprinted with permission of XMethods, Inc.)

<?xm version="1.0"?>
<definitions nane="eBayWat cher Servi ce"
t ar get Nanmespace=
"http://ww. xnet hods. net/ sd/ eBayWat cher Servi ce. wsdl "
xm ns:tns="http://ww. xnmet hods. net/ sd/ eBayWat cher Servi ce. wsdl "
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns="http://schemas. xm soap. or g/ wsdl /">

<nessage nane="get Current Pri ceRequest ">
<part nanme="auction_id" type = "xsd:string"/>
</ message>
<nessage nane="get Current Pri ceResponse" >
<part name="return" type = "xsd:float"/>
</ nessage>

<port Type nane="eBayWat cher Port Type" >
<operati on name="get CurrentPrice">
<i nput
nessage="t ns: get Current Pri ceRequest "
name="get Current Price"/ >
<out put
nessage="t ns: get Current Pri ceResponse"
name="get Current Pri ceResponse"/ >
</ operati on>
</ port Type>

<bi ndi ng nanme="eBayWat cher Bi ndi ng" type="t ns: eBayWat cher Port Type" >
<soap: bi ndi ng
styl e="rpc"
transport="http://schenmas. xm soap. org/ soap/ http"/>
<operati on nane="get CurrentPrice">

113

Web Services Essentials

<soap: operation soapAction=""/>
<i nput nanme="get CurrentPrice">
<soap: body
use="encoded"
namespace="ur n: xmet hods- EbayWat cher "
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "/ >
</i nput >
<out put nane="get Current Pri ceResponse" >
<soap: body
use="encoded"
namespace="ur n: xmet hods- EbayWat cher"
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "/ >
</ out put >
</ operati on>
</ bi ndi ng>

<servi ce nanme="eBayWt cher Servi ce">
<docunent ati on>
Checks current high bid for an eBay auction
</ docunent ati on>
<port name="eBayWt cherPort" bindi ng="t ns: eBayWat cher Bi ndi ng" >
<soap: addr ess
| ocation="http://services. xmet hods. net: 80/ soap/ servl et/ rpcrouter”/>
</ port >
</ service>
</ definitions>

Hereis an overview of the main WSDL elements;

nessages

Two messages are defined: get Current Pri ceRequest and get Current Pri ceResponse.
The request message contains a single string parameter; the response message
contains a single float parameter.

port Type

A single operation, get current Pri ce , is defined. Again, we see the request/response
operation pattern.

bi ndi ng

The binding element specifies HTTP SOAP as the transport. The soapAction
attribute is left as an empty string (").

service

This element specifies that the service is avalable a
http://services.xmethods.net:80/soap/servlet/rpcrouter.

To access the eBay watcher service, you can use any of the WSDL invocation tools
defined earlier. For example, the following call to GLUE:

i nvoke http://ww. xmet hods. net/sd/ 2001/ EBayWat cher Ser vi ce. wsdl
getCurrentPrice 1271062297

retrieves the current bid price for a Handspring Visor Deluxe:

result = 103.5

114

Web Services Essentials

s The XMethods web site (http://www.xmethods.net) provides dozens
. of sample SOAP and .NET services. Nearly all of these services

-
Ty

include WSDL files and therefore provide an excellent opportunity
for learning WSDL in detail. As you browse the XMethods
directory, try interfacing with the specified services via any of the
WSDL invocation tools described here. Quite likely, you will be
amazed at how easy it is to integrate and invoke new services.

6.5 WSDL Invocation Tools, Part |l

Our initial discussion of WSDL invocation tools focused on programming and command-
line invocation tools. We now move on to even ssimpler tools that are entirely driven by a
web-based interface.

6.5.1 The GLUE Console

In addition to supporting a number of command-line tools, the GLUE platform also
supports a very intuitive web interface for deploying new services and connecting to
existing services.

To start the GLUE console, just type:

consol e

This will automaticaly start the GLUE console on the default port 8100. Open a web
browser and you will see the GLUE console home page. (See Figure 6-5 .)

Figure 6-5. The GLUE console: index page

-l el - Pt Did vl gelorer

CLECTRIC

GLUE COMSOLE

&l 1 Aol ek e

In the text box entitled WSDL, you can enter the URL for any WSDL file. For example,
try entering the URL for the eBay Price Waicher Service,
http://www.xmethods.net/sd/2001/EBayWatcher Service.wsdl.

115

Web Services Essentials

Click the WSDL button, and you will see the Web Service overview page. (See Figure 6-
6.) This page includes a description of the specified service (extracted from the WSDL
docurent element) and a list of public operations. In the case of the eBay service, you

should see asingle get current Pri ce method.

Figure 6-6. The GLUE console: Web Service overview page for the eBay Price Watcher

Service
Y i e e T =% =]
D G e Fpecsim - Jack - Hel -
deimd - 0 e 1 B bl Bt A s e it

=] i

L e e e)

WEB SERVICE

DLSCRIFTION Chacks ourrent high bedl for a0 aBap wcton
LNDPOENT hifp S eerdoms carer hads., et B T oy BTVt TG i e
il

MET RO i

Inwa

Al Fagha Fppsvend

& e O e

Click the get current Pri ce method, and you will see the Web Method overview page. (See
Figure 6-7 .) This page includes atext box where you can specify the input auction ID.

Figure 6-7. The GLUE console: Web Method overview page for the getCurrentPrice method

=leln

RERPIE
L= |

ek e el e e M oo R = - [

AT T o e B e iy e b e e iy P ol e e T v S i]

7] e

ELECTRIC

WEB METHOD

LRDPOIRT
METHOD

IR TS -
LUTPUTS: wiurm <floss

SOAR ACTIEN

AEND
press sEnd B iion (o aveate method and s et

£ b O e

Enter an auction ID, click the Send button, and GLUE will automaticaly invoke the
remote method and display the results at the bottom of the page. For example, Figure 6-8
shows the current bid price for the Handspring Visor Deluxe. Note that the price has
already gone up $10 since invoking the service via the GLUE command-line tool!

116

Web Services Essentials

Figure 6-8. The GLUE console: invoking the getCurrentPrice method (results of the
invocation are displayed at the bottom of the screen)

Al el Tl - S gl St vt gl

EEE =12l N
| i e Pl Jek b

E-i—bd\." QA ftenh ditecm (fewery D O Bl o] W

Aﬂlﬂ'.{ln’h B e e e T L T e | _'!:I =y

ELECTRIC

WEB METHOD

En DRI

MET RO QELL TN RS
IRFRITS suctlon_jd 1271002207
BUTPUTS mrlurn <fosts

SOAF ACTHEN
SEND
1ixs

P il ke

6.5.2 SOAPCIlient.com

If you would like to try out a web-based interface similar to GLUE, but don't want to

bother downloading the GLUE package, consider the Generic SOAP Client available at
SOAPClient.com.

Figure 6-9 shows the opening screen to the Generic SOAP Client. Much like the GLUE
console, you can specify the address for aWSDL file in this screen.

Figure 6-9. The Generic SOAP Client, available from SOAPClient.com

e e R e T e e

=B H|
B i pee Ppocm kg
P D A D fetm Py D o e
w0 T e 2 ohen
S0APClient.com

SEAC Dl Syslems
Tholest . . voutl tiver }
Application " Gt ponapreom
Hiome | S0AP Tools | UDDI Browser | Reso : » | FFCs | Whit

Generic SOAP Client

Tris gonenc SO8F chont aliove you I st wour SCRS sendcn Using aweh mser T pafoms dyamic
bingings and enecules mebods & remobe web 4 eneces, The bedt is 4 Woostep prodess

1. Entex e Web Jazvice Description Lancuase (W2DIL) file, and click the cetoieve butbion
& N ald bmld ATHL bozwe dsmamacelly b semerahaen Dl
¥ e HTHL fcwm snd Clich Chee Easd

This Liigeess tie
c& o2 ths enote ssthod & SHEP clisnr chisct will be cossted, which periciec
paz =r Bamdany. sowresr comatrectiomcdelivery. ard direlly respoose decedimy. The
samult ix than meot fc vour broemar sx & TTIT sexaece

iz P sk ot ARy R O T T T Diytemecha S eovice wi

Served nowe e UL | e, s e LECED

o

i
]

Specify the same eBay Price Watcher Service WSDL file, and the SOAP Client will
display atext box for entering the auction ID. (See Figure 6-10.)

117

Web Services Essentials

Figure 6-10. The Generic SOAP Client: Displaying information on the XMethods eBay Price

Watcher Service

IR Ak | Rl 1 R R LA

T =

ik @ A D Rt | gewery | b W o]

IIE] vt o ke o W T L A T s o o TR KT, W b e AN e e T v D Wt 8] SR
BO0APCHant, codn AU AyFienes

SOAP Taela F
ail
Soap Clienl Form
Soap Method : getCurreniPrice
Servar Address: hitp:#sarvdces smethods. et 30 scapisardetporouter
saiction_id 150 b E
Show: [Respozes =]

1]

Figure 6-11 displays the result of the eBay service invocation. The Handspring Visor is up

another $4!

Figure 6-11. The Generic SOAP Client: Response from the XMethods eBay Price Watcher

Service
-8l x
| = |

bk v DA S e Gifeots gy (L bl o] W e
AERIT T O o e d St b =
SO APCHent. com SUCDate Systems |

SaveTime .agk Acoly Ouline &

SO0AP Toela | UDDIE

Save Money (- Lt pe.conm

The soap server reburned the following response:
nrs

L

6.6 Automatically Generating WSDL Files

One of the best aspects of WSDL is that you rarely have to create WSDL files from
scratch. A whole host of tools currently exists for transforming existing services into
WSDL descriptions. You can then choose to use these WSDL files as is or manually
tweak them with your favorite text editor. In the discussion that follows, we explore the

WSDL generation tool provided by GLUE.

indicating WSDL errors and warnings.

s If you create WSDL files from scratich or tweak WSDL files
. generated by a tool, it is a good idea to validate your final WSDL
" 4% documents. You can download a WSDL validator

http://pocketsoap.com/wsdl/. This package requires that you have an
XSLT engine and the zvonSchematron (http://www.zvon.org), but
installation only takes a few minutes. Once installed, the validator is
well worth the effort and creates nicely formatted HTML reports

118

Web Services Essentials

6.6.1 GLUE java2wsdI Tool

The GLUE platform includes a java2wsdl command-line tool for transforming Java
services into WSDL descriptions. The command-line usage is as follows:

usage: java2wsdl <argunents>

where valid argunents are:

cl assname nane of java class

-d directory out put directory

-e url endpoi nt of service

-g i ncl ude GET/ POST bi ndi ng
-mmap-file read mappi ng i nstructions
-n nanespace nanespace for service

-r description description of service

-S i ncl ude SOAP bi ndi ng

-x comand-file conmand file to execute

Complete information on each argument is available online within the GLUE User Guide
at http://www.themindel ectric.com/products/glue/rel eases/ GLUE-
1.1/docs/guide/index.html. For now, we will focus on the most basic arguments.

For example, consider the priceservice class in Example 6-4. The service provides a
single get Pri ce() method.

Example 6-4. PriceService.java

package com eceram . soap. exanpl es;

i mport java.util.Hashtabl e;
/**
* A Sanpl e SOAP Service
* Provides Current Price for requested Stockkeeping Unit (SKU)
*/
public class PriceService {
protected Hashtabl e products;

/**

* Zero Argunent Constructor
* Load product database with two sanple products
*/
public PriceService () {
products = new Hashtable();
/1 Red Hat Linux
product s. put (" A358185", new Doubl e (54.99));
/'l MAfee PGP Personal Privacy
product s. put (" A358565", new Doubl e (19.99));

}

/**

* Provides Current Price for requested SKU

* In a real -setup, this nethod woul d connect to
* a price database. |If SKU is not found, nethod
* will throw a PriceException.

*/

public double getPrice (String sku)
throws Product Not FoundExcepti on {
Doubl e price = (Doubl e) products. get(sku);
if (price == null) {
t hr ow new Product Not FoundException ("SKU:. "+sku+" not found");
}

return price. doubl evVal ue();

119

Web Services Essentials

To generate aWSDL file for this class, run the following command:

java2wsdl com eceram . soap. exanpl es. PriceService -s -e http://local host:
8080/ soap/ servl et/ rpcrouter -n urn:exanpl es: priceservice

The - s option directs GLUE to create a SOAP binding; the - e option specifies the address
of our service; and the - n option specifies the namespace URN for the service. GLUE will
generate a PriceServicewsdl file. (See Example 6-5 .)

s If your service is defined via a Java interface and you include your

s | source files within your CLASSPATH, GLUE will extract your

~ g+ Javadoc comments, and turn these into WSDL docunentation
elements.

Example 6-5. PriceService.wsdl (automatically generated by GLUE)

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<l--generated by GUE-->
<definitions name='com eceramni . soap. exanpl es. Pri ceServi ce
t ar get Nanespace=" http://ww. t hem ndel ectri c. com wsdl / com ecerani . soap

xm ns:tns="http://ww.them ndel ectric.confwsdl/com eceramn . soap.
exanpl es. Pri ceServi ce/
xmns:electric=" http://ww:.theni ndel ectric.conl
xm ns: soap="http://schenas. xm soap. or g/ wsdl / soap/
xm ns: http="http://schenmas. xm soap. org/ wsdl / htt p/
xm ns: m ne="http://schenas. xm soap. or g/ wsdl / m e/
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena
xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/
xm ns: wsdl = http://schemas. xm soap. or g/ wsdl /'
xm ns="http://schemas. xm soap. org/ wsdl /"' >
<nessage nane=' get Pri ce0Soapln' >
<part nane='sku' type='xsd:string />
</ nessage>
<nessage nane=' get Pri ce0SoapCQut' >
<part nane='Result' type='xsd: double'/>
</ nessage>
<port Type nane='com ecerami . soap. exanpl es. Pri ceServi ceSoap' >
<operati on nane='getPrice' paraneterOder=" sku' >
<i nput nane='get Pri ceOSoapl n' nessage='tns: getPrice0Soapln'/>
<out put name=' get Pri ce0SoapQut' nessage='tns: getPrice0SoapQut'/>
</ operati on>
</ port Type>
<bi ndi ng nanme=' com ecer am . soap. exanpl es. Pri ceSer vi ceSoap'
type='tns: com ecerani . soap. exanpl es. Pri ceServi ceSoap' >
<soap: bi ndi ng style="rpc
transport="http://schenmas. xm soap. org/ soap/ http' />
<operation name='getPrice' >
<soap: operation soapAction='getPrice' style='rpc'/>
<i nput nane=' get Pri ceOSoapl n' >
<soap: body use=' encoded
namespace=" urn: exanpl es: pri ceservi ce
encodi ngStyl e=' http://schenmas. xm soap. or g/ soap/ encodi ng/"' / >
</input >
<out put nane=' get Pri ce0OSoapCQut"' >
<soap: body use=' encoded
namespace=" ur n: exanpl es: pri ceservi ce
encodi ngStyl e=' http://schermas. xm soap. or g/ soap/ encodi ng/ ' / >
</ out put >
</ operati on>
</ bi ndi ng>

120

Web Services Essentials

<servi ce nane='com ecer am . soap. exanpl es. Pri ceServi ce' >
<port nanme='com ecerani .soap. exanpl es. Pri ceServi ceSoap'
bi ndi ng="tns: com ecerani . soap. exanpl es. Pri ceServi ceSoap' >
<soap: address | ocation="http://207.237.201. 187: 8080
/ soap/ servl et/ rpcrouter'/>
</ port >
</ service>
</ definitions>

Y ou can then invoke the service via SOAP::Lite:

use SOAP:: Lite;

print "Connecting to Price Service...\n";

print SOAP::Lite
-> service('http://1ocal host: 8080/ wsdl / PriceService.wsdl")
-> getPrice ('A358185');

Hopefully, this example illustrates the great promise of web service interoperability. We
have a WSDL file generated by GLUE, a server running Java, and a client running Perl,
and they all work seamlessly together.

Connecting to Price Service...
54. 99

The IBM Web Services Toolkit (available at
= http://www.al phaworks.ibm.com/tech/webservicestoolkit) provides a
WSDL generation tool called wsdi gen. This tool can take existing
Java classes, Enterprise JavaBeans, and Microsoft COM objects and
automatically generate corresponding WSDL files. However, as this
book goes to press, the wsdl gen tool creates files based on the 1999
version of the W3C XML Schema. The WSDL files are therefore
incompatible with other WSDL invocation tools, such as SOAP::Lite
and GLUE. If you choose to use the IBM tool, make sure to
manually update your WSDL files to reflect the latest version of
XML Schema (http://www.w3.0rg/200L/XML Schema).

6.7 XML Schema Data Typing

In order for a SOAP client to communicate effectively with a SOAP server, the client and
server must agree on a data type system. By default, XML 1.0 does not provide a data
type system. In contrast, every programming language provides some basic facility for
declaring data types, such as integers, floats, doubles, and strings. One of the greatest
challenges in building web services is therefore creating a common data type system that
can be used by a diverse set of programming languages running on a diverse set of
operating systems.

WSDL does not aim to create a standard for XML data typing. In fact, WSDL is
specifically designed for maximum flexibility and is therefore not tied exclusively to any
one data type system. Nonetheless, WSDL does default to the W3C XML Schema
specification. The XML Schema specification is also currently the most widely used
specification for data typing.

121

Web Services Essentials

The more you know about XML Schemas, the better you can understand complex WSDL
files. A full discussion of XML Schemas is beyond the scope of this chapter. However,
two facts are crucially important.

First, the XML Schema specification includes a basic type system for encoding most data
types. This type system includes a long list of built-in simple types, including strings,
floats, doubles, integers, time, and date. This list, shown in Table 6-1 , is excerpted from
the XML Schema Part 0) Primer
(http://www.w3.0org/TR/2000/WD=xmlschema=0=20000407/). If your application sticks
to these simple data types, there is no need to include the WSDL types element, and the
resulting WSDL file is extremely simple. For example, our first two WSDL files use only

strings and floats.

Table 6-1. A list of the main XML Schema built-in simple types

Simple type Example(s)

string Web Services

Boolean true, false, 1,0

float -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN
double -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN
decimal -1.23, 0, 123.4, 1000.00

binary 100010

integer -126789, -1, 0, 1, 126789
nonPositivel nteger -126789, -1, 0

negativel nteger -126789, -1

long -1, 12678967543233

int -1, 126789675

short -1, 12678

byte -1, 126

nonNegativel nteger 0, 1, 126789

unsignedLong 0, 12678967543233

unsignedint 0, 1267896754

unsignedShort 0, 12678

unsignedByte 0, 126

positivel nteger 1, 126789

date 1999-05-31

time 13:20:00.000, 13:20:00.000-05:00

122

Web Services Essentials

Second, the XML Schema specification provides a facility for creating new data types.

This is important if you want to create data types that go beyond what is already defined
within the Schema. For example, a service might return an array of floats or a more
complex stock quote object containing the high, low, and volume figures for a specific
stock. Whenever your service goes beyond the simple XML Schema data types, you must
declare these new data types within the WSDL t ypes element.

In the next two sections of this chapter, we present two specific examples of using XML
Schemas to create new data types. The first focuses on arrays; the second focuses on a
more complex data type for encapsulating product information.

6.7.1 Arrays

Example 6-6 , shown later in this section, is a sample WSDL file that illustrates the use of
arrays. Thisisthe Price List Service we created in Chapter 5. The service has one public
method, called get Pri ceLi st , which expects an array of string SKU values and returns an
array of double price values.

The WSDL file now includes atypes element. Inside this element, we have defined two
new complex types. Very broadly, the XML Schema defines simple types and complex
types. Simple types cannot have element children or attributes, whereas complex types
can have element children and attributes. We have declared complex types in our WSDL
file, because an array may have multiple elements, one for each value in the array.

The XML Schema requires that any new type you create be based on some existing data
type. This existing base type is specified via the base attribute. Y ou can then choose to
modify this base type using one of two main methods. extension Of restriction.
Extension simply means that your new data type will have all the properties of the base
type plus some extra functionality. Restriction means that your new data type will have all
the properties of the base data type, but may have additional restrictions placed on the data.

In Example 6-6 , we'll create two new complex types viarestriction. For example:

<conpl exType nanme="ArrayOf String">
<conpl exCont ent >
<restriction base="soapenc: Array">
<attribute ref="soapenc: arrayType"
wsdl : arrayType="string[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

Example 6-6. PricelListService.wsdl

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions name="PriceLi st Servi ce"
t ar get Namespace="htt p: // ww. eceram . com wsdl / Pri celLi st Servi ce. wsd| "
xm ns="http://schemas. xm soap. org/ wsdl /"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns:tns="http://ww. eceram .confwsdl/PriceLi st Service. wsdl "
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: xsd1="http://ww. eceramni . com schema" >

123

Web Services Essentials

<types>
<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schenma"
t ar get Nanespace="htt p: // ww. ecer ani . con’ schema"
xm ns: wsdl ="http://schemas. xm soap. org/ wsdl /"
xm ns: soapenc="http://schenas. xm soap. or g/ soap/ encodi ng/ " >

<conpl exType nane="ArrayXf Stri ng">
<conpl exCont ent >
<restriction base="soapenc: Array" >
<attribute ref="soapenc: arrayType"
wsdl :arrayType="string[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>
<conpl exType nane="ArrayO Doubl e" >
<conpl exCont ent >
<restriction base="soapenc: Array" >
<attribute ref="soapenc:arrayType"
wsdl : arrayType="doubl e[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>
</ schema>
</types>

<nessage name="Pri ceLi st Request" >
<part nane="sku_list" type="xsdl: ArrayCf String"/>
</ nessage>

<nessage nanme="Priceli st Response">
<part nanme="price_list" type="xsdl: ArrayCf Doubl e"/>
</ nessage>

<port Type nane="PricelLi st_Port Type" >
<operation name="get PriceList">
<i nput message="tns: PriceLi st Request"/>
<out put nessage="tns: PricelLi st Response"/ >
</ operati on>
</ port Type>

<bi ndi ng name="Pri ceLi st _Bi ndi ng" type="tns: PriceList_Port Type">
<soap: bi ndi ng style="rpc" transport="http://schenas. xmn soap. org/ soap/ http"/>
<operation name="get PriceList">
<soap: oper ation soapActi on="urn: exanpl es: pricelistservice"/>
<i nput >
<soap: body
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="ur n: exanpl es: pri cel i st servi ce"
use="encoded"/ >
</i nput >
<out put >
<soap: body
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "
nanespace="urn: exanpl es: pricel i stservi ce" use="encoded"/>
</ out put >
</ operati on>
</ bi ndi ng>

<servi ce nanme="PricelList_Service">
<port nanme="PriceList_Port" binding="tns: PriceList_Bindi ng">
<soap: address | ocation="http://| ocal host: 8080/ soap/ servl et/ rpcrouter"/>
</ port>
</ service>
</ definitions>

124

Web Services Essentials

The WSDL specification requires that arrays be based on the SOAP 1.1 encoding schema.
It also requires that arrays use the name Array o xxx , where xxx is the type of item in the
array. The previous example therefore creates a new type called Array o St ring. This new
type is based on the SOAP array data type, but it is restricted to holding only string
values. Likewise, the Arraycf Doubl e data type creates a new array type containing only
double values.

When using the WSDL types element, you need to be particularly aware of XML
namespace issues. First, note that the root schera element must include a namespace
declaration for the SOAP encoding specification
(http://schemas.xml soap.or g/soap/encoding/). This is required because our new data types
extend the array definition specified by SOAP.

Second, the root schema element must specify a target Nanespace attribute. Any newly
defined elements, such as our new array data types, will belong to the specified
tar get Nanespace. T0 reference these data types later in the document, you must refer back
to the same t ar get Nanespace. Hence, our defini ti ons element includes a new namespace
declaration:

xm ns: xsd1="http://ww. eceramni . conm schem">

xsd1 matchesthet ar get Nanespace and therefore enables us to reference the new data types
later in the document. For example, the nessage e€lement references the
xsdl: ArrayCf String datatype:

<message hanme="Pri celi st Request" >
<part nanme="sku_list" type="xsdl:ArrayCfString"/>
</ message>

£

For an excellent and concise overview of W3C Schema complex
types and their derivation via extension and restriction, see Donald
g: Smith's article on "Understanding W3C Schema Complex Types."
The article is available online a
http://www.xml.com/pub/a/2001/08/22/easyschema.html.

6.7.1.1 Automatically invoking array services

Once you move beyond basic data types, the simple WSDL invocation methods described
previously in this chapter no longer work quite as easily. For example, you cannot simply
open the GLUE console, pass an array of strings, and hope to receive back an array of
doubles. Additional work is necessary, and some manual code is required. Nonetheless,
the additional work is minimal, and the discussion that follows focuses on the GLUE
platform. We have chosen to focus on the GLUE platform because it represents the most
elegant platform for working with complex data types; other tools, such as the IBM Web
Services Toolkit, do, however, provide similar functionality.

125

Web Services Essentials

To get started, you should become familiar with the GLUE wsdl 2j ava command-line tool.
The tool takes in a WSDL file and generates a suite of Java class files to automatically
interface with the specified service. You can then write your own Java class to invoke the
specified service. Best of al, the code you write is minimally simple, and all SOAP-
specific details are completely hidden from your view. (See Figure 6-12 .)

Figure 6-12. The GLUE wsdl2java tool and the GLUE architecture

L — - GLUE
document wsd|2java tool

v
GLlIE-gen&rath
Java interfage SEIAP
Your Java code service

GLUE-generated
Java helper class

Hereisthe wsdl 2j ava command-line usage:

usage: wsdl 2j ava <ar gunent s>

where valid argunents are:

http://host:port/fil ename URL of WSBDL

-C checked exceptions

-d directory output directory for files
-1 user password realm login credentials
-mmap-file read nmapping instructions
-p package set default package

-V ver bose

-x comand-file command file to execute

Complete information on each argument is available online within the GLUE User Guide
at http://www.themindel ectric.com/products/glue/rel eases/ GL UE-
1.1/docs/guide/index.html. For now, we will focus on the most basic arguments. For
example, to generate Java class files for the PriceListServicewsdl file, first make sure that
the WSDL file is available publicly on a web site or locally via a web server such as
Tomcat. Then, issue the following command:

wsdl 2j ava. bat http://1 ocal host: 8080/ wsdl /Pri ceLi st Servi ce.wsdl -p com
eceram . wsdl . gl ue

The first argument specifies the location of the WSDL file; the second argument specifies
that the generated files should be placed in the package com ecer ani . wsdl . gl ve.

GLUE will automatically download the specified WSDL file and generate two Java dass
files:

wite file |IPricelList_Service.java
wite file PricelList_ServiceHel per.java

126

Web Services Essentials

Thefirst file, IPricelist_Servicejava, is shown in Example 6-7. Thisfile represents a Java
interface that mirrors the public methods exposed by the WSDL file. Specifically, the
interface shows a get Pri ceLi st () method that receives an array of string values, and
returns an array of doubl e values.

Example 6-7. IPriceList_Service.java

/'l generated by GLUE
package com eceram . wsdl . gl ue;
public interface |PriceList_Service

{
doubl e[] getPriceList(String[] sku_list);
}

The second file, PriceList_ServiceHelper.java, is shown in Example 6-8. Thisis known as
a GLUE helper file, and it can dynamically bind to the service specified by the WSDL
file. To accessthe service, smply call the static bi nd() method.

Example 6-8. PricelList_ServiceHelper.java

/'l generated by GLUE
package com eceram . wsdl . gl ue;

inport electric.registry. Registry;
inmport electric.registry. RegistryException;

public class PricelList_Servi ceHel per
public static |IPriceList_Service bind() throws RegistryException

return bind("http://1ocal host: 8080/ wsdl/PriceLi st Service.wsdl");
}

public static |PriceList_Service bind(String url)
throws Regi stryException

return (IPriceList_Service)
Regi stry. bind(url, IPriceList_Service.class);
}

}

Once GLUE has generated the interface and helper files, you just need to write your own
class that actually invokes the service. Example 6-9 shows a sample application that
invokes the Price List Service. The code first cals pricelist ServiceHel per. bind() ,
which then returns an | pri ceLi st _Servi ce object. All subsequent code behaves as if the
Price List Service is a local object, and all SOAP-specific details are completely hidden
from the developer.

Here is a sample output of the | nvoke_Pri ceLi st application:

Product Cat al og
SKU: A358185 --> Price: 54.99
SKU: A358565 --> Price: 19.99

127

Web Services Essentials

Example 6-9. Invoke_PriceList.java

package com eceram . wsdl ;

i mport com eceramn .wsdl . gl ue.*;

/**
* SOAP | nvoker. Uses the PriceListServiceHel per to invoke
* SOAP service. PricelListServiceHel per and |PriceLi st Service
* are automatically generated by G.UE

*/

public class Invoke_PriceList {

/**
* Get Product List via SOAP
*/
public double[] getPrices (String skus[]) throws Exception {
| PricelList_Service pricelListService = PricelList_ServiceHel per.bind();
doubl e[] prices = pricelListService.getPriceList(skus);
return prices;
}
/**
* Main Method
*/
public static void nain (String[] args) throws Exception {
I nvoke_PriceLi st invoker = new I nvoke_PriceList();
Systemout.println ("Product Catal 0og");
String skus[] = {"A358185", "A358565" };
doubl e[] prices = invoker.getPrices (skus);
for (int i=0; i<prices.length; i++) {
Systemout.print ("SKU "+skus[i]);
Systemout.println (" --> Price: "+prices[i]);
}
}

6.7.2 Complex Types

Our final topic is the use of complex datatypes. For example, consider a home monitoring
service that provides a concise update on your home. The data returned could include
multiple data elements, such as the current temperature, security status, and whether the
garage door is open or closed. Encoding this data into WSDL requires additional
knowledge of XML Schemas, which reinforces the main precept that the more you know
about XML Schemas, the better you will understand complex WSDL files.

To explore complex types, consider the WSDL file in Example 6-10. This WSDL file
describes our Product Service from Chapter 5. The complex types are indicated in bold.

Example 6-10. ProductService.wsdl

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions name="Product Servi ce"
t ar get Nanespace="http://ww. eceram . coni wsdl / Pr oduct Servi ce. wsdl "
xm ns="http://schemas. xm soap. org/ wsdl / "
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"
xm ns:tns="http://ww. eceram .com wsdl / Product Servi ce. wsdl "
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schena"
xm ns: xsd1="http://wwv. eceramn . conl schena" >

128

Web Services Essentials

<types>
<xsd: schema
t ar get Nanespace="htt p: // ww. ecer ani . com schema"
xm ns="http://ww. w3. org/ 2001/ XM_Schena" >
<xsd: conpl exType nane="product">
<xsd: sequence>
<xsd: el ement nanme="nane" type="xsd:string"/>
<xsd: el ement name="description" type="xsd:string"/>
<xsd: el ement nanme="price" type="xsd: doubl e"/>
<xsd: el ement nane="SKU' type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schenma>
</types>

<nessage nane="get Product Request ">
<part name="sku" type="xsd:string"/>
</ nessage>

<nessage nane="get Product Response" >
<part name="product" type="xsdl: product"/>
</ message>

<port Type nane="Product Port Type">
<oper ati on nane="get Product ">
<i nput nessage="t ns: get Product Request "/ >
<out put nessage="tns: get Product Response"/ >
</ operati on>
</ port Type>

<bi ndi ng nanme="Product _Bi ndi ng" type="tns: Product _Port Type">
<soap: bi ndi ng styl e="rpc"
transport="http://schenmas. xm soap. org/ soap/ http"/>
<oper ati on nane="get Product">
<soap: operation soapAction="urn: exanpl es: product servi ce"/ >
<i nput >
<soap: body
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="ur n: exanpl es: product servi ce"
use="encoded"/ >
</i nput >
<out put >
<soap: body
encodi ngStyl e="http://schenas. xnm soap. or g/ soap/ encodi ng/ "
nanespace="ur n: exanpl es: product servi ce" use="encoded"/ >
</ out put >
</ operati on>
</ bi ndi ng>

<servi ce name="Product_Service">
<port name="Product_Port" bindi ng="tns: Product _Bi ndi ng">
<soap: address | ocation="http://|ocal host: 8080/ soap/ servlet/rpcrouter"/>
</ port>
</ service>

</definitions>

The service in Example 6-10 describes a get Product operation that returns a complex
product type for encapsulating product information, including product name, description,
price, and SKU number.

The new product type is defined in much the same manner as the array definition from the
previous example. The main difference is that we are now using the sequence element.

The sequence element specifies a list of subelements and requires that these elements
appear in the order specified. XML Schemas also enable you to specify cardinality viathe

129

Web Services Essentials

m nCccur s and mexCecur s attributes. 1 these attributes are absent (as in our example), they
default to 1 , requiring that each subelement must occur exactly one time.

Each subelement can also have its own data type, and you can see that we have mixed and
matched string data types with double data types in our example.

6.7.2.1 Automatically invoking complex type services

To automatically invoke the Product Service, we return to the GLUE wsdl 2j ava tool. This
time around, GLUE will generate a Java interface class and a Java helper class, along with
two additional files for handling the new complex type.

For example, the following command:

wsdl 2j ava. bat http://| ocal host: 8080/ wsdl / Product Servi ce. wsdl -p com eceram .
wsdl . gl ue

generates the following output:

wite file I Product_Service.java
wite file Product_ServiceHel per.java
wite file product.java

wite file Product_Service. map

The first two files in the output listing are familiar. The first file is a Java interface
mirroring the service; the second file is a helper class for dynamically binding to the
specified service. (See Example 6-11 and Example 6-12.)

Example 6-11. IProduct_Service.java

/'l generated by GLUE
package com eceram . wsdl . gl ue;
public interface |Product_Service

{
product getProduct(String sku);

}

Example 6-12. Product_ServiceHelper.java

/'l generated by GLUE
package com ecer am . wsdl . gl ue;

inport electric.registry.Registry;
inmport electric.registry. RegistryException;

public class Product_ServiceHel per
public static |Product_Service bind() throws RegistryException

{
return bind("http://1ocal host: 8080/ wsdl / Product Servi ce. wsdl ");

}

public static |IProduct_Service bind(String url)
throws Regi stryException

return (I Product_Service)

130

Web Services Essentials

Regi stry. bind(url, |Product_Service.class);

}

The third file in the output listing, product.java, represents a simple container class for
encapsulating product data. (See Example 6-13.) GLUE essentially takes all the complex
types defined within the WSDL file and creates a container class for each type. Each
subelement is then transformed into a public variable for easy access. For example, the
pr oduct class has four public variables, name , descri ption , price |, and skuU
corresponding to our new complex datatype. Note also that the public variables match the
XML Schema types specified within the WSDL file; for example, nare is declared as a
String , whereaspri ce isdeclared asadoubl e.

Example 6-13. product.java

/'l generated by GLUE
package com eceram . wsdl . gl ue;

public class product

{

public java.lang. String nane;
public java.lang. String description;
public doubl e price;

public java.lang. String SKU;
}

Finally, GLUE generates a Java-to-XML Schema mapping file. (See Example 6-14.) The
file itself is extremely concise and is responsible for converting Java to XML Schema
types and vice versa. (See Figure 6-13 .) The root conpl exType element indicates that
elements of type product should be transformed into the product class located in
com ecerani . wsdl . gl ue. Inside the root complex type, there is a one-to-one mapping
between the XML Schema type and the public Java variable. For example, the element
name IS mapped to the product.name variable, and the type is specified as string.
Likewise, the element price is mapped to the product. price variable, and the type is
specified as doubl e.

Figure 6-13. The GLUE Java-to-XML Schema mapping file

WML Schema GLIE mapping Java class with
type file public variables

Example 6-14. Product_Service.map

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<l--generated by GLUE-->
<mappi ngs xm ns="http://ww.them ndel ectric.com schenma/"' >
<schenma
xm ns="http://ww. w3. or g/ 2001/ XM_Schena
t ar get Namespace=" htt p: // ww. eceram . com schena
xm ns:electric="http://ww.thenindel ectric.con schena/"'>
<conpl exType nane='product' electric:class='"com eceramn .wsdl.glue. product' >
<sequence>
<el enent nane='nane' electric:field=" nane' type='string' />

131

Web Services Essentials

<el ement nane='description'
electric:field="description type='string />
<el ement nanme='price' electric:field="price type= double'/>
<el enent nane='SKU electric:field="SKU type="string />
</ sequence>
</ conpl exType>
</ schema>
</ mappi ngs>

To invoke the Product Service, you must first explicitly load the mapping file via the
GLUE wvappi ngs class:

Mappi ngs. r eadMappi ngs(" Product _Servi ce. map") ;

You can then access the service just like in the previous example. See Example 6-15 for
the compl ete invocation program. Here is some sample output:

Product Service

Name: Red Hat Linux

Description: Red Hat Linux Operating System
Price: 54.99

Example 6-15. Invoke Product.java

package com eceram . wsdl ;

i mport java.io.| OException;

import electric.xm.io.Mppings;

import electric.xm.ParseException;

inmport electric.registry.RegistryException;
i mport com eceramni . wsdl . gl ue. *;

/**

* SOAP I nvoker. Uses the Product_ServiceHel per to invoke the Product
* SOAP service. Al other .java files are automatically generated

* by GLUE

*/

public class Invoke_ Product {
/**
* Get Product via SOAP Service
*/

public product getProduct (String sku) throws Exception {
/1 Load Java <--> XM. Mappi ng
Mappi ngs. r eadMappi ngs(" Product _Servi ce. nap");
/1 I nvoke Service
| Product _Service service = Product_Servi ceHel per.bind();
product prod = service. get Product (sku);
return prod,;

}
/**
* Main Met hod
*/
public static void main (String[] args) throws Exception {
I nvoke_Product invoker = new I nvoke_Product();

Systemout.println ("Product Service");
product prod = invoker. get Product ("A358185");

Systemout.println ("Nane: "+prod.nane);
Systemout.println ("Description: "+prod.description);
Systemout.println ("Price: "+prod.price);

132

Web Services Essentials

Thisis avery small amount of code, but it is capable of doing very real work. Be sureto
check The Mind Electric web site (http://themindelectric.com) for new releases of the
GLUE product.

133

Web Services Essentials

Part V: UDDI

Chapter 7
Chapter 8 - UDDI Inquiry API: Quick Reference

Chapter 9

134

Web Services Essentials

Chapter 7. UDDI Essentials

UDDI is a technical specification for describing, discovering, and integrating web
services. UDDI is therefore a critical part of the emerging web service protocol stack,
enabling companies to both publish and find web services. This chapter provides a
complete overview of UDDI and covers the following topics:

The main concepts and history of UDDI

The main uses of UDDI, such as its potential impact within the field of supply-
chain management

The technical aspects of UDDI, including a detailed explanation of the UDDI data
model

How to search UDDI via a web-based interface and how to use the UDDI
programmatic AP

How to publish new companies and services to UDDI

Popular UDDI implementations for Java, Perl, and Microsoft COM

7.1 Introduction to UDDI

At its core, UDDI consists of two parts. First, UDDI is a technical specification for
building a distributed directory of businesses and web services. Data is stored within a
specific XML format, and the UDDI specification includes API details for searching
existing data and publishing new data. Second, the UDDI Business Registry (also
frequently referred to as the UDDI "cloud services') is a fully operational implementation
of the UDDI specification. Launched in May 2001 by Microsoft and IBM, the UDDI
registry now enables anyone to search existing UDDI data. It also enables any company to
register itself and its services.

The data captured within UDDI is divided into three main categories:

White pages
This includes general information about a specific company - for example, business
name, business description, contact information, address and phone numbers. It can
also include unique business identifiers, such as a Dun & Bradstreet D-U-N-S°
Number.

Yellow pages
This includes general classification data for either the company or the service

offered. For example, this data may include industry, product, or geographic codes
based on standard taxonomies.

135

Web Services Essentials

Green pages

This category contains technical information about a web service. Generadly, this
includes a pointer to an external specification and an address for invoking the web
service. UDDI is not restricted to describing web services based on SOAP. Rather,
UDDI can be used to describe any service, from a single web page or email address
all the way up to SOAP, CORBA, and Java RMI services.

7.1.1 A Brief History of UDDI

UDDI 1.0 was originaly announced by Microsoft, IBM, and Ariba in September 2000.
Since the initial announcement, the UDDI initiative has grown to include more than 280
companies. (A complete list of UDDI members is avalable at
http://www.uddi.org/community.html.)

In May 2001, Microsoft and IBM launched the first UDDI operator sites and turned the
UDDI registry live. In June 2001, UDDI announced Version 2.0. New features include:

Improved support for internationalization. For example, businesses can describe
themselves and their services in multiple languages.

Improved support for describing complex organizations. For example, a business
can publish business units, departments, or divisions and tie them together under
one umbrella.

An improved set of search options.

As of this writing, the Microsoft and IBM sites implement the 1.0 specification and plan
2.0 support in the near future. According to the original plan, the UDDI group will release
three versions of UDDI and then turn the specification over to an appropriate standards
body.

7.2 Why UDDI?

At first glance, UDDI appears extremely simple. Nonetheless, it includes some subtle
points that are easily overlooked. Let's therefore begin by examining the future impact of
UDDI within a specific industry.

To make the concepts as concrete as possible, consider the semiconductor industry.
Currently, approximately 400 companies in the information technology, electronic
component, and semiconductor manufacturing industries are members of an industry
consortium called RosettaNet. RosettaNet is focused on creating standard processes and
interfaces for e-business and supply-chain management. One of RosettaNet's main
accomplishments is the creation of Partner Interface Processes (PIPs). PIPs are XML-
based interfaces that enable two trading partners to exchange data. Dozens of PIPs already
exist. For example:

PIP2A2

Enables a partner to query another for product information

136

Web Services Essentials

PIP3A2
Enables a partner to query the price and availability of specific products
PIP3A4

Enables a partner to submit an electronic purchase order and receive
acknowledgment of the order

PIP3A3
Enables a partner to transfer the contents of an electronic shopping cart
PIP3B4
Enables a partner to query status on a specific shipment
By accelerating the adoption of PIPs, RosettaNet will dramaticaly increase
interoperability between trading partners and enable more flexible supply- chain

management. This increases overall efficiency and drives down costs. Each of the
participating companies therefore has a direct incentive to adhere to the PIP standards.

- Additional information regarding RosettaNet is available at
http://www.rosettanet.org.

In April 2001, RosettaNet registered 83 individual PIPs within UDDI. Let's consider two
fictional companies and examine how each may leverage UDDI in the near future.

7.2.1 Scenario 1: Publishing to UDDI

First, consider Acme Parts, a supplier of generic semiconductor widgets. Acme is a
member of the RosettaNet consortium and has recently upgraded its e-business services to
adhere to a subset of the RosettaNet specification. For example, Acme now enables
partners to query for specific product information, product availability, and pricing. It also
enables partners to submit electronic purchase orders and to constantly track the status of
those orders.

Acme is eager to integrate into existing supply chains. It therefore registers itself within
UDDI. It also registers each of its e-business services. For each service, it notes the
technical specification implemented. For example, the Acme Parts: Submit Purchase
Order is noted to adhere to RosettaNet PIP3A4.

By registering within UDDI, Acme advertises its services and enables buyers to easily
discover the technical standards used. In the future, you can also imagine that Acme will
purchase new UDDI-aware e-commerce software. The software will know the UDDI
protocol and will be able to automatically register the company and its services.

137

Web Services Essentials

7.2.2 Scenario 2: Searching UDDI

Next, consider United Semiconductor, a buyer of parts from Acme Parts and dozens of
other suppliers. To drive down costs, United wants to integrate all its suppliers into one
coherent system.

United has two options. First, let's assume that United and Acme are already well-
established partners. United can therefore look up Acme within the UDDI Business
Registry, determine which services are available from Acme, and determine whether those
services adhere to the same RosettaNet standards. For each service, United can also
determine the exact binding points. For example, the Acme Parts: Submit Purchase Order
service is available at http://www.acmeparts.com/services/po. United therefore has all the
information necessary to seamlessly add Acme to its supply chain and immediately start
submitting electronic purchase orders.

As a second option, United could also look up other suppliers. Or it could look up al
companies that implement the specific PIP for submitting electronic purchase orders.

7.3 UDDI Technical Overview
The UDDI technical architecture consists of three parts:
UDDI data model

An XML Schema for describing businesses and web services. The data model is
described in detail in the "UDDI Data Model" section, later in this chapter.

UDDI API
A SOAP-based API for searching and publishing UDDI data.
UDDI cloud services

Operator sites that provide implementations of the UDDI specification and
synchronize all data on a scheduled basis.

UDDI cloud services are currently provided by Microsoft and IBM. Ariba had originally
planned to offer an operator as well, but has since backed away from the commitment.
Additional operators from other companies, including Hewlett-Packard, are planned for
the near future. (For an updated list of operator sites;, go to
http://www.uddi.org/register.html.)

The current cloud services provide a logically centralized, but physically distributed,
directory. This means that data submitted to one root node will automatically be replicated
across all the other root nodes. Currently, data replication occurs every 24 hours.

It isalso possible to set up private UDDI registries. For example, alarge company may set
up its own private UDDI registry for registering al internal web services. As these
registries are not automatically synchronized with the root UDDI nodes, they are not
considered part of the UDDI cloud.

138

Web Services Essentials

7.4 UDDI Data Model
UDDI includes an XML Schema that describes four core types of information:

busi nessEntity
busi nessServi ce
bi ndi ngTenpl at e
t Model

These core data elements are described in the following sections. Figure 7-1 illustrates the
containment hierarchy. (This diagram is based on Figure 1 from the "UDDI Data Structure
Reference V1.0", available at http://www.uddi.org/pubs/DataStructure-V 1.00-Open-
20000930_2.doc.) You may be tempted to rush ahead and try the web-based UDDI
interface, but taking the time to understand these core elements now will help immensely
when you're trying to make sense of both the web-based interface and the programmatic
API.

- The actual UDDI XML Schemas are available online at the following
s | URLs: http://www.uddi.org/schema/2001/uddi_v1.xsd (UDDI 1.0)
" 4 and http://www.uddi.org/schemal/uddi_v2.xsd (UDDI 2.0).

Figure 7-1. The UDDI data model

ahiout the actual busingss, induding
business name, description, ete.

businessEntity: Includes infeemation ‘

to extemal tachmical specifications
or tanonomies

o "'L thodel: Includes descriptions and pointers
P

1 | businessService: Includes infarmatian
ahout 2 single web service or 2 group related
| with web services

bindingTemplate: Includes information
about how and where to access a specific
| weh service

7.4.1 The businessEntity

Thebusi nessEnti ty element includes information about the actual business. This includes
business name, description, address, and contact information. For example, here is an
excerpt from the Microsoft busi nessent i t y record:

<busi nessEntity
busi nessKey="0076b468- eb27- 42e5- ac09- 9955cf f 462a3"
operator="M crosoft Corporation" authorizedNane="Martin Kohl | eppel ">
<nane>M crosoft Corporati on</ name>
<description xm : | ang="en">Enpoweri ng peopl e through great software
- any tinme, any place and on any device is Mcrosoft's vision. As the
wor | dwi de | eader in software for personal and business conputing, we
strive to produce innovative products and services that nmeet our
custoner's. ..
</ description>

139

Web Services Essentials

<cont act s>
<contact useType="Corporate Addresses and tel ephone">
<description xm:lang="en">Corporate Miling Addresses</
descri pti on>
<per sonNane />
<phone useType="Cor por at e Headquarters">(425) 882-8080</phone>
<addr ess sort Code="~" useType="Corporate Headquarters">
<addr essLi ne>M crosoft Corporati on</addressLi ne>
<addr essLi ne>One M crosoft Way</addressLi ne>
<addr essLi ne>Rednond, WA 98052- 6399</ addr essLi ne>
<addr essLi ne>USA</ addr essLi ne>
</ addr ess>
</ cont act >
<cont act useType="Techni cal Contact - Corporate UD'>
<description xm :lang="en">Wrld Wde Operations</description>
<per sonNane>Mar tin Kohl | eppel </ per sonNane>
<enai | >marti nk@ri crosoft.conx/ emai |l >
</ cont act >
</ cont act s>
<identifierBag>
<keyedRef er ence
t Model Key="uui d: 8609c81le- eelf - 4d5a- b202- 3eb13ad01823"
keyNane="D- U-N- S" keyVal ue="08- 146- 6849" />
</identifierBag>
<cat egor yBag>
<keyedRef er ence
t Model Key="uui d: cOb9f e13- 179f - 413d- 8a5b- 5004db8e5bb2"
keyNane="NAI CS: Software Publisher" keyVal ue="51121" />
</ cat egor yBag>
</ busi nessEntity>

Upon registering, each business receives a unique busi nesskey value. For example, the
busi nesskey for Microsoft is 0076b468- eh27- 42e5- ac09- 9955¢f f 462a3. AS we shall soon
see, the key is used to tie a business to its published services.

In addition to basic contact information, the busi nessent ity record can include optional
business identifiers and business categories. |dentifiers can represent any unique value
that identifies the company. For example, UDDI is currently set up to accept both Dun &
Bradstreet D-U-N-S® Numbers and Thomas Registry Supplier IDs. (See Table 7-1 and
Table 7-2 for details.)

Table 7-1. Dun & Bradstreet D-U-N-S® Number

Name dnb-com:D-U-N-S
Description | Dun & Bradstreet D-U-N-S® Number
uulD uuid:8609C81E-EE1F-4D5A-B202-3EB13AD01823

The Dun & Bradstreet D-U-N-S® (Data Universal Numbering System) Number isa
nine-digit identification number used to identify businesses and subsidiaries. Over 62
million D-U-N-S numbers currently exist. Information is available at
http://www.dnb.com/english/duns/.

Details

140

Web Services Essentials

Table 7-2. Thomas Register Supplier ID

Description | Thomas Register Supplier ID

Name thomasregister-com:supplierl D |
UuID uuid:B1B1BAF5-2329-43E6-AE13-BABE97195039 |

The Thomas Register of American Manufacturers provides a unique supplier ID for over
Details 168,000 American and Canadian companies. Information is available at
http://www.thomasregister.com/.

As you can see from our first example, the Microsoft busi nessentity record includes the
Microsoft D&B D-U-N-S® Number. To include multiple values, note that the
busi nesskntity element includes an element named i denti fi er Bag. Here, the term "bag"
indicates a generic container of multiple values, and enables a company to register
multiple business identifiers.

Businesses can also register multiple business categories. This can include industry,
product, service, or geographic codes based on standard taxonomies. UDDI is currently
prepopul ated with the following three business categories:

NAICS
The North American Industry Classification System (NAICS) provides industry
classification. (See Table 7-3 for details.)

UNSPSC
The Universal Standard Products and Service Classification (UNSPSC) provides
product and service classification. (See Table 7-4 for details.)

SO 3166
The International Organization for Standardization (1SO) maintains ISO 3166, a
standard taxonomy for world geography. (See Table 7-5 for details.)

As you can see from our first example, the Microsoft record includes an NAICS
classification for "NAICS: Software Publisher”.

Table 7-3. NAICS

Description | Business Taxonomy: NAICS (1997 Release)

|
|
Name ntis-gov:naics:1997 |
|
|

uuibD uuid: COB9FE13-179F-413D-8A5B-5004DB8E5BB2

NAICS provides a six-digit industry code for more than 19,000 industries. NAICS was
created jointly by the governments of Canada, Mexico, and the U.S. to provide a
standard system for statistical reporting throughout the North American Free Trade
Details Association (NAFTA). Beginning in 1997, NAICS replaced the previous Standard
Industry Classification (SIC). Additional information is available at
http://www.naics.com/. To look up your NAICS code, go to

http://www.nai cs.com/search.htm.

141

Web Services Essentials

Table 7-4. UNSPSC

Description | Product Taxonomy: UNSPSC (Version 3.1)

Name UNSPSC-0rg:unspsc: 3-1 |
UuID uuid:DB77450D-9FA8-45D4-A7BC-04411D14E384 |

UNSPSC provides standard codes for classifying products and services. The standard
was developed in 1998 and is currently maintained by the nonprofit Electronic
Commerce Code Management Association (ECCMA). UNSPSC provides coverage of 54
industries and includes over 12,000 codes for every product and service imaginable. For
example: the code 50131601 denotes "Fresh eggs’, whereas the code 50131602 denotes
"Egg substitutes'! Additional information is available at http://www.unspsc.org.

Details

Table 7-5. 1SO 3166

Name uddi-org:iso-ch:3166:1999

Description | UDDI Geographic Taxonomy, 1SO 3166 |
UuID uuid:61668105-B6B6-425C-914B-409FB252C36D |

SO maintains SO 3166, alist of 237 country codes. For example, China has the code
CN, whereas the U.S. hasthe code US. By using SO 3166, companies registered with
Details UDDI can identify their geographic headquarters or their main geographic areas of
business. 1SO 3166 is aso used for top-level Internet domain country codes. Additional
information is available at http://www.din.de/gremien/nas/nabd/iso3166malindex.html.

7.4.2 The businessService

The busi nessservi ce element includes information about a single web service or a group
of related web services. This includes name, description, and an optiona list of
bi ndi ngTenpl at es (described in the next section of this chapter). For example, here is a
sample busi nessSer vi ce record for the XMethods.net Delayed Stock Quote Service:

<busi nessServi ce
servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<nane>XMet hods Del ayed Stock Quotes</nanme>
<description xm:|ang="en">20-m nute del ayed stock quotes</description>
<bi ndi ngTenpl at es>
<bi ndi ngTenpl at e
servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229c64"
bi ndi ngKey="d594a970- 3e16- 11d5- 98bf - 002035229c64" >
<description xm: | ang="en">
SQAP bi nding for del ayed stock quotes service
</ descri ption>
<accessPoi nt URLType="http">
http://services. xmet hods. net : 80/ soap
</ accessPoi nt >
<t Model | nst anceDet ai | s>
<t Model | nst ancel nf o
t Model Key="uui d: 0e727db0- 3e14- 11d5- 98bf - 002035229¢c64" />
</t Model | nst anceDet ai | s>
</ bi ndi ngTenpl at e>
</ bi ndi ngTenpl at es>
</ busi nessServi ce>

Likethe busi nessEntity , @ach busi nessServi ce hasaunique ser vi cekey.

142

7.4.3 The bindingTemplate

Web Services Essentials

The bi ndi ngTenpl ate €element includes information about how and where to access a
specific web service. For example, in the previous XMethods record above, we can see

that the

Stock

Quote Service IS

available via SOAP at

http://services.xmethods.net: 80/soap. Bindings need not refer only to HTTP-based
services. In fact, UDDI bindings can point to email-based services, fax-based services,
FTP-based services, or even telephone-based services. (See Table 7-6 for details.)

Table 7-6. UDDI binding options

Name Description UuID Details
- Identifies aservice that is invoked via
o Email-based | UUid-93335D49-3EFB- SMTP email. For example, this could
uddi-org:smtp . 48A0-ACEA- . , :
service EA102B60DDC6 specify a person's email address or an
SMTP-based SOAP service.
uuid: 1A2B00BE-6E2C- - . . .
uddi-org:fax z:rfl-ibasedce 40F5.-875B- {;jae:strl:]llesz 3 r?:rw ce that isinvoked viafax
56F32686E0E7 '
uuid: 1A2B00BE-6E2C- - . . .
uddi-org:ftp g\l;(l:):sed 42F5-8758- :_ijregtlfl es asarvice that isinvoked via
56F32686E0E7 '
uddi- Teleohone uuid:38E12427-5536- Identifies a service that isinvoked viaa
ora:telenhone baszg service 4260-A6F9- telephone call. This could include
g-teep B5B530E63A07 interaction by voice and/or touch-tone.
.- Identifies aweb service that isinvoked
o HTTP-based | UUid-68DE9ES0-ADOS- viathe HTTP protocol. This could
uddi-org:http . 469D-8A37- .
service 088422BEBC36 reference a simple web page or amore
complex HTTP-based SOAP application.
uddi- HTTP web uuid:4CEC1CEF-1F68-
ora:homenage homepage 4B23-8CB7- Identifies a web home page.
g-nOMEPagE | YRL 8BAA763AEBS9

7.4.4 The tModel

The t vodel is the last core data type, but potentially the most difficult to grasp. t Model
stands for technical model. t vodel s are primarily used to provide pointers to external
technical specifications. For example, the bi ndi ngTenpl at e for the XMethods Stock Quote
Service provides information about where to access the SOAP binding, but it does not
provide information about how to interface with it. The t model element fills this gap by
providing a pointer to an external specification. For example, hereisthet vodel referenced
by the XMethods Stock Quote binding:

<t Mbdel

t Model Key="uui d: 0e727db0- 3e14- 11d5- 98bf - 002035229c64"

oper at or ="www. i bm coni servi ces/ uddi " aut hori zedNanme="0100001Q51" >
<nanme>XMet hods Si npl e Stock Quot e</nane>
<description xm:lang="en">Si npl e stock quote interface</description>
<overvi ewboc>

<description xm : 1 ang="en" >wsdl

<over vi ewJRL>

I i nk</ descri ption>

143

Web Services Essentials

http: //ww. xmet hods. net/t nodel s/ Si npl eSt ockQuot e. wsdl
</ overvi ewURL>
</ over vi ewDoc>
<cat egor yBag>
<keyedRef erence
t Model Key="uui d: clacf 26d- 9672- 4404- 9d70- 39b756e62ab4"
keyName="uddi - or g: t ypes" keyVal ue="wsdl Spec" />
</ cat egor yBag>
</ t Model >

The overview document provides the pointer to the external specification. In this record,
XMethods has followed the best practice of specifying the SOAP interface using WSDL,
and has provided a pointer to the actual WSDL file. Y ou need not always specify aWSDL
file; you can, for example, specify a generic web page with detailed instructions on
interfacing with the service.

£

The terms twdel and service type are frequently used
interchangeably. For example, the Microsoft UDDI site enables one
g+ to "search service type by name" This is equivalent to searching
t Model s by name.

t vodel s are vitaly important because they enable you to identify the technical
specifications implemented. More importantly, if two companies reference the same
t Model , you can be assured that both companies implement the same specification.

As a final note, it is important to mention that ¢ vodel s are not reserved for technical
specifications of web services. In fact, t vodel s are used whenever it is necessary to point
to any externa specification. For example, all the previously described business
identifiers and classifications have been registered as t vodel s. Specifically, the D&B D-
U-N-S° Number references an external standard created by Dun & Bradstreet and has
therefore been registered as a unique tMdel (uuid:8609C81E-EE1F-4D5A-B202-
3EB13ADO01823).

t Model s can also reference other t vodel s. For example, the XMethods t model references
the t vodel for uddi -org: types. The types t vodel provides a mechanism to categorize
specifications; in our case, XMethods has identified the wsdl spec category.

7.5 Searching UDDI

With afirm grasp of the UDDI data model, we now turn to the mechanics of searching the
UDDI Business Registry. Most users who are new to UDDI are likely to begin with the
web-based UDDI interface. The following section therefore traces a sample search on the
Microsoft UDDI Operator site. WE'l then retrace the same search via the programmatic
UDDI API.

144

Web Services Essentials

7.5.1 Web-Based Searching
There are three options for searching UDDI:

Internet Explorer now supports UDDI name resolution via the Real Names
Keyword System. Just type "uddi” in the Internet Explorer address bar, followed
by the name of the target company. For example, type "uddi ariba’.

Y ou may also go directly to the Microsoft UDDI site at http://uddi.microsoft.com.
Or you can go directly to the IBM UDDI site at http://www-
3.ibm.com/services/uddi/.

A sample screenshot of the Microsoft UDDI site is displayed in Figure 7-2. The Search
box in the upper left enables you to search by business name.

Figure 7-2. The Microsoft UDDI home page; note the Search box in the upper left corner

|] - L o B i, [- L] i TE
B G g Fpotsn Dok d60 u
s | Dy fetm Jehk =k -
A] ool aa T riee’ o
: . |
guddi e

..... R, Register
Sl Teirk o P LD

ek e vt USHI E e giniraiian, e rans

Learm more about UDDI {

To explore each of the core UDDI datatypes, let us consider acommon search path. Welll
begin by searching for a specific business, selecting a business service, drilling down to a
binding template, and finally retrieving the t vodel technical specification. The search path
is summarized as follows:

Busi nessEntity
--> BusinessService
--> BindingTenpl ate
--> tMdel record

To begin, type "XMethods' in the Search box. A list of matching results is displayed in
Figure 7-3.

145

Web Services Essentials

Figure 7-3. Searching for XMethods

AL - i el B o, Dty i gt ot - sl Bnbevak Rl

| B G pee Faete Lok o | |

ek v a -d-;y-u-;!uq:lh-ﬂ- i.ﬂlb :
H!_.El_g'a_m_._.. X rorguaich wege prrp——y i iy =
T p e L L e
* suddi

DIFGwiA ity st Srmkmen L -
L o o U e 0 T P T I T S VU T
BED S faagenohic Tampapry

Ei Addvanced Search
=

T
Fagaber earch v paRE:
Bdareastar

Sawrc

811 Eusaresses
B A Chhi oni s Burraas rave m 1 B Gl Beisoe deisdly
Fir favwbopans
Safch s 1_': Py
HuE

Hep

Frocuewlp Srkn ey

oo

At LGOI

Cntectin

o EDG A R e T ara i A TS e |

-

T TR 0 L R T O R e el | e e

When you click on the XMethods link, the complete XMethods busi nessEntity record is
displayed, as shown in Figure 7-4.

Figure 7-4. The XMethods businessEntity record

B LA - icm ol B o, Dty i g ot - sl kel Rl

= e i T
| B G e Faots Dok g | " |

il e JUE = oar Bl e st S o A IR B o i
[a0 ey g sy En ez M G bl |t ipa

DFEwWEE sty ek e Srmbim ey Pl st Spers Tharslari Lndnde s Flamatin stan
by ooty Undvesrio il Bt il faricnn bkt et Wi Baiabiac sl snkiion
BED bl bnagenoic Taspepryy

s e R R e S b e G)
- KM thods

[
Wek: Mo rosseTe MR
privy
Fagsbnr Canbacts
Ao isi
L Frat Toibosineg Borda o Saradt hush B geon i bd
1]

svLOrEEL Wit Us-igju nlds camai dalall :"ﬂ:l urage
P Erabicr
B Tany g eurdsr ST b e

S Foasdar
Lot
e
Fracusedy arbad e &
[

e L1

Tl 38 der vl fuaree U sid W Tyl porain et _..'._I

If you scroll down the page, you will see a complete listing of all services offered by
XMethods. Click the link for XMethods Delayed Stock Quotes. Figure 7-5 displays the
full busi nessServi ce record.

146

Web Services Essentials

Figure 7-5. The XMethods Delayed Stock Quotes businessService record

Werll - Line il B plsimn, Dbicwvmrg sl [k gl koo - eicemacil Dk Hnplaer - i
| B i e FpoTsr ok BeD

g:-d-_i\-ul-.!uq-lh i.ﬂlh 5
i R 1 DA B B = ohGa

DFEWEA sy s e Srm by Fimadii oo Spuiarn Tharslars Lkl b Elammtin s
oy cwbagery | Uirdvesriod it mdired Pl el fabricnn Db | Sl Deratrhic sl wtkon
R0 vk Feaaenohic s weprsy

EIHER

R

ng= HMetheds Delayed Stock Quotes

S P P S p——

Fagsber

il N L i

Ry M

BVILOREEL Tric droaie thn R RESs BIOBE Pl Fior S Lorwics o oo a2 alig e oy of awkiisonad svitance gpeedls o,

P dabvbopeis LERL e T U by Desurrijaliinn Tiistaiies et ads

Sk ann b mricns spethoc ren Bbiean b ISP S S D B S e P Cais

HER

five Bérics slusiincatiana

Frecasvds frkad Sordeny

Polhies Aol st s sl o Gl TR o 4 6y o sl of i Wi Gl @ Lairesis G B SRTYER g A PG R Kl g B kel
o scior. Thisiw bl uwas of LUs ragirs e condi e 1 vanos ol & perioder eniy.

A LU0

Cxraad U P P R I————

A RS Wt T, i arati e Tl e | TR TP DTS T A e rRARess "'J'-:

Figure 7-5 displays a single bi ndi ngTenpl at e , and we can see the URL for accessing the
Stock Quote Service. If you click the Details link under Bindings, Figure 7-6 will display
additional details regarding the bi ndi ngTenpl at e.

Figure 7-6. The XMethods bindingTemplate record

aresd maing e lemrarep ard frivoriion Sacpealt o Lepbaner

Iwrﬁwm e AL 10 M e Y Pl et - 2 oa]

1!

BrOraER et davmricis Sonbertry flirsbl ntie Tpatin iwdard ndlestetal i Fic iiis:

ey admmr bl brsvdord Prodert and bories Tadr Geabieh Crogrephic dlesnesen
ARD Tk Congrapis Tassrasey

Ly
Hars Tpesibisan iy s pirebe The dtali o Pt SREETRabE (e BHb) Toa dses 1he ispraiians b 1his D, Bt o
Hors bt hoarviel o rrahos ondky 1o gead 1 the pioeis g,
W) Tistb aids S Sregl Sy
Ty
Rieadstor e Garavebs £ 6 8 et Ao m el ki o beiaiel B e pobets The SRR T Ao Dol d N dmeke I
AR B A
wawnh
] L e |FUR el pRuatsd
[

i bl iy W s
e i~ apore ew deowrerd proneden frttar, debeied nfrrmahions sk e S oapscfesaoy wgr s o s aee

Bz Srthar aeerea s deteh promided.

Galk 3

L L

HEp

Frogiande dibed s
Pk i

A LT

e ek e S e g1

Under Specification signature, we can see that the binding references a t vodel named
XMethods Simple Stock Quote. Click on the t model record, and the results are displayed
in Figure 7-7.

147

Web Services Essentials

Figure 7-7. The "XMethods Simple Stock Quote" tModel record

il Cit G Ppoeim Joch b

M e DA S e e e e

e el

Sapless (] o oeci o ool miedeicetal i STt T - b A R

" iuddi

ZEArch be kesinar rers B,
|

ednared dmanik

||||||

EBLORE R

&) Dww

o e

From Figure 7-7 , you can now retrieve the XMethods WSDL specification file.

It is important to note that the Microsoft Advanced Search enables you to search by
multiple criteria, including NAICS code, UNSPSC code, or 1SO 3166 country code. For
example, Figure 7-8 shows a sample search for the NAICS code for software publishers.

Figure 7-8. Advanced search: searching by NAICS code

kot - i smanll Sndervst: Enplowr

Bl LIt e Fpetsn lak o u
b n S T R I T T Sy e e B
Agdwn o | hopaerlanso®. rondamct o]
F "
uddi
Search ps ossen e [irowess - e orsiar Lk -
by g Sraivials Buirmrhic
s
ddvanced Search
:::::
Earoi oy T - =T
B o
|||||| L=
. e]
BRI R T
CviCrmi rp UEL
oty T o i
BaviLOR SIC Cachrn
UREFEC Coves
30 T Costaywphic Thomnamy
Fmalhlaman Fayord
HE
=l o v

If you are curious to browse the UDDI registry from a different perspective, try the Visual
UDDI Map provided by Antarcti.ca (http://uddi.antarcti.ca). The visua map enables you
to drill down by category. For example, Figure 7-9 and Figure 7-10 demonstrate drilling

down by NAICS code.

148

Web Services Essentials

s As an alternative to the Microsoft UDDI browser, try the UDDI
. browser available at Soapclient.com
"4 (http://www.soapclient.com/uddisearch.html). This service enables

you to search the Microsoft and IBM sites and to intuitively drill al
the way down to the t vodel record.

Figure 7-9. Visual UDDI Map hosted by Antarcti.ca - NAICS view

FRUDDA) Vossadl veporegeenitabinn - Mcrosst Tnteret Eaphiver =l =
ph gt gam Fpodm [mh o e -
etk = o () A Dsewch ipteotes emtoy iy O S v (o] 0w |

ejess |87 btk (fudd snbarcH caletatTag=| »] o

RriE 4
Eairrebaling Entarlavsrant Gnpalyue |k
J andFood Seraioey ang Byoreaiian
-

Exploen ke B
srvies in the UDD
[LEETY FIPRRFPVE AT Edusaliceal Finnres
InForrsatinsiich Ssrriast asd Inlerratins
ahvaa b imnimad of Issanas+
e ugh
Iev its o vant MAICS rmap
Tha k # demcaraton
il des bt s
Wheaal Bl Beckrodops. ;

06 10 image mag :“ !:. He
i L an
ierEarn Frafesscnal, il
legin ¢ regitber ek) T Toskwdl Sarse i Ratad Trads
help Syt braliend h
visual
Bnet”
Tiramsrpese fmbier
ered HlEre8 aLcieg
Wil ras
rad
searth

el D Intemet

Figure 7-10. Visual UDDI Map hosted by Antarcti.ca - NAICS Manufacturing view

DA s ¥ aaiort: RAIE Fhanil wil iy - il Jol ssst, npliine

B Rt pee Fpocsl LR oo
el S J= L ol A o e AL e 1 I il
ﬂ-c-ir_lM:,'..fnnujrnm:h_\'.hr.'ran.c-bo-:lwl-:;.p-r.

—+
' SubCane e
1 Sarmiea ared Bt et e
el Hare gyt o
[o g o | iy Wt Wamu e
et a;
@ ‘T:I" e P’_‘[wu_ﬂﬁl
i vead Huring 1 | E
e g
— |
R A
e T R ER] (PR PSR | (=g
whsLal E:
Bl

| o

149

Web Services Essentials

7.5.2 The UDDI Inquiry API

The UDDI APl is a SOAP-based protocol for interfacing with the UDDI Business
Registry. Very broadly, the APl is divided into two parts: the Inquiry APl provides search
and retrieval functionality, whereas the Publisher APl provides insert and update
functionality.

Table 7-7 provides an overview of the main UDDI inquiry functions. Inquiry functions are

further subdivided into two groups. find xxx functions provide genera search
functionality, whereas get_xxx functions retrieve full records based on unique key values.

Table 7-7. Main functions of the UDDI Inquiry API

Function name Description

find_xxx Functions

find_binding Searches for bindings associated with a specified service
find_business Searches for businesses that match the specified criteria
find_service Searches for services associated with a specified business
find_tModel Searches for t model s that match the specified criteria
get_xxx Functions

get_bindingDetail Retrieves a complete bi ndi ngTenpl at e record
get_businessDetail Retrieves a complete busi nessEnti ty record
get_serviceDetail Retrieves a complete busi nessSer vi ce record

get_tModel Detail Retrieves a complete t model record

Inquiry interfaces are provided at the following URLS:

Microsoft: http://uddi.microsoft.com/inquire
IBM: http://www-3.ibm.com/services/uddi/inquiryapi

To send inquiry functions, you can send a SOAP request directly to either of these URLSs.
Alternatively, you can try one of the UDDI implementations described later in this chapter.

To learn the mechanics of the UDDI API, the simplest option is to set up a web-based
interface for submitting UDDI queries directly. To facilitate this, | have set up a UDDI
test bed at http://ecerami.com/uddi/. Figure 7-11 provides a screenshot of this test bed.
You can enter any UDDI function in the text box on the right. When you click Submit,
your query is routed to the Microsoft site, and the XML results are displayed. If you do
not want to type the full query, you can select one of the links for a predefined query.
Predefined queries are available for each of the query functions that were described earlier
in Table 7-7.

150

Web Services Essentials

Figure 7-11. The UDDI test bed: a simple interface for trying out sample UDDI queries

B Dir tee Fpome Lk g

P o R R = bl o I T e (T
e 1= haegeceans. rond aiirden Ep e i=rd Do _| 2 P

ULCDI Test Bed

Yoiu anp Freras R o LIDOH Taat Cad Wordguiion: Taackrg | 20L1 1 Emmy
Welcome

WAk e £ v LD T Bhind Frcemn thiss paasg i, o aan cilomiit s LIDEA 10
s dracths to the Mmoo EHH Serace Typa wour cueny imthe b ba ke, o
mzde one of the bnle for @ preou b guery.

DD Inpeiry Funcions. ind Flsd Boasrean geascse=s1.60 o]
@ LN O e e T:::-:;L:M::'f;lqr‘
& LD gy e _basiveas Lo W at_mais e

& fed bigsisee by name

& nd b ba Marn (it fre Cralie

& e beoren ke 55 Cody

o el a Duy
o 85 bigiud o e
o el baniery by dincorery Ui
LN myary nd oervice
O bpd_wwracs ke naEnE

Ll)

Given the table of query functions, let's try to retrace the search path described in the web-
based searching interface shown in Figure 7-11. For each of the following examples, we
have included a sample request and response. To keep the examples more concise, we have
also stripped out the SOAP-specific details.

7.5.2.1 The find_business function

Let's begin with the find_business function. The complete API specification for this and
all other inquiry functions is provided in Chapter 8. Hereis a sample find_business query
to search for XMethods:

<find_busi ness generic="1.0" xm ns="urn:uddi -org: api ">
<name>XMet hods</ nane>
</ find_busi ness>

Note that the request specifies UDDI Version 1.0, as indicated by the generi c attribute.
Within the find_business function, we specify a nane element, set to the value xvet hods.
By default, UDDI will ignore case, and perform a strict left-to-right lexical search. Use
the % character to specify wildcard options; for example, vdat a% will find all companies
containing the word "data".

Microsoft returns the following response:

<busi nessLi st generic="1.0" operator="Mcrosoft Corporation”
truncated="fal se" xm ns="urn: uddi -org: api ">
<busi nessl nf os>
<busi nessl nf o busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<name>XMet hods</ nanme>
<description xm:lang="en">Wb services resource site</description>
<servi cel nf os>
<servicelnfo
servi ceKey="d5b180a0- 4342- 11d5- bd6c- 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<nanme>XMet hods Barnes and Nobl e Quot e</ nane>
</ servi cel nf o>

151

Web Services Essentials

<servicelnfo
servi ceKey="ed85f 000- 4345- 11d5- bd6c- 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<nane>XMet hods Pacific Bell SMS Service</ nane>

</ servi cel nf o>

<servicelnfo
servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<name>XMet hods Del ayed St ock Quotes</nane>

</ servi cel nf o>

<servicelnfo
servi ceKey="618167a0- 3e64- 11d5- 98bf - 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<name>XMet hods Currency Exchange Rates</nane>

</ servi cel nf o>

</ servicel nfos>
</ busi nessl nf o>
</ busi nessl nf os>
</ busi nessLi st >

The response includes a root busi nessLi st element, and one busi nessi nfo element for
each matching company. If the UDDI operator returns only a partia list of matching
results, the busi nessLi st element's t runcat ed attribute will be set to t rue. If no matches
are found, a businessList element with zero sub-elements is returned. In our case,
Microsoft has identified one match for XMethods and has indicated its unique
busi nessKey.

7.5.2.2 The get_businessDetail function

Having obtained the unique busi nesskey , we can query Microsoft again for the complete
busi nessknt ity record. Thisisaccomplished viathe get_businessDetail function:

<get _busi nessDetail generic="1.0" xm ns="urn:uddi-org: api">
<busi nessKey>ba744ed0- 3aaf - 11d5- 80dc- 002035229c64</ busi nessKey>
</ get _busi nessDetai |l >

This method retrieves the complete busi nessenti ty record for each specified busi nesskey.
(You can specify multiple busi nesskeys , if you like.)

Microsoft responds as follows:

<busi nessDetail generic="1.0" operator="M crosoft Corporation”
truncated="fal se" xm ns="urn: uddi -org: api ">
<busi nessEntity
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64"
oper at or ="www. i bm coni servi ces/ uddi " aut hori zedNane="0100001Qs1" >
<di scover yURLs>
<di scoveryURL useType="busi nessEntity">
http://ww.ibm conl services/uddi/uddi get?
busi nessKey=BA744EDO- 3AAF- 11D5- 80DC- 002035229C64
</ di scover yURL>
</ di scover yURLs>
<name>XMet hods</ nane>
<description xm :lang="en">Web servi ces resource site</description>
<cont act s>
<cont act useType="Founder">
<description xm:lang="en" />
<per sonNanme>Tony Hong</ per sonNane>
<phone useType="Founder" />
<emai | useType="Founder" >t hong@net hods. net </ emai | >
<addr ess>

152

Web Services Essentials

<addressLine />
<addressLine />
<addressLine />
<addressLine />
<addr essLine />
</ addr ess>
</ cont act >
</ cont act s>
<busi nessServi ces>
[... Information about Business Services goes here...]
</ busi nessServi ces>
</ busi nessEntity>
</ busi nessDet ai | >

The response includes aroot busi nessbet ai | element, and one busi nessEnti ty element for
each matching business. If no matches are found, an E invalidkeyPassed error is
returned. (Error handling will be discussed shortly.)

7.5.2.3 The find_service function

Given a businesskey , one can also query for al of its associated services. This is
accomplished viathe find_service function:

<find_service generic="1.0" xm ns="urn:uddi-org:api"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
</find_service>

Microsoft responds as follows:

<servi celLi st generic="1.0" operator="M crosoft Corporation"
truncated="fal se" xm ns="urn: uddi -org: api ">
<servi cel nf os>
<servicelnfo
servi ceKey="618167a0- 3e64- 11d5- 98bf - 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<name>XMet hods Currency Exchange Rates</nanme>
</ servi cel nf o>
<servi cel nfo
servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<nanme>XMet hods Del ayed St ock Quotes</nane>
</ servi cel nf o>
<servi celnfo
servi ceKey="ed85f 000- 4345- 11d5- bd6c- 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<nanme>XMet hods Pacific Bell SMS Service</ nanme>
</ servi cel nf o>
<servi cel nfo
servi ceKey="d5b180a0- 4342- 11d5- bd6c- 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<nane>XMet hods Barnes and Nobl e Quot e</ nane>
</ servi cel nf o>
</ servicel nfos>
</ servi celLi st >

The response includes a root ser vi ceLi st element, and one servi cel nf o element for each

matching company. If no matches are found, a serviceList element with zero
subelements is returned.

153

Web Services Essentials

If you want to narrow your search, you can specify an optional nane element. For
example, the following query searches for all XMethods services containing the word
"Quote".

<find_service generic="1.0" xm ns="urn:uddi-org:api"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<name>% ot e¥%</ name>

</find_service>

7.5.2.4 The get_serviceDetail function

Given aunique ser vi cekey , one can retrieve the complete busi nessServi ce record. This
is accomplished via the get_serviceDetail function. For example, the following query
retrieves the XMethods Delayed Stock Quotes Service:

<get _serviceDetail generic="1.0" xm ns="urn:uddi-org:api">
<servi ceKey>d5921160- 3e16- 11d5- 98bf - 002035229c64</ ser vi ceKey>
</ get _serviceDetail >

Microsoft responds as follows:

<serviceDetail generic="1.0" operator="M crosoft Corporation”
truncat ed="fal se" xm ns="urn: uddi -org: api ">
<busi nessServi ce
servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<nanme>XMet hods Del ayed St ock Quot es</nane>
<description xm: | ang="en">
20-m nut e del ayed stock quotes
</ descri ption>
<bi ndi ngTenpl at es>
<bi ndi ngTenpl at e
servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229¢c64"
bi ndi ngKey="d594a970- 3e16- 11d5- 98bf - 002035229c64" >
<description xm: |l ang="en">
SQAP bi nding for del ayed stock quotes service
</ descri ption>
<accessPoi nt URLType="http">
http://services. xmet hods. net: 80/ soap
</ accessPoi nt >
<t Mbdel | nst anceDet ai | s>
<t Model | nst ancel nf o
t Model Key="uui d: 0e727db0- 3e14- 11d5- 98bf - 002035229c64" />
</t Model | nst anceDet ai | s>
</ bi ndi ngTenpl at e>
</ bi ndi ngTenpl at es>
</ busi nessServi ce>
</ serviceDetail >

The response includes a root ser vi cebet ai | element and one busi nessSer vi ce element for
each matching service. If no matches are found, an £_i nval i dkeyPassed efror is returned.

7.5.2.5 The get_bindingDetail function
You may have noticed that the get serviceDetail function returns complete details
regarding all bi ndi ngTenpl at es. (See the example response in the previous section.) If you

only want binding details, you can use the get_bindingDetail function. For example, the
following query retrieves the SOAP binding for the XMethods Stock Quote service:

154

Web Services Essentials

<get _bi ndi ngDetail generic="1.0" xm ns="urn:uddi-org:api ">
<bi ndi ngKey>d594a970- 3e16- 11d5- 98bf - 002035229¢c64</ bi ndi ngKey>
</ get _bi ndi ngDet ai | >

Here, you can specify one or more unique bi ndi ngkey values. Microsoft returns the full
bi ndi ngTenpl at e record:

<bi ndi ngDet ai | generic="1.0" operator="Mcrosoft Corporation"
truncated="fal se" xm ns="urn: uddi -org: api ">
<bi ndi ngTenpl at e
servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229c64"
bi ndi ngKey="d594a970- 3e16- 11d5- 98bf - 002035229c64" >
<description xm :|ang="en">
SQAP bi nding for del ayed stock quotes service
</ descri ption>
<accessPoi nt URLType="http">
http://services. xmet hods. net: 80/ soap
</ accessPoi nt >
<t Model | nst anceDet ai | s>
<t Model | nst ancel nfo
t Model Key="uui d: 0e727db0- 3e14- 11d5- 98bf - 002035229c64" />
</t Model | nst anceDet ai | s>
</ bi ndi ngTenpl at e>
</ bi ndi ngDet ai | >

Querying for a live binding via a programmatic APl represents one of the potential
strengths of UDDI. For example, consider a UDDI-aware software application that
attempts to connect to a web service. If access fails, the software can query UDDI for
fresh binding information and attempt to reconnect at a new access point. This may be
particularly useful for disaster recovery or connecting to backup systems.

7.5.2.6 The get_tModelDetail function

Finally, given a t Model Key , one can retrieve the full t vodel record. This is accomplished
viathe get_tModel Detail function. For example, the following query retrieves the t vodel
record referenced by the XMethods SOAP bi ndi ngTenpl ate :

<get _t Model Detail generic="1.0" xm ns="urn:uddi-org:api">
<t Model Key>uui d: 0e727db0- 3e14- 11d5- 98bf - 002035229c64</ t Model Key>
</ get _t Model Det ai | >

Microsoft returns the following response:

<t Mbdel Detai | generic="1.0" operator="Mcrosoft Corporation"
truncated="fal se" xm ns="urn: uddi -org: api ">
<t Model
t Model Key="uui d: 0e727db0- 3e14- 11d5- 98bf - 002035229¢c64"
oper at or ="www. i bm coni servi ces/ uddi " aut hori zedNane="0100001Qs1" >
<name>XMet hods Si npl e Stock Quote</nanme>
<description xm:lang="en">Si npl e stock quote interface</description>
<overvi ewbDoc>
<description xm:lang="en">wsdl |ink</description>
<over vi ewURL>
http://ww. xmet hods. net/t nodel s/ Si npl eSt ockQuot e. wsd
</ overvi ewURL>
</ overvi ewDoc>
<cat egor yBag>
<keyedRef erence
t Model Key="uui d: clacf 26d- 9672- 4404- 9d70- 39b756e62ab4"
keyNanme="uddi - or g: t ypes" keyVal ue="wsdl Spec" />
</ cat egor yBag>

155

Web Services Essentials

</t Mbdel >
</t Model Det ai | >

The response includes a root t vodel Det ai | element, and one t vodel element for each
matching t Model . 1f no matches are found, an E_i nval i dkeyPassed error is returned.

7.5.2.7 Error handling

In the event of an error, the UDDI operator will return a disposition report. The
disposition report includes specific details on the cause of the error. For example, the
following query is invalid because it references an illegal corpany element, instead of the
expected nare element:

<find_busi ness generic="1.0" xm ns="urn:uddi -org: api ">
<conpany>XMet hods</ conpany>
</ find_busi ness>

Microsoft responds by returning a full disposition report:

<?xm version="1.0" encodi ng="utf-8"7?>
<soap: Envel ope xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body>
<soap: Faul t >
<faul t code>soap: dient</faultcode>
<faul tstring>System Web. Servi ces. Prot ocol s. SoapException --->
System Xm . Schema. Xnl SchemaExcepti on: El enent 'urn:uddi-org: api
find_business' has invalid content. Expected 'urn:uddi-org:api
findQualifiers urn:uddi-org:api:name urn:uddi-org:api:identifierBag
urn: uddi - org: api : cat egoryBag urn: uddi - or g: api : t Model Bag
urn: uddi -org: api: di scoveryURLs'. An error occurred at (4, 2).
at System Xm . Xm Val i dat i ngReader . | nt ernal Val i dati onCal | back
(bj ect sender, ValidationEventArgs e)
[Full Stack Trace here...]
<detail >
<di sposi ti onReport
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schena" generic="1.0"
operator="M crosoft Corporation” xm ns="urn:uddi-org:api">
<result errno="10500">
<errlnfo errCode="E fatal Error">
El enent ' urn:uddi -org: api:find_business' has
invalid content. Expected 'urn:uddi-org:api
findQualifiers urn:uddi-org:api:nanme urn:uddi-org:
api :identifierBag urn:uddi-org: api: categoryBag
urn: uddi - or g: api : t Model Bag urn: uddi - or g: api
di scoveryURLs'. An error occurred at (4, 2).
</errlnfo>

</result>
</ di sposi ti onReport >
</ detail >

</ soap: Faul t >
</ soap: Body>
</ soap: Envel ope>

The UDDI operator uses the SOAP rFault element to return errors, and inserts the

disposition report inside the SOAP det ai | element. This follows the general SOAP error-
handling pattern. (See Chapter 3 for details).

156

Web Services Essentials

7.6 Publishing to UDDI

Having covered the details of searching UDDI, the next step is publishing to UDDI. Again,
you have the option of using a web-based interface or a programmatic API. Both
Microsoft and IBM provide test registries where you can experiment with publishing new
data. It ishighly recommended that you experiment with these test registries first, prior to
publishing data to live servers.

7.6.1 Web-Based Publishing
To access the web-based test registries, use the following URLS:

Microsoft: https://test.uddi.microsoft.com
IBM: https://www-3.ibm.com/services/uddi/testregistry/protect/

For the production registries, use the same URLS referenced in the "Searching UDDI"
section, earlier in this chapter.

7.6.1.1 Security and user authentication

All inserts and updates to the UDDI registry require user authentication and must be
transported via SSL. According to the UDDI specification, however, each operator site is
free to implement its own user authentication scheme. Because of this, each business must
select one operator site for all publishing transactions. Data from this site will aways
propagate to other root nodes, but all updates and inserts must be performed at the
originally selected site.

Microsoft provides user authentication via Microsoft Passport. See Figure 7-12 for a
sample login screen. To publish UDDI data, you can either register a new Passport
account or enter the login and password for an existing Passport account.

Figure 7-12. Microsoft Passport login screen

-l T pe T R B 1 R R D R e i e
"'_' LR e T et R B B L P Y e T T L ML e [O T B | BT = L e e L N j iy

Eign im P'f.:\suﬂrtﬁ'

Sy SEETITSIIETTRDE

Panewe |
g I
i i ol ey il
Bt have & PEsapam? oo e feie

0000 e rrilh L A gl sl

157

Web Services Essentials

7.6.1.2 Publishing a business entity

In the sample screenshots that follow, we return to the case of Acme Parts, which was
discussed earlier in this chapter. To recap, Acme Parts has just released its Acme Parts:
Submit Purchase Order Service. The service adheres to RosettaNet PIP3A4, and Acme
wants to register its business and its new service within UDDI.

Once you have logged in via Microsoft Passport, you will see the general UDDI
administration screen. See Figure 7-13 for a sample screenshot. To add a new business,
click the Add a New Business link.

Figure 7-13. The UDDI administration screen

ol S T 1K~ o Wil i S s 4 BT bl
i] bore et s et oo e | o

5 ; b
’l renp weeialy thay e barrilae pog srorwie dyeeg U0 rogniegion, Ul bl e dela’s oo b reonbaon peroee o'y o are el pu egl iy araiable oy e
= Iegiay

Lol ragasirgiian fatails

el I 0

Figure 7-14 shows the initia fields required for publishing a new business entity. Fill in
the name and description for Acme Parts and click the Save button.

Figure 7-14. Adding a new business

weny wel by e - Farsinl IR mat Csplerer - D P - JE
e G pes P Je (e [= |
e T e Bl 1 NSRRI T R e (I e
Seldtenn 3 b A At LA A S N j -]

ubbi Test site
= ey F Hugech ¢ Rogbtar v ddadnisber

el £ e

158

Web Services Essentials

Figure 7-15 shows the Edit Business page. From the Edit Business page, you can add
contact information, business identifiers, and business classifications.

Figure 7-15. The Edit Business page

=i8IH]
Bt~ JE: = BN ML i s A 41 B b
w:{lha:._'cﬂuﬂ IR Com R i e 3 =]

i v T W sl .l:ll.-\.-':.':-:i.-:o v Ik, ke gl lag remer e astereere oo Tera dekes eeinde U amobo oF e
r ri el tha darsicen

vy wey popimn of dotn fheak arp urse 0 g ipd Wkl bummasa v 3. o oo e mgoier bsbrg ramber. Teme anable uoers of the regudn &2 oonfere e deekry
o b s ivei

[l I R

For example, if you click Add a classification, you can drill down to your specific business
classification. See Figure 7-16 for a sample screenshot.

Figure 7-16. Adding a business classification

TH Ted, s eo il Depiplion Dyl ebogeaiies - Marmll Inic Baplorer- e mle =
[s e
Il = o b = L R [S R e e
Sl ey e e o e U g e s s =]
Fuampas. 7 J
ried

uobi Test site

Inr demiognm | contact | policies

Te i cabicr e o b i # b i ek Akl
Fare Disne e .
L

AR Tl 8 4 g bl e ol Lss ROOLERTa all iy i el L0 Poni Sl Akl

Lol o i

Microsoft provides drill-down support for the core UDDI taxonomies: NAICS, UNSPSC,
and 1SO 3166. It also provides support for two additional taxonomies. the Standard
Industry Classification (SIC) and the Microsoft GeoWeb geographic classification. Figure
7-17 shows a sampl e screenshot of the NAICS drill-down functionality.

159

Web Services Essentials

Figure 7-17. Adding an NAICS code

- S =B H|
B i pes Faoms Lo e | = |
e eia L™ S 1= NI ottt gl e S sl 1 I b
w!{_lm:._'nmnﬂ S R R R N T A LR 5 o

1o mdd a ey RE e, ke T s e g e B S W e B A e e s Ceae e S

Carrwn alaiieatme

HAICE

el 0

Once you have added any contacts, identifications, or classifications, make sure to select
the Publish button. Your data will not be saved to the registry without this final step.

7.6.1.3 Publishing a business service

To add a business service, return to the administration home page. You should now see
your published business entity. (See Figure 7-18 .) To add a service, select Edit business,
then click Add a Service.

Figure 7-18. The UDDI administration page displays the newly published business entity

3 L - UnAA =TT
B B pes Fawee Dk e | |
el R (8 | qmm;ﬁm T e (A

B] et s st o T ® o

ThIE i wrebnk B3 vk B0 BrE oF bR WD G 8 el bk ik cun Sy PR ted o LDDE ta whuch yins bie pasdibel raohts
Fromm bhe ol ol bag resans el v bioes: e ae ek nlbery L mger chseges e mtier nddr s b or oddarg o rovreevem e ganfeg ke A chenem B e
T 7 b s T b pa DD m ey e e ben

[Beaigess 8

Listireg L- 1 wf 1 Bamirmsars

Ak o 5 PR B AT 33 e T rhe Benirase o derale

Diishness noes ArtRan
BLuE Paety =2
SRpO OF §R0 SHTICONEAT T [T Ll

Parxanal fagiairisien datall E

» g vimdialie M s o il e prom By il i UG b 1, Ml Uil thecs Sl an'd b il be glis Dol bl e Sl 50wl el i 5 el e dmn ll
el 0

160

Web Services Essentials

Figure 7-19 shows the initial fields required for publishing a new service.Enter the service
name and description, and click the Continue button.

Figure 7-19. Adding a new service

B alflx
O O few Fpeeim ek leb -
e~ - Q) A Qe dnems gm0 3 - S

Jelitrs) ottt o I T S e e e i

“uchmaw DrZer Jenccmy

#a D 01 Ebecrecady Sl e Frachase Dnke s

T

b pnsd UDDL Prvacy Tlabavas]

A Rk s Teora gl Liss LG Frara L

el £ biae

Figure 7-20 shows the Edit Service page. From the Edit Service page, click Define new
binding.

Figure 7-20. The Edit Service page

=lB|H]
L et S 1 NS i et it AR] BT Bt
m'{_lm:,'r.m;ﬂ FWRET ComR O B AT S | o]

Figure 7-21 shows the initial fields required to create a new binding. For each binding,
you must enter an access point, a URL type (HTTP, HTTPS, FTP, mailto, fax, phone, or
other), and an optional description.

In the case of Acme Parts, | have entered a fictional URL for a SOAP binding interface.
Click the Continue button and the Edit Bindings page will be refreshed with a new section
for adding specification signatures. See Figure 7-22 for details.

161

Web Services Essentials

Figure 7-21. The Edit Bindings page

il Tosk - Lidvorsal Bes . e | U T
| B G tee fpees Do e | = |
AL T~ I, b bbb AR s 21 Tl
|ﬂ- hegact add reaert.oom R S driendng. oo ENTvitoe | RbIndng viroet 3 .ﬂ*ﬂ: 1
CT— N =]
I [

+ Siarth r Hegiiter = Advninediar

"
o =]
DL Eoodor g 12e Bk evling Clatiaae & Pt sk Udin

2 iy
s 5

J-n-u---a-ﬂ ﬁ5|g’-‘h _afPariey fﬂq’.lh-ﬂ--iqlh
|ﬂ- horpaffeact i raacmr T oo S g v

riarth r Pegiiter = Adinioolar

Iﬂlm:‘

The final step is to add your specification signature. Unfortunately, there is not much
consistency in labeling t vodel records - on the Microsoft site, the terms service type and
specification signature both refer to t vodel records. In the case of Acme Parts, we want to
reference the RosettaNet PIP3A4. To begin, click the link for Add Specification
Signature.

You will be prompted with a Find dialog screen for searching all registered t Mbdel

records. See Figure 7-23 for details. Enter the word "RosettaNet" and click Continue.
Figure 7-24 shows a list of matching results. .

162

Web Services Essentials

Figure 7-23. Searching for preregistered tModel records

o el e rgenin Jek e

e I o e o e e e B

uobl Test site

atsal inrdermlopars | contees | policls

v Gemch * Engider Adminivber

WA TraL - b mrows ol o il s vy i g s - Pl omish L Ligiiwvar - B
| B fir e Fgoes lak pot

[O T ™, e i T e ST [l
N i -

uobl Test site [t

+ Siarch * Miglsler ¢ Adiningtar

e) D it ey (D @ o D e
g bl bl o WA T

uobl Test site

» Guarch * Rugsiur o Adesinhiber

163

Web Services Essentials

Unfortunately, RosettaNet has not registered all of its PIPs within the test registry. If this
were the production registry, you could scroll down and find an exact match for PIP3A4.

For now, select the closest match, and click on the first item named
RosettaNet.Order.Management. Click Continue. Figure 7-25 shows the Edit Specification
Signature page.

All the fields on this page are optional. However, if you wish to add additional details for
this t model record, you may do so here. Then, click the Continue button several times,
until you reach the Publish button. Just like when adding a new business record, your
record will not be saved until you actually choose to publish it.

7.6.1.4 Publishing a tModel record

The most difficult aspect of publishing a new service is determining which technical
specification it implements. The most useful web services will be those that implement
public specifications. For example, your e-commerce service may implement a RosettaNet
standard or an OAGIS standard. (See the sidebar Open Applications Group , later in this
chapter.) As web services mature, more and more standards bodies will define interfaces
for a diverse set of applications. Perhaps there will one day be standards for financial
transactions, weather information, sports updates, headline news distribution, and online
auctions.

When building a web service, the first step is to determine if any standards exist for your
application and whether it makes sense to implement any of these standards. If no such
standards exist or you want to publish your own specification, you will need to register
your own tModel record. For example, Acme Parts may offer a Product Availability
Service. This specific implementation is not covered by RosettaNet, and Acme Parts has
decided to publish aWSDL file describing the interface.

To add a new service type, go back to the main administration page, and select Add a New
Service Type. Figure 7-26 shows the required fields.

Figure 7-26. Adding a new service type

bt dest - L i Biicovary el e atien - Bt s R L]

| D O e Pmeele JER R

164

Web Services Essentials

In the case of Acme Parts, | have added a reference to a sample WSDL file that describes
the SOAP binding.

Open Applications Group

The Open Applications Group (OAG) is a nonprofit consortium focused on e-
business integration. Much like RosettaNet, OAG has published its own
specification, the Open Applications Group Integration Specification (OAGIS). A
sampling of OAGIS interfaces includes:
get_catalog

Enables catalog synchronization between two partners
get_pricelist

Enables one partner to request a current price list from another partner
get_prodavail

Enables one partner to query for product availability
sync_exchangerate

Enables two partners to synchronize foreign exchange rates

Like RosettaNet, the OAGI S specification has been registered with UDDI.
Additional information is available at http://www.openapplications.org.

7.6.2 The UDDI Publishing API

Publishing to UDDI usually takes place via a web-based interface. Nonetheless, there are
certain instances when you may want direct access to the publishing API. For example,
you may be building web services software that automatically registers new web services,
or you may need an automatic method of updating binding access URLS, in the event of
disaster recovery.

Publishing requests must be sent to a secure URL that is distinct from the Inquiry API
URL. To publish to the test registries, use the following URLS:

- Microsoft: https://test.uddi.microsoft.com/publish
- IBM: https://www.ibm.com/services/uddi/testregistry/protect/publish

To publish to the production registries, use these URLS:

Microsoft: https://uddi.microsoft.com/publish
IBM: https://www.ibm.com/services/uddi/protect/publish

165

Web Services Essentials

Table 7-8 provides an overview of the main UDDI publishing functions. The publishing
API is divided into three main subsections: authenticating users, saving data, and deleting
data. Inthe sections that follow, we will see examples from each of the three subsections.

Table 7-8. Main functions of the UDDI publishing API

Function name

Description

Authentication
functions

get_authToken

Requests an authentication token from the operator site. An
authentication token is required for all subsequent save xxx and
delete xxx functions.

discard _authToken

Requests that the specified authentication token be discarded and
invalidated.

save xxx functions

save_binding

Inserts or updates a bi ndi ngTenpl at e record.

save business

Inserts or updates abusi nessEnt i ty record.

save_service Inserts or updates abusi nessSer vi ce record.

save_tModel Inserts or updates at vodel record.

delete xxx

functions

delete_binding Deletes the bi ndi ngTenpl at e record specified by the bi ndi ngkey.

delete _business

Deletes the busi nessEnt i ty record specified by the busi nesskey.

delete_service Deletes the busi nessser vi ce record specified by the ser vi cekey.
Hidesthe t model record specified by the t vodel Key. A hidden t vodel
record can still be referenced by another UDDI record (e.g., a

delete tModel bi ndi ngTenpl at e record), but it will be excluded from search results

generated by the find_tModel function. t vodel records cannot be
deleted.

7.6.2.1 Authenticating users

Publishing UDDI

data can only be performed by authorized users. As indicated

previously, each operator site is free to implement its own user authentication scheme.

When sending save or delete requests, the UDDI API requires that the request include an
authentication token. To obtain a token, you must first make a get_authToken request.
The function requires that you specify auser ID and password. For example, the following
request attempts to authenticate a user at Acme Parts:

<get _aut hToken generic="1.0" xm ns="urn:uddi -org: api "

user | D="boss@cneparts. cont cred="theBoss

</ get _aut hToken>

"

166

Web Services Essentials

If the user is not recognized, the operator site will return an E unknownUser error.
Otherwise, the operator site will return an authentication token. For example, Microsoft
returns the following response:

<aut hToken generic="1.0" xm ns="urn:uddi -org: api "

operator="http://uddi.mcrosoft.coni>
<aut hl nf 0>1BAAAAAAAHNTYkB2yI o* pV* pnr FoS4a* | bl r gZSI pa
j YC853wg9HI f shaozLxYp&Bo; 1AAAAAAAAAKZI 8QkQJ8BJf nMe
*HeQCt OTHvU3TDkPEogcauDpvt HyxQGczEEOc) 9bdl 7C48RRyr K
H7ReaF80H vQEM t SEhgD8RNhnt Or HFdZoWkANFe* uSLmab4WA
FKLHFouvDh3MI* 9VKOYMLI 4dg$$
</ aut hl nf 0>

</ aut hToken>

All subsequent calls to save or delete data will require the use of this token. When you
have completed your publishing requests, you have the option of discarding the token by
calling the discard_authToken function. For example:

<di scard_aut hToken generic="1.0" xm ns="urn: uddi -org: api ">
<aut hl nf 0>1BAAAAAAAHNTYKB2yI o* pV* pnr FoS4a* | bl r gZSI pa
j YC853wg9HI f shaozLxYp&2Bo; 1AAAAAAAAAKZI 8QkQJ8BJIf nvt
*HeQCt OTHvU3TDkPEogcauDpvt HyxQGczEEOc) 9bdl 7C48RRyr K
H7ReaF80H vQEM t SEhgD8RNhnt Or HFdZoWkANFe* uSLmab4WA
FKLHFouvDh3MI* 9VKOYMLI 4dg$$
</ aut hl nf 0>

</ di scar d_aut hToken>

If successful, the operator site will return an £ success status code. For example:

<di sposi ti onReport generic="1.0"
operator="M crosoft Corporation" xm ns="urn:uddi -org: api ">
<result errno="0">
<errlnfo errCode="E_success"></errlnfo>
</result>
</ di sposi ti onReport >

If you do decide to discard an authorization token, you can always get a new one by
calling the get_authToken function again.

7.6.2.2 Saving UDDI data

The publishing API enables you to insert new data or update existing data. For example,
let's say that we have already registered our business but want to update the business
description. To save general business entity data, use the save _business function.

<save_busi ness generic="1.0" xm ns="urn: uddi -org: api ">
<aut hl nf 0>1BAAAAAAAHNTYKB2yI o* pV* pnr FoS4a* | bl r gZSI pa
j YC853wg9HI f shaozLxYpG2Bo; 1AAAAAAAAAKZI 8QkQJI8BJf nMe
*HeQCt OTHvuU3TDkPEogcauDpvt HyxQGczEEOc) 9bdl 7C48RRyr K
H7ReaF80H vQEM t SEhgD8RNhnt Or HFdZoWkANFe* uSLmab4WA
FKLHFouvDh3MI* 9VKOYMLI 4dg$$
</ aut hl nf 0>
<busi nessEntity
busi nessKey="03754729- 3D3C- 48E0- 854A- 1C1FD576CA5B" >
<name>Acme Part s</ nane>
<description xm: | ang="en">
Supplier of fine sem conductor parts and Integrated Grcuits
</ descri ption>
</ busi nessEntity>
</ save_busi ness>

167

Web Services Essentials

In this example, note the use of the authorization token. Also note the updated business
description. In general, the value of the unique key - in this case, the businesskey -
determines whether this is an update or an insert. If the unique key is specified as an
empty string (e.g., busi nesskey=""), thisis an insert for a new record. Otherwise, thisisa
request to update the record indicated by the unique key.

In response, the UDDI operator will echo back the newly saved data. For example,
Microsoft returns the following:

<busi nessDetail generic="1.0" operator="M crosoft Corporation"
truncat ed="fal se" xm ns="urn: uddi-org: api ">
<busi nessEntity
aut hori zedNane="Et han Ceram "
busi nessKey="03754729- 3D3C- 48E0- 854A- 1C1FD576CA5B"
oper ator ="M crosoft Corporation">
<di scover yURLs>
<di scover yURL useType="busi nessEntity">
http://test.uddi.mcrosoft.conidi scovery?busi nessKey=0375
4729- 3D3C 48E0- 854A- 1C1FD576CASB
</ di scover yURL>
</ di scover yURLs>
<name>Acne Part s</ nanme>
<description xm : |l ang="en">
Supplier of fine sem conductor parts and Integrated Grcuits
</ descri ption>
</ busi nessEntity>
</ busi nessDet ai | >

To insert an entirely new record, consider using the save_tModel function:

<save_t Model generic="1.0" xm ns="urn:uddi-org: api ">
<aut hl nf 0>1BAAAAAAAHNTY KB2yI o* pV* pnr FoS4a* | bl r gZSI pa
j YC853wg9HI f shaozLxYpG2Bo; 1AAAAAAAAAKZI 8QkQJI8BJf nMe
*HeQCt OTHvuU3TDkPEogcauDpvt HyxQGczEEOc) 9bdl 7C48RRyr K
H7ReaF80H vQEM t SEhgD8RNhnt Or HFdZoWkANFe* uSLmab4WA
FKLHFouvDh3MI* 9VKOYMLI 4dg$$
</ aut hl nf 0>
<t Model t Mdel Key="">
<name>Price Query Interface</nane>
<description xm: | ang="en">
SQAP Interface for querying product prices
</ descri ption>
<overvi ewboc>
<description xm :|ang="en">
WSDL File
</ description>
<overvi ewURL>
http://ww. acneparts. com servi ces/ query_price. wsdl
</ overvi ewURL>
</ overvi ewboc>
</ t Model >
</ save_t Model >

Here, we have registered a new t wodel record for the Acme Price Query interface.
Because the t Wodel Key IS Set to the empty string, the UDDI operator considers this an
insert. Microsoft returns the following response:

<t Mbdel Detai | generic="1.0" operator="M crosoft Corporation”
truncat ed="fal se" xm ns="urn: uddi-org: api ">
<t Model authorizedNanme="Et han Ceram " operator="M crosoft Corporation"
t Model Key="uui d: 01EBBDO3- 324D- 4D7C 97EA- 79B9C396D6EA" >
<name>Price Query Interface</nane>

168

Web Services Essentials

<description xm: | ang="en">
SOAP Interface for querying product prices

</ descri ption>

<over vi ewboc>
<description xm :lang="en">W5DL Fil e</descri ption>
<over vi ewJrL>

http://ww. acneparts. coni services/ query_price. wsdl

</ over vi ewURL>

</ overvi ewboc>

</ t Mbdel >
</t Model Det ai | >

Note that the t vodel record has now been assigned its own unique ID.
7.6.2.3 Deleting/hiding UDDI data

Deleting data is generally very straightforward and only requires that you specify the
unique key value. For example, the following request hides the newly created t model
record:

<del et e_t Model generic="1.0" xm ns="urn:uddi-org:api">

<aut hl nf 0>1BAAAAAAAHNY KB2yI o* pV* pnr FoS4a* | bl r gZSI pa

j YC853wg9HI f shaozLxYpG2Bo; 1AAAAAAAAAKZI 8QkQJI8BJf nMe

*HeQCt OTHvU3TDk PEogcauDpvt HyxQGczEEOcj 9bdl 7C48RRyr K

H7ReaF8CH vQEM t SEhgD3RNhit Or HFdZoVWk ANFe* uSLmab4\W A

FKLHFouvDh3MI* QVKOYMLI 4dg$$</ aut hl nf o>

<t Model Key>uui d: 01EBBDO3- 324D- 4D7G- 97EA- 79B9C396D6EA" </ t Mbdel Key>
</ del et e_t Model >

A hidden twodel record can dtill be referenced by another UDDI record (e.g., a
bi ndi ngTenpl ate record), but it will be excluded from search results generated by the

find_tModel function. Therefore, unlike businessentity , businessService , Of
bi ndi ngTenpl at e records, t Model records cannot actually be deleted.

7.7 UDDI Implementations

A number of UDDI implementations are currently available. These implementations make
it easier to search or publish UDDI data, without getting mired in the complexities of the
UDDI API. Hereisabrief synopsis of the main UDDI implementations available.

7.7.1 Java

There are two UDDI implementations for Java.

UDDI4J (UDDI for Java) (http://oss.software.ibm.com/devel operworks/projects/uddi4j/)

UDDI4J was originally created by IBM. In January 2001, IBM turned over the code
to its own open source site. Details are available in Chapter 9.

jUDDI (http://www.juddi.org/)
jUDDI is an open source Java implementation of a UDDI registry and a toolkit for

accessing UDDI services. Initially developed by Bowstreet, Inc., jUDDI is now
hosted on the SourceForge open source development site.

169

Web Services Essentials

7.7.2 Microsoft COM
There is one UDDI implementation for Microsoft.com.
UDDI Software Development Kit (SDK) (http://uddi.microsoft.com/devel oper/)

The Microsoft UDDI Software Development Kit (SDK) provides a COM-based API
for accessing UDDI services.

7.7.3 Perl
There is one UDDI implementation for Perl.
SOAP::Lite (http://www.soaplite.com)
SOAP::Lite provides abasic UDDI client for inquiry and publishing.
7.8 Web Resources
For additional details regarding UDDI, the following web resources are extremely useful.
http://www.uddi.org/
The official UDDI site. The site includes a useful UDDI technical white paper, alist
of participating UDDI organizations, press releases, a complete archive of all
technical specifications, and the official UDDI FAQ.
http://groups.yahoo.com/group/uddi-technical
A UDDI technical newsgroup. The newsgroup provides an active forum for UDDI
technical issues and the UDDI API. For the general UDDI newsgroup, go to
http://groups.yahoo.com/group/uddi-general.

http://www.uddicentral.com

A web site devoted to UDDI information and news.

170

Web Services Essentials

Chapter 8. UDDI Inquiry API: Quick Reference

This chapter provides a quick reference to the UDDI Inquiry API. The Inquiry API
enables you to search existing data or retrieve specific records from a UDDI operator site.
For an overview of the APl and the UDDI Data Model, refer to Chapter 7.

A snapshot of each UDDI inquiry function is provided in Table 8-1. Later in this chapter,
we examine the functions in detail, providing the following information about each

function;

A brief description

The language syntax for UDDI 1.0 and 2.0
Descriptions of all function arguments

A list of possible error values

When possible, we also include one or more UDDI 1.0 examples for each function. Each
of the examples was verified against the Microsoft UDDI Operator site. The chapter
concludes with a brief overview of the UDDI find qualifiers, which enable more precise

search criteria

Table 8-1. The UDDI Inquiry API

. I UDDI
Inquiry API Description version
. . Searches for template bindings associated with a
find_binding specified service 1.0,2.0
find_business Searches for businesses that match the specified criteria | 1.0, 2.0
, . Discovers businesses that have been related viathe
find_relatedBusinesses uddi-org:relationships model 2.0
, : Searches for services associated with a specified
find_service LS NESS 10,20
find tModel Searches for t model records that match the specified 10.20
- criteria T
- . Retrieves the complete bi ndi ngTenpl at e for each
get_bindingDetail specified bi ndi ngkey 1.0,2.0
. : Retrieves the complete busi nessent i ty for each
get_businessDetail specified busi nesskey 1.0,2.0
. . Retrieves the extended busi nessent i ty for each
get_businessDetail Ext specified busi nesskey 1.0,2.0
et serviceDetail Retrieves the busi nessser vi ce record for each specified | 1 5 5
gL servi ceKey A
get_tModel Detail Retrievesthe t vodel record for each specified 1.0,2.0

t Model Key

171

Web Services Essentials

8.1 The UDDI Inquiry API

find_bindings

The find_bindings function searches for template binding records associated with a
specified service and the specified t vodel record(s). The response includes a root
bi ndi ngDet ai | element and one bi ndi ngTenpl at e element for each matching binding. If the
UDDI operator returns only a partial list of matching results, the bi ndi ngbet ai | element's
truncat ed attribute will be set to t rue. If no matches are found, a bi ndi ngbet ai | element
with zero subelements is returned.

Version: 1.0 and 2.0

1.0 syntax:

<find_bi ndi ng servi ceKey="uui d_key" generic="1.0"
[mxRows="nn"] xm ns="urn: uddi - org: api ">
[<findQualifiers/>]
<t Mbdel Bag/ >

</ find_bi ndi ng>

2.0 syntax:

<find_bi ndi ng serviceKey="uui d_key" [maxRows="nn"] generic="2.0"
xm ns="urn: uddi - org: api _v2">
[<findQualifiers/>]
<t Mbdel Bag/ >

</ find_bi ndi ng>

Arguments:
servi ceKey

Required uui d_key attribute specifying the associated busi nessSer vi ce.

max Rows

Optional attribute to specify the maximum number of rows to be returned; if maxRrows
is exceeded, the bi ndi ngbet ai | element'st runcat ed attribute will be set to t r ue.

findQualifiers

Optiona element to override the default search functionality. For additional details,
see the "Find Qualifiers" section, later in this chapter.

t Model Bag

Required uui d_key element to specify t Model records. If more than one t Model IS
specified, the search is performed viaalogical AND.

172

Web Services Essentials

Example:

The following UDDI 1.0 example searches for all SOAP bindings associated with the
XMethods Delayed Stock Quote Service. The XMethods Stock Quote Service is specified
by the servi cekey d5921160- 3e16- 11d5- 98bf - 002035229¢64 , and the WSDL specification
for the SOAP interface is referenced by the t Model record uui d: 0e727db0- 3e14- 11d5- 98bf -
002035229¢64.

<find_bi ndi ng servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229c64" generi c="1.0"
xm ns="urn: uddi - org: api ">
<t Mbdel Bag>
<t Mbdel Key>
uui d: 0e727db0- 3e14- 11d5- 98bf - 002035229c64
</t Model Key>
</t Model Bag>
</ find_bi ndi ng>

Here is aresponse to the query:

<bi ndi ngDet ai | generic="1.0" operator="Mcrosoft Corporation"
truncated="fal se" xm ns="urn: uddi -org: api ">
<bi ndi ngTenpl at e servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229c64"
bi ndi ngKey="d594a970- 3e16- 11d5- 98bf - 002035229c64" >
<description xm: |l ang="en">
SQAP bi nding for del ayed stock quotes service
</ descri ption>
<accessPoi nt URLType="http">
http://services. xmet hods. net: 80/ soap
</ accessPoi nt >
<t Model | nst anceDet ai | s>
<t Model | nst ancel nfo
t Model Key="uui d: 0e727db0- 3e14- 11d5- 98bf - 002035229c64" />
</t Model | nst anceDet ai | s>
</ bi ndi ngTenpl at e>
</ bi ndi ngDet ai | >

Errors:
E i nval i dKeyPassed
Aninvalid servi cekey attribute was specified.
E t ooManyOpti ons
Too many search options were specified (UDDI 1.0 only).
E _unsupport ed

The specified fi ndqual i fi er isnot supported.

173

Web Services Essentials

find_business

The find_business function searches for businesses that match the specified criteria. The
response includes a root busi nessLi st element, and one busi nessl nfo element for each
matching company. If the UDDI operator returns only a partia list of matching results, the
busi nessLi st element'struncat ed attribute will be set to t rue. If no matches are found, a
busi nessLi st element with zero subelementsiis returned.

Version: 1.0 and 2.0

1.0 syntax:

<find_busi ness generic="1.0" [nmaxRows="nn"]
xm ns="urn: uddi - org: api ">
[<findQualifiers/>]
[<nane/ >]
[<identifierBag/>]
[<cat egor yBag/ >]
[<t Model Bag/ >]
[<di scover yURLs>]
</ find_busi ness>

2.0 syntax:

<find_busi ness generic="2.0" [nmaxRows="nn"]
xm ns="urn: uddi -org: api _v2">
[<findQualifiers/>]
[<name/ > [<nane/>]...]
[<di scover yURLs/ >]
[<identifierBag/>]
[<cat egor yBag/ >]
[<t Model Bag/ >]
</ find_busi ness>

Arguments:

max Rows

Optional attribute to specify the maximum number of rows to be returned; if maxRows
is exceeded, the busi nessLi st eement'st runcat ed attribute will be set tot r ue.

findQualifiers

Optional element to override the default search functionality. For example, the find
qualifier exact Nanenat ch Will match exact business names.For details, see the "Find
Qualifiers' section, later in this chapter.

nane

The full or partial name of the business. UDDI 2.0 enables you to specify up to five
business names. The default behavior is to perform an exact left-to-right lexical
search. Use % to specify wildcard options;, for example, vlata% will find al
companies containing the word "data’.

174

Web Services Essentials
di scover yURLs

Optional element to search by discovery URLs. If more than one di scoveryURL is
specified, the search is performed viaalogical OR.

i dentifierBag

Optional element to search by identifier. For example, you can search by Dun &

Bradstreet D-U-N-S® Number. [f more than one identifier is specified, the search is
performed viaalogical OR.

cat egor yBag

Optional element to search by category. For example, you can search by NAICS
codes. If more than one category is specified, the search is performed via a logical
AND.

t Model Bag

Optional element to search by t vodel records. If more than one t model is specified,
the search is performed viaalogica AND.

Examples:

Here are three example 1.0 queries:

Search for all businesses beginning with the word "XMethods":

<find_busi ness generic="1.0" xm ns="urn:uddi -org: api ">
<nane>XMWet hods</ nane>
</ find_busi ness>

Search for all businesses with the specified Dun & Bradstreet D-U-N-S® number:

<find_busi ness generic="1.0" xm ns="urn:uddi-org:api">
<i dentifierBag>

<keyedRef erence t Mbdel Key="uui d: 8609c81le- eelf - 4d5a- b202- 3eb13ad01823"
keyNane="dnb-com D- U N S" keyVal ue="04-693-3052" />
</identifierBag>
</ find_busi ness>

Search for all businesses registered with the NAICS code for Advertising:

<find_busi ness generic="1.0" xm ns="urn:uddi-org:api">
<cat egor yBag>

<keyedRef erence t Mbdel Key="uui d: 70a80f 61- 77bc- 4821- a5e2-
2a406acc35dd"
keyNane="Advertisi ng" keyVal ue="7310" />
</ cat egor yBag>
</ find_busi ness>

175

Web Services Essentials

Hereis aresponse to the first example query (search for the word "XMethods"):

<busi nessLi st generic="1.0" operator="Mcrosoft Corporation"
truncated="fal se" xm ns="urn: uddi -org: api ">
<busi nessl nf os>
<busi nessl nf o busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<nanme>XMet hods</ nanme>
<description xm :lang="en">Web services resource site</description>
<servi cel nf os>
<servicelnfo servi ceKey="d5b180a0- 4342- 11d5- bd6c- 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<nane>XMet hods Barnes and Nobl e Quot e</ nane>
</ servi cel nf o>
<servicel nfo servi ceKey="ed85f 000- 4345- 11d5- bd6c- 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<nanme>XMet hods Pacific Bell SM5 Service</nane>
</ servi cel nf o>
<servicelnfo servi ceKey="d5921160- 3e16- 11d5- 98bf-002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<name>XMet hods Del ayed Stock Quot es</nane>
</ servi cel nf o>
<servicel nfo servi ceKey="618167a0- 3e64- 11d5- 98bf - 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<name>XMet hods Currency Exchange Rates</nane>
</ servi cel nf o>
</ servicel nfos>
</ busi nessl nf o>
</ busi nessl nf os>
</ busi nessLi st >

Errors:
E naneToolLong
The business name is too long.
E _unsupported
The specified fi ndQual i fi er isnot supported.
E t ooManyQOpti ons

Too many search options were specified.

176

Web Services Essentials

find_relatedBusinesses

The find_relatedBusinesses function searches for businesses related to the specified
busi nesskey. UDDI 2.0 provides improved support for describing complex organizations.
For example, a business can publish business units, departments, or divisions and tie them
together under one umbrella. Business relationships are created via the uddi-
org: rel ati onshi ps t Model record (uui d: 807A206A- EE22- 470D- ADC7- E0424A337003). UDDI
2.0 supports three relationship values:

parent-child

Used to indicate a parent-child relationship. For example, a holding company that
owns a subsidiary may choose to publish a parent-child relationship.

peer-peer

Used to indicate two peer entities. For example, two divisions within one company
may choose to publish a peer-peer relationship.

identity
Used to indicate that two entities represent the same organization.

The find_relatedBusinesses function is used to discover businesses that have been related
via the uddi-org:relationships model. The response includes a root
rel at edBusi nessesLi st element. If the UDDI operator returns only a partial list of
matching results, the rel at edBusi nessesLi st element's t runcat ed attribute will be set to
true. If no matches are found, arel at edBusi nessesLi st element with zero subelementsis
returned.

Version: 2.0

2.0 syntax:

<find_rel at edBusi nesses generic="2.0" xm ns="urn:uddi -org: api _v2">
[<findQualifiers/>]
<busi nessKey/ >
[<keyedRef er ence/ >]

</find_rel at edBusi nesses>

177

Web Services Essentials

Arguments:

findQualifiers

Optiona element to override the default search functionality. For additional details,
see the "Find Qualifiers" section, later in this chapter.

busi nessKey
Required uui d_key specifying the busi nessEnti ty.

keyedRef erence

Optional element used to specify auddi - org: rel ati onshi p value. A keyedReference
requires three attributes. t vodel Key , keyName , and keyval ue. For example, to
retrieve businesses entity records that have a peer-peer relationship with the
specified busi nesskey , use the following keyedRef er ence :

<keyedRef er ence
t Model Key="uui d: 807A2C6A- EE22- 470D- ADC7- E0424A337C03"
keyName="uddi - or g: r el ati onshi ps"
keyVal ue="peer-peer" />

Errors:
E i nval i dKeyPassed
Aninvalid busi nesskey attribute was specified.

E_unsupported

The specified fi ndqual i fi er isnot supported.

178

Web Services Essentials

find_service

The find_service function searches for services associated with a specified business. The
response includes a root servicelLi st element, and one servicelnfo element for each
matching company. If the UDDI operator returns only a partia list of matching results, the
servi ceLi st element's t runcat ed attribute will be set to t rue. If no matches are found, a
servi ceLi st element with zero subelementsiis returned.

Version: 1.0 and 2.0

1.0 syntax:

<find_service busi nessKey="uui d_key" generic="1.0" [rmaxRows="nn"]
xm ns="urn: uddi - org: api ">
[<findQualifiers/>]
[<nane/ >]
[<cat egor yBag/ >]
[<t Model Bag/ >]
</find_service>

2.0 syntax:

<find_servi ce busi nessKey="uui d_key" generic="2.0" [maxRows="nn"]
xm ns="urn: uddi - org: api _v2">
[<findQualifiers/>]
[<name/ > [<nane/>]...]
[<cat egor yBag/ >]
[<t Model Bag/ >]
</find_service>

Arguments:
busi nessKey

Required uui d_key attribute specifying the associated busi nessEnti ty.

max Rows

Optional attribute to specify the maximum number of rows to be returned. If
maxRows 1S exceeded, the servi ceList element's truncat ed attribute will be set to
true.

findQualifiers

Optional element to override the default search functionality. For example, the find
qualifier exact NameMat ch Will match exact service names. For additional details, see
the "Find Qualifiers' section, later in this chapter.

179

Web Services Essentials

nane

The full or partia name of the service. UDDI 2.0 alows you to specify up to five
service names. The default behavior is to perform an exact left-to-right lexical
search. Use %to specify wildcard options; for example, vquot evwill find all services
containing the word "quote”.

cat egor yBag

Optional element to search by category. If more than one category is specified, the
search is performed viaalogical AND.

t Model Bag

Optional element to search by t model s. If more than one t vodel is specified, the
search is performed viaalogical AND.

Examples:
Here are two example 1.0 queries:

Search for all services provided by XMethods:

<find_service generic="1.0" xm ns="urn:uddi-org:api"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229¢c64" >
</find_service>

Search for all services provided by XMethods that contain the word "quote”:

<find_service generic="1.0" xm ns="urn:uddi-org:api"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<name>% ot e¥%</ nanme>

</find_service>

Here is aresponse to the second example query:

<servi celLi st generic="1.0" operator="M crosoft Corporation"
truncated="fal se" xm ns="urn: uddi -org: api ">
<servi cel nf os>
<servicel nfo servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<name>XMet hods Del ayed St ock Quotes</nane>
</ servi cel nf o>
<servicelnfo servi ceKey="d5b180a0- 4342-11d5- bd6c- 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<nane>XMet hods Barnes and Nobl e Quot e</ nane>
</ servi cel nf o>
</ servicel nfos>
</ servi celLi st >

180

Web Services Essentials

Errors:

E i nval i dKeyPassed
Aninvalid busi nesskey attribute was specified.
E_nanmeToolLong

The service name is too long.

E_t ooManyOpti ons

Too many search options were specified (UDDI 1.0 only).

E_unsupported

The specified fi ndqual i fi er isnot supported.

181

Web Services Essentials

find_tModel

The find_tModel function searches for t vodel records that match the specified criteria

The response includes a root t vodel Li st element and one t vodel I nfo element for each
matching company. If the UDDI operator returns only a partia list of matching results, the
t Model Li st element's t runcat ed attribute will be set to true. If no matches are found, a
t Model Li st element with zero subelements is returned.

Version: 1.0 and 2.0

1.0 syntax:

<find_t Model generic="1.0" [maxRows="nn"] xm ns="urn: uddi -org: api ">
[<findQualifiers/>]
[<nane/ >]
[<identifierBag/>]
[<cat egor yBag/ >]
</find_t Model >

2.0 syntax:

<find_t Model generic="2.0" [maxRows="nn"] xm ns="urn:uddi -org:api _v2">
[<findQualifiers/>]
[<nane/ >]
[<identifierBag/ >]
[<cat egor yBag/ >]
</find_t Model >

Arguments:

max Rows

Optional attribute to specify the maximum number of rows to be returned. If
maxRows 1S exceeded, the t Model Li st element'st runcat ed attribute will be set tot r ue.

findQualifiers

Optiona element to override the default search functionality. For example, the find
qualifier exact Nanenat ch will match exact t vodel names. For additional details, see
the "Find Qualifiers' section, later in this chapter.

nane

The full or partial name of the t model . The default behavior is to perform an exact
left-to-right lexical search. Use % to specify wildcard options, for example,
vshi ppi ng%Wwill find al t vodel s containing the word "shipping".

i dentifierBag

Optional element to search by identifier. I1f more than one identifier is specified, the
search is performed via alogical OR.

182

Web Services Essentials

cat egor yBag

Optional element to search by category. If more than one category is specified, the
search is performed viaalogical AND.

Examples:
Here are two example 1.0 queries:

Search for al t vodel records registered with OAGIS:

<find_t Model generic="1.0" xm ns="urn:uddi-org:api">
<nanme>0AGd S¥%/ nane>
</ find_t Model >

Search for al t model records that are registered with the RosettaNet specification
and that contain the word " Shipment".

<find_t Model generic="1.0" xm ns="urn:uddi-org:api">
<nanme>Roset t aNet %6hi pnent %</ nane>
</ find_t Model >

Hereis aresponse to the second example query:

<t Mbdel Li st generic="1.0" operator="M crosoft Corporation”
truncated="fal se" xm ns="urn: uddi -org: api ">
<t Mbdel | nf os>
<t Model | nf o t Mbdel Key="uui d: e13f bf 58-f 69a- 4c8a- a2f 5- aecc5cca75el" >
<name>Roset t anet - or g: Pl P4B2: Not i f yOF Shi pnent Recei pt: v1. 0</ nanme>
</t Model I nf 0>
<t Model | nf o t Mbdel Key="uui d: 7b15ela7- bbe7- 4c32- 8f 44- 64662a555b7c" >
<name>Roset t anet - or g: Pl P3B5: ChangeShi pnment : v01. 00. 00</ nanme>
</t Model I nf 0>
<t Model I nf o t Mbdel Key="uui d: 87¢133f 5-f 521- 420a- 8316- 9f f 37€292796" >
<name>Roset t anet - or g: Pl P3B4: Quer yShi pnent St at us: v01. 00. 00</ nanme>
</t Model I nf 0>
<t Model I nf o t Mbdel Key="uui d: cf 073d7c-e297-470f - b7de- 4ael8bd72ca9" >
<nanme>Roset t anet - or g: PI P3B3: Di st ri but eShi pnent St at us: v01. 00. 00</ nanme>
</t Model I nf 0>
<t Model | nf o t Mbdel Key="uui d: 7¢60881c- ad6c- 4520- 955b- 49f e75b71d53" >
<nane>Roset t anet - or g: Pl P3B2: Not i f yOF AdvanceShi prent : v01. 00. 00</ nane>
</t Model I nf 0>
<t Model | nf o t Mbdel Key="uui d: 05b548d8- 0c23- 4249- 8a68- b653f 7c97d8a" >
<nane>Roset t anet - or g: Pl P3B2: Not i f yOF AdvanceShi prent : v01. 01. 00</ nane>
</t Model I nf 0>
</t Model I nf 0s>
</t Model Li st >

For more information on OAGI S or RosettaNet, refer to Chapter 7.

183

Errors:

E_nanmeToolLong

Thet vodel nameistoo long.
E_t ooManyOpti ons

Too many search options were specified (UDDI 1.0 only).
E_unsupported

The specified fi ndqual i fi er isnot supported.

Web Services Essentials

184

Web Services Essentials

get_bindingDetalil

The get_bindingDetail function retrieves the complete bi ndi ngTenpl at e for each specified
bi ndi ngKey. The response includes a root bindingbetail e€lement, and one
bi ndi ngTenpl at e element for each matching binding. If the UDDI operator returns only a
partia list of matching results, the bi ndi ngbet ai | element's t r uncat ed attribute will be set
totrue. If no matches arefound, an E_ i nval i dkeyPassed €fror is returned.

Version: 1.0 and 2.0

1.0 syntax:

<get _bi ndi ngDetai|l generic="1.0" xm ns="urn: uddi -org: api ">
<bi ndi ngKey/ >
[<bi ndi ngKey/ > .. .]

</ get _bi ndi ngDet ai | >

2.0 syntax:

<get _bi ndi ngDet ai | generic="2.0" xm ns="urn: uddi-org:api _v2" >
<bi ndi ngKey/ >
[<bi ndi ngKey/> .. .]

</ get _bi ndi ngDet ai | >

Argument:

bi ndi ngKey
Required uui d_key specifying the bi ndi ngTenpl at e
Example:

The following UDDI 1.0 example retrieves a bindi ngTenpl at e associated with the
XMethods Stock Quote Service:

<get _bi ndi ngDet ai | generic="1.0" xm ns="urn: uddi -org: api ">
<bi ndi ngKey>d594a970- 3e16- 11d5- 98bf - 002035229c64</ bi ndi ngKey>
</ get _bi ndi ngDet ai | >

Here is aresponse to the query:

<bi ndi ngDet ai | generic="1.0" operator="M crosoft Corporation"
truncat ed="fal se" xm ns="urn: uddi - org: api ">
<bi ndi ngTenpl ate servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229c64"
bi ndi ngKey="d594a970- 3e16- 11d5- 98bf - 002035229c64" >
<description xm: | ang="en">
SQAP bi nding for del ayed stock quotes service
</ descri ption>
<accessPoi nt URLType="http">
http://services. xmet hods. net: 80/ soap
</ accessPoi nt >

185

Web Services Essentials

<t Model | nst anceDet ai | s>
<t Model | nst ancel nfo
t Model Key="uui d: 0e727db0- 3e14- 11d5- 98bf - 002035229c64" />
</t Model | nst anceDet ai | s>
</ bi ndi ngTenpl at e>
</ bi ndi ngDet ai | >

Error:

E i nval i dKeyPassed

Aninvalid bi ndi ngkey was specified.

186

Web Services Essentials

get_businessDetail

The get_businessDetail function retrieves the complete busi nessenti ty for each specified
busi nesskey. The response includes a root businessDetail €element, and one
busi nessentity element for each matching business. If the UDDI operator returns only a
partial list of matching results, the busi nessDet ai | truncated attribute will be set to t r ue.
If no matches are found, an E_i nval i dkeyPassed €rror is returned.

Version: 1.0 and 2.0

1.0 Syntax:

<get _busi nessDetail generic="1.0" xm ns="urn:uddi-org: api ">
<busi nessKey/ >
[<busi nessKey/> .. .]

</ get _busi nessDet ai | >

2.0 Syntax:

<get _busi nessDetai| generic="2.0" xm ns="urn: uddi-org: api _v2">
<busi nessKey/ >
[<busi nessKey/> .. .]

</ get _busi nessDet ai | >

Argument:

busi nessKey

Required uui d_key specifying the businessentity. You can specify multiple
busi nessKeys.

Example:

The following UDDI 1.0 example retrieves the busi nessent i t y record for XMethods, Inc:

<get _busi nessDetail generic="1.0" xm ns="urn:uddi-org: api">
<busi nessKey>ba744ed0- 3aaf - 11d5- 80dc- 002035229c64</ busi nessKey>
</ get _busi nessDet ai | >

Here is a complete response to the query:

<busi nessDetai |l generic="1.0" operator="M crosoft Corporation”
truncated="fal se" xm ns="urn: uddi -org: api ">
<busi nessEntity
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64"
oper at or ="www. i bm coni servi ces/ uddi " aut hori zedNane="0100001Qs1" >
<di scover yURLs>
<di scoveryURL useType="busi nessEntity">
http://ww. i bm com servi ces/ uddi / uddi get ?busi nessKey=
BA744EDO- 3AAF- 11D5- 80DC- 002035229C64
</ di scover yURL>
</ di scover yURLs>
<name>XMet hods</ nane>
<description xm:lang="en">Wb services resource site</description>
<cont act s>

187

Web Services Essentials

<cont act useType="Founder">
<description xm:lang="en" />
<per sonNane>Tony Hong</ per sonNane>
<phone useType="Founder" />
<emai | useType="Founder" >t hong@net hods. net </ enai | >
<addr ess>
<addr essLine />
<addr essLine />
<addr essLine />
<addr essLine />
<addr essLine />
</ addr ess>
</ cont act >
</ cont act s>
<busi nessServi ces>
<busi nessServi ce
servi ceKey="d5b180a0- 4342- 11d5- bd6c- 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<name>XMet hods Barnes and Nobl e Quot e</ nane>
<description xm: |l ang="en">
Ret urns book price from Barnes and Noble online store
| SBN
</ descri ption>
<bi ndi ngTenpl at es>
<bi ndi ngTenpl at e
servi ceKey="d5b180a0- 4342- 11d5- bd6c- 002035229c64"
bi ndi ngKey="d5b61480- 4342- 11d5- bd6c- 002035229¢c64" >
<description xm: |l ang="en">
SQAP Bi nding for tnodel: XMet hods Book Quote
</ descri ption>
<accessPoi nt URLType="http">

gi ven

http://services. xnet hods. net: 80/ soap/ servl et/ rpcrouter

</ accessPoi nt >
<t Model | nst anceDet ai | s>
<t Model | nst ancel nfo
t Model Key="uui d: 26d3abd0- 433d- 11d5- bd6c-
002035229c64" [>
</t Model | nst anceDet ai | s>
</ bi ndi ngTenpl at e>
</ bi ndi ngTenpl at es>
</ busi nessServi ce>

<busi nessServi ce servi ceKey="ed85f 000- 4345-11d5- bd6c-002035229c64"

busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<name>XMet hods Pacific Bell SMS Service</nanme>
<description xm: |l ang="en">

Sends a text nessage to a subscriber on the PacBell SMS

net wor k

</ descri ption>

<bi ndi ngTenpl at es>

<bi ndi ngTenpl at e
servi ceKey="ed85f 000- 4345- 11d5- bd6c- 002035229c64"
bi ndi ngKey="ed8d1bf 0- 4345- 11d5- bd6c- 002035229¢c64" >
<description xm: |l ang="en">
SQAP Bi ndi ng for tnodel: XMet hods SMS

</ descri ption>
<accessPoi nt URLType="http">

http://services. xmet hods. net: 80/ perl/soaplite.cg

</ accessPoi nt >
<t Model | nst anceDet ai | s>
<t Model | nst ancel nfo
t Model Key="uui d: 33f 24880- 433d- 11d5- bd6c-
002035229c64" [>
</t Model | nst anceDet ai | s>
</ bi ndi ngTenpl at e>
</ bi ndi ngTenpl at es>
</ busi nessServi ce>
<busi nessServi ce
servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229c64"

188

Web Services Essentials

busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<name>XMet hods Del ayed St ock Quotes</nane>
<description xm: |l ang="en">
20-m nut e del ayed stock quotes
</ descri ption>
<bi ndi ngTenpl at es>
<bi ndi ngTenpl at e
servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229c64"
bi ndi ngkey="d594a970- 3e16- 11d5- 98bf - 002035229¢c64" >
<description xm: |l ang="en">
SQOAP bi nding for del ayed stock quotes service
</ descri ption>
<accessPoi nt URLType="http">
http://services. xmet hods. net: 80/ soap
</ accessPoi nt >
<t Model | nst anceDet ai | s>
<t Model | nst ancel nf o
t Model Key="uui d: 0e727db0- 3e14- 11d5- 98bf -
002035229c64" />
</t Model | nst anceDet ai | s>
</ bi ndi ngTenpl at e>
</ bi ndi ngTenpl at es>

</ busi nessServi ce>
<busi nessServi ce

servi ceKey="618167a0- 3e64- 11d5- 98bf - 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229c64" >
<nanme>XMet hods Currency Exchange Rates</nane>
<description xm: |l ang="en">
Ret urns exchange rates between 2 countries' currencies
</ descri ption>
<bi ndi ngTenpl at es>
<bi ndi ngTenpl at e
servi ceKey="618167a0- 3e64- 11d5- 98bf - 002035229c64"
bi ndi ngKey="618474e0- 3e64- 11d5- 98bf - 002035229¢c64" >
<description xm: |l ang="en">
SQAP bi nding for currency exchange rates service
</ descri ption>
<accessPoi nt URLType="http">
http://services. xmet hods. net: 80/ soap
</ accessPoi nt >
<t Mbdel | nst anceDet ai | s>
<t Model | nst ancel nf o
t Model Key="uui d: e092f 730- 3e63- 11d5- 98bf -
002035229c64" />
</t Model | nst anceDet ai | s>
</ bi ndi ngTenpl at e>
</ bi ndi ngTenpl at es>

</ busi nessServi ce>
</ busi nessServi ces>

</ busi nessEntity>
</ busi nessDet ai | >

Error:

E i nval i dKeyPassed

Aninvalid busi nesskey was specified.

189

Web Services Essentials

get_businessDetail Ext

The get_businessDetailExt function retrieves the extended businessentity for each
specified busi nesskey. The response includes a root busi nessDet ai | Ext €lement, and one
busi nessEntityExt element for each matching business. If the operator returns only a
partia list of matching results, the busi nessbet ai | Ext element'struncat ed attribute will be
set to true. If no matches are found, an E inval i dkeyPassed efror is returned. This
function is useful for querying external UDDI registries that are not part of the UDDI
cloud services and that may contain extra business registration information. When
querying a UDDI operator site, this method returns the exact same results as
get_businessDetail.

Version: 1.0 and 2.0

1.0 syntax:

<get _busi nessDet ai | Ext generic="1.0" xm ns="urn:uddi-org:api" >
<busi nessKey/ >
[<busi nessKey/> ...]

</ get _busi nessDet ai | Ext >

2.0 syntax:

<get _busi nessDet ai | Ext generic="2.0" xm ns="urn:uddi-org: api _v2" >
<busi nessKey/ >
[<busi nessKey/> .. .]

</ get _busi nessDet ai | Ext >

Argument:

busi nessKey

Required uuid_key specifying the businessentity. You can specify multiple
busi nessKeys.

Example:

The following UDDI 1.0 example retrieves the external businessentity record for
XMethods, Inc.

<get _busi nessDet ai | Ext generic="1.0" xm ns="urn:uddi-org:api ">
<busi nessKey>ba744ed0- 3aaf - 11d5- 80dc- 002035229c64</ busi nessKey>
</ get _busi nessDet ai | Ext >

When querying a UDDI Operator site, this query returns the exact same result noted in the
get_businessDetail example earlier in this chapter.

190

Web Services Essentials

Errors:

E i nval i dKeyPassed

Aninvalid busi nesskey was specified.

E_unsupported

The query is not supported. If thisoccurs, usethe get _busi nessDet ai | query.

191

Web Services Essentials

get_serviceDetall

The get_serviceDetail function retrieves the busi nesssServi ce record for each specified
ser vi ceKey. The response includes a root servicebetail €lement, and one
busi nessServi ce element for each matching service. If the UDDI operator returns only a
partia list of matching results, the servi cebet ai | element's t runcat ed attribute will be set
totrue. If no matches arefound, an E_ i nval i dkeyPassed efror is returned.

Version: 1.0 and 2.0

1.0 syntax:

<get _serviceDetail generic="1.0" xm ns="urn:uddi-org:api" >
<servi ceKey/ >
[<serviceKey/> ...]

</ get _serviceDetail >

2.0 syntax:

<get _serviceDetail generic="2.0" xm ns="urn:uddi-org: api _v2">
<servi ceKey/ >
[<serviceKey/> ...]

</ get _serviceDetail >

Argument:

servi ceKey

Required uui d_key specifying the servicebetail. You can specify multiple
servi ceKeys.

Example:

The following UDDI 1.0 example retrieves the service details for the XMethods Stock
Quote service:

<get _serviceDetail generic="1.0" xm ns="urn:uddi-org:api">
<servi ceKey>d5921160- 3e16- 11d5- 98bf - 002035229c64</ ser vi ceKey>
</ get _serviceDetail >

Here is a complete response to the query:

<serviceDetail generic="1.0" operator="M crosoft Corporation"
truncated="fal se" xm ns="urn: uddi -org: api ">
<busi nessServi ce
servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229c64"
busi nessKey="ba744ed0- 3aaf - 11d5- 80dc- 002035229¢c64" >
<nane>XMet hods Del ayed St ock Quot es</ nanme>
<description xm: |l ang="en">
20-m nut e del ayed stock quotes
</ descri ption>
<bi ndi ngTenpl at es>
<bi ndi ngTenpl ate
servi ceKey="d5921160- 3e16- 11d5- 98bf - 002035229c64"
bi ndi ngKey="d594a970- 3e16- 11d5- 98bf - 002035229c64" >

192

Web Services Essentials

<description xm: | ang="en">
SQAP bi nding for del ayed stock quotes service
</ descri ption>
<accessPoi nt URLType="http">
http://services. xmet hods. net: 80/ soap
</ accessPoi nt >
<t Mbdel | nst anceDet ai | s>
<t Mbdel | nst ancel nfo
t Model Key="uui d: 0e727db0- 3e14- 11d5- 98bf - 002035229c64" />
</t Model | nst anceDet ai | s>
</ bi ndi ngTenpl at e>
</ bi ndi ngTenpl at es>
</ busi nessServi ce>
</ serviceDetail >

Error:

E i nval i dKeyPassed

Aninvalid servi cekey was specified.

193

Web Services Essentials

get_tModelDetail

The get_tModelDetail function retrieves the t vodel record for each specified ¢ Model Key.
The response includes a root t vodel Detai | €lement, and one t vodel element for each
matching t vodel . If the UDDI operator returns only a partial list of matching results, the
t Model Det ai | element'struncat ed attribute will be set totrue. If no matches are found, an
E inval i dkeyPassed error isreturned.

Version: 1.0 and 2.0

1.0 syntax:

<get _t Model Detai |l generic="1.0" xm ns="urn: uddi-org: api ">
<t Mbdel Key/ >
[<t Model Key/> .. .]

</ get _t Model Det ai | >

2.0 syntax:

<get _t Mbdel Detai | generic="2.0" xm ns="urn:uddi-org: api _v2">
<t Mbdel Key/ >
[<t Model Key/> .. .]

</ get _t Model Det ai | >

Argument:

t Model Key
Required uui d_key specifying the t vodel . You can specify multiple t Model Keys.
Example:

The following UDDI 1.0 example retrieves the t vodel record for the RosettaNet Partner
Interface Process (PIP) for "Query Shipment Status':

<get _t Model Detai |l generic="1.0" xm ns="urn: uddi-org: api ">
<t Model Key>uui d: 87¢c133f 5- f 521- 420a- 8316- 9f f 37€292796</ t Model Key>
</ get _t Model Det ai | >

Following is a complete response to the query:

<t Mbdel Detai | generic="1.0" operator="M crosoft Corporation"
truncat ed="fal se" xm ns="urn: uddi - org: api ">
<t Model t Mbdel Key="uui d: 87¢133f 5- f 521- 420a- 8316- 9f f 37€292796"
operator="M crosoft Corporation" authorizedNane="Suhayl Masud">
<nanme>Roset t anet - or g: Pl P3B4: Quer yShi prent St at us: v01. 00. 00</ nane>
<description xm: |l ang="en">
Enabl es in-transit information users to query shipnent status
and allows transport service providers to respond with shipnment
status notifications
</ descri ption>
<over vi ewboc>
<description xm :lang="en">
This is the conpressed file that contains the specification
in a word docunent, the htm nessage guideline docunent and

194

the xm dtds

</ descri ption>

<over vi ewURL>
http://ww. rosettanet. org/rosettanet/ Doc/ 0/
CR0J24SOSBA13FCD0282FOPTD8/ 3B4_Quer yShi pnent
St at us_R01_00_00. zi p

</ overvi ewURL>

</ overvi ewDoc>
</ t Model >
</t Model Det ai | >

Errors:
E i nval i dKeyPassed

Aninvalid t Model Key Was specified.
E keyRetired

The specified t Model Key IS No longer active.

Web Services Essentials

195

Web Services Essentials

8.2 Find Qualifiers

Each of the find functions can take an optional list of UDDI find qualifiers, which enable
more precise search criteria. Table 82 provides a list of the most frequently used UDDI

find qualifiers.

Table 8-2. Most frequently used UDDI find qualifiers

Find qualifier

Description

exact NarmeMat ch

Mandates an exact name match

caseSensi tiveMat ch

Mandates that the search be case-sensitive

sort ByNaneAsc

Sorts results by name in ascending al phabetic order

sort ByNaneDesc

Sorts results by name in descending al phabetic order

sort ByDat eAsc

Sorts results by date last updated in ascending chronological order

sort ByDat eDesc

Sorts results by date last updated in descending chronological order

soundex

Mandates a sound-alike search for the specified name (UDDI 2.0 only)

The following example illustrates the use of the exact Nanenat ch qualifier:

<find_busi ness generic="1.0" xm ns="urn:uddi-org:api">
<findQualifiers>
<findQualifier>exact NameMat ch</fi ndQualifier>
</findQualifiers>
<nanme>Ari ba, |nc</nane>

</ find_busi ness>

UDDI's search facilities are fairly comprehensive and may be enhanced in future versions.

196

Web Services Essentials

Chapter 9. UDDI 4J

UDDI for Java (UDDI4J) is a Java client toolkit for retrieving and publishing UDDI data.
IBM originally crested UDDI4J; in January 2001, it turned the code over to its own
devel operWorks open source site (http://www-124.ibm.com/devel operworks/oss/).

This chapter provides a complete overview of UDDI4J, including:

The technical aspects of using the UDDI4J API

Three sample applications, including two applications that use the UDDI Inquiry
API and one that uses the UDDI Publishing API

A quick-reference guide to the complete UDDI4J API

9.1 Getting Started

To get started, you must first download the UDDI4J distribution. The distribution is
available at http://oss.software.ibm.com/devel operworks/projects/uddi4j/.

Y ou will also need the following additional software:

The complete Apache SOAP distribution, including the prerequisite software, such
as the Xerces XML Parser and the JavaMail API. See Chapter 3 for complete
details.

The Java Secure Socket Extension (JSSE), available a
http://java.sun.com/products/jsse/index.html. JSSE is required if you plan to
publish UDDI data.

9.1.1 Technical Overview

The UDDI4J API provides a direct mapping of the UDDI Data Model and the UDDI
Programming API. (See Chapter 7 for details.) The most important class is the ubbi Proxy
class. This class provides centralized access to all inquiry and publishing functions
included in the UDDI 1.0 Programming API. To perform inquiry functions, you must
provide an inquiry URL for a UDDI operator site via the set | nqui ryur.() method. To
perform publishing functions, you must specify an HTTPS URL via the set Publ i shURL()
method.

Each of the UDDI Programming APl functions is directly available via the ubpi proxy
class. For example, the ubbi Proxy class has inquiry methods for find_business() ,
get _businessDetail () , get_TModel Detail () , etc. It aso has publishing methods for
save_busi ness() , save_service() , del ete_busi ness() , EtC.

Depending on the method call, the ubbi Proxy object will generate a SOAP request, send
the request to the specified UDDI operator site, and make the response data available via
intermediate objects. Most of these intermediate objects are available in the
com i bm uddi . dat at ype package. For example, the comibm uddi. datatype. busi ness
package contains classes for extracting business entity information, such as the business
name, description, and contact information.

197

Web Services Essentials

In the event of an error, the ubbi Proxy classwill throw a ubdi Except i on. Depending on the
type of error, the uDD Exception may contain a DispositionReport oObject containing
detailed information about the cause of the error.

9.2 Finding and Retrieving UDDI Data

UDDI lets you search for information about businesses and business entities, using slightly
different APIs.

9.2.1 Searching for Businesses

Our first example runs the uobi proxy find_busi ness() method and prints out the matching
results. The program expects a single command-line argument, in which you specify the
name of a business. For example, the following command line:

java com eceramni . uddi . fi ndBusi ness M cro

generates the following output:

Searching for Businesses: Mcro

M crotrack, Inc.: f53480ab-be29-4090-9239-f4cda7cf71c6

M cr of or m Readi ng Room 622a4879- dcaa- 4bab- 9aec- 6e6bf b858067
Mcro Informatica LLC. dce959cf -200d- 4d9e- beee- ede770299212

M crosoft Corporation: 0076b468-eb27-42e5-ac09-9955cff462a3

M cronotor: 11bb5410-61d7-11d5-b286-002035229c64

M croVi deo Learning Systems: 8995b9f 7- 0043- 4eb0- adaf - 2aa81ad387e4
M croApplications, Inc.: a23c90le-834c-4b8a- bf 38-3f 96f edc349a
M croLink LLC. fb5783d6-4ba4- 4bce-b181- 4d3cd9f 35e3d

M croMai n Corporation: 1e6¢5410-00e7-4aee-acfb-fb59f 3896322
Mcro Mdtion Inc.: d4e4b830-f 19e- 4edf - 9f 44- 8936e53d9a33

The complete code is shown in Example 9-1. First, note that the fi ndBusi nessByNane()
method creates a new upDi Proxy object and specifies the inquiry URL for the Microsoft
UDDI site. (For acomplete list of inquiry and publishing URLS, refer to Chapter 7.)

The code then calls the proxy's fi nd_busi ness() method:

Busi nessLi st busi nessLi st = proxy. find_busi ness(businessNane, null, 0);

This method expects three arguments. a business name, a FindQual i fier object, and a
maximum number of records to return. In our case, we have no find qualifiers and
therefore pass a null value. (See the "Find Qualifiers' section later in this chapter for
details regarding the use of find qualifiers.) We also specify a o value for maximum
number of records; o0 is a reserved value that indicates no restrictions on the number of
rows returned.

The find_busi ness() method returns a Busi nessList object. The code then navigates
through the Busi nessLi st object to obtain the matching businesses. For complete details
on navigating through the business data hierarchy, refer to the
com i bm uddi . dat at ype. busi ness package in the Quick Reference API.

In the event of a DDl Except i on , the code attempts to extract the bi sposi ti onReport Object
and display the cause of the error.

198

Web Services Essentials

Example 9-1. findBusiness.java

package com eceram . uddi;

i mport java.util.*;

i nport com i bm uddi . UDDI Excepti on;

i mport com i bm uddi.client.UDDI Proxy;
i mport comibm uddi.response. *;

i mport java.net. Mal f ormedURLExcepti on;
i mport org.apache. soap. SOAPExcepti on;

/**

* Sanple UDDI Program searches for all compani es that
* match the first command |ine argunent.

* Exanpl e usage: java findBusi ness XMet hods

*/

public class findBusiness {

/**

* Main nethod

*/

public static void main (String args[]) {
findBusi ness inquiry = new findBusiness();

try {
/1 Search for Specified Business Nane

String businessNane = args[O0];
Systemout.println ("Searching for Businesses: "+businessNane);
Vect or busi nessl nfoVector = inquiry.findBusi nessByNane (busi nessNane);

/1 Print nanme and business key for each matchi ng busi ness
for (int i=0; i<businessinfoVector.size(); i++) {
Busi nessl nfo busi nesslinfo =
(Busi nessl nfo) busi nesslnfoVector. el enent At (i);
String nane = businesslnfo.getNameString();
String busi nessKey = busi nessl nfo. get Busi nessKey();
Systemout. println (nane+": "+busi nessKey);

}
} catch (Mal fornedURLException e) {
e.printStackTrace();
} catch (SQAPException e) {
e.printStackTrace();
} catch (UDDI Exception e) {
/1 Extract UDDI Disposition Report
Di spositi onReport dr = e.getDispositionReport();
if (drl=null) {
System out . println("UDDI Exception faultCode:" +
e.get Faul t Code() +
"\'n errno:" + dr.getErrno() +
"\'n errCode:" + dr.getErrCode() +
"\'n errInfoText:" + dr.getErrinfoText());

}
e.printStackTrace();

* Find Business by Name

* @aram busi nessNanme Busi ness Name Tar get

* @eturn Vector of Businesslnfo objects

*/

public Vector findBusi nessByNane (String busi nessNane)
throws Mal f or mredURLExcepti on, SOAPException, UDDI Exception {
/1 Create UDDI Proxy Object
UDDI Proxy proxy = new UDDI Proxy();

/1 Point to Mcrosoft Inquiry URL
proxy. setlnqui ryURL("http://uddi.mnmcrosoft.conlinquire");

199

Web Services Essentials

/1 Find Matching Businesses
Busi nessLi st busi nessLi st = proxy. find_busi ness(busi nessNanme, null, 0);

/1 Process UDDl Response

Busi nessl nf os busi nessl nfos = busi nessLi st. get Busi nesslnfos();
Vect or busi nessl nfoVect or = busi nessl nf os. get Busi nessl nfoVector();
return businessl nfoVector;

}

9.2.1.1 FindQualifiers

You can use the FindQual i fi ers object to specify more precise control over the search
criteria. For example, the following code searches for exact name matches:

Vector fgs = new Vector();

FindQualifiers findQualifiers = new FindQualifiers ();

FindQualifier fg = new FindQualifier(Fi ndQualifier.exactNanmeMatch);

fgs. addEl enent (fq);

findQualifiers.setFindQualifierVector(fqgs);

Busi nessLi st bl = proxy.find_business("M crosoft Corporation",
findQalifiers, 0);

For more complete details, refer to the com i bm uddi . uti | package in the Quick Reference
API.

9.2.1.2 IdentifierBag

You can usethe I denti fi er Bag Object to perform searches indexed by one or more UDDI
identifiers. For example, the following code attempts to locate the business record
associated with the specified Dun & Bradstreet D-U-N-S° Number:

Vect or keyedRef erenceVector = new Vector();
KeyedRef erence keyedRef = new KeyedReference
("dnb-com D-U-N-S", "04-693-3052");
keyedRef . set TMbdel Key ("uui d: 8609c81le- eelf - 4d5a- b202- 3eb13ad01823");
keyedRef er enceVect or. addEl enent (keyedRef);
IdentifierBag idBag = new ldentifierBag ();
i dBag. set KeyedRef er enceVect or (keyedRef er enceVect or) ;
Busi nessLi st bl = proxy.find_business(idBag, null, 0);

For details regarding UDDI identifiers, refer to Chapter 7.

9.2.1.3 CategoryBag

You can use the cat egor yBag Object to perform searches indexed by one or more UDDI
categorizations. For example, the following code searches for all businesses registered
with the NAICS code for software publisher:

keyedRef erenceVect or = new Vector();

keyedRef = new KeyedReference ("ntis-gov: naics:1997", "51121");
keyedRef . set TMbdel Key (" uui d: COBO9FE13- 179F- 413D- 8A5B- 5004DB8E5SBB2") ;
keyedRef er enceVect or . addEl enent (keyedRef);

Cat egoryBag cat egoryBag = new CategoryBag ();

cat egor yBag. set KeyedRef er enceVect or (keyedRef er enceVect or) ;

Busi nessLi st bl = proxy.find_business(categoryBag, null, 0);

200

Web Services Essentials

For details regarding preregistered UDDI taxonomies and categorizations, refer to Chapter
7.

9.2.2 Retrieving a businessEntity Record

Our second example runs the proxy get _busi nessDet ai | () method and prints out portions
of the full busi nessentity record. The program expects a single command-line argument,
in which you can specify the busi nesskey for a business.

For example, the following command line:

java com eceram . uddi . get Busi nessDetail 0076b468-eb27-42e5- ac09-9955cf f 462a3

generates the following output:

Busi ness Nanme: M crosoft Corporation

Description: Enmpowering people through great software - any tine, any place
and on any device is Mcrosoft's vision. As the worl dwi de | eader in software
for personal and business conputing, we strive to produce innovative products and
services that neet our custoner's

Contact: Corporate Miiling Addresses

Address: M crosoft Corporation

Address: One Mcrosoft Wy

Address: Rednond, WA 98052- 6399

Address: USA

Contact: World Wde Qperations

Email: rmartink@n crosoft.com

The complete code is shown in Example 9-2. Note that the get _busi nessbet ai | () method
returns aBusi nessDet ai | object. You can then navigate through the Busi nessDet ai | object
to display any portion of the record you want. In this case, the code displays the business
name, description, and contact information. For details on navigating through the
Busi nessDet ai | Object, refer to the com i bm uddi . dat at ype. busi ness package in the Quick
Reference API (discussed in Chapter 8).

Example 9-2. getBusinessDetail.java

package com eceram . uddi;

/**

* Sanple UDDI Program retrieves the businessEntity
* gpecified by the first command |ine argunent.
* Exanpl e usage:
* java getBusinessDetail ba744ed0O-3aaf-11d5-80dc-002035229c64
*/

i mport java.util.*;

i mport comibmuddi.client.UDD Proxy;

i nport com i bm uddi . UDDI Excepti on;

i mport comibm uddi.response. Di spositionReport;

i mport com i bm uddi.response. Busi nessDetai | ;

i mport com i bm uddi . dat at ype. busi ness. *;

i mport java.net. Mal f ormredURLExcepti on;

i mport org.apache. soap. SOAPExcepti on;

public class getBusi nessDetail {

/**

* Main Met hod

*/

public static void main (String args[]) {

201

Web Services Essentials

try {
get Busi nessDetail inquiry = new getBusi nessDetail ();
Busi nessDet ai | busi nessDetail = inquiry.getBusinessDetail (args[0]);

i nquiry.print_businessDetail (businessDetail);
} catch (Ml fornedURLException e) {
e.printStackTrace();
} catch (SQAPException e) {
e.printStackTrace();
} catch (UDDI Exception e) {
/1 Extract UDDI Disposition Report
Di spositi onReport dr = e.getDispositionReport();
if (drl=null) {
System out . println("UDDI Exception faultCode:" +
e.get Faul t Code() +
"\'n errno:" + dr.getErrno() +
"\'n errCode:" + dr.getErrCode() +
"\'n errinfoText:" + dr.getErrinfoText());

e.printStackTrace();

}

}

/**

* Retrieve Business Detail Record

* @ar am busi nessKey UDDI Busi ness Key

* @eturn UDDI Business Detail record

*/

publ i ¢ Busi nessDetail getBusinessDetail (String businessKey)
throws Mal f or mredURLExcepti on, SOAPException, UDDI Exception {
/1 Create UDDI Proxy Object
UDDI Proxy proxy = new UDDI Proxy();
/1 Point to Mcrosoft Inquiry URL
proxy. setlnquiryURL("http://uddi.mcrosoft.coninquire");

/1l Retrieve BusinessDetail record

Busi nessDet ai | busi nessDetail = proxy.get_busi nessDetail (busi nessKey);
return businessDetail;

}

/**

* Print Business Entity Data
* @ar am busi nessDetail UDDl Business Detail Record
*/
private void print_businessDetail (BusinessDetail businessDetail) {
Vect or busi nessEntityVector = businessDetail.getBusinesseEntityVector();
for (int i = 0; i < businessEntityVector.size(); i++) {
Busi nessEntity businessEntity =
(Busi nessEntity) businessEntityVector.elenmentAt(i);
String nane = businessEntity.getNanmeString();
String description = businessiEntity. getDefaultDescriptionString();
Systemout.println ("Business Name: "+nane);
Systemout.println ("Description: "+description);
Contacts contacts = businessEntity.getContacts();
print_contacts (contacts);

}
/**
* Print Contact Data
* @aramcontacts UDDI Contacts |Information
*/
private void print_contacts (Contacts contacts) {
Vect or contactVector = contacts. getContactVector();
for (int j=0; j< contactVector.size(); j++)
Contact contact = (Contact) contactVector.elenmentAt (j);
String description = contact. getDefaul tDescriptionString();
Vect or addressVector = contact.get AddressVector();
Vector enumil Vector = contact.getEnail Vector();

202

Web Services Essentials

Systemout.println ("Contact: "+ description);
print_addressVector (addressVector);
print_email Vector (enuil Vector);

}
}
/**
* Print Address Data
* @ar am addressVector Vector of UDDI Address Records
*/
private void print_addressVector (Vector addressVector) {
for (int i=0; i< addressVector.size(); i++) {
Address address = (Address) addressVector.elenentAt(i);
Vect or addressLi nes = address. get AddressLi neVector();
for (int j=0; j<addressLines.size(); j++) {
Addr essLi ne addressLi ne = (AddressLi ne) addressLines. el ement At (j);
String addressText = addressLine.getText();
Systemout. println("Address: "+addressText);
}

}
}

/**

* Print Enmil Data

* @aram email Vector Vector of UDDI Email Objects
*/

private void print_enuil Vector (Vector enail Vector) ({
for (int i=0; i< emailVector.size(); i++) {

Email email = (Email) email Vector.elenentAt(i);
String email Text = email.getText();
Systemout.println ("Email: "+email Text);

}
}
}

9.3 Publishing UDDI Data

UDDI publishing requests must be sent via an SSL connection and are restricted to
authorized users only. To specify an HTTPS URL, use the set Publ i shurL() method. To
obtain user authorization, you must use the proxy get _aut hToken() method. This method
requires a username and password and returns an authentication token, which must be
passed to all subsequent publishing methods.

Our final example illustrates how to save a new busi nessenti ty record, and also illustrates
the generic technique for obtaining a user authentication token. The code creates a new
busi nessentity record for Acme Parts, then confirms that the record was published by
extracting and displaying the new busi nesskey.

The program expects two command-line arguments, in which you can specify a username
and password. For example, the following command line:

java com eceram . uddi . saveBusi ness et han@cerani.comoreilly

generates the following output:

Savi ng New Busi ness: Acne Parts

Aut henti cation Token: 1l buzUm&DuPzkcoUd1l 6i y* BqWwPhuFW 2! ggowk* 6Ki znl u4sj QedT

OnuL2c1SmmBnR28aogU! | 6ZL73yROF 3(BS$; 11 buzUmE2AoqvPrRavv TeOLUsaVLQKOATGYVyy xwk 3
2Kb4

c3j MROW4R p7kaQYRCXu9! 95W@BFZTI j E! 47uKCONPCCr yf OYh! | | t wf YMCaPKTq* ROr TWW zcg
UEL

203

Web Services Essentials

1 9859i KxI E* w7 QPI x8n8aYWs 8WCk An7 UHwy b
Publ i shed Busi ness Key: 3deaf a60-0023-4220-b3e0-0c87ch34526a

Example 9-3 includes a uboi i | class that is responsible for authenticating users. Note
that the class specifies an SSL provider:

System set Property("j ava. prot ocol . handl er. pkgs",
"com sun. net. ssl.internal . ww. protocol");
Security. addProvi der (new com sun.net.ssl.internal.ssl.Provider());

These two lines are required for transferring information via SSL.

Note that the proxy get_aut hToken() method requires a username and password and
returns an Aut hToken object. The Aut hToken object can then be used in all subsequent
publishing requests.

The remainder of the code is shown in Example 9-3. Within this code, we save a new
Busi nessEntity object with a new name, description, and contact information. Note in
particular the instantiation of the Busi nessEnt i t y object:

Busi nessEntity businessEntity = new BusinessEntity("", "Acne Parts");

The code passes an empty busi nesskey string to the constructor, indicating that this is a
new record. The proxy's save_busi ness() method echoes back a Busi nessDet ai | Object,
enabling us to extract the newly assigned busi nesskey value.

Example 9-3. saveBusiness.java

package com eceram . uddi;

/**

* UDDI Program publishes a new UDDI BusinessEntity
* record. Specify usernane and password on conmand |ine.
* Exanpl e usage:
* java saveBusi ness et han@cerani .com password
*/

i mport com i bm uddi. *;

i mport comibmuddi.client.*;

i mport com i bm uddi . dat at ype. busi ness. *;

i mport com i bm uddi.response. *;

i mport java.util.Vector;

i mport j ava. net. Mal f or mredURLExcepti on;

i mport org.apache. soap. SOAPExcepti on;

public class saveBusi ness {
private Aut hToken token;
private UDDI Proxy proxy;

/**

* Main Met hod
*/
public static void main (String args[]) {
saveBusi ness publish = null;
try {
Systemout. println("Saving New Busi ness: Acne Parts");
Aut hToken token = UDDI Util.get_authentication_token(args[0], args[1]);
Systemout. println("Authentication Token: "+token.getAuthlnfoString());
publ i sh = new saveBusi ness(t oken);
String businessKey = publish.save_business();
Systemout. println("Published Business Key: "+businessKey);

204

Web Services Essentials

} catch (Ml fornedURLException e) {
e.printStackTrace();

} catch (SQAPException e) {
e.printStackTrace();

} catch (UDDI Exception e) {
Di spositi onReport dr = e.getDispositionReport();
ubDl Uti | . printDispositionReport (dr);
e.printStackTrace();
}
}
/**

* Constructor

* @aramtoken UDDI Authentication Token
*/

publ i c saveBusi ness (AuthToken token) {
this.token = token;

}

/**

* Save New Business Entity

*/

public String save_business ()

throws Mal f or mredURLExcepti on, SOAPException, UDDI Exception {
String businessKey = null;

/1 Point to Mcrosoft Test Publish URL (SSL)
proxy = new UDDI Proxy();
proxy. set Publ i shURL("https://test.uddi.m crosoft.con publish");

/1l Create Sanple Business Entity Record

Busi nessEntity businessEntity = create_business ();
Vect or busi nessEntityVector = new Vector();

busi nessEnt it yVect or. addEl enent (busi nessentity);

/1 Publish new Business Record
Busi nessDet ai | busi nessDetail =
proxy. save_busi ness(t oken. get AuthlnfoString(), businessEntityVector);

/1 Verify publication by extracting new busi ness key
Vect or businessEntities = businessDetail.getBusinessEntityVector();
if (businessEntities.size() > 0) {
Busi nessEntity returnedBusi nesseEntity =
(Busi nessEntity) (businessEntities.elenentAt(0));
busi nessKey = returnedBusi nessEntity. get Busi nessKey();

}
return busi nessKey;
}
/**
* Create new sanpl e Business Entity record
*/

private BusinessEntity create_business() {
Vect or businessEntities = new Vector();
Busi nessEntity businessEntity = new BusinessEntity("", "Acne Parts");

/1 Set Business Description
busi nessEntity. set Def aul t Descri ptionString
("Maker of fine sem conductor parts");

/] Set Contact Nane and Email

Contact contact = new Contact ("Ethan Ceram");
Email enmail = new Enmail ("ceram @s. nyu. edu");
Vector enail Vector = new Vector();

emai | Vect or . addEl enment (enai |) ;

contact . set Enmi | Vect or (enai | Vector);

Contacts contacts = new Contacts();

Vect or contactVector = new Vector();

205

Web Services Essentials

cont act Vect or. addEl enent (cont act) ;
contacts. set Cont act Vect or (cont act Vect or) ;
busi nessEntity. set Cont act s(contacts);
return businessEntity;

}
}

9.4 UDDI4J Quick Reference API

This section includes a quick-reference guide to the UDDI4J API. All packages within the
APl are included except for comibm uddi.request , which client applications do not
typically use directly.

206

Web Services Essentials

9.4.1 The com.ibm.uddi Package

com.ibm.uddi.UDDIElement

Thisisthe base class for all UDDI elements.
Synopsis

public abstract class UDD El enent extends oject {
/| Constructors
public UDDIEl ement();
public UDDI El enment (El enent el) throws UDDI Exception
/1 Field Sunmary
protected El enent base;
public static String GENERI C
public static String XM.NS
/1 Public Methods
publ i ¢ NodeLi st get Chil dEl enent sByTagNane(El enent el, String tag)
abstract public void saveToXM.(El enent base);
/'l Protected Methods
protected String get Text (Node el);

Hierarchy

java.l ang. Obj ect --> com i bm uddi . UDDI El enent

207

Web Services Essentials

com.ibm.uddi.UDDIException

This class encapsulates UDDI related errors. A ubDi Exception object may include a
Di sposi ti onReport Object, containing detailed information about the cause of the error.

Synopsis

public class UDD Exception extends Exception {
/| Constructors
publ i c UDDI Exception();
publ i c UDDI Exception(El ement el, bool ean createDi spositionReport);
/1 Public Methods
public String getDetail ();
public Element getDetail Elenent();
public DispositionReport getDi spositionReport();
public String getFaultActor();
public String getFaultCode();
public String getFaultString();
public bool ean isValidEl ement (El emrent el);
public String toString();
/'l Protected Methods
protected String get Text (Node el);
}

Hierarchy

java. |l ang. Obj ect --> java.lang. Throwabl e --> java. |l ang. Exception -->
com i bm uddi . UDDI Excepti on

208

Web Services Essentials

com.ibm.uddi.VectorNodeList

This utility class provides an implementation of the or g. wac. dom NodelLi st interface, but it
is not typically used directly by UDDI client code.

Synopsis

public class VectorNodelLi st extends Object inplenents Nodelist {
/| Constructors
publ i ¢ Vector NodeLi st (Vector v);
/1 Public Methods
public int getLength();
public Vector getVector();
public Node iten(int index);
}

Hierarchy

java.l ang. Obj ect --> com i bm uddi. Vect or NodeLi st

209

Web Services Essentials

9.4.2 The com.ibm.uddi.client Package

com.ibm.uddi.client.UDDIProxy

This class provides centralized access to all inquiry and publishing functions provided by
the UDDI 1.0 Programming API. To perform inquiry functions, you must set the inquiry
URL via the set I nqui ryURL() method; to perform publishing functions, you must set an
HTTPS URL via the setpublishur.() method. All publishing requests, such as
save_xxx() and del ete_xxx() , require an authentication token; to obtain an authentication
token, use the get _aut hToken() method and specify a username and password.

Synopsis

public class UDDI Proxy extends Object {
/] Constructors
public UDDI Proxy();
public UDDI Proxy(URL inquiryURL, URL publishURL,
SQAPTr ansport transport);
/1 Public Methods
public DispositionReport del ete_binding(String authlnfo,
String bindi ngkey) throws UDDI Exception, SOAPExcepti on;
public DispositionReport del ete_binding(String authlnfo,
Vect or bi ndi ngKeyStrings) throws UDDI Exception, SOAPExcepti on;
public DispositionReport del ete_business(String authlnfo,
String businessKey) throws UDDI Exception, SOAPExcepti on;
public DispositionReport del ete_business(String authlnfo,
Vect or busi nessKeyStrings) throws UDDI Exception, SQAPExcepti on;
public DispositionReport del ete_service(String authlnfo,
String serviceKey) throws UDDI Exception, SOAPExcepti on;
public DispositionReport del ete_service(String authlnfo,
Vect or serviceKeyStrings) throws UDDI Exception, SOAPExcepti on;
public DispositionReport del ete_t Mddel (String authlnfo,
String tMdel Key) throws UDDI Exception, SOAPExcepti on;
public DispositionReport del ete_t Moddel (String authlnfo,
Vect or t Model KeyStrings) throws UDDI Exception, SOAPExcepti on;
public DispositionReport discard_aut hToken(Aut hl nfo aut hl nf 0)
throws UDDI Exception, SOAPExcepti on;
public BindingDetail find_binding(FindQualifiers findQualifiers,
String serviceKey, TModel Bag t nodel bag, int naxRows)
throws UDDI Exception, SOAPExcepti on;
publ i ¢ Busi nessLi st find_busi ness(CategoryBag bag, FindQualifiers
findQualifiers, int maxRows) throws UDDI Exception, SOAPExcepti on;
publ i ¢ BusinessLi st find_business(Di scoveryURLs bag, FindQualifiers
findQualifiers, int maxRows) throws UDDI Exception, SOAPExcepti on;
publ i ¢ BusinessList find_business(ldentifierBag bag, FindQualifiers
findQualifiers, int maxRows) throws UDDI Exception, SOAPExcepti on;
publ i c BusinessList find_business(String nane, FindQualifiers
findQualifiers, int maxRows) throws UDDI Exception, SOAPExcepti on;
publ i ¢ BusinessList find_business(TMWbdel Bag bag, FindQualifiers
findQualifiers, int maxRows) throws UDDI Exception, SOAPExcepti on;
public ServicelList find_service(String businessKey, CategoryBag bag,
FindQualifiers findQualifiers, int nmaxRows) throws UDDI Excepti on,
SQAPExcept i on;
public ServicelList find_service(String businessKey, String nane,
FindQualifiers findQualifiers, int nmaxRows) throws UDDI Excepti on,
SQAPExcept i on;
public ServiceList find_service(String busi nessKey, TMbdel Bag bag,
FindQualifiers findQualifiers, int nmaxRows) throws UDDI Excepti on,
SQAPExcept i on;

210

Web Services Essentials

public TModel Li st find_t Model (Cat egoryBag bag, FindQualifiers
findQualifiers, int maxRows) throws UDDI Exception, SQOAPExcepti on;
public TModel Li st find_tMdel (IdentifierBag identifierBag,
FindQualifiers findQualifiers, int naxRows) throws UDDI Excepti on,
SQAPExcept i on;
public TModel Li st find_tMdel (String nanme, FindQualifiers
findQualifiers,int maxRows) throws UDDI Exception, SQOAPExcepti on;
public Aut hToken get _aut hToken(String userid, String cred)
t hrows UDDI Exception, SOAPExcepti on;
public BindingDetail get_bindingDetail (String bi ndi ngKey)
t hrows UDDI Exception, SOAPExcepti on;
publ i c Bindi ngDetail get_bindi ngDetail (Vector bindi ngkeyStrings)
t hrows UDDI Exception, SOAPExcepti on;
public BusinessDetail get_businessDetail (String businessKey)
t hrows UDDI Exception, SOAPExcepti on;

publi ¢ Busi nessDetail get_businessDetail (Vector businessKeyStrings)

t hrows UDDI Exception, SOAPExcepti on;
publ i c Busi nessDet ai | Ext get_busi nessDetail Ext(String busi nessKey)
t hrows UDDI Exception, SOAPExcepti on;
publ i ¢ Busi nessDetai | Ext get _busi nessDet ai | Ext (Vect or
busi nessKeyStrings) throws UDDI Exception, SQAPExcepti on;
public Registeredlinfo get_registeredl nfo(String authlnfo)
t hrows UDDI Exception, SOAPExcepti on;
public ServiceDetail get_serviceDetail (String serviceKey)
t hrows UDDI Exception, SOAPExcepti on;
public ServiceDetail get_serviceDetail (Vector serviceKeyStrings)
throws UDDI Exception, SOAPExcepti on;
public TModel Detail get_tMdel Detail (String t Model Key)
t hrows UDDI Exception, SOAPExcepti on;
public TModel Detail get_t Model Detail (Vector tMdel KeyStrings)
t hrows UDDI Exception, SOAPExcepti on;
public BindingDetail save_binding(String authlnfo,
Vect or bi ndi ngTenpl at es) throws UDDI Exception, SOAPExcepti on;
publ i c BusinessDetail save_business(String authlnfo,
Upl oadRegi ster[] upl oadRegi sters) throws UDDI Excepti on,
SQAPExcept i on;
public BusinessDetail save_business(String authlnfo,
Vect or businessEntities) throws UDDI Exception, SOAPExcepti on;
public ServiceDetail save_service(String authlnfo,
Vect or busi nessServices) throws UDDI Exception, SOAPExcepti on;
public TModel Detail save_t Model (String authlnfo, Upl oadRegister([]
upl oadRegi sters) throws UDDI Exception, SOAPExcepti on;
public TModel Detail save_t Model (String authlnfo, Vector tMdels)
t hrows UDDI Exception, SOAPExcepti on;
public El ement send(El ement el, bool ean inquiry)
t hrows SOAPExcepti on;
public El ement send(UDDI El enent el, bool ean inquiry)
t hrows SQAPExcepti on;
public void setlnquiryURL(String url) throws MalfornedURLExcepti on;
public void setPublishURL(String url) throws MalfornedURLExcepti on;
public void setTransport (SOAPTransport transport);
public DispositionReport validate_categorization(String tMdel Key,
String keyVal ueString, BusinessEntity businessEntity)
t hrows UDDI Exception, SOAPExcepti on;
public DispositionReport validate_categorization(String tMdel Key,
String keyVal ueString, BusinessService businessService)
t hrows UDDI Exception, SOAPExcepti on;
public DispositionReport validate_categorization(String tMdel Key,
String keyVal ueString, ThWbodel tMdel) throws UDDI Excepti on,
SQAPExcept i on;

Hierarchy

java.l ang. Obj ect --> comibm uddi.client.UDDI Proxy

211

Web Services Essentials

9.4.3 The com.ibm.uddi.datatype Package

com.ibm.uddi.datatype.Description

This class encapsulates a textual description associated with multiple UDDI data type
objects, including Bi ndi ngTenpl at e , Busi nessEntity , Busi nessServi ce , and Thbdel .

Synopsis

public class Description extends UDDI El enent {
/| Constructors
public Description();
public Description(String val ue);
public Description(El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getLang();
public String getText();
public void saveToXM.(El enent parent);
public void setLang(String s);
public void setText(String s);

}
Hierarchy

java.l ang. Gbj ect --> com i bm uddi.UDD El enent -->
com i bm uddi . dat at ype. Descri pti on

212

Web Services Essentials

com.ibm.uddi.datatype.Name

This class encapsulates a textual name associated with multiple UDDI data type objects,
including Busi nessEntity , Busi nessServi ce , and Thodel .

Synopsis

public class Name extends UDDI El enent {
/| Constructors
public Narme();
public Name(String val ue);
publ i c Narme(El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getText();
public void saveToXM.(El emrent parent);
public void setText(String s);

}
Hierarchy

java. |l ang. Qbj ect --> comibm uddi.UDDl El enent -->
com i bm uddi . dat at ype. Nane

213

Web Services Essentials

com.ibm.uddi.datatype.OverviewDoc

This class encapsulates an external overview document associated with multiple UDDI
data type objects, including Tvodel and | nst anceDet ai | s.

Synopsis

public class Overvi ewDoc extends UDDI El ement {
/| Constructors
public Overviewboc();
public Overvi ewDoc(El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enment base;
public static final String UDD _TAG
/1 Public Methods
public String getDefaul tDescriptionString();
public Vector getDescriptionVector();
public Overvi ewURL get Overvi ewdRL() ;
public String getOverviewdRLString();
public void saveToXM.(El enent parent);
public void setDefaul tDescriptionString(String s);
public void setDescriptionVector(Vector s);
public void setOvervi ewJRL(Overvi ewdRL S);
public void setQOverviewdRL(String s);

Hierarchy

java.l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . dat at ype. Over vi ewbDoc

214

com.ibm.uddi.datatype.OverviewURL

Web Services Essentials

This class encapsulates the URL for an external overview document.

Synopsis

public class Overvi ewdRL extends UDDI El ement {
/] Constructors
public OverviewldRL();
public Overvi ewdRL(String val ue);
public Overvi ewdRL(El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getText();
public void saveToXM.(El enent parent);
public void setText(String s);

}
Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . dat at ype. Over vi ewURL

215

9.4.4 The com.ibm.uddi.datatype.binding Package

com.ibm.uddi.datatype.binding.AccessPoint

Web Services Essentials

This class encapsulates information for a UDDI accesspPoi nt record.

Synopsis

public class AccessPoint extends UDDI El ement {
/| Constructors
public AccessPoint();
public AccessPoint(String value, String URLType);
publi ¢ AccessPoi nt (El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El ement base;
public static final String UDD _TAG
/1 Public Methods
public String getText();
public String get URLType();
public void saveToXM.(El enent parent);
public void setText(String s);
public void set URLType(String s);

Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . dat at ype. bi ndi ng. AccessPoi nt

216

com.ibm.uddi.datatype.binding.BindingTemplate

Web Services Essentials

This class encapsulates information for a UDDI bi ndi ngTenpl at e record.

Synopsis

public class BindingTenpl ate ext ends UDDI El enent {

/| Constructors
public BindingTenplate();
public Bindi ngTenpl ate(String bi ndi ngKey,
t Model | nst anceDet ai | s);

publi ¢ Bi ndi ngTenpl at e(El emrent base) throws UDDI Excepti on;

/1 Field Sunmary

protected El enent base;

public static final String UDD _TAG
/1 Public Methods
AccessPoi nt get AccessPoint();
String getBindi ngKey();

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

}

Hierarchy

j ava. | ang. Qbj ect

C
C
C
C

C
C
C
C
C
C
C
C
C
C
C

String getDefaul tDescriptionString(

Vect or getDescriptionVector();

String getServiceKey();

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

saveToXM.(El enent parent);
set AccessPoi nt (AccessPoint s);
set Bi ndi ngKey(String s);

set Def aul t DescriptionString(String s);

TModel | nst anceDetai l s

)

Host i ngRedi rect or get Hosti ngRedi rect or (

set Descri ptionVector (Vector s);

set Host i ngRedi rect or (Hosti ngRedi rector s);

set Servi ceKey(String s);

)

TModel | nst anceDet ai | s get TMbdel | nst anceDet ai | s(

)

set TModel | nst anceDet ai | s(TModel | nst anceDetail s s);

--> com i bm uddi . UDDI El enent

com i bm uddi . dat at ype. bi ndi ng. Bi ndi ngTenpl at e

-->

217

Web Services Essentials

com.ibm.uddi.datatype.binding.BindingTemplates

This class encapsulates multiple Bi ndi ngTenpl at e Objects.
Synopsis

public class Bindi ngTenpl at es ext ends UDDI El enent {
/] Constructors
publi ¢ Bi ndi ngTenpl ates();
publ i ¢ Bi ndi ngTenpl at es(El enrent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public Vector getBindingTenplateVector();
public void saveToXM.(El enent parent);
public void setBindi ngTenpl at eVect or (Vector s);
}

Hierarchy

java. |l ang. Qbj ect --> com i bm uddi.UDD El enent -->
com i bm uddi . dat at ype. bi ndi ng. Bi ndi ngTenpl at es

218

Web Services Essentials

com.ibm.uddi.datatype.binding.HostingRedirector

This class encapsulates information for a UDDI host i ngRedi rect or record.

Synopsis

public class HostingRedirector extends UDDI El emrent {
/| Constructors
public HostingRedirector();
public HostingRedirector(String bindi ngKey);
publi ¢ HostingRedirector (El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El ement base;
public static final String UDD _TAG
/1 Public Methods
public String getBindi ngkey();
public void saveToXM.(El enent parent);
public void setBindi ngKey(String s);

Hierarchy

java. |l ang. Obj ect --> com i bm uddi.UDDI El enent -->
com i bm uddi . dat at ype. bi ndi ng. Host i ngRedi r ect or

219

Web Services Essentials

com.ibm.uddi.datatype.binding.InstanceDetails

This class encapsulates information for the instance details of a bi ndi ngTenpl at e record.

Synopsis

public class InstanceDetails extends UDDI El ement {
/| Constructors
public InstanceDetails();
public InstanceDetail s(El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getDefaul tDescriptionString();

public Vector getDescriptionVector();
public I nstanceParns getlnstanceParns();
public Overvi ewDoc get Overvi ewbDoc();
public void saveToXM.(El enent parent);
public void setDefaul t DescriptionString(String s);
public void setDescriptionVector(Vector s);
public void setlnstanceParns(lnstanceParns s);
public void setOvervi ewbDoc(Overvi ewDoc S);
}
Hierarchy

java.l ang. Obj ect --> com i bm uddi . UDDI El enent -->
com i bm uddi . dat at ype. bi ndi ng. | nst anceDetai |l s

220

Web Services Essentials

com.ibm.uddi.datatype.binding.InstanceParms

This class encapsulates information for the settings file or the instance parameters of a
bi ndi ngTenpl at e record.

Synopsis

public class |InstanceParns extends UDDI El enent {
/'] Constructors
public InstanceParns();
public InstanceParns(String val ue);
public I nstanceParns(El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enment base;
public static final String UDD _TAG
/1 Public Methods
public String getText();
public void saveToXM.(El ement parent);
public void setText(String s);

}
Hierarchy

java. |l ang. Qbj ect --> comibm uddi.UDDl El enent -->
com i bm uddi . dat at ype. bi ndi ng. | nst ancePar s

221

Web Services Essentials

com.ibm.uddi.datatype.binding.TModelinstanceDetails

This class encapsulates multiple Tvodel | nst ancel nf o Objects.
Synopsis

public class TMbdel I nstanceDetai | s extends UDDI El emrent {
/'l Constructors
public TModel I nstanceDetails();
publi c TModel | nst anceDet ai | s(El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public Vector getTModel I nstancel nfoVector();
public void saveToXM.(El enent parent);
public void set TMbdel | nst ancel nf oVect or (Vector s);

}
Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . dat at ype. bi ndi ng. TModel | nst anceDet ai | s

222

com.ibm.uddi.datatype.binding.TModellnstancelnfo

This class encapsulates information for the instance details of a UDDI t model record.

Synopsis

public class TModel I nstancel nfo extends UDDI El ement {
/] Constructors
public TModel I nstancel nfo();
public TModel | nstancel nfo(String t Model Key);

publi ¢ TModel I nst ancel nf o(El enent base) throws UDDI Excepti on;

/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getDefaul tDescriptionString();
public Vector getDescriptionVector();

public InstanceDetails getlnstanceDetails();
public String get TModel Key();
public void saveToXM.(El enent parent);
public void setDefaul tDescriptionString(String s);
public void setDescriptionVector(Vector s);
public void setlnstanceDetail s(lnstanceDetails s);
public void set TMbdel Key(String s);

}

Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDDI El enent -->
com i bm uddi . dat at ype. bi ndi ng. TModel | nst ancel nfo

Web Services Essentials

223

Web Services Essentials

9.4.5 The com.ibm.uddi.datatype.business Package

com.ibm.uddi.datatype.business.Address

This class encapsulates information about a business address. Refer also to the
com i bm uddi . dat at ype. busi ness. Addr essLi ne class, which is discussed in the following

section.

Synopsis

public class Address extends UDD El enent {
/] Constructors
public Address();
publi c Address(El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
Vect or get AddressLineStrings();
Vect or get AddressLineVector();
String getSortCode();
String getUseType();

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

}

Hierarchy

j ava. | ang. Qbj ect

C

C
C
C
C
C
C
C
C

voi d
voi d
voi d
voi d
voi d

saveToXM.(El enent parent);

set Addr essLi neStrings(Vector s);
set Addr essLi neVect or (Vector s);
set Sort Code(String s);

set UseType(String s);

--> com i bm uddi . UDDI El enent -->

com i bm uddi . dat at ype. busi ness. Addr ess

224

com.ibm.uddi.datatype.business.AddressLine

Web Services Essentials

This class encapsulates a single line within a business address.

Synopsis

public class AddressLine extends UDDI El ement {
/] Constructors
public AddressLine();
publi ¢ AddressLine(String val ue);

publi ¢ AddressLi ne(El ement base) throws UDDI Excepti on;

/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getText();
public void saveToXM.(El enent parent);
public void setText(String s);

}
Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . dat at ype. busi ness. Addr essLi ne

225

Web Services Essentials

com.ibm.uddi.datatype.business.BusinessEntity

This class encapsulates all information for a UDDI busi nessEntity record. Thisincludes
the business name, description, contacts, busi nesskey , and any business identifiers or
business taxonomy categorizations.

Synopsis

public class BusinessEntity extends UDDI El enent {
/| Constructors
public BusinesseEntity();
public BusinessEntity(String businessKey, String nane);
publi ¢ Busi nesskntity(El enent base) throws UDDI Exception;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getAuthorizedName();

public String getBusinessKey();
publ i ¢ Busi nessServi ces getBusi nessServices();
publ i c CategoryBag get Cat egoryBag();
public Contacts getContacts();
public String getDefaul tDescriptionString();
public Vector getDescriptionVector();
public DiscoveryURLs getDi scoveryURLS();
public ldentifierBag getldentifierBag();
public Name getName();
public String getNameString();
public String getQperator();
public void saveToXM.(El enent parent);
public void setAuthorizedNane(String s);
public void setBusinessKey(String s);
public void setBusi nessServices(Busi nessServices s);
public void set Cat egoryBag(Cat egoryBag s);
public void setContacts(Contacts s);
public void setDefaul t DescriptionString(String s);
public void setDescriptionVector(Vector s);
public void setD scoveryURLs(Di scoveryURLs s);
public void setldentifierBag(ldentifierBag s);
public void setName(Nane s);
public void setName(String s);
public void setQperator(String s);

}

Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . dat at ype. busi ness. Busi nessEntity

226

com.ibm.uddi.datatype.business.Contact

Web Services Essentials

This class encapsulates information about a business contact. This includes the person's

name, one or more business addresses, email addresses, and telephone numbers.

Synopsis

public class Contact extends UDDI El enent {
/| Constructors
public Contact();
public Contact(String personNane);
public Contact (El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public Vector getAddressVector();

public String getDefaul tDescriptionString();
public Vector getDescriptionVector();
public Vector getEmail Vector();
publ i ¢ PersonName get PersonNanme();
public String getPersonNameString();
public Vector getPhoneVector();
public String getUseType();
public void saveToXM.(El enent parent);
public void set AddressVector (Vector s);
public void setDefaul tDescriptionString(String s);
public void setDescriptionVector(Vector s);
public void setEnail Vector(Vector s);
public void setPersonNane(PersonNane s);
public void setPersonNane(String s);
public void setPhoneVector (\Vector s);
public void setUseType(String s);
}
Hierarchy

java. |l ang. Obj ect --> com i bm uddi.UDD El enent -->
com i bm uddi . dat at ype. busi ness. Cont act

227

Web Services Essentials

com.ibm.uddi.datatype.business.Contacts

This class encapsulates multiple cont act objects.
Synopsis

public class Contacts extends UDDI El ement {
/'l Constructors
public Contacts();
public Contacts(El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public Vector getContactVector();
public void saveToXM.(El enent parent);
public void set ContactVector(Vector s);

}
Hierarchy

java. |l ang. Qbj ect --> comibm uddi.UDD El enent -->
com i bm uddi . dat at ype. busi ness. Cont act s

228

Web Services Essentials

com.ibm.uddi.datatype.business.Email

This class encapsulates a single email address.
Synopsis

public class Email extends UDDI El ement {

/] Constructors

public Email ();

public Email (String val ue);

public Email (El ement base) throws UDDI Excepti on;
/1 Field Sunmary

protected El enent base;

public static final String UDD _TAG
/1 Public Methods

public String getText();

public String getUseType();

public void saveToXM.(El enent parent);

public void setText(String s);

public void setUseType(String s);

}

Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . dat at ype. busi ness. Enai |

229

Web Services Essentials

com.ibm.uddi.datatype.business.PersonName

This class encapsulates a single person’'s name.

Synopsis

public class PersonName extends UDDI El ement {
/| Constructors
public PersonName();
public PersonNanme(String val ue);
publi ¢ PersonNanme(El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getText();
public void saveToXM.(El enent parent);
public void setText(String s);

}
Hierarchy

java.l ang. Obj ect --> com i bm uddi . UDDI El enent -->
com i bm uddi . dat at ype. busi ness. Per sonNane

230

Web Services Essentials

com.ibm.uddi.datatype.business.Phone

This class encapsulates a single tel ephone number.

Synopsis

public class Phone extends UDDI El ement {

/] Constructors

public Phone();

public Phone(String val ue);

publi ¢ Phone(El ement base) throws UDDI Excepti on;
/1 Field Sunmary

protected El enent base;

public static final String UDD _TAG
/] Public Methods

public String getText();

public String getUseType();

public void saveToXM.(El enent parent);

public void setText(String s);

public void setUseType(String s);

}

Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . dat at ype. busi ness. Phone

231

9.4.6 The com.ibm.uddi.datatype.service Package

com.ibm.uddi.datatype.service.BusinessService

Web Services Essentials

This class encapsulates all information for a UDDI busi nessSer vi ce record.

Synopsis

public class BusinessService extends UDDI El ement {

/| Constructors
publ i ¢ Busi nessService();
publ i ¢ Busi nessService(String serviceKey,
Bi ndi ngTenpl at es bi ndi ngTenpl at es) ;

publ i ¢ Busi nessService(El ement base) throws UDDI Excepti on;

/1 Field Sunmary

protected El enment base;

public static final String UDD _TAG
/1 Public Methods
Bi ndi ngTenpl at es get Bi ndi ngTenpl at es(
String getBusi nessKey();
Cat egoryBag get Cat egoryBag();

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

}

Hierarchy

j ava. | ang. Qbj ect

C
C
C
C

C
C
C
C
C
C
c
C
C
C
C
C
C

String getDefaul tDescriptionString(

Vect or getDescriptionVector();

Narme

get Nane();

String getNameString();
String getServiceKey();

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

saveToXM.(El enent parent);

set Bi ndi ngTenpl at es(Bi ndi ngTenpl ates s);

set Busi nessKey(String s);
set Cat egor yBag(Cat egoryBag s);

set Def aul t DescriptionString(String s);

String nane,

)

set Descri ptionVector (Vector s);

set Narme(Nane s);
set Name(String s);
set Servi ceKey(String s);

--> com i bm uddi . UDDI El enent

com i bm uddi . dat at ype. servi ce. Busi nessServi ce

>

)

232

Web Services Essentials

com.ibm.uddi.datatype.service.BusinessServices

This class encapsulates multiple Busi nessSer vi ce Objects.
Synopsis

public class BusinessServices extends UDDI El enent {
/'l Constructors
public BusinessServices();
publ i ¢ Busi nessServi ces(El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public Vector getBusinessServiceVector();
public void saveToXM.(El enent parent);
public void setBusinessServiceVector(Vector s);

}
Hierarchy

java.l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . dat at ype. servi ce. Busi nessServi ces

233

9.4.7 The com.ibm.uddi.datatype.tmodel Package

com.ibm.uddi.datatype.tmodel.TModel

This class encapsulates all information for a UDDI t Model record.

Synopsis

public class TMbdel extends UDDI El enent {
/'l Constructors
public TModel ();
public TModel (String t Mbdel Key, String nane);
public TModel (El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String NAI CS_TMODEL_KEY;
public static final String UDD _TAG
public static final String UNSPSC TMODEL_KEY;
/1 Public Methods
public String getAuthorizedNanme();
publ i c CategoryBag get Cat egoryBag();
public String getDefaultDescriptionString();

public Vector getDescriptionVector();
public ldentifierBag getldentifierBag();
public Name getName();
public String getNameString();
public String getQperator();
public Overvi ewDoc get Overvi ewbDoc();
public String get TModel Key();
public void saveToXM.(El enent parent);
public void setAuthorizedNane(String s);
public void set Cat egor yBag(Cat egoryBag s);
public void setDefaul tDescriptionString(String s);
public void setDescriptionVector(Vector s);
public void setldentifierBag(ldentifierBag s);
public void setName(Nanme s);
public void setName(String s);
public void setQperator(String s);
public void setOvervi ewboc(Overvi ewDoc S);
public void set TMbdel Key(String s);

}

Hierarchy

java. |l ang. Qbj ect --> comibmuddi.UDD El enent -->
com i bm uddi . dat at ype. t nodel . TMbdel

Web Services Essentials

234

Web Services Essentials

9.4.8 The com.ibm.uddi.response Package

com.ibm.uddi.response.AuthToken

This class encapsulates the UDDI operator response for a get _aut hToken() query. Use the
get Aut hl nf oSt ri ng() method to retrieve the actual authentication token value.

Synopsis

public class AuthToken extends UDDI El ement {
/] Constructors
public AuthToken();
public Aut hToken(String operator, String authlnfo);
public Aut hToken(El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public Authlnfo getAuthlnfo();

public String getAuthlnfoString();
public String getQperator();
public void saveToXM.(El enent parent);
public void setAuthlnfo(Authlnfo s);
public void setAuthlnfo(String s);
public void setQperator(String s);

}

Hierarchy

java.l ang. Obj ect --> com i bm uddi.UDDl El enent --> comibm uddi.response. Aut hToken

235

Web Services Essentials

com.ibm.uddi.response.BindingDetail

This class encapsulates the UDDI operator response for a get _bi ndi ngbet ai | () query, a
find_binding() qQuery, oOr a save binding() publishing request. Use the
get Bi ndi ngTenpl at eVect or () method to extract avect or Of Bi ndi ngTenpl at e Objects.

Synopsis

public class BindingDetail extends UDDI El ement {
/| Constructors
public BindingDetail ();
public BindingDetail (String operator);
publi ¢ Bi ndi ngDetail (El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enment base;
public static final String UDD _TAG
/1 Public Methods
public Vector getBindingTenpl ateVector();

public String getQperator();
public String getTruncated();
publ i ¢ bool ean get Truncat edBool ean();
public void saveToXM.(El enent parent);
public void setBindi ngTenpl at eVect or (Vector s);
public void setQperator(String s);
public void setTruncated(bool ean s);
public void setTruncated(String s);
}
Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDDI El enent -->
com i bm uddi . response. Bi ndi ngDet ai |

236

Web Services Essentials

com.ibm.uddi.response.BusinessDetail

This class encapsulates the UDDI operator response for aget _busi nessDet ai | () query or a
save_business() publishing request. Use the get BusinessEntityVector() method to
extract avect or Of Busi nessEnti ty Objects.

Synopsis

public class BusinessDetail extends UDDIEl enent {
/| Constructors
public BusinessDetail();
publi c BusinessDetail (String operator);
publi ¢ Busi nessDetail (El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public Vector getBusinesskEntityVector();

public String getQperator();
public String getTruncated();
publ i ¢ bool ean get Truncat edBool ean();
public void saveToXM.(El enent parent);
public void setBusinessEntityVector(Vector s);
public void setQperator(String s);
public void setTruncat ed(bool ean s);
public void setTruncated(String s);
}
Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . response. Busi nessDet ai |

237

Web Services Essentials

com.ibm.uddi.response.BusinessDetail Ext

This class encapsulates the UDDI operator response for a get_businessDet ai | Ext ()
query. Use the getBusinessEntityExtVector() method to extract a Vvector of
Busi nessEnt it yExt Objects.

Synopsis

public class BusinessDetail Ext extends UDDI El enent {

/| Constructors
publi c BusinessDetail Ext();
publi ¢ Busi nessDetail Ext (String operator, Vector businessEntityExt);
publ i ¢ Busi nessDet ai | Ext (El enent base) throws UDDI Excepti on;

/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG

/1 Public Methods
public Vector getBusinessEntityExtVector();

public String getQperator();
public String getTruncated();
publ i ¢ bool ean get Truncat edBool ean();
public void saveToXM.(El enent parent);
public void setBusi nessEntityExtVector(Vector s);
public void setQperator(String s);
public void setTruncat ed(bool ean s);
public void setTruncated(String s);
}
Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDDl El enent -->
com i bm uddi . response. Busi nessDet ai | Ext

238

Web Services Essentials

com.ibm.uddi.response.BusinessEntityExt

This class encapsulates information for a UDDI busi nessEnt i t yExt record.

Synopsis

public class BusinessEntityExt extends UDDI El ement {
/| Constructors
public BusinessEntityExt();
publ i ¢ Busi nessEntityExt (BusinessEntity businessentity);
publ i c Busi nessEntityExt (El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public BusinessEntity getBusinessentity();
public void saveToXM.(El enent parent);
public void setBusinessEntity(BusinessEntity s);

Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . response. Busi nessEnt it yExt

239

com.ibm.uddi.response.Businessinfo

Web Services Essentials

This class encapsulates brief information for a UDDI businessentity record. This
includes the busi nesskey , business name, and description. Use get Servi cel nfos() tO

retrieve alist of services offered by the business.

Synopsis

public class Businesslnfo extends UDDI El enent {
/'l Constructors
public Businesslinfo();

publ i ¢ Busi nesslnfo(String businessKey, String nanme, Servicelnfos

servi cel nfos);
publ i ¢ Busi nessl nfo(El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getBusinessKey();

public String getDefaul tDescriptionString();
public Vector getDescriptionVector();
public Name getName();
public String getNameString();
public Servicelnfos getServicelnfos();
public void saveToXM.(El enent parent);
public void setBusinessKey(String s);
public void setDefaul tDescriptionString(String s);
public void setDescriptionVector(Vector s);
public void setNanme(Nanme s);
public void setName(String s);
public void setServicel nfos(Servicelnfos s);

}

Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . response. Busi nessl nfo

240

Web Services Essentials

com.ibm.uddi.response.Businessinfos

This class encapsulates multiple Busi nessi nf o objects. Use the get Busi nessl nf oVect or ()
method to retrieve a Vect or Of Busi nessl| nf o objects.

Synopsis

public class Businesslnfos extends UDDI El enent {
/] Constructors
public Businessinfos();
publ i ¢ Busi nessl nfos(El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enment base;
public static final String UDD _TAG
/1 Public Methods
public Vector getBusinesslnfoVector();
public void saveToXM.(El enent parent);
public voi d setBusi nessl nfoVector(Vector s);

}
Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . response. Busi nessl nf os

241

Web Services Essentials

com.ibm.uddi.response.BusinessList

This class encapsulates the UDDI operator response for a fi nd_busi ness() query. Use the
get Busi nessl nf os() method to retrieve a Busi nessl nf o object.

Synopsis

public class BusinessList extends UDDI El enent {
/| Constructors
public BusinessList();
publ i c BusinessList(String operator, Businesslnfos businesslnfos);
publ i ¢ Busi nessLi st (El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
publ i ¢ Busi nessl nfos getBusi nesslnfos();
public String getOperator();
public String getTruncated();
publ i ¢ bool ean get Truncat edBool ean();
public void saveToXM.(El enent parent);
public void setBusi nessl nfos(Busi nesslnfos s);
public void setQperator(String s);
public void setTruncated(bool ean s);
public void setTruncated(String s);

Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . response. Busi nessLi st

242

Web Services Essentials

com.ibm.uddi.response.DispositionReport

This class encapsulates a UDDI disposition report. Depending on the API call, the
Di sposi ti onReport May contain error information or a success flag. For example, acall to
the get _busi nessDetai | () query that fails will trigger a ubbl Except i on with an embedded
Di sposi tionReport Object. A call to del et e_busi ness() will return a bi spositi onReport
object directly; if the deletion was successful, the success flag will be set to true. Use
get Err Code() to retrieve the UDDI error code (e.g., E i nval i dkeyPassed , E fatal Error);
use get Errno() to retrieve the UDDI error code number (e.g., 10210 , 10500); Or use
get Errol nfoText () to retrieve a more complete description of the error. Usethe success()
method to retrieve the success flag. Use get Generic() to retrieve the UDDI version

number of the UDDI operator site.

Synopsis

public class DispositionReport extends UDDI El ement {
/1 Constructors

Di sposi ti

Sunmmary

publ i
/'l Fiel
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
/'l Publ
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

}

Hierarchy

java. | ang. Qbj ect

c
d
c
c
c

—TOO0O0O0O0O000O0

OO 00

C
C
C
C

stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

c

OO0O0O000O00 00

c

fi
fi
fi
fi
fi
fi
fi
fi
fi
fi

onReport (El enent el) throws UDDI Excepti on;

nal
nal
nal
nal
nal
nal
nal
nal
nal
nal

Stri
Stri
Stri
Stri
Stri
Stri
Stri
Stri
Stri
Stri

ng
ng
ng
ng
ng
ng
ng
ng
ng
ng

E_account Li ni t Exceeded;
E_aut hTokenExpi r ed;

E_aut hTokenRequi r ed;

E _cat egori zati onNot Al | owed;
E i nval i dCat egory;

E i nval i dKeyPassed;

E i nval i dURLPassed;

E keyRetired;

E_operat or M snat ch;

E _user M snat ch;

String UDDI _TAG

i ¢ Met hods

String get ErrCode(
String getErrinfoText();

int getErrno(

K

String getGeneric(
String get Operator(
bool ean i sVal i dEl ement (El enent el);
voi d saveToXM.(El ement el);

bool ean success(

)

)

)
)

--> com i bm uddi . UDDI El enrent - ->
com i bm uddi . response. Di sposi ti onReport

243

Web Services Essentials

com.ibm.uddi.response.Errinfo

This class encapsulates information regarding a UDDI disposition report. The class is not

typically used directly by UDDI client code.

Synopsis

public class Errinfo extends UDD El enent {
/| Constructors
public Errinfo();
public Errinfo(String value, String errCode);
public Errinfo(El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getErrCode();
public String getText();
public void saveToXM.(El emrent parent);
public void setErrCode(String s);
public void setText(String s);

Hierarchy

java.l ang. Qbj ect --> com i bm uddi.UDDI El enent --> comibm uddi.response. Errlnfo

244

Web Services Essentials

com.ibm.uddi.response.Registeredinfo

This class encapsulates the UDDI operator response for a get _registeredinfo() query.
The object includes alist of al busi nessentity keysandt vodel keysthat are controlled by
the specified authentication token.

Synopsis

public class Regi steredlnfo extends UDDI El enent {
/| Constructors
public Registeredlinfo();
public Registeredlnfo(String operator, Businesslnfos businesslnfos,
ThModel | nf os t Model | nf 0s);
publi ¢ Regi steredl nfo(El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
publ i ¢ Busi nessl nfos getBusi nesslnfos();

public String getQperator();
publ i c TModel | nfos get TMbdel I nfos() ;
public String getTruncated();
publ i ¢ bool ean get Truncat edBool ean();
public void saveToXM.(El enent parent);
public void setBusinessl nfos(Busi nesslnfos s);
public void setQperator(String s);
public void set TMbdel | nf os(TModel I nfos s);
public void setTruncated(bool ean s);
public void setTruncated(String s);

}

Hierarchy

java.l ang. bj ect --> com i bm uddi.UDD El enent -->
com i bm uddi . response. Regi st eredl nfo

245

Web Services Essentials

com.ibm.uddi.response.Result

This class encapsulates information regarding a UDDI disposition report. The class is not
typically used directly by UDDI client code.

Synopsis

public class Result extends UDDIEl enent {

/| Constructors

public Result();

public Result(String errno);

public Result(El ement base) throws UDDI Excepti on;
/1 Field Sunmary

protected El enent base;

public static final String UDD _TAG
/1 Public Methods

public Errinfo getErrinfo();

public String getErrno();

public String getKeyType();

public void saveToXM.(El enent parent);

public void setErrinfo(Errinfo s);

public void setErrno(String s);

public void setKeyType(String s);

Hierarchy

java. |l ang. Obj ect --> com i bm uddi.UDDI El enent --> comibm uddi.response. Result

246

Web Services Essentials

com.ibm.uddi.response.ServiceDetalil

This class encapsulates the UDDI operator response for a get _servi ceDetai | () query or a
save_service() publishing request. Use the getBusinessServiceVector() method to
retrieve avect or Of Busi nessSer vi ce Objects.

Synopsis

public class ServiceDetail extends UDDI El enent {
/| Constructors
public ServiceDetail ();
public ServiceDetail (String operator);
public ServiceDetail (El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
Vect or get Busi nessServi ceVector();
String getQperator();
String getTruncated();
bool ean get Truncat edBool ean();

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

Hierarchy

j ava. | ang. Qbj ect

c

C
C
C
C
C
C
C
C

voi d
voi d
voi d
voi d
voi d

saveToXM.(El enent parent);

set Busi nessServi ceVect or (Vector s);
setQperator(String s);

set Truncat ed(bool ean s);

set Truncated(String s);

--> com i bm uddi . UDDI El enent -->

com i bm uddi . response. Servi ceDet ai |

247

Web Services Essentials

com.ibm.uddi.response.Servicelnfo

This class encapsulates brief information for a UDDI businessService record. This
information includes service name, ser vi cekey , and associated busi nessKeys.

Synopsis

public class Servicelnfo extends UDDI El ement {
/| Constructors
public Servicelnfo();
public Servicelnfo(String serviceKey, String nane);
public Servicelnfo(El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getBusinessKey();
public Name getName();
public String getNameString();
public String getServiceKey();
public void saveToXM.(El enent parent);
public void setBusinessKey(String s);
public void setName(Nanme s);
public void setName(String s);
public void setServiceKey(String s);

Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . response. Servicel nfo

248

Web Services Essentials

com.ibm.uddi.response.Servicelnfos

This class encapsulates multiple servicel nfo objects. Use the get Servi cel nfovect or ()
method to retrieve a vect or Of Servi cel nf o Objects.

Synopsis

public class Servicelnfos extends UDDI El enent {
/| Constructors
public Servicelnfos();
public Servicel nfos(El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public Vector getServicelnfoVector();
public void saveToXM.(El enent parent);
public void set Servicel nfoVector (Vector s);

}
Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . response. Servi cel nf os

249

Web Services Essentials

com.ibm.uddi.response.ServiceList

This class encapsulates the UDDI operator response for afind_service() query. Usethe
get Servi cel nf os() method to retrieve a Ser vi cel nf os object.

Synopsis

public class ServiceList extends UDDI El ement {

/| Constructors
public ServiceList();
public ServiceList(String operator, Servicelnfos servicelnfos);
publi c ServicelLi st (El ement base) throws UDDI Excepti on;

/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG

/1 Public Methods
public String getQperator();

public Servicelnfos getServicelnfos();
public String getTruncated();
publ i ¢ bool ean get Truncat edBool ean();
public void saveToXM.(El enent parent);
public void setQperator(String s);
public void setServicel nfos(Servicelnfos s);
public void setTruncated(bool ean s);
public void setTruncated(String s);

}

Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . response. Servi celLi st

250

com.ibm.uddi.response.TModelDetalil

Web Services Essentials

This class encapsulates the UDDI operator response for a get _t Model Detai | () query or a
save_t Model () publishing request. Use the get Tvodel Vector () method to retrieve a
Vect or Of TVbdel Objects.

Synopsis

public class TModel Detail extends UDDI El enent
/1 Constructors
public TModel Detail ();

public TModel Detail (String operator,
public TModel Detai |l (El ement base) throws UDDI Excepti on;

/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
String getQperator();
Vect or get TModel Vector();
String getTruncated();
bool ean get Truncat edBool ean();

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

Hierarchy

j ava. | ang. Qbj ect

c

C
C
C
C
C
C
C
c

voi d
voi d
voi d
voi d
voi d

saveToXM.(El enent parent);
set Qperator(String s);

set TMbdel Vect or (Vect or s);
set Truncat ed(bool ean s);
set Truncated(String s);

--> com i bm uddi . UDDI El enent

com i bm uddi . response. TWbdel Det ai |

{

Vect or tMdel);

o>

251

Web Services Essentials

com.ibm.uddi.response.TModelInfo

This class encapsulates brief information for a UDDI t model record. The information
includesthet vodel name and the t model Key.

Synopsis

public class TModel I nfo extends UDDI El ement {
/'l Constructors
public TModel Info();
public TModel Info(String tModel Key, String nane);
public TModel I nf o(El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public Name getName();
public String getNameString();
public String get TModel Key();
public void saveToXM.(El enent parent);
public void setName(Nanme s);
public void setName(String s);
public void set TMbdel Key(String s);

Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . response. TWbdel I nfo

252

Web Services Essentials

com.ibm.uddi.response.TModelIinfos

This class encapsulates multiple Tvodel | nfo objects. Use the get Tvbdel | nf oVect or ()
method to retrieve a Vect or of Tvodel | nf o Objects.

Synopsis

public class TModel I nfos extends UDDI El ement {
/] Constructors
public TModel I nfos();
publi c TModel | nfos(El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public Vector getTModel I nfoVector();
public void saveToXM.(El enent parent);
public void set TMbdel | nf oVect or(Vector s);

}
Hierarchy

java.l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bm uddi . response. TModel | nf os

253

Web Services Essentials

com.ibm.uddi.response.TModelList

This class encapsulates the UDDI operator response for afind_t Model () query. Use the
get TModel | nf os() method to retrieve a Tvodel | nf o Object.

Synopsis

public class TMobdel Li st extends UDDI El ement {

/| Constructors
public TModel List();
public TModel List(String operator, TModel I nfos tMdel I nfos);
publi ¢ TModel Li st (El enent base) throws UDDI Excepti on;

/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG

/1 Public Methods
public String getQperator();

public TModel I nf os get TMbdel I nfos() ;
public String getTruncated();
publ i ¢ bool ean get Truncat edBool ean();
public void saveToXM.(El enent parent);
public void setQperator(String s);
public void set TMbdel | nf os(TModel I nfos s);
public void setTruncated(bool ean s);
public void setTruncated(String s);

}

Hierarchy

java. |l ang. Obj ect --> com i bm uddi.UDD El enent -->
com i bm uddi . response. TWbdel Li st

254

Web Services Essentials

9.4.9 The com.ibm.uddi.util Package

com.ibm.uddi.util.AuthInfo

This class encapsulates the UDDI authentication token. Use the get Text () method to
retrieve the actual authentication token value.

Synopsis

public class Authlnfo extends UDDI El emrent {
/'] Constructors
public Authlnfo();
public Authlnfo(String value);
publ i c Authl nfo(El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enment base;
public static final String UDD _TAG
/1 Public Methods
public String getText();
public void saveToXM.(El emrent parent);
public void setText(String s);
}

Hierarchy

java.l ang. Obj ect --> com i bm uddi.UDD El enent --> comibmuddi.util.Authlnfo

255

Web Services Essentials

com.ibm.uddi.util.BindingKey

This class encapsulates information regarding a UDDI Bi ndi ngkey , but is not typically
used by client code directly.

Synopsis

public class Bindi ngkey extends UDDI El ement {
/| Constructors
public Bi ndi ngkey();
public Bindi ngKey(String val ue);
publ i ¢ Bi ndi ngKey(El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getText();
public void saveToXM.(El ement parent);
public void setText(String s);

}
Hierarchy

java.l ang. Obj ect --> com i bm uddi.UDDI El enent --> comibmuddi.util.Bindi ngKey

256

Web Services Essentials

com.ibm.uddi.util.BusinessKey

This class encapsulates information regarding a UDDI Busi nesskey , but is not typically
used by client code directly.

Synopsis

public class BusinessKey extends UDDI El ement {
/'l Constructors
publi c Busi nessKey();
publi ¢ Busi nessKey(String val ue);
publ i ¢ Busi nessKey(El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getText();
public void saveToXM.(El ement parent);
public void setText(String s);

}
Hierarchy

java. |l ang. Qbj ect --> com i bm uddi.UDDI El enent --> comibmuddi.util.BusinessKey

257

Web Services Essentials

com.ibm.uddi.util.CategoryBag

This class encapsulates multiple keyedRef er ence objects, each of which indicates a UDDI
categorization. For example, a categoryBag Object may contain one or more NAICS
codes. Theclassisusually passed as an argument to any of the fi nd_xxx() functions.

Synopsis

public class CategoryBag extends UDDI El enent {
/1 Constructors
public CategoryBag();
publ i ¢ Cat egoryBag(El ement base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public Vector getKeyedReferenceVector();
public void saveToXM.(El emrent parent);
public void set KeyedRef erenceVect or(Vector s);

}
Hierarchy

java. |l ang. Gbj ect --> comibm uddi.UDD El enent --> comibmuddi.util.CategoryBag

258

com.ibm.uddi.util.DiscoveryURL

Web Services Essentials

This class encapsulates the information for aUDDI Di scover yURL.

Synopsis

public class DiscoveryURL extends UDDI El enent {
/'l Constructors
public DiscoveryURL();
public DiscoveryURL(String value, String useType);

public Di scoveryURL(El ement base) throws UDDI Excepti on;

/1 Field Sunmary

protected El enent base;

public static final String UDD _TAG
/1 Public Methods

public String getText();

public String getUseType();

public void saveToXM.(El enent parent);

public void setText(String s);

public void setUseType(String s);

Hierarchy

java.l ang. Obj ect --> comibm uddi.UDDI El enent --> comibmuddi.util.Di scoveryURL

259

com.ibm.uddi.util.DiscoveryURLS

Web Services Essentials

This class encapsulates multiple bi scover yURL objects.

Synopsis

public class DiscoveryURLs extends UDDI El ement {
/| Constructors
public DiscoveryURLs();
public Di scoveryURLs(Vector discoveryURL);

publ i c Di scoveryURLs(El enent base) throws UDDI Exception;

/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG

/1 Public Methods
public Vector getDi scoveryURLVector();
public void saveToXM.(El enent parent);
public void set D scoveryURLVect or(Vector s);

Hierarchy

java.l ang. Obj ect --> comibm uddi.UDDI El enent --> comibmuddi.util.D scoveryURLs

260

com.ibm.uddi.util.FindQualifier

Web Services Essentials

This class encapsulates a single UDDI Fi ndqual i fi er , used to specify more precise search
criteria. For example, a Fi ndQual i fier Set tO exact NameMat ch mandates that only exact
name matches be returned from afi nd_xxx() function call.

Synopsis

public class FindQualifier

/1 Constructors

public FindQualifier(

extends UDDI El enent {

)

public FindQualifier(String value);

public FindQualifier(El ement base) throws UDDI Excepti on;
/1 Field Sunmary

protected E

publ i
publ i
publ i
publ i
publ i
publ i
publ i

C
C
C
C
C
C

c

stati
stati
stati
stati
stati
stati
stati

enent base;
c final Stri
c final Stri
c final Stri
c final Stri
c final Stri
c final Stri
c final Stri

/1 Public Methods
public String get Text(
public void saveToXM.(El
public void setText(Stri

Hierarchy

j ava. | ang. Qbj ect

ng
ng
ng
ng
ng
ng
ng

)

caseSensi tiveMat ch;
exact NanmeMat ch;
sort ByDat eAsc;

sort ByDat eDesc;
sort ByNaneAsc;

sort ByNanmeDesc;
ubDl _TAG

ement parent);

ng

s);

--> comibm uddi. UDDI El enent --> com i bm uddi

.util.FindQualifier

261

Web Services Essentials

com.ibm.uddi.util.FindQualifiers

This class encapsulates multiple Fi ndqual i fi er objects. The classis usually passed as an
argument to any of the fi nd_xxx() function calls.

Synopsis

public class FindQualifiers extends UDDIEl enent {
/| Constructors
public FindQualifiers();
public FindQualifiers(El ement base) throws UDDI Exception;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public Vector getFindQualifierVector();
public void saveToXM.(El ement parent);
public void setFindQualifierVector(Vector s);
}

Hierarchy

java. |l ang. Qbj ect --> comibm uddi.UDDl El enent -->
comibmuddi.util.FindQualifiers

262

Web Services Essentials

com.ibm.uddi.util.ldentifierBag

This class encapsulates multiple keyedRef er ence objects, each of which indicates a UDDI
identifier. For example, an IdentifierBag Object may contain one or more Dun &
Bradstreet D-U-N-S° Numbers. The class is usually passed as an argument to any of the
find xxx() function calls.

Synopsis

public class IdentifierBag extends UDDI El enent {
/] Constructors
public IdentifierBag();
public IdentifierBag(El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public Vector getKeyedReferenceVector();
public void saveToXM.(El ement parent);
public void setKeyedRef erenceVect or(Vector s);

Hierarchy

java.l ang. Obj ect --> com i bm uddi.UDD El enent --> comibmuddi.util.ldentifierBag

263

Web Services Essentials

com.ibm.uddi.util.KeyedReference

This class encapsulates a single UDDI keyedRef erence record. See CategoryBag and
| denti fierBag for additional details.

Synopsis

public class KeyedReference extends UDDI El enent {
/| Constructors
public KeyedReference();
public KeyedReference(String keyName, String keyVal ue);
publi ¢ KeyedRef erence(El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getKeyName();

public String getKeyVal ue();
public String get TModel Key();
public void saveToXM.(El enent parent);
public void setKeyNane(String s);
public void setKeyValue(String s);
public void set TMbdel Key(String s);

}

Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDD El enent -->
com i bmuddi.util.KeyedReference

264

Web Services Essentials

com.ibm.uddi.util.KeyValue

This class encapsulates information regarding a UDDI keyval ue , but is not typically used
by client code directly.

Synopsis

public class KeyVal ue extends UDDI El ement {
/| Constructors
public KeyVval ue();
public KeyVal ue(String val ue);
publi ¢ KeyVal ue(El ement base) throws UDDI Exception
/1 Field Sunmary
protected El enent base
public static final String UDD _TAG
/1 Public Methods
public String getText();
public void saveToXM.(El ement parent);
public void setText(String s);

}
Hierarchy

java. |l ang. Obj ect --> com i bm uddi . UDDI El enent -->
com i bmuddi . util.KeyVal ue

265

Web Services Essentials

com.ibm.uddi.util.ServiceKey

This class encapsulates information regarding a UDDI servi cekey , but is not typically
used by client code directly.

Synopsis

public class ServiceKey extends UDD El ement {
/| Constructors
public ServiceKey();
public ServiceKey(String val ue);
public ServiceKey(El enent base) throws UDDI Excepti on;
/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getText();
public void saveToXM.(El ement parent);
public void setText(String s);

}
Hierarchy

java.l ang. Obj ect --> com i bm uddi.UDDI El enent --> comibmuddi.util.ServiceKey

266

com.ibm.uddi.util. TModelBag

Web Services Essentials

This class encapsulates multiple Tvodel Key objects.

Synopsis

public class TModel Bag ext ends UDDI El enent {
/| Constructors
public TModel Bag();
publ i c Thwbdel Bag(Vector tMdel KeyStrings);

publi c TModel Bag(El enent base) throws UDDI Excepti on;

/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG

/1 Public Methods
public Vector getTModel KeyStrings();
public Vector getTModel KeyVector();
public void saveToXM.(El enent parent);
public void set TMbdel KeyStrings(Vector s);
public void set TMbdel KeyVect or (Vector s);

Hierarchy

java.l ang. Obj ect --> com i bm uddi.UDDI El enent --> comibmuddi.util.TMdel Bag

267

com.ibm.uddi.util. TModelKey

Web Services Essentials

This class encapsulates asingle UDDI t Model Key.

Synopsis

public class TModel Key extends UDDI El enent {
/1 Constructors
public TModel Key();
public TModel Key(String val ue);

publi c TModel Key(El enent base) throws UDDI Excepti on;

/1 Field Sunmary
protected El enent base;
public static final String UDD _TAG
/1 Public Methods
public String getText();
public void saveToXM.(El enent parent);
public void setText(String s);

Hierarchy

java.l ang. Obj ect --> comibm uddi.UDDI El enent --> comibmuddi.util.TMdel Key

268

Web Services Essentials

com.ibm.uddi.util.UploadRegister

This class encapsulates a single UDDI upl oadRegi ster. Upl oadRegi sters indicate the
URL for a complete XML document and can be passed to severa of the save xxx()
functions. For example, an upl oadRegi ster may indicate the URL for a UDDI
busi nesskntity record; to publish the record, use the save_business(String authlnfo,
Upl oadRegi ster[] upl oadRegi sters) method. Note that not all UDDI operator sites
support the upl oadRegi st er facility.

Synopsis

public class Upl oadRegi ster extends UDDI El enent {

/| Constructors

public Upl oadRegi ster();

public Upl cadRegi ster(String val ue);

publi ¢ Upl oadRegi st er (El enent base) throws UDDI Excepti on;
/1 Field Sunmary

protected El enent base;

public static final String UDD _TAG
/1 Public Methods

public String getText();

public void saveToXM.(El ement parent);

public void setText(String s);

}

Hierarchy

java. |l ang. j ect --> com i bm uddi.UDD El enent -->
com i bm uddi . util. Upl oadRegi st er

269

Web Services Essentials

Glossary
A
Apache SOAP

Open source Java implementation of the SOAP protocol. Hosted by the Apache
Software Foundation.

B

BEEP
Blocks Extensible Exchange Protocol. Developed by Marshall Rose, and now an
officia IETF specification, BEEP is a framework of best practices for building new
application protocols. BEEP is layered directly on TCP and includes a number of
built-in features, such as an initial handshake protocol, authentication, security, and

error handling. Currently, BEEP is not widely deployed, but it has the potential to
replace HTTP as a viable protocol for remote procedure calls. Seealso HTTP.

binding element
The WSDL binding element specifies the implementation details for the XML

messaging layer of a web service. WSDL includes built-in binding extensions for
defining SOAP services.

bindingTemplate

A UDDI XML dement that includes information about how and where to access a
specific web service. See also businessService and tModel.

businessEntity

A UDDI XML element that includes information about a registered business, such as
business name, description, address, and contact information.

270

Web Services Essentials

businessService
A UDDI XML element that includes information about a registered web service or a

group of related web services. This includes name, description, and an optional list
of bi ndi ngTenpl at es. See also bindingTemplate.

D
deployment descriptor file
An XML file used by Apache SOAP to define and deploy a specific SOAP service.

It contains the service URN, a list of service methods, application scope, Java
provider, and Java-to-XML type mappings.

deserialize
A generic technigue for receiving data over a network connection and reconstructing
the specified variable or object. For example, a Java SOAP client might receive

XML messages over a network connection and use the messages to reconstruct the
correct Java objects. See also serialize, XML datatype, and type mapping registry.

disposition report
A UDDI XML element that indicates the success or failure of a UDDI operation. In

the event of failure, the disposition report will include a human-readable explanation
of the error.

DNS

Domain Name System. A distributed system for transating domain names to IP
addresses. See aso IP address.

G
GLUE

Web services platform created by The Mind Electric, Inc. Includes support for
SOAP, WSDL, and UDDI.

271

Web Services Essentials

green pages

A generic category of data used within UDDI to specify technical information about
aweb service. Generally, thisincludes a pointer to an external specification and an
address for invoking the web service. See also bindingTemplate and tModel.

H

HTTP
Hypertext Transfer Protocol. HTTP is the main protocol for exchanging data
between web browsers and web servers. HTTP was originally designed for remote
document retrieval, but is now used by SOAP and XML-RPC for remote procedure
cals. Seeaso BEEP.

|

IETF
Internet Engineering Task Force. The IETF is the main standards body for Internet
protocols, including HTTP and BEEP.

P
Internet Protocol. Thisisthe main protocol used to route packets of data throughout
the Internet. Seealso TCP.

|P address
A unique 32-bit address that identifies a machine on the Internet.

| SO 3166

A standard taxonomy of country codes maintained by the International Organization
for Standardization (1SO). For example, China has the code CN, whereas the United
States has the code US. Using I1SO 3166, companies registered with UDDI can
identify their geographic headquarters or their main geographic areas of business.
SO 3166 is also used for top-level Internet domain country codes.

272

Web Services Essentials

M

MIME
Multi-Purpose Internet Mail Extensions. MIME is a standard technique for
transmitting or attaching binary data, such asimages, audio, and video.

mustUnder stand
A SOAP Header attribute, which indicates whether a specified header is optional or
mandatory. If set to true , the recipient must understand and process the Header
attribute. Otherwise, it must discard the message and return a Faul t . See also SOAP
Header.

N

NAICS
North American Industry Classification System. NAICS provides a six- digit
industry code for more than 19,000 industries. Beginning in 1997, NAICS replaced
the previous Standard Industry Classification (SIC). NAICS is used within UDDI as
a standard taxonomy for classifying businesses and business services.

P

port
A logica connection place where TCP/IP servers listen for client requests. HTTP
uses port 80.

portType

The WSDL port Type element combines multiple nessage elements to form a
complete one-way or roundtrip operation. For example, a port Type can combine a
request message and a response message into a single request/response operation,
such as are commonly used in SOAP services.

273

Web Services Essentials

R

remote procedure calls
A generic technique whereby one application can connect over a network to a second
application, invoke one of its functions, and receive the results of the call. Remote

procedure calls (RPCs) are used in many distributed application frameworks,
including CORBA, Distributed COM, Java RMI, SOAP, and XML-RPC.

rpcrouter

Apache SOAP servlet that receives SOAP requests and routes them to the
appropriate service classes for processing.

S
SAML

Security Assertion Markup Language. Developed by the Organization for the
Advancement of Structured Information Standards (OASIS), SAML facilitates the
exchange of authentication and authorization information between business partners.

Semantic Web

A term coined by Tim Berners-Lee, the original inventor of the World Wide Web.
Very broadly, the Semantic Web envisions aworld in which applications can use and
understand the Web as easily as humans now browse the Web. Berners-Lee has
indicated that web services are an important actualization of his Semantic Web
vision.

serialize
A generic technique for transforming a variable or object into a standard format for
transmission across a network. For example, a Java SOAP client will serialize Java

objects to a standard XML format and then transmit the XML over the network. See
also deserialize, XML datatype, and type mapping registry.

service description

Layer within the web service protocol stack that is responsible for describing the
public interface to a specific web service. See aso WSDL.

274

Web Services Essentials

service provider

Within the web service architecture, the service provider is any host that implements
aweb service and makes it available on the Internet. Traditionally, thisis the same as
aserver in aclient/server architecture.

serviceregistry

Within the web service architecture, the service registry is a logically centralized
directory of services. Developers can connect to a service registry and publish new
services or find existing ones. See a'so UDDI.

service requestor

Within the web service architecture, the service requestor is any consumer of a web
service. The requestor utilizes an existing web service by opening a network
connection and sending an XML request. Traditionally, thisis the same asaclient in
aclient/server architecture.

servicetype

SeetModd .

SOAP

SOAP is an XML-based protocol for exchanging information between computers.
Although SOAP can be used in a variety of messaging systems and can be delivered
via a variety of transport protocols, the main focus of SOAP is remote procedure
calls (RPCs) transported via HTTP. Like XML-RPC, SOAP is platform
independent. It therefore enables diverse applications to communicate with one
another over a network connection.

SOAP Body

The SOAP Body element encapsulates the main "payload” of the SOAP message.
The payload includes details regarding the remote procedure call, including the
method name to invoke, method parameters, or return values. The Body element can
also include an optional Faul t element for specifying error conditions.

275

Web Services Essentials

SOAP Envelope

The SOAP XML Envel ope element encapsulates a single XML message being
transferred via SOAP. The Envel ope specifies the SOAP version, and consists of one
optional SOAP Header and a required SOAP Body. See also SOAP Header and
SOAP Body.

SOAP Header

The optiona SOAP Header element provides a flexible framework for specifying
additional application-level attributes for a specific SOAP message. The Header
framework can be used in a diverse set of applications, including user authentication,
transaction management, or payment authorization. See also SOAP Envelope and
mustUnderstand.

SOAP::Litefor Perl

The SOAP library for Perl. Includes support for SOAP, XML-RPC, WSDL, and
UDDI.

SOAPAction Header

The HTTP Header that can be used to indicate the intent of a SOAP message. Some
SOAP servers require that clients specify a full soapaction value, such as the
following: soaPAction: "urn: xnet hodsBabel Fi sh#Babel Fish". But other SOAP
servers, including Apache SOAP, only require that clients specify a blank
SOAPAction (e.g., soaPAction: ""). The soaPAction Header iS required under
SOAP 1.1, but is optional under SOAP 1.2.

SOAP-DSIG

SOAP Security Extensions: Digita Signature. SOAP-DSIG uses public key
cryptography to enable digital signing of SOAP messages. This enables the client or
server to validate the identity of the other party. SOAP-DSIG has been submitted to
the W3C.

276

Web Services Essentials

socket

A programming abstraction that facilitates network programming by insulating the
programmer from the details of the underlying network protocol.

-
tar getNamespace
A convention of XML Schemathat enables an XML document to refer to itself. Any
newly defined elements will belong to the specified t ar get Nanespace. See aso XML
Schema.
TCP
Transmission Control Protocol. TCP is primarily responsible for breaking messages
into individual IP packets and then reassembling those packets at the destination.
Seeaso IP.
TcpTunnelGui
A tool bundled with Apache SOAP that enables you to easily intercept and view
SOAP requests and responses. A great tool for debugging SOAP applications.
tModel

Technical model. A UDDI XML element used to provide pointers to external
technical specifications. Also referred to as a service type.

type mapping registry

Within Apache SOAP, the type mapping registry maps XML elements to Java
classes and vice versa. By default, the registry is prepopulated with basic data types,
including strings, vectors, dates, and arrays. If you are passing new data types, you
need to explicitly register the new type and indicate which Java classes will be
responsible for serializing and deserializing your new type. See also serialize and
deserialize.

277

Web Services Essentials

UDDI

Universal Description, Discovery, and Integration. UDDI currently represents the
discovery layer within the web service protocol stack. UDDI was originally created
by Microsoft, IBM, and Ariba, and represents a technical specification for publishing
and finding businesses and web services. See aso UDDI cloud services.

UDDI Business Registry

See UDDI cloud services .

UDDI cloud services

Also known as the UDDI Business Registry, UDDI cloud services represent a fully
operational implementation of the UDDI specification. Launched in May 2001 by
Microsoft and I1BM, UDDI cloud services now enable anyone to search existing
UDDI data or to publish new business and service data.

ubDDI4J

An open source UDDI library developed by IBM.

UNSPSC

Universal Standard Products and Service Classification. UNSPSC provides standard
codes for classifying products and services. The standard was developed in 1998
and is currently maintained by the nonprofit Electronic Commerce Code
Management Association (ECCMA). UNSPSC provides coverage of 54 industries
and includes over 12,000 codes for products and services. UNSPSC is used within
UDDI as a standard taxonomy for classifying businesses and business services.

URN

Uniform Resource Name. A URN is a Uniform Resource Identifier (URI) that is
both persistent and location-independent. For example, urn: i sbn: 0596000588 refers
to the book XML in Nutshell (O'Reilly). URNSs are frequently used to identify SOAP
Services.

278

Web Services Essentials

w
wW3C
World Wide Web Consortium. The W3C is the main standards body for web

protocols and specifications, including HTML, XML, XML Schema, SOAP, and
XML Encryption. See also W3C XML Protocol Group.

W3C XML Protocol Group

Created in September 2000, the W3C XML Protocol Group aims to standardize web
service protocols. Itsfirst goal isto create an official specification for SOAP.

W3C Web Services Activity

Created in January 2002, this Activity includes the W3C XML Protocol Working
Group, aswell as groups for Architecture and Description.

web service

A web service is any service that is available over the Internet, uses a standardized
XML messaging system, and is not tied to any one operating system or programming
language. Although not required, web services should also be self-describing via a
common XML format and discoverable via a simple find mechanism.

web service protocol stack
An emerging stack of protocols used to create and describe web services. The
current web service protocol stack consists of four layers. service transport (HTTP,

FTP, BEEP, etc), XML messaging (XML-RPC, SOAP), service description
(WSDL), and service discovery (UDDI).

white pages

A generic category of data used within UDDI to specify business information,
including business name, business description, and address. See also businessEntity.

279

Web Services Essentials

WSDL

Web Services Description Language. WSDL currently represents the service
description layer within the web service protocol stack. WSDL isan XML grammar
for specifying a public interface for aweb service. This public interface can include
information on all publicly available functions, data type information for all XML
messages, binding information about the specific transport protocol to be used, and
address information for locating the specified service. WSDL is not necessarily tied
to a specific XML messaging system, but it does include built-in extensions for
describing SOAP services.

WSIF

Web Services Invocation Framework. WSIF is a framework created by IBM that
enables a programmer to invoke a SOAP service without actually writing any SOAP-
specific code. It also enables automatic invocation of SOAP services, based on
WSDL files.

X
XKMS
XML Key Management Services is a proposed web service specification for

distributing and managing public keys and certificates. XKMS has been submitted
to the W3C.

XML

eXtensible Markup Language. An official recommendation of the W3C, XML
represents a flexible framework for organizing and sharing data. XML is used
heavily within the XML messaging, service description, and service discovery layers
of the web service protocol stack.

XML datatype
Indicates the type of data that may be placed inside a particular XML element. XML

Schema includes built-in support for basic data types. including strings, integers,
floats, and doubles. See also XML Schema and type mapping registry.

280

Web Services Essentials

XML Encryption Standard

A proposed W3C framework for encrypting/decrypting entire XML documents or
just portions of an XML document.

XML namespaces
Provides a standard mechanism for disambiguating XML elements and attributes that

have the same name. The SOAP specification makes heavy use of XML
namespaces.

XML Schema
A framework for defining rules for XML documents. XML Schema includes the

ability to specify data types for individual elements, a key ingredient for remote
procedure calls (RPCs).

XML-RPC
A protocol that uses XML messages to perform RPCs via HTTP. Like SOAP,

XML-RPC is platform-independent, and it therefore enables diverse applications to
communicate with each other over a network connection.

yellow pages
A generic category of data used within UDDI to classify companies or services

offered. Data may include industry, product, or geographic codes based on standard
taxonomies. See also SO 3166, NAICS, tModel , and UNSPSC.

281

Web Services Essentials

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Web Services Essentials is a spiny lobster (also known as a
rock lobster). There are about 45 species of spiny lobster worldwide, ranging in size from
2 to 26 pounds. Spiny lobsters have spine-studded shells and long antennae. However,
unlike American lobsters, they have no large front claws. Spiny lobsters aso have larger
tails than American lobsters. They are colorfully marked with bright green, blue, and
yellow spots on an orange or brown shell. Spiny lobsters inhabit shallow-watered, rocky
environmentsin tropical and subtropical waters worldwide, as well as in cold waters of the
southern hemisphere. Spiny lobsters usually remain concealed in rock crevices during the
day and come out to feed at night. They eat a wide variety of foods, including shellfish,
crabs, small fish, sea urchins, and sometimes algae and seaweed. They reach sexua
maturity at 7 to 10 years and can live for over 30 years.

Although they are reclusive, spiny lobsters seem to be more socia than American lobsters
and often share their dens in coral reefs. One of the stranger sights reported by fishermen
and divers is the so-called "March of the Spinys," which is a mass migration of hundreds
or even thousands of spiny lobsters that often takes place in October or November, usually
after a period of prolonged storminess. During this time, spiny lobsters swim in single-file
columns, moving from shallow to deeper waters. Although the lobsters are nocturnal
creatures, these marches sometimes occur in broad daylight. To date, there is no scientific
explanation for this phenomenon.

Claire Cloutier was the production editor and copyeditor for Web Services Essentials.
Rachel Wheeler was the proofreader. Sarah Sherman and Jeffrey Holcomb provided
quality control. Phil Dangler, Edie Shapiro, Sarah Sherman, and Derek Di Matteo
provided composition assistance. Nancy Crumpton wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Emma Colby produced the cover layout with QuarkXPress 4.1, using Adobe's
ITC Garamond font.

David Futato designed the interior layout. Mihaela Maier and Neil Walls converted the
files from Microsoft Word to FrameMaker 5.5.6, using tools created by Mike Sierra. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book
were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Rachel Wheeler.

282

	Cover
	Table of Contents
	Preface
	Audience
	Organization
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Part I: Introduction to Web Services
	1. Introduction
	1.1 Introduction to Web Services
	1.2 Web Service Architecture
	1.3 XML Messaging
	1.4 Service Description: WSDL
	1.5 Service Discovery: UDDI
	1.6 Service Transport
	1.7 Security Considerations
	1.8 All Together Now
	1.9 Standards and Coherence

	Part II: XML-RPC
	2. XML-RPC Essentials
	2.1 XML-RPC Overview
	2.2 Why XML-RPC?
	2.3 XML-RPC Technical Overview
	2.4 Developing with XML-RPC
	2.5 Beyond Simple Calls

	Part III: SOAP
	3. SOAP Essentials
	3.1 SOAP 101
	3.2 The SOAP Message
	3.3 SOAP Encoding
	3.4 SOAP via HTTP
	3.5 SOAP and the W3C
	3.6 SOAP Implementations

	4. Apache SOAP Quick Start
	4.1 Installing Apache SOAP
	4.2 Hello, SOAP!
	4.3 Deploying SOAP Services
	4.4 The TcpTunnelGui Tool
	4.5 Web Resources

	5. Programming Apache SOAP
	5.1 Working with Arrays
	5.2 Working with JavaBeans
	5.3 Working with Literal XML Documents
	5.4 Handling SOAP Faults
	5.5 Maintaining Session State

	Part IV: WSDL
	6. WSDL Essentials
	6.1 The WSDL Specification
	6.2 Basic WSDL Example: HelloService.wsdl
	6.3 WSDL Invocation Tools, Part I
	6.4 Basic WSDL Example: XMethods eBay Price Watcher Service
	6.5 WSDL Invocation Tools, Part II
	6.6 Automatically Generating WSDL Files
	6.7 XML Schema Data Typing

	Part V: UDDI
	7. UDDI Essentials
	7.1 Introduction to UDDI
	7.2 Why UDDI?
	7.3 UDDI Technical Overview
	7.4 UDDI Data Model
	7.5 Searching UDDI
	7.6 Publishing to UDDI
	7.7 UDDI Implementations
	7.8 Web Resources

	8. UDDI Inquiry API: Quick Reference
	8.1 The UDDI Inquiry API
	8.2 Find Qualifiers

	9. UDDI 4J
	9.1 Getting Started
	9.2 Finding and Retrieving UDDI Data
	9.3 Publishing UDDI Data
	9.4 UDDI4J Quick Reference API

	Glossary
	Colophon

