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Chapter 2

Preface

One thing I (Sarah) have learned over the last 20 or so years is that a sure way to
derail a promising conversation at a party is to tell people what I do for a living.
And rest assured that I’m neither a tax auditor nor captain of a sludge barge. No,
I’m merely a biostatistician and statistics instructor, a revelation which invariably
provokes a response such as “statistics was my worst class in school” or the
sudden inspiration to quote that old chestnut popularized by Mark Twain that
there are three kinds of lies: lies, damned lies, and statistics.

Personally, I find statistics fascinating and I love working in this field. I like
teaching statistics as well, and I like to believe that I communicate some of this
enthusiasm to my students, most of whom are physicians or other healthcare
professionals required to take my classes as part of their fellowship studies. It’s
often an uphill battle, however: some of them arrive with a negative attitude
toward everything statistical, possibly augmented by the belief that statistics is
some kind of magical procedure that will do their thinking for them, or a set of
tricks and manipulations whose purpose is to twist reality in order to mislead
other people.

I’m not sure how statistics got such a bad reputation, or why so many people have
a negative attitude toward it. I do know that most of them can’t afford it: the need
to be competent in statistics is fast becoming a necessity in many fields of work.
It’s also becoming a requirement to be a thoughtful participant in modern society,
as we are bombarded daily by statistical information and arguments, many of
questionable merit. I have long since ceased to hope that I can keep everyone from
misusing statistics: instead I have placed my hopes in cultivating a statistics-
educated populace who will be able to recognize when statistics are being misused
and discount the speaker’s credibility accordingly. We (Sarah and Paul) have tried
to address both concerns in this book: statistics as a professional necessity, and
statistics as part of the intellectual content required for informed citizenship.
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What Is Statistics?
Before we jump into the technical details of learning and using statistics, let’s step
back for a minute and consider what can be meant by the word “statistics.” Don’t
worry if you don’t understand all the vocabulary immediately: it will become clear
over the course of this book.

When people speak of statistics, they usually mean one or more of the following:

1. Numerical data such as the unemployment rate, the number of persons who
die annually from bee stings, or the racial makeup of the population of New
York City in 2006 as compared to 1906.

2. Numbers used to describe samples (subsets) of data, such as the mean
(average), as opposed to numbers used to describe populations (entire sets of
data); for instance, if we work for an advertising firm interested in the average
age of people who subscribe to Sports Illustrated, we can draw a sample of
subscribers and calculate the mean of that sample (a statistic), which is an
estimate of the mean of the entire population of subscribers.

3. Particular procedures used to analyze data, and the results of those proce-
dures, such as the t statistic or the chi-square statistic.

4. A field of study that develops and uses mathematical procedures to describe
data and make decisions regarding it.

The type of statistics referred to in definition #1 is not the primary concern of this
book: if you simply want to find the latest figures on unemployment, health, or
any of the myriad other topics on which governments and private organizations
regularly release statistical data, your best bet is to consult a reference librarian or
subject expert. If, however, you want to know how to interpret those figures (to
understand why the mean is often misleading as a statement of average value, for
instance, or the difference between crude and standardized mortality rates), Statis-
tics in a Nutshell can definitely help you out.

The concepts included in definition #2 will be discussed in Chapter 7, which
introduces inferential statistics, but they also permeate this book. It is partly a
question of vocabulary (statistics are numbers that describe samples, while param-
eters are numbers that describe populations), but also underscores a fundamental
point about the practice of statistics. The concept of using information gained
from studying a sample to make statements about a population is the basis of
inferential statistics, and inferential statistics is the primary focus of this book (as
it is of most books about statistics).

Definition #3 is also fundamental to most chapters of this book. The process of
learning statistics is to some extent the process of learning particular statistical
procedures, including how to calculate and interpret them, how to choose the
appropriate statistic for a given situation, and so on. In fact, many new students of
statistics subscribe to this definition: learning statistics to them means learning to
execute a set of statistical procedures. This is not an invalid approach to statistics
so much as it is incomplete: learning to execute statistical procedures is a neces-
sary part of the practice of statistics, but it is far from being the entire story.
What’s more, since computer software has made it increasingly easy for anyone,
regardless of mathematical background, to produce statistical analyses, the need
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to understand and interpret statistics has far outstripped the need to learn how to
do the calculations themselves.

Definition #4 is nearest to my heart, since I chose statistics as my professional
field. If you are a secondary or post-secondary student you are probably aware of
this definition of statistics, as many universities and colleges today either have a
separate department of statistics or include statistics as a field of specialization
within mathematics. Statistics is increasingly taught in high school as well: in the
U.S., enrollment in the A.P. (Advanced Placement) Statistics classes is increasing
more rapidly than enrollment in any other A.P. area.

Statistics is too important to be left to the statisticians, however, and university
study in many subjects requires one or more semesters of statistics classes. Many
basic techniques in modern statistics have been developed by people who learned
and used statistics as part of their studies in another field. For instance, Stephen
Raudenbush, a pioneer in the development of hierarchical linear modeling,
studied Policy Analysis and Evaluation Research at Harvard, and Edward Tufte,
perhaps the world’s leading expert on statistical graphics, began his career as a
political scientist: his Ph.D. dissertation at Yale was on the American Civil Rights
Movement.

With the increasing use of statistics in many professions, and at all levels from top
to bottom, basic knowledge of statistics has become a necessity for many people
who have been out of school for years. Such individuals are often ill-served by
textbooks aimed at introductory college courses, which are too specialized, too
focused on calculation, and too expensive.

Finally, statistics cannot be left to the statisticians because it’s also a necessity to
understand much of what you read in the newspaper or hear on television and the
radio. A working knowledge of statistics is the best check against the proliferation
of misleading or outright false claims (whether by politicians, advertisers, or social
reformers), which seem to occupy an ever-increasing portion of our daily news
diet. There’s a reason that Darryl Huff’s 1954 classic How to Lie with Statistics
(W.W. Norton) remains in print: statistics are easy to misuse, the common tech-
niques of statistical distortion have been around for decades, and the best defense
against those who would lie with statistics is to educate yourself so you can spot
the lies and stop the lying liars in their tracks.

The Focus of This Book
There are so many statistics books already on the market that you might well
wonder why we feel the need to add another to the pile. The primary reason is
that we haven’t found any statistics books that answer the needs we have
addressed in Statistics in a Nutshell. In fact, if I may wax poetic for a moment, the
situation is, to paraphrase the plight of Coleridge’s Ancient Mariner, “books,
books everywhere, nor any with which to learn.” The issues we have tried to
address with this book are:

1. The need for a book that focuses on using and understanding statistics in a
research or applications context, not as a discrete set of mathematical tech-
niques but as part of the process of reasoning with numbers.
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2. The need to integrate discussion of issues such as measurement and data
management into an introductory statistics text.

3. The need for a book that isn’t focused on a particular subject area. Elemen-
tary statistics is largely the same across subjects (a t-test is pretty much the
same whether the data comes from medicine, finance, or criminal justice), so
there’s no need for a proliferation of texts presenting the same information
with slightly different spin.

4. The need for an introductory statistics book that is compact, inexpensive,
and easy for beginners to understand without being condescending or overly
simplistic.

So who is the intended audience of Statistics in a Nutshell? We see three in
particular:

1. Students taking introductory statistics classes in high schools, colleges, and
universities.

2. Adults who need to learn statistics as part of their current jobs or in order to
be eligible for promotion.

3. People who are interested in learning about statistics out of intellectual
curiosity.

Our focus throughout Statistics in a Nutshell is not on particular techniques,
although many are taught within this work, but on statistical reasoning. You
might say that our focus is not on doing statistics, but on thinking statistically.
What does that mean? Several things are necessary in order to be able to focus on
the process of thinking with numbers. More particularly, we focus on thinking
about data, and using statistics to aid in that process.

Statistics in the Age of Information
It’s become fashionable to say that we’re living in the Age of Information, where
so many facts are collected and disseminated that no one could possibly keep up
with them. Well, this is one of those clichés that is based on truth: we are
drowning in data and the problem is only going to get worse. Wide access to
computing technology and electronic means of data storage and dissemination
have made information easier to access, which is great from the researcher’s point
of view, since you no longer have to travel to a particular library or archive to
peruse printed copies of records.

Whether your interest is the U.S. population in 1790, annual oil production and
consumption in different countries, or the worldwide burden of disease, an
Internet search will point you to data sources that can be accessed electronically,
often directly from your home computer. However, data has no meaning in and of
itself: it has to be organized and interpreted by human beings. So part of partici-
pating fully in the Information Age requires becoming fluent in understanding
data, including the ways it is collected, analyzed, and interpreted. And because
the same data can often be interpreted in many ways, to support radically
different conclusions, even people who don’t engage in statistical work them-
selves need to understand how statistics work and how to spot valid versus invalid
claims, however solidly they may seem to be backed by numbers.
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Organization of This Book
Statistics in a Nutshell is organized into four parts: introductory material (Chap-
ters 1–6) that lays the necessary foundation for the chapters that follow;
elementary inferential statistical techniques (Chapters 7–11); more advanced tech-
niques (Chapters 12-16); and specialized techniques (Chapters 17–19).

Here’s a more detailed breakdown of the chapters:

Chapter 1, Basic Concepts of Measurement
Discusses foundational issues for statistics, including levels of measurement,
operationalization, proxy measurement, random and systematic error,
measures of agreement, and types of bias. Statistics demonstrated include
percent agreement and kappa.

Chapter 2, Probability
Introduces the basic vocabulary and laws of probability, including trials,
events, independence, mutual exclusivity, the addition and multiplication
laws, and conditional probability. Procedures demonstrated include calcula-
tion of basic probabilities, permutations and combinations, and Bayes’s
theorem.

Chapter 3, Data Management
Discusses practical issues in data management, including procedures to
troubleshoot an existing file, methods for storing data electronically, data
types, and missing data.

Chapter 4, Descriptive Statistics and Graphics
Explains the differences between descriptive and inferential statistics and
between populations and samples, and introduces common measures of
central tendency and variability and frequently used graphs and charts. Statis-
tics demonstrated include mean, median, mode, range, interquartile range,
variance, and standard deviation. Graphical methods demonstrated include
frequency tables, bar charts, pie charts, Pareto charts, stem and leaf plots,
boxplots, histograms, scatterplots, and line graphs.

Chapter 5, Research Design
Discusses observational and experimental studies, common elements of good
research designs, the steps involved in data collection, types of validity, and
methods to limit or eliminate the influence of bias.

Chapter 6, Critiquing Statistics Presented by Others
Offers guidelines for reviewing the use of statistics, including a checklist of
questions to ask of any statistical presentation and examples of when legiti-
mate statistical procedures may be manipulated to appear to support
questionable conclusions.

Chapter 7, Inferential Statistics
Introduces the basic concepts of inferential statistics, including probability
distributions, independent and dependent variables and the different names
under which they are known, common sampling designs, the central limit
theorem, hypothesis testing, Type I and Type II error, confidence intervals
and p-values, and data transformation. Procedures demonstrated include
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converting raw scores to Z-scores, calculation of binomial probabilities, and
the square-root and log data transformations.

Chapter 8, The t-Test
Discusses the t-distribution, the different types of t-tests, and the influence of
effect size on power in t-tests. Statistics demonstrated include the one-sample
t-test, the two independent samples t-test, the two repeated measures t-test,
and the unequal variance t-test.

Chapter 9, The Correlation Coefficient
Introduces the concept of association with graphics displaying different
strengths of association between two variables, and discusses common statis-
tics used to measure association. Statistics demonstrated include Pearson’s
product-moment correlation, the t-test for statistical significance of Pearson’s
correlation, the coefficient of determination, Spearman’s rank-order coeffi-
cient, the point-biserial coefficient, and phi.

Chapter 10, Categorical Data
Reviews the concepts of categorical and interval data, including the Likert
scale, and introduces the R × C table. Statistics demonstrated include the chi-
squared tests for independence, equality of proportions, and goodness of fit,
Fisher’s exact test, McNemar’s test, gamma, Kendall’s tau-a, tau-b, and tau-c,
and Somers’s d.

Chapter 11, Nonparametric Statistics
Discusses when to use nonparametric rather than parametric statistics, and
presents nonparametric statistics for between-subjects and within-subjects
designs. Statistics demonstrated include the Wilcoxon Rank Sum and Mann-
Whitney U tests, the median test, the Kruskal-Wallis H test, the Wilcoxon
matched pairs signed rank test, and the Friedman test.

Chapter 12, Introduction to the General Linear Model
Introduces linear regression and ANOVA through the concept of the General
Linear Model, and discusses assumptions made when using these designs.
Statistical procedures demonstrated include simple (bivariate) regression,
one-way ANOVA, and post-hoc testing.

Chapter 13, Extensions of Analysis of Variance
Discusses more complex ANOVA designs. Statistical procedures demon-
strated include two-way and three-way ANOVA, MANOVA, ANCOVA,
repeated measures ANOVA, and mixed designs.

Chapter 14, Multiple Linear Regression
Extends the ideas introduced in Chapter 12 to models with multiple predic-
tors. Topics covered include relationships among predictor variables,
standardized coefficients, dummy variables, methods of model building, and
violations of assumptions of linear regression, including nonlinearity, auto-
correlation, and heteroscedasticity.

Chapter 15, Other Types of Regression
Extends the technique of regression to data with binary outcomes (logistic
regression) and nonlinear models (polynomial regression), and discusses the
problem of overfitting a model.
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Chapter 16, Other Statistical Techniques
Demonstrates several advanced statistical procedures, including factor anal-
ysis, cluster analysis, discriminant function analysis, and multidimensional
scaling, including discussion of the types of problems for which each tech-
nique may be useful.

Chapter 17, Business and Quality Improvement Statistics
Demonstrates statistical procedures commonly used in business and quality
improvement contexts. Analytical and statistical procedures covered include
construction and use of simple and composite indexes, time series, the
minimax, maximax, and maximin decision criteria, decision making under
risk, decision trees, and control charts.

Chapter 18, Medical and Epidemiological Statistics
Introduces concepts and demonstrates statistical procedures particularly rele-
vant to medicine and epidemiology. Concepts and statistics covered include
the definition and use of ratios, proportions, and rates, measures of preva-
lence and incidence, crude and standardized rates, direct and indirect
standardization, measures of risk, confounding, the simple and Mantel-
Haenszel odds ratio, and precision, power, and sample size calculations.

Chapter 19, Educational and Psychological Statistics
Introduces concepts and statistical procedures commonly used in the fields of
education and psychology. Concepts and procedures demonstrated include
percentiles, standardized scores, methods of test construction, the true score
model of classical test theory, reliability of a composite test, measures of
internal consistency including coefficient alpha, and procedures for item anal-
ysis. An overview of item response theory is also provided

Two appendixes cover topics that are a necessary background to the material
covered in the main text, and a third provides references to supplemental reading:

Appendix A
Provides a self-test and review of basic arithmetic and algebra for people
whose memory of their last math course is fast receding on the distant
horizon. Topics covered include the laws of arithmetic, exponents, roots and
logs, methods to solve equations and systems of equations, fractions, facto-
rials, permutations, and combinations.

Appendix B
Provides an introduction to some of the most common computer programs
used for statistical applications, demonstrates basic analyses in each program,
and discusses their relative strengths and weaknesses. Programs covered
include Minitab, SPSS, SAS, and R; the use of Microsoft Excel (not a statis-
tical package) for statistical analysis is also discussed.

Appendix C
An annotated bibliography organized by chapter, which includes published
works and websites cited in the text and others that are good starting points
for people researching a particular topic.
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You should think of these chapters as tools, whose best use depends on the indi-
vidual reader’s, background and needs. Even the introductory chapters may not
be relevant immediately to everyone: for instance, many introductory statistics
classes do not require students to master topics such as data management or
measurement theory. In that case, these chapters can serve as references when the
topics become necessary (expertise in data management is often an expectation of
research assistants, for instance, although it is rarely directly taught).

Classification of what is “elementary” and what is “advanced” depends on an
individual’s background and purposes. We designed Statistics in a Nutshell to
answer the needs of many different types of users. For this reason, there’s no
perfect way to organize the material to meet everyone’s needs, which brings us to
an important point: there’s no reason you should feel the need to read the chap-
ters in the order they are presented here. Statistics presents many chicken-and-egg
dilemmas: for instance, you can’t design experiments without knowing what
statistics are available to you, but you can’t understand how statistics are used
without knowing something about research design. Similarly, it might seem that a
chapter on data management would be most useful to individuals who have
already done some statistical analysis, but I’ve advised many research assistants
and project managers who are put in charge of large data sets before they’ve had a
single course in statistics. So use the chapters in the way that best facilitates your
specific purposes, and don’t be shy about skipping around and focusing on what-
ever meets your particular needs.

Some of the later chapters are also specialized and not relevant to everyone, most
obviously Chapters 17–19, which are written with particular subject areas in
mind. Chapters 15 and 16 also cover topics that are not often included in intro-
ductory statistics texts, but that are the statistical procedure of choice in particular
contexts. Because we have planned this book to be useful for consumers of statis-
tics and working professionals who deal with statistics even if they don’t compute
them themselves, we have included these topics, although beginning students may
not feel the need to tackle them in their first statistics course.

It’s wise to keep an open mind regarding what statistics you need to know. You
may currently believe that you will never have the need to conduct a nonpara-
metric test or a logistic regression analysis. However, you never know what will
come in handy in the future. It’s also a mistake to compartmentalize too much by
subject field: because statistical techniques are ultimately about numbers rather
than content, techniques developed in one field often prove to be useful in
another. For instance, control charts (covered in Chapter 17) were developed in a
manufacturing context, but are now used in many fields from medicine to
education.

We have included more advanced material in other chapters, when it serves to
illustrate a principle or make an interesting point. These sections are clearly iden-
tified as digressions from the main thread of the book, and beginners can skip
over them without feeling that they are missing any vital concepts of basic
statistics.
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Symbols Used in This Book

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelera-
tors (such as Alt and Ctrl).

Symbol Meaning

Names of statistics

µ Mean of a population

σ Standard deviation of a population

σ2 Variance of a population

Π Proportion of a population

x Mean of a sample

s Standard deviation of a sample

s2 Variance of a sample

n Number of cases in a sample

p Proportion of a sample

Κ Kappa (measure of agreement)

χ2 Chi-squared (statistic, distribution)

Statistical formulas

Σ Summation

! Factorial

C Combination

P Permutation

E Expected value

O Observed value
xij Value of variable x for case ij

Set theory, Bayes Theorem

~ Not

| Conditional probability

∪ Union

∩ Intersection

Other

α Alpha (significance level; probability of Type I error)

β Beta (probability of Type II error)

R Number of rows in a table

C Number of columns in a table
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Chapter 1Basic Concepts

1
Basic Concepts of Measurement

Before you can use statistics to analyze a problem, you must convert the basic
materials of the problem to data. That is, you must establish or adopt a system of
assigning values, most often numbers, to the objects or concepts that are central
to the problem under study. This is not an esoteric process, but something you do
every day. For instance, when you buy something at the store, the price you pay is
a measurement: it assigns a number to the amount of currency that you have
exchanged for the goods received. Similarly, when you step on the bathroom scale
in the morning, the number you see is a measurement of your body weight.
Depending on where you live, this number may be expressed in either pounds or
kilograms, but the principle of assigning a number to a physical quantity (weight)
holds true in either case.

Not all data need be numeric. For instance, the categories male and female are
commonly used in both science and in everyday life to classify people, and there is
nothing inherently numeric in these categories. Similarly, we often speak of the
colors of objects in broad classes such as “red” or “blue”: these categories of
which represent a great simplification from the infinite variety of colors that exist
in the world. This is such a common practice that we hardly give it a second
thought.

How specific we want to be with these categories (for instance, is “garnet” a sepa-
rate color from “red”? Should transgendered individuals be assigned to a separate
category?) depends on the purpose at hand: a graphic artist may use many more
mental categories for color than the average person, for instance. Similarly, the
level of detail used in classification for a study depends on the purpose of the
study and the importance of capturing the nuances of each variable.



2 | Chapter 1: Basic Concepts of Measurement

Measurement
Measurement is the process of systematically assigning numbers to objects and
their properties, to facilitate the use of mathematics in studying and describing
objects and their relationships. Some types of measurement are fairly concrete: for
instance, measuring a person’s weight in pounds or kilograms, or their height in
feet and inches or in meters. Note that the particular system of measurement used
is not as important as a consistent set of rules: we can easily convert measure-
ment in kilograms to pounds, for instance. Although any system of units may
seem arbitrary (try defending feet and inches to someone who grew up with the
metric system!), as long as the system has a consistent relationship with the prop-
erty being measured, we can use the results in calculations.

Measurement is not limited to physical qualities like height and weight. Tests to
measure abstractions like intelligence and scholastic aptitude are commonly used
in education and psychology, for instance: the field of psychometrics is largely
concerned with the development and refinement of methods to test just such
abstract qualities. Establishing that a particular measurement is meaningful is
more difficult when it can’t be observed directly: while you can test the accuracy
of a scale by comparing the results with those obtained from another scale known
to be accurate, there is no simple way to know if a test of intelligence is accurate
because there is no commonly agreed-upon way to measure the abstraction “intel-
ligence.” To put it another way, we don’t know what someone’s actual
intelligence is because there is no certain way to measure it, and in fact we may
not even be sure what “intelligence” really is, a situation quite different from that
of measuring a person’s height or weight. These issues are particularly relevant to
the social sciences and education, where a great deal of research focuses on just
such abstract concepts.

Levels of Measurement
Statisticians commonly distinguish four types or levels of measurement; the same
terms may also be used to refer to data measured at each level. The levels of
measurement differ both in terms of the meaning of the numbers and in the types
of statistics that are appropriate for their analysis.

Nominal Data

With nominal data, as the name implies, the numbers function as a name or label
and do not have numeric meaning. For instance, you might create a variable for
gender, which takes the value 1 if the person is male and 0 if the person is female.
The 0 and 1 have no numeric meaning but function simply as labels in the same
way that you might record the values as “M” or “F.” There are two main reasons
to choose numeric rather than text values to code nominal data: data is more
easily processed by some computer systems as numbers, and using numbers
bypasses some issues in data entry such as the conflict between upper- and lower-
case letters (to a computer, “M” is a different value than “m,” but a person doing
data entry may treat the two characters as equivalent). Nominal data is not limited
to two categories: for instance, if you were studying the relationship between



Levels of Measurement | 3

Basic Concepts

years of experience and salary in baseball players, you might classify the players
according to their primary position by using the traditional system whereby 1 is
assigned to pitchers, 2 to catchers, 3 to first basemen, and so on.

If you can’t decide whether data is nominal or some other level of measurement,
ask yourself this question: do the numbers assigned to this data represent some
quality such that a higher value indicates that the object has more of that quality
than a lower value? For instance, is there some quality “gender” which men have
more of than women? Clearly not, and the coding scheme would work as well if
women were coded as 1 and men as 0. The same principle applies in the baseball
example: there is no quality of “baseballness” of which outfielders have more than
pitchers. The numbers are merely a convenient way to label subjects in the study,
and the most important point is that every position is assigned a distinct value.
Another name for nominal data is categorical data, referring to the fact that the
measurements place objects into categories (male or female; catcher or first
baseman) rather than measuring some intrinsic quality in them. Chapter 10
discusses methods of analysis appropriate for this type of data, and many tech-
niques covered in Chapter 11, on nonparametric statistics, are also appropriate for
categorical data.

When data can take on only two values, as in the male/female example, it may
also be called binary data. This type of data is so common that special techniques
have been developed to study it, including logistic regression (discussed in
Chapter 15), which has applications in many fields. Many medical statistics such
as the odds ratio and the risk ratio (discussed in Chapter 18) were developed to
describe the relationship between two binary variables, because binary variables
occur so frequently in medical research.

Ordinal Data

Ordinal data refers to data that has some meaningful order, so that higher values
represent more of some characteristic than lower values. For instance, in medical
practice burns are commonly described by their degree, which describes the
amount of tissue damage caused by the burn. A first-degree burn is characterized
by redness of the skin, minor pain, and damage to the epidermis only, while a
second-degree burn includes blistering and involves the dermis, and a third-degree
burn is characterized by charring of the skin and possibly destroyed nerve
endings. These categories may be ranked in a logical order: first-degree burns are
the least serious in terms of tissue damage, third-degree burns the most serious.
However, there is no metric analogous to a ruler or scale to quantify how great the
distance between categories is, nor is it possible to determine if the difference
between first- and second-degree burns is the same as the difference between
second- and third-degree burns.

Many ordinal scales involve ranks: for instance, candidates applying for a job may
be ranked by the personnel department in order of desirability as a new hire. We
could also rank the U.S. states in order of their population, geographic area, or
federal tax revenue. The numbers used for measurement with ordinal data carry
more meaning than those used in nominal data, and many statistical techniques
have been developed to make full use of the information carried in the ordering,
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while not assuming any further properties of the scales. For instance, it is appro-
priate to calculate the median (central value) of ordinal data, but not the mean
(which assumes interval data). Some of these techniques are discussed later in this
chapter, and others are covered in Chapter 11.

Interval Data

Interval data has a meaningful order and also has the quality that equal intervals
between measurements represent equal changes in the quantity of whatever is
being measured. The most common example of interval data is the Fahrenheit
temperature scale. If we describe temperature using the Fahrenheit scale, the
difference between 10 degrees and 25 degrees (a difference of 15 degrees) repre-
sents the same amount of temperature change as the difference between 60 and 75
degrees. Addition and subtraction are appropriate with interval scales: a differ-
ence of 10 degrees represents the same amount over the entire scale of
temperature. However, the Fahrenheit scale, like all interval scales, has no natural
zero point, because 0 on the Fahrenheit scale does not represent an absence of
temperature but simply a location relative to other temperatures. Multiplication
and division are not appropriate with interval data: there is no mathematical sense
in the statement that 80 degrees is twice as hot as 40 degrees. Interval scales are a
rarity: in fact it’s difficult to think of another common example. For this reason,
the term “interval data” is sometimes used to describe both interval and ratio data
(discussed in the next section).

Ratio Data

Ratio data has all the qualities of interval data (natural order, equal intervals) plus
a natural zero point. Many physical measurements are ratio data: for instance,
height, weight, and age all qualify. So does income: you can certainly earn 0
dollars in a year, or have 0 dollars in your bank account. With ratio-level data, it is
appropriate to multiply and divide as well as add and subtract: it makes sense to
say that someone with $100 has twice as much money as someone with $50, or
that a person who is 30 years old is 3 times as old as someone who is 10 years old.

It should be noted that very few psychological measurements (IQ, aptitude, etc.)
are truly interval, and many are in fact ordinal (e.g., value placed on education, as
indicated by a Likert scale). Nonetheless, you will sometimes see interval or ratio
techniques applied to such data (for instance, the calculation of means, which
involves division). While incorrect from a statistical point of view, sometimes you
have to go with the conventions of your field, or at least be aware of them. To put
it another way, part of learning statistics is learning what is commonly accepted in
your chosen field of endeavor, which may be a separate issue from what is accept-
able from a purely mathematical standpoint.

Continuous and Discrete Data

Another distinction often made is that between continuous and discrete data.
Continuous data can take any value, or any value within a range. Most data
measured by interval and ratio scales, other than that based on counting, is
continuous: for instance, weight, height, distance, and income are all continuous.
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In the course of data analysis and model building, researchers sometimes recode
continuous data in categories or larger units. For instance, weight may be
recorded in pounds but analyzed in 10-pound increments, or age recorded in
years but analyzed in terms of the categories 0–17, 18–65, and over 65. From a
statistical point of view, there is no absolute point when data become continuous
or discrete for the purposes of using particular analytic techniques: if we record
age in years, we are still imposing discrete categories on a continuous variable.
Various rules of thumb have been proposed: for instance, some researchers say
that when a variable has 10 or more categories (or alternately, 16 or more catego-
ries), it can safely be analyzed as continuous. This is another decision to be made
on a case-by-case basis, informed by the usual standards and practices of your
particular discipline and the type of analysis proposed.

Discrete data can only take on particular values, and has clear boundaries. As the
old joke goes, you can have 2 children or 3 children, but not 2.37 children, so
“number of children” is a discrete variable. In fact, any variable based on counting
is discrete, whether you are counting the number of books purchased in a year or
the number of prenatal care visits made during a pregnancy. Nominal data is also
discrete, as are binary and rank-ordered data.

Operationalization

Beginners to a field often think that the difficulties of research rest primarily in
statistical analysis, and focus their efforts on learning mathematical formulas and
computer programming techniques in order to carry out statistical calculations.
However, one major problem in research has very little to do with either mathe-
matics or statistics, and everything to do with knowing your field of study and
thinking carefully through practical problems. This is the problem of operational-
ization, which means the process of specifying how a concept will be defined and
measured. Operationalization is a particular concern in the social sciences and
education, but applies to other fields as well.

Operationalization is always necessary when a quality of interest cannot be
measured directly. An obvious example is intelligence: there is no way to measure
intelligence directly, so in the place of such a direct measurement we accept some-
thing that we can measure, such as the score on an IQ test. Similarly, there is no
direct way to measure “disaster preparedness” for a city, but we can operation-
alize the concept by creating a checklist of tasks that should be performed and
giving each city a “disaster preparedness” score based on the number of tasks
completed and the quality or thoroughness of completion. For a third example,
we may wish to measure the amount of physical activity performed by subjects in
a study: if we do not have the capacity to directly monitor their exercise behavior,
we may operationalize “amount of physical activity” as the amount indicated on a
self-reported questionnaire or recorded in a diary.

Because many of the qualities studied in the social sciences are abstract, opera-
tionalization is a common topic of discussion in those fields. However, it is
applicable to many other fields as well. For instance, the ultimate goals of the
medical profession include reducing mortality (death) and reducing the burden of
disease and suffering. Mortality is easily verified and quantified but is frequently
too blunt an instrument to be useful, since it is a thankfully rare outcome for most
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diseases. “Burden of disease” and “suffering,” on the other hand, are concepts
that could be used to define appropriate outcomes for many studies, but that have
no direct means of measurement and must therefore be operationalized. Exam-
ples of operationalization of burden of disease include measurement of viral levels
in the bloodstream for patients with AIDS and measurement of tumor size for
people with cancer. Decreased levels of suffering or improved quality of life may
be operationalized as higher self-reported health state, higher score on a survey
instrument designed to measure quality of life, improved mood state as measured
through a personal interview, or reduction in the amount of morphine requested.

Some argue that measurement of even physical quantities such as length require
operationalization, because there are different ways to measure length (a ruler might
be the appropriate instrument in some circumstances, a micrometer in others).
However, the problem of operationalization is much greater in the human sciences,
when the object or qualities of interest often cannot be measured directly.

Proxy Measurement

The term proxy measurement refers to the process of substituting one measure-
ment for another. Although deciding on proxy measurements can be considered
as a subclass of operationalization, we will consider it as a separate topic. The
most common use of proxy measurement is that of substituting a measurement
that is inexpensive and easily obtainable for a different measurement that would
be more difficult or costly, if not impossible, to collect.

For a simple example of proxy measurement, consider some of the methods used
by police officers to evaluate the sobriety of individuals while in the field. Lacking
a portable medical lab, an officer can’t directly measure blood alcohol content to
determine if a subject is legally drunk or not. So the officer relies on observation of
signs associated with drunkenness, as well as some simple field tests that are
believed to correlate well with blood alcohol content. Signs of alcohol intoxica-
tion include breath smelling of alcohol, slurred speech, and flushed skin. Field
tests used to quickly evaluate alcohol intoxication generally require the subjects to
perform tasks such as standing on one leg or tracking a moving object with their
eyes. Neither the observed signs nor the performance measures are direct
measures of inebriation, but they are quick and easy to administer in the field.
Individuals suspected of drunkenness as evaluated by these proxy measures may
then be subjected to more accurate testing of their blood alcohol content.

Another common (and sometimes controversial) use of proxy measurement are the
various methods commonly used to evaluate the quality of health care provided by
hospitals or physicians. Theoretically, it would be possible to get a direct measure of
quality of care, for instance by directly observing the care provided and evaluating it
in relationship to accepted standards (although that process would still be an opera-
tionalization of the abstract concept “quality of care”). However, implementing
such a process would be prohibitively expensive as well as an invasion of the
patients’ privacy. A solution commonly adopted is to measure processes that are
assumed to reflect higher quality of care: for instance whether anti-tobacco coun-
seling was offered in an office visit or whether appropriate medications were
administered promptly after a patient was admitted to the hospital.
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Proxy measurements are most useful if, in addition to being relatively easy to
obtain, they are good indicators of the true focus of interest. For instance, if
correct execution of prescribed processes of medical care for a particular treat-
ment is closely related to good patient outcomes for that condition, and if poor or
nonexistent execution of those processes is closely related to poor patient
outcomes, then execution of these processes is a useful proxy for quality. If that
close relationship does not exist, then the usefulness of measurements of those
processes as a proxy for quality of care is less certain. There is no mathematical
test that will tell you whether one measure is a good proxy for another, although
computing statistics like correlations or chi-squares between the measures may
help evaluate this issue. Like many measurement issues, choosing good proxy
measurements is a matter of judgment informed by knowledge of the subject area,
usual practices in the field, and common sense.

True and Error Scores
We can safely assume that no measurement is completely accurate. Because the
process of measurement involves assigning discrete numbers to a continuous
world, even measurements conducted by the best-trained staff using the finest
available scientific instruments are not completely without error. One concern of
measurement theory is conceptualizing and quantifying the degree of error
present in a particular set of measurements, and evaluating the sources and conse-
quences of that error.

Classical measurement theory conceives of any measurement or observed score as
consisting of two parts: true score, and error. This is expressed in the following
formula:

X = T + E

where X is the observed measurement, T is the true score, and E is the error. For
instance, the bathroom scale might measure someone’s weight as 120 pounds,
when that person’s true weight was 118 pounds and the error of 2 pounds was
due to the inaccuracy of the scale. This would be expressed mathematically as:

120 = 118 + 2

which is simply a mathematical equality expressing the relationship between the
three components. However, both T and E are hypothetical constructs: in the real
world, we never know the precise value of the true score and therefore cannot
know the value of the error score, either. Much of the process of measurement
involves estimating both quantities and maximizing the true component while
minimizing error. For instance, if we took a number of measurements of body
weight in a short period of time (so that true weight could be assumed to have
remained constant), using the most accurate scales available, we might accept the
average of all the measurements as a good estimate of true weight. We would then
consider the variance between this average and each individual measurement as
the error due to the measurement process, such as slight inaccuracies in each
scale.
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Random and Systematic Error

Because we live in the real world rather than a Platonic universe, we assume that
all measurements contain some error. But not all error is created equal. Random
error is due to chance: it takes no particular pattern and is assumed to cancel itself
out over repeated measurements. For instance, the error scores over a number of
measurements of the same object are assumed to have a mean of zero. So if
someone is weighed 10 times in succession on the same scale, we may observe
slight differences in the number returned to us: some will be higher than the true
value, and some will be lower. Assuming the true weight is 120 pounds, perhaps
the first measurement will return an observed weight of 119 pounds (including an
error of –1 pound), the second an observed weight of 122 pounds (for an error of
+2 pounds), the third an observed weight of 118.5 pounds (an error of –1.5
pounds) and so on. If the scale is accurate and the only error is random, the
average error over many trials will be zero, and the average observed weight will
be 120 pounds. We can strive to reduce the amount of random error by using
more accurate instruments, training our technicians to use them correctly, and so
on, but we cannot expect to eliminate random error entirely.

Two other conditions are assumed to apply to random error: it must be unrelated
to the true score, and the correlation between errors is assumed to be zero. The
first condition means that the value of the error component is not related to the
value of the true score. If we measured the weights of a number of different indi-
viduals whose true weights differed, we would not expect the error component to
have any relationship to their true weights. For instance, the error component
should not systematically be larger when the true weight is larger. The second
condition means that the error for each score is independent and unrelated to the
error for any other score: for instance, there should not be a pattern of the size of
error increasing over time (which might indicate that the scale was drifting out of
calibration).

In contrast, systematic error has an observable pattern, is not due to chance, and
often has a cause or causes that can be identified and remedied. For instance, the
scale might be incorrectly calibrated to show a result that is five pounds over the
true weight, so the average of the above measurements would be 125 pounds, not
120. Systematic error can also be due to human factors: perhaps we are reading
the scale’s display at an angle so that we see the needle as registering five pounds
higher than it is truly indicating. A scale drifting higher (so the error components
are random at the beginning of the experiment, but later on are consistently high)
is another example of systematic error. A great deal of effort has been expended to
identify sources of systematic error and devise methods to identify and eliminate
them: this is discussed further in the upcoming section on measurement bias.

Reliability and Validity
There are many ways to assign numbers or categories to data, and not all are
equally useful. Two standards we use to evaluate measurements are reliability and
validity. Ideally, every measure we use should be both reliable and valid. In reality,
these qualities are not absolutes but are matters of degree and often specific to
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circumstance: a measure that is highly reliable when used with one group of
people may be unreliable when used with a different group, for instance. For this
reason it is more useful to evaluate how valid and reliable a measure is for a
particular purpose and whether the levels of reliability and validity are acceptable
in the context at hand. Reliability and validity are also discussed in Chapter 5, in
the context of research design, and in Chapter 19, in the context of educational
and psychological testing.

Reliability

Reliability refers to how consistent or repeatable measurements are. For instance,
if we give the same person the same test on two different occasions, will the scores
be similar on both occasions? If we train three people to use a rating scale
designed to measure the quality of social interaction among individuals, then
showed each of them the same film of a group of people interacting and asked
them to evaluate the social interaction exhibited in the film, will their ratings be
similar? If we have a technician measure the same part 10 times, using the same
instrument, will the measurements be similar each time? In each case, if the
answer is yes, we can say the test, scale, or instrument is reliable.

Much of the theory and practice of reliability was developed in the field of educa-
tional psychology, and for this reason, measures of reliability are often described
in terms of evaluating the reliability of tests. But considerations of reliability are
not limited to educational testing: the same concepts apply to many other types of
measurements including opinion polling, satisfaction surveys, and behavioral
ratings.

The discussion in this chapter will be kept at a fairly basic level: information
about calculating specific measures of reliability are discussed in more detail in
Chapter 19, in connection with test theory. In addition, many of the measures of
reliability draw on the correlation coefficient (also called simply the correlation),
which is discussed in detail in Chapter 9, so beginning statisticians may want to
concentrate on the logic of reliability and validity and leave the details of evalu-
ating them until after they have mastered the concept of the correlation
coefficient.

There are three primary approaches to measuring reliability, each useful in partic-
ular contexts and each having particular advantages and disadvantages:

• Multiple-occasions reliability

• Multiple-forms reliability

• Internal consistency reliability

Multiple-occasions reliability, sometimes called test-retest reliability, refers to how
similarly a test or scale performs over repeated testings. For this reason it is some-
times referred to as an index of temporal stability, meaning stability over time. For
instance, we might have the same person do a psychological assessment of a
patient based on a videotaped interview, with the assessments performed two
weeks apart based on the same taped interview. For this type of reliability to make
sense, you must assume that the quantity being measured has not changed: hence
the use of the same videotaped interview, rather than separate live interviews with
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a patient whose state may have changed over the two-week period. Multiple-
occasions reliability is not a suitable measure for volatile qualities, such as mood
state. It is also unsuitable if the focus of measurement may have changed over the
time period between tests (for instance, if the student learned more about a
subject between the testing periods) or may be changed as a result of the first
testing (for instance, if a student remembers what questions were asked on the
first test administration). A common technique for assessing multiple-occasions
reliability is to compute the correlation coefficient between the scores from each
occasion of testing: this is called the coefficient of stability.

Multiple-forms reliability (also called parallel-forms reliability) refers to how simi-
larly different versions of a test or questionnaire perform in measuring the same
entity. A common type of multiple forms reliability is split-half reliability, in which
a pool of items believed to be homogeneous is created and half the items are allo-
cated to form A and half to form B. If the two (or more) forms of the test are
administered to the same people on the same occasion, the correlation between
the scores received on each form is an estimate of multiple-forms reliability. This
correlation is sometimes called the coefficient of equivalence. Multiple-forms reli-
ability is important for standardized tests that exist in multiple versions: for
instance, different forms of the SAT (Scholastic Aptitude Test, used to measure
academic ability among students applying to American colleges and universities)
are calibrated so the scores achieved are equivalent no matter which form is used.

Internal consistency reliability refers to how well the items that make up a test
reflect the same construct. To put it another way, internal consistency reliability
measures how much the items on a test are measuring the same thing. This type
of reliability may be assessed by administering a single test on a single occasion.
Internal consistency reliability is a more complex quantity to measure than
multiple-occasions or parallel-forms reliability, and several different methods have
been developed to evaluate it: these are further discussed in Chapter 19. However,
all depend primarily on the inter-item correlation, i.e., the correlation of each item
on the scale with each other item. If such correlations are high, that is interpreted
as evidence that the items are measuring the same thing and the various statistics
used to measure internal consistency reliability will all be high. If the inter-item
correlations are low or inconsistent, the internal consistency reliability statistics
will be low and this is interpreted as evidence that the items are not measuring the
same thing.

Two simple measures of internal consistency that are most useful for tests made
up of multiple items covering the same topic, of similar difficulty, and that will be
scored as a composite, are the average inter-item correlation and average item-total
correlation. To calculate the average inter-item correlation, we find the correla-
tion between each pair of items and take the average of all the correlations. To
calculate the average item-total correlation, we create a total score by adding up
scores on each individual item on the scale, then compute the correlation of each
item with the total. The average item-total correlation is the average of those indi-
vidual item-total correlations.

Split-half reliability, described above, is another method of determining internal
consistency. This method has the disadvantage that, if the items are not truly
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homogeneous, different splits will create forms of disparate difficulty and the reli-
ability coefficient will be different for each pair of forms. A method that
overcomes this difficulty is Cronbach’s alpha (coefficient alpha), which is equiva-
lent to the average of all possible split-half estimates. For more about Cronbach’s
alpha, including a demonstration of how to compute it, see Chapter 19.

Measures of Agreement

The types of reliability described above are useful primarily for continuous
measurements. When a measurement problem concerns categorical judgments,
for instance classifying machine parts as acceptable or defective, measurements of
agreement are more appropriate. For instance, we might want to evaluate the
consistency of results from two different diagnostic tests for the presence or
absence of disease. Or we might want to evaluate the consistency of results from
three raters who are classifying classroom behavior as acceptable or unacceptable.
In each case, each rater assigns a single score from a limited set of choices, and we
are interested in how well these scores agree across the tests or raters.

Percent agreement is the simplest measure of agreement: it is calculated by
dividing the number of cases in which the raters agreed by the total number of
ratings. In the example below, percent agreement is (50 + 30)/100 or 0.80. A
major disadvantage of simple percent agreement is that a high degree of agree-
ment may be obtained simply by chance, and thus it is impossible to compare
percent agreement across different situations where the distribution of data
differs.

This shortcoming can be overcome by using another common measure of agree-
ment called Cohen’s kappa, or simply kappa, which was originally devised to
compare two raters or tests and has been extended for larger numbers of raters.
Kappa is preferable to percent agreement because it is corrected for agreement due
to chance (although statisticians argue about how successful this correction really
is: see the sidebar below for a brief introduction to the issues). Kappa is easily
computed by sorting the responses into a symmetrical grid and performing calcu-
lations as indicated in Table 1-1. This hypothetical example concerns two tests for
the presence (D+) or absence (D–) of disease.

The four cells containing data are commonly identified as follows:

Table 1-1. Agreement of two rates on a dichotomous outcome

Test 2

+ –

Test 1 + 50 10 60

– 10 30 40

60 40 100

+ –

+ a b

– c d
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Cells a and d represent agreement (a contains the cases classified as having the
disease by both tests, d contains the cases classified as not having the disease by
both tests), while cells b and c represent disagreement.

The formula for kappa is:

where ρo = observed agreement and ρe = expected agreement.

ρo = (a + d)/(a + b + c + d), i.e., the number of cases in agreement divided by the
total number of cases.

ρe = the expected agreement, which can be calculated in two steps. First, for cells
a and d, find the expected number of cases in each cell by multiplying the row and
column totals and dividing by the total number of cases. For a, this is (60 × 60)/
100 or 36; for d it is (40 × 40)/100 or 16. Second, find expected agreement by
adding the expected number of cases in these two cells and dividing by the total
number of cases. Expected agreement is therefore:

ρe = (36 + 16)/100 = 0.52

Kappa may therefore be calculated as:

Kappa has a range of 0–1: the value would be 0 if observed agreement were the
same as chance agreement, and 1 if all cases were in agreement. There are no
absolute standards by which to judge a particular kappa value as high or low;
however, many researchers use the guidelines published by Landis and Koch
(1977):

< 0     Poor

0–0.20  Slight

0.21–0.40 Fair

0.41–0.60 Moderate

0.61–0.81 Substantial

0.81–1.0 Almost perfect

Note that kappa is always less than or equal to the percent agreement because it is
corrected for chance agreement.

For an alternative view of kappa (intended for more advanced statisticians), see
the sidebar below.

Validity

Validity refers to how well a test or rating scale measures what is it supposed to
measure. Some researchers define validation as the process of gathering evidence
to support the types of inferences intended to be drawn from the measurements in

κ
ρo ρe–

1 ρe–
-----------------=

κ 0.8 0.52–
1 0.52–

------------------------- 0.583= =
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question. Researchers disagree about how many types of validity there are, and
scholarly consensus has varied over the years as different types of validity are
subsumed under a single heading one year, then later separated and treated as
distinct. To keep things simple, we will adhere to a commonly accepted categori-
zation of validity that recognizes four types: content validity, construct validity,
concurrent validity, and predictive validity, with the addition of face validity,
which is closely related to content validity. These types of validity are discussed
further in the context of research design in Chapter 5.

Content validity refers to how well the process of measurement reflects the impor-
tant content of the domain of interest. It is particularly important when the
purpose of the measurement is to draw inferences about a larger domain of
interest. For instance, potential employees seeking jobs as computer program-
mers may be asked to complete an examination that requires them to write and
interpret programs in the languages they will be using. Only limited content and
programming competencies may be included on such an examination, relative to
what may actually be required to be a professional programmer. However, if the
subset of content and competencies is well chosen, the score on such an exam
may be a good indication of the individual’s ability to contribute to the business
as a programmer.

A closely related concept to content validity is known as face validity. A measure
with good face validity appears, to a member of the general public or a typical
person who may be evaluated, to be a fair assessment of the qualities under study.
For instance, if students taking a classroom algebra test feel that the questions
reflect what they have been studying in class, then the test has good face validity.

Controversies Over Kappa
Cohen’s kappa is a commonly taught and widely used statistic, but its applica-
tion is not without controversy. Kappa is usually defined as representing
agreement beyond that expected by chance, or simply agreement corrected for
chance. It has two uses: as a test statistic to determine if two sets of ratings agree
more often than would be expected by chance (which is a yes/no decision), and
as a measure of the level of agreement (which is expressed as a number between
0 and 1).

While most researchers have no problem with the first use of kappa, some
object to the second. The problem is that calculating agreement expected by
chance between any two entities, such as raters, is based on the assumption that
the ratings are independent, a condition not usually met in practice. Because
kappa is often used to quantify agreement for multiple individuals rating the
same case, whether it is a child’s classroom behavior or a chest X-ray from a
person who may have tuberculosis, there is no reason to assume that ratings are
independent. In fact quite the contrary—they are expected to agree.

Criticisms of kappa, including a lengthy bibliography of relevant articles, can be
found on the website of John Uebersax, Ph.D., at http://ourworld.compuserve.
com/homepages/jsuebersax/kappa.htm.

http://ourworld.compuserve.com/homepages/jsuebersax/kappa.htm
http://ourworld.compuserve.com/homepages/jsuebersax/kappa.htm
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Face validity is important because if test subjects feel a measurement instrument is
not fair or does not measure what it claims to measure, they may be disinclined to
cooperate and put forth their best efforts, and their answers may not be a true
reflection of their opinions or abilities.

Concurrent validity refers to how well inferences drawn from a measurement can
be used to predict some other behavior or performance that is measured simulta-
neously. Predictive validity is similar but concerns the ability to draw inferences
about some event in the future. For instance, if an achievement test score is highly
related to contemporaneous school performance or to scores on other tests
administered at the same time, it has high concurrent validity. If it is highly
related to school performance or scores on other tests several years in the future, it
has high predictive validity.

Triangulation

Because every system of measurement has its flaws, researchers often use several
different methods to measure the same thing. For instance, colleges typically use
multiple types of information to evaluate high school seniors’ scholastic ability
and the likelihood that they will do well in university studies. Measurements used
for this purpose include scores on the SAT, high school grades, a personal state-
ment or essay, and recommendations from teachers. In a similar vein, hiring
decisions in a company are usually made after consideration of several types of
information, including an evaluation of each applicant’s work experience, educa-
tion, the impression made during an interview, and possibly a work sample and
one or more competency or personality tests.

This process of combining information from multiple sources in order to arrive at
a “true” or at least more accurate value is called triangulation, a loose analogy to
the process in geometry of finding the location of a point by measuring the angles
and sides of the triangle formed by the unknown point and two other known loca-
tions. The operative concept in triangulation is that a single measurement of a
concept may contain too much error (of either known or unknown types) to be
either reliable or valid by itself, but by combining information from several types
of measurements, at least some of whose characteristics are already known, we
may arrive at an acceptable measurement of the unknown quantity. We expect
that each measurement contains error, but we hope not the same type of error, so
that through multiple measurements we can get a reasonable estimate of the
quantity that is our focus.

Establishing a method for triangulation is not a simple matter. One historical
attempt to do this is the multitrait, multimethod matrix (MTMM) developed by
Campbell and Fiske (1959). Their particular concern was to separate the part of a
measurement due to the quality of interest from that part due to the method of
measurement used. Although their specific methodology is less used today, and
full discussion of the MTMM technique is beyond the scope of a beginning text,
the concept remains useful as an example of one way to think about measure-
ment error and validity.

The MTMM is a matrix of correlations among measures of several concepts (the
“traits”) each measured in several ways (the “methods”); ideally, the same several
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methods will be used for each trait. Within this matrix, we expect different
measures of the same trait to be highly related: for instance, scores measuring
intelligence by different methods such as a pencil-and-paper test, practical
problem solving, and a structured interview should all be highly correlated. By the
same logic, scores reflecting different constructs that are measured in the same
way should not be highly related: for instance, intelligence, deportment, and
sociability as measured by a pencil-and-paper survey should not be highly
correlated.

Measurement Bias
Consideration of measurement bias is important in every field, but is a particular
concern in the human sciences. Many specific types of bias have been identified
and defined: we won’t try to name them all here, but will discuss a few common
types. Most research design textbooks treat this topic in great detail and may be
consulted for further discussion of this topic. The most important point is that the
researcher must be alert to the possibility of bias in his study, because failure to
consider and deal with issues related to bias may invalidate the results of an other-
wise exemplary study.

Bias can enter studies in two primary ways: during the selection and retention of
the objects of study, or in the way information is collected about the objects. In
either case, the definitive feature of bias is that it is a source of systematic rather
than random error. The result of bias is that the information analyzed in a study is
incorrect in a systematic fashion, which can lead to false conclusions despite the
application of correct statistical procedures and techniques. The next two sections
discuss some of the more common types of bias, organized into two major catego-
ries: bias in sample selection and retention, and bias resulting from information
being collected or recorded differently for different subjects.

Bias in Sample Selection and Retention

Most studies take place on samples of subjects, whether patients with leukemia or
widgets produced by a local factory, because it would be prohibitively expensive if
not impossible to study the entire population of interest. The sample needs to be a
good representation of the study population (the population to which the results
are meant to apply), in order for the researcher to be comfortable using the results
from the sample to describe the population. If the sample is biased, meaning that
in some systematic way it is not representative of the study population, conclu-
sions drawn from the study sample may not apply to the study population.

Selection bias exists if some potential subjects are more likely than others to be
selected for the study sample. This term is usually reserved for bias that occurs
due to the process of sampling. For instance, telephone surveys conducted using
numbers from published directories unintentionally remove from the pool of
potential respondents people with unpublished numbers or who have changed
phone numbers since the directory was published. Random-digit-dialing (RDD)
techniques overcome these problems but still fail to include people living in
households without telephones, or who have only a cell phone. This is a problem
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for a research study if the people excluded differ systematically on a characteristic
of interest, and because it is so likely that they do differ, this issue must be
addressed by anyone conducting telephone surveys. For instances, people living in
households with no telephone service tend to be poorer than those who have a
telephone, and people who have only a cell phone (i.e., no “land line”) tend to be
younger than those who have conventional phone service.

Volunteer bias refers to the fact that people who volunteer to be in studies are
usually not representative of the population as a whole. For this reason, results
from entirely volunteer samples such as phone-in polls featured on some televi-
sion programs are not useful for scientific purposes unless the population of
interest is people who volunteer to participate in such polls (rather than the
general public). Multiple layers of nonrandom selection may be at work: in order
to respond, the person needs to be watching the television program in question,
which probably means they are at home when responding (hence responses to
polls conducted during the normal workday may draw an audience largely of
retired people, housewives, and the unemployed), have ready access to a tele-
phone, and have whatever personality traits would influence them to pick up their
telephone and call a number they see on the television screen.

Nonresponse bias refers to the flip side of volunteer bias: just as people who volun-
teer to take part in a study are likely to differ systematically from those who do
not volunteer, people who decline to participate in a study when invited to do so
very likely differ from those who consent to participate. You probably know
people who refuse to participate in any type of telephone survey (I’m such a
person myself): do they seem to be a random selection from the general popula-
tion? Probably not: the Joint Canada/U.S. Survey of Health found not only
different response rates for Canadians versus Americans, but also found nonre-
sponse bias for nearly all major health status and health care access measures
(results summarized in http://www.allacademic.com/meta/p_mla_apa_research_
citation/0/1/6/8/4/p16845_index.html).

Loss to follow-up can create bias in any longitudinal study (a study where data is
collected over a period of time). Losing subjects during a long-term study is
almost inevitable, but the real problem comes when subjects do not drop out at
random but for reasons related to the study’s purpose. Suppose we are comparing
two medical treatments for a chronic disease by conducting a clinical trial in
which subjects are randomly assigned to one of several treatment groups, and
followed for five years to see how their disease progresses. Thanks to our use of a
randomized design, we begin with a perfectly balanced pool of subjects. However,
over time subjects for whom the assigned treatment is not proving effective will be
more likely to drop out of the study, possibly to seek treatment elsewhere, leading
to bias. The final sample of subjects we analyze will consist of those who remain
in the trial until its conclusion, and if loss to follow-up was not random, the
sample we analyze will no longer be the nicely randomized sample we began with.
Instead, if dropping out was related to treatment ineffectiveness, the final subject
pool will be biased in favor of those who responded effectively to their assigned
treatment.

http://www.allacademic.com/meta/p_mla_apa_research_citation/0/1/6/8/4/p16845_index.html
http://www.allacademic.com/meta/p_mla_apa_research_citation/0/1/6/8/4/p16845_index.html
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Information Bias

Even if the perfect sample is selected and retained, bias may enter the study
through the methods used to collect and record data. This type of bias is often
called information bias because it affects the validity of the information upon
which the study is based, which may in turn invalidate the results of the study.

When data is collected using in-person or telephone interviews, a social relation-
ship exists between the interviewer and subject for the course of the interview.
This relationship can adversely affect the quality of the data collected. When bias
is introduced into the data collected because of the attitudes or behavior of the
interviewer, this is known as interviewer bias. This type of bias may be created
unintentionally when the interviewer knows the purpose of the study or the status
of the individuals being interviewed: for instance, interviewers might ask more
probing questions to encourage the subject to recall toxic chemical exposures if
they know the subject is suffering from a rare type of cancer related to chemical
exposure. Interviewer bias may also be created if the interviewers display personal
attitudes or opinions that signal to the subject that they disapprove of the behav-
iors being studied, such as promiscuity or drug use, making subjects less likely to
report those behaviors.

Recall bias refers to the fact that people with life experiences such as serious
disease or injury are more likely to remember events that they believe are related
to the experience. For instance, women who suffered a miscarriage may have
spent a great deal of time probing their memories for exposures or incidents that
they believe could have caused the miscarriage. Women who had a normal birth
may have had similar exposures but not given them further thought and thus will
not recall them when asked on a survey.

Detection bias refers to the fact that certain characteristics may be more likely to
be detected or reported in some people than in others. For instance, athletes in
some sports are subject to regular testing for performance-enhancing drugs, and
test results are publicly reported. World-class swimmers are regularly tested for
anabolic steroids, for instance, and positive tests are officially recorded and often
released to the news media as well. Athletes competing at a lower level or in other
sports may be using the same drugs but because they are not tested as regularly,
or because the test results are not publicly reported, there is no record of their
drug use. It would be incorrect to assume, for instance, that because reported
anabolic steroid use is higher in swimming than in baseball, that the actual rate of
steroid use is higher in swimming than in baseball. The apparent difference in
results could be due to more aggressive testing on the part of swimming officials,
and more public disclosure of the test results.

Social desirability bias is caused by people’s desire to present themselves in a
favorable light. This often motivates them to give responses that they believe will
please the person asking the question; this type of bias can operate even if the
questioner is not actually present, for instance when subjects complete a pencil-
and-paper survey. This is a particular problem in surveys that ask about behav-
iors or attitudes that are subject to societal disapproval, such as criminal behavior,
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or that are considered embarrassing, such as incontinence. Social desirability bias
can also influence responses in surveys where questions are asked in such a way
that they signal what the “right” answer is.

Exercises
Here’s a review of the topics covered in this chapter.

Problem

Given the distribution of data in the table below, calculate percent agreement,
expected values for cells a and d, and kappa for rater 1 and rater 2.

Solution

Percent agreement = (70 + 25)/140 = 0.679

Expected values:

a: (85 × 100)/140 = 60.7
d: (55 × 40)/140 = 15.7
ρo = observed agreement = (70 + 25)/140 = 0.679
ρe = expected agreement = (60.7 + 15.7)/140 = 0.546

Rater 2

+ –

Rater 1 + 70 15 85

– 30 25 55

100 40 140

60.7

15.7

κ 0.679 0.546–
1 0.546–

-----------------------------------
0.133
0.454
-------------- 0.293== =
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The Likert Scale
The Likert scale may be the most common type of rating scale used in human
subjects research. This type of scale was first described in 1932 by Rensis Likert
(1903–1981), an organizational psychologist who served as director of the
University of Michigan’s Institute for Social Research from 1946 to 1970. Ques-
tions using the Likert scale typically present a statement and subjects are invited
to choose their response to it from an ordered, odd-numbered set of choices
(most often five, but sometimes seven or nine). Below is an example.

The United States should adopt a national system of health insurance.

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly disagree

Sometimes an even number of responses are provided, so that there is no neutral
middle choice: this is called the “forced choice” method because the respon-
dent is forced to make the choice to agree or disagree with the statement. Often
the order of responses is changed within a questionnaire so 1 = Strongly
disagree and 5 = Strongly agree, to detect whether people are automatically
selecting the first or last choices without reading the items.

Data gathered by Likert items is ordinal: although the choices are ordered, there
is no reason to believe that there are equal intervals between them. For instance,
we have no way of knowing if the distance between “Strongly agree” and
“Agree” is the same as the distance between “Agree” and “Neither agree nor
disagree.”
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Dewey Defeats Truman
Several United States presidential elections have featured inaccurate predictions
based on biased samples. It’s always humorous to see a respected publication or
organization get it completely wrong, but these incidents also serve as a
cautionary tale of what can happen when statistics conducted on a nonrepresen-
tative sample are assumed to apply to the general population.

In 1936, the magazine Literary Digest, which had correctly predicted the winner
of the presidential election in 1916, 1920, 1924, 1928, and 1932, predicted that
Republican Alf Landon would defeat Democrat Franklin Roosevelt by a land-
slide. However, history shows that Roosevelt won the 1936 election in a
landslide. The problem with the Literary Digest prediction was that although it
was based on a large sample (over 2.3 million respondents out of 10 million
invited to take part), the sample was biased because it consisted of people who
owned automobiles or telephones, or who subscribed to the Literary Digest. In
1936, such individuals tended to be wealthier than the general population, and
also more likely to be Republican. Because it was necessary to return a postcard
to participate in the poll, the Literary Digest sample was subject to volunteer
bias as well.

In 1948, every major poll predicted that the Republican Thomas Dewey would
defeat the Democrat Harry S. Truman for president. The Chicago Tribune even
printed papers with the front-page headline “Dewey Defeats Truman.”
Although polling techniques had improved since 1936, several sources of bias
were still present in the polls, which led to this inaccurate prediction. One
problem was that telephone surveys were used without statistical correction for
the fact that telephone ownership was far more common among the affluent,
who were also more likely to support Dewey. Another factor was that there
were large numbers of undecided voters in the days leading up to the election,
and none of the polls had a good method for predicting for whom these individ-
uals would ultimately vote. A third problem, which related directly to the
Chicago Tribune fiasco, was that Dewey’s support was stronger in the East, and
due to the differences in time zones, those election results were reported first.
The Tribune decided to print papers based on those early results, which were
based on a biased sample of results from eastern states. What the Tribune did
not anticipate was that Truman would carry many western states, including
California, and thus amass sufficient electoral votes to win the election.
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Probability

In a conventional textbook, this chapter would be titled something like “A Brief
Introduction to Probability Theory” or “Fundamentals of Probability for Begin-
ners,” in either case warning you that a Very Serious Topic was about to be
broached, and that however forbidding the chapter might appear, it was only
scratching the surface of a subject beyond the comprehension of most poor
mortals.

Well, I don’t buy any of it. Probability theory is the very basis of statistics, and it
is a fascinating topic in its own right. But while it can become as complex as any
other field of human endeavor, there’s no reason why anyone willing to put in the
time can’t come to understand it. The basic principles of probability are simple to
state, and intuitive and easy to comprehend. What’s more, most people are
already familiar with probabilistic statements, from the weather report that tells
you there is a 30% chance of rain this afternoon to the warning on cigarette pack-
ages that smoking increases the risk for lung cancer.

If like most adults you hold one or more insurance policies, you are already
engaged in a probabilistic enterprise. For instance, you probably have some kind
of automobile insurance, which should really be called “automobile expenses
insurance,” since its primary purpose is to protect the policy-holder against
extreme expenses that may be incurred due to an automobile accident. People
don’t purchase insurance policies because they are planning to get into a crash, or
even because they expect such an occurrence: rather, it is an acknowledgment by
the policy-holder that there is a nonzero probability of such events occurring in
the future.

Governments often require automobile owners to have insurance policies for the
same reason: it’s not a judgment that you are a bad driver, just an acknowledg-
ment that accidents do happen and few individuals would be able to cover the
costs of a major accident out of their own pocket. The insurance industry employs
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a large cadre of statisticians to calculate how much you should be charged for a
policy, taking into consideration (among other things) the probability that you
will be in an accident or file a claim for any other reason, and the amount that
each such claim would cost the company.

You need no more mathematical expertise than what you learned in junior high
school to understand the basics of probability as presented in this chapter. That
understanding will provide the basis to understanding the statistical techniques
presented in subsequent chapters. It will also set you up in good stead to grasp a
large proportion of the statistics you will ever encounter, unless you decide to take
it up as a field of study. In addition, you will be able to understand probabilistic
statements as used in everyday speech, and be able to recognize when they are
used incorrectly. Finally, I hope you will come to enjoy, as I do, spending time
working with the building blocks of statistical science: while the real world of
statistical analysis can be chaotic and frustrating, the laws of probability are
simple, and spending a few calm hours among them is an excellent preparation
for more advanced analysis. Even experienced statisticians like to take a break
from the complexity of real-world problems from time to time to review the basics
of probability, just as a professional violinist warms up with simple scales or a
golfer spends time grooving his swing on the practice range before a major
tournament.

About Formulas
People who haven’t done well in math or statistics in the past often dislike
formulas, which many feel are an arcane system of communication invented by
mathematicians to act as a barrier to keep the uninitiated from ever really learning
math, thus reserving all the good jobs for themselves. (The part about the good
jobs is not entirely a joke, considering that an understanding of mathematics and
statistics is required for many lucrative professions today.) First-year calculus is
often perceived as a barrier that prevents many otherwise able individuals from
pursuing careers in science and engineering, and the specter of graduate-level
statistics courses has probably discouraged an equal number from pursuing
advanced work in the social sciences.

But the assumption that formulas are a barrier to understanding is wrong, and I
hope I can reverse this attitude and convince you that formulas are your friends.
They are simply a condensed and unambiguous way of communicating impor-
tant information, and can be considered as a set of instructions written in the
language of mathematics. As one of my calculus professors used to say, “Look at
the formula, then do what the formula tells you to do.”

Mathematical formulas have the advantage that they are not dependent on
language, so mathematics can be communicated and understood among people
regardless of their native language or national origin. This is reflected in the fact
that mathematics is one of the most international fields of study today. It doesn’t
matter if you grew up speaking English or Russian or Farsi, you can communicate
easily with your colleagues in mathematics without the barriers imposed by
human languages.
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Let’s take the example of the formula for calculating the arithmetic mean, known
in common language as the average, of a set of numbers. The formula to calculate
the mean is:

It may look like Greek to you (in fact, some of it is!), but it’s really just a set of
directions telling you how to do the necessary calculations. Let’s break it down
into parts:

• x is the number whose mean we are calculating.

• The symbol x means the mean of x, which is what we are calculating.

• The symbol xi means a particular value of x.

• n means the number of values of x being used to compute the mean.

• The summation symbol, Σ, means to add together a number of cases, in this
case all values of x. The notations above and below the summation symbol
mean to add together all values of x, starting with the first value (x1) and
going to the last value (xn).

The formula therefore tells you to calculate the mean by adding together all the
values of x, then dividing by the number of cases that you just added together.

Suppose we want to calculate the mean of three numbers: 1, 3, and 5. In terms of
variable notation, we would call them x1, x2, and x3. In this example, n = 3
because we have three numbers. So to execute the formula, we add together the
numbers from x1 to x3 and multiply by 1/3, giving us:

You will encounter more complicated formulas as you progress in your statistical
studies, but the process for using them is the same:

1. Identify the meaning of each symbol used and the operation required.

2. Identify the values to be substituted for each symbol.

3. Substitute the values into the equation, perform the specified operations, and
you have your result.

Basic Definitions
Here are some basic concepts to know for a discussion of probability.

Trials

Probability is concerned with the outcome of trials, which are also called experi-
ments or observations: the crucial fact, whichever term is used, is that they refer to
an event whose outcome is unknown. If the outcome were known, after all, there

x
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would be no need to consider its probability. A trial can be as simple as flipping a
coin or drawing a card from a deck, or as complex as observing whether a person
diagnosed with breast cancer is still alive five years after diagnosis. We will reserve
the term trial for a single observation, such as one coin flip, and the term experi-
ment to refer to multiple trials, such as the results from flipping one coin five
times.

Sample Space

The sample space, signified by S, is the set of all possible elementary outcomes of
a trial. If the trial is flipping a coin once, then the sample space is S = {heads,
tails} (often abbreviated S = {h,t}), because those two alternatives represent all
the possible outcomes for the experiment. If the experiment is rolling a single die,
the sample space is S = {1, 2, 3, 4, 5, 6}, representing the six faces of the die that
may turn up in a single roll. These elementary outcomes are also referred to as
sample points. If the experiment consists of multiple trials, all possible combina-
tions of outcomes of the trials must be specified as part of the sample space.
For instance, if the trial consists of flipping a coin twice, the sample space is S =
{(h, h), (h, t), (t, h), (t, t)}.

Events

An event, usually signified by a capital letter other than S, is the specification of
the outcome of a trial, and may consist of a single outcome or a set of outcomes. If
the outcome or set of outcomes occurs, we say the outcome has “satisified the
event” or “the event occurred.” For instance, the event “heads in flipping a coin”
could be specified as E = {heads} while the event “odd number in rolling a die”
could be specified as E = {1, 3, 5}. A simple event is the outcome of a single
experiment or observation, such as a single coin flip. Simple events may be
combined into compound events, as in the union and intersection examples
below. Events can be defined by listing the outcomes or by defining them logi-
cally, so that if the trial was rolling two dice, and we were interested in how
often the sum would be less than 6, we could specify this as either E = {2, 3, 4,
5} or E = {sum is less than 6}.

A common way to graphically portray the probability of events and combinations
of events is through Venn diagrams, in which a rectangle represents the sample
space and circles represent particular events. Venn diagrams are used in Figures
2-1 through 2-4 below.

Union

The union of several simple events creates a compound event that occurs if one or
more of the events occur. The union of E and F is written E ∪ F and means
“either E or F, or both E and F.” Note that the union symbol is similar to a capital
letter U. The union of E and F is the shaded area in the Venn diagram in
Figure 2-1. Note that this figure portrays two complete circles that partially
overlap.
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Intersection

The intersection of two or more simple events creates a compound event that
occurs only if all the simple events occur. The intersection of E and F is written
E ∩ F and means “both E and F.” The intersection of E and F is the shaded area
in the Venn diagram in Figure 2-2.

Complement

The complement of an event means everything in the sample space that is not that
event. The complement of event E is written variously as ~E, Ec, or E, and is read
as “not E” or “E complement.” For instance, if E = (numbers > 0), ~E = (numbers
≤ 0). If E = (probability breast cancer patient survives for at least five years), ~E =
(probability breast cancer patient does not survive for at least five years). The
complement of F is the shaded area in the Venn diagram in Figure 2-3.

Venn Diagrams
Anyone who was brought up on “the new math” probably remembers Venn
diagrams from their elementary school textbooks. While the wisdom of intro-
ducing set theory to fifth graders may be debatable, that is surely no fault of the
British mathematician John Venn (1834–1923) or his diagrams, which are still
widely used in mathematics and other fields to display the logical relationship
between sets of objects, and have been adapted to other fields such as literature
as well. Venn spent most of his adult life teaching at Caius College, Cambridge
University, where his primary interest was in logic: he published three text-
books, including Symbolic Logic (1881), which introduced Venn diagrams.
Caius students and faculty today have a daily reminder of Venn’s accomplish-
ments: he has been immortalized by stained glass windows in the college dining
hall, which portray a Venn diagram with three overlapping sets signified by
three circles of different colors.

Figure 2-1. The union of E and F (shaded area)
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Mutual Exclusivity

If events cannot occur together, they are mutually exclusive. Following the same line
of reasoning, if two sets have no events in common, they are mutually exclusive. For
instance, the event A = (salary is greater than $100K) and event B = (salary is less
than or equal to $100K) are mutually exclusive, as are the sets A = (even integers)
and B = (odd integers). The mutually exclusive sets E and F are presented in the
Venn diagram in Figure 2-4; note that they have no points in common.

Figure 2-2. The intersection of E and F (shaded area)

Figure 2-3. The complement of F (shaded area)
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Independence

If two trials are independent, that means that the outcome of one has no relation-
ship to the outcome of another. To put it another way, knowing the outcome of
one event gives you no information about the outcome of the second event. The
classic example of independence is flipping an ordinary coin: if you flip the coin
twice, the outcome of the first trial has no influence on the outcome of the second
trial, and the probability of heads is the same on every flip.

Permutations

In probability theory, a permutation is all the possible ways elements in a set can
be arranged. For instance, if a set consists of the elements (a, b, c), then the
permutations of this set are (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), and (c, b,
a). Note that the order of elements is important in permutations: (a, b, c) is a
different permutation than (a, c, b).

You can calculate the number of permutations of any set of distinct elements
(meaning that none of the elements repeat within the set) by using factorials,
which are signified by an exclamation point. Many calculators have an x! key to
calculate factorials. 3! is read as “3 factorial” and means the product 3 × 2 × 1 or 6,
which agrees with the result we found by listing out the different permutations
above. To find the factorial for any number, multiply every number from the
starting number down to 1. This makes logical sense, because if you have three
elements, you have three choices for the first element (a, b, c in our example), two
choices for the second element (minus whatever was chosen for the first element),
and one choice for the third element (whatever element remains after the first two
are chosen). Therefore, you have 3 × 2 × 1 = 6 different ways of arranging the
elements. Permutations become large very quickly: for instance 5! = 120 and 10! =
3,628,800. 20! is so large it cannot be displayed on my calculator except through
scientific notation: 20! = 2.432902008E18.

Figure 2-4. E and F are mutually exclusive: they have no points in common



28 | Chapter 2: Probability

Combinations

Combinations are similar to permutations, with the difference that the order of
elements is not significant in combinations: (a, b, c) is the same combination as (b,
a, c). For this reason there is only one combination of the set (a, b, c).

Combinations and permutations are used in statistics to calculate the number of
ways a subset of specified size can be drawn from a set, which allows the calcula-
tion of the probability of drawing any particular subset. There are several different
ways to denote permutations and combinations: these are demonstrated in
Appendix A, along with a few problems. We’ll stick to a simple system of nota-
tion for this section: the number of permutations possible when drawing two
elements from a set of 3 is written 3P2, and the number of combinations possible
as 3C2. Continuing with our example, 3P2 = 6 because there are 6 permutations
of 2 elements drawn from a set of 3: (a, b), (a, c), (b, c), (b, a), (c, a) and (c, b).
There are three combinations, so 3C2 = 3: (a, b), (a, c) and (b, c).

The number of permutations of subsets of size k drawn from a set of size n is
calculated as:

Using this formula, the number of permutations of size 2 that can be drawn from
a set of size 8 is:

Given the same values for n and k, there will always be fewer combinations than
permutations, because a different order of the same elements counts as a different
permutation, but not as a different combination. This is clear in the formula for a
combination, which is the formula for the permutation divided by the factorial of
the number of objects selected:

Scientific Notation
Scientific notation is used to display numbers that are very large or very small: it
not only saves space but is more accurate because you do not have to write or
read numbers with lots of zeros. The concept behind scientific notation is that
any number can be written as a number greater than or equal to one and less
than 10 (called the coefficient) multiplied by a power of 10 (called the base). So
the number 1234 can be written as 1.234E3 (the E stands for exponent), which
means 1.234 × 103, i.e., 1.234 × 1000. Similarly, 1.234E – 4 means 1.234 × 10-4

or 1.234 × 0.0001, which is 0.0001234. Another way to interpret E is how many
places to the left or right to move the decimal point. So 1.234E3 tells you to
move it three places to the right, producing 1,234, while 1.234E – 4 tells you to
move it four places to the left, for 0.0001234.

n!
n k–( )!

-------------------

8P2 8!
8 2–( )!

-------------------
8!
6( )!

---------- 56= = =
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Using this formula, we calculate the number of combinations of size 2 that can be
drawn from a set of size 8 as:

Defining Probability
There are several technical ways to define probability, but a definition useful for
statistics is that probability tells us how often something is likely to occur when an
experiment is repeated. For instance, the probability that a coin will come up
heads can be estimated by executing a number of coin flips and observing how
many times it is heads rather than tails. The most important single fact about
probability is this:

The probability of an event is always between 0 and 1.

If the probability of an event is 0, that means there is no chance that it will occur,
while if the probability of an event is 1, that means it is certain to occur. It is
conventional in mathematics to specify probability using decimals, so we say that
the probability of an event is between 0 and 1, but it is equally acceptable (and
more common in everyday speech) to speak in terms of percentages, so it is
equally correct to say that the probability of an event is always between 0% and
100%. To move from decimals to percent, multiply by 100 (per cent = per 100),
so a probability of 0.4 is also a probability of 40% (0.4 × 100 = 40) and a proba-
bility of 0.85 may also be stated as 85% probability.

Negative probability and probabilities greater than 100% exist only as figures of
speech: they are logical impossibilities. The fact that probability is bounded by 0
and 1 has mathematical implications that we explore further when considering
logistic regression in Chapter 15. This fact also provides a useful check on your
calculations: if you come up with a probability below 0 or greater than 1, you have
made a mistake somewhere along the way. Furthermore, if someone tells you there is
a 200% chance that you will make a killing on the stock market if you follow their
system, you should probably look for a new investment advisor.

Another useful fact about probability is that:

The probability of the sample space is always 1.

Because the sample space represents all possible outcomes of a trial, the total
probability of the sample space must add up to 1. This is a useful fact because
while we may know the probability of some events in a sample space, there may
be others about which we have no information. However, since we know that the
probability of the total sample space equals 1, we can assign a probability to those
events about which we have no information, based on what remains after the
known probabilities are considered.

nCk nPk
k!

----------=

8C2 8P2
2!

----------
56
2
------ 28= = =
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A third useful fact that follows from the first two:

The probability of an event and its complement is always 1.

This fact follows from the definition of a complement: everything in the sample
space that is not the event E is the complement of E, so E and ~E together must
make up the entire sample space and the probability of E and ~E together must
equal 1. This should be clear from Figure 2-3 above: the rectangular box repre-
sents the sample space, the circle the event F, and the shaded area within the box
but outside the circle ~F. Together, F and ~F comprise the entire sample space.

Expressing the Probability of an Event

It is typical to write probability statements as follows:

P(E) = 0.5

This is read as “the probability of event E is 0.5” or “the probability of event E is
50%”. Our first fact about probability, that the probability of an event is always
between 0 and 1, may be written:

0 ≤ P(E) ≤ 1

The second fact about probability, which follows from the definition of the
sample space S as including all possible outcomes of a trial, may be stated as:

P(S) = 1

The third fact about probability, that the probability of an event and its comple-
ment is always equal to 1, can be written:

P(F) + P(~F) = 1

Which provides us with the important corollary:

P(~F) = 1 – P(F)

This will prove very handy in later calculations. If we know the probability of F,
we automatically know the probability of ~F, which is 1 – P(F).

Conditional Probabilities

Often we want to know the probability of some event, given that another event
has occurred. This is expressed symbolically as P(E|F) and read as “the proba-
bility of E given F.” The second event is known as the “condition” and the process
is sometimes referred to as “conditioning on F.” Conditional probability is an
important concept in statistics because often we are trying to establish that a
factor has a relationship with an outcome, for instance that people who smoke
cigarettes are more likely to develop lung cancer. This would be expressed
symbolically as:

P(lung cancer | smoker) > P(lung cancer | nonsmoker)

Conditional probabilities can also be used to define independence. Two variables
are said to be independent if the following relationship holds:

P(E|F) = P(E)
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To continue with the same example, the equation to state that the probability of
having lung cancer is unrelated to smoking would be:

P(lung cancer | smoker) = P(lung cancer)

Meaning that the probability of lung cancer for a person who smokes is the same
as the probability for the population in general, smokers and nonsmokers alike.
This is just an example, and I’m not implying that it is true: many studies have
shown that the probability of lung cancer for a smoker is much higher than the
rate in the general population.

Calculating the Probability of Multiple Events

To calculate the probability of any of several events occurring (the union of
several events), add the probabilities of the individual events. The specific equa-
tion used will depend on whether the events are mutually exclusive (cannot both
occur) or not.

Union of mutually exclusive events

If the events are mutually exclusive, as in Figure 2-4, the equation is simply:

P(E ∪ F) = P(E) + P(F)

So imagine first a college that does not allow double majors. We will define the
events E = (English major) as having a probability of 0.2, and F = (French major)
as having a probability of 0.1. These events are mutually exclusive because
students are allowed only one major, so we would calculate the probability the
event (either English or French major) as:

P(E ∪ F) = 0.2 + 0.1 = 0.3

Union of events that are not mutually exclusive

At a different college that does allow double majors, the events (English major)
and (French major) are not mutually exclusive. The equation calculating
P(English major or French major) must therefore include a term correcting for this
overlap. Looking at Figure 2-2, the overlap is the area contained in both circles E
and F (which is their intersection, represented by the shaded area). A college that
allows students to elect more than one major could have people majoring in both
English and French, and if we fail to take this into consideration we will be
counting these people twice (people with double majors in French and English
would be represented by the shaded area in Figure 2-2).

To correct for the probability of two events both occurring, we use the following
equation to calculate the probability of either of two events that are not mutually
exclusive:

P(E ∪ F) = P(E) + P(F) – P(E ∩ F)

Given P(English major) = 0.2, P(French major) = 0.1, and P(double major in
French and English) = 0.05, the probability of a student being either an English or
a French major is:

P(E ∪ F) = 0.2 + 0.1 – 0.05 = 0.15
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Intersection of independent events

To calculate the probability of all of several events occurring (the intersection of
several events), multiply their individual probabilities. The specific formula used
depends on whether the events are independent or not.

If they are independent, the probability of both E and F is calculated as simply:

P(E ∩ F) = P(E) × P(F).

For instance, if we are flipping a coin twice, so E = (heads on first flip) and F =
(heads on second flip), both trials are independent. If the probability of heads is 0.5,
we can compute the probability (heads on both flips) as:

P(E ∩ F) = 0.5 * 0.5 = 0.25

Intersection of nonindependent events

If two events are not independent, we have to know their conditional probability
in order to be able to calculate the probability of both occurring. The formula to
use is:

P(E ∩ F) = P(E) * P(F|E)

For instance, if we are drawing two cards without replacement from a standard
deck of 52, those events are not independent because the probability for the
second draw depends on the result of the first draw. If we are interested in the
probability of drawing two black cards, we can calculate this using the informa-
tion that the probability E = (first card black) is 26/52 or 0.5, and the conditional
probability F|E = P(second card black|first card black) is 25/51 or 0.49. There-
fore, the probability (both cards are black) is:

P(E ∩ F) = 0.5 × 0.49 = 0.245

Bayes’s Theorem
Bayes’s theorem, also known as Bayes’s formula, is one of the most common
applications of conditional probabilities. A typical use of Bayes’s theorem in the
medical field is to calculate the probability that a person who tests positive on a
screening test for a particular disease actually has the disease. Bayes’s formula also
uses several of the basic concepts of probability introduced above and is therefore
a good review for the entire chapter. Bayes’s formula for any two events A and B
is:

The ampersand (&) is equivalent to the intersection symbol ∩ (i.e., it means
“and”), so P(A&B) means the probability of both A and B. You would use this
formula when you know P(B|A) but want to know P(A|B). The numerator of
Bayes’s theorem uses the fact that the probability of two events is the probability

P A B( ) P A&B( )
P B( )

----------------------=
P B A( )P A( )

P B A( )P A( ) P B ~A( )P ~A( )+
-----------------------------------------------------------------------------------=
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of the first event multiplied by the conditional probability of the second event
given the first. In this example, the conditional probability of B given A is multi-
plied by the probability of A, giving us the probability of both A and B. The
denominator uses this same fact plus the fact that any event plus its complement
comprise the entire sample space and together have a probability of 1, so the sum
of the conditional probabilities of (B given A) times the probability of A, and (B
given ~A) times the probability of ~A, equals the probability of B.

Suppose we have a screening test that is 95% effective in detecting disease in those
who have it, and 99% effective in not falsely diagnosing disease in those who are
free of it. Clinicians would say that this test has 95% sensitivity and 99% speci-
ficity. Suppose also that the rate of disease in the population is 1%. Using the
symbols D for disease, ~D for absence of disease, T for a positive test, and ~T for
a negative test, these probabilities can be stated as:

Sensitivity: P(T|D) = 0.95

Specificity: P(~T|~D) = 0.99

P(D) = 0.01

These are very high values for sensitivity and specificity: many commonly used
tests and procedures are less accurate. However, we know that some probability
remains that a person who tests positive will not in fact have the disease (a false
positive) and that a person who tests negative will in fact have the disease (a false
negative). In the case of an individual who has tested positive, we want to know
the probability that the person actually has the disease, written formally as
P(D|T). We can calculate this probability using Bayes’s theorem plus the informa-
tion about sensitivity, specificity, and disease rate in the population given above:

Using the fact that an event plus its complement constitute the entire sample
space and together have a probability of 1, we know that the false positive rate is
1-sensitivity, i.e., P(T|~D) = 1 – 0.99 or 0.01. For the same reason, we know that
the probability in the population of not having the disease is 1 – P(D), so P(~D) =
0.99. Using this plus the information supplied above:

This demonstrates that even with a highly specific and sensitive screening test,
about half the people who test positive will be false positives, i.e., they won’t have
the disease. This is not necessarily a reason to not use the test, particularly if the
disease has serious consequences and there is an accurate follow-up test to sepa-
rate the true and false positives. However, any proposal to institute universal
screening should always consider the false positive rate and the potential conse-
quences of it.

P D T( ) P D&T( )
P T( )

-----------------------=
P T D( )P D( )

P T D( )P D( ) P T ~D( )P ~D( )+
-------------------------------------------------------------------------------------=

P D T( ) 0.95 0.01×
0.95 0.01×( ) 0.01 0.99×( )+

---------------------------------------------------------------------------= 0.0095
0.0095 0.0099+
------------------------------------------ 0.4897= =
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It should be noted that this result is dependent on the rate of disease in the popula-
tion as well as the sensitivity and specificity of the screening test. If the disease rate
were 0.005 instead of 0.01, then fewer of the positives would be false positives:

Enough Exposition, Let’s Do Some Statistics!
Statistics is something you do, not something you read about, so the real purpose
of the preceding theoretical presentation was to give you the information you
need to perform simple calculations about the probability of events. It also intro-
duced concepts, such as independence and mutual exclusivity, which you will
need to understand in order to use more advanced statistical procedures.

The purpose of the problems that follow is to give you some experience in
working with the concepts of basic probability. If you are a person who likes to
work through a lot of problems in order to understand a topic, there are many
excellent textbooks focusing on probability: several are suggested in Appendix C.

If you are new to solving problems in elementary probability, it may help to follow
this procedure:

1. Define the trial and/or experiment.

2. Define the sample space.

3. Define the event.

4. Specify the relevant probabilities and do the calculations.

At some point you may not feel it is necessary to go through all these steps, but
they may help you get started working with the exercises. In some cases, an alter-
native solution using a different approach to the problem is provided.

The Reverend Thomas Bayes
The ubiquitous Bayes’s theorem was developed by the British Nonconformist
minister the Reverend Thomas Bayes (1702–1761). Bayes studied logic and
theology at the University of Edinburgh and earned his livelihood as a minister
in Holborn and Tunbridge Wells, England. However, his fame today rests on
his theory of probability, which was developed in an essay published after his
death by the Royal Society of London. There is an entire field of study today
known as Bayesian statistics, which have in common the notion of a probability
as a statement of strength of belief, rather than a frequency of occurrence.
However, it is uncertain whether Bayes himself would have embraced this defi-
nition, since he published relatively little on mathematics during his lifetime.

P D T( ) 0.95 0.005×
0.95 0.005×( ) 0.01 0.995×( )+

---------------------------------------------------------------------------------= 0.00475
0.00475 0.00995+
------------------------------------------------ 0.3231= =
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Dice, Coins, and Playing Cards

Because many of the examples in this chapter use dice, coins and playing cards,
their characteristics are reviewed here:

Dice
The standard die (the singular of dice) used in the Western world is a cube
with six sides, each displaying a different number of dots, from 1 to 6. A stan-
dard assumption in probability calculations is that all sides of the die are
equally likely to land facing up when the die is rolled or thrown, so one roll of
the die has six equally likely outcomes: 1, 2, 3, 4, 5, and 6. In technical terms,
the set of outcomes from rolling one or more dice has a discrete uniform
distribution because the possible outcomes can be enumerated and each
outcome is equally likely. The results of two or more dice thrown at once (or
multiple throws of the same die) are assumed to be independent of each
other, so the probabilities of each combination of numbers are calculated by
multiplying the probability of each separate result.

In the interests of precision, I should point out that the “equal probability for
all sides” holds only for casino dice, in which the pips (circles used to mark
the numbers on each side) are painted on. Cheaper dice, such as you may
purchase at the dime store, do not have equal weight on all sides because the
pips are drilled into the cube face rather than painted on. However, in theo-
retical discussions of probability, this nicety is usually ignored and we assume
that all sides of the dice are equally probable.

Coins
The archetypal coin used in probability experiments has two sides, heads and
tails. A fair coin is equally likely to come up heads or tails on any toss or flip.
For any coin, fair or not, the probability of heads and tails is constant on each
flip, so that the results of previous flips have no influence on later flips and
the results of multiple flips are independent of each other. As with dice, the
probability of an actual coin landing heads or tails is seldom exactly 50–50,
for a number of physical reasons, including coin design and wear, and off-
center technique on the part of the person performing the flip, but for the
sake of probability exercises we assume it is unless otherwise specified. Some-
times experiments are conducted by spinning coins rather than flipping them
(fewer projectiles flying through the air in a crowded classroom). However,
the 50–50 assumption applies even less here, although for the purposes of
doing calculations (as opposed to actually spinning coins and recording the
results) we assume that it does. For more on these issues, see http://www.
sciencenews.org/articles/20040228/fob2.asp.

Playing cards
The standard deck of playing cards today has 52 cards in four suits: spades,
clubs, diamonds, and hearts. Spades and clubs are black cards, diamonds and
hearts are red cards. There are 13 cards in each suit: an ace, numbered cards
from 2 through 10, and 3 face cards—the jack, queen, and king.

http://www.sciencenews.org/articles/20040228/fob2.asp
http://www.sciencenews.org/articles/20040228/fob2.asp
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Exercises

Problem

If I draw one card from an ordinary deck of 52 playing cards, what is the proba-
bility that it will be a red card?

Solution

1. The trial is a single draw of one card from a deck of 52.

2. The sample space is all the possible cards, each of which has an equal like-
lihood of being drawn.

3. The event is E = {red card}.

4. Since there are 52 cards in the deck and half (26) are red, the probability of
drawing a red card is 26/52 or 0.5. The answer is that we have a 50% proba-
bility of drawing a red card.

Problem

If I roll a die once, what is the probability of getting a number lower than 5?

Solution

1. The trial is a single roll of a six-sided die.

2. The sample space is the numbers (1, 2, 3, 4, 5, 6), all of which are equally
likely.

3. The event is E = (any of 1, 2, 3, 4), which can also be considered the union of
four simple events, i.e., E = (E = 1) ∪ (E = 2) ∪ (E = 3) ∪ (E = 4).

4. Four of the six simple events or possible outcomes that constitute the sample
space satisfy the event E, so the probability of E is 4/6 or 0.67 (rounded).

Alternative solution

Another way to look at this is to calculate the probability of each simple event that
satisfies the event E and add them together, since the events are mutually exclu-
sive. Using this approach, the probability of each simple event in E is 1/6, i.e., there
is a 1 in 6 chance that the number will be 1, 1 in 6 that the number will be 2, and
so on, so the probability of E is 1/6 + 1/6 + 1/6 + 1/6 or 4/6, which is the same
answer as above.

Problem

If I flip a fair coin twice, what is the probability that I will get at least one head?

Solution

1. The experiment is two flips of a fair (P = 0.5 for either heads or tails) coin, i.e.,
two independent trials.

2. The sample space is {(h, h,), (h, t), (t, h), (t, t)}, all of which are equally likely.
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3. The event is E = (at least one head); three of the events in the sample space
satisfy this condition: (h, h), (h, t), and (t, h).

4. Each of the outcomes is equally likely, and three of the four satisfy the event
E, so the probability of E is 3/4 or 0.75.

Alternative solution

We can also find this result mathematically by calculating the probability of the
complement of this event, then subtracting it from 1 to get the probability of the
event. If the event E is (at least one head) then its complement is ~E = (no heads,
i.e., two tails). We know that the probability of getting a tail on any flip of a fair
coin is 0.5, and the flips are independent, so the probability of (t,t) is 0.5 × 0.5 or
0.25. Using the definition of complement above, 1 – P(~E) = P(E), so 1 – 0.25 =
0.75 or P(E) and the probability of at least one head from two flips is 0.75.

Problem

If I draw one card from a standard 52-card deck, what is the probability that it
will be a black (clubs or spades) face card (king, queen, or jack)?

Solution

1. The trial is drawing one card from a 52-card deck.

2. The sample space is all 52 cards, each of which has equal probability of being
drawn.

3. The event is E = (black face card); six cards satisfy this condition, the jack,
queen, or king of either spades or clubs.

4. The probability is 6/52 or 0.115.

Mathematical solution

P(face card) = 12/52 or 0.231

P(black card) = 26/52 or 0.5

P(black face card) = P(face card) * P(black card) = 0.231 * 0.5 = 0.116

This solution is possible because the probability of drawing a black
card, and the probability of drawing a face card are independent.

Problem

If I draw one card from a standard 52-card deck, what is the probability that it
will be either black (clubs or spades) or a face card (king, queen, or jack)?

Solution

1. The trial is drawing one card from a 52-card deck.

2. The sample space is all 52 cards, each of which has an equal probability of
being drawn.
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3. The event is E = (either black card or face card), meaning any of the 26 black
cards or any of the 12 face cards will satisfy the event.

4. The two types of cards that will satisfy the condition are not mutually exclu-
sive: some black cards are also face cards, and vice versa. There are 26 black
cards: ace through king of spades (13) and ace through king of clubs (13).
There are 12 face cards: jack, king, and queen for each of hearts, diamonds,
clubs, and spades. There are six cards in both categories: jack, king, and
queen of spades and clubs. So there are 26 + 12 – 6 = 32 cards that satisfy
this event, and the probability is 32/52 or 0.615.

Mathematical solution

P(black card) = 26/52 or 0.500

P(face card) = 12/52 or 0.2301

P(black face card) = 6/52 or 0.115

P(black card or face card) = 0.500 + 0.231 – 0.115 = 0.616

Problem:

If I draw a single card from a 52-card deck and it is black, what is the probability
that its suit is clubs?

Solution

1. The trial is drawing one card from a 52-card deck.

2. The sample space is all black cards, since we are interested in the conditional
probability of a card being a club, given that it is a black card. Our sample
space is therefore the 26 black cards.

3. The event is E = (club | black card).

4. The probability of the card being a club, given that it is a black card, is 13/26
or 0.5.

Note that this is a conditional probability (conditioned on the fact
that the card is black); the unconditional probability of the card being
a club, if we had no information about its color, is 13/52 or 0.25.

Mathematical solution

P(clubs | black card) = P(clubs)/P(black card) = 0.25/0.5 = 0.5

Problem

If order is not significant, how many ways are there to select a subset of 5 students
from a classroom of 20?

Solution

This is a combinatorial problem that is too lengthy to solve by listing all possible
subsets. Instead, we will use the combination formula. In this case, n = 20 and k = 5:
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There are 80 students attending a conference: 40 boys and 40 girls. 30 of the boys
are majoring in math, as are 20 of the girls. We know that if you pick a boy at
random, there is a 75% chance that he is a math major; however, if you pick a
math major at random, what is the probability that the student is male?

Solution

P(male) = 40/80 = 0.5

P(~male) = 40/80 = 0.5

P(math|male) = 30/40 = 0.75

P(math|~male) = 20/40 = 0.5

Closing Note: The Connection Between Statistics and Gambling

Statisticians like to illustrate probability using dice, coin flips, and playing cards as
examples, objects that are also used in gambling (or gaming, in the industry’s
preferred terminology). One reason is that these objects are familiar to most
people, the probabilities of the different outcomes are known and unchanging,
and they supply examples that can be used to illustrate the basic concepts of prob-
ability, including independence and mutual exclusivity. They also have the
advantage that problems can be solved using the concrete objects in question (for
instance, by selecting from a standard deck of cards) as well as through mathe-
matical equations.

Another reason is that many of the laws of probability were discovered in connec-
tion with games of chance and skill involving dice and playing cards. In fact,
gamblers have been a regular source of inquiry into the probabilities of different
combinations of events, in large part because their ability to win rather than lose
money depends in large part on their understanding the probability of different
events within their chosen game.

Many historians trace the beginning of modern probability theory to the Chevalier
de Mere, a gentleman gambler in 17th century France. He was fond of betting that
he would roll at least one six in four rolls of a single die: the wisdom of this bet will
be demonstrated below. However, he also believed that it was a good bet to
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propose that he would roll one or more double sixes in 24 rolls of a pair of dice:
this turned out to be a losing proposition. Fortunately for the future of proba-
bility, the Chevalier took this problem to his friend the philosopher Blaise Pascal,
who discussed it with his friend the mathematician Pierre de Fermat and in the
process developed, among other things, Pascal’s triangle, the binomial distribu-
tion, and the modern concept of probability.

In an even bet among friends, when there is no “house” taking a percentage of the
proceeds, a good bet is one you are likely to win more than 50% of the time, i.e., a
bet where the likelihood of winning is 0.5 or greater. The Chevalier’s first bet met
this standard: the probability of rolling at least one six in four rolls of a die is 0.518.
This is easily calculated by considering the probability of rolling no sixes in four
trials, which is (5/6)4. Rolling at least one six is the converse of rolling no sixes, so
the P(at least one six in four trials) is 1 – (5/6)4 or 1 – 0.482, which is 0.518. This
means that about 52% of the time, the Chevalier won this bet.

However, rolling at least one double six in 24 rolls of a pair of dice is not a wise
bet. There are 36 combinations of numbers in each of two rolls of a pair of dice,
and only one combination is double sixes: therefore on each roll the probability is
35/36 that double sixes will not come up. Because each roll of the dice is indepen-
dent, we can multiply the probabilities for each roll together: because the
probabilities do not change, this means multiplying (35/36) by itself 24 times,
which is the same as raising it to the power of 24. The probability of rolling at
least one double six is 1 – P(no double sixes) or 1 – 0.509, which is 0.491. Since
this probability is less than 0.5, this is a losing bet.

If you are interested in learning more about how probability theory applies to
games of chance and skill such as roulette, craps, blackjack, horse racing, and
poker, take a look at Edward Packel’s The Mathematics of Games and Gambling,
published by the Mathematical Association of America and listed in Appendix C.
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3
Data Management

You may wonder what a chapter on data management is doing in a book about
statistics. It’s really very simple: statistics is about analyzing data, and the validity
of the statistical result depends in large part on the validity of the data analyzed.
So if you will be working with statistics, you need to know something about data
management, whether you will be performing the necessary tasks yourself or dele-
gating them to someone else. Oddly enough, data management is often ignored in
conventional statistics classes, as well as in many offices and labs: professors and
project managers alike sometimes seem to believe that data will magically orga-
nize itself without the need for human intervention. However, people who work
with data on a daily basis are more likely to subscribe to the 80/20 rule, which
says that you spend 80% of your time preparing the data for analysis, and only
20% of your time actually analyzing it. Additionally, even people who understand
the need for data management often act as if everyone was born knowing how to
do it, unlike matters such as doing linear algebra or riding a bicycle, which actu-
ally need to be learned. This is nonsense: data management is a skill that can be
learned like any other, and while it is certainly possible to learn it on the job, a.k.a.
The School of Hard Knocks, there’s no reason not to take advantage of the collec-
tive wisdom of those who have gone before you.

The quality of analysis depends on the quality of the data, a fact enshrined in a
phrase that originated in the world of computer programming: “Garbage In,
Garbage Out,” or GIGO. The same concept applies to statistics: the finest statisti-
cian cannot produce valid results if the data is a mess. However, recognition of
this truth may be obscured by a cultural gulf between the practice of statistics and
the practice of data management. If the discipline of statistics dwells on the Olym-
pian heights of abstraction, in the ethereal world of formulas and idealized
populations, data management must get down in the trenches and grapple with
the reality of the data actually collected. Data by its nature is messy, and seldom
does a data file arrive in perfect shape and ready for analysis. So between
collecting the data and analyzing it, someone has to get their hands dirty working
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directly with the data file, cleaning, organizing, and otherwise getting it ready for
analysis. There’s no mystery about what needs to be done during this process, but
it does require a systematic approach guided by knowledge of the data and the
uses to which it will be put, and a skeptical attitude informed by common sense.

GIGO has another meaning that applies equally well to statistical analysis:
“Garbage In, Gospel Out.” This refers to the distressing tendency of some people
to believe that anything produced by a computer must be correct, or by extension
that any analytic results are correct because they were produced using statistical
procedures. This problem may be intensified if the statistical results were
produced using a computer package such as SPSS or SAS, adding the mystique of
computing to the intimidation of statistics. Unfortunately, statistical processes
don’t know whether the data is good or bad: the fact that you can calculate the
mean and variance of any set of numbers does not mean that those numbers have
any meaning, let alone that they represent a reasonable summary of the data. The
ease with which complex analyses can be produced using modern statistical soft-
ware has increased the prevalence of this problem because results can be
produced faster and with less effort on the analyst’s part. The basic problem
remains that the software assumes you have provided it with correct data and
produces results according to the algorithms programmed within it, without
regard to whether the data supplied is either accurate or meaningful.

If your interest is entirely in learning statistical procedures, for instance, if you are
taking a class where the professor supplies you with data sets that have already
been cleaned, or if your job responsibilities are only to analyze the data as it is
supplied to you, you may want to skip this chapter. Similarly, if you have no prac-
tical experience working with data, this chapter may seem entirely abstract and
you may want to skim or pass over it until you’ve actually handled some data. On
the other hand, you may find it useful to consider the process of data manage-
ment and become aware of what may happen when it isn’t done correctly. In
addition, job change is a regular feature of the modern world, so in the future you
may find yourself applying for a position that includes data management, or
supervision of others who perform those duties. If you can speak convincingly on
the topics covered in this chapter, you’ll have a head start on a good proportion of
the candidates. In addition, if you get the job, you will start off with a good under-
standing of why data management is important and how it is done.

An Approach, Not a Set of Recipes
Because many different methods and computer programs are used to collect,
store, and analyze data, it’s impossible to write a chapter spelling out how to carry
out particular procedures that will work in all of them. So I’m focusing in this
chapter on an approach to data management, including issues common to many
situations and a general process of moving from raw data to a data set ready for
analysis.

If I had to give one piece of advice concerning data management, it would be this:
assume nothing. Don’t assume that the data file supplied to you is the file you are
actually supposed to analyze. Don’t assume that all the variables transferred
correctly when you moved the file from Excel to SAS (volumes could be written
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on this subject alone, and every version of any software seems to include a new set
of problems). Don’t assume that quality control was exercised over the data entry
process or that anyone else has examined the data for out-of-range or otherwise
impossible values. Don’t assume that the person who gave you the project is
aware that a key variable is missing for 50% of the cases... you get the idea. Data
collection and data entry are activities performed by human beings, who don’t
always know their jobs perfectly, and make mistakes now and then. A large part
of the data management process is discovering where those mistakes were made
and either correcting them or thinking of ways to work around them so the data
may be analyzed as intended.

The Chain of Command
Without carrying the military metaphor too far, efficient data management for a
large project requires establishing a structure or hierarchy of people who are
responsible for different aspects of the process. Equally important, everyone
involved in the project should know who is authorized to make what decisions, so
that when a problem arises it can be resolved quickly and reasonably. This is
common sense, but not always exercised in practice. If the data entry clerk notices
that data is coming in with lots of variables missing, for instance, he should know
exactly who to report the problem to so it can be corrected while the project is
still in the data collection phase. If an analyst finds out-of-range values during
initial inspection of the data file, she should know who can make the decision
about what to do with those values, so they can be corrected or recoded before
the main analysis takes place. Make it difficult for such issues to be resolved, and
the staff is likely to impose their own ad hoc solutions or give up trying to deal
with them, leaving you with a data set of uncertain quality.

Codebooks
The codebook is a classic tool of social science research, but the principle of the
codebook applies to any project that involves collecting and analyzing data. Some-
times the codebook is an actual book, generally either a spiral notebook or a
three-ring binder, which is used to collect and organize important information
about a project. I have also worked on many projects where there was no actual
code “book” in the sense of a physical object of paper and ink; instead, all infor-
mation was stored electronically, in the data and syntax files themselves and
ancillary electronic documents. Some projects use a hybrid system, in which most
of the codebook information is stored electronically, but also printed and kept in
a binder. The bottom line is that it doesn’t matter what method you choose, as
long as the vital information about the project and the data set is reliably recorded
in some location for future reference.

On the whole, I would say that companies whose data consists of the records of
their day-to-day business operations do a better job of documentation than
academics and people working on small projects. That is probably a combination
of two factors. When data reflects the main business of a company, the informa-
tion technology department has a real incentive to get it right, and when the data
collection and storage processes are ongoing and standardized, it is easier to
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establish a set of procedures and follow them. In addition, companies generally
assign people to carry out the procedures of data management, and ensure that
they are appropriately trained. The polar opposite is often found in academia,
where numerous small projects, each with their own quirks, may be conducted
simultaneously. In such circumstances, data management may be relegated to
undergraduates with minimal experience or training, or to Ph.D.s or M.D.s who
are subject matter experts but unfamiliar with (and possibly uninterested in) the
day-to-day issues of data management.

The main reason you need a codebook or its equivalent is to create a repository of
information about the project and its data, so that people who join the project
later or analyze the data long after the collection process has ceased know what it
is and how to interpret it. It’s also helpful for people who have been involved from
the start, because no one’s memory is perfect and it’s easy to forget what deci-
sions were made six months or two years ago. Having codebook information
easily accessible is also a great timesaver when it’s time to write up your results or
when you need to explain the project to a new analyst.

At a minimum, the codebook needs to include information in the following
categories:

• The project itself and data collection procedures used

• Data entry procedures

• Decisions made about the data

• Coding procedures

Details about the project that should be recorded include the original purpose,
timeline, funding, original personnel and any changes, and who is in charge of
what. Data collection procedures should include when the data was collected,
what procedures were used, and who actually did the data collection. If a form
like a questionnaire was used, a copy should be included in the codebook, as
should any instructions given to the data collectors.

Information about data entry procedures is particularly important when data is
collected in one medium, for instance, on paper questionnaires, and analyzed in
another, usually as an electronic file. However, even if a CATI (computer assisted
telephone interviewing) system or other method of electronic data collection was
used, the codebook should explain how the individual files were collected and
transferred. Usually electronic file transfer works smoothly, but not always. Every
time a file is transferred there is an opportunity for a data file to become
corrupted, in which case it may be necessary to trace back the process in order to
correct the error. Information about the training of data entry personnel and any
quality control methods (such as double entry of a percentage of the data) should
also be recorded.

Seldom is data ready to be analyzed exactly as it has been collected: someone
needs to examine it and make decisions about such things as out-of-range values
and missing data before the file is ready for analysis. All these decisions need to be
recorded, as well as the location of each version of the file. An archived version of
the original data file should be stored somewhere it can’t be changed, in case you
want to reverse a coding decision later, or the edited file becomes corrupt and has
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to be re-created. It’s also sensible to store versions of the file after each major
round of editing, in case you decide that decisions made in rounds 1, 2, 3, and 5
were valid but not those of round 4: being able to go back to version 3 of the file
saves having to process the original version from scratch. The number of vari-
ables and cases in each version of the file, and the file layout, should also be
recorded. Every time a file is transferred you need to confirm that the right
number of cases and variables appear in the new version, and the file layout is
useful when you need to refer to variables by position rather than name (for
instance, if the last variable in the file didn’t survive the transfer).

Coding procedures will probably occupy the largest part of your codebook. Infor-
mation that should be recorded here includes variable names, labels added to
variables and data values, definitions of missing value codes and how they were
applied, and a list of any new variables and the process by which they were
created (by using a function, categorizing continuous data, etc.).

The Rectangular Data File
There are many ways to store data electronically, but the most typical remains the
rectangular data file. This format should be familiar to anyone who has used a
spreadsheet program such as Excel, and although statistical packages such as SAS
and SPSS can read data stored in many different packages, the rectangular data file
remains a common currency in which files can be exchanged among many
different programs.

The most important aspect of the layout of a rectangular data file is that each row
represents a record, and each column represents a variable. In addition, data is
often arranged so that each row represents one case as defined by the anticipated
unit of analysis (see the upcoming “Unit of Analysis” sidebar for more about this),
but this requirement is not strictly necessary.

Figure 3-1 displays an excerpt of data from the General Social Survey of 1993, a
nationally representative survey that has been conducted by the National Opinion
Research Center at the University of Chicago almost every year since 1972. Each
line holds data collected from one individual, identified by the variable “id” in the
first column. Each column represents data on a particular variable: for instance,
the second column holds values for the variable “wrkstat”, which is the indi-
vidual’s response to a question about their work status, and the third column
holds values for the variable “marital”, which is the individual’s response to a
question about their marital status.

Figure 3-2 shows the same excerpt from the same data set when opened in SPSS:
the chief difference is that in Excel the first row is used to store variable names
(“id”, “wrkstat”, etc.) while in SPSS variable names are stored separately. This
means that when moving a data file from Excel to SPSS, there will appear to be
one fewer case because the variable names occupy a data row in Excel, while in
SPSS they do not.

Although other data arrangements are possible in spreadsheets, such as placing
variables in rows and cases in columns, these methods should not be used for data
that will be imported into a statistical program. In addition, while spreadsheets
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allow for the inclusion of other types of information beyond data and variable
names, such as titles and calculated fields, that information should be removed
before importing into a statistical program.

The main point to keep in mind when considering how to store your data in an
electronic file is that it must be formatted for use with the program you intend to
use to analyze it, whether that is SPSS, SAS, R, or some other program. What all
these programs have in common is that they assume the data is arranged in a
particular way and will apply the algorithms for the procedure requested
assuming that that expectation has been met. Most programs provide multiple
ways of transforming data files and the burden is on the statistical analyst to find

Figure 3-1. Rectangular data file in Excel

Figure 3-2. Rectangular data file in SPSS
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out the correct way to format the data for the intended analysis, and to get the
data set into that format.

Spreadsheets and Relational Databases
Even if a project’s data will ultimately be analyzed using a specialized statistical
analysis program, it is common to collect and/or enter the data using a different
program, such as Excel, Access, or Filemaker. These programs can be simpler to
use for data entry than a statistical program and many people have them installed
on their computer anyway (particularly Excel), limiting the number of licenses
that must be purchased. Excel is a spreadsheet, while Access and Filemaker are
relational databases. All three can open electronic files from other programs and
write files that can be opened by other programs, making them good choices if
data will be transferred among programs. In addition, all three can also be used to
inspect the data and compute elementary statistics.

For small data projects with simple data, a spreadsheet may be completely
adequate. The advantage of spreadsheets is their simplicity: you can create a new
data file simply by opening a new spreadsheet and typing the data into the
window, and the entire data set can be contained in a single document. Beginners
find spreadsheets easy to use, and the spreadsheet format encourages entering
data in the rectangular data file form, facilitating data sharing among programs.

Relational databases are a better choice for some larger or more complex projects.
They consist of a number of separate tables, each of which looks similar to a

Unit of Analysis
The unit of analysis in a research project is the major entity the study focuses
on: examples include individual students, classrooms, schools, arrests, visits to
the emergency room, neighborhoods, and countries. We refer to the unit of
analysis because the same data could be analyzed using different units: for
instance, one analysis might look at the academic achievement of individual
schoolchildren, while another analysis of the same data could look at achieve-
ment levels among different schools, and a third could look at academic
achievement in different cities.

Data that is specific to one unit of analysis is often referred to as belonging to a
particular level, so in the example above, the variables collected on individual
schoolchildren would be called individual-level data and the variables collected
concerning schools (such as enrollment or type of funding) would be called
school-level data. Although in some fields it is still acceptable to mix data from
different levels in a conventional statistical analysis, this can produce misleading
results. Instead, it is becoming more and more the expectation that specialized
techniques such as multilevel modeling will be used if data from different levels
is included in a single analysis.
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spreadsheet page. In a well-designed database, each table holds only one partic-
ular type of data, and the tables are linked by key variables. This means that
within the database, data for one case (for instance, for one person) would be
contained in many separate, specialized tables. A student database might have one
table for home addresses, one for birth dates, one for enrollment dates, and so on.
If data needs to be transferred to a different program for analysis, the relational
database program can write a rectangular data file that contains all the desired
information in a single table. The chief advantage of a relational database is effi-
ciency: data is never entered more than once, and multiple records can draw on
the same data. In the school example, this would mean that several siblings could
draw on the same home address record, while in a spreadsheet that information
would have to be entered separately for each child, raising the possibility of typing
or transcription errors.

Inspecting a New Data File
Let’s assume you have just been sent a new data file to analyze. You have read the
background information on the project and know what type of analysis you need
to perform, but you need to confirm that the file is in good shape before you begin
the analysis. In most cases, you need to answer the questions below (at least)
before you begin to analyze the data. Procedures to determine the answer to these
questions are available in many types of software, from Excel and Access through
specialized statistical packages. Several books that cover data cleaning techniques
in particular programs are listed in Appendix C.

1. How many cases are in the file?

2. How many variables are in the file?

3. Are there any (unintended) duplicate cases?

4. Did the variable values, names, and labels transfer correctly?

5. Is all the data within reasonable range?

6. How much data is missing and in what patterns?

You should know how many cases are expected to be in the data file you received:
if that does not match up with the number actually in the file, either you were sent
the wrong file (which happens all the time) or the file got corrupted during the
transfer process (which also happens all the time). At this point you need to go
back to the source and get the correct, uncorrupted file before continuing further
in your investigation.

Assuming the number of cases is correct, you also need to confirm that the correct
number of variables are included in the file. Aside from being sent the wrong data
file, a common typical reason why a received file has the wrong number of vari-
ables is that the program you are using to open the file has a restriction on the file
size or number of variables it can accommodate.

Assuming you have a file with the correct number of cases and variables, you next
want to see if it contains any unintended duplicate cases. This requires communi-
cation with whoever is in charge of data collection on the project to find out what
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constitutes a duplicate case, and if a key variable (see the upcoming “Unique Iden-
tifiers” sidebar if this term is unfamiliar) is used to identify cases. The definition of
a duplicate case depends on the unit of analysis: if the unit of analysis is hospital
visits, it would be appropriate for the same person to have multiple records in the
file (because they could have made multiple hospital visits). In a file of death
records, on the other hand, you would expect only one record per individual.
Methods for identifying duplicate records depend on the software being used as
well as the specifics of the data set: sometimes it is as simple as confirming that no
ID number appears more than once, while sometimes it requires searching for
records that have the same values on all or more variables.

Checking that variable values, names, and labels are correct is the next step in
inspecting a data file. Correct transfer of data values is the most important issue:
many unexpected things can happen to data in the file transfer process. Things to
check include correct variable type (sometimes numeric variables are unexpect-
edly translated to string variables, or vice versa: more on string and numeric
variables below), length of string variables (which are often truncated or padded),
and correct values for dates. Date variables are a frequent source of trouble,
because of the different ways they are stored in different systems. Generally data is
stored as a number reflecting the number of units of time (days or seconds) from a
particular reference date. Unfortunately, each program seems to use a different
reference date, and some use different units as well, with the consequence that
date values often do not transfer correctly from one program to another. If date
values cannot be made to transfer correctly, they can be translated to string vari-
ables, which can be used to re-create the date values in the new program.

Unique Identifiers
The concept of the unique identifier is vital to data management and is familiar
to people who work with databases, but may not be known to people who have
never worked in data processing. An identifier is a code, usually a number,
which is used to identify cases in a data set, and a unique identifier is one that is
unique for each case.

Most data sets need at least one unique identifier for each potential unit of anal-
ysis. For instance, if data from a medical clinic could be analyzed at either the
patient or visit level, one identifier is required that is unique for each patient but
common to all the records for one patient, and a second identifier that identifies
all the records belonging to a specific patient visit. The unique identifier is
useful to confirm that there are no duplicate records, to identify common
records belonging to one unit (for instance, all the clinic visits for an indi-
vidual), and to avoid confusing records for different individuals. There may be
multiple Bill Smiths in a large hospital file, and you wouldn’t want to get them
confused. By the same principle, a particular Bill Smith might come to the clinic
five times in a year: when looking at his health history, you want to be able to
pull out all the records relating to him.
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Variable names can also change unexpectedly during the file transfer process, due
to different programs having different rules about what is allowable in a variable
name. For instance, Excel allows variable names to begin with a number, while
SAS and SPSS do not. Some programs allow names up to 64 characters in length,
while others truncate names at 8 characters, a process that may result in duplicate
variable names or the substitution of generic names such as “var1”. Although data
can be analyzed no matter how the individual variables are named, odd and
nonmeaningful names impose an extra burden on the analyst and may make the
analytical process less efficient. Some advance planning is in order if data will be
shared among several programs: in particular, someone needs to look up the
naming conventions for each program whose use is anticipated, and create vari-
able names that will be compatible with all the programs that will be used.

Variable and value labels are a great convenience when working with a data file,
but often create problems when files are moved from one program or platform to
another. Variable labels are text phrases attached to a variable, often used to work
around name length restrictions: for instance, the variable “wrkstat” in the GSS
example could be assigned the label “Work status in the previous six months.”
Value labels are similar but are assigned to the values of individual variables.
Continuing with the previous example, for the variable “wrkstat” we might assign
the label “Full-time employment” to the value 1, “Part-time employment” to the
value 2, and so on. However, due to differences in how variable and value labels
are stored in different platforms and programs, often they don’t transfer correctly.
One solution, if you know that the data will be shared across several platforms
and/or programs, is to use simple variable names such as “v1” and write a piece of
code to be run on each platform or program that takes care of the assignment of
variable and value labels.

The next step is to examine the actual values in the data set and see whether they
seem reasonable. If you find errors at this point, they may be due to data
recording or data entry problems. In either case, someone who is involved with
the original project will have to make a judgment call about how to deal with
apparently incorrect data values. You can inspect the range of values on a variable
by running a frequency procedure if you are using a statistical package, by sorting
the cases and inspecting them visually if you are using a spreadsheet package, or
with software-specific procedures such as the Filter option in Microsoft Excel.
The question you need to answer is whether the values in the data file make sense,
because once you start analyzing the data, the program will assume that all the
values entered are valid. Typical problems to be on the alert for include out-of-
range data (someone with an age of 150 years), invalid values (“3” entered for a
question that has only two valid values, “0” and “1”) and incongruous patterns
(newborn infants reported as college graduates).

The final step before beginning an analysis is to examine the amount of missing
data and its patterns. Missing data is a complex problem that can only be touched
on in this chapter: if you need to get more deeply into the subject, I recommend
consulting the classic Little and Rubin text listed in Appendix C. Your first goal is
to find out how much missing data there is, a task that can be accomplished using
frequency procedures. The second is to examine the patterns of missing data
across multiple variables. For instance, is data frequently missing on particular
sets of variables? Are there cases with lots of missing data, while others are
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entirely or primarily complete? What are the different reasons why data is missing
(for instance, because a person declined to provide information, versus because a
question did not apply to them) and how are the different types of missing data
coded? See the section “Missing Data” later in this chapter for further discussion.

String and Numeric Data
One distinction observed in most electronic data processing and statistical anal-
ysis systems (although they may use different names for the concept) is the
difference between string and numeric variables. The values stored in string vari-
ables, which are also called character or alphanumeric variables, can include
letters, numbers, blanks, and symbols such as “#” (the specific characters allowed
vary across different systems). String variables are stored as a series of coded
values: the coding systems most commonly used are EBCDIC (Extended Binary
Coded Decimal Interchange Code) and ASCII (American Standard Code for Infor-
mation Interchange). Because string variables are coded as a system of values,
certain procedures are possible that refer to the position of the characters: for
instance, selecting the first three characters in a variable and storing it in a new
variable.

Numeric variables are stored as numeric values rather than as the characters that
are used to write those values, and may be used in mathematical and statistical
procedures (such as addition and subtraction), while string variables may not. In
some systems, certain symbols such as the decimal point, comma, and dollar sign
are also allowed within numeric variables.

The specific method used to store the values of numeric variables differs across
platforms and systems, as does the precision with which values are stored. Each
electronic data system (Excel, SAS, SPSS, etc.) has a different set of rules for what
characters are allowed in string and numeric variables, and rules about which
types of variables may be used in which procedures. You need to be aware that
when transferring electronic files from one system to another, the variable type
may change or certain values may be dropped. This is a problem that needs to be
handled on a file-by-file basis: the specific problems that occur when transferring
files from Excel to SPSS, for instance, may be different from those that occur when
transferring files from Access to SAS.

Missing Data
Nearly every data set ever collected has included missing data at some point in its
history. Despite the ubiquity of missing data, however, it is not a simple problem
to deal with and analysts have to decide to what lengths they are willing and able
to go in order to handle missing data. This discussion can only introduce the main
concepts concerning missing data, and suggest some practical fixes. For a more in-
depth and academic discussion, see the classic text Statistical Analysis with
Missing Data by Little and Rubin (Wiley) listed in Appendix C.

Data can be missing for many reasons, and it is useful if the reasons are recorded
within the data set. The method to accomplish this varies with different systems
but is nearly always possible, often by using specific data codes to differentiate
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among them, using values (such as –8 and –9) that cannot appear as true values
for the variable in question. For instance, on a survey, an individual might refuse a
particular question, or might not have the information requested: those two types
of responses could be assigned different codes and their meaning noted in the
codebook. Many types of software also allow this information to be included in
the data file through value labels. A third possibility is that the question was not
asked because it was not applicable (such as a question about having a driving
license when interviewing a 10-year-old), so that type of missing data would be
assigned yet another code. The reason for differentiating among these cases is that
you might want to include the reasons data is missing in an analysis. For instance,
you might want to know if those who declined to answer differed demographi-
cally from those who did not know the answer to the question.

Missing data poses two problems: it reduces the number of cases available for
analysis, thereby reducing statistical power (your ability to find true differences in
the data, a topic discussed further in Chapter 18), and may also introduce bias
into the data. The first point is based on the fact that, all things being equal,
statistical power is increased as the number of cases increase, so any loss of cases
may result in a loss of power. The second point requires an excursion into missing
data theory.

Missing data is often divided into three types: missing completely at random
(MCAR), missing at random (MAR), and nonignorable. MCAR means that the
fact of a piece of data being missing is not related to either its own value or the
value of other variables in the data set. This is the easiest type of missing data to
deal with, since the complete cases may be considered to be a random sample of
the entire data set. Unfortunately, MCAR data rarely occurs in practice. MAR
data means that the fact that the data is missing is not related to its own value, but
is related to the values of other variables in the analysis. For instance, failure to
complete a survey item about household income may be related to an individual’s
level of education. Nonignorable missing data is unfortunately the most common
type, and also the type most likely to introduce bias into a statistical analysis.
Nonignorable refers to data whose missingness is related to its own value. For
instance, overweight people may be less willing to supply information about how
much they weigh, and people with low-prestige jobs may be less likely to fill out
an occupational survey.

This discussion may seem a bit theoretical: how can you tell what type of missing
data you have, when you by definition don’t know the values of the data that is
missing? The answer is that you have to make a judgment based on knowledge of
the population surveyed and your experience in the field. Because the most
common methods of statistical analysis assume you have complete, unbiased
data, if a data set has a large quantity of missing data, you (or whoever is empow-
ered to make such decisions) will have to decide how to deal with it.
Implementing any of the solutions suggested below, other than the first or fourth,
may require calling in a statistical consultant or using software designed specifi-
cally for dealing with missing data, so the departmental budget and availability of
such experts and software will also play a role in the decision. Some potential
solutions are included below: the most preferable is 1. Solutions 5 through 7 are
seldom justified from a statistical point of view, although they are often used in
practice.
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1. Make an extra effort to collect the missing data by following up with the
source, which solves the problem by making the missing data no longer
missing.

2. Consider a different analytical design, such as a multilevel model rather than
a classic repeated-measures model.

3. Impute values for the missing data using maximum likelihood methods such
as those available in the SPSS MVA module, or use multiple imputation in
SAS PROC MI to generate a distribution for the missing value and select a
value for each missing case.

4. Include a dummy (0, 1) variable in your analysis that indicates that data was
missing, along with an imputed value replacing the missing data.

5. Drop the cases or variables with large amounts of missing data from the anal-
ysis (only feasible if the problem is confined to a small percentage of cases
and/or variables that are not central to your analysis, and may introduce bias
if the data is not MCAR).

6. Conditional imputation: use available values to impute missing values (not
recommended, as it may result in an underestimate of variance).

7. Simple imputation: substitute a value such as the population mean for the
missing value (not recommended, as it nearly always results in an extreme
underestimate of variance).
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4
Descriptive Statistics and
Graphics

Most of this book, as in most statistics books, is concerned with statistical infer-
ence, which is the practice of drawing conclusions about a population using
statistics calculated on a sample considered to be representative of that popula-
tion. However, this particular chapter is concerned with descriptive statistics,
meaning the use of statistical and graphic techniques to present information about
the data set being studied. Computing descriptive statistics and examining graphic
displays of data is an advisable preliminary step in data analysis. You can never be
too familiar with your data, and the time you spend examining the actual distribu-
tion of the data collected (as opposed to the distribution you expected it to
assume) is always time well spent. Descriptive statistics and graphic displays are
also the final product in some contexts: for instance, a business may want to
monitor total volume of sales for its different locations without any desire to use
that information to make inferences about other businesses.

Populations and Samples
The same data set may be considered as either a population or a sample,
depending on the reason for its collection and analysis. For instance, the final
exam grades of the students in a class are a population if the purpose of the anal-
ysis is to describe the distribution of scores in that class. They are a sample if the
purpose of the analysis is to make some inference from those scores to the scores
of students in other classes. Analyzing a population means you are performing
your calculations on all members of the group in question, while analyzing a
sample means you are working with a subset drawn from a larger population.
Samples rather than populations are often analyzed for practical reasons, since it
may be impossible or prohibitively expensive to study a large population directly.

Notational conventions and terminology differ from one author to the next, but as
a general rule numbers that describe a population are referred to as parameters
and are signified by Greek letters such as µ and σ, while numbers that describe a
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sample are referred to as statistics and are signified by Latin letters such as x and s.
Sometimes computation formulas for a parameter and the corresponding statistic
are the same, as in the population and sample mean. However, sometimes they
differ: the most famous example is that of the population and sample variance and
standard deviation. Somewhat confusingly, because most statistical practice is
concerned with inferential statistics, sometimes statistical formulas properly
meant for samples are applied to populations (when the parameter formula
should be used instead). When the formulas differ, both will be provided in this
chapter.

Measures of Central Tendency
Measures of central tendency, also known as measures of location, are typically
among the first statistics computed for the continuous variables in a new data set.
The main purpose of computing measures of central tendency is to give you an
idea of what is a typical or common value for a given variable. The three most
common measures of central tendency are the arithmetic mean, median, and
mode.

The Mean

The arithmetic mean, or simply the mean, is more commonly known as the
average of a set of values. It is appropriate for interval and ratio data, and can also
be used for dichotomous variables that are coded as 0 or 1. For continuous data,
for instance measures of height or scores on an IQ test, the mean is simply calcu-
lated by adding up all the values and dividing by the number of values. The mean
of a population is denoted by the Greek letter mu (σ) while the mean of a sample
is typically denoted by a bar over the variable symbol: for instance, the mean of x
would be designated x and pronounced “x-bar.” The bar notation is sometimes
adapted for the names of variables also: for instance, some authors denote “the
mean of the variable age” by age, which would be pronounced “age-bar”.

For instance, if we have the following values of the variable x:

100, 115, 93, 102, 97

We calculate the mean by adding them up and dividing by 5 (the number of
values):

x = (100 + 115 + 93 + 102 + 97)/5 = 507/5 = 101.4

Statisticians often use a convention called summation notation, introduced in
Chapter 1, which defines a statistic by expressing how it is calculated. The
computation of the mean is the same whether the numbers are considered to
represent a population or a sample: the only difference is the symbol for the mean
itself. The mean of a data set, as expressed in summation notation, is:

x
1
n
--- xi

i 1=

n

∑=
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Where x is the mean of x, n is the number of cases, and xi is a particular value of
x. The Greek letter sigma (Σ) means summation (adding together), and the figures
above and below the sigma define the range over which the operation should be
performed. In this case the notation says to sum all the values of x from 1 to n.
The symbol i designates the position in the data set, so x1 is the first value in the
data set, x2 the second value, and xn the last value in the data set. The summation
symbol means to add together or sum the values of x from the first (x1) to xn. The
mean is therefore calculated by summing all the data in the data set, then dividing
by the number of cases in the data set, which is the same thing as multiplying by
1/n.

The mean is an intuitively easy measure of central tendency to understand. If the
numbers represented weights on a beam, the mean would be the point where the
beam would balance perfectly. However the mean is not an appropriate summary
measure for every data set because it is sensitive to extreme values, also known as
outliers (discussed further below), and may also be misleading for skewed
(nonsymmetrical) data. For instance, if the last value in the data set were 297
instead of 97, the mean would be:

x = (100 + 115 + 93 + 102 + 297)/5 = 707/5 = 141.4

This is not a typical value for this data: 80% of the data (the first four values) are
below the mean, which is distorted by the presence of one extremely high value. A
good practical example of when the mean is misleading as a measure of central
tendency is household income data in the United States. A few very rich house-
holds make the mean household income a larger value than is truly representative
of the average or typical household.

The mean can also be calculated using data from a frequency table, i.e., a table
displaying data values and how often each occurs. Consider the following simple
example in Table 4-1.

To find the mean of these numbers, treat the frequency column as a weighting
variable, i.e., multiply each value by its frequency. The mean is then calculated as:

This is the same result you would reach by adding together each individual score
(1+1+1+1+...) and dividing by 26.

The mean for grouped data, in which data has been tabulated by range, is calcu-
lated in a similar manner. One additional step is necessary: the midpoint of each

Table 4-1. Simple frequency table

Value Frequency

1 7

2 5

3 12

4 2

x 1 7×( ) 2 5×( ) 3 12×( ) 4 2×( )+ + +
7 5 12 2+ + +

----------------------------------------------------------------------------------------------- 2.35= =
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range must be calculated, and for the purposes of the calculation it is assumed
that all data points in that range have the midpoint as their value. A mean calcu-
lated in this way is called a grouped mean. A grouped mean is not as precise as the
mean calculated from the original data points, but it is often your only option if
the original values are not available. Consider the following tiny grouped data set
in Table 4-2.

The mean is calculated by multiplying the midpoint of each interval by its
frequency, and dividing by the total frequency:

One way to lessen the influence of outliers is by calculating a trimmed mean. As
the name implies, a trimmed mean is calculated by trimming or discarding a
certain percentage of the extreme values in a distribution, and calculating the
mean of the remaining values. In the second distribution above, the trimmed
mean (defined by discarding the highest and lowest values) would be:

x = (100 + 115 + 102 )/3 = 317/3 = 105.7

This is much closer to the typical values in the distribution than 141.4, the value
of the mean of all the values. In a data set with many values, a percentage such as
10 percent or 20 percent of the highest and lowest values may be eliminated
before calculating the trimmed mean.

The mean can also be calculated for dichotomous data using 0–1 coding, in which
case the mean is equivalent to the percent of values with the number 1. For
instance, if we have 10 subjects, 6 males and 4 females, coded 1 for male and 0 for
female, computing the mean will give us the percentage of males in the
population:

x = (1+1+1+1+1+1+0+0+0+0)/10 = 6/10 = 0.6 or 60% males

The Median

The median of a data set is the middle value when the values are ranked in
ascending or descending order. If there are n values, the median is formally
defined as the (n+1)/2th value. If n = 7, the middle value is the (7+1)/2th or
fourth value. If there is an even number of values, the median is the average of the

Table 4-2. Grouped data

Range Frequency Midpoint

1–20 5 10.5

21–40 25 30.5

41–60 37 50.5

61–80 23 70.5

81–100 8 90.5

x 10.5 5×( ) 30.5 25×( ) 50.5 37×( ) 70.5 23×( ) 90.5 8×( )+ + + +
5 25 37 23 8+ + + +

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------=

51.32=
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two middle values. This is formally defined as the average of the (n/2)th and
((n/2)+1)th value. If there are six values, the median is the average of the (6/2)th
and ((6/2)+1)th value, or the third and fourth values. Both techniques are demon-
strated below:

Odd number of values: 1, 2, 3, 4, 5, 6, 7 median = 4
Even number of values: 1, 2, 3, 4, 5, 6 median = (3+4)/2 = 3.5

The median is a better measure of central tendency than the mean for data that is
asymmetrical or contains outliers. This is because the median is based on the
ranks of data points rather than their actual values: 50 percent of the data values
in a distribution lie below the median, and 50 percent above the median, without
regard to the actual values in question. Therefore it does not matter if the data set
contains some extremely large or small values, because they will not affect the
median more than less extreme values. For instance, the median of all three distri-
butions below is 4:

Distribution A: 1, 1, 3, 4, 5, 6, 7
Distribution B: 0.01, 3, 3, 4, 5, 5, 5
Distribution C: 1, 1, 2, 4, 5, 100, 2000

The Mode

A third measure of central tendency is the mode, which refers to the most
frequently occurring value. The mode is most useful in describing ordinal or cate-
gorical data. For instance, imagine that the numbers below reflect the favored
news sources of a group of college students, where 1 = newspapers, 2 = televi-
sion, and 3 = Internet:

1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3

We can see that the Internet is the most popular source because 3 is the modal
(most common) value in this data set.

In a symmetrical distribution (such as the normal distribution, discussed in
Chapter 7), the mean, median, and mode are identical. In an asymmetrical or
skewed distribution they differ, and the amount by which they differ is one way to
evaluate the skewness of a distribution.

Measures of Dispersion
Dispersion refers to how variable or “spread out” data values are: for this reason
measures of dispersions are sometimes called “measures of variability” or
“measures of spread.” Knowing the dispersion of data can be as important as
knowing its central tendency: for instance, two populations of children may both
have mean IQs of 100, but one could have a range of 70 to 130 (from mild retar-
dation to very superior intelligence) while the other has a range of 90 to 110 (all
within the normal range). Despite having the same average intelligence, the range
of IQ scores for these two groups suggests that they will have different educa-
tional and social needs.
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The Range and Interquartile Range

The simplest measure of dispersion is the range, which is simply the difference
between the highest and lowest values. Often the minimum (smallest) and
maximum (largest) values are reported as well as the range. For the data set (95,
98, 101, 105), the minimum is 95, the maximum is 105, and the range is 10 (105 –
95). If there are one or a few outliers in the data set, the range may not be a useful
summary measure: for instance, in the data set (95, 98, 101, 105, 210), the range
is 115 but most of the numbers lie within a range of 10 (95 to 105). Inspection of
the range for any variable is a good data screening technique: an unusually wide
range, or extreme minimum or maximum values, warrants further investigation. It
may be due to a data entry error or to inclusion of a case that does not belong to
the population under study (for instance, information from an adult that got
mixed in with a data set concerned with children).

The interquartile range is an alternative measure of dispersion that is less influ-
enced by extreme values than the range. The interquartile range is the range of the
middle 50% of the values in a data set, which is calculated as the difference
between the 75th and 25th percentile values. The interquartile range is easily
obtained from most statistical computer programs but may also be calculated by
hand using the following rules (n = the number of observations, k the percentile
you wish to find):

1. Rank the observations from smallest to largest.

2. If (nk)/100 is an integer (a round number with no decimal or fractional part),
the kth percentile of the observations is the average of the ((nk)/100th)and
((nk)/100+1)th largest observations.

3. If (nk)/100 is not an integer, the kth percentile of the observation is the
(j+1)th largest measurement, where j is the largest integer less than (nk)/100.

Consider the following data set, with 13 observations:

• (1, 2, 3, 5, 7, 8, 11, 12, 15, 15, 18, 18, 20).

• First we want to find the 25th percentile, so k = 25.

• We have 13 observations, so n = 13.

• (nk)/100 = (25 * 13)/100 = 3.25, which is not an integer, so we will use the
second method (#3 in the list above).

• j = 3 (the largest integer less than (nk)/100, i.e., less than 3.25).

• So the 25th percentile is the ( j + 1)th or 4th observation, which has the value
5.

We can follow the same steps to find the 75th percentile:

• (nk)/100 = (75*13)/100 = 9.75, not an integer.

• j = 9, the smallest integer less than 9.75.

• So the 75th percentile is the 9 + 1 or 10th observation, which has the value
15.

• Therefore, the interquartile range is (5 to 15) or 10.
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The resistance of the interquartile range to outliers should be clear. This data set
has a range of 19 (20 – 1) and an interquartile range of 10; however, if the last
value was 200 instead of 20, the range would be 199 (200 – 1) but the interquar-
tile range would still be 10, and that number would better represent most of the
values in the data set.

The Variance and Standard Deviation

The most common measures of dispersion for continuous data are the variance
and standard deviation. Both describe how much the individual values in a data
set vary from the mean or average value. The variance and standard deviation are
calculated slightly differently depending on whether a population or a sample is
being studied, but basically the variance is the average of the squared deviations
from the mean, and the standard deviation is the square root of the variance. The
variance of a population is signified by σ2 (pronounced “sigma-squared”: σ is the
Greek letter sigma) and the standard deviation as σ, while the sample variance
and standard deviation are signified by s2 and s, respectively.

The deviation from the mean for one value in a data set is calculated as (xi – x)
where xi is value i from the data set and x is the mean of the data set. Written in
summation notation, the formula to calculate the sum of all deviations from the
mean for a data set with n observations is:

Unfortunately this quantity is not useful because it will always equal zero. This is
not surprising if you consider that the mean is computed as the average of all the
values in the data set. This may be demonstrated with the tiny data set (1, 2, 3, 4,
5):

x = (1 + 2 + 3 + 4 + 5 )/5 = 3

So we work with squared deviations (which are always positive) and divide their
sum by n, the number of cases, to get the average deviation or variance for a
population:

The sample formula for the variance requires dividing by n – 1 rather than n
because we lose one degree of freedom when we calculate the mean. The formula
for the variance of a sample, notated as s2, is therefore:

xi x–( )
i 1=

n

∑

xi x–( )
i 1=

n

∑ 1 3–( ) 2 3–( ) 3 3–( ) 4 3–( ) 5 3–( )+ + + +=

2– 1–( ) 0 1 2+ + + + 0==

σ2 1
n
--- xi x–( )2

i 1=

n

∑=
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Continuing with our tiny data set, we can calculate the variance for this popula-
tion as:

If we consider these numbers to be a sample, the variance would be computed as:

Note that because of the different divisor, the sample formula for the variance will
always return a larger result than the population formula, although if the sample
size is close to the population size, this difference will be slight. The divisor (n – 1)
is used so that the sample variance will be an unbiased estimator of the popula-
tion variance.

Because squared numbers are always positive (outside the realm of imaginary
numbers), the variance will always be equal to or greater than 0. The variance
would be zero only if all values of a variable were the same (in which case the vari-
able would really be a constant). However, in calculating the variance, we have
changed from our original units to squared units, which may not be convenient to
interpret. For instance, if we were measuring weight in pounds, we would prob-
ably want measures of central tendency and dispersion expressed in the same
units, rather than having the mean expressed in pounds and variance in squared
pounds. To get back to the original units, we take the square root of the variance:
this is called the standard deviation and is signified by σ for a population and s for
a sample.

For a population, the formula for the standard deviation is:

In the example above:

The formula for the sample standard deviation is:

s2 1
n 1–( )

----------------- xi x–( )2

i 1=

n

∑=

σ2 1
5
--- 2–( )2 1–( )2 0( )2 1( )2 2( )2

+ + + +( )×=

4 1 0 1 4+ + + +
5

------------------------------------------= 10
5
------ 2= =

s2 1
5 1–( )

----------------- 2–( )2 1–( )2 0( )2 1( )2 2( )2
+ + + +( )×=

4 1 0 1 4+ + + +
4

------------------------------------------= 10
4
------ 2.5= =

σ σ2 1
n
--- xi x–( )2

i 1=

n

∑= =

σ 2 1.41= =

s s2 1
n 1–( )
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n
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In the above example:

In general, for two variables measured with the same units (e.g., two groups of
people both weighed in pounds), the group with the larger variance and standard
deviation has more variability among their scores. However, the unit of measure
affects the size of the variance: the same population weights, expressed in ounces
rather than pounds, would have a larger variance and standard deviation. The
coefficient of variation (CV), a measure of relative variability, gets around this
difficulty and makes it possible to compare variability across variables measured
in different units. The CV is shown here using sample notation, but could be
calculated for a population by substituting σ for s. The CV is calculated by
dividing the standard deviation by the mean, then multiplying by 100:

For the previous example, this would be:

Outliers
There is no absolute agreement among statisticians about how to define outliers,
but nearly everyone agrees that it is important that they be identified and that
appropriate analytical techniques be used for data sets that contain outliers. Basi-
cally, an outlier is a data point or observation whose value is quite different from
the others in the data set being analyzed. This is sometimes described as a data
point that seems to come from a different population, or is outside the typical
pattern of the other data points. For instance, if the variable of interest was years
of education and most of your subjects had 10–16 years of school (first year of
high school through university graduation) but one subject had 0 years and
another had 26, those two values might be defined as outliers. Identification and
analysis of outliers is an important preliminary step in many types of data anal-
ysis, because the presence of just one or two outliers can completely distort the
value of some common statistics, such as the mean.

It’s also important to identify outliers because sometimes they represent data
entry errors. In the above example, the first thing to do would be to check if the
data was entered correctly: perhaps the correct values were 10 and 16, respec-
tively. The second thing to do is to investigate whether the cases in question
actually belong to the same population as the other cases: for instance, does the 0
refer to the years of education of a child when the data set was supposed to
contain only information about adults?

If neither of these simple fixes solves the problem, the statistician is left to his own
judgment as to what to do with them. It is possible to delete cases with outliers
from the data set before analysis, but the acceptability of this practice varies from
field to field. Sometimes a standard statistical fix already exists, such as the

s 2.5 1.58= =

CV
s
x
--- 100%×=

CV
1.58

3
----------- 100% 52.7= %×=
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trimmed mean described above, although the acceptability of such fixes also
varies from one field to the next. Other possibilities are to transform the data
(discussed in Chapter 7) or use nonparametric statistical techniques (discussed in
Chapter 11), which are less influenced by outliers.

Various rules of thumb have been developed to make the identification of outliers
more consistent. One common definition of an outlier, which uses the concept of
the interquartile range (IQR), is that mild outliers are those lower than the 25th
quartile minus 1.5 × IQR, or greater than the 75th quartile plus 1.5 × IQR. Cases this
extreme are expected in about 1 in 150 observations in normally distributed data.
Extreme outliers are similarly defined with the substitution of 3 × IQR for 1.5 × IQR;
values this extreme are expected about once per 425,000 observations in a normal
distribution.

Graphic Methods
There are innumerable graphic methods to present data, from the basic tech-
niques included with spreadsheet software such as Microsoft Excel to the
extremely specific and complex methods developed in the computer language R.
Entire books have been written on the use and misuse of graphics in presenting
data: the leading (if also controversial) expert in this field is Edward Tufte, a Yale
professor (with a Master’s degree in statistics and a PhD in political science). His
most famous work is The Visual Display of Quantitative Information (listed in
Appendix C), but all of Tufte’s books are worthwhile for anyone seriously inter-
ested in the graphic display of data. This section concentrates on the most
commonly used graphic methods for presenting data, and discusses issues
concerning each. It is assumed throughout this section that graphics are a tool
used in the service of communicating information about data rather than an end
in themselves, and that the simplest presentation is often the best.

Frequency Tables

The first question to ask when considering a graphic method of presentation is
whether one is needed at all. It’s true that in some circumstances a picture may be
worth a thousand words, but at other times frequency tables do a better job than
graphs at presenting information. This is particularly true when the actual values
of the numbers in different categories, rather than the general pattern among the
categories, are of primary interest. Frequency tables are often an efficient way to
present large quantities of data and represent a middle ground between text (para-
graphs describing the data values) and pure graphics (such as a histogram).

Suppose a university is interested in collecting data on the general health of their
entering classes of freshmen. Because obesity is a matter of growing concern in the
United States, one of the statistics they collect is the Body Mass Index (BMI),
calculated as weight in kilograms divided by squared height in meters. Although
not without controversy, the ranges for the BMI shown in Table 4-3, established
by the Centers for Disease Control and Prevention (CDC) and the World Health
Organization (WHO), are generally accepted as useful and valid.
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So consider Table 4-4, an entirely fictitious list of BMI classifications for entering
freshmen.

This is a useful table: it tells us that most of the freshman are normal body weight
or are moderately overweight, with a few who are underweight or obese. The BMI
is not an infallible measure: for instance athletes often measure as either under-
weight (distance runners, gymnasts) or overweight or obese (football players,
weight throwers). But it’s an easily calculated measurement that is a reliable indi-
cator of a healthy or unhealthy body weight for many people. This table presents
raw numbers or counts for each category, which are sometimes referred to as
absolute frequencies: they tell you how often each value appears, not in relation to
any other value. This table could be made more useful by adding a column for
relative frequency, which displays the percent of the total represented by each
category. The relative frequency is calculated by dividing the number of cases in
each category by the total number of cases (750), and multiplying by 100.
Table 4-5 shows the column for relative frequency.

Note that relative frequency should add up to approximately 100%, although it
may be slightly off due to rounding error.

We can also add a column for cumulative frequency, which adds together the rela-
tive frequency for each category and those above it in the table, reading down

Table 4-3. WHO/CDC categories for BMI

BMI range Categories

< 18.5 Underweight

18.5–24.9 Normal weight

25.0–29.9 Overweight

30.0 and above Obese

Table 4-4. Distribution of BMI in the freshman class of 2005

BMI range Number

< 18.5 25

18.5–24.9 500

25.0–29.9 175

30.0 and above 50

Table 4-5. Relative frequency of BMI in the freshmen class of 2005

BMI range Number Relative frequency

< 18.5 25 3.3%

18.5–24.9 500 66.7%

25.0–29.9 175 23.3%

30.0 and above 50 6.7%
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Table 4-6. The cumulative frequency for the final category should always be 100%
except for rounding error.

Cumulative frequency allows us to tell at a glance, for instance, that 70% of the
entering class is normal weight or underweight. This is particularly useful in tables
with many categories, as it allows the reader to quickly ascertain specific points in
the distribution such as the lowest 10%, the median (50% cumulative frequency),
or the top 5%.

You can also construct frequency tables to make comparisons between groups, for
instance, the distribution of BMI in male and female freshmen, or for the class
that entered in 2005 versus the entering classes of 2000 and 1995. When making
comparisons of this type, raw numbers are less useful (because the size of the
classes may differ) and relative and cumulative frequencies more useful. Another
possibility is to create graphic presentations such as the charts described in the
next section, which make such comparisons possible at a glance.

Bar Charts
The bar chart is particularly appropriate for displaying discrete data with only a
few categories, as in our example of BMI among the freshman class. The bars in a
bar chart are customarily separated from each other so they do not suggest conti-
nuity: although in this case our categories are based on categorizing a continuous
variable, they could equally well be completely nominal categories, such as
favorite sport or major field of study. Figure 4-1 shows the freshman BMI infor-
mation presented in a bar chart (unless otherwise noted, the charts presented in
this chapter were created using Microsoft Excel).

Absolute frequencies are useful when you need to know the number of people in a
particular category: for instance, the number of students who are likely to need
obesity counseling and services each year. Relative frequencies are more useful
when you need to know the relationship of the numbers in each category, partic-
ular when comparing multiple groups: for instance, whether the proportion of
obese students is rising or falling. The student BMI data is presented as relative
frequencies in the chart in Figure 4-2. Note that the two charts are identical,
except for the y-axis (vertical axis) labels, which are frequencies in Figure 4-1 and
percentages in Figure 4-2.

The concept of relative frequencies becomes even more useful if we compare the
distribution of BMI categories over several years. Consider the entirely fictitious
frequency information in Table 4-7.

Table 4-6. Cumulative frequency of BMI in the freshman class of 2005

BMI range Number Relative frequency Cumulative frequency

< 18.5 25 3.3% 3.3%

18.5–24.9 500 66.7% 70.0%

25.0–29.9 175 23.3% 93.3%

30.0 and above 50 6.7% 100%
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Because the class size is different in each year, the relative frequencies (%) are
most useful in observing trends in weight category distribution. In this case, there
has been a clear decrease in the proportion of underweight students and an

Figure 4-1. Absolute frequency of BMI categories in freshman class

Figure 4-2. Relative frequency of BMI categories in freshman class

Table 4-7. Absolute and relative frequencies of BMI for three entering classes

BMI range           1995                2000                 2005

Underweight
< 18.5

50 8.9% 45 6.8% 25 3.3%

Normal
18.5–24.9

400 71.4% 450 67.7% 500 66.7%

Overweight
25.0–29.9

100 17.9% 130 19.5% 175 23.3%

Obese
30.0 and above

10 1.8% 40 6.0% 50 6.7%

Total 560 100.0% 665 100.0% 750 100.0%
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increase in the number of overweight and obese students. This information can
also be displayed using a bar chart, as in Figure 4-3.

This is a grouped bar chart, which shows that there is a small but definite trend
over 10 years toward fewer underweight and normal weight students and more
overweight and obese students (reflecting changes in the American population at
large). Bear in mind that creating a chart is not the same thing as conducting a
statistical test, so we can’t tell from this chart alone whether these differences are
statistically significant.

Another type of bar chart, which emphasizes the relative distribution of values
within each group (in this case, the relative distribution of BMI categories in three
entering classes), is the stacked bar chart, illustrated in Figure 4-4.

In this type of chart, the bar for each year totals 100 percent, and the relative
percent in each category may be compared by the area within the bar allocated to
each category. There are many more types of bar charts, some with quite fancy
graphics, and some people hold strong opinions about their usefulness. Edward
Tufte’s term for graphic material that does not convey information is “chart-
junk,” which concisely conveys his opinion. Of course the standards for what is
considered “junk” vary from one field of endeavor to another: Tufte also wrote a

Figure 4-3. Bar chart of BMI distribution in three entering classes

Figure 4-4. Stacked bar chart of BMI distribution in three entering classes



68 | Chapter 4: Descriptive Statistics and Graphics

famous essay denouncing Microsoft PowerPoint, which is the presentation soft-
ware of choice in my field of medicine and biostatistics. My advice is to use the
simplest type of chart that clearly presents your information, while remaining
aware of the expectations and standards within your profession or field of study.

Pie Charts

The familiar pie chart presents data in a manner similar to the stacked bar chart: it
shows graphically what proportion each part occupies of the whole. Pie charts,
like stacked bar charts, are most useful when there are only a few categories of
information, and when the differences among those categories are fairly large.
Many people have particularly strong opinions about pie charts: while they are
still commonly used in some contexts (business presentations come to mind), they
have also been aggressively denounced in other contexts as uninformative at best
and potentially misleading at worst. So you can make your own decision based on
context and convention; I will present the same BMI information in pie chart form
and you may be the judge of whether it is useful (Figure 4-5). Note that this is a
single pie chart showing one year of data, but other options are available
including side-by-side charts (similar to Figure 4-4, to allow comparison of the
proportions of different groups) and exploded sections (to show a more detailed
breakdown of categories within a segment).

Pareto Charts

The Pareto chart or Pareto diagram combines the properties of a bar chart,
displaying frequency and relative frequency, with a line displaying cumulative
frequency. The bar chart portion displays the number and percentage of cases,
ordered in descending frequency from left to right (so the most common cause is
the furthest to the left and the least common the furthest to the right). A cumula-
tive frequency line is superimposed over the bars. Consider the hypothetical data
set shown in Table 4-8, which displays the number of defects traceable to
different aspects of the manufacturing process in an automobile factory.

Figure 4-5. Pie chart showing BMI distribution for freshmen entering in 2005
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Figure 4-6 shows the same information presented in a Pareto chart, produced
using SPSS.

This chart tells us immediately that the most common causes of defects are in the
Body and Accessory manufacturing processes, which together account for about
75% of defects. We can see this by drawing a straight line from the “bend” in the
cumulative frequency line (which represents the cumulative number of defects
from the two largest sources, Body and Accessories, to the right-hand y-axis. This
is a simplified example and violates the 80:20 rule because only a few major
causes of defects are shown: typically there might be 30 or more competing causes
and the Pareto chart is a simple way to sort them out and decide which processes
to focus improvement efforts on. This simple example does serve to display the
typical characteristics of a Pareto chart: the bars are sorted from highest to lowest,
the frequency is displayed on the left y-axis and the percent on the right, and the
actual number of cases for each cause are displayed within each bar.

Table 4-8. Manufacturing defects by department

Department Number of defects

Accessory 350

Body 500

Electrical 120

Engine 150

Transmission 80

Figure 4-6. Major causes of manufacturing defects
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The Stem-and-Leaf Plot

The types of charts discussed so far are most appropriate for displaying categor-
ical data. Continuous data has its own set of graphic display methods. One of the
simplest is the stem-and-leaf plot, which can easily be created by hand and
presents a quick snapshot of the distribution of the data. To make a stem-and-leaf
plot, divide your data into intervals (using your common sense and the level of
detail appropriate to your purpose) and display each case using two columns. The
“stem” is the leftmost column and contains one value per row, while the “leaf” is
the rightmost column and contains one digit for each case belonging to that row.
This creates a plot that displays the actual values of the data set but also assumes
a shape that indicates which ranges of values are most common. The numbers can
represent multiples of other numbers (for instance, units of 10,000 or of 0.01) as
appropriate to the values in the distribution.

Here’s a simple example. Suppose we have the final exam grades for 26 students
and want to present them graphically. These are the grades:

61, 64, 68, 70, 70, 71, 73, 74, 74, 76, 79, 80, 80, 83, 84, 84, 87, 89, 89, 89, 90
92, 95, 95, 98, 100

The logical division is units of 10 points, e.g., 60–69, 70–79, etc. So we construct
the “stem” of the digits 6, 7, 8, 9 (the “tens place” for those of you who remember
your grade school math) and create the “leaf” for each number with the digit in
the “ones place,” ordered left to right from smallest to largest. Figure 4-7 shows
the final plot.

This display not only tells us the actual values of the scores and their range (61 to
100) but the basic shape of their distribution as well. In this case, most scores are
in the 70s and 80s, with a few in the 60s and 90s, and one is 100. The shape of the
“leaf” side is in fact a crude sort of histogram, rotated 90 degrees, with the bars

Vilfredo Pareto
Vilfredo Pareto (1843–1923) was an Italian economist who discovered what is
now called the Pareto principle, also known as the principle of “the vital few
and the trivial many” or “the 80–20 rule.” The Pareto principle states that in
many circumstances, 80% of the activity or outcomes stem from 20% of the
causes. For instance, in many countries, approximately 80% of the wealth is
owned by approximately 20% of the people; it is often the case in industrial
production that 20% of the errors in production are responsible for 80% of the
defects; and in health services utilization, 20% of the patients typically make
80% of the visits. The “vital few” in the Pareto principle are the 20% of people,
errors, etc., that account for most of the activity, and the “trivial many” are the
other 80% that collectively account for only 20% of the activity. Pareto is best-
known today for the Pareto chart, which is commonly used in quality control to
help identify which processes are causing most of the difficulties, be they
customer complaints or defective products.
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being units of 10; the shape in this case is approaching normality (given that there
are only five bars to work with).

The Boxplot

The boxplot, also known as the “hinge plot” or the “box and whiskers plot,” was
devised by the statistician John Tukey as a compact way to summarize and display
the distribution of a set of continuous data. Although boxplots can be drawn by
hand (as can many other graphics, including bar charts and histograms), in prac-
tice they are nearly always created using software. Interestingly, the exact methods
used to construct a boxplot vary from one software program to another, but they
are always constructed to highlight five important characteristics of a data set: the
median, the first and third quartiles (and hence the interquartile range as well),
and the minimum and maximum. The central tendency, range, symmetry, and
presence of outliers in a data set can be seen at a glance in a boxplot, and side-by-
side boxplots make it easy to make comparisons among different distributions of
data. Figure 4-8 is a boxplot of the final exam grades used in the stem-and-leaf
plot above.

Figure 4-7. Stem-and-leaf plot of final exam grades

Figure 4-8. Boxplot of exam data (created in SPSS)
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The dark line represents the median value, in this case 81.5. The shaded box
encloses the interquartile range, so the lower boundary is the first quartile (25th
percentile) of 72.5 and the upper boundary is the third quartile or 75th percentile
of 87.75. Tukey called these quartiles “hinges,” hence the name “hinge plot.” The
short horizontal lines at 61 and 100 represent the minimum and maximum values,
and together with the lines connecting them to the interquartile range “box” are
called “whiskers,” hence the name “box and whiskers plot.” We can see at a
glance that this data set is basically symmetrical, because the median is approxi-
mately centered within the interquartile range, and the interquartile range is
located approximately centrally within the complete range of the data.

This data set contains no outliers, i.e., no numbers that are far outside the range
of the other data points. In order to demonstrate a boxplot that contains outliers,
I have changed the score of 100 in this data set to 10 and renamed the data set
“error.” Figure 4-9 shows the boxplots of the two datasets side by side (the
boxplot for the correct data is labeled “final”).

Note that except for the single outlier value, the two data sets look very similar:
this is because the median and interquartile range are resistant to influence by
extreme values. The outlying value is designated with an asterisk and labeled with
its case number (26): the latter feature is not included in every statistical package.

A more typical use of the boxplot is to compare two or more real data sets side by
side. Figure 4-10 shows a comparison of two years of final exam grades from 2007
and 2008, labeled “final2007” and “final2008”, respectively.

Figure 4-9. Boxplot with outlier (created in SPSS)



Bar Charts | 73

Descriptive
Statistics

Without looking at any of the actual grades, I can see several differences between
the two years:

• The highest scores are the same in both years.

• The lowest score is much lower in 2008.

• There is a greater range of scores in 2008, both in the interquartile range
(middle 50% of the scores) and overall.

• The median is slightly lower in 2008.

The fact that the highest score was the same in both years is not surprising: the
exam had a range of 0–100 and the highest score was achieved in both years. This
is an example of a ceiling effect, which exists when scores by design can be no
higher than a particular number, and people actually achieve that score. The anal-
ogous condition, if a score can be no lower than a specified number, is called a
floor effect: in this case, the exam had a floor of 0 (the lowest possible score) but
because no one achieved that score, no floor effect is present in the data.

The Histogram

The histogram is another popular choice for displaying continuous data. A histo-
gram looks similar to a bar chart, but generally has many more individual bars,
which represent ranges of a continuous variable. To emphasize the continuous
nature of the variable displayed, the bars (also known as “bins,” because you can
think of them as bins into which values from a continuous distribution are sorted)
in a histogram touch each other, unlike the bars in a bar chart. Bins do not have to

Figure 4-10. Boxplot comparing final exam scores from 2007 and 2008 (created in SPSS)
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be the same width, although frequently they are. The x-axis (vertical axis) repre-
sents a scale rather than simply a series of labels, and the area of each bar
represents the percentage of values that are contained in that range.

Figure 4-11 shows the final exam data, presented as a histogram created in SPSS
with four bars of width ten, and with a normal distribution superimposed, which
looks quite similar to the shape of the stem-and-leaf plot.

The normal distribution is discussed in detail in Chapter 7; for now, suffice it to
say that it is a commonly used theoretical distribution that assumes the familiar
bell shape shown here. The normal distribution is often superimposed on histo-
grams as a visual reference so we may judge how closely a data set fits a normal
distribution.

For better or for worse, the choice of the number and width of bars can drasti-
cally affect the appearance of the histogram. Usually histograms have more than
four bars; Figure 4-12 shows the same data with eight bars of width five.

It’s the same data, but it doesn’t look nearly as normal, does it? Figure 4-13 shows
the same data with a bin width of two.

Figure 4-11. Histogram with a bin width of 10
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So how do you decide how many bins to use? There are no absolute answers, but
there are some rules of thumb. The bins need to encompass the full range of data
values. Beyond that, a common rule of thumb is that the number of bins should
equal the square root of the number of points in the data set. Another is that the
number of bins should never be less than about six: these rules clearly conflict in
our data set, because √26 = 5.1, which is definitely less than 6. So common sense
also comes into play, as does trying different numbers of bins and bin widths: if
the choice drastically changes the appearance of the data, further investigation is
in order.

Bivariate Charts
Charts that display information about the relationship between two variables are
called bivariate charts: the most common example is the scatterplot. Scatterplots
define each point in a data set by two values, commonly referred to as x and y, and
plot each point on a pair of axes. Conventionally the vertical axis is called the y-axis
and represents the y-value for each point, and the horizontal axis is called the x-axis
and represents the x-value. Scatterplots are a very important tool for examining
bivariate relationships among variables, a topic further discussed in Chapter 9.

Figure 4-12. Histogram with a bin width of 5
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Figure 4-13. Histogram with a bin width of two

Univariate, Bivariate, Multivariate
People sometimes get confused about the meaning of terms like univariate and
bivariate. However, it’s easy to keep them straight if you recall that uni- means
one and bi- means two: think of a unicycle, which has one wheel, and a bicycle,
which has two. Multi means many and in statistics is often used to mean “more
than two.” Univariate statistics such as the mean therefore describe characteris-
tics of one variable, and the bar chart and histogram are examples of univariate
graphic displays. Bivariate statistics such as Pearson’s correlation coefficient
describe the relationship between two variables, and bivariate graphs such as
the scatterplot display the relationship between two variables. Multivariate
statistics such as the multiple correlation and multivariate regression describe
the relationship between more than two variables.
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Scatterplots

Consider the data set shown in Table 4-9, which consists of the verbal and math
SAT (Scholastic Aptitude Test) scores for a hypothetical group of 15 students.

Other than the fact that most of these scores are fairly high (the SAT is calibrated
so that the median score is 500, and most of these scores are well above that), it’s
difficult to discern much of a pattern between the math and verbal scores from the
raw data. Sometimes the math score is higher, sometimes the verbal score.
However, creating a scatterplot of the two variables, as in Figure 4-14, with math
SAT score on the y-axis (vertical axis) and verbal SAT score on the x-axis (hori-
zontal) makes their relationship clear.

Despite some small inconsistencies, verbal and math scores have a strong linear
relationship: people with high verbal scores tend to have high math scores and
vice versa, and those with lower scores in one area tend to have lower scores in
the other. Not all relationships between two variables are linear, however:
Figure 4-15 shows a scatterplot of variables that are highly related but for which
the relationship is quadratic rather than linear.

In the data presented in this scatterplot, the x-values in each pair are the integers
from –10 to 10, and the y-values are the squares of the x-values. As noted above,
scatterplots are a simple way to examine the type of relationship between two
variables, and patterns like the quadratic are easy to differentiate from the linear
pattern.

Table 4-9. SAT scores for 15 students

Math Verbal

750 750

700 710

720 700

790 780

700 680

750 700

620 610

640 630

700 710

710 680

540 550

570 600

580 600

790 750

710 720
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Line Graphs

Line graphs are also often used to display the relationship between two variables,
often between time on the x-axis and some other variable on the y-axis. One
requirement for a bar graph is that there can only be one y-value for each x-value,
so it would not be an appropriate choice for data such as the SAT data presented
above. Consider the data in Table 4-10, from the U.S. Centers for Disease Control
and Prevention (CDC), showing the percentage of obesity among U.S. adults,
measured annually over a 13-year period.

Figure 4-14. Scatterplot of verbal and math SAT scores

Figure 4-15. Quadratic relationship among variables
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What we can see from this table is that obesity has been increasing at a steady
pace; occasionally there is a decrease from one year to the next, but more often
there is a small increase (1–2 percent). This information can also be presented as a
bar chart, as in Figure 4-16.

Table 4-10. Percentage of obesity among U.S. adults, 1990–2002 (source: CDC)

1990 11.6

1991 12.6

1992 12.6

1993 13.7

1994 14.4

1995 15.8

1996 16.8

1997 16.6

1998 18.3

1999 19.7

2000 20.1

2001 21

2002 22.1

Figure 4-16. Obesity among U.S. adults, 1990–2002 (CDC)
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Although the line graph makes the overall pattern of steady increase clear, the
visual effect of the graph is highly dependent on the scale and range used for the
y-axis (which in this case shows percentage of obesity). Figure 4-16 is a sensible
representation of the data, but if we wanted to increase the effect we could choose
a larger scale and smaller range for the y-axis (vertical axis), as in Figure 4-17.

Figure 4-17 presents exactly the same data as Figure 4-16, but a smaller range was
chosen for the y-axis (10%–22.5%, versus 0%–30%). The narrower range makes
the differences between years look larger: choosing a misleading range is one of
the time-honored ways to “lie with statistics.”

The same trick works in reverse: if we graph the same data using a wide range for
the vertical axis, the changes over the entire period seem much smaller, as in
Figure 4-18.

Figure 4-18 presents the same obesity data as Figures 4-16 and 4-17, with a large
range on the vertical axis (0%–100%) to decrease the visual impact of the trend.

So which scale should be chosen? There is no perfect answer to this question: all
present the same information, and none strictly speaking are incorrect. In this
case, if I were presenting this chart without reference to any other graphics, the
scale would be 5–16 because it shows the true floor for the data (0%, which is the
lowest possible value) and includes a reasonable range above the highest data
point. One principle that should be observed is that if multiple charts are
compared to each other (for instance, charts showing the percent obesity in

Figure 4-17. Obesity among U.S. adults, 1990–2002 (CDC), using a restricted range to
decrease the visual impact of the trend
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different countries over the same time period, or charts of different health risks for
the same period), they should all use the same scale to avoid misleading the
reader.

Exercises
Like any other aspect of statistics, learning the techniques of descriptive statistics
requires practice. The data sets provided are deliberately simple, because if you
can apply a technique correctly with 10 cases, you can also apply it with 1,000.

My advice is to try solving the problems several ways, for instance, by hand, using
a calculator, and using whatever software is available to you. Even spreadsheet
programs like Excel have many simple mathematical and statistical functions
available, and now would be a good time to investigate those possibilities. In addi-
tion, by solving a problem several ways, you will have more confidence that you
are using the software correctly.

Most graphic presentations are created using software, and while each package
has good and bad points, most will be able to produce most if not all of the
graphics presented in this chapter, and quite a few other types of graphs as well.
So the best way to become familiar with graphics is to investigate whatever soft-
ware you have access to and practice graphing data you work with (or that you
make up). Always keep in mind that graphic displays are a form of communica-
tion, and therefore should clearly indicate whatever you think is most important
about a given data set.

Figure 4-18. Obesity among U.S. adults, 1990–2002 (CDC), using a large range to inflate
the visual impact of the trend
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Question

When is each of the following an appropriate measure of central tendency? Think
of some examples for each from your work or studies.

Mean
Median
Mode

Answer

The mean is appropriate for interval or ratio data that is continuous, symmetrical,
and does not contain significant outliers.

The median is appropriate for continuous data that may be skewed (asymmet-
rical), based on ranks, or contain extreme values.

The mode is most appropriate for categorical variables, or for continuous data
sets where one value dominates the others.

Question

What is the median of this data set?

1 2 3 4 5 6 7 8 9

Answer

5: The data set has 9 values, which is an odd number; the median is therefore the
middle value when the values are arranged in order. To look at this question more

How to Lie with Statistics
Darrell Huff was a freelance writer who also worked as an editor at Look maga-
zine, Better Homes and Gardens, and Liberty, among other publications. His
greatest claim to fame, however, is the classic How to Lie with Statistics, first
published in 1954: some say it is the most widely read statistics book in the
world. Huff was not a trained statistician, and his presentation can be chari-
tably described as informal (and some illustrations would be quite offensive if
they were included in a contemporary book). Yet this slim volume has retained
its popularity over the years, remains in print, and has been translated into
many languages, including a Chinese edition published in 2003.

Huff draws his examples of “lies,” by which he means the misleading presenta-
tion of information, from the contemporary media and political and commercial
discourse. Some of his most insightful examples are in the chapters on graphic
presentation, from the use of a deliberately misleading scale to the lack of any
axis labels at all. One reason for the continuing popularity of How to Lie with
Statistics, unfortunately, is that many of the misleading techniques he identified
in 1954 are still in use today.
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mathematically, since there are n = 9 values, the median is the (n + 1)/2th value,
and thus the median is the (9 + 1)/2th or fifth value.

Question

What is the median of this data set?

1 2 3 4 5 6 7 8

Answer

4.5: The data set has 8 values, which is an even number; the median is therefore
the average of the middle two values, in this case 4 and 5. To look at this ques-
tion more mathematically, the median for an even-numbered set of values is the
average of the (n/2)th and (n/2)th + 1 value; n = 8 in this case, so the median is
the average of the (8/2)th and (8/2)th + 1 values, i.e., the fourth and fifth values.

Question

What is the mean of the following data set?

1 2 3 4 5 6 7 8 9

Answer

The mean is:

In this case, n = 9 and

so x = 45/9 = 5.

Question

What are the mean and median of the following (admittedly bizarre) data set?

1, 7, 21, 3,  –17

Answer

The mean is ((1 + 7 + 21 + 3 + (–17))/5 = 15/5 = 3.

The median, since there are an odd number of values, is the (n + 1)/2th value, i.e.,
the third value. The data values in order are (–17, 1, 3, 7, 21), so the median is the
third value or 3.
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Question

What are the variance and standard deviation of the following data set? Calculate
this using both the population and sample formulas.

1 3 5

Answer

The population formula to calculate variance is:

And the sample formula is:

In this case, n = 3, x = 3, and the sum of the squared deviation scores = (–2)2 + 02 +
22 = 8. The population variance is therefore 8/3 or 2.67, and the population stan-
dard deviation is the square root of the variance or 1.63. The sample variance is 8/2
or 4, and the sample standard deviation is the square root of the variance or 2.
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5
Research Design

When trying to make sense of the world using statistics, it’s important to consider
which type of research design will provide you with the most accurate answer for
the type of question you are asking. Typically, the selection of a particular design
involves an amount of horse trading between the extent to which a research envi-
ronment is able to be controlled versus only being able to be observed, and
whether the research goal involves determining some underlying cause for a
phenomenon (science), or whether the goal is to optimize the yield or output for a
specific process while minimizing effort (technology). Various other impediments
to the use of certain designs—such as human research ethics committees—may
require you to carry out your research in ways that are less than ideal in a statis-
tical sense, but ensure that your work is consistent with community rather than
just scientific values.

The two main types of research design are experimental and observational studies.
In an experiment, some degree of manipulation is involved, since the intention is
that the researcher should maximize control over as many aspects of the environ-
ment as possible. All variable measurements and manipulations are under
research control, including the allocation of experimental units (or subjects or
participants). An observational study implies that no change of the environment is
necessary, and that the allocation of experimental units to groups is outside the
control of the researcher. Indeed, the goal of an experiment is to control the envi-
ronment in such a way that manipulation of a treatment variable yields a direct,
corresponding change in one or more response variables. In practice, it may be
very difficult to control the confounding effects of all variables in an environment,
since some intermediate variables may not even be known to exist, yet still exert
an influence. Note that a group or category of treatments is known as a factor.
You may also see treatments referred to as independent or predictor variables, and
responses may also be known as dependent variables. While some experimental
designs attempt to measure the effect of a single treatment or factor on a response,
a single experiment can actually involve multiple factors, each with multiple
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levels. The goal here is to establish the main effect of each factor on the response,
but also possibly their interaction. For example, a study examining the effect of
seasonal factors and time of drug administration on mood might have two factors;
season (summer, fall, winter, spring) and medication administration (morning,
night). Thus, the goal would be to determine a main effect for season (e.g., are
you happier in summer), a main effect for medication administration (e.g., is
morning more effective than night), and any interactions (e.g., are you happiest in
summer when medication is taken in the morning). Any or all of these main
effects and interactions may form part of your research hypothesis.

An observational study is less invasive than an experimental study, but has corre-
spondingly less effectiveness than an experiment, in terms of inference; the major
difference between an observational and an experimental study lies in the strength
of the explanation that can be drawn from the results of each. In order to mini-
mize systematic error (or bias, a subject discussed at greater length in Chapter 1),
an experimenter will randomly allocate experimental units to groups, whereas in
observational studies, this is generally not possible, as you can only observe what
is present in the environment during an observation. There may be very good
reasons why you would choose an observational approach over an experimental
design: for example, while there is a large body of work in social psychology in
which the influence of many intermediate variables is controlled in the labora-
tory, the ultimate ecological validity of the work is clearly most accurately
demonstrated in the real world. Conversely, the variables measured during obser-
vation may have had their construct validity determined in controlled laboratory
experiments. So, over the long term, a research plan might set out a combination
of experimental and observational work to be performed.

Observational Studies
Not all observational studies (also known as quasi-experimental studies) are the
same in terms of their effectiveness in answering research questions. The least
biased observational studies are “forward-looking” (prospective) and focus on a
randomly selected group (a cohort). Thus, a prospective longitudinal study, also
known as a cohort study, observes people forward in time from their entry into the
study. Cohort studies often start from birth or another common point in time,
such as the start of school. Systematic error can be reduced by ensuring that all
participants have as much in common as possible, for example, by selecting on
birthdate, social class, etc. In contrast, a retrospective longitudinal study reviews
participants backward in time from their entry into the study. The goal of this
type of case control study might be to determine, for example, what social activi-
ties in the clinical group have led to catching a specific disease. However, if there
is a long gap in time between the study and the events in question, then recall bias
may influence the results.

Case control designs are also the only ethically supportable designs where a treat-
ment may be harmful, as is the case in disease; for example, in order to link the
AIDS syndrome with HIV infection, it would be clearly unethical to administer
the virus to an experimental treatment group and compare their immune
responses and clinical outcomes with a control group. For some case control
studies, even if an experimental manipulation was possible, there simply may not
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be enough potential participants—particularly for very rare disease cases—so an
observational design in preferable. Experimental designs are usually only appro-
priate where the treatments are either known to be all not harmful or all
beneficial. For example, a researcher investigating the effectiveness of a new form
of pain relief might use baseline responses for other pain relief medications that
are known to be safe in the quantities administered.

Two other types of observational study are worth mentioning. A cross-sectional
design involves a single observation (e.g., a questionnaire or an interview), which
may be useful if an immediate response to a specific question is required (e.g.,
what donut flavors are popular in New York City today), but have clear limits on
their generalizability (since donut flavor preferences may change seasonally).
Another technique is so-called secondary analysis, where data from many different
sources is combined to investigate a particular problem. In this case, the investi-
gator does not exert any influence over the data collection, and the analysis is
generally retrospective, since data is usually discovered post-hoc from a range of
sources. While some researchers have questioned the validity of relying on other
people’s data, secondary analysis can be very useful for developing new leads
when investigating difficult or complex questions. For example, cohort studies
undertaken in different countries may have systematic bias related to geograph-
ical or social factors, and secondary analysis can be used to trace and/or eliminate
this bias by examining whether the relationship between variables is consistent
across these different countries. Note that the only source of control in a
secondary analysis is the selection of variables, although it may be possible for a
secondary analysis to specify new variables to be measured in a future prospective
study.

While observational studies are generally considered weaker in terms of statistical
inference, they have one important characteristic: response variables (like human
behavior) can often be observed within the natural environment, enhancing their
ecological validity, or the sense in which what is being observed has not been arti-
ficially constrained by engaging in a narrowly defined experimental paradigm.
Going one step further, some observational studies use participant observation
methods, where a researcher becomes involved in the activity under study. If this
participation is hidden from the actual participants, then ethical issues may arise
around the use of deception. However, in other cases, there may be ethical objec-
tions to withholding an intervention in which investigator participation is
required. For example, in clinical settings in speech language pathology, the clin-
ical investigator would typically play a very active role in eliciting responses to
various treatments, since these would not normally be forthcoming from the
participants. Observational studies may be the only solution to investigate a
research problem where ethical considerations prevent the use of randomized
experimental trials.

Observational studies potentially suffer from a number of biases, including biases
in selection, which are either known or suspected. One way of removing these
biases is to make adjustments for those that are known (perhaps using a covari-
ance correction), and at least making clear those that are suspected to exist.
Often, even if the magnitude of a bias is not known, the direction of bias can be
easily determined. For example, members of a conservative political party may be
reasonably assumed to hold conservative social values, even if the strength of
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these beliefs or their extent is unknown (as an illustration, all conservatives may
favor jailing of drug dealers, but a proportion may favor the death penalty over
imprisonment).

Case control studies match patients with nonpatients based on covariates to elimi-
nate bias, without having to use an experimental design. A covariate in the
context of observational studies is a variable that is unaffected by the administra-
tion of a treatment (e.g., collected prior to a study), such as age, sex, or IQ,
whereas a variable that is predicted to be affected by a treatment is known as an
outcome. This type of matching is also common in experimental designs (i.e., a
matched pair design).

For some observational studies, such as clinical populations, the treatment group
may be relatively small, but in order to match as closely as possible on all covari-
ates, a large potential pool of controls is generally useful. Indeed, it may also be
possible to further eliminate biases by matching a single member of the treatment
group to several controls who are all matched on key covariates. You can imagine,
though, that as the number of covariates increases, and/or as the number of
controls per treatment unit increases, the likelihood of finding “perfect matches”
decreases. If you are concerned that bias may be creeping in, you can calculate a
propensity score, which is the probability of being assigned to a treatment or
control group based on the covariate values. Think of it as a form of validation for
the assignments that you have made during case control.*

So far, I’ve focused on known biases, but what about biases that are unknown? In
experiments, randomization takes care of both identified and unknown sources of
bias—if the selection is performed randomly, both types of bias will be controlled
for. But in an observational study, there may simply be a confounding, hidden
source of bias that is unknown, such as a hidden covariate. In this situation, it
may be possible to use a sensitivity analysis to determine whether there is a source
of hidden bias, especially one of great magnitude.

Experimental Studies
There are three different elements to an experimental study, and the configura-
tion of the design can range from the very simple to the very complex:

Experimental units
The objects under examination. In human experiments, units are generally
referred to as participants, given their active engagement in the experimental
process.

Treatments
The procedures applied to each unit in the experimental setting, which are
either qualitative or quantitative (with contrasting, well-defined levels of
interest), depending on whether the variables are real values or categorical.

* For more information, see Rosenbaum, P. R., and Rubin, D. B., (1983), “The Central Role of the
Propensity Score in Observational Studies for Causal Effects,” Biometrika 70, 41–55.
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Responses
These form the criteria on which the effect of the experimental treatments
can be compared.

The term treatment implies a fairly active process of performing some transforma-
tion on the unit, whereas the status of the unit may already be known, and no
transformation is necessary. A random allocation to a specific treatment group
(control or experimental) may be determined on the basis of variables such as age
or sex, for control purposes, or the variables may form an integral part of the
hypothesis. For example, a psychological study of reaction times in driving might
attempt to control for sex differences by balancing the number of males and
females in the control and experimental groups, or the hypothesis might explic-
itly predict that sex has an effect on reaction times. In the latter case, sex has an
explanatory role in the study.

In some experimental designs, a comparison is made between a baseline measure-
ment for each unit before treatment, and the measurement for the unit after
treatment (also known as pre-test and post-test responses). This type of design is
known as a within-subjects design, and provides a high degree of experimental
control, since measurements on units are only ever made with themselves, i.e.,
participants act as their own controls. Conversely, in a between-subjects design,
comparisons are made between units that are matched on as many variables as
possible, to ensure the least confounded comparison of the treatment on units
from the control and experimental groups. Note that this terminology is mainly
used in social and health sciences, and may differ in other disciplines. I will
discuss these commonly used designs further in the “Blocking and Common
Designs” section later in this chapter.

Ingredients of a Good Design

The goal of an experiment is to clearly show differences, if they exist, when a
treatment is applied to a group of experimental units. Differences can be
expressed in terms of magnitude, as well as through limits placed on the confi-
dence of the analysis, which may arise from random error. Good procedures for
allocating experimental units to treatment and control groups are an important
step here, and indeed, separate experimental from observational studies.

A major goal of any experimental design is to minimize or preferably eliminate
systematic errors or biases in the data collected.

For many reasons—including ethical and resource considerations—the amount of
data collected should be minimally sufficient to answer a particular research ques-
tion. The use of effective sampling and power calculations ensures that the
smallest number of experimental units is subjected to experimentation, and that a
result can be achieved with the least cost and least effort.

An effective research design makes analysis much easier later on. For example, if
you design your experiment in such a way that you will not encounter missing
observations, then you will not need to worry about coding missing data and any
limitations of interpretation from your results that may subsequently arise (a topic
explored further in Chapter 3). Where missing data arises because of the loss of
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experimental units due to mortality (in the human case), then a mortality bias
may exist in your data.

Statistical theory is very flexible to the extent that many sophisticated types of
designs are mathematically possible, but in practice, most statistics (and therefore
designs) are structured according to the requirements of the general linear model.
This makes analysis easy, since many techniques such as correlation and regres-
sion are based on this model. But to make valid use of the general linear model, an
experiment must be designed with several important factors in mind, including
balance and orthogonality.

Balance means that treatments are administered in equal numbers within each
experimental block, meaning that they will occur with the same frequency. A lack
of balance indicates that some bias has arisen in the allocation of units to the
treatment or control group. Randomization of group allocation, blinding, and
identifying biases are all mechanisms for ensuring that balance is maintained;
these are discussed later in this chapter.

Orthogonality means that the effects of different treatments can be independently
estimated without interfering with each other. For example, if you have two treat-
ments in an experiment, and you build up a statistical model that measures their
effects on experimental units, you should be able to remove either treatment from
the model, and get the same answer for the remaining treatment.

None of this is as complicated as it first sounds, and if you stick to some well-
known recipes and templates for factorial design, you won’t need to worry about
more exotic exceptional cases.

Gathering Experimental Data
So, you want to run an experiment, but where do you start? I will outline some
general guidance below, roughly in the order in which you need to carry out each
step, but my advice is to stand on the shoulders of giants. That is, if you are
running experiments in a scientific discipline, then look at some articles from
research journals in that specific discipline, and ensure that the designs and anal-
yses that you carry out are consistent with what others are using in the field. The
process of peer review ensures that the methodology used has been vetted by at
least two experts—so, how can you go wrong? In industry or manufacturing, it
may be harder to find guidance, but company technical reports and previous anal-
yses should provide some previous examples—even if they have not been peer-
reviewed—that you might find instructive.

Having said that, you will be surprised at just how much variation and urban
mythology surrounds experimental design, so let’s walk through the steps one by
one. I’ll focus primarily on science in this example:

1. Identify the experimental units that you want to measure something from.

2. Identify the treatments that you want to administer, and the controls that you
will use.

3. Specify treatment levels.
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4. Identify the response variables that you will measure from the experimental
units.

5. Generate a testable hypothesis that predicts what effect the treatment will
have on the response variables.

6. Run the experiment.

7. Analyze the results.

That was easy, right? Design (steps 1–5) can be easy, but let’s look at each step in
detail to see what’s really involved.

Identifying Experimental Units

Recall that statistics are estimates of population parameters drawn from a sample.
In order to ensure that these estimates are accurate (i.e., representative), the anal-
yses that you later use to determine the significance of experimental effects rely on
the assumption that you have truly selected these units randomly. Bias can very
easily creep into a design at this first stage, and yet circumstances may dictate that
this cannot be easily avoided. For example, many research studies in psychology
solely use undergraduate psychology students as participants. This serves two
purposes: firstly, as part of their coursework, students are exposed to a wide
variety of experimental designs and get to experience, first-hand, what is involved
in running an experiment; and secondly, the participant group is easily accessible
for psychological researchers. In some ways, control may be achieved in this
group because the participants may be the same age, have an even split in terms of
sex, may come from the same home town, listen to the same music, dress with the
same fashion styles, have above average intelligence, etc. However, in selecting
from a limited sub-sample of the population at large, the inferences that you can
make about the broader population are limited. Thus, some research papers tell
us more about the behavior of college students at this specific point in time, rather
than the population at large. It’s a difficult area, and different fields will have
different expectations about what is acceptable practice in terms of wider
inference.

What is meant by random selection in this context? Imagine a lottery in which
every citizen of a country receives a ticket. All of the tickets are entered into a
large box, which is mixed by rotation through many different angles. An assistant
is then asked to pick one ticket by placing his hand in the box and selecting the
first ticket that he touches. In this case, every ticket has an equal chance of being
selected. If you needed 100 members for a control and 100 for an experimental
group, then you could select them using a similar process, where the first 100
selections are allocated to a control group, and the next 100 are allocated to the
treatment group. Of course, you could alternate selection by allocating the first
ticket to a control group, the next to the treatment group, the third to a control
group, and so on. However, if the sampling is truly random, then the two tech-
niques will be equivalent. Importantly, for the selection to be random, the
allocation of any particular individual must be truly independent of the selection
of any of the others.



92 | Chapter 5: Research Design

Are there any situations where random allocation is not possible? Certainly—and
this is a major limitation for applying inference in experimental studies. There are
relatively few sources of true random variation; if, for example, you use a
computer program to generate a set of random numbers as the basis for allo-
cating participants to treatment groups, the program will almost certainly be using
a pseudorandom number generator, which approximates the characteristics of
truly random numbers—but the numbers are not truly randomly generated. This
is because such programs are generally seeded with a small set of numbers. Some
strategies to increase the randomness, such as using a timestamp as a seed, rather
than a fixed value, produce better numbers. Fortunately, there are techniques—
such as the Pearson chi-square test or Kendall and Smith’s randomness hypoth-
esis tests—that can be used to determine the randomness of any set of numbers
that might be used for treatment allocation.

Random selection is not always possible in real-world applications. Indeed, in
many areas of science, there are quite structured (and potentially biased) mecha-
nisms for identifying groups of interest on which an experiment is conducted,
where inference may have to be limited to a population that is not perhaps the
largest possible population.

Imagine that you are a microbiologist interested in examining bacteria present in
hospitals. If you use a filter with pores of diameter one µm, any bacteria less than
this will not be part of the population that you are observing. This sampling limi-
tation will introduce systematic bias into the study; however, as long as you are
clear that the population about which you can make inferences is bacteria of
diameter > one µm, and nothing else, your results will be valid.

One way to ensure that you make valid inferences is to limit the population you
are experimenting on. Concise experimental results that make valid inferences are
important. Over time, accumulating evidence from many well-designed studies
will be more reliable in identifying population characteristics. For example,
carrying out tests of reaction time to English words may be used to make infer-
ences about the perceptual and cognitive processing performance of English-
speaking people. However, it may only be used to suggest further hypotheses
about non-English speakers. Subsequent experiments aimed at increasing the
generalizability of the finding might include the same experiment but with
German words displayed to German speakers, and Japanese kanji to Japanese
speakers. Indeed, this is the way that more general results are built up in science.

Identifying Treatments and Controls

Treatments are the manipulations that you want to perform in order to demon-
strate an experimental effect. For example, a pharmaceutical company has spent
millions of dollars on a new “smart” drug, and after many years testing in the lab,
they now want to see if it works in practice. So, they set up a clinical trial, where
they select 1,000 participants by randomly selecting names from a national phone
book, giving a truly representative sample of the population on significant param-
eters, such as age, gender, etc. Luckily, they have a 100% success rate in recruiting
participants for the study (everyone wants to be smarter, right?), so they don’t
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have to worry about noncompliance.* All participants are going to be tested on the
same day in identical experimental conditions (exactly the same location, temper-
ature, lighting, chair, desk, etc.). At nine in the morning, participants are
administered an intelligence test via computer; at noon, they are given an oral
dose of the “smart” drug with water; and at three p.m., they sit for the same intel-
ligence test again. The results showed an average increase in intelligence of 15%!
The company is ecstatic, and they release the results of the test to the stock
exchange, resulting in a large increase in the company’s share price. But what’s
wrong with the treatments administered in this experiment?

Firstly, since everyone was tested in exactly the same place, and under exactly the
same experimental conditions, the result cannot be automatically assumed to
apply to other locations and environments. If the test was administered under a
different temperature, the results might be different. In addition, there might have
been some aspect of the testing facility that biased the result—say, the chair or
desk used, or building oxygen levels—and it’s difficult to rule these confounding
influences out.

Secondly, the fact that the baseline and experimental conditions were always
carried out in the same order will almost certainly have been a contributing factor
in the 15% increase in intelligence, i.e., there will have been a learning effect from
the first time that participants undertook the test to the second time, given that
the questions were exactly the same (or even if they were of the same general
form).

Thirdly, there is no way that the researchers can be sure that some other
confounding variable was not responsible for the result, since there was no experi-
mental control in the overall process; for example, there could be some
physiological response to drinking water at noon (in this paradigm) that increases
intelligence levels in the afternoon.

Finally, participants could be experiencing the placebo effect, where they expect
that having taken the drug, their performance will improve. This is a well-known
phenomenon in psychology, and requires the creation of an additional control
group to be tested under similar circumstances, but with an inert rather than
active substance being administered.

There are numerous such objections that could be made to the design as it stands,
but fortunately, there are well-defined ways in which the design can be strength-
ened by using experimental controls. For example, if half of the randomly selected
sample was then randomly allocated to a control group, and the remaining half
allocated to an experimental group, then an inert control tablet could be adminis-
tered to the control group, and the “smart” drug to the experimental group. In
this case, the learning effect from taking the test twice can be estimated from the
control group, and any performance differences between the two groups can be
determined statistically after the treatment has been applied.

* Noncompliance is a major issue in experimental designs, since if participants are deleted from a
truly random sample, the deletion will cause the sample to be nonrandom, and the limits of in-
ference must be correspondingly reduced. In practice, many analytical procedures make allow-
ances for missing data, and missing cases should always be included where possible in the
analysis.
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Of course, in real clinical drug trials, the research designs are structured quite
differently, and investigations are staged in phased trials that have explicit goals at
each step, starting with broad dose-response relationships, investigations of
toxicity, and so on, with controls being tightened at each stage until an optimal
and safe dosage can be identified that produces the desired clinical outcome.

Specifying Treatment Levels

In practice, you may not be specifically interested in determining whether some
factors are influencing the experimental result—you may simply wish to cancel
out any systematic errors that may be arising. This can often be achieved by
balancing the design, to ensure that equal numbers of participants are tested in
different levels of the treatment. For example, if you are interested in whether the
“smart” drug increases intelligence in general, your sampling should ensure that
there are an equal number of male and female participants, a spread of testing
times, etc. However, if you are interested in determining whether sex or time of
drug administration influences the performance of the drug treatment, then these
variables would need to be explicitly recognized as experimental factors, and their
levels specified in the design. For categorical variables like sex, the levels or cate-
gories (male and female) are easy to specify. However, for continuous variables
(like time of day), it may be easier to collapse the levels to hourly times (in which
case there will be 24 levels, assuming equal dosage across the 24-hour day), or
simply morning, afternoon, and evening (3 levels). Once again, the research ques-
tion guides the selection of levels and the experimental effects that you are
interested in. Otherwise, counterbalancing and randomization can be used to
mitigate error arising from bias. Indeed, replication of the result but extending or
being able to generalize across spatial and temporal scales is important for estab-
lishing the generalizability of the result.

Once treatment levels have been determined, researchers generally refer to the
treatments and their levels as a formal factorial design, in the form A1(n1) × A2(n2)
× … Ax(nx), where A1..x are the treatments and n1..x are the levels within each treat-
ment. For example, if you wanted to determine the effect of sex and time of drug
administration on intelligence, and you had a control and experimental group,
then there would be three treatments, with their levels as follows: SEX: male/
female, TIME: morning/afternoon/evening, DRUG: smart/placebo. Thus, the
design can be expressed as SEX (2) × TIME (3) × DRUG (2), which can be read as
a “2 by 3 by 2” design. We will deal with the analysis of main effects within and
interactions between these treatments in the analysis chapters.

Specifying Response Variables

Sometimes, the response variable will be fairly obvious, but in other cases, more
than one response variable may need to be measured, depending on how precisely
the variable can be operationalized from some abstract concept. Intelligence is a
very good example: the abstract concept may appear to be fairly straightforward
to the layperson, and yet there is no single test that directly measures intelligence.
Instead, many different measures of general ability across different skills (numer-
ical, analytical, etc.) are measured as response variables, and may be combined to
form a single number (an intelligence quotient, or IQ), representing some latent
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structure amongst the correlated responses. There are advanced techniques
(covered in Chapter 16) that describe how to combine and reduce the number of
response variables to a smaller, more meaningful (in the sense of interpretation)
set.

Indeed, it is likely that for a concept as problematic to define as intelligence, the
safest bet might be to use a number of different instruments to obtain response
variables, and then determine how much they agree with each other. Indeed, tech-
niques for determining the mutual consistency of response variables play an
important role in validating experimental designs.

There are three main types of response variables: baseline, response, and interme-
diate. In the previous section, we saw how a baseline measure of intelligence was
used to estimate a direct experimental effect on a response variable (intelligence).
An intermediate variable is used to explain the relationship between the treat-
ment and response variable where it is indirect, but controllable. If you’re
interested in establishing a causal relationship as part of an explanatory model,
then you will clearly want to be aware of all of the variables involved in a process.

In some designs, the distinction between treatments and intermediate variables
may not be important. For instance, if you are a chemist and you are interested in
the chemical properties of water, you may be happy to work at the level of atomic
particles (protons, neutrons, electrons) rather than the subatomic level in your
analysis.

In very complicated systems, unanticipated interventions (or unobservable inter-
mediate variables) may influence the result, especially if such variables are highly

Treatments or Characteristics?
One important difference arises between physical and social sciences in the defi-
nition of treatments. The word treatment implies an active process of applying a
process that is transformative, e.g., administering a drug to improve intelli-
gence. However, in social sciences, treatments are quite often made up of fixed
characteristics, such as sex. Should such characteristics be regarded as treat-
ments since no transformation takes place? Are designs that use such treatments
experimental, quasi-experimental, or actually observational? The issue is funda-
mental to demonstrating a causal relationship between treatments and
responses, since using a nontransformative treatment leaves open the question
of what characteristic of the experimental units is actually responsible for any
differences observed between treatment levels. Ultimately, the type of infer-
ences that can be made from any research design are limited by such
considerations. In technological research, an experiment may have a more
explicit optimization goal, such as the estimation of an effect size, to determine
the optimal combination and proportions of different treatments and levels that
will maximize the value of the response variable.

In some fields, a distinction is made between “independent” variables (or set
characteristics) and treatments, which seems to be a sensible compromise.
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correlated with a treatment, or where the act of performing the experiment
changes the behavior of that which is being observed. Thus, it may be hard to
causally draw out whether a treatment is specifically responsible for a change in
response. Another general principle is that the longer the delay between a treat-
ment being administered and a response being observed, the greater the likelihood
of some intermediate variable affecting the result, and possibly leading to spurious
conclusions. Seasonal factors, such as temperature, humidity, and so on, exert a
very strong influence on the outcomes of agricultural production, for example,
perhaps more than a treatment looking at fertilizer productivity.

Inference and Threats to Validity
The choice of research design—experimental or observational—is usually
governed by constraints over how data of interest can be collected, and the type of
statistical inference required; that is, inferring characteristics of a population using
statistics calculated on a sample considered to be representative of that popula-
tion. Before I review the structure of these research designs, I will firstly discuss
inference, and why it is the cornerstone of statistics.

Sometimes, data is collected for a very specific purpose, without any desire to
understand, characterize, or make predictions about a broader phenomenon. For
example, clinicians in a hospital ward dedicated to the treatment of hypertension
may be interested in how different anti-hypertensive medications affect each of
the patients individually—these effects are difficult to predict, since so many
physiological factors are involved. The selection of safe and effective medication
for each patient is the primary motivation. In each of the patient cases, data is
collected and stored for the primary clinical purpose. However, after a number of
years, clinicians begin to notice some patient factors that appear to predict which
drug will have the best clinical outcome for certain patients. Drug A appears to be
most effective for men, while Drug B appears to be most effective for women.
Rather than administering A and B to every patient—since drug administration is
inherently risky—the clinicians decide that they would like to determine whether
the results that they have observed for individual patients are true for the wider
population. Thus, based on the samples that they have obtained in the past (clin-
ical) context, they wish to make inferences about the parameters of a larger
population. This will assist in both quantitatively characterizing and predicting
the effects of the drugs on patients.

Who is the population in this instance? The population is the group of persons
who suffer from hypertensive illness. Since it is infeasible to test the effects of
Drug A and Drug B on all hypertensive patients worldwide, a sample—a representa-
tive subset of the population—is usually selected for such a study. A number of
research designs could be used to investigate the two hypotheses for the study, i.e.,
that Drug A is most effective for men, and that Drug B is most effective for women.
Case control designs or clinical trials could be used to test the effects of Drug A and
Drug B on men and women, perhaps using matched samples for the control and
experimental conditions. You will learn more about these techniques and strate-
gies later in this chapter.
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It’s important to distinguish between the estimates obtained from a sample and
the numerical characteristics of a population that would be determined if every
member of the population were measured. For example, a parameter (from the
population) might be characterized as the percentage of male patients whose
systolic blood pressure reached 120 after administration of Drug A, while the
statistic (from the sample) might be the percentage of male patients whose systolic
blood pressure reached 120 after administration of Drug A at Hospital X. If the
responses to the treatment by patients at Hospital X were truly representative of
the population, then the statistics computed would be considered true estimates
of the population parameters.

In real-life situations, you rarely encounter a variable with zero variance, i.e.,
where every experimental unit responds in exactly the same way. In this case,
statistics from random samples are treated as random variables, and the responses
gathered take on the form of a probability (or sampling) distribution. The proper-
ties of these distributions and associated theorems (such as the Central Limit
Theorem*) mean that you can make valid comparisons between experimental and
control groups using the designs described in this chapter, and using the analyt-
ical tools described in Chapter 7 and the balance of this book.

Validity means being sure that what you are measuring is what you intend to
measure or claim to have measured, as described in Chapter 1. In experiments, the
validity of an observed treatment difference between responses (between an experi-
mental and control condition, for example) is the extent to which the result cannot
be attributed to error in sampling or measurement. Continuing the hypertensive
drug example, if case-control and subsequent experimental studies were under-
taken by the same clinical team inside the same hospital, to what extent would the
results be valid? The main concerns about greater interpretation vis-à-vis the popu-
lation would be the fact that some consistent bias in measurement may be giving
rise to the result, and/or that the clinical population being tested was too small
and/or not sufficiently representative of the broader hypertensive population.
Thus, two easy techniques to improve the validity of a research result are to test
across different laboratories, research teams, and facilities, and to sample with
sufficiently large sample sizes to observe an experimental effect. The actual sizes
required to test the statistical significance of differences between treatments
depends on the specific test being used (power and sample size calculations are
further discussed in Chapter 18).

In some fields, such as psychology, general notions of validity have been refined to
develop typologies of validity. The American Psychological Association, for
instance, originally classified validity into four categories: content validity,
construct validity, concurrent validity, and predictive validity. In more recent
times, this classification has itself become more refined into the following major
types: construct validity, content validity, internal validity, and statistical validity.
I will review each of these below, and discuss threats to validity in each case.

* Where the normal distribution accurately represents the actual distribution of responses, since
the Central Limit Theorem predicts that sample means will approximate the normal distribution.
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Construct Validity

Construct validity refers to the extent to which an abstract concept that is opera-
tionalized as a variable is both sound and measurable. Thus, an invalid construct
is one in which there is no general agreement in the field as to whether the
construct is useful and/or correct, or simply disagreed upon. Even if a theoretical
construct is widely accepted, there may be little agreement on how it should be
measured, which means an assessment of convergent validity is required. A classic
example is intelligence, where there are divergent views on what the construct
actually means, as well as how each of the specific constructs are operationalized.
For example, even if you accepted that tests of general cognitive ability were valid
operationalizations of intelligence, the many batteries of tests of general ability are
not always correlated with each other.

Internal consistency for such test batteries means that there is consistency within
the set of items for a given scale, while the agreement between different batteries
can be assessed through criterion validity. Measures have been developed to esti-
mate internal consistency (further discussed in Chapters 1 and 19), including
Cronbach’s alpha, which will be higher if a correlation is consistent for large
samples when compared to small samples.

Criterion validity for these sorts of tests indicates how well the responses for the
particular battery of tests matches others used in the field, or responses for
different tests that (based on theoretical assumptions) should be correlated. For
example, if you develop a new test of verbal ability, you would expect the distri-
bution of results to be correlated with the results of similar tests, or other
measures of linguistic performance. On the other hand, if you feel that the crite-
rion is wrong, you could create an entirely new test and consider some other
method of determining validity (such as predictive validity).

Predictive validity can be achieved when a response can be shown to be accurately
predictive of the intended phenomenon. A classic example is whether perfor-
mance on exams at the end of high school—used to determine entrance into
specific courses—is actually predictive of performance in those courses, and/or
the professions for which they are intended to prepare students (in many studies,
they are not).

Another phenomenon, known as regression towards the mean, predicts that
students at either end of the spectrum (e.g., those scoring 0% or 100%) would be
more likely on re-test to score closer to the mean for purely statistical reasons,
because of measurement error. In this example, the phenomenon arises because
some responses (correct for the 100% group, and incorrect for the 0% group)
were no doubt the result of chance (or guessing) as much as knowledge, skill, or
intelligence. Thus, you would expect on re-test that—given that the chances of all
your guesses being right or wrong a second time around are low—low scorers
would score higher, and high scorers would score lower. The phenomenon is
observed throughout the natural world and the business world, and may lead to
spurious inferences being made about current weak performance because
previous performance was high. For example, many companies that report strong,
above-average earnings in their first year may see a subsequent reduction in their
second year, which is independent of any treatment effect. You can see that in
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nonexperimental (naturalistic) settings, it’s easy for these sorts of inappropriate
inferences to be made; the main strategy for dealing with such biases is to be
aware of them!

External validity is usually the most significant issue when attempting to draw
inferences about population parameters from sample statistics. Where there are
many successful ways to replicate experiments in different conditions, by different
teams, then external validity is enhanced. Any study that claims to make valid
inferences about a population, based on the statistics from a single study, is
usually treated with skepticism.

Content Validity

Content validity is concerned with establishing acceptance that a construct
measures what it claims to. Typically, an operationalized variable might be criti-
cized as being too broadly or too narrowly defined, in the sense that it measures
too much or too little information, or where the variable scope is just not clearly
defined. For example, intelligence tests that focus solely on tests of verbal and/or
numerical ability may neglect other critical facets of intelligence, such as
emotional intelligence.

Internal Validity

Internal validity can only be established when there are no biases that may lead to
the misidentification of explanatory variables in a study. Internal validity can be
threatened by:

• Systematic biases in selection

• Intentional bias inherent in a researcher’s genuine desire to establish causal
relationships

• Self-serving bias in responding to solicitation for participation in a study on
the part of participants

• Giving answers to questionnaires and other studies involving self-ratings that
make the participant “look good”

Where an experimental design is used, issues involving comparisons between
treatments can also become a validity issue (in addition to raising ethical issues).
For example, is it ethical to withhold a treatment from the control group simply
for the purpose of establishing experimental control? If blinded designs are not
implemented—and sometimes this is simply not practical—the potential for
rivalry between treatment groups must be considered a source of bias.

Statistical Validity and Hypothesis Testing

Achieving statistical validity ensures that correct conclusions are drawn from any
statistical analyses performed on data. Validity in this sense can be achieved by
carrying out hypothesis testing—using predictions about data that have been
made a priori—and by determining the reliability of the results through repeated
independent experimentation, known as replication. Reliable results may then be
reproduced for different factor levels, variable combinations, etc., and can be
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accepted as generalizable, in the sense that they can be used to make inferences
about broader populations than those that have been directly tested.

While hypothesis testing will be discussed in detail in Chapter 7, at the stage of
selecting a research design, it’s important to consider whether you have sufficient
information to make a prediction about the effect of a treatment on a variable. If
you do, then conducting an experiment is certainly appropriate, and a clear
hypothesis statement can be generated. However, if you don’t, it may be better to
consider further observation, or using an observational study to further clarify
your thinking vis-à-vis treatment effects. This is particularly important in research
involving animal or human subjects, who may suffer distress during
experimentation.

There are inherent risks in hypothesis testing when the hypothesis is ambiguous,
not specified in sufficient detail to make predictions concerning operationalized
variables, or completely absent. A Type I error occurs in hypothesis testing when a
researcher finds that, on the basis of experimentation, a treatment has a statisti-
cally significant effect on an experimental group, when, in fact, it does not. The
probability of committing a Type I error is estimated using p values, with p < 0.05
or p < 0.01 being commonly accepted values in different fields. This simply means
that you have a 1 in 20 or 1 in 100 chance, respectively, of committing a Type I
error—not very reassuring, especially if you do 20 experiments per year, as you
could expect a significant result to occur simply by chance. Conversely, a Type II
error means that you have missed a significant effect of the treatment on an exper-
imental group. Again, there could be many explanations: power may be too low
to demonstrate the effect, or the sample size (or a nonrandomly selected sample)
is simply too small for the effect to be observed.

A hypothesis is a clearly formulated statement that makes a prediction about the
effect of a treatment on an experimental unit that forms the basis for your experi-
mental design. For example, a general prediction like “fertilizer increases crop
growth” is not sufficient to be a testable hypothesis; more likely, a hypothesis
would be formulated predicting the effect of a specific fertilizer on a specific crop,
and even specific concentrations. For example, does 100 mg/L of phosphate
increase the size of sunflowers by 10% after 5 days? In this instance, you could
randomly select a treatment and control group of sunflowers, with the treatment
group being sprayed with 100 mg/L of liquid phosphate and the control group
being sprayed with water. The growth of the flowers could then be measured from
both groups, and the hypothesis could be supported or not supported.

One important aspect of hypothesis testing vis-à-vis research design is the limita-
tion of inference inherent in one experiment. If the results from the sunflower
experiment were taken that the hypothesis was “proven” 100%, then there would
still be a strong possibility that one or more factors were responsible for the result—
even if there was a control group. For example, the concentration of the phosphate
may have actually been 110 mg/L due to a lab error, there may have been excess
fertilizer landing by chance only on the experimental group but not the control
group, the control group may have been placed further into the shade than the
experimental group, and so on. This is why any one experiment is only used to
provide support for a hypothesis, rather than proof. Indeed, many scientists believe



Eliminating Bias | 101

Research
Design

it is impossible to “prove” anything; rather, hypotheses gain support over many
years, as results become more generalizable, and any null results are taken into
account. Indeed, if the result had failed to produce any difference in crop size, no
one would have suggested that fertilizers don’t enhance crop yield! Once again, you
must always be alert to potential sources of random or systematic error in the design
and conduct of experimental research.

A related issue is reliability of experimental results, which is the likelihood that
the same experiment will yield identical results if performed many times over, by
the same team or by other teams. If the goal of generalizability is considered to
increase the breadth of knowledge concerning an experimental effect, then reli-
ability is more concerned with the confidence that the result is repeatable. The
extent to which a result is reliable for individual units versus a population is an
important issue in experimental research. Determining reliability in this sense
depends on the extent to which individual experimental units are the focus of the
research, or whether the objective of the research is to test a hypothesis about
idealized units, represented by response means, rather than individual unit
responses. For example, in well-characterized systems, it is possible to make very
precise predictions about the expected behavior of all experimental units: two
hydrogen atoms and one oxygen will always combine in exactly the same way, for
example, and this can be predicted accurately on a per-molecule basis. In this
instance, the responses for all units are assumed to be equal.

However, in many physical systems, there is a naturally occurring distribution of
responses in the population. Thus, the result of an experiment must be able to
distinguish between variation in population responses that may be measurement
error, and error due to the individual (or group) differences that result from a
treatment. So, the hypothesis is often couched in terms of an average effect, rather
than an effect that is consistently produced for every unit. By focusing on average
effects, which may be biased by outliers of significant magnitude, you may find
that a significant number of experimental units may actually experience no effect,
or even a negative effect.

It may be possible to reduce the variation among a particular population by a
priori identification of features that allow them to be reduced into further distinct
populations, using categories that can be accurately determined from the popula-
tion. For example, you might classify and group trees naturally according to trunk
size, color, leaf density, etc., until the experimental units have similar response
properties. At the same time, generalizability will be limited by focusing on very
specific subpopulations.

Eliminating Bias
I have already discussed how systematic errors can be reduced through effective
design; however, there are many additional design techniques that a researcher
can use to minimize bias in research results. You’ve seen how randomization can
be used to ensure that treatment and control groups are equally comparable, but
there are many other influences that can potentially confound an experiment.
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Blinding

You may have heard of the so-called placebo effect, in which participants in an
experiment who have been allocated to a control group appear to exhibit some of
the effects of the treatment. This effect arises from many sources, including an
expectancy effect (since in drug trials, for example, the experimental substance
and its known effects and risks would be disclosed to participants), as well as bias
introduced by the behavior of the treatment allocators or response gatherers in an
experiment. For example, if a treatment allocator knows that a participant is
going to receive the treatment, they may act more cautiously than if they were
administering a control. Conversely, the response gatherer (i.e., the person
responsible for observing and measuring data in an experiment) may also be influ-
enced by membership knowledge of the treatment and control groups.

Using single-, double-, or triple-blind experimental methods can effectively
control these sources of error:

Single-blind
The participant does not know whether he or she has been allocated to a
treatment or control group.

Hypothesis Testing Versus Data Mining
Given that a statistical significance p < 0.05 implies that 1 in 20 experiments will
result in a Type I error, the onus is on the researcher to construct experiments
that are consistent with, or attempt to explain, phenomena based on a model or
theory. However, some researchers may collect a large amount of data on many
different response variables, and try to relate these to explicit treatments of
known characteristics of the sample. When undertaken on a large scale, this
approach is known as data mining. Data mining—as a form of secondary anal-
ysis—is incredibly useful in exploring large, existing data sets, usually collected
through observation or aggregated from different sources. At its simplest, the
purpose of data mining is to determine correlations between many different
variables, which may later form the basis for an experimental prediction. Alter-
natively, in industrial settings, it may be used to create decision rules in
production systems, based on relationships observed in the data. For example, a
financial database might reveal that all bank customers with income > $100,000
and living at an address > 3 years never default on a home loan. Thus, the bank
may decide to offer loans to customers who meet these requirements, and who
currently do not have a loan. But generally there is no causal inference made;
the decision rules are pragmatic in nature. Contrast this with the scenario where
no a priori hypotheses are formed when undertaking experiments; if p < 0.05, a
Type I error may occur 5% of the time, and you can imagine that the incidence
will be higher where unexpected results, not predicted, are taken as experimen-
tally “proven” relationships. That’s not to say that there’s not a place for
unexpected findings (or serendipity) in science, but they usually occur at the
observational or exploratory stage of research.
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Double-blind
Neither the participant nor the treatment allocator knows whether the partic-
ipant has been allocated to a treatment or control group.

Triple-blind
Neither the participant, the treatment allocator, nor the response gatherer
knows whether the participant has been allocated to a treatment or control
group.

In small laboratories, the roles of treatment allocator and response gatherer may
be carried out by the same individual, and thus triple-blind status can often be as
easily achieved as double-blind status. While blinding is highly desirable, it may
not always be possible to achieve at one or more of the levels. For example, a
control tablet may be physically different from the experimental tablet, and a
researcher may be familiar with it. Good experimental control can be achieved
only by trying to hold all variables constant across the two groups, except for the
treatment(s).

Retrospective Adjustment

In the previous section, I mentioned the potential bias of the response gatherer,
arising from not being blind to the treatment status of participants. Another
potential source of bias arises when there are multiple response gatherers, or
when different instruments are used to gather response data, making essentially
independent judgments of responses in either control or experimental treatments.
Bias can be reduced in a number of ways: responses from multiple judges could be
averaged, for example, to reach a “consensus” value, but what about situations in
which there was only one judgment made for each unit by one of a group of
judges? It may be possible to examine the overall set of decisions made by each
judge, and attempt a retrospective adjustment for perceived bias; however, the
calibration of such post-hoc adjustments can be difficult, since inter-rater reli-
ability must be established for the pool of judges.

Blocking and Common Designs

The purpose of blocking is to set up experiments in such a way that comparable
(and preferably identical) responses can be elicited from the same treatment. The
idea is to use as much a priori information as possible about experimental units to
allocate them to experimental blocks, so that all units in a specific block give the
same response to a treatment. Perhaps the most famous example of blocking is
the use of identical twins in psychological research to examine the effect of
“nature versus nurture,” since the twins have exactly the same genetic makeup. In
circumstances where the twins have been separated at birth, for example, or sent
to different schools, the impact of differences in environment can be determined
while controlling for genetic factors. The advantage of blocking with identical
twins is that variation due to one factor (genetics) can be tightly controlled
because the responses will be very closely matched. The disadvantage with iden-
tical twin research is that the subject pool is limited, and the numbers of separated
identical twins are even fewer.
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However, the level of control for blocking to be effective does not have to be so
very tight to use a matched pair design. The differences in responses between
subjects can be controlled by matching on as many potentially confounding (or
unit-treatment correlated) factors as possible. In psychological research, this typi-
cally means matching on factors such as age, sex, and IQ, but may also include
quite specific controls, such as visual acuity or color blindness in perceptual
experiments. In some cases, these factors will be nuisance factors, but in other
cases, they are just not central to the research question.

It may not be possible to match participants on all possible sources of influence
extraneous to the research question, but most scientific fields have a set of well-
known criteria on which matching has been shown to be effective. The advantage
of matched pair designs is that, on a per-unit basis, you can establish more confi-
dence that an experimental effect genuinely occurs for all units, rather than
hoping randomization will iron out any differences. However, by introducing
structure into the treatment allocation process, the benefits of randomization may
be lost. In a randomized block design, though, it may be possible to allocate treat-
ments to matched units in a random way, to preserve the reduction in bias
achieved therein.

A rule of thumb in research design is to block wherever possible,
and where you can’t block, randomize.

Recall that a matched pair design attempts to control as many extraneous factors
as possible by matching experimental and control treatment units as closely as
possible. Further control can be achieved by allowing units to act as their own
controls in a within-subjects design, although it may not always be physically
possible or practical to do this. For example, if the treatment irreversibly alters the
unit in some way, then a within-subjects design provides a very high level of
experimental control. This is because you can observe the true experimental effect
for all units, excepting error due to any changes in the environment between the
control and experimental session.

Within-subjects designs are used extensively in psychology; however, since many
of the experiments involve some modification to behavior or cognition, you may
wonder whether there isn’t a possible confounding “learning” effect. If all units
were given the control treatment first and then administered the experimental
treatment (or vice versa), there certainly would be potential for a learning effect
(or maturation bias) to influence the results.

However, randomization again provides an antidote, in the form of a Latin
Square, which provides an unbiased way to randomize the allocation of partici-
pants to treatments. In any design where y conditions are presented to each
participant (T1, T2, …, Ty), the trials for each participant are grouped together and
randomized, using a Latin Square, to ensure that no sequence is ever repeated
twice for different subjects. For example, if the reaction time to five objects is
measured with trials T1, T2, T3, T4, and T5, and there are five participants, then a
randomized Latin Square would produce the design shown in the following table,
governing the order of stimulus presentation.
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Using a Latin Square in this way ensures that any between-subjects variation
affects all treatments in an equal way. Note that there are 161,279 other possible
randomizations of the 5 × 5 Latin Square that would retain their characteristic
property of no orthogonal (row or column) having the same number more than
once. If your design required that at least one instance of the ordinal presentation
of treatments (i.e., T1, T2, T3, T4, and T5) then the reduced form could be used—
because the first row and column would preserve ordinality—but yielding only 55
possible randomizations.

Example Experimental Design
In this section, I review a real example of an experiment and discuss the design
decisions made, comparing how it could have been conducted using two common
experimental designs, and provide examples that highlight the relative strengths
and/or weaknesses of each strategy.

Martin and Siddle (2003)* set out to investigate the main effects of alcohol and
tranquilizers on reaction time, P300 amplitude, and P300 latency, as well as their
interaction. P300 amplitude and latency are measures derived from event-related
potentials in the brain at 300ms. All three responses are related to different infor-
mation processing mechanisms in the brain.

The research question was based on previous studies that had independently
demonstrated the impact of alcohol or tranquilizers on these response variables,
but not their interaction. Also, studies investigating the effect of alcohol on the
response variables tended to use large doses, and studies looking at tranquilizers
focused on strong and not weak ones (hence, temazepam, a mild tranquilizer, was
selected). Thus, three questions were posed: (1) would alcohol have a significant
main effect on any of the response variables; (2) would temazepam have a signifi-
cant main effect on any of the response variables; and (3) would alcohol and
tempazepam interact?

The experiment used a within-subjects design, so that participants acted as their
own controls. The factorial design was 2 (alcohol, control) × 2 (tranquilizer,
control); thus, every participant performed the same experiment four times,
having either no alcohol or temazepam, alcohol only, temazepam only, or both
alcohol and temazepam.

The results indicated a significant main effect for temazepam on P300 amplitude
(i.e., with or without alcohol), and significant main effect for alcohol on P300

T1 T5 T2 T3 T4

T3 T2 T4 T5 T1

T4 T3 T5 T1 T2

T5 T4 T1 T2 T3

T2 T1 T3 T4 T5

* F. Martin and D. Siddle (2003). “The interactive effects of alcohol and temazepam on P300 and
reaction time.” Brain and Cognition, 53(1), 58–65.
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latency and reaction time. However, there was no significant interaction between
the two factors at all. Given that alcohol and temazepam have different main
effects, and since they don’t interact, the study supports the idea that alcohol and
temazepam independently affect different information processing mechanisms in
the brain.

If you were designing this experiment, what would you have done? Would you
have selected a matched pair design instead of a within-subjects design? Possibly,
since this would have reduced the number of trials that each participant had to
complete, but in this instance, using a within-subjects design also allowed for
smaller participant numbers to be used (N = 24), whereas a larger sample may
have been needed to demonstrate an effect between subjects. No doubt, you
would have randomized the selection of participants, perhaps by selecting names
from a phone book using page numbers and columns generated by a random
number generator. Content validity would not be a concern, since the response
variables used are widely accepted in the field as reflecting information processing
characteristics of the brain. You would also have ensured blinding of the
researcher administering the alcohol or temazepam, ensuring that the control for
each was physically the same in appearance. Would you have chosen to increase
the number of factors rather than having a 2 × 2? For example, perhaps there
would only be an interaction between alcohol and temazepam at high respective
dosages, so perhaps a 3 × 3 design would have been more appropriate? The ques-
tion here is not necessarily experimental but ethical; you want to limit the amount
of tranquilizer being administered to each participant, and in the absence of a
compelling theoretical reason (or clinical evidence or observation) to suspect
otherwise, I think that a 2 × 2 study was correct.
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6
Critiquing Statistics Presented

by Others

This chapter explains how to read and critique statistics presented by someone
else, including those contained in published research articles and workplace
presentations, and will teach you to evaluate the research design. You’ll also learn
to critique the statistics chosen and their presentation, and common ways authors
and presenters try to cover up weaknesses in their data.

The Misuse of Statistics
Broadly, the misuse of statistics falls into two very distinct categories: ignorance
and intention. The ignorant use of statistics arises when a person attempts to use
descriptive or inferential statistics to support an argument, where the technique,
test, or methodology is inappropriate. The intentional misuse of statistics arises
when a person attempts to conceal, obfuscate, or over-interpret results that have
been obtained. Intuitively, you may think that ignorance arises mostly with
complex statistical procedures such as multivariate analysis—and it certainly
does—but even basic descriptive statistical procedures are routinely misused.

Intentional misuse is rife in descriptive statistics as well; witness the infamous
“stock charting” techniques, in which graph axes are typically labeled with an
ordinal scale that manipulates intervals to make a stock appear to rise faster in
price than it actually does. The assumptions of inferential testing that make the
calculation of statistical tests valid are routinely ignored, as they represent an
“inconvenient truth” regarding the analysis that is being performed.

In this chapter, some examples are drawn from the contemporary debate
surrounding climate change and global warming, since the public mood in most
countries has clearly changed over the past few years. Has research progressed
sufficiently that most governments and citizens are now convinced of its truth?
Has experimental evidence been obtained that more strongly confirms specific
hypotheses about climate change that were previously predicted? If “statistically
significant” changes in climatic systems are detected, are they meaningful
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changes? Or is the population weary of sensational headlines, simply accepting
that if a statement is repeated often enough by credible sources (such as newspa-
pers, TV news and former vice presidents) then it must be true?

There is no simple answer to any of these questions, but as with all scientific
debates, the pattern of observation, prediction, hypothesis testing, and analysis
should remain unchanged.

Common Problems
If you are presented with a set of dazzling statistics that are meant to “prove” or
support some argument, theory, or proposition, start with the following checklist
to start asking the tough questions:

Truly representative sampling
If the investigator is attempting to make inferences about a population by
using a sample, how was the sample selected? Was it truly randomly selected?
Were there any biases in the selection process? The results of any inferential
tests will only be valid if the sample is truly representative of the population
that the investigator wants to make inferences about. In some cases, samples
may be maliciously constructed to prove a particular fallacious argument.
Alternatively, there may be a self-selection bias that arises when some
members of a population respond to a sampling request while others do not.
For inferences about a population to be valid, the sample must be truly repre-
sentative with all sources of bias removed.

Response bias
Respondents may be tempted to tell you exactly what you want to hear,
simply because they are asked a particular leading question, so as not to
offend.

Conscious bias
Are arguments presented in a disinterested, objective fashion? Or is there a
clear intention to report a result at any cost?

Missing data and refusals
How is missing data treated in the analysis? If participants were selected
randomly, but some refused to participate, how were they counted in the
analysis?

Small sample sizes
Were the sample sizes selected large enough for a null hypothesis to be
rejected? Was the sample size selected on the basis of a power calculation?

Large sample sizes
A sample that is too large is overly sensitive to small differences that may not
be important from a subject-matter perspective.

Effect sizes
If a result is statistically significant, was an effect size reported? If not, how
was the importance of the result established? Was it meaningful in the
context of the phenomenon under investigation?
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Parametric tests
Was the data analyzed using a parametric test when a nonparametric test
may have been more appropriate?

Test selection
Was the correct inferential test used for the scale of variable used? Different
techniques are used for different DV (dependent variable) and IV (indepen-
dent variable) combinations of categorical, ordinal, and/or interval/ratio data.

Association and causality
Is the only evidence for a causal relationship between two variables a measure
of association, such as correlation? In this situation, it is incorrect to assert a
causal relationship, even if one variable is labeled “dependent” on an “inde-
pendent” variable.

Training and test data
Has a model been developed using one data set and then tested using the
same data set? This problem occurs frequently in pattern recognition
applications.

Operationalization
Is the variable selected to measure some particular phenomenon actually
measuring it? This is a common problem in psychology, where latent vari-
ables (such as intelligence) are measured indirectly by performance on
different cognitive tasks.

Assumptions
Have the assumptions that underlie the validity of the test been met? How
has the investigator ensured that they have been met? For example, if a test
assumes that a population is normally distributed, and it is in fact bimodal,
then the results of the test will be meaningless.

Testing the null hypothesis
To determine whether two groups are drawn from the same or different
populations, it is common practice to test the null hypothesis that they are
drawn from the same population. This derives from basic scientific method-
ology, where theories are supported by numerous and reliable sets of tests of
null hypotheses that are rejected, rather than the (apparently) more straight-
forward approach of testing the hypothesis directly. Beware of any piece of
research that attempts to “prove” a theory by a single experiment.

Blinding
Was the study single-, double-, or triple-blinded? For example, could the
participants or investigators have introduced some bias by having knowledge
of the treatment or control conditions in an experiment?

Controls
If the effect of a treatment is demonstrated in a pre/post-treatment model, are
matched controls receiving a placebo within the same experimental para-
digm to control for the placebo effect? A designed experiment is the only
common way to be able to make causal inferences.
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Quick Checklist
Investigations supported by statistics follow a surprisingly standard lifecycle. If
you are reviewing a piece of work, try and determine what the sequence of events
was during the investigation. Did the investigators start off with one hypothesis
and change their minds once the results were in? Did they try numerous different
tests with various post-hoc adjustments to make sure that they could report a
“significance test” result? Asking searching questions about the research process is
like a detective asking questions about movements at a certain date and time—
inconsistencies and story-changing can be very revealing!

In short, investigations based on statistics should proceed along the following
lines:

• Assuming that a period of observation and exploration has preceded the start
of an investigation, research questions should be stated up front. Investiga-
tors must have formulated hypotheses (and the corresponding null hypothe-
ses) well before they begin to collect data. Otherwise, the use of hypothesis
testing is invalid, and the investigation may take on the flavor of a “fishing
expedition.” Given that a p = 0.05 result represents a 1 in 20 chance of mak-
ing a Type I error, and since many thousands of studies are published each
year in the scientific literature alone, many “facts” must surely be open to
question. This is where independent repeatability and reliability are critical to
the integrity of the scientific method.

• The relationship between the population of interest and the sample obtained
must be clearly understood. It’s not sufficient to make inferences about the
entire human population based on a sample of highly educated, healthy,
middle-class college students from one college. Honestly.

• Hypotheses must relate to the effect of specific IVs on DVs. Thus, it’s critical
to know as much about the DVs as possible, especially every source of varia-
tion in the DVs. This is particularly important where DVs are thought or
known to be highly correlated (i.e., multicollinearity). The DVs must be mea-
surable and must operationalize underlying concepts completely.

• In complex designs, where there are both main effects and interactions to
consider, all of the possible combinations of main effects and interactions and
their possible interpretations must be noted.

• Procedures for random sampling and handling missing data or refusals must
be formalized early on, in order to prevent bias from arising. Remember that
a truly representative sample must be randomly selected. Where purely ran-
dom sampling is not feasible, it may be possible to identify particular strata
within the population and sample those in proportion to their occurrence
within the population. For example, since the proportion of males and
females is generally known for most populations, sampling can be performed
appropriately and “in proportion.”

• Always select the simplest test that will allow you to explore the inferences
that you need to examine. Multivariate techniques are incredibly important,
but if you only need to make simple comparisons, they may be inappropriate.
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• Selection of tests must always be balanced against known or expected charac-
teristics of the data. For example, if testing mean differences, and only small
samples may be available, then use a two-sample t-test in preference to an
ANOVA. Although the two only differ in terms of the number of group
means being tested, a designed experiment is the only common way to be
able to make causal inferences.

• Don’t be afraid to report deviations, nonsignificant test results, and failure to
reject null hypotheses—not every experiment can or should result in a major
scientific result!

Research Design
Generally, the design of an investigation of a question of interest needs to follow
the guidelines presented in Chapter 5 if meaningful inferences are eventually to be
made. However, many investigations do not follow these types of guidelines at
all—especially if you have a newspaper to sell that relies on sensational headlines
to grab the attention of an inattentive reader. Other investigations are based on a
single sample or event whose significance is then extrapolated to indicate some
more fundamental shift.

One of the major problems in the climate change debate is that there is no experi-
mental apparatus available that completely represents the complexity of the
earth’s climatic systems. Indeed, to thoroughly test the various hypotheses that
have been developed, you might need to have a number of different planets, iden-
tical in composition to earth, which can be assigned to control and treatment
conditions to test different hypotheses. For example, does global warming arise
from greenhouse gases? Or does it arise from increases in solar activity? Do both
factors contribute to global warming? Do the factors have main effects on global
warming, or do they interact to produce global warming, or both?

Clearly, it is not possible to obtain such samples for physical objects like plane-
tary systems, so investigators may resort to using models that have been
demonstrated to have predictive value. However, even though computer models
of the climate have improved dramatically over the years, thanks to advances in
computer processing power and model refinement, they are still unable to predict
the weather accurately beyond a few days. If the models have predictive validity,
how well do they rate on explanatory value? A classic example is the development
of supervised learning algorithms such as artificial neural networks; these general-
ized function approximators were used to predict many different phenomena in
psychology and neuroscience, based on the backpropagation algorithm, which
attempts to minimize errors between an output array of units, and an expected
value supplied for training, where hidden unit values are adjusted to compensate
for error. While the networks do have predictive validity, real neural networks
rarely provide for the backpropagation of potentials in the way that the model
implies. Thus, you would not want to base the development of new neurosurgical
procedures on this type of artificial neural network, even though it has a level of
predictive validity.
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Variation

Understanding variation is critical to all systems. Variation can arise from legiti-
mate sources of a population in question, but also from measurement error.
Variation may be cyclical, so cross-sectional designs may not always correctly
identify that local minima may be perfectly acceptable in the lifecycle of a system.
In climatic systems, for example, variation in temperature occurred prior to the
industrial revolution and the consequent increase in the release of greenhouse
gases; how do you partition the variation expected due to normal cyclical effects
from that which can be directly attributed to human activity? This is one of the
critical issues facing environmental science, since the atmosphere definitely
warmed since the last ice age, without any human interference, until the indus-
trial revolution.

Population

Scope in defining a population is critical in accurately specifying the limits of infer-
ence that can be made from a particular study. If all members of a population are
measured in some way, and there is no missing data or refusals, then you don’t
need statistics at all, as you can directly calculate parameters of interest. Part of
the problem in defining a population is when there is some fundamental misun-
derstanding of the population in question. Imagine that a survey of attitudes
undertaken at a census in Utah is taken as the same population as California; both
states are located in the same country and are relatively close in geographical
terms, and so it may be tempting use Utah as a sample for California. And it may
well be the case that many attitudes in Utah would be predictive of those in Cali-
fornia—but there may well be very significant differences. A better design would
be to sample in both states and determine if there are significant differences
between attitudes, with confidence intervals and other techniques used to ensure
the validity of the result.

Sampling

There are two keys aspects of sampling: size and randomness. A truly representa-
tive sample must be both “large enough” and randomly selected to give an
accurate estimate (statistic) of any population parameters. Being sufficiently large
to represent the population is a difficult problem—calculations of statistical
power certainly provide a basis for this, in terms of inferential testing—but more
sophisticated sampling schemes will attempt to identify all sources of variation in
the population that might introduce bias, and sample within those appropriately.
Sampling bias can occur when participants are able to self-select into a study.
Alternatively, sampling can be biased where there is a confounding factor at work.

Random sampling is very difficult to achieve for cross-sectional or short-term
studies. Long-term cohort studies with high retention rates that were originally
sampled randomly provide the best basis for studies in social or health sciences.
Being able to track all sources of variability in an individual’s life, and examining
how similar they are to other members of the sample, provides a reliable basis for
estimating population parameters.
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Controls

A recent study indicated that the administration of antidepressant medication to a
large number of participants in a clinical study was no more effective than a
placebo. Thus, the expectation of receiving a cure resulted in the same improve-
ment in depressive symptoms as receiving a tablet with the active ingredient. The
placebo effect is very powerful in humans, and most studies should provide some
type of explicit control where the effect of a treatment is intended to be demon-
strated. In clinical and pharmaceutical sciences, the methods and processes for
controls are well established. However, in areas like climatic modeling, finding
suitable controls is difficult if not impossible.

The Power of Coincidence

When statistical significance is measured at the p = 0.01 or 0.05 level, this means
that there is a 1 in 100 or a 1 in 20 chance respectively of a Type I error being
committed. Thus, in the case of p = 0.05, a repetition of the experiment would
lead to 19 out of 20 cases being significant, and 1 out of 20 being insignificant.
This is why independent replication and repeatability are so important. In addi-
tion, the world is full of coincidences, and experiments are subject to
measurement error, and the interaction of the two can lead to some downright
wacky and unexpectedly “significant” findings, to which no actual significance
should be attached. Imagine that there are 20 earths surrounding the sun, and you
choose one to examine the effects of global warming. You find a correlation
between increases in industrial activity and temperatures for the last 200 years.
Since you know that there is a 1 in 20 chance of committing a Type I error, you
would check out at least some of the other planets, or perform an experiment on
them all, with half acting as matched controls for the others.

You can see the difficulty here in understanding the causal sources of global
warming: there are no other 19 planets that you can experiment with, or verify
your model against—but at the same time, you know there is a strong possibility
of committing a Type I error. There is also the insidious effect of the Poisson
distribution, which can be used to model rare events that cluster together, and
shows that 25% of intervals will have multiple events, while others will be empty.
The effect can be seen from some cancer cluster cases that do not appear to have
any particular relationship with each other.

Descriptive Statistics
The issues surrounding the appropriate interpretation of inferential tests are
complex and prone to error. However, the use of descriptive statistics also has
enormous potential to introduce errors in reasoning and understanding. Some of
these errors are deliberate attempts to misguide and mislead. Others are simply
poor choices. In this section, you will learn about some common problems associ-
ated with descriptive statistics, especially measures of central tendency and
graphing.
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Measures of Central Tendency

The choices for deception here are endless: if researchers wanted to overempha-
size average temperature increases, they would select the mean as the measure of
central tendency, or conversely, the median if they wanted to underemphasize the
effect. Over a 10-year period, if there are 8 years of 70 degree averages, and 2 years
of 80 degree averages, then selecting the mode would also underemphasize the
effect. Unscrupulous investigators will often choose the measure of central
tendency that best fits their desired outcome.

Measures of central tendency can also be very misleading when the sample and/or
the population changes from measurement to measurement. Average house prices
are a classic example: these are based solely on sales in a particular period, such as
one year. From year to year, the sample from which the average is calculated will
almost certainly change, unless all houses sold in one year are resold the next, and
no other houses are sold. This would surely be a very unlikely event. And yet
eager homeowners often take a “10% average rise in house prices” to mean that
theirs has increased by the same proportion. Where the population itself
changes—such as where many new homes are built and sold in one year—the
median will almost certainly rise. And yet existing houses may sell for exactly
the same price (or less) than the year before. A more valid method of determining
the average house price would be to sample amongst the population so that each
house has an equal chance of being valued and added to the sample. Further-
more, since the proportion of existing houses to new builds is known, the sample
could be further stratified, so that average prices for both types of houses could be
reported and/or aggregated afterward.

The fair solution is usually to eliminate cases from analysis that lie two standard
deviations above or below the mean. This also helps to minimize measurement
error effects; in reaction time experiments, for example, it’s not uncommon for
participants to become incredibly bored and miss a stimulus. If the computer
program waits only for two seconds to accept a response, but the stimulus is
missed, then a reaction time that is usually on the order of 20–80ms is now
recorded as 2,000ms, which is up to two orders of magnitude greater. If this case
is not culled, then the mean would be greatly overestimated.

Note that by removing outliers, you are reducing the generalizability of your
results, so you should never remove outliers casually.

Standard Error and Confidence Intervals

Given that measurement error exists when trying to gather data in most disci-
plines, the standard error and/or probable error should be reported, especially
when trying to compare the means of two different groups. The standard error is
an estimate of the variation of error in making a particular observation, i.e., it
represents the gap between the measured value and the “true” value. Since it’s not
always possible to understand what factors may influence measurement error,
standard error is always estimated.

Normally, the standard error is estimated by using standard deviation divided by
the square root of n; thus, as the sample size increases, the standard error gener-
ally decreases, as observations become more reliable.
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Where the standard errors overlap between the means for two groups (i.e., stan-
dard errors of the mean), it doesn’t make sense to attempt to distinguish between
them, since there is no way to achieve certainty in measurement within that range.
But where the null hypothesis of equality of means is tested, it’s useful to examine
the standard errors to see if they do overlap.

Standard errors of the mean are used to calculate confidence intervals. For
example, where the upper and lower 95% confidence intervals are to be
presented, these can be calculated by using the following formula, where x is
equal to the sample mean, y is equal to the standard error of the sample, and z is
the 0.975 quantile of the normal distribution:

Upper 95% Limit=x+(y*z)
Lower 95% Limit=x-(y*z)

For confidence intervals at these levels, if a single population is repeatedly
sampled, then 95% of the samples should capture the true population mean.

Be wary of any study that doesn’t provide confidence intervals, especially if the
sample size is small.

Graphing

Graphs are often provided in the absence of statistics to provide an accessible way
of understanding how variables are related. However, graphs can be misused in a
number of ways; for example, axes may be unlabeled, meaning that they cannot
be correctly interpreted, or axes can be manipulated to obscure or enhance the
real relationship between variables.

The old adage “a picture tells a thousand words” is certainly true, but the “thousand
words” can change dramatically depending on the choice of scale. Figure 6-1 shows a
fictional set of temperature increases ranging between 70–77 degrees over a 50-year
timespan. The rise in temperature is strongly correlated with the year, r = 0.96.
Figure 6-1 certainly shows this almost perfectly linear rise.

However, by stretching out the Year axis, suddenly the visual effect is of an overall
slower rise in temperature, as shown in Figure 6-2.

Note that if the Temperature scale is now adjusted to start at 1 degree rather than
68, then the relationship is even further flattened, and the two variables visually
appear to be uncorrelated, as shown in Figure 6-3.

If this was not enough, then converting the Temperature scale to the log has the
effect of flattening the line even further, as shown in Figure 6-4.

Of course, if you took the opposite view, you could always stretch the Tempera-
ture axis vertically, and make it appear as if the temperature rise was, in fact very
steep, as shown in Figure 6-5.

Another common tactic is to use “2-D” graphs, where a doubling in size is shown
by doubling both the x- and y-dimensions, thereby exaggerating the increase.
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Figure 6-1. Graph manipulation

Figure 6-2. Graph manipulation

Figure 6-3. Graph manipulation
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Figure 6-4. Graph manipulation

Figure 6-5. Graph manipulation
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Extrapolation and Trends

A common tool used in marketing is extrapolation of a known relationship
between two variables, outside a measured range, to form a trend. For example, if
the S&P 500 index has increased by 10 points for the last 10 weeks, a gambler
might feel some confidence in betting that the index might increase by 10 points
during the following week. In this case, using simple linear interpolation provides
the best estimate possible—but because the stock market is subject to a lot of
random variation, the index will not always rise in accordance with previous expe-
rience. If the system is not a linear system, then linear interpolation is not
appropriate.

For nonlinear systems, polynomial extrapolation and conic extrapolation may be
appropriate, if the system in question can be modeled by using the functional
form in each respective case.

Trends can be useful when smooth data is extrapolated by smooth functions, or
nonsmooth data is extrapolated using a nonsmooth function. But when the
system under study is not deterministic, subject to random error, or chaotic, the
usefulness of trending is limited and may give wildly inaccurate and potentially
misleading results, especially if there is branching or bifurcation in the data.

Inferential Statistics
So far, you have learned about key problems in research design and descriptive
statistics that are often present in reports of statistical work performed. In some
cases, deception may be behind the incorrect presentation of an analysis, and the
omission of key statistics should raise your suspicions. With inferential testing,
however, not only does deception play a role, but also the incorrect or inappro-
priate use of some tests is a major problem. The most significant problem is that
the assumptions of multivariate tests are routinely ignored, and yet the results of
these tests are extremely sensitive to any violation of the assumptions. Investiga-
tors can and should be proactive in determining whether their data actually meets
all of the underlying assumptions for using a specific multivariate test.

Assumptions of Statistical Tests

Typical violations of some statistical tests are given below, and mechanisms to test
whether the assumptions are violated are also provided.

t-tests

Two-sample t-tests assume that the samples are unrelated; if they are related, then
a paired t-test should be used (t-tests are discussed further in Chapter 8). Unre-
lated here means independent—you can test for linear independence by using the
correlation coefficient. Serial correlation may become an issue if data is collected
over a period of time.

t-tests are also influenced by outliers; these should be removed when they are two
or more standard deviations above or below the mean. Alternatively, they may be
visually detected by using a boxplot or a normal Q-Q plot. Use caution with
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outlier removal, as removal of any data will reduce the generalizability of your
results.

Note that discarding outliers on the basis of sound statistical measures—such as
the standard deviation—is an entirely separate activity from discarding data that
happens to be unfavorable. For example, when there is a 5% chance of commit-
ting a Type I error, then discarding the 19/20 experiments that do not meet your
favored conclusion would not be statistically valid (or ethical).

t-tests assume that the underlying population variances of the two groups are
equal (since the variances are pooled as part of the test); if they are not, then the
Welch-Satterthwaite t-test should be used, since this provides a direct means to
adjust for the inequality. An F-test could be performed to directly test the equiva-
lence of variances, or a side-by-side boxplot comparison could be used.

Normality of the distributions of both variables is assumed, although for the small
samples that a t-test is often used to test, this may be difficult to establish—a
histogram of the distribution should reveal any significant lack of symmetry (or
skew). In this case, a nonparametric or “distribution-free” test (discussed in
Chapter 11), such as the Wilcoxon rank-sum test, may be more appropriate. The
lack of balance in sample sizes may result in biased estimation of the population
parameters in one of the groups; certainly, the standard error of the mean will be
greatest in the smaller group.

Note that the t-test is often used with small sample sizes. Using small samples in
any design may result in a lack of power, meaning a true difference may not be
determined. Unless variances are small, testing within small samples may produce
a nonsignificant result, even if there truly is a significant difference. Relaxation of
the alpha level will increase power, as will increasing the sample size and/or
reducing variance.

ANOVA

ANOVA has a large number of assumptions that need to be met, which usually
requires directly determining whether the assumption is met (rather than hoping
that it is met, or ignoring it). ANOVA (discussed further in Chapter 12) assumes
independence and normality—again, the impact of outliers needs to be consid-
ered if these are the main cause of the nonnormality, and attempting to screen
them may radically change the result of the F-test, but at least the result would
then be valid. The most important assumption, from a practitioner’s perspective, is
the equality of variances.

ANOVA is most reliable when sample sizes are balanced and when the popula-
tion variances are equal. Skewed distributions and unequal variances may make
the interpretation of the F-test unreliable. A side-by-side boxplot comparison may
be very helpful; if data is sampled from a truly normal distribution, then there
should be symmetry in the boxplots. If there is no attempt to establish normality,
ask why. While it’s true that—if the population data is normally distributed—
increasing the sample size will bring about a greater approximation to normality,
if the population is not normal, then increasing the sample size won’t help. And
yet many studies rely on large numbers to claim reliability, putting great faith in
the Central Limit Theorem. Levene’s test and Bartlett’s test are very useful for
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determining whether the assumption of equal population variances has been met
from a sample.

If samples are both nonnormal and population variance is thought to be unequal,
and/or there is a lack of balance in sample sizes, it might be best to use a nonpara-
metric test, such as the Kruskal-Wallis. Alternatively, if sample sizes are unequal,
but the other assumptions are met, then a Tukey-Kramer adjustment may be
made.

MANOVA

In addition to the assumptions underlying univariate ANOVA, MANOVA
assumes the equality of variance-covariance matrices (more on MANOVA can be
found in Chapter 13). This assumption can be tested using the Box test, and
significance levels are often provided. Data is also assumed to be multivariate
normal; unfortunately, there is no direct test available for multivariate normality,
but univariate normality tests should at least be undertaken.

MANOVA is also sensitive to outliers, and these should be removed before anal-
ysis, again noting that removing any cases from your analysis may reduce the
generalizability of your results. Tests for linear relationships (to exclude nonlinear
relations) should be performed; however, where multicollinearity arises, reducing
redundancy for dependent measures (through principal component analysis or
similar) should be considered—usually where r > 0.80, as a rule of thumb.

Linear regression

Like the other techniques described here, linear regression assumes the indepen-
dence of errors in the IV and DV: if a seasonal effect is present, then examining
the residuals should indicate that a more complex model is required (look for any
pattern other than a random distribution). Linear regression is covered in depth in
Chapters 12 and 14. Time series analysis, for example, provides methods to
remove seasonal or cyclical trends from data before performing linear regression.

Examining residuals is more an art than a science. However, by becoming familiar
with residual analysis, you will be better able to assess the regression analyses
presented by others and pinpoint any problems.

Table 6-1 shows average wholesale coffee prices per pound for the past 10 years.
As you can see, the rise in prices is strongly correlated with the year, r = 0.991.
There is some random variation present in the data—perhaps some prices were
transcribed incorrectly, or perhaps some growers were slightly more or less greedy
each year. But generally, the relationship is linear.

Figure 6-6 shows the residuals from the model fit, with an overlaid normal distri-
bution. Although there are some deviations for such a small sample, it’s actually a
good fit.
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However, what if coffee prices had spiked in 2002 to $10.86? The correlation
would then be r = 0.572, resulting in only 32% of the variation being accounted
for in the DV by the IV, rather than 98%. The residual plot in Figure 6-7 shows 9
cases clustered around standardized residuals of 1, while there is only one case
with a residual of approximately 3. If that single case had been removed as an
outlier, using the ±2 SD criterion, then the almost-perfect fit observed in
Figure 6-6 would have been maintained.

Imagine a seasonal effect (shown in Table 6-2) that reflects government policy to
run a subsidization program every second year to ensure that growers can remain

Table 6-1. Average wholesale coffee prices

 Year Price

 1998  2.40

 1999  2.89

 2000  3.75

 2001  4.00

 2002  4.20

 2003  4.82

 2004  5.19

 2005  5.98

 2006  6.36

 2007  7.31

Figure 6-6. Residuals and overlaid fit to normal distribution—no outliers
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competitive in a global market. In this case, there is an increasing linear trend
overall (r = 0.74), but you can see a repeating pattern where there are serial clus-
ters that are above and below zero. You wouldn’t see this from the histogram,
which is why, especially with regression through time, it’s useful to examine the
serial order of residuals. Figure 6-8 illustrates this.

Figure 6-7. Residuals and overlaid fit to normal distribution—single outlier

Table 6-2. Average wholesale coffee prices with cyclical effect

Year Price

1998 2.51

1999 1.97

2000 2.63

2001 1.91

2002 2.66

2003 2.12

2004 2.86

2005 2.94

2006 3.48

2007 3.25
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In other situations, there may be an observed expansion in the divergence at posi-
tive and negative parts of the cycle—perhaps the government increases spending
on the subsidy in the first year, and then has to decrease the subsidy because it has
less money. In this situation, you may see a bifurcation, as shown in Figure 6-9.
Again, the correlation is still high, at r = 0.79, but the residuals, shown in
Figure 6-10, clearly show the oscillation between successive residuals, as well as
their increase in magnitude.

Figure 6-8. Residuals plotted serially: cyclical effect

Figure 6-9. Residuals and overlaid fit to normal distribution: increasing cyclical effect
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Figure 6-10. Residuals plotted serially: increasing cyclical effect
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7
Inferential Statistics

Statistical inference is the science of characterizing or making decisions about a
population using information from a sample drawn from that population. Most of
the practice of statistics is concerned with inferential statistics, and many sophisti-
cated techniques have been developed to facilitate this type of inference.

The name “inferential statistics” derives from the term “inference,” given two
definitions by the Merriam-Webster online dictionary (http://www.m-w.com/
dictionary/inference):

a) the act of passing from one proposition, statement, or judgment considered
as true to another whose truth is believed to follow from that of the former

b) the act of passing from statistical sample data to generalizations (as of the
value of population parameters) usually with calculated degrees of certainty

The second meaning, which is specific to statistics, is clearly related to the first.
Inference in general is a method of making suppositions about an unknown,
drawing on what is known to be true. Statistical inference is a refinement of ordi-
nary inference, and is a process of making generalizations about unmeasured
populations using data calculated on measured samples. Statistical inference has
the additional advantage of quantifying the degree of certainty for a particular
inference.

People sometimes get confused about the difference between descriptive statistics
(covered in Chapter 4) and inferential statistics, partly because in many cases the
statistical procedures used are identical while the interpretation differs. For
instance, the same formula is used for calculating a mean whether the data repre-
sents a population or a sample: add up all the data values and divide by the
number of values. There are differences in the notations of the formula, however,
such as the use of the Greek letter µ to represent the population mean (which is
properly called a parameter since it is a number that describes a population) and
the Latin letter x with a bar over it (x), pronounced “x-bar,” to represent a sample
mean (properly called a statistic since it is a number that represents a sample), and

http://www.m-w.com/dictionary/inference
http://www.m-w.com/dictionary/inference
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the use of the uppercase N for population size versus the lowercase n for sample
size. In other cases, the formula is different: for instance to calculate a population
standard deviation we divide by N, while for the sample standard deviation we
divide by n – 1.

So it can make a difference, even before you get to the interpretation stage,
whether you are working with descriptive or inferential statistics. To answer this
question, think about the purpose of your study: is it merely to describe the
specific people or entities that provided the data upon which you will perform the
calculations? Or is it to generalize to a larger group of which the study objects are
considered representative? The basic rule is this:

Any time you want to generalize your results beyond the specific cases that
provided your data, you should be doing inferential statistics.

To look at the same question from another side:

Any time the cases that provided your data do not represent the entire
population of interest, you should be doing inferential statistics.

Probability Distributions
Statistical inference frequently relies on making assumptions about the way data is
distributed, or requires performing some transformation of the data to make it
better fit some known distribution. Therefore we will begin the topic of statistical
inference with a presentation of the concept of a theoretical probability distribu-
tion, and a review of two commonly used distributions.

A theoretical probability distribution is defined by a formula that specifies what
values can be taken by data points within the distribution, and how common each
value will be (or, in the case of continuous distributions, how common a given
range of values will be). Graphic presentations of theoretical probability distribu-
tions are often used to present statistical concepts: the well-known “bell curve” of
the normal distribution is a good example.

Theoretical probability distributions are useful in inferential statistics because
their properties and characteristics are known. If the actual distribution of a given
data set is reasonably close to that of a theoretical probability distribution, many
calculations may be performed on the actual data using assumptions drawn from
the theoretical distribution. In addition, thanks to the Central Limit Theorem, we
can assume that the distribution of means of samples of a sufficient size is normal,
even if the population from which the samples were drawn is not normally
distributed.

Probability distributions are commonly classified as continuous, meaning the data
can take on any value within a specified range, or discrete, meaning the data can
only take on certain values. We examine the normal distribution as an example of
a continuous distribution, and the binomial distribution as an example of a
discrete distribution.
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The Normal Distribution

We will use the normal distribution for our example of a continuous distribution
because it is arguably the most commonly used distribution in statistics. This is
due in part to the fact that the normal distribution is a reasonable description of
how many continuous variables are distributed in reality, from industrial process
variation to intelligence test scores. A second reason for the widespread use of the
normal distribution is that under specified conditions we may assume that
sampling distributions of statistics such as the sample mean are normally distrib-
uted even if the samples are drawn from populations that are not normally
distributed. This is discussed further in the section on the Central Limit Theorem
later in this chapter. The normal distribution is also referred to as the “bell curve”
due to its characteristic shape, and as the “Gaussian distribution” in honor of the
18th-century physicist and mathematician Karl Gauss, who used this distribution
to analyze astronomical data.

There are an infinite number of normal distributions, all of which have the same
basic shape but differ according to their mean µ (the Greek letter mu) and vari-
ance σ (the Greek letter sigma). Examples of three normal distributions with
different means and standard deviations are displayed in Figure 7-1.

The normal distribution with a mean of 0 and standard deviation of 1 is known as
the standard normal distribution or Z distribution. Any normal distribution can be
transformed to the standard normal distribution by converting the original values
to standardized scores (a process discussed below and further in Chapter 19),
which facilitates comparison among populations with different means and
variances.

Figure 7-1. Three normal distributions
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All normal distributions, regardless of the mean and variance, share certain char-
acteristics. These include:

• Symmetry

• Unimodality (a single most common value)

• A continuous range from –∞ to +∞ (negative infinity to positive infinity)

• A total area under the curve of 1

• A common value for the mean, median, and mode

As we noted above, there are an infinite number of normal distributions, but they
all share certain properties. For the sake of convenience, we often describe normal
distributions in terms of units of standard deviation rather than raw numbers,
because that allows us to apply the same description to any normal distribution.

Because all normal distributions have the same basic shape, we can make some
assumptions about how data is distributed within any normal distribution. The
empirical rule states that for any normal distribution:

• About 68% of the data will fall within one standard deviation of the mean

• About 95% of the data will fall within two standard deviations of the mean

• Over 99% of the data will fall within three standard deviations of the mean

This is illustrated in Figure 7-2, which expresses values in units of standard
deviation.

Knowledge of these properties of the normal distribution gives us a way to judge
whether a particular value is typical or atypical compared to other values in the
population. This comparison is facilitated by converting raw scores (scores in
their natural metric, for instance weight measured in pounds or kilograms) into Z-
scores, which express the value of the score in terms of units of the standard devi-
ation for their population. Converting all data points to Z-scores is equivalent to
transforming a normally distributed population to the standard normal distribu-
tion. For this reason, Z-scores are sometimes referred to as normalized scores, the
process of computing them as normalizing the scores, and the standard normal
distribution is sometimes called the Z distribution.

Figure 7-2. Percent of data falling into specified ranges of the normal distribution
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The formula to calculate a Z-score for a population with known mean and stan-
dard deviation is:

If the variable x is distributed normally with mean of 100 and standard deviation
of 5, i.e., x ~ N(100, 5), a value of 105 has a Z-score of 1, because:

Similarly, a value of 10 from this population has a Z-score of 2, and a value of 85
has a Z-score of –3. Using the empirical rule cited above, we classify the value 105
as above average but not remarkable among the population (about 15.9% of the
population would be expected to have higher Z-scores). A Z-score of 2 is more
unusual (about 2.5% of the population would be expected to have higher Z-scores)
and –3 is quite unusual (less than half of one percent of the population would be
expected to have scores this low or lower).

The advantage of Z-scores is that they facilitate comparison among populations
with different means and standard deviations. For instance, comparing our popu-
lation x ~ N(100, 5) with another population y ~ N(50,10), we can’t immediately
say whether a score of 95 among the first population is more or less unusual than
a score of 35 among the second population. However, this comparison is easily
made using Z-scores:

Conversion to Z-scores places both populations on the same metric, and we can
see that the second score is more extreme because –1.5 is further from 0, the mean
of the standard normal distribution, than –1.

The Binomial Distribution

We will use the binomial distribution as an example of a discrete distribution, i.e.,
a distribution for a variable in which only certain values are possible. Consider the
case of flipping a coin five times: the number of times the coin comes up heads
can take the values 0, 1, 2, 3, 4, or 5, but not the values 3.2 or 4.6. The variable
“number of heads in five coin flips” is therefore a discrete variable.

The binomial distribution applies to many types of real-life data with dichoto-
mous outcomes (outcomes that can take only two values), from machine parts
that are either defective or acceptable to students who either pass or fail a class.

Events in a binomial distribution are generated by a Bernoulli process. A single trial
or experiment within a Bernoulli process is called a Bernoulli trial or Bernoulli
experiment. The binomial distribution describes the number of successes in n trials
of a Bernoulli process. “Success” doesn’t necessarily mean something good, just that

Z x µ–
σ

-------------=

Z 105 100–
5

------------------------- 1= =

95 100–
5

---------------------- 1–=

35 50–
10

------------------- 1.5–=
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the outcome we are looking for occurred. For instance, if we were describing how
many machine parts out of a sample of 10 were defective, each part would be
considered a separate trial and would be classified as a success if it were defective.
The binomial distribution describes how likely it is that a particular number of
parts from the sample of 10 will be defective, given some estimate of the overall
rate of defective parts.

Data represented by the binomial distribution must meet four requirements:

1. The outcome of each trial is one of two mutually exclusive outcomes.

2. Each trial is independent, so the result of one trial has no influence on the
result from any other trial.

3. The probability of success is constant for every trial.

4. There are a fixed number of trials, denoted as n.

Common examples of data described by the binomial distribution include the
number of heads in 10 flips of a coin, where the probability of heads on any toss is
known to be 50%; the number of males in a sample of 5 drawn from a large popu-
lation known to be 55% male (the population must be large enough for its
makeup to not change appreciably by the removal of five members); and the
number of defective items in a sample of 20, drawn from a large population whose
defect rate is known to be 1%.

The formula to calculate the probability of a particular number of successes on a
particular number of trials is:

where:

is a combination, discussed in Chapter 2, which expresses the number of ways k
items can be chosen from a set of n objects.

The symbol ! in this equation means factorial: n! = (n)(n – 1)(n – 2)…(1). For
instance, 5! = 5 * 4 * 3 * 2 * 1 = 120.

k is the number of trials: if we are flipping a coin 10 times, k = 10.

n is the number of successes: for instance, if we want to know the probability of 5
successes in 10 trials, n = 5.

p, a number between 0 and 1, is the probability of success: for instance, if we are
flipping a fair coin and the event is heads, p = 0.5.

The binomial formula can be used to calculate the probability of getting a partic-
ular number of successes given a fixed probability of success per trial and a fixed
number of trials.

n
k 

  pk 1 p–( )n k–

n
k 

  n!
k! n k–( )!
-------------------------=

n
k 

 
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Figure 7-3 shows the graph for three binomial distributions (each combination of
p and n will produce a different distribution).

Note that as n increases, the binomial distribution comes to resemble the normal
distribution. A common rule of thumb is that if both np and n(1 – p) are greater
than 5, the binomial distribution may be approximated by the normal distribu-
tion. In Figure 7-1, the distribution (p = 0.5, n = 40) qualifies for the normal
approximation because:

np = 40(0.5) = 20
n(1 – p) = 40(1 – 0.5) = 20

However, a distribution with p = 0.1 and n = 40 could not use the normal approx-
imation because:

np = 40(0.1) = 4

Complex calculations based on the binomial distribution are usually done using
computer software, but a simple example will demonstrate how the formula
works. Suppose we are flipping a fair coin five times: what is the probability that
we will get exactly one head? We will define “heads” as a success and use the
binomial formula to solve this problem. In this example:

p = 0.5 (the definition of a “fair coin” is that heads and tails are equally likely)
k = 5 (because we are conducting five trials)
n = 1 (because we are calculating the probability of exactly one success)

The probability of exactly one success in five trials, given a probability of success
on each trial as 0.5, is:

Figure 7-3. Three binomial distributions

P n 1=( ) 5
1 

  0.51 1 0.5–( )5 1– 0.156= =
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Breaking down the steps:

And therefore:

Independent and Dependent Variables
There are many ways to characterize variables: one of the most common is by the
roles they play in a research design or data analysis. Using those criteria, a simple
way to describe variables is as either dependent, if they represent some outcome of
the study, or independent, if they are presumed to influence the value of the
dependent variable(s). Many study designs include a third category, control vari-
ables, which may influence the dependent variable but are not the main focus of
interest.

Note that the labels “independent,” “dependent,” and “control” relate to the roles
played by the variables in a given design or experiment. This is because a vari-
able, for instance weight, could easily be an independent variable in one study, a
dependent variable in another, and a control variable in a third. In addition, other
labels are also used to describe dependent and independent variables, with some
authors preferring to reserve specific labels for particular types of studies. Control
variables are particularly problematic because many types of control variables
have been defined, depending on their relationship to the independent and depen-
dent variables of interest, and the type of study design employed. This discussion
will concentrate on independent and dependent variables, and leave the discus-
sion of control variables to the chapters relating to specific study designs.

We will use the example of a regression equation to illustrate the concept of inde-
pendent and dependent variables. This is just a brief introduction: the topic of
regression is covered in detail in Chapters 12 and 14.

In a standard linear model such as an OLS regression equation (OLS means Ordi-
nary Least Squares; if not otherwise specified, this is what is meant by a regression
equation), the outcome or dependent variable is customarily indicated by the
letter Y, while the independent variables are indicated by X. Subscripts are used to
identify each individual X variable: X1, X2, and so on.

This should be clear from the conventional way of notating a regression equation:

The e in this equation means “error” and refers to the fact that we don’t expect
any regression equation to perfectly predict Y. Note that each X in the equation is
preceded by a β, which is called its regression coefficient: β1 is the regression coef-
ficient for X1, β2 is the regression coefficient for X2, and so on. These coefficients
are determined through a mathematical process in order to make the best possible
equation for predicting the value of Y from the value of the Xs.

5
1 

  5!
1!5 1 )!–
-----------------------

5 4× 3× 2× 1×
1 4 3× 2× 1×( )
------------------------------------------ 5= = =

P n 1=( ) 5 0.5( )× 0.5( )4× 0.156= =

Y β0 β1X1 β2X2 β3X3 … e+ + + + +=
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Because of this notational convention, the dependent variable is also referred to as
the “Y variable” and the independent variables as the “X variables.” Other terms
used for the dependent variable include the outcome variable, the response vari-
able, and the explained variable. Other names for independent variables include
regressors, predictor variables, and explanatory variables.

Some researchers believe that the terms independent and dependent should be
reserved for experimental studies, in which case at least the primary independent
variables have been manipulated in some way by the researcher, while the values
for the dependent variable are merely observed and recorded. In this interpreta-
tion, the terms “independent” and “dependent” imply causality, i.e., that the
value of the dependent variable depends at least in part on the values of the inde-
pendent variables, a statement that is impossible to establish in many
nonexperimental designs. This may be illustrated by comparing a randomized
controlled trial (an experimental design) with a cross-sectional survey (an observa-
tional design).

In a randomized clinical trial of the effects of a new drug on hypertension, if the
correct procedures are followed and significant results are achieved, the researcher
can be comfortable (or as comfortable as one can ever be when dealing with infer-
ential statistics, whose conclusions are inherently probabilistic rather than
absolute) in asserting that changes in blood pressure observed were caused or
influenced by the new drug.

In a cross-sectional survey of juvenile delinquency and drug use, however, it is
impossible to establish a causal effect because either variable could cause the
other, and any relationships found could be due to other variables. For instance,
children who use drugs may be more likely to become delinquent, or delinquents
may be more likely to use drugs. Even if this issue is resolved by including tempo-
rality in these questions (it might be possible to determine which came first, drug
use or delinquency) the explanation cannot be discarded that those who use drugs
(a self-selected group) differ in other ways from those who do not. For instance,
the drug users may be less intelligent, or more intelligent, than the nondrug users,
or may have different family circumstances, and either of those variables could
influence delinquency independently of drug use.

Populations and Samples
The concept of populations and samples, discussed briefly in Chapter 4, is crucial
to understanding inferential statistics. The process of defining the population and
selecting an appropriate sampling method can be quite complex (in fact, many
doctoral-level statisticians specialize in just that type of work) and requires more
study than can be covered here. Instead, the basic issues and concepts will be
discussed, and the reader interested in further information on the subject should
consult a specialized textbook (several are listed in Appendix C).

The population of interest (often called merely “the population”) consists of all
the people or other units (for instance, airplane parts or Atlantic salmon) that the
researchers would like to study, if they had infinite resources. To put it another
way, the population of interest is all the units to which the researchers would like
to be able to generalize their results. Defining the population of interest is the first
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step in drawing a sample: it may be very broad, such as everyone living in the
United States in 2007, or narrow, such as Canadian men aged 65–75 with a diag-
nosis of congestive heart failure.

Almost all research is based on a study sample drawn from a population, rather
than the population itself, for practical reasons. The rare exceptions are studies
such as those based on the U.S. census, which intends to collect data from every
individual living in the United States in a particular year.

Nonprobability Sampling

There are many ways to draw a sample. Unfortunately, some of the most conve-
nient (described in this section) are based on nonprobability sampling, which
leaves them highly subject to sampling bias. This means there is a high proba-
bility that the sample drawn using a nonprobability method will not be
representative of the population the sample is meant to represent, and therefore
may lead to incorrect conclusions about that population. The convenient methods
are popular because they allow the researcher to bypass the steps of defining the
population of interest, assigning a probability of selection to each member,
drawing a sample, and applying sampling weights. The drawback is that with this
type of sampling no information is available about how the sample relates to the
population of interest, so little faith may be laid in conclusions about that popula-
tion based on results from the sample.

Volunteer samples are a commonly used type of nonprobability sample. An
example would be if a researcher advertises in the newspaper for study subjects
and accepts those who answer the ad and who volunteer to be part of the study.
Unfortunately, people who volunteer for studies can’t be assumed to be represen-
tative of any general population. Volunteer samples are particularly common in
circumstances when it would be difficult to randomly select from a population,
for instance in a study about people who use illegal drugs. Much useful informa-
tion can be gained from volunteer samples, particularly in the early stages of a
project: for instance, you might use volunteer subjects to gather information
about drug use within a community, which you could use to construct a question-
naire that would be administered to a random sample from the community. But
results from volunteer samples have limited usefulness if the goal is to generalize
beyond the sample.

Convenience samples are another type of nonprobability sampling that may be used
to collect initial information, but like volunteer sampling have limited usefulness if
the goal is to generalize beyond the sample. For instance, you might collect infor-
mation about the shopping habits of people in a geographical area by interviewing
the first 30 people you saw at a particular shopping mall, and use that information
to construct a study that would use a randomized design. But it would not be valid
to conclude, for instance, that because 75% of your convenience sample favored
shopping at The Gap over Old Navy, that 75% of the people living in the area
would do likewise.

Quota sampling is a type of nonprobability sampling in which a data collector is
ordered to find a certain number of subjects within broad classifications: in the
shopping example, the data collector might be instructed to collect data from a
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sample of 15 men and 15 women. Quota sampling is a slight improvement in
accuracy over convenience sampling because it can specify the makeup of the
sample: without the quota requirements the shopping mall sample might be 25
women and 5 men. But it does not get around the main problem of all nonproba-
bility sampling, which is that you have no way of knowing if the people sampled
were representative of the population of interest. You may have an even represen-
tation of men and women in a quota sample, for instance, but are they
representative of all the men and women who shop at the mall?

Probability Sampling

In probability sampling, every member of the population has a known probability
of selection to be in the sample. Although more difficult to execute than nonprob-
ability sampling, it has the benefit of allowing the researcher to generalize the
results obtained to the population of interest.

Drawing a sample from a population requires devising some type of sampling
frame, which allows the researcher to identify and sample members of the popula-
tion. Sometimes an obvious sampling frame exists: if the population is students
enrolled at a particular school, a list of all enrolled students could serve as the
sampling frame. Other times a less optimal sampling frame must be used: for
instance, a telephone directory or block of phone numbers in use may be
employed for a survey carried out by telephone. A problem with either frame is
that people without phone service are not included in the population from which
the sample is drawn, although they may be included in the population of interest.
Weighting and other procedures can be used during analysis to make results from
the study sample more applicable to the population of interest.

The most basic type of probability sampling is simple random sampling (SRS). In
SRS all samples of a given size have an equal probability of being selected.
Suppose you wanted to draw a random sample of 50 students attending a partic-
ular school. You obtain a list of the students and select 50 at random from the list,
using a random number table or random number generator. Because the list
represents an enumeration of the entire population and the choice of who to
include in the sample is completely random, every student has an equal proba-
bility of being selected for the sample, as does every combination of students up
to the size of the sample.

In most cases, SRS has the most desirable statistical properties of any kind of
sampling, including the smallest confidence intervals around parameter esti-
mates, and requires the least complex procedures to analyze. However, SRS is
impossible or prohibitively expensive to execute in some contexts, so other
methods of probability sampling have been developed to deal with situations
where SRS is not possible or practical.

Systematic sampling is very similar to SRS. To draw a systematic sample, you need
a list or other enumeration of your population. You then choose a start number
between 1 and n at random, and include in that sample the nth object and every
nth object following, n being chosen to produce the sample size desired. Suppose
you want to draw a random sample of 100 objects from a population of 1,000.
The steps to draw a systematic sample are:
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1. Set n = 10, because 1000/100 = 10.

2. Choose a number at random between 1 and 10.

3. Select the object with that number, and every 10th object thereafter.

If the number chosen at random was 7, your sample would include the 7th, 17th,
27th, and so on, up to the 997th object.

Systematic sampling technique is particularly useful when the population accrues
over time and there is no predetermined list of objects. For instance, if you want
to survey people who will be making court appearances in the upcoming year, at
the start of the study you will not know who those people will be. So you could
make an estimate of n based on the court caseload in the previous year, keep an
ordered list of people making court appearances, and then survey every nth
person who appears in court. If you determine that n is 14, you would then survey
the 14th person, 28th person, 42nd person, and so on.

One caution when using systematic sampling is that you must ensure that the data
is not cyclic in a way that corresponds with n. For instance, if particular hours or
days in court were reserved for particular types of cases, and your choice of n
meant that people whose court dates were scheduled for those times had no possi-
bility of being selected, then your sample would not be random.

There are many types of complex random samples, an umbrella term for proba-
bility sampling methods that impose one or more layers of complexity beyond
that of SRS. In a stratified sample, the population of interest is divided into
nonoverlapping groups or strata based on common characteristics. For people,
these characteristics might be gender or age, for cities they might be population
size or type of government, for hospitals they might be type of organization or
number of beds. If comparing different strata is a primary goal of the study, strati-
fied sampling is a good choice because it can be designed to ensure adequate
sampling from each strata of interest. For instance, using SRS might not produce
sufficient elderly people to accurately compare their results with middle-aged
people, while a stratified sample can be designed to oversample the elderly to
ensure sufficient sample size, then correct statistically for the oversampling.

In a cluster sample, the population is sampled making use of pre-existing groups.
This technique is often used in national surveys that require in-person interviews
or the collection of physical specimens (e.g., blood samples), because it would be
prohibitively expensive to send survey personnel to interview one person in Ruck-
ersville, Virginia, one in Chadron, Nebraska, one in Barrow, Alaska, and so on. A
more economical procedure is to create a sampling plan that incorporates several
levels of random selection. On a national level, this could be executed by selecting
geographic regions, then states within regions, cities within states, and so on
down to individual households and individuals within households. Precision is
decreased with cluster sampling because objects that are clustered within units
(for instance, households within cites and cities within states) tend to be more
similar than objects selected through SRS. Offsetting this loss of precision is the
fact that the cost savings of cluster sampling are usually substantial, so a larger
sample can be collected.
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Cluster sampling can be combined with the technique of sampling proportional to
size. For instance, you may wish to draw a sample of elementary school students.
There is no national list of all elementary school students, but you could compile
a list of all elementary schools, and each school would have a list of their students.
So you could select schools at random, possibly in a multistage process, then draw
a random sample from the selected schools. Because schools enroll different
numbers of students, you might want to include this information in your
sampling plan so you don’t have a disproportionate number of students from
small schools (which are more numerous but contain fewer students). Then you
could select a different number of students from each school according to the
number enrolled in the school: twice as many from a school with 400 students as
from one that enrolled 200, for instance. In this way, your final sample will have a
representative proportion of students from both large and small schools.

The Central Limit Theorem
The Central Limit Theorem states that the sampling distribution of the sample
mean approximates the normal distribution, regardless of the distribution of the
population from which the samples are drawn, if the sample size is sufficiently
large. This fact enables us to make statistical inferences using tests based on the
approximate normality of the mean, even if the sample is drawn from a popula-
tion that is not normally distributed.

The Central Limit Theorem may be stated as follows with regard to the sample
mean:

Let X1,. . . Xn be a random sample from some population with mean µ and
variance σ2. Then for large n,

even if the underlying distribution of individual observations in the population
is not normal.

The symbol is used to represent “approximately distributed” and the
formula can be read as: “the mean of X is approximately normally distributed
with mean µ and variance σ2/n”.*

The application of the Central Limit Theorem in practice can be seen through
computer simulations that repeatedly draw samples of specified size from a
nonnormal population. Figure 7-4 displays a histogram for a population of
randomly generated data (100 cases) with a uniform distribution of values ranging
from 0 to 100.

The distribution in Figure 7-4 is decidedly nonnormal. However, the Central
Limit Theorem says that when samples of sufficient size are drawn from a
nonnormal population, the means of those samples tend to assume a normal
distribution. Note that the theorem does not state what constitutes a “sufficient
size.” Analysts have developed rules of thumb regarding this issue, such as the

* Bernard Rosner, Fundamentals of Biostatistics, Fifth Edition; Brooks/Cole, 2000, p. 174.
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often-repeated rule that the sample size should be 30 or larger, but no absolute
rule applies in all cases. For data that is approximately normal, normality of the
sampling distribution of the sample mean may be normal with a sample size as
small as 10 or 15, while with highly skewed distribution the sample size required
may be 40 or greater. I’ve seen one example in which a sample size of 200 was
required!

The influence of sample size on the distribution of sample means can be seen by
comparing Figures 7-5 and 7-6. Figure 7-5 displays the distribution of the means of
100 samples of size n = 2 drawn from the population shown in Figure 7-4, while
Figure 7-6 displays the distribution of the means of 100 samples of size n = 25
drawn from the same population. Figure 7-5 looks more like a uniform than a
normal distribution, indicating that a sample size of 2 is not sufficient to invoke the
Central Limit Theorem for this population.

Figure 7-6 displays the distribution of 100 means calculated from samples of size
25 drawn from the uniform distribution displayed in Figure 7-4. It looks very
much like a normal distribution, so a sample size of 25 appears to be sufficient to
invoke the Central Limit Theorem for this population.

Figures 7-7 to 7-9 demonstrate the same principles with samples drawn from a
skewed population. Figure 7-7 shows the distribution of values for a data set of
size 100 with a skewed distribution.

Figures 7-8 and 7-9 demonstrate how the distribution of sample means drawn
from the population displayed in Figure 7-7 changes with the size of the sample.
Figure 7-8 shows the distribution of means calculated from 100 samples of size 2,

Figure 7-4. Histogram of a uniformly distributed population (N = 100) with range 0–100
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Figure 7-5. Distribution of the means of 100 samples of size n = 2, drawn from a uniform
distribution

Figure 7-6. Distribution of means of 100 samples of size n = 25, drawn from a uniform
distribution
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while Figure 7-9 shows the distribution of means from 100 samples of size 25. As
with the uniform data example, a sample of size n = 2 is not sufficient to invoke
the Central Limit Theorem for this data, while a sample of 25 seems to be
sufficient.

Hypothesis Testing
Hypothesis testing is fundamental to inferential statistics because it allows us to
use statistical methods to make decisions about real-life problems. There are
several conceptual steps involved in hypothesis testing:

1. Develop a research hypothesis that can be tested mathematically.

2. Formally state the null and alternative hypotheses.

3. Decide on an appropriate statistical test and do the calculations.

4. Make your decision based on the results.

Take the example of a new medication to treat high blood pressure. The manufac-
turer wants to establish that it works better than current standard treatments for
the same condition, so the research hypothesis might be something like “Hyper-
tensive patients treated with drug X will show greater lowering in their blood
pressure than hypertensive patients receiving the standard treatment.” If we use
µ1 to signify the mean blood pressure in the group treated with drug X, and µ2 as
the mean blood pressure in the group receiving standard treatment, our null and
alternative hypotheses could be formally stated as:

H0: µ1 ≥ µ2
HA: µ1 < µ2

Figure 7-7. Histogram of skewed population (N = 100)
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Figure 7-8. Distribution of means from samples of size n = 2, drawn from a population with
skewed distribution

Figure 7-9. Distribution of means from samples of size n = 25, drawn from a population
with skewed distribution
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H0 is called the null hypothesis: in this example, the null hypothesis states that
drug X is no improvement over standard treatment. HA, sometimes written as H1,
is called the alternative hypothesis: in this case, the alternative hypothesis is that
drug X is more effective than standard treatment. Note that the null and alterna-
tive hypotheses must be both mutually exclusive (no results could satisfy both
conditions) and exhaustive (all possible results will satisfy one of the two
conditions).

In this example, the alternative hypothesis is single-tailed: we state that the blood
pressure of the group treated with drug X must be lower than that of the standard
treatment group for the null hypothesis to be rejected. We could also state a two-
tailed alternative hypothesis if that were more appropriate to our research ques-
tion. If we were interested in whether the blood pressure of patients treated with
drug A was different, either higher or lower, than that of patients receiving stan-
dard treatment, we would state this using a two-tailed alternative hypothesis:

H0: µ1 = µ2
HA: µ1 ≠ µ2

Normally the first two steps would be performed before the experiment is
designed or the data collected; the statistic to be used for hypothesis testing is also
sometimes specified at this time, or is implicit in the hypothesis and type of data
involved. We then collect the data and perform the statistical calculations, in this
case probably a t-test or ANOVA, and based on our results make one of two
decisions:

• Reject the null hypothesis and accept the alternative hypothesis, or

• Fail to reject the null hypothesis

The first case is sometimes called “finding significance” or “finding significant
results.” The process of statistical testing involves establishing a probability level
or p-value (a topic treated in greater detail below) beyond which we will consider
results from our sample strong enough to support rejection of the null hypoth-
esis. In practice, the p-value is commonly set at 0.05. Why this particular value?
It’s an arbitrary cutoff point and dates back to the early twentieth century, when
statistics were computed by hand and the results compared to published tables
used to determine whether a result was significant or not. The use of p < 0.05 as
the standard for significant results has been challenged (see the upcoming sidebar,
“Controversies About Hypothesis Testing”) but still remains common practice for
published research. Alternative lower values are sometimes used, such as p < 0.01
or p < 0.001, but no one has been successful in legitimizing the use of a higher
cutoff, such as p < 0.10.

Note that failure to reject the null hypothesis does not mean that we have proven
it to be true, only that the experiment or study did not find sufficient evidence to
reject it.

Inferential statistics allows us to make probabilistic statements about the data, but
the possibility of error is inherent in the process. Statisticians have classified two
types of errors when making decisions in inferential statistics, and set levels for
error rates that are commonly considered acceptable. The two types of error are
displayed in Table 7-1.
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The diagonal boxes represent correct decisions: H0 is true and was not rejected in
the study, or H0 is false and was rejected in the study. The other two boxes (often
referred to as the off-diagonal boxes) represent Type I and Type II errors. A Type I
error, also known as alpha or α, represents the error made when the null hypoth-
esis is true but is rejected in a study. A Type II error, also called beta or β,
represents the error made when H0 is false but is not rejected in a study.

The level of acceptability for Type I error is conventionally set at 0.05, as noted
above. Setting alpha at 0.05 means that we accept the fact of a 5% probability of
Type I error. To put it another way, we understand when setting the alpha level at
0.05 that we accept the fact that in our study we have a 5% chance of rejecting the
null hypothesis when we should have accepted it.

Type II error has received less attention in statistical theory because historically it
has been considered a less serious error to fail to make an inference that is true
(Type II error) than to make an inference that is false (Type I error). Conventional
levels of acceptability for Type II error are β = 0.1 or β = 0.2. If β = 0.1, that
means the study has a 10% probability of a Type II error, i.e., there is a 10%
chance that the null hypothesis will be false but will be accepted in the study.

Controversies About Hypothesis Testing
Despite the ubiquitousness of hypothesis testing in modern statistical practice,
and the canonical place that the α = 0.05 significance level seems to have
achieved, many researchers have criticized both practices. One of the chief
critics is Jacob Cohen, whose arguments are presented in, among other places,
his 1994 article “The World Is Round (p < 0.05).” (American Psychologist, 49:2,
December 1994, 997–1003). Valid as many of these criticisms are, both hypoth-
esis testing and the 0.05 significance level don’t seem to be going away anytime
soon. And some level must be set at which results are considered significant, to
avoid attributing significance to differences due to chance or to sampling error.
A sensible compromise is to realize that there’s nothing magical about 0.05,
even if it is sometimes treated as such, and that the significance level of a sample
calculation is affected by many factors, including the size of the sample
involved. It’s a common saying among statisticians that if you have a large
enough sample, any little difference will be statistically significant. The take-
home message is that statistical methods don’t relieve the researcher of the need
to apply common sense.

Table 7-1. Type I and Type II errors

                                             True state

H0 true HA true

Decision based on
sample statistic

Accept H0 Correct decision: H0 true
and H0 not rejected

Type II error or β

Reject H0 Type I error or α Correct decision: H0 false
and H0 rejected
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The reciprocal of Type II error is power, defined as 1 – β. The importance of
setting an appropriate power level has become more appreciated in recent years,
particularly in the medical field. Researchers and funding agencies have become
concerned with power, and thus with Type II error, in part because they don’t
want to spend the time and effort to conduct a study unless it has a reasonable
probability of finding significant results if they do exist. Power calculation is
discussed in more detail in Chapter 18.

Confidence Intervals
When we calculate a single statistic, such as the mean, to describe a sample, that
is referred to as calculating a point estimate because the number represents a single
point on the number line. The sample mean is a point estimate, and is a useful
statistic as the best estimate of the population mean. However, we know that the
sample mean is only an estimate and that if we drew a different sample, the mean
of the sample would probably be different. We don’t expect that every possible
sample we could draw will have the same sample mean. It is reasonable to ask
how much the point estimate is likely to vary by chance if we had chosen a
different sample, and in many professional fields it has become common practice
to report both point estimates and interval estimates. A point estimate is a single
number, while an interval estimate is a range or interval of numbers.

The most common interval estimate is the confidence interval, which is the
interval between two values that represent the upper and lower confidence limits
or confidence bounds for a statistic. The formula used to calculate the confidence
interval depends on the statistic being used and will be included in the relevant
chapters: this section is meant to convey the concept of the confidence interval.
The confidence interval is calculated using a predetermined significance level,
often called α (the Greek letter alpha), which is most often set at 0.05, as
discussed above. The confidence coefficient is calculated as (1 – α) or, as a
percentage, 100(1 – α)%. Thus if α = 0.05, the confidence coefficient is 0.95 or
95%. The latter usage is more common; for instance, professional journals often
require that you report the 95% confidence interval for your statistics.

Confidence intervals are based on the notion that if a study was repeated an infi-
nite number of times, each time drawing a different sample from the same
population and constructing a confidence interval based on that sample, x% of
the time the confidence interval would contain the unknown parameter value that
the study seeks to estimate. For instance, if our test statistic is the mean and we
are using 95% confidence intervals, over an infinite number of repetitions of the
study, 95% of the time the confidence interval constructed from the study would
contain the mean of the population. For this reason, the confidence interval is
sometimes described as presenting a plausible range of values for the mean.

The confidence interval conveys important information about the precision of the
point estimate. For instance, suppose we have two samples of students and in
both cases the mean IQ score is 100. In one case, however, the 95% confidence
interval is (95,105), while in the other case the 95% confidence interval is
(80,120). Because the former confidence interval is much narrower than the latter,
the estimate of the mean is more precise for the first sample.
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p-values
It is a fact of life when working with inferential statistics that we are always trying
to estimate something that we can’t measure directly. For instance, we don’t have
the ability to collect data from every hypertensive adult in the world, but we can
select a sample of hypertensive adults, design an experiment involving them, and
analyze the data we thus collect. Because we understand that sampling error is
always a possibility in studies based on samples, we want to know the probability
that the results obtained from our sample were not due to chance. If we had the
means to draw repeated samples from the population and repeat the experiment,
how likely is it that we would obtain similar results most of the time?

A p-value usually expresses the probability that results at least as extreme as those
obtained in a sample were due to chance. The phrase “at least as extreme” is
necessary because most statistical tests involve comparing the test statistic to
some hypothetical distribution (such as the normal distribution, as illustrated
below) where scores closer to the center of the distribution are most common and
scores become less likely as they are further from the center of the distribution.

This may be clearer by considering a simple illustration. Suppose we are engaged
in an experiment flipping a coin that we believe to be fair, i.e., a coin for which
heads or tails are equally likely outcomes for any single flip. We can express this
formally as P(H) = P(T) = 0.5. We will call each flip a trial. Our expectation is that
we will get 5 heads on 10 trials, although we know that on any particular set of 10
trials we may get a different number of heads. So we flip the coin 10 times and 8
times it comes up heads. We want to know the p-value of this result, i.e., how
likely is it that a coin with a probability of 0.5 for heads on any single trial would
produce 8 heads in 10 trials?

Using a binomial table, computer software, or the binomial formula, we find that
the probability of this exact result (8 heads in 10 trials) is 0.0439, meaning that
less than 5% of the time would we expect to get exactly 8 heads in 10 flips with a
fair coin. The probability for 9 heads in 10 trials is 0.0098, and for 10 heads in 10
trials is 0.0010. This demonstrates that as results move further away from the
expected result of 5 heads in 10 trials, they become less likely.

If we are evaluating the probability that the coin truly is fair, results that are far
from our expectation give us strong evidence that it in fact is not fair. For this
reason, we usually calculate the probability not just of the result we obtained in
our experiment, but of results at least as extreme as those we obtained. In this
case, the probability of getting 8, 9 or 10 heads in 10 flips of a fair coin is 0.0439 +
0.0098 + 0.0010, or 0.0547. This is the p-value for the result of at least 8 heads in
10 trials using a coin where P(heads) = 0.5.

p-values are commonly reported for most research results involving statistical
calculations, in part because intuition is a poor guide to how unusual a particular
result is. For instance, many people might think it is unusual to get 8 or more
heads on 10 trials using a fair coin. In this case, the binomial probability of such a
result has a p-value of 0.0547. This result does not allow us to reject the null
hypothesis that the coin is fair, i.e., P(heads) = 0.5, using the standard rule of
thumb that a p-value must be less than 0.05 for results to be considered
significant.
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Data Transformations
Many of the most common statistical procedures are what are known as para-
metric statistics, meaning that they make certain assumptions about the
distribution of the population from which the sample analyzed was drawn. If the
raw data does not meet these assumptions, the researcher has several options for
analyzing the data. One is to use alternate, nonparametric statistical procedures,
which make fewer or no assumptions about the data distribution, but are also
frequently less powerful than their parametric counterparts. Nonparametric statis-
tics are discussed in Chapter 11. Another possibility is to transform the data in
some way so that the assumptions of the desired parametric statistical procedure
are met. There are many ways to transform data, depending on the distribution
involved and the assumptions that are violated. Because the most common trans-
formation problem is to make a data set closer to a normal distribution, the most
common transformation for improving the normality of data will be discussed
here. For more detail about data transformation, the reader should consult a more
advanced textbook such as that by Mosteller and Tukey listed in Appendix C.

The first step in using a data transformation is to evaluate the data set in question
and decide which, if any, transformations are appropriate. Two approaches are
recommended to evaluate a data set. One is to graph the data, for instance by
creating a histogram with a superimposed normal curve. This allows a visual eval-
uation of the general shape of the data and an opportunity to identify outliers.
The shape of the data also aids in suggesting what transformation to apply. The
second method is to compute one of the statistics provided in most statistical
computing packages to test whether the data fits a particular distribution. Two
commonly used tests for this purpose are the Anderson-Darling and the
Kolmogorov-Smirnov. One or both statistics are included in many statistical
packages, and a statistical calculator to compute the Kolmogorov-Smirnov test is
available at http://jumk.de/statistic-calculator/.

Data that is right-skewed may be made more normal by application of the square-
root or log transformations. The square-root transformation computes the square
root of each value. If the data value is 4, the transformed value is 2 because √4= 2.
The log transformation computes the natural log of each value, so if the data value
is 4, the transformed value is 1.386 because ln(4) = 1.386. Either transformation
may be accomplished easily using statistical software such as SPSS or SAS.

Figure 7-10 displays a right-skewed data set. Figure 7-11 shows the same data
after a square-root transformation (the values graphed are the square roots of the
data in Figure 7-10) and Figure 7-12 shows the same data after a log transforma-
tion (the values graphed are the natural logs of the data displayed in Figure 7-10).

Comparing the three graphs visually, Figure 7-10 is definitely right-skewed,
meaning that most of the data values are relatively low, with a few higher values
creating a long “tail” to the “right.” It does not seem to fit the superimposed
normal distribution curve. Figure 7-11 seems to be a much better fit to the normal
distribution, and Figure 7-12 seems to have replaced the right-skew with a left-
skew, so it is also nonnormal. For a second source of information, we calculate
the Kolmogorov-Smirnov statistic (using SPSS, although it is available in other
programs as well) to statistically evaluate how well each data set fits the normal
distribution. Results for the three data sets and the results shown in Table 7-2.

http://jumk.de/statistic-calculator/


Data Transformations | 147

Inferential
Statistics

Figure 7-10. Right-skewed data set (raw values)

Figure 7-11. Data after square-root transformation
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The null hypothesis for the Kolmogorov-Smirnov test is that the data is normally
distributed, so if the test indicates that the null hypothesis should be rejected, this
means that the data is not normally distributed. Using the rule that we reject the
null hypothesis if p < 0.05, we conclude that the raw data and the natural log
transformation data are not normally distributed, while the square-root transfor-
mation data can be accepted as normally distributed.

If a variable has a left or negative skew, you can reflect the data and then apply the
square-root or log transformation. To reflect a variable, take the largest value in
the data set, add 1, then subtract each value of the variable from the new number.
If the largest value in the data set is 35, we would subtract each value from 36 (i.e.,
35 + 1) to get the reflected values. Reflection changes a left-skewed distribution to
one with a right skew, and the square-root and log transformations can then be
applied to see if they improve normality.

Note that data transformation is not a guaranteed solution to a distribution
problem: sometimes it makes the problem worse or introduces a new problem!

Figure 7-12. Data after natural log transformation

Table 7-2. Kolmogorov-Smirnov test for normality for a data set and two transformations

Raw data
Square-root

transformation
Natural log

transformation

Kolmogorov-Smirnov Z 1.46 0.66 1.41

p 0.029 0.78 0.04
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For this reason, the transformed data should also be evaluated for normality, as
we did above, to see if the transformation resulted in data that has the desired
distribution. Note also that a transformation changes the unit of the data: for
instance, if you apply the log transformation to a population of blood pressure
scores, your unit is then the log of blood pressure rather than the original scores.
If you reflect a variable, this reverses the values (what was the highest score is now
the lowest) and so the interpretation of any statistic based on those values is also
reversed. The effects of other transformation must be kept in mind when inter-
preting the statistical results.

Exercises
Here’s a quick review of the concepts explained in this chapter.

Conceptual Questions

1. In each of the following sets of variables, which are likely candidates to be
treated as independent and which as dependent within a research study?

• Gender, alcohol consumption, and driving record

• High school GPA (grade point average), university freshman year GPA,
choice of major, race/ethnicity, and gender

• Age, ethnicity, smoking habits, use of hormone replacement therapy,
and occurrence of breast cancer

• Accuracy on a coding task, type of instructions given, practice time, and
anxiety level

2. Why is the Central Limit Theorem of primary importance to the practice of
inferential statistics?

3. What type of sampling is described by the following scenarios?

• The goal is to collect information on HIV status, obtained through blood
tests, on the U.S. population. Because it is expensive to send researchers
to many locations, a sampling plan is devised using successively smaller
regions of the country, beginning with Census Region (Northeast, South,
Midwest, and West) and ending with census block groups.

• The goal is to find out how elementary school students are reacting to a
recently appointed principal. The researcher wants to include equal
numbers of male and female students in the sample, so the interviewer is
sent to the school with instructions to interview 10 male and 10 female
students from among those on the playground after school one day.

• The goal is to learn more about the domestic life of policemen working
in a major city, including how home life is affected when the policeman’s
spouse is employed outside the home. A complete list of all men and
women working as policemen in this city is available, and a computer is
used to draw a random sample of 200 from this list. The sample is then
interviewed by telephone.
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• A factory supervisor is concerned that the quality of parts produced may
not be equal on all shifts or at all times within a shift (the factory oper-
ates 24 hours per day). A sampling plan is devised to collect samples of
30 parts at 9 times during the work day: within the first 2 hours, within
the 6 hours, and within the last 2 hours of each of the 3 daily shifts.

4. How are hypothesis testing, confidence intervals, and the p-value related?

Problems

1. Calculate the Z-scores of the following data values, assuming they came from
a normal population with µ = 100 and σ2 = 4.

• 108

• 95

• 98

2. Which of the following has a more extreme Z-score, i.e., a Z-score further (in
either a positive or negative direction) from 0?

• A score of 190, from a population with µ = 180 and σ2 = 16

• A score of 175, from a population with µ = 200 and σ2 = 25

Solutions

1. Calculating Z-scores using a specified normal distribution.

2. In the second example, the score is more extreme, because –5 is further from
0 than 2.5.

Z 108( ) 108 100–

4
-------------------------

8
2
--- 4= = =

Z 95( ) 95 100–

4
----------------------

5–
2
------ 2.5–= = =

Z 98( ) 98 100–

4
----------------------

2–
2
------ 1.0–= = =

190 180–

16
-------------------------

10
4
------ 2.5= =

175 200–

25
-------------------------

25–
5

--------- 5.0–= =
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8
The t-Test

The purpose of the t-test is to make inferences about single means, or inferences
about two means or variances, where sample sizes are small and/or the popula-
tion distribution is unknown. While not always used in practice—since the one-
way Analysis of Variance (ANOVA) is mathematically equivalent to the t-test, and
since most researchers attempt to gather a reasonable number of samples to avoid
Type II errors—understanding the logic and outcomes of the t-test (and its distri-
bution) will make it much easier for you to follow ANOVA and more
sophisticated analytical techniques, especially where your sampling is necessarily
limited.

The t Distribution
In Chapter 7, you learned how to use the normal (or Gaussian) distribution,
which is a continuous probability distribution, to assist in making inferences
about a population. Recall that the known mathematical properties of the distri-
bution can be used to determine probabilities of characteristics occurring within
the population, even when the population mean is unknown. Thus, hypothesis
testing can be carried out using limited sampling, and correct inferences drawn, if
the population is normally distributed. In many natural systems, populations are
normally distributed, but sometimes they are not, and thus, the normal distribu-
tion cannot be used as a model.

However, if you have gathered enough samples, it may still be possible to use the
properties of the normal distribution, since the sampling distribution of averages
is likely to be normal, according to the Central Limit Theorem (or at least have
some of the key characteristics of a normal distribution, such as being unimodal
and symmetrical). Thus, irrespective of the underlying population distribution,
the normal distribution can be used to estimate probabilities when samples are
sufficiently large: the sample variance can be used to estimate the population vari-
ance, and inferences drawn with the assistance of the normal distribution.
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This strategy may not always be appropriate for answering your specific research
question, especially if you can only obtain limited samples because of financial,
physical, or time constraints. Indeed, such a situation faced industrial statistician
William Gosset in the early twentieth century, when he worked at the Guinness
Brewery in Dublin as an industrial researcher with an enviable role—quality
assurance for beer brewing. After studying statistics with Karl Pearson at Univer-
sity College, London, Gosset published a paper under the pseudonym “Student,”
since Guinness did not want their competitors to know that they were employing
statistics to improve quality control.

Gosset’s key observation was the dependence on sample size for determining the
probability that the mean of the population lies within a given distance of the
mean of the sample, if a normal distribution is assumed. Through a combination
of mathematical argument and numerical simulation, Gosset noted that when
samples are collected from a normal distribution, and if the number of samples is
small, and these are used to estimate the variance, then the distribution (for the
variable x):

is both flatter, and has more observations appearing in the tails, than a normal
distribution, when sample sizes are less than 30, and where refers to the
standard error. Since both s and x are random variables, this may not be such a
surprise. However, as the number of samples increases, the distribution becomes
normal, given the dependence on n, and the corresponding effect on degrees of
freedom, since df = n – 1. This distribution is known as the t distribution, and
approximates a normal distribution if n (and by implication df) are large (>30 in
practical terms).

Books of statistical tables normally provide critical values of t that can be used at
different degrees of freedom to make inferences about the population, with an asso-
ciated probability of committing a Type I error (α). For example, where n = 21 and
df = 20, then t = 1.725 at the p = 0.05 significance level, and t = 2.528 at the p = 0.01
significance level. These relations would usually be expressed as t0.05,20 = 1.725 and
t0.05,20 = 1.725, respectively. Figure 8-1 shows an example t distribution for df = 5,
15, and 25, compared to a normal distribution.

t-Tests
Now that you have seen what the t distribution is, you may be wondering about
its purpose. In simple terms, t-tests are the simplest form of parametric hypothesis
testing for real-valued (rather than categorical) data. Using a t-test allows you to
test whether the mean of a sample differs significantly from an expected value, or
whether the means of two groups different significantly from each other. Signifi-
cance here means statistical significance, and is related to the probability (p) of
committing a Type I error. Typically acceptable probability values are p < 0.05,
representing a 1 in 20 chance of committing a Type I error, or p < 0.01, repre-
senting a 1 in 100 chance of committing a Type I error.

t x µ–
s

n
-------

-------------=

s n⁄
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The probability of committing a Type I error relates to two different ways that
hypothesis testing is used: in science and in technology. Scientists typically frame
their experiments so that they do not directly test the hypothesis, but evaluate a
null hypothesis. Thus, Type I error here applies to the probability of rejecting the
null hypothesis, when in fact it should have been accepted. For example, a scien-
tist has formed two groups, treatment and control, testing the effects of a new
weight-loss drug, and her hypothesis is that the weight-loss drug will significantly
reduce weight in her treatment group. Weight is measured pre-test and post-test
(after six weeks of taking the drug). Age, sex, height, and weight-matched partici-
pants are randomly allocated to the treatment and control groups. The null

Figure 8-1. Comparison of the normal and t distribution for v = 5, 15, and 25

William Gosset
William Sealy Gosset is often considered the first “industrial” statistician of
modern times. Although his work was motivated by the very pragmatic
concerns of his employer (Arthur Guinness, Son & Co, the brewers), his applied
work gave rise to a set of major inferential statistical tests based on the distribu-
tion that he identified. After systematically working through related techniques
like correlation in order to solve problems at his workplace, he identified the
fundamental constraint of small samples and the limitation of techniques that
assume large numbers of observations and/or experiments to determine reli-
ability. Later techniques, such as the Analysis of Variance developed by R.A.
Fisher, relied heavily on Gosset’s exposition of the t distribution. Gosset’s life
and work provide excellent examples of the interaction between applied science
and theoretical development. To read more about Gossett, see Pearson, E.S.
(1973). Some historical reflections on the introduction of statistical methods in
industry can be found in The Statistician, 22, 165–179.
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hypothesis in this case—since the two groups were drawn with equal probability
from the population—is that there will be no difference between the means of the
groups.

Calculating the t statistic, and determining the p value, gives the probability of
committing a Type I error. If p < 0.05 (or p < 0.01), then the experimenter rejects
the null hypothesis, which provides support for the hypothesis. If p > 0.05, then
you would fail to reject the null hypothesis, which provides evidence against the
hypothesis. Further replication of the result and/or an enhancement in coverage of
different populations increases the generalizability of the finding, and may eventu-
ally lead to general acceptance of the result.

In everyday applications of statistics, Type I errors have a more immediate impact;
if an engineer, for example, needs to test whether the height of a door is sufficient
for 99 in 100 of the population not to bump their heads, then a finding that 1 in
20 will bump his head is quite useful. Or, if the sample size is too small, then the
engineer may believe that the height is suitable for 99 in 100 when in fact it is only
suitable for 19 in 20. So, in the field, technologists and engineers need to be just as
concerned about committing Type I errors, even if they believe that hypothesis
testing is something that only scientists do. In safety-critical systems, it’s essential
that hypothesis testing be used in conjunction with other approaches that are
algorithmic in nature, and work perfectly well in simulation.

The value of t can be estimated in practice by using the following formula:

t-tests are often used industrially since they only require small samples (typically
less than 30) for probability values to be calculated. Thus, they are useful in situa-
tions where funding is tight, and/or where samples are destroyed during the
experimental process.

t-Test Assumptions

Sometimes, in inferential statistics, it seems that assumptions are made to be
ignored; the validity of the results from a two-sample t-test, for example, relies on
properties of the population distributions being equal, but these assumptions are
routinely ignored or violated in practice. Why should you care about these
assumptions? Aren’t they just trivial mathematical issues that have no relevance to
practice? Well, if you’re a scientist who makes an amazing discovery of differ-
ences between two groups that is accepted for publication in a prestigious journal,
only to later have to write a retraction because your analysis was shown to be
invalid by a competitor, you’ll be very embarrassed.

More seriously, if you’re an engineer or technologist, and you designed a new
system based on flawed testing, lives could be lost. Always ensure that the
assumptions underlying a test are met, and if they are not, use a different tech-
nique, or one of the many corrections that exist for such tests. For example, one
assumption of t-tests is homogeneity of variance between the two samples; if this
assumption is violated, then the unequal variance t-test should be used. Or if a
parametric statistic is inappropriate, consider the use of nonparametrics.

t parameter estimate from sample( ) hypothetical parameter estimate( )–
estimator standard error estimated( )

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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Generally, the distributions from which the samples are drawn should be normal.
This can be tested directly using the Shapiro-Wilk test or Kolmogorov-Smirnov
test. Equality of variances can be determined by using Levene’s test, Brown and
Forsythe test, or Bartlett’s test for two independent samples. Where normality
cannot be established, then nonparametric tests can be used; these include the
Mann-Whitney U test for independent samples (between subjects), or the
Wilcoxon signed rank test for dependent samples (within subjects). Chapter 11
discusses the use of these nonparametric techniques.

One-Sample t-Test
As discussed above, inferences about the population mean µ can be made when
the population is normally distributed, where the population variance is unknown
and a random sample has been selected. The procedure is similar to testing using
the normal distribution. Alternatively, the t distribution can be used to determine
confidence intervals for µ, or both approaches can be used together, as you will see
in the following example.

An Army recruiter faces the difficult task of selecting new troops based on fairly
loose criteria that may bear no resemblance to the tasks that the troops actually
need to perform in the field. Suppose the best predictor of performance happens
to be response time to Space Invaders, where the accuracy rate for all Army
enlisted personnel has been found to be 78%. Thus, the best estimate for the
population mean is µ = 78. The Little Rock branch of the Space Invaders Society
of America (SISA) has approached the recruiter with a proposal that its members
should be considered for rapid recruitment because of their Space Invaders
playing skills. The Army recruiter believes that all young recruits being drawn
from the same population as the SISA members are not more likely to have a
higher performance than the current population, but decides to test the null
hypothesis that there is no difference.

Given that (a) there are 100 members of the SISA branch, (b) there is only one
Space Invaders machine, (c) the recruiter can only attend for 2 hours, and (d) a
game of Space Invaders takes 20 minutes on average, the recruiter decides to
randomly select 6 members’ names out of a hat. All members of SISA are keen to
join the Army, so all respond and attend the testing session.

The recruiter finds that average accuracy a = 79% and s2 = 0.75 for the sample. The
number of degrees of freedom df = 5, since n = 6, and at the 0.05 level of signifi-
cance, the null hypothesis can be rejected if t ≥ 2.015 and t ≥ 3.365 at the 0.01 level.

The value of t can be estimated as follows:

t a µ–
s

n
-------

------------=

79 78–
0.75

6
-----------

-------------------=

3.26=
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Thus, the null hypothesis can be rejected at 0.05 but not at the 0.01 level. The
recruiter realizes that the chance of committing a Type I error is between 1 in 20
and 1 in 100, and thus believes that a significant increase in performance over the
current population could be achieved by recruiting from SISA.

Determining Confidence Intervals

In the case where you genuinely do not know the mean of a population, it’s
possible to use the t distribution to determine a confidence interval for the popu-
lation mean µ. Imagine you are a safety engineer whose role is to assign safety
ratings to new vehicles produced by automotive manufacturers; as part of your
work, it is necessary to determine the impact that crashing a vehicle at constant
velocity will have on the front end of the vehicle. The response variable is known
as “crunch,” and is obtained by measuring the depth of impact: the safety rating
will depend, in part, on the crunch measure, with lower values giving a higher
rating. While safety testing is critical for marketing purposes—especially if a high
rating is achieved—manufacturers are reluctant to sacrifice too many vehicles to
testing, since they can no longer be sold. For every new vehicle, the population
mean is unknown, and must be tested.

Imagine that 10 vehicles of the new vehicle model called “Superiox” are crash
tested at 60 mph, with the results shown in Table 8-1. Given the small number of
samples, you decide to use the t distribution to determine the 95% confidence
interval for the crunch variable (y). The mean can be computed as follows:

The variance can then be computed as:

The standard deviation is then s = √0.169 = 0.411, and the mean’s standard error
is s/√ν = 0.411 / √10 = 0.129. Given n = 10, df = 9, thus:

y∑ 24.0=

y∑
n

-----------=

24.0
10

-----------=

2.4=

y2∑ 59.12=

s2
y2 y∑( )2

n
------------------–∑

n 1–
---------------------------------------=

59.12 2.42

10
----------–

9
-------------------------------=

0.169=
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Thus, the estimated range of the population mean is 1.708 ≤ µ ≤ 2.292. To be
more conservative, you may decide to use the upper boundary of the estimated
mean in the calculation of the safety rating score.

The t distribution could be used for either one- or two-tailed testing, depending
on the scenario. A one-tailed test is a test of the null hypothesis for one value, or
one “tail” of the distribution. A two-tailed test, on the other hand, explicitly tests
both “tails” of the distribution. The null hypothesis would thus be rejected if a
value fell into either the lower or upper tail of the distribution. Whether you use a
one- or two-tailed test depends on whether you are testing for a significant posi-
tive or negative difference in a parameter, or both. For example, you would use a
one-tailed test for the hypothesis that Californian surfers catch more waves than
the average surfer. But you may also want to test the hypothesis that Californian
surfers catch more or fewer waves than the average surfer. If you just test for an
effect in one direction, no test of the opposite direction can be implied.

With such a small number of samples, it may be difficult to make sense of a histo-
gram to verify the unimodality of the distribution, as shown in Figure 8-2. On this
occasion, there does seem to be a bimodal distribution, but given the relative
symmetry, it’s difficult to make a judgment call on such a small sample. However,
other graphical aids, such as a boxplot, may be used to explore the symmetry of
the distribution.

Two-Sample t-Test
The purpose of the two-sample t-test is to determine whether two population
means are significantly different. The test is also known as the independent
samples t-test, since the two samples are not related to each other, and can there-
fore be used to implement a between-subjects design. In addition to the
assumption of independence, both distributions must be normal, and the popula-
tion variances must be equal (i.e., homogeneous). Ensuring that these
requirements are met in any experiment can be difficult, and requires solid design
work to be undertaken up front, especially in the random selection of samples
from both populations.

An age-old physical performance question is whether male football players are
fitter than male ballet dancers, so a sports physiologist organizes a study in part-
nership with a local hospital research team to answer the question. The two

Table 8-1. Crash testing results for Superiox vehicle at 60 mph

2.3 2.6 3.2 1.8 2.2

2.2 2.6 2.5 1.9 2.7

CI0.95 y t0.025 9,
s

n
-------±=

2.0 2.262 0.129×±=

2.0 0.292±=

1.708 µ 2.292≤ ≤=



158 | Chapter 8: The t-Test

groups are independent populations, since no football player is also a ballerina.
There are also two lists of ballet dancers and football players located all over the
country that are maintained by their respective professional associations, and
study members are randomly selected from each group. Since ballet dancers and
football players are very busy, only 10 study members from each group can be
recruited. All participants will be tested on a range of human performance tasks,
including walking, running, and stepping, and corresponding physiological
measures associated with fitness, including heart-rate variability, pulse-wave
velocity, etc., are then combined to form a single fitness score out of 100.

The participants are all tested in the same facility at the same time of day, and
their responses are assessed and combined using the same clinicians. The results
for the two groups are shown in Table 8-2.

Figure 8-2. Frequency distribution of the crunch variable

Table 8-2. Fitness results for football players and ballet dancers

Ballet dancers Football players

89.2 79.3

78.2 78.3

89.3 85.3

88.3 79.3

87.3 88.9

90.1 91.2

95.2 87.2

94.3 89.2

78.3 93.3

89.3 79.9
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Thus, µballet = 87.95, µfootball = 85.19, s2
ballet = 32.38, and s2

football = 31.18. The
variances of the two samples are within a 5% range of each other, thus, the
assumption of equal variance seems reasonable, although a more formal test could
be undertaken. Note the skew of the football variable, and the peak frequency for
both is quite distinct, as shown in Figure 8-3.

The pooled sample variance is given by:

The degrees of freedom in the design are df = n1 + n2 – 2 = 18. To test the null
hypothesis, i.e., that µballet = µfootball, t is computed in the following way:

Figure 8-3. Frequency distribution of the fitness variable

sp
2 y1 y1–( )2∑ y2 y2–( )2∑+

n1 1–( ) n2 1–( )+
-------------------------------------------------------------------------=

n1 1–( )s1
2 n2 1–( )s2

2
+

n1 n2 2–+
---------------------------------------------------------=

9 32.38( ) 9 31.18( )+
10 10 2–+

-----------------------------------------------------=

31.78=

t
yballet yfootball–( ) µballet µfootball–( )–

sp
2

n1
-----

sp
2

n2
-----+

----------------------------------------------------------------------------------------------=

87.95 85.19–( ) 0–

31.78
10

-------------- 
  31.78

10
-------------- 

 +

----------------------------------------------------=

1.095=



160 | Chapter 8: The t-Test

At p = 0.05, t0.95,18 = 1.734, thus, you would fail to reject the null hypothesis on
this occasion, and accept that—for the fitness measure used, and the samples
analyzed—there does not appear to be a difference in fitness between the two
groups. Looking at the different distributions, you might also argue that the test
was not fair and proper, since the shapes were different, and skew was present in
one case. Therefore, further experimentation, perhaps with larger and more repre-
sentative samples, would be required to further test the null hypothesis.

Repeated Measures t-Test
The purpose of the repeated measures t-test is to test the same experimental units
under different treatment conditions—usually experimental and control—to
determine the treatment effect, allowing units to act as their own controls. This is
also known as the dependent samples t-test, since the two samples are related to
each other, thus implementing a within-subjects design. The other requirement is
that sample sizes be equal, which is not the case for a two-sample t-test.

Standard Error
You may be wondering what the s/√ν denominator of the formula to compute
the various forms of t actually means. s/√ν represents the standard error of the
mean. Given that the standard deviation of a random variable x is given by:

for any sample x, the standard error of the mean of x is given by:

You can use the standard error to determine how close the mean of a sample is
to the population mean for that variable. Using standard error enhances the
confidence that your particular sample can be used to say something mean-
ingful about the desired population. It’s important to distinguish between the
standard deviation of the data, which is a measure of variability or dispersion
computed from the probability distribution function, and the standard error,
which provides you with certainty about the population mean as estimated from
a specific sample.

For two samples, as seen above, the standard error of the difference between
two means is given by:

Again, this indicates the level of confidence you should have that the difference
between the two means, as sampled, is indicative of the difference between the
population means. In this example, the pooled variance is used, but individual
sample variances could also be used.

σx
σ
n

-------=
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-------=
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A researcher is interested in the effect of a motivational speaker on mathematics
exam performance. The experimental condition is this: 30 minutes before an
exam being undertaken, high school students will be given a 15-minute talk
emphasizing their potential for self-actualization and other concepts believed to
be key to enhanced self-esteem, which in turn should lead to higher exam perfor-
mance. In the control condition, randomly selected newspaper passages will be
read to the students. The class size is 10, so a t-test is appropriate to use with this
small sample.

The key point is that rather than half of the students being administered the
experimental treatment and half being administered the control, all students will
participate in both conditions, for two separate exams. To counterbalance any
order effects in the design, half of the students (randomly selected) will partici-
pate in the control condition first and then the experimental condition, and the
other half will undertake the experiment in the reverse order. The results are
represented by y.

The results from the experiments are shown in Table 8-3.

The null hypothesis in this experiment is that µd = 0. The mean of yd is ∑yd/n =
48/10 = 4.8. The variance is then calculated as:

Table 8-3. Exam performance after motivational speaker treatment

Experimental Control Difference (Difference)2

65 66 –1 1

75 67 8 64

80 65 15 225

77 68 9 81

74 69 5 25

69 70 –1 1

72 69 3 9

72 68 4 16

71 69 2 4

79 65 6 36

yd∑ 48= yd
2∑ 462=

sd
2

yd
2∑

yd∑( )2

n
---------------------–

n 1–
-----------------------------------------=

462 48( )2

10
--------------–

9
------------------------------=

25.73=
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The value for t at the p = 0.05 probability level is then given by:

The number of degrees of freedom df = 9, since n = 10, and at the 0.05 level of signif-
icance, the null hypothesis can be rejected if t ≥ 1.833, and t ≥ 2.821 at the 0.01
level. Thus, you would fail to reject the null hypothesis in this experiment.

In this experiment, the null hypothesis is framed as a one-tailed problem, i.e., you
are predicting that a treatment (such as motivational speaking) will have a posi-
tive effect on performance (in this case, in exams). If you were genuinely unsure
whether motivational speaking would have a positive or negative impact on
performance, it would be wiser to use a two-tailed version of the null hypothesis,
and adjust the degrees of freedom accordingly. Figure 8-4 illustrates the results.

Unequal Variance t-Test
Recall that the goal of the two-sample t-test is to test whether the difference
between the means of two groups is statistically significant. The t-test, in this
form, assumes that the variances are the same in the underlying populations, and
the test is not reliable (i.e., both Type I and Type II errors may be committed)
when these variances are heterogeneous. This is because the variances are pooled
to gain the most reliable estimate, and the result of the test would be seriously
distorted if they were not equivalent (whilst accepting some difference due to
measurement or sampling error). The problem of hypothesis testing between two

Figure 8-4. Frequency distribution of the performance variable
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independent samples where variances are known to be unequal is known as the
Behrens-Fisher problem, and there have been several proposed solutions.

However, in reality, many researchers use the t-test without first verifying that the
variances are indeed homogeneous, or use a Mann-Whitney (nonparametric) test
as a substitute. In addition, since the t distribution approximates a normal distri-
bution for large sample numbers, it is routinely applied to known nonnormal
distributions with sufficiently large samples in the belief that large samples can
mitigate any concerns about nonnormality (or indeed, hetereogeneity of variance).
Sufficiently large means greater than 30 in most cases, in the context of the
Central Limit Theorem.

The unequal variance t-test (or Welch t-test) should be used whenever the vari-
ances are unknown, and/or the sample size is small, and/or you wish to be
conservative in the inferences that you draw. The main difference between the two
is that the calculation of the degrees of freedom is more complicated for the unequal
variance t-test than for the two-sample t-test.

If you wish to use the two-sample t-test, the best approach is to calculate the
homogeneity of variance prior to any t-testing, and then decide whether to use the
two-sample t-test or the unequal variance t-test.

Another possibility is to use adjusted degrees of freedom to evaluate the signifi-
cance of t, although this value will almost certainly be more conservative than the
df computed directly from n. The df would be computed in the following way for
a two independent sample t-tests:

Normally, when variances are equal, standard error is minimized when n1 = n2,
but where this is not possible to achieve with the samples available, the robust-
ness of the t-test is guaranteed as long as the following equivalence is met:

This equation implies that there should be a proportional relationship between
sample sizes and variances. There are many situations in independent-groups t-tests
where the experimental group are necessarily smaller than the control group. In this
case, as the control group increases in size, as long as there is a corresponding
increase in variance, the test will be valid. Many of these remedies rely ultimately
on the normality assumption being true “in the large,” if not for a specific, small
sample.
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Effect Size and Power
An important question in studies where sample sizes are small and/or limited is
determining how many experimental units are required to observe an experi-
mental effect. Recall the crash test example above. The experimenter wants to
minimize the number of vehicles destroyed, each vehicle costs a lot of money. On
the other hand, the experimenter must be sure that enough cars have been tested
to ensure public safety. Alternatively, in animal or human experimentation, it is
unethical to apply a treatment to more participants than necessary to see a partic-
ular effect.

A statistically significant difference between the mean of one sample and an
expected mean, or between two means, does not in itself indicate whether the
difference is important. The importance of an observed effect must be determined
by the knowledge domain and/or industry standards that are relevant to the
problem. For example, in the crash testing scenario, prior experience and/or
observation from real crashes may indicate three different thresholds for a crash
impact effect at different velocities: one beyond which death will occur, one
beyond which death will not occur but injury will occur, and one beyond which
neither death nor significant injury will occur. These thresholds might be used to
determine a “star rating,” for example, so that consumers can make informed
choices about car purchasing based on safety. These are examples of important
differences, and the differences between them should also be statistically signifi-
cant. But not all statistically significant differences will be important.

The distance between each of the thresholds in this example corresponds to an
effect size, or the magnitude of difference between them. The effect size for any
test of mean comparisons is given by:

Population means can be replaced by sample means in any specific experiment,
and the standard deviation should be the same for both samples (assuming that
the homogeneity of variance assumption for t-tests is met), or a pooled estimate
can be used. As a concrete example, imagine that the threshold for crash impact at
80 mph, in which death will occur, is 2.5 yards, and 1.5 yards in which serious
injury but no death will occur. Assuming equal variance, and if the standard devi-
ation is 0.2, then the effect size will be given by:

This is a very large effect size, and so the difference can be considered statistically
important. However, if the threshold beyond which no injury will occur is only 1.4
yards, the effect size is much smaller:

µ1 µ2–

σ
------------------

2.5 1.5–
0.2

---------------------- 5.0=

1.5 1.4–
0.2

---------------------- 0.5=
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Here, the difference between the populations is going to be very small indeed,
since they differ by 0.5 standard deviations on average. In statistical terms, it’s
always going to be easier to measure large differences than small differences, when
the standard deviation and n are equal.

If you know in advance what the expected difference between two means is before
you experiment, based on past experience or observation, and you have a reason-
able estimate of the standard deviation, you can compute an effect size prior to
experimentation. After selecting an appropriate α (e.g., α = 0.01), you can
compute the number of experimental units required to observe a specific level of
power.

Calculation of statistical power before you run an experiment is an important step
in determining its scope, especially in terms of the likelihood of committing a
Type II error. So far, you have learned a lot about Type I errors, but the impact of
Type II errors can be quite insidious; imagine signing off on crash tests for a
vehicle showing that the sample did not differ from the mean, when in fact the
crash performance for the population mean was significantly worse than the
acceptable level. Thus, statistical power is best understood as the ability of a
test—in this case a t-test—to discriminate between two means when in fact they
are actually different. Power is formally defined as 1 – β, where β is the proba-
bility of committing a Type II error.

Following the crash testing example, if you have an effect size of 4.0, and α = 0.
05, to achieve power of 0.90 (i.e., where β = 0.1), then n should be at least 4.
However, if you have an effect size of 0.5, and α = 0.05, to achieve power of 0.90
(i.e., where β = 0.1), then n should be at least 106. That’s a very large difference in
n required to see an experimental effect, but serves to illustrate why effect sizes
are critical to understanding the importance of statistically significant results. In
practice, because of the conservative nature of scientific hypothesis testing,
priority is usually given to conservative α levels (e.g., α < 0.01), while β is typi-
cally accepted at 0.80 in many fields, especially where a lot of repetition occurs in
experimentation. Effect size and power are further discussed in Chapter 18.

Exercises
While you can use a statistical package like Minitab, SPSS, STATA, SAS, or even
Excel to compute t-tests and their significance, working through some examples
yourself will make the underlying concepts easier to understand (especially the
difference, say, between standard error and standard deviation). Also, if you
consider scenarios from work or school that involve small samples, you may begin
to develop a sense of how to approach them inferentially using t-tests. If you have
understood all of the permutations of t-testing as computed by hand, then using a
statistical package will be much easier for you. Also, the output generated by
many statistical packages is confusing if you don’t understand what you should be
looking for; e.g., most statistical tests are accompanied by various adjustments
and corrections that are usually calculated but may not be relevant to your
research question, unless one or more of the assumptions underlying the test have
been violated (e.g., homogeneity of variance).
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Question

A boutique brewery company is trying to determine the optimal period of fermen-
tation for a new organic ale called Old Sarum, which is free of additives and
preservatives that may have been hindering the fermentation process, according to
the marketing director. However, given that the organic ingredients have never
been used before, the brewer needs to know whether the new recipe will require a
different fermentation period from the existing recipe. The average fermentation
time for existing brews is 48 hours, so the best estimate for the population mean is
µµ = 48. The master brewer—skeptical that organic ingredients will make any
difference at all to the fermentation process—decides to test the null hypothesis
that there is no difference between the population mean and the sample mean of
Old Sarum.

However, the pressure from the marketing department means that there is only a
limited time available for quality control before the new product is launched, so
the brewer is only allowed 20 kegs of beer to be brewed and tested. Since there are
120 kegs, a computer program is used to randomly select 20 from the population.

Answer

The brewer finds that average brewing time is 43 hours and s2 = 3.5 for the
sample. The number of degrees of freedom df = 19, since n = 20, and at the 0.05
level of significance, the null hypothesis can be rejected if t ≥ 1.729, and t ≥ 2.539
at the 0.01 level.

The value of t can be estimated as follows:

Thus, the null hypothesis can be rejected at both the 0.05 and the 0.01 levels. The
brewer realizes that the chance of committing a Type I error is less than 1 in 100
of the population, and thus believes that a significant reduction in brewing times
exists between Old Sarum and the existing brews.

Question

The finance department is very unhappy with the brewer, since 20 kegs is a lot of
beer to waste on a test. The finance manager decides to conduct a power analysis
to determine how many kegs should have been used, taking into account that a
difference of only two hours more would have resulted in a cost savings in terms
of fermentation.

t a µ–
s

n
-------
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48 43–
3.5

20
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6.39=
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Answer

The manager begins by computing the effect size:

If you have an effect size of 1.06, and α = 0.05, to achieve power of 0.90 (i.e.,
where β = 0.1), then n should be at least 15. Thus, the finance manager decides to
deduct the cost of the five wasted kegs from the brewing department’s accounts.

Question

After the success of the Old Sarum in reducing the costly fermentation process,
the brewers are under pressure to make sure that it tastes better than other ales.
To this end, the marketing department engages a consultant to undertake an
expert panel evaluation of the flavor of Old Sarum versus the original ale. The
consultant will employ a panel of expert judges, who are expensive to hire, so only
10 will be empanelled to make taste judgments.

Answer

The results from the experiments are shown in Table 8-4.

The null hypothesis in this experiment is that µd = 0. The mean of yd is:

Table 8-4. Taste test results for Old Sarum

Existing brew /10 Old Sarum /10 Difference (Difference)2

6 8 –2 4

7 8 –1 1

8 9 –1 1

7 8 –1 1

7 10 –3 9

8 9 –1 1

6 8 –2 4

6 9 –3 9

7 8 –1 1

7 7    0 0

Effect size
µ1 µ2–

σ
------------------=

48 46–
1.87

-------------------=

1.06=

yd∑ 15= yd
2∑ 31=

yd

n
-----∑ 15
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The variance is then calculated as:

The value for t at the p = 0.05 probability level is then given by:

The number of degrees of freedom df = 9, since n = 10, and at the 0.05 level of
significance the null hypothesis can be rejected if t ≥ 1.833, and t ≥ 2.821 at the 0.01
level. Thus, you would reject the null hypothesis in this experiment at both the 0.01
and 0.05 levels of significance and conclude that the panel’s judgments clearly
favored Old Sarum.

Of course, since the judges were not randomly selected from the population of
judges, they may not reflect broader opinion within the expert community, nor
would any inference be able to be made about the wider beer-consuming popula-
tion, who were not judges. The marketing department would be wise to follow up
these studies with a much broader set of tests using randomization.

Note that the flavor ratings here should be interpreted as interval data: if the
ratings were to be interpreted as ordinal data, then a nonparametric test for differ-
ences between groups, such as the Mann-Whitney U test, would be more
appropriate.
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9
The Correlation Coefficient

This chapter is concerned with measures of relatedness between two variables. A
simple measure, the correlation coefficient, is commonly used to quantify the
degree of association between two variables. Often, correlations are used during
an exploratory or observational stage of research to determine which variables at
least have a statistical relationship with each other. In experimental designs, corre-
lations are also used to determine the degree of association between independent
and dependent (or response) variables. However, the finding of a correlation
between two variables does not imply that a change in one variable causes a corre-
sponding change in another—that’s why you still need experiments. Indeed, the
history of computing correlation coefficients at large, and often without any theo-
retical or model-based justification, has led to numerous errors in inference being
made. In this chapter, you will learn about measures of association, such as
Pearson’s correlation coefficient, the Spearman rank-order coefficient, the point-
biserial correlation coefficient, and phi, and review examples of the appropriate
use of each. The key message is that correlations are useful tools, but many vari-
ables in nature are correlated; such relationships are not always useful for
inference.

Measuring Association
The world is awash with correlations, or statistical associations between two (or
more) variables. Often, such relationships are useful to characterize or predict
some phenomena. For example, a freshman economics student interested in
understanding monthly central bank interest rate movements notices that every
quarter, if inflation is greater than an annualized 2%, interest rates always rise by
0.25%. The student reviews 10 years of data and concludes that the association
between the two variables (inflation and interest rate increases) is very strong; the
student then hypothesizes that inflation could be causing interest rate rises. The
student excitedly emails her professor to report the discovery, only to find out that
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while the two variables are indeed correlated, the relationship is only causal to the
extent that central banks use a 2% inflation benchmark as a major factor in their
deliberations.

The important lesson here is that a correlation during an observational phase of
research has highlighted a very strong association between two variables, one of
which always preceded the other. Temporal dependencies like this are often good
candidates for causal relationships. In this case, the student was able to deter-
mine that while inflation does not have one specific cause, interest rate
movements are decided by a committee, based on observation of this variable.
Thus, it’s entirely appropriate to consider inflation as an independent variable,
and the interest rate as a dependent variable. Note that the interest rate settings of
the committee constitute an intermediate variable, since the student was able to
measure the association between inflation and interest rate movements without
any knowledge or observation of the committee’s behavior.

It’s important to note that, while measures of association are often useful in char-
acterizing the broad relationship between two variables, they do not always reflect
the underlying and significant variation in the association between specific cases.
Thus, while lung cancer is strongly associated with lifelong smoking, nonetheless,
some people get lung cancer without ever lighting a cigarette, while some heavy
smokers live to 100 and die from other causes.

If you have a very large population, and unless the association between two vari-
ables is 100.00%, such cases will always occur. In the case of cancer, there are
undoubtedly some other causes of cancer above and beyond direct smoking (such
as passive smoking) and also some protective measures for certain individuals that
are almost certainly genetic. Therefore, while you might be able to construct a
model of the relationships between two variables in the large, it’s always possible
to refine this model until all variation is explained.

There are a number of techniques that have been developed to quantify the associ-
ation between variables of different scales (nominal, ordinal, interval, and ratio),
including the following:

• Pearson product-moment (with both variables measured on an interval or
ratio scale)

• Spearman rank-order (with both variables measured on ordinal scales)

• Phi (with both variables measured on a nominal/dichotomous scale)

• Point biserial (with one variable measured on a nominal/dichotomous scale,
and one measured on an interval or ratio scale)

We review examples of each type of correlation in this chapter.

Graphing Associations Through Scatterplots
One of the easiest ways to explore associations between variables is to use scatter-
plots. A scatterplot is a graph that usually takes the form of an explanatory
variable (on the horizontal, or x-axis) plotted against a response variable (on the
vertical, or y-axis). Each member of a sample corresponds to one data point on
the graph described by a set of coordinates (x, y). When many variables are
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plotted, a sense of the overall pattern of the relationship between the explanatory
and response variables often emerges. The relationship may be described as strong
or weak. Note that the overall pattern may be influenced by a number of outliers,
or cases that do not fit the overall pattern.

The form of association can be either linear or nonlinear: often, statisticians seek
to determine the mathematical relationship between two variables (specified by a
linear or nonlinear model), whereas engineers may be primarily interested in
linearized versions. You will learn more about model building in Chapter 12, but
for now, if you can draw a straight line through your (x, y) set of coordinates, you
are likely dealing with a linear model.

Quantitative Variables

The association between two quantitative variables can be readily displayed using
a scatterplot. Relationships between two variables can be described as signed,
additive, multiplicative, or a combination of all three types of relation. For
example, a positive multiplicative relationship between interest rates and infla-
tion means that when interest rates increase, inflation will also increase.
Conversely, a negative relationship would imply that a decreasing interest rate
would be associated with increasing inflation.

Relationships of this type are commonly used in linear algebra; you might think of
them as “formulae of straight lines,” since they describe exactly the characteris-
tics of straight lines in a two-dimensional plane that can vary. In the general form
of the model y = ± ax ± b:

• y is the dependent variable

• ±a is the slope (i.e., where the value of y when x = 0); –a indicates a negative
association; +a indicates a positive association

• x is the independent variable

• ±b is the intercept of the straight line

Note that m is sometimes used in place of a in this equation: this is just a different
notational convention and does not change the meaning. Given various sources of
error, most phenomena that can be described by a linear model actually demon-
strate some deviation from expected values. However, by using a scatterplot, you
can get some visual clues concerning whether the relationship between two vari-
ables is linear or not.

Figure 9-1 shows the association between two variables (x and y) that are strongly
positively associated, since for each (x, y) set of coordinates, the values are equal.
The model describing this relationship is x = y. Using the linear model, a = 1,
which is positive, so the relationship is positive; and b = 0, since the intercept is
the origin (0, 0).

However, associations between two variables can also be negative, as shown in
Figure 9-2, where each value of y is a negative multiple of x. In this example, the
association between the two variables is perfectly negative. Note that the values of
the (x, y) coordinates do not need to be the same in order for the association to be
strong—the first values plotted are (1, –2), (2, –4), and (3, –6). The model for this
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relationship is y = –2x, which is multiplicative in nature. Using the linear model,
a = –2, which is positive, so the relationship is positive. Again, b = 0, since the
intercept is the origin (0, 0).

Relationships between two variables can also be additive, or both multiplicative
and additive. Figure 9-3 shows the strongly linear relationship between x and y,
where the model is multiplicative (by a factor of 2) and additive (with 0.5). The
model for this relationship is y = 2x + 0.5. Using the linear model, a = 2, which is
positive, so the relationship is positive.

Sometimes, variables have no relationship, so don’t be fooled into thinking that a
straight line on a number plane indicates an association. Figure 9-4 shows the
situation where the same value of y is related to every possible value of x. In this
case, there is no association between the variables. Using the linear model, a = 0,
and since there is no slope, there is no relationship.

Often, when taking real-world measurements, some amount of random or system-
atic error is present, as described in Chapter 6. This can obscure the strength of
relationship between two variables when you are examining a scatterplot. For
example, Figure 9-5 shows exactly the same data as Figure 9-1, except that
random error has been added into the model, to better reflect real-world measure-
ments. By looking at the scatterplot, would you have guessed that the model was
similar to Figure 9-1? In this example, the model is x + εx = y + εy, where εx and εy
represent random error.

Figure 9-1. Association between two variables described by the model y = x
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Figure 9-2. Association between two variables described by the model y = –2x

Figure 9-3. Association between two variables described by the model y = 2x + 0.5
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Finally, Figure 9-6 shows a different type of relationship between two variables:
an exponential relationship that is described by the model y = ex, where e equals
2.712..., which is the base of the natural logarithm. Exponential and other

Figure 9-4. Lack of association between two variables described by the model y = 1

Figure 9-5. Association between two variables described by the model y+εy = x+εx
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nonlinear functions mean that variables may not be linearly associated, but are
associated in other ways. Indeed, knowing (or being able to predict) the type and
class of model required to describe the type of association between two variables
is part of the art of being a statistician.

In this example, if you changed the y-axis to be displayed using a logarithmic
scale, the relationship between x and y would appear to be strong. Being aware of
the underlying linearity either assumed or used explicitly is very important when
understanding relationships. Linear associations are the easiest to deal with math-
ematically, but exponential relationships are very powerful (imagine if Figure 9-6
described the growth in your savings after 10 years of stock market investment!).

Looking forward to Chapter 12, imagine now drawing a straight line through
Figure 9-5; you can see there are several possible straight lines that can be drawn
through all of the data points. The basis of linear regression goes one step further
in quantifying the relationship between two (or more) variables by drawing the
line through the plane that best fits the data, in the sense of minimizing the
distance between the observed coordinates and their estimate according to a
model.

Least-squares linear regression, described in Chapter 12, minimizes the squared
deviations from the expected values of each observation, and thus provides the
“best fit” to a linear model for the data. The point to note here is that you can use
graphical tools as well as mathematical models to determine underlying structure
in data.

Figure 9-6. Association between two variables described by the model y = ex
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Pearson’s Product-Moment Correlation Coefficient
Using scatterplots is a good visual guide for examining relationships between two
variables. However, as you have seen in Figure 9-5, sometimes effects like random
error can make it difficult to easily estimate the strength of relationship. Fortu-
nately, there is a single quantitative measure that can be computed to determine
the strength and direction of relationship between two variables, Pearson’s
product-moment correlation coefficient for samples, otherwise known as r.

In simple terms, the more the relationship between two variables is similar to a
straight line (excepting the type shown in Figure 9-4, with a zero slope), the more
correlated the variables are said to be. If the values are only weakly scattered
around a straight line in the scatterplot, the variables are said to be weakly corre-
lated; weak scattering means that the values are generally clustered around the
values predicted by a straight line, but where there is deviation or error from the
predicted values. The correlation can be either positive or negative; Figure 9-2
shows a negative relationship, and thus the correlation is also negative. Just like
the mean and standard deviation statistics are estimates of their respective popula-
tion parameters, r is an estimate of the population parameter rho (ρ). In the
population, if ρ = 0 for two variables, the two variables are said to be
independent.

The correlation coefficient measures the tendency of two variables to change in
value together (i.e., to either increase or decrease). To do this, the sum of prod-
ucts of the two standardized variables are divided by the degrees of freedom.*

The formula for the correlation coefficient is:

Here, you can see that the correlation is derived from the sum of products of stan-
dardized deviations from the mean for the (x, y) set of coordinates. Why do you
need to standardize the variables? It’s the same old question of comparing apples
and oranges—if you divide the deviations of each case from the mean by the stan-
dard deviation, you can relate variables that have been measured in different
units. For example, if you want to measure the relationship between grip strength
and weight, measure in pounds per square inch (psi) and pounds, respectively.

To compute r, the following algorithm, corresponding to the formula shown
above, is used:

• For each (x, y) set of coordinates, subtract the mean from each observation
for x and y.

* Conceptually, the number of degrees of freedom for error in a sample is the number of chances
for change, and is usually defined as the sample size minus one. Mathematically, the difference
between the number of observations and the degrees of freedom occurs because the residuals aris-
ing from fitting a particular model are always of a smaller dimension: if you know the values of
all residuals except one, then you can calculate it, because their sum must be zero.

r

xi x–

sx
-------------- 

  yi y–

sy
------------- 

 

i 1=

n

∑
n 1–

--------------------------------------------------=
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• Divide by the corresponding standard deviation.

• Multiply the two results together.

• The result is then added to a sum.

• The sum is divided by the degrees of freedom, n – 1.

r always ranges in value from –1 to 1, with values close to zero representing weak
relationships, and high values representing strong relationships (either strongly
negative or strongly positive). A correlation of 1.00 means that the two values are
completely or perfectly positively correlated; –1.00 means perfectly negatively
correlated; and a correlation of 0.00 means that there is no relationship between
two variables.

Let’s look at an example. A psychologist is interested in the relationship between
net wealth and attractiveness, rated by an expert panel of five judges with a
combined score out of 10. The two values of the variables are shown in Table 9-1.

The mean and standard deviation of wealth (x) and attractiveness (y) are 1.773
and 0.593765, and 4.242 and 1.454203 respectively. Table 9-2 shows the result of
subtracting the mean from each observation, and division by the standard devia-
tion. Table 9-3 shows the summation of the multiples, and the calculation of the
correlation coefficient.

Table 9-1. Measures of wealth and attractiveness

Wealth ($m) Attractiveness

1.21 2.44

2.24 5.73

1.20 2.93

2.39 5.69

1.10 2.74

1.45 4.26

2.29 5.11

2.33 5.58

1.13 2.42

2.39 5.52

Table 9-2. Computation of deviations and normalization

–0.563 -0.94819 –1.802 –1.23917

0.467 0.786506 1.488 1.023241

–0.573 –0.96503 –1.312 –0.90221

0.617 1.039132 1.448 0.995734

–0.673 –1.13345 –1.502 –1.03287

–0.323 –0.54399 0.018 0.012378

x x–
x x–

sx
------------ y y–

y y–
sy

------------
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Thus:

r = 1/(n – 1) × 8.701

 = 1/9 × 8.701

 = 0.967

Thus, with a correlation coefficient of r = 0.967, the two variables wealth and
attractiveness are highly positively correlated, meaning that people with low
wealth tend to be less attractive than individuals with high wealth (Figure 9-7).
Conversely, wealthy individuals tend to be more attractive than individuals with
lower wealth. Note that since we have not performed any experimental manipula-
tion of the variables wealth and attractiveness, it’s impossible to say whether
wealth causes attractiveness, or indeed, whether attractiveness is a cause of
wealth.

Alternatively, even with a strong observed statistical relationship, there may well
be an intermediate variable that actually causes the change in a variable’s value.
You need to be very cautious of over-interpreting correlations, since a surpris-
ingly large number of variables in the physical world are correlated, but the
relationship is not meaningful or causative.

0.517 0.870715 0.868 0.596891

0.557 0.938082 1.338 0.920092

–0.643 –1.08292 –1.822 –1.25292

0.617 1.039132 1.278 0.878832

Table 9-3. Computation of products

Product

1.174961

0.804786

0.87066

1.034699

1.170699

–0.00673

0.519721

0.863121

1.356812

0.913222

Σ = 8.701

Table 9-2. Computation of deviations and normalization (continued)

x x–
x x–

sx
------------ y y–

y y–
sy

------------
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However, if you find a highly correlated measure that is fast, easy, and cheap to
obtain, and your only interest is prediction, select whichever correlated variable
gives you the highest r. For example, a psychologist interested in predicting
emotional intelligence might administer a test battery of 200 questions that takes
three hours to complete. But after obtaining the results from 100,000 participants
worldwide, the psychologist discovers that responses to the first question—“Do
you love animals?”—have a correlation coefficient of 0.90 with the overall
emotional intelligence score. Given the strength of this relationship, in a predic-
tive sense, the psychologist may decide to reduce the number of questions being
asked in order to save time and expense, and minimize any discomfort to partici-
pants. The relevant correlation for this type of data is called the point-biserial
correlation, and is further discussed later in this chapter.

Testing Statistical Significance

The significance of the correlation coefficient can be evaluated by using the t
statistic. For example, if you believe there is a relationship between two variables
in the population, you can test against a null hypothesis that ρ = 0, using the t
statistic and the estimate of r:

For the association between wealth and attractiveness, we can test the null
hypothesis that they are independent, as follows:

Figure 9-7. Association between two variables (wealth and attractiveness)

t r

1 r2–
n 2–
--------------

-------------------=
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According to the statistical tables for t, the result of t = 10.73, df = 8, is highly
statistically significant, p < 0.01, and you can reject the null hypothesis. For more
details regarding the interpretation of t-tests, see Chapter 8.

Coefficient of Determination
The correlation coefficient alone provides an indication of the strength and direc-
tion of relationship. But it doesn’t directly tell you the proportion of variation in
one variable that can be accounted for by the other. Nor can relative r values be
directly compared in proportion, e.g., you can’t say that r = 0.2 represents double
the correlation of r = 0.1.

Fortunately, the square of the correlation coefficient provides exactly this
measure, and is known as the coefficient of determination. Thus, in the emotional
intelligence test example above, r2 = 0.9 × 0.9 = 0.81. Hence, 81% of the variation
in wealth can be directly attributed to attractiveness and vice versa. As you will
see in Chapters 12 and 14 on linear regression, the unique variance accounted for
by multiple explanatory variables can often be combined to account for the
majority of variation in a response variable. Thus, if attractiveness uniquely
explains 81% of the variation in wealth, and level of education uniquely explains
10% of the variation, then combining the two explanatory variables together to
form a model for variation in wealth allows you to explain 91% of the variation in
the variable.*

Let’s look at an example. An environmental engineer working for a government
advisory panel on climate change wants to examine the relationship between
engine capacity and CO2 emissions. Since engines are very complex systems,
subject to the interaction of thousands of variables in each case, and with
numerous variation across cases, the problem of stating the relationship between
the two variables is difficult. Also, the number of different environmental and
driving conditions under which engines operate varies enormously.

However, the engineer decides that based on studies of driving usage, a represen-
tative “driving” pattern can be established that features driving on a 10-mile
circuit under different acceleration conditions and velocities. Manufacturers are

* Note the key term here: “uniquely.” Ideally, all explanatory variables should be orthogonal and
account for a unique portion of variance. However, this is rarely the case in measured data, unless
the variables have been produced by an orthogonal decomposition, such as principal components
analysis, described in Chapter 16.

t 0.967

1 0.9672
–
10 2–

--------------------------

-------------------------------=

0.967

0.065
8

--------------

-------------------=

10.73=
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then invited to submit vehicles to be tested, with the relationship between engine
size and CO2 output (grams/mile)—averaged over the 10 miles—being deter-
mined by the correlation coefficient, and the coefficient of determination used to
determine the proportion of variance in CO2 accounted for by engine size.

The results of the initial 10 vehicles are shown in Table 9-4, and displayed using a
scatterplot in Figure 9-8.

The mean and standard deviation of engine size (x) and CO2 emissions (y) are 3.11
and 1.11201, and 259.5 and 57.9487, respectively. Table 9-2 shows the result of
subtracting the mean from each observation, and division by the standard devia-
tion. Tables 9-5 and 9-6 show the summation of the multiples, and the calculation
of the correlation coefficient, respectively.

Figure 9-8. Association between two variables (engine size and CO2 emissions)

Table 9-4. Results of the initial 10 vehicles

Engine size CO2 emissions (grams/mile)

1.9 200

2.2 210

1.8 230

2.5 240

3.2 235

5.4 400

4.3 310

3.3 250

3.2 260

3.3 260
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Thus:

r = 1/(n – 1) × 8.466
 = 1/9 × 8.466
 = 0.94068

Thus, with a correlation coefficient of r = 0.94068, and coefficient of determina-
tion can be calculated as follows:

r2 = 0.940682

 = 0.88487

Hence, 88.487% of variation in CO2 emissions can be explained by engine
capacity.

Table 9-5. Computation of deviations and normalization

–1.21 –1.08812 –59.5 –1.02677

–0.91 –0.81834 –49.5 –0.8542

–1.31 –1.17805 –29.5 –0.50907

–0.61 –0.54856 –19.5 –0.3365

0.09 0.080935 –24.5 –0.42279

2.29 2.059334 140.5 2.424558

1.19 1.070134 50.5 0.87146

0.19 0.170862 –9.5 –0.16394

0.09 0.080935 0.5 0.008628

0.19 0.170862 0.5 0.008628

Table 9-6. Computation of products

Product

1.117249

0.699027

0.599709

0.184592

–0.03422

4.992975

0.93258

–0.02801

0.000698

0.001474

Σ = 8.466

x x–
x x–
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Spearman Rank-Order Coefficient
Sometimes, you may be interested in determining the relationship between two
variables in terms of the ranking of each case within each variable. This is usually
the case where you are interested in ordinal relations. For example, in educa-
tional testing, it is often difficult a priori to predict whether a test or examination
will produce a distribution of results that allows for identification and discrimina-
tion of certain types of skill levels. If a test is set “too easy,” many students will
achieve “full marks,” while if a test is “too hard,” many students will fail, even
though—in both cases—there is underlying variation in general ability. Also,
when comparing results across tests, you may be more interested in a particular
student’s rank in the class, rather than the student’s raw scores. Using ranks
rather than raw scores allows these sorts of comparisons to be made fairly and
validly.

The Spearman rank-order coefficient (or rank correlation coefficient) is very similar
to the product-moment correlation coefficient, discussed above, except that the
ranks are correlated rather than the raw scores. So, a lot of the computational
effort involves working out the differences between ranks for individual items on
different variables, and then squaring the observed deviations. The formula for
calculating the Spearman rank correlation coefficient is:

Let’s revisit the relationship between CO2 emissions and engine size with a view
to ranking individual engines by each variable. The first step in calculating rs is to
rank all of the scores based on the two different variables (CO2 emissions and
engine size), as shown in Table 9-7, sorted by the engine rank. Here, you can see
that while the ninth and tenth ranked engine by size are the same as the ninth and
tenth ranked engine by emissions, the other cases all occupy different relative
ranks.

Table 9-7. Ranking of items

Vehicle Engine size CO2 emissions Engine rank Emissions rank

A 1.8 230 1 3

B 1.9 200 2 1

C 2.2 210 3 2

D 2.5 240 4 5

E 3.2 235 5.5 4

F 3.2 260 5.5 7.5

G 3.3 250 7.5 6

H 3.3 260 7.5 7.5

I 4.3 310 9 9

J 5.4 400 10 10

rs 1
6 d2∑( )

n n2 1–( )
------------------------–=



184 | Chapter 9: The Correlation Coefficient

If two variables have the same value, then they occupy a “tied rank,” and can be
scored as halfway between the two items of interest. If more than two items are
tied, the average can be taken of all the ranks concerned.

Now let’s compute the differences between the ranks and the squared differences,
as shown in Table 9-8.

Thus, Σδ2 = 15.50. The correlation can then be computed as:

rs = 1 – (6 × 15.50) / 10(100 – 1)
 = 0.90606

Testing Statistical Significance

There are some general rules for interpreting values of rs, as follows:

• 0.9 ≤ rs ≤ 1 indicates a very strong correlation

• 0.7 ≤ rs ≤ 0.9 indicates a strong correlation

• 0.5 ≤ rs ≤ 0.7 indicates a moderate correlation

However, it is also possible to determine statistical significance by using a z test.
In the case where the null hypothesis is that rs = 0, the following z test can be
carried out:

In this example:

Table 9-8. Calculation of rank differences

Vehicle
Engine

size
CO2

emissions
Engine

rank
Emissions

rank d d2

A 1.8 230 1 3 2 4

B 1.9 200 2 1 –1 1

C 2.2 210 3 2 –1 1

D 2.5 240 4 5 –1 1

E 3.2 235 5.5 4 –1.5 2.25

F 3.2 260 5.5 7.5 2 4

G 3.3 250 7.5 6 –1.5 2.25

H 3.3 260 7.5 7.5 0 0

I 4.3 310 9 9 0 0

J 5.4 400 10 10 0 0

z
rs 0–

1
n 1–
------------

-----------------=

rs n 1–=

z 0.906 10 1–=

2.718=
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z = 2.718 is statistically significant at the p < 0.01 significance level, and you can
reject the null hypothesis.

Advanced Techniques
While Pearson’s and Spearman’s correlation techniques are the most commonly
used, the point-biserial and phi correlation coefficients may also be used on some
specialist settings, as described in this section.

Point-Biserial Correlation Coefficient

A psychologist interested in predicting emotional intelligence might administer a
test battery of 200 questions that takes three hours to complete, in which the
psychologist is concerned with determining the relationship between answers on a
single categorical scale (loves animals/does not love animals) and overall
emotional intelligence (EI). If 90% of the variability in EI could be accounted for
by the answer to one question because of its high correlation, there wouldn’t be
much point in administering the whole test. However, neither Pearson’s product-
moment nor Spearman’s rank correlation coefficient allows you to perform corre-
lations with categorical variables: you need the point-biserial correlation
coefficient. In this example, the single value of EI can be correlated with a 0 or 1
coded response from the “Do you love animals?” question.

The psychologist decides to test 10 participants to compute the point-biserial
correlation coefficient (rpbi), shown in Table 9-9.

 The rpbi can then be calculated as follows:

Table 9-9. Love of animals and emotional intelligence

Love of animals (x) Emotional intelligence (y)

0 67

0 77

1 98

1 95

1 85

0 68

0 71

1 89

1 82

1 79

rpbi

Mp Mq–

St
---------------------- pq=
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Where Mp is the mean for the scores coded as 1, Mq is the mean for the scores
coded as 0, St is the standard deviation for all scores, p is the proportion of scores
coded as 1, and q is the proportion of scores coded as 0.

Given st = 10.80, Mp = 88, Mq = 70.75, p = 0.6, q = 0.4, then rpbi is given by:

Thus, there is a high correlation between EI and the response to the question. The
psychologist would no doubt want to ask participants more than one question to
obtain a result closer to the full EI figure.

Phi Correlation Coefficient

A natural progression from investigating the relationship between one categorical
(binary) variable and a variable measured on an interval or ratio scale is to
measure the association between two categorical variables (rϕ). The logic is similar
to the previous types of correlation coefficients you have learned about, but with
some differences in the treatment of the categorical data.

Consider an example: a tropical diseases epidemiologist is interested in whether
having visited a certain country (x) is associated with having a certain hemor-
rhagic fever (y). The data for 10 participants from a travel clinic has been collected
over the past year, and is shown in Table 9-10.

From simply observing the frequencies, you can see that 60% of people who
visited the country had the fever, but a significant number of cases (40%)
occurred even when the person had not visited the country. Perhaps we should
consider whether participants had visited a neighboring country—but firstly, rϕ
can be determined by coding up the occurrences into Cartesian coordinates, as
shown in Table 9-11.

Table 9-10. Country visit versus hemorrhagic fever

Country visit (x) Hemorrhagic fever (y)

1 1

1 1

1 1

1 0

1 0

0 0

0 0

0 0

0 1

0 1

rpbi
88 70.75–

10.8
--------------------------- 0.24=

0.78=
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The formula for deriving rϕ is quite complex, but is based on the difference in the
product of frequencies f(0, 0) and f(1, 1) and the product of frequencies f(0, 1)
and f(1, 0), divided by an estimate of the products of the standard deviations for x
and y. These are labeled C, B, A, and D, respectively. rϕ is then given by:

Thus, there is no strong relationship between the two variables, and visiting a
single country is clearly not the answer to the epidemiologist’s problems.

Table 9-11. Country visit versus hemorrhagic fever (frequencies)

Did not visit country (0) Visited country (1)

Fever (1) (0, 1) f = 2 (A) (1, 1) f = 3 (B)

No fever (0) (0, 0) f = 3 (C) (1, 0) f = 2 (D)

rϕ
AD BC–

A B+( ) C D+( ) A C+( ) B D+( )
--------------------------------------------------------------------------------------=

0.2–=
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Categorical Data

A categorical variable is one in which the responses consist of a set of categories
rather than numbers that measure an amount or quantity of something on a
continuous scale. For instance, a person may describe their gender in terms of
“male” or “female” or a machine part may be classified as “acceptable” or “defec-
tive.” More than two categories are also possible: for instance, a person might
describe their political affiliation (in the United States) as “Republican,” “Demo-
crat,” “Independent,” or “Other.”

Categorical variables may be inherently categorical, with no numeric scale under-
lying their measurement (such as political party affiliation) or may be created by
categorizing a continuous or discrete variable. For instance, blood pressure is a
measure of the pressure exerted on the walls of the blood vessels, measured in
millimeters of mercury (Hg). Blood pressure is usually recorded with specific
measurements such as 120/80 Hg, but it is often analyzed using categories such as
low, normal, prehypertensive, and hypertensive. An example using a discrete vari-
able is number of children in a household: while the data may be collected as the
exact number of children, it may be analyzed in categories such as “0 children”,
“1–2 children,” and “3 or more children.”

Although the wisdom of classifying continuous or discrete measurements into
categories is sometimes debatable (some researchers refer to it as “throwing away
information” because it discards all the information about variance within the
categories), it is a common practice in many fields. Categorizing is done for many
reasons, from custom (for instance, if certain categorizations have become
accepted in your professional field), to solving distribution problems with a
particular data set.

Categorical data techniques may also be applied to ordinal variables, meaning
those measured on a scale in which the categories may be ranked in order but
without the assumptions that the distance between each category is equal. The
well-known Likert scale, in which people choose their responses to questions
from a set of ordered categories (such as Strongly Agree, Agree, Neutral, Disagree,
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and Strongly Disagree) is a classic example of an ordinal variable. There is a
special set of analytic techniques, also discussed in this chapter, for ordinal data
that takes advantage of the fact that ordered categories were used. Given a choice,
specific ordinal techniques are preferred over categorical techniques for the anal-
ysis of ordinal data because they are more powerful.

A host of specific techniques have been developed to analyze categorical and
ordinal data, and to integrate the analysis of categorical data into techniques such
as linear regression. This chapter discusses the most common techniques used for
exclusively categorical and ordinal data, with a few exceptions. Kappa is covered
in Chapter 1; the Spearman correlation coefficient, point-biserial correlation coef-
ficient and phi are discussed in Chapter 9; nonparametric methods are covered in
Chapter 11; and the odds ratio, risk ratio, and the Mantel-Haenszel test are
covered in Chapter 18.

The R × C Table
When an analysis concerns the relationship of two categorical variables, their
distribution in the data set is often displayed in an R × C table, also referred to as a
contingency table. The R in R × C refers to row and the C to column: a specific
table is described by the number of rows and columns it contains. Rows and
columns are always named in this order, a convention also followed in describing
matrices and in subscript notation. Sometimes a distinction is made between 2 × 2
tables, which display the joint distribution of two binary variables, and tables of
larger dimensions. This is not necessary because a 2 × 2 table can be thought of as
an R × C table where R and C both equal 2. The phrase “R × C” is read as “R by
C” and the same convention applies to specific tables sizes, so “2 × 2” is read as “2
by 2.”

Suppose we are interested in studying the relationship between broad categories
of age and health, the latter defined by the well-known five-point general health
scale. We decide on the categories to be used for age and collect data from a
sample of individuals, classifying them according to age (using our predefined
categories) and health status (using the five-point scale). We then display this
information in a contingency table, like in Table 10-1.

This would be described as a 4 × 5 table because it contains four rows and five
columns. Each cell would contain the count of people with the pair of characteris-
tics described: the number of people under 18 years who were in excellent health,
the number aged 18–39 years were in very good health, and so on.

Table 10-1. Contingency table displaying health status by age category

Excellent Very good Good Fair Poor

Under 18 years

18–39 years

40–64 years

65 years and
older
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The Chi-Square Distribution
When we do hypothesis testing with categorical variables, we need some way to
evaluate if our results are significant. With R × C tables, the statistic of choice is
often one of the chi-square tests, which draw on the known properties of the chi-
square distribution. The chi-square distribution is a continuous theoretical proba-
bility distribution that is widely used in significance testing because many test
statistics follow this distribution when the null hypothesis is true. The ability to
relate a computed statistic to a known distribution makes it easy to determine the
probability of a particular test result.

The chi-square distribution is a special case of the gamma distribution and has
only one parameter, k, which specifies the degrees of freedom. The chi-square
distribution has only positive values because it is based on the sum of squared
quantities, as will be seen below, and is right-skewed. Its shape varies according to
the value of k, most radically when k is a low value, as can be seen in Figure 10-1.
As k approaches infinity, the chi-square distribution approaches (becomes very
similar to) a normal distribution.

Statistics books sometimes include a table of critical values for the chi-square
distribution, which can be useful if you don’t have access to a computer. The
tables define critical values for the different chi-square distributions, which can be
used to compare the chi-square value from a particular study with the critical
value. For instance, the critical value, assuming α = 0.05, for the chi-square distri-
bution with one degree of freedom is 3.84. Any test result above this value will be
considered significant for a chi-square test of independence for a 2 × 2 table
(described next).

Figure 10-1. Chi-square probability distributions with different degrees of freedom
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Note that 3.84 = 1.962 and that 1.96 is the critical value for the Z-distribution
(standard normal distribution) for a two-tailed test when α = 0.05. This result is
not coincidental but is due to a mathematical relationship between the Z and chi-
square distributions.

Stated formally: if Xi are independent, normally distributed variables with µ = 0
and σ = 1, and the random variable Q is defined as:

Then Q will follow a chi-square distribution with k degrees of freedom.

The important points to remember are that you must know the degrees of
freedom to evaluate a chi-square value, and that the critical values increase with
the number of degrees of freedom. If α = 0.05, the critical value for a chi-square
distribution with one degree of freedom is 3.84, while for 10 degrees of freedom it
is 18.31.

The Chi-Square Test
The chi-square test is one of the most common ways to examine relationships
between two or more categorical variables. Not surprisingly, it involves calcu-
lating a number, called the chi-square statistic, which follows a chi-square
distribution. For simplicity’s sake I will explain the chi-square test first in terms of
the 2 × 2 table, then look at some more complicated examples. In addition, there
are several types of chi-square tests: this discussion will cover the most common,
which is Pearson’s chi-square test.

There are actually three ways of using the chi-square test, and while they are
sometimes treated as identical we will differentiate among them here. The first is
the chi-square test for independence. Taking the example of two variables, it tests
the null hypothesis that the variables are independent of each other, i.e., that
there is no relationship between them. The alternative hypothesis is that the vari-
ables are in fact related, so they are dependent rather than independent.

For instance, we might collect data on smoking status and diagnosis with lung
cancer from a random sample of adults. Each of these variables is dichotomous: a
person currently smokes or does not, and has a lung cancer diagnosis or does not.
Our frequency table will look like Table 10-2.

Table 10-2. Smoking status and lung cancer diagnosis

Lung cancer diagnosis No lung cancer diagnosis

Currently smoke 60 300

Do not currently smoke 10 390

Q Xi
2

i 1=

k

∑=
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Just looking at this data, it seems that there is a relationship between smoking and
lung cancer: 20% of the smokers have been diagnosed with lung cancer, while
only about 2.5% of the nonsmokers have been. Appearances can be deceiving, so
we will conduct a chi-square test for independence. Our hypotheses will be:

H0: smoking status and lung cancer diagnosis are independent.
HA: smoking status and lung cancer diagnosis are not independent.

Although chi-square tests are usually performed using a computer, particularly for
larger tables, it is worthwhile to go through the steps of calculation for a simple
example by hand. The chi-square test relies on the difference between observed
and expected values in each of the cells of the 2 × 2 table. The observed values are
simply what you found (observed) in your sample or data set, while the expected
values are what you would have expected to find if the two variables were inde-
pendent. To calculate the expected value for a given cell, we use this formula:

where E is the expected value for cell ij, and i and j designate the rows and
columns of the cell. This subscript notation is used throughout statistics so it’s
worth reviewing here. Table 10-3 is a 2 × 2 table.

Table 10-4 adds row and column totals to our example.

The frequency for cell11 is 60, the value for cell12 is 300, the total for row 1 is 360,
and the total for column 1 is 70.

The values for column and row totals are called marginals because they are on the
margin of the table. They reflect the frequency of one variable in the study
without regard to its relationship with the other variable, so the marginal
frequency for lung cancer diagnosis in this table is 70. The numbers within the
table (60, 300, 10, and 390 in this example) are called joint frequencies because
they reflect the number of cases having specified values on both variables. For
instance, the joint frequency for smokers with a lung cancer diagnosis is 60 in this
table.

Table 10-3. Subscript notation for a 2 × 2 table

Cell11 Cell12 Row 1 (i = 1)

Cell21 Cell21 Row 2 (i = 2)

Column 1 (j = 1) Column 2 (j = 2)

Table 10-4. Smoking and lung cancer data with row and column totals

Lung cancer diagnosis No lung cancer diagnosis Total

Currently smoke 60 300 360

Do not currently smoke 10 390 400

Total 70 690 760

Eij
ith row total jth row total×

grand total
------------------------------------------------------------------------=
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If the two variables are not related, we would expect that the frequency of each
cell would be the product of its marginals, divided by the sample size. To put it
another way, we would expect the joint frequencies to be affected only by the
distribution of the marginals. For instance, if smoking and lung cancer were unre-
lated, we would expect the number of people who smoke and have lung cancer to
be determined only by the number of smokers and the number of people with
lung cancer in the sample. By this logic, the probability of lung cancer should be
about the same in smokers and nonsmokers if it is true that smoking is not related
to the development of lung cancer.

Using the formula above, we can calculate the expected values for each of the
cells:

The observed and expected values for the lung cancer data are presented in
Table 10-5; expected values for each cell are in parentheses. We need some way to
determine if the discrepancies can be attributed to chance or if they represent a
significant result. We can make this determination using the chi-square test.

The chi-square test is based on the squared difference between observed and
expected values in each cell, using this formula:

Which means:

1. Calculate the observed/expected values for cell 11.

2. Square the difference and divide by the expected value.

3. Do the same for the remaining cells.

4. Add the numbers calculated in steps 1–3 together.

Table 10-5. Observed and expected values for the lung cancer data

Lung cancer diagnosis No lung cancer diagnosis Total

Currently smoke 60 (33.16) 300 (326.84) 360

Do not currently smoke 10 (36.84) 390 (363.16) 400

Total 70 690 760

E11
360 70×

760
---------------------- 33.16= =

E12
360 690×

760
------------------------- 326.84= =

E21
400 70×

760
---------------------- 36.84= =

E22
400 690×

760
------------------------- 363.16= =

χ2 Oij Eij–( )2

Eij
----------------------------

i 1 j, 1= =

rc

∑=
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Continuing with our example, for cell11 this quantity is:

Continuing with the other cells, we find values of 2.2 for cell12, 19.6 for cell21,
and 2.0 for cell22. The total is 45.5, which is within rounding error for the value
calculated using SPSS (45.474).

In order to interpret a chi-square statistic, you need to know its degrees of
freedom. Each chi-square distribution has a different number of degrees of
freedom, and correspondingly different critical values. For a simple chi-square
test, the degrees of freedom are (r – 1)(c – 1), i.e., (the number of rows minus 1)
times (the number of columns minus 1). For a 2 × 2 table, the degrees of freedom
are (2 – 1)(2 – 1) or 1; for a 3 × 5 table they are (3 – 1)(5 – 1) or 8.

Having calculated the chi-square value and degrees of freedom by hand, we would
consult a chi-square table to see if the chi-squared value calculated from our data
exceeds the critical value for the relevant distribution. In this case the critical
value for α = 0.05 is 3.84, so we have sufficient evidence to reject the null hypoth-
esis that the variables are independent. This process is further discussed in
Chapter 7 on inferential statistics. More commonly, we would do the entire anal-
ysis by computer, which would give us a chi-squared value, its degrees of
freedom, and the p-value. If the p-value is less than 0.05 we would normally reject
the null hypothesis and conclude that the variables we studied are not indepen-
dent. In this case, 21.7 is a highly significant value (p < 0.001) for a chi-square
statistic with 1 degree of freedom, which leads us to the same conclusion, which is
to reject the null hypothesis of independence between the variables.

The chi-square test for equality of proportions is computed exactly the same way as
the chi-square test for independence, but the hypothesis tested is stated differ-
ently. The test for equality of proportions is used for data that is conceived as
having been drawn from multiple independent populations: the hypothesis is that
the distribution of some variable is the same in all populations. For instance, we
could draw random samples from different ethnic groups and test whether the
rates of lung cancer diagnosis were the same or different across the populations.
The calculations would proceed as in the example above: people would be classi-
fied by ethnic group and lung cancer status, expected values would be computed,
the value of the chi-square statistic and degrees of freedom calculated, and the
statistic compared to a table of chi-square values for the appropriate degrees of
freedom or the exact p-value obtained from a statistical software package.

The chi-square test of goodness of fit is used to test the hypothesis that the distribu-
tion of a categorical variable within a population follows a specific pattern of
proportions, while the alternative hypothesis is that the distribution of the vari-
able follows some other pattern. The test is calculated using expected values
based on hypothesized proportions, and the different categories or groups are
designated with the subscript i, from 1 to g:

Oij Eij–( )2

Eij
----------------------------

60 33.16–( )2

33.16
---------------------------------- 21.7= =

χ2 Oi Ei–( )2

Ei
-------------------------

i 1=

g

∑=
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For instance, suppose we believe that 10% of a particular population has low
blood pressure (hypotension), 40% normal blood pressure, 30% prehyperten-
sion, and 20% hypertension. We can test this hypothesis by drawing a sample and
comparing the observed proportions to those of our hypothesis (which are the
expected values). Table 10-6 shows an example using hypothetical data.

The computed chi-square value is 21.7 with 3 degrees of freedom, and is highly
significant (the critical value for α = 0.05 is 9.49), so we would reject the null
hypothesis that the blood pressure levels in the population followed the distribu-
tion we hypothesized. Degrees of freedom for the chi-square goodness of fit test is
one less than the number of groups or proportions stated in the hypothesis. In this
example, the degrees of freedom are (4 – 1), or 3.

The Pearson’s chi-square test is suitable for data in which all observations are
independent (the same person is not measured twice, for instance) and the catego-
ries are mutually exclusive and exhaustive (so that no case may be classified into
more than one cell, and all cases can be classified). It is also assumed that no cell
has an expected value less than 1, and no more than 20% of the cells have an
expected value less than 5. The reason for the last two requirements is that the
chi-square is an asymptotic test and may not be valid for sparse data (data in
which one or more cells have a low expected frequency).

Fisher’s exact test, discussed below, does not require these assumptions and is a
good substitute for the 2 × 2 chi-squared test with sparse data. Another solution,
known as Yates’ correction for continuity, is to subtract 0.5 from the absolute
value of the difference between observed and expected values in each cell before
squaring, as follows:

Yates’ correction reduces the chi-square value and thus the probability of a false
positive result for data sets with sparse cells. Use of Yates’ correction is not
universally endorsed, however: some researchers feel it may be an over-correction
leading to a loss of power and false negative results.

The chi-square test is often computed for tables larger than 2 × 2, although
computer software is usually used for those analyses rather than hand calcula-
tions. There is no theoretical limit on the number of columns and rows that may
be included, but two factors impose practical limits: the possibility of making a

Table 10-6. Expected and observed values for the distribution of blood pressure levels

Hypotension Normal Prehypertension Hypertension Total

Expected
proportion

0.10 0.40 0.30 0.20 1.00

Expected
count

10 40 30 20 100

Observed
count

12 25 50 13 100

χ2 Oij Eij– 0.5–( )2

Eij
---------------------------------------------

i 1 j, 1= =

rc

∑=
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coherent interpretation of the results (try this with a 30 × 30 table!) and the neces-
sity to avoid sparse cells, as noted above. Sometimes data is collected in a large
number of categories but collapsed into a smaller number to get around the sparse
cell problem. For instance, information about marital status may be collected
using many categories (married, single never married, divorced, living with
partner, widowed, etc.) but for a particular analysis the statistician may choose to
reduce the categories (e.g., to married and unmarried) because of insufficient
numbers in the smaller categories.

Fisher’s Exact Test
Fisher’s Exact Test (often called simply Fisher’s) is a nonparametric test often
substituted for the chi-square test with small or sparsely distributed data sets.
Fisher’s is based on the hypergeometric distribution and calculates the exact prob-
ability (p-value) of observing the distribution seen in the table, or a more extreme
distribution: this is the meaning of the “exact” in the title. It is not an asymptotic
test and therefore is not subject to the sparseness rules that apply to the chi-square
tests (no cells with expected values less than 1, no more than 20% of cells with
expected values less than 5). Computer software is usually used to calculate
Fisher’s, particularly for tables larger than 2 × 2, because of the repetitious nature
of the calculations. A simple example with a 2 × 2 table is illustrated below.

Suppose we are interested in the relationship between use of a particular street
drug and sudden cardiac failure in young adults. Because the drug is both illegal
and new to our area, and because sudden cardiac death is rare in young adults, we
were not able to collect enough data to allow us to conduct a chi-square test.
Table 10-7 shows the data for analysis.

Our hypotheses are:

H0: risk of sudden cardiac death is no more common among users of the new
drug than in nonusers.
H1: risk of sudden cardiac death is greater in people using the new drug.

Fisher’s Exact Test calculates the probability of results at least as extreme as those
found in the study. A “more extreme” result in this study would be one in which
the difference in proportion of drug users versus nondrug users suffering sudden
cardiac death was even greater than in the actual data (keeping the same sample
size), as in Table 10-8.

Table 10-7. Fisher’s exact test: calculating the relationship between the use of novel street
drug and sudden cardiac death in young adults

Cardiac death No cardiac death Total

Used drug 7 2 9

Didn’t use drug 5 6 11

Total 12 8 20
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The formula to calculate the exact probability for a 2 × 2 table is:

where ! means factorial (4! = 4 × 3 × 2 × 1) and cells and marginals are identified
using the notation shown in Table 10-9.

In this case, a = 8, b = 1, c = 4, d = 7, r1 = 9, r2 = 11, c1 = 12, c2 = 8, and n = 20.
The exact probability for Table 10-8 is:

To find the p-value for this and all more extreme tables, we would have to repeat
this calculation for each table and add them together. Since 0.132 is above the
conventional p-value of 0.05, which is the usual standard for rejecting the null
hypothesis, we don’t need to continue with our labors, because the overall proba-
bility cannot get any lower by adding in probabilities from more tables. We can
therefore conclude that our sample data does not provide sufficient evidence to
reject the null hypothesis of no relationship between the two variables. Using
SPSS, I found the exact significance for a one-sided hypothesis to be 0.16, which
confirms the conclusion that this data does not present sufficient evidence to
reject the null hypothesis.

McNemar’s Test for Matched Pairs
McNemar’s test is a type of chi-square test used when the data comes from paired
samples. We might use McNemar’s to examine the results of an opinion poll on
some issue before and after a group of individuals viewed a political advertise-
ment. In this example, each person would contribute two opinions, one before
and one after viewing the advertisement. Another example would be the concor-
dance of opinions on some issue among pairs of siblings. In this example,
although different individuals are involved, they are so closely related or affiliated
that we would expect them to be more similar than an independent sample of

Table 10-8. More extreme data distribution for drug use/cardiac death example

Cardiac death No cardiac death Total

Used drug 8 1 9

Didn’t use drug 4 7 11

Total 12 8 20

Table 10-9. Table notation

a b r1
c d r2

c1 c2 n

p
r1!r2!c1!c2!

n!a!b!c!d!
-----------------------------=

p 9!11!12!8!
20!7!2!5!6!
------------------------------ 0.132= =
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individuals from the population. Analogous to the sibling example, McNemar’s
can also be used to analyze data collected from two groups of individuals who
have been closely matched on important characteristics such that they can no
longer be considered independent. For instance, medical studies sometimes look
at the occurrence of a particular disease, related to a risk factor, among two
groups of individuals matched on characteristics such as age, gender, and
ethnicity.

Suppose we want to measure the effectiveness of a political advertisement in
changing people’s opinions. One way to do this would be to ask people if they are
for or against capital punishment, both before and after viewing a 30-second tele-
vision commercial advocating that capital punishment should be abolished.
Consider the hypothetical data set in Table 10-10.

More people were against capital punishment after viewing the commercial, but is
this difference significant? We can test this using McNemar’s chi-square test,
calculated using the following formula:

This formula uses a method of referring to cells by letters, using the plan shown in
Table 10-11.

Note that this formula is based exclusively on the distribution of discordant pairs
(b and c), in this case those in which a person changed their opinion after viewing
the commercial. McNemar’s has a chi-squared distribution with one degree of
freedom. In this example:

Table 10-10. McNemar’s test of opinions on capital punishment, before and after viewing a
television commercial

            After viewing the commercial

Before viewing
the commercial

For capital
punishment

Against capital
punishment

For capital
punishment

15 25 40

Against capital
punishment

10 20 30

25 45 70

Table 10-11. Method of referring to cells in a 2 × 2 table by letters

a b

c d

χ2 b c–( )2

b c+
-------------------=

χ2 25 10–( )2

25 10+
--------------------------

225
35
--------- 6.43= = =
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This is sufficient evidence to reject the null hypothesis (the critical value is 3.84
for a chi-square distribution with one degree of freedom) and conclude that
people’s opinions do change after viewing the commercial. I also determined from
a computer analysis that the exact probability of getting a chi-square statistic with
one degree of freedom at least as extreme as 6.43, if people’s opinions did not
change before and after viewing the commercial, is 0.017, reinforcing the fact that
the change observed in this study is significant.

Correlation Statistics for Categorical Data
The most common correlation statistic, Pearson’s correlation coefficient, requires
variables measured on at least the interval level. A number of different measures
of correlation have been developed for categorical and ordinal data. These are
often produced using a statistical software package, although most can also be
calculated by hand. These measures of correlation share most characteristics with
Pearson’s correlation. One is that their range is from –1 to +1 (although some
have range restrictions, as noted below), with 0 indicating no relationship.
Another is symmetry, meaning that either variable can be considered independent
or dependent.

As with Pearson’s correlation, the correlation statistics discussed in this section
are measures of association only, and statements about causality cannot be
supported by a correlation coefficient alone. There are a plethora of these
measures, some of which are known under several names: a few of the most
common are discussed here. A good approach if you’re using a new statistical
software package is to see which measures are supported by that package, and
then investigate which are appropriate for your data, because there are so many
different correlation statistics.

Binary Variables

Phi is a measure of the degree of association between two binary variables, i.e.,
two categorical variables, each of which can take on only two values. Phi is the
same as r (Pearson’s correlation) when variables are scored as 0 and 1, and is
further discussed in Chapter 9. Cramer’s V is analogous to phi for tables larger
than 2 × 2; it is usually calculated using statistical software, as are the other
measures discussed in this paragraph. If two binary variables are thought to repre-
sent underlying continuous measurement scales (for instance, if test scores on a
scale of 0–100 are dichotomized for analytical purposes as pass/fail), the tetra-
choric correlation coefficient is an appropriate statistic to use.

Ordinal Variables

The most common correlation statistic for ordinal data (in which data is ordered
but cannot be assumed to have equal distance between values) is Spearman’s
rank-order coefficient. It is based on the ranks of data points (first, second, third,
and so on) rather than their values, and is sometimes used in favor of Pearson’s
correlation to lessen the influence of outliers (extreme values) even for variables
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measured at the interval or ratio scale. Spearman’s rank-order coefficient is
discussed in detail in Chapter 9.

Goodman and Kruskal’s gamma, often called simply gamma, is a measure of asso-
ciation for ordinal variables computed by calculating the number of concordant
and discordant pairs among two variables. It is sometimes called a measure of
monotonicity because it tells you how often the variables have values in the order
expected. For instance, if I tell you that two variables in a data set have a positive
relationship, and that case 2 has a higher value on the first variable than does case
1, you would expect that case 2 also has a higher value on the second variable.
This would be a concordant pair. If case 2 had a lower value on the second vari-
able, it would be a discordant pair. To calculate gamma by hand, we would first
create a frequency distribution on the two variables, retaining their natural order.

Consider a hypothetical data set relating BMI (body mass index, a measure of
weight relative to height) and blood pressure levels. In general, high BMI is associ-
ated with high blood pressure, but this is not the case for every individual. Some
overweight people have normal blood pressure, and some normal-weight people
have high blood pressure. Is there a significant relationship between weight and
blood pressure in the data set shown in Table 10-12?

The equations to calculate gamma rely on the cell designations shown in
Table 10-13.

First we have to find the number of concordant pairs (P) and discordant pairs (Q),
as follows:

P = a(e + f) + bf = 15(15 + 20) + 15(20) = 525 + 300 = 825
Q = c(d + e) + bd = 5(10 + 15) + 15(10) = 125 + 150 = 275

Gamma is then calculated as:

Gamma is a symmetrical measure because it does not matter which variable is
considered the predictor and which the outcome: the value of gamma will be the
same in either case. It does not correct for tied ranks within the data. For large
samples gamma has an approximately normal distribution, making it possible to

Table 10-12. Example data to calculate gamma

Blood pressure

Normal Prehypertensive Hypertensive

BMI Normal 15 (a) 15 (b) 5 (c)

Overweight 10 (d) 15 (e) 20 (f)

Table 10-13. Cell designations to compute gamma

a b c

d e f

γ P Q–
P Q+
---------------

825 275–
825 275+
------------------------- 0.5= = =
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calculate standard errors and p-values, and these numbers are provided when
gamma is calculated using a computer program. I calculated gamma for this data
using SPSS, which gave me a standard error of 0.145 and a p-value of 0.002, so I
concludes that the data shows a relationship between BMI and blood pressure.

Maurice Kendall developed three slightly different types of ordinal correlation as
alternatives to gamma. Statistical programs sometimes use slightly different
formulas to calculate these statistics, so the exact formula used by any particular
package should be confirmed with the software manual. All Kendall’s tau statis-
tics, like gamma, are symmetrical measures.

Kendall’s tau-a is based on the number of concordant versus discordant pairs,
divided by a measure based on the total number of pairs (n = the sample size):

Kendall’s tau-b is a similar measure of association based on concordant and
discordant pairs, adjusted for the number of ties in ranks. It is calculated as (P –
Q) divided by the geometric mean of the number of pairs not tied on X (X0) and
the number of pairs not tied on Y (Y0). Kendall’s tau-b has a known sampling
distribution and statistical packages usually report its standard error and signifi-
cance. Tau-b can approach 1.0 or –1.0 only for square tables (tables with the
same number of rows and columns). The formula for Kendall’s tau-b is:

where X0 = the number of pairs not tied on X, and Y0 = the number of pairs not
tied on Y.

Kendall’s tau-c is used for nonsquare tables and, like tau-b, has a known sampling
distribution. Tau-c is calculated as:

where m is the number of rows or columns, whichever is smaller, and n is the
sample size.

Somers’s d is an asymmetrical version of gamma, so calculation of the statistic
varies depending on which variable is considered the predictor and which the
outcome. Somers’s d also differs from gamma because it is corrected for the
number of pairs tied on the predictor variable. So if the hypothesis is that X
predicts Y, Somers’s d is corrected for the number of pairs tied on X. If the
hypothesis is that Y predicts X, it is corrected for the number of pairs tied on Y.
This is often phrased as saying that Somers’s d “penalizes” the data for ties: all
this really means is that, as in tau-b, tied pairs are removed from the denomi-
nator. Using the notation that X0 = the number of pairs not tied on X, and Y0 =
the number of pairs not tied on Y, Somers’s d is calculated as:

τa
P Q–

n n 1–( )
2

--------------------- 
 
---------------------------=

τb
P Q–

P Q Y0+ +( ) P Q X0+ +( )
------------------------------------------------------------------------=

τc P Q–( ) 2m

n2 m 1–( )
-------------------------=
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A symmetric value of Somers’s d may be calculated by averaging the two asym-
metric values calculated with these formulas.

The Likert and Semantic Differential Scales
Several types of scales have been developed to measure qualities that have no
natural metric, such as opinions, attitudes, and perceptions. The best known of
these scales is the Likert scale, introduced by Rensis Likert in 1932, and widely
used today in fields ranging from education to health care to business manage-
ment. In a typical Likert scale question, a statement is presented and the
respondent is asked to choose from an ordered list of responses. For instance:

My classes at Lincoln East High School prepared me for university studies.
1. Strongly agree
2. Agree
3. Neutral
4. Disagree
5. Strongly disagree

This is a classic ordinal scale: we can be reasonably sure that “strongly agree”
represents more agreement than “agree,” and “agree” represents more agreement
than “neutral,” but we can’t be sure if the increment of agreement between
“agree” and “strongly agree” is the same as the increment between “neutral” and
“agree,” or if these increments are the same for each respondent.

Categorical and ordinal methods, as described in this chapter, are always appro-
priate for the analysis of Likert scale data, and so are some of the nonparametric
methods described in Chapter 11. The fact that Likert scale responses are often
identified with numbers has sometimes led researchers to analyze the data as if it
were collected on an interval scale. For instance, you can find published articles
that report the mean and variance for data collected using a Likert scale. A
researcher choosing to follow this path (treating Likert data as interval) should be
aware that this is a controversial approach that will be rejected by many editors
(including myself), and that the burden is on the researcher to justify any depar-
ture from ordinal or categorical methods of analysis for Likert scale data.

Five levels of response are commonly used with Likert scales, because three is
thought to not allow sufficient variation of response, while seven is believed to
offer too many choices. There is also some evidence that people are reluctant to
select the extreme values of a scale when a large number of choices are offered.
Some researchers prefer to use an even number of responses, usually four or six,
in order to avoid a middle category that may be chosen by default by some
respondents.

d predicting Y from X( ) P Q–
P Q X0+ +
-----------------------------=

d predicting X from Y( ) P Q–
Q P Y0+ +
----------------------------=
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The semantic differential scale is similar to the Likert scale, except that individual
data points are not labeled, merely the extreme values. The Likert question above
could be rewritten as a semantic differential question as follows:

Please rate your academic preparation at Lincoln East High School in relation
to the demands of university study.
Excellent preparation      1  2  3  4  5       Inadequate preparation

Because individual data points do not have to be labeled, semantic differential
items often offer more data points to the respondent. Ten data points is a popular
choice because people are familiar with a 10-point judging scale (hence the
popular phrase “a perfect 10”). Like Likert scales, semantic differential scales are
by nature ordinal, although when a larger number of data points are offered, some
researchers argue that they can be analyzed as interval data.

Exercises
Here are some review questions on the topics covered in this chapter.

Question

What are the dimensions of these tables? What are the degrees of freedom for an
independent samples chi-square test calculated from data of these dimensions?

Rensis Likert (1903–1981)
Rensis Likert (pronounced Lick-urt, with the accent on the first syllable) was an
American social scientist who specialized in research on organizational behavior
and management theory. Likert received his B.A. in sociology from the Univer-
sity of Michigan in 1926 and his Ph.D. in psychology from Columbia in 1932:
he developed the Likert scale as part of his dissertation research. Likert was a
founder of the University of Michigan Institute for Social Research and served as
its director from 1946 to 1970; he spent his later years consulting for corpora-
tions and writing books on management theory. A central aspect of his work
will endear him to self-motivated students and employees around the world:
Likert introduced the concepts of participation management and the human-
centered organization, based on his findings that there was an inverse relation-
ship between coercive management supervision and employee productivity.
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Answer

2 × 4 and 4 × 3: remember, tables are described as R × C, i.e., (# of rows) by (# of
columns). The degrees of freedom are 3 for the first table [(2 – 1)(4 – 1)] and 6 for
the second [(4 – 1)(3 – 1)], because degrees of freedom for chi-squares are calcu-
lated as [(r – 1)(c – 1)].

Question

What is the null hypothesis for the chi-square test of independence?

Answer

The variables are independent, which also means that the joint probabilities may
be predicted using only the marginal probabilities.

Question

What is an appropriate statistic to measure the relationship between the two inde-
pendent variables displayed in the following 2 × 2 table? What is the value of that
statistic and what conclusion would you draw from it?

Answer

Because two cells have expected values of less than five (cells c and d), Fisher’s
Exact Test should be used. The value is 0.077 (obtained using computer soft-
ware), which does not provide sufficient evidence to reject the null hypothesis of
no relationship between E and D.

Question

What are the expected values for the cells in this table? What is the value of the
chi-square statistic? What conclusion would you draw about the relationship
between exposure and disease, given this data?

Answer

Here are the expected values.

D+ D–

E+ 25 10

E– 2 5

D+ D–

E+ 25 30

E– 15 5

D+ D–

E+ 29.3 25.7

E– 10.7 9.3
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Chi-square(1) = 5.144, p = 0.023. We can therefore conclude that we have suffi-
cient evidence to reject the null hypothesis that exposure and disease are unrelated.

Question

The following table represents political affiliations of married couples. Compute
the appropriate statistic to see if the affiliations of husbands and wives are inde-
pendent of those of their spouses.

Answer

McNemar’s test is appropriate because the data comes from correlated pairs. The
value of McNemar’s chi-square is 2.00, which is not sufficient to reject the null
hypothesis that the political affiliations of spouses are independent of the affilia-
tion of the other spouse.

Question

Which of Kendall’s tau statistics would be appropriate for the following data?

Answer

Kendall’s tau-c should be used because the table is not square (it has four rows
and three columns).

Question

What is the argument against analyzing Likert and similar attitude scales as
interval data?

Answer

There is no natural metric for constructs such as attitudes and opinions. We can
devise scales that are ordinal (the responses can be ranked in order of strength of
agreement, for instance) to measure such constructs, but it is impossible to deter-
mine if the intervals among points on such scales are equally spaced. Therefore,
data collected using Likert and similar types of scales should be analyzed at the
ordinal or categorical level rather than the interval or ratio level.

Wife

Republican Democrat

Husband
Republican 20 30

Democrat 20 20

                Satisfaction with job

Dissatisfied Neutral Satisfied

Educational Level

< HS 45 20 10

HS grad 15 15 20

Some college 30 10 25

College grad 10 15 30
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Question

In what circumstance would you compute the Cramer’s V statistic?

Answer

Cramer’s V is an extension of the phi statistic and should be calculated to deter-
mine the strength of association between two categorical variables that have more
than two levels. For binary variables, Cramer’s V is equivalent to phi.

Simpson’s Paradox
Simpson’s paradox is a circumstance in which the direction of an association
reverses when data from several groups is combined. This paradox is well
known among baseball fans, for instance: it is possible for player A to have a
higher batting average (proportion of hits) than player B in each of two years,
yet have a lower batting average when data from the two years is combined.
Consider the example in Table 10-14.

Player A had a higher batting average each year, yet over both years combined, a
lower average. This phenomenon occurs due to the different number of cases
observed for each player in each year. Simpson’s paradox was also at the root of
a controversy about gender discrimination in university admissions a few years
ago. A lawsuit filed against the University of California was denied when it was
shown that apparent gender discrimination (a lower percentage of women than
men admitted overall to the university) could be explained by the fact that
admissions were determined on a department-by-department basis, and that
most women applied to departments where the percentage of applicants
accepted was low, while most men applied to departments where the percentage
of applicants accepted was higher. In fact, in most departments a slightly lower
percentage of men than women were accepted, but this distinction was reversed
when admissions data from all departments was combined.

Simpson’s paradox is also seen in the evaluation of medical treatments, where
treatment A may be superior to treatment B in each of two samples, yet inferior
when the samples are combined. Some statisticians argue that circumstances
such as this should not be labeled a “paradox” at all, since to do so implies that
there is a causal relationship between the two variables.

Table 10-14. Simpson’s paradox in baseball

2000 2001 Combined

Player Hits At-
bats

Average Hits At-
bats

Average Hits At-
bats

Average

A 10 50 0.200 200 600 0.333 210 650 323

B 85 400 0.213 50 145 0.345 135 545 0.248
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11
Nonparametric Statistics

The basis of statistics is parameter estimation, i.e., when an attempt is made to
estimate the parameters (mean and standard deviation) of a population from a
random sample. However, most statistical techniques rely on the underlying
distribution being of a particular type, such as the normal distribution, for infer-
ences made from the relevant statistical tests to be valid. What about scenarios
where the underlying data is known to be nonnormal? In these cases, a different
set of statistical techniques, known as nonparametric statistics, can be fruitfully
applied to understand data. These techniques are often known as distribution-free
since they make no assumptions about the underlying distribution of the data.

Nonparametric statistics are often applied to data sets where ranks rather than
raw scores are used. For example, scholastic testing often involves some ranking
of students from highest to lowest scores, and the ranks rather than the scores are
often used in analysis. Taking the mean of the ranks of these scores is not a useful
measure of central tendency in this scenario. Alternatively, Likert scales asking
participants to rate their satisfaction with a product on a scale of values from
1–10, where 1 is very dissatisfied and 10 is extremely satisfied, the appropriate
measure of central tendency would be the median rather than the mean, since the
scores are ordinal rather than interval or ratio—that is, a score of 10 does not
indicate 10 times the satisfaction of a corresponding score of 1. This is precisely
the type of scenario where inferential tests that do not rely on parameterization
are most useful.

In this chapter, you will learn about the most commonly used nonparametric
procedures, including the median test, the Mann-Whitney U test, the Wilcoxon
matched pairs signed rank test, the Kruskal-Wallis test, and the Friedman test.
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Note that while nonparametric techniques are more robust* than their parametric
counterparts, they typically have lower power (i.e., they are less sensitive), and are
most appropriately used for smaller rather than larger samples, since some
nonnormal distributions (such as Student’s t distribution) approximate a normal
distribution for large N (from the Central Limit Theorem).

Nonnormal Data
A common practice of some researchers in certain disciplines is to assume that all
data is normally distributed, and to apply the relevant parametric test to “prove”
differences between groups. Such “proof” has no validity if the underlying
assumptions about distributions are not met. However, these researchers could
just as easily use nonparametrics, and immediately enhance the credibility of their
work. Many naturally occurring variables approximate a normal distribution for
large samples, such as height. Yet other physical variables, such as the distribu-
tion of weight in a population, are subject to variation, even within the same
population over time, as the current obesity epidemic in first-world countries
demonstrates.

Another issue is the scale of data being used, a topic discussed in detail in
Chapter 1. For a ratio or interval scale, such as height or height differences, a 7-
foot tall tree is twice as tall as a 3.5-foot tree. But for ordinal data, such as test
scores that are ordinal, it’s not clear that in a set of grades [a, b, c, d] that an “a”
grade is twice as good as a “c” grade. This is because grades are ultimately associ-
ated with ranks and not interval or ratio data.

Denoting ranks using alphabetical rather than numerical categories is very useful
in one respect: there is no temptation, then, to treat ordinal data as if it were
interval or ratio, and computing mean values as a true representation of central
tendency. Unfortunately, this is common practice in some types of survey
research. For example, undergraduate students may be asked to rate their
lecturers at the end of each term on 10 measures such as clarity of speaking, feed-
back on assignments, etc., on an ordinal scale of 1 to 5 as follows:

• 1—Needs improvement

• 2—Below expectation

• 3—Meets expectation

• 4—Exceeds expectation

• 5—Outstanding

To obtain an average performance measure, the human resources department
decides to calculate the mean for each academic across all 10 measures. If
Professor Smith obtains a mean score of 2.3, what does this really mean? Of
course, it is a meaningless calculation, since there is no constant interval between

* In statistics, robustness is a quality of tests whose validity is not unduly violated by departures
from underlying assumptions—without having to rely on the Central Limit Theorem. As an ex-
ample, many multivariate statistical tests are very sensitive to assumption violations, but non-
parametrics are generally the most robust.
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measures on the scale. In other words, below expectation is not half as bad as needs
improvement, and exceeds expectation is not twice as good as below expectation.
Rather, a better measure of central tendency would be the median rank (i.e., what
rank lies in the middle of the distribution) or the mode rank (i.e., what rank did
most students give to this academic). Using numerical labels in this example has
presented a temptation to treat ordinal ranks as interval data, which is completely
inappropriate.

The more appropriate approach is to start analyzing nonnormal and/or ranked
data using descriptive statistics that are designed to make sensible characteriza-
tions of the data, and then to use these statistics as the basis for inferential testing.
For ordinal data, the typical way to begin analysis is to order the scores, usually
from lowest to highest, and assign them a rank to show the order in which each
score appears. Consider a football competition at the end of each season; every
team has won a number of games, and this score is used to order and rank each
team in terms of their performance. The two top ranked teams will compete in a
“final match,” irrespective of whether the difference in the number of games won
by each team is 1 or 10—the two teams are still ranked 1 and 2, and it’s possible
for the rank 2 team to win the competition by winning the “final match.”

Nonparametric tests are suitable for both between-subjects and within-subjects
designs, described in Chapter 5, as well as tests of association. In Chapter 9, for
example, you learned about Spearman’s R, which is a correlation coefficient
computed from ranks rather than data measured using interval or ratio scales. In
this chapter, the focus is on exploring nonparametrics for between- and within-
subjects comparisons.

The most commonly used nonparametrics for between-subjects comparisons are
the Mann-Whitney U test, the median test, and the Kruskal-Wallis test. For
within-subjects designs, the Wilcoxon matched pairs signed rank test and the
Friedman test are generally used.

Between Subjects Designs
This section reviews some commonly used nonparametric tests for between-
subjects designs, generally based on the rank sum and mean rank measures.

Wilcoxon’s Rank Sum Test and the Mann-Whitney U Test

Two main descriptive statistics are used to characterize ordinal data: the rank sum
and the mean rank. To illustrate how these statistics can be used, consider an
example; an Olympic Games selection committee must choose a champion tae
kwon do team from two states (California and Nevada) to represent the U.S. Since
there are both individual and group events for which the members have trained
together, the teams can’t be combined to produce a composite team of the most
highly performing individuals. Each team member has been given an overall
performance score, based on the number of bricks that they managed to break
during a five-minute testing session. The results are shown in Table 11-1.
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Trying to interpret the results in this case is difficult just by visual inspection; the
scores for the California team are more consistent and clustered in a smaller
range, while the Nevada results are bimodal and have a greater range. Since the
top three performers are from Nevada, you might be tempted to select this team,
but the median score for Nevada is just 4, compared to California, with 7. This is
not particularly helpful, since the three top scores for Nevada are beyond inclu-
sion in the median range, and yet these athletes would most likely win the
individual competition on their own merits. Similarly for the mean, the California
team can break 7 bricks on average, and the Nevada team only 5.78, but since
brick-breaking is a discrete event, the fractional of the score doesn’t have a phys-
ical meaning.

The most appropriate way to describe the data is to assign a rank to each case,
and then add all of the ranks together for each team. This usually gives an accu-
rate indication of where the values are likely to be grouped on the scale. To assign
ranks, every team member from both teams is ranked from top to bottom. This
process is shown in Table 11-2.

Table 11-1. Performance scores for tae kwon do teams from two states

California Nevada

4 2

5 3

6 3

6 4

7 4

8 5

9 10

9 10

9 11

Table 11-2. Team rankings

California Nevada Rank

2 1

3 2

3 3

4 4

4 5

4 6

5 7

5 8

6 9

6 10

7 11

8 12
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Note that, where tied ranks occur—i.e., the same rank occurs for more than one
case in either team—the average rank is instead computed from the sum of the
ranks concerned and divided by their number. The new ranking, including tied
ranks, is shown in Table 11-3.

The rank sum is then calculated for each group by simply adding together their
respective ranks:

The magnitude of the rank sum indicates how close together the ranks are for
each group. Thus, the California group overall tends to cluster at high values,

9 13

9 14

9 15

10 16

10 17

11 18

Table 11-3. Ranks for individual tae kwon do performance scores, including ties

California Nevada Rank

2 1

3 2.5

3 2.5

4 5

4 5

4 5

5 7.5

5 7.5

6 9.5

6 9.5

7 11

8 12

9 14

9 14

9 14

10 16.5

10 16.5

11 18

Table 11-2. Team rankings (continued)

California Nevada Rank

ΣR California( ) 5 7.5 9.5 9.5 11 12 14 14 14 96.5=+ + + + ++ + +=

ΣR Nevada( ) 1 2.5 2.5 5 5 7.5 16.5 16.15 18+ + + + + + + + 74.5= =
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where the Nevada group tends to be grouped toward lower values, even though
Nevada has the three highest scorers. Going a step further, and to compensate for
unequal group sizes to make a fair comparison, the mean rank R can be computed
by dividing each sum by the respective N. The results are shown below:

Thus, on the whole, the California team ranks higher than the Nevada team.
Thus, using rank-based methods, the selectors should select the California team,
since the mean rank is higher. However, it is also possible to calculate a z-test for
the rank sum to determine whether the difference between the two groups is
statistically significant. If the null hypothesis is that the two groups would have
equal mean ranks, we can compute the expected sum as follows:

In the example above, you can see that one group (California) has a rank sum
above the expected mean, and the other group (Nevada) has a rank sum below
the expected mean. The z-test can be computed from the mean and standard devi-
ation of W, which is the difference between the smallest observed rank sum and
the expected rank sum, as shown below:

The estimate for σW is given by:

In this example:

Thus:

This result is not statistically significant at either p < 0.01 or p < 0.05. Thus, you
would fail to reject the null hypothesis.

R California( ) 96.5
9

----------- 10.72= =

R Nevada( ) 74.5
9

----------- 8.28= =

µW

n1 n1 n2 1+ +( )
2

---------------------------------------=

9 9 9 1+ +( )
2

-------------------------------=

85.5=

z
W µW–

σW
---------------------=

σW

n1n2 n1 n2 1+ +( )
12

---------------------------------------------=

σW
9 9× 9 9 1+ +( )

12
-----------------------------------------=

11.32=

z 7.45 85.5–
11.32

-----------------------------=

0.97–=
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The Wilcoxon rank sum test is considered mathematically equivalent to the
Mann-Whitney U test since the same z score will be produced, and can be used as
a substitute for the two-sample t-test, where the normality assumption of the
underlying data is questionable. In summary, the Mann-Whitney U test can be
used to test the null hypothesis that two groups have identical distributions and/
or identical medians (rather than means). The Mann-Whitney U test can be
applied to data measured on ordinal, integer, or ratio scales.

Median Test

The median test makes use of ranks and the binomial distribution to test hypoth-
eses, i.e., where there are only two possible outcomes. The test is based on the
distribution of dichotomous variables using either a known median rank, or
comparing the differences between two groups with median ranks estimated from
a sample (i.e., one-sample and two-sample median tests, respectively). In epidemi-
ology, the median test is often used to generalize findings between studies. For
example, a researcher may be interested in testing a hypothesis whether a new
metabolic disorder, provisionally termed Type X diabetes, is a disease of older
rather than younger people. Having previously studied Type II diabetes, the
median age of onset was found to be 35.5 years. After studying Type X diabetes,
the researcher believes the age of onset is greater. Thus, the null hypothesis is that
π = 0.50, while the hypothesis is that π > 0.50. After examining the age of onset in
a clinical sample of 40, 36 had an age greater than 35.5 years, and thus the null
hypothesis was rejected at p < 0.05.

Further metabolic research in the lab subsequently suggests that there may be two
subtypes of Type X diabetes—Type X1 and X2—and raises the question of
whether subtypes are associated with age: that is, do younger patients tend to
have Type X1 and older patients Type X2? The research decides to look at another
sample of 40 cases, 20 of which have been provisionally given Type X1 and 20
classified as Type X2. The median age was 36 years. For Type X1, 12 cases were
above the median age and 8 cases were below the median age. For Type X2, 9
cases were above the median age and 11 cases were below the median age. The
null hypothesis is that π(Type X1) = π(Type X2) = 0.50, whereas the alternative
hypothesis is that π(Type X1) < π(Type X2). The tabulated frequencies are shown
in Table 11-4, and would omit exact median scores if they occurred.

A chi-square test (discussed in Chapter 10) can be used to test the significance.
You can use the fast computational formula for χ2 analysis, where the fields are
described as in Table 11-5.

Table 11-4. Frequencies of age of occurrence for Type X1 and Type X2 diabetes

Above median Below median Total

Type X1 12 8 20

Type X2 9 11 20

Total 20 20 40
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Thus:

The results indicate that χ2 = 0.902, which is not statistically significant at p < 0.05,
df = 1. Thus, there is no clear difference between the two subtypes in terms of age,
and the original one-way test is clearly most useful in terms of understanding the
relationship between age and diabetes subtypes.

Kruskal-Wallis H Test

The Kruskal-Wallis H test extends the Mann-Whitney U test by allowing for
multiple groups to be compared, in order to test the null hypothesis that there is
no median difference for at least two of the groups. You may be wondering how
this relates to the t-test; in summary, the t-test can only test comparisons between
two groups, just like a correlation is a measure of association between two vari-
ables. However, as you will learn in Chapter 12, the general linear model allows
more general comparisons to be made between groups and variables, without
being limited to a single comparison within one test.

In the case of comparisons between more than two groups, using the Mann-
Whitney U test requires you to undertake all possible pair-wise comparisons
between each pair of groups. For example, in the Wilcoxon rank sum test
example, a comparison was made between the California and Nevada groups.
However, if the selectors were required to choose between California, Nevada,
and Utah, then three comparisons would be required to establish if any two
groups differed significantly from each other:

• California versus Nevada

• California versus Utah

• Utah versus Nevada

The benefit of using the Kruskal-Wallis H test is that all possible combinations
can be tested at once using a generalized version of the Wilcoxon rank sum test.
However, statistical significance is not established using a z score; rather, a chi-
square test is used to determine whether all of the populations being examined
have the same ordinal distribution.

Table 11-5. Chi-square test for significance

Type Above median Below median Row sums

X1 a b a + b = n1

X2 c d c + d = n2

Column sums a + c b + d N

χ2 n ad bc–( )2

a b+( ) c d+( ) a c+( ) b d+( )
-----------------------------------------------------------------------=

40 12 11×( ) 8 9×( )–( )2

12 8+( ) 9 11+( ) 12 9+( ) 8 11+( )
--------------------------------------------------------------------------------------=

0.902=
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H can be calculated as follows:

Returning to the tae kwon do example, Table 11-6 shows the scores from the
teams in three states (now including Utah), and the rankings are shown in
Table 11-7.

Table 11-6. Performance scores for tae kwon do teams from three states

California Nevada Utah

4 2 10

5 3 9

6 3 10

6 4 6

7 4 6

8 5 7

9 10 8

9 10 7

9 11 6

Table 11-7. Ranks for individual tae kwon do performance scores from three states,
including ties

California Nevada Utah Rank

2 1

3 2.5

3 2.5

4 5

4 5

4 5

5 7.5

5 7.5

6 11

6 11

6 11

6 11

6 11

7 15

7 15

7 15

8 17.5

H

n
Ri n 1+( )–( )2

2
-------------------------------------

i
∑ 

 
 

n n 1+( )
12

---------------------
-------------------------------------------------------=
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You can determine the expected value for all of the mean ranks using the
following formula:

Against this expected value, you will be interested in verifying whether any of the
groups deviate from this expected mean, or whether only one or more groups
deviate from the expected value. We then compute the H statistic as shown
below:

8 17.5

9 20.5

9 20.5

9 20.5

9 20.5

10 24.5

10 24.5

10 24.5

10 24.5

11 27

Table 11-7. Ranks for individual tae kwon do performance scores from three states,
including ties (continued)

California Nevada Utah Rank

ΣR California( ) 5 7.5 11 11 15 17.5 20.5 20.5 20.5+ 128.5=+ + + ++ + +=

ΣR Nevada( ) 1 2.5 2.5 5 5 7.5 24.5 24.5 27+ + + + + + + + 99.5= =

ΣR Utah( ) 11 11 11 15 15 17.5 20.5 24.5 24.5+ + + + + ++ + 150= =

R California( ) 128.5
9

-------------- 14.28= =

R Nevada( ) 99.5
9

----------- 11.06= =

R Utah( ) 150
9

--------- 16.66= =

R N 1+
2

--------------=

14.0=

H 9 14.28 14.0–( )2 11.06 14.0–( )2 16.66 14.0–( )2
+ +[ ]

27 27 1+( )
12

----------------------------
---------------------------------------------------------------------------------------------------------------------------------------------=

9 0.08 8.64 7.08+ +[ ]
63

--------------------------------------------------------=

142.18
63

-----------------=

2.26=
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To calculate the significance of H, you compare it to χ2 at the p = 0.05 level, for df
= 8, which is 15.51; the null hypothesis can be rejected, since at least one team
outperforms the others. However, the selectors actually want to know which
teams are significantly better performing in this case. Thus, an a posteriori proce-
dure, such as Fisher’s least significant difference, can be used to determine a value
that represents the least significant difference between two groups, in terms of
their mean ranks. In this example, we can use the following:

Table 11-8 shows the differences between mean ranks for all three groups, and the
significant differences are marked with a * (p < 0.05). As you can see, the only
significant difference is between Utah and Nevada, so the selectors should have
confidence in selecting Utah over Nevada, but not Utah over California.

Within-Subjects Designs
This section reviews some commonly used nonparametric tests for within-subjects
designs.

Wilcoxon Matched Pairs Signed Rank Test

The Wilcoxon matched pairs signed rank test can be used as a nonparametric
replacement or substitute for the one-sample t-test, in the situation where a pre-
treatment measure is compared with a post-treatment measure, and the null
hypothesis is that the difference is zero (i.e., the treatment has no effect). The
Wilcoxon can also be considered the within-subjects equivalent of the Wilcoxon
rank sum test, as reviewed in the previous section. The Wilcoxon does not assume
normality, but does assume at least a symmetric distribution.

In the case of the Wilcoxon matched pairs versus the rank sum test, the former
assumes that pairs of scores can be matched in a meaningful way, e.g., repeated
measures from the same participant, while the latter can cater for comparisons
between groups of different sizes.

Following from the previous tae kwon do example, where the Wilcoxon rank sum
test was used to select the California team over the Nevada team, the Olympic
Games selectors are now faced with the question of choosing which event to enter

Table 11-8. Significance for mean rank differences assessed a posteriori

California Nevada Utah

California – 3.22 2.38

Nevada 3.22 – 5.6*

Utah 2.38 5.6* –

z 2 N N 1+( )[ ]
12n

---------------------------------=

2 27 27 1+( )[ ]
108

------------------------------------=

3.74=
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the team: patterns or sparring. The selectors have decided to only enter one event
and devote all their energies to training for that event, since the skills required and
training techniques involved are quite different (patterns focuses on style, spar-
ring requires form and fitness). The selectors want to answer the following
research question: when compared with their own performance on the two
events, do the team members consistently perform better in one event or the
other?

The selectors randomly allocate each California team member to perform five
minutes of patterns or five minutes of sparring, and then alternate events, after a
10-minute rest break. A panel of experts judges the performance of each team
member, and the scores are averaged to arrive at a final score out of 10. The differ-
ences between the two measures are then calculated and tabulated, as shown in
Table 11-9.

In this example, member 4 has an identical score, and is therefore excluded from
the analysis, since his performance could count equally toward either activity
(sparring or patterns). The next stage is to rank the differences in performance for
all nontied scores, as shown in Table 11-10. The average rank is computed if more
than one score ties for the same rank.

If there were a genuine difference between the groups in either direction (i.e., in
favor of sparring or patterns), then you would expect to see a clustering among
the rankings and their differences (which, by visual inspection, is clearly the case
here). The rank sum of the differences can be used to calculate whether the posi-
tive differences are sufficient to cancel out the effect of the negative differences,
thereby supporting the null hypothesis of no difference between the two groups:

Table 11-9. Ranks for individual tae kwon do members on sparring and patterns

Member Sparring Patterns Difference

1 6 8 +2

2 7 5 –2

3 8 7 –1

4 8 8 0

5 10 9 –1

6 9 8 –1

7 9 10 +1

8 8 5 –3

9 10 8 –2

Table 11-10. Rank differences for individual tae kwon do members between sparring and
patterns

Member 1 7 2 3 5 6 8 9

Difference +2 +1 –1 –1 –1 –1 –1 –2

Rank 1 2 5 5 5 5 5 8
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To calculate the statistical significance of any difference between the two groups,
Wilcoxon’s T is calculated by adding the rank sums for both the positive and
negative cases separately. The rank sum of smallest magnitude is then taken as T,
and the mean difference calculated between T and the estimated µT. In this
example, the rank sums can be derived as follows:

To calculate the z-test, you can use the following formula:

where:

thus:

Friedman Test

The Friedman test is an extension of the matched pairs signed rank test for
multiple related samples. Recalling the tae kwon do example, an Olympic team
will need to perform at consistently high levels over five hours of competition, so
repeated measures of performance can be taken during each hour, to determine if
there are any differences between the means. Each hourly score is ranked in order
of performance. The null hypothesis is that there will be no differences between
the means; however, you can imagine that for many teams, there will be signifi-
cant differences over time between the first and last measurement, or even a
similar performance level at the first and last stages, but with tiredness inter-
vening during the intermediate periods to reduce performance.

The use of the Friedman test is not limited to measures made over time, but could
also be used to evaluate the effect of drug treatments or any other experimental
situation where a nonparametric approach may be most appropriate.

µT
n n 1+( )

4
---------------------=

8 8 1+( )
4

---------------------=

18=

Σn Positive( ) 2 1+ 3= =

Σn Negative( ) 1 1 1 1 1 2+ + + + + 7= =

z
T µT–

σT
-----------------=

σT
n n 1+( ) 2n 1+( )

24
-------------------------------------------=

8 8 1+( ) 16 1+( )
24

-------------------------------------------=

7.141=

z 3 18–
7.141
--------------- 2.10–= =
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The test is used as follows: consider b members of a tae kwon do team whose
performance is measured at t time points. Let xij represent the performance score
at time i for team member j, where i = 1, 2, .., t and j = 1, 2, …, b. Scores are
ranked and replaced with their respective ranks. The rank sum at each time
interval i is given by si, where I = 1, 2, …, t, and the Friedman statistic T can then
be calculated as:

The sparring performance scores for the eight members of the Texas tae kwon do
team are shown in Table 11-11, at three different hourly time periods, and their
respective ranks are shown in Table 11-12.

The squared sum of rank sums for each time period can be calculated as follows:

Table 11-11. Sparring performance scores at three different hourly time periods

1 Hour 2 Hours 3 Hours

Member 1 9 8 7

Member 2 9 7 8

Member 3 6 8 7

Member 4 8 7 6

Member 5 8 7 6

Member 6 9 8 7

Member 7 9 8 7

Member 8 7 5 6

Table 11-12. Sparring performance ranks at three different hourly time periods

1 Hour 2 Hours 3 Hours

Member 1 3 2 1

Member 2 3 1 2

Member 3 1 3 2

Member 4 3 2 1

Member 5 3 2 1

Member 6 3 2 1

Member 7 3 2 1

Member 8 3 1 2

Total 22 15 11

T
12 si

2∑
bt t 1+( )
---------------------- 3b t 1+( )–=

si
2∑ 222 152 112+ + 830= =
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Therefore, given b = 8 team members and t = 3 time periods, T can be calculated
as follows:

Using critical values from a chi-square distribution, and df = 2, there are statisti-
cally significances at p < 0.05, but not at p < 0.01. Thus, you would reject the null
hypothesis, and be confident in selecting a team that had significantly higher
performance than their counterparts.

Exercises
Here are some exercises to review the topics covered in this chapter.

Question

There is a different rank procedure to use when there are tied ranks, based on
mid-ranks.* Imagine that the testing procedure over three time intervals is then
performed separately for the Alaskan tae kwon do team. The performance scores
are shown in Table 11-13.

Answer

The scores are firstly ranked scores, as shown in Table 11-14.

* Some sources also recommend using a correction factor with tied ranks, which may be available
in the statistical package of your choice.

Table 11-13. Sparring performance scores at three different hourly time periods (with ties)

1 Hour 2 Hours 3 Hours

Member 1 8 8 6

Member 2 6 6 7

Member 3 6 8 7

Member 4 8 7 6

Member 5 9 9 7

Member 6 9 8 7

Member 7 8 7 6

Member 8 8 7 7

T 12 830×
8 3 3 1+( )××
------------------------------------- 3 8 3 1+( )××–=

9960
96

------------ 96–=

7.75=
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The squared sum of rank sums for each time period can be calculated as follows:

Therefore, given b = 8 team members and t = 3 time periods, T can be calculated
as follows:

In this case, after consulting a table of critical values for the chi-square distribu-
tion for df = 2, you would fail to reject the null hypothesis at both p < 0.05 and
p < 0.01.

Question

A marketing professional is interested in determining whether there are differ-
ences in soccer supporters and soft drink preferences, to guide appropriate
advertisement placement in a future campaign. 100 randomly selected supporters
from each team of the two top-ranking soccer teams (W, X) are asked if they
prefer one soft drink (A or B) over another, when exiting a football match. The
results are shown in Table 11-15, based on whether the values are above or below
the median. Does the data support the hypothesis that different team supporters
have different soft drink preferences?

Table 11-14. Sparring performance ranks at three different hourly time periods (with ties)

1 Hour 2 Hours 3 Hours

Member 1 2.5 2.5 1

Member 2 1.5 1.5 3

Member 3 1 3 2

Member 4 3 2 1

Member 5 2.5 2.5 1

Member 6 3 2 1

Member 7 3 2 1

Member 8 3 1.5 1.5

Rank Sum 19.5 17 11.5

Table 11-15. Median results of drink preferences (brand A, B) between two soccer teams’
fans (W, X)

Team Above median Below median Row sums

W 30 70 100

X 60 40 100

Column sums 90 110 200

si
2∑ 19.52 172 11.52+ + 801.5= =

T 12 801.5×
8 3 3 1+( )××
------------------------------------- 3 8 3 1+( )××–=

9618
96

------------ 96–=

4.188=
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Answer

You can use the fast computational formula for χ2 analysis, where the fields are
described as shown in the table below.

Thus:

The result is χ2 = 18.18, p < 0.01. Thus, you can conclude that Team X supporters
are more likely than Team W supporters to score above the median.

Team Above median Below median Row sums

W a b a + b = n1

X c d c + d = n2

Column sums a + c b + d n

χ2 n ad bc–( )2

a b+( ) c d+( ) a c+( ) b d+( )
-----------------------------------------------------------------------=

200 30 40×( ) 70 60×( )–( )2

30 70+( ) 60 40+( ) 30 60+( ) 70 40+( )
---------------------------------------------------------------------------------------------------=

18.18=
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12
Introduction to the General
Linear Model

In Chapter 9, you learned to describe the association between two variables by
using a simple graphical technique in a two-dimensional (x, y) plane. You also
learned to quantify the bivariate relationship by computing a correlation coeffi-
cient. You may have been surprised by how easy it was to relate the mathematical
relationship between two variables, especially for simple cases such as r = 1.00,
where a perfect correlation can be graphically described by a straight line, with a
specific slope and intercept.

It is possible to take the relationship one step further and use characteristics, such
as the slope and intercept, to build a functional mathematical model, and deter-
mine the precise deviation from the model for observed data. In this approach, the
correlation coefficient and the coefficient of determination still have an important
role to play; however, the use of linear regression to test the goodness of fit of
observed data to a theoretical model goes one step further in being able to charac-
terize existing data, and predict values of dependent variables from independent
variables. This process occurs literally by simple algebraic operations, such as
substitution.

Linear regression is an extremely valuable technique, which is often used for
prediction in models where no experimental control has been applied to the
collection of data. For example, you may want to determine the relationship
between training and performance in athletics. However, where appropriate
experimental design is in place, then it may be better to use the Analysis of Vari-
ance (ANOVA) technique, which—like the t-test—can be used to determine the
likelihood of different samples being drawn from the same population (i.e., using
a hypothesis testing framework, where there is a hypothesized difference between
two groups). For example, you may want to determine whether athletes who have
taken a mineral supplement perform better than athletes who have taken a
placebo.
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Linear regression and ANOVA are both based on the general linear model, which,
in simple terms, is the geometry and algebra of straight lines. The applications of
the general linear model are widespread, as linear models have often been found
to be useful approximations to more difficult real-world relationships. Chapter 15
describes some of the more esoteric types of regression (including fitting of
nonlinear models).

This chapter introduces linear regression and ANOVA through the concept of the
general linear model, which encompasses both techniques. Bivariate regression
will be used to introduce the basic assumptions of linear regression, such as
homoscedasticity, and basic concepts such as the least-squares method of line
fitting and the meaning of slope and intercept.

The General Linear Model
What is meant by the term “functional mathematical relationship” between an
independent (or explanatory) variable x and a dependent (or response) variable y?
Simply put, y = f(x) means that you can calculate any value of y if you know the
value of x. The function f( ) can be any valid mathematical function:

• y = x means that the value of y is always the same as the value of x, e.g., (x, y)
= (1, 1), (2, 2), (3, 3), etc.

• y = ax means that the value of y is always some multiple of the value of x,
determined by the constant a, e.g., where a = 2, (x,y) = (1, 2), (2, 4), (3, 6),
etc.

• y = ax + b means that the value of y is always some multiple of the value of x,
determined by the constant a, plus the value of a constant b, e.g., where a = 2,
b = 1, (1, 3), (2, 5), (3, 7), etc.

• y = x2 means that the value of y is always the value of x multiplied by itself, e.g.,
(x,y)= (1, 1), (2, 4), (3, 9), etc.

In its bivariate form, the general linear model can always be described by y = ax +
b. In the multiple case, i.e., where there are n dependent variables (x1, x2, x3,
…xn), each is assigned a separate slope (a1, a2, a3 …, an), and the form of the
model is y = a1x1 + a2x2 + a3x3 + … + anxn + b. But you’ll learn more about the
multiple case in Chapter 14; the point is that a really simple model of straight
lines on a plane is extremely powerful and can be expanded in a number of
different and very useful ways.

In general, the best way to start looking for relationships between dependent and
independent variables is to use a graph in the two-dimensional plane, along with a
correlation. However, if you are dealing with large numbers of possibly related
variables, it may be less time-consuming to start with a correlation table, and only
visually investigate relationships between variables that are moderately or highly
correlated. The risk with this strategy is that the underlying model that relates the
two variables may be nonlinear, so relying on correlation alone may not suggest
any relationship.
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Linear Regression
Imagine you have a relationship between two variables (x, y) that is described by
the model y = ax + b. If the observed data perfectly matches the model, then a
correlation of r = 1.00 will be observed, and also the coefficient of determination
r2 = 1.00. However, there may be any number of reasons why the observed data
may not actually match that predicted; for instance:

• There may be other independent variables that independently account for
variation in y, other than x. For example, athletic performance may be influ-
enced by a range of factors, including coaching strategies, number of hours
and their impact, etc.

• There may be some element of random variation in the observations, such as
bias or systematic error. For example, two clinicians measuring tumor growth
may use slightly different procedures to arrive at a different volume measure-
ment from the same observation.

• The variables may represent phenomena that are not fixed in value over time.
For example, in a study of attitudes, participants’ attitudes may change dur-
ing the experimental period.

However, accepting that error will always be present, how do we actually “fit” the
observed data to a hypothetical model? In the following example, we review the
process for carrying out linear regression, and examine some of the pitfalls associ-
ated with “line fitting.”

Imagine a psychologist interested in the relationship between height and intelli-
gence, operationalized as IQ. The psychologist believes that there is good
evidence for a causal relationship between height and IQ, and has investigated
numerous biological pathways that suggest that IQ is a dependent variable, and
height is an independent variable. Some example measures relating IQ to height
are shown in Figure 12-1: the correlation between the two variables is high, at r =
0.83; thus, using the coefficient of determination, more than 70% of the vari-
ability in IQ can be attributed to height. Looking at the plot of the data, there is a
clear linear relationship between IQ and height: as height rises, IQ also rises corre-
spondingly. However, notice that there are also many cases where IQ ≈ 110, for a
range of different heights (1.4m–1.65m). There is obviously a strong effect of four
observations of large heights on the quantified association; if the psychologist had
good reasons for considering these cases as outliers, and they were removed from
the analysis, then a weak correlation would be observed r = 0.33, with r2 = 0.11,
as shown in Figure 12-2. In this situation, the psychologist must examine whether
the first or second relationship really represent, the true state of nature.

Linear regression can be used to go one step further than correlation. In this case,
an imaginary straight line can be drawn on the graph, representing the hypothe-
sized linear relationship between the two variables. The deviations from the
imaginary line can be used to calculate the correlation coefficient, but most
importantly, the linear model can be used to predict all dependent variable values
along the straight line, based on values of the independent variable. This type of
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prediction is extremely useful, as you know—with a certain level of accuracy,
from the coefficient of determination—how accurate your prediction is going to
be. Using a regression line also means that you don’t need to experimentally
measure every possible value of an independent variable to predict the corre-
sponding value of the dependent variable; however, as you can see from the
example in Figure 12-1, extrapolation and prediction in ranges where you haven’t
measured may be dangerous to rely upon. For example, if the psychologist had
never measured any heights greater than 165cm, she would never have realized
how strongly correlated the two variables were across the range of measurable
height.

Compare Figures 12-1 and 12-2 side-by-side (Figure 12-2 is at the end of this
section): what is the main characteristic that differentiates the two lines, and their
vastly different correlation coefficients? Clearly, the slope of each line is different;
when there is a very shallow vertical rise in the slope compared to the horizontal
run, as in Figure 12-2, the correlation is low. However, when there is an equiva-
lent vertical rise to the horizontal run, then the correlation is at its highest.
Conversely, if the vertical rise is much greater than the horizontal run, then the
correlation would also be weak. The relationship between rises and runs can be
described more formally using calculus, but the important message for regression
is to understand how the slope of the regression directly influences correlations.

So, given the two possible relationships between IQ and height, as shown in
Figures 12-1 and 12-2, how do you go about deciding which regression line is the
“best fit” to the observed data? Regression involves picking the “best” line that fits
the observed data, where “best” means that the deviations between each data

Figure 12-1. Association between two variables height (IV) and IQ (DV)
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point of the linear model and the observed data are minimized. To ensure that the
best overall line is selected as the “best fit,” you need to have some way of aver-
aging across all of the observations to ensure that no single deviation results in an
inappropriate line being selected.

In linear regression, the deviations are measured against the dependent variable
for each observation of the independent variable. In addition, it is usual to utilize
the squared deviations, and sum them all together:

Where SSE is the sum of squared errors, N is the number of cases, yi is the
observed dependent variable value, and is the expected value of the observa-
tion, as predicted from the model. The literal goal of least-squares is to find the
line that minimizes SSE for all observations. Note that error here means the quan-
titative difference between the expected and observed values, whether the error
arises from measurement error, bias, or a genuine deviation from the prediction
made by the underlying model.

Why are the deviations squared instead of their raw values? There are several
justifications that can be made, but one important one is that large differences are
weighted more highly than smaller differences—so, to most effectively minimize
the SSE, in terms of a model fit, it is more desirable to reduce larger than smaller
differences.

The formula for SSE can be rewritten in terms of the general linear model in the
following way:

It is then possible to use calculus to minimize this function. A set of computa-
tional formulae is given below:

SSE yi ŷi–( )2
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N
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For the IQ and height example:

Therefore, the model that best fits the line in this example is:

y = ax + b

 = 102.35x – 43.67

Or, to predict IQ on the basis of height:

IQ = 102.35 × Height – 43.67

Therefore, the IQ of any person can be estimated using the model, based on their
height, and the value of slope and intercept estimated using this procedure. Note
that the accuracy of any individual prediction is determined by the coefficient of
determination: if this is close to r2 = 1.00, then we would feel very confident in the
strength of predictions made for new cases, especially where the value of the
dependent variable has previously been observed and entered into the model.
Also, as more cases with the same ordered pairs are observed through replicated
observations, further independently and randomly obtained samples etc., the
overall confidence in the model will increase. However, in omitting the four tallest
cases from Figure 12-1—as described in Figure 12-2—a very different model
would be produced, suggesting a strong lack of relationship between IQ and
height. Therefore, you need to be careful in extrapolating a known model to
regions on the plane where observations have never been made.

In some cases, single parameter estimation may be used. For example, where the
intercept is zero, ratio estimation may be used to make predictions in the model.
Thus, if the model was IQ = 102.35 × Height, simply multiply a specific height by
102.35. Alternatively, if the slope was 1, then difference estimation could be used.

x∑ 33.25=

y∑ 2 486,=

x2∑ 53.01=

y2∑ 299 676,=

x 33.25
21

-------------- 1.58= =

y 2 486,
21

-------------- 118.38= =

Sxx 53.01 33.25 33.25×( )
21

----------------------------------------– 0.36= =

Sxy 3 973.04, 33.25 2 486,×( )
21

-----------------------------------------– 36.87= =

a 36.87
0.36
-------------- 102.35= =

b 118.38 102.35 1.58×( )– 43.67–= =
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Thus, if the model was IQ = Height – 43.67, then adding a value to the righthand
side of the equation would predict IQ. An example would be an intervention to
make people taller (and by inference, increase their IQ); in both cases (ratio esti-
mation and difference estimation), a single parameter could be used to predict the
experimental effect, if a causal relationship existed.

Most importantly in the height and IQ example, since there have been no experi-
mental controls or manipulations, the relationship between IQ and height is
purely predictive and not causative, i.e., simply developing a mathematical model
and using least-squares regression and correlation analysis to determine the
strength of relationship between two variables cannot be used to infer causation.
Indeed, the equation could easily be rewritten to show that height can be just as
easily predicted from IQ as IQ can be predicted from height. The only way that
causation could be inferred would be from using the appropriate experimental
design, as discussed in Chapter 5.

You may be wondering which value is more useful—the correlation coefficient or
the slope of a regression line. The correlation coefficient is useful in determining
the strength of association between two variables—once established, the slope of
the regression can be used to estimate by how much one variable rises (or falls) as
a function of another. If the relationship is weak, then the slope of a regression
line is meaningless—so both measures are useful, and have an important role in
characterizing and predicting relationships between two variables respectively.

Figure 12-2. Association between two variables height (IV) and IQ (DV) in a restricted
range
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Assumptions

As with most statistical procedures, there are a number of assumptions that
underlie the validity of linear regression, which—if violated—limit any inferences
that may be drawn. Key assumptions include:

• That the most relevant independent and dependent variables were selected
for inclusion in the model. This is particularly important when moving from
characterization and prediction to hypothesis testing, and especially when
there are multiple variables that are correlated with each other.

• That the variables have been measured in such a way to minimize measure-
ment error and bias.

• That the independent variables are independent and, if any inferences are
intended to be drawn, that an experimental manipulation has been applied.
Correlated independent variables in multiple linear regressions (multicol-
linearity) are discussed further in Chapter 14.

• That the data are randomly sampled, and/or that the inferences drawn from
the analysis are qualified accordingly.

• That the mathematical function fitted is an accurate model of the phenome-
non under study.

• That the variance of the independent and dependent variables is the same
(homogeneity of variance), i.e., the conditional variance of the independent
variable given the dependent variable is the same for all values of the depen-
dent variable.

If there is any doubt about the quality or validity of the variables being used or the
data collected, it makes sense to replicate the analysis, where possible, with a
different sample, and/or to use an alternative but related variable or approach that
may be less prone to measurement error or bias.

In terms of fitting models, the least squares procedure can also be used to fit
nonlinear models directly, or a linear model may be fit over a certain range where
the nonlinear function is approximately linear (such as a threshold function). The
difficulty in using a linear model to approximate a nonlinear model is the poten-
tial bias introduced in terms of the functional relationship between the dependent
and independent variables.

One way to forensically examine whether a nonlinear model is more appropriate
is to use an explicit test for linearity, or to examine the residuals; for a stepwise
function, for example, low residuals may be observed for the middle section of the
function, but greater residuals at either end. In this case, a nonlinear model may
be better.

Examining the residuals for various sorts of issues is an important activity to
undertake, once a regression analysis has been performed. Two key issues can be
investigated: determining autocorrelation, and verifying the assumption of
homoscedasticity. The former is usually associated with longitudinal data, while
the latter is often associated with cross-sectional studies.
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Autocorrelation arises when there is a large correlation between different observa-
tions, especially where observations are recorded over a period of time. After
fitting a linear model, autocorrelation will be readily apparent in the residuals if it
is present in the data. Where the residuals are rising over time they are said to be
positively correlated, or negatively correlated where they are decreasing over time.
The risk is that a bias will be introduced into the estimate of standard error. In the
case of simple linear regression, autocorrelation may indicate that a more sophisti-
cated model is required to account for the relationship, thus, a search for a second
and additional explanatory variable would normally occur.

In the case of homoscedasticity, where residuals are assumed to be unrelated to
any variables in the model, a violation is known as heteroscedasticity. This can be
determined by examining the residuals; if there is an overall linear relationship,
but there are large variations in the residuals observed for some levels of the inde-
pendent variable, then heteroscedasticity may exist. Like autocorrelation, the risk
is that a bias will be introduced into the estimate of standard error.

In both cases, tests to detect biases and appropriate corrections can be found in
most statistical packages.

Analysis of Variance (ANOVA)
Simply put, the Analysis of Variance (ANOVA) is a technique commonly used to
test whether there are statistically significant differences between two or more
independent groups. These groupings are made on the basis of levels of indepen-
dent variables, as described in Chapter 7. The simplest form of ANOVA is a one-
way analysis, where the intention is to determine whether there is an overall main
effect of different levels of an independent variable on a dependent variable. The
outcome of performing an ANOVA is an F ratio, which can be used to determine
whether statistically significant differences exist between the groups. For example,
in a simple experiment to determine the effect of caffeine on learning, a psycholo-
gist might have two levels of the independent variables (experimental: caffeine
100mg; control: placebo). The F ratio can then be tested for significance at
different levels of α, typically p < 0.01 or p < 0.05, for a dependent variable, such
as number of correct responses in a math quiz.

Like linear regression, ANOVA can be extended to account for differences across
multiple independent variables, as well as interactions between the variables. For
example, a psychologist may wish to determine whether caffeine or nicotine has
an effect on learning (both known as main effects), as well as any interaction
between caffeine and nicotine.

ANOVA can also be used to test the significance of the coefficient of determina-
tion, arising from regression analysis.

One-Way ANOVA

The simplest form of ANOVA is a one-way ANOVA, where the simple question
of differences between two or more treatment levels can be tested in terms of a
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main effect. This is equivalent to performing a t-test. The hypothesis is that one or
more populations differ significantly in their means. Figure 12-3 shows an
example of four sample groups, each with a slightly different mean, but with
significant overlap in their distributions; in this case, there is a large amount of
variation within each sample. Thus, it is unlikely that you would find any statisti-
cally significant differences between the means, and indeed, the directly testable
null hypothesis would be that the populations’ means were equal, i.e.:

No difference would imply that the samples were drawn from the same popula-
tion, and that the division into groups was not appropriate.

However, consider the alternate case where there is relatively little variation
within two samples; here, the distributions have very little overlap, and you can
make a reasonable prediction that the means are statistically significant, as shown
in Figure 12-4. That is, you may predict that the two samples have been drawn
from different populations. Note that in the case of more than two samples, a
difference between at least two of the groups would lead you to reject the null
hypothesis. The hypothesized variation between means is the basis for the anal-
ysis of variance. The analysis is based on the total mean—as measured from all of
the observations across all samples—and the mean of each individual sample. The
total variation across all samples is known as the Total Sum of Squares (SSTotal), i.e.,
the total sum of squared deviations; the variation between samples is known as
the Sum of Squares Between (SSBetween); and the variation within samples is
known as the Sum of Squares Within (SSWithin). In simple terms, and taking into
account degrees of freedom for each variation term, the F test for ANOVA is
simply the ratio between the Sum of Squares Between and the Sum of Squares
Within. Thus, if the variation between samples becomes relatively large compared
to the variation within samples, you would expect the groups to be drawn from
different populations, and a significant mean difference to exist.

Figure 12-3. Four normally distributed groups with large variation within samples

X1 X2 X3 X4= = =
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Let’s look at an example. An economist is interested in the effect of interest rates
on house prices, and uses a series of Monte Carlo* simulations to arrive at median
house prices for four different levels of interest: 2.5%, 5%, 7.5%, and 10%. The
output of the models, after three different iterations, is shown in Table 12-1 and
plotted in Figure 12-5, shown later in this chapter.

From the graph, you can see that there is a general rise in house prices; the
medians for the different rates are $164,331, $199,628, $214,402, and $265,521,
respectively. This appears to indicate that interest rate rises have a positive effect
on house prices. But is the apparent difference “real,” in the sense that the
apparent rise is not caused by confounding factors, such as biases in measure-
ment? If there is a hypothesized “real” difference in median house prices between
the four interest rate levels, then the null hypothesis would be no difference
between the groups. This is exactly the main effect test that ANOVA is suitable
for.

In the analysis that follows, you will see how ANOVA (and its F ratio) can be
implemented by hand; however, you would normally use a statistical package to
calculate the F ratio, especially where multiple independent variables are included
in the analysis. Of course, you may feel that to test the null hypothesis, you could
simply perform:

t-tests, but the overall α level would be greatly increased because of the multiple
comparisons.

Each observed median house price is denoted yij, where i is the group, and j is the
observation. In this example, the number of groups is a = 4, the number of obser-
vations per group is n = 3, and the interest rate levels are denoted j = {1, 2, 3, 4}

Figure 12-4. Two normally distributed groups with little variation within samples

* The Monte Carlo method involves the use of random numbers as inputs to a deterministic func-
tion to solve a problem using repeated trials. Intuitively, you can imagine how aggregating the
results from numerous simulation trials using random numbers can be used to minimize the effect
of various forms of bias. Monte Carlo methods are often used when mathematical problems are
too complicated to solve analytically.

4
2 

  6=
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for {2.50%, 5.00%, 7.50%, 10.00%} respectively. To keep things simple, there
are equal numbers of observations for each group, but in practice, you may have
some missing observations to deal with.

Table 12-2 shows the assignment to treatment groups using the algebraic
notation.

As the name suggests, ANOVA is literally an analysis of variance; if the null
hypothesis is accepted, then it is possible to compare variances between groups
and variances within groups. Consider the different averages associated with the
groups:

Assuming the model:

Table 12-1. Simulation results for effect of different interest rates on median house prices

2.50% 5.00% 7.50% 10.00%

12,655 19,877 21,033 25,023

17,877 20,122 21,188 27,877

18,766 19,888 22,099 26,755

Table 12-2. Simulation results for different groups with algebraic notation

y1j y2j y3j y4j

y11 = 12,655 y21 = 19,877 y31 = 21,033 y41 = 25,023

y12 = 17,877 y22 = 20,122 y32 = 21,188 y42 = 27,877

y13 = 18,766 y23 = 19,888 y33= 22,099 y43 = 26,755

Total 49,298 59,887 64,320 79,655

yij∑∑ 253 160,=

Grand Mean: yij∑∑ 253 160,
12

---------------------= 21 096,=

Group Means:

y1
49 293,

3
------------------= 16 432,=

y2
59 887,

3
------------------ 19 962,= =

y3
64 320,

3
------------------ 21 440,= =

y4
79 655,

3
------------------ 26 551,= =

yij µ αi ε+ +=
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where µ is the population mean and ε is error (or variation ascribed to each house
price), the αi becomes the effect of the independent variable (interest rate). αi can
be estimated by:

thus, the data can be rewritten in additive model terms, as shown in Table 12-3.

If the null hypothesis is true, then all αi = 0, and also:

The assumption is that the error term is independently normally distributed (IND)
with µ = 0, and the same variance for all αi. As you will see in many research
publications, violations of these assumptions are commonplace and often uncor-
rected, bringing into question the validity of the analysis and the inferences
drawn.

Using ANOVA for hypothesis testing requires that you compare three types of
variation: total, within-group, and between-group, where the total variance can be
partitioned into either within-group or between-group variation:

Total variance
The mean sum of squared deviations from the grand mean:

Table 12-3. Simulation results rewritten using additive model

2.50%

12,655 = 21,096 + (16,432 – 21,096) – 3,777

17,877 = 21,096 + (16,432 – 21,096) + 1,455

18,766 = 21,096 + (16,432 – 21,096) + 2,334

5.00%

19,877 = 21,096 + (19,962 – 21,096) – 85

20,122 = 21,096 + (19,962 – 21,096) + 160

19,888 = 21,096 + (19,962 – 21,096) – 74

7.50%

21,033= 21,096 + (21,440 – 21,096) – 407

21,188 = 21,096 + (21,440 – 21,096) – 252

22,099 = 21,096 + (21,440 – 21,096) + 659

10.00%

25,023 = 21,096 + (26,551 – 21,096) – 1,528

27,877 = 21,096 + (26,551 – 21,096) + 1,326

26,755 = 21,096 + (26,551 – 21,096) + 204

yi yi–

αi
i

∑ 0=

yij y–( )2

j
∑

i
∑

na 1–
---------------------------------------
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Within-group variance
The mean sum of squared deviations from the group average:

Between-group variance
The mean sum of squared deviations from the grand mean but multiplied by
n:

Why do you need to calculate so many variances? Simply put, the within-group
variance will be greater than the mean when the null hypothesis is rejected, while
the between-group variance will be equal to the mean when the null hypothesis is
accepted. The F statistic, calculated below, is the ratio of the among-group vari-
ance to the within-group variance. Thus, a test of whether a group of means is
significantly different from each other becomes a test of whether their variances
are significantly different.

To calculate the numerators of the different variances, you can use the following
formulae:

Recalling that:

SSTotal = SSWithin + SSBetween
SSBetween = 3 × (16,432 – 21,096)2 +
 3 × (19,962 – 21,096)2 +
 3 × (21,440 – 21,096)2 +
 3 × (26,551 – 21,096)2

 = 158,743,533
SSTotal = (831,898,910 + 1,195,522,557 + 1,379,684,234 + 2,119,107,683) –
12 (21,096) 2

 = 185,381,251
 SSWithin = 185,381,251 – 158,743,533
 = 26,637,718

yij yi–( )2

j
∑

i
∑

a n 1–( )
----------------------------------------

n

yi y–( )2

i
∑

a 1–
-----------------------------

SSTotal yij y–( )2

j
∑

i
∑=

SSWithin yij yi–( )2

j
∑

i
∑=

SSBetween n yi y–( )2

i
∑=
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Here, a – 1 is the df for SSBetween and n – a is the df for SSWithin. Thus, the critical
value for F3,8 at p = 0.05 is 4.066; you would reject the null hypothesis on this
occasion. Figure 12-5 illustrates.

Post Hoc Tests

In the one-way ANOVA example, the F-test was statistically significant, and the
null hypothesis rejected. However, you still need a way to determine which of the
means were significantly different from each other, i.e., the result of the F-test
does not imply that all samples were drawn from different populations, merely
that at least one was drawn from a different population from the others.

To determine which groups were actually different, you need to undertake post
hoc tests. In most cases, you would use the Scheffe test, but there may be justifica-
tion for using one of the many others, e.g., depending on whether the
homoscedasticity assumptions can be met, or how liberal you are prepared to be
in terms of committing Type I errors. The Scheffe test is the most conservative
test, and should be used unless there is a good reason not to.*

The Scheffe test will produce a significance value for each pair-wise comparison, i.e.,
(n – 1) × a distinct combinations:

Figure 12-5. Simulation results for effect of different interest rates on median house prices

* Post hoc testing should not be confused with post hoc hypothesis generation, in which, having
discovered an unexpected difference or failing to find one using a Scheffe test, a shopping expe-
dition is undertaken, where you simply pick a test until it gives you the result you are looking for.

F

SSBetween

a 1–
----------------------

SSWithin

n a–
-------------------

---------------------- 15.89= =



Exercises | 239

GeneralLinear
M

odel

Other post hoc tests, in order of conservatism, include:

• Fisher’s least significant difference

• Bonferroni correction

• Duncan’s new multiple-range test

• Student-Newman-Keuls’ test

• Tukey’s honestly significant difference test

Fisher’s least significant difference is based on a two-sample t-test, as described in
Chapter 9, where the estimate of pooled variance s2

p is used, since the variances
are assumed to be equal.

The pooled variance can be estimated by:

where y1 and y2 are the two groups for whom the pair-wise comparison is made.
The t-test then has the form:

Fisher’s least significant difference should only be used after an overall F-test has
established a significant difference. Otherwise, the risk of Type I errors greatly
increases, given the number of comparisons being made. Thus, at p = 0.05, if 20
comparisons are made, you would expect at least one erroneous result. It has been
shown mathematically that the error rate for least significant difference is no
greater than a t-test under these circumstances.

Exercises
In the following exercises, you will explore the relationship between linear regres-
sion and the one-way ANOVA. The technique that you use to either relate two
variables, build a model, or test for mean differences will always make use of the
underlying general linear model.

Question

Some nutritionists have suggested a link between coffee consumption and IQ, so
you decide to investigate the strength of association by using linear regression.
Table 12-4 shows a set of data collected from a randomly selected sample of people
in a railway carriage. A short IQ inventory is administered, and participants are

a
n 1–
------------ 

 

sp
2 y1 y1–( )2∑ y2 y2–( )2∑+

n1 1–( ) n2 1–( )
-------------------------------------------------------------------------=

n1 1–( )s1
2 n2 1–( )s2

2+

n1 n2 2–+
---------------------------------------------------------=

t
y1 y2–

2sp
2

n
--------

-----------------=
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asked how many cups of coffee they have drunk in the past 24 hours. Fortunately,
everybody catching the train only drinks the same coffee drink (size and strength)
made by the same café.

Your role is to determine the linear model and strength of relationship between
the two variables.

Answer

You plot the coordinates contained in Table 12-4, and conclude that there is a
positive association between IQ and coffee consumption. You then calculate the
correlation coefficient using the techniques described in Chapter 10, giving r = 0.
98, and the coefficient of determination r2 = 0.95. This indicates that 95% of the
variability in IQ can be accounted for by coffee consumption, so you decide to
proceed with the linear regression. Your next task is to build the model:

Table 12-4. Relationship between IQ and coffee consumption

Coffee IQ

2 123

1 112

1 102

1 98

0 79

0 87

1 102

2 120

2 120

3 145

x∑ 13.0=

y∑ 1 088,=

x2∑ 25.0=

y2∑ 121 720,=

x 13
10
------ 1.3= =

y 1 088,
10

-------------- 108.8= =

Sxx 25.0 13.0 13.0×( )
10

----------------------------------– 8.1= =

Sxy 1 575, 13.0 1 088,×( )
10

-------------------------------------– 160.6= =

a 160.6
8.1

-------------- 19.82= =

b 108.8 19.82 1.3×( )– 83.02= =
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Therefore, the model that best fits the line in this example is:

y = ax + b
 = 19.82x + 83.02

Or, to predict IQ on the basis of coffee consumption:

IQ = 19.82 × Coffee + 83.02

Question

In the previous question, you established a strong linear relationship between IQ
and coffee consumption. However, since the design was not experimental, you are
unable to determine whether drinking coffee causes a corresponding change in
IQ, or the equally likely possibility that clever people simply like to drink more
coffee (e.g., because of a personality trait associated with high IQ).

How would you determine a causal relationship?

Answer

To really determine if there is a causal effect, you set up a randomized experiment
in which participants are randomly selected from the telephone book, and asked
to not drink any coffee or caffeine-containing substances in the prior to the experi-
ment 24 hours. The participants are then assigned randomly to a treatment
(100mg caffeine tablet) or placebo (a tablet with equivalent size and taste to the
treatment), after being matched on age and sex. The treatment is always adminis-
tered at nine in the morning by the same experimenter in the same room, with the
same temperature. Neither the experimenter nor the participant knows whether
they are receiving the treatment or the placebo. In the treatment group, after
waiting 15 minutes for the caffeine to establish a pharmacological effect for the
treatment, a small battery of verbal tasks—highly correlated with a full IQ test—is
administered, and the responses noted by the experimenter. The placebo condi-
tion is run in exactly the same way, except that (obviously) the placebo tablet is
administered in place of the caffeine.

The results from the experiment are shown in Table 12-5. In this example, a = 2
and n = 10.

Table 12-5. Treatment and control groups for coffee (IV) and placebo consumption, and the
effect on IQ (DV)

Treatment Control

110 100

100 95

120 100

125 122

120 115

120 88

115 97

90 87
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Recalling that:

SSTotal = SSWithin + SSBetween

SSBetween = 10 × (108.3 – 102.75)2 + 10 × (97.2 – 102.75)2 = 616.05

SSTotal = (119,019 + 96,096) – 20 (102.75) 2  = 3,963.75

SSWithin = 200,594 – 616.05 = 199,977.6

Here, a – 1 is the df for SSBetween and n – a is the df for SSWithin. Thus, the critical
value for F1,18 at p = 0.05 is 3.16; as a result, you would reject the null hypothesis
on this occasion. Note that the critical value for F1,18 at p = 0.01 is 5.092.

95 92

88 76

Table 12-5. Treatment and control groups for coffee (IV) and placebo consumption, and the
effect on IQ (DV) (continued)

Treatment Control

F

SSBetween

a 1–
----------------------

SSWithin

n a–
-------------------

---------------------- 3.31= =
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Extensions of Analysis of

Variance

In Chapter 12, you learned about the general linear model and its applications in
linear regression and one-way Analysis of Variance (ANOVA). In the algebraic
derivation of the general linear model, from an analysis of the two-dimensional
number plane, the possible extension to the multidimensional case was alluded
to. Factorial ANOVA involves the use of models that include more than one inde-
pendent variable, while Multivariate ANOVA (or MANOVA) uses models with
multiple dependent variables.

In this chapter, you will learn about more of these complex ANOVA designs,
including two-way and three-way factorial ANOVA, and MANOVA for at least
two dependent variables. Issues surrounding the use of factorial and nonfactorial
designs, and the Analysis of Covariance (ANCOVA), will be covered, while in
Chapter 14, corresponding multidimensional extensions to linear regression will
be covered.

Realistically, most ANOVA designs are typically factorial, and at least two-way,
depending on your field of interest. In addition, during model building based
around groups, it may become apparent that there is a confound influencing vari-
ation in the dependent variable as observed. For example, a test of athletic
performance between two schools is confounded if one happens to be a specialist
athletics school, with twice as many contact sport hours as the second school. The
number of contact sport hours is thus considered a covariate, and ANCOVA
allows an adjustment on the dependent variable to be made to cancel out its
effect, and consider (in this example) whether there may be differences between
the two schools independent of the covariate.

This chapter will also present ANOVA for repeated measures, and unique
assumptions for these designs, such as sphericity, as well as considering the use of
mixed designs, combining between-subjects and within-subjects comparisons.
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As the designs and examples become more complicated, the use of SPSS output
and syntax as examples will be used. Please refer to Appendix B for more details
on how to use this statistical package. However, the ANOVA tables generated by
SPSS will be comparable with your package of choice.

Factorial ANOVA
Factorial designs are often used in experiments to understand the combined effect
of at least two different factors on a dependent variable. These include the main
effects that could be tested individually for each factor, using t-tests, as well as an
additional source of variation—the interaction. Typically, participants are
randomly allocated to a control or treatment group, and a placebo or experi-
mental treatment applied. In this case, it is possible to study the main effect of
each treatment, as well as their interaction (i.e., based on a significant effect at a
specific combination of levels). Factors must lend themselves to categorization in
terms of different levels (either naturally or artificially constructed); otherwise,
multiple linear regression (Chapter 14) may be more appropriate.

The major assumptions for factorial ANOVA are the independence of observa-
tions and the homogeneity of variance, as per other techniques based on the
general linear model. Fortunately, statistical packages generally provide methods
to test homogeneity of variance (e.g., Levene’s test, used below), while the inde-
pendence of observations is an issue that is generally dealt with at the
experimental design stage.

Two common types of factorial designs are a × b (two-way) and a × b × c (three-
way). Main effects and interactions can be tested for statistical significance by
using the appropriate factorial ANOVA test. In this section, you will learn when
and how to apply factorial ANOVA to determine whether population means differ
between groups based on a number of different independent variables.

Two-Way ANOVA

Physical performance measures often vary in populations, and declines in grip
strength, for instance, may be correlated with a number of different clinical condi-
tions. Your research team is interested in studying how two factors, gender and
alcohol consumption, are related to grip strength. That is, you want to answer
three research questions:

• Does gender influence grip strength?

• Does alcohol consumption influence grip strength?

• Do gender and alcohol consumption interact to influence grip strength?

In this case, the interaction expresses a hypothesis that gender modifies or quali-
fies the relationship between alcohol consumption and grip strength. Since the
independent variables (gender and alcohol consumption) divide neatly into
distinct categories, hypotheses can be drawn that specify the direction of any
effect; for example:

• Does the male population generally have greater grip strength than the female
population?
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• Does the population of alcohol consumers have lower grip strength than the
teetotaler population?

• Does the effect of low alcohol consumption on grip strength depend on gen-
der? In other words, is grip strength significantly lower for female alcohol
consumers compared to male teetotalers?

Geometrically, it is easy to determine if an interaction exists, since the dependent
variable means across all levels will be parallel for different IVs if an interaction
does not exist, or intersecting if there is an interaction.

Figure 13-1 demonstrates a clear difference between the DV (grip strength) for
two IVs (gender and number of alcoholic drinks), but no interaction between the
two DVs. In other words, women tend to have lower grip strength than men, and
drinking alcohol tends to reduce grip strength.

Conversely, if there were an interaction between the two IVs, as shown in
Figure 13-2, then the two lines would cross (or at least not be parallel). In this
case, there is an interaction because differences appear in grip strength; low grip
strength is associated with being female and having moderate alcohol consump-
tion, and with being male and having high alcohol consumption, while high grip
strength is associated with being male and having moderate alcohol consump-
tion, and being female and having high alcohol consumption.

In experimental disciplines, it would be normal practice to define groups only
where there has been an experimental manipulation. For example, alcohol
consumption, as a category, would be based on two randomly assigned groups,

Figure 13-1. Main effects for gender and drink consumption on grip strength, but no
interaction
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one receiving alcohol, and one a control. But in prospective, life course studies,
for example, such variables cannot be ethically artificially manipulated over time,
and the quality of experimental control would be very low indeed. Other useful
groups, such as gender, are also difficult to reassign in an experimental paradigm.
The message is to always treat the results of ANOVA in a manner consistent with
the data collection.

Table 13-1 shows sample data for the first 12 cases collected in the grip strength
lab. Six women and six men had their grip strength measured, and each gender
group also had three drinkers and three nondrinkers (defined as drinking at least
weekly, or  never drinking).

Figure 13-2. Interaction between gender and drink consumption on grip strength

Table 13-1. Relationship between grip strength (DV) and gender and alcohol consumption
(IVs)

Gender Alcohol Grip strength (psi)

Female Weekly 19

Female Weekly 20

Female Weekly 21

Female Never 30

Female Never 25

Female Never 28

Male Weekly 31

Male Weekly 30

Male Weekly 35
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The two main effects are testing two mean population differences, based on the
null hypothesis:

• , where the sample means are 23.83 and 32.5, respectively

• , where the sample means are 26.00 and 30.33,
respectively

To test the interaction, the sample means are compared as follows:

•

•

•

•

If a significant effect is found, one way to determine the direction is to plot the
means. After a two-way ANOVA is conducted using a statistical package, a
number of tables are generally produced, but the key results are shown in
Table 13-2. Normally, you can ignore the F-tests for the intercept and the corrected
model, and focus on the results for each main effect and interaction. The coefficient
of determination, as applied to the underlying linear model, shows R2 = 0.901 (or
adjusted R2 = 0.864). This represents the amount of variation in the DV accounted
for by the two significant main effects and the interaction, i.e., 90.1% of variation is
accounted for. A more conservative R2 is provided by the multiple correlation coeffi-
cient, which is discussed in detail in Chapter 14.

R can also be used as an indicator of effect size, with values of R = 0.10, 0.36, 0.51
indicating small, medium, or large effects respectively. Other statistics (such as
eta) can also be computed to indicate effect size, and many disciplines now
require effect sizes to be reported in academic journals. The important point, in
terms of inference, is not just pursuing ANOVA as a means to determining
whether there are “statistically significant differences” between groups, but
whether these differences are meaningful.

All three effects tested in the design are significant:

Gender main effect: F(1, 8) = 52.00, p < 0.001
The direction of the effect shows that women generally have lower grip
strength than men.

Alcohol main effect: F(1, 8) = 13.00, p = 0.007
The direction of the effect shows that alcohol reduces grip strength.

Male Never 32

Male Never 35

Male Never 32

Table 13-1. Relationship between grip strength (DV) and gender and alcohol consumption
(IVs) (continued)

Gender Alcohol Grip strength (psi)

Female Male– 0=

Weekly Never– 0=

Female Weekly, 20=

Female Never, 27.67=

Male Weekly, 32=

Male Never, 33=
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Gender × alcohol interaction: F(1, 8) = 7.692, p = 0.024
The interaction shows that gender and alcohol interact, with female alcohol
drinkers having much worse grip strength than male nondrinkers.

Levene’s test, which is a test of the assumption of homogeneity of error variances,
was also performed. The test result was F(3, 8) = 1.273, p = 0.35, which is not
significant. Therefore, the error variance of the DV across all groups is equal, and
the ANOVA has not violated this assumption (Table 13-2).

Three-Way ANOVA

The two-way factorial model can easily be extended to three factors. After demon-
strating significant main effects for gender and alcohol consumption on grip
strength, your research team investigates other possible factors that may influ-
ence grip strength. In the literature, there appears to be a lot of discussion about
the influence of age on grip strength, with a marked decline appearing after the
age of 40. So, you decide to add an age category (below 40 or above 40) to deter-
mine if age has any influence or as much influence on grip strength, as the other
factors.

Table 13-3 shows the raw data for the study.

Table 13-2. ANOVA testing differences in grip strength (DV) for gender and alcohol
consumption (IVs)

Source
Sum of

squares df Mean square F Sig.

Corrected
model

 315.000 3  105.000  24.231 0.000

Intercept 9520.333 1 9520.333 2197.000 0.000

Gender  225.333 1  225.333  52.000 0.000*

Alcohol  56.333 1  56.333  13.000 0.007*

Gender *
alcohol

 33.333 1  33.333  7.692 0.024*

Error  34.667 8  4.333

Total 9870.000 12

Corrected total 349.667 11

Table 13-3. Relationship between grip strength (DV) and gender, alcohol consumption, and
age (IVs)

Gender Alcohol Grip strength (psi) Age

Female Weekly 19 Below 40

Female Weekly 20 Above 40

Female Weekly 21 Below 40

Female Never 30 Above 40

Female Never 25 Below 40

Female Never 28 Above 40
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Table 13-4 shows the three-factor version of the ANOVA table that corresponds
to the two-factor case shown in Table 13-2. The results can be summarized as
follows:

• A significant main effect was found for gender, F(1, 4) = 72.00, p = 0.001.

• A significant main effect was found for alcohol consumption, F(1, 4) = 18.00,
p = 0.013.

• No significant main effect was found for age, F(1,4) = 0.22, p = 0.662.

• No significant interaction was found for gender × alcohol, F(1,4) = 5.56, p =
0.078.

• No significant interaction was found for gender× age, F(1, 4) = 5.56, p = 0.078.

• No significant interaction was found for age× alcohol, F(1, 4) = 0.89, p = 0.34.

• No significant interaction was found for age × alcohol × gender, F(1, 4) = 0.89,
p = 0.34.

Note that those are two-way interactions for each pair of factors as well as a three-
way interaction. In this case, the main effects of gender and alcohol were repli-
cated, as per the previous example, but no interaction was observed (in the
previous example, there was an interaction observed between alcohol consump-
tion and gender). In this example, R2 = 0.966 represents the amount of variation
in the DV accounted for by the two significant main effects, and even the more
conservative adjusted R2 = 0.906. This represents a very large effect size.

Male Weekly 31 Below 40

Male Weekly 30 Above 40

Male Weekly 35 Below 40

Male Never 32 Above 40

Male Never 35 Below 40

Male Never 32 Above 40

Table 13-4. ANOVA testing differences in grip strength (DV) based on gender, alcohol
consumption, and age (IVs)

Source
Type III Sum of

squares df Mean square F Sig.

Corrected
model

337.667 7 48.238 16.079 0.009

Intercept 8362.667 1 8362.667 2787.556 0.000

Gender 216.000 1 216.000 72.000 0.001*

Alcohol 54.000 1 54.000 18.000 0.013*

Age 0.667 1 0.667 0.222 0.662

Gender *
alcohol

16.667 1 16.667 5.556 0.078

Gender * age 16.667 1 16.667 5.556 0.078

Table 13-3. Relationship between grip strength (DV) and gender, alcohol consumption, and
age (IVs) (continued)

Gender Alcohol Grip strength (psi) Age
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MANOVA
Factorial ANOVA deals with cases in which there are multiple IVs, while
MANOVA allows designs with multiple DVs to be analyzed. Continuing with the
physical performance example, grip strength is often analyzed along with other
measures, such as the number of steps that can be mounted and demounted in a
given timeframe (usually 30-second intervals). While all measures of physical
performance are expected to be correlated to some extent, there may be good
reasons (clinical or otherwise) for treating the effects separately. Otherwise, if the
measures are highly correlated (known as multicollinearity), and make no signifi-
cant contribution to the model, then the best measure of performance may be
selected, and the other measure not collected—this can reduce time, cost, and
inconvenience to study participants.

MANOVA has many assumptions, such as independent observations, multi-
variate normality, homogeneity of variance, equality of group sizes (or at most, a
1.5 ratio between N of the smallest group and the largest group), and homoge-
neity of covariance for dependent variable pairs across all groups (which can be
tested by Box’s test of equality of covariance matrices).

Table 13-5 shows sample data in which there are two independent variables
(gender and alcohol consumption) and two dependent variables (grip strength
and number of steps mounted in 30s). The MANOVA model can be used to test
the following effects:

• Main effects of the independent variables (i.e., do alcohol and/or gender
independently influence physical performance)

• Interactions between the independent variables (i.e., do alcohol and/or gen-
der modulate the effect of each other to influence physical performance)

• The degree of relationship between the dependent variables

• How significant are the dependent variables, in terms of being affected by
gender or alcohol consumption

Again, Levene’s test could be used to determine whether the assumption of the
equality of error variances has been violated. If the assumption is violated, a trans-
formation may be used to meet the assumption.

Alcohol * age 2.667 1 2.667 0.889 0.399

Gender *
alcohol * age

2.667 1 2.667 00.889 0.399

Error 12.000 4 3.000

Total 9870.000 12

Corrected total 349.667 11

Table 13-4. ANOVA testing differences in grip strength (DV) based on gender, alcohol
consumption, and age (IVs) (continued)

Source
Type III Sum of

squares df Mean square F Sig.
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To test the multivariate case, a multivariate F-test is used to evaluate the hypoth-
eses. The results of the multivariate F-test—shown in Table 13-6—indicate a
main effect for each of the independent variables, but no interaction:

• For gender, F(2.00, 7.00) = 52.23, p = 0.000

• For alcohol, F(2.00, 7.00) = 10.94, p = 0.007

• For gender × alcohol, F(2.00, 7.00) = 4.70, p = 0.051

Notice that there are multiple F-tests computed for several different statistics:
Wilks’s Lambda, Pillai’s Trace, Hotelling’s Trace, and Roy’s Largest Root. In the
case of two dependent variables, these statistics will produce the same F values.
Normally, Pillai’s Trace is used, but only if the result of Box’s test is not
significant.

Tests of between-subjects effects are shown in Tables 13-6 and 13-7, to highlight
the importance of each dependent variable. Interpreting these results is similar to
analyzing two factorial designs with a separate DV; an R2 is computed for each
model, based on each dependent variable (R2 = 0.901 for grip strength and R2 =
0.909 for steps). The results are quite interesting:

• There is a significant main effect for gender on grip strength and steps.

• There is a significant main effect for alcohol on grip strength and steps.

• There is a significant interaction between gender and alcohol on grip
strength.

• There is no significant interaction between gender and alcohol on steps.

By examining the univariate F-tests, you can determine which dependent variable
made the greatest contribution to the significant multivariate result; in this case,
grip strength made a more significant contribution than steps. Generally, unless
the multivariate F-test is significant, the results of the univariate tests are
disregarded.

Table 13-5. Relationship between grip strength and steps (DVs) and gender and alcohol
consumption (IVs)

Gender Alcohol Grip strength (psi) Steps

Female Weekly 19 Below 40

Female Weekly 20 Above 40

Female Weekly 21 Below 40

Female Never 30 Above 40

Female Never 25 Below 40

Female Never 28 Above 40

Male Weekly 31 Below 40

Male Weekly 30 Above 40

Male Weekly 35 Below 40

Male Never 32 Above 40

Male Never 35 Below 40

Male Never 32 Above 40
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In the ideal case, dependent variables are completely uncorrelated (orthogonal). If
this is not possible, orthogonal factors can be produced using advanced tech-
niques like orthogonal decomposition, which can be implemented by using
principal components analysis (presented in Chapter 17).

Note that MANOVA is a complex procedure, including variations incorporating
analysis of covariates (MANCOVA) and mixed MANOVA or doubly multivariate
MANOVA where multiple DVs are collected on different occasions. These tech-
niques are extremely powerful and commonly used in experimental disciplines.
You should refer to a specialist multivariate analysis text for further details.

Table 13-6. ANOVA testing differences in grip strength and steps (DVs) based on gender
and alcohol consumption (IVs) (multivariate tests)

Effect Value F Hypothesis df Error df Sig.

Intercept Pillai’s Trace 0.999 3556.956 2.000 7.000 0.000

Wilks’s
Lambda

0.001 3556.956 2.000 7.000 0.000

Hotelling’s
Trace

1016.273 3556.956 2.000 7.000 0.000

Roy’s
Largest Root

1016.273 3556.956 2.000 7.000 0.000

Gender Pillai’s Trace 0.937 52.233 2.000 7.000 0.000*

Wilks’s
Lambda

0.063 52.233 2.000 7.000 0.000*

Hotelling’s
Trace

14.924 52.233 2.000 7.000 0.000*

Roy’s
Largest Root

14.924 52.233 2.000 7.000 0.000*

Alcohol Pillai’s Trace 0.758 10.940 2.000 7.000 0.007*

Wilks’s
Lambda

0.242 10.940 2.000 7.000 0.007*

Hotelling’s
Trace

3.126 10.940 2.000 7.000 0.007*

Roy’s
Largest Root

3.126 10.940 2.000 7.000 0.007*

Gender *
alcohol

Pillai’s Trace 0.573 4.700 2.000 7.000 0.051

Wilks’s
Lambda

0.427 4.700 2.000 7.000 0.051

Hotelling’s
Trace

1.343 4.700 2.000 7.000 0.051

Roy’s
Largest Root

1.343 4.700 2.000 7.000 0.051
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ANCOVA
Analysis of Covariance (ANCOVA) is a variation of factorial ANOVA that allows
the potentially confounding effect of a covariate to be canceled out in ANOVA.
You may wonder why, if there is a factor that influences variability in the DV, it is
not just included in the model as a normal factor. The answer is that the DV can
be adjusted for changes that would not have occurred if the confounding effect of
the covariate had been in place.

Continuing with the grip strength example, the research team becomes concerned
that frequency of attending the gym may be influencing the observed relationship
between gender and alcohol consumption (IVs) and grip strength (DV). An
ANCOVA is carried out using a categorical gym attendance variable with two
levels (never attends, has attended at least once in the previous week), with the
data shown in Table 13-8. To test the assumption of homogeneity of error vari-
ance, Levene’s test is computed, with F(3,8) = 1.290, p = 0.342, which is not
significant, so the assumption holds. Proceeding with the ANCOVA, you find that
the previously established relationship between gender, alcohol consumption, and
grip strength holds true, and that the covariate (gym attendance) is not signifi-
cant, as shown in Table 13-9:

Table 13-7. Tests of between-subjects effects

Source
Dependent
variable

Type III Sum
of squares df

Mean
square F Sig.

Corrected
model

Grip 315.000(a) 3 105.000 24.231 0.000

Steps 147.000(b) 3 49.000 26.727 0.000

Intercept Grip 9520.333 1 9520.333 2197.000 0.000

Steps 10680.333 1 10680.333 5825.636 0.000

Gender Grip 225.333 1 225.333 52.000 0.000*

Steps 120.333 1 120.333 65.636 0.000*

Alcohol Grip 56.333 1 56.333 13.000 0.007*

Steps 21.333 1 21.333 11.636 0.009*

Gender *
alcohol

Grip 33.333 1 33.333 7.692 0.024*

Steps 5.333 1 5.333 2.909 0.126

Error Grip 34.667 8 4.333

Steps 14.667 8 1.833

Total Grip 9870.000 12

Steps 10842.000 12

Corrected
total

Grip 349.667 11

Steps 161.667 11
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• For gender, F(1, 7) = 45.55, p = 0.000

• For alcohol, F(1, 7) = 10.319, p = 0.015

• For gender × alcohol, F(1, 7) = 6.739, p = 0.036

• For gym atttendance, F(1, 7) = 0.008, p = 0.929

So, gym attendance, in itself, does not have a significant effect on the DV, and the
previously established significant main effects and interaction still remain signifi-
cant after ANCOVA. R2 = 0.901 and adjusted R2 = 0.844, indicating a large effect
size, and a very significant proportion of variance in the DV being accounted for
by the main effects of gender and alcohol consumption, and their interaction.

Table 13-8. Relationship between grip strength (DV) and gender and alcohol consumption
(IVs) and covariate (frequency of gym attendance)

Gender Alcohol Grip strength (psi) Gym

Female Weekly 19 Never

Female Weekly 20 Never

Female Weekly 21 Weekly

Female Never 30 Never

Female Never 25 Weekly

Female Never 28 Weekly

Male Weekly 31 Never

Male Weekly 30 Never

Male Weekly 35 Weekly

Male Never 32 Weekly

Male Never 35 Never

Male Never 32 Weekly

Table 13-9. ANOVA testing differences in grip strength (DV) between gender and alcohol
consumption (IVs) with a covariate (frequency of gym attendance) (between-subjects
effects)

Source
Type III Sum of

squares df Mean square F Sig.

Corrected
model

315.042 4 78.760 15.923 0.001

Intercept 867.191 1 867.191 175.317 0.000

Gym 0.042 1 0.042 0.008 0.929

Gender 225.333 1 225.333 45.555 0.000*

Alcohol 51.042 1 51.042 10.319 0.015*

Gender *
alcohol

33.333 1 33.333 6.739 0.036*

Error 34.625 7 4.946

Total 9870.000 12

Corrected total 349.667 11
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Repeated Measures ANOVA
As described in Chapter 5, a repeated measures design involves measuring the
same dependent variables across two or more intervals (usually time intervals). In
medical and behavioral research, pre- and post-treatment designs are very
common, where the effect of a drug or some other intervention needs to be
assessed. In these designs, participants act as their own controls, minimizing error
due to variation between individuals.

In this example, imagine you are a psychiatrist interested in the effects of a new
anti-anxiety drug on cognitive performance, since clinical observations indicate
that it has some detrimental effect. The two research questions are:

• Does taking the drug reduce cognitive performance?

• Are there some doses that are relatively safer than others?

To answer these questions, different doses of the drug can be randomly adminis-
tered to a sample, with four different treatment levels (100, 200, 300, and 400mg)
and a baseline (placebo) condition, as shown in Table 13-10. If any of the treat-
ments are significantly different to the baseline, the first research question can be
answered in the affirmative. The second research question can then be investi-
gated to determine which doses are significantly different to the baseline.
Regression analysis is also suited to these designs by allowing for different models
(linear and nonlinear) to be fitted to determine the dose-response relationship.

While the assumptions for repeated measures ANOVA are similar to other
ANOVA designs, an additional complication is sphericity, which is the assump-
tion of homogeneity of variances and covariances within each level of the within-
subjects factor. In this example, sphericity means that if the cognitive perfor-
mance scores for 100mg were subtracted from the 200mg scores, the variances
would be equal. For many real-world data sets, this assumption is often violated;
you can test whether a violation has occurred by performing Mauchly’s Test of
Sphericity. Alternatively, the degrees of freedom can be adjusted by using the

Table 13-10. Effect of anti-anxiety drug (IV) on cognitive performance (DV)

Baseline 100mg 200mg 300mg 400mg

 50  48  45  44  44

 42  40  36  35  34

 56  50  48  47  47

 49  48  45  43  42

 50  47  48  43  43

 43  41  37  36  35

 56  53  49  48  47

 59  58  57  56  53

 48  46  43  42  39

 43  42  36  35  34
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Greenhouse-Geisser, Huynh-Feldt, or lower bound corrections. The effects can be
tested using univariate or multivariate techniques, with the latter being appro-
priate if the assumptions for repeated measures ANOVA are not met.

The results of the analysis are shown in Tables 13-11 through 13-14. Firstly,
Mauchly’s Test of Sphericity shows that no violation of the assumption of homo-
geneity of variance and covariance has occurred, W = 0.353, p = 0.572 with df = 9.
Secondly, if the assumption had been violated, the Greenhouse-Geisser, Huynh-
Feldt, or lower-bound corrections shown could be applied to the degrees of freedom
for the design. Thirdly, multivariate F-tests show that there is a significant effect of
administering the drug on cognitive performance, F(4, 6) = 92.568, p = 0.000. By
plotting the means, you can easily see that the direction is negative, i.e., cognitive
performance is reduced by taking the drug. Finally, tests of within-subjects contrasts
show significant linear and quadratic components, with F(1, 9) = 367.347, p = 0.
000, and F(1, 9) = 6.446, p = 0.032 respectively. Thus, at the p < 0.01 significance
level, you would say that the relationship between the DV and IV was strictly
linear, but at the p < 0.05 level, there was both a linear and a quadratic compo-
nent. This indicates that the effect is not just a simple reduction in cognitive
performance as a function of drug dosage, but that there is a significant nonlinear
effect as well. Further modeling may indicate why this additional effect is
observed, and whether the quadratic component is concave or convex.

Table 13-11. ANOVA testing effect on cognitive performance (DV) after administration of
anti-anxiety drug (IV) (Mauchly’s Test of Sphericity)

Within-subjects
effect Mauchly’s W Approx. chi-square df Sig.

Drug 0.353 7.729 9 0.572

Table 13-12. Epsilon

Epsilon

Greenhouse-Geisser Huynh-Feldt Lower-Bound

0.677 0.997 0.250

Table 13-13. Multivariate tests

Effect Value F Hypothesis df Error df Sig.

Drug Pillai’s Trace 0.984 92.568 4.00 6.000 0.000*

Wilks’s Lambda 0.016 92.568 4.000 6.000 0.000*

Hotelling’s Trace 61.712 92.568 4.000 6.000 0.000*

Roy’s Largest
Root

61.712 92.568 4.000 6.000 0.000*
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Mixed Designs
In the previous section, you saw how useful a repeated measures design was in a
study to investigate the effects of a drug on cognitive performance, where partici-
pants acted as their own controls. However, in many cases, you will also want to
perform an experimental manipulation between subjects, or you may want to
examine the effect across different natural groups. In this case, you can use a
mixed design, with both between- and within-subjects factors. Additionally, you
may need to control for the effect of a covariate; in the case of dose-response rela-
tionships in pharmacology or clinical studies, you may need to control for the
confounding effects of the co-administration of other drugs. In this section, you
will see how these scenarios can be implemented using a mixed design.

Within-Subjects and Between-Subjects

In this example, we extend the previous repeated measures design to examine
whether the effect of the anti-anxiety drug (the within-subjects factor) has the
same effect on both men and women (the between-subjects factor), or whether
there is no difference. The data is shown in Table 13-15.

Table 13-14. Tests of within-subjects contrasts

Source Drug
Type III Sum

of squares df
Mean

square F Sig.

Drug Linear 400.000 1 400.000 367.347 0.000*

Quadratic 10.314 1 10.314 6.446 0.032*

Cubic 1.000 1 1.000 1.731 0.221

Order 4 1.286 1 1.286 0.964 0.352

Error (drug) Linear 9.800 9 1.089

Quadratic 14.400 9 1.600

Cubic 5.200 9 0.578

Order 4 12.000 9 1.333

Table 13-15. Effect on cognitive performance (DV) after administration of anti-anxiety
drug (WS IV) across two gender groups (BS IV)

Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Gender

 50  48  45  44  44 Male

 42  40  36  35  34 Male

 56  50  48  47  47 Male

 49  48  45  43  42 Male

 50  47  48  43  43 Male

 43  41  37  36  35 Female

 56  53  49  48  47 Female

 59  58  57  56  53 Female

 48  46  43  42  39 Female

 43  42  36  35  34 Female
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The results for the multivariate tests are shown in Tables 13-16 through 13-20.
Once again, Mauchly’s Test of Sphericity was not significant, so the sphericity
assumption was not violated. You can see that there is a significant effect for the
drug factor, F(4, 5) = 101.118, p = 0.000, but no interaction with gender, F(4, 5) =
1.946, p = 0.241. This indicates that the within-subjects effect is present, as it was
in the previous example, but that no significant difference was observed between
men and women. These results were confirmed by the univariate tests of within-
subjects effects, with F(4, 32) = 91.486, p = 0.000 for drug, and F(4,32) = 1.180,
p = 0.241 for gender. The univariate test for the between-subjects factor (gender)
was also not significant, F(1, 8) = 0.13, p = 0.910.

Table 13-16. ANOVA testing effect on cognitive performance (DV) after administration of
anti-anxiety drug (WS IV) across two gender groups (BS IV) (Mauchly’s Test of Sphericity)

Within-
subjects

effect
Mauchly’s

W
Approx.

chi-square df Sig. Epsilon(a)

Greenhouse-Geisser Huynh-Feldt

Drug .239 9.181 9 0.436 0.607 1.000 0.250

Table 13-17. Multivariate tests

Effect Value F
Hypothesis

df Error df Sig

Drug Pillai’s Trace 0.988 101.118 4.000 5.000 0.000*

Wilks’s
Lambda

0.012 101.118 4.000 5.000 0.000*

Hotelling’s
Trace

80.894 101.118 4.000 5.000 0.000*

Roy’s Largest
Root

80.894 101.118 4.000 5.000 0.000*

Drug *
gender

Pillai’s Trace 0.609 1.946 4.000 5.000 0.241

Wilks’s
Lambda

0.391 1.946 4.000 5.000 0.241

Hotelling’s
Trace

1.557 1.946 4.000 5.000 0.241

Roy’s Largest
Root

1.557 1.946 4.000 5.000 0.241

Table 13-18. Test of within-subjects effects

Source
Type III Sum

of squares df Mean square F Sig.

Drug Sphericity assumed 412.600 4 103.150 91.486 0.000*

Greenhouse-Geisser 412.600 2.429 169.844 91.486 0.000*

Huynh-Feldt 412.600 4.000 103.150 91.486 0.000*

Lower-bound 412.600 1.000 412.600 91.486 0.000*
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Within-Subjects and Between-Subjects and Covariates

If there is a potential covariate that may be confounding an ANOVA result, it’s
always best to include this in the analysis so that its effect can be accounted for
and adjustments made. Following with the mixed design presented previously,

Drug *
gender

Sphericity assumed 5.320 4 1.330 1.180 0.338

Greenhouse-Geisser 5.320 2.429 2.190 1.180 0.336

Huynh-Feldt 5.320 4.000 1.330 1.180 0.338

Lower-bound 5.320 1.000 5.320 1.180 0.309

Error (drug) Sphericity assumed 36.080 32 1.128

Greenhouse-Geisser 36.080 19.434 1.857

Huynh-Feldt 36.080 32.000 1.128

Lower-bound 36.080 8.000 4.510

Table 13-19. Tests of within-subjects contrasts

Source Drug
Type III Sum

of squares df
Mean

square F Sig.

Drug Linear 400.000 1 400.000 363.636 0.000*

Quadratic 10.314 1 10.314 6.171 0.038*

Cubic 1.000 1 1.000 1.538 0.250

Order 4 1.286 1 1.286 1.181 0.309

Drug *
gender

Linear 1.000 1 1.000 0.909 0.368

Quadratic 1.029 1 1.029 0.615 0.455

Cubic 0.000 1 .000 0.000 1.000

Order 4 3.291 1 3.291 3.024 0.120

Error (drug) Linear 8.800 8 1.100

Quadratic 13.371 8 1.671

Cubic 5.200 8 0.650

Order 4 8.709 8 1.089

Table 13-20. Tests of between-subjects effects

Source
Type III Sum of

squares df Mean square F Sig.

Intercept 102152.000 1 102152.000 478.710 0.000

Gender 2.880 1 2.880 0.013 0.910

Error 1707.120 8 213.390

Table 13-18. Test of within-subjects effects (continued)

Source
Type III Sum

of squares df Mean square F Sig.
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you suspect that prior administration of another drug (Drug B) may be giving rise
to the observed effect of the anti-anxiety medication on cognitive performance.
So, you decide to explicitly enter the prior administration of Drug B into the
model as a covariate. Table 13-21 shows the new data.

The results of the analysis are shown in Tables 13-22 through 13-26. Firstly, you
perform Mauchly’s Test of Sphericity and conclude that no violation has
occurred, W = 0.204, p = 0.496 for df = 9.

Next, multivariate tests are performed. In addition to the previous tests for a main
effect of drug (within-subjects), and a drug (within-subjects) × gender (between-
subjects) interaction, a drug (within-subjects) × Drug B (covariate) is also tested.
The interaction is not significant, F(4, 4) = 0.791, p = 0.587.

Univariate test results for within-subjects effects indicate no drug × gender or Drug ×
Drug B interactions, with F(4, 28) = 0.787, p = 0.352 and F(4, 28) = 0.873, p =
0.587 respectively, but a significant main effect for drug, F(4, 32) = 9.913, p = 0.000.

In terms of the direction of effect, tests of within-subjects contrasts indicate a
significant linear component for drug, F(1, 7) = 32.770, p = 0.001, but no other
component was significant for the drug main effect, nor was any other compo-
nent significant for any of the interactions (Drug × Drug B and drug × gender).

Since you are testing a between-subjects factor, and a covariate, between-subjects
are also performed. No significant effects were observed for either Drug B or
gender, F(1, 7) = 1.074, p = 0.335 and F(1, 7) = 0.103, p = 0.757 respectively.

Table 13-21. Effect on cognitive performance (DV) after administration of anti-anxiety
drug (WS IV) across two gender groups (BS IV) taking into account covariate (prior
administration of Drug B)

Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Gender Drug B

 50  48  45  44  44 Male Yes

 42  40  36  35  34 Male No

 56  50  48  47  47 Male Yes

 49  48  45  43  42 Male No

 50  47  48  43  43 Male Yes

 43  41  37  36  35 Female No

 56  53  49  48  47 Female Yes

 59  58  57  56  53 Female No

 48  46  43  42  39 Female Yes

 43  42  36  35  34 Female No
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Table 13-22. ANOVA testing effect on cognitive performance (DV) after administration of
anti-anxiety drug (WS IV) across two gender groups (BS IV) taking into account covariate
(prior administration of Drug B) (Mauchly’s Test of Sphericity)

Within-
subjects

effect
Mauchly’s

W Approx. chi-square df Sig. Epsilon

Greenhouse-
Geisser

Huynh-
Feldt

Drug 0.204 8.599 9 0.496 0.539 1.000 0.250

Table 13-23. Multivariate test

Effect Value F
Hypothesis

df Error df Sig.

Drug Pillai’s Trace 0.905 9.498 4.000 4.000 0.025*

Wilks’s
Lambda

0.095 9.498 4.000 4.000 0.025*

Hotelling’s
Trace

9.498 9.498 4.000 4.000 0.025*

Roy’s Largest
Root

9.498 9.498 4.000 4.000 0.025*

Drug *
Drug_B

Pillai’s Trace 0.442 .791 4.000 4.000 0.587

Wilks’s
Lambda

0.558 .791 4.000 4.000 0.587

Hotelling’s
Trace

0.791 .791 4.000 4.000 0.587

Roy’s Largest
Root

0.791 .791 4.000 4.000 0.587

Drug *
gender

Pillai’s Trace 0.600 1.502 4.000 4.000 0.352

Wilks’s
Lambda

0.400 1.502 4.000 4.000 0.352

Hotelling’s
Trace

1.502 1.502 4.000 4.000 0.352

Roy’s Largest
Root

1.502 1.502 4.000 4.000 0.352

Table 13-24. Tests of within-subjects effects

Source
Type III Sum

of squares df
Mean

square F Sig.

Drug Sphericity
assumed

45.931 4 11.483 9.913 0.000*

Greenhouse-
Geisser

45.931 2.155 21.318 9.913 0.002*
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Huynh-Feldt 45.931 4.000 11.483 9.913 0.000*

Lower-
bound

45.931 1.000 45.931 9.913 0.016*

Drug *
Drug_B

Sphericity
assumed

3.647 4 0.912 0.787 0.543

Greenhouse-
Geisser

3.647 2.155 1.693 0.787 0.482

Huynh-Feldt 3.647 4.000 0.912 0.787 0.543

Lower-
bound

3.647 1.000 3.647 0.787 0.404

Drug *
gender

Sphericity
assumed

4.047 4 1.012 0.873 0.492

Greenhouse-
Geisser

4.047 2.155 1.878 0.873 0.445

Huynh-Feldt 4.047 4.000 1.012 0.873 0.492

Lower-
bound

4.047 1.000 4.047 0.873 0.381

Error (drug) Sphericity
assumed

32.433 28 1.158

Greenhouse-
Geisser

32.433 15.082 2.150

Huynh-Feldt 32.433 28.000 1.158

Lower-
bound

32.433 7.000 4.633

Table 13-25. Tests of within-subjects contrasts

Source Drug
Type III Sum

of squares df
Mean

square F Sig.

Drug Linear 41.002 1 41.002 32.770 0.001*

Quadratic 3.796 1 3.796 2.148 0.186

Cubic 0.435 1 0.435 0.733 0.420

Order 4 0.699 1 0.699 0.685 0.435

Drug *
Drug_B

Linear 0.042 1 0.042 0.033 0.860

Quadratic 1.001 1 1.001 0.567 0.476

Cubic 1.042 1 1.042 1.754 0.227

Order 4 1.562 1 1.562 1.530 0.256

Drug *
gender

Linear 1.042 1 1.042 0.833 0.392

Quadratic 0.630 1 0.630 0.356 0.569

Cubic 0.042 1 0.042 0.070 0.799

Order 4 2.334 1 2.334 2.286 0.174

Table 13-24. Tests of within-subjects effects (continued)

Source
Type III Sum

of squares df
Mean

square F Sig.



Mixed Designs | 263

Analysis of
Variance

Error (drug) Linear 8.758 7 1.251

Quadratic 12.370 7 1.767

Cubic 4.158 7 0.594

Order 4 7.146 7 1.021

Table 13-26. Tests of between-subjects effects

Source
Type III Sum of

squares df Mean square F Sig.

Intercept 12893.858 1 12893.858 60.982 0.000

Drug_B 227.070 1 227.070 1.074 0.335

Gender 21.870 1 21.870 0.103 0.757

Error 1480.050 7 211.436

Table 13-25. Tests of within-subjects contrasts (continued)

Source Drug
Type III Sum

of squares df
Mean

square F Sig.
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14
Multiple Linear Regression

In Chapter 12, you learned how to use bivariate linear regression to build simple
linear models suitable for characterization of the relationship between two vari-
ables (typically one dependent variable and one independent variable). Clearly,
many variables in the physical world can have multiple IVs independently,
accounting for some portion of variance in the DV. Note the difference between
“single linear regression” and “multiple linear regression”—the former refers to a
setting in which there are multiple responses in a response vector emphasizing that
we are in the setting with a single outcome but multiple predictors. This chapter
discusses multiple linear regression as an extension of simple linear regression.
Assumptions specific to multivariate regression, such as multicollinearity among
predictor variables, are discussed and methods for model-building are presented.

Multiple Regression Models
The use of simple linear regression models and the bivariate correlation coeffi-
cient and its square (the coefficient of determination) are useful for illustrating
simple examples; in reality, very few physical systems or fields of interest rely on a
single independent and dependent variable pair. Consider models used to study
climate change, such as General Circulation Models (GCMs) and even more
sophisticated Atmosphere-Ocean General Circulation Models (AOGCMs). These
models have been developed over the past 30 years to allow the increasingly accu-
rate forecast of weather patterns. The models used involve understanding and
quantifying relationships between potentially hundreds and thousands of vari-
ables in many different qualitative categories. For example, in the mid-1970s,
models focused on variables derived from atmospheric conditions, while in the
near future, models will be available that are based on atmospheric data combined
with land surface, ocean and sea ice, sulphate and nonsulphate aerosol, carbon
cycle, dynamic vegetation, and atmospheric chemistry data. By combining these
additional sources of variation into a large-scale statistical model, predictions of
weather activity of qualitatively different types has been made possible at different
spatial and temporal scales.
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There are two things to note about models of this type that are extremely impor-
tant for the development of multiple linear regression models. Firstly, each new
set of variables added to the model should uniquely and significantly account for
some of the variation observed in the dependent variable; secondly, since you
expect that some (many?) of the variables will be correlated, you need a tech-
nique that selects the set of variables that provide the best fit to the dependent
variable. As you shall see, multiple linear regression algorithms provide these tools
(and more!), allowing you to add new variables into a model to see if they make
any difference to the variation accounted for. For example, if you look at the
timescale of developments of the GCM and AOGCM models, each qualitative set
of variables has been added over time and evaluated to determine if any new and
useful information could be extracted from them vis-à-vis predictability of depen-
dent variables. In cases where no additional information is gained, the variables
concerned can be withdrawn from the model, and time and money saved by
having to only collect the smallest number of variables possible to predict weather
phenomena.

Formally, multiple linear regression models take the form:

Y = β + α1X1 + α2X2 + … αnXn

where Y is the dependent variable, β is the intercept, X1, X2, … Xn are the inde-
pendent variables, and α1, α2, … αn are the slopes. Note that the dependent
variable (Y) and independent variables (X1, X2, … Xn) are observed data, while the
intercept (β) and slopes (α1, α2, … αn) are computed by the multiple linear regres-
sion algorithm. In algebraic terms, the goal of the algorithm is to minimize the
following sum:

For bivariate relationships, visualizing the relationship between two variables can
be easily accomplished using a two-dimensional number plane. This is also
possible for three-dimensional models (i.e., one dependent variable and two inde-
pendent variables), but becomes much harder for higher-dimensional models.

In the following example, a three-dimensional model is used to illustrate how
minimizing the expression above can be achieved by minimizing the residuals
between the observed dependent variable value and its predicted value on the
three-dimensional number plane Y = β + α1X1 + α2X2. Imagine that you are an
atmospheric researcher interested in characterizing and predicting the relation-
ship between average temperature at ground level, and the atmospheric levels of
carbon dioxide (CO2) and methane (CH4), measured in parts per million (ppm)
and parts per billion (ppb), respectively. The model assumes that changes in the
surface temperature have increased linearly over the past 100 years, i.e., there is a
correlation between year and surface temperature increase of 0.01 degrees Celsius
per year. Thus, for characterization, the model would use surface temperature as
the dependent variable, but you may use year as the dependent variable if you
wanted to predict the concentrations of CO2 and CH4 in future years. Sample
data is shown in Table 14-1.

Y β– α1X1 α2X2– … α– nXn––( )2

i 1=

N

∑
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Figure 14-1 shows the relationship between temperature, CO2, and CH4. You can
see that all three variables tend to rise with each other in a positive manner, which
corresponds with generally held theories that rises in CO2 and CH4 are associated
with rising surface temperatures.

What you hope to achieve by performing multiple linear regression is to account
for more variation in the DV by using multiple IVs. However, the variation
accounted for by each factor will be additive only if the two factors are orthog-
onal, so you can’t simply take the coefficient of determination from the results of
two simple linear regression analyses and add them together to arrive at the

Table 14-1. Sample data showing the relationship between temperature, CH4
concentration, and CO2 concentration

Temperature CO2 CH4

20.1 288.8803 1475.822

20.2 292.5981 1490.691

20.3 297.8734 1492.851

20.4 291.7772 1507.829

20.5 305.7114 1531.721

20.6 313.7092 1518.571

20.7 324.1619 1539.442

20.8 304.6294 1547.516

20.9 325.738 1548.636

21 308.9492 1525.255

Figure 14-1. Relationship between CO2, CH4, and temperature
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combined variation accounted for in the multivariate case. However, if you have
used one of the orthogonal decomposition techniques described in Chapter 16, such
as principal component analysis, then the factors would indeed be orthogonal and
the variance additive.

To illustrate, construct two simple linear regression models and perform linear
regression on them, and compare the result with the multivariate case, as shown
in Examples 14-1 through 14-3, which show the bivariate and multivariate regres-
sion models for temperature, CO2, and CH4.

Example 14-1. Bivariate: temperature =β +αCO2

      Source |       SS       df       MS              Number of obs =      10
-------------+------------------------------           F(  1,     8) =   25.77
       Model |  0.62954855    1   0.62954855           Prob > F      =  0.0010
    Residual |  0.195450687   8  0.024431336           R-squared     =  0.7631
-------------+------------------------------           Adj R-squared =  0.7335
       Total |  0.824999237   9  0.091666582           Root MSE      =  0.15631

------------------------------------------------------------------------------
 temperature |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         co2 |  0.0104444   0.0020575    5.08   0.001     0.0056998    0.0151891
       _cons |   4.697114   3.123358     1.50   0.171    -2.505362    11.89959

Example 14-2. Bivariate: temperature =β +αCH4

       Source |       SS       df       MS              Number of obs =      10
-------------+------------------------------           F(  1,     8)  =   12.18
       Model |   0.498017047    1  0.498017047         Prob > F       =  0.0082
    Residual |   0.32698219     8  0.040872774         R-squared      =  0.6037
-------------+------------------------------           Adj R-squared  =  0.5541
       Total |   0.824999237    9  0.091666582         Root MSE       =  0.20217

------------------------------------------------------------------------------
 temperature |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         ch4 |    0.0180594 0.0051737    3.49   0.008      0.0061289    0.0299899
       _cons |   15.03461   1.581345     9.51   0.000     11.38802     18.6812

Example 14-3. Multivariate: temperature =β +α1CO2+α2CH4

      Source |       SS       df       MS              Number of obs =      10
-------------+------------------------------           F(  2,     7) =   12.15
       Model |  0.640537185    2  0.320268593          Prob > F      =  0.0053
    Residual |  0.184462052    7  0.026351722          R-squared     =  0.7764
-------------+------------------------------           Adj R-squared =  0.7125
       Total |  0.824999237    9  0.091666582          Root MSE      =  0.16233

------------------------------------------------------------------------------
 temperature |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         co2 |  0.0046003   0.007124     0.65   0.539   -0.0122452   0.0214458
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The results contain two important inferential tests: univariate t-tests on each coef-
ficient, as well as an overall F-test. These can be used for testing hypotheses that
each IV makes a significant contribution to the model, or that the model as a
whole is statistically significant in terms of the relationships it specifies between
the DVs and IVs. The results of these tests should always be interpreted by using
the appropriate estimate of effect size.

From the results of the analysis, you can observe that:

1. The regression equation resulting from the analysis of the temperature = β +
α CO2 model can be expressed as follows:

temperature = 4.70 + 0.10 CO2 with R2 = 0.76, F(1, 8) = 12.18, p = 0.008

t-tests indicate that both CO2 concentration and the intercept make a signifi-
cant contribution to the model, with t = 3.49, p = 0.008 and t = 9.51, p = 0.000,
respectively.

2. The regression equation resulting from this analysis of the temperature = β +
α CH4 model can be expressed as follows:

temperature = 15.03 + 0.18 CH4 with R2 = 0.60, F(1, 8) = 25.77, p = 0.001

t -tests indicate that only CH4 concentration makes a significant contribution
to the model, with t = 5.08, p = 0.001 and t = 1.50, p = 0.171, respectively.

3. The regression equation resulting from the analysis can be expressed as
follows:

temperature = 6.210 + 0.009 CH4 + 0.005 CO2 with R2 = 0.77, F(2,
7)=12.15, p = 0.005

None of the variables makes a significant individual contribution to the
model, with t = 2.33, p = 0.053 coming closest for CH4 concentration. This
can be attributed to the multicollinearity between the two IVs.

Thus, CH4 concentration is the best univariate predictor of temperature (R2 = 0.76),
although CO2 is also quite high (R2 = 0.60). However, by adding CO2 into the
bivariate model to form a multivariate model, only 1% more variation in tempera-
ture can be uniquely explained. Given this result, you can conclude that using the
bivariate model with CH4 as the IV explains almost as much variation in the DV as
the multivariate model, and thus you would only use the bivariate model for charac-
terization and prediction.

Recall in this example that there was a perfect correlation between increases in
year and temperature, so temperature was selected as the DV, and the model was
treated as if it were a cross-sectional design. However, in any realistic assessment
of global warming, it’s likely that—to some extent—temperature can be predicted
fromthe previous year’s temperature. In this case, temperature can be treated as a
lagged dependent variable. Thus, historical values of temperature can (and should)
be explicitly included in the model. For example, the model:

temperaturey = β + α1CO2 + α2CH4 + α3temperaturey–1

         ch4 |   0.008522   0.0036645    2.33   0.053     -0.000143    0.0171871
       _cons |   6.209997   4.001369     1.55   0.165    -3.251736    15.67173

Example 14-3. Multivariate: temperature =β +α1CO2+α2CH4 (continued)
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explicitly acknowledges the predictive power of this year’s temperature (year y) by
the previous year’s temperature (year y – 1). Removing autocorrelated sources of
variation is an important part of time series analysis, which is discussed in more
detail in Chapter 17. The important message is not to feel constrained to use stan-
dard textbook models for understand the relationships that you can observe,
especially if you are trying to predict the impact of changing the levels of one or
more factors.

Standardized Coefficients

A central question in multiple regression is which of two IVs may have the
greatest impact. In this example, and in the current climate of global warming
treaties, carbon trading schemes, etc., is it more important to reduce CH4 or CO2?
In other words, which chemical actually has the greatest effect on temperature? If
we simply compared the size of the estimated parameters, α2 is twice as large as
α1, suggesting that CH4 has a greater effect on temperature or is more important
than CO2. You can see this is not true by the t-tests, but in any case, it is a
spurious comparison, since CH4 and CO2 are measured in different units (ppb
and ppm, respectively). In simple volumetric terms, for example, a one ppm
change is much more significant than a one ppb change.

As CH4 and CO2 are both chemicals, it is possible to compare like-with-like on an
atomic basis, but in many cases of linear regression, the IV measures are not
directly comparable. In this case, the coefficients for each IV can be standardized
by using the standard deviation. Such standardized coefficients are known as beta
coefficients. Beta coefficients are usually reported as part of the regression anal-
ysis, but it is necessary to also compute the standard deviations to interpret the
results. In Examples 14-4 and 14-5, the descriptive statistics for the model vari-
ables are shown, along with the beta coefficients. Thus, a one standard deviation
change in CO2 would result in a temperature change of 0.198 standard devia-
tions, and a one standard deviation change in CH4 would result in a temperature
change of 0.713 standard deviations. Thus, a change in CH4 has a greater relative
impact on temperature than CO2. As a result, it may be argued that countering
the effects of CH4 may have a greater impact than reducing CO2 on global
warming, although in reality, it is unlikely that there is one “silver bullet” that can
solve global warming! Examples 14-4 and 14-5 show the standardized coefficients
in a regression model for temperature, CO2, and CH4.

Example 14-4. Descriptive statistics

    Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------
 temperature |        10       20.55     0.3027649     20.1         21
         co2 |        10    305.4028    13.02559   288.8803    325.738
         ch4 |        10    1517.833    25.32265   1475.822   1548.636

Example 14-5. Standardized coefficients

------------------------------------------------------------------------------
 temperature |      Coef.      Beta
-------------+----------------------------------------------------------------
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Proxy and Dummy Variables

Although regression is often presented as a technique that can only be used with
real-valued, continuous variables, categorical variables can also be used. Indeed,
in many fields like psychology and the social sciences, using categorical variables
is critical to understanding the relationships between different group members in
which the categories are mutually exclusive. Where categorical variables are used
in regression analysis, they may also be referred to as dummy variables, since they
nominally code for a category rather than lying on an interval or ratio scale. For
example, if you are interested in gender as a DV, it may be normal to code S = 0
(for males) and S = 1 (for females), but these are nominal values. In the social
sciences, building up regression models around many sets of IVs is very useful for
understanding what causes changes in a DV; for example, models with wealth as a
DV may take into account parental income (low, high), social class (low, middle),
education (high school, college), and so on. If a model is statistically significant,
and if the factors each make a distinct contribution, such models can be very
useful in predicting the DV when all of the IV dummy variable values are known.

However, dummy variables are often criticized for lack of face validity when a
direct measurement is not actually made to determine category membership.
“Sex” as a dummy variable is a good example: sex is determined at face value by
primary and secondary sex characteristics; at the genetic level, most people have
either XX chromosomes (female) or XY (male). Individuals with Kleinfelter’s
syndrome, on the other hand, have three chromosomes (XXY); consequently, the
mapping between sexes “at face value” with the possible permutations at the chro-
mosomal level is not clear. This is why many social scientists prefer to use the
dummy variable “gender,” which is clearly defined in terms of social roles that
have face validity. Similar problems occur with the use of proxy variables like
race, where there is little genetic basis for the definition of the category.

In situations where there are more than two possible values for a category,
dummy variables can also be used. For example, class often has three possible
groupings: working, middle, and ruling. In this case, one grouping acts as a refer-
ence group for two dummy variables that are created for the other two groupings.
Any grouping could be chosen as the reference group. For example, a case would
have the “working” variable set to 1 only where the individual was classified as
being “working class”; otherwise, the value would be set to 0.

The following model would be used to regress a DV against the three IV
categories:

Y = β + α1X + α2middle + α3ruling

After running the analysis, coefficients (α1 and α2) would be computed for each of
the dummy variables (middle, ruling), while the intercept would be for the

         co2 |  0.0046003   0.1979162
         ch4 |  0.008522    0.7127669
------------------------------------------------------------------------------

Example 14-5. Standardized coefficients (continued)
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reference group, since α1 = 0 and α2 = 0 for them. α1 and α2 provide an estimate
of the relative difference between the reference group and the grouping identified
by the dummy variable. For instance, the coefficient for middle would indicate the
difference between the working and middle groups, and the associated univariate
t-test would indicate whether the difference was statistically significant. However,
the result does not indicate an effect size, and hence whether the differences are
particularly meaningful.

Unfortunately, models of this kind are often used to make all sorts of wild claims
about members of different groups who have been coded up using different
dummy variables; as with the case of gender/sex described above, you need to be
very clear about how to establish the validity of the particular groupings that you
are interested in, noting the potential biases in both self-reported and simplistic
observational measures.

Table 14-2 shows some sample data, with the IV for working class used as the
reference variable, middle and ruling class membership the dummy variables, and
IQ as the DV.

The model is significant, with F(2, 8) = 11.86, p = 0.004. The coefficient of deter-
mination R2 = 0.748, but the adjusted R2 = 0.685, with the ANOVA results shown
in Table 14-3. The univariate tests for the dummy variables show that both are
significant, with t = 3.607, p = 0.007 and t = 4.569, p = 0.002 for middle and
upper, respectively, as shown in Table 14-4. These results indicate that the differ-
ence between the working and middle and working and ruling groups are
statistically significant. Since the standardized coefficient for βRuling= 0.915 is
greater than βMiddle= 0.723, the relative gap in IQ is greater between working and
ruling groups than working and middle groups.

Table 14-2. Sample data for the reference IV X, dummy IVs middle and ruling class, and
DV (IQ)

IQ X Middle Ruling

70.0 1 0 0

75.0 1 0 0

80.0 1 0 0

85.0 1 0 0

90.0 0 1 0

95.0 0 1 0

100.0 0 1 0

120.0 0 1 0

105.0 0 0 1

110.0 0 0 1

115.0 0 0 1
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Regression Algorithms

In the previous examples, there were cases in which adding or removing an inde-
pendent variable resulted in the model reaching statistical significance or not.
While some statistical packages just enter all IVs specified into the model and
report the overall statistical significance and the univariate significance for each
IV, other algorithms are much more sophisticated in identifying the best model,
based on including or excluding specific IVs. The analysis can often be provided
with default probabilities to include or exclude variables, while attempting to
minimize error.

There are two different types of algorithm: stepwise and blocking. Stepwise algo-
rithms allow factors to be entered in three different ways:

Backward entry
All independent variables are removed sequentially until the model is no
longer significant, after they have initially been entered as a block using the
enter method.

Forward entry
Independent variables are added until statistical significance is reached.

Stepwise
Begins with backward entry, and once significance has been reached, adds
IVs in again—based on the size of F—and determines overall significance
again. The goal is to avoid local minima in the global optimization of the
model fit. The algorithm then evaluates the model again, to determine if
another IV should be removed. Since this process could end up in an infinite
loop, the maximum number of steps is often specified. Note that forward and
backward selection and forward and backward stepwise are different
techniques.

Table 14-3. ANOVA results for the regression model based on working, middle, and ruling
class membership, and DV (IQ)

Model
Sum of

squares df
Mean

square F Sig.

1 Regression 2056.250 2 1028.125 11.856 0.004a

Residual 693.750 8 86.719

Total 2750.000 10

Table 14-4. Univariate significance tests for the regression model based on working, middle,
and ruling class membership, and DV (IQ)

Model Unstandardized coefficients Standardized coefficients t Sig.

B Std. error Beta

Middle 23.750 6.585 0.723 3.607 0.007

Upper 32.500 7.112 0.915 4.569 0.002
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Blocking methods can be described as follows:

Enter
All variables are entered in nonincreasing order of tolerance, or in a specific
order.

Remove
Removes a group of variables in a single block.

Forced entry
A list of IVs is specified, and all are entered.

Depending on your method of entry, it is possible that you may receive different
and/or potentially inaccurate results. Let’s examine the effect of using the
different stepwise techniques. Imagine you are an educator interested in the rela-
tionship between IQ and traditional measures of general ability, such as
performance on numerical, reading, verbal, and reasoning skills, as well as nontra-
ditional measures, such as musical and physical performance. Sample data is
shown in Table 14-5.

You decide to explore the relationships between the variables, calculating all pair-
wise correlations and their statistical significance, as shown in Table 14-6.
Unsurprisingly, the most traditional measures (numerical, reading, and verbal) are
highly positively correlated with IQ.

However, reasoning was almost completely uncorrelated, and there was a strong
negative relationship between IQ and physical performance. A nonsignificant rela-
tionship was observed between IQ and musical ability.

Table 14-5. Data showing the relationship between traditional measures and
nontraditional measures of general ability, and IQ

IQ Numerical Reading Verbal Physical Musical Reasoning

85.0 3.0 5.0 7.0 10.0 6.0 10.0

90.0 3.0 6.0 7.0 10.0 6.0 10.0

95.0 4.0 6.0 7.0 9.0 7.0 8.0

100.0 4.0 7.0 8.0 9.0 7.0 5.0

100.0 5.0 7.0 8.0 8.0 8.0 6.0

100.0 5.0 8.0 8.0 7.0 9.0 5.0

105.0 6.0 8.0 8.0 6.0 8.0 4.0

105.0 6.0 8.0 8.0 5.0 7.0 5.0

110.0 7.0 9.0 8.0 4.0 6.0 6.0

110.0 7.0 9.0 8.0 3.0 6.0 9.0

115.0 8.0 10.0 9.0 3.0 5.0 10.0

120.0 9.0 10.0 9.0 1.0 4.0 9.0
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At this point, you may well decide to use a blocking method and enter the signifi-
cantly correlated variables into a model. However, you are really interested in
teasing out what factors will produce the overall best model, given the fair amount
of multicollinearity, so let’s explore what happens when you use two of the most
popular stepwise methods: forward and backward.

Forward

With the strongest pairwise correlation with IQ (r = 0.978), numerical is entered
as the first factor, with the inclusion p-value set to p <= 0.05. For this model,
R2 = 0.956, adjusted R2 = 0.952. The overall model was significant, F(1, 10) =
217.36, p = 0.000, as shown in Table 14-7.

The numerical IV made a significant contribution to the model, t = 14.743, p =
0.000, as shown in Tables 14-8 and 14-9, which also shows that all of the other
IVs were excluded, and did not make a significant contribution to the model.
The benefit of the forward stepwise algorithm is that you quickly reach the
model that captures the greatest amount of variance. However, since many IVs
are significantly correlated, you cannot be sure from a theoretical and model
building perspective which IV is causal. This is where the other stepwise
methods come into their own. Tables 14-8 and 14-9 show the univariate signifi-
cance tests for the regression model.

Table 14-6. Pairwise relationships between traditional measures and nontraditional
measures of general ability, and IQ

IQ Numerical Reading Verbal Physical Musical Reasoning

IQ 1.000 0.978** 0.976** 0.914** –0.955** –0.427 –0.073

Numerical 0.978** 1.000 0.963** .887** –0.986** –0.481 0.026

Reading 0.976** 0.963** 1.000 .912** –0.954** –0.381 –0.055

Verbal 0.914** 0.887** 0.912** 1.000 –0.836** –0.337 –0.103

Physical –0.955** –0.986** –0.954** –.836** 1.000 0.503 –0.062

Musical –0.427 –0.481 –.381 –0.337 0.503 1.000 –0.738**

Reasoning –0.073 0.026 –.055 –0.103 –0.062 –0.738** 1.000

Table 14-7. ANOVA testing significance of forward (stepwise) multiple linear regression

Model
Sum of

squares df
Mean

square F Sig.

1 Regression 1073.528 1 1073.528 217.362 0.000

Residual 49.389 10 4.939

Total 1122.917 11
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Backward

Forward stepwise models work by adding variables until some criterion is met
(such as the t value indicating univariate significance), while backward stepwise
models work in the opposite way: all variables are included, and then excluded in
the reverse order of contribution made to the model, i.e., the IVs making the
smallest contribution are removed, and the analysis is rerun after each removal.

Table 14-10 shows that five models were considered; after each iteration, one IV is
removed, starting with verbal and proceeding to physical, musical, and reasoning.
Recall that the forward stepwise method resulted in only one IV—numerical—
being included, so the backward method has provided a more insightful result, in
the sense that both numerical and reading measures of general ability are thought
to reflect quite different underlying information processing skills.

Table 14-8. Included variables

Model Unstandardized coefficients
Standardized
coefficients t Sig.

B Std. error Beta

1 (Constant) 74.318 2.043 36.374 0.000

Numerical 5.122 0.347 0.978 14.743 0.000

Table 14-9. Excluded variables

Model Beta in t Sig.
Partial

correlation Collinearity statistics

Tolerance

1 Reading .467 2.239 0.052 0.598 0.072

Verbal .219 1.648 0.134 0.482 0.213

Physical .288 .716 0.492 0.232 0.029

Musical .057 .737 0.480 0.239 0.768

Reasoning –.098 –1.594 0.146 –0.469 0.999

Table 14-10. Backward stepwise model for linear regression

Model Variables entered Variables removed Method

1 Reasoning, numerical,
musical, verbal, reading,
physical

. Enter

2 . Verbal Backward (criterion: Probability of
F-to-remove >= 0.100).

3 . Physical Backward (criterion: Probability of
F-to-remove >= 0.100).

4 . Musical Backward (criterion: Probability of
F-to-remove >= 0.100).

5 . Reasoning Backward (criterion: Probability of
F-to-remove >= 0.100).
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Table 14-11 shows the standardized coefficients for each model iteration, as well
as the corresponding t values and their significance. At each stage, you can see
how the variable that has the least univariate significance is excluded, and the
model is then rerun. In each iteration, also notice how the standardized coeffi-
cients converge toward a final value; in the final iteration, βNumerical has been
reduced from 0.731 to 0.528, while the other included IV (βReading) has stayed
relatively constant, from 0.487 to 0.467. From a model-building perspective,
based on a theoretical understanding of the abilities that may contribute to IQ,
the relatively higher contribution of numerical over reading skills is more satisfac-
tory than the model arising from the forward stepwise model, which excluded any
significant contribution from reading.

Table 14-12 shows the ANOVA table for all models. Note the increase in F at
each iteration, even though fewer IVs are in the model; caution should be exer-
cised since each F value is computed using different degrees of freedom.

Table 14-11. Standardized coefficients for each model iteration

Model
Unstandardized
coefficients

Standardized
coefficients t Sig.

1 (Constant) 64.480 20.702 3.115 0.026

Numerical 3.827 2.369 0.731 1.616 0.167

Reading 3.070 1.749 0.487 1.755 0.140

Verbal .048 2.628 0.003 0.018 0.986

Physical 1.011 1.423 0.305 0.710 0.509

Musical –1.222 0.864 –0.167 –1.414 0.216

Reasoning –.742 0.445 –0.169 –1.668 0.156

2 (Constant) 64.514 18.819 3.428 0.014

Numerical 3.851 1.822 0.735 2.114 0.079

Reading 3.088 1.301 0.490 2.373 0.055

Physical 1.026 1.040 0.310 0.986 0.362

Musical –1.224 0.777 –0.167 –1.575 0.166

Reasoning –.743 0.402 –0.169 –1.848 0.114

3 (Constant) 80.511 9.530 8.448 0.000

Numerical 2.449 1.137 0.467 2.153 0.068

Reading 2.863 1.279 0.454 2.239 0.060

Musical –1.179 0.775 –0.161 –1.522 0.172

Reasoning –0.785 0.399 –0.179 –1.968 0.090

4 (Constant) 68.274 5.524 12.360 0.000

Numerical 3.149 1.122 0.601 2.806 0.023

Reading 2.476 1.352 0.393 1.831 0.105

Reasoning –0.294 0.253 –0.067 –1.161 0.279

5 (Constant) 64.655 4.649 13.908 0.000

Numerical 2.765 1.093 0.528 2.529 0.032

Reading 2.945 1.316 0.467 2.239 0.052
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In summary, you can see that different stepwise methods can give different
results. You shouldn’t use stepwise methods as some kind of post-hoc hypothesis
generating tool; instead, build models that actually make sense in terms of the
underlying theory. In these two examples, you have seen how including a term for
both “left brain” and “right brain” contributions to IQ produced a better outcome
than a single IV.

Common Problems with Multiple Regression
As with all techniques based on the general linear model, violating assumptions of
multiple linear regression reduces the validity of any results. For example, in many
of the examples presented in this chapter, the IVs are significantly correlated. The
best way to deal with this problem is to perform some form of orthogonal decom-
position on the IVs prior to model building, so that you are guaranteed to have a
set of independent IVs in the model. Techniques to create orthogonal IVs are
discussed in Chapter 16.

As you saw from the presentation of stepwise methods, adding IVs in or leaving
them out can significantly alter the model’s significance. Wherever relevant vari-
ables are excluded, the coefficients calculated in the analysis must be regarded as
suspect, since they will be biased at the expense of a true population estimate.
This is why regression shouldn’t be considered an endpoint; rather, it is one step
in a journey that should include alternative model specifications and/or measures
that are shown to act in the same way, and can therefore be considered robust.

Table 14-12. ANOVA table for each model iteration

Model
Sum of

squares df
Mean

square F Sig.

1 Regression 1105.368 6 184.228 52.491 0.000

Residual 17.548 5 3.510

Total 1122.917 11

2 Regression 1105.367 5 221.073 75.582 0.000

Residual 17.550 6 2.925

Total 1122.917 11

3 Regression 1102.521 4 275.630 94.600 0.000

Residual 20.395 7 2.914

Total 1122.917 11

4 Regression 1095.770 3 365.257 107.638 0.000

Residual 27.147 8 3.393

Total 1122.917 11

5 Regression 1091.192 2 545.596 154.779 0.000

Residual 31.725 9 3.525

Total 1122.917 11



278 | Chapter 14: Multiple Linear Regression

Similarly, including irrelevant variables is also problematic; while it may seem that
an irrelevant variable should have no impact on the model, unless the variable is
completely independent of the other IVs (which would be rare indeed, especially
in a large model), it should not be included. This will eventually lead to an under-
estimate of the true relationship between an IV and a DV, and may result in a
Type II error, since significant IVs may be treated as insignificant in the analysis.

Another key problem in multiple linear regression is assuming linearity in the face
of nonlinearity. In many disciplines, it’s common to use a (simple) linear approxi-
mation to a (more complex) nonlinear model. This may be perfectly acceptable
for functions like a sigmoid, which are linear in specific ranges; if the coordinates
of your IV and DV only fall within the linear range, a linear model is entirely suit-
able. However, you should never assume linearity, and if you are dealing with a
genuinely nonlinear phenomenon, it’s best to create and test against a model that
is nonlinear.

Several examples of multicollinearity have been presented in the chapter. Multi-
collinearity arises when IVs are correlated with each other. A distinct
phenomenon arises when correlation is observed in the residuals, i.e., the differ-
ences between observed and predicted values for the DV. This phenomenon is
known as autocorrelation or serial correlation, and can invalidate models analyzed
using the Ordinary Least Squares (OLS) algorithm. The assumptions for OLS
include:

• The mean of all residuals is zero, even though there is variation in the pool of
residual values

• Residuals are uncorrelated

• The residuals are independent of and uncorrelated with the IVs
(homoscedasticity)

Where a cross-sectional design is used, the chance of (say) residuals being corre-
lated with each other is slim. However, in longitudinal and/or time series studies,
autocorrelation will almost certainly be present. In this case, seasonal effects are
usually removed prior to entry in the model if some regular, cyclical effect is
present. However, autocorrelation may also indicate the absence of an important
explanatory variable in the model. If you are concerned about autocorrelation,
you can compute the Durbin-Watson coefficient that tests the null hypothesis that
there is no correlation among the residuals that are serially related. Alternatively,
other regression algorithms, such as Generalized Least Squares (GLS), may be
employed.

Note that cross-sectional designs have their own problems—the assumption of
homoskedasticity is routinely violated—in which case, GLS may also be used. The
model may also need further refinement and/or addition of a further IV, since
heteroskedasticity would suggest some systematic source of variation existing in
the residuals that has not been accounted for by the IVs. Stepwise regression algo-
rithms may also be useful here, and homoskedasticity may be an important
criterion in ultimate model selection.
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Exercises
Multiple linear regression can be used to investigate a number of different types of
research questions, as shown in the examples below.

Question

As a human resource specialist, you are interested in the motivational factors that
are associated with productivity (DV) in IT teams, based on the KLOC metric
(thousands of lines of code written per week). There are four motivational factors
that can influence productivity, based on either intrinsic or extrinsic measures of
motivating experiences per working week, which have either been self-reported or
observed. The hypothesis is that self-reported measures exert a much stronger
influence, since they provide a more objective view, rather than the subjective self-
report measures. Thus, four IVs are derived and used:

• Intrinsic self-report (IS)

• Intrinsic observed (IO)

• Extrinsic self-report (ES)

• Extrinsic observed (EO)

Sample data is shown in Table 14-13.

Answer

Since you have not used the data set before, you decide to create a correlation
matrix to show the relationships between the variables, as shown in
Example 14-6.

Table 14-13. Four IVs (IS, IO, ES, EO) may have an impact on KLOC

Productivity
(KLOC)

Intrinsic self-
report (IS)

Intrinsic observed
(IO)

Extrinsic self-
report (ES)

Extrinsic observed
(EO)

2.5 45 27 34 30

1.2 3 100 44 14

8.3 54 85 33 65

5.4 35 56 45 89

3.6 56 34 45 67

5.6 44 58 34 51

4.3 55 41 22 32

2.3 34 18 12 23

0.4 43 100 1 4

3.4 44 28 1 32
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You can see that the IV with the strongest relationship with the DV is extrinsic
observed (EO), R = 0.78, R2 = 0.61. On the other hand, intrinsic observed (IO) has
almost no relationship with the DV, R = –0.04, R2 = 0.0016. In terms of potential
multicollinearity, only ES and EO have a strong relationship, R = 0.6115, R2 = 0.37.

Given the relationships revealed by the correlation matrix, you decide to run a
simple linear regression analysis, with the results shown in Example 14-7.

Thus, with the model KLOC = β + αEO, you calculate β = 0.92, α = 0.19, with
F(1, 8) = 12.40, with EO making a significant contribution to the model, t = 3.52,
p = 0.008. You then decide to run the full model with all IVs, as shown in
Example 14-8.

Example 14-6. Relationship between four IVs (IS, IO, ES, EO) and a DV (KLOC)

             |     KLOC       IS       IO       ES       EO
-------------+---------------------------------------------
        KLOC |   1.0000
          IS |   0.4776   1.0000
          IO |  -0.0442  -0.3909   1.0000
          ES |   0.3616  -0.1884   0.1192   1.0000
          EO |   0.7796   0.3581  -0.1751   0.6115   1.0000

Example 14-7. Regression analysis showing the relationship between one IV (EO) and the
DV (KLOC)

      Source |       SS       df       MS              Number of obs =      10
-------------+------------------------------           F(  1,     8) =   12.40
       Model |  29.5743294     1  29.5743294           Prob > F      =  0.0078
    Residual |  19.0856724     8  2.38570905           R-squared     =  0.6078
-------------+------------------------------           Adj R-squared =  0.5587
       Total |  48.6600018     9  5.40666686           Root MSE      =  1.5446

------------------------------------------------------------------------------
        KLOC |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          EO |   0.0681908  0.0193676     3.52   0.008     0.0235289   0.1128526
       _cons |   0.9246364  0.9273239     1.00   0.348    -1.213776    3.063049

Example 14-8. Regression analysis showing the relationship between four IVs (IS, IO, ES,
EO) and the DV (KLOC)

      Source |       SS       df       MS              Number of obs =      10
-------------+------------------------------           F(  4,     5) =    2.77
       Model |  33.5311801     4  8.38279502           Prob > F      =  0.1468
    Residual |  15.1288217     5  3.02576434           R-squared     =  0.6891
-------------+------------------------------           Adj R-squared =  0.4404
       Total |  48.6600018     9  5.40666686           Root MSE      =  1.7395

------------------------------------------------------------------------------
        KLOC |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
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Thus, with the model KLOC = β + α1EO + α2ES + α3IO + α4IS, you calculate
β = –1.23, α1 = 0.68, α2 = 0.68, α3 = 0.68, and α4 = 0.68, with F(4, 5) = 2.77, p =
0.15, which is not significant. You can see from the results that the coefficient
of determination has risen from 0.6078 to 0.6891, which is unsurprising, since
any even the smallest amount of variation accounted for by the additional IVs
will be additive to the bivariate case for KLOC and EO (i.e., R2 will never
decrease with the addition of more IVs). Adding more and more IVs—assuming
they are equally likely to contribute something—will necessarily keep increasing
R2.

However, if you adopt the more conservative adjusted R2, you can see that the
proportion of variance accounted for actually decreases in the multivariate case.
This is a typical indicator that adding the additional IVs have not enhanced the
explanatory power of the model and thus, the additional factors should be
removed.

The lack of significance of any individual factor in the multivariate model, while
indicating multicollinearity, also suggests that the model is a poor one. The
bivariate model, in which EO alone accounts for more than 60% of variation in
KLOC, is probably the best option, and suggests that for the population
concerned, extrinsic rewards that can be externally verified (such as money) are
likely to have a very strong impact on productivity. The causal effect could be
established further by running a within subjects design experiment, where indi-
vidual team members were rewarded more or less on two different tasks. Further
refinement of the “internal” measures, in terms of validity, may also lead to an
enhanced contribution to the model.

Question

You are a management consultant working in the retail sector, conducting a time-
in-motion study to determine which of two IVs (barcode scanner size and oper-
ator accuracy) has the greatest effect on DV (throughput), measured in items per
second. The question is difficult to answer, because the units of measurement in
each case are different: the scanner size is measured in cubic centimeters, while
accuracy is measured as the mean time to successfully scan an item. Your client
wants to increase throughput, since customers have complained that queues in
the store are long. However, larger scanners are more expensive than smaller
ones, and training courses for staff will not necessarily increase accuracy. The
manager wants to know whether to spend money on more training (or hiring
better staff) or purchasing larger scanners. The data is shown in Table 14-14.

          IS |  0.0397661   0.049625      0.80   0.459    -0.0877989    0.1673312
          IO |  0.0155191   0.0206913     0.75   0.487    -0.0376695    0.0687078
          ES | -0.0115671   0.0513429    -0.23   0.831    -0.1435482    0.120414
          EO |  0.0676238   0.0349941     1.93   0.111    -0.0223315    0.1575791
       _cons | -1.230059    2.74642      -0.45   0.673    -8.289956    5.829837

Example 14-8. Regression analysis showing the relationship between four IVs (IS, IO, ES,
EO) and the DV (KLOC) (continued)
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Answer

You decide to create a correlation matrix to show the relationships between the
variables, as shown in Example 14-9.

You can see that the IV with the strongest relationship with the DV is scanner
size, r = 0.65, r2 = 0.42, while accuracy only has r = 0.44, r2 = 0.19. In this
example, the coefficients for each IV can be standardized by using the standard
deviation (i.e., beta coefficients). To assist you to interpret the results, descriptive
statistics for the DV and IVs are shown in Example 14-10.

The regression analysis is shown in Example 14-11, along with the beta coefficients.
The overall model is not statistically significant, with F(2, 7) = 4.68, p = 0.051.
However, R2 = 0.57, with adjusted R2 = 0.45. The only IV to make a significant
univariate contribution to the model was scanner size, t = 2.48, p = 0.042.

Table 14-14. Data for the time-in-motion analysis with DV (throughput) and two IVs
(scanner size and operator accuracy)

Throughput Size Accuracy

0.5 4 95

0.9 4 98

0.4 2 85

0.5 2 90

1.2 6 95

1.1 4 98

0.8 4 89

0.9 4 91

1.1 2 99

1.3 6 89

Example 14-9. Correlation matrix for the time-in-motion analysis with DV (throughput)
and two IVs (scanner size and operator accuracy)

             | throughput     size accuracy
-------------+---------------------------
  throughput |   1.0000
        size |   0.6520   1.0000
    accuracy |   0.4415   0.0920   1.0000

Example 14-10. Descriptive statistics for the time-in-motion analysis with DV (throughput)
and two IVs (scanner size and operator accuracy)

    Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------
  throughput |        10         0.87    0.3164034        0.4        1.3
        size |        10         3.8     1.47573          2          6
    accuracy |        10        92.9     4.748099         85         99
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After examining the beta coefficients, you can see that a one standard deviation
change in size would result in a throughput change of 0.385 standard deviations,
and a one standard deviation change in scanner size would result in a throughput
change of 0.617 standard deviations. Thus, a change in scanner size has a greater
relative impact on throughput than operator accuracy, which is borne out by the
significant model contribution made by scanner size. Thus, you present the argu-
ment to management that increasing the scanner size will have a greater impact on
increasing throughput than operator accuracy.

To verify the argument, you perform a univariate regression analysis with only
throughput and scanner size (Example 14-12). The results indicate that the model
is statistically significant, F(1, 8) = 5.92, p = 0.041. Scanner size made a signifi-
cant univariate contribution to the model, with t = 2.43, p = 0.041.

Example 14-11. Regression analysis for the time-in-motion analysis with DV (throughput)
and two IVs (scanner size and operator accuracy)

      Source |       SS       df       MS              Number of obs =      10
-------------+------------------------------           F(  2,     7) =    4.68
       Model |  0.515343685    2  0.257671843          Prob > F      =  0.0513
    Residual |  0.385656317    7  0.05509376           R-squared     =  0.5720
-------------+------------------------------           Adj R-squared =  0.4497
       Total |  0.901000002    9  0.100111111          Root MSE      =  0.23472

------------------------------------------------------------------------------
  throughput |      Coef.   Std. Err.      t    P>|t|                     Beta
-------------+----------------------------------------------------------------
    accuracy |   0.0256441  0.0165484     1.55   0.165                 0.3848282
        size |   0.1322073  0.0532437     2.48   0.042                 0.6166251
       _cons |  -2.014729   1.533835     -1.31   0.230                        .

Example 14-12. Regression analysis for the time-in-motion analysis with DV (throughput)
and the most correlated IV (scanner size)

      Source |       SS       df       MS              Number of obs =      10
-------------+------------------------------           F(  1,     8) =    5.92
       Model |  0.383040801    1  0.383040801          Prob > F      =  0.0411
    Residual |  0.517959202    8    0.0647449          R-squared     =  0.4251
-------------+------------------------------           Adj R-squared =  0.3533
       Total |  0.901000002    9  0.100111111          Root MSE      =  0.25445

------------------------------------------------------------------------------
  throughput |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        size |   0.1397959  0.0574744    2.43   0.041     0.0072596   0.2723322
       _cons |   0.3387755  0.2327537    1.46   0.184    -0.1979556   0.8755066
------------------------------------------------------------------------------
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15
Other Types of Regression

In Chapter 14, you learned about multiple linear regression. Although multiple
linear regression is appropriate for many scenarios, other types of regression,
including logistic and nonlinear, are best used under different circumstances. This
chapter reviews scenarios in which these types of regression are the correct
analytic choice, and covers how to perform these analyses, the meaning of the
results, and issues to be wary of, such as overfitting.

Logistic Regression
In Chapter 14, multiple linear regression was presented as regressing a real-valued
DV on two or more IVs, measured on interval or ratio scales, or categorical IVs,
coded using binary variables. Logistic regression is commonly used when the DV
is also categorical, typically nominal. Logistic regression is commonly used in
epidemiological studies to understand the relationship between a number of risk
factors (categorical or real-valued) and a categorical DV. For example, while it
may be possible to use a real-valued DV from which hypertension can be
deduced, a clinician is typically interested in making a diagnosis (hypertensive/not
hypertensive) based on several different IVs. The reason that you need logistic
regression is that the assumption of common variance in the DV is not met when
the two possible values are 0 and 1. Also, any linear regression model may predict
DV values less than 0 or greater than 1, which would have no meaning in terms of
the nominal codings for categories. The odds ratios for each IV in the model can
also be estimated by using logistic regression.

Imagine that you are a clinical epidemiologist working at a city hospital,
exploring factors that predict the incidence of prostate cancer, without requiring
an invasive biopsy; one possible factor is the width of the prostate gland opening.
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The instrument used to measure prostate sizes estimates widths in four different
ranges:

• 0–1 mm

• 1–2 mm

• 2–3 mm

• 3–4 mm

All of the patients investigated for prostate cancer in the previous 12 months have
had their gland openings measured, with the results shown in Table 15-1.

Clearly, the likelihood of getting cancer increases with a decrease in the size of the
prostate gland opening. Note that the form of the function is not linear but
sigmoidal—a small increase in size leads to a significant reduction in the likeli-
hood of getting cancer.

Rather than utilizing the proportion of cases, the log of the odds of the propor-
tion is used as the DV, which is known as a logit. Where π is the proportion of
cases to patients:

For binary categorical variables:

Thus, the regression model can be written as follows:

where α is the slope and β is the intercept. Maximum likelihood estimation is
used to obtain estimates for α and β.

The hypothesis to be tested in this example is that there is a log-linear increase in
the odds ratio as the independent variable (gland size) decreases. The null hypoth-
esis is therefore that there is no change in the odds ratio as the gland size
increases.

Table 15-1. Likelihood of getting prostate cancer based on gland opening size

Gland size Number of cancer cases Number of patients Proportion of cases to patients

0.5mm 25 30 0.83

1.5mm 40 50 0.8

2.5mm 20 40 0.5

3.5mm 10 60 0.17

Logit π( ) loge
π

1 π–
------------ 

 =

Logit π( ) loge p true( )[ ] loge p false( )[ ]–=

loge
π

1 π–
------------ 

  β αx+=
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The algorithm for maximum likelihood estimation is quite complicated, and will
not be covered here. However, noting that the test statistic for logistic regression
has a chi-square distribution, the Wald test can be used, which is the quotient of
the maximum likelihood parameter estimate and its standard error. Since the null
hypothesis predicts that the parameter is zero, the quotient distribution should be
standard normal, and will improve in accuracy with larger sample sizes.

When performing the regression analysis, data is coded using a standard proce-
dure. For DVs containing ranges, the midpoint of the ranges is chosen as the value
entered into the model. You now take a subset of the results for one day, shown in
Table 15-2, and see how accurately the model can be fitted.

Using an enter (block) method, similar to what was used for the multiple linear
regression examples discussed in Chapter 14, the algorithm iterates until it
reaches a solution where parameter estimates do not change by more than a
certain amount.

The classification table is shown in Table 15-3, and the model significance results
are shown in Table 15-4. Overall, the predicted values were only 50% correct
when the patient did not have cancer, but 90% correct when the patient did have
cancer. In terms of goodness of fit, gland size made a significant contribution to
the model, with the result of the Wald test equal to 3.97, p = 0.046.

Table 15-2. Clinical data subset showing cases of prostate cancer based on gland opening
size

Gland size Cancer

0.5 1

0.5 1

0.5 1

0.5 1

1.5 1

1.5 1

1.5 1

1.5 0

2.5 1

2.5 1

2.5 0

2.5 0

3.5 0

3.5 0

3.5 0

3.5 1
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Logarithmic Transformations
As you now know, violating the assumptions of tests derived from the general
linear model can render the results meaningless, especially where confidence is
concerned. One traditional way of ensuring that data follows a normal distribu-
tion is to take the logarithms of the variable values and use these to construct a
regression model.

Let’s consider the problem of measuring IQs from a biased sample of college
students, who all presumably have higher than normal IQ (otherwise, how would
they end up in college?). Thus, you can assume from the outset that there will be a
bias in the results, and a negative skew in the distribution. Does it then make
sense for researchers to use college students as their mainstay of experimentation
concerning human intelligence?

Possibly—as long as the values in the extreme range, which are clustered at one
end of the untransformed scale, are then shifted to center in any transformation.
For example, in an experiment that produces a cluster of results with the value 10,
it may make sense to use a log transformation to the base 10, which will have the
effect of shifting these values to 1. This also opens up the possibility of coding up
categorical variables based on the transformed data.

Using logarithmic transformations is not cheating; when you obtain means and
confidence intervals using log-transformed data, you will still need to calculate
antilogs to compute the actual means and CIs. However, using logarithmic trans-
formations provides a way to meet at least one of the requirements of meeting the
underlying assumptions of regression fairly easily.

Table 15-3. Classification table for logistic regression

Classification table

Predicted

Cancer

Observed 0 1 Percentage
correct

Step 1 Cancer 0 3 3 50.0

1 1 9 90.0

Overall
percentage

75.0

Table 15-4. Significance results for logistic regression model

  Variables in the equation

Step 1 Size –1.403 0.704 3.970 1 0.046 0.246

Constant 3.600 1.785 4.067 1 0.044 36.584
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Depending on the direction of any skew in your data, it may also be possible to
use a square root or square transformation of the data.

Polynomial Regression
So far, you have largely learned about model fitting when the relationship
between a DV and one or more IVs is linear, i.e., the value of a DV can be
predicted by a weighted linear sum of the IVs, plus an intercept value. In the two-
dimensional plane, such relationships can be viewed as straight lines that have a
nonzero slope. However, as you will no doubt realize, many phenomena in the
physical sciences that you may wish to create models for, and test goodness-of-fit,
may be nonlinear. Any relationship that is not entirely linear is, by definition,
nonlinear, so any discussion of nonlinear modeling must be very broad indeed. In
this section, you will learn about two of the most commonly used regression
models, which are based on either quadratic or cubic polynomials.

A quadratic model has both a linear and squared term for the IV, while the cubic
model has a linear, squared, and cubic term for the IV. Each curve has a number
of extreme points equal to the highest order term in the polynomial, so a quadratic
model will have a single maximum, while a cubic model has both a relative
maximum and a minimum. Visually, a quadratic model looks similar to the left-
hand side of a cubic model, as shown in Figures 15-1 and 15-2; thus, an important
question to answer for a specific range of the IV is whether the model is actually
quadratic or cubic.

As you can see in Figure 15-3, adding a linear component into the model tends to
flatten out the nonlinear contribution (for the cubic), or shorten or lengthen the
shape of the curve, as shown in Figure 15-4 for the quadratic.

Let’s look at an example from sports psychology. The Yerkes-Dodson Law, first
formulated in 1908, predicts a quadratic relationship between arousal (the IV) and
performance (the DV). For many athletes, then, achieving the optimal level of

Figure 15-1. Negative quadratic model
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physiological arousal—corresponding to the single maxima of the DV—becomes
the goal for producing the best performance. If athletes are not aroused enough,
their performance will be poor; conversely, if athletes are over-aroused, their
performance will also be poor. If the athlete is over-aroused, the coach can realis-
tically only wait until arousal has decreased before performance increases.

However, if the relationship between arousal and performance was actually cubic,
increasing arousal even further might result in improvements in performance,
which would be a contrary prediction to the quadratic model. Thus, regression
can be used to determine the goodness-of-fit to both the quadratic and cubic
models, and the one with the best goodness-of-fit can be taken as the most
accurate.

Figure 15-2. Cubic model

Figure 15-3. Cubic model with linear component
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Watters, Martin, and Schreter (1997)* designed an experiment to determine
whether there was a quadratic relationship between caffeine (a drug that produces
arousal) and cognitive performance on a battery of tests. The experimental setup
required a dose of caffeine to be administered at regular intervals in a single
session (6 × 100 mg); this would introduce practice effects, and would lead to an
increase in performance session-to-session, independent of arousal. Any residual
variation accounted by a quadratic term would then indicate the underlying rela-
tionship between arousal and performance.

You may be wondering why participants in the study were not simply invited back
several times to complete the test, with the caffeine dosage randomly assigned on
each occasion. The reasoning was ethical; the researchers wanted to observe any
adverse reactions at low dosages, which would be impossible on the first trial in a
truly randomized design, and also the researchers wanted to minimize the number
of return visits. To obtain a higher degree of experimental control, a repeated
measures design was used, in which each participant attended a placebo and
treatment session (single blind). If the experimenter noted an adverse reaction, the
experiment would be halted. The order of attendance for either the placebo or
treatment condition was randomized.

As designed, the experiment had both a within-subjects and between-subjects
comparison, with the former showing the dose-response relationship, and the
latter confirming that the dose-response relationship observed was not the
product of chance (or practice). Only the within-subjects analysis is shown below.
The analysis proceeds by adding a term into the model progressively, starting with
caffeine, followed by the square and cube of caffeine. Table 15-5 shows some
sample data that may be obtained in this type of experiment.

Figure 15-4. Quadratic model with linear component

* Watters, P.A., Martin, F. & Schreter, Z. (1997). “Caffeine and cortical arousal: The nonlinear
Yerkes-Dodson Law.” Human Psychopharmacology: Clinical and Experimental, 12, 249–258.
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For the linear model y = ax + b, where y is performance and x is caffeine, there
was virtually no relationship, R2 = 0.001, showing no significant linear relation-
ship between the two variables F(1, 68) = 0.097, p = 0.757, as shown in
Table 15-6.

For the quadratic plus linear model y = a1x + a2x
2 + b, where y is performance and x

is caffeine, there was a strong relationship, R2 = 0.462, showing a significant linear
and quadratic relationship between the two variables, F(2, 67) = 28.81, p < 0.001 as
shown in Tables 15-7 and 15-8. Note the significant contribution made by both the
linear and quadratic term, with a strongly linear practice effect accompanied by a
negative quadratic term, indicating the Yerkes-Dodson Law. The relative contribu-
tion that both terms make to the model, demonstrated by the beta coefficients, is
comparable (βlinear = 2.314 versus βquadratic = –2.448).

Table 15-5. Relationship between caffeine and cognitive performance

0mg 100mg 200mg 300mg 400mg 500mg 600mg

10.0 15.0 17.0 18.0 15.0 13.0 11.0

8.0 10.0 14.0 16.0 12.0 10.0 9.0

15.0 16.0 18.0 24.0 20.0 17.0 15.0

14.0 17.0 21.0 22.0 21.0 17.0 13.0

15.0 16.0 18.0 20.0 18.0 16.0 12.0

10.0 15.0 17.0 18.0 15.0 13.0 11.0

8.0 10.0 14.0 16.0 12.0 10.0 9.0

15.0 16.0 18.0 24.0 20.0 17.0 15.0

14.0 17.0 21.0 22.0 21.0 17.0 13.0

15.0 16.0 18.0 20.0 18.0 16.0 12.0

Table 15-6. Linear relationship between caffeine and cognitive performance

Sum of
squares df Mean square F Sig.

Regression 1.429 1 1.429 0.097 0.757

Residual 1004.057 68 14.766

Total 1005.486 69

Table 15-7. Linear and quadratic relationship between caffeine and cognitive performance

Sum of
squares df Mean square F Sig.

Regression 464.971 2 232.486 28.818 0.000

Residual 540.514 67 8.067

Total 1005.486 69
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For the cubic plus quadratic plus linear model y = a1x + a2x
2 + a3x

3 + b, where y is
performance and x is caffeine, there was no additional variation accounted by the
addition of the cubic term, thus confirming the significant linear and quadratic
relationship between the two variables F(3, 66) = 18.93, p = 0.000, as shown in
Tables 15-9 and 15-10. Note the significant contribution made by both the linear
and quadratic term, but not the cubic term, demonstrated by the beta coefficients
(βlinear = 2.314 versus βquadratic = –2.448 and βcubic = 0.110). The results are illus-
trated in Figure 15-5.

Overfitting
One of the amazing features of modern statistical packages is that you can auto-
matically specify and perform any number of tedious statistical tests at the click of
a button, which can be useful if your a priori hypotheses have failed to meet
expectations. This approach to statistics is commonly known as a fishing expedi-
tion, and when used with nonlinear regression, is known as arbitrary curve-fitting.
Here, you can simply instruct a computer package to calculate all of the possible

Table 15-8. Linear and quadratic relationship between caffeine and cognitive performance,
continued

Unstandardized coefficients
Standardized

coefficients t Sig.

B Std. error Beta

Caffeine 0.044 0.006 2.314 7.166 0.000

Caffeine ** 2 –7.429E-5 0.000 –2.448 –7.580 0.000

(Constant) 12.014 0.784 15.324 0.000

Table 15-9. Linear, quadratic, and cubic relationship between caffeine and cognitive
performance

Sum of
squares df Mean square F Sig.

Regression 465.038 3 155.013 18.930 0.000

Residual 540.448 66 8.189

Total 1005.486 69

Table 15-10. Linear, quadratic, and cubic relationship between caffeine and cognitive
performance, continued

Unstandardized coefficients
Standardized

coefficients t Sig.

B Std. error Beta

Caffeine 0.045 0.014 2.373 3.265 0.002

Caffeine ** 2 –7.929E-5 0.000 –2.613 –1.409 0.164

Caffeine ** 3 5.556E-9 0.000 0.110 0.090 0.928

(Constant) 11.981 0.872 13.740 0.000
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nonlinear relationships between two variables, and simply select the one that gives
you the best match, in terms of F values and significance results.*

Imagine that you are a nutritionist interested in the relationship between smoking
and blood pressure, with the results obtained from a small study shown in
Table 15-11. You know that there is a relationship between the two, but as an
expert witness in a court case, you are under pressure to prove the strongest
possible link between the two variables.

Figure 15-5. Linear, quadratic, and cubic terms in the model

* A deeper question is whether hypothesis-driven statistics is superior to agnostic and hypothesis-
free data mining, but that is beyond the scope of this book.

Table 15-11. Relationship between diastolic blood pressure and daily cigarette smoking

DiastolBP DailyCigs

80.0 0.0

75.0 0.0

90.0 1.0

80.0 0.0

75.0 0.0

95.0 10.0

90.0 20.0

100.0 25.0

110.0 30.0

140.0 35.0
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As you can see from the results shown in Figure 15-6, there are varying values of
R2 being generated from multiple models that were included in the analysis,
including an amazing 97% of variability in diastolic BP being accounted for by a
cubic model! Even more amazingly, no one had ever suspected a cubic relation-
ship between the two variables; nonetheless, you would be able to make a very
convincing argument on the basis of your analysis.

Do the R2 values computed by such an approach have any real meaning? Yes and
no: the real risk with small sample sizes and fishing expeditions is overfitting. This
means your data fits a model too well, given the specific sample that you have
available. The only way to protect against overfitting is to replicate the result
across a number of different samples. If only limited samples are available—such
as in destructive testing environments—generalization techniques such as cross-
validation, bootstrapping, and the jack-knife may be employed. Table 15-12 shows
more data.

Figure 15-6. Different models relating cigarette smoking to diastolic blood pressure

Table 15-12. Relationship between diastolic blood pressure and daily cigarette
smoking

Equation Model summary Parameter estimates

R square F df1 df2 Sig. Constant b1 b2 b3

Linear 0.781 28.518 1 8 0.001 78.423 1.246

Quadratic 0.869 23.118 2 7 0.001 80.984 –0.386 0.053
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The full results of the analysis are shown in Tables 15-13 through 15-24, which
show models of the relationship between diastolic blood pressure and daily ciga-
rette smoking.

Cubic 0.970 64.155 3 6 0.000 79.069 3.975 –0.299 0.007

Compound 0.813 34.853 1 8 0.000 79.007 1.013

Growth 0.813 34.853 1 8 0.000 4.370 0.012

Exponential 0.813 34.853 1 8 0.000 79.007 .0120

Table 15-13. Linear model (1)

Sum of
squares df Mean square F Sig.

Regression 2,774.247 1 2,774.247 28.518 0.001

Residual 778.253 8 97.282

Total 3,552.500 9

Table 15-14. Linear model (2)

Unstandardized coefficients
Standardized

coefficients t Sig.

B Std. error Beta

DailyCigs 1.246 0.233 0.884 5.340 0.001

(Constant) 78.423 4.207 18.641 0.000

Table 15-15. Quadratic model (1)

Sum of
squares df Mean square F Sig.

Regression 3,085.388 2 1542.694 23.118 0.001

Residual 467.112 7 66.730

Total 3,552.500 9

Table 15-16. Quadratic model (2)

Unstandardized coefficients
Standardized

coefficients t Sig.

B Std. error Beta

DailyCigs –0.386 0.780 –.274 –0.495 0.636

DailyCigs ** 2 0.053 0.024 1.195 2.159 0.068

(Constant) 80.984 3.681 22.003 0.000

Table 15-12. Relationship between diastolic blood pressure and daily cigarette
smoking (continued)

Equation Model summary Parameter estimates
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Table 15-17. Cubic model (1)

Sum of
squares df Mean square F Sig.

Regression 3445.101 3 1148.367 64.155 0.000

Residual 107.399 6 17.900

Total 3552.500 9

Table 15-18. Cubic model (2)

Unstandardized coefficients
Standardized

coefficients t Sig.

B Std. error Beta

DailyCigs 3.975 1.053 2.819 3.774 0.009

DailyCigs ** 2 –0.299 0.080 –6.761 –3.761 0.009

DailyCigs ** 3 0.007 0.002 5.028 4.483 0.004

(Constant) 79.069 1.954 40.475 0.000

Table 15-19. Compound model (1)

Sum of
squares df Mean square F Sig.

Regression 0.276 1 0.276 34.853 0.000

Residual 0.063 8 0.008

Total 0.340 9

Table 15-20. Compound model (2)

Unstandardized coefficients
Standardized

coefficients t Sig.

B Std. error Beta

DailyCigs 1.013 0.002 2.464 474.805 0.000

(Constant) 79.007 3.000 26.333 0.000

Table 15-21. Growth model (1)

Sum of
squares df Mean square F Sig.

Regression 0.276 1 0.276 34.853 0.000

Residual 0.063 8 0.008

Total 0.340 9
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Table 15-22. Growth model (2)

Unstandardized coefficients
Standardized

coefficients t Sig.

B Std. error Beta

DailyCigs 0.012 0.002 0.902 5.904 0.000

(Constant) 4.370 0.038 115.065 0.000

Table 15-23. Exponential model (1)

Sum of
squares df Mean square F Sig.

Regression 0.276 1 0.276 34.853 0.000

Residual 0.063 8 0.008

Total 0.340 9

Table 15-24. Exponential model (2)

Unstandardized coefficients
Standardized

coefficients t Sig.

B Std. error Beta

DailyCigs 0.012 0.002 0.902 5.904 0.000

(Constant) 79.007 3.000 26.333 0.000
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16
Other Statistical Techniques

This chapter introduces more advanced statistical techniques by providing some
specific examples; the techniques themselves will not be presented because the
intent is to help the reader identify when one of these techniques is appropriate
for a given research question. Methodologies covered include factor analysis,
cluster analysis, discriminant function analysis, and multidimensional scaling.

Factor Analysis
Factor Analysis (FA) uses standardized variables to reduce data sets using Prin-
cipal Components Analysis (PCA), the most widely used data reduction technique.
It is based on an orthogonal decomposition of an input matrix to yield an output
matrix that consists of a set of orthogonal components (or factors) that maximize
the amount of variation in the variables from the input matrix. In turn, the
process almost always produces a smaller, compact number of output compo-
nents. In linear algebra terms, PCA works from the covariance matrix to produce
a set of eigenvectors and eigenvalues. The components in the output matrix are
linear combinations of the input variables, where the first component maximizes
the variance captured, and with each subsequent factor capturing as much of the
residual variance as possible, while taking on an uncorrelated direction in space. A
more general version of PCA is Hotelling’s Canonical Correlation Analysis (CCA),
which—assuming multivariate normality—can be used to test whether two sets of
variables are independent.

PCA is primarily used for three major purposes:

• In hypothesis testing using techniques based on the general linear model,
PCA produces variables that are orthogonal, meaning that one of the major
assumptions of the general linear model can be easily met.

• To compress a large number of variables into a smaller, more manageable
data set.



Factor Analysis | 299

Statistical
Techniques

• To identify latent variables in large data sets that are represented by highly
correlated input variables.

While the first two purposes are usually achieved by PCA, the third is typically
approached using Factor Analysis (FA), which is also based on orthogonal decom-
position, but may involve more complex techniques such as variance maximizing
rotation (varimax). You will learn about some of these techniques in this chapter.
Note that in FA, the retained principal components are known as common factors,
and correlations with the input variables are called factor loadings.

Let’s look at an example from the field of psychometrics, which is a major user of
FA. Historically, FA has been used to test various theories of mental performance
and intelligence, including the hypothesis that a single “general” factor underlies
intelligence, or that multiple, orthogonal factors comprise intelligence. In turn,
the general findings derived from large-sale studies of intelligence and cognitive
function in the population have allowed a very reliable understanding of indi-
vidual differences to be determined from a number of different test instruments.
While sampling does play a role in the development of test batteries, many coun-
tries have mandatory ability testing programs that minimize sampling error,
although measurement error may still influence results for individual cases. The
process of understanding individual differences—and compensating for them—
was heavily influenced by the thinking of Carl Friedrich Gauss, the inventor of the
“Gaussian” distribution, followed by the later work of Bessel, who developed a
“personal equation” to make corrections in observations made by different
astronomers.

Early attempts to understand intelligence and measurable variables started with
scientists like James Cattell, who tried to quantify intelligence in terms of a set of
mental tests, such as reaction times, rate of movement, grip strength, and so on.
Later work showed that results from these tests were uncorrelated with actual
academic performance. However, work by Spearman on the general intelligence
factor g, extracted from the results of a battery of psychological tests, led to the
widespread adoption of FA and PCA-like methods in psychometrics. Later work
by Thurstone and others suggested that there must be at least two different and
independent cognitive factors underlying intelligence: a linguistic factor L and a
quantitative factor Q. Even today, the Scholastic Aptitude Test (SAT) and the
Graduate Record Examination (GRE) produce 2–3 factor scores, which are
distinctly correlated with different types of questions; one SAT factor is corre-
lated highly with English and humanities topics, while another is more strongly
related to mathematical and logical performance.

Let’s look at a typical psychometric example, where a set of cognitive and mental
performance scores is taken as the input matrix, and an output matrix is then
produced, which is of lower dimension. The dimensionality could be driven by a
number of different considerations; a specific psychological theory might predict
two factors (e.g., L and Q), so only the two factors accounting for the highest
proportion of variance would be selected. On the other hand, if the work is more
exploratory, then a standard criterion could be adopted for factor retention. The
most commonly used criterion is the Guttman-Kaiser criterion, which only retains
eigenvalues > 1 (in the case of FA), i.e., where the variation accounted for by the
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factor is greater than the average for the variable if the variation was equally
distributed across the input data set. Other more sophisticated criteria include the
Velicer partial correlation procedure, Bartlett’s test, or the broken stick model. A
more graphical approach is to use the scree plot of eigenvalues to determine any
“leveling” of the slope.

The results from the administration of a standard battery of tests for 10 study
participants are shown in Table 16-1. A psychologist is interested in determining
whether there is a general intelligence factor underlying performance across all of
these different components of intelligence (e.g., reading, verbal ability, musical
ability) or whether there are distinct factors on which individual variables are
highly loaded. For example, is there an L factor that is strongly associated with
reading and verbal ability, and a separate Q factor that is associated with arith-
metical and geometrical ability?

The first way to begin exploring the data is to create a correlation matrix, as
shown in Table 16-2. This displays all of the significant relationships between
variables (and just as importantly, any lack of relationship).

Table 16-1. Psychometric test results

Reading Music Arithmetic Verbal Sports Spelling Geometry

8 9 6 8 5 9 10

5 6 5 5 6 5 5

2 3 2 6 8 6 4

8 9 10 9 8 10 6

10 7 1 10 5 10 2

9 8 4 9 1 7 2

3 9 10 2 6 4 9

8 10 3 8 5 7 2

10 9 3 10 6 10 3

7 10 1 9 6 10 2

Table 16-2. Correlations among psychometric test variables

Reading Music Arithmetic Verbal Sports Spelling Geometry

Reading r 1.000 0.535 –0.253 0.860** –0.469 0.762* –0.386

p 0.111 0.481 0.001 0.172 0.010 0.270

Music r 0.535 1.000 0.249 0.262 –0.263 0.380 0.069

p 0.111 0.488 0.464 0.463 0.278 0.850

Arithmetic r –0.253 0.249 1.000 –0.501 0.206 –0.307 0.758*

p 0.481 0.488 0.140 0.568 0.389 0.011

Verbal r 0.860** 0.262 –0.501 1.000 –0.236 0.895** –0.569

p 0.001 0.464 0.140 0.511 0.000 0.086

Sports r –0.469 –0.263 0.206 –0.236 1.000 0.054 0.266

p 0.172 0.463 0.568 0.511 0.881 0.458
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The correlations appear to support the idea of separate Q and L factors.

For L:

• Verbal performance and reading scores appear to be highly correlated (r =
0.86**).

• Reading and spelling scores are highly correlated (r = 0.762*).

• Verbal performance and spelling scores are also correlated (r = 0.895**).

For Q:

• Geometry and arithmetic scores are highly correlated (r = 0.758*).

None of the other variables (e.g., sporting or musical performance) were signifi-
cantly correlated with any other variables, so you could expect that two
interpretable factors will result from the FA.

The first step after computing PCA is to examine what proportion of variance is
accounted for by the factor structure. This is done by examining the communali-
ties, as shown in Table 16-3. Here, you can see that some variables, like music,
have relatively low communality, while others, like spelling, have very high
communality.

Tables 16-4 through 16-6 show the initial eigenvalues, extraction sums of squared
loadings, and rotation sums of squared loadings resulting from the FA. This is the
most significant part of the results for interpretation. In Section A, you can see
that three factors were extracted, accounting for 89.378% of the cumulative vari-
ance; thus, you can immediately see the power of PCA, since it has reduced seven
variables to three factors, while still accounting for almost all of the variation
within the data! Section B shows the three extracted factors before rotation, while

Spelling r 0.762* 0.380 –0.307 0.895** 0.054 1.000 –0.291

p 0.010 0.278 0.389 0.000 0.881 0.415

Geometry r –0.386 0.069 0.758* –0.569 0.266 –0.291 1.000

p 0.270 0.850 0.011 0.086 0.458 0.415

Table 16-3. Communalities

Initial Extraction

Reading 1.000 0.929

Music 1.000 0.779

Arithmetic 1.000 0.868

Verbal 1.000 0.955

Sports 1.000 0.943

Spelling 1.000 0.967

Geometry 1.000 0.814

Table 16-2. Correlations among psychometric test variables (continued)

Reading Music Arithmetic Verbal Sports Spelling Geometry
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Section C shows the extracted factors after rotation was performed using varimax
with the Kaiser Normalization. The varimax rotation rotates the axes of the
factors in such a way that orthogonality is preserved, while maximizing the sum of
variances of the loadings. Note that this does not affect the total amount of vari-
ance accounted for by the three factors, but the relative proportion of variance
between factors does change.

New users of FA always feel that there must be some trickery with rotation, espe-
cially as it is used as an aid to interpreting factor loadings, and the existence of
latent structure. But it really does serve a very useful purpose in trying to tease out
which variables are most closely associated with each factor.

Tables 16-7 and 16-8 show the unrotated and rotated component matrices before
and after rotation. For component 1, which corresponds to the latent L factor,
you can see that rotation has the effect of increasing the relative loadings of the
most relevant variables, such as spelling, so that spelling, reading, and verbal skills
now have the highest scores. Conversely, component 2, which corresponds to the

Table 16-4. Initial eigenvalues

Component                           Initial eigenvalues

Total % of variance Cumulative %

1 3.488 49.829 49.829

2 1.651 23.591 73.420

3 1.117 15.958 89.378

4 0.425 6.069 95.446

5 0.234 3.343 98.789

6 0.067 0.952 99.742

7 0.018 0.258 100.000

Table 16-5. Extraction sums of squared loadings

      Extraction sums of squared loadings

Total % of variance Cumulative %

3.488 49.829 49.829

1.651 23.591 73.420

1.117 15.958 89.378

Table 16-6. Rotation sums of squared loadings

   Rotation sums of squared loadings

Total % of Variance Cumulative %

2.846 40.653 40.653

2.066 29.517 70.170

1.345 19.208 89.378
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Q factor, now has higher loadings for arithmetic and geometry, while unrelated
variables such as music are now relatively decreased. Component 3 has a high
loading only for sport, and while representing a distinct factor, can be disre-
garded in this analysis, since it doesn’t reflect any latent structure.

Returning to the question of the selection of eigenvalues, Figure 16-1 shows the
scree plot resulting from the analysis. Note the distinctive shallowing of slope that
occurs after the second and the fourth eigenvalues; these points could be used to
exclude factors, and indeed, the two components of interest (L and Q) are identi-
fied as the first two components.

Figure 16-2 shows the effect of the rotation; you can see that the variables associ-
ated with the L factor (spelling, verbal, and reading) are closely clustered in 3D
space, as are the variables associated with the Q factor (arithmetic and geometry).
Note that the other two variables (sports and music) are then roughly equidistant
from the centroids of the two component-oriented clusters. The impact of the
rotation is easier to observe in 3D space than by looking at the loading tables.

The output matrix from the FA procedure is shown in Table 16-9. This shows the
scores for the three components computed for each of the study participants; if this
were the GRE or SAT, these are the scores that would be reported back to the test
takers. Note that the precision of the results depends on your computer package.

Table 16-7. Unrotated component matrix

Component

1 2 3

Reading 0.902 0.328 –0.085

Music 0.386 0.775 –0.174

Arithmetic –0.582 0.727 0.028

Verbal 0.955 0.009 0.209

Sports –0.403 –0.059 0.882

Spelling 0.819 0.235 0.491

Geometry –0.664 0.597 0.130

Table 16-8. Rotated component matrix

Component

1 2 3

Reading 0.859 –0.144 –0.412

Music 0.593 0.490 –0.433

Arithmetic –0.158 0.917 0.050

Verbal 0.869 –0.438 –0.088

Sports –0.046 0.176 0.954

Spelling 0.955 –0.164 0.169

Geometry –0.246 0.846 0.195
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Figure 16-1. Scree plot

Figure 16-2. Component plot in rotated space
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As with all of the other techniques you have learned about in this book, PCA and
FA have some basic prerequisites that need to be met in order for the results to be
valid and/or reliable. As the data set grows larger, the results become more reli-
able. In the case of psychometrics, reliability is usually established when a test has
been administered to many hundreds of thousands of individuals, across different
national and linguistic groups. The other main requirement is that the number of
cases must always be larger than the number of variables in the input matrix.
Normally, tests for statistical significance are not performed with PCA, so outliers
and other potential sources of bias are much less likely to cause problems than
(say) with ANOVA. This is why PCA is often regarded as a data-cleaning tool,
used before any other type of analysis or statistical test is applied.

For PCA, the assumptions of linear correlation also hold, i.e., that variables must
be linearly related. The best results are obtained when all of the variables are
neither zero nor perfectly correlated, as this introduces problems with sphericity
and the underlying calculation of the orthogonal decomposition.

Cluster Analysis
Cluster analysis is a set of techniques that allows groupings of cases to be made on
the basis of one or more variables. Some cluster analysis techniques allocate cases
to groups by partition, while other techniques provide for hierarchical trees that
show the taxonomic relationship between groups and their ancestors. A related
technique, Discriminant Function Analysis (DFA), can be used to develop rules to
assign cases to groups, based on an understanding of the parametric structure of
the groups, and is better at predicting group membership than cluster analysis
alone. Thus, the two techniques are often used in conjunction with each other;
cluster analysis may be used where the number of groups is initially unknown,
and once this number has been established, DFA may be used for the prediction
of individual group membership for each case.

Table 16-9. Component scores for each participant

Component 1, L Component 2, Q Component 3, Sport

0.518 1.132 –0.095

–1.170 –0.128 0.084

–1.396 –1.207 1.619

1.094 1.198 1.128

0.706 –1.049 0.0139

–.225 –0.588 –2.097

–1.416 1.711 –0.309

0.109 –0.259 –0.721

1.064 –0.273 0.179

0.715 –0.536 0.198
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Cluster analysis is very useful for two scenarios. Firstly, you may already know
how many groups you expect to find in the data, so you pass this number of
groups to the algorithm, and let it take care of the allocation (k-means). Alterna-
tively, you may not know how many groups exist, in which case, you can ask the
algorithm to estimate how many groups there actually are.

Cluster analysis is a highly empirical tool; its success depends largely on the
quality of data supplied. Cluster analysis works by taking an input vector of Y,
with n cases and p variables, and allocating each of n cases to one of k groups.
Each of the variables measures some aspect of an object under study; continuing
with the psychometric example, each variable may represent a score on a partic-
ular type of ability test (reading, spelling, etc.). The algorithm works by randomly
creating k clusters, identifying the centroids (or cluster centers), and then assigning
each case to the closest centroid. Cases are moved between clusters to minimize
within-cluster variability and maximize between-cluster variability. The process
continues until it converges according to some predefined criterion, e.g., the
cluster membership doesn’t change after one iteration. Note that because there is
some randomness introduced by the initial assignment of centroids, you don’t
always get the same answer.

The computational goal is to ensure that all members of groups 1…k are similar to
other members of that group and dissimilar to members of other groups. Simi-
larity—or dissimilarity—is determined by the use of a specific distance measure.
A number of different measures have been developed, including:

Euclidean distance
The geometric distance between two points in a multidimensional space.

Manhattan distance
A “city block” distance that reduces the influence of outliers.

Mahalanobis distance
Within-cluster distances tend to be increased while between-cluster distances
are decreased.

Let’s revisit the psychometric example. Having shown that there are three factors,
including L and Q, the psychologist is now interested in determining whether
there might be some basis for classifying students into different educational
groups based on this latent structure, since the identified factors for L, Q, and
Sports were orthogonal. The issue is specialization: if students are only “good” at
Sports, or “Linguistic” or “Quantitative” work, then those students should be
streamed appropriately into specialist classes.* The main problem is that some
students may be “good” at more than one of these skills, and the idealized view
provided by the rotated loading matrix shown previously in Figure 16-2 may not
apply to all cases.

Cluster analysis is proposed to be used to determine if there are three distinct
groups in this data set, corresponding to distinct members of the proposed L, Q,

* Educators’ preferences for comprehensive versus specialist education seem to run along a “busi-
ness cycle,” in which the prevailing trend changes every 10 years or so; thus, the issue of providing
evidence for one approach or the other is nontrivial.
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and Sports classes. In this case, we pass k = 3 to the algorithm and ask it to iden-
tify three groups, and then assign each student to a class.

The initial cluster centers are shown in Table 16-10, and after several iterations
the algorithm converges to a solution, with the final cluster membership, final
cluster centers, and pairwise distances between the final clusters shown in Tables
16-11 through 16-13. The initial cluster centers are related to correlations shown
in Table 16-10, and the corresponding principal components that were extracted:
cluster 1 is strongly associated with reading, verbal, and spelling; cluster 2 with
arithmetic and geometry; and cluster 3 with sports. While there are some changes
during the iterative process, these groupings tend not to change. The resulting
group allocations are simply a function of the distance from each centroid. The
pairwise distances between each centroid are also reasonably consistent with each
other, i.e., the between-group distances appear to have been successfully maxi-
mized, and there does not appear to have been difficulty in separating them. Also,
only one student was allocated to the second cluster, which would not have been
expected from the PCA. Adding more cases into the analysis would almost
certainly improve the reliability of the result.

Table 16-10. Initial cluster centers

Cluster

1 2 3

Reading 10.00 3.00 2.00

Music 9.00 9.00 3.00

Arithmetic 3.00 10.00 2.00

1 2 3

Verbal 10.00 2.00 6.00

Sports 6.00 6.00 8.00

Spelling 10.00 4.00 6.00

Geometry 3.00 9.00 4.00

Table 16-11. Cluster solution: cluster membership

Case number Cluster Distance

1 1 6.565

2 3 2.915

3 3 2.915

4 1 7.078

5 1 4.468

6 1 5.053

7 2 0.000

8 1 3.332

9 1 2.556

10 1 4.238
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Table 16-14 shows the ANOVA results for the significance of each variable in
terms of discriminability. The results are not intended to be a strict test of statis-
tical significance in terms of hypothesis testing, but are useful in examining which
variables provided discriminability. Spelling, verbal, and reading scores were all
significant (unsurprisingly), but the scores for the second and third clusters (arith-
metic and geometry, and sports) were not significant. The first of these makes
sense, since scoring highly on spelling, verbal, and reading does discriminate
between the first and second groups, but the lack of discriminability for the third
cluster is a surprise (although recall from PCA that this only accounted for 15% of
the variance).

Table 16-12. Cluster solution: final cluster centers

          Cluster

1 2 3

Reading 8.57 3.00 3.50

Music 8.86 9.00 4.50

Arithmetic 4.00 10.00 3.50

Verbal 9.00 2.00 5.50

Sports 5.14 6.00 7.00

Spelling 9.00 4.00 5.50

Geometry 3.86 9.00 4.50

Table 16-13. Cluster solution: pairwise distances between final cluster centers

Cluster 1 2 3

1 12.971 8.562

2 12.971 9.925

3 8.562 9.925

Table 16-14. ANOVA

Cluster Error F Sig.

Mean
square df

Mean
square df

Reading 28.893 2 1.745 7 16.558 0.002

Music 15.321 2 1.622 7 9.443 0.010

Arithmetic 17.000 2 9.214 7 1.845 0.227

Verbal 26.950 2 0.643 7 41.922 0.000

Sports 2.771 2 4.122 7 0.672 0.541

Spelling 17.550 2 1.786 7 9.828 0.009

Geometry 11.571 2 8.194 7 1.412 0.305
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Although hierarchical clustering will not be covered in detail, the dendrogram that
arises from the analysis is very useful in understanding the relatedness of specific
cases, and is widely used in taxonomic analysis of various kinds. Figure 16-3
shows the dendrogram computed using the average linkage between groups. Here,
you can see that the closest root relations are between cases 5 and 9, and 8 and
10, and these two groups of cases are next most closely related to each other, and
then to case 6. Overall, the case with the greatest relation to all others is 7. Exam-
ining the linkages in this way can be very useful in trying to characterize and
understand the relations between individual cases and the clusters to which they
are allocated.

Discriminant Function Analysis
Discriminant Function Analysis (DFA) is used to construct rules that allow classifi-
cation of cases into two or more groups using a linear combination of variables.
The goal is to maximize the distance between two or more groups, which in turn
maximizes discriminability through a set of one or more functions of a specific
rank, i.e., the number of functions required to maximize the separation between
groups. These functions are typically linear combinations of the input variables,
and are called Linear Discriminant Functions (LDFs). DFA is related to classifica-
tion analysis, where the goal is to maximize the accuracy of allocation of cases to
groups. Classification functions may be either linear or nonlinear, or use a gener-
alized function approximator, such as an artificial neural network.

Thus, cluster analysis and classification analysis are in some ways trying to solve
the same problem but by different means, expressed as finding the maxima of
different functions (e.g., maximizing distance or classification accuracy).

Returning to the psychometric example, and given the group allocations provided
by cluster analysis, DFA can be used to determine a set of discriminant functions
that provides maximum separation between the groups. It is then possible to test
the null hypothesis of the equality of group means for each variable. In the two-
group case, this can be evaluated using a t-test, or in the case of more than two

Figure 16-3. Dendrogram computed using the average linkage between groups



310 | Chapter 16: Other Statistical Techniques

groups, an F-test can be performed. The results shown in Table 16-15 indicate
that there are significant differences for reading, F(2, 7) = 16.558, p = 0.002;
music, F(2, 7) = 9.443, p = 0.010; verbal, F(2, 7) = 41.922, p = 0.000; and spelling,
F(2, 7) = 9.828, p = 0.009. Thus, in terms of discriminability, you could retain
reading, music, verbal, and spelling and still maximize the distance between
groups.

Table 16-16 shows the two canonical discriminant functions required to classify
the cases into groups. Interestingly, the first function captures 96% of the vari-
ance, while the second function only captures 4%.

Table 16-17 shows the computed values for Wilks’s Lambda, which can be used
to evaluate the significance of the discriminant functions in a multivariate sense.
Unfortunately, none are significant. This probably reflects the fact that function 1
accounts for such a high proportion of variance. Having a larger number of
samples would provide more robust results and hopefully lead to significance.

The standardized canonical discriminant function coefficients are shown in
Table 16-18.

Table 16-15. Tests of equality of group means

Wilks’s
Lambda F df1 df2 Sig.

Reading 0.174 16.558 2 7 0.002

Music 0.270 9.443 2 7 0.010

Arithmetic 0.655 1.845 2 7 0.227

Verbal 0.077 41.922 2 7 0.000

Sports 0.839 0.672 2 7 0.541

Spelling 0.263 9.828 2 7 0.009

Geometry 0.713 1.412 2 7 0.305

Table 16-16. Canonical discriminant functions

Function Eigenvalue % of variance Cumulative %
Canonical

correlation

1 79.224 96.0 96.0 0.994

2 3.287 4.0 100.0 0.876

Table 16-17. Wilks’s Lambda

Test of function(s) Wilks’s Lambda Chi-square df Sig.

1 through 2 0.003 23.362 14 0.055

2 0.233 5.822 6 0.443
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The structure matrix is shown in Table 16-19. Here, you can see significant load-
ings of reading and spelling on function 1, and significant loadings of music,
verbal, arithmetic, geometry, and sports on function 2. These are slightly different
from what you might have expected—say, from PCA or cluster analysis—but it’s
worth keeping in mind that the algorithm in each case has a different computa-
tional goal (e.g., maximizing distance between clusters or maximizing accuracy of
classification).

Finally, Table 16-20 shows the relationship between the two discriminant func-
tions and the group centroids.

Table 16-18. Standardized canonical discriminant function coefficients

Function

1 2

Reading –0.706 –0.141

Music 1.838 –0.368

Arithmetic –0.364 –0.707

Verbal 3.686 1.409

Sports –0.150 1.309

Spelling –1.884 –2.030

Geometry 1.916 0.945

Table 16-19. Structure matrix

Function

1 2

Reading 0.243* –0.140

Spelling 0.188* 0.034

Music 0.115 –0.708*

Verbal 0.379 0.433*

Arithmetic –0.046 –0.331*

Geometry –0.055 –0.225*

Sports –0.043 0.121*

Table 16-20. Functions at group centroids

Cluster number of case Function

1 4.804 –0.169

2 –14.483 –3.465

3 –9.573 2.324
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Multidimensional Scaling
Multidimensional scaling (MDS) is similar to PCA in the sense that it is concerned
with data reduction; unlike cluster analysis, MDS is concerned with determining
the underlying dimensionality of a data set, based on a measure of dissimilarity
using a proximity matrix. The goal is to reduce a data set into a lower dimension k
based on the dissimilarity between all objects in the data set, and to identify a set
of principal coordinates. The ordination process uses a geometric representation
to identify the principal components. Many of the same distance measures used in
cluster analysis are also applicable to MDS.

A number of different algorithms are available to perform MDS, including Prox-
scal and Alscal, with the former using distances in the dissimilarity measures while
the latter uses squares of distances. As with the other multivariate techniques
reviewed in this chapter, the psychometric example is also suitable for analysis
using MDS. The final coordinates arrived at using Proxscal are shown in
Table 16-21, and the resulting common space projections are shown in
Figure 16-4. In the two dimensions shown, you can see that reading, verbal, and
spelling are closest to each other, as are arithmetic and geometry, identifying once
again the L and Q factors. However, also notice that music is approximately equi-
distant from reading as reading is from spelling. Once again, sports appears
relatively isolated from the other variables.

One of the nice features of MDS is that a number of metrics are available for
determining deviations from monotonicity to satisfy a constraint relating to the
form of the function that maps the distances between cases in a k-dimensional
space. To determine whether the relationship between distances and similarities is
nonmonotonic, the Standardized Residual Sum of Square (STRESS) measure can
be used, which is always 0 < STRESS < 1. STRESS is normally minimized during
MDS, and thus, a target for an excellent fit is usually 0 < STRESS < 0.1. In this
example, STRESS = 0.09, so the fit of the model is excellent.

The results using Alscal are slightly different, as shown in Figure 16-5. Here, arith-
metic and geometry (Q) are clustered well away from reading, spelling, and verbal
(L), with sports once again being significant. Table 16-22 shows the iterative

Table 16-21. Functions at group centroids

Dimension

1 2

Reading –0.558 0.154

Music –0.253 0.454

Arithmetic 0.798 0.312

Verbal –0.630 –0.136

Sports 0.279 –0.428

Spelling –0.461 –0.218

Geometry 0.825 –0.138
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nature of Alscal, where the algorithm iterates until a satisfactory level of STRESS
(in this case, Young’s S-STRESS formula based on squares of distances rather than
actual distances) is achieved.

Figure 16-4. MDS common space mappings (Proxcal)

Figure 16-5. MDS common space mappings (Alscal)
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The significance of STRESS and the monotonicity constraint is made clearer in
Figure 16-6, where you can see that the function is monotonically nondecreasing
in a very linear fashion.

Table 16-22. Alscal iterations to minimize S-STRESS

 Iteration S-STRESS Improvement

 1 0.02266

 2 0.01736 0.00530

 3 0.01456 0.00280

 4 0.01279 0.00178

 5 0.01157 0.00121

 6 0.01066 0.00091

Figure 16-6. Nondecreasing monotonicity
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17
Business and Quality

Improvement Statistics

Many of the statistics used in business and quality improvement applications are
those within the common repertoire of basic statistics, including the chi-square
test (covered in Chapter 10), t-tests (Chapter 8), and techniques based on the
General Linear Model (Chapters 12–15). However, there are also a number of
techniques developed for the specific needs of business and quality improvement
applications, and those will be the subjects of this chapter.

Index Numbers
Index numbers are commonly used in business to measure the change in quantity
or price over time for some good or combination of goods and services, and are
often the data points used in time series analyses. One example is the Consumer
Price Index (CPI), which represents the average price of a quantity of consumer
goods and services believed to be typical household purchases in the United
States. The U.S. CPI is calculated monthly by the Bureau of Labor Statistics of the
U.S. Department of Labor and is used as a measure of inflation and to calculate
cost of living adjustments for pensions and wages. Although many criticisms have
been made of the CPI, it has proven highly useful as a summary measure of the
average cost of living and allows comparison across historical periods and
geographic areas. Many other countries also calculate a CPI or similar index,
including Canada, China, Israel, New Zealand, Australia, and many European
countries.

Calculation of indexes can be very simple (when the index reflects the change in
the price or quantity of a single commodity) or very complex (when the index
reflects a weighted average of a number of goods and services, as is true for the
CPI). A simple index number displays the change in time of the price or quantity of
a single commodity, for instance the number of television sets sold or the price of
an ounce of gold. To calculate a simple index, you must choose a base period to be
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used for comparison: the index will then represent the change in price or quantity
relative to that base period. To calculate a simple index, three steps are required:

1. Obtain the prices or quantities for the commodity for the time period of
interest.

2. Select a base period and obtain the price or quantity for that year.

3. Calculate the index number for each time period, using the formula:

where It = the index at time t, Yt = the price or quantity at time t, and Y0 = the
price or quantity in the base period.

For instance, suppose we wanted track to the health of the automobile manufac-
turing industry in the United States over the last 20 years. As part of this research
we could create an index expressing the number of automobiles manufactured
each year in terms of the first year of the time period. If we had data for the years
1986–2005, 1986 would be the base year and the quantity of cars manufactured
that year would be Y0. Consider Table 17-1, which shows a reduced and entirely
hypothetical data set to demonstrate calculation of a simple index.

An index of 100 represents the same quantity or price as the base period. An
index less than 100 indicates a decline in quantity or price, and an index greater
than 100 indicates an increase in quantity or price compared to the base period.
One of the great advantages of index numbers is that they put quantities
measured on different scales and with different ranges of scores into a common
metric. For instance, using indexes we can easily compare the relative increase or
decrease over time in production of automobiles, motorbikes, and bicycles.

A composite index combines information about the price or quantity of several
types of goods or services. For instance, we might calculate the quantity of beer
sold by the three largest breweries in Scotland by adding together the quantity
sold by each manufacturer. If we performed this calculation for a number of years
and selected one year to use as the base period, we could calculate an index
number for each year as we did the simple index in the example above. This type
of index is known as a simple composite index because it is calculated by
combining information from several sources without using any type of weighting.

Table 17-1. Simple index calculation

Year Number of automobiles manufactured

1986 (base year) 5,000

2005 4,000

It

Yt

Y0
------ 100×=

I2005
4000
5000
------------ 100× 80= =



Index Numbers | 317

Im
provem

ent
Statistics

When some type of weighting is used to create the totals used to calculate the
index number, this is known as a weighted composite index. Price indexes are often
weighted by the quantity of goods sold, for instance. There are several different
ways to apply a weighting scheme, because the quantities of items purchased will
change from one time period to the next, and the choice of weights can have an
important influence on the results of the index calculations. Once a scheme of
weighting is selected, however, calculating the index numbers themselves is
straightforward. The total price is calculated for each time period, and the index
numbers for each time period are calculated using a procedure analogous to that
used for the simple index.

A Laspeyres index uses the base period quantities as weights, so inflation or defla-
tion is measured for a fixed “basket” of goods or services. The CPI is an example
of a Laspeyres index: the quantities used for weighting are based on samples of
purchases by over 30,000 families in the years 1982–1984. The steps in calcu-
lating a Laspeyres index are:

1. Collect price information (P1t, P2t, …Pkt) for each time period for each item (1
through k) to be included in the index.

2. Collect purchase quantity information (Q1t
0
, Q2t

0
, …Qkt

0
) for the base period

for each item to be included in the index.

3. Select a base period (t0).

4. Calculate the weighted totals for each time period, using the formula:

5. Calculate the Laspeyres index, It, by dividing the weighted total for each time
period by the weighted total for the base period and multiplying by 100, i.e.:

Table 17-2 shows a simple example of the calculation of the Laspeyres index for a
“market basket” containing only two types of goods.

The weighted total for 2000 is:

Table 17-2. Laspeyres index example

Product Base quantity (2000) 2000 price 2005 price

Bread 10 1.00 1.50

Milk 20 2.00 4.00

Q it0
Pit

i 1=

k

∑

It

Q it0
Pit

i 1=

k

∑

Q it0
Pit0

i 1=

k

∑
----------------------------= 100×

10 1.00×( ) 20 2.00×( )+ 50.00=
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The 2005 weighted total is:

The Laspeyres index for this basket of goods in 2005, using 2000 as the base year,
is therefore:

A Paasche Index calculates weighted totals using the quantities of items purchased
in each time period. This has the advantage of adjusting for changes in consumer
habits: for instance, if the price of a good rises, people tend to buy less of it and
purchase less expensive substitutes. An example of substitution would be if the
price of beef rose faster than the price of chicken, and people responded by buying
more chicken and less beef. This change in consumer habits would not be
reflected in the Laspeyres index but would be in the Paasche index.

The steps to calculate a Paasche index are similar to those for a Laspeyres index.
The main difference is that information about the quantities purchased in each
time period must be collected and used to calculate the weighted totals.

1. Collect price information (P1t, P2t, …Pkt) for each time period for each item (1
through k) to be included in the index.

2. Collect purchase quantity information (Q1t, Q2t, …Qkt) for each time period
for each item to be included in the index.

3. Select a base period (t0).

4. Calculate the weighted totals for each time period, using the formula:

5. Calculate the Paasche index, It, by dividing the weighted total for each time
period by the weighted total for the base period and multiplying by 100, i.e.:

Table 17-3 shows a simple example of calculating a Paasche index.

Table 17-3. Calculating a Paasche index

Product 2000 quantity 2000 price 2005 quantity 2005 price

Bread 10 1.00 15 1.50

Milk 20 2.00 15 4.00

10 1.50×( ) 20 4.00×( )+ 95.00=

I2005
95
50
------ 100× 190= =

Q itPit

i 1=

k

∑

It

Q itPit

i 1=

k

∑

Q itPit0

i 1=

k

∑
---------------------------= 100×
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The 2000 weighted total is:

The 2005 weighted index is:

The Paasche index for this basket of goods in 2005, using 2000 as the base year, is
therefore:

Note that although the prices were the same in each example, the different
methods of weighting resulted in substantial differences in the two index numbers
(190 versus 165). The Paasche index has the advantage of comparing prices for a
basket of goods at purchase levels appropriate to each time period. It has the
disadvantage of requiring that this information (quantities of each type of good
purchased) be collected for each time period, which may be prohibitively expen-
sive. Another disadvantage of the Paasche index is that because both prices and
quantities may change from one period to another, it is difficult to compare
Paasche index numbers for any two periods when one of the periods is not the
base period.

Time Series
Time series are used frequently in business statistics to chart the changes in some
quantity over time. Strictly speaking, a time series is just a sequence of measure-
ments of some quantity taken at different times, often at equally spaced intervals.
The previous example of the number of automobiles manufactured in the years
1986–2005 would qualify, as would the measurements discussed later in this
chapter in the section on control charts. Time series may be used for either
descriptive or inferential purposes; the latter includes forecasting, i.e., predicting
values for time periods that have not yet occurred. The reader should bear in
mind, however, that time series analysis is a complex topic with many specialized
techniques, and that this section can only introduce some of the terminology and
a few simple examples. Anyone planning to work in this area should consult a
textbook devoted to the subject, such as Robert S. Shumway, Time Series and Its
Applications: With R Examples (Springer). Note also that some authors (e.g.,
Tabachnick and Fidell) specify that at least 50 data points are required to use time
series techniques.

One characteristic of time series data is that data points in sequence are assumed
to not be independent, as would be required for standard General Linear Model
and many other analytical techniques, but to be autocorrelated. This means that
the value for a given time point is expected to be related to the points before and
after it, and perhaps to points more distant in the series as well.

10 1.00×( ) 20 2.00×( )+ 50.00=

15 1.50×( ) 15 4.00×( )+ 82.50=

I2005
82.5
50

----------- 100× 165= =
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Time series data is assumed to be stationary, meaning that properties such as
mean, variance, and autocorrelation structure are constant over the entire range of
the data. Sometimes data has to be preprocessed by differencing in order to
achieve stationarity: this means subtracting each data point from some previous
point. The distance between the two points is called the lag. Techniques to test
for the types of differencing required, and to perform them automatically, are
included in software packages dedicated to time series analysis. Other transforma-
tions, such as taking the square root or logarithm of the data to stabilize the
variance, may also be applied in before the times series analysis begins.

Additive models are often used to describe the components of a time series, i.e.:

Criticisms of the U.S. Consumer Price Index (CPI)
The CPI is the principal measure of price changes in the United States and has
been produced in some form by the Bureau of Labor Statistics since 1919. It is
used for many purposes, including as a measurement of inflation and in calcu-
lating cost of living adjustments for negotiated wage packages and social
security and civil service retirement benefits. Not surprisingly, an index used for
so many purposes also comes under criticism from many quarters.

Among the principal criticisms, all of which tend to lead to the CPI overstating
inflation, are:

Quality change and new product bias
The CPI does not account for the improved quality of some items, such as
electronics. A DVD player that sells for $150 in 2005 may be of a substan-
tially higher quality and therefore “worth more” to the consumer than one
that cost $100 in 2000, but this increase in quality is not reflected in the CPI.
Similarly, because a fixed market basket of items is used, new items are not
included in the index in a timely fashion. The result is that early declines in
price (typical among new electronics products, for instance) are not captured
in the index.

Substitution bias
The use of a fixed basket of goods (weights are updated about once every 10
years) does not allow for changes in consumer purchasing patterns in
response to changes in price. For instance, if the price of meat rises faster
than that of other protein foods such as poultry or eggs, consumers may
respond by purchasing more poultry and eggs and less meat, but this shift
will not be reflected in the CPI.

Outlet substitution bias
Because price information is gathered from traditional sales outlets such as
department stores, newer outlets such as big-box discounters or Internet
sales are not fully represented in the CPI surveys.

Yt Tt Ct St Rt+ + +=
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The components of the trend Yt in this model are:

Tt
Secular or long-term trend, i.e., the overall trend over the time studied.

Ct
The cyclical effect, i.e., fluctuations about the secular trend due to business
or economic conditions, such as periods of general economic recession or
expansion.

St
The seasonal effect, i.e., fluctuations due to time of year, for instance the
summer versus the winter months.

Rt
The residual or error effect, i.e., what remains after the secular, cyclical and
seasonal effect have been accounted for; it may include both random effects
and effects due to rare events such as hurricanes or epidemics.

Much of time series analysis is devoted to resolving the variance observed over
time into these components. The concept is similar to partitioning the variance in
ANOVA models, although the mathematics involved is different.

Exact measurements plotted over time, also known as raw time series, will almost
always show a great deal of minor variation that may obscure major trends that
could help explain the pattern and make accurate future forecasts. Various types
of smoothing have been devised to deal with this problem. They can be divided
into two types: moving average or rolling average techniques, which involve taking
some kind of average over a series of consecutive points and substituting this
average for the raw values, and exponential techniques, in which an exponential
series is used to weight the data points.

To calculate a simple moving average (SMA), take the unweighted mean of a speci-
fied number of data points (n) prior to the time point in question. The size of n is
sometimes described as a window because the idea is that a window including n
data points (a window of width n) is used to calculate the moving average. As you
progress forward in time through the data, the window moves so you can “see”
different data points each time, and the average is calculated using the points
included in the window for each time point. For instance, a five-point SMA would
be the average of a given value and the previous four data points.

The SMA for each new data point drops only one value and adds only one new
value, reducing the fluctuation from point to point. This attribute gave rise to the
term rolling average, because the last value “rolls off” the series as the new value
“rolls on.” This is similar to the methodology used to compute player standings
on professional tennis tours, although in that case a total rather than an average is
computed. Each player’s total points in a given week is the sum of their points
from the previous 52 weeks, and each week the total is recalculated as the oldest
week’s points are dropped and the newest week’s points added in.

The greater the size of the window used to calculate an SMA, the greater the
smoothing since each new data point has less influence relative to the total. At
some point the data may become so “smoothed” that important information
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about the pattern is lost. In addition, the larger the window, the more data points
that have to be discarded (because you need more points to calculate each
average). This may be seen in the example in Figure 17-1 and Table 17-4.

As would be expected, the largest fluctuations are seen in the raw data, while by
the time the window is increased to 4, there is very little fluctuation in values
between time points.

When a window of 2 is used, only one data point has to be dropped from the
moving average (the first, because it has no prior point to use in calculating the
average. When a window of 4 is used, the first three points have to be dropped
because none of them has three prior points to use in calculating the average.

The central moving average (CMA) is similar to the moving average but uses a
window of size n with both past and future data used to calculate the average for
each point. For a CMA of size 3, for instance, the value at time 2 would be 4.67 or
(5 + 6 + 3)/3. Note that the future points are measured data, not forecasts: they
are “future” only in that they are measured at a later time than the central data
point for a given CMA. Table 17-5 shows an example.

Figure 17-1. Raw data and moving averages with n = 2 and n = 4

Table 17-4. Simple moving average with different sized windows

Time 1 2 3 4 5 6 7 8 9 10

Raw
data

5 6 3 7 4 6 8 5 2 6

n = 2 5.5 4.5 5 5.5 5 7 6.5 3.5 4

n = 4 5.25 5 5 6.25 5.75 5.25 5.25

Table 17-5. Central moving average (n = 3) for previous data

Time 1 2 3 4 5 6 7 8 9

Raw data 5 6 3 7 4 6 8 5 2

CMA (n = 3) 4.67 5.33 4.67 5.67 6.00 6.33 5.00
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The weighted moving average (WMA) uses values from a window of size n but
assigns greater weight to the data points closer to the point in question. If not
otherwise specified, arithmetic rather than exponential weights are used. A typical
system assigns the weight n to the day whose weight is being calculated, where n
is the number of days included in the weight. Every other day included in the
WMA is weighted one less for each day it is removed from the day being
weighted. In a five-day WMA, the day being weighted would be given a weight of
five, the previous day a weight of four, and so on down to four days previous,
which would have a weight of one. This weighted sum is divided by the sum of
the weight factors, which will be [n(n – 1)]/2. The WMA makes intuitive sense in
any situation where consecutive points can be assumed to be the most closely
related, with the relationship lessening as the length of time between data points
increases.

The exponential moving average (EMA) also applies more weight to closer
measurements, but the weights allocated to data points further from the point in
question decrease exponentially rather than arithmetically. To calculate an EMA,
an exponential smoothing constant α between 0 and 1 is selected. This constant is
related to the number of time points included, n, by the following equation:

so that α = 0.2 is equivalent to n = 9 because (2/10 = 0.2). α is then applied in the
following formula, which is continued until the terms become so small as to
become negligible:

where p1 is the measure at the given time point for which the EMA is being calcu-
lated, p2 is one time point removed, p3 is two time points removed, and so on. The
denominator approaches 1/α as the number of points included increases, and
86% of the total weight in the calculation will be included in the first n time
points. n is not the number of data points included in calculating the EMA, as it is
in the simple and weighted moving averages: the stopping point will be deter-
mined by the value chosen for α, and by the researcher’s decision as to what
constitutes a negligible value.

Decision Analysis
We all make decisions every day, but how do we go about making the best deci-
sion, particularly in a situation where a lot (for instance, a large amount of money)
is at stake? Decision analysis is a body of professional practices, methodologies,
and theories used to systematize the decision-making process in the service of
improving the process of decision-making. There are many schools of thought
within decision theory, and each may be useful in a particular context: this
section concentrates on several of the most common decision analysis methods,
which will help to introduce the student to the types of processes involved, as
well as providing concrete assistance in particular decision-making contexts.

α 2
n 1+
-------------=

EMA
p1 1 α–( )p2 1 α–( )2p3 1 α–( )3p4 …+ + + +

1 1 α–( ) 1 α–( )2 …+ + +
---------------------------------------------------------------------------------------------------------------------=



324 | Chapter 17: Business and Quality Improvement Statistics

The decision-making process will be described in terms of financial costs and
payoffs, but can be used with other metrics as well (for instance, personal satis-
faction or improved quality of life) as long as they can be quantified.

In decision analysis, the process of making a decision is usually conceived of as a
series of steps that is not unlike the process involved in hypothesis testing. They
are also not that different, except for the selection and application of a mathemat-
ical model in steps 5–6, from the ordinary type of decision-making process we
engage in every day. Besides the potential to lead to better decisions, going
through these steps (and justifying and documenting them) should make the
reasons for a particular decision easier to explain and justify to someone who
wasn’t involved in the process. The basic steps are:

1. Define the situation or context, including states of nature (any situation in the
real world that may influence the outcomes). States of nature must be stated
as mutually exclusive and exhaustive alternatives, for instance, strong/
medium/weak market, or low rainfall/adequate rainfall.

2. Identify the choices at hand, i.e., the alternative decisions that could be
made; these are known as actions.

3. Identify the possible outcomes or consequences.

4. Assign costs and profits associated with all possible combinations of choices
and outcomes.

5. Select an appropriate mathematical model.

6. Apply the model using the information from steps 2–4.

7. Make a decision based on the best expected outcome as predicted by the
model.

Choice of a decision theory methodology depends in part on how much is known
about a situation. There are three types of contexts in which one may apply deci-
sion theory:

• Decision-making under certainty

• Decision-making under uncertainty

• Decision-making under risk

Decision-making under certainty means that the future state of nature is known, so
the decision-making process requires only stating the alternatives and payoffs in
order to be able to pick the choices that will invariably lead to the best outcome.
This situation will not be further discussed because no mathematical modeling is
required and because there is no uncertainty about what is the best choice.

Decision-making under uncertainty is a more common situation: we don’t know
the probabilities of each state of nature and must make our decision based only
on the gains or losses from different actions under each state. For instance, if we
are choosing from several cities in which to open a restaurant, the success of the
restaurant depends in part on the economic climate in each city when the restau-
rant opens, but we may not have good estimates of the future economic climates
in the future in these cities. Similarly, when choosing what crop or variety to
plant, our success at harvest time depends partly on the amount of rainfall during
the growing season, but we may feel we don’t have sufficient information to esti-
mate this in advance.



Decision Analysis | 325

Im
provem

ent
Statistics

In decision-making under risk, we know the probabilities of each outcome (or have
reasonable estimates of them) and can combine this information with that about
expected payoffs to determine which decision is optimal.

Minimax, Maximax, and Maximin

The information needed to make a decision under uncertainty may be summa-
rized in a payoff table, where each row represents a possible action taken, and
each column a state of nature. The numbers within the cells of the table represent
the outcome expected under different combinations of actions and states of
nature. For instance, suppose we are considering whether to invest in staging an
event in a large outdoor venue or a smaller indoor venue, with a third alternative
to not invest in the event at all. Suppose also that the event is to be held in a
climate where rainstorms are common during the season of the year when the
event will take place, and we don’t feel we can assign reasonable probabilities to
the chance of rain on a particular day. The payoff table might look like
Table 17-6.

The outdoor venue is larger so if it doesn’t rain that night we stand to make a
large profit (gain of $500,000). If it rains, the event will be canceled and we will
lose our investment as well as not making any revenue (loss of $50,000). On the
other hand, the indoor venue should return about the same profit ($200,000)
whether it rains or not: less than the outdoor venue if the weather is good, more
than the outdoor venue if it rains. Finally, we might decide that investing in staged
events is too risky and choose to apply our money elsewhere.

We can also create an opportunity loss table, which expresses the amount of
money we lost the opportunity to make by choosing a particular course of action.
For our hypothetical event-investment-in-rainy-country scheme, the opportunity
loss table would look like Table 17-7.

Table 17-6. Payoff table for investing in an event

                    Weather

Rain No rain

Outdoor venue –$50,000 $500,000

Action Indoor venue $200,000 $200,000

Do not invest $0 $0

Table 17-7. Opportunity loss table for investing in an eventt

Weather

Rain No rain

Action
Outdoor venue $250,000 0

Indoor venue $0 $300,000

Do not invest $200,000 $500,000
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Note that there are no negative numbers in an opportunity loss table. The best
action for a given state of nature has a loss of $0, while the others represent the
amount of money lost by not choosing the best action for that state of nature.

Three procedures have been developed for decision-making under uncertainty:
minimax, maximax, and maximin. The minimax procedure involves choosing the
action that will minimize opportunity loss. To make a minimax decision, we use
the opportunity loss table to identify the maximum opportunity loss for each
action, then choose the action with the lowest opportunity loss. In this example:

Maximum opportunity loss (outdoor venue) = $250,000
Maximum opportunity loss (indoor venue) = $300,000
Maximum opportunity loss (do not invest) = $500,000

Using the minimax procedure, we would decide to finance the event at the
outdoor venue, because it has the smallest maximum opportunity loss of the three
choices.

The maximin strategy involves choosing the action that has the largest minimal
outcome. This has been described as the strategy for pessimists, because it
chooses the alternative with the highest minimal gain or smallest loss, i.e., the best
outcome under unfavorable conditions. In this example:

Minimum gain (outdoor venue) = –$50,000
Minimum gain (indoor venue) = $200,000
Minimum gain (do not invest) = $0

Using the maximin strategy, we would choose the indoor venue, because the
worst we could do is make $200,000 regardless of weather conditions.

The maximax strategy involves choosing the action that has the highest maximum
outcome. For this reason it might be called the strategy for optimists, because it
chooses the strategies that provide the best outcome under the most favorable
state of nature. In this example:

Maximum gain (outdoor venue) = $500,000
Maximum gain (indoor venue) = $200,000
Maximum gain (do not invest) = $0

Using the maximax strategy, we would choose the outdoor venue, because it
offers the highest maximum outcome.

Decision-Making Under Risk

If the probabilities of different states of nature are known or can be reasonably
estimated, we are in a decision-making under risk situation. Let’s say that in the
previous example, we also had information about the probability of rain on the night
when the event is scheduled. If the probability of rain is 0.6, that means the prob-
ability of no rain is 0.4 because they are mutually exhaustive states of nature. We
add this information in Table 17-8.
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The expected payoff is calculated by multiplying the payoff under each combina-
tion of actions and states of nature by the probability of the state of nature. For
instance, for the “outdoor venue” option:

E(payoff) = (.6)(–50,000) + (.4)(500,000) = –30,000 + 200,000 = 170,000

We choose the option with the greatest expected payoff. In this case we would
choose to stage our event indoors. This method requires that we have reasonable
estimates of the probability of the states of nature: if they were reversed in the
above example, the highest expected payoff would come from the outdoor venue.

Decision Trees

If the probability of various outcomes, given particular actions, is known, then a
decision tree can be constructed that displays the actions and payoffs under
different states of nature and can be used to clarify the outcomes of different
combinations. The decision tree containing the same information as the decision
table in Table 17-8 is shown in Figure 17-2.

The purpose of a decision tree is to display decision-making information,
including available actions, states of nature, and expected payoffs in a clear and
graphical manner. It does not include any rules for making decisions but can aid
decision-making by presenting the relevant information in one graphical
summary.

Table 17-8. Expected payoff from various actions, given probabilities of different states of
nature

Rain No rain Expected payoff

Probability 0.6 0.4

Actions
Outdoor venue –$50,000 $500,000 170,000

Indoor venue $200,000 $200,000 200,000

Do not invest $0 $0 0

Figure 17-2. Decision tree for event venue example



328 | Chapter 17: Business and Quality Improvement Statistics

Quality Improvement
The roots of Quality Improvement (QI) date back to the 1920s, when Walter
Shewhart began developing a statistical approach to studying variation in manu-
facturing processes. Interest in QI got a major boost in the 1950s with the work of
W. Edwards Deming, who developed a statistical approach to QI based on
Shewhart’s work. Ironically, Deming’s approach was initially rejected in his native
country (the United States) but enthusiastically embraced in Japan, who applied
QI techniques to manufacturing so successfully that they were able to challenge
and in some cases surpass the American supremacy in manufacturing. In
response, American companies began adopting QI approaches in the 1980s;
Motorola and General Electric are among the best-known early adopters.

There are multiple approaches to QI, including a popular program known as Six
Sigma (6σ), which is part of a general approach known as Total Quality Manage-
ment (TQM). This section concentrates on the basics of QI, which are common to
many such programs, and avoids getting into the specifics of jargon and acro-
nyms of any particular program. It also concentrates on the statistical
methodology used in QI, although the reader should bear in mind that most QI
programs are multifaceted and include psychological and organizational strate-
gies as well as statistical measurement and analytic techniques.

Although QI began in the manufacturing sector, it is now applied in other areas,
including health care and education. “Quality” may be the buzzword of the new
century, so consideration of the basic aspects of quality measurement and improve-
ment may prove useful to people working in widely disparate fields, and, anywhere
quality can be defined and measured, the field of QI may provide useful tools.

The first step in measuring anything is defining it. Quality in the QI context is
generally defined in terms of the customer: a high-quality product satisfies the
needs and preferences of the customer. In the case of manufacturing, this might
mean machine parts with specified dimensions and durability. In the case of
healthcare, it might mean a doctor’s visit that answers the patient’s concerns and
does not involve excessive waiting or other aversive experiences. The customer’s
needs and preferences must be translated into product variables that can be
measured. Picking up on the healthcare example, “no excessive waiting time”
might be operationalized into “waiting time of no more than 10 minutes.” This
would allow each visit to be evaluated as to whether the standard was met. Simi-
larly, specific dimensions can be established for machine parts, and specific parts
evaluated as to whether they fall into the acceptable range as specified by the
customer.

The language of QI is drawn from manufacturing, and commonly refers to prod-
ucts that are created by processes, which are part of a larger system. For instance, a
company may manufacture bolts (the product) through a series of processes (such
as cutting, stamping, and polishing), which are part of a larger system that takes
inputs (such as metal) and transforms them into outputs (the bolts). An inherent
fact about any process is that it is variable: not every bolt will have exactly the
same dimensions. QI to a large extent is concerned with defining acceptable limits
of variation, tracking variation within processes, and identifying causes and
finding solutions when products are not within the acceptable range of variation.
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Run Charts and Control Charts

Control charts, developed by Walter Shewhart of Bell Laboratories in the 1920s,
are a basic graphical technique used to monitor process variation. The control
chart is a refinement of the basic run chart, which is simply a time series chart
displaying some characteristic of the product in question on the y-axis, and time
or order of production on the x-axis. Often the data points graphed represent a
statistic such as the mean that is calculated from small samples of product, rather
than individual values.

Graphing sample means allows us to invoke the Central Limit Theorem and
assume an underlying normal distribution for the data points (without regard to
the distribution of the individual values in the population). This is essential when
using the decision rules detailed below for determining when a process is going
out of statistical control. If individual data points are represented in the control
chart, these rules cannot be used unless the underlying process is normal, but
graphing the points may still be useful as a graphical representation of the varia-
tion present in the process.

We expect to find variation in the output from any process, but do not expect the
distribution of the output to change, either in location (mean or median) or varia-
tion (standard deviation or range). If the distribution of output from a process is
consistent over time, we say the process is in statistical control or simply in
control. If it changes, the process is said to be out of statistical control or simply
out of control. The process of monitoring and eliminating sources of variation for
some process in order to bring it into or keep it in statistical control is called
statistical process control.

There are two basic sources of the total variation of any process: common causes
and special or assignable causes. Common causes of variation are those that are
attributable to the design of a process and affect all output of the process. For a
manufacturing process, common causes might include lighting in a factory, the
quality of raw materials, and worker training. If the amount of variation due to
common causes is too great, the process must be redesigned. Perhaps the lighting
can be improved, workers can be given more training or the tasks broken down
into smaller segments that are easier to do accurately, or a more consistent source
found for the raw materials used in the manufacturing process. This type of
correction is generally the responsibility of management and does not figure in the
type of analysis discussed in this section.

For the purposes of this section, a process that has only common causes of varia-
tion is a process that is in control. Instead, we focus on special causes of variation,
which are actions or events that are not part of the process design. Special causes
are usually temporary and affect only small parts of the process. For instance, a
worker may become fatigued and fail to execute his job accurately, or a machine
may get out of adjustment and start producing products outside the range of
acceptable values. Control charts are used to identify when processes are going
out of statistical control and may also aid in identifying special causes of variation.

Control charts usually include a centerline drawn at the process mean or median.
The centerline acts as a reference point to evaluate the data points: for instance,
use of a centerline makes it easier to evaluate whether data points are close to or
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distant from a central value. The value of this centerline is usually specified in
advance by the analyst, and represents the expected value when the process is in
control (running correctly, producing acceptable output) rather than the mean of
the sample points. One other convention in control charts is the addition of lines
connecting each consecutive point, which makes it easier to see the pattern across
the sequence of measurements. Both features are displayed in the hypothetical run
chart in Figure 17-3.

This run chart displays the weight of 40 consecutively produced screws from a
hypothetical manufacturing process. The y-axis displays the weight in ounces of
each screw, while the x-axis displays the order of observation, and the green
centerline displays the process mean of 3.0. We can observe therefore that the first
three screws were slightly below the mean, the fourth was above, and so on. We
can also see that the pattern is basically random and centered around the process
mean, and that the longest run (consecutive values in the same direction) is 5
(values 29–33).

There’s no particular pattern in the data presented in Figure 17-3 (not surprising,
since it was created using a random number generator!), which is one of the indi-
cations that a process is in control. The charts in Figures 17-4 through 17-9
display some of the patterns that can be spotted by a run chart and might signal
the need for further investigation.

Figure 17-3. Control chart of weight in ounces for 40 screws (individual values), with a
process mean of 3.0

Figure 17-4. Control chart with an upward trend
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Note that at this stage, because we are looking at individual data points, we are
looking for general patterns rather than performing statistical tests. More formal
rules are discussed shortly that may be used to determine when a data pattern
cannot be attributed to random variation but should be investigated as evidence
that a process is going out of control.

When a control chart is based on sample means, thanks to the Central Limit
Theorem we can use the normal distribution to identify values or patterns that
would be highly improbable for a process in statistical control. A number of rules
have been determined that indicate a process is going out of control, based on the
expected distribution of values of the data points if they were based on samples
drawn from a normal distribution with mean and variance specified from the
process when it is in control.

Use of the standard deviation to define acceptable ranges of values for the outputs
from a process is the source of the name for the Six Sigma program, because sigma
(σ) is the symbol for standard deviation. The idea behind the Six Sigma program
is to reduce variability sufficiently that output in the range of ±3 σ will still be
acceptable to the customer.

As discussed in Chapter 8, with normally distributed data, the probability of data
points within particular ranges is known. The percentage of data from a normal

Figure 17-5. Control chart with downward trend

Figure 17-6. Control chart with cyclical pattern
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distribution contained in different ranges, defined by standard deviations from the
mean, is displayed in Figure 17-10.

The probability of a data point within one standard deviation of the mean is about
68%. The probability of a data point in the range between one and two standard
deviations above or below the mean is about 27%. The probability of a point
between two and three standard deviations above or below the mean is 4% and the
probability of a point beyond three standard deviations above or below the mean is
about 0.2%. To look at it another way, in repeated samples from a normally distrib-
uted population, we would expect about 68% of the sample means to fall within
one standard deviation of the mean, about 95% within two standard deviations,

Figure 17-7. Control chart with increasing variability

Figure 17-8. Control chart with shock or outlier (single extreme value)

Figure 17-9. Control chart with change of level (upward shift of mean)
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about 99% to be within 3 standard deviations, and about 0.2% beyond three stan-
dard deviations from the mean.

A control chart with the addition of control limits translates this information so
the distribution of points is on the y-axis while the x-axis displays the time or
order of samples charted. The different ranges are often labeled as shown in
Figure 17-11.

In this chart:

1. Zone A, or the three-sigma zone, is the area between two and three σ of the
centerline.

2. Zone B, or the two-sigma zone, is the area between one and two σ of the
centerline.

3. Zone C, or the one-sigma zone, is the area within one σ of the centerline.

These zones are used in conjunction with a set of pattern analysis rules to deter-
mine when a process has gone out of control.

Figure 17-10. Probability of data points in particular ranges in a normal distribution

Figure 17-11. Control chart with sigma ranges
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Because both the mean value and variability of the samples are important to deter-
mining if a process is in control, control charts are usually produced in pairs, one
representing mean values of the samples and one representing variability. For
continuous data, an x-bar chart (so called because x, pronounced x-bar, is the
statistical symbol for a sample mean) is used to track the mean value. Variability is
represented with either an s-chart displaying the standard deviation of the
samples, or an r-chart representing the range of the samples.

The pattern analysis rules below are used to interpret data from the x-bar chart
but could be applied to any of the various types of control charts. This list is an
amalgam of several sets of rules including the “Western Electric rules” developed
at the Western Electric Company (now part of AT&T) and first published in
1956, and the “Nelson rules” developed by Lloyd S. Nelson and first published in
1984.

The circumstances under which a process is judged out of control under pattern
analysis rules are:

1. If any point falls outside Zone A.

2. If nine consecutive points fall in Zone C or beyond (further from the center-
line) on the same side of the centerline.

3. If six consecutive points fall in the same direction, i.e., all increasing or all
decreasing.

4. If 14 consecutive points alternate up and down.

5. If two out of three consecutive points fall in Zone A or beyond, on the same
side of the centerline.

6. If four out of five consecutive points fall in Zone B or beyond, on the same
side of the centerline.

7. If 15 points in a row fall in Zone C.

8. If 11 consecutive points fall in Zone B or beyond.

If data is binary rather than continuous (for instance, if items are simply classified
as defective or acceptable), p-charts or np-charts based on the binomial distribu-
tion can be created in place of the x-bar chart. Note that binomial data is often
referred to as attribute data within the field of quality control. If the interest is the
number of defects rather than the number of defective units (i.e., if a unit can have
more than one defect and the total count of defects is the variable of interest),
then c-charts and u-charts can be created in place of the x-bar chart. Because these
charts are usually created using computer software (as are x-bar charts) they will
not be discussed in detail here: the key point is that the principles of interpreta-
tion are the same as for x-bar charts. The following set of rules should help clarify
which type of chart to use for each type of data:

1. Data points represent sample means from continuous data (x-bar chart).

2. Data points represent the number of defective items per sample, and all
samples are the same size (np-chart).

3. Data points represent the proportion of defective items per sample, and
samples are of different sizes (p-chart).
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4. Data points represent the average number of defects per unit, and all samples
are the same size (c-chart).

5. Data points represent the average number of defects per unit, and samples are
of different sizes (u-chart).

Exercises
Here’s a quick review of the topics covered in this chapter.

Question

Calculate the simple index for 2000, using each of the other years as a base year.
What do the results tell you about the selection of the base period?

W. Edwards Deming and Japan
Japan was not always the manufacturing powerhouse we know today. In the
first half of the twentieth century, Japan was noted primarily for the manufac-
ture of inexpensive products, and the industrial infrastructure of the country
was severely damaged during the Second World War. However, after the war
the victorious Allied command assigned a group of engineers to help Japan
rebuild their economy.

One aspect of this rebuilding was teaching Japanese manufacturers about the
statistical quality control methods developed by Walter Shewhart at Bell Labo-
ratories in the 1920s. In 1950, W. Edwards Deming (1900–1993), a statistician
who had studied with Shewhart, was invited to present a series of lectures on
statistical quality improvement under the auspices of the Japanese Union of
Scientists and Engineers. During his visit, Deming also met with the top execu-
tives of many major Japanese companies.

Deming so impressed the Japanese industrial leaders they established two
annual awards in his name for achievements in the field of quality: the Deming
Prize for Individuals (awarded to individuals who have made important contri-
butions in the study, methodology, or dissemination of TQM) and the Deming
Application Prize (awarded for outstanding performance improvement through
application of TQM principles ). Further information about these prizes is avail-
able from the Deming Institute web site at http://www.deming.org/demingprize/.

Year Price

1970 1,000

1980 1,500

1990 2,000

2000 1,500

http://www.deming.org/demingprize/
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Answer

I2000 = 150 when 1970 is the base year, 100 when 1980 is the base year, and 75
when 1990 is the base year. This demonstrates the importance of the base year in
index calculations, and in not allowing politics or other considerations to affect
this choice.

Calculations when 1970 is the base year:

I2000 = (1,500/1,000) × 100 = 150

When 1980 is the base year:

I2000 = (1,500/1,500) × 100 = 100

When 1990 is the base year:

I2000 = (1,500/2,000) × 100 = 75

Question

Calculate the Laspeyres index and Paasche index for 2000 for the following data,
using 1990 as the base year. Why do they differ?

Answer

The Laspeyres index is 141.67, while the Paasche index is 87.50. The difference is
due to the weighting: the Laspeyres index uses the weighting from the base year,
while the Paasche index uses the weights for the index year. In this case, the same
amount of meat was purchased in 1990 and 2000, but less beef and more chicken
was purchased in 2000 relative to 1990. An inflation index based on the Laspeyres
index would miss this change in consumer habits.

Here are the calculations for the Laspeyres index:

And for the Paasche index:

Question

Calculate the SMA and CMA for n = 3 and n = 5 for the sixth time point for the
following table.

Product 1990 quantity 1990 price 2000 quantity 2000 price

Beef 100 pounds $3.00/pound 50 pounds $5.00/pound

Chicken 100 pounds $3.00/pound 150 pounds $3.50/pound

100 5.00( ) 100 3.50( )+
100 3.00( ) 100 3.00( )+
----------------------------------------------------------- 100× 850

600
---------= 100× 141.67=

50 5.00( ) 150 3.50( )+
100 3.00( ) 100 3.00( )+
----------------------------------------------------------- 100× 775

600
--------- 100× 129.17= =
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Answer

SMA(n = 3) = (7 + 6 + 4)/3 = 5.7
SMA(n = 5) = (5 + 2 + 7 + 6 + 4)/5 = 4.8
CMA(n = 3) = (6 + 4 + 8)/3 = 6.0
CMA(n = 5) = (7 + 6 + 4 + 8 + 7)/5 = 6.4

Notice that since there is a general trend upward in this data, the CMA estimates
are higher, particularly with the larger window.

Question

Suppose you were considering whether to open a stationer’s shop in a small or a
large city. There is greater potential profit to be made in the large city but also
greater potential loss (due to the greater expenses of setting up business there).
The success of the shop will largely depend on the local business climate when
you open: if other local businesses are expanding, you have a good chance to land
some large orders, while if they are struggling, you may barely meet your
expenses.

Here’s a table of payoffs under two states of nature: calculate the minimax,
maximax, and maximin decisions for this situation.

Answer

For the minimax solution, construct an opportunity loss table as follows.

The minimax solution is to choose the action that minimizes opportunity loss; in
this case, we would choose to place our store in the large city.

The maximax solution is to select the action that has the highest maximum
outcome, so in this case we would place our store in the large city.

The maximin solution is to select the action that has the largest minimal outcome,
so in this case we would place our store in the small city.

Time 1 2 3 4 5 6 7 8 9

Raw
data 3 5 2 7 6 4 8 7 9

      Weather

Good business climate Poor business climate

Action Large city 200,000 10,000

Small city 100,000 20,000

      Weather

Good business climate Poor business climate

Action Large city 0 10,000

Small city 100,000 0
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Question

What pattern analysis rules are violated in the control chart in Figure 17-12?

Note that for the in-control process, the mean = 3 and the standard deviation = 0.5,
so the centerline is at 3.0, the 3-sigma limits at 1.5 and 4.5, the 2-sigma limits are at
4.0 and 2.0, and the 1-sigma limits are at 3.5 and 2.5.

Answer

The violations are listed below and identified in Figure 17-13.

1. Nine points in a row on the same side of the centerline (rule 2).

2. One point outside three-sigma range, i.e., outside Zone A (rule 1).

3. Six points in a row in the same direction (rule 3).

4. Four out of five consecutive points beyond the one-sigma range (Zone B or
beyond) on the same side of the centerline (rule 6).

Figure 17-12. Control chart with pattern violations

Figure 17-13. Control chart with pattern violations flagged
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Many of the statistics used in medicine and epidemiology are common to other
fields: examples include the t-test (covered in Chapter 8), correlation (covered in
Chapter 9), and the various types of regression and ANOVA (covered in Chapters
12–15). But some other statistics have been developed specifically to meet the
needs of medical and epidemiological research (such as the odds ratio), and
others, while common to many fields, are used so frequently in medicine and
epidemiology that they are covered in this chapter (for instance, standardized
rates).

Measures of Disease Frequency
Before getting into specific measures of disease frequency, it is worthwhile to
discuss the meanings of several terms in common usage that are often confused.
We can always report disease frequency in terms of the number of cases: there
were 256 cases of tuberculosis (TB) in city A and 471 in city B last year, for
instance. Raw numbers are useful for people who allocate current resources and
plan future monetary and space allocation, because they need to know how many
cases of TB and how many hip fractures to expect in the coming year so they can
allocate resources accordingly. However, for research and planning at the national
and international level, disease occurrence is more usefully described in terms of
relative rather than absolute occurrence, because we often want to look at trends
over time or across different geographical areas with different population sizes.
For instance, the hypothetical raw numbers above suggest that city B has a worse
problem with TB than city A, but if city B has five times the population, the char-
acterization would be reversed. Similarly, the number of cases of a disease may
increase because the population is also increasing, so to make comparisons we
often need to translate counts into other metrics.
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Ratio, Proportion, and Rate
Three related types of metrics are the ratio, the proportion, and the rate. A ratio
expresses the magnitude of one quantity in relation to the magnitude of another
quantity, without making further assumptions about the two numbers, and
without requiring that the two numbers share a common unit. Ratios may be
expressed as A:B or A per B, and are often converted to standard metrics for easy
comparison, such as 1:B or A per 10,000. For instance, we might be interested in
the ratio of men to women living with AIDS in the United States. According to the
Centers for Disease Control and Prevention (CDC) in 2005 there were 769,635
men and 186,383 women living with AIDS in the U.S. The ratio of men to women
living with AIDS is therefore 769,635:186,383, which could also be expressed as
4.13:1. The second formulation makes it clearer that there were just over four
times as many men as women living with AIDS in the U.S. in 2005.*

Two types of ratios often used in epidemiology and public health are the risk ratio
and the odds ratio, which will be further discussed below. Ratios do not require
the quantities compared to be measured in the same units: for instance, a
common measure used to compare healthcare availability in different countries is
the ratio of hospital beds to the population size. This is often expressed as the
number of hospital beds per 10,000 people. According to the World Health Orga-
nization, in 2005 the United Kingdom had 39.0 hospital beds per 10,000 people,
while Sudan had 7.0 and Peru 11.0, suggesting that hospital care was more readily
available in the United Kingdom than in the other two countries.† This type of
ratio is sometimes referred to as a rate, although it does not meet the strict defini-
tion of rate (discussed below) because the denominator does not include a
measure of time.

A proportion is a particular type of ratio in which all cases included in the numer-
ator are also included in the denominator. To return to the previous example, if
we want to know what proportion of people living with AIDS in the U.S. were
male, we would divide the number of males by the total number of cases (the
number of cases in males plus the number of cases in females):

Proportions are often expressed as percents, which means literally per cent or per
100 (cent is Latin for 100). To translate proportions to percents, multiply by 100:

0.805 × 100 = 80.5%

The proportion of males among all people living with AIDS in the U.S. could also
be expressed as 80.5 percent or 80.5%.

A rate, strictly speaking, is a proportion in which the denominator includes a
measure of time. For instance, we commonly measure a person’s heart rate in terms
of beats per minute, and disease or injury occurrence in terms of the number of

* Source: http://www.statehealthfacts.org/profileind.jsp?ind=505&cat=11&rgn=1)

† Bed counts from http://www.who.int/whosis/database/core/core_select.cfm.

769 635,
769 635, 186 383,+
------------------------------------------------- 0.805=

http://www.statehealthfacts.org/profileind.jsp?ind=505&cat=11&rgn=1
http://www.who.int/whosis/database/core/core_select.cfm
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cases per week, month, or year. Morbidity and mortality (disease and death) statis-
tics are often reported in terms of the rate per 1,000 or 100,000 per time unit: this is
done because it is easier to interpret numbers like 3.57 versus 12.9 annually per
100,000 population than 0.00000357 versus 0.0000129 annually per person.

Converting rates to standard quantities facilitates comparison across populations
of different sizes. For instance, the CDC reports that the annual death rate in the
U.S. in 2004 was 816.5 per 100,000 population, as compared to 1,076.4 per
100,000 in 1940 and 954.7 per 100,000 in 1960. There were more deaths in 2004
than in any of the comparison years (2,397,615 in 2004 versus 1,417,269 in 1940
and 1,711,982 in 1960) but since the population of the U.S. was also increasing
the annual death rate per 100,000 decreased.*

This may be seen by a simple example using hypothetical data (Table 18-1).

We can see that although deaths increased each year, the population increased
even faster, so the annual death rate per 100,000 decreased in each year studied.
To calculate the death rate per 100,000, use this formula:

So for 1940, the rate is calculated as:

One issue in computing rates over a long period of time, such as a year, is to
decide what number to use in the denominator. Often the population at the
midpoint of the year is used.

There are several other issues involved in reporting disease incidence. One is
whether the number of individuals with a condition, or the number of conditions
itself, is being reported. For instance, if you were studying oral health, you might
be interested in tooth decay. But a single person could have more than one cavity:
are you interested in the number of people who had at least one cavity, or the
total number of cavities?

A similar issue arises if you are studying a transient condition. For instance, if
your topic is homelessness, are you interested in how many people had been
homeless at least once over a time period, or would you count each separate

* Source: http://www.cdc.gov/nchs/data/nvsr/nvsr55/nvsr55_19.pdf.

Table 18-1. Calculating annual death rate per 100,000 population

Year Deaths Population Deaths per 100,000

1940 75 50,000 150.0

1950 95 60,000 158.3

1960 110 75,000 146.7

1970 125 90,000 138.9

deaths
population
---------------------------- 100 000,×

75
50 000,
------------------ 100 000,× 150.0=

http://www.cdc.gov/nchs/data/nvsr/nvsr55/nvsr55_19.pdf
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instance of homelessness, with the understanding that some people might have
been homeless more than once in the time period in question? These are prob-
lems of unit of analysis, meaning that you need to decide what entity you are
studying (e.g., is it a person who may develop one or more cavities, or a number of
individual teeth, each of which may develop a cavity) and collect and analyze data
with that definition in mind.

Prevalence and Incidence
In epidemiology and medicine, when we speak of the number of cases of a
disease, a basic distinction is made as to whether we are counting all the existing
cases of a disease, or if we are only counting new cases. This may seem like hair-
splitting to the average person, but is significant because we often want to
separate new cases of a disease from existing cases. This lets us determine if a
sanitation campaign is effective in preventing new infections, for instance. We
separate existing from new cases by measuring two types of disease frequency:
prevalence and incidence.

Prevalence describes the number of cases that exist in a population at a particular
point in time. Prevalence describes the disease burden on a population without
differentiating between new versus existing cases: a diabetic diagnosed the day the
survey was conducted is counted equally as having the condition as is a diabetic
who has been living with the condition for 20 years. Prevalence is particularly
useful to people involved in resource allocation and planning, because they need
to know the disease burden in the population as well as what it will be like in the
future. Prevalence has also assumed increasing importance as the focus in epide-
miology in the industrialized world has shifted from infectious to chronic diseases
and conditions. This is because chronic diseases and conditions are often not
curable but not rapidly fatal either, so a person can live for years with the disease
or condition if appropriate medical care is provided.

Prevalence is defined as the proportion of individuals in a population who have
the disease at a particular moment in time, and is calculated as:

at a given point in time.

If a survey of a city with a population of 150,000 people found that 671 were
diabetics, the prevalence of diabetes at the time of the survey in that city would be
671 per 150,000 or 447.3 per 100,000. Because prevalence tells you the disease
status of a population at a particular point in time, it is sometimes called point
prevalence. Note that the “point” can be either a calendar time, such as a day, or a
time in the life cycle or other course of events, such as the onset of menopause or
the first day following surgery. Prevalence is sometimes referred to as prevalence
rate, particularly when longer time intervals such as a year are used, although this
is not strictly correct because there is no unit of time in the denominator.

Incidence is more complicated to calculate, because it requires three elements to
be defined. Incidence describes the number of new cases of a disease or condition

P number of cases
total population
-----------------------------------------=



Prevalence and Incidence | 343

M
edical

Statistics

that develop in a population at risk during a particular time interval. Population at
risk means people who have the potential to develop the condition: men are not at
risk for pregnancy, for instance, and so would not be included in the population
at risk. Similarly, once a person is infected with HIV (the virus that causes AIDS),
that person cannot become infected again (or become uninfected, as far as we
know), so the population at risk for HIV infection is restricted to those individ-
uals who are not already HIV positive. Both incidence and prevalence are also
used to describe health behaviors as well as diseases and conditions; for instance,
we can refer to the prevalence of smoking in Mexico or the incidence of smoking
onset in 2005 among teenagers at a particular school.

There are two types of incidence, cumulative incidence and incidence density.
Cumulative incidence (CI) is the proportion of people who contract a disease
during a specific time interval and is calculated as:

CI is used to estimate the probability that an individual at risk will develop a
disease or condition within a specified period, so it is important that the period be
identified: the CI of a woman developing breast cancer in a one-year period
following initial use of oral contraceptives will be different from the CI for a 10-
year period.

The formula to calculate CI assumes the entire population at risk can be studied
for the entire specified period: this means that unless otherwise qualified, inci-
dence is a proportion. If the population at risk changes over the period included in
the incidence calculations, then the incidence density (ID), also known as the inci-
dence rate (IR), should be calculated instead. This would be necessary if people
entered a study after it began, or dropped out before it was completed. Calcula-
tion of the IR requires expressing the denominator in person-time units, which
represent the amount of time each person was observed. The time of observation
is often referred to as the time each person contributed to the study.

The calculation of person-time units is demonstrated in Table 18-2. It represents
hypothetical data on the annual rate of post-surgical infections at two hospitals.
Because the hospitals serve different numbers of patients and patients are in the
hospital for different lengths of time, we need to calculate the IR using person-
time units in the denominator. Our statistic of comparison will be the number of
complications per 100 patient-days. Each patient-day can be considered an oppor-
tunity for an infection to occur, so using patient-days in the denominator corrects
for the different exposure to risk at the two hospitals.

Table 18-2. Post-surgical infection rates per 100 patient-days at two hospitals

Hospital Patient ID Days followed Infection?

1 1 30 N

1 2 25 Y

1 3 15 N

Total for Hospital 1 70 1

2 1 45 Y

CI
number of new cases

population at risk
------------------------------------------------------ for specified period=
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The rate of infections per 100 patient days is calculated as:

So for this example the rates are:

for hospital A and:

for hospital B.

Even though hospital B had more post-surgical infections in the period studied,
these occurred during proportionally more patient-days, so hospital B had a lower
rate of post-surgical infections than hospital A.

The relationship between incidence and prevalence for a particular disease
depends largely on the duration of the disease. If a disease has short duration
(such as the common cold), prevalence will be low relative to incidence. In
contrast, if a disease has a long duration (typical of many chronic diseases such as
diabetes), the prevalence will be high relative to incidence. Changes in prevalence
across time periods may be due either to changes in incidence or to changes in
duration. For instance, incidence of a fatal disease may decrease but prevalence
may increase if new treatments are developed that allow people to live for longer
periods with the disease without curing it (an increase in the duration of the
average case of the disease). Or the incidence of a disease may increase but the
prevalence decrease if the duration of the disease is shortened through the devel-
opment of new treatments that promote faster recovery.

Prevalence may be expressed mathematically as the product of incidence times
average duration:

If two of the variables are known, the third can be calculated. For instance, if the
incidence of a disease is 75 per 100,000 and the average annual prevalence is 45
per 100,000, the average duration can be calculated as:

2 2 30 N

2 3 50 N

2 4 75 Y

Total for Hospital 2 200 2

Table 18-2. Post-surgical infection rates per 100 patient-days at two hospitals (continued)

Hospital Patient ID Days followed Infection?

number of infections
person-days studied
----------------------------------------------------- 100×

1
70
------ 100× 1.43 per 100=

2
200
--------- 100× 1.00 per 100=

P I D×=

D P
I
---

45 100 000,⁄
75 100 000,⁄ year⁄
----------------------------------------------

45
75 year⁄
--------------------- 0.6 years= = = =



Crude, Category-Specific, and Standardized Rates | 345

M
edical

Statistics

This assumes steady-state conditions for the time period under study, i.e., no
major changes in disease incidence or duration. The formula can also be used to
calculate how prevalence would change if either incidence or duration changes.
For instance, if incidence of a particular disease remains steady at 125 per
100,000, but duration drops from 0.6 years to 0.1 years, prevalence will decrease
from 75 per 100,000 per year to 12.5 per 100,000 per year. Similarly, if duration
increases, prevalence will increase. If incidence of some disease remains steady at
200 per 100,000 per year, but duration increases from 0.5 years to 2 years, preva-
lence will increase from 100 per 100,000 per year to 400 per 100,000 per year.

Crude, Category-Specific, and Standardized Rates
If not otherwise qualified, the term rate usually means the crude rate. The crude
rate is the rate for the entire population under study, with no particular weighting
or adjustment. For instance, according to the CDC, the overall death rate for
cancer in the U.S. in 2003 was 195.5 per 100,000. However, these mortality rates
were not constant across ethnic group, age group, or gender, nor were they
constant across different types of cancer. To examine these differences, we need to
look at the category-specific rates, in which both the numerator and denominator
represent one population group or one type of disease. For instance, in the U.S. in
2003, the cancer mortality rate for men was 201.4/100,000, while for women it
was 182.0/100,000, and the crude mortality rate for lung cancer was 76.9/
100,000, while for skin melanomas it was 2.7/100,000.

For white Americans in 2003 the crude cancer death rate was 203.8/100,000,
while for African-Americans it was 164.3/100,000, a finding that may seem para-
doxical until we consider that increased life expectancy is often associated with
increased cancer mortality. Someone who dies as an infant is unlikely to have died
of cancer, for instance, while someone who lives into their 80s has a much higher
probability of a cancer-related death. This is true of general mortality as well:
under most circumstances a person who is 90 years old has a much higher proba-
bility of dying in the next year than a person who is 12 years old. For this reason,
death rates used to make comparisons across different populations or time
periods are usually standardized by age, and may also be standardized by catego-
ries such as ethnicity or gender.

The importance of age-adjustment can be seen by comparing the crude and age-
adjusted cancer mortality figures for the U.S. in 2003 in Table 18-3.

Table 18-3. Crude and age-adjusted cancer mortality rates (per 100,000) for the U.S in
2003

Crude Age-adjusted

Overall 191.5 190.1

White 203.8 188.3

African American 164.3 234.5

Asian/Pacific Islander 79.4 114.3

American Indian/
Alaska Native

69.3 121.0

Hispanic 60.3 127.4
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This makes it clear that although the crude death rate from cancer is highest
among white Americans, this is due in part to a longer life expectancy. A longer
life expectancy means that there are more white Americans in the older age cate-
gories, where mortality from cancer is higher. When age-adjustment is
considered, African-Americans have the highest death rate from cancer.*

There are two types of standardization, direct and indirect. Both are used to
compare morbidity and mortality in different populations while removing the
influence of other population characteristics, such as age or gender distribution.
In direct standardization, a population is chosen to serve as the standard and
adjusted rates for the populations to be compared are calculated using weights
from the standard population. For instance, consider the hypothetical example of
the occurrence of arthritis by employment status in Table 18-4.

The rate (really the proportion) of arthritis is over twice as high among persons
not employed as among employed persons, according to this data. Could this be
due to people being forced out of the labor market due to severe arthritis?
Possibly, but a more logical explanation is that people over the age of 65 are more
likely to not be employed, and also more likely to have a diagnosis of arthritis. To
test the hypothesis that age distribution is the reason for the observed differences
in rate of arthritis diagnosis by employment status, we need to compute age-
adjusted rates of arthritis using a standard population. First, we need to calculate
age-specific rates for employed and unemployed individuals, as in Table 18-5.

Looking at the age distribution and age-specific rates for the employed versus
unemployed populations, we see that the age-specific rates are somewhat higher
in the unemployed group. We also see that a much higher proportion of the
unemployed group (50%, versus 5% for the employed group) is in the 65+ age
category, where the rates of arthritis diagnosis are highest.

* Source: http://apps.nccd.cdc.gov/uscs/Table.aspx?Group=TableAll&Year=2003&Display=n.

Table 18-4. Arthritis diagnosis by employment status

Employment status Population Arthritis Rate per 1000

Employed 10,000 387 38.7

Unemployed 5,000 892 178.4

Table 18-5. Age-specific rates of arthritis diagnosis

Employed Unemployed

Age Population Diagnoses Rate/1000 Population Diagnoses Rate/1000

18–44 5,000 127 25.4 1,000 32 32.0

45–64 4,500 260 57.7 1,500 100 66.7

65+ 500 105 210.0 2,500 760 304.0

Total 10,000 387 38.7 5,000 892 178.4

http://apps.nccd.cdc.gov/uscs/Table.aspx?Group=TableAll&Year=2003&Display=n
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We used very broad age categories (basically young working adult, older working
adult, and retirement age) in this table for ease of calculation. Often smaller cate-
gories are used, such as 10-year age ranges. We can use these age-specific rates to
calculate expected numbers of diagnoses in each age category for the two employ-
ment groups, using the age distribution from a hypothetical standard population.
Usually a standard source would be used in these calculations, for instance U.S.
population in 2000 as determined by the U.S. Census Bureau. The calculations
are shown in Table 18-6.

The expected diagnoses are calculated by applying the age-specific rates for each
population to the number of people in that age category in the standard popula-
tion. This may be considered a type of weighting, and is equivalent to saying how
many arthritis diagnoses we would expect to see in each population if the age
distribution was the same as in the standard population. For instance, for the
18–44 age group in the employed population, the calculation is:

For the 65+ age category in the unemployed population, it would be:

We can immediately see that, if the two populations had the same age distribu-
tion, employed people would have fewer arthritis diagnoses (12,879) than people
who were unemployed (16,989). We can further refine this finding by calculating
the age-adjusted arthritis diagnosis rates for each population by dividing the
number of expected diagnoses by the total size of the reference population. For
employed people this would be:

For unemployed people it would be 84.9 per 1,000. So the rate of arthritis is
slightly higher in unemployed than employed persons, but the difference is much
less than the crude rate would suggest. Note that the age-adjusted rates calcu-
lated through direct standardization do not represent the actual rates in any

Table 18-6. Expected numbers of diagnoses by age category and employment category

Standard
population Employed Unemployed

Age group Population Rate/1,000 Expected
diagnoses

Rate/1000 Expected
diagnoses

18–44 100,000 25.4 2,540.0 32.0 3,200.0

45-64 70,000 57.7 4,039.0 66.7 4,669.0

65+ 30,000 210.0 6,300.0 304.0 9,120.0

Total 200,000 12,879 16,989

E
25.4
1000
------------ 100 000,× 2540= =

E
304

1000
------------ 30 000,× 9120= =

12 879,
200 000,
--------------------- 64.4 per 1000=
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population: they represent what rate would be expected in one or more particular
populations, if they had the age distribution of some reference population.

Indirect standardization takes the reverse approach: it takes the category-specific
rates from some standard population, and applies them to the actual category
distribution in two or more populations. Applying indirect standardization to our
arthritis example, we will calculate the expected number of arthritis diagnoses if
both populations had the same age-specific rate of diagnosis but kept their own
specific population age distribution. The rates (which are hypothetical) are shown
in Table 18-7.

We can use these numbers to calculate the standardized morbidity ratio (morbidity
means disease) by dividing the observed number of diagnoses (from Table 18-5)
by the expected number of diagnoses (from Table 18-7). The standardized
morbidity ratio for employed people is:

For the unemployed group, it would be 69.5%.

If we were dealing with deaths rather than diagnoses of arthritis, we could use the
same technique to calculate the standardized mortality ratio (SMR), a statistic
commonly used to compare mortality (death) across populations.

The Risk Ratio
Many medical and epidemiological studies are concerned with the relationship
between two dichotomous variables. A common example is the exposure to some
risk factor (such as asbestos or tobacco smoke) and the development of some
disease or condition (such as asbestosis or lung cancer). The exposure can be an
inherent quality, such as gender or ethnicity, and need not be negative; for
instance, engaging in regular physical activity is an exposure that has a positive
influence on health.

The relationship between two dichotomous variables is often presented in a
crosstabulation or contingency table, also called a 2 × 2 or “two by two” table
because of its dimensions (two rows and two columns). The standard way to set
up such a table is illustrated in Table 18-8.

Table 18-7. Indirect method of standardization

Standard Employed Unemployed

Age group Rate/1,000 Population Expected
diagnoses

Population Expected
diagnoses

18–44 30.0 5,000 150 1,000 30

45-64 60.0 4,500 270 1,500 90

65+ 200.0 500 100 2,500 500

Total 10,000 520 5,000 620

observed diagnoses
expected diagnoses
--------------------------------------------------

387
520
--------- 0.744 or 74.4%= =
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E+ means the person had the exposure, E– that they did not. D+ means they have
the disease, D– that they do not. Individuals in a study are classified by their
exposure and disease status, and the cells labeled a, b, c, and d contain the
frequencies for each combination of exposure and disease. For instance, cell a
holds the frequency for people who have the exposure and have the disease, while
cell d holds the frequency for people who have neither exposure nor disease.

The frequencies in the four cells a, b, c, and d are sometimes referred to as joint
frequencies because the people in those cells are classified on both exposure and
disease. On the margins of the table are the row and column totals, often referred
to as marginal frequencies. For instance, a + c is the total number of people in the
study with the disease regardless of exposure status, while a + b is the total
number of people with the exposure regardless of disease status. The total
number of people in the study is a + b + c + d.

The risk ratio, also called the relative risk, estimates the likelihood of developing
the disease for people with the exposure, relative to people without the exposure.
It is the ratio of the proportion of the exposed that develop the disease to the
proportion of the unexposed that develop it. The risk ratio is calculated as:

The risk ratio can also be thought of as the ratio of disease incidence in the
exposed (Ie) versus unexposed (I0) populations:

For studies in which the denominator is person-time units, the calculation is anal-
ogous but uses the ratio of the incidence densities (incidence rates) from the two
populations:

Let’s look at data from a hypothetical study to see if there is a relationship
between consumption of a high-fat diet (the exposure) and Type II diabetes (the
disease). The data is presented in Table 18-9.

Table 18-8. The classic 2x2 table

Disease Total

D+ D–

Exposure E+ a b a + b

E– c d c + d

Total a + c b + d a + b + c + d

RR a a b+( )⁄
c c d+( )⁄
-------------------------=

RR incidence in exposed group
incidence in unexposed group
-----------------------------------------------------------------------------

Ie

I0
----= =

RR
IDe

ID0
---------=
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The risk of Type II diabetes, given consumption of a high-fat diet, is:

The risk of Type II diabetes for someone on a normal or low-fat diet, i.e., not
consuming a high-fat diet, is:

The relative risk of developing diabetes, given consumption of a high-fat diet
versus nonconsumption of a high-fat diet, is the ratio of these two risks (hence the
term risk ratio), or:

A relative risk greater than 1 indicates that the exposure increases the risk of the
disease. If there is no relation between exposure and risk, the relative risk will be
1, while if the exposure is protective (associated with lower risk of disease), the
risk ratio will be less than 1. In this case we would say that people consuming a
high-fat diet have 2.38 times the risk of Type II diabetes, compared to people
consuming a low-fat or normal diet.

Like many other statistics, risk ratios are usually reported along with their confi-
dence interval (CI). These calculations must take into account the fact that the
risk ratio is right-skewed because it has a bound of 0, but no upper bound. To
deal with this skew, we take the natural logarithm (ln) of the risk ratio, which
transforms it to an approximately normal distribution. The procedure for calcu-
lating the CI for an RR requires taking the natural log of the RR, finding the
confidence interval for this ln(RR) and then taking the natural antilogarithm of the
confidence interval limits to return to the original units. Note that in statistical
notation, ex is often written as exp(x) for the sake of convenience.

There are several different ways to calculate the confidence interval for a risk ratio,
the most common being to use statistical software. However, the calculation can
also be done by hand. A simple computational formula, which is applicable when
the rare disease assumption holds and the odds ratio is a good estimate of the risk
ratio (see below), is:

Table 18-9. Relationship of a high-fat diet to Type II diabetes

D+ D–

E+ 350 1200 1550

E– 200 1900 2100

550 3100 3650

a
a b+
------------

350
1550
------------ 0.226= =

c
c d+
------------

200
2100
------------ 0.095= =

RR
RR1

RR2
----------

a a b+( )⁄
c c d+( )⁄
-------------------------

0.226
0.095
-------------- 2.38= = = =

CI
ad
bc
------exp z Variance RRln( )±[ ]=
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where z is the value of the standard normal distribution associated with the
desired confidence level, usually 1.96, which results in a 95% confidence interval.
When the RR is estimated using the odds ratio (discussed below) from a case-
control study, the CI may be calculated using values from the 2 × 2 table using this
formula:

Using values from Table 18-9, this translates to:

So the upper bound is (2.77)e188 = (2.77)(1.207) = 3.34 and the lower bound is
(2.77)e188= (2.77)(.829) = 2.30, giving us a confidence interval of (2.30,3.34).
Because this CI does not include the null value of 1.0, we conclude that the rela-
tionship between consumption of a high-fat diet and diagnosis with Type II
diabetes is significant.

The time period over which data is collected is significant in interpreting relative
risk. The risk of developing many chronic diseases increases with duration of
exposure, for instance, so the risk of a high-fat diet for development of Type II
diabetes would be expected to be higher in a 10-year study than in a 5-year study.
This is particularly true for studies of mortality, because if a study is continued
long enough, the probability of mortality for all the subjects is 100%!

Because there is often some risk of disease for people without the exposure being
studied, epidemiology also uses the concept of attributable risk (AR). Attributable
risk is the absolute effect of the exposure on disease occurrence, meaning the
excess risk of disease in the exposed versus the unexposed group. AR is useful as a
measure of the public health cost or benefit of some exposure, because it subtracts
from the exposed group the cases that would be assumed to have occurred
anyway. It can also be used to estimate the impact of a proposed intervention to
remove an exposure by calculating how many cases of disease would be “saved,”
i.e., would not occur, if the exposure were eliminated. Attributable risk is calcu-
lated by subtracting the incidence rate in the unexposed from the rate in the
exposed. In our example, this would be:

Therefore, a high-fat diet accounts for about 131 excess cases of Type II diabetes
per 1,000 people. If there is no relationship between exposure and disease, there
would be no excess cases in the exposed group, and the AR would equal 0.

The attributable risk percentage (AR%; also called the etiologic fraction) is the
proportion of cases in the exposed population that can be attributed to the exposure

CI
ad
bc
------exp z 1

a
---

1
b
---

1
c
---

1
d
---+ + +± 

 =

CI
350 1900×
200 1200×
-----------------------------exp 1.96 1

350
---------

1
1200
------------

1
200
---------

1
1900
------------+ + +± 

 =

2.77exp 1.96 0.00286 0.0008 0.005 0.00053+ + +±( )=

2.77exp 1.96 0.00959( )±[ ]=

2.77exp 1.88±( ) or 2.77e 0.188±
=

AR Ie I0– 0.226 0.095– 0.131= = =
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and are assumed would be prevented by eliminating the exposure. It is calculated,
continuing with our example, as:

We would interpret this by saying that 58.0% of the cases among the exposed
groups are due to the exposure. The AR% can also be calculated using the RR, as
follows:

The Odds Ratio
The odds ratio was developed for use in case-control studies. Case-controls were
invented in epidemiology to facilitate research into diseases that are rare or slow
to develop, so a conventional prospective study would be impractical. In the case-
control study, individuals are selected on the basis of their disease status and then
their exposure status is determined. Risk ratios cannot be calculated in case-
control studies: the reason is that risk ratios are sensitive to the number of people
without the disease, and this number is determined in case-control studies by the
study design rather than the rate of disease in a population. As will be demon-
strated below, the odds ratio has the beneficial quality of being insensitive to the
number of controls (persons without the disease), while the risk ratio does not
share this property.

The odds ratio is the ratio of the odds of disease for the exposed group to the odds
of disease for the unexposed group. In a 2 × 2 table, the odds of disease given
exposure are a/c, and the odds of disease given no exposure are b/d. The odds
ratio is calculated using this formula:

Let’s suppose we have a case-control study examining the effect of smoking on
breast cancer. The hypothetical data is shown in Table 18-10.

The odds ratio may be calculated as:

Table 18-10. Relationship of smoking and breast cancer

D+ D–

E+ 50 2,000 2,050

E– 25 1,900 1,925

75 3,900 3,975

AR%
AR
Ie

-------- 100×
I0 Ie–

Ie
--------------- 100× 0.226 0.095–

0.226
----------------------------------- 100× 58.0%= = = =

AR%
RR 1–

RR
----------------- 100× 2.38 1–

2.38
-------------------- 100× 58.0%= = =

OR odds for exposed
odds for unexposed
---------------------------------------------------

a c⁄
b d⁄
----------

ad
bc
------= = =

OR 50 25⁄
2000 1900⁄
----------------------------- 1.90= =
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The risk ratio for this data is similar:

If a disease or condition is rare (a rule of thumb is that it must be less than 10% in
all exposure groups), the odds ratio provides a reasonable estimate of the risk
ratio. The reason for the “rare disease” requirements is that as a disease becomes
more common, the odds ratio diverges further from the risk ratio. This is demon-
strated in the data presented in Table 18-11, which represents data from a
hypothetical case-control study of smoking and lung cancer.

The disease is common in both exposed and unexposed subjects: 50% of the
exposed subjects have lung cancer, as do 16.7% of the unexposed. The odds ratio
is:

And the risk ratio is:

The RR is sensitive to changes in the number of controls, while the OR is not.
Suppose that because controls are easier to find than cases, we increased the
number of controls 10-fold (unlikely, because diminishing returns set in for
control-case ratios at about 4:1, but useful to demonstrate this point). This would
give us the data shown in Table 18-12.

The odds ratio does not change:

Table 18-11. Smoking and lung cancer

D+ D–

E+ 50 50 100

E– 20 100 120

70 125 195

Table 18-12. Smoking and lung cancer, 10-fold increase in controls

D+ D–

E+ 50 500 550

E– 20 1,000 1,020

70 1,500 1,570

RR 50 2050⁄
25 1925⁄
----------------------- 1.88= =

OR 50 100×
20 50×
----------------------

5000
1000
------------ 5.0= = =

RR 50 100⁄
20 120⁄
-------------------- 3.0= =

OR 50 1000×
20 500×
-------------------------

5000
1000
------------ 5.0= = =
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But the RR does:

Confidence intervals for the OR may be calculated using the method described in
the RR section.

Confounding, Stratified Analysis, and the
Mantel-Haenszel Common Odds Ratio
Confounding is a condition in which an observed statistical association is due at
least in part to differences in the study groups other than the exposure of interest
in the study. Confounding is sometimes described as the “third variable”
problem: the relationship between two variables, say exposure and disease, is
mixed up or confounded with the influence of a third variable related to both of
them. More than one variable can be involved in confounding, but for the sake of
simplicity we will demonstrate methods to deal with a single confounding
variable.

Confounding is always of concern in epidemiology, particularly in observational
studies where group membership is not under the control of the investigator. For
instance, studies of the effects of smoking on health have to take into account the
fact that smoking is a voluntary behavior (people choose to smoke or not to
smoke) and people who smoke may differ in many other ways (such as alcohol
consumption, diet, or level of education) from those who do not.

If possible, it is preferable to control for confounding in the study design.
Randomization is the method of choice for intervention studies because it theoreti-
cally controls for all potential confounders at once. This is because, on average,
random assignment to groups should result in approximately the same distribu-
tion of any potential confounder in each group, including confounders of which
the researcher is not aware.

Two other methods that may be used in observational studies to control for
known or suspected confounders are restriction and matching. Both have the
disadvantage that they only implement control over the confounders used in the
design. With restriction, the researcher studies only a subset of the population,
selected based on their values on the potential confounder. For instance, medical
studies are sometimes done only on men, or only on women, to remove the influ-
ence of gender on the relationship between the exposure and disease. This has the
disadvantage of restricting the applicability of study results: if a relationship
between alcohol consumption and psychopathology is found in a group of men,
that does not immediately justify generalizing the conclusions to women, because
women were not included in the study.

Matching is another technique that attempts to control for known confounders,
by a different method. Matching includes all levels of the confounders but
controls enrollment in the study or assignment to groups so that the confounders
will be equally distributed across the groups. Matching is commonly used in case-
control studies, in which controls are selected to match the cases already enrolled

RR 50 550⁄
20 1020⁄
----------------------- 4.64= =
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in the study. There are different systems for matching, but the basic concept is
that categories are constructed for the confounding variables and assignment to
groups is controlled so that the distribution of the confounders is the same in each
group.

There are two ways to implement matching. In direct matching, individuals are
matched on a one-to-one basis. In frequency matching, assignment to the groups is
monitored so that equal numbers of the confounders are present in each group. If
the confounders are gender and age category, in direct matching a woman of age
60–70 years (for instance) in the treatment group would be matched by a woman
of age 60–70 years in the control group. In frequency matching, the project
manager would monitor enrollment to see that an equal number of females and
persons in the different age categories were included in the treatment and control
groups.

If it is not possible to control for confounding in the research design, it must be
dealt with during the analysis. There are numerous statistical methods to control
for confounding after the fact, including multivariable methods that can become
quite complex. However, confounding is often treated more simply in epidemi-
ology and regression, particularly in studies focused on a single exposure and
disease. This presentation demonstrates one of the most common methods to
evaluate and control for confounding: computation and comparison of the crude
and Mantel-Haenszel common odds ratio.

There is no implication of causality in classifying a variable as a confounder; in
fact, many of the most common confounders are only correlates of another factor.
For instance, studies of the influence of physical activity on health must consider
age and sex as confounders, because young people and males are more likely to
engage in leisure-time exercise. To qualify as a confounder, a variable must meet
three requirements:

1. It must be related to the exposure.

2. It must be related to the disease, independently of its association with the
exposure.

3. It must not be wholly intermediate in the causal pathway between exposure
and disease.

A fourth requirement, which is practical rather than theoretical, is that in order to
function as a confounder in a particular study, a variable must be unequally
distributed among groups in the present study. For instance, we know that age
could serve as a confounder for mortality, but if in a particular study the age
distribution is the same among all groups studied, then age cannot act as a
confounder in that particular study.

Let’s take as an example a study of the protective effect of voluntary leisure-time
physical activity (exposure) on the occurrence of heart attack (myocardial infarc-
tion or MI), which may be confounded by age. All three requirements are met:

1. Age is related to physical activity (young people exercise more than older
people).

2. Age is a risk factor for MI, independent of physical activity (older people are
more likely to have an MI).
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3. Age is not wholly intermediate in the causal pathway between physical
activity and MI (there is no way physical activity could affect a person’s age,
which would then affect their probability of MI).

One method to control confounding is the use of stratified analysis, in which the
groups to be studied are divided into strata or subgroups based on values of the
confounding variable. Stratification by age category is a common example. Popu-
lations of different countries have different age structures: some countries have
relatively more young people, others relatively more older people. Age is related to
mortality and many types of morbidity. For these reasons, comparison of
morbidity and mortality between populations is often accomplished by stratifying
by age category, then standardizing so the age distribution is comparable in the
populations being compared.

An example should demonstrate the need to evaluate confounding. In 2007
mortality rate in the United States was 8.26 deaths per 1,000, while in Ecuador it
was 4.21 per 1,000. Should this be interpreted as evidence that Ecuadorans lead
more salubrious lifestyles than Americans? That’s an intriguing possibility, but is
not supported by examination of detailed life tables, which show that Ecuadorans
have higher death rates than Americans in each specific age category. For instance,
for the 45–49 age group the probability of death for Americans is 0.00341, while for
Ecuadorans it is 0.00513.

The difference in mortality is due to the age structure of the two populations.
Ecuador, like most developing countries, has a higher percentage of its popula-
tion in younger age groups. The United States, like most industrialized countries,
has a higher percentage of people in the older age categories, where the risk of
mortality increases. This distinction would be missed if only crude mortality rates
were considered, but becomes clear when a stratified analysis removes the influ-
ence of the confounding variable (age) from the outcome (mortality).*

There is no absolute test for confounding, but there are ways to examine the
effects of potential confounders on the relationship of interest and make a
reasoned decision about whether confounding is present. The general steps to
follow in assessing confounding are as follows:

1. Calculate the crude measure of association, ignoring the confounding
variable.

2. Stratify the study population by the confounding variable, i.e., divide the
population into smaller subgroups based on values of the confounding
variable.

3. Calculate an adjusted measure of association.

4. Compare the crude and adjusted measures: a difference of 10% or more is
generally considered evidence of confounding.

* Sources: https://www.cia.gov/library/publications/the-world-factbook/rankorder/2066rank.html,
http://www.who.int/whosis/database/life/life_tables/life_tables_process.cfm?path=whosis,life_
tables&language=english, and http://www.who.int/whosis/database/life/life_tables/life_tables_
process.cfm?country=ecu&language=en.

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2066rank.html
http://www.who.int/whosis/database/life/life_tables/life_tables_process.cfm?path=whosis,life_ta
http://www.who.int/whosis/database/life/life_tables/life_tables_process.cfm?path=whosis,life_ta
http://www.who.int/whosis/database/life/life_tables/life_tables_pro
http://www.who.int/whosis/database/life/life_tables/life_tables_pro
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The appropriate measure of association depends on the study design; we will
demonstrate stratified analysis using the crude odds ratio and the Mantel-Haenszel
adjusted odds ratio. Note that in order to use the Mantel-Haenszel method, two
assumptions must be met: the overall sample size must be large, and the association
between exposure and outcome should be in the range of approximately 0.5 to 2.5.

The Mantel-Haenszel (MH) estimator of the common odds ratio for stratified data
allows information to be combined from a series of two or more 2 × 2 tables, using
the following formula:

where there are k individual tables, i represents one of the tables (i.e., one strata of
the population), ni is the sample size for that table, and ai, bi, ci, and di are the
values of cells within that table. Suppose we are interested in the relationship
between smoking and liver disease. We know that people who smoke are also
more likely to consume alcohol, alcohol consumption is an independent risk
factor for liver disease, and alcohol consumption is not wholly intermediate in the
hypothesized causal chain between smoking and liver disease. Alcohol consump-
tion is therefore a potential confounder in this study, which we will examine by
stratifying our study population on alcohol consumption (as a dichotomy: those
who drink alcohol versus those who don’t) and examining the difference (if any)
between the crude and adjusted odds ratios for our population.

The data looks like Table 18-13 before we consider the effect of alcohol
consumption.

The crude odds ratio is:

This is a strong positive OR and indicates that smoking is positively associated
with liver disease. Smokers are twice as likely to have liver disease as nonsmokers.
To examine if alcohol consumption is a confounding factor, we construct sepa-
rate 2 × 2 tables for those who do and don’t consume alcohol (Tables 18-14 and
18-15).

Table 18-13. Smoking/liver disease data before stratification

D+ D–

E+ 50 100 150

E– 30 120 150

800 220 300

ORMH

aidi( ) ni⁄
i 1=

k

∑

bici( ) ni⁄
i 1=

k

∑
---------------------------------=

OR ad
bc
------

50 20×
30 100×
---------------------- 2.00= = =
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We can compute the MH common odds ratio as follows:

Since this is more than 10% different from the crude odds ratio of 2.00, we
conclude that alcohol consumption is a confounder in the relationship between
smoking and liver disease and should be included as such in our analyses.

Power Analysis
This section deals with the theory of power and sample size, and presents a few
simple examples. Sample and power calculations are frequently simple, but they
are also specific: every type of research design uses a different formula, and there’s
no point in listing them all when they are available in reference books. For those
working in medicine and epidemiology, one particularly recommended source is
the chapter on sample size calculation in the Handbook of Epidemiology
(Springer). Many software packages, such as SAS and Minitab, include packaged
routines to do power and sample size calculations, and there are various power
and sample size calculators on the Web as well; a good collection of links to
online calculators may be found at http://statpages.org.

The practice of doing inferential statistics always includes the possibility of
making a wrong decision, because inferential statistics uses calculations on a
sample to make conclusions about a population. As discussed in Chapter 7, there
are two kinds of common errors in inferential statistics:

1. Type I error or α, when you incorrectly reject the null hypothesis.

2. Type II error or β, when you fail to reject the null hypothesis when you
should have rejected it.

Table 18-14. Smoking/liver disease, for those who don’t consume alcohol

D+ D–

E+ 40 35 75

E– 30 45 75

70 80 150

Table 18-15. Smoking/liver disease, for those who do consume alcohol

D+ D–

E+ 60 15 75

E– 50 25 75

110 40 150

ORMH

aidi( ) ni⁄
i 1=

k

∑

bici( ) ni⁄
i 1=

k

∑
---------------------------------

40 45×( ) 150⁄
30 35×( ) 150⁄

--------------------------------------
60 25×( ) 150⁄
50 15×( ) 150⁄

--------------------------------------+ 3.714= = =

http://statpages.org
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Another way to look at this is to say that Type I error is finding significance where
none exists, while Type II error is failing to find significance when it does exist.

Power is 1-β and is the probability of accepting the null hypothesis when you
should reject it. We’d all like to have high power all the time, but practical consid-
erations, in particular the cost and availability of subjects, usually force us to
compromise. A rule of thumb is that you should have at least 80% power, i.e.,
80% chance of finding significant results in your sample if they exist in the popu-
lation. That means that 20% of the time, you won’t find significance when you
should. The standard of 90% power is regularly used as well.

Four main factors affect power:

1. α level, i.e., P(Type I error) (higher α increases power)

2. Difference in outcome between the populations (greater difference increases
power)

3. Variability (reduced variability increases power)

4. Sample size (larger sample size increases power)

A change in any one of these factors, while the others are held constant, will
change the power level for a given design. The α level is usually chosen to be 0.05
or less (for instance 0.01); a larger value of α translates into more power. A greater
difference in outcome between the populations increases power. Differences in
outcome can be increased by improving the intervention so it has a stronger effect,
or by choosing study groups to increase the expected difference in outcomes
between them. Reduced variability also increases power. Variability can some-
times be decreased by improving measurement or through selection of study
subjects (such as restricting them to a particular age range or income level).

That leaves us with sample size, the one factor primarily under the control of the
experimenter at the planning stages of his research project. All things being equal,
more subjects = greater power. However, recruiting more subjects usually costs
more money and requires more effort on the part of the research team. The goal of
power analysis is to find a reasonable compromise in which you have acceptable
power but are not going bankrupt or collecting more data than is necessary.

The basic concepts of power are illustrated in Figure 18-1.

Figure 18-1. Power diagram for two normally distributed populations
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Figure 18-1 illustrates aspects of a power calculation in which the null hypothesis
is that the mean of the population is 100, while the alternative hypothesis is that
the population mean is 115. In this figure, the leftmost (light gray) distribution is
the null population, which represents the distribution if the null hypothesis is
true. The right-most (dark gray) distribution is the alternative population, which
represents the data distribution if the alternative hypothesis is true and the popu-
lation  mean is 115.

Power calculations are always carried out with respect to a particular alternative
hypothesis. In this case, the alternative is not simply that the population mean is
greater than 100, but that it is 115. Note that hypothesis testing involves the loca-
tion of population means, although the hypotheses are tested using means
calculated from samples. For simplicity’s sake, in this example both populations
are assumed to have equal standard deviations of 15.

The hypothesis being tested is one-tailed, so a single cutpoint or critical value,
represented by the dotted line, is established. If the sample mean is above this
cutpoint, the null hypothesis will be rejected. If the sample mean is below this
cutpoint, the sample mean will be accepted. The location of the cutpoint, 112.5,
was set with regard to the null population, which has a mean of 100 and a stan-
dard deviation of 15: it is the critical value for a significance test when α = 0.05,
because 95% of the null population lies to the left of 112.5, and 5% to the right.

The area of the null population above the cutpoint represents the P(Type I error)
or the probability of rejecting the null hypothesis when it is true. In this example
P(Type I error) is 0.05.

The area of the alternative population, to the left of the cutpoint, represents β or
the P(Type II error) if the alternative hypothesis (population mean = 115) is true.
This is the probability that if the true mean is 115, the sample value will be below
the cutpoint of 112.5.

The area of the alternative population to the right of the cutpoint is the power of
the test for this specific null hypothesis. This represents the probability that if the
alternative hypothesis is true and the population mean is 115, the sample mean
will be above the cutpoint of 112.5 and we will conclude that the population
mean is significantly greater than 100.

Let’s consider how each of the four factors cited above could increase power in
this example, assuming that only one factor can change at once:

1. If α were increased to 0.10, the cutpoint would be lower (further to the left)
and the power would increase, while the P(Type II error) would decrease.
The area below the cutpoint would decrease, representing a reduction in
P(Type II error).

2. If the effect size were greater, for instance if the mean of the alternative popu-
lation were 120 instead of 115, the distribution for the alternative population
would be shifted up the number line. The result would be a decrease in
P(Type II error), and an increase in power.

3. If the standard deviation were decreased, the two populations would overlap
less. This would result in a reduction in the probability of Type II error and
an increase in power.
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4. If sample size were increased, this would have a similar effect to decreasing
standard deviation and would result in a reduction in the probability of Type
II error and an increase in power.

One good way to become familiar with the influence of different factors on power
is to experiment with a graphical power calculator. A good online example is
available at http://wise.cgu.edu/power/power_applet.html.

Sample Size Calculations
As mentioned before, each type of power or sample size calculation requires that
the appropriate formula be used. However, if the principles of research design, as
well as power analysis, are understood, finding the correct formula is not diffi-
cult. Two simple examples of sample size calculations will be demonstrated here
because they are a good illustration of the principles at work and are easily
performed using only a hand calculator.

Confidence Interval for a Proportion

One common sample size calculation is determining the sample size required to
calculate a proportion with acceptable precision. For instance, you may be calcu-
lating agreement among different employees assigned to do medical chart reviews,
and you want an estimate of the proportion in agreement, plus or minus five
percentage points. Or you may be conducting a survey of the proportion of adults
immunized against influenza in a population, and want to estimate the propor-
tion immunized plus or minus 10 percentage points. This is not a power
calculation because no hypothesis is being tested, but it is a sample size calcula-
tion because you need to determine the minimum sample size required for a
specified level of precision.

The formula used for a two-sided confidence interval is:

π (Greek letter pi) is the hypothesized population proportion. Z is determined by
the alpha level; the value of Z for the chosen level of alpha can be found using a
standard normal distribution table. ω (Greek letter omega) is the half-width of the
desired confidence interval. The half-width is half the confidence interval: if we
use a confidence interval of 10 percentage points, the half-width is 5 percentage
points.

We want to calculate a two-sided confidence interval with α = 0.05, so Z = 1.96.
We believe π to be 0.8, and we want a confidence interval of 10 percentage points,
so ω = 0.05 (5/100). Plugging these values into the equation gives us:

We round this estimate up to 246 since there generally are no fractional subjects
available! So we need 246 subjects, if our estimate of π is correct, to have an

n
Z1 α 2⁄–

ω
------------------- 

 
2

π 1 π–( )[ ]=

n
1.96
0.05
----------- 

  2
0.8 0.2( )[ ] 245.9= =

http://wise.cgu.edu/power/power_applet.html
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estimate with a 95% confidence interval of 0.10 (0.05 above and 0.05 below the
estimate).

Power for the Test of the Difference Between Two Sample Means
(Independent Samples t-Test)

For an example of a simple power calculation, let’s assume we want to calculate
how many subjects per group we need to conduct a two-tailed independent
samples t-test with acceptable power. The formula is:

where δ is effect size, calculated as:

σ in this case is determined using whichever method of calculating the standard
deviation for a t-test is appropriate for the data in question (see Chapter 8 for
details). We need Z-values for both α and β to use this formula. We will stick
with the 95% confidence interval for a two-tailed test used in the previous
example, so the Z-value for 1 – α/2 will be 1.96. We will compute the sample size
required for 80% power, so the Z-value for 1-β will be 0.84. Note that if we were
doing a one-tailed test, Zα would be 1.645, and if we were calculating 90% power,
Z1–β would be 1.28.

The effect size is the difference between the two populations, divided by the stan-
dard deviation. If µ1 = 25, µ2 = 20, and σ = 10, the effect size is 0.5. We plug these
numbers into the formula as follows:

So we need at least 63 subjects per group to have an 80% probability of finding a
significant difference between two groups, when the effect size is 0.5.

Exercises
Here’s a set of questions to help you review the topics covered in this chapter.

Question

A classic example of the use of contingency tables in epidemiology is investiga-
tion of outbreaks. When a number of people become ill after eating at a
restaurant, the public health department will launch an investigation to try to
identify the food or foods responsible. This effort is complicated by the fact that
the people who got sick probably ate many different foods, and some people
who ate the same foods may not have gotten sick. So one approach is to inter-
view the customers to ascertain what they ate and whether or not they got sick.

n
2 Z1 α 2⁄– Z1 β–+( )2

δ2
---------------------------------------------------=

µ1 µ2–

σ
------------------

n 2 1.96 0.84+( )2

0.52
----------------------------------------

15.6
0.25
----------- 62.72= = =
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The data is then arranged into a series of 2 × 2 tables, as in Tables 18-16 and
18-17, in which the exposure is the particular food in question and the disease is
food poisoning. Calculate the risk ratios for the two foods below and justify a
decision as to whether or not they were a cause of food poisoning.

How to Lie with Percentages
You can’t work in statistics for very long before someone demonstrates their
cleverness by quoting some form of the aphorism attributed to the British politi-
cian Benjamin Disraeli and popularized in the United States by Mark Twain,
that there are three kinds of lies: lies, damned lies, and statistics. There’s even a
popular book called How to Lie with Statistics by Darrell Huff (Norton), which
is sometimes said to be the most-read statistics book in the world. One purpose
of Huff’s book, and this one as well, is not to teach you how to lie with statis-
tics, but to help you spot other people lying.

One of the easiest ways to lie (or mislead, if you prefer) with statistics is to quote
percentages without reference to the raw numbers underlying them, a practice
beloved of politicians but not exclusively practiced by them. For instance, if you
heard that there was a 100% increase in cholera cases in the United States, you
might find that cause for alarm, until you learned that the increase was from one
case to two. Similarly, a 50% increase in cancer risk for some rare exposure
(affecting, say, only 15 people nationally) may not have as much public health
significance as a 5% increase of a common exposure (which might affect
200,000,000 people).

People often forget that percentage increases and decreases are not symmet-
rical. If you increase the number of college graduates by 10% one year, then
decrease it by 10% the next year, you are not back to your original total. Say you
have 100,000 college graduates to begin with. A 10% increase gives you
110,000. A 10% decrease of the new total gives you 99,000 (110,000 × 0.9),
which is fewer than you started with.

Table 18-16. Contingency table for roast beef and food poisoning

D+ D–

E+ 15 85

E– 20 80

Table 18-17. Contingency table for chicken salad and food poisoning

D+ D–

E+ 80 20

E– 20 80
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Answer

The OR for roast beef is:

The OR for chicken salad is:

It appears that the culprit is chicken salad, because people who ate it had four
times the risk of food poisoning compared to people who didn’t eat it. Roast beef
seems to have a slightly protective effect, perhaps because people who ate the
roast beef were less likely to eat the chicken salad. Anyway, people who ate roast
beef had only 75% of the risk of food poisoning as compared to people who did
not eat roast beef.

Question

Compute the odds ratio and confidence interval for the data shown in
Table 18-18, from a case-control study of oral contraceptive use and breast
cancer. Does the data show a significant relationship between the two?

Answer

The odds ratio is:

To see if this is significantly different from the null value of 1.0, compute the 95%
confidence interval as:

The CI of (.61, 2.81) includes the null value of 1.0, so we conclude that this study
does not demonstrate a significant relationship between oral contraceptive use
and breast cancer.

Table 18-18. Contingency table for oral contraceptive use and breast cancer

D+ D–

E+ 30 70

E– 20 80

RR a a b+( )⁄
c c d+( )⁄
-------------------------

15 100⁄
20 100⁄
-------------------- 0.75= = =

RR a a b+( )⁄
c c d+( )⁄
-------------------------

80 100⁄
20 100⁄
-------------------- 4.0= = =

OR ad
bc
------

30 80×
20 70×
-------------------

2400
1400
------------ 1.71= = = =

CI
ad
bc
------exp z 1

a
---

1
b
---

1
c
---

1
d
---+ + +± 

 =

1.71exp 1.96 1
30
------

1
70
------

1
20
------

1
80
------+ + +± 

 =

0.206– 3.626( , )=
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Question

Calculate the sample size needed to estimate a proportion plus or minus 10
percentage points, when the hypothesized proportion is 0.70.

Answer

Use the sample size formula for a proportion and plug in the numbers:

Z1–α/2 = 1.96

ω = 0.10

π = 0.70

In other words, 81 subjects.

Question

Calculate the sample size needed for an independent samples t-test with a one-
tailed hypothesis, 90% power, and an effect size of 0.4.

Answer

Use the sample size formula presented above and plug in the numbers:

Zα = 1.645

Z1–β = 1.28

δ = 0.4

In other words, 107 subjects per group.

n
Z1 α 2⁄–

ω
------------------- 

 
2

π 1 π–( )[ ] 1.96
0.1
----------- 

  2
0.7 0.3( )[ ] 80.7= = =

n
2 Zα Z1 β–+( )2

δ2
--------------------------------------

2 1.645 1.28+( )2

0.42
-------------------------------------------

17.11
0.16
-------------- 106.9= = = =
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Many statistical techniques used in education and psychology are common to
other fields of endeavor: these include the t-test (covered in Chapter 8), various
regression and ANOVA models (covered in Chapters 12–15) and the chi-square
test (covered in Chapter 10). The discussion of measurement in Chapter 1 will
also prove useful since much of educational and psychological research involves
constructs that cannot be observed directly and have no obvious units of measure-
ment. Examples of such constructs include mechanical aptitude, self-efficacy, and
resistance to change. This chapter concentrates on statistical procedures used in
the field of psychometrics, which is concerned with the creation, validation, and
use of tests and measurements applied to human intelligence, knowledge, abili-
ties, and psychological characteristics such as personality traits.

The first question you may ask with regard to the use of statistics in education
and psychology is why they are necessary at all. After all, isn’t every person an
individual, and isn’t the point of education and psychology to perceive that
person in all their individual richness, not to reduce them to a set of numbers or
place them in comparison with others who may not really be comparable at all?

This is a valid concern and underscores what anyone working in the human
sciences knows already: doing research on human beings is in many ways much
more difficult than doing research in the hard sciences or in manufacturing,
because people are infinitely more varied than lug nuts or chemical molecules. It’s
the diversity and individuality of people, which we certainly value as students of
the human sciences, that makes research in those fields particularly difficult. It’s
also true that while some educational and psychological research is aimed toward
making general statements about groups of people, a great deal of it is focused on
understanding and helping individuals who come embedded with social circum-
stances, family histories, and all kinds of other complications, making direct
comparisons between one person and another very difficult.

But standard statistical procedures are useful even in the most specific and indi-
vidual therapeutic circumstances; for instance, when the goal of an encounter is to
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devise an appropriate educational plan for one student or therapeutic regimen for
one patient. Making such decisions is difficult, but would be even more so
without the aid of formal educational and psychological tests that yield numeric
values and can be compared to scores for other individuals. No one would suggest
that only formal, standardized tests and questionnaires be used in these contexts:
interviews and observational testing play an important role in educational and
psychological evaluations as well. But the advantages of including formal testing
procedures and standardized tests in clinical and educational evaluations include:

1. Objective comparisons are facilitated by the use of a normative group: for
instance, is this patient recovering from trauma experiencing more side
effects than is common among others who have experienced the same injury?
Are the reading skills of this pupil comparable to others of his age and grade
level?

2. Answers can be gained quickly; you needn’t wait for the end of the school
term to discover which pupils are struggling because of poor language profi-
ciency, for instance, and you don’t need a lengthy interview or practical
examination to discover that a patient is suffering from serious memory
deficits.

3. Standardized tests are presented in a regulated situation and under specified
conditions, and can be scored objectively, so the only issue being evaluated is
the student’s or patient’s performance, not their appearance, sociability
(unless that is germane to the context), or other irrelevant factors.

4. Most standardized tests do not require great skill to administer (unlike clin-
ical interviews, for instance) and can be given to groups of people at once,
making them particularly useful as screening procedures and as an adjunct to
more personalized evaluation. They are also less open to manipulation by
either the subject or the test administrator, so the test results can be inter-
preted with confidence that they were not affected by the choice of
administrator or irrelevant qualities of the subject.

Percentiles
In many countries, school-age children are evaluated by tests that report their
results in percentiles, also known as percentile ranks. So Johnny’s parents may be
informed that he scored at the 90th percentile in reading and the 85th percentile
in math, while Susie’s parents learn that she scored at the 88th percentile in
reading and the 92nd percentile in math. Percentiles are a form of norm-referenced
scoring, so called because an individual score is placed in the context of a norm
group, meaning people similar to the test-taker. For school-age children, the
norm group is often other children in the same grade within their country.
Norm-referenced scoring is used in all kinds of testing situations in which an indi-
vidual’s rank in relation to some comparison group is more important than an
absolute score.

The percentile rank of an individual score refers to the percentage in the norm
group that scored lower than that individual score. So 90% of the students in
Johnny’s norm group scored below him in reading and 85% scored below him in
math: this indicates he is doing very well in both subjects in comparison to other
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students of his age and grade level. Here’s a brief example illustrating how to find
percentile ranks for scores on an exam that was given to 100 students (on national
exams the norm group would be much larger, and the scores reflect a greater
range, but this example will illustrate the point).

The first step in translating from raw scores to percentiles is to create a frequency
table that includes a column for cumulative percentage, as illustrated in
Table 19-1. To find the percentile rank for a particular score, use the cumulative
percentage from the next-highest score, i.e., from the row just above in the table.
In this example, someone who scored 96 on the exam was at the 75th percentile
rank (meaning 75% of the test-takers scored below 96), while someone who
scored 85 was at the 25th percentile rank. There can be no 100th percentile rank
because, logically speaking, 100% of the test-takers couldn’t have scored below a
score that is included in the table. You can have a 0th percentile, however: the
person who scored 53 is in the 0th percentile because no one achieved a lower
score.

Table 19-1. Scores of 100 students on an exam

Score Frequency Percentage Cumulative percentage

53 1 1.0% 1.0%

55 2 2.0% 3.0%

58 1 1.0% 4.0%

61 2 2.0% 6.0%

65 3 3.0% 9.0%

67 1 1.0% 10.0%

70 2 2.0% 12.0%

71 3 3.0% 15.0%

78 2 2.0% 17.0%

80 4 4.0% 21.0%

82 2 2.0% 23.0%

84 2 2.0% 25.0%

85 5 5.0% 30.0%

86 4 4.0% 34.0%

88 3 3.0% 37.0%

90 5 5.0% 42.0%

91 7 7.0% 49.0%

92 8 8.0% 57.0%

93 7 7.0% 64.0%

94 5 5.0% 69.0%

95 6 6.0% 75.0%

96 4 4.0% 79.0%

97 3 3.0% 82.0%

98 7 7.0% 89.0%

99 6 6.0% 95.0%

100 5 5.0% 100.0%
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In situations such as standardized testing at the national level, the norm group
used to map the scores to percentiles is much larger, and generally calculation of
percentiles for individual students is not necessary. Instead, the test manufacturer
provides a chart that relates raw scores to percentile ranks.

Standardized Scores
The standardized score, also known as the normal score or the Z-score, transforms
a raw score into units of standard deviation above or below the mean. This trans-
lates the scores so they may be evaluated in reference to the standard normal
distribution, which is discussed in Chapter 7. Standardized scores are frequently
used in education and psychology because they place a score in the context of
other scores, and can therefore be considered a type of norm-referenced scoring.
For frequently used scales such as the Wechsler Adult Intelligence Scale (WAIS),
population means and standard deviations are known and may be used in the
calculations: for the WAIS, the mean is 100 and the standard deviation is 15. To
convert a raw score to a standardized score, use the following formula:

where X is the raw score, µ is the population mean, and σ is the population stan-
dard deviation. The conversion to Z-scores puts all scores on a common scale,
which is the standard normal distribution that has a mean of 0 and a variance of 1,
and score probabilities are distributed with the known properties of the normal
distribution (for instance, about 66% of the scores will be within one standard devi-
ation of the mean). We can convert a raw score of 115 on the WAIS to a Z-score as
follows:

We can consult a table of the standard normal distribution (Z distribution) to
learn that a Z-score of 1.0 means that 84.1% of individuals score at or below that
individual’s raw score. Standardized scores are particularly useful when
comparing scores on tests with different scales. For instance, let’s say we also
administer a test of mathematical aptitude that has a mean of 50 and a standard
deviation of 5. If a person scores 105 on the WAIS and 60 on the mechanical apti-
tude, we can easily compare those scores in terms of Z-scores. For the WAIS:

For the mechanical aptitude test:

So this person scored slightly above average in intelligence, but far above average
in mechanical aptitude.

Z X µ–
σ

--------------=

Z 115 100–
15

-------------------------
15
15
------ 1.0= = =

Z 105 100–
15

------------------------- 0.33= =

Z 60 50–
5

------------------- 2.0= =
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Some people find standardized scores confusing, particularly the fact that a
person can have a Z-score that is 0 or negative (and in the standard normal distri-
bution, half the scores are below average and therefore negative). For this reason,
Z-scores are sometimes converted to T-scores for presentation to parents or other
nonstatistical audiences. A T-score expresses a score in terms of a population with
a mean of 50 and a standard deviation of 10, using the following formula:

If a person has a Z-score of 2.0 (meaning they scored two standard deviations
above the mean), this can be converted to a T-score as follows:

Similarly, someone with a Z-score of –2.0 would have a T-score of 30. Because hardly
anyone ever scores five standard deviations or more below the mean, T-scores are
almost always positive, which makes them easier for many people to understand. For
instance, the clinical scales of the Minnesota Multiphase Personality Inventory-II
(MMPI-II), commonly used to identify and evaluate psychiatric conditions, are
reported as T-scores.

Test Construction
Most tests in psychology and education are used for what is called subject-centered
measurement, in which the purpose is to place individuals on a continuum with
respect to particular characteristics such as language-learning ability or anxiety.
Creating and validating a test is a huge amount of work (when I was in graduate
school, students were barred from writing a dissertation that required creating
and validating a new test, out of fear that they would never complete the process),
and the burden is entirely on the test’s creator to convince others working in the
same field that the test scores are meaningful. Therefore, the first move for
someone beginning to investigate a field is to check and see if there are any
existing, validated tests that would be adequate. However, particularly if you are
researching a new topic or dealing with a previously ignored population, there
may be no existing test adequate to your purpose, in which case the only option is
to create and validate a new test.

Anyone seriously contemplating constructing a test from scratch needs to consult
a psychometrics textbook: one commonly used is An Introduction to Classical and
Modern Test Theory by Crocker and Algina (Wadsworth). Crocker and Algina list
10 steps in the process of test construction, many of which have little to do with
statistics but much to do with subject expertise and knowledge of the target popu-
lation (the people to whom the test will be administered). Other authors break
down the process into different numbers of steps, but all agree that it is a multi-
stage, iterative process. Some of the major tasks involved are defining the purpose
of the test, defining the area of knowledge or behaviors to be covered, creating a
pool of items or behaviors to evaluate the target knowledge or behaviors, revising
the items (multiple times), creating the final form of the test, and evaluating it for
reliability and validity. The discussion in this book concentrates on the statistical
aspects of test construction; for a discussion of nonstatistical issues, consult a
textbook such as Crocker and Algina.

T Z 10( ) 50+=

T 2 10( ) 50+ 70= =
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Tests may be either norm-referenced or criterion-referenced. Norm-referenced tests
have already been discussed; their purpose is to place an individual in the context
of some group. In contrast, the purpose of a criterion-referenced test is to
compare an individual to some absolute standard; for instance, to see if they have
obtained minimum competency in an academic subject. In a criterion-referenced
test, everyone taking the test could receive a high score, or everyone could receive
a low score, because the individuals are evaluated with reference to a predeter-
mined standard rather than in reference to each other. Although criterion-
referenced tests may yield a continuous outcome (for instance, a score on a scale
of 1–100), a cutpoint (single score) is often established as well such that everyone
who achieves that score or above passes, while everyone with a score below it
fails.

Most tests are composed of numerous individual items, often written questions,
which are combined (often simply added together) to produce a composite test
score. For instance, a test of language ability might be constructed of 100 items,
with each correct item scored as a 1 and each incorrect item as a 0. The composite
score for an individual could then be determined by adding up the number of
correct items. Many of the statistical procedures used in examining tests have to
do with the relationship among individual items, and the relation between indi-
vidual items and the composite score.

Although composite test scores are commonly used, they can be misleading
measures of ability or achievement. One major difficulty is that typically all items
are assigned the same weight toward the total score, while they may not all be of
equal difficulty. The distinction between someone who misses some easy ques-
tions but gets more difficult questions correct versus someone who gets the easy
questions correct but can’t answer the difficult questions is lost when a composite
score is formed by simply summing the scores of items of differing homogeneity.

The mean and variance of dichotomous items (those scored as either right or
wrong) is calculated using the concept of item difficulty, signified as p. Item diffi-
culty is the proportion of examinees who answer a question correctly. If N people
are in the group of examinees used to establish item difficulty, p is calculated for
one item as:

With dichotomous items scored 0–1 (0 for incorrect, 1 for correct), the mean is
the same as the proportion answering the item correctly:

where Xij are the individual items and N is the number of examinees.

Variance for an individual dichotomous item pj may be calculated as:

p j
number who answer item correctly

N
------------------------------------------------------------------------------------------=

p j µ j

Xij∑
N

---------------= =

σ j
2 p j 1 p j–( )=
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This is sometimes written as:

because there is an alternative convention of writing (1 – pj) as qj. We will not
follow that convention, because it requires introducing a new symbol qj, which is
unnecessary.

The correlation coefficient between two dichotomous items pj and pk, also called
the phi coefficient, may be calculated as:

where pjk is the proportion of examinees answering both pj and pk correctly, pj is
the item difficulty of item j (the proportion answering item j correctly), and pk is
the item difficultly for item k. An alternative method of calculation uses the
frequency counts from a 2 × 2 table (whose setup differs slightly from the arrange-
ment commonly used in medical and epidemiological statistics) showing the
number correct and incorrect on the pair of items, using the standard cell designa-
tions shown in Table 19-2.

+ and – signify whether each item is answered correctly, so:

• a is the number of people who got j right and k wrong.

• b is those who got both items wrong.

• c is those who got both items right.

• d is those who got j wrong and k right.

The formula to calculate phi using cell counts is:

Further explanation of phi, including a worked example, is included in Chapter 9.

Computing the variance of a composite score requires knowing both the indi-
vidual item variances and their covariance. Unless all pairs of variables are
completely uncorrelated or are negatively correlated, the variance of a composite
score will always be greater than the sum of the individual item variances.
Although composite variance is usually computed using statistical software, the
formula is useful to know because it underlines the relationship among the rele-
vant quantities. The covariance for a pair of items j and k (whether the items are
dichotomous or continuous) may be computed as:

Table 19-2. Standard notation for a 2 × 2 table

Item j

+ –

Item k – a b

+ c d

σ j
2 p jq j=

phi
p jk p jpk–

p j 1 p j–( )pk 1 pk–( )
--------------------------------------------------------=

phi bc ad–

a b+( ) a c+( ) c d+( ) b d+( )
----------------------------------------------------------------------------=
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where σjk is the covariance of the two items, ρjk is the correlation between the two
items, and σj and σk are the individual item covariances. Because there are two
covariance pairs for each item pair (the covariance of j with k, and the covariance
of k with j, which are identical), the covariance of a composite Y may be calcu-
lated as:

The stipulation i > j in the above formula stipulates that we only compute unique
covariance terms. To get the right number of covariance terms, we then multiply
each unique covariance by 2.

This formula underlines the fact that as items are added to a test, the number of
covariance terms increases more quickly than the number of variance terms; for
instance, if we add 5 items to a test that has 5 items to start with, the number of
variance terms increases from 5 to 10, but the number of covariance items increases
from 20 to 90. It helps to remember that the number of unique covariance terms for
n items is calculated as n(n – 1); in our example, 5 items yields 5(4) = 20 covariance
terms. A 10-item test would have 10(9) = 90 covariance terms. The number of
unique covariance terms is [n(n – 1)]/2, so 5 items yield 10 unique covariance terms
and 10 items yield 45 unique covariance terms.

In most cases, adding items to a composite increases the variance of the
composite, because the variance of the composite is increased by the variance of
the individual item plus its covariance with all the existing items on the test. The
proportional increase is greater when items are added to a short test than to a long
test, and is greatest when items are highly correlated, because that results in larger
covariances among items. All else being equal, the greatest composite variance is
produced by items of medium difficulty (p = 0.5 produces the largest covariance
scores) that are highly correlated with each other.

Classical Test Theory: The True Score Model
In an ideal world, all tests would have perfect reliability, meaning that if the same
individuals were tested under the same conditions for some stable characteristic,
they would receive identical scores each time. In this case, we would have no
problem saying that a person’s observed score on the test was the same as the
person’s true score, and that the observed score was an accurate reflection of that
person’s score on whatever the test was designed to measure. In the real world,
however, many factors can influence observed scores, and repeated tests on the
same material taken by the same individual often yield different scores. For this
reason, we must differentiate between the true score and the observed score. We
do this by introducing the concept of measurement error, which is that part of the
observed score that causes it to deviate from the true score.

Measurement error can be either random or systematic. Random measurement
error is the result of chance circumstances such as room temperature, variance in
administrative procedure, or fluctuation in the individual’s mood or alertness.

σ jk ρ jkσ jσk=

σ2
Y σi

2 2 ρijσiσ j
i j<
∑+∑=
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We would not expect random error to consistently affect an individual’s score in
one direction or the other. Random error makes measurement less precise but
does not systematically bias results because it can be expected to have a positive
effect on one occasion and a negative effect on another, thus “canceling itself out”
over the long run. Because there are so many potential sources for random error,
we have no expectation that it can be completely eliminated, but we desire to
reduce it as much as possible in order to increase the precision of our measure-
ments. Systematic measurement error, on the other hand, is error that consistently
affects an individual’s score in a particular direction but has nothing to do with
the construct being tested. An example would be measurement error on a mathe-
matics exam that is caused by poor language skills, so that the examinee cannot
read the directions to take the exam properly. Systematic measurement error is a
source of bias and should be eliminated from testing whenever possible.

The psychologist Charles Spearman introduced the classical concepts of true and
error scores in the early twentieth century. Spearman described the observed score
X (the score actually received by an individual on a testing occasion), which is
composed of a true component (T) and a random error component (E):

Over an infinite number of testing occasions, the random error component would
be assumed to cancel itself out, so the mean or expected value of the observed
scores is the same as the true score. For individual j, this can be written as:

where Tj is the true score for individual j, E(Xj) is his expected observed score over
an infinite number of testing occasions, and µxj

is the mean observed score for
individual j over the same occasions. Error is therefore the difference between an
individual’s observed score and his true score:

Over an infinite number of testing occasions the expected value of the error for
one individual is 0. Because “error” in these definitions means random error only,
true and error scores are assumed to have the following properties:

• Over a population of examinees, the mean of the error scores is 0.

• Over a population of examinees, the correlation between true and error
scores is 0.

• The correlation between error scores between scores by two randomly cho-
sen examinees on two forms of the same test, or two testing occasions using
the same form, is 0.

Reliability of a Composite Test
When we administer a test to an individual, one of our concerns is how well the
observed score on that test represents the person’s true score. In theoretical terms,
what we seek is the reliability index for a composite test, which is the ratio of the
standard deviation of the true scores to the standard deviation of the observed
scores. The reliability index is calculated as:

X T E+=

T j E X j( ) µX j
= =

E j X j T j–=
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inees and σX is the standard deviation of their observed scores. This is sometimes
expressed as the proportion of total variation on the test scores, which is
explained by true variation.

In practice, the true scores are unknown, so the reliability index must be esti-
mated by using observed scores. One way to do this is to administer two parallel
tests to the same group of examinees and use the correlation between their scores
on the two forms, known as the reliability coefficient, as an estimate of the reli-
ability index. Parallel tests must satisfy two conditions: equal difficulty and equal
variance.

The reliability coefficient is an estimate of the ratio of true score variance to
observed score variance and can be interpreted similarly to the coefficient of deter-
mination (r2) in the General Linear Model. So if a test reports a reliability
coefficient of 0.88, we can interpret this as meaning that 88% of the observed
score variance from administrations of this test is due to true score variance, while
the remaining 0.12 or 12% is due to random error. To find the correlation
between true and observed scores for this test, we take the square root of the reli-
ability coefficient, so for this test the correlation between true and observed scores
is estimated as √0.88 or 0.938.

The reliability coefficient can be estimated using one of several methods, which
are discussed in more detail in Chapter 1. If we estimate the reliability coefficient
by administering the same test to the same examinees on two different occasions,
this is called the test-retest method and the correlation between test scores in this
case is known as the coefficient of stability. We could also estimate the reliability
coefficient by administering two equivalent forms of a test to the same examinees
on the same occasion, also known as the alternate form method, in which case the
correlation between scores would be called the coefficient of equivalence. If both
different forms and different occasions of testing are used, correlation between the
scores under these conditions is called the coefficient of stability and equivalence.
Because this coefficient has two sources of error, forms and occasions, it is gener-
ally assumed to be lower than either the coefficient of stability or the coefficient of
equivalence would be for a given group of examinees.

Measures of Internal Consistency
A different approach to estimating reliability is to use a measure of internal consis-
tency that can be calculated from a single administration of a test to a single group
of examinees. The reason internal consistency measurements are used to estimate
reliability is that a composite test is often conceived of as being composed of test
items sampled from a large domain of potential items. An internal consistency
estimate is a prediction of how similar an individual’s score would be if a different
subset of items from that domain had been chosen.

ρXT

σT

σX
-------=
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Consider the task of creating an exam to test student competence in high school
algebra. The first steps in creating this test would be to decide what topics to
cover. Then a pool of items would be written that evaluate student mastery of
those topics. A subset of items would then be chosen to create the final test. The
purpose of this type of exam is not merely to see how well the students score on
the specific items included in the test they took, but how well they mastered all
the content considered to be within the domain of high school algebra. If the
items used on the test are a fair selection from this content domain, the test score
should be a reliable indicator of the students’ mastery of the material. Item homo-
geneity is also a valued characteristic of this type of test because it is an indication
that the items are testing the same content and do not have technical flaws such as
misleading wording or incorrect scoring, which would cause student performance
on an item to be unrelated to mastery of algebra.

Split-Half Methods

Split-half methods to measure internal consistency require that a test be split into
two parts or forms, usually two halves of equal length, which are intended to be
parallel. All items on the full-length test are completed by each examinee. The
split may be achieved by several methods, including alternate assignment (even-
numbered items to one form, odd-numbered to the other), content matching, or
random assignment. Whatever method is used, if the original test had 100 items,
the two halves will each have 50 items. The correlation coefficient between exam-
inee scores for the two forms is the coefficient of equivalence for the two halves.
The coefficient of equivalence is an underestimate of the reliability for the full-length
test, because longer tests are usually more reliable than shorter tests. The Spearman-
Brown prophecy formula can be used to estimate the reliability of the full-length test
from the coefficient of equivalence for the two halves, using the following
formula:

where ρXX' is the estimated reliability of the full-length test and ρAB is the
observed correlation, i.e., coefficient of equivalence, between the two half-tests.
For this formula to be accurate, the two half-tests must be strictly parallel. If the
coefficient of equivalence for the two half-tests is 0.5, the estimated reliability of
the full-length test is:

A second method to estimate reliability of a full-length test using the split-half
method is to calculate the difference between scores on the two halves for each
examinee. The variance of that difference score is an estimate of error variance of
reliability, so the 1 minus the ratio of error variance to total variance may also be
used as an estimate of reliability. This is the formula to use for the second method:

ρ̂XX'

2ρAB

1 ρAB+
-------------------=

ρ̂XX'
2 0.5( )
1 0.5+
------------------ 0.67= =

ρ̂XX' 1
σD

2

σX
2

-------–=



Measures of Internal Consistency | 377

Educational
Statistics

where

is the variance of the difference scores, and

is the variance of the observed scores.

Estimates of reliability using either method will be identical when the variance of
the two half-tests is identical. The more dissimilar the two variances, the larger the
estimate using the Spearman-Brown formula relative to estimates using the differ-
ence-score method. Estimation of reliability by either method depends on how the
items are chosen for the two halves, because a different split will result in different
correlations between the halves or a different set of difference scores. In fact, using
these methods, there are as many different reliabilities for a given test as there are
ways to split its items into two halves. If there are k items in the full-length test,
the number of splits possible is:

where ! signifies factorial, so k! = (k)(k – 1)(k – 2)…(1). This may not be a problem
in practice because if the test items are basically homogeneous, reliability esti-
mated using any particular split should be similar to reliability estimated using a
different split.

Coefficient Alpha

There are several methods of estimating reliability using item covariances that
avoid the problem of multiple split-half reliabilities, three of which are presented
below. Cronbach’s alpha may be used for either dichotomous or continuously
scored items, while the two Kuder Richardson formulas are for dichotomous
items. The measure of internal consistency computed by any of these methods is
commonly referred to as coefficient alpha, and is equivalent to the mean of all
possible split-half coefficients computed using the difference-score method. Coef-
ficient alpha is, strictly speaking, not an estimate of the reliability coefficient but
of its lower bound (sometimes called the coefficient of precision). This nicety is
often ignored in interpretation, however, and coefficient alpha is usually reported
without further interpretation.

Note that computing coefficient alpha for a test of any considerable length is
tedious and therefore generally accomplished using computer software. Still, it is
useful to know the formulas and work through a simple calculation in order to
understand what factors affect coefficient alpha.

σD
2

σX
2

1
2
---k!

k
2
---!
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Cronbach’s alpha is the most common method for calculating coefficient alpha,
and is the name often given for coefficient alpha in computer software packages
designed for reliability analysis. It is computed using the following formula:

where k is the number of items,

is the variance of item i, and

is the total test variance.

Suppose we have a 5-item test, with a total test variance of 100 and individual
item variances of 10, 5, 6.5, 7.5, and 13. Cronbach’s alpha would be calculated as:

There are several Kuder Richardson formulas to calculate coefficient alpha: two
useful for dichotomous items are presented here. Note that KR 21 is a simplified
version of the KR 20 formula; it assumes all items are of equal difficulty. KR 20
and KR 21 yield identical results if all items are of equal difficulty; if they are not,
KR 21 yields lower results than KR 20. The KR 20 formula is:

where k is the number of items, p is the difficulty for a given item so p(1 – p) is the
variance for one item, and:

is the total variance. Note that the KR 20 formula is identical to the Cronbach’s
alpha formula, with the exception that the item variance term has been restated to
take advantage of the fact that KR 20 is used for dichotomous items, so:

has been replaced by p(1 – p).

The KR 20 formula can be simplified by assuming all items have equal difficulty,
so it is not necessary to compute and sum the individual item variances. This
simplification yields the KR 21 formula:
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where k is the number of items, and:

 is the overall mean score for the test, and:

is the total variance for the test.

Item Analysis
Test construction often proceeds by creating a large pool of items, pilot-testing
them on examinees similar to those for whom the test is intended, and selecting a
subset for the final test that makes the greatest contributions to test validity and
reliability. Item analysis is a set of procedures used to examine and describe exam-
inees’ responses to the items under consideration, including the distribution of
responses to each item and the relationship between responses to each item and
other criteria.

One of the first things usually computed in an item analysis is the mean and vari-
ance of each item. For dichotomous items, the mean is also the proportion of
examinees that answered the item correctly, and is called the item difficulty or p,
as discussed above. The total test score for one examinee is the sum of the item
difficulties, which is the same as the sum of questions answered correctly. The
average item difficulty is the total score divided by the number of items:

and:

Because item difficulty is a proportion, the variance for an individual item is:

Often items are selected to maximize variance, in order to increase the test’s effi-
ciency in discriminating among individuals of different abilities. Variance is
maximized when p = 0.5, a fact that you can prove to yourself by calculating the
variance for other values of p:

µ̂

σ̂X
2

µX pi
i

∑=

µp

µX

k
-------=

σi
2 pi 1 pi–( )=

If p 0.50, σi
2 0.5 0.5( ) 0.2500= = =

If p 0.49, σi
2 0.49 0.51( ) 0.2499= = =

If p 0.45, σi
2 0.45 0.55( ) 0.2475= = =

If p 0.40, σi
2 0.40 0.60( ) 0.2400= = =
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and so on. Because p and 1 – p are reciprocal, the variance is the same for p = 0.4
and p = 0.6, because in the first case:

and in the second:

In many common test formats, including multiple choice, examinees may raise
their scores by guessing if they don’t know the correct answer. This means that
the p value of an item will often be higher than the proportion of examinees who
actually know the material tested by the item. To put it another way, the observed
scores will be higher than the true scores because the observed scores have been
raised by successful guessing. The test creator’s goal is usually to maximize true
score variation on the test, so when an item format allows guessing (for instance,
multiple choice items that carry no penalty for incorrect answers), an additional
step is necessary to calculate the observed difficulty of an item to maximize item
variance. This is done by adding the quantity 0.5/m to the item difficulty, where
m is the number of choices for an item. The items are assumed to be equally likely
to be selected if the examinee doesn’t know the correct answer. The observed
difficulty p0 of an item that is assumed to have a true difficulty of 0.5 (half the
examinees know the correct answer without guessing), for different values of m,
would be as shown in Table 19-3.

Maximum score variance for an item with two choices is obtained if the observed
item difficulty is 0.75, while maximum variance for three-choice items requires an
observed difficulty of 0.67, and for four choices the observed difficulty should be
0.625. If examinees are not guessing at random, i.e., if they can eliminate one or
more wrong choices before guessing, the observed item difficulty will be even
higher than shown in Table 19-3. The probability of nonrandom correct guessing
can’t be calculated directly, but simulation studies have shown that for items
whose true difficulty (without guessing) is 0.5, observed difficulty may be as high
as 0.85 for a two-choice item, 0.77 for a three-choice item, and 0.74 for a four-
choice item. All of which means that if you are using an item format that allows
guessing, to maximize score variance you will want to choose items with an
observed difficulty higher than 0.5: how high depends on the number of item
choices and whether you think guessing will be random or nonrandom.

Item discrimination refers to how well an item differentiates between examinees
that have high versus low amounts of the quality being tested, whether it is
knowledge of geography, musical aptitude, or depression. Normally the test

Table 19-3. Item difficulties, corrected for guessing

Number of choices p0

2 0.5 + 0.5/2 = 0.75

3 0.5 + 0.5/3 = 0.67

4 0.5 = 0.5/4 = 0.625

σi
2 0.4 0.6( )=

σi
2 0.6 0.4( )=
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creator selects items that have positive discrimination, meaning they have a high
probability of being answered correctly or positively by those who have a large
amount of the quality, and incorrectly or negatively by those who have a small
amount. For instance, if you are measuring mathematical aptitude, you want
questions that students with high mathematical aptitude are likely to answer
correctly, while those with low mathematical aptitude are unlikely to answer
correctly. The reverse would be negative discrimination, e.g., a student with little
mathematical aptitude would be more likely to answer a question correctly than
someone with high aptitude. Negative discrimination is usually grounds to elimi-
nate an item from the pool, unless it is being retained to catch people who are
faking their answers (for instance, on a mental health inventory). Five indices of
item discrimination are discussed in this section, followed by an index of item
discrimination that can be related either to total test score or to an external crite-
rion. If all items are of moderate difficulty (which is typical of many testing
situations), all five discrimination indices will produce similar results.

The index of discrimination is only applicable to dichotomously scored items and
compares the proportion of examinees in two groups that answered the item
correctly. The two groups are often formed by examinee scores on the entire test;
for instance, the upper 50% of examinees is often compared to the lower 50%, or
the upper 30% to the lower 30%. The formula for the index of discrimination (D)
is:

where pu is the proportion in the upper group that got the item correct and pl is
the proportion in the lower group that got it correct. If 80% of the examinees in
the upper group got an item correct, while only 30% of those in the lower group
got it correct, the index of discrimination would be:

The range of D is (–1, +1). D = 1.0 would mean that everyone in the upper group
got the item correct and no one in the lower group did. The index of discrimina-
tion is affected by how the upper and lower groups are formed; for instance, if the
upper group was the top 20% and the lower group the bottom 20%, we would
expect to find a larger index of discrimination than if the upper 50% and lower
50% were used.

There are no significance tests for the index of discrimination and no absolute
rules about what constitutes an acceptable value. A rule of thumb suggested by
Ebel (1965) is that D > 0.4 is satisfactory (items can be used), D < 0.2 is unsatis-
factory (items can be discarded), and the range between suggests that the items
should be revised to raise D above 0.4.

The point-biserial correlation can be used as a measure of how closely the response
on a dichotomous item is related to the total test score or some other continuous
quantity. The point-biserial correlation is calculated as:

D pu pl–=

D 0.8 0.3– 0.5= =

ρpbis

µ+ µX–

σX
-------------------- p

1 p–
------------=
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where µ+ is the average total test score for examinees who answered the item
correctly, µX is the average total score for the entire examinee group, σX is the
standard deviation on the total score for the entire group, and p is the item diffi-
culty. With a small group of items (a rule of thumb is 25 or less), performance on
the individual item should be removed from the total score using this formula:

where ρi(X – i) is the correlation between an individual item and the total score
minus that item, ρXi is the correlation between an individual item and the total
score, σi is the item standard deviation, and σX is the total score standard devia-
tion. A worked example of the point-biserial correlation is included in Chapter 9.

The biserial correlation coefficient may be used with dichotomous items, if it is
assumed that performance on the item is due to a latent quality that is normally
distributed. The formula to calculate the biserial correlation coefficient is:

where µ+ is the average total test score for examinees who answered the item
correctly, µX is the average total score for the entire examinee group, σX is the stan-
dard deviation on the total score for the entire group, p is the item difficulty, and Y
is the Y-coordinate (height of the curve) from the standard normal distribution for
the item difficulty. Y values can be found from a table of the standard normal distri-
bution: for instance, if p = 0.5, Y = 0.3989, while if p = 0.6, Y = 0.3867. Suppose for
a given item, µ+ = 80, µX = 78, σX = 5, and p = 0.5. The biserial correlation coeffi-
cient for this item would be:

The value of the biserial correlation is systematically higher than the point-
biserial correlation (discussed in Chapter 10) for the same numbers, and the
difference increases sharply if p < 0.25 or p > 0.75, a fact that should be kept in
mind when comparing item analyses using the two procedures. The biserial corre-
lation coefficient is the preferred item difficulty statistic when the dichotomous
item is assumed to reflect an underlying normal distribution and the goal is to
select items that are very easy or very difficult, or if the test will be used with
future groups of examinees with a wide range of ability.

The phi coefficient, discussed above, expresses the relationship between two
dichotomous variables. If the variables are not true dichotomies but have been
created by dichotomizing values from a continuous variable with an underlying
normal distribution (such as a pass/fail score determined by establishing a single
cutpoint for a continuous variable), the tetrachoric correlation coefficient is
preferred over the phi coefficient because the range of phi is restricted when the
item difficulties are not equal. Tetrachoric correlations are also used in factor
analysis and structural equation modeling. The tetrachoric correlation coefficient
is rarely computed by hand, but is included in some of the standard statistical
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software packages, including SAS and R. Further discussion of the tetrachoric
correlation coefficient, including links to different computer programs (some of
which are free) and macros to calculate it, can be found at http://ourworld.
compuserve.com/homepages/jsuebersax/tetra.htm.

The item reliability index is the correlation between item performance and either
total test score or an external, continuous criterion, weight by item variance. The
logic behind using the item reliability index is that, all else being equal, items with
greater variance do a better job at discriminating among individuals. This means
that if two items have the same correlation with the criterion, the item with
greater variance is preferred. If all items are of similar difficulty, little is gained by
using the item reliability index rather than the item-total or item-criterion
correlation.

If the item is being related to the total test score, the item reliability index for item
i is calculated as:

where σi is the variance for item i, and ρix is the item-total correlation. If the item
is dichotomous, the item reliability index is computed as:

If the item is being related to some external criterion (for instance, overall grade
point average), the item reliability index can be written as:

where σi is the variance for item i, and ρiY is the correlation between the item and
the external criterion. If the item is dichotomous, this can be written as:

Item Response Theory
Although analyses based on classical test theory are still used in many fields, Item
Response Theory (IRT) offers an important alternative approach. Anyone working
in psychometrics should be aware of IRT, and it is increasingly being used in other
fields from medicine to criminology. IRT will probably be used even more in the
future, as IRT capabilities are implemented into commonly used statistical pack-
ages. IRT is a complex topic and can only be briefly introduced here; those who
wish to pursue it should consult a textbook such as Hambleton, Swaminathan,
and Rogers (1991) or a similar introductory textbook. An inventory of computer
packages for IRT is available from the Rasch SIG at http://winsteps.com/rasch.htm.

IRT addresses several failings of classical test theory, chief among which is the fact
that methods based on classical test theory cannot separate examinee characteris-
tics from test characteristics. In classical theory, an examinee’s ability is defined in
terms of a particular test, and the difficulty of a particular test is defined in terms
of a particular group of examinees. This is because the difficulty of a test item is
defined in classical theory as the proportion of examinees getting it correct: with

σiρix

pi1 pi– ρix( )

σiρiY

pi1 pi– ρiY( )

http://ourworld.compuserve.com/homepages/jsuebersax/tetra.htm
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one group of examinees an item might be classified as “difficult” because few got
it correct, while for another group of examinees it might be classified as “easy”
because most got it correct. Similarly, on one test an examinee might be rated as
having high ability or having mastered a body of material because he got a high
score on the test, while on another test ostensibly covering the same basic mate-
rial he might be rated as having low ability or mastery because he got a low score.

The fact that estimates of item difficulty and examinee ability are intertwined in
classical test theory means that it is difficult to make an equivalent estimation of
ability comparing examinees that take different tests, or to rate the difficulty of
items administered to different groups of examinees. Classical test theory has tried
various procedures to try to deal with these issues, such as including a common
body of items on different forms of a test, but the central problem remains:

• Performance of a given examinee on a given item can be explained by the
examinee’s ability on whatever the item is testing, and ability is considered to
be a latent, unobservable trait.

• An item characteristic curve (ICC) can be drawn to express the relationship
between the performance of a group of examinees on a given item and their
ability.

Ability is usually represented by the Greek letter theta (θ), while item difficulty is
expressed as a number from 0.0 to 1.00. The ICC is drawn as a smooth curve on a
graph in which the vertical axis represents the probability of answering an item
and the horizontal axis represents examinee ability on a scale in which θ has a
mean of 0 and a standard deviation of 1. The ICC is a monotonically increasing
function, so that examinees with higher ability (higher value of θ) will always be
predicted to have a higher probability of answering a given item correctly. This is
shown in the theoretical ICC in Figure 19-1.

Figure 19-1. Theoretical ICC
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IRT models, in relation to classical test theory models, have the following
advantages:

1. IRT models are falsifiable, i.e., the fit of an IRT model can be evaluated and a
determination made as to whether a particular model is appropriate for a
particular set of data.

2. Estimates of examinee ability are not test-dependent; they are made in a
common metric that allows comparison of examinees that took different
tests.

3. Estimates of item difficulty are not examinee-dependent; item difficulty is
expressed in a common metric that allows comparison of items administered
to different groups.

4. IRT provides individual estimates of standard errors for examinees, rather
than assuming (as in classical test theory) that all examinees have the same
standard error of measurement.

5. IRT takes item difficulty into account when estimating examinee ability, so
two people with the same number of items correct on a test could have
different estimates of ability if one answered more difficult questions
correctly than did the other.

One consequence of points 2 and 3 is that in IRT, estimates of examinee ability
and item difficulty are invariant. This means that, apart from measurement error,
any two examinees with the same ability have the same probability of answering a
given item correctly, and any two items of comparable difficulty have the same
probability of being answered correctly by any examinee.

Note that although in this discussion we are using the context of questions for
which answers are scored as right or wrong (hence language such as “the proba-
bility of answering the item correctly”), IRT models can also be applied in
contexts where there is no right or wrong answer. For instance, in a psychological
questionnaire measuring attitudes, the meaning of item difficulty could be
described as “the probability of endorsing an item” and θ as the degree or amount
of the quality being measured (such as favorable attitude toward civic expansion).

There are several different models commonly used in IRT, which differ according
to the item characteristics that they incorporate. Two assumptions are common to
all IRT models:

Unidimensionality
Whose strict definition is that items on a test measure only one ability, and
which is defined in practice by the requirement that performance on test
items be explicable with reference to one dominant factor

Local independence
Which means that if examinee ability is held constant, there is no relation-
ship between examinee responses to different items, i.e., responses to the
items are independent
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The simplest IRT logistic model includes only one characteristic of the item, item
difficulty, signified by bi. This is called the one-parameter logistic model, and is
also called the Rasch model because it was developed by the Danish mathemati-
cian Georg Rasch. The ICC for the one-parameter logistic model is computed
using the following equation:

where Pi(θ) is the probability that an examinee with ability θ will answer item i
correctly, and bi is the difficulty parameter for item i.

Item difficulty is defined as the point on the ability scale (x-axis) where the proba-
bility of an examinee getting the item correct is 0.5. For more difficult items,
greater examinee ability is required before half the examinees are predicted to get
it right, while for easier items, a lower level of ability is required to reach that
point. In the Rasch model, the ICCs for items of differing difficulties have the
same shape and differ only in location. This may be seen in Figure 19-2, which
displays ICCs for several items of equal discrimination that vary in difficulty.

Bearing in mind that θ is a measure of examinee ability, it can be seen that a
greater amount of ability is required to have a 50% probability of answering item
A correctly, compared with items further to the left. It is also clear that among the
items graphed here, the least amount of θ is required to have a 50% chance of
answering item B correctly. So we would say that item B is the easiest among these
items, and item A the most difficult.

If this is not clear, draw a horizontal line across the graph at y = 0.5 and then a
vertical line down to the x-axis where the horizontal line intersects each curve.
The point where each vertical line intersects the x-axis is the amount of θ required
to have a 50% probability of answering the item correctly: for curve B, θ = –1.5,
while for curve A, θ = 1.5 (higher value of θ required for a 50% probability of
answering an item correctly = more difficult item).

Figure 19-2. Items of identical discrimination but varying difficulty: item A is the most
difficult, item B the easiest

Pi θ( ) e
θ bi–

1 e
θ bi–

+
----------------------=
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The two-parameter IRT model includes an item discrimination factor, ai. The
item discrimination factor allows items to have different slopes. Items with steeper
slopes are more effective in differentiating among examinees of similar abilities
than are items with flatter slopes, because the probability of success on an item
changes more rapidly relative to changes in examinee ability.

Item difficulty is proportional to the slope at the point where bi = 0.5, i.e., where
half the examinees would be expected to get the item correct. The usual range for
ai is (0, 2), because items with negative discrimination (those which an examinee
with less ability has a greater probability to answer correctly) are usually
discarded, and because in practice item discrimination is rarely greater than 2.
The two-parameter logistic model also includes a scaling parameter, D, which is
added to make the logistic function as close as possible to the cumulative normal
distribution.

The ICC for a two-level logistic model is computed using the following formula:

Two items that differ in both difficulty and discrimination are illustrated in
Figure 19-3.

It may be easier to compare the two items by drawing a horizontal reference line
at bi = 0.5. In this example, the items clearly differ in difficulty: more ability is
required to have a 50% probability of answering item 2 correctly as compared to
item 1.

The three-level logistic model includes an additional parameter ci, which is techni-
cally called the pseudo-chance-level parameter. This parameter provides a lower
asymptote for the ICC that represents the probability of examinees with low
ability answering the item correctly due to chance. ci is often called the “guessing
parameter” because one reason low-ability applicants could get a difficult ques-
tion correct is by guessing the right answer. However, often ci is lower than would

Figure 19-3. Two items that differ in both difficulty and discrimination
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be expected by random guessing because of the skill of test examiners in devising
wrong answers that may seem correct to an examinee of low ability. The ICC for
the three-parameter logistic model is calculated using this formula:

A three-parameter model is shown in Figure 19-4; it has a substantial guessing
parameter, which can be seen from the fact that the curve intersects the x-axis
around 0.20. This means that a person with very low θ would still have about a
20% chance of answering this item correctly.

Exercises
Here is a set of questions to review the topics covered in this chapter.

Question

Given the data distribution in Table 19-1:

1. What is the percentile rank for a score of 80?

2. What score corresponds to a score at the 75th percentile?

Answer

You find the percentile by looking at the cumulative probability for the score just
above the score you are interested in. To find a score corresponding to a percen-
tile rank, reverse the process:

1.  A score of 80 is in the 17th percentile.

2.  A score of 96 is in the 75th percentile.

Figure 19-4. ICC for item with substantial guessing parameter
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Question

Assume you are working with a published test whose mean is 100 and whose vari-
ance is 20. Convert the following individual scores to Z-scores and then to T-
scores:

1. 70

2. 105

Answer

1. For 70, Z = –1.5 and T = 35.

2. For 105, Z = 0.25 and T = 52.5.

The computations for a score of 70:

T = –1.5(10) + 50 = 35

The computations for a score of 105:

T = 0.25(10) + 50 = 52.5

Question

Compute phi for the following table, both the probability and the cell count
methods, and interpret the results.

Answer

phi = 0.36

The computations are as follows. Using the probabilities method, calculate each
item difficulty (the proportion getting it correct) and the proportion that got both
items correct, then put those values into the following formula:

pjk = 25/50 = 0.5

pj = 35/50 = 0.7 and 1 – pj = 0.3

pk = 30/50 = 0.6 and 1 – pk = 0.4

Item j

+ –

Item k – 10 10

+ 25 5

Z 70 100–
20

---------------------- 1.5–= =

Z 105 100–
20

------------------------- 0.25= =

phi
p jk p jpk–

p j 1 p j–( )pk 1 pk–( )
--------------------------------------------------------=
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Using the cell count method, the cell frequencies are:

a = 10, b = 10, c = 25, d = 5

Plug them into the following formula:

phi 0.5 0.7( ) 0.6( )–

0.7 0.3( )0.6 0.4( )
------------------------------------------------
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250 50–

20( ) 35( ) 30( ) 15( )
---------------------------------------------------=

200

315000
-----------------------=

0.36=
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You don’t need to be an ace in mathematics to learn statistics, and nowadays
pocket calculators and computer programs can do much of the mathematical
drudgery for you. However, a good understanding of how numbers work,
including the basic laws of arithmetic and algebra, is a prerequisite to being able
to reason statistically. And that’s what learning statistics is about for most people:
while anyone can learn to churn out calculations, a process made that much easier
with the ready availability of dedicated statistical computing packages, if you
don’t understand the meaning of the numbers thus produced, your efforts may be
useless or counterproductive. Besides, it’s always more fun to understand what
you are doing, and if you truly understand numbers and can explain them to
others, you’ll find you have a great advantage over other candidates, whether in
school or at work.

If the math you learned in school has faded to a distant memory, don’t worry: you
have lots of company! Even if you did well in high school algebra, a brief review of
the basic concepts may ease your path into statistics, and working through some
elementary problems will sharpen your mind before you take on more complex
calculations. Running through simple calculations is also a good way to get
acquainted with a new calculator or a new software program: start by working
with calculations where you already know what the right answer is, and you’ll be
much more confident with the technology when you use it to tackle more
complex problems.

I had a calculus teacher in college who told us that most of the errors people made
in class were errors in algebra: not only was he right, but many of the mistakes we
made were on material we had learned in junior high school! The same is true in
statistics: there’s nothing complicated about the math you need, at least at the
beginning level, but you need to be very comfortable with the material, and you
need it fresh in your mind. So here’s a friendly review of some basic mathematics,
which I hope will reduce the anxiety and refresh the memories of those who don’t
quite remember the last time they multiplied exponents or plotted Cartesian
coordinates.
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If you want to see how much you remember, you can go straight to the quiz at the
end of the chapter: if you do well on all the topics, you don’t need to do this
review section. On the other hand, if you do poorly, you might want to find an
algebra review text (aimed at the high school or college freshman market) and
work through it, because you may need more of a brush-up than this section can
provide. And if you are really ambitious, or if you discover that you like statistics
so much you want to major in it, you will eventually need to take several semes-
ters of calculus as well as calculus-based statistics courses. Should that prove to be
the case, you should probably start brushing up on your math skills using a good
precalculus or college algebra textbook.

Laws of Arithmetic
It’s often helpful to think of numbers as points along a number line, in which
lower numbers are to the left and higher numbers are to the right. You may
remember the number line from primary school (Figure A-1).

The concept of the number line is useful in probability, because we often refer to a
value in a distribution as being “further to the right” when what we really mean is
“of a higher value.” The statement that a value is “at least as extreme” or “at least
as far from the mean” as another value, which you will frequently encounter in
hypothesis testing, also refers to the number line: for a distribution with one most
common central value (in the case of the normal distribution, that value would be
the mean), as values get further from that central value (further to the left or right)
they become less likely.

Numbers may be written with either a positive or negative sign; if no sign is
included, positive value is assumed. The absolute value of a is written |a| and
means the distance a occupies on the number line, whether in a negative or posi-
tive direction. This means that if a = –5 and b = 5, the absolute value of a and b
are identical, i.e., |a| = |b| = 5. Another way to look at it is that the absolute value
of the number is the same as the number, after any negative sign is removed. By
this rule, |–5| is larger than |4| even though 4 is larger (further to the right) than
–5, because 5 (the absolute value of |–5|) is larger than 4, the absolute value of
|4|.

To add numbers with like signs, add their absolute values and keep the sign:

3 + 5 + 8
–3 + –5 = –8

To add two numbers with different signs, subtract their absolute values and keep
the sign of the number with the larger absolute value:

–3 + 5 = 2
3 + –5 = –2

Figure A-1. Number line
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To add more than two numbers with different signs, group them by signs, add the
absolute values of each set, then subtract the negatives from the positives:

–3 + 5 + –2 + 4 = (5 + 4) – (3 + 2) = 4

As you can see, adding a negative number is the same as subtracting a positive
number. This is formalized in the following law:

a – b = a + –b

So:

2 – 5 = 2 + (–5) = –3

To multiply numbers with like signs, multiply their absolute values. If all values
are positive, the result is positive. If all are negative, count the number of negative
signs. If there are an even number of negative signs, the result is positive; if an odd
number, the result is negative:

4(2) = 8
–4(–2) = 8
–4(–2)(–3) = –24

To multiply numbers with unlike signs, multiply the absolute values and then
count the number of negative signs: if even, the result is positive; if odd, the result
is negative:

–4(2)(–3) = 24
–4(2)(3) = –24

To divide numbers with like signs, divide the absolute values and make the result
positive. To divide numbers with unlike signs, divide the absolute values and
make the result negative:

10/5 = 2
–10/–5 = 2
10/–5 = –2

Order of Operations

In general, we solve arithmetic expressions from left to right, but perform arith-
metic operations within an expression in the following order:

1. Anything in parentheses

2. Exponents and roots

3. Multiplication and division

4. Addition and subtraction

Legions of school children have learned this by the mnemonic “Please excuse my
dear Aunt Sally,” i.e., parentheses, exponents and roots, multiply, divide, add,
subtract. If there are multiple layers of parentheses, you solve each expression
beginning with the innermost parentheses. Table A-1 shows some examples.
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Properties of Real Numbers
Real numbers are the type of numbers familiar from everyday life and that are used
most often in math and statistics. They can be written using decimals and there-
fore include rational numbers such as 4 and 7/5, and irrational numbers such as π
(3.1415....) and the square root of 2 (1.4142...), but not imaginary or complex
numbers (numbers that are negative when squared). Unless otherwise specified,
real numbers are assumed throughout this review. Some properties of real
numbers include:

• The associative property for addition and multiplication:

(a + b) + c = a + (b + c) so (1 + 2) + 3 = 1 + (2 + 3) = 6
a(b × c) = (a × b)c so 2 × (3 × 4) = (2 × 3) × 4 = 24

• The commutative property for addition and multiplication:

a + b = b + a so 5 + 4 = 4 + 5 = 9
a × b = b × a so 2 × 3 = 3 × 2 = 6

• The distributive property of multiplication:

a(b + c) = ab + ac so 5(2 + 3) = 5(2) + 5(3) = 10 + 15 = 5(5) = 25

• The additive identity of 0: any number plus 0 = the number itself:

a + 0 = a so 5 + 0 = 5

• The multiplicative identity of 0: any number times 0 = 0:

a × 0 = 0 so 5(0) = 0

• The multiplicative identity of 1: any number times 1 = the number itself:

a(1) = a so 5(1) = 5

• The inverse property of addition: the sum of any number and its inverse is 0:

a + –a = 0 and –a + a = 0 so 5 + –5 = 0 and –5 + 5 = 0

• The rule of double negatives: pairs of negatives cancel each other out:

–(–a) = a so –(–5) = 5

• The inverse property of multiplication:

a × (1/a) = 1 if a ≠ 0 (because division by 0 is undefined) so 5 × (1/5) = 1

Table A-1. Order of operations examples

Expression Rule Result

2 + 5 × 10 Multiplication before addition 52

(2 + 5) × 10 Expressions in parentheses first 70

10 × 22 Exponents before multiplication 40

(10 ×  2)2 + 5 Expressions in parentheses first, then
exponents, then addition

405

10 – 4/(2 + 2) Expressions in parentheses first, then
division, then subtraction

9

[5 + 3(4 + 6)]/(3 + 2) Innermost parentheses first 7



Exponents and Roots | 395

Basic
M

athem
atics

Exponents and Roots
An exponent tells you to multiply the base number by itself as many times as the
exponent says:

• an = a × a × a...n times, where a is the base and n the exponent, so 24 = 2 × 2 ×
2 × 2= 16

• a2 is often referred to as “a squared” and a3 as “a cubed”; they can also be
read as “a to the second power” or “a to the second” and so on, and this sys-
tem is used for powers above 3 (a7 would be read as “a to the seventh
power”).

• Multiplying exponential numbers with a common base: add the exponents and
keep the base:

am × an = am + n so 32 × 33 = 32 + 3= 35 = 243 = 9 × 27

• Power rules for exponents:

(am)n = amn so (22)3 = 26 = 64 = 4 × 4 × 4 or 43

(ab)n = anbn so (5 × 4)2 = 52 × 42 = 400 = 25 × 16
(a/b)n = an/bn so (3/4)2 = 32/42 = 9/16 assuming y ≠ 0

• Zero exponent: any number other than 0, with an exponent of 0, = 1:

a0 = 1 so 2450 = 1 and –80 = 1 (00 is undefined)

• A negative exponent is the same as dividing by the base raised to the power of
the exponent:

a–1 = 1/a and a–2 = 1/a2 so 2–1 = 1/2 and 2–2 = 1/22 = 1/4
(a/b)–n = (b/a)n so (5/3)–2 = (3/5)2 = 9/25

• When dividing exponential numbers with a common base, subtract the
exponents:

am/an = am – n (assuming a ≠ 0) so 35/32 = 35 – 2 = 33 = 27

Taking the root of a number is the inverse of raising it to an exponential value: the
nth root of x is the number such that an= x. This may be easier to understand if
we consider the square root, which is the second root of a number. So we can say
that the square root of 9 is 3, because 32 = 9. This can also be written or, if not
specified, the second root is assumed. Similarly, the third root of 125 is 5 because
53 = 125. This can be written formally as third roots are often referred to as cube
roots; beyond 3, the usual terminology is “fourth root,” “fifth root,” and so on.

Properties of Roots

abn an bn so 4 16× 4 16 2 4 = 8 where both× a and b 0≥= = =

a
b
---n

an

bn
-------- so 27

64
------3

273

643
-----------

3
4
--- 0.75 where both a and b 0≥= = = =

amn an( )
m

a

m
n
----

so 823 83( )
2

8

2
3
---

4 where both a and b 0≥= = = = =
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Note that every positive number has two square roots, one positive and one nega-
tive. For instance, 2 and –2 are both square roots of 4, because 22 = 4 and –22 = 4.
The positive square root is called the principal square root and, unless otherwise
specified, is the one usually taken.

A logarithm is the power you need to raise a given base to, in order to produce a
particular number. For instance, log10 100 = 2 because 102 = 100. In this example,
10 is the base and 2 is the logarithm. Although any number can serve as a base, in
statistics we often work with base-e exponential functions. These are also called
natural logarithms or Naperian logarithms and are written ln x which means
loge x. The base e is the irrational number 2.718... and is useful to describe many
processes in the natural sciences, hence the name “natural log.” Scientific calcula-
tors usually have an LN key to calculate natural logs, and many computer
programs have built-in functions for the same purpose. Be forewarned, however:
sometimes the function to compute a natural log is abbreviated LOG rather than
LN because natural logs are more common than base-10 logs in most scientific
work.

The equation ln x = 1.5 is equivalent to writing e1.5 = x. In this case, x = 4.48
(rounded) because e1.5 = 4.48 and we can say that the natural log of 4.48 is 1.5.
The following principles hold for logarithms of whatever base (the base is signi-
fied by b in these examples):

• logb 1 = 0 because b0 = 1 (any number to the 0th power = 1)

• logb b = 1 because b1 = b (any number to the first power equals itself)

• logb bx = x (because by definition the log of bx is x if the base is b)

• (where x > 0) because logb x is the exponent to which you raise b
to get x

The following properties of logarithms are also useful in statistics:

• logb MN = logb M + logb N (the logarithm of a product is the sum of the
logarithms)

• logb M/N = logb M – logb N (the logarithm of a quotient is the difference of
the logarithms

• logb Mp = p logb M

You can easily prove these principles to yourself using a pocket calculator. For
instance, using natural logs:

ln (2 × 4) = ln 8 = ln 2 + ln 4 = 0.693 + 1.386 = 2.079
ln(2/5) = ln 0.4 = ln 2 – ln 5 = 0.693 – 1.609 = –.916
ln 23 = = ln 8 = 3 ln 2 = 3(0.693) = 2.079

Note that logarithms for numbers between 0 and 1 are negative, and logarithms
for numbers less than 0 are undefined (you’ll get an error message on your calcu-
lator if you try to find ln –1).

b
xblog

x=
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Solving Equations
The following properties of equality will help you solve equations:

• If a = b, then a + b = a + c (adding a constant to both sides of an equality
does not change the equality)

• If a = b, then a – c = b – c (subtracting a constant from both sides of an equal-
ity does not change the equality)

• If a = b, then ac = bc (multiplying both sides of an equality by a constant does
not change the equality)

• If c ≠ 0, then a/c = b/c (dividing both sides of an equality by a nonzero con-
stant does not change the equality)

These properties come in handy, as do the properties of real numbers listed
above, when solving linear equations. For instance, to solve:

5(x – 4) = 40

Multiply out the left side:

5x – 20 = 40

Then “isolate” x by adding 20 to both sides:

5x = 60

Then divide both sides by 5:

x = 12

To check the solution, we substitute 12 back into the original equation:

5(12 – 4) = 5(8) = 40, which is correct.

For more complex problems, we need to combine like terms as follows:

2(3x + 1) = 5(x + 2)
6x + 2 = 5x + 10                       Multiply out both sides
x + 2 = 10                                  Subtract 5x from both sides
x = 8                                           Subtract 2 from both sides
2(24 + 1) = 5(8 + 2) = 50         Check: substitute 8 into the original equation

Logarithms are useful for solving equations that include exponents: you take the
log of both sides, then use the properties of logarithms to solve for the unknown.
For instance, assuming a base of 10:

5x = 3
log10 5 x = log10 3
x log10 5 = log10 3
x = log10 3 /log10 5 = 0.683
Check: 5.683 = 3
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Systems of Equations
A system of equations, also known as a system of simultaneous equations, is a set of
algebraic equations. The goal is to find a common solution, i.e., values for the
variables that will be correct for all equations in the system. If there is a common
solution (which is the case with all the systems presented here), the system is
called consistent; if not, the system is called inconsistent. Systems of equations can
be solved by graphing (by drawing the lines represented by the equations: the
solution is the point of intersection) or by using algebra: we will present only the
latter method here.

Solving systems of equations with two unknowns is a good review of algebra and
logical reasoning, which will stand you in good stead even if you plan to do all
your statistics using a computer package. A simple approach to solving systems of
equations, which will work for the examples presented here, is to simplify each
equation as much as possible, then use either the method of substitution or the
method of addition (or subtraction) to solve the system. We’ll demonstrate with
systems of two equations in two unknowns, although the same principles can be
used to solve larger systems, such as three equations in three unknowns. That’s
about the point, however, when it becomes more convenient to solve more
complex problems using matrices, a topic that is beyond this basic review.

Here is a demonstration of the method of substitution used to solve a system of
two equations in two unknowns (the unknowns are x and y):

2x + y = 6
3x – 2y = 16

Solve the first equation for y:

y = 6 – 2x

Substitute this value into the second equation:

3x – 2(6 – 2x) = 16

Solve the second equation for x:

3x – 12 + 4x = 16
7x = 28
x = 4

Substitute this value into the first equation to solve for y:

y = 6 – (2 × 4) = –2

So the solution is (4, – 2) i.e., x = 4, y = –2. Check by substituting these values
into the equations:

2(4) + (–2) = 6
3(4) – (2 × –2) = 16

To use the method of addition (or subtraction) to solve the same system of equa-
tions, you add or subtract the like terms from the two equations so that one of the
variables drops out, then solve for the other variable. An additional step is often
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necessary, which is to multiply one or both equations by a constant so that one of
the variables (x or y) will drop out when the systems are added or subtracted. In
this case, we multiply the first equation by 2:

2[2x + y = 6] = 4x + 2y = 12

We then substitute this equation (which is equivalent to the original expression,
since all we have done is multiply both sides by a constant) in the system and add
it to the second equation:

4x + 2y = 12
+3x – 2y = 16
7x = 28 so x = 4

We can then use this value to solve either equation for y:

2(4) + y = 6 so y = –2
3(4) – 2y = 16 so y = –2

This gives us the same solution as with the substitution method: (4, –2).

Graphing Equations
Points in multidimensional space are often described using Cartesian coordinates,
also called rectangular coordinates, which are simply the values on each dimen-
sion in a system that locate a particular point. We will demonstrate this system
using two dimensions, because that is easier to display on a printed page, but the
same concepts can be applied to higher numbers of dimensions.

Identifying the location of points in two-dimensional space is done using a plane
with two axes, x and y; each axis is a number line, and they intersect at 0. The y-
axis is vertical, the x-axis is horizontal, and together they divide the plane into
four quadrants, as shown in Figure A-2.

The point (3, 5) has an x-value of 3 and a y-value of 5, as shown in Figure A-2.
Locating a point in this way is similar to finding a location on a map using rectan-
gular coordinates: run a straight line vertically at x = 3, another horizontally at y = 5,
and where the two lines intersect will be the point (3, 5). The values of Cartesian
coordinates are always given in the order (x, y) and for this reason are sometimes
called ordered pairs. The location of any point in the plane can be uniquely identi-
fied in this way, by specifying values for x and y. It can be seen that points in
Quadrant I will have positive values for both x and y, those in Quadrant II will be
negative on x and positive on y, those in III will be negative on both x and y, and
those in IV will be positive on x and negative on y.

Linear equations are sometimes written in the form y = mx + b, where m is called
the slope and b is the y-intercept: not surprisingly, this method of notation is
called the slope-intercept form of a line. To plot a linear equation (one that does
not include squares or higher-order terms) using Cartesian coordinates, find two
or more pairs of coordinates that satisfy the equation and draw a straight line
connecting them. Here’s a simple example:

y = 2x + 4



400 | Appendix A: Review of Basic Mathematics

Here are some possible solutions (there are an infinite number!):

x = 0, y = 4
x = 1, y = 6
x = –2, y = 0

Graphing these solutions can be done as in Figure A-3.

The interpretation of the line’s components, which are the same as will be used to
interpret linear regression equations, is:

Slope
The amount of increase in y for a one-unit increase in x

Intercept
The value of y when x = 0, i.e., the value when the line crosses the y-axis

Even without drawing the graph, you can interpret the equation and predict new
values of y given x. Take the following equation:

y = –3x + 6

Because the slope is negative, we know that the line will run from the upper left to
lower right of the graph (the opposite of the above graph, which had a positive
slope. We also know that as x increases, y decreases, and vice versa. The intercept
(6) also tells us that the line will cross the y-axis at 6. We can calculate some
points on the line as follows (it’s often easier to find the x-intercept and y-intercept
immediately). Table A-2 shows some possible values.

Figure A-2. Cartesian coordinate system
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The graph of this equation is shown in Figure A-4.

Another way to write the equation of a straight line is by using what is called the
point-slope form. This format relies on the fact that if we know the slope of the
line and one point on it, we can draw the line and calculate the coordinates of any
point on the line. Similarly, if we know two points on the line, we can calculate
the slope). To put it another way, a straight line can be uniquely identified by two
points, or by one point plus its slope. The point-slope form of a line is written as:

y – y1 = m(x – x1)

where m is the slope of the line and (x, y) and (x1, y1) are two points on the line.
We can find the slope, given two points on the line, using the formula:

Figure A-3. Line representing the equation y = –2x + 4

Table A-2. Some values for the line y = –3x + 6

x y

2 0

0 6

1 3

m
y y1–

x x1–
---------------=
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You may remember this as “slope = rise over run” where rise is the change in y-values
(the change on the vertical axis) and run is the change in x-values (the change on the
horizontal axis) between the two points. If we have the points (0, 6) and (2, 0), the
slope of the line that contains them is:

This corresponds to what we found in the previous example. If instead our line
included the points (6, 6) and (4, 2), its slope would be:

Continuing with this example, if we knew that a line with slope 2 ran through the
point (6, 6), we could find the y-coordinate for 4 using the point-slope equation:

y – y1 = m(x – x1)
6 – y1 = 2(6 – 4)
–y1 = 4 – 6 = –2
y1 = 2

Linear Inequalities
An equation is defined by the fact that it connects two expressions with an equals
sign, e.g., y = mx + b is the equation of a line. Often we want to connect two
expressions with inequalities, stating they are not equal, as in Table A-3.

Figure A-4. Graph of the equation y = –3x + 6

m 6 0–
0 2–
------------

6
2–

------ 3–= = =

m 6 2–
6 4–
------------

4
2
--- 2= = =
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The alphabetical abbreviations such as “GE” and “LT” are often used in computer
programming. Inequalities are often evaluated for their logical or truth value. For
instance, if a = 5 and b = 6, then a < 5 and a < b are both true and a > 5 and a > b
are both false. The following laws govern linear equalities:

1. If the same number is added or subtracted from both sides of an inequality,
the inequality remains in the same direction.

If a < b then a + x < b + x and a – x < b – x
6 < 10, so (6 + 4) < (10 + 4) and (6 – 1) < (10 –1)

2. If the same positive number is used to multiply or divide both sides of an
inequality, the inequality remains in the same direction.

If a > b then ax > bx and a/x > b/x
5 > 3 so (5 × 2) > (3 × 2) and (5/2) > (3/2)

3. If the same negative number is used to multiply or divide both sides of an
inequality, the direction of the inequality is reversed.

If a < b then a(–x) > b(–x)
2 < 4 so 2(–3) > 4(–3) and 2/–3 > 4/–3, i.e., –6 > –12 and –2/3 > –4/3

A linear inequality can be solved using the same steps used to solve linear equa-
tions. For instance:

4(3x + 2) < 20
12x + 8 < 20
12x < 12
x < 1

Fractions
A fraction is simply a way of expressing one number divided by another. The top
number is called the numerator and the bottom number is the denominator:

The following properties of fractions should be kept in mind (all assume no divi-
sion by 0):

Table A-3. Commonly used inequalities

Sign, abbreviation Meaning Examples

≠, NE Not equal a ≠ b, a NE 5

<, LT Less than a < b, a LT 5

>, GT Greater than a > b, a GT 5

≤, <=, LE Less than or equal a ≤ b, a <= b, a LE 5

≥,>=, GE Greater than or equal a ≥ b, a >= b, a GE 5

≈ Approximately equal a ≈ b, a ≈ 5

numerator
denominator
---------------------------------
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1.  if and only if ad = bc

2.  and

3.

4.

Note that property 3 follows from property 2: anything divided by itself = 1, so
multiplying by c/c as in this case is simply multiplying by 1 and does not change
the fraction. This property also allows us to simplify fractions by dividing out
common factors. For instance:

Remembering from our review of exponents that y1 = 1/y.

To add or subtract fractions, they need to have a common denominator. You may
remember from grade school an exercise called “finding the least common domi-
nator” or “finding the LCD” but for our purposes any common denominator will
do. Then you just add the numerators and keep the denominator:

If the fractions don’t have a common denominator, you need to multiply or divide
as necessary, then do the addition and simplify the result by dividing out the
common factors. Therefore:

1 1/3 is called a mixed number because it has both an integer part and a fractional
part. 4/3 is called an improper fraction because its numerator is larger than its
denominator. To convert an improper fraction to a mixed number, remove as
many whole units (1s in this case) as possible so the final expression is the whole
units with the remainder expressed as a fraction:

To multiply fractions, just multiply the numerators and denominators separately
and simplify the result:

a
b
---

c
d
---=

a
1
--- a= a

a
--- 1=

a
b
---

ac
bc
------=

a
b
---– a–

b
------

a
b–

------= =

8
24
------

8 1×
8 3×
-------------

1
3
---= =

4x3y2

2xy3
---------------

2x2

y
--------- 2x2y 1–= =

a
c
---

b
c
---+ a b+

c
------------=

5
6
---

2
4
---+ 10

12
------

6
12
------+ 16

12
------

4
3
--- or 1

1
3
---= = =

4
3
---

3
3
---

1
3
---+ 1

1
3
---= =
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To divide fractions, simply invert and multiply. This is because dividing by x is the
same as multiplying by 1/x (i.e., dividing is the same as multiplying by the recip-
rocal of the divisor). Therefore:

Fractions can also be expressed as decimals or percents. A percent is just a fraction
in which the denominator is 100 (cent = 100 in Latin). With calculators, it’s
absurdly easy to convert any fraction to a decimal, then convert it to percent by
multiplying by 100, and some calculators even have a special key to return divi-
sions automatically as percents. So:

1/4 = 0.25 = 25% (.25 × 100)
6/4 = 1.5 = 150%

To take a percent of a number, multiply by the decimal equivalent of that
number. For instance, 40% of 30 = 0.4(30) = 12. To calculate an increase over
some base number, multiply by 1.0 plus the increase; for instance, calculate a
20% increase by multiplying by 1.2, because multiplying by 1.0 gives you the orig-
inal number, and multiplying by 0.2 gives you the 20% increase. For this reason, a
100% increase, which is the same as doubling, means multiplying by 2.0 (1.0 for
the original number, 1.0 for the increase). To find a decrease from a total,
multiply by 1 – the decrease; for instance, to find the number that represents a
10% decrease from 100, multiply 100 by 0.9, so 100(.9) = 90, which is a 10%
decrease from 100.

Factorials, Permutations, and Combinations
The factorial of a number is simply that number multiplied by all the smaller inte-
gers until you get down to 1. The factorial of n is written n! and means n(n – 1)(n – 2)
...(1), so:

 5! = 5(4)(3)(2)(1) = 120

and:

10! = 10(9)(8)(7)(6)(5)(4)(3)(2)(1) = 3,628,800

Calculators often have a factorial key, usually indicated by ! or x!, as well as
permutation and combination keys, often indicated by nPr and nCr: if your calcu-
lator has these keys, experiment with them as you work through this section.
Fractions that include factorials can often be simplified by canceling common

a
b
---

c
d
---× ac

bd
------=

9
5
---

10
27
------× 9 10×

5 27×
----------------

90
135
---------

2
3
---= = =

a
b
---

c
d
---÷ a

b
---

d
c
---× ad

bc
------= =

3
4
---

1
2
---÷ 3

4
---

2
1
---× 6

4
--- 1.5 or 1

1
2
---= = =
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factors, a useful property since factorials quickly become very large numbers, as
we saw in the example of 10! above. The utility of canceling common factors
should be clear from this example:

Factorials are useful in problems in which you are concerned with arranging a
finite number of objects in order. For instance, how many ways are there to
arrange five books on a shelf? You have five choices for the first book, four for the
second (because the first book has already been “used” and can’t be chosen
again), three for the third, two for the fourth, and one for the fifth. The answer is
therefore 5! = 120.

If you are interested in the number of ways to arrange a subset of objects from a
finite set of distinct objects (i.e., they are all different), you can use permutations
to calculate the answer. In fact, the number of ways to arrange five out of five
objects, as in the previous paragraph, is a permutation problem in which the
subset is the same as the entire set. But more typically a permutation question
deals with something like the number of ways to arrange three books from a set of
five. There are several different conventions in permutation notation, so you may
see any of the following denoting the number of ways to arrange r objects chosen
from a set of n:

The number of ways to arrange three objects selected from five is therefore:

Note that by convention 0! is defined as 1, not 0, to avoid the problem of division
by 0.

In a permutation, the order of objects is significant. If we were arranging sets of
three from the first five letters of the alphabet, for instance, (a, b, c) would be a
different permutation than (a, c, b). If order is not a concern, we are dealing with
combinations rather than permutations. In a combination, we are interested in the
number of distinct sets of r objects that can be selected from a set of n objects, but
do not count different orders of the same objects as a different set. When
choosing sets of three from the first five letters of the alphabet, (a, b, c) would be
considered the same combination as (a, c, b). Like permutations, there is not one
standard notation for combinations and you may see any of the following to
denote the number of combinations of r objects from a set of n:

There is a simple relationship between the number of permutations and number
of combinations possible when choosing r items from n items:

nPr = (r!)nCr

10!
8!
--------

10( ) 9( ) 8( ) 7( ) 6( ) 5( ) 4( ) 3( ) 2( ) 1( )
8( ) 7( ) 6( ) 5( ) 4( ) 3( ) 2( ) 1( )

----------------------------------------------------------------------------------------- 10 9( ) 90= = =

P n r,( ) nPr P
n

r
n!

n r–( )!
-------------------= = =

5P3 5!
5 3–( )!

-------------------
5!
2!
----- 5 4( ) 3( ) 60= = = =

C n r,( ) nCr C
n

r
n
r 

 = = =
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Therefore:

This relationship should be clear if we consider the ways to arrange a selection of
two from the first three letters of the alphabet. The six permutations are:

ab ac ba bc ca cb

While the three combinations are:

 ab ac bc

because ab and ba are different permutations but the same combination, as are ac
and ca, and bc and cb. Mathematically:

Exercises
Here’s a review of the concepts in this appendix.

Laws of Arithmetic and Real Numbers

You will get a better diagnosis of your mathematical understanding if you do the
first seven sections without using a pocket calculator, i.e., if you use your knowl-
edge of algebra to solve them by hand. In the case of answers with unresolved
variables (such as x or y) just restate them in simplest form.

1.  3 + (–8) =

2. 6/–3 =

3.  (–8y)(–6z) =

4. 2 + 5/10 =

5. (2 + 5)/10 =

6. 6 + 32 –5 =

7. (3 + 2)2 =

8. [12(5) – 2(3)] / (3 × 2) =

9. –(3 – 5x) =

10. 6(4 + 2x) – x(5) =

11. 3(4/x) =

12. 5x(4 – 2) =

13. (5x + 6)(3) =

n
r 

  nPr
r!

---------
n!

r! n r–( )!
-----------------------= =

nPr 3!
3 2–( )!

------------------- 3! 6= = =

n
r 

  3P2
2!

----------
3!

2! 3 2–( )!
-------------------------

3!
2!
----- 3= = = =
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Exponents, Roots, and Logarithms

1. 20 =

2. (1/4)2 =

3. (–x)4 =

4. (x3)2 =

5. 22 (23) =

6. x5(x-2) =

7. (4 × 2)2 =

8. 2-1 =

9. x2/x4 =

10. (2/3)2 =

11. (7y2)1 =

12. (5/9)-1 =

13. x5/x-2 =

14. (27/8)-1/3 =

15. (4/9)1/2 =

16.

17.

18.

19.

20.

21. e0 =

22. ln 1 =

23. log10 100 =

24. log10 (5 × 2) =

25. ln e3 =

Solving Equations for x

1. 3x + 7 = 20

2. (1/3)x = 6

x4 =

27y33 =

4 16× =

25
81
------ =

x4

y6
-----4 =
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3. 3(x + 2) = 2(x + 1)

4. 4x = 3(x – 2) + 7

Systems of Linear Equations

1. 3x – 2y = 6 and x + 2y = 14

2. x + 3y = –1 and 2x + y = 3

Linear Equations and Cartesian Coordinates

1. Given a line with the equation y = 3x + 2, fill in the following table.

2. In the equation y = –x + 5, what is the slope and what is the y-intercept?

3. Given the equation y = 6 – 2x, if x increases by 2, what happens to y?

4. Find the slope for the following pair of points: (5, 3) and (2, –1)

5. Given a line with slope –1 that runs through the point (2, 4), find the y-
coordinate for the line when it passes through x = –3.

Linear Equalities

1. If a < b, what is the relationship of 3a to 3b?

2. If a < b, what is the relationship of –2a to –2b?

3. Solve down to an inequality for x: 5(2x –1) > 8

4. Solve down to an equality for x: 3x(2) GE 4

Fractions, Decimals, and Percents

1.

2.

3.

4.

x y

0

0

1

–1

3x2y
1

------------ =

5xy3z2

6y5
------------------ =

8
10
------

3
15
------+ =

8y3

2y
---------

9y2

3
---------+ =
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5.

6.

7.

8.

9. What is 20% of 75?

10. What is the decimal equivalent of 7/21?

11. If we sold 500 units last year, and sales increased by 10% this year, how many
units did we sell this year?

12. If sales declined by 20% this year, how many units did we sell?

Factorials, Permutations, and Combinations

It’s OK to use a calculator for this section.

1. 7! =

2. 6P4 =

3. 8C3 =

4.

5. How many ways are there to choose a batting lineup (9 players) from 15
players total (order does count)?

6. How many unique combinations (order does not count) of 5 items can you
select from 10 unique items?

Answers

Laws of Arithmetic and Real Numbers

1. 3 + (–8) = –5

2. 6/–3 = –2

3.  (–8y)(–6z) = 48yz

4. 2 + 5/10 = 2.5 or 2 1/2

5. (2 + 5)/10 = 7/10 or 0.7

6. 6 + 32 –5 = 10

5
4
---

7
3
---× =

3x
7
------

2
x
---× =

7
5
---

14
10
------÷ =

x
3
---

2
3x
------÷ =

x!
x 1–( )!

------------------- =



Answers | 411

Basic
M

athem
atics

7. (3 + 2)2 = 25

8. [12(5) – 2(3)] / (3 × 2) = 9

9. –(3 – 5x) = –3 + 5x

10. 6(4 + 2x) – x(5) = 24 + 12x – 5x = 24 + 7x

11. 3(4/x) = 12/x or 12x-1

12. 5x(4 – 2) = 10x

13. (5x + 6)(3) = 15x + 18

Exponents, Roots, and Logarithms

1. 20 = 1

2. (1/4)2 = 1/16 or 0.0625

3. (–x)4 = x4

4. (x3)2 = x6

5. 22 (23) = 25 = 32

6. x5(x-2) = x3

7. (4 × 2)2 = 82 = 64

8. 2–1 = 1/2 or 0.5

9. x2/x4 = x -2 or 1/x2

10. (2/3)2 = 4/9 or 0.444…

11. (7y2)1 = 7y2

12. (5/9)-1 = 9/5 or 1 4/5 or 1.8

13. x5/x-2 = x7

14. (27/8)-1/3 = 2/3

15. (4/9)1/2 = 2/3

16.

17.

18.

19.

20.

x4 x2=

27y33 3y=

4 16× 2 4× 8= =

25
81
------

5
9
---=

x4

y6
-----4 x y⁄ 3 2⁄=
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21. e0 = 1

22. ln 1 = 0

23. log10 100 = 2

24. log10 (5 × 2) = 1

25. ln e3 = 3

Solving Equations for x

1. 3x + 7 = 20: x = 13/3 or 4 1/3

2. (1/3)x = 6: x = 18

3. 3(x + 2) = 2(x + 1): x = –4

4. 4x = 3(x – 2) + 7: x = 1

Systems of Linear Equations

1. 3x – 2y = 6 and x + 2y = 14: solution = (5, 4.5)

2. x + 3y = –1 and 2x + y = 3: solution = (2, –1)

Linear Equations and Cartesian Coordinates

1. Given a line with the equation y = 3x + 2, fill in the following table.

2. In the equation y = –x + 5, what is the slope and what is the y-intercept?
Slope = –1, y-intercept = 5

3. Given the equation y = 6 – 2x, if x increases by 2 what happens to y? y
decreases by 4

4. Find the slope for the following pair of points: (5, 3) and (2, –1): 4/3

5. Given a line with slope –1 that runs through the point (2, 4), find the y-coor-
dinate for the line when it passes through x = –3: y1 = 9

Linear Equalities

1. If a < b, what is the relationship of 3a to 3b? 3a < 3b

2. If a < b, what is the relationship of –2a to –2b? –2a > –2b

3. Solve down to an inequality for x: 5(2x –1) > 8: 10x > 13 or x > 13/10

4. Solve down to an equality for x: 3x(2) GE 4: x GE 4/6 or x GE 2/3

x y

0 2

–2/3 0

1 5

–1 –1
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Fractions, Decimals, and Percents

1.

2.

3.

4.

5.

6.

7.

8.

9. What is 20% of 75? 15

10. What is the decimal equivalent of 7/21? 0.333

11. If we sold 500 units last year, and sales increased by 10% this year, how many
units did we sell this year? 550

12. If sales declined by 20% this year, how many units did we sell? 400

Factorials, Permutations, and Combinations

1. 7! = 5040

2. 6P4 = 360

3. 8C3 =56

4.

5. In baseball, how many ways are there to choose a batting lineup (9 players)
from 15 players total (order does count)? 15P9 = 1,816,214,400

6. How many unique combinations (order does not count) of 5 items can you
select from 10 unique items? 10C5 = 252

3x2y
1

------------ 3x2y=

5xy3z2

6y5
------------------

5xz2

6y2
------------=

8
10
------

3
15
------+ 30

30
------ 1= =

8y3

2y
---------

9y2

3
---------+ 7y2=

5
4
---

7
3
---× 35

12
------ 2

11
12
------= =

3x
7
------

2
x
---× 6

7
---=

7
5
---

14
10
------÷ 1=

x
3
---

2
3x
------÷ x2

2
-----=

x!
x 1–( )!

------------------- x=
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B
Introduction to Statistical
Packages

At some point in your statistics career, you may need to use a statistical package:
theoretical understanding and a pocket calculator can take you only so far. Fortu-
nately, we live in an age when there are many types of software available to make
the task of doing statistics easier. Most statisticians work with one or more of the
standard statistical packages, such as SAS or SPSS: a statistical package is basically
a collection of software routines with a common interface that has been designed
to simplify the job of performing statistical analysis and related tasks such as data
management. The main thing to remember with regard to statistical packages is
that, like any computer software, they are only a means to an end. Each package
has its advantages and disadvantages, and at least at the beginning level you will
probably need to use whatever is available at your workplace or at your school. If
you then need to learn a new package (say, for a different job) it should not pose
great difficulty. If you have a good theoretical understanding of statistics and at
least minimal computer aptitude, you can figure out how to use just about any
statistical package.

However, starting to work with a new statistical package may seem a daunting
task, particularly if your boss or instructor assumes that you are already an expert
in it! Printed manuals or online help files may or may not be useful at the very
start: a surprising number assume you are already familiar with the software in
question, when that familiarity is the very thing you lack. So the purpose of this
appendix is to give you a brief overview of several of the most popular packages,
with particular emphasis on matters that may be crucial to the new user and/or
not clearly stated in most documentation.

Another thing I have tried to accomplish in this appendix is to provide a sense of
the particular strengths and weakness of each package, and what are typical uses
for each. Of course I can only speak from my experience, and my thoughts are
certainly not the last word on the subject. If you are ever in the position of
needing to choose a package to purchase for your department that will perform
specific functions, you will want to consult several of the many online or
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published reviews that discuss the relative capabilities of the different statistical
packages, such as http://en.wikipedia.org/wiki/Comparison_of_statistical_packages.

Minitab
Minitab is a statistical package developed at Pennsylvania State University in the
1980s and now sold by the privately owned company Minitab, Inc. It is
commonly used as instructional software in beginning statistics classes and is also
used for business and quality improvement applications because it includes
routines to compute many statistics and create the charts most commonly used in
those contexts. Although Minitab is a proprietary product, a free 30-day trial copy
may be downloaded from the company web site at http://www.Minitab.com.

Minitab is favored in some beginning statistics classes because it is easy to use:
according to the company web site, it is the most common statistical software
used for instruction in colleges and universities worldwide. The standard installa-
tion includes an extensive system of help files and demonstrations, which also
make it popular with beginners. However, the features that make it easy for begin-
ners to learn, such as reliance on a menu interface while offering only limited
syntax capability and the provision of only a limited number of analytical choices,
may make it unsuitable for more advanced applications.

Minitab can import and export files in several formats, including its proprietary
Minitab worksheet (identified with the extension *.mtw) and Minitab project (*.mpj)
formats, and Excel (*.xls) and text (*.txt) files. Data is stored in rectangular files as
shown in Figure B-1: rows are numbered and columns are identified as C1, C2, etc.
Variable names may be added in the shaded row between the column label and data
set. Both data and variable names may be typed directly into the Minitab worksheet.

Commands in Minitab are usually generated through the menu interface; they are
recoded in the session window, along with output that can be expressed as text.
Graphical results are each written to a separate window (which can make for quite
a proliferation of open windows during an analysis!). All results plus the data set
for an analysis may be saved as a Minitab project, and data sets and graphs may
also be saved as separate files in a number of different formats. An excerpt from
the session window for a logistic regression analysis is shown in Figure B-2.

Figure B-1. Minitab worksheet

http://en.wikipedia.org/wiki/Comparison_of_statistical_packages
http://www.Minitab.com
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Running an analysis using Minitab means opening a data set and choosing analyt-
ical options from the menu system (often several layers of nesting are involved in
even simple analyses, which can be confusing). Minitab can do many basic
descriptive statistics, graphical displays, power and sample size calculations,
random number generation, and some more advanced statistical analyses such as
linear and logistic regression; however, the options available are often surpris-
ingly limited compared to statistical packages such as SPSS or SAS. Therefore, if
Minitab is under consideration for purchase it is wise to run some proposed anal-
yses using the trial copy to see if these limitations will be a problem for your
proposed uses.

The greatest strength of Minitab may be in quality control and related business
applications: it is the world leader in that context, according to the company web

Figure B-2. Minitab session window
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site. Minitab is often the statistical package taught in conjunction with Six Sigma
and similar types of quality improvement training. Specific business and quality
control functions are easily produced in Minitab, including DOE (Design of
Experiments) analyses, run charts, control charts (Minitab was used to create the
control charts for Chapter 18 of this book), time series methods, fishbone
diagrams (cause and effect diagrams), Pareto charts, and capability analyses.

Appendix C lists several useful references for Minitab. The Minitab home page
(http://www.minitab.com) includes a number of tutorials and papers to assist
Minitab users, including a downloadable basic textbook (http://www.minitab.com/
support/docs/rel15/MeetMinitab.pdf). A web search will reveal many independent
tutorials and help sites as well. Instructional books about Minitab or that teach it
in conjunction with quality improvement include Ryan, Joiner, and Cryer’s
Minitab Handbook (Duxbury), Matthews’s Design of Experiments with Minitab
(American Society for Quality), and Henderson’s Six Sigma: Quality Improvement
with Minitab (Wiley).

SPSS
SPSS is a general-purpose statistical computing package sold by SPSS, Inc., which
was first released in 1968. It is widely used by social scientists (the name origi-
nally meant Statistical Package for the Social Sciences) and is also used extensively
in other areas including health research, business, and education. SPSS might be
characterized as offering capabilities somewhere between Minitab and SAS: it is
more complex and offers many more analytical possibilities than Minitab, but is
more limited than SAS. On the other hand, many beginners find SPSS easier to
learn than SAS, as SPSS offers both syntax and a menu interface, offers a spread-
sheet interface as its default, and is superior in data formatting and
documentation.

SPSS can import and export data in many formats and in nonrectangular configu-
rations; however, the data set is always translated to an SPSS rectangular data file,
known as a system file (which uses the extension *.sav). Metadata (information
about the data) such as variable formats, missing values, and variable and value
labels are stored with the data set. Two views are offered of the data: the spread-
sheet-like Data View (Figure B-3) and the Variable View (Figure B-4), which
shows the metadata. You can type directly into either window, so data may be
entered directly into the Data View, and variable names, labels, and so on into the
Variable View window.

SPSS can be operated entirely through syntax (computer code), which may be
typed directly into the syntax window, or written using any text or word
processing program and pasted into the syntax window (Figure B-5). SPSS syntax
files are stored with the extension *.sps. This is a great advantage over programs
that are entirely menu-driven because the syntax preserves a record of how an
analysis was performed, can be shared with others (for instance, by emailing the
text file to a collaborator), and can be reused (for instance, to produce daily or
weekly reports). SPSS syntax is easy to write and interpret (at least relative to
many other programs!), as should be evident in the code excerpt in Figure B-6.
You can probably guess what this code is doing without ever having used SPSS.

http://www.minitab.com
http://www.minitab.com/support/docs/rel15/MeetMinitab.pdf
http://www.minitab.com/support/docs/rel15/MeetMinitab.pdf
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Here’s a hint: lines beginning with * are comments, i.e., notes to the programmer
rather than executable lines of code. The actual program recodes the continuous
variable exercise into the dichotomous variable exerc_cat, adds labels to the new
variable and its values, and creates a cross-tabulation table of the two variables to
check that the coding was executed correctly.

However, some people prefer to use the menu interface, and almost any statistical
analysis or data management function in SPSS can be accomplished by either
means. I prefer to think of the menu system as an alternative way of generating
code that can be saved in a syntax file. This lets me enjoy the best of both worlds:
I can use the menus to write the syntax for an unfamiliar command, then save the
syntax as a record of the analysis performed, which I can also reuse or alter if I
desire. The second paragraph of syntax in Figure B-5 was created this way: the
tell-tale sign of menu-generated syntax is the capitalized commands (RECODE,
VARIABLE LABELS, etc.). To generate syntax using the menu system, make all
relevant selections in the menu command interface, then select “Paste” rather
than “OK” as the final step, as shown in Figure B-6. This results in the syntax
being saved in a syntax file, or appended to an existing syntax file, if one is already
open. On the other hand, if you simply want to run an analysis and don’t care
about saving the syntax, click “OK” instead and the analysis executes immedi-
ately. The statistical results are the same either way.

Figure B-3. SPSS Data View

Figure B-4. SPSS Variable View
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It would be impossible in this brief space to enumerate all the types of analyses
available; an overview of SPSS capabilities can be found on the SPSS web page
(http://www.spss.com). It is an expensive program beyond the range of most indi-
viduals, but educational prices are lower and often universities obtain a site
license so they are able to provide students and employees with access to SPSS for
free or at much lower cost.

Figure B-5. SPSS syntax window

Figure B-6. Using the SPSS menu system to generate syntax

http://www.spss.com
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Appendix C lists several sources of help for the SPSS user. For someone who
wants to learn SPSS using the menu system, a useful series of books written by
Marija Norusis have been published by SPSS, Inc.: these include the SPSS 15.0
Guide to Data Analysis (2007), the SPSS 15.0 Statistical Procedures Companion
(2006), and the SPSS 15.0 Advanced Statistical Procedures Companion (2007).
Note that slightly older versions of these books may also be useful, particularly at
the beginning level, since many of the changes in new versions of SPSS involve
adding new programs rather than changing the more basic procedures. For those
wishing to learn SPSS syntax, books available include Boslaugh’s An Intermediate
Guide to SPSS Programming: Using Syntax for Data Management (Sage) and
Levesque’s SPSS Programming and Data Management: A Guide for SPSS and SAS
Users (SPSS; out of print but may be downloaded from http://www.spsstools.net/).
Tutorials, sample code, and guidance about using SPSS are available from a
number of web sites: two of the best are located at UCLA (http://www.ats.ucla.
edu/STAT/spss/) and Texas A & M University (http://www.stat.tamu.edu/spss.php).

SAS
SAS is a statistical software package that was developed at North Carolina State
University in the 1960s, and since 1976 has been a commercial product sold by
SAS Institute. It is another step up in complexity from SPSS: SAS is somewhat
more difficult to use but offers much more in terms of types of analyses available
and flexibility in specifying and executing those analyses. The major disadvantage
for beginners is that SAS is a syntax-based system and there are so many choices
to be made for even a simple analysis that it can overwhelm people who don’t
have a background in or aptitude for programming. SAS is also less friendly in
terms of managing data files and metadata; for instance, it stores formats in files
separate from the data file and requires that the format location be specified in the
syntax every time the data file is opened (rather than attaching the format infor-
mation to the data file, as SPSS does). However, SAS has become the standard
language in many professional fields, and there is more assistance for learning and
using SAS, both from the SAS web page (http://www.sas.com) and help desk and
from many published books and web sites, than is available for SPSS.

SAS is similar to SPSS in many ways: it is a comprehensive statistical package that
can conduct more types of analyses than can possibly be enumerated here; it can
read and write data sets in many different formats; and it is prohibitively expen-
sive for an individual to buy but may be affordable if your school or place of
business has a site license. The major difference is that SAS is primarily a syntax-
based system, with the exception of JMP, a menu-driven, interactive statistics and
graphics package that is now sold by a division of SAS. Many statisticians prefer
to work with syntax anyway, partly because they (like me!) are so old they learned
to use computers before graphical interfaces were available and partly because (as
mentioned in the SPSS section above) syntax may be shared and reused. In addi-
tion, writing syntax forces programmers to think through their analysis in a way
that can be avoided while clicking on menus. To someone just starting out in
statistics, however, the lack of a menu interface may seem more of a barrier than
an advantage. This may be somewhat ameliorated by using the time-tested
method of taking someone else’s code and altering it to fit your needs, and there is

http://www.spsstools.net/
http://www.ats.ucla.edu/STAT/spss/
http://www.ats.ucla.edu/STAT/spss/
http://www.stat.tamu.edu/spss.php
http://www.sas.com
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so much annotated SAS code available on the Internet that you could probably
teach yourself to write SAS programs just by using this method.

SAS has three main windows: the syntax window, where you can type your syntax
or copy it in from another text or word processing program; the log window,
which contains a record or log of everything done in a particular session,
including warnings and other messages from the SAS system; and the output
window, where output from statistical procedures is sent by default (it can be
directed to other locations, such as an html or *.rtf file, through use of the ODS
system). To use SAS, you must open an SAS data set or import another type of
data (such as a file stored in Excel or text format), submit commands through the
syntax window, and check the output in the output window. The log and syntax
windows are illustrated in Figure B-7.

The syntax window (transprt) illustrates three main features of SAS program-
ming. The first is that the location of SAS data files are declared using the libname
command and the data files themselves referenced with a two-part name: library.
datasetname. In this case we declared the library brfss (the actual name is arbi-
trary) to exist at the physical location:

C:\Documents and Settings\seb5632\Desktop\2007brfss\

then referenced the data set brfss.brfss2007 that is stored in that location. The
second main point is that SAS programs consist primarily of two types of steps:

1. DATA steps, which open, manipulate, and save data files.

2. PROC steps, which perform statistical analyses on the files.

Figure B-7. SAS log and syntax windows
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In this case, our DATA step opened the file brfss.brfss2007, selected cases for
Missouri (state code = 29), and stored the selected cases in a new file called brfss.mo.
We then created a crosstabulation table for the variables hlthplan and sex using
this new data file, selecting only cases with a value of 1 or 2 on the variable
hlthplan.

The log window (Log – (Untitled)) echoes the syntax submitted and also contains
messages from the SAS system. Messages in the output window tell us that 5,252
cases were used to create the cross-tabulation table, and give us information about
processing time and CPU usage.

An excerpt from the output created by this syntax is shown in the SAS output
window in Figure B-8.

To the far left of the log, syntax, and output windows are two other windows that
may be toggled between by use of the tabs in their lower corners. The Results
window (Figure B-9) shows an outline of the results produced during a session:
clicking on any folder causes the next greater level of detail to be displayed. The
Explorer window (Figures B-10 and B-11) allows access to different SAS libraries
(any libraries created by the user, such as y in this case, must have been declared
by a libname command during the current SAS session): clicking on the folders
moves the display to the next greater level of detail.

Figure B-8. SAS output

Figure B-9. SAS Results window: output from the Frequency procedure is displayed at one
level greater of detail than that of the Means or Corr procedure
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Note that it is possible to open an SAS data set in spreadsheet form (as in
Figure B-12), which SAS calls Viewtable format, by clicking on it in the Explorer
window, and that it is possible to enter or edit data directly by this method:
normally, however, in SAS these procedures are accomplished using syntax.

Several resources to learn SAS are listed in Appendix C. This is only a beginning:
there are many resources available on the Internet to help you learn SAS. Because
it is a syntax-based language, examples of annotated code are particularly useful
in learning SAS. Good sources of annotated code include the support section of
the SAS web site (http://support.sas.com), the UCLA web site (http://www.ats.ucla.
edu/stat/sas/modules/), and the Texas A & M web site (http://techdocs.tamu.edu/
Completed/SASUG); many more can be found by searching the Internet. There are
many more books published about SAS than about any of the other packages
discussed in this appendix, so the trick is not finding a book about SAS but
finding the book that meets your needs. Two good books for beginners that

Figure B-10. SAS Explorer window

Figure B-11. Contents of a data library (three SAS data files) from SAS Explorer window

http://support.sas.com
http://www.ats.ucla.edu/stat/sas/modules/
http://www.ats.ucla.edu/stat/sas/modules/
http://techdocs.tamu.edu/Completed/SASUG
http://techdocs.tamu.edu/Completed/SASUG
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include discussions about file types, importing and exporting data, etc., are
Delwiche and Slaughter’s The Little SAS Book: A Primer (SAS), and Cody’s
Learning SAS by Example: A Programmer’s Guide (SAS). Cody and Smith’s
Applied Statistics and the SAS Programming Language (Prentice Hall) focuses more
on statistical procedures. There are also many discipline-specific SAS books, such
as Walker’s Common Statistical Methods for Clinical Research with SAS Examples
(SAS).

R
R is a programming language that functions as a statistical package because of the
many pre-written statistical routines (computer code written to perform a partic-
ular task) that are available. It differs from the other packages discussed in this
appendix because, rather than being a proprietary product sold or licensed by a
corporation, it is a product that is freely available for download. R is sometimes
described as “GNU-S” because it is an implementation of the proprietary language
S-Plus, which is sold by the Insighful Corporation. It is an extremely powerful
system, and new routines are being written and made available on the Internet
every day by statisticians and programmers all over the world. Graphics available
in R are superior to those produced by almost any other system. Another advan-
tage of using R is that every algorithm in R is available to be read and interpreted
by anyone (so you can find out exactly what the computer is doing when it
executes a command), in contradistinction to proprietary packages such as SAS
and SPSS.

Free is a tough price point to beat, so you may wonder why everyone isn’t already
using R to do statistical work. The answer is that R is much harder to use than the
other packages discussed in this appendix, particularly for someone who doesn’t
have a lot of aptitude or experience as a programmer. Even the R tutorials and
help files may be baffling to the naive user. Using R also requires the programmer

Figure B-12. SAS data set in Viewtable format
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to think about what they are doing, to a greater extent than programming in SAS.
While this is certainly an educational advantage, people who just want to produce
a few simple statistics may not feel that the initial difficulty is worth the
investment.

On the other hand, if you start out using R at the same time you learn statistics it
may be no more difficult to learn than any other package. There are several GUI
implementations available, and as R becomes increasingly common, even more
user-friendly adaptations may be developed. A sort of natural experiment is
currently taking place as R is increasingly being adopted as a teaching language
for beginning statistics, so perhaps in 10 years we will be able to answer this ques-
tion. One thing is certain: as R becomes more popular and is used more as the
first language for introductory statistics classes, more instructional materials
appropriate to absolute beginners are being written and distributed. And if you
are serious about statistics as a career, you need to become familiar with R
because it is the most powerful and flexible language available, and may become
the lingua franca of statistical programming in the near future.

To use R, you first need to download it to your computer. The easiest way to do
this is to go to the CRAN (Comprehensive R Archive Network) web page (http://
cran.r-project.org) and follow the instructions. The next step, unless you are very
stout of heart (or already an ace programmer), is to find a good instructional text
for R; there are some on the market, and others that may be downloaded from
the Internet. You may also want to check out the resources available at http://
www.r-project.org/.

R is a command-oriented language: you type commands at a command prompt
and the R-interpreter responds interactively, either executing the command or
giving you an error message. The commands are quite compact compared to those
used in SPSS and SAS, and can appear cryptic to the uninitiated; however, once
you learn to use R, you will come to appreciate its efficiency. Even more so than
with the other languages discussed in this appendix, the best way to get comfort-
able with R is to get some basic instructional materials and run through some very
simple examples on your computer.The R language is really quite logical, but that
logic is easier to recognize through use and practice than by reading someone
else’s explanation.

Another thing you should know about R is that it is an object-oriented language
(as are Java, C++, and Smalltalk, among others, but in distinction to the other
packages discussed in this appendix); this basically means that everything you
create in R is an object that can be further manipulated by other commands. An
object is also a member of a class, meaning that it has certain characteristics and
internal organization that allow you to perform operations on it. Again, those are
concepts that are easier to understand when you have some experience using an
object-oriented language.

Several resources for learning R are listed in Appendix C, and there are more
becoming available every day. An Internet search is one good way to turn up
resources, since many instructors using R have made their instructional materials
freely available. Instructional books for R include Dalgaard’s Introductory Statis-
tics with R (Springer), Maindonald and Brown’s Data Analysis and Graphics Using

http://cran.r-project.org
http://cran.r-project.org
http://www.r-project.org/
http://www.r-project.org/
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R: An Example-Based Approach (Cambridge), Braun and Murdloch’s A First
Course in Statistical Programming with R (Cambridge), and Crawley’s A Hand-
book of Statistical Analyses Using R (Chapman & Hall). Instructional materials
available from the Internet include Using the R Statistical Computing Environment
to Teach Social Statistics Courses by Fox and Anderson (http://www.unt.edu/rss/
Teaching-with-R.pdf), Verzani’s Using R for Introductory Statistics (http://cran.r-
project.org/doc/contrib/Verzani-SimpleR.pdf), and Baron and Li’s Notes on the use
of R for psychology experiments and questionnaires (http://www.psych.upenn.edu/
~baron/rpsych/rpsych.html).

Microsoft Excel
Microsoft Excel is, properly speaking, not a statistical package at all, although it is
sometimes used as one. Excel is a spreadsheet application produced by Microsoft
Corporation that is frequently used for data management because of its ubiquity
(it is preloaded on most new computers sold in the United States, for instance),
ease of use, and the fact that the major statistical packages have prewritten
routines to import and export data in Excel format. Excel also has the capability
to produce graphs and charts and perform some statistical analyses, although you
should know that Excel has some well-known flaws in statistical accuracy
(discussed, for instance, at http://www.daheiser.info/excel/frontpage.html), so the
advisability of using it for anything beyond the most basic displays and calcula-
tions is arguable. On the other hand, Excel may be entirely adequate for your
needs, or it may be the software of choice in a class you are taking. Just remember
that Excel is a spreadsheet application, not a statistical package, and proceed
accordingly. If you have to justify a decision to use Excel versus some other
package for analysis or teaching, this is one time I would highly recommend
reading some of the (often heated) discussion on this issue, which you can easily
find through an Internet search.

Excel stores data in individual spreadsheets, which it calls worksheets; multiple
worksheets are collected into a workbook. Individual data points are stored in cells
(the rectangular boxes in the worksheets) identified by column and row, e.g., cell
A1. Both individual worksheets and workbooks use the extension *.xls. A spread-
sheet looks like a rectangular data set, but has many more capabilities, including
built-in functions to perform computations on sets of cells such as rows or
columns of data. Excel also offers many choices regarding how data is stored, how
it appears on the screen, and how it is printed: a given cell, column, or row can be
formatted for string or numeric data, to appear in a number of date formats, and
so on.

In Figure B-13, you can see a worksheet (Sheet1) within a workbook that includes
three worksheets: you maneuver between worksheets by clicking on the tabs at
the bottom of the window (labeled Sheet1, Sheet2, and Sheet3 in this example).
Rows are horizontal, as in the standard rectangular data set, so we have row 1,
row 2, etc. Columns are vertical, so we have column A, column B, and so on. Indi-
vidual cells are defined by row and column, so the cell in the upper-lefthand
corner is A1, the next to its right is B1, and the next below is A2. A1, A2, etc. are
called cell references.

http://www.unt.edu/rss/Teaching-with-R.pdf
http://www.unt.edu/rss/Teaching-with-R.pdf
http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
http://www.psych.upenn.edu/~baron/rpsych/rpsych.html
http://www.psych.upenn.edu/~baron/rpsych/rpsych.html
http://www.daheiser.info/excel/frontpage.html
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Data can be entered simply by typing in the worksheet, in which case Excel
applies default formats based on its “best guess” as to the type of data entered.
These formats can be changed using the menu commands Format/Format Cells;
Figure B-14 shows some of the choices available for date-format data. If you are
using Excel to collect data that will be transferred to a different program for anal-
ysis, you should be aware that formatting is often lost or garbled in the transfer
process. For this reason, particularly when working with time and date variables
(which because of their complexity and the different ways they are stored in the
different programs, are frequently mistranslated between programs), some
researchers prefer to use text format for all Excel data to be imported, and to
format it after importation in the program where it will be analyzed.

Variable names can be added in the first row, and many packages have the option
to retain those names when importing data (i.e., they will not be confused with
data in the new program but will be attached to the data used as variable names).
However, because the row containing the variable names is counted as a data row
in Excel but not in programs such as SPSS and SAS, the imported file will have
one fewer row than the Excel file. This may cause panic, as it appears a case has
been lost, although the discrepancy is just due to differing ways of storing data.

Another trap for the unwary when transferring data between systems is the fact
that each system has a different set of rules for variable names; it can be disheart-
ening to spend a lot of time entering meaningful variable names in a spreadsheet,
only to have them appear as “Var1”, “Var2”, and so on when the file is imported
into a statistical package. If you are going to import variable names, you need to
follow the rules of the target program, so if you are going to import the data into
SPSS, follow the SPSS naming conventions when entering the names in your Excel
spreadsheet. One solution is to use simple names (such as v1, v2, etc.) in Excel
and then write code in the target program to add meaningful names to the
variables.

Figure B-13. Microsoft Excel worksheet



428 | Appendix B: Introduction to Statistical Packages

Excel has the capability to create many types of charts and graphs. Somewhat
confusingly, to create a chart or graph you insert it into a worksheet, using the
menu commands Insert/Chart and making choices from a series of menus. It can
then be saved as a separate object if desired and/or inserted into other programs
such as Microsoft Word. Types of charts and graphs available include column,
bar, line, pie, scatterplot, area, bubble, donut, radar, and stock (hi-low-close).

You can do quite a lot of basic arithmetic in Excel, and the spreadsheet capabili-
ties are particularly useful if you need to do arithmetic on many rows or columns
of numbers. Excel includes a number of built-in functions that allow you to
compute basic statistics for any collection of cells, and you can also perform arith-
metic operations by specifying the equation. In either case, the function or
formula is entered into a cell, which will also be used to store the results of the
calculation. Note that in the examples below, cells are referred to by their loca-
tion (row and column). For instance, to add numbers you can specify the
equation using the + sign or the function SUM; for large groups of numbers, using
a function is more practical. Both methods are shown in Figure B-15, and both
produce the identical result (30). Normally cells containing a formula display the
result of the calculation, but you can cause the formulas to be displayed by
selecting a range of cells and typing CTL ` (hold down the control key and type a
backtick); the same sequence will reverse the process, i.e., hide the formulas and
display the results. Excel has hundreds of built-in functions: you can find a list of
them under “Function Reference” in the help menu or by searching the help files.
Note that only the results of formulas, not the formulas themselves, are generally
transferred when a data set is moved from Excel to some other program.

Figure B-14. Some examples of formatting available in Excel
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Often, when working with spreadsheets, a formula may be entered once and then
copied to other locations; for instance, you may sum one column of numbers,
then wish to sum several more columns without respecifying the formula. This
can be done quickly in Excel by dragging the formula from one cell to the next:
the cell references will change automatically. This is demonstrated in Figure B-16.

Note that cell references can be either relative or constant. The references in the
formulas above are relative: the “Annual Total” line for each column is simply the
sum of the four cells in rows 3–6 of that column (which represent quarterly sales
totals for that year). When the formula was dragged from column C to column D,
the references in the formula were also changed, so “=SUM(C3:C6)” became
“=SUM(D3:D6)” and similarly for column E. In some cases you want a cell refer-
ence to be constant, meaning that it remains the same when the formula is
dragged to a new column or row. To hold a cell constant, precede both the
column and row designations by a dollar sign: $C$1 always refers to cell C1,
whether the rest of the formula refers to column A or Z, or row 1 or 100. The
reference $C1 would keep the column constant but allow the row to change,
while C$1 would keep the row constant but allow the column to change.

Excel includes a set of tools called the Analysis ToolPak, which can be used to do
more complex statistical analyses. The Analysis ToolPak is an add-in or supple-
mental program that can perform procedures such as random number generation
and exponential smoothing, as well as statistical procedures such as t-tests and
ANOVA. To access these options, click on Tools/Data Analysis in the Excel menu
system: if you don’t see the Data Analysis option, Analysis ToolPak has not been
installed on your system. Bear in mind also that the accuracy of the results using
some of these procedures has been severely criticized (as mentioned above), and
the choice to use them should take those criticisms into account.

Figure B-15. Two ways to perform addition in Excel

Figure B-16. Repeating the same formula across columns
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Appendix C lists several sources of help if you are trying to learn to use Excel for
statistical purposes. An Internet search using terms such as “Excel AND statis-
tics” should locate a number of tutorials offering more instruction (and more
criticism!) regarding using Excel to do statistical calculations. In addition, there
are many handbooks for Excel on the market, and several statistics books have
been written that use Excel, including Triola’s Elementary Statistics Using Excel
(Addison Wesley) and Knight’s Analyzing Business Data Using Excel (O’Reilly).
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multiple events, probability of, 31
multiple forms reliability, 10
multiple linear regression, 264

common problems, 277
proxy and dummy variables, 270
regression algorithms, 272
standardized coefficients, 269

multiple linear regressions
models, 264

multiple-occasions reliability, 9
multiplication, 393

of exponential numbers, 395
of fractions, 404

multiplicative identity of 0, 394
multiplicative identity of 1, 394
multitrait, multimethod matrix (see

MTMM)
multivariate, 76
mutual exclusivity, 26

N
negative discrimination, 381
negative exponents, 395
negative probability, 29
Nelson rules, 334
nominal data, 2
nonignorable missing data, 52
nonnormal data, 208
nonparametric statistics, 207
nonparametric tests, 209–221

between-subjects designs, 209–217
Kruskal-Wallis H test, 214–217
median test, 213
Wilcoxon’s rank sum and Mann-

Whitney U tests, 209–213
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within-subjects designs, 217–221
Friedman test, 219–221
Wicoxon matched pairs signed

rank test, 217–219
nonprobability sampling, 134
nonresponse bias, 16
normal distribution, 127–129
normal scores, 369
normalized scores, 128
norm-referenced scoring, 367
norm-referenced tests, 371
null hypothesis, 153
numeric variables, 51

O
observational studies, 86–88

potential biases, 87
observations, 23
observed score and true score, 373
odds ratio, 352–354
OLS (Ordinary Least Squares)

algorithm, 278
OLS (Ordinary Least Squares) regression

equations, 132
omega (ω), 361
operationalization, 5
opportunity loss tables, 325
order of operations, 393
ordered pairs, 399
ordinal data, 3
ordinal variables, 188
orthogonal decomposition, 298
orthogonality, 90
out of control processes, 334
outcome variables, 133
outcomes, 324
outliers, 56, 62
overfitting, 292

P
Paasche Index, 318
Packel, Edward, 40
parallel forms reliability, 10
parameter estimation, 207
parameters, xii, 54
parametric hypothesis testing, 152
parametric statistics, 146
Pareto charts or diagrams, 68–70
Pareto, Vilfredo, 70

PCA (Principal Components
Analysis), 298

Pearson’s chi-square test, 195
Pearson’s correlation, 199
Pearson’s product moment correlation

coefficient, 176–180
statistical significance, testing, 179

percent agreement, 11
percentages, lying with, 363
percentiles, 367
percents, 405
permutations, 27, 406
person-time units, 343
Phi correlation coefficient, 186, 199,

372, 382
pi (π), 361
pie charts, 68
placebo effect, 93, 102
playing cards, 35
point estimates, 144
point-biserial correlation, 185, 381
point-slope form, 401
Poisson distribution, 113
polling, presidential elections, 20
polynomial regression, 288
populations at risk, 343
populatios, defining, 112
positive discrimination, 381
post hoc tests, 238
power analysis, 358–361

factors affecting power, 359
power and sample size theory, 358–361
power rules for exponents, 395
predictive validity, 14, 98
predictor variables, 85, 133
prevalence, 342
probability, 21–34

Bayes’s theorem, 32–34
conditional probabilities, 30
defining, 29–32
of multiple events, 31
probability statements, 30

probability distributions, 126–132
probability sampling, 135–137
probable error, 114
product variables, 328
products, processes, and systems, 328
propensity score, 88
properties of equality, 397
proportion, 340
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prospective longitudinal studies, 86
Proxscal algorithm, 312
proxy measurement, 6
pseudo-chance-level parameter, 387
psychometrics, 366

composite tests, reliability, 374
IRT, 383–388
item analysis, 379–383
measures of internal

consistency, 375
percentiles, 367
test construction, 370–373
uses of, 366

p-values, 145

Q
QI (Quality Improvement), 328–335

choosing a charting method, 334
control charts, 329
out of control processes, 334
products, processes, and

systems, 328
statistical process control, 329

quadratic polynomial regression, 288
quality, 328
Quality Improvement (see QI)
quantitative variables, 171
quasi-experimental studies, 86
quota sampling, 134

R
R × C table, 189
r (Pearson’s product-moment correlation

coefficient), 176
R programming language, 424
r2 (coefficient of determination), 180
random error, 8
random measurement error, 373
random selection, 91
randomization, 354
randomized block design, 104
range, 59
rank correlation coefficient, 183
rank sum, 209
ranking, alphabetic versus numerical

categories, 208
Rasch model, 386
rate, 340

ratio, 340
ratio data, 4
Raudenbush, Stephen, xiii
raw time series, 321
real numbers, 394
recall bias, 17, 86
records, 45
rectangular coordinates, 399
rectangular data file, 45–47
reference groups, 270
regression algorithms, 272
regression coefficients, 132
regression equations, 132
regression towards the mean, 98
regressors, 133
relational databases, 47
reliability, 8–11
reliability coefficient, 375
reliability index, 374
reliability of experimental results, 101
repeated measures ANOVA, 255–257
repeated measures t-tests, 160
replication, 99
research design, 85

evaluating, 111, 111–113
coincidence, 113
controls, 113
population, 112
sampling, 112
variation, 112

experimental studies (see
experimental studies)

mixed designs (see mixed designs)
observational studies, 86–88
response variables, 85, 95

response variables, 95, 133
restriction, 354
retrospective longitudinal studies, 86
risk assessment, 326
risk ratio, 348–352
rϕ (phi correlation coefficient), 186
robustness, 208
rolling average, 321
roots, 395–396
rule of double negatives, 394
run charts, 330
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S
sample size, 359
sample size calculations, 361–362

confidence interval for a
proportion, 361

independent samples t-test, 362
sample space, 24
samples, xii, 54, 133
sampling, 112

nonprobability sampling, 134
probability sampling, 135–137
representative sampling, 108
sampling proportional to size, 137

SAS, 420–424
scatterplots, 77, 170
s-charts, 334
Scheffe test, 238
scientific notation, 28
scree plot, 300
secondary analysis, 87
selection bias, 15
semantic differential scale, 203
serial correlation, 278
set theory symbols, xix
Shewhart, Walter, 328, 329
Shumway,Robert S., 319
sigma (Σ), 56
sigma (σ), 127
sigmoidal form, 285
simple composite index, 316
simple imputation, 53
simple index number, 315
simple moving average (see SMA)
simple random sampling (see SRS)
Simpson’s paradox, 206
single-blind experimental methods, 102
single-tailed hypothesis, 142
Six Sigma (6σ), 328, 331
slope, 171, 399
SMA (simple moving average), 321
smoothing, 321
SMR (standardized mortality ratio), 348
social desirability bias, 17
Somers’s d, 201
Spearman, Charles, 374
Spearman rank-order coefficient, 183,

199
special causes, 329
split-half methods, 376

split-half reliability, 10
spreadsheets, 47
SPSS, 417–420
SRS (simple random sampling), 135
standard deck of cards, 35
standard deviation, 60
standard error, 114
standard normal distribution, 127
standardized morbidity ratio, 348
standardized mortality ratio (see SMR)
Standardized Residual Sum of Square

(STRESS), 312
standardized scores, 369
states of nature, 324
stationary quality of time series

data, 320
statistical formulas, symbols for, xix
statistical inference, 54, 96
statistical packages, 414

Microsoft Excel, 426–430
Minitab, 415–417
R programming language, 424
SAS, 420–424
SPSS, 417–420

statistical power calculation, 165
statistical process control, 329
statistical symbols, xix
statistical validity, 99
statistics, xii, 55

and gambling, 39
descriptive statistics, 113
evaluating (see evaluating statistics)
examples from dice, coins, and

playing cards, 35–39
inferential statistics (see inferential

statistics)
misuse of, 107

stem-and-leaf plots, 70–74
stepwise algorithms, 272

backward entry, 275
forward entry, 274

stratification, 356
string variables, 51
subject-centered measurement, 370
substitution bias, 320
subtraction of fractions, 404
summation (∑), 23
summation notation, 55
symbols, xix
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systematic error, 8, 86
systematic measurement error, 374
systematic sampling, 135
systems of equations, 398

T
table of symbols, xix
t-distribution, 151
temporal stability, 9
test construction, 370–373

items and item difficulty, 371
norm-referenced tests, 371

test-retest method, 375
test-retest reliability, 9
tetrachoric correlation coefficient, 199,

382
three-way ANOVA, 248–250
time series, 319–323
TQM (Total Quality Management), 328
trials, 23
triangulation, 14
trimmed means, 57
triple-blind experimental methods, 103
true score, 7, 373
t-tests, 118, 151, 152–155

brewery example, 166–168
independent samples t-test, 362
one-sample t-test, 155–157
repeated measures t-test, 160
two-sample t-test, 157–160
unequal variance t-test, 162–163

Tufte, Edward, xiii, 63
Tukey, John, 71
two-sided confidence interval

formula, 361
two-tailed hypothesis, 142
two-way ANOVA, 244–248
Type I and Type II errors, 100, 143, 359

U
unequal variance t-tests, 162–163
union (∪), 24

of mutually exclusive events, 31
of non-mutually exclusive events, 31

unique identifiers, 49
units of analysis, 47, 342
univariate, 76

V
validity, 8, 12, 97–101
variables, 45
variance, 60
variation, 112
Velicer partial correlation

procedure, 300
Venn diagrams, 24, 25
volunteer bias, 16
volunteer samples, 134

W
Wald test, 286
Wechsler Adult Intelligence Scale

(WAIS), 369
weighted composite index, 317
weighted moving average (see WMA)
Welch t-test, 163
Western Electric Rules, 334
Wilcoxon matched pairs signed rank

test, 217–219
Wilcoxon’s rank sum test, 209–213
window, 321
within-subjects design, 89, 104

nonparametric tests for, 217–221
Friedman test, 219–221
Wilcoxon matched pairs signed

rank test, 217–219
WMA (weighted moving average), 323

X
x-bar charts, 334

Y
Yates’ correction for continuity, 195
Yerkes-Dodson Law, 288
y-intercept, 399

Z
Z distribution, 127, 128
zero exponent, 395
Z-scores, 369
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as a spiny spider crab (Maja squinado, Maja brachydactyla). Found in the north-
east Atlantic Ocean and the Mediterranean Sea, the thornback crab is the largest
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Thornback crabs are occasionally found on the shore, but they prefer depths of 90
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dant, they can be a source of frustration for lobster fisherman, as they infest the
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sponges, or aquatic debris to better blend in against the seabed.
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