
 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Squid: The Definitive Guide

By Duane Wessels

Publisher: O'Reilly

Pub Date: January 2004

ISBN: 0-596-00162-2

Pages: 496

Squid is the most popular Web caching software in use today, and it works on a variety of
platforms including Linux, FreeBSD, and Windows. Written by Duane Wessels, the creator of
Squid, Squid: The Definitive Guide will help you configure and tune Squid for your particular
situation. Newcomers to Squid will learn how to download, compile, and install code. Seasoned
users of Squid will be interested in the later chapters, which tackle advanced topics such as
high-performance storage options, rewriting requests, HTTP server acceleration, monitoring,
debugging, and troubleshooting Squid.

 < Day Day Up >

http://www.oreilly.com/catalog/squid/reviews.html
http://www.oreilly.com/cgi-bin/reviews?bookident=squid
http://www.oreilly.com/catalog/squid/errata/
http://academic.oreilly.com/
http://www.oreillynet.com/cs/catalog/view/au/578?x-t=book.view

 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Squid: The Definitive Guide

By Duane Wessels

Publisher: O'Reilly

Pub Date: January 2004

ISBN: 0-596-00162-2

Pages: 496

 Copyright

 Dedication

 Preface

 About This Book

 Recommended Reading

 Conventions Used in This Book

 Comments and Questions

 Acknowledgments

 Chapter 1. Introduction

 Section 1.1. Web Caching

 Section 1.2. A Brief History of Squid

 Section 1.3. Hardware and Operating System Requirements

 Section 1.4. Squid Is Open Source

 Section 1.5. Squid's Home on the Web

 Section 1.6. Getting Help

 Section 1.7. Getting Started with Squid

 Section 1.8. Exercises

 Chapter 2. Getting Squid

 Section 2.1. Versions and Releases

http://www.oreilly.com/catalog/squid/reviews.html
http://www.oreilly.com/cgi-bin/reviews?bookident=squid
http://www.oreilly.com/catalog/squid/errata/
http://academic.oreilly.com/
http://www.oreillynet.com/cs/catalog/view/au/578?x-t=book.view

 Section 2.2. Use the Source, Luke

 Section 2.3. Precompiled Binaries

 Section 2.4. Anonymous CVS

 Section 2.5. devel.squid-cache.org

 Section 2.6. Exercises

 Chapter 3. Compiling and Installing

 Section 3.1. Before You Start

 Section 3.2. Unpacking the Source

 Section 3.3. Pretuning Your Kernel

 Section 3.4. The configure Script

 Section 3.5. make

 Section 3.6. make Install

 Section 3.7. Applying a Patch

 Section 3.8. Running configure Later

 Section 3.9. Exercises

 Chapter 4. Configuration Guide for the Eager

 Section 4.1. The squid.conf Syntax

 Section 4.2. User IDs

 Section 4.3. Port Numbers

 Section 4.4. Log File Pathnames

 Section 4.5. Access Controls

 Section 4.6. Visible Hostname

 Section 4.7. Administrative Contact Information

 Section 4.8. Next Steps

 Section 4.9. Exercises

 Chapter 5. Running Squid

 Section 5.1. Squid Command-Line Options

 Section 5.2. Check Your Configuration File for Errors

 Section 5.3. Initializing Cache Directories

 Section 5.4. Testing Squid in a Terminal Window

 Section 5.5. Running Squid as a Daemon Process

 Section 5.6. Boot Scripts

 Section 5.7. A chroot Environment

 Section 5.8. Stopping Squid

 Section 5.9. Reconfiguring a Running Squid Process

 Section 5.10. Rotating the Log Files

 Section 5.11. Exercises

 Chapter 6. All About Access Controls

 Section 6.1. Access Control Elements

 Section 6.2. Access Control Rules

 Section 6.3. Common Scenarios

 Section 6.4. Testing Access Controls

 Section 6.5. Exercises

 Chapter 7. Disk Cache Basics

 Section 7.1. The cache_dir Directive

 Section 7.2. Disk Space Watermarks

 Section 7.3. Object Size Limits

 Section 7.4. Allocating Objects to Cache Directories

 Section 7.5. Replacement Policies

 Section 7.6. Removing Cached Objects

 Section 7.7. refresh_pattern

 Section 7.8. Exercises

 Chapter 8. Advanced Disk Cache Topics

 Section 8.1. Do I Have a Disk I/O Bottleneck?

 Section 8.2. Filesystem Tuning Options

 Section 8.3. Alternative Filesystems

 Section 8.4. The aufs Storage Scheme

 Section 8.5. The diskd Storage Scheme

 Section 8.6. The coss Storage Scheme

 Section 8.7. The null Storage Scheme

 Section 8.8. Which Is Best for Me?

 Section 8.9. Exercises

 Chapter 9. Interception Caching

 Section 9.1. How It Works

 Section 9.2. Why (Not) Intercept?

 Section 9.3. The Network Device

 Section 9.4. Operating System Tweaks

 Section 9.5. Configure Squid

 Section 9.6. Debugging Problems

 Section 9.7. Exercises

 Chapter 10. Talking to Other Squids

 Section 10.1. Some Terminology

 Section 10.2. Why (Not) Use a Hierarchy?

 Section 10.3. Telling Squid About Your Neighbors

 Section 10.4. Restricting Requests to Neighbors

 Section 10.5. The Network Measurement Database

 Section 10.6. Internet Cache Protocol

 Section 10.7. Cache Digests

 Section 10.8. Hypertext Caching Protocol

 Section 10.9. Cache Array Routing Protocol

 Section 10.10. Putting It All Together

 Section 10.11. How Do I ...

 Section 10.12. Exercises

 Chapter 11. Redirectors

 Section 11.1. The Redirector Interface

 Section 11.2. Some Sample Redirectors

 Section 11.3. The Redirector Pool

 Section 11.4. Configuring Squid

 Section 11.5. Popular Redirectors

 Section 11.6. Exercises

 Chapter 12. Authentication Helpers

 Section 12.1. Configuring Squid

 Section 12.2. HTTP Basic Authentication

 Section 12.3. HTTP Digest Authentication

 Section 12.4. Microsoft NTLM Authentication

 Section 12.5. External ACLs

 Section 12.6. Exercises

 Chapter 13. Log Files

 Section 13.1. cache.log

 Section 13.2. access.log

 Section 13.3. store.log

 Section 13.4. referer.log

 Section 13.5. useragent.log

 Section 13.6. swap.state

 Section 13.7. Rotating the Log Files

 Section 13.8. Privacy and Security

 Section 13.9. Exercises

 Chapter 14. Monitoring Squid

 Section 14.1. cache.log Warnings

 Section 14.2. The Cache Manager

 Section 14.3. Using SNMP

 Section 14.4. Exercises

 Chapter 15. Server Accelerator Mode

 Section 15.1. Overview

 Section 15.2. Configuring Squid

 Section 15.3. Gee, That Was Confusing!

 Section 15.4. Access Controls

 Section 15.5. Content Negotiation

 Section 15.6. Gotchas

 Section 15.7. Exercises

 Chapter 16. Debugging and Troubleshooting

 Section 16.1. Some Common Problems

 Section 16.2. Debugging via cache.log

 Section 16.3. Core Dumps, Assertions, and Stack Traces

 Section 16.4. Replicating Problems

 Section 16.5. Reporting a Bug

 Section 16.6. Exercises

 Appendix A. Config File Reference

 http_port

 https_port

 ssl_unclean_shutdown

 icp_port

 htcp_port

 mcast_groups

 udp_incoming_address

 udp_outgoing_address

 cache_peer

 cache_peer_domain

 neighbor_type_domain

 icp_query_timeout

 maximum_icp_query_timeout

 mcast_icp_query_timeout

 dead_peer_timeout

 hierarchy_stoplist

 no_cache

 cache_access_log

 cache_log

 cache_store_log

 cache_swap_log

 emulate_httpd_log

 log_ip_on_direct

 cache_dir

 cache_mem

 cache_swap_low

 cache_swap_high

 maximum_object_size

 minimum_object_size

 maximum_object_size_in_memory

 cache_replacement_policy

 memory_replacement_policy

 store_dir_select_algorithm

 mime_table

 ipcache_size

 ipcache_low

 ipcache_high

 fqdncache_size

 log_mime_hdrs

 useragent_log

 referer_log

 pid_filename

 debug_options

 log_fqdn

 client_netmask

 ftp_user

 ftp_list_width

 ftp_passive

 ftp_sanitycheck

 cache_dns_program

 dns_children

 dns_retransmit_interval

 dns_timeout

 dns_defnames

 dns_nameservers

 hosts_file

 diskd_program

 unlinkd_program

 pinger_program

 redirect_program

 redirect_children

 redirect_rewrites_host_header

 redirector_access

 redirector_bypass

 auth_param

 authenticate_ttl

 authenticate_cache_garbage_interval

 authenticate_ip_ttl

 external_acl_type

 wais_relay_host

 wais_relay_port

 request_header_max_size

 request_body_max_size

 refresh_pattern

 quick_abort_min

 quick_abort_max

 quick_abort_pct

 negative_ttl

 positive_dns_ttl

 negative_dns_ttl

 range_offset_limit

 connect_timeout

 peer_connect_timeout

 read_timeout

 request_timeout

 persistent_request_timeout

 client_lifetime

 half_closed_clients

 pconn_timeout

 ident_timeout

 shutdown_lifetime

 acl

 http_access

 http_reply_access

 icp_access

 miss_access

 cache_peer_access

 ident_lookup_access

 tcp_outgoing_tos

 tcp_outgoing_address

 reply_body_max_size

 cache_mgr

 cache_effective_user

 cache_effective_group

 visible_hostname

 unique_hostname

 hostname_aliases

 announce_period

 announce_host

 announce_file

 announce_port

 httpd_accel_host

 httpd_accel_port

 httpd_accel_single_host

 httpd_accel_with_proxy

 httpd_accel_uses_host_header

 dns_testnames

 logfile_rotate

 append_domain

 tcp_recv_bufsize

 err_html_text

 deny_info

 memory_pools

 memory_pools_limit

 forwarded_for

 log_icp_queries

 icp_hit_stale

 minimum_direct_hops

 minimum_direct_rtt

 cachemgr_passwd

 store_avg_object_size

 store_objects_per_bucket

 client_db

 netdb_low

 netdb_high

 netdb_ping_period

 query_icmp

 test_reachability

 buffered_logs

 reload_into_ims

 always_direct

 never_direct

 header_access

 header_replace

 icon_directory

 error_directory

 maximum_single_addr_tries

 snmp_port

 snmp_access

 snmp_incoming_address

 snmp_outgoing_address

 as_whois_server

 wccp_router

 wccp_version

 wccp_incoming_address

 wccp_outgoing_address

 delay_pools

 delay_class

 delay_access

 delay_parameters

 delay_initial_bucket_level

 incoming_icp_average

 incoming_http_average

 incoming_dns_average

 min_icp_poll_cnt

 min_dns_poll_cnt

 min_http_poll_cnt

 max_open_disk_fds

 offline_mode

 uri_whitespace

 broken_posts

 mcast_miss_addr

 mcast_miss_ttl

 mcast_miss_port

 mcast_miss_encode_key

 nonhierarchical_direct

 prefer_direct

 strip_query_terms

 coredump_dir

 ignore_unknown_nameservers

 digest_generation

 digest_bits_per_entry

 digest_rebuild_period

 digest_rewrite_period

 digest_swapout_chunk_size

 digest_rebuild_chunk_percentage

 chroot

 client_persistent_connections

 server_persistent_connections

 pipeline_prefetch

 extension_methods

 request_entities

 high_response_time_warning

 high_page_fault_warning

 high_memory_warning

 ie_refresh

 vary_ignore_expire

 sleep_after_fork

 Appendix B. The Memory Cache

 Appendix C. Delay Pools

 Section C.1. Overview

 Section C.2. Configuring Squid

 Section C.3. Examples

 Section C.4. Issues

 Section C.5. Monitoring Delay Pools

 Appendix D. Filesystem Performance Benchmarks

 Section D.1. The Benchmark Environment

 Section D.2. General Comments

 Section D.3. Linux

 Section D.4. FreeBSD

 Section D.5. OpenBSD

 Section D.6. NetBSD

 Section D.7. Solaris

 Section D.8. Number of Disk Spindles

 Appendix E. Squid on Windows

 Section E.1. Cygwin

 Section E.2. SquidNT

 Appendix F. Configuring Squid Clients

 Section F.1. Manually

 Section F.2. Proxy Auto-Configuration

 Section F.3. WPAD

 Section F.4. Summary

 Colophon

 Index

 < Day Day Up >

 < Day Day Up >

Copyright © 2004 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://safari.oreilly.com). For more
information, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly Media, Inc. Squid: The Definitive Guide, the image of a giant squid and
related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly & Associates
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

 < Day Day Up >

http://safari.oreilly.com/
mailto:corporate@oreilly.com

 < Day Day Up >

Dedication

To my darling Anne. You have no idea.

 < Day Day Up >

 < Day Day Up >

Preface

About This Book

Recommended Reading

Conventions Used in This Book

Comments and Questions

Acknowledgments

 < Day Day Up >

 < Day Day Up >

About This Book

I started the Squid project eight years ago while working at the National Laboratory for Applied
Network Research and the University of California. Back then I certainly enjoyed writing code
and fixing bugs but always felt bad about the lack of decent documentation. This book is my
attempt to rectify that situation. It's been a long time coming and almost didn't happen. Like
they say, "better late than never!"

This book is written for those who are tasked with setting up and maintaining one or more
Squid caches. If you're new to Squid, I'll show you how to download, compile, and install the
code. Those of you who have been using Squid for a while will be more interested in the later
chapters, where I talk about disk cache performance, modifying requests, surrogate mode,
caching hierarchies, monitoring Squid, and more.

In order to use this book, you should have a basic knowledge of Unix systems. Many of the
book's examples are based on free operating systems, such as Linux, FreeBSD, NetBSD, and
OpenBSD. I also have some tips for Solaris users. If you're more comfortable with Windows
systems, you can use Squid under a Unix emulator or give the native NT port a try.

Here's an overview of the book's contents:

Chapter 1, Introduction

This chapter introduces you to Squid and web caching. I give a brief history of the
project, and a few notes on our future work. I explain how you can find additional
support and information, including a FAQ, on the Squid web site.

Chapter 2, Getting Squid

In this chapter, I explain how and why you should download Squid's source code. You
may prefer to install a precompiled binary or use a preconfigured package. I also talk
about staying up to date with Squid using the anonymous CVS server.

Chapter 3, Compiling and Installing

Assuming you've downloaded the source code, this chapter explains how to configure
and compile Squid. In some cases you may need to tune your system before compiling
Squid. For example, your kernel may have relatively low file-descriptor limits that affect
Squid's performance.

Chapter 4, Configuration Guide for the Eager

Here, I give a brief introduction to Squid's configuration file. If you are the impatient
type and can't wait to start using Squid, this chapter will leave you with a minimal

configuration file you can start playing with.

Chapter 5, Running Squid

In this chapter, I explain how to run Squid for the first time and how to test Squid in a
terminal window. Following that, I suggest a number of ways to configure your system
so that Squid starts each time it boots. I also explain how to reconfigure Squid while it is
running and how to safely shut it down.

Chapter 6, All About Access Controls

I talk extensively about access controls in this chapter. Squid has a powerful collection
of access control features and a number of different rule sets that determine how
requests and responses are treated. This is an important chapter because a mistake in
your access controls may leave your cache, or even internal systems, vulnerable to
abuse from outsiders.

Chapter 7, Disk Cache Basics

This chapter is about Squid's primary function: storing cached responses on disk. I
explain how to configure the disk cache, including replacement policies and freshness
controls. I also show you how to manually remove unwanted objects from the cache.

Chapter 8, Advanced Disk Cache Topics

In this chapter, I explain how to improve the performance of Squid's disk cache. I'll talk
about Squid's different storage schemes and a number of filesystem tuning options that
may help. If your Squid cache handles a relatively light load, you probably don't need to
worry about disk performance.

Chapter 9, Interception Caching

Here, I explain how to configure Squid for HTTP interception, sometimes also called
transparent caching. Actually, configuring Squid is the easy part. The difficulty comes
from setting up a router or switch on your network and the host from which Squid is
running. I explain how to configure networking equipment from Cisco, Alteon, Foundry,
and Extreme. I'll also show you how to configure your operating system (Linux,
FreeBSD, NetBSD, OpenBSD, and Solaris) for HTTP interception. Finally, I talk about
WCCP.

Chapter 10, Talking to Other Squids

In this chapter, I cover the ins and outs of cache cooperation, including meshes, arrays,
and hierarchies. You may also find it useful if you simply need to forward requests from
Squid to another proxy or intermediary. I'll talk about the various intercache protocols

supported by Squid (ICP, HTCP, Cache Digests, and CARP) and how Squid chooses the
next-hop location for a given cache miss.

Chapter 11, Redirectors

Redirectors are the best way to make Squid rewrite HTTP requests before forwarding
them. I describe the interface between Squid and a redirector program so that you can
write your own. I also present a few of the more popular third-party redirectors
available.

Chapter 12, Authentication Helpers

In this chapter, I explain how Squid interfaces with external authentication databases
such as LDAP, NT domain controllers, and password files. Squid comes with a number of
authentication helpers and understands Basic, Digest, and NTLM authentication
credentials. I also document the API for each, in case you want to develop your own
helper.

Chapter 13, Log Files

I cover Squid's various log files in this chapter, including access.log, store.log, cache.
log, and others. I explain what each log file contains and how you should periodically
maintain them.

Chapter 14, Monitoring Squid

This chapter provides a lot of information on monitoring Squid's operation. I cover both
SNMP and Squid's own cache manager interface. You'll find it useful for both long-term
monitoring and short-term problem diagnosis.

Chapter 15, Server Accelerator Mode

Squid's server accelerator mode is useful in a number of situations. You can use it to
boost your origin server's poor performance, as a firewall to protect the server, or even
to build your own content delivery network. I show how to set up Squid and make sure
that outsiders can't abuse your service.

Chapter 16, Debugging and Troubleshooting

The book's final chapter explains how to debug and troubleshoot problems with Squid.
You may find that some sites, or some user agents, don't work properly with Squid. I
show how to isolate and reproduce the problem and how to present the information to
Squid developers for assistance.

Appendix A, Config File Reference

This appendix is a reference guide for each of Squid's 200 configuration file directives.
Each has a description, syntax, defaults, and examples.

Appendix B, The Memory Cache

This brief appendix explains a little about Squid's memory cache.

Appendix C, Delay Pools

You can use Squid's delay pools feature to limit bandwidth consumed by web surfers. I
explain how the delay pools work and provide a number of example configurations.

Appendix D, Filesystem Performance Benchmarks

In this appendix, I present the results of numerous filesystem benchmarks. These may
help you make informed decisions regarding particular operating systems, filesystem
features, and Squid's storage techniques.

Appendix E, Squid on Windows

Have a look at this appendix if you'd like to run Squid on your Windows box. I talk about
using Cygwin and about a native port of Squid, called SquidNT.

Appendix F, Configuring Squid Clients

This appendix contains information on how to configure various user agents to use
Squid. I talk about manual configuration, environment variables, Proxy Auto-
Configuration functions, and the Web Proxy Auto Discovery protocol.

As I'm finishing up this book, the latest stable version is Squid-2.5.STABLE4, and the
development version is Squid-3.0. Perhaps the most important difference between the two is
that Squid-3 is being rewritten in C++. You should find that most things are backward-
compatible, although a few new configuration directives have been created. Please read the
release notes carefully if you use Squid-3.0 or later.

I have created a web site for the book, located at http://squidbook.org/. There, you will find
errata, supplemental information, and links to online resources.

Topics Not Covered

Due to a lack of time and space, there are some topics I was unable to cover in this book; they
include:

http://squidbook.org/

Non-HTTP protocols

You'll find that I mostly talk about HTTP, even though Squid also supports FTP, Gopher,
and some other relatively obscure protocols.

Customizing error messages

Squid's error messages can be customized and the source distribution includes versions
of the error messages in a number of different languages. You can probably figure out
how to customize the error messages by modifying the default pages or by reading
Squid's source code.

Load balancing Squids

Load balancing is a popular way to increase the capacity of a caching service. Refer to
one of the load balancing books mentioned in the following section if necessary.

What is cachable

HTTP has a number of somewhat complicated rules for determining what may, or may
not be, cached, and for how long. Refer to Web Caching, or HTTP: The Definitive Guide
(for more information, see the next section).

Copyright

A number of nontechnical issues surround web caching. These include copyrights and
privacy.

Modifying the source

I don't go into detail about Squid's source code in this book. The Squid project hosts a
programmers' guide, which is generally incomplete and out of date. If you have
questions about the source code, please join the squid-dev mailing list.

SOCKS

Squid doesn't support the SOCKS protocol at this time.

 < Day Day Up >

 < Day Day Up >

Recommended Reading

While reading this book, you may want to consult some of these other resources for more
information (I'll refer to them throughout this book):

● The Design and Implementation of the 4.4 BSD Operating System by Marshall Kirk
McKusick, Kieth Bostic, Michael J. Karels, and John S. Quarterman (Addison-Wesley
Longman)

● DNS and BIND by Paul Albitz and Cricket Liu (O'Reilly & Associates)
● HTTP: The Definitive Guide by David Gourley and Brian Totty (O'Reilly)
● Load Balancing Servers, Firewalls, and Caches by Chandra Koopurapu (John Wiley &

Sons)
● Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly)
● Server Load Balancing by Tony Bourke (O'Reilly)
● Unix System Administration Handbook and Linux System Administration Handbook by

Evi Nemeth, Garth Snyder, Scott Seebass, and Trent R. Hein (Prentice Hall)
● My book, Web Caching (O'Reilly)
● RFC 1413: Identification Protocol
● RFC 1738: Uniform Resource Locators (URL)
● RFC 2186: Internet Cache Protocol (ICP), Version 2
● RFC 2187: Application of Internet Cache Protocol (ICP), Version 2
● RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax
● RFC 2616: Hypertext Transfer Protocol—HTTP/1.1
● RFC 2617: HTTP Authentication: Basic and Digest Access Authentication
● RFC 2756: Hypertext Caching Protocol
● RFC 2817: Upgrading to TLS Within HTTP/1.1
● RFC 3040: Internet Web Replication and Caching Taxonomy
● RFC 3143: Known HTTP Proxy/Caching Problems
● Caching-related web sites, such as http://www.caching.com/ and http://www.web-

cache.com/

 < Day Day Up >

http://www.caching.com/
http://www.web-cache.com/
http://www.web-cache.com/

 < Day Day Up >

Conventions Used in This Book

I use the following typesetting conventions in this book:

Italic

Used for new terms where they are defined, buttons, pages, configuration file directives,
filenames, modules, ACLs, directories, and URI/URLs

Constant width

Used for configuration file examples, program output, HTTP header names and
directives, scripts, options, environment variables, functions, methods, rules, keywords,
libraries, and command names

Constant width italic

Used for replaceable text within examples and code pieces

Constant width bold

Used to indicate commands to be typed verbatim

When displaying a Unix command, I'll include a shell prompt, like this:

% ls -l

If the command is specific to the Bourne shell (sh) or C shell (csh), the prompt will indicate
which you should use:

sh$ ulimit -a

csh% limits

If the command requires super-user privileges, the shell prompt is a hash mark:

make install

Occasionally, I provide configuration file examples with long lines. If the line is too wide to fit
on the page, it's wrapped around and indented. Squid doesn't accept this sort of syntax, so you
must make sure to place everything on one line.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

 < Day Day Up >

 < Day Day Up >

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/squid

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network,
check the O'Reilly web site at:

http://www.oreilly.com

You can contact the author at wessels@packet-pushers.com.

 < Day Day Up >

http://www.oreilly.com/catalog/squid
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
mailto:wessels@packet-pushers.com

 < Day Day Up >

Acknowledgments

Looking back at the events and people that allowed me to write this book makes me feel
extremely humble and grateful. I'm so happy to have been a part of the Harvest project with
Mike Schwartz, Peter Danzig, and the others. That led directly to my work with kc claffy and
Hans-Werner Braun at NLANR/UCSD. The Squid project would have never been at all without
their support, and the grant from the National Science Foundation.

I'm also very thankful for all the hard work put in by the small crew of Squid developers:
Henrik Nordström, Robert Collins, Adrian Chadd, and everyone else who has contributed time
and code to the project. And I'm sorry that you ever had to read and/or fix any ugly code I
wrote.

To all the reviewers who read the drafts—Joe Cooper, Scott Pepple, Robert Collins, and Adrian
Chadd—thanks for finding my mistakes and suggesting ways to make the book better. I also
owe so much to the people at O'Reilly for making the book possible, and for making it all come
together. My editors Tatiana Diaz and Nat Torkington, the production editor Mary Anne Mayo,
the graphic designer Melanie Wang, the illustrator, Rob Romano, the XML mungers Andrew
Savikas and Joe Wizda, and the countless other folks working behind the scenes for me.

To my good friend, and business partner, Alex Rousskov: thanks for giving me the time and
freedom to see this little project through. Finally, to the members of my new family, Annie and
Blooey, thanks for putting up with the late nights. Can I make it up to you with extra back
scratches?

 < Day Day Up >

 < Day Day Up >

Chapter 1. Introduction

This long-overdue book is about Squid: a popular open source caching proxy for the Web. With
Squid you can:

● Use less bandwidth on your Internet connection when surfing the Web
● Reduce the amount of time web pages take to load
● Protect the hosts on your internal network by proxying their web traffic
● Collect statistics about web traffic on your network
● Prevent users from visiting inappropriate web sites at work or school
● Ensure that only authorized users can surf the Internet
● Enhance your user's privacy by filtering sensitive information from web requests
● Reduce the load on your own web server(s)
● Convert encrypted (HTTPS) requests on one side, to unencrypted (HTTP) requests on

the other

Squid's job is to be both a proxy and a cache. As a proxy, Squid is an intermediary in a web
transaction. It accepts a request from a client, processes that request, and then forwards the
request to the origin server. The request may be logged, rejected, and even modified before
forwarding. As a cache, Squid stores recently retrieved web content for possible reuse later.
Subsequent requests for the same content may be served from the cache, rather than
contacting the origin server again. You can disable the caching part of Squid if you like, but the
proxying part is essential.

Figure 1-1. Squid sits between clients and servers

As Figure 1-1 shows, Squid accepts HTTP (and HTTPS) requests from clients, and speaks a
number of protocols to servers. In particular, Squid knows how to talk to HTTP, FTP, and

Gopher servers.
[1]

 Conceptually, Squid has two "sides." The client-side talks to web clients (e.
g., browsers and user-agents); the server-side talks to HTTP, FTP, and Gopher servers. These
are called origin servers, because they are the origin location for the data they serve.

[1] Gopher servers are quite rare these days. Squid also knows about WAIS and
whois, but these are even more obscure.

Note that Squid's client-side understands only HTTP (and HTTP encrypted with SSL/TLS). This
means, for example, that you can't make an FTP client talk to Squid (unless the FTP client is
also an HTTP client). Furthermore, Squid can't proxy protocols for email (SMTP), instant
messaging, or Internet Relay Chat.

 < Day Day Up >

 < Day Day Up >

1.1 Web Caching

Web caching refers to the act of storing certain web resources (i.e., pages and other data files)
for possible future reuse. For example, Matilda is the first person in the office each morning,
and she likes to read the local newspaper online with her wake-up coffee. As she visits the
various sections, the Squid cache on their office network stores the HTML pages and JPEG
images. Harry comes in a short while later and also reads the newspaper online. For him, the
site loads much faster because much of the content is served from Squid. Additionally, Harry's
browsing doesn't waste the bandwidth of the company's DSL line by transferring the exact
same data as when Matilda viewed the site.

A cache hit occurs each time Squid satisfies an HTTP request from its cache. The cache hit
ratio, or cache hit rate, is the percentage of all requests satisfied as hits. Web caches typically
achieve hit ratios between 30% and 60%. A similar metric, the byte hit ratio, represents the
volume of data (i.e., number of bytes) served from the cache.

A cache miss occurs when Squid can't satisfy a request from the cache. A miss can happen for
any number of reasons. Obviously, the first time Squid receives a request for a particular
resource, it is a cache miss. Similarly, Squid may have purged the cached copy to make room
for new objects.

Another possibility is that the resource is uncachable. Origin servers can instruct caches on how
to treat the response. For example, they can say that the data must never be cached, can be
reused only within a certain amount of time, and so on. Squid also uses a few internal
heuristics to determine what should, or should not, be saved for future use.

Cache validation is a process that ensures Squid doesn't serve stale data to the user. Before
reusing a cached response, Squid often validates it with the origin server. If the server
indicates that Squid's copy is still valid, the data is sent from Squid. Otherwise, Squid updates
its cached copy as it relays the response to the client. Squid generally performs validation using
timestamps. The origin server's response usually contains a last-modified timestamp. Squid
sends the timestamp back to the origin server to find if the original resource has changed.

For a detailed treatment of web caching, have a look at my book Web Caching, also by O'Reilly.

 < Day Day Up >

 < Day Day Up >

1.2 A Brief History of Squid

In the beginning was the CERN HTTP server. In addition to functioning as an HTTP server, it
was also the first caching proxy. The caching module was written by Ari Luotonen in 1994.

That same year, the Internet Research Task Force Group on Resource Discovery (IRTF-RD)
started the Harvest project. It was "an integrated set of tools to gather, extract, organize,
search, cache, and replicate" Internet information. I joined the Harvest project near the end of
1994. While most people used Harvest as a local (or distributed) search engine, the Object
Cache component was quite popular as well. The Harvest cache boasted three major
improvements over the CERN cache: faster use of the filesystem, a single process design, and
caching hierarchies via the Internet Cache Protocol.

Towards the end of 1995, many Harvest team members made the move to the exciting world of
Internet-based startup companies. The original authors of the Harvest cache code, Peter Danzig
and Anawat Chankhunthod, turned it into a commercial product. Their company was later
acquired by Network Appliance. In early 1996, I joined the National Laboratory for Applied
Network Research (NLANR) to work on the Information Resource Caching (IRCache) project,
funded by the National Science Foundation. Under this project, we took the Harvest cache code,
renamed it Squid, and released it under the GNU General Public License.

Since that time Squid has grown in size and features. It now supports a number of cool things
such as URL redirection, traffic shaping, sophisticated access controls, numerous authentication
modules, advanced disk storage options, HTTP interception, and surrogate mode (a.k.a. HTTP
server acceleration).

Funding for the IRCache project ended in July 2000. Today, a number of volunteers continue to
develop and support Squid. We occasionally receive financial or other types of support from
companies that benefit from Squid.

Looking towards the future, we are rewriting Squid in C++ and, at the same time, fixing a
number of design issues in the older code that are limiting to new features. We are adding
support for protocols such as Edge Side Includes (ESI) and Internet Content Adaptation
Protocol (ICAP). We also plan to make Squid support IPv6. A few developers are constantly
making Squid run better on Microsoft Windows platforms. Finally, we will add more and more
HTTP/1.1 features and work towards full compliance with the latest protocol specification.

 < Day Day Up >

 < Day Day Up >

1.3 Hardware and Operating System Requirements

Squid runs on all popular Unix systems, as well as Microsoft Windows. Although Squid's
Windows support is improving all the time, you may have an easier time with Unix. If you have
a favorite operating system, I'd suggest using that one. Otherwise, if you're looking for a
recommendation, I really like FreeBSD.

Squid's hardware requirements are generally modest. Memory is often the most important
resource. A memory shortage causes a drastic degradation in performance. Disk space is,
naturally, another important factor. More disk space means more cached objects and higher hit
ratios. Fast disks and interfaces are also beneficial. SCSI performs better than ATA, if you can
justify the higher costs. While fast CPUs are nice, they aren't critical to good performance.

Because Squid uses a small amount of memory for every cached response, there is a
relationship between disk space and memory requirements. As a rule of thumb, you need 32
MB of memory for each GB of disk space. Thus, a system with 512 MB of RAM can support a 16-
GB disk cache. Your mileage may vary, of course. Memory requirements depend on factors
such as the mean object size, CPU architecture (32- or 64-bit), the number of concurrent users,
and particular features that you use.

People often ask such questions as, "I have a network with X users. What kind of hardware do I
need for Squid?" These questions are difficult to answer for a number of reasons. In particular,
it's hard to say how much traffic X users will generate. I usually find it easier to look at
bandwidth usage, and go from there. I tell people to build a system with enough disk space to
hold 3-7 days worth of web traffic. For example, if your users consume 1 Mbps (HTTP and FTP
traffic only) for 8 hours per day, that's about 3.5 GB per day. So, I'd say you want between 10
and 25 GB of disk space for each Mbps of web traffic.

 < Day Day Up >

 < Day Day Up >

1.4 Squid Is Open Source

Squid is free software and a collaborative project. If you find Squid useful, please consider
contributing back to the project in one or more of the following ways:

● Participate on the squid-users discussion list. Answer questions and help out new users.
● Try out new versions and report bugs or other problems.
● Contribute to the online documentation and Frequently Asked Questions (FAQ). If you

notice an inconsistency, report it to the maintainers.
● Submit your local modifications back to the developers for inclusion into the code base.
● Provide financial support to one or more developers through small development

contracts.
● Tell the developers about features you would like to have.
● Tell your friends and colleagues that Squid is cool.

Squid is released as free software under the GNU General Public License. This means, for
example, that anyone who distributes Squid must make the source code available to you. See
http://www.gnu.org/licenses/gpl-faq.html for more information about the GPL.

 < Day Day Up >

http://www.gnu.org/licenses/gpl-faq.html

 < Day Day Up >

1.5 Squid's Home on the Web

The main source for up-to-date information about Squid is http://www.squid-cache.org. There
you can:

● Download the source code.
● Read the FAQ and other documentation.
● Subscribe to the mailing list, or read the archives.
● Contact the developers.
● Find links to third-party applications.
● And more!

 < Day Day Up >

http://www.squid-cache.org/

 < Day Day Up >

1.6 Getting Help

Given that Squid is free software, you may need to rely on the kindness of strangers for
occasional assistance. The best place to do this is the squid-users mailing list. Before posting a
message to the mailing list, however, you should check Squid's FAQ document to see if your
question has already been asked and answered. If neither resource provides the help you need,
you can contact one of the many services offering professional support for Squid.

1.6.1 Frequently Asked Questions

Squid's FAQ document, located at http://www.squid-cache.org/Doc/FAQ/FAQ.html, is a good
source of information for new users. The FAQ evolves over time, so it will contain entries
written after this book. The FAQ also contains some historical information that may be
irrelevant today.

Even so, the FAQ is one of the first places you should look for answers to your questions. This
is especially true if you are a new user. While it is certainly less effort for you to simply write to
the mailing list for help, veteran mailing list members grow tired of reading and answering the
same questions. If your question is frequently asked, it may simply be ignored.

The FAQ is quite large. The HTML version exists as approximately 25 different chapters, each in
a separate file. These can be difficult to search for keywords and awkward to print. You can also
download PostScript, PDF, and text versions by following links at the top of the HTML version.

1.6.2 Mailing Lists

Squid has three mailing lists you might find useful. I explain how to become a subscriber below,
but you may want to check Squid's mailing list page, http://www.squid-cache.org/mailing-lists.
html, for possibly more up-to-date information.

1.6.2.1 squid-users

The squid-users mailing list is an excellent place to find answers for such questions as:

● How do I ... ?
● Is this a bug ... ?
● Does this feature/program work on my platform?
● What does this error message mean?

Note that you must subscribe before you can post a message. To subscribe to the squid-users
list, send a message to squid-users-subscribe@squid-cache.org.

If you prefer, you can receive the digest version of the list. In this case, you'll receive multiple
postings in a single email message. To sign up this way, send a message to squid-users-digest-
subscribe@squid-cache.org.

http://www.squid-cache.org/Doc/FAQ/FAQ.html
http://www.squid-cache.org/mailing-lists.html
http://www.squid-cache.org/mailing-lists.html
mailto:squid-users-subscribe@squid-cache.org
mailto:squid-users-digest-subscribe@squid-cache.org
mailto:squid-users-digest-subscribe@squid-cache.org

Once you subscribe, you can post a message to the list by writing to squid-users@squid-cache.
org. If you have a question, consider checking the FAQ and/or mailing list archives first. You
can browse the list archive by visiting http://www.squid-cache.org/mail-archive/squid-users/.
However, if you are looking for something specific, you'll probably have more luck with the
search interface at http://www.squid-cache.org/search/.

1.6.2.2 squid-announce

The moderated squid-announce list is used to announce new Squid versions and important
security updates. The volume is quite low, usually less than one message per month. Write to
squid-announce-subscribe@squid-cache.org if you'd like to subscribe.

1.6.2.3 squid-dev

The squid-dev list is a place where Squid hackers and developers can exchange ideas and
information. Anyone can post a message to squid-dev, but subscriptions are moderated. If
you'd like to join the discussion, please send a message about yourself and your interests in
Squid. One of the list members should subscribe you within a few days.

The squid-dev messages are archived at http://www.squid-cache.org/mail-archive/squid-dev/,
where anyone may browse them.

1.6.3 Professional Support

A number of companies now offer professional assistance for Squid. They may be able to help
you get started with Squid for the first time, recommend a configuration for your network
environment, and even fix some bugs.

Some of the consulting companies are associated with core Squid developers. By giving them
your business, you ensure that fixes and features will be committed to future Squid software
releases. If necessary, you can also arrange for development of private features.

Visit http://www.squid-cache.org/Support/services.html for the list of professional support
services.

 < Day Day Up >

mailto:squid-users@squid-cache.org
mailto:squid-users@squid-cache.org
http://www.squid-cache.org/mail-archive/squid-users/
http://www.squid-cache.org/search/
mailto:squid-announce-subscribe@squid-cache.org
http://www.squid-cache.org/mail-archive/squid-dev/
http://www.squid-cache.org/Support/services.html

 < Day Day Up >

1.7 Getting Started with Squid

If you are new to Squid, the next few chapters will help you get started. First, I'll show you how
to get the code, either the original source or precompiled binaries. In Chapter 3, I go through
the steps necessary to compile and install Squid on your Unix system; this chapter is important
because you'll probably need to tune your system before compiling the source code. Chapter 4
provides a very brief introduction to Squid's configuration file. Finally, Chapter 5 explains how
to run Squid.

If you've already had a little experience installing and running Squid, you may want to skip
ahead to Chapter 6.

 < Day Day Up >

 < Day Day Up >

1.8 Exercises

● Visit the Squid site and locate the squid-users mailing list archive. Browse the messages
for the past few weeks.

● Search the Squid FAQ for information about file descriptors.
● Check one of the Squid mirror sites. Is it up to date with the primary site?

 < Day Day Up >

 < Day Day Up >

Chapter 2. Getting Squid

Squid is normally distributed as source code. This means you'll probably need to compile it, as
described in Chapter 3. The installation process should be relatively painless. The developers
put a lot of effort into making sure Squid compiles easily on all the popular operating systems.

You can also find precompiled binaries for some operating systems. Linux users can get Squid
in one of the various package formats (e.g., RPM, Debian, etc.). The FreeBSD, NetBSD, and
OpenBSD projects offer Squid ports. The BSD ports aren't binary distributions but rather a
small set of files that know how to download, compile, and install the Squid source. While these
precompiled or preconfigured packages may be easier to install, I recommend that you
download and compile the source yourself.

Anonymous CVS is a great way for developers and users to stay current with the official source
tree. Instead of downloading entire new releases, you run a command to retrieve only the parts
that have changed since your last update.

 < Day Day Up >

 < Day Day Up >

2.1 Versions and Releases

The Squid developers make periodic releases of the source code. Each release has a version
number, such as 2.5.STABLE4. The third component starts either with STABLE or DEVEL (short
for development).

As you can probably guess, the DEVEL releases tend to have newer, experimental features.
They are also more likely to have bugs. Inexperienced users should not run DEVEL releases. If
you choose to try a DEVEL release, and you encounter problems, please report them to the
Squid maintainers.

After spending some time in the development state, the version number changes to STABLE.
These releases are suitable for all users. Of course, even the stable releases may have some
bugs. The higher-numbered stable versions (e.g., STABLE3, STABLE4) are likely to have fewer
bugs. If you are really concerned about stability, you may want to wait for one of these later
releases.

 < Day Day Up >

 < Day Day Up >

2.2 Use the Source, Luke

So why can't you just copy a precompiled binary to your system and expect it to work
perfectly? The primary reason is that the code needs to know about certain operating system
parameters. In particular, the most important parameter is the maximum number of open file
descriptors. Squid's ./configure script (see Section 3.4) probes for these values before
compiling. If you take a Squid binary built for one value and run it on a system with a different
value, you may encounter problems.

Another reason is that many of Squid's features must be enabled at compile time. If you take a
binary that somebody else compiled, and it doesn't include the code for the features that you
want, you'll need to compile your own version anyway.

Finally, note that shared libraries sometimes make it difficult to share executable files between
systems. Shared libraries are loaded at runtime. This is also known as dynamic linking.
Squid's ./configure script probes your system to find out certain things about your C library
functions (if they are present, if they work, etc.). Although library functions don't usually
change, it is possible that two different systems have slightly different shared C libraries. This
may become a problem for Squid if the two systems are different enough.

Getting the Squid source code is really quite easy. To get it, visit the Squid home page, http://
www.squid-cache.org/. The home page has links to the current stable and development
releases. If you aren't located in the United States, you can select one of the many mirror sites.
The mirror sites are usually named "wwwN.CC.squid-cache.org," where N is a number and CC is
a two-letter country code. For example, www1.au.squid-cache.org is an Australian mirror site.
The home page has links to the current mirror sites.

Each Squid release branch (e.g., Squid-2.5) has its own HTML page. This page has links to the
source code releases and "diffs" between releases. If you are upgrading from one release to the
next, you may want to download the diff file and apply the patch as described in Section 3.7.
The release pages describe the new features and important changes in each version, and also
have links to bugs that have been fixed.

When web access isn't an option, you can get the source release from the ftp://ftp.squid-cache.
org FTP server or one of the FTP mirror sites. For the current versions, look in the pub/squid-2/
DEVEL or pub/squid-2/STABLE directories. The Squid FTP site is mirrored at many locations as
well. You can use the same country-code trick to guess some mirror sites, such as ftp1.uk.
squid-cache.org.

The current Squid release distributions are about 1 MB in size. After downloading the
compressed tar file, you can proceed to Chapter 3.

 < Day Day Up >

http://www.squid-cache.org/
http://www.squid-cache.org/

 < Day Day Up >

2.3 Precompiled Binaries

Some Unix distributions include, or make available, precompiled Squid packages. For Linux, you
can easily find Squid RPMs. Often the Squid RPM is included on Linux CD-ROMs you can buy.
The FreeBSD/NetBSD/OpenBSD distributions also contain Squid in their ports and/or packages
collections.

While RPMs and precompiled packages may initially save you some time, they also have some
drawbacks. As I already mentioned, certain features must be enabled or disabled before you
start compiling Squid. The precompiled package that you install may not have the particular
feature you want. Furthermore, Squid's ./configure script probes your operating system for
certain parameters. These parameters may be configured differently on your machine on which
Squid was compiled. Finally, if you want to apply a patch to Squid, you'll either have to wait for
someone to build a new RPM/package or get the source and do it yourself.

I strongly encourage you to compile Squid from the source, but the decision is yours to make.

 < Day Day Up >

 < Day Day Up >

2.4 Anonymous CVS

The Concurrent Versioning System (CVS) is a nifty package that allows you to simultaneously
edit and manage source code and other files. Almost every open source software project uses
CVS.

You can anonymously access Squid's CVS files (read-only) to keep your source code up to date.
The nice thing about CVS is that you can easily retrieve only the changes (diffs) of your current
version. Thus, it is easy to see what has changed recently. Applying the changes to your
current files efficiently synchronizes your source code with the official version.

CVS uses a tree-like indexing system. The trunk of the tree is called the head branch. For
Squid's repository, this is where all new changes and features are placed. The head branch
usually contains experimental and, possibly unstable, code. The stable code is typically found
on other branches.

To effectively use Squid's anonymous CVS server, you first need to understand how different
versions and branches are tagged. For example, the Version 2.5 branch is named SQUID_2_5.
Particular releases, which represent a snapshot in time, have longer names, such as
SQUID_2_5_STABLE4. To get exactly Squid Version 2.5.STABLE4, use the
SQUID_2_5_STABLE4 tag; to get the latest code on the 2.5 branch, use SQUID_2_5.

To use the Squid anonymous CVS server, you first need to set the CVSROOT environment
variable:

csh% setenv CVSROOT :pserver:anoncvs@cvs.squid-cache.org:/squid

Or, for Bourne shell users:

sh$ CVSROOT=:pserver:anoncvs@cvs.squid-cache.org:/squid

sh$ export CVSROOT

You then log in to the server:

% cvs login

(Logging in to anoncvs@cvs.squid-cache.org)

CVS password:

At the prompt, enter anoncvs for the password. Now you can check out the source tree with
this command:

% cvs checkout -r SQUID_2_5 -d squid-2.5 squid

The -r option specifies the revision tag to retrieve. Omitting the -r option gets you the head

branch. The -d option changes the top-level directory name in which files are placed. If you
omit the -d option, the top-level directory is the same as the module name. The final command-
line argument (squid) is the name of the module to check out.

Once you have the Squid source tree checked out, you can run the cvs update command to
update your files and synchronize with the master repository. Additional interesting commands
are cvs diff, cvs log, and cvs annotate.

To learn more about CVS, visit http://www.cvshome.org/.

 < Day Day Up >

http://www.cvshome.org/

 < Day Day Up >

2.5 devel.squid-cache.org

The Squid developers maintain a separate site, currently hosted at SourceForge, for
experimental Squid features. Check it out at http://devel.squid-cache.org/. There you'll find a
number of cutting-edge development projects that haven't yet been integrated into the official
Squid code base. You can access these projects through SourceForge's anonymous CVS server
or download diff files based on the standard releases.

 < Day Day Up >

http://devel.squid-cache.org/

 < Day Day Up >

2.6 Exercises

● Visit the Squid web site or FTP server and look at the recent stable and development
releases. How often are new releases made?

● Download the most recent stable code.
● Use Squid's anonymous CVS server to check out the recent stable branch. Change one

of the source files by inserting a blank line, then run cvs diff.

 < Day Day Up >

 < Day Day Up >

Chapter 3. Compiling and Installing

Squid is designed to be portable and should compile on all major Unix systems, including Linux,
BSD/OS, FreeBSD, NetBSD, OpenBSD, Solaris, HP-UX, OSF/DUNIX/TRU-64, Mac OS/X, IRIX,
and AIX. Squid also runs on Microsoft Windows. Please see Appendix E for instructions on
compiling and running Squid on Windows.

Compiling Squid is relatively straightforward. If you've installed more than a few open source
packages, you're probably already familiar with the procedure. You first use a program called ./
configure to probe your system and then a program called make to do the actual compiling.

Before getting to that step, however, let's talk about tuning your system in preparation for
Squid. Your operating system may have default resource limits that are too low for Squid to run
correctly. Most importantly, you need to worry about the number of available file descriptors.

 < Day Day Up >

 < Day Day Up >

3.1 Before You Start

If you've been using Unix for a while, chances are that you've already compiled a number of
other software packages. If so, you can probably quickly scan this chapter. The procedure for
compiling and installing Squid is similar to many other software distributions.

To compile Squid, you need an ANSI C compiler. Don't be too alarmed by the "ANSI" part.
Chances are that if you already have a C compiler, it is compliant with the ANSI specification.
The GNU C compiler (gcc) is an excellent choice and widely available. Most operating systems
come with a C compiler as a part of the standard installation. The common exceptions are
Solaris and HP-UX. If you're using one of those operating systems, you might not have a
compiler installed.

Ideally you should compile Squid on the same system on which it will run. Part of the
installation process probes your system for certain parameters, such as the number of available
file descriptors. However, if your system doesn't have a C compiler, you may be able to compile
Squid elsewhere and then copy the binaries back. If the operating systems are different, Squid
may encounter some problems. Also, Squid may become confused if the two systems have
different kernel configurations.

In addition to a C compiler, you'll also need Perl and awk. awk is a standard program on all
Unix systems, so you shouldn't need to worry about it. Perl is quite common, but it may not be
installed on your system by default. You may need the gzip program to uncompress the source
distribution file.

Solaris users, make sure that /usr/ccs/bin is in your PATH, even if you're using gcc. To compile
Squid, you may need the make and ar programs found in that directory.

 < Day Day Up >

 < Day Day Up >

3.2 Unpacking the Source

After downloading the source distribution, you need to unpack it somewhere. The particular
location doesn't really matter. You can unpack Squid in your home directory or anywhere; you'll
need about 20 MB of free disk space. Personally, I like to use /tmp. Use the tar command to
extract the source directory:

% cd /tmp

% tar xzvf /some/where/squid-2.5.STABLE4-src.tar.gz

squid-2.5.STABLE4/

squid-2.5.STABLE4/CONTRIBUTORS

squid-2.5.STABLE4/COPYING

squid-2.5.STABLE4/COPYRIGHT

squid-2.5.STABLE4/CREDITS

squid-2.5.STABLE4/ChangeLog

squid-2.5.STABLE4/INSTALL

squid-2.5.STABLE4/QUICKSTART

squid-2.5.STABLE4/README

...

Some tar programs don't have the z option, which automatically uncompresses gzip files. In
that case, you'll need to use this command:

% gzip -dc /some/where/squid-2.5.STABLE4-src.tar.gz | tar xvf -

Once the source code has been unpacked, the next step is usually to configure the source tree.
However, if this is the first time you're compiling Squid, you should make sure certain kernel
resource limits are high enough; to find out how, read on.

 < Day Day Up >

 < Day Day Up >

3.3 Pretuning Your Kernel

Squid requires a fair amount of kernel resources under moderate and high loads. In particular,
you may need to configure your system with a higher-than-normal number of file descriptors
and mbuf clusters. The file-descriptor limit can be especially annoying. You'd be better off to
increase the limit before compiling Squid.

At this point, you might be tempted to get the precompiled binaries to avoid the hassle of

building a new kernel.
[1]

 Unfortunately, you need to make a new kernel, regardless. Squid and
the kernel exchange information through data structures that must not exceed the set file-
descriptor limits. Squid checks these limits at runtime and uses the safest (smallest) value.
Thus, even if a precompiled binary has higher file descriptors than the kernel, the kernel value
takes precedence.

[1] Not all operating systems require building a new kernel. Some may be
tunable at runtime.

To change some settings, you must build and install a new kernel. This procedure varies among
different operating systems. Consult Unix System Administration Handbook (Prentice Hall) or
your operating-system documentation if necessary. If you're using Linux, you probably don't
need to recompile your kernel.

3.3.1 File Descriptors

File descriptors are simply integers that identify each file and socket that a process has opened.
The first opened file is 0, the second is 1, and so on. Unix operating systems usually impose a
limit on the number of file descriptors that each process can open. Furthermore, Unix also
normally has a systemwide limit.

Because of the way Squid works, the file-descriptor limits may adversely affect performance.
When Squid uses up all the available file descriptors, it is unable to accept new connections
from users. In other words, running out of file descriptors causes denial of service. Squid can't
accept new requests until some of the current requests complete, and the corresponding files
and sockets are closed. Squid issues a warning when it detects a file-descriptor shortage.

You can save yourself some trouble by making sure the file descriptor limits are appropriate
before running ./configure. In most cases, 1024 file descriptors will be sufficient. Very busy
caches may require 4096 or more. When configuring file descriptor limits, I recommend setting
the systemwide limit to twice the per-process limit.

You can usually discover your system's file-descriptor limit from your Unix shell. All C shells and
similar have the built-in limit command. Newer Bourne shells and similar have a command
called ulimit. To find your file-descriptor limits, try running these commands:

csh% limit descriptors unlimited

csh% limit descriptors

descriptors 4096

or:

sh$ ulimit -n unlimited

sh$ ulimit -n

4096

On FreeBSD, you can also use the sysctl command:

% sysctl -a | grep maxfiles

kern.maxfiles: 8192

kern.maxfilesperproc: 4096

If you can't figure out the file-descriptor limit, Squid's ./configure script can do it for you. When
you run ./configure, as described in Section 3.4, watch for output like this near the end:

checking Maximum number of file descriptors we can open... 4096

If either limit, ulimit, or ./configure report a value less than 1024, you should invest the time to
increase the limit before compiling Squid. Otherwise, Squid's performance will be poor under a
moderate load.

Increasing the file descriptor limit varies from system to system. The following sections offer
some tips to help get you started.

3.3.1.1 FreeBSD, NetBSD, OpenBSD

Edit your kernel configuration file, and add a line like this:

options MAXFILES=8192

On OpenBSD, use option instead of options. Then, configure, compile, and install the new
kernel. Reboot your system so the change takes effect.

3.3.1.2 Linux

Configuring file descriptors on Linux is a little complicated. You must edit one of the system
include files, and execute some shell commands before compiling and running Squid. Start off
by editing the file /usr/include/bits/types.h. Change the value for _ _FD_SETSIZE as follows:

#define _ _FD_SETSIZE 8192

Next, increase the kernel file descriptor limit with this command:

echo 8192 > /proc/sys/fs/file-max

Finally, increase the process file-descriptor limit in the same shell in which you will configure
and compile Squid:

sh# ulimit -Hn 8192

This command must be executed as root and only works from the bash shell. There is no need
to reboot on Linux.

With this technique, you must execute the echo and ulimit commands
each time your system boots, or at least before starting Squid. If you
use an rc.d script to start Squid (see Section 5.6.2), that is a good
place to stick these commands.

3.3.1.3 Solaris

Add this line to your /etc/system file:

set rlim_fd_max = 4096

Then, reboot the system for the change to take effect.

3.3.2 Mbuf Clusters

The BSD-based networking code uses a data structure known as an mbuf (see W.R.Stevens'
book, TCP/IP Illustrated, Vol 2). Mbufs are typically small (e.g., 128 octets) chunks of memory.
The data for larger network packets are stored in mbuf clusters. The kernel may enforce an
upper limit on the total number of mbuf clusters available in the system. You can find this limit
with the netstat command:

% netstat -m

196/6368/32768 mbufs in use (current/peak/max):

 146 mbufs allocated to data

 50 mbufs allocated to packet headers

103/6182/8192 mbuf clusters in use (current/peak/max)

13956 Kbytes allocated to network (56% of mb_map in use)

0 requests for memory denied

0 requests for memory delayed

0 calls to protocol drain routines

In this example, there are 8,192 mbuf clusters available, but there are never more than 6,182
used at once. When the system runs out of mbuf clusters, I/O routines such as read() and write
() return the "No buffer space available" error message.

NetBSD and OpenBSD don't display mbuf usage in netstat -m output. Instead, they report
"WARNING: mclpool limit reached" via syslog.

To increase the number of mbuf clusters, you need to add an option to your kernel
configuration file:

options NMBCLUSTERS=16384

3.3.3 Ephemeral Port Range

Ephemeral ports are the local port numbers the TCP/IP stack assigns to outgoing connections.
In other words, when Squid makes a connection to an origin server, the kernel assigns a port
number to the local socket. These local port numbers fall within a certain range. On FreeBSD,
for example, the default ephemeral port range is 1024-5000.

A shortage of ephemeral ports may adversely affect performance for very busy proxies (i.e.,
hundreds of requests per second). This is because some TCP connections enter a TIME_WAIT
state when they are closed. An ephemeral port number can't be reused while the connection is
in the TIME_WAIT state.

You can see how many connections are in this state with the netstat command:

% netstat -n | grep TIME_WAIT

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp4 0 0 192.43.244.42.19583 212.67.202.80.80 TIME_WAIT

tcp4 0 0 192.43.244.42.19597 202.158.66.190.80 TIME_WAIT

tcp4 0 0 192.43.244.42.19600 207.99.19.230.80 TIME_WAIT

tcp4 0 0 192.43.244.42.19601 216.131.72.121.80 TIME_WAIT

tcp4 0 0 192.43.244.42.19602 209.61.183.115.80 TIME_WAIT

tcp4 0 0 192.43.244.42.3128 128.109.131.47.25666 TIME_WAIT

tcp4 0 0 192.43.244.42.3128 128.109.131.47.25795 TIME_WAIT

tcp4 0 0 192.43.244.42.3128 128.182.72.190.1488 TIME_WAIT

tcp4 0 0 192.43.244.42.3128 128.182.72.190.2194 TIME_WAIT

Note that this example has both client- and server-side connections. Client-side connections

have 3128 as the local port number; server-side connections have 80 as the remote (foreign)
port number. The ephemeral port numbers appear under the Local Address heading. In this
example, they are in the 19,000s.

Unless you see thousands of ephemeral ports in the TIME_WAIT state, you probably don't need
to increase the range. On FreeBSD, you can increase the range with this command:

sysctl -w net.inet.ip.portrange.last=30000

On OpenBSD, the command is almost the same, but the sysctl variable has a different name:

sysctl -w net.inet.ip.portlast=49151

On NetBSD, things work a little differently. The default range is 49,152-65,535. To increase the
range, change the lower limit:

sysctl -w net.inet.ip.anonportmin=10000

On Linux, simply write a pair of numbers to the following special file:

echo "1024 40000" > /proc/sys/net/ipv4/ip_local_port_range

Don't forget to add these commands to your system startup scripts so that they take effect
each time your machine reboots.

 < Day Day Up >

 < Day Day Up >

3.4 The configure Script

Like many other Unix software packages, Squid uses a ./configure script to learn about an
operating system before compiling. The ./configure script is generated by the popular GNU
autoconf program. When the script runs, it probes the system in various ways to find out about
libraries, functions, types, parameters, and features that may or may not be present. One of
the first things that ./configure does is look for a working C compiler. If the compiler can't be
found or fails to compile a simple test program, the ./configure script can't proceed.

The ./configure script has a number of different options. The most important is the installation
prefix. Before running ./configure, you need to decide where Squid should live. The installation
prefix determines the default locations for the Squid logs, binaries, and configuration files. You
can change the location for those files after installing, but it's easier if you decide now.

The default installation prefix is /usr/local/squid. Squid puts files in seven different
subdirectories under the prefix:

% ls -l /usr/local/squid

total 5

drwxr-x--- 2 wessels wheel 512 Apr 28 20:42 bin

drwxr-x--- 2 wessels wheel 512 Apr 28 20:42 etc

drwxr-x--- 2 wessels wheel 512 Apr 28 20:42 libexec

drwxr-x--- 3 wessels wheel 512 Apr 28 20:43 man

drwxr-x--- 2 wessels wheel 512 Apr 28 20:42 sbin

drwxr-x--- 4 wessels wheel 512 Apr 28 20:42 share

drwxr-x--- 4 wessels wheel 512 Apr 28 20:43 var

Squid uses the bin, etc, libexec, man, sbin, and share directories for a few, relatively small files
(or other directories) that don't change very often. The files under the var directory, however,
are a different story. This is where you'll find Squid's log files, which may grow quite large (tens
or hundreds of megabytes). var is also the default location for the actual disk cache. You may
want to put var on a different partition with plenty of space. One easy way to do this is with the
—localstatedir option:

% ./configure --localstatedir=/bigdisk/var

You don't need to worry too much about pathnames when configuring Squid. You can always
change the pathnames later, in the squid.conf file.

3.4.1 configure Options

The ./configure script has a number of different options that all start with —. You can see the
full list of options by typing ./configure --help. Some of these options are common to all
configure scripts, and some are unique to Squid. Here are the standard options that you might
find useful:

--prefix =PREFIX

This sets the installation prefix directory, as described earlier. The installation prefix is
the default directory for all executables, logs, and configuration files. Throughout this
book, $prefix refers to your choice for the installation prefix.

--localstatedir =DIR

This option allows you to change the location for the var directory. The default is $prefix/
var, but you might want to change it so that Squid's disk cache and log files are stored
elsewhere.

--sysconfdir =DIR

This option allows you to change the location for the etc directory. The default is $prefix/
etc. If you like to use /usr as the installation prefix, you might want to set —sysconfdir
to /etc.

Here are the Squid-specific ./configure options:

--enable-dlmalloc[=LIB]

On some systems, the built-in memory allocation (malloc) functions have poor
performance characteristics when used with Squid. Using the —enable-dlmalloc option
builds and links with the dlmalloc package included in the Squid source code. If you
already have dlmalloc built on your system, you can specify the library's pathname as
the =LIB argument. See http://g.oswego.edu/dl/html/malloc.html for more information
on dlmalloc.

--enable-gnuregex

Squid uses regular expressions for pattern matching in access control lists and other
configuration directives. The GNU regular expression library comes with the Squid
source code; it can be used on operating systems that don't have built-in regular
expression functions. The ./configure script probes your system for a regular expression
library and enables the use of GNU regex if necessary. If, for some reason, you want to
force the usage of GNU regex, you can add this option to the ./configure command.

--enable-carp

http://g.oswego.edu/dl/html/malloc.html

The Cache Array Routing Protocol (CARP) is useful for forwarding cache misses to an
array, or cluster, of parent caches. There's more about CARP in Section 10.9.

--enable-async-io [=N_THREADS]

Async I/O refers to one of Squid's techniques for improved storage performance. The
aufs storage module uses a number of thread processes to perform disk I/O operations.
This code works only on Linux and Solaris systems. The =N_THREADS argument
changes the number of thread processes Squid uses. aufs and Async I/O are discussed
in Section 8.4.

Note that the —enable-async-io option is a shortcut that turns on three other ./configure
options. It is equivalent to specifying:

--with-aufs-threads=N_THREADS

--with-pthreads

--enable-storeio=ufs,aufs

--with-pthreads

The —with-pthreads option causes the compilation procedure to link with your system's
Pthreads library. The aufs storage module is the only part of Squid that uses threads.
Normally, you don't specify this option on the ./configure command line because it's
enabled automatically when you use —enable-async-io.

--enable-storeio =LIST

Squid supports a number of different storage modules. With this option, you tell ./
configure which modules to compile. The ufs, aufs, diskd, coss, and null modules are
supported in Squid-2.5. You can also get a list by looking at the directories under src/fs.

LIST is a comma-separated list of module names. For example:

% ./configure --enable-storeio=afus,diskd,ufs

The ufs module is the default and least likely to cause problems. Unfortunately, it also
has limited performance characteristics. The other modules may not necessarily compile
on your particular operating system. For a complete description of Squid's storage
modules, see Chapter 8.

--with-aufs-threads =N_THREADS

Specifies the number of threads to use for the aufs storage scheme (see Section 8.4).

By default, Squid automatically calculates how many threads to use, based on the
number of cache directories.

--enable-heap-replacement

This option has been deprecated but remains for backward compatibility. You should
always use the —enable-removal-policies option instead.

--enable-removal-policies =LIST

Removal policies are the algorithms Squid uses to eject cached objects when making
room for new ones. Squid-2.5 supports three removal policies: least recently used
(LRU), greed dual size (GDS), and least frequently used (LFU).

However, for some reason, the ./configure options blur the distinction between a
particular replacement policy and the underlying data structures required to implement
them. LRU, which is the default, is implemented with a doubly linked list. The GDS and
LFU implementations use a data structure known as a heap.

To use the GDS or LFU policies, you specify:

% ./configure --enable-removal-policies=heap

You then select between GDS and LFU in the Squid configuration file. If you want to
retain the option of using LRU, specify:

% ./configure --enable-removal-policies=heap,lru

There's more about replacement policies in Section 7.5.

--enable-icmp

As you'll see in Section 10.5, Squid can make round-trip time measurements with ICMP
messages, much like the ping program. You can use this option to enable these features.

--enable-delay-pools

Delay pools are Squid's technique for traffic shaping or bandwidth limiting. The pools
consist of groups of client IP addresses. When requests from these clients are cache
misses, their responses may be artificially delayed. See more about delay pools in
Appendix C.

--enable-useragent-log

This option enables logging of the HTTP User-Agent header from client requests. See
more about this in Section 13.5.

--enable-referer-log

This option enables logging of the HTTP referer header from client requests. See more
about this in Section 13.4.

--disable-wccp

The Web Cache Coordination Protocol (WCCP) is Cisco's once-proprietary protocol for
intercepting and distributing HTTP requests to one or more caches. WCCP is enabled by
default, but you can use this option to prevent compilation of the WCCP code if you like.

--enable-snmp

The Simple Network Management Protocol (SNMP) is a popular way to monitor network
devices and servers. This option causes the build procedure to compile all of the SNMP-
related code, including a cut-down version of the CMU SNMP library.

--enable-cachemgr -hostname [=hostname]

cachemgr is a CGI program you can use to administratively query Squid. By default,
cachemgr's hostname field is blank, but you can create a default value with this option.
For example:

% ./configure --enable-cachemgr-hostname=mycache.myorg.net

--enable-arp-acl

Squid supports ARP, or Ethernet address, access control lists on some operating
systems. The code to implement ARP ACLs uses nonstandard function interfaces, so it is
disabled by default. If you run Squid on Linux or Solaris, you may be able to use this
feature.

--enable-htcp

HTCP is the Hypertext Caching Protocol—an intercache protocol similar to ICP. See
Section 10.8 for more information.

--enable-ssl

Use this option to give Squid the ability to terminate SSL/TLS connections. Note this

only works for accelerated requests in surrogate mode. See Section 15.2.2 for more
information.

--with-openssl [=DIR]

This option exists so that you can tell the compiler where to find the OpenSSL libraries
and header files, if necessary. If they aren't in the default location, enter the parent
directory after this option. For example:

% ./configure --enable-ssl --with-ssl=/opt/foo/openssl

Given this example, your compiler looks for the OpenSSL header files in /opt/foo/
openssl/include, and for libraries in /opt/foo/openssl/lib.

--enable-cache-digests

Cache Digests are another alternative to ICP, but with significantly different
characteristics. See Section 10.7.

--enable-err-languages ="lang1 lang2 ..."

Squid supports customizable error messages and comes with error messages in many
different languages. This option determines the languages that are copied to the
installation directory ($prefix/share/errors). If you don't use this option, all available
languages are installed. To see which languages are available, look at a directory listing
of the errors directory in the source distribution. Here's how to enable more than one
language:

% ./configure --enable-err-languages="Dutch German French" ...

--enable-default-err-language =lang

This option sets the default value for the error_directory directive. For example, if you
want to use Dutch error messages, you can use this ./configure option:

% ./configure --enable-default-err-language=Dutch

You can also set the error_directory directive in squid.conf, as described in Appendix A.
English is the default error language if you omit this option.

--with-coss-membuf-size =N

The Cyclic Object Storage System (coss) is an experimental storage scheme for Squid.
This option sets the memory buffer size for coss cache directories. Note that in order to

use coss, you must specify it as a storage type in the —enable-storeio option.

The argument is given in bytes. The default is 1,048,576 bytes or 1 MB. You can specify
a 2-MB buffer like this:

% ./configure --with-coss-membuf-size=2097152

--enable-poll

Unix provides two similar functions that scan open file descriptors for I/O events: select
() and poll(). The ./configure script usually does a very good job of figuring out when
to use poll() over select(). Use this option if you want to override the ./configure script
and force it to use poll().

--disable-poll

Similarly, Unix gurus may want to force ./configure to not use poll().

--disable-http-violations

By default, Squid can be configured to violate the HTTP protocol specifications. You can
use this option to remove the code completely that would violate HTTP.

--enable-ipf-transparent

In Chapter 9, I'll describe how to configure Squid for interception caching. Some
operating systems use the IP Filter package to assist with the interception. In these
cases you should use this ./configure option. If you enable this option and get compiler
errors on the src/client_side.c file, chances are that the IP Filter package isn't actually
(or correctly) installed on your system.

--enable-pf-transparent

You may need this option to use HTTP interception on systems that use the PF packet
filter. PF is the standard packet filter for OpenBSD and may have been ported to other
systems as well. If you enable this option and get compiler errors on the src/client_side.
c file, chances are that PF isn't actually installed on your system.

--enable-linux-netfilter

Netfilter is the name of the Linux packet filter for the 2.4 kernel series. Enable this
option if you want to use HTTP interception with Linux 2.4 or later.

--disable-ident-lookups

ident is a simple protocol that allows a server to find the username associated with a
client's particular TCP connection. If you use this option, the compiler excludes
completely the code that performs such lookups. Even if you leave the code enabled at
compile time, Squid doesn't make ident lookups unless you configure them in squid.conf.

--disable-internal-dns

The Squid source code includes two different DNS resolution implementations, called
internal and external. Internal lookups are the default, but some people prefer the
external technique. This option disables the internal functionality and reverts to the
older method.

Internal lookups use Squid's own implementation of the DNS protocol. That is, Squid
generates raw DNS queries and sends them to a resolver. It retransmits queries that
time out, and you can specify any number of resolvers. One of the benefits to this
implementation is that Squid gets accurate TTLs for DNS replies.

External lookups use the C library's gethostbyname() and gethostbyaddr() functions.
Since these routines block the process until the answer comes back, they must be called
from external, helper processes. Squid uses a pool of external processes to make
queries in parallel. The primary drawback to external DNS resolution is that you need
more helper processes as Squid's load increases. Another annoyance is that the C
library functions don't convey TTLs with the answers, in which case Squid uses a
constant value supplied by the positive_dns_ttl directive.

--enable-truncate

The truncate() system call is an alternative to using unlink(). While unlink() removes
a cache file altogether, truncate() sets the file size to zero. This frees the disk space
associated with the file but leaves the directory entry in place. This option exists
because some people believed (or hoped) that truncate() would produce better
performance than unlink(). However, benchmarks have shown little or no real
difference.

--disable-hostname-checks

By default, Squid requires that URL hostnames conform to the somewhat archaic
specifications in RFC 1034:

The labels must follow the rules for ARPANET host names. They must start with a
letter, end with a letter or digit, and have as interior characters only letters,
digits, and hyphen.

Here, "letter" means the ASCII characters A through Z. Since internationalized domain names
are becoming increasingly popular, you may want to use this option to remove the restriction.

--enable-underscores

This option controls Squid's behavior regarding underscore characters in hostnames.
General consensus is that hostnames must not include underscore characters, although
some people disagree. Squid, by default, generates an error message for requests that
have an underscore in a URL hostname. You can use this option to make Squid treat
them as valid. However, your DNS resolver may also enforce the no-underscore
requirement and fail to resolve such hostnames.

--enable-auth [=LIST]

This option controls which HTTP authentication schemes to support in the Squid binary.
You can select any combination of the following schemes: basic, digest, and ntlm. If you
omit the option, Squid supports only basic authentication. If you give the —enable-auth
option without any arguments, the build process adds support for all schemes.
Otherwise, you can give a comma-separated list of schemes to support:

% ./configure --enable-auth=digest,ntlm

I talk more about authentication in Chapters 6 and 12.

--enable-auth-helpers =LIST

This old option is now deprecated, but still remains for backward compatibility. You
should use —enable-basic-auth-helpers=LIST instead.

--enable-basic-auth-helpers =LIST

With this option, you can build one or more of the HTTP Basic authentication helper
programs found in helpers/basic_auth. See Section 12.2 for their names and
descriptions.

--enable-ntlm-auth-helpers =LIST

With this option, you can build one or more of the HTTP NTLM authentication helper
programs found in helpers/ntlm_auth. See Section 12.4 for their names and descriptions.

--enable-ntlm-fail-open

When you enable this option, Squid's NTLM authentication module defaults to allow
access in the event of an error or problem.

--enable-digest-auth-modules=LIST

With this option, you can build one or more of the HTTP Digest authentication helper
programs found in helpers/digest_auth. See Section 12.3 for their names and
descriptions.

--enable-external-acl-helpers=LIST

With this option, you can build one or more of the external ACL helper programs that I
discuss in Section 12.5. For example:

% ./configure --enable-external-acl-helpers=ip_user,ldap_group

--disable-unlinkd

Unlinkd is another one of Squid's external helper processes. Its sole job is to execute
the unlink() (or truncate()) system call on cache files. Squid realizes a significant
performance gain by implementing file deletion in an external process. Use this option
to disable the external unlink daemon feature.

--enable-stacktrace

Some operating systems support automatic generation of stack trace data in the event
of a program crash. When you enable this feature and Squid crashes, the stack trace
information is written to the cache.log file. This information is often helpful to
developers in tracking down programming bugs.

--enable-x-accelerator-vary

This advanced feature may be used when Squid is configured as a surrogate. It instructs
Squid to look for X-Accelerator-Vary headers in responses from backend origin
servers. See Section 15.5.

3.4.2 Running configure

Now we're ready to run the ./configure script. Go to the top-level source directory and type ./
configure, followed by any of the options mentioned previously. For example:

% cd squid-2.5.STABLE4

% ./configure --enable-icmp --enable-htcp

./configure's job is to probe your operating system and find out which things are available, and
which are not. One of the first things it does is make sure your C compiler is working. If ./
configure detects a problem with your C compiler, the script exits with this error message:

configure: error: installation or configuration problem: C compiler

cannot create executables.

Most likely, you'll never see that message. If you do, it means either your system doesn't have
a C compiler at all or that the compiler isn't installed correctly. Look at the config.log file for
hints as to the exact problem. If your system has more than one C compiler, you can tell ./
configure which to use by setting the CC environment variable before running ./configure:

% setenv CC /usr/local/bin/gcc

% ./configure ...

After ./configure checks out the compiler, it looks for a long list of header files, libraries, and
functions. Normally you won't have to worry about this part. In some cases, ./configure pauses
to get your attention about something that may be a problem (such as not enough file
descriptors). It may also stop if you specify incompatible or unreasonable command-line
options. If something does go wrong, check the config.log output. ./configure's final task is to
create Makefiles and other files based on the things it learned about your system. At this point,
you're ready to begin compiling.

 < Day Day Up >

 < Day Day Up >

3.5 make

Once ./configure has done its job, you can simply type make to begin compiling the source code:

% make

Normally, this part goes smoothly. You'll see a lot of lines that look like this:
[2]

[2] The make output used to be much prettier, but such is the price we pay for advanced
compiling tools such as automake.

source='cbdata.c' object='cbdata.o' libtool=no depfile='.deps/cbdata.Po'

tmpdepfile='.deps/cbdata.TPo' depmode=gcc /bin/sh ../cfgaux/depcomp gcc -DHAVE_

CONFIG_H -DDEFAULT_CONFIG_FILE=\"/usr/local/squid/etc/squid.conf\" -I. -I. -I../

include -I. -I. -I../include -I../include -g -O2 -Wall -c 'test -f cbdata.c ||

echo './''cbdata.c

source='client_db.c' object='client_db.o' libtool=no depfile='.deps/client_db.Po'

tmpdepfile='.deps/client_db.TPo' depmode=gcc /bin/sh ../cfgaux/depcomp gcc -DHAVE_

CONFIG_H -DDEFAULT_CONFIG_FILE=\"/usr/local/squid/etc/squid.conf\" -I. -I. -I../

include -I. -I. -I../include -I../include -g -O2 -Wall -c 'test -f client_db.c ||

echo './''client_db.c

source='client_side.c' object='client_side.o' libtool=no depfile='.deps/client_side.Po'

tmpdepfile='.deps/client_side.TPo' depmode=gcc /bin/sh ../cfgaux/depcomp gcc -

DHAVE_CONFIG_H -DDEFAULT_CONFIG_FILE=\"/usr/local/squid/etc/squid.conf\" -I. -I. -I../

include -I. -I. -I../include -I../include -g -O2 -Wall -c 'test -f client_side.c ||

echo './''client_side.c

source='comm.c' object='comm.o' libtool=no depfile='.deps/comm.Po' tmpdepfile='.

deps/comm.TPo' depmode=gcc /bin/sh ../cfgaux/depcomp gcc -DHAVE_CONFIG_H -DDEFAULT_

CONFIG_FILE=\"/usr/local/squid/etc/squid.conf\" -I. -I. -I../include -I. -I. -I../

include -I../include -g -O2 -Wall -c 'test -f comm.c || echo './''comm.c

You may see some compiler warnings. In most cases, it is safe to ignore these. If you see a lot of them
or something that looks really serious, report it to the developers as described in Section 16.5.

If the compilation gets all the way to the end without any errors, you can move to the next section,

which describes how to install the programs you just built.

To verify that compilation was successful, you can run make again. You should see this output:
[3]

[3] If make recompiles the source every time you run it, and there are no errors, your
system clock may be set wrong.

% make

Making all in lib...

Making all in scripts...

Making all in src...

Making all in fs...

Making all in repl...

'squid' is up to date.

'client' is up to date.

'unlinkd' is up to date.

'cachemgr.cgi' is up to date.

Making all in icons...

Making all in errors...

Making all in auth_modules...

The compilation step may fail for a number of reasons, including:

Source code bugs

Usually the Squid source code is thoroughly debugged. However, you may encounter some bugs
or problems that prevent Squid from compiling. You're more likely to find these sorts of bugs in
the newer development versions. Report these to the developers.

Compiler installation problems

An improperly installed C compiler probably won't be able to compile Squid or any other
moderately sized software package. Usually, compilers come pre-installed with the operating
system, so you don't have to worry about that. However, if you attempt to upgrade your
compiler after installing the operating system, you might make a mistake. Never copy a
compiler installation from one machine to another, unless you are absolutely sure about what
you are doing. I feel it is always better to install the compiler on each machine separately.

Always make sure that your compiler's header files are synchronized with the library files. The header
files normally reside in /usr/include, while libraries are found in /usr/lib. Linux's popular RPM system
makes it possible to upgrade one, but not the other. If the libraries are based on different header files,
Squid may not compile.

If you want to upgrade the compiler on one of the open-source BSD variants, be sure to run make
world from the /usr/src directory, rather than from the /usr/src/lib or /usr/src/include directories.

Here are some common compilation problems and error messages:

Solaris: make[1]: *** [libmiscutil.a] Error 255

This means that ./configure didn't find the ar program. Make sure /usr/ccs/bin is listed in your
PATH environment variable. If you don't have the Sun compiler installed, you'll need the GNU
binutils (http://www.gnu.org/directory/binutils.html).

Linux: storage size of 'rl' isn't known

This happens when the header and library files don't match, as described earlier. Be sure to
upgrade both packages at the same time.

Digital Unix: Don't know how to make EXTRA_libmiscutil_a_SOURCES. Stop.

Digital Unix's make program isn't tolerant of the Makefile produced by the automake package.
For example, lib/Makefile.in contains these lines:

noinst_LIBRARIES = \

 @LIBDLMALLOC@ \

 libmiscutil.a \

 libntlmauth.a \

 @LIBREGEX@

After substitution, when lib/Makefile is created, it looks like this:

noinst_LIBRARIES = \

 \

 libmiscutil.a \

 libntlmauth.a \

 <TAB>

As shown above, the last line contains an (invisible) TAB character, which confuses make. You
can get past this problem by installing and using GNU make, or by manually editing lib/Makefile
(and any others exhibiting this problem) to make it look like this:

noinst_LIBRARIES = \

 \

http://www.gnu.org/directory/binutils.html

 libmiscutil.a \

 libntlmauth.a

If you have problems compiling Squid, check the FAQ first. You may also want to search the Squid web
site (use the search box on the home page). Finally, if you're still stuck, send email to the squid-
users@squid-cache.org list.

 < Day Day Up >

mailto:squid-users@squid-cache.org
mailto:squid-users@squid-cache.org

 < Day Day Up >

3.6 make Install

After compiling, you need to install the programs into their permanent directories. This might
require superuser privileges, to put files in the installation directories. If so, become root first:

% su

Password:

make install

If you enable Squid's ICMP measurement features with the —enable-icmp option, you must
install the pinger program. The pinger program must be installed with superuser privileges
because only root is allowed to send and receive ICMP messages. The following command
installs pinger with the appropriate permissions:

make install-pinger

After installing Squid, you should see the following directories and files listed under the
installation prefix directory (/usr/local/squid by default):

sbin

The sbin directory contains programs normally started by root.

sbin/squid

This is the main Squid program.

bin

The bin directory contains programs for all users.

bin/RunCache

RunCache is a shell script you can use to start Squid. If Squid dies, this script
automatically starts it again, unless it detects frequent restarts. The RunCache script is
a relic from the time when Squid was not a daemon process. With the current versions,
RunCache is less useful because Squid automatically restarts itself when you don't use
the -N option.

bin/RunAccel

The RunAccel script is nearly identical to RunCache, except that it adds a command-line
argument that tells Squid where to listen for HTTP requests.

bin/squidclient

squidclient is a simple HTTP client you can use to test Squid. It also has some special
features for making management requests to a running Squid process.

libexec

The libexec directory traditionally contains helper programs. These are commands that
you wouldn't normally run yourself. Rather, these programs are normally started by
other programs.

libexec/unlinkd

unlinkd is a helper program that removes files from the cache directories. As you'll see
later, file deletion can be a significant bottleneck. By implementing the delete operation
in an external process, Squid achieves some performance gain.

libexec/cachemgr.cgi

cachemgr.cgi is a CGI interface to Squid's management functions. To use it, you'll
probably need to copy this program to your HTTP server's cgi-bin directory. You'll see
more about this in Section 14.2.

libexec/diskd (optional)

You get this only if you specify —enable-storeio=diskd.

libexec/pinger (optional)

You get this only if you specify —enable-icmp.

etc

The etc directory contains Squid's configuration files.

etc/squid.conf

This is the primary configuration file for Squid. Initially, this file contains a lot of
comments to explain what each option does. After you understand the configuration

directives, it's a good idea to remove the comments to make the configuration file
smaller and easier to read. Note that the installation procedure doesn't overwrite this
file if it already exists.

etc/squid.conf.default

This is a copy of the default configuration file from the source distribution. You may find
it useful to have a copy of the current default configuration file after upgrading your
Squid installation. New configuration directives may be added, and some of the existing
directives may have changed.

etc/mime.conf

The mime.conf file tells Squid which MIME types to use for data retrieved from FTP and
Gopher servers. The file is a table that correlates filename extensions to MIME types.
Normally, you won't need to edit this file. However, you may need to add entries for
special file types used within your organization.

etc/mime.conf.default

This is the default mime.conf file from the source distribution.

share

The share directory normally contains read-only data files used by Squid.

share/mib.txt

This is the SNMP Management Information Base (MIB) file for Squid. Squid doesn't use
this file itself. Rather, your SNMP agent software (such as snmpget and Multi-Router
Traffic Grapher (MRTG)) needs this file to understand the SNMP objects available from
Squid.

share/icons

The share/icons directory contains a number of small icon files Squid uses in FTP and
Gopher directory listings. Normally, you won't need to worry about these files, but you
can change them if you want.

share/errors

The share/errors directory contains templates for the error messages Squid shows to
users. These files are copied from the source directory when you install Squid. You can
edit them if you like. However, the installation procedure always overwrites these files

every time you run make install. So if you want to have customized error messages, it's
a good idea to put them in a different directory.

var

The var directory contains files that aren't critical and that change frequently. These are
the sort of files you don't normally back up.

var/logs

The var/logs directory is the default location for Squid's various log files. It is empty
when you first install Squid. Once Squid gets running, you can expect to find files here
named access.log, cache.log, and store.log.

var/cache

This is the default cache directory (cache_dir) if you don't specify one in squid.conf. See
Chapter 7 for all the details about cache directories.

 < Day Day Up >

 < Day Day Up >

3.7 Applying a Patch

After you've been running Squid for a while, you may find that you need to patch the source
code to fix a bug or add an experimental feature. Patches are posted for important bug fixes on
the squid-cache.org web site. If you don't want to wait for the next official release, you can
download and apply the patch to your source code. You will then need to recompile Squid.

To apply a patch—also sometimes called a diff—you need a program called patch. Chances are
that your operating system already has the patch program. If not, you can download it from
the GNU collection (http://www.gnu.org/directory/patch.html). Note that if you're using
anonymous CVS (see Section 2.4), you don't need to worry about patching files. The CVS
system does it for you automatically when you update your tree.

To apply a patch, you need to save the patch file somewhere on your system. Then cd to the
Squid source directory and run the command like this:

% cd squid-2.5.STABLE4

% patch < /tmp/patch_file

By default, the patch program tells you what it's doing as it runs. Usually this output scrolls by
very quickly, unless there is a problem. You can safely ignore the warnings that say offset
NNN lines. If you don't want to see all this output, use the -s option to make patch silent.

When patch updates the source files, it creates a backup copy of the original file. For example,
if you're applying a patch to src/http.c, patch names the backup file src/http.c.orig. Thus, if you
want to undo the patch after applying it, you can simply rename all the .orig files back to their
former names. To use this technique successfully, it's a good idea to remove all .orig files
before applying a patch.

If patch encounters a problem, it stops and prompts you for advice. Common problems are as
follows:

● Running patch from the wrong directory. To fix this problem, you may need to cd to a
different directory or use patch's -p option.

● Patch is already applied. patch can usually tell if the patch file has already been applied.
In this case, it asks if you want to unpatch the file.

● The patch program doesn't understand the file you are giving it. Patch files come in
three flavors: normal, context, and unified. Old versions of patch may not understand
context or unified diff output. Getting the latest version from the GNU FTP site will solve
this problem.

● Corrupted patch file. If you aren't careful when downloading and saving the patch file, it
may become corrupted. Sometimes people send patch files in email messages, and it is
tempting to simply cut-and-paste them into a new window. On some systems, cut-and-
paste can change Tab characters into spaces, or incorrectly wrap long lines. Both
changes confuse patch. The -l option may be helpful, but it's best to make sure you
copy and save the patch file correctly.

Sometimes patch can't apply part or all of the diff. In these cases, you'll see such messages as

http://www.gnu.org/directory/patch.html

Hunk 3 of 4 failed. The failed sections are saved to files named .rej. For example, if a failure
occurs while processing src/http.c, patch saves that piece of the diff to src/http.c.rej. In some
cases, you may be able to fix these by hand, but it's usually not worth the trouble. If you have
a lot of "failed hunks" or .rej files, it's a good idea to download a whole new copy of the latest
source code.

After you apply a patch, you need to recompile Squid. One of the great things about make is
that it only recompiles the files that have changed. But sometimes make doesn't comprehend
all the intricate dependencies, and it doesn't rebuild enough of the files. To be safe, it's usually
a good idea to recompile everything. The best way to do this is to clean the source tree before
recompiling:

% make clean

% make

 < Day Day Up >

 < Day Day Up >

3.8 Running configure Later

Sometimes you may find it necessary to rerun ./configure. For example, if you tune your kernel
parameters, you must run ./configure again so it picks up the new settings. As you read this
book, you may also find that you want to use features that must be enabled with ./configure
options.

To rerun ./configure with the same options, use this command:

% ./config.status --recheck

Another technique is to "touch" the config.status file, which updates its timestamp. This causes
make to re-run the ./configure script before compiling the source code:

% touch config.status

% make

To add or remove ./configure options, you need to type in the whole command again. If you
can't remember the previous options, just look at the top of the config.status file. For example:

% head config.status

#! /bin/sh

Generated automatically by configure.

Run this file to recreate the current configuration.

This directory was configured as follows,

on host foo.life-gone-hazy.com:

#

./configure --enable-storeio=ufs,diskd --enable-carp \

--enable-auth-modules=NCSA

Compiler output produced by configure, useful for debugging

configure, is in ./config.log if it exists.

After rerunning ./configure, you must compile and install Squid again. To be safe, it's a good
idea to run make clean first:

% make clean

% make

Recall that ./configure caches the things it discovers about your system. In some situations,
you'll want to clear this cache and start the compilation process from the very beginning. You
can simply remove the config.cache file if you like. Then, the next time ./configure runs, it
won't use the previous values. You can also restore the Squid source tree to its preconfigure
state with the following command:

% make distclean

This removes all object files and other files created by the ./configure and make commands.

 < Day Day Up >

 < Day Day Up >

3.9 Exercises

● After compiling Squid, remove one or more of the .o files and run make again.
● Use the ulimit or limits command to change the file descriptor limit to some small value

before compiling Squid. Does ./configure obey or ignore your new limit?
● Compile Squid with a high file-descriptor limit, then try to run it on a system with a

lower limit. Does Squid use the lower or higher limit?
● What happens if you mistype one of the —enable options? What if you specify an invalid

storage scheme with the —enable-store-io option?
● After compiling Squid, remove src/Makefile and try to compile it again. What's the

easiest way to restore the file?

 < Day Day Up >

 < Day Day Up >

Chapter 4. Configuration Guide for the Eager

After compiling and installing Squid, your next task is to delve into the configuration file. If
you're new to Squid, you're likely to find it a bit overwhelming. The most recent version has
approximately 200 configuration file directives and 2700 lines of comments. I certainly don't
expect you to read about, and configure, every directive before starting Squid. This chapter can
help you get Squid running quickly.

All the squid.conf directives have default values. You might be able to get Squid going without
even touching the configuration file. However, I don't recommend trying that. You'll be much
happier if you read the following sections first.

If you are really turned off by Squid's configuration file syntax, you might want to try the
Webmin graphical user interface. It allows you to configure Squid (and numerous other
programs) from your web browser. See http://www.webmin.com and The Book of Webmin by
Joe Cooper (No Starch Press) for more information.

 < Day Day Up >

http://www.webmin.com/

 < Day Day Up >

4.1 The squid.conf Syntax

Squid's configuration file is relatively straightforward. It is similar in style to many other Unix
programs. Each line begins with a configuration directive, followed by some number of values
and/or keywords. Squid ignores empty lines and comment lines (beginning with #) when
reading the configuration file. Here are some sample configuration lines:

cache_log /squid/var/cache.log

define the localhost ACL

acl Localhost src 127.0.0.1/32

connect_timeout 2 minutes

log_fqdn on

Some directives take a single value. For these, repeating the directive with a different value
overwrites the previous value. For example, there is only one connect_timeout value. The first
line in the following example has no effect because the second line overwrites it:

connect_timeout 2 minutes

connect_timeout 1 hour

On the other hand, some directives are actually lists of values. For these, each occurrence of
the directive adds a new value to the list. The extension_methods directive works this way:

extension_methods UNGET

extension_methods UNPUT

extension_methods UNPOST

For these list-based directives, you can also usually put multiple values on the same line:

extension_methods UNGET UNPUT UNPOST

Many of the directives have common types. For example, connect_timeout is a time
specification that has a number followed by a unit of time. For example:

connect_timeout 3 hours

client_lifetime 4 days

negative_ttl 27 minutes

Similarly, a number of directives refer to the size of a file or chunk of memory. For these, you
can write a size specification as a decimal number, followed by bytes, KB, MB, or GB. For
example:

minimum_object_size 12 bytes

request_header_max_size 10 KB

maximum_object_size 187 MB

Another type worth mentioning is the toggle, which can be either on or off. Many directives
use this type. For example:

server_persistent_connections on

strip_query_terms off

prefer_direct on

In general, the configuration file directives may appear in any order. However, the order is
important when one directive makes reference to something defined by another. Access
controls are a good example. An acl must be defined before it can be used in an http_access
rule:

acl Foo src 1.2.3.4

http_access deny Foo

Many things in squid.conf are case-sensitive, such as directive names. You can't write
HTTP_port instead of http_port.

The default squid.conf file contains comments describing each directive, as well as the default
values. For example:

TAG: persistent_request_timeout

How long to wait for the next HTTP request on a persistent

connection after the previous request completes.

#

#Default:

persistent_request_timeout 1 minute

Each time you install Squid, the current default configuration file is saved as squid.conf.default
in the $prefix/etc directory. Since directives change from time to time, you can refer to this file

for the most up-to-date documentation on squid.conf.

The rest of this chapter is about the handful of directives you need to know before running
Squid for the very first time.

 < Day Day Up >

 < Day Day Up >

4.2 User IDs

As you probably know, Unix processes and files have user and group ownership attributes. You
need to select a user and group for Squid. This user and group combination must have read
and write access to most of the Squid-related files and directories.

I highly recommend creating a dedicated squid user and group. This minimizes the chance that
someone can exploit Squid to read other files on the system. If more than one person has
administrative authority over Squid, you can add them to the squid group.

Unix processes inherit their parent process' ownership attributes. That is, if you start Squid as
user joe, Squid also runs as user joe. If you don't want Squid to run as joe, you need to change
your user ID beforehand. This is typically accomplished with the su command. For example:

joe% su - squid

squid% /usr/local/squid/sbin/squid

Unfortunately, running Squid isn't always so simple. In some cases, you may need to start
Squid as root, depending on your configuration. For example, only root can bind a TCP socket
to privileged ports like port 80. If you need to start Squid as root, you must set the
cache_effective_user directive. It tells Squid which user to become after performing the tasks
that require special privileges. For example:

cache_effective_user squid

The name that you provide must be a valid user (i.e., in the /etc/passwd file). Furthermore,
note that this directive is used only when you start Squid as root. Only root has the ability to
become another user. If you start Squid as joe, it can't switch to user squid.

You might be tempted to just run Squid as root without setting cache_effective_user. If you try,
you'll find that Squid refuses to run. This, again, is due to security concerns. If an outsider were
somehow able to compromise or exploit Squid, he could gain full access to your system.
Although we strive to make Squid secure and bug-free, this requirement provides some extra
insurance, just in case.

If you start Squid as root without setting cache_effective_user, Squid uses nobody as the
default value. Whatever user ID you choose for Squid, make sure it has read access to the files
installed in $prefix/etc, $prefix/libexec, and $prefix/share. The user ID must also have write
access to the log files and cache directory.

Squid also has a cache_effective_group directive, but you probably don't need to set it. By
default, Squid uses the cache_effective_user's default group (from the password file).

 < Day Day Up >

 < Day Day Up >

4.3 Port Numbers

The http_port directive tells Squid which port number to listen on for HTTP requests. The
default is port 3128:

http_port 3128

If you are running Squid as a surrogate (see Chapter 15), you should probably set this to 80.

You can instruct Squid to listen on multiple ports with additional http_port lines. This is often
useful if you must support groups of clients that have been configured differently. For example,
the browsers from one department may be sending requests to port 3128, while another
department uses port 8080. Simply list both port numbers as follows:

http_port 3128

http_port 8080

You can also use the http_port directive to make Squid listen on specific interface addresses.
When Squid is used on a firewall, it should have two network interfaces: one internal and one
external. You probably don't want to accept HTTP requests coming from the external side. To
make Squid listen on only the internal interface, simply put the IP address in front of the port
number:

http_port 192.168.1.1:3128

 < Day Day Up >

 < Day Day Up >

4.4 Log File Pathnames

I'll discuss all the details of Squid's log files in Chapter 13. For now the only thing you may
need to worry about is where you want Squid to put its log files. The default location is a
directory named logs under the installation prefix. For example, if you don't use the —prefix=
option with ./configure, the default log file directory is /usr/local/squid/var/logs.

You need to make sure that log files are stored on a disk partition with enough space. When
Squid receives a write error for a log file, it exits and restarts. The primary reason for this
behavior is to grab your attention. Squid wants to make sure you don't miss any important
logging information, especially if your system is being abused or attacked.

Squid has three main log files: cache.log, access.log, and store.log. The first of these, cache.
log, contains informational and debugging messages. When you start Squid the first few times,
you should closely watch this file. If Squid refuses to run, the reason is probably at the end of
cache.log. Under normal conditions, this log file doesn't become large enough to warrant any
special attention. Also note that if you start Squid with the -s option, the important cache.log
messages are also sent to your syslog daemon. You can change the location for this log file with
the cache_log directive:

cache_log /squid/logs/cache.log

The access.log file contains a single line for each client request made to Squid. On average,
each line is about 150 bytes. In other words, it takes about 150 MB to log one million client
requests. Use the cache_access_log directive to change the location of this log file:

cache_access_log /squid/logs/access.log

If, for some reason, you don't want Squid to log client requests, you can specify the log file
pathname as /dev/null.

The store.log file is probably not very useful to most cache administrators. It contains a record
for each object that enters and leaves the cache. The average record size is typically 175-200
bytes. However, Squid doesn't create an entry in store.log for cache hits, so it contains fewer
records than access.log. Use the cache_store_log directive to change the location:

cache_store_log /squid/logs/store.log

You can easily disable store.log altogether by specifying the location as none:

cache_store_log none

If you're not careful, Squid's log files increase in size without limit. Some operating systems
enforce a 2-GB file size limit, even if you have plenty of free disk space. Exceeding this limit
results in a write error, which then causes Squid to exit. To keep log file sizes reasonable, you
should create a cron job that regularly renames and archives the log files. Squid has a built-in
feature to make this easy. See Section 13.7 for an explanation of log file rotation.

 < Day Day Up >

 < Day Day Up >

4.5 Access Controls

I'll have a lot to say about access controls in Chapter 6. For now, I'll cover a few controls so
that more enthusiastic readers can quickly start using Squid.

Squid's default configuration file denies every client request. You must place additional access
control rules in squid.conf before anyone can use the proxy. The simplest approach is to define
an ACL that corresponds to your user's IP addresses and an access rule that tells Squid to allow
HTTP requests from those addresses. Squid has many different ACL types. The src type
matches client IP addresses, and the http_access rules are checked for client HTTP requests.
Thus, you need to add only two lines:

acl MyNetwork src 192.168.0.0/16

http_access allow MyNetwork

The tricky part is putting these lines in the right place. The order of http_access lines is very
important, but the order of acl lines doesn't matter. You should also be aware that the default
configuration file contains some important access controls. You shouldn't change or disrupt
these until you fully comprehend their significance. When you edit squid.conf for the first time,
look for this comment:

#

INSERT YOUR OWN RULE(S) HERE TO ALLOW ACCESS FROM YOUR CLIENTS

#

Insert your new rules below this comment, and before the http_access deny All line.

For the sake of completeness, here is a suitable initial access control configuration, including
the recommended default controls and the example earlier:

acl All src 0/0

acl Manager proto cache_object

acl Localhost src 127.0.0.1/32

acl Safe_ports port 80 21 443 563 70 210 280 488 591 777 1025-65535

acl SSL_ports 443 563

acl CONNECT method CONNECT

acl MyNetwork src 192.168.0.0/16

http_access allow Manager Localhost

http_access deny Manager

http_access deny !Safe_ports

http_access deny CONNECT !SSL_ports

http_access allow MyNetwork

http_access deny All

 < Day Day Up >

 < Day Day Up >

4.6 Visible Hostname

Hopefully, you won't need to worry about the visible_hostname directive. However, you'll need to
set it if Squid can't figure out the hostname of the machine on which it is running. When this
happens, Squid complains and refuses to run:

% squid -Nd1

FATAL: Could not determine fully qualified hostname. Please set 'visible_hostname'

Squid wants to be sure about its hostname for a number of reasons:

● The hostname appears in Squid's error messages. This helps users identify the source of
potential problems.

● The hostname appears in the HTTP Via header of cache misses that Squid forwards.
When the request arrives at the origin server, the Via header contains a list of all proxies
involved in the transaction. Squid also uses the Via header to detect forwarding loops. I'll
talk about forwarding loops in Chapter 10.

● Squid uses internal URLs for certain things, such as the icons for FTP directory listings.
When Squid generates an HTML page for an FTP directory, it inserts embedded images for
little icons that indicate the type of each file in the directory. The icon URLs contain the
cache's hostname so that web browsers request them directly from Squid.

● Each HTTP reply from Squid includes an X-Cache header. This isn't an official HTTP
header. Rather, it is an extension header that indicates if the response was a cache hit or
a cache miss. Since requests and responses may flow through more than one cache, each
X-Cache header includes the name of the cache reporting hit or miss. Here's a sample
response that passed through two caches:

HTTP/1.0 200 OK

Date: Mon, 29 Sep 2003 22:57:23 GMT

Content-type: text/html

Content-length: 733

X-Cache: HIT from bo2.us.ircache.net

X-Cache: MISS from bo1.us.ircache.net

Squid tries to figure out the hostname automatically at startup. First it calls the
gethostname() function, which usually returns the correct hostname. Next, Squid
attempts a DNS lookup on the hostname with gethostbyname(). This function typically
returns both IP addresses and the canonical name for the system. If gethostbyname()
succeeds, Squid uses the canonical name in error messages, Via headers, etc.

Squid may be unable to determine its fully qualified hostname for a number of reasons,
including:

● The hostname may not be set.
● The hostname may be missing from the DNS zone or /etc/hosts files.

● The Squid system's DNS client configuration may be incorrect or missing. On Unix, you
should check the /etc/resolv.conf and /etc/host.conf files.

If you see the fatal message mentioned previously, you need either to fix the hostname and DNS
information or explicitly configure the hostname for Squid. In most cases, it is sufficient to ensure
the hostname command returns a fully qualified hostname and add an entry to /etc/hosts. If that
doesn't work, just set the visible hostname in squid.conf:

visible_hostname squid.packet-pushers.net

 < Day Day Up >

 < Day Day Up >

4.7 Administrative Contact Information

You should set the cache_mgr directive as a favor to your users. The value is an email address
users can write to in case a problem surfaces. The cache_mgr address appears in Squid's error
messages by default. For example:

cache_mgr squid@web-cache.net

 < Day Day Up >

 < Day Day Up >

4.8 Next Steps

After creating the minimal configuration file, you're more or less ready to run Squid for the first
time. To do that, just follow the instructions in the next chapter.

When you've mastered starting and stopping Squid, you can spend some time beefing up the
configuration file. You may want to add more sophisticated access controls, which you'll find
documented in Chapter 6. Since I didn't say anything about the disk cache yet, you should also
spend a fair amount of time in Chapter 7 and Chapter 8.

 < Day Day Up >

 < Day Day Up >

4.9 Exercises

● Parse Squid's configuration file with squid -k parse and check the process exit status.
● Intentionally introduce a some errors into the configuration file and run squid -k parse

again. Notice how Squid reports different errors.
● Insert comments into the configuration file. Can you start a comment anywhere, even

after a valid directive?
● Why do you think some configuration file errors are fatal, but others are not?

 < Day Day Up >

 < Day Day Up >

Chapter 5. Running Squid

Now that you have Squid installed, and maybe even configured, you need to learn the ins and
outs of running Squid. Although most of the configuration occurs in squid.conf, you may find
some of Squid's command-line options useful. For example, one of the first things you must do
is use the -z option to initialize the cache directories. You may also find the -d option useful for
debugging.

Squid normally runs as a daemon process. If you are new to Squid, however, I recommend
running Squid in the foreground from a terminal window until you are confident that it is
working properly. Following that, you can run Squid as a daemon, in the background. Most
likely, you'll want to start Squid each time your system boots. Different operating systems have
different approaches to startup scripts. I'll show you how to make it happen in three different
ways.

You can send signals to the running Squid process to execute various tasks, such as halting and
reconfiguring Squid, and rotating the log files. Although you can use the kill command to send
signals, it is easier to use the squid -k commands.

 < Day Day Up >

 < Day Day Up >

5.1 Squid Command-Line Options

Before getting too far into other things, let's look at Squid's command-line options. Many of
these you will never use and some are useful only when debugging problems:

-a port

Specifies a new http_port value. This option always overrides the value from squid.conf.
Note, however, that you can specify multiple values in squid.conf. The -a option
overrides only the first value from the config file. (This option uses the letter "a"
because in the Harvest cache, the HTTP port was called the ASCII port.)

-d level

Makes Squid write its debugging messages to stderr (as well as cache.log and syslog, if
configured). The level argument specifies the maximum level for messages that should
be shown on stderr. In most cases -d1 works well. See Section 16.2 for a description of
debugging levels.

-f file

Specifies an alternate configuration file.

-h

Displays the usage information.

-k function

Signals Squid to perform various administrative functions. The function argument may
be one of the following: reconfigure, rotate, shutdown, interrupt, kill, debug,
check, or parse. reconfigure causes the running Squid process to reread its
configuration file. rotate causes Squid to rotate its log files, which involves closing
them, possibly renaming them, and opening them again. shutdown sends the signal to
shut down the Squid process. interrupt also shuts down Squid but does so
immediately, without waiting for active transactions to finish. kill sends the
unstoppable KILL signal to Squid, which should only be used as a last resort. debug puts
Squid into full debugging mode. It can quickly fill up your disk space if your cache is
busy. check simply checks for a running Squid process. The process return value
indicates whether Squid is running or not. Finally, parse simply parses the squid.conf
file. The process return value is non-zero if the configuration file contains errors.

-s

Enables logging to the syslog daemon. Squid uses the LOCAL4 syslog facility. Level 0
debug messages are logged with priority LOG_WARNING, and level 1 messages are logged
with LOG_NOTICE. Higher level debugging messages aren't sent to syslogd. You might
use an entry like this in /etc/syslogd.conf:

local4.warning /var/log/squid.log

-u port

Specifies an alternate ICP port number, overriding icp_port in squid.conf.

-v

Prints the version string.

-z

Initializes cache, or swap, directories. You must use this option when running Squid for
the first time or whenever you add a new cache directory.

-C

Prevents the installation of signal handlers that trap certain fatal signals such as SIGBUS
and SIGSEGV. Normally, the signals are trapped by Squid so that it can attempt a clean
shutdown. However, trapping the signal may make it harder to debug the problem
afterwards. With this option, the fatal signals cause their default actions, which is
usually to dump core.

-D

Disables initial DNS tests. Normally, Squid won't start until it verifies that its DNS server
is working. This option prevents that check. You can also alter or remove the
dns_testnames option in squid.conf.

-F

Makes Squid refuse all requests until it rebuilds the storage metadata. If your cache is
busy, this option may shorten the time required to rebuild the metadata. If your cache
is large, however, the rebuild procedure may take a long time anyway.

-N

Prevents Squid from becoming a background daemon process.

-R

Prevents Squid from using the SO_REUSEADDR option before binding to the HTTP port.

-V

Enables virtual host surrogate mode. Similar to entering httpd_accel_host virtual in
squid.conf.

-X

Forces full debugging, as though you had specified debug_options ALL,9 in squid.conf.

-Y

Returns ICP_MISS_NOFETCH instead of ICP_MISS when rebuilding store metadata. For
busy parent caches, this option may result in less load while the cache is rebuilding. See
Section 10.6.1.2.

 < Day Day Up >

 < Day Day Up >

5.2 Check Your Configuration File for Errors

Before trying to start Squid, you should verify that your squid.conf file makes sense. This is
easy to do. Just run the following command:

% squid -k parse

If you see no output, the configuration file is valid, and you can proceed to the next step.

However, if your configuration file contains an error, Squid tells you about it:

squid.conf line 62: http_access allow okay2

aclParseAccessLine: ACL name 'okay2' not found.

Here you can see that the http_access directive on line 62 references an ACL that doesn't exist.
Sometimes the error messages are less informative:

FATAL: Bungled squid.conf line 76: memory_pools

In this case, we forgot to put either on or off after the memory_pools directive on line 76.

It's a good idea to develop the habit of using squid -k parse every time you modify your
configuration file. If you don't bother, and your file has some errors, Squid tells you about them
and refuses to start anyway. If you end up managing a number of caches, it is likely that you'll
develop some scripts to automate starting, stopping, and reconfiguring Squid. You can use this
feature in your scripts to ensure that the configuration files are always valid.

 < Day Day Up >

 < Day Day Up >

5.3 Initializing Cache Directories

Before running Squid for the first time, and whenever you add a new cache_dir, you must
initialize the cache directories. The command is simply:

% squid -z

For the UFS-related storage schemes (ufs, aufs, and diskd; see Chapter 8), this command
creates the subdirectories needed under each cache_dir. You don't need to worry that Squid will
wipe out your current cache directories (if any).

Ownership and permissions are a common problem at this stage. Squid runs under a certain
user ID, specified with cache_effective_user in squid.conf. This user ID must have read and
write permission under each cache_dir directory. If not, you'll see a message like this:

Creating Swap Directories

FATAL: Failed to make swap directory /usr/local/squid/var/cache/00:

 (13) Permission denied

In this case, you should make sure that all components of /usr/local/squid/var/cache are
accessible to the user ID given in squid.conf. The final component—the cache directory—must
be writable by this user ID as well.

Cache directory initialization may take a couple of minutes, depending on the size and number
of cache directories, and the speed of your disk drives. If you want to watch the progress, use
the -X option:

% squid -zX

 < Day Day Up >

 < Day Day Up >

5.4 Testing Squid in a Terminal Window

Once you've initialized the cache directories, you should run Squid in a terminal window with
logging to stderr. This way, you can easily spot any errors or problems and make sure that
Squid successfully starts. Use the -N option to keep Squid in the foreground and the -d1 option
to display level 1 debugging on stderr:

% squid -N -d1

You should see output like this:

2003/09/29 12:57:52| Starting Squid Cache

version 2.5.STABLE4 for i386-unknown-freebsd4.8...

2003/09/29 12:57:52| Process ID 294

2003/09/29 12:57:52| With 1064 file descriptors available

2003/09/29 12:57:52| DNS Socket created on FD 4

2003/09/29 12:57:52| Adding nameserver 206.107.176.2 from /etc/resolv.conf

2003/09/29 12:57:52| Adding nameserver 205.162.184.2 from /etc/resolv.conf

2003/09/29 12:57:52| Unlinkd pipe opened on FD 9

2003/09/29 12:57:52| Swap maxSize 102400 KB, estimated 7876 objects

2003/09/29 12:57:52| Target number of buckets: 393

2003/09/29 12:57:52| Using 8192 Store buckets

2003/09/29 12:57:52| Max Mem size: 8192 KB

2003/09/29 12:57:52| Max Swap size: 102400 KB

2003/09/29 12:57:52| Rebuilding storage in /usr/local/squid/var/cache (DIRTY)

2003/09/29 12:57:52| Using Least Load store dir selection

2003/09/29 12:57:52| Set Current Directory to /usr/local/squid/var/cache

2003/09/29 12:57:52| Loaded Icons.

2003/09/29 12:57:52| Accepting HTTP connections at 0.0.0.0, port 3128, FD 11.

2003/09/29 12:57:52| Accepting ICP messages at 0.0.0.0, port 3130, FD 12.

2003/09/29 12:57:52| WCCP Disabled.

2003/09/29 12:57:52| Ready to serve requests.

If you see an error message, you need to fix it before proceeding. Be sure to check the first few
lines of output for warning messages. The most common errors are file/directory permissions
and configuration file syntax errors. If you see an error message that doesn't make sense, have
a look at Chapter 16 for advice and information on troubleshooting Squid. If that doesn't help,
check the Squid FAQ, or search the mailing list archives for an explanation.

Once you see the Ready to serve requests message, test Squid with a few HTTP requests.
You can do this by configuring your browser to use Squid as a proxy and then open a web
page. If Squid is working correctly, the page should load as quickly as it would without using
Squid. Alternatively, you can use the squidclient program that comes with Squid:

% squidclient http://www.squid-cache.org/

If this works, Squid's home page HTML file will scroll across your terminal window. Once you're
confident that Squid works okay, you can interrupt the Squid process (i.e., with Ctrl-C) and run
Squid as a daemon.

 < Day Day Up >

 < Day Day Up >

5.5 Running Squid as a Daemon Process

Normally you'll want to run Squid as a daemon process (i.e., not attached to your terminal window).
The easiest way to do this is simply execute Squid as follows:

% squid -s

The -s option causes Squid to write important status and warning messages to syslogd. Squid uses
the LOCAL4 facility and the LOG_WARNING and LOG_NOTICE priorities. Your syslog daemon may or may
not actually log Squid's messages, depending on how it is configured. These same messages are
written to the cache.log file, so it is safe to omit the -s option if you prefer.

When you start Squid without the -N option (as shown earlier), Squid automatically backgrounds itself
and creates a parent/child process pair. The child process is the one that does all the real work. The
parent process makes sure that a child process is always running. Thus, if the child process dies
unexpectedly, the parent starts another so that Squid remains in operation. You can see this parent/
child process interaction by looking at your syslog messages:

Jul 31 14:58:35 zapp squid[294]: Squid Parent: child process 296 started

Here you can see that the parent is process ID 294, and the child is 296. When you look at ps output,
you'll see that the child process is listed as (squid):

% ps ax | grep squid

 294 ?? Is 0:00.01 squid -sD

 296 ?? S 0:00.27 (squid) -sD (squid)

If the child Squid process dies unexpectedly, the parent starts another. For example:

Jul 31 15:02:53 zapp squid[294]: Squid Parent: child process 296 exited due to signal 6

Jul 31 15:02:56 zapp squid[294]: Squid Parent: child process 359 started

In some situations, the child Squid process may die immediately. Rather than constantly spawning
new Squid processes, the parent process gives up if the child processes won't stay running for at least
10 seconds five times in a row:

Jul 31 15:13:48 zapp squid[455]: Squid Parent: child process 474 exited with status 1

Jul 31 15:13:48 zapp squid[455]: Exiting due to repeated, frequent failures

If this happens to you, check syslog and Squid's cache.log for error messages.

5.5.1 The squid_start Script

When Squid runs as a daemon process, it looks for a file named squid_start in the same directory as
the squid binary. If found, this program is executed before the parent process forks to run the child
process. You can use this script for certain administrative tasks, such as notifying someone that Squid

is starting, managing log files, etc. Squid doesn't start the child process until the squid_start program
exits.

The squid_start script only works when you start Squid by its absolute or
relative pathname. In other words, Squid doesn't use the PATH environment
variable to locate squid_start. Thus, you may want to develop the habit of
starting Squid like this:

% /usr/local/squid/sbin/squid -sD

rather than starting Squid like this:

% squid -sD

 < Day Day Up >

 < Day Day Up >

5.6 Boot Scripts

Most likely, you'll want Squid to start automatically every time your computer boots. Different
operating systems vary widely in how their boot-up scripts work. I'll describe some common
environments here, but you may need to refer to your particular operating system for specific
information.

5.6.1 /etc/rc.local

One of the easiest schemes is the /etc/rc.local script. This is simply a shell script that runs as
root each time the system boots. Using this script to start Squid is as easy as adding the
following line:

/usr/local/squid/sbin/squid -s

Of course your installation prefix may be different, and you may like to use some other
command-line options. Don't use the -N option here.

If, for some reason, you're not using the cache_effective_user directive, you can try using su to
start Squid as a non-root user:

/usr/bin/su nobody -c '/usr/local/squid/sbin/squid -s'

5.6.2 init.d and rc.d

The init.d and rc.d schemes use a separate shell script to start different services. These scripts
are often located in one of the following directories: /sbin/init.d, /etc/init.d, and /usr/local/etc/
rc.d. The scripts usually take a single command-line argument, which is either start or stop.
Some systems only use the start argument. Here's a basic script for starting Squid:

#!/bin/sh

#

this script starts and stops Squid

case "$1" in

start)

 /usr/local/squid/sbin/squid -s

 echo -n ' Squid'

 ;;

stop)

 /usr/local/squid/sbin/squid -k shutdown

 ;;

esac

Linux users may want to add commands that set the file-descriptor
limits before running Squid. For example:

echo 8192 > /proc/sys/fs/file-max

limit -HSn 8192

To use this script, find the appropriate directory in which such scripts are stored. Give it a
meaningful name, similar to the others. Perhaps S98squid or simply squid.sh. Be sure to test
the script by rebooting your computer rather than assuming it will work.

5.6.3 /etc/inittab

Another scheme supported on some operating systems is the /etc/inittab file. On these
systems, the init process starts and stops services based on the run level. A typical inittab entry
looks like this:

sq:2345:once:/usr/local/squid/sbin/squid -s

With this entry, the init process starts Squid just once and then forgets about it. Squid makes
sure it stays running as described previously. Alternatively, you can do it like this:

sq:2345:respawn:/usr/local/squid/sbin/squid -Ns

Here, since we use the respawn option, init restarts Squid if the process exits. If you use
respawn, be sure to use the -N option.

After editing the inittab file, use this command to make init reread its configuration file and
start Squid:

init q

 < Day Day Up >

 < Day Day Up >

5.7 A chroot Environment

Some people like to run Squid in a chroot environment. This is a Unix feature that gives a
process a new root filesystem directory. It provides an extra level of security in the event that
Squid is compromised. If an attacker somehow gains access to the operating system through
Squid, she can only access files under the chroot filesystem. The other system files, outside of
the chroot tree, remain inaccessible.

The easiest way to run Squid in a chroot environment is by specifying the new root directory in
the squid.conf file with this directive:

chroot /new/root/directory

The chroot() system call requires superuser privileges, so you must
start Squid as root to use this feature.

The chroot environment isn't for first-time Unix users. It is a little tricky because you must
replicate a number of files underneath the new root directory. For example, if the default
configuration file is normally /usr/local/squid/etc/squid.conf, and you use the chroot directive,
the file must be located at /new/root/directory/usr/local/squid/etc/squid.conf. You must copy
all of the files under $prefix/etc, $prefix/share, and $prefix/libexec to the chroot directory.
Make sure that $prefix/var and the cache directories exist and are writable under the chroot
directory as well.

Chances are that your operating system requires a number of files in the chroot directory, such
as /etc/resolv.conf and /dev/null. If you use an external helper program, such as a redirector
(see Chapter 11) or an authenticator (see Chapter 12), you'll also need some shared libraries
from /usr/lib. You can use the ldd utility to find out which shared libraries are required for a
given program:

% ldd /usr/local/squid/libexec/ncsa_auth

/usr/local/squid/libexec/ncsa_auth:

 libcrypt.so.2 => /usr/lib/libcrypt.so.2 (0x28067000)

 libm.so.2 => /usr/lib/libm.so.2 (0x28080000)

 libc.so.4 => /usr/lib/libc.so.4 (0x28098000)

You can also use the chroot command to test helpers:

chroot /new/root/directory /usr/local/squid/libexec/ncsa_auth

/usr/libexec/ld-elf.so.1: Shared object "libcrypt.so.2" not found

For more information on chroot, see the chroot() manpage on your system.

 < Day Day Up >

 < Day Day Up >

5.8 Stopping Squid

The safest way to shut down Squid is with the squid -k shutdown command:

% squid -k shutdown

This command sends the TERM signal to the running Squid process. Upon receipt of the TERM
signal, Squid closes its incoming sockets so that new requests aren't accepted. It then waits
some amount of time for outstanding requests to complete. The default is 30 seconds, which
you can change with the shutdown_lifetime directive.

If, for some reason, the squid.pid file is missing or unreadable, the squid -k commands don't
work. In this case, you can manually kill Squid by finding the process ID with ps. For example:

% ps ax | grep squid

If you see more than one Squid process, be sure to kill the one that shows up as (squid). For
example:

% ps ax | grep squid

 294 ?? Is 0:00.01 squid -sD

 296 ?? S 0:00.27 (squid) -sD (squid)

% kill -TERM 296

After sending the TERM signal, you may want to watch the log file to double-check that Squid is
shutting down:

% tail -f logs/cache.log

2003/09/29 21:49:30| Preparing for shutdown after 9316 requests

2003/09/29 21:49:30| Waiting 10 seconds for active connections to finish

2003/09/29 21:49:30| FD 11 Closing HTTP connection

2003/09/29 21:49:31| Shutting down...

2003/09/29 21:49:31| FD 12 Closing ICP connection

2003/09/29 21:49:31| Closing unlinkd pipe on FD 9

2003/09/29 21:49:31| storeDirWriteCleanLogs: Starting...

2003/09/29 21:49:32| Finished. Wrote 253 entries.

2003/09/29 21:49:32| Took 0.1 seconds (1957.6 entries/sec).

2003/09/29 21:49:32| Squid Cache (Version 2.5.STABLE4): Exiting normally.

If you use squid -k interrupt, Squid shuts down immediately, without waiting for active requests
to complete. This is equivalent to sending the INT signal with kill.

 < Day Day Up >

 < Day Day Up >

5.9 Reconfiguring a Running Squid Process

As you learn more about Squid, you'll probably find yourself making many changes to the squid.
conf file. To have the new settings take effect, you can either shut down and restart Squid, or
you can reconfigure Squid while it is running.

The best way to reconfigure a running Squid process is with the squid -k reconfigure command:

% squid -k reconfigure

When you run this command, a HUP signal is sent to the running Squid process. Squid then
reads and parses the squid.conf file. If the operation is successful, you'll see this in cache.log:

2003/09/29 22:02:25| Restarting Squid Cache (version 2.5.STABLE4)...

2003/09/29 22:02:25| FD 12 Closing HTTP connection

2003/09/29 22:02:25| FD 13 Closing ICP connection

2003/09/29 22:02:25| Cache dir '/usr/local/squid/var/cache' size remains unchanged

 at 102400 KB

2003/09/29 22:02:25| DNS Socket created on FD 5

2003/09/29 22:02:25| Adding nameserver 10.0.0.1 from /etc/resolv.conf

2003/09/29 22:02:25| Accepting HTTP connections at 0.0.0.0, port 3128, FD 9.

2003/09/29 22:02:25| Accepting ICP messages at 0.0.0.0, port 3130, FD 11.

2003/09/29 22:02:25| WCCP Disabled.

2003/09/29 22:02:25| Loaded Icons.

2003/09/29 22:02:25| Ready to serve requests.

You need to be a little careful with the reconfigure option because it's possible to make changes
that cause a fatal error. For example, note that Squid closes and reopens the incoming HTTP
and ICP sockets. If you change the http_port to a port number that Squid can't open, it exits
with a fatal error message.

Certain options and directives can't be changed while Squid is running. This includes:

● Removal of cache directories (cache_dir directive).
● Changes to the store_log directive.
● Changing the block-size value for coss cache_dirs. In fact, whenever you change this

value, you must reinitialize the coss cache_dir.
● The coredump_dir directive isn't examined during the reconfigure procedure. Thus, you

can't make Squid change its current directory after it has started.

Solaris users may experience a subtle problem when reconfiguring Squid. The fopen() call in
the Solaris stdio implementation requires an unused file descriptor less than 256. The FILE
structure stores the file descriptor as an 8-bit value. Normally this isn't a problem because
Squid uses raw I/O (e.g., open()) to open cache files. However, certain tasks that occur during
the reconfigure procedure use fopen(). These may fail if the first 256 file descriptors are
already allocated.

 < Day Day Up >

 < Day Day Up >

5.10 Rotating the Log Files

Squid writes to a number of log files unless you disable them in squid.conf. You must
periodically rotate the log files to prevent them from consuming too much disk space. Squid
places a lot of importance on log files and exits with an error message when it can't write to
them. To keep disk space consumption under control, use the following command in a cron job:

% squid -k rotate

For example, this crontab entry rotates the logs every 24 hours, at 4 A.M.:

0 4 * * * /usr/local/squid/sbin/squid -k rotate

This command does two things. First, it closes the currently open log files. Then, it renames the
cache.log, store.log, and access.log files by appending a numeric extension. For example, cache.
log becomes cache.log.0, cache.log.0 becomes cache.log.1, and so on, up to the value of the
logfile_rotate option.

Squid keeps only the last logfile_rotate versions of each log file. The older versions are simply
removed during the renaming process. If you want to keep more copies, you need to increase
the logfile_rotate limit or write some custom scripts that move the log files to a different
location.

See Section 13.7 for additional information about rotating log files.

 < Day Day Up >

 < Day Day Up >

5.11 Exercises

● Use Squid's -s option and verify that its messages are saved by your syslog daemon.
● Run squid -X -d9, and examine some of the debugging messages.
● Write a shell script that stops Squid but doesn't exit until all Squid processes exit.
● Play with squid -k rotate. What happens if you have tail -f cache.log running when

you rotate the log files?

 < Day Day Up >

 < Day Day Up >

Chapter 6. All About Access Controls

Access controls are the most important part of your Squid configuration file. You'll use them to
grant access to your authorized users and to keep out the bad guys. You can use them to
restrict, or prevent access to, certain material; to control request rewriting; to route requests
through a hierarchy; and to support different qualities of service.

Access controls are built from two different components. First, you define a number of access
control list (ACL) elements. These elements refer to specific aspects of client requests, such as
IP addresses, URL hostnames, request methods, and origin server port numbers. After defining
the necessary elements, you combine them into a number of access list rules. The rules apply
to particular services or operations within Squid. For example, the http_access rules are applied
to incoming HTTP requests. I cover the access control elements first, and then the rules later in
this chapter.

 < Day Day Up >

 < Day Day Up >

6.1 Access Control Elements

ACL elements are the building blocks of Squid's access control implementation. These are how you specify
things such as IP addresses, port numbers, hostnames, and URL patterns. Each ACL element has a name,
which you refer to when writing the access list rules. The basic syntax of an ACL element is as follows:

acl name type value1 value2 ...

For example:

acl Workstations src 10.0.0.0/16

In most cases, you can list multiple values for one ACL element. You can also have multiple acl lines with
the same name. For example, the following two configurations are equivalent:

acl Http_ports port 80 8000 8080

acl Http_ports port 80

acl Http_ports port 8000

acl Http_ports port 8080

6.1.1 A Few Base ACL Types

Squid has approximately 25 different ACL types, some of which have a common base type. For example,
both src and dst ACLs use IP addresses as their base type. To avoid being redundant, I'll cover the base
types first and then describe each type of ACL in the following sections.

6.1.1.1 IP addresses

Used by: src, dst, myip

Squid has a powerful syntax for specifying IP addresses in ACLs. You can write addresses as subnets,

address ranges, and domain names. Squid supports both "dotted quad" and CIDR prefix
[1]

 subnet
specifications. In addition, if you omit a netmask, Squid calculates the appropriate netmask for you. For
example, each group in the next example are equivalent:

[1] CIDR stands for Classless Inter-Domain Routing. It is from an Internet-wide effort to
support routing by any prefix length, instead of the old class A, B, and C subnet lengths.

acl Foo src 172.16.44.21/255.255.255.255

acl Foo src 172.16.44.21/32

acl Foo src 172.16.44.21

acl Xyz src 172.16.55.32/255.255.255.248

acl Xyz src 172.16.55.32/28

acl Bar src 172.16.66.0/255.255.255.0

acl Bar src 172.16.66.0/24

acl Bar src 172.16.66.0

When you specify a netmask, Squid checks your work. If your netmask masks out non-zero bits of the IP
address, Squid issues a warning. For example, the following lines results in the subsequent warning:

acl Foo src 127.0.0.1/8

aclParseIpData: WARNING: Netmask masks away part of the specified IP in 'Foo'

The problem here is that the /8 netmask (255.0.0.0) has all zeros in the last three octets, but the IP
address 127.0.0.1 doesn't. Squid warns you about the problem so you can eliminate the ambiguity. To be
correct, you should write:

acl Foo src 127.0.0.1/32

or:

acl Foo src 127.0.0.0/8

Sometimes you may need to list multiple, contiguous subnets. In these cases, it may be easier to specify
an address range. For example:

acl Bar src 172.16.10.0-172.16.19.0/24

This is equivalent to, and more efficient than, this approach:

acl Foo src 172.16.10.0/24

acl Foo src 172.16.11.0/24

acl Foo src 172.16.12.0/24

acl Foo src 172.16.13.0/24

acl Foo src 172.16.14.0/24

acl Foo src 172.16.15.0/24

acl Foo src 172.16.16.0/24

acl Foo src 172.16.18.0/24

acl Foo src 172.16.19.0/24

Note that with IP address ranges, the netmask goes only at the very end. You can't specify different
netmasks for the beginning and ending range values.

You can also specify hostnames in IP ACLs. For example:

acl Squid dst www.squid-cache.org

Squid converts hostnames to IP addresses at startup. Once started, Squid never
makes another DNS lookup for the hostname's address. Thus, Squid never
notices if the address changes while it's running.

If the hostname resolves to multiple addresses, Squid adds each to the ACL. Also note that you can't use
netmasks with hostnames.

Using hostnames in address-based ACLs is usually a bad idea. Squid parses the configuration file before
initializing other components, so these DNS lookups don't use Squid's nonblocking IP cache interface.
Instead, they use the blocking gethostbyname() function. Thus, the need to convert ACL hostnames to
addresses can delay Squid's startup procedure. Avoid using hostnames in src, dst, and myip ACLs unless
absolutely necessary.

Squid stores IP address ACLs in memory with a data structure known as an splay tree (see http://www.
link.cs.cmu.edu/splay/). The splay tree has some interesting self-organizing properties, one of which being
that the list automatically adjusts itself as lookups occur. When a matching element is found in the list,
that element becomes the new root of the tree. In this way frequently referenced items migrate to the top
of the tree, which reduces the time for future lookups.

All subnets and ranges belonging to a single ACL element must not overlap. Squid warns you if you make a
mistake. For example, this isn't allowed:

acl Foo src 1.2.3.0/24

acl Foo src 1.2.3.4/32

It causes Squid to print a warning in cache.log:

WARNING: '1.2.3.4' is a subnetwork of '1.2.3.0/255.255.255.0'

WARNING: because of this '1.2.3.4' is ignored to keep splay tree searching

 predictable

WARNING: You should probably remove '1.2.3.4' from the ACL named 'Foo'

In this case, you need to fix the problem, either by removing one of the ACL values or by placing them into
different ACL lists.

6.1.1.2 Domain names

Used by: srcdomain, dstdomain, and the cache_host_domain directive

A domain name is simply a DNS name or zone. For example, the following are all valid domain names:

www.squid-cache.org

http://www.link.cs.cmu.edu/splay/
http://www.link.cs.cmu.edu/splay/

squid-cache.org

org

Domain name ACLs are tricky because of a subtle difference relating to matching domain names and
subdomains. When the ACL domain name begins with a period, Squid treats it as a wildcard, and it
matches any hostname in that domain, even the domain name itself. If, on the other hand, the ACL
domain name doesn't begin with a period, Squid uses exact string comparison, and the hostname must be
exactly the same for a match.

Table 6-1 shows Squid's rules for matching domain and hostnames. The first column shows hostnames
taken from requested URLs (or client hostnames for srcdomain ACLs). The second column indicates
whether or not the hostname matches lrrr.org. The third column shows whether the hostname matches
an .lrrr.org ACL. As you can see, the only difference is in the second case.

Table 6-1. Domain name matching

URL hostname Matches ACL lrrr.org? Matches ACL .lrrr.org?

lrrr.org Yes Yes

i.am.lrrr.org No Yes

iamlrrr.org No No

Domain name matching can be confusing, so let's look at another example so that you really understand
it. Here are two slightly different ACLs:

acl A dstdomain foo.com

acl B dstdomain .foo.com

A user's request to get http://www.foo.com/ matches ACL B, but not A. ACL A requires an exact string
match, but the leading dot in ACL B is like a wildcard.

On the other hand, a user's request to get http://foo.com/ matches both ACLs A and B. Even though there
is no word before foo.com in the URL hostname, the leading dot in ACL B still causes a match.

Squid uses splay trees to store domain name ACLs, just as it does for IP addresses. However, Squid's
domain name matching algorithm presents an interesting problem for splay trees. The splay tree technique
requires that only one key can match any particular search term. For example, let's say the search term
(from a URL) is i.am.lrrr.org. This hostname would be a match for both .lrrr.org and .am.lrrr.org. The fact
that two ACL values match one hostname confuses the splay algorithm. In other words, it is a mistake to
put something like this in your configuration file:

acl Foo dstdomain .lrrr.org .am.lrrr.org

If you do, Squid generates the following warning message:

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/lrrr.org
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/i.am.lrrr.org
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/iamlrrr.org
http://www.foo.com/

WARNING: '.am.lrrr.org' is a subdomain of '.lrrr.org'

WARNING: because of this '.am.lrrr.org' is ignored to keep splay tree searching predictable

WARNING: You should probably remove '.am.lrrr.org' from the ACL named 'Foo'

You should follow Squid's advice in this case. Remove one of the related domains so that Squid does
exactly what you intend. Note that you can use both domain names as long as you put them in different
ACLs:

acl Foo dstdomain .lrrr.org

acl Bar dstdomain .am.lrrr.org

This is allowed because each named ACL uses its own splay tree.

6.1.1.3 Usernames

Used by: ident, proxy_auth

ACLs of this type are designed to match usernames. Squid may learn a username through the RFC 1413
ident protocol or via HTTP authentication headers. Usernames must be matched exactly. For example, bob
doesn't match bobby. Squid also has related ACLs (ident_regex and proxy_auth_regex) that use regular-
expression pattern matching on usernames.

You can use the word REQUIRED as a special value to match any username. If Squid can't determine the
username, the ACL isn't matched. This is how Squid is usually configured when using username-based
access controls.

6.1.1.4 Regular expressions

Used by: srcdom_regex, dstdom_regex, url_regex, urlpath_regex, browser, referer_regex, ident_regex,
proxy_auth_regex, req_mime_type, rep_mime_type

A number of ACLs use regular expressions (regex) to match character strings. (For a complete regular-
expression reference, see O'Reilly's Mastering Regular Expressions.) For Squid, the most commonly used
regex features match the beginning and/or end of a string. For example, the ^ character is special because
it matches the beginning of a line or string:

^http://

This regex matches any URL that begins with http://. The $ character is also special because it matches
the end of a line or string:

.jpg$

Actually, the previous example is slightly wrong because the . character is special too. It is a wildcard that
matches any character. What we really want is this:

\.jpg$

The backslash escapes the . so that its specialness is taken away. This regex matches any string that ends
with .jpg. If you don't use the ^ or $ characters, regular expressions behave like standard substring

searches. They match an occurrence of the word (or words) anywhere in the string.

With all of Squid's regex types, you have the option to use case-insensitive comparison. Matching is case-
sensitive by default. To make it case-insensitive, use the -i option after the ACL type. For example:

acl Foo url_regex -i ^http://www

6.1.1.5 TCP port numbers

Used by: port, myport

This type is relatively straightforward. The values are individual port numbers or port number ranges.
Recall that TCP port numbers are 16-bit values and, therefore, must be greater than 0 and less than
65,536. Here are some examples:

acl Foo port 123

acl Bar port 1-1024

6.1.1.6 Autonomous system numbers

Used by: src_as, dst_as

Internet routers use Autonomous System (AS) numbers to construct routing tables. Essentially, an AS
number refers to a collection of IP networks managed by a single organization. For example, my ISP has
been assigned the following network blocks: 134.116.0.0/16, 137.41.0.0/16, 206.168.0.0/16, and many
more. In the Internet routing tables, these networks are advertised as belonging to AS 3404. When
routers forward packets, they typically select the path that traverses the fewest autonomous systems. If
none of this makes sense to you, don't worry. AS-based ACLs should only be used by networking gurus.

Here's how the AS-based types work: when Squid first starts up, it sends a special query to a whois
server. The query essentially says, "Tell me which IP networks belong to this AS number." This information
is collected and managed by the Routing Arbiter Database (RADB). Once Squid receives the list of IP
networks, it treats them similarly to the IP address-based ACLs.

AS-based types only work well when ISPs keep their RADB information up to date. Some ISPs are better
than others about updating their RADB entries; many don't bother with it at all. Also note that Squid
converts AS numbers to networks only at startup or when you signal it to reconfigure. If the ISP updates
its RADB entry, your cache won't know about the changes until you restart or reconfigure Squid.

Another problem is that the RADB server may be unreachable when your Squid process starts. If Squid
can't contact the RADB server, it removes the AS entries from the access control configuration. The default
server, whois.ra.net, may be too far away from many users to be reliable.

6.1.2 ACL Types

Now we can focus on the ACL types themselves. I present them here roughly in order of decreasing
importance.

6.1.2.1 src

IP addresses are the most commonly used access control elements. Most sites use IP address controls to
specify clients that are allowed to access Squid and those that aren't. The src type refers to client (source)
IP addresses. That is, when an src ACL appears in an access list, Squid compares it to the IP address of

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/whois.ra.net

the client issuing the request.

Normally you want to allow requests from hosts inside your network and block all others. For example, if
your organization is using the 192.168.0.0 subnet, you can use an ACL like this:

acl MyNetwork src 192.168.0.0

If you have many subnets, you can list them all on the same acl line:

acl MyNetwork src 192.168.0.0 10.0.1.0/24 10.0.5.0/24 172.16.0.0/12

Squid has a number of other ACL types that check the client's address. The srcdomain type compares the
client's fully qualified domain name. It requires a reverse DNS lookup, which may add some delay to
processing the request. The srcdom_regex ACL is similar, but it allows you to use a regular expression to
compare domain names. Finally, the src_as type compares the client's AS number.

6.1.2.2 dst

The dst type refers to origin server (destination) IP addresses. Among other things, you can use this to
prevent some or all of your users from visiting certain web sites. However, you need to be a little careful
with the dst ACL. Most of the requests received by Squid have origin server hostnames. For example:

GET http://www.web-cache.com/ HTTP/1.0

Here, www.web-cache.com is the hostname. When an access list rule includes a dst element, Squid must
find the IP addresses for the hostname. If Squid's IP cache contains a valid entry for the hostname, the
ACL is checked immediately. Otherwise, Squid postpones request processing while the DNS lookup is in
progress. This can add significant delay to some requests. To avoid those delays, you should use the

dstdomain ACL type (instead of dst) whenever possible.
[2]

[2] Apart from access controls, Squid only needs an origin server's IP address when
establishing a connection to that server. DNS lookups normally occur much later in request
processing. If the HTTP request results in a cache hit, Squid doesn't need to know the
server's address. Additionally, Squid doesn't need IP addresses for cache misses that are
forwarded to a neighbor cache.

Here is a simple dst ACL example:

acl AdServers dst 1.2.3.0/24

Note that one problem with dst ACLs is that the origin server you are trying to allow or deny may change
its IP address. If you don't notice the change, you won't bother to update squid.conf. You can put a
hostname on the acl line, but that adds some delay at startup. If you need many hostnames in ACLs, you
may want to preprocess the configuration file and turn the hostnames into IP addresses.

6.1.2.3 myip

The myip type refers to the IP address where clients connect to Squid. This is what you see under the
Local Address column when you run netstat -n on the Squid box. Most Squid installations don't use this
type. Usually, all clients connect to the same IP address, so this ACL element is useful only on systems
that have more than one IP address.

To understand how myip may be useful, consider a simple company local area network with two subnets.
All users on subnet-1 are programmers and engineers. Subnet-2 consists of accounting, marketing, and

other administrative departments. The system on which Squid runs has three network interfaces: one on
subnet-1, one on subnet-2, and the third connecting to the outbound Internet connection (see Figure 6-1).

Figure 6-1. An application of the myip ACL

When properly configured, all users on subnet-1 connect to Squid's IP address on that subnet, and
similarly, all subnet-2 users connect to Squid's second IP address. You can use this to give the technical
staff on subnet-1 full access, while limiting the administrative staff to only work-related web sites.

The ACLs might look like this:

acl Eng myip 172.16.1.5

acl Admin myip 172.16.2.5

Note, however, that with this scheme you must take special measures to prevent users on one subnet
from connecting to Squid's address on the other subnet. Otherwise, clever users on the accounting and
marketing subnet can connect through the programming and engineering subnet and bypass your
restrictions.

6.1.2.4 dstdomain

In some cases, you're likely to find that name-based access controls make a lot of sense. You can use
them to block access to certain sites, to control how Squid forwards requests and to make some responses
uncachable. The dstdomain type is very useful because it checks the hostname in requested URLs.

First, however, I want to clarify the difference between the following two lines:

acl A dst www.squid-cache.org

acl B dstdomain www.squid-cache.org

A is really an IP address ACL. When Squid parses the configuration file, it looks up the IP address for www.
squid-cache.org and stores the address in memory. It doesn't store the name. If the IP address for www.
squid-cache.org changes while Squid is running, Squid continues using the old address.

The dstdomain ACL, on the other hand, is stored as a domain name (i.e., a string), not as an IP address.
When Squid checks ACL B, it uses string comparison functions on the hostname part of the URL. In this

case, it doesn't really matter if the www.squid-cache.org IP changes while Squid is running.

The primary problem with dstdomain ACLs is that some URLs have IP addresses instead of hostnames. If
your goal is to block access to certain sites with dstdomain ACLs, savvy users can simply look up the site's
IP address manually and insert it into the URL. For example, these two URLs bring up the same page:

http://www.squid-cache.org/docs/FAQ/

http://206.168.0.9/docs/FAQ/

The first can be easily matched with dstdomain ACLs, but the second can't. Thus, if you elect to rely on
dstdomain ACLs, you may want to also block all requests that use an IP address instead of a hostname.
See the Section 6.3.8 for an example.

6.1.2.5 srcdomain

The srcdomain ACL is somewhat tricky as well. It requires a so-called reverse DNS lookup on each client's
IP address. Technically, Squid requests a DNS PTR record for the address. The answer—a fully qualified
domain name (FQDN)—is what Squid compares to the ACL value. (Refer to O'Reilly's DNS and BIND for
more information about DNS PTR records.)

As with dst ACLs, FQDN lookups are a potential source of significant delay. The request is postponed until
the FQDN answer comes back. FQDN answers are cached, so the srcdomain lookup delay usually occurs
only for the client's first request.

Unfortunately, srcdomain lookups sometimes don't work. Many organizations fail to keep their reverse
lookup databases current. If an address doesn't have a PTR record, the ACL check fails. In some cases,
requests may be postponed for a very long time (e.g., two minutes) until the DNS lookup times out. If you
choose to use the srcdomain ACL, make sure that your own DNS in-addr.arpa zones are properly
configured and working. Assuming that they are, you can use an ACL like this:

acl LocalHosts srcdomain .users.example.com

6.1.2.6 port

Most likely, you'll want to use the port ACL to limit access to certain origin server port numbers. As I'll
explain shortly, Squid really shouldn't connect to certain services, such as email and IRC servers. The port
ACL allows you to define individual ports, and port ranges. Here is an example:

acl HTTPports port 80 8000-8010 8080

HTTP is similar in design to other protocols, such as SMTP. This means that clever users can trick Squid
into relaying email messages to an SMTP server. Email relays are one of the primary reasons we must deal
with a daily deluge of spam. Historically, spam relays have been actual mail servers. Recently, however,
more and more spammers are using open HTTP proxies to hide their tracks. You definitely don't want your
Squid cache to be used as a spam relay. If it is, your IP address is likely to end up on one of the many
mail-relay blacklists (MAPS, ORDB, spamhaus, etc.). In addition to email, there are a number of other TCP/
IP services that Squid shouldn't normally communicate with. These include IRC, Telnet, DNS, POP, and
NNTP. Your policy regarding port numbers should be either to deny the known-to-be-dangerous ports and
allow the rest, or to allow the known-to-be-safe ports and deny the rest.

My preference is to be conservative and allow only the safe ports. The default squid.conf includes the
following Safe_ports ACL:

acl Safe_ports port 80 # http

acl Safe_ports port 21 # ftp

acl Safe_ports port 443 563 # https, snews

acl Safe_ports port 70 # gopher

acl Safe_ports port 210 # wais

acl Safe_ports port 1025-65535 # unregistered ports

acl Safe_ports port 280 # http-mgmt

acl Safe_ports port 488 # gss-http

acl Safe_ports port 591 # filemaker

acl Safe_ports port 777 # multiling http

http_access deny !Safe_ports

This is a sensible approach. It allows users to connect to any nonprivileged port (1025-65535), but only
specific ports in the privileged range. If one of your users tries to request a URL, such as http://www.lrrr.
org:123/, Squid returns an access denied error message. In some cases, you may need to add additional
port numbers to the Safe_ports ACL to keep your users happy.

A more liberal approach is to deny access to certain ports that are known to be particularly dangerous. The
Squid FAQ includes an example of this:

acl Dangerous_ports 7 9 19 22 23 25 53 109 110 119

http_access deny Dangerous_ports

One drawback to the Dangerous_ports approach is that Squid ends up searching the entire list for almost
every request. This places a little extra burden on your CPU. Most likely, 99% of the requests reaching
Squid are for port 80, which doesn't appear in the Dangerous_ports list. The list is searched for all of these
requests without resulting in a match. However, integer comparison is a fast operation and should not
significantly impact performance.

6.1.2.7 myport

Squid also has a myport ACL. Whereas the port ACL refers to the origin server port number, myport refers
to the port where Squid receives client requests. Squid listens on different port numbers if you specify
more than one with the http_port directive.

The myport ACL is particularly useful if you use Squid as an HTTP accelerator for your web site and as a
proxy for your users. You can accept the accelerator requests on port 80 and the proxy requests on port
3128. You probably want the world to access the accelerator, but only your users should access Squid as a
proxy. Your ACLs may look something like this:

acl AccelPort myport 80

acl ProxyPort myport 3128

acl MyNet src 172.16.0.0/22

http_access allow AccelPort # anyone

http_access allow ProxyPort MyNet # only my users

http_access deny ProxyPort # deny others

6.1.2.8 method

The method ACL refers to the HTTP request method. GET is typically the most common method, followed
by POST, PUT, and others. This example demonstrates how to use the method ACL:

acl Uploads method PUT POST

Squid knows about the following standard HTTP methods: GET, POST, PUT, HEAD, CONNECT, TRACE, OPTIONS,
and DELETE. In addition, Squid knows about the following methods from the WEBDAV specification, RFC

2518: PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK, UNLOCK.
[3]

 Certain Microsoft products use
nonstandard WEBDAV methods, so Squid knows about them as well: BMOVE, BDELETE, BPROPFIND. Finally,
you can configure Squid to understand additional request methods with the extension_methods directive.
See Appendix A.

[3] For the RFC database, visit http://www.rfc-editor.org/rfc.html.

Note that the CONNECT method is special in a number of ways. It is the method used for tunneling certain
requests through HTTP proxies (see also RFC 2817: Upgrading to TLS Within HTTP/1.1). Be especially
careful with the CONNECT method and remote server port numbers. As I talked about in the previous
section, you don't want Squid to connect to certain remote services. You should limit the CONNECT method
to only the HTTPS/SSL and perhaps NNTPS ports (443 and 563, respectively). The default squid.conf does
this:

acl CONNECT method CONNECT

acl SSL_ports 443 563

http_access allow CONNECT SSL_ports

http_access deny CONNECT

With this configuration, Squid only allows tunneled requests to ports 443 (HTTPS/SSL) and 563 (NNTPS).
CONNECT method requests to all other ports are denied.

PURGE is another special request method. It is specific to Squid and not defined in any of the RFCs. It
provides a way for the administrator to forcibly remove cached objects. Since this method is somewhat
dangerous, Squid denies PURGE requests by default, unless you define an ACL that references the method.
Otherwise, anyone with access to the cache may be able to remove any cached object. I recommend
allowing PURGE from localhost only:

acl Purge method PURGE

acl Localhost src 127.0.0.1

http://www.rfc-editor.org/rfc.html

http_access allow Purge Localhost

http_access deny Purge

See Section 7.6 for more information on removing objects from Squid's cache.

6.1.2.9 proto

This type refers to a URI's access (or transfer) protocol. Valid values are the following: http, https (same
as HTTP/TLS), ftp, gopher, urn, whois, and cache_object. In other words, these are the URL scheme
names (RFC 1738 terminology) supported by Squid. For example, suppose that you want to deny all FTP
requests. You can use the following directives:

acl FTP proto FTP

http_access deny FTP

The cache_object scheme is a feature specific to Squid. It is used to access Squid's cache management
interface, which I'll talk about in Section 14.2. Unfortunately, it's not a very good name, and it should
probably be changed.

The default squid.conf file has a couple of lines that restrict cache manager access:

acl Manager proto cache_object

acl Localhost src 127.0.0.1

http_access allow Manager Localhost

http_access deny Manager

These configuration lines allow cache-manager requests only when they come from the localhost address.
All other cache-manager requests are denied. This means that any user with an account on the Squid
machine can access the potentially sensitive cache-manager information. You may want to modify the
cache-manager access controls or protect certain pages with passwords. I'll talk about that in Section
14.2.2.

6.1.2.10 time

The time ACL allows you to control access based on the time of day and the day of the week. The syntax is
somewhat cryptic:

acl name [days] [h1:m1-h2:m2]

You can specify days of the week, starting and stopping times, or both. Days are specified by the single-
letter codes shown in Table 6-2. Times are specified in 24-hour format. The starting time must be less
than the ending time, which makes it awkward to write time ACLs that span "midnights."

Table 6-2. Day codes for the time ACL

Code Day

S Sunday

M Monday

T Tuesday

W Wednesday

H Thursday

F Friday

A Saturday

D All weekdays (M-F)

Days and times are interpreted with the localtime() function, which takes into
account your local time zone and daylight savings time settings. Make sure that
your computer knows what time zone it is in! You'll also want to make sure that
your clock is synchronized to the correct time.

To specify a time ACL that matches your weekday working hours, you can write:

acl Working_hours MTWHF 08:00-17:00

or:

acl Working_hours D 08:00-17:00

Let's look at a trickier example. Perhaps you're an ISP that relaxes access during off-peak hours, say 8 P.
M. to 4 A.M. Since this time spans midnight, you can't write "20:00-04:00." Instead you'll need either to
split this into two ACLs or define the peak hours and use negation. For example:

acl Offpeak1 20:00-23:59

acl Offpeak2 00:00-04:00

http_access allow Offpeak1 ...

http_access allow Offpeak2 ...

Alternatively, you can do it like this:

acl Peak 04:00-20:00

http_access allow !Peak ...

Although Squid allows it, you probably shouldn't put more than one day list and time range on a single
time ACL line. The parser isn't always smart enough to figure out what you want. For example, if you enter
this:

acl Blah time M 08:00-10:00 W 09:00-11:00

what you really end up with is this:

acl Blah time MW 09:00-11:00

The parser ORs weekdays together and uses only the last time range. It does work, however, if you write
it like this, on two separate lines:

acl Blah time M 08:00-10:00

acl Blah time W 09:00-11:00

6.1.2.11 ident

The ident ACL matches usernames returned by the ident protocol. This is a simple protocol, that's
documented in RFC 1413. It works something like this:

1. A user-agent (client) establishes a TCP connection to Squid.

2. Squid connects to the ident port (113) on the client's system.

3. Squid writes a line containing the two TCP port numbers of the client's first connection. The Squid-
side port number is probably 3128 (or whatever you configured in squid.conf). The client-side port
is more or less random.

4. The client's ident server writes back the username belonging to the process that opened the first
connection.

5. Squid records the username for access control purposes and for logging in access.log.

When Squid encounters an ident ACL for a particular request, that request is postponed until the ident
lookup is complete. Thus, the ident ACL may add some significant delays to your users' requests.

We recommend using the ident ACL only on local area networks and only if all or most of the client
workstations run the ident server. If Squid and the client workstations are connected to a LAN with low
latency, the ident ACL can work well. Using ident for clients connecting over WAN links is likely to frustrate
both you and your users.

The ident protocol isn't very secure. Savvy users will be able to replace their normal ident server with a
fake server that returns any username they select. For example, if I know that connections from the user
administrator are always allowed, I can write a simple program that answers every ident request with
that username.

You can't use ident ACLs with interception caching (see Chapter 9). When Squid
is configured for interception caching, the operating system pretends that it is
the origin server. This means that the local socket address for intercepted TCP
connections has the origin server's IP address. If you run netstat -n on Squid,
you'll see a lot of foreign IP addresses in the Local Address column. When Squid
makes an ident query, it creates a new TCP socket and binds the local endpoint
to the same IP address as the local end of the client's TCP connection. Since the
local address isn't really local (it's some far away origin server's IP address), the
bind() system call fails. Squid handles this as a failed ident query.

Note that Squid also has a feature to perform "lazy" ident lookups on clients. In this case, requests aren't
delayed while waiting for the ident query. Squid logs the ident information if it is available by the time the
HTTP request is complete. You can enable this feature with the ident_lookup_access directive, which I'll
discuss later in this chapter.

6.1.2.12 proxy_auth

Squid has a powerful, and somewhat confusing, set of features to support HTTP proxy authentication. With
proxy authentication, the client's HTTP request includes a header containing authentication credentials.
Usually, this is simply a username and password. Squid decodes the credential information and then
queries an external authentication process to find out if the credentials are valid.

Squid currently supports three techniques for receiving user credentials: the HTTP Basic protocol, Digest
authentication protocol, and NTLM. Basic authentication has been around for a long time. By today's
standards, it is a very insecure technique. Usernames and passwords are sent together, essentially in
cleartext. Digest authentication is more secure, but also more complicated. Both Basic and Digest
authentication are documented in RFC 2617. NTLM also has better security than Basic authentication.
However, it is a proprietary protocol developed by Microsoft. A handful of Squid developers have
essentially reverse-engineered it.

In order to use proxy authentication, you must also configure Squid to spawn a number of external helper
processes. The Squid source code includes some programs that authenticate against a number of standard
databases, including LDAP, NTLM, NCSA-style password files, and the standard Unix password database.
The auth_param directive controls the configuration of all helper programs. I'll go through it in detail in
Chapter 12.

The auth_param directive and proxy_auth ACL is one of the few cases where their order in the
configuration file is important. You must define at least one authentication helper (with auth_param)
before any proxy_auth ACLs. If you don't, Squid prints an error message and ignores the proxy_auth
ACLs. This isn't a fatal error, so Squid may start anyway, and all your users' requests may be denied.

The proxy_auth ACL takes usernames as values. However, most installations simply use the special value
REQUIRED:

auth_param ...

acl Auth1 proxy_auth REQUIRED

In this case, any request with valid credentials matches the ACL. If you need fine-grained control, you can
specify individual usernames:

auth_param ...

acl Auth1 proxy_auth allan bob charlie

acl Auth2 proxy_auth dave eric frank

Proxy authentication doesn't work with HTTP interception because the user-
agent doesn't realize it's talking to a proxy rather than the origin server. The
user-agent doesn't know that it should send a Proxy-Authorization header in
its requests. See Section 9.2 for additional details.

6.1.2.13 src_as

This type checks that the client (source) IP address belongs to a specific AS number. (See Section 6.1.1.6
for information on how Squid maps AS numbers to IP addresses.) As an example, consider the fictitious
ISP that uses AS 64222 and advertises the 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16 networks. You
can write an ACL like this, which allows requests from any host in the ISP's address space:

acl TheISP src 10.0.0.0/8

acl TheISP src 172.16.0.0/12

acl TheISP src 192.168.0.0/16

http_access allow TheISP

Alternatively, you can write it like this:

acl TheISP src_as 64222

http_access allow TheISP

Not only is the second form shorter, it also means that if the ISP adds more networks, you won't have to
update your ACL configuration.

6.1.2.14 dst_as

The dst_as ACL is often used with the cache_peer_access directive. In this way, Squid can forward cache
misses in a manner consistent with IP routing. Consider an ISP that exchanges routes with a few other
ISPs. Each ISP operates their own caching proxy, and these proxies can forward requests to each other.
Ideally, ISP A forwards cache misses for servers on ISP B's network to ISP B's caching proxy. An easy way
to do this is with AS ACLs and the cache_peer_access directive:

acl ISP-B-AS dst_as 64222

acl ISP-C-AS dst_as 64333

cache_peer proxy.isp-b.net parent 3128 3130

cache_peer proxy.isp-c.net parent 3128 3130

cache_peer_access proxy.isb-b.net allow ISP-B-AS

cache_peer_access proxy.isb-c.net allow ISP-C-AS

These access controls make sure that the only requests sent to the two ISPs are for their own origin

servers. I'll talk further about cache cooperation in Chapter 10.

6.1.2.15 snmp_community

The snmp_community ACL is meaningful only for SNMP queries, which are controlled by the snmp_access
directive. For example, you might write:

acl OurCommunityName snmp_community hIgHsEcUrItY

acl All src 0/0

snmp_access allow OurCommunityName

snmp_access deny All

In this case, an SNMP query is allowed only if the community name is set to hIgHsEcUrItY.

6.1.2.16 maxconn

The maxconn ACL refers to the number of simultaneous connections from a client's IP address. Some
Squid administrators find this a useful way to prevent users from abusing the proxy or consuming too
many resources.

The maxconn ACL matches a request when that request exceeds the number you specify. For this reason,
you should use maxconn ACLs only in deny rules. Consider this example:

acl OverConnLimit maxconn 4

http_access deny OverConnLimit

In this case, Squid allows up to four connections at once from each IP address. When a client makes the
fifth connection, the OverConnLimit ACL is matched, and the http_access rule denies the request.

The maxconn ACL feature relies on Squid's client database. This database keeps a small data structure in
memory for each client IP address. If you have a lot of clients, this database may consume a significant
amount of memory. You can disable the client database in the configuration file with the client_db
directive. However, if you disable the client database, the maxconn ACL will no longer work.

6.1.2.17 arp

The arp ACL is used to check the Media Access Control (MAC) address (typically Ethernet) of cache clients.
The Address Resolution Protocol (ARP) is the way that hosts find the MAC address corresponding to an IP
address. This feature came about when some university students discovered that, under Microsoft
Windows, they could set a system's IP address to any value. Thus, they were able to circumvent Squid's
address-based controls. To escalate this arms race, a savvy system administrator gave Squid the ability to
check the client's Ethernet addresses.

Unfortunately, this feature uses nonportable code. If you use Solaris or Linux, you should be able to use
arp ACLs. If not, you're out of luck. The best way to find out is to add the —enable-arp-acl option when
you run ./configure.

The arp ACL feature contains another important limitation. ARP is a datalink layer protocol. It works only
for hosts on the same subnet as Squid. You can't easily discover the MAC address of a host on a different
subnet. If you have routers between Squid and your users, you probably can't use arp ACLs.

Now that you know when not to use them, let's see how arp ACLs actually look. The values are Ethernet
addresses, as you would see in ifconfig and arp output. For example:

acl WinBoxes arp 00:00:21:55:ed:22

acl WinBoxes arp 00:00:21:ff:55:38

6.1.2.18 srcdom_regex

The srcdom_regex ACL allows you to use regular expression matching on client domain names. This is
similar to the srcdomain ACL, which uses modified substring matching. The same caveats apply here:
some client addresses don't resolve back to domain names. As an example, the following ACL matches
hostnames that begin with dhcp:

acl DHCPUser srcdom_regex -i ^dhcp

Because of the leading ^ symbol, this ACL matches the hostname dhcp12.example.com, but not host12.
dhcp.example.com.

6.1.2.19 dstdom_regex

The dstdom_regex ACL is obviously similar, except that it applies to origin server names. The issues with
dstdomain are relevant here, too. The following example matches hostnames that begin with www:

acl WebSite dstdom_regex -i ^www\.

Here is another useful regular expression that matches IP addresses given in URL hostnames:

acl IPaddr dstdom_regex [0-9]$

This works because Squid requires URL hostnames to be fully qualified. Since none of the global top-level
domains end with a digit, this ACL matches only IP addresses, which do end with a number.

6.1.2.20 url_regex

You can use the url_regex ACL to match any part of a requested URL, including the transfer protocol and
origin server hostname. For example, this ACL matches MP3 files requested from FTP servers:

acl FTPMP3 url_regex -i ^ftp://.*\.mp3$

6.1.2.21 urlpath_regex

The urlpath_regex ACL is very similar to url_regex, except that the transfer protocol and hostname aren't
included in the comparison. This makes certain types of checks much easier. For example, let's say you
need to deny requests with sex in the URL, but still possibly allow requests that have sex in their
hostname:

acl Sex urlpath_regex sex

As another example, let's say you want to provide special treatment for cgi-bin requests. You can catch
some of them with this ACL:

acl CGI1 urlpath_regex ^/cgi-bin

Of course, CGI programs aren't necessarily kept under /cgi-bin/, so you'd probably want to write additional
ACLs to catch the others.

6.1.2.22 browser

Most HTTP requests include a User-Agent header. The value of this header is typically something strange
like:

Mozilla/4.51 [en] (X11; I; Linux 2.2.5-15 i686)

The browser ACL performs regular expression matching on the value of the User-Agent header. For
example, to deny requests that don't come from a Mozilla browser, you can use:

acl Mozilla browser Mozilla

http_access deny !Mozilla

Before using the browser ACL, be sure that you fully understand the User-Agent strings your cache
receives. Some user-agents lie about their identity. Even Squid has a feature to rewrite User-agent
headers in requests that it forwards. With browsers such as Opera and KDE's Konqueror, users can send
different user-agent strings to different origin servers or omit them altogether.

6.1.2.23 req_mime_type

The req_mime_type ACL refers to the Content-Type header of the client's HTTP request. Content-Type
headers usually appear only in requests with message bodies. POST and PUT requests might include the
header, but GET requests don't. You might be able to use the req_mime_type ACL to detect certain file
uploads and some types of HTTP tunneling requests.

The req_mime_type ACL values are regular expressions. To catch audio file types, you can use an ACL like
this:

acl AuidoFileUploads req_mime_type -i ^audio/

6.1.2.24 rep_mime_type

The rep_mime_type ACL refers to the Content-Type header of the origin server's HTTP response. It is
really only meaningful when used in an http_reply_access rule. All other access control forms are based on
aspects of the client's request. This one is based on the response.

If you want to try blocking Java code with Squid, you might use some access rules like this:

acl JavaDownload rep_mime_type application/x-java

http_reply_access deny JavaDownload

6.1.2.25 ident_regex

You saw the ident ACL earlier in this section. The ident_regex simply allows you to use regular
expressions, instead of exact string matching on usernames returned by the ident protocol. For example,

this ACL matches usernames that contain a digit:

acl NumberInName ident_regex [0-9]

6.1.2.26 proxy_auth_regex

As with ident, the proxy_auth_regex ACL allows you to use regular expressions on proxy authentication
usernames. For example, this ACL matches admin, administrator, and administrators:

acl Admins proxy_auth_regex -i ^admin

6.1.3 External ACLs

Squid Version 2.5 introduces a new feature: external ACLs. You instruct Squid to send certain pieces of
information to an external process. This helper process then tells Squid whether the given data is a match
or not.

Squid comes with a number of external ACL helper programs; most determine whether or not the named
user is a member of a particular group. See Section 12.5 for descriptions of those programs and for
information on how to write your own. For now, I'll explain how to define and utilize an external ACL type.

The external_acl_type directive defines a new external ACL type. Here's the general syntax:

external_acl_type type-name [options] format helper-command

type-name is a user-defined string. You'll also use it in an acl line to reference this particular helper.

Squid currently supports the following options:

ttl=n

The amount of time, in seconds, to cache the result for values that are a match. The default is
3600 seconds, or 1 hour.

negative_ttl=n

The amount of time, in seconds, to cache the result for values that aren't a match. The default is
3600 seconds, or 1 hour.

concurrency=n

The number of helper processes to spawn. The default is 5.

cache=n

The maximum number of results to cache. The default is 0, which doesn't limit the cache size.

format is one or more keywords that begin with the % character. Squid currently supports the following
format tokens:

%LOGIN

The username, taken from proxy authentication credentials.

%IDENT

The username, taken from an RFC 1413 ident query.

%SRC

The IP address of the client.

%DST

The IP address of the origin server.

%PROTO

The transfer protocol (e.g., HTTP, FTP, etc.).

%PORT

The origin server TCP port number.

%METHOD

The HTTP request method.

%{Header}

The value of an HTTP request header; for example, %{User-Agent} causes Squid to send strings
like this to the authenticator:

"Mozilla/4.0 (compatible; MSIE 6.0; Win32)"

%{Hdr:member}

Selects certain members of list-based HTTP headers, such as Cache-Control; for example, given
this HTTP header:

X-Some-Header: foo=xyzzy, bar=plugh, foo=zoinks

and the token %{X-Some-Header:foo}, Squid sends this string to the external ACL process:

foo=xyzzy, foo=zoinks

%{Hdr:;member}

The same as %{Hdr:member}, except that the ; character is the list separator. You can use any
nonalphanumeric character as the separator.

helper-command is the command that Squid spawns for the helper. You may include command arguments
here as well. For example, the entire command may be something like:

/usr/local/squid/libexec/my-acl-prog.pl -X -5 /usr/local/squid/etc/datafile

Putting all these together results in a long line. Squid's configuration file doesn't support the backslash line-
continuation technique shown here, so remember that all these must go on a single line:

external_acl_type MyAclType cache=100 %LOGIN %{User-Agent} \

 /usr/local/squid/libexec/my-acl-prog.pl -X -5 \

 /usr/local/squid/share/usernames \

 /usr/local/squid/share/useragents

Now that you know how to define an external ACL, the next step is to write an acl line that references it.
This is relatively straightforward. The syntax is as follows:

acl acl-name external type-name [args ...]

Here is a simple example:

acl MyAcl external MyAclType

Squid accepts any number of optional arguments following the type-name. These are sent to the helper
program for each request, after the expanded tokens. See my description of the unix_group helper in
Section 12.5.3 for an example of this feature.

6.1.4 Dealing with Long ACL Lists

ACL lists can sometimes be very long. Such lists are awkward to maintain inside the squid.conf file. Also,
you may need to generate Squid ACL lists automatically from other sources. In these cases, you'll be
happy to know that you can include ACL lists from external files. The syntax is as follows:

acl name "filename"

The double quotes here instruct Squid to open filename and assign its contents to the ACL. For example,
instead of this:

acl Foo BadClients 1.2.3.4 1.2.3.5 1.2.3.6 1.2.3.7 1.2.3.9 ...

you can do this:

acl Foo BadClients "/usr/local/squid/etc/BadClients"

and put the IP addresses into the BadClients file:

1.2.3.4

1.2.3.5

1.2.3.6

1.2.3.7

1.2.3.9

...

Your file may include comments that begin with a # character. Note that each entry in the file must be on
a separate line. Whereas a space character delimits values on an acl line, newlines are the delimiter for
files containing ACL values.

6.1.5 How Squid Matches Access Control Elements

It is important to understand how Squid searches ACL elements for a match. When an ACL element has
more than one value, any single value can cause a match. In other words, Squid uses OR logic when
checking ACL element values. Squid stops searching when it finds the first value that causes a match. This
means that you can reduce delays by placing likely matches at the beginning of a list.

Let's look at a specific example. Consider this ACL definition:

acl Simpsons ident Maggie Lisa Bart Marge Homer

When Squid encounters the Simpsons ACL in an access list, it performs the ident lookup. Let's see what
happens when the user's ident server returns Marge. Squid's ACL code compares this value to Maggie,
Lisa, and Bart before finding a match with Marge. At this point, the search terminates, and we say that
the Simpsons ACL matches the request.

Actually, that's a bit of a lie. The ident ACL values aren't stored as an unordered list. Rather, they are
stored as an splay tree. This means that Squid doesn't end up searching all the names in the event of a
nonmatch. Searching an splay tree with N items requires log(N) comparisons. Many other ACL types use
splay trees as well. The regular expression-based types, however, don't.

Since regular expressions can't be sorted, they are stored as linked lists. This makes them inefficient for
large lists, especially for requests that don't match any of the regular expressions in the list. In an attempt
to improve this situation, Squid moves a regular expression to the top of the list when a match occurs. In
fact, due to the nature of the ACL matching code, Squid moves matched entries to the second position in
the list. Thus, commonly matched values naturally migrate to the top of the ACL list, which should reduce
the number of comparisons.

Let's look at another simple example:

acl Schmever port 80-90 101 103 107 1 2 3 9999

This ACL is a match for a request to an origin server port between 80 and 90, and all the other individual
listed port numbers. For a request to port 80, Squid matches the ACL by looking at the first value. For port
9999, all the other values are checked first. For a port number not listed, Squid checks every value before
declaring the ACL isn't a match. As I've said before, you can optimize the ACL matching by placing the
more common values first.

 < Day Day Up >

 < Day Day Up >

6.2 Access Control Rules

As I mentioned earlier, ACL elements are the first step in building access controls. The second
step is the access control rules, where you combine elements to allow or deny certain actions.
You've already seen some http_access rules in the preceding examples. Squid has a number of
other access control lists:

http_access

This is your most important access list. It determines which client HTTP requests are
allowed, and which are denied. If you get the http_access configuration wrong, your
Squid cache may be vulnerable to attacks and abuse from people who shouldn't have
access to it.

http_reply_access

The http_reply_access list is similar to http_access. The difference is that the former list
is checked when Squid receives a reply from an origin server or upstream proxy. Most
access controls are based on aspects of the client's request, in which case the
http_access list is sufficient. However, some people prefer also to allow or deny requests
based on the reply content type. Because Squid doesn't know the content type value
until it receives the server's reply, this additional access list is necessary. See Section
6.3.9 for more information.

icp_access

If your Squid cache is configured to serve ICP replies (see Section 10.6), you should use
the icp_access list. In most cases, you'll want to allow ICP requests only from your
neighbor caches.

no_cache

You can use the no_cache access list to tell Squid it must never store certain responses
(on disk or in memory). This list is typically used in conjunction with dst, dstdomain,
and url_regex ACLs.

The "no" in no_cache causes some confusion because of double negatives. A request
that is denied by the no_cache list isn't cached. In other words no_cache deny ... is
the way to make something uncachable. See Section 6.3.10 for an example.

miss_access

The miss_access list is primarily useful for a Squid cache with sibling neighbors. It

determines how Squid handles requests that are cache misses. This feature is necessary
for Squid to enforce sibling relationships with its neighbors. See Section 6.3.7 for an
example.

redirector_access

This access list determines which requests are sent to one of the redirector processes
(see Chapter 11). By default, all requests go through a redirector if you are using one.
You can use the redirector_access list to prevent certain requests from being rewritten.
This is particularly useful because a redirector receives less information about a
particular request than does the access control system.

ident_lookup_access

The ident_lookup_access list is similar to redirector_access. It enables you to make
"lazy" ident lookups for certain requests. Squid doesn't issue ident queries by default. It
does so only for requests that are allowed by the ident_lookup_access rules (or by an
ident ACL).

always_direct

This access list affects how a Squid cache with neighbors forwards cache misses. Usually
Squid tries to forward cache misses to a parent cache, and/or Squid uses ICP to locate
cached responses in neighbors. However, when a request matches an always_direct
rule, Squid forwards the request directly to the origin server.

With this list, matching an allow rule causes Squid to forward the request directly. See
Section 10.4.4 for more information and an example.

never_direct

Not surprisingly, never_direct is the opposite of always_direct. Cache miss requests that
match this list must be sent to a neighbor cache. This is particularly useful for proxies
behind firewalls.

With this list, matching an allow rule causes Squid to forward the request to a
neighbor. See Section 10.4.3 for more information and an example.

snmp_access

This access list applies to queries sent to Squid's SNMP port. The ACLs that you can use
with this list are snmp_community and src. You can also use srcdomain, srcdom_regex,
and src_as if you really want to. See Section 14.3 for an example.

broken_posts

This access list affects the way that Squid handles certain POST requests. Some older
user-agents are known to send an extra CRLF (carriage return and linefeed) at the end
of the request body. That is, the message body is two bytes longer than indicated by the
Content-Length header. Even worse, some older HTTP servers actually rely on this
incorrect behavior. When a request matches this access list, Squid emulates the buggy
client and sends the extra CRLF characters.

Squid has a number of additional configuration directives that use ACL elements. Some of these
used to be global settings that were modified to use ACLs to provide more flexibility.

cache_peer_access

This access list controls the HTTP requests and ICP/HTCP queries that are sent to a
neighbor cache. See Section 10.4.1 for more information and examples.

reply_body_max_size

This access list restricts the maximum acceptable size of an HTTP reply body. See
Appendix A for more information.

delay_access

This access rule list controls whether or not the delay pools are applied to the (cache
miss) response for this request. See Appendix C.

tcp_outgoing_address

This access list binds server-side TCP connections to specific local IP addresses. See
Appendix A.

tcp_outgoing_tos

This access list can set different TOS/Diffserv values in TCP connections to origin servers
and neighbors. See Appendix A.

header_access

With this directive, you can configure Squid to remove certain HTTP headers from the
requests that it forwards. For example, you might want to automatically filter out
Cookie headers in requests sent to certain origin servers, such as doubleclick.net. See
Appendix A.

header_replace

This directive allows you to replace, rather than just remove, the contents of HTTP
headers. For example, you can set the User-Agent header to a bogus value to keep
certain origin servers happy while still protecting your privacy. See Appendix A.

6.2.1 Access Rule Syntax

The syntax for an access control rule is as follows:

access_list allow|deny [!]ACLname ...

For example:

http_access allow MyClients

http_access deny !Safe_Ports

http_access allow GameSites AfterHours

When reading the configuration file, Squid makes only one pass through the access control
lines. Thus, you must define the ACL elements (with an acl line) before referencing them in an
access list. Furthermore, the order of the access list rules is very important. Incoming requests
are checked in the same order that you write them. Placing the most common ACLs early in the
list may reduce Squid's CPU usage.

For most of the access lists, the meaning of deny and allow are
obvious. Some of them, however, aren't so intuitive. In particular, pay
close attention when writing always_direct, never_direct, and
no_cache rules. In the case of always_direct, an allow rule means
that matching requests are forwarded directly to origin servers. An
always_direct deny rule means that matching requests aren't forced
to go directly to origin servers, but may still do so if, for example, all
neighbor caches are unreachable. The no_cache rules are tricky as
well. Here, you must use deny for requests that must not be cached.

6.2.2 How Squid Matches Access Rules

Recall that Squid uses OR logic when searching ACL elements. Any single value in an acl can
cause a match.

It's the opposite for access rules, however. For http_access and the other rule sets, Squid uses
AND logic. Consider this generic example:

access_list allow ACL1 ACL2 ACL3

For this rule to be a match, the request must match each of ACL1, ACL2, and ACL3. If any of
those ACLs don't match the request, Squid stops searching this rule and proceeds to the next.
Within a single rule, you can optimize rule searching by putting least-likely-to-match ACLs first.
Consider this simple example:

acl A method http

acl B port 8080

http_access deny A B

This http_access rule is somewhat inefficient because the A ACL is more likely to be matched
than B. It is better to reverse the order so that, in most cases, Squid only makes one ACL
check, instead of two:

http_access deny B A

One mistake people commonly make is to write a rule that can never be true. For example:

acl A src 1.2.3.4

acl B src 5.6.7.8

http_access allow A B

This rule is never going to be true because a source IP address can't be equal to both 1.2.3.4
and 5.6.7.8 at the same time. Most likely, someone who writes a rule like that really means
this:

acl A src 1.2.3.4 5.6.7.8

http_access allow A

As with the algorithm for matching the values of an ACL, when Squid finds a matching rule in
an access list, the search terminates. If none of the access rules result in a match, the default
action is the opposite of the last rule in the list. For example, consider this simple access
configuration:

acl Bob ident bob

http_access allow Bob

Now if the user Mary makes a request, she is denied. The last (and only) rule in the list is an
allow rule, and it doesn't match the username Mary. Thus, the default action is the opposite of
allow, so the request is denied. Similarly, if the last entry is a deny rule, the default action is to
allow the request. It is good practice always to end your access lists with explicit rules that
either allow or deny all requests. To be perfectly clear, the previous example should be written
this way:

acl All src 0/0

acl Bob ident bob

http_access allow Bob

http_access deny All

The src 0/0 ACL is an easy way to match each and every type of request.

6.2.3 Access List Style

Squid's access control syntax is very powerful. In most cases, you can probably think of two or
more ways to accomplish the same thing. In general, you should put the more specific and
restrictive access controls first. For example, rather than:

acl All src 0/0

acl Net1 src 1.2.3.0/24

acl Net2 src 1.2.4.0/24

acl Net3 src 1.2.5.0/24

acl Net4 src 1.2.6.0/24

acl WorkingHours time 08:00-17:00

http_access allow Net1 WorkingHours

http_access allow Net2 WorkingHours

http_access allow Net3 WorkingHours

http_access allow Net4

http_access deny All

you might find it easier to maintain and understand the access control configuration if you write
it like this:

http_access allow Net4

http_access deny !WorkingHours

http_access allow Net1

http_access allow Net2

http_access allow Net3

http_access deny All

Whenever you have a rule with two or more ACL elements, it's always a good idea to follow it
up with an opposite, more general rule. For example, the default Squid configuration denies
cache manager requests that don't come from the localhost IP address. You might be tempted
to write it like this:

acl CacheManager proto cache_object

acl Localhost src 127.0.0.1

http_access deny CacheManager !Localhost

However, the problem here is that you haven't yet allowed the cache manager requests that do
come from localhost. Subsequent rules may cause the request to be denied anyway. These
rules have this undesirable behavior:

acl CacheManager proto cache_object

acl Localhost src 127.0.0.1

acl MyNet 10.0.0.0/24

acl All src 0/0

http_access deny CacheManager !Localhost

http_access allow MyNet

http_access deny All

Since a request from localhost doesn't match MyNet, it gets denied. A better way to write the
rules is like this:

http_access allow CacheManager localhost

http_access deny CacheManager

http_access allow MyNet

http_access deny All

6.2.4 Delayed Checks

Some ACLs can't be checked in one pass because the necessary information is unavailable. The
ident, dst, srcdomain, and proxy_auth types fall into this category. When Squid encounters an
ACL that can't be checked, it postpones the decision and issues a query for the necessary
information (IP address, domain name, username, etc.). When the information is available,
Squid checks the rules all over again, starting at the beginning of the list. It doesn't continue
where the previous check left off. If possible, you may want to move these likely-to-be-delayed
ACLs near the top of your rules to avoid unnecessary, repeated checks.

Because these delays are costly (in terms of time), Squid caches the information whenever
possible. Ident lookups occur for each connection, rather than each request. This means that
persistent HTTP connections can really benefit you in situations where you use ident queries.
Hostnames and IP addresses are cached as specified by the DNS replies, unless you're using
the older external dnsserver processes. Proxy Authentication information is cached as I
described previously in Section 6.1.2.12.

6.2.5 Slow and Fast Rule Checks

Internally, Squid considers some access rule checks fast, and others slow. The difference is
whether or not Squid postpones its decision to wait for additional information. In other words, a
slow check may be deferred while Squid asks for additional data, such as:

● A reverse DNS lookup: the hostname for a client's IP address
● An RFC 1413 ident query: the username associated with a client's TCP connection
● An authenticator: validating the user's credentials
● A forward DNS lookup: the origin server's IP address
● An external, user-defined ACL

Some access rules use fast checks out of necessity. For example, the icp_access rule is a fast
check. It must be fast, to serve ICP queries quickly. Furthermore, certain ACL types, such as
proxy_auth, are meaningless for ICP queries. The following access rules are fast checks:

● header_access
● reply_body_max_size
● reply_access
● ident_lookup
● delay_access
● miss_access
● broken_posts
● icp_access
● cache_peer_access
● redirector_access
● snmp_access

The following ACL types may require information from external sources (DNS, authenticators,
etc.) and are thus incompatible with fast access rules:

● srcdomain, dstdomain, srcdom_regex, dstdom_regex
● dst, dst_as
● proxy_auth
● ident
● external_acl_type

This means, for example, that you can't reliably use an ident ACL in a header_access rule.

 < Day Day Up >

 < Day Day Up >

6.3 Common Scenarios

Because access controls can be complicated, this section contains a few examples. They
demonstrate some of the common uses for access controls. You should be able to adapt them
to your particular needs.

6.3.1 Allowing Local Clients Only

Almost every Squid installation should restrict access based on client IP addresses. This is one
of the best ways to protect your system from abuses. The easiest way to do this is write an ACL
that contains your IP address space and then allow HTTP requests for that ACL and deny all
others:

acl All src 0/0

acl MyNetwork src 172.16.5.0/24 172.16.6.0/24

http_access allow MyNetwork

http_access deny All

Most likely, this access control configuration will be too simple, so you'll need to add more lines.
Remember that the order of the http_access lines is important. Don't add anything after deny
All. Instead, add the new rules before or after allow MyNetwork as necessary.

6.3.2 Blocking a Few Misbehaving Clients

For one reason or another, you may find it necessary to deny access for a particular client IP
address. This can happen, for example, if an employee or student launches an aggressive web
crawling agent that consumes too much bandwidth or other resources. Until you can stop the
problem at the source, you can block the requests coming to Squid with this configuration:

acl All src 0/0

acl MyNetwork src 172.16.5.0/24 172.16.6.0/24

acl ProblemHost src 172.16.5.9

http_access deny ProblemHost

http_access allow MyNetwork

http_access deny All

6.3.3 Denying Pornography

Blocking access to certain content is a touchy subject. Often, the hardest part about using
Squid to deny pornography is coming up with the list of sites that should be blocked. You may
want to maintain such a list yourself, or get one from somewhere else. The "Access Controls"
section of the Squid FAQ has links to freely available lists.

The ACL syntax for using such a list depends on its contents. If the list contains regular
expressions, you probably want something like this:

acl PornSites url_regex "/usr/local/squid/etc/pornlist"

http_access deny PornSites

On the other hand, if the list contains origin server hostnames, simply change url_regex to
dstdomain in this example.

6.3.4 Restricting Usage During Working Hours

Some corporations like to restrict web usage during working hours, either to save bandwidth, or
because policy forbids employees from doing certain things while working. The hardest part
about this is differentiating between appropriate and inappropriate use of the Internet during
these times. Unfortunately, I can't help you with that. For this example, I'm assuming that
you've somehow collected or acquired a list of web site domain names that are known to be
inappropriate. The easy part is configuring Squid:

acl NotWorkRelated dstdomain "/usr/local/squid/etc/not-work-related-sites"

acl WorkingHours time D 08:00-17:30

http_access deny !WorkingHours NotWorkRelated

Notice that I've placed the !WorkingHours ACL first in the rule. The dstdomain ACL is expensive
(comparing strings and traversing lists), but the time ACL is a simple inequality check.

Let's take this a step further and understand how to combine something like this with the
source address controls described previously. Here's one way to do it:

acl All src 0/0

acl MyNetwork src 172.16.5.0/24 172.16.6.0/24

acl NotWorkRelated dstdomain "/usr/local/squid/etc/not-work-related-sites"

acl WorkingHours time D 08:00-17:30

http_access deny !WorkingHours NotWorkRelated

http_access allow MyNetwork

http_access deny All

This scheme works because it accomplishes our goal of denying certain requests during working
hours and allowing requests only from your own network. However, it might be somewhat
inefficient. Note that the NotWorkRelated ACL is searched for all requests, regardless of the
source IP address. If that list is long, you'll waste CPU resources by searching it for requests
from outside your network. Thus, you may want to change the rules around somewhat:

http_access deny !MyNetwork

http_access deny !WorkingHours NotWorkRelated

http_access Allow All

Here we've delayed the most expensive check until the very end. Outsiders that may be trying
to abuse Squid will not be wasting your CPU cycles.

6.3.5 Preventing Squid from Talking to Non-HTTP Servers

You need to minimize the chance that Squid can communicate with certain types of TCP/IP
servers. For example, people should never be able to use your Squid cache to relay SMTP
(email) traffic. I covered this previously when introducing the port ACL. However, it is such an
important part of your access controls that I'm presenting it here as well.

First of all, you have to worry about the CONNECT request method. User agents use this method
to tunnel TCP connections through an HTTP proxy. It was invented for HTTP/TLS (a.k.a SSL)
requests, and this remains the primary use for the CONNECT method. Some user-agents may
also tunnel NNTP/TLS traffic through firewall proxies. All other uses should be rejected. Thus,
you'll need an access list that allows CONNECT requests to HTTP/TLS and NNTP/TLS ports only.

Secondly, you should prevent Squid from connecting to certain services such as SMTP. You can
either allow safe ports or deny dangerous ports. I'll give examples for both techniques.

Let's start with the rules present in the default squid.conf file:

acl Safe_ports port 80 # http

acl Safe_ports port 21 # ftp

acl Safe_ports port 443 563 # https, snews

acl Safe_ports port 70 # gopher

acl Safe_ports port 210 # wais

acl Safe_ports port 280 # http-mgmt

acl Safe_ports port 488 # gss-http

acl Safe_ports port 591 # filemaker

acl Safe_ports port 777 # multiling http

acl Safe_ports port 1025-65535 # unregistered ports

acl SSL_ports port 443 563

acl CONNECT method CONNECT

http_access deny !Safe_ports

http_access deny CONNECT !SSL_ports

<additional http_access lines as necessary...>

Our Safe_ports ACL lists all privileged ports (less than 1024) to which Squid may have valid
reasons for connecting. It also lists the entire nonprivileged port range. Notice that the
Safe_ports ACL includes the secure HTTP and NNTP ports (443 and 563) even though they
also appear in the SSL_ports ACL. This is because the Safe_ports ACL is checked first in the
rules. If you swap the order of the first two http_access lines, you could probably remove 443
and 563 from the Safe_ports list, but it's hardly worth the trouble.

The other way to approach this is to list the privileged ports that are known to be unsafe:

acl Dangerous_ports 7 9 19 22 23 25 53 109 110 119

acl SSL_ports port 443 563

acl CONNECT method CONNECT

http_access deny Dangerous_ports

http_access deny CONNECT !SSL_ports

<additional http_access lines as necessary...>

Don't worry if you're not familiar with all these strange port numbers. You can find out what
each one is for by reading the /etc/services file on a Unix system or by reading IANA's list of
registered TCP/UDP port numbers at http://www.iana.org/assignments/port-numbers.

6.3.6 Giving Certain Users Special Access

Organizations that employ username-based access controls often need to give certain users
special privileges. In this simple example, there are three elements: all authenticated users,

http://www.iana.org/assignments/port-numbers

the usernames of the administrators, and a list of pornographic web sites. Normal users aren't
allowed to view pornography, but the admins have the dubious job of maintaining the list. They
need to connect to all servers to verify whether or not a particular site should be placed in the
pornography list. Here's how to accomplish the task:

auth_param basic program /usr/local/squid/libexec/ncsa_auth

 /usr/local/squid/etc/passwd

acl Authenticated proxy_auth REQUIRED

acl Admins proxy_auth Pat Jean Chris

acl Porn dstdomain "/usr/local/squid/etc/porn.domains"

acl All src 0/0

http_access allow Admins

http_access deny Porn

http_access allow Authenticated

http_access deny All

Let's examine how this all works. First, there are three ACL definitions. The Authenticated ACL
matches any valid proxy authentication credentials. The Admins ACL matches valid credentials
from users Pat, Jean, and Chris. The Porn ACL matches certain origin server hostnames found
in the porn.domains file.

This example has four access control rules. The first checks only the Admins ACL and allows all
requests from Pat, Jean, and Chris. For other users, Squid moves on to the next rule. According
to the second rule, a request is denied if its origin server hostname is in the porn.domains file.
For requests that don't match the Porn ACL, Squid moves on to the third rule. Here, the request
is allowed if it contains valid authentication credentials. The external authenticator (ncsa_auth
in this case) is responsible for deciding whether or not the credentials are valid. If they aren't,
the final rule applies, and the request is denied.

Note that the ncsa_auth authenticator isn't a requirement. You can use any of the numerous
authentication helpers described in Chapter 12.

6.3.7 Preventing Abuse from Siblings

If you open up your cache to peer with other caches, you need to take additional precautions.
Caches often use ICP to discover which objects are stored in their neighbors. You should accept
ICP queries only from known and approved neighbors.

Furthermore, you can configure Squid to enforce a sibling relationship by using the
miss_access rule list. Squid checks these rules only when forwarding cache misses, never

cache hits. Thus, all requests must first pass the http_access rules before the miss_access list
comes into play.

In this example, there are three separate ACLs. One is for the local users that connect directly
to this cache. Another is for a child cache, which is allowed to forward requests that are cache
misses. The third is a sibling cache, which must never forward a request that results in a cache
miss. Here's how it all works:

alc All src 0/0

acl OurUsers src 172.16.5.0/24

acl ChildCache src 192.168.1.1

acl SiblingCache src 192.168.3.3

http_access allow OurUsers

http_access allow ChildCache

http_access allow SiblingCache

http_access deny All

miss_access deny SiblingCache

icp_access allow ChildCache

icp_access allow SiblingCache

icp_access deny All

6.3.8 Denying Requests with IP Addresses

As I mentioned in Section 6.1.2.4, the dstdomain type is good for blocking access to specific
origin servers. However, clever users might be able to get around the rule by replacing URL
hostnames with their IP addresses. If you are desperate to stop such requests, you may want
to block all requests that contain an IP address. You can do so with a redirector (see Chapter
11) or with a semicomplicated dstdom_regex ACL like this:

acl IPForHostname dstdom_regex ^[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+$

http_access deny IPForHostname

6.3.9 An http_reply_access Example

Recall that the response's content type is the only new information available when Squid checks
the http_reply_access rules. Thus, you can keep the http_reply_access rules very simple. You
need only check the rep_mime_type ACLs. For example, here's how you can deny responses
with certain content types:

acl All src 0/0

acl Movies rep_mime_type video/mpeg

acl MP3s rep_mime_type audio/mpeg

http_reply_access deny Movies

http_reply_access deny MP3s

http_reply_access allow All

You don't need to repeat your http_access rules in the
http_reply_access list. The allow All rule shown here doesn't mean
that all requests to Squid are allowed. Any request that is denied by
http_access never makes it to the stage where Squid checks the
http_reply_access rules.

6.3.10 Preventing Cache Hits for Local Sites

If you have a number of origin servers on your network, you may want to configure Squid so
that their responses are never cached. Because the servers are nearby, they don't benefit too
much from cache hits. Additionally, it frees up storage space for other (far away) origin servers.

The first step is to define an ACL for the local servers. You might want to use an address-based
ACL, such as dst:

acl LocalServers dst 172.17.1.0/24

If the servers don't live on a single subnet, you might find it easier to create a dstdomain ACL:

acl LocalServers dstdomain .example.com

Next, you simply deny caching of those servers with a no_cache access rule:

no_cache deny LocalServers

The no_cache rules don't prevent your clients from sending these
requests to Squid. There is nothing you can configure in Squid to stop
such requests from coming. Instead, you must configure the user-
agents themselves.

If you add a no_cache rule after Squid has been running for a while, the cache may contain
some objects that match the new rule. Prior to Squid Version 2.5, these previously cached
objects might be returned as cache hits. Now, however, Squid purges any cached response for
a request that matches a no_cache rule.

 < Day Day Up >

 < Day Day Up >

6.4 Testing Access Controls

As your access control configuration becomes longer, it also becomes more complicated. I
strongly encourage you to test your access controls before turning them loose on a production
server. Of course, the first thing you should do is make sure that Squid can correctly parse your
configuration file. Use the -k parse feature for this:

% squid -k parse

To further test your access controls, you may need to set up a fake Squid installation. One easy
way to do that is compile another copy of the Squid source code with a different $prefix
location. For example:

% tar xzvf squid-2.5.STABLE4.tar.gz

% cd squid-2.5.STABLE4

% ./configure --prefix=/tmp/squid ...

% make && make install

After installing, you need to edit the new squid.conf file and change a few directives. Change
http_port if Squid is already running on the default port. For simple testing, create a single,
small cache directory like this:

cache_dir ufs /tmp/squid/cache 100 4 4

If you don't want to recompile Squid again, you can also just create a new configuration file.
The drawback to this approach is that you'll need to set all the log-file pathnames to the
temporary location so that you don't overwrite the real files.

You can easily test some access controls with the squidclient program. For example, if you have
a rule that depends on the origin server hostname (dstdomain ACL), or some part of the URL
(url_regex or urlpath_regex), simply enter a URI that you would expect to be allowed or denied:

% squidclient -p 4128 http://blocked.host.name/blah/blah

or:

% squidclient -p 4128 http://some.host.name/blocked.ext

Certain aspects of the request are harder to control. If you have src ACLs that block requests
from outside your network, you may need to actually test them from an external host. Testing
time ACLs may be difficult unless you can change the clock on your system or stay awake long
enough.

You can use squidclient's -H option to set arbitrary request headers. For example, use the

following if you need to test a browser ACL.

% squidclient -p 4128 http://www.host.name/blah \

 -H 'User-Agent: Mozilla/5.0 (compatible; Konqueror/3)\r\n'

For more complicated request, with many headers, you may want to use the technique
described in Section 16.4.

You might also consider developing a routine cron job that checks your ACLs for expected
behavior and reports any anomalies. Here is a sample shell script to get you started:

#!/bin/sh

set -e

TESTHOST="www.squid-cache.org"

make sure Squid is not proxying dangerous ports

#

ST=`squidclient 'http://$TESTHOST:25/' | head -1 | awk '{print $2}'`

if test "$ST" != 403 ; then

 echo "Squid did not block HTTP request to port 25"

fi

make sure Squid requires user authentication

#

ST=`squidclient 'http://$TESTHOST/' | head -1 | awk '{print $2}'`

if test "$ST" != 407 ; then

 echo "Squid allowed request without proxy authentication"

fi

make sure Squid denies requests from foreign IP addresses

elsewhere we already created an alias 192.168.1.1 on one of

the system interfaces

#

EXT_ADDR=192.168.1.1

ST=`squidclient -l $EXT_ADDR 'http://$TESTHOST/' | head -1 | awk '{print $2}'`

if test "$ST" != 403 ; then

 echo "Squid allowed request from external address $EXT_ADDR"

fi

exit 0

 < Day Day Up >

 < Day Day Up >

6.5 Exercises

● Define an ACL for each known type (src, dst, ident, etc.) and write a rule that uses all of
them.

● Intentionally mistype the name of an ACL in one of your rules. Does squid -k parse
catch the error? Does Squid start anyway?

● Write an http_access that uses slow ACLs, like srcdomain or ident. Time how long Squid
takes to serve a request with and without the slow ACL checks.

 < Day Day Up >

 < Day Day Up >

Chapter 7. Disk Cache Basics

I'm going to talk a lot about disk storage and filesystems in this chapter. It is important to
make sure you understand the difference between two related things: disk filesystems and
Squid's storage schemes.

Filesystems are features of particular operating systems. Almost every Unix variant has an
implementation of the Unix File System (UFS). It is also sometimes known as the Berkeley Fast
File System (FFS). Linux's default filesystem is called ext2fs. Many operating systems also
support newer filesystem technologies. These include names and acronyms such as advfs, xfs,
and reiserfs.

Programs (such as Squid) interact with filesystems via a handful of system calls. These are
functions such as open(), close(), read(), write(), stat(), and unlink(). The arguments to
these system calls are either pathnames (strings) or file descriptors (integers). Filesystem
implementation details are hidden from programs. They typically use internal data structures
such as inodes, but Squid doesn't know about that.

Squid has a number of different storage schemes. The schemes have different properties and
techniques for organizing and accessing cache data on the disk. Most of them use the
filesystem interface system calls (e.g., open(), write(), etc.).

Squid has five different storage schemes: ufs, aufs, diskd, coss, and null. The first three use
the same directory layout, and they are thus interchangeable. coss is an attempt to implement
a new filesystem specifically optimized for Squid. null is a minimal implementation of the API: it
doesn't actually read or write data to/from the disk.

Due to a poor choice of names, "UFS" might refer to either the Unix
filesystem or the Squid storage scheme. To be clear here, I'll write the
filesystem as UFS and the storage scheme as ufs.

The remainder of this chapter focuses on the squid.conf directives that control the disk cache.
This includes replacement policies, object removal, and freshness controls. For the most part,
I'll only talk about the default storage scheme: ufs. We'll get to the alternative schemes and
other tricks in the next chapter.

 < Day Day Up >

 < Day Day Up >

7.1 The cache_dir Directive

The cache_dir directive is one of the most important in squid.conf. It tells Squid where and how
to store cache files on disk. The cache_dir directive takes the following arguments:

cache_dir scheme directory size L1 L2 [options]

7.1.1 Scheme

Squid supports a number of different storage schemes. The default (and original) is ufs.
Depending on your operating system, you may be able to select other schemes. You must use
the —enable-storeio=LIST option with ./configure to compile the optional code for other storage
schemes. I'll discuss aufs, diskd, coss, and null in Section 8.7. For now, I'll only talk about the
ufs scheme, which is compatible with aufs and diskd.

7.1.2 Directory

The directory argument is a filesystem directory, under which Squid stores cached objects.
Normally, a cache_dir corresponds to a whole filesystem or disk partition. It usually doesn't
make sense to put more than one cache directory on a single filesystem partition. Furthermore,
I also recommend putting only one cache directory on each physical disk drive. For example, if
you have two unused hard drives, you might do something like this:

newfs /dev/da1d

newfs /dev/da2d

mount /dev/da1d /cache0

mount /dev/da2d /cache1

And then add these lines to squid.conf:

cache_dir ufs /cache0 7000 16 256

cache_dir ufs /cache1 7000 16 256

If you don't have any spare hard drives, you can, of course, use an existing filesystem partition.
Select one with plenty of free space, perhaps /usr or /var, and create a new directory there. For
example:

mkdir /var/squidcache

Then add a line like this to squid.conf:

cache_dir ufs /var/squidcache 7000 16 256

7.1.3 Size

The third cache_dir argument specifies the size of the cache directory. This is an upper limit on
the amount of disk space that Squid can use for the cache_dir. Calculating an appropriate value
can be tricky. You lose some space to filesystem overheads, and you must leave enough free
space for temporary files and swap.state logs (see Section 13.6). I recommend mounting the
empty filesystem and running df:

% df -k

Filesystem 1K-blocks Used Avail Capacity Mounted on

/dev/da1d 3037766 8 2794737 0% /cache0

/dev/da2d 3037766 8 2794737 0% /cache1

Here you can see that the filesystem has about 2790 MB of available space. Remember that UFS
reserves some "minfree" space, 8% in this case, which is why Squid can't use the full 3040 MB
in the filesystem.

You might be tempted just to put 2790 on the cache_dir line. You might even to get away with it
if your cache isn't very busy and if you rotate the log files often. To be safe, however, I
recommend taking off another 10% or so. This extra space will be used by Squid's swap.state
file and temporary files.

Note that the cache_swap_low directive also affects how much space Squid uses. I'll talk about
the low and high watermarks in Section 7.2.

The bottom line is that you should initially be conservative about the size of your cache_dir.
Start off with a low estimate and allow the cache to fill up. After Squid runs for a week or so
with full cache directories, you'll be in a good position to re-evaluate the size settings. If you
have plenty of free space, feel free to increase the cache directory size in increments of a few
percent.

7.1.3.1 Inodes

Inodes are fundamental building blocks of Unix filesystems. They contain information about disk
files, such as permissions, ownership, size, and timestamps. If your filesystem runs out of
inodes, you can't create new files, even if it has space available. Running out of inodes is bad,
so you may want to make sure you have enough before running Squid.

The programs that create new filesystems (e.g., newfs or mkfs) reserve some number of inodes
based on the total size. These programs usually allow you to set the ratio of inodes to disk
space. For example, see the -i option in the newfs and mkfs manpages. The ratio of disk space
to inodes determines the mean file size the filesystem can support. Most Unix systems create
one inode for each 4 KB, which is usually sufficient for Squid. Research shows that, for most
caching proxies, the mean file size is about 10 KB. You may be able to get away with 8 KB per
inode, but it is risky.

You can monitor your system's inode usage with df -i. For example:

% df -ik

Filesystem 1K-blocks Used Avail Capacity iused ifree %iused Mounted on

/dev/ad0s1a 197951 57114 125001 31% 1413 52345 3% /

/dev/ad0s1f 5004533 2352120 2252051 51% 129175 1084263 11% /usr

/dev/ad0s1e 396895 6786 358358 2% 205 99633 0% /var

/dev/da0d 8533292 7222148 628481 92% 430894 539184 44% /cache1

/dev/da1d 8533292 7181645 668984 91% 430272 539806 44% /cache2

/dev/da2d 8533292 7198600 652029 92% 434726 535352 45% /cache3

/dev/da3d 8533292 7208948 641681 92% 427866 542212 44% /cache4

As long as the inode usage (%iused) is less than the space usage (Capacity), you're in good
shape. Unfortunately, you can't add more inodes to an existing filesystem. If you find that you
are running out of inodes, you need to stop Squid and recreate your filesystems. If you're not
willing to do that, decrease the cache_dir size instead.

7.1.3.2 The relationship between disk space and process size

Squid's disk space usage directly affects its memory usage as well. Every object that exists on
disk requires a small amount of memory. Squid uses the memory as an index to the on-disk
data. If you add a new cache directory or otherwise increase the disk cache size, make sure that
you also have enough free memory. Squid's performance degrades very quickly if its process
size reaches or exceeds your system's physical memory capacity.

Every object in Squid's cache directories takes either 76 or 112 bytes of memory, depending on
your system. The memory is allocated as StoreEntry, MD5 Digest, and LRU policy node
structures. Small-pointer (i.e., 32-bit) systems, like those based on the Intel Pentium, take 76
bytes. On systems with CPUs that support 64-bit pointers, each object takes 112 bytes. You can
find out how much memory these structures use on your system by viewing the Memory
Utilization page of the cache manager (see Section 14.2.1.2).

Unfortunately, it is difficult to predict precisely how much additional memory is required for a
given amount of disk space. It depends on the mean reply size, which typically fluctuates over
time. Additionally, Squid uses memory for many other data structures and purposes. Don't
assume that your estimates are, or will remain, correct. You should constantly monitor Squid's
process size and consider shrinking the cache size if necessary.

7.1.4 L1 and L2

For the ufs, aufs, and diskd schemes, Squid creates a two-level directory tree underneath the
cache directory. The L1 and L2 arguments specify the number of first- and second-level
directories. The defaults are 16 and 256, respectively. Figure 7-1 shows the filesystem structure.

Figure 7-1. The cache directory structure for ufs-based storage schemes

Some people think that Squid performs better, or worse, depending on the particular values for
L1 and L2. It seems to make sense, intuitively, that small directories can be searched faster
than large ones. Thus, L1 and L2 should probably be large enough so that each L2 directory has
no more than a few hundred files.

For example, let's say you have a cache directory that stores about 7000 MB. Given a mean file
size of 10 KB, you can store about 700,000 files in this cache_dir. With 16 L1 and 256 L2
directories, there are 4096 total second-level directories. 700,000 ÷ 4096 leaves about 170 files
in each second-level directory.

The process of creating swap directories with squid -z, goes faster for smaller values of L1 and
L2. Thus, if your cache size is really small, you may want to reduce the number of L1 and L2
directories.

Squid assigns each cache object a unique file number. This is a 32-bit integer that uniquely
identifies files on disk. Squid uses a relatively simple algorithm for turning file numbers into
pathnames. The algorithm uses L1 and L2 as parameters. Thus, if you change L1 and L2, you
change the mapping from file number to pathname. Changing these parameters for a nonempty
cache_dir makes the existing files inaccessible. You should never change L1 and L2 after the
cache directory has become active.

Squid allocates file numbers within a cache directory sequentially. The file number-to-pathname
algorithm (e.g., storeUfsDirFullPath()) is written so that each group of L2 files go into the same
second-level directory. Squid does this to take advantage of locality of reference. This algorithm
increases the probability that an HTML file and its embedded images are stored in the same
second-level directory. Some people expect Squid to spread cache files evenly among the
second-level directories. However, when the cache is initially filling, you'll find that only the first
few directories contain any files. For example:

% cd /cache0; du -k

2164 ./00/00

2146 ./00/01

2689 ./00/02

1974 ./00/03

2201 ./00/04

2463 ./00/05

2724 ./00/06

3174 ./00/07

1144 ./00/08

1 ./00/09

1 ./00/0A

1 ./00/0B

...

This is perfectly normal and nothing to worry about.

7.1.5 Options

Squid has two scheme-independent cache_dir options: a read-only flag and a max-size value.

7.1.5.1 read-only

The read-only option instructs Squid to continue reading from the cache_dir, but to stop
storing new objects there. It looks like this in squid.conf:

cache_dir ufs /cache0 7000 16 256 read-only

You might use this option if you want to migrate your cache storage from one disk to another. If
you simply add one cache_dir and remove another, Squid's hit ratio decreases sharply. You can
still get cache hits from the old location when it is read-only. After some time, you can remove
the read-only cache directory from the configuration.

7.1.5.2 max-size

With this option, you can specify the maximum object size to be stored in the cache directory.
For example:

cache_dir ufs /cache0 7000 16 256 max-size=1048576

Note that the value is in bytes. In most situations, you shouldn't need to add this option. If you
do, try to put the cache_dir lines in order of increasing max-size.

 < Day Day Up >

 < Day Day Up >

7.2 Disk Space Watermarks

The cache_swap_low and cache_swap_high directives control the replacement of objects stored
on disk. Their values are a percentage of the maximum cache size, which comes from the sum
of all cache_dir sizes. For example:

cache_swap_low 90

cache_swap_high 95

As long as the total disk usage is below cache_swap_low, Squid doesn't remove cached objects.
As the cache size increases, Squid becomes more aggressive about removing objects. Under
steady-state conditions, you should find that disk usage stays relatively close to the
cache_swap_low value. You can see the current disk usage by requesting the storedir page
from the cache manager (see Section 14.2.1.39).

Note that changing cache_swap_high probably won't have a big impact on Squid's disk usage.
In earlier versions of Squid, this parameter played a more important role; now, however, it
doesn't.

 < Day Day Up >

 < Day Day Up >

7.3 Object Size Limits

You can control both the maximum and minimum size of cached objects. Responses larger than
maximum_object_size aren't stored on disk. They are still proxied, however. The logic behind
this directive is that you don't want a really big response to take up space better utilized by
many small responses. The syntax is as follows:

maximum_object_size size-specification

Here are some examples:

maximum_object_size 100 KB

maximum_object_size 1 MB

maximum_object_size 12382 bytes

maximum_object_size 2 GB

Squid checks the response size in two different ways. If the reply includes a Content-Length
header, Squid compares its value to the maximum_object_size value. If the content length is
the larger of the two numbers, the object becomes immediately uncachable and never
consumes any disk space.

Unfortunately, not every response has a Content-Length header. In this case, Squid writes the
response to disk as data comes in from the origin server. Squid checks the object size again
only when the response is complete. Thus, if the object's size reaches the
maximum_object_size limit, it continues consuming disk space. Squid increments the total
cache size only when it is done reading a response.

In other words, the active, or in-transit, objects don't contribute to the cache size value Squid
maintains internally. This is good because it means Squid won't remove other objects in the
cache, unless the object remains cachable and then contributes to the total cache size.
However, it is also bad because Squid may run out of free disk space if the reply is very large.
To reduce the chance of this happening, you should also use the reply_body_max_size
directive. A response that reaches the reply_body_max_size limit is cut off immediately.

Squid also has a minimum_object_size directive. It allows you to place a lower limit on the size
of cached objects. Responses smaller than this size aren't stored on disk or in memory. Note
that this size is compared to the response's content length (i.e., the size of the reply body),
which excludes the HTTP headers.

 < Day Day Up >

 < Day Day Up >

7.4 Allocating Objects to Cache Directories

When Squid wants to store a cachable response on disk, it calls a function that selects one of
the cache directories. It then opens a disk file for writing on the selected directory. If, for some
reason, the open() call fails, the response isn't stored. In this case, Squid doesn't try opening
a disk file on one of the other cache directories.

Squid has two of these cache_dir selection algorithms. The default algorithm is called least-
load; the alternative is round-robin.

The least-load algorithm, as the name implies, selects that cache directory that currently has
the smallest workload. The notion of load depends on the underlying storage scheme. For the
aufs, coss, and diskd schemes, the load is related to the number of pending operations. For ufs,
the load is constant. For cases in which all cache_dirs have equal load, the algorithm uses free
space and maximum object sizes as tie-breakers.

The selection algorithm also takes into account the max-size and read-only options. Squid
skips a cache directory if it knows the object size is larger than the limit. It also always skips
any read-only directories.

The round-robin algorithm also uses load measurements. It always selects the next cache
directory in the list (subject to max-size and read-only), as long as its load is less than 100%.

Under some circumstances, Squid may fail to select a cache directory. This can happen if all
cache_dirs are overloaded or if all have max-size limits less than the size of the object. In this
case, Squid simply doesn't write the object to disk. You can use the cache manager to track the
number of times Squid fails to select a cache directory. View the store_io page (see Section
14.2.1.41), and find the create.select_fail line.

 < Day Day Up >

 < Day Day Up >

7.5 Replacement Policies

The cache_replacement_policy directive controls the replacement policy for Squid's disk cache.
Version 2.5 offers three different replacement policies: least recently used (LRU), greedy dual-
size frequency (GDSF), and least frequently used with dynamic aging (LFUDA).

LRU is the default policy, not only for Squid, but for most other caching products as well. LRU is
a popular choice because it is almost trivial to implement and provides very good performance.
On 32-bit systems, LRU uses slightly less memory than the others (12 versus 16 bytes per
object). On 64-bit systems, all policies use 24 bytes per object.

Over the years, many researchers have proposed alternatives to LRU. These other policies are
typically designed to optimize a specific characteristic of the cache, such as response time, hit
ratio, or byte hit ratio. While the research almost always shows an improvement, the results
can be misleading. Some of the studies use unrealistically small cache sizes. Other studies
show that as cache size increases, the choice of replacement policy becomes less important.

If you want to use the GDSF or LFUDA policies, you must pass the —enable-removal-policies
option to the ./configure script (see Section 3.4.1). Martin Arlitt and John Dilley of HP Labs
wrote the GDSF and LFUDA implementation for Squid. You can read their paper online at http://
www.hpl.hp.com/techreports/1999/HPL-1999-69.html. My O'Reilly book, Web Caching, also
talks about these algorithms.

The cache_replacement_policy directive is unique in an important way. Unlike most of the other
squid.conf directives, the location of this one is significant. The cache_replacment_policy value
is actually used when Squid parses a cache_dir directive. You can change the replacement
policy for a cache_dir by setting the replacement policy beforehand. For example:

cache_replacement_policy lru

cache_dir ufs /cache0 2000 16 32

cache_dir ufs /cache1 2000 16 32

cache_replacement_policy heap GDSF

cache_dir ufs /cache2 2000 16 32

cache_dir ufs /cache3 2000 16 32

In this case, the first two cache directories use LRU replacement, and the second two use
GDSF. This characteristic of the replacement_policy directive is important to keep in mind if you
ever decide to use the config option of the cache manager (see Section 14.2.1.7). The cache
manager outputs only one (the last) replacement policy value, and places it before all of the
cache directories. For example, you may have these lines in squid.conf:

cache_replacement_policy heap GDSF

cache_dir ufs /tmp/cache1 10 4 4

http://www.hpl.hp.com/techreports/1999/HPL-1999-69.html
http://www.hpl.hp.com/techreports/1999/HPL-1999-69.html

cache_replacement_policy lru

cache_dir ufs /tmp/cache2 10 4 4

but when you select config from the cache manager, you get:

cache_replacement_policy lru

cache_dir ufs /tmp/cache1 10 4 4

cache_dir ufs /tmp/cache2 10 4 4

As you can see, the heap GDSF setting for the first cache directory has been lost.

 < Day Day Up >

 < Day Day Up >

7.6 Removing Cached Objects

At some point you may find it necessary to manually remove one or more objects from Squid's
cache. This might happen if:

● One of your users complains about always receiving stale data.
● Your cache becomes "poisoned" with a forged response.
● Squid's cache index becomes corrupted after experiencing disk I/O errors or frequent

crashes and restarts.
● You want to remove some large objects to free up room for new data.
● Squid was caching responses from local servers, and now you don't want it to.

Some of these problems can be solved by forcing a reload in a web browser. However, this
doesn't always work. For example, some browsers display certain content types externally by
launching another program; that program probably doesn't have a reload button or even know
about caches.

You can always use the squidclient program to reload a cached object if necessary. Simply
insert the -r option before the URI:

% squidclient -r http://www.lrrr.org/junk >/tmp/foo

If you happen to have a refresh_pattern directive with the ignore-reload option set, you and
your users may be unable to force a validation of the cached response. In that case, you'll be
better off purging the offending object or objects.

7.6.1 Removing Individual Objects

Squid accepts a custom request method for removing cached objects. The PURGE method isn't
one of the official HTTP request methods. It is different from DELETE, which Squid forwards to
an origin server. A PURGE request asks Squid to remove the object given in the URI. Squid
returns either 200 (Ok) or 404 (Not Found).

The PURGE method is somewhat dangerous because it removes cached objects. Squid disables
the PURGE method unless you define an ACL for it. Normally you should allow PURGE requests
only from localhost and perhaps a small number of trusted hosts. The configuration may look
like this:

acl AdminBoxes src 127.0.0.1 172.16.0.1 192.168.0.1

acl Purge method PURGE

http_access allow AdminBoxes Purge

http_access deny Purge

The squidclient program provides an easy way to generate PURGE requests. For example:

% squidclient -m PURGE http://www.lrrr.org/junk

Alternatively, you could use something else (such as a Perl script) to generate your own HTTP
request. It can be very simple:

PURGE http://www.lrrr.org/junk HTTP/1.0

Accept: */*

Note that a URI alone doesn't uniquely identify a cached response. Squid also uses the original
request method in the cache key. It may also use other request headers if the response
contains a Vary header. When you issue a PURGE request, Squid looks for cached objects
originally requested with the GET and HEAD methods. Furthermore, Squid also removes all
variants of a response, unless you remove a specific variant by including the appropriate
headers in the PURGE request. Squid removes only variants for GET and HEAD requests.

7.6.2 Removing a Group of Objects

Unfortunately, Squid doesn't provide a good mechanism for removing a bunch of objects at
once. This often comes up when someone wants to remove all objects belonging to a certain
origin server.

Squid lacks this feature for a couple of reasons. First, Squid would have to perform a linear
search through all cached objects. This is CPU-intensive and takes a long time. While Squid is
searching, your users can experience a performance degradation. Second, Squid keeps MD5s,
rather than URIs, in memory. MD5s are one-way hashes, which means, for example, that you
can't tell if a given MD5 hash was generated from a URI that contains the string "www.example.
com." The only way to know is to recalculate the MD5 from the original URI and see if they
match. Because Squid doesn't have the URI, it can't perform the calculation.

So what can you do?

You can use the data in access.log to get a list of URIs that might be in the cache. Then, feed
them to squidclient or another utility to generate PURGE requests. For example:

% awk '{print $7}' /usr/local/squid/var/logs/access.log \

 | grep www.example.com \

 | xargs -n 1 squidclient -m PURGE

7.6.3 Removing All Objects

In extreme circumstances you may need to wipe out the entire cache, or at least one of the
cache directories. First, you must make sure that Squid isn't running.

One of the easiest ways to make Squid forget about all cached objects is to overwrite the swap.
state files. Note that you can't simply remove the swap.state files because Squid then scans the

cache directories and opens all the object files. You also can't simply truncate swap.state to a
zero-sized file. Instead, you should put a single byte there, like this:

echo '' > /usr/local/squid/var/cache/swap.state

When Squid reads the swap.state file, it gets an error because the record that should be there
is too short. The next read results in an end-of-file condition, and Squid completes the rebuild
procedure without loading any object metadata.

Note that this technique doesn't remove the cache files from your disk. You've only tricked
Squid into thinking that the cache is empty. As Squid runs, it adds new files to the cache and
may overwrite the old files. In some cases, this might cause your disk to run out of free space.
If that happens to you, you need to remove the old files before restarting Squid again.

One way to remove cache files is with rm. However, it often takes a very long time to remove
all the files that Squid has created. To get Squid running faster, you can rename the cache
directory, create a new one, start Squid, and remove the old one at the same time. For
example:

squid -k shutdown

cd /usr/local/squid/var

mv cache oldcache

mkdir cache

chown nobody:nobody cache

squid -z

squid -s

rm -rf oldcache &

Another technique is to simply run newfs (or mkfs) on the cache filesystem. This works only if
you have the cache_dir on its own disk partition.

 < Day Day Up >

 < Day Day Up >

7.7 refresh_pattern

The refresh_pattern directive controls the disk cache only indirectly. It helps Squid decide
whether or not a given request can be a cache hit or must be treated as a miss. Liberal settings
increase your cache hit ratio but also increase the chance that users receive a stale response.
Conservative settings, on the other hand, decrease hit ratios and stale responses.

The refresh_pattern rules apply only to responses without an explicit
expiration time. Origin servers can specify an expiration time with
either the Expires header, or the Cache-Control: max-age directive.

You can put any number of refresh_pattern lines in the configuration file. Squid searches them
in order for a regular expression match. When Squid finds a match, it uses the corresponding
values to determine whether a cached response is fresh or stale. The refresh_pattern syntax is
as follows:

refresh_pattern [-i] regexp min percent max [options]

For example:

refresh_pattern -i \.jpg$ 30 50% 4320 reload-into-ims

refresh_pattern -i \.png$ 30 50% 4320 reload-into-ims

refresh_pattern -i \.htm$ 0 20% 1440

refresh_pattern -i \.html$ 0 20% 1440

refresh_pattern -i . 5 25% 2880

The regexp parameter is a regular expression that is normally case-sensitive. You can make
them case-insensitive with the -i option. Squid checks the refresh_pattern lines in order; it
stops searching when one of the regular expression patterns matches the URI.

The min parameter is some number of minutes. It is, essentially, a lower bound on stale
responses. A response can't be stale unless its time in the cache exceeds the minimum value.
Similarly, max is an upper limit on fresh responses. A response can't be fresh unless its time in
the cache is less than the maximum time.

Responses that fall between the minimum and maximum are subject to Squid's last-modified
factor (LM-factor) algorithm. For such responses, Squid calculates the response age and the LM-
factor and compares it to the percent value. The response age is simply the amount of time
passed since the origin server generated, or last validated, the response. The resource age is
the difference between the Last-Modified and Date headers. The LM-factor is the ratio of the
response age to the resource age.

Figure 7-2 demonstrates the LM-factor algorithm. Squid caches an object that is 3 hours old
(based on the Date and Last-Modified headers). With an LM-factor value of 50%, the
response will be fresh for the next 1.5 hours, after which the object expires and is considered
stale. If a user requests the cached object during the fresh period, Squid returns an unvalidated
cache hit. For a request that occurs during the stale period, Squid forwards a validation request
to the origin server.

Figure 7-2. Calculating expiration times based on LM-factor

It's important to understand the order that Squid checks the various values. Here is a simplified
description of Squid's refresh_pattern algorithm:

● The response is stale if the response age is greater than the refresh_pattern max value.
● The response is fresh if the LM-factor is less than the refresh_pattern percent value.
● The response is fresh if the response age is less than the refresh_pattern min value.
● Otherwise, the response is stale.

The refresh_pattern directive also has a handful of options that cause Squid to disobey the
HTTP protocol specification. They are as follows:

override-expire

When set, this option causes Squid to check the min value before checking the Expires
header. Thus, a non-zero min time makes Squid return an unvalidated cache hit even if
the response is preexpired.

override-lastmod

When set, this option causes Squid to check the min value before the LM-factor
percentage.

reload-into-ims

When set, this option makes Squid transform a request with a no-cache directive into a
validation (If-Modified-Since) request. In other words, Squid adds an If-Modified-
Since header to the request before forwarding it on. Note that this only works for
objects that have a Last-Modified timestamp. The outbound request retains the no-
cache directive, so that it reaches the origin server.

ignore-reload

When set, this option causes Squid to ignore the no-cache directive, if any, in the
request.

 < Day Day Up >

 < Day Day Up >

7.8 Exercises

● Run df on your existing filesystems and calculate the ratio of inodes to disk space. If
any of those partitions are used for Squid's disk cache, do you think you'll run out of
space, or inodes first?

● Try to intentionally make Squid run out of disk space on a cache directory. How does
Squid deal with this situation?

● Write a shell script to search the cache for given URIs and optionally remove them.
● Examine Squid's store.log and estimate the percentage of requests that are subject to

the refresh_pattern rules.
● Can you think of any negative side effects of the ignore-reload, override-expire,

and related options?

 < Day Day Up >

 < Day Day Up >

Chapter 8. Advanced Disk Cache Topics

Performance is one of the biggest concerns for Squid administrators. As the load placed on
Squid increases, disk I/O is typically the primary bottleneck. The reason for this performance
limitation is due to the importance that Unix filesystems place on consistency after a system
crash.

By default, Squid uses a relatively simple storage scheme (ufs). All disk I/O is performed by the
main Squid process. With traditional Unix filesystems, certain operations always block the
calling process. For example, calling open() on the Unix Fast Filesystem (UFS) causes the
operating system to allocate and initialize certain on-disk data structures. The system call
doesn't return until these I/O operations complete, which may take longer than you'd like if the
disks are already busy with other tasks.

Under heavy load, these filesystem operations can block the Squid process for small, but
significant, amounts of time. The point at which the filesystem becomes a bottleneck depends
on many different factors, including:

● The number of disk drives
● The rotational speed and seek time of your hard drives
● The type of disk drive interface (ATA, SCSI)
● Filesystem tuning options
● The number of files and percentage of free space

 < Day Day Up >

 < Day Day Up >

8.1 Do I Have a Disk I/O Bottleneck?

Web caches such as Squid don't usually come right out and tell you when disk I/O is becoming
a bottleneck. Instead, response time and/or hit ratio degrade as load increases. The tricky thing
is that response time and hit ratio may be changing for other reasons, such as increased
network latency and changes in client request patterns.

Perhaps the best way to explore the performance limits of your cache is with a benchmark,
such as Web Polygraph. The good thing about a benchmark is that you can fully control the
environment and eliminate many unknowns. You can also repeat the same experiment with
different cache configurations. Unfortunately, benchmarking often takes a lot of time and
requires spare systems that aren't already being used.

If you have the resources to benchmark Squid, begin with a standard caching workload. As you
increase the load, at some point you should see a significant increase in response time and/or a
decrease in hit ratio. Once you observe this performance degradation, run the experiment again
but with disk caching disabled. You can configure Squid never to cache any response (with the
null storage scheme, see Section 8.7). Alternatively, you can configure the workload to have
100% uncachable responses. If the average response time is significantly better without
caching, you can be relatively certain that disk I/O is a bottleneck at that level of throughput.

If you're like most people, you have neither the time nor resources to benchmark Squid. In this
case, you can examine Squid's runtime statistics to look for disk I/O bottlenecks. The cache
manager General Runtime Information page (see Chapter 14) gives you median response times
for both cache hits and misses:

Median Service Times (seconds) 5 min 60 min:

 HTTP Requests (All): 0.39928 0.35832

 Cache Misses: 0.42149 0.39928

 Cache Hits: 0.12783 0.11465

 Near Hits: 0.37825 0.39928

 Not-Modified Replies: 0.07825 0.07409

For a healthy Squid cache, hits are significantly faster than misses. Your median hit response
time should usually be 0.5 seconds or less. I strongly recommend that you use SNMP or
another network monitoring tool to collect periodic measurements from your Squid caches (see
Chapter 14). A significant (factor of two) increase in median hit response time is a good
indication that you have a disk I/O bottleneck.

If you believe your production cache is suffering in this manner, you can test your theory with
the same technique mentioned previously. Configure Squid not to cache any responses, thus
avoiding all disk I/O. Then closely observe the cache miss response time. If it goes down, your
theory is probably correct.

Once you've convinced yourself that disk throughput is limiting Squid's performance, you can
try a number of things to improve it. Some of these require recompiling Squid, while others are
relatively simple steps you can take to tune the Unix filesystems.

 < Day Day Up >

 < Day Day Up >

8.2 Filesystem Tuning Options

First of all, you should never use RAID for Squid cache directories. In my experience, RAID
always degrades filesystem performance for Squid. It is much better to have a number of
separate filesystems, each dedicated to a single disk drive.

I have found four simple ways to improve UFS performance for Squid. Some of these are
specific to certain operating systems, such as BSD and Linux, and may not be available on your
platform:

● Some UFS implementations support a noatime mount option. Filesystems mounted with
noatime don't update the inode access time value for reads. The easiest way to use this
option is to add it to the /etc/fstab like this:

Device Mountpoint FStype Options Dump Pass#

/dev/ad1s1c /cache0 ufs rw,noatime 0 0

● Check your mount(8) manpage for the async option. With this option set, certain I/O
operations (such as directory updates) may be performed asynchronously. The
documentation for some systems notes that it is a dangerous flag. Should your system
crash, you may lose the entire filesystem. For many installations, the performance
improvement is worth the risk. You should use this option only if you don't mind losing
the contents of your entire cache. If the cached data is very valuable, the async option
is probably not for you.

● BSD has a feature called soft updates. Soft updates are BSD's alternative to journaling

filesystems.
[1]

 On FreeBSD, you can enable this option on an unmounted filesystem
with the tunefs command:

[1] For further information, please see "Soft Updates: A Technique for
Eliminating Most Synchronous Writes in the Fast File System" by Marshall
Kirk McKusik and Gregory R. Ganger. Proceedings of the 1999 USENIX
Annual Technical Conference, June 6-11, 1999, Monterey, California.

umount /cache0

tunefs -n enable /cache0

mount /cache0

● You only have to run the tunefs once for each filesystem. Soft updates are automatically
enabled on the filesystem again when your system reboots.

On OpenBSD and NetBSD, you can use the softdep mount option:

Device Mountpoint FStype Options Dump Pass#

/dev/sd0f /usr ffs rw,softdep 1 2

If you're like me, you're probably wondering what the difference is between the async option
and soft updates. One important difference is that soft update code has been designed to
maintain filesystem consistency in the event of a system crash, while the async option has not.
This might lead you to conclude that async performs better than soft updates. However, as I
show in Appendix D, the opposite is true.

Previously, I mentioned that UFS performance, especially writing, depends on the amount of
free space. Disk writes for empty filesystems are much faster than for full ones. This is one
reason behind UFS's minfree parameter and space/time optimization tradeoffs. If your cache
disks are full and Squid's performance seems bad, try reducing the cache_dir capacity values so
that more free space is available. Of course, this reduction in cache size also decreases your hit
ratio, but the response time improvement may be worth it. If you're buying the components for
a new Squid cache, consider getting much larger disks than you need and using only half the
space.

 < Day Day Up >

 < Day Day Up >

8.3 Alternative Filesystems

Some operating systems support filesystems other than UFS (or ext2fs). Journaling filesystems
are a common alternative. The primary difference between UFS and journaling filesystems is in
the way that they handle updates. With UFS, updates are made in-place. For example, when
you change a file and save it to disk, the new data replaces the old data. When you remove a
file, UFS updates the directory directly.

A journaling filesystem, on the other hand, writes updates to a separate journal, or log file. You
can typically select whether to journal file changes, metadata changes, or both. A background
process reads the journal during idle moments and applies the actual changes. Journaling
filesystems typically recover much faster from crashes than UFS. After a crash, the filesystem
simply reads the journal and commits all the outstanding changes.

The primary drawback of journaling filesystems is that they require additional disk writes.
Changes are first written to the log and later to the actual files and/or directories. This is
particularly relevant for web caches because they tend to have more disk writes than reads in
the first place.

Journaling filesystems are available for a number of operating systems. On Linux, you can
choose from ext3fs, reiserfs, XFS, and others. XFS is also available for SGI/IRIX, where it was
originally developed. Solaris users can use the Veritas filesystem product. The TRU64 (formerly
Digital Unix) Advanced Filesystem (advfs) supports journaling.

You can use a journaling filesystem without making any changes to Squid's configuration.
Simply create and mount the filesystem as described in your operating system documentation.
You don't need to change the cache_dir line in squid.conf. Use a command like this to make a
reiserfs filesystem on Linux:

/sbin/mkreiserfs /dev/sda2

For XFS, use:

mkfs -t xfs -f /dev/sda2

Note that ext3fs is simply ext2fs with journaling enabled. Use the -j option to mke2fs when
creating the filesystem:

/sbin/mke2fs -j /dev/sda2

Refer to your documentation (e.g., manpages) for other operating systems.

 < Day Day Up >

 < Day Day Up >

8.4 The aufs Storage Scheme

The aufs storage scheme has evolved out of the very first attempt to improve Squid's disk I/O
response time. The "a" stands for asynchronous I/O. The only difference between the default
ufs scheme and aufs is that I/Os aren't executed by the main Squid process. The data layout
and format is the same, so you can easily switch between the two schemes without losing any
cache data.

aufs uses a number of thread processes for disk I/O operations. Each time Squid needs to read,
write, open, close, or remove a cache file, the I/O request is dispatched to one of the thread
processes. When the thread completes the I/O, it signals the main Squid process and returns a
status code. Actually, in Squid 2.5, certain file operations aren't executed asynchronously by
default. Most notably, disk writes are always performed synchronously. You can change this by
setting ASYNC_WRITE to 1 in src/fs/aufs/store_asyncufs.h and recompiling.

The aufs code requires a pthreads library. This is the standard threads interface, defined by
POSIX. Even though pthreads is available on many Unix systems, I often encounter
compatibility problems and differences. The aufs storage system seems to run well only on
Linux and Solaris. Even though the code compiles, you may encounter serious problem on other
operating systems.

To use aufs, you must add a special ./configure option:

% ./configure --enable-storeio=aufs,ufs

Strictly speaking, you don't really need to specify ufs in the list of storeio modules. However,
you might as well because if you try aufs and don't like it, you'll be able to fall back to the plain
ufs storage scheme.

You can also use the —with-aio-threads=N option if you like. If you omit it, Squid automatically
calculates the number of threads to use based on the number of aufs cache_dirs. Table 8-1
shows the default number of threads for up to six cache directories.

Table 8-1. Default number of threads for up to six cache directories

cache_dirs Threads

1 16

2 26

3 32

4 36

5 40

6 44

After you compile aufs support into Squid, you can specify it on a cache_dir line in squid.conf:

cache_dir aufs /cache0 4096 16 256

After starting Squid with aufs enabled, make sure everything still works correctly. You may
want to run tail -f store.log for a while to make sure that objects are being swapped out to disk.
You should also run tail -f cache.log and look for any new errors or warnings.

8.4.1 How aufs Works

Squid creates a number of thread processes by calling pthread_create(). All threads are
created upon the first disk activity. Thus, you'll see all the thread processes even if Squid is idle.

Whenever Squid wants to perform some disk I/O operation (e.g., to open a file for reading), it
allocates a couple of data structures and places the I/O request into a queue. The thread
processes have a loop that take I/O requests from the queue and executes them. Because the
request queue is shared by all threads, Squid uses mutex locks to ensure that only one thread
updates the queue at a given time.

The I/O operations block the thread process until they are complete. Then, the status of the
operation is placed on a done queue. The main Squid process periodically checks the done
queue for completed operations. The module that requested the disk I/O is notified that the
operation is complete, and the request or response processing proceeds.

As you may have guessed, aufs can take advantage of systems with multiple CPUs. The only
locking that occurs is on the request and result queues. Otherwise, all other functions execute
independently. While the main process executes on one CPU, another CPU handles the actual I/
O system calls.

8.4.2 aufs Issues

An interesting property of threads is that all processes share the same resources, including
memory and file descriptors. For example, when a thread process opens a file as descriptor 27,
all other threads can then access that file with the same descriptor number. As you probably
know, file-descriptor shortage is a common problem with first-time Squid administrators. Unix
kernels typically have two file-descriptor limits: per process and systemwide. While you might
think that 256 file descriptors per process is plenty (because of all the thread processes), it

doesn't work that way. In this case, all threads share that small number of descriptors. Be sure
to increase your system's per-process file descriptor limit to 4096 or higher, especially when
using aufs.

Tuning the number of threads can be tricky. In some cases, you might see this warning in
cache.log:

2003/09/29 13:42:47| squidaio_queue_request: WARNING - Disk I/O overloading

It means that Squid has a large number of I/O operations queued up, waiting for an available
thread. Your first instinct may be to increase the number of threads. I would suggest, however,
that you decrease the number instead.

Increasing the number of threads also increases the queue size. Past a certain point, it doesn't
increase aufs's load capacity. It only means that more operations become queued. Longer
queues result in higher response times, which is probably something you'd like to avoid.

Decreasing the number of threads, and the queue size, means that Squid can detect the
overload condition faster. When a cache_dir is overloaded, it is removed from the selection
algorithm (see Section 7.4). Then, Squid either chooses a different cache_dir or simply doesn't
store the response on disk. This may be a better situation for your users. Even though the hit
ratio goes down, response time remains relatively low.

8.4.3 Monitoring aufs Operation

The Async IO Counters option in the cache manager menu displays a few statistics relating to
aufs. It shows counters for the number of open, close, read, write, stat, and unlink requests
received. For example:

% squidclient mgr:squidaio_counts

...

ASYNC IO Counters:

Operation # Requests

open 15318822

close 15318813

cancel 15318813

write 0

read 19237139

stat 0

unlink 2484325

check_callback 311678364

queue 0

The cancel counter is normally equal to the close counter. This is because the close function
always calls the cancel function to ensure that any pending I/O operations are ignored.

The write counter is zero because this version of Squid performs writes synchronously, even for
aufs.

The check_callback counter shows how many times the main Squid process has checked the
done queue for completed operations.

The queue value indicates the current length of the request queue. Normally, the queue length
should be less than the number of threads x 5. If you repeatedly observe a queue length larger
than this, you may be pushing Squid too hard. Adding more threads may help but only to a
certain point.

 < Day Day Up >

 < Day Day Up >

8.5 The diskd Storage Scheme

diskd (short for disk daemons) is similar to aufs in that disk I/Os are executed by external
processes. Unlike aufs, however, diskd doesn't use threads. Instead, inter-process
communication occurs via message queues and shared memory.

Message queues are a standard feature of modern Unix operating systems. They were invented
many years ago in AT&T's Unix System V, Release 1. The messages passed between processes
on these queues are relatively small: 32-40 bytes. Each diskd process uses one queue for
receiving requests from Squid and another queue for transmitting results back.

8.5.1 How diskd Works

Squid creates one diskd process for each cache_dir. This is different from aufs, which uses a
large pool of threads for all cache_dirs. Squid sends a message to the corresponding diskd
process for each I/O operation. When that operation is complete, the diskd process sends a
status message back to Squid. Squid and the diskd processes preserve the order of messages in
the queues. Thus, there is no concern that I/Os might be executed out of sequence.

For reads and writes, Squid and the diskd processes use a shared memory area. Both processes
can read from, and write to, this area of memory. For example, when Squid issues a read
request, it tells the diskd process where to place the data in memory. diskd passes this memory
location to the read() system call and notifies Squid that the read is complete by sending a
message on the return queue. Squid then accesses the recently read data from the shared
memory area.

diskd (as with aufs) essentially gives Squid nonblocking disk I/Os. While the diskd processes are
blocked on I/O operations, Squid is free to work on other tasks. This works really well as long as
the diskd processes can keep up with the load. Because the main Squid process is now able to
do more work, it's possible that it may overload the diskd helpers. The diskd implementation
has two features to help out in this situation.

First, Squid waits for the diskd processes to catch up if one of the queues exceeds a certain
threshold. The default value is 64 outstanding messages. If a diskd process gets this far behind,
Squid "sleeps" a small amount of time and waits for it to complete some of the pending
operations. This essentially puts Squid into a blocking I/O mode. It also makes more CPU time
available to the diskd processes. You can configure this threshold by specifying a value for the
Q2 parameter on a cache_dir line:

cache_dir diskd /cache0 7000 16 256 Q2=50

Second, Squid stops asking the diskd process to open files if the number of outstanding
operations reaches another threshold. Here, the default value is 72 messages. If Squid would
like to open a disk file for reading or writing, but the selected cache_dir has too many pending
operations, the open request fails internally. When trying to open a file for reading, this causes
a cache miss instead of a cache hit. When opening files for writing, it prevents Squid from
storing a cachable response. In both cases the user still receives a valid response. The only real
effect is that Squid's hit ratio decreases. This threshold is configurable with the Q1 parameter:

cache_dir diskd /cache0 7000 16 256 Q1=60 Q2=50

Note that in some versions of Squid, the Q1 and Q2 parameters are mixed-up in the default
configuration file. For optimal performance, Q1 should be greater than Q2.

8.5.2 Compiling and Configuring diskd

To use diskd, you must add it to the —enable-storeio list when running ./configure:

% ./configure --enable-storeio=ufs,diskd

diskd seems to be portable since shared memory and message queues are widely supported on
modern Unix systems. However, you'll probably need to adjust a few kernel limits relating to
both. Kernels typically have the following variables or parameters:

MSGMNB

This is the maximum characters (octets) per message queue. With diskd, the practical
limit is about 100 outstanding messages per queue. The messages that Squid passes are
32-40 octets, depending on your CPU architecture. Thus, MSGMNB should be 4000 or
more. To be safe, I recommend setting this to 8192.

MSGMNI

This is the maximum number of message queues for the whole system. Squid uses two
queues for each diskd cache_dir. If you have 10 disks, that's 20 queues. You should
probably add even more in case other applications also use message queues. I
recommend a value of 40.

MSGSSZ

This is the size of a message segment, in octets. Messages larger than this size are split
into multiple segments. I usually set this to 64 so that the diskd message isn't split into
multiple segments.

MSGSEG

This is the maximum number of message segments that can exist in a single queue.
Squid normally limits the queues to 100 outstanding messages. Remember that if you
don't increase MSGSSZ to 64 on 64-bit architectures, each message requires more than
one segment. To be safe, I recommend setting this to 512.

MSGTQL

This is the maximum number of messages that can exist in the whole system. It should

be at least 100 multiplied by the number of cache_dirs. I recommend setting it to 2048,
which should be more than enough for as many as 10 cache directories.

MSGMAX

This is the maximum size of a single message. For Squid, 64 bytes should be sufficient.
However, your system may have other applications that use larger messages. On some
operating systems such as BSD, you don't need to set this. BSD automatically sets it to
MSGSSZ x MSGSEG. On other systems you may need to increase the value from its
default. In this case, you can set it to the same as MSGMNB.

SHMSEG

This is the maximum number of shared memory segments allowed per process. Squid
uses one shared memory identifier for each cache_dir. I recommend a setting of 16 or
higher.

SHMMNI

This is the systemwide limit on the number of shared memory segments. A value of 40 is
probably enough in most cases.

SHMMAX

This is the maximum size of a single shared memory segment. By default, Squid uses
about 409,600 bytes for each segment. Just to be safe, I recommend setting this to 2
MB, or 2,097,152.

SHMALL

This is the systemwide limit on the amount of shared memory that can be allocated. On
some systems, SHMALL may be expressed as a number of pages, rather than bytes.
Setting this to 16 MB (4096 pages) is enough for 10 cache_dirs with plenty remaining for
other applications.

To configure message queues on BSD, add these options to your kernel configuration file:
[2]

[2] OpenBSD is a little different. Use option instead of options, and specify the
SHMMAX value in pages, rather than bytes.

System V message queues and tunable parameters

options SYSVMSG # include support for message queues

options MSGMNB=8192 # max characters per message queue

options MSGMNI=40 # max number of message queue identifiers

options MSGSEG=512 # max number of message segments per queue

options MSGSSZ=64 # size of a message segment MUST be power of 2

options MSGTQL=2048 # max number of messages in the system

options SYSVSHM

options SHMSEG=16 # max shared mem segments per process

options SHMMNI=32 # max shared mem segments in the system

options SHMMAX=2097152 # max size of a shared mem segment

options SHMALL=4096 # max size of all shared memory (pages)

To configure message queues on Linux, add these lines to /etc/sysctl.conf:

kernel.msgmnb=8192

kernel.msgmni=40

kernel.msgmax=8192

kernel.shmall=2097152

kernel.shmmni=32

kernel.shmmax=16777216

Alternatively, or if you find that you need more control, you can manually edit include/linux/msg.
h and include/linux/shm.h in your kernel sources.

For Solaris, add these lines to /etc/system and then reboot:

set msgsys:msginfo_msgmax=8192

set msgsys:msginfo_msgmnb=8192

set msgsys:msginfo_msgmni=40

set msgsys:msginfo_msgssz=64

set msgsys:msginfo_msgtql=2048

set shmsys:shminfo_shmmax=2097152

set shmsys:shminfo_shmmni=32

set shmsys:shminfo_shmseg=16

For Digital Unix (TRU64), you can probably add lines to the kernel configuration in the style of

BSD, seen previously. Alternatively, you can use the sysconfig command. First, create a file
called ipc.stanza like this:

ipc:

 msg-max = 2048

 msg-mni = 40

 msg-tql = 2048

 msg-mnb = 8192

 shm-seg = 16

 shm-mni = 32

 shm-max = 2097152

 shm-max = 4096

Now, run this command and reboot:

sysconfigdb -a -f ipc.stanza

After you have message queues and shared memory configured in your operating system, you
can add the cache_dir lines to squid.conf:

cache_dir diskd /cache0 7000 16 256 Q1=72 Q2=64

cache_dir diskd /cache1 7000 16 256 Q1=72 Q2=64

...

If you forget to increase the message queue limits, or if you don't set them high enough, you'll
see messages like this in cache.log:

2003/09/29 01:30:11| storeDiskdSend: msgsnd: (35) Resource temporarily unavailable

8.5.3 Monitoring diskd

The best way to monitor diskd performance is with the cache manager. Request the diskd page;
for example:

% squidclient mgr:diskd

...

sent_count: 755627

recv_count: 755627

max_away: 14

max_shmuse: 14

open_fail_queue_len: 0

block_queue_len: 0

 OPS SUCCESS FAIL

 open 51534 51530 4

 create 67232 67232 0

 close 118762 118762 0

 unlink 56527 56526 1

 read 98157 98153 0

 write 363415 363415 0

See Section 14.2.1.6 for a description of this output.

 < Day Day Up >

 < Day Day Up >

8.6 The coss Storage Scheme

The Cyclic Object Storage Scheme (coss) is an attempt to develop a custom filesystem for
Squid. With the ufs-based schemes, the primary performance bottleneck comes from the need
to execute so many open() and unlink() system calls. Because each cached response is
stored in a separate disk file, Squid is always opening, closing, and removing files.

coss, on the other hand, uses one big file to store all responses. In this sense, it is a small,
custom filesystem specifically for Squid. coss implements many of the functions normally
handled by the underlying filesystem, such as allocating space for new data and remembering
where there is free space.

Unfortunately, coss is still a little rough around the edges. Development of coss has been
proceeding slowly over the last couple of years. Nonetheless, I'll describe it here in case you
feel adventurous.

8.6.1 How coss Works

On the disk, each coss cache_dir is just one big file. The file grows in size until it reaches its
maximum size. At this point, Squid starts over at the beginning of the file, overwriting any data

already stored there. Thus, new objects are always stored at the "end" of this cyclic file.
[3]

[3] The beginning is the location where data was first written; the end is the
location where data was most recently written.

Squid actually doesn't write new object data to disk immediately. Instead, the data is copied
into a 1-MB memory buffer, called a stripe. A stripe is written to disk when it becomes full. coss
uses asynchronous writes so that the main Squid process doesn't become blocked on disk I/O.

As with other filesystems, coss also uses the blocksize concept. Back in Section 7.1.4, I talked
about file numbers. Each cached object has a file number that Squid uses to locate the data on
disk. For coss, the file number is the same as the block number. For example, a cached object
with a swap file number equal to 112 starts at the 112th block in a coss filesystem. File
numbers aren't allocated sequentially with coss. Some file numbers are unavailable because
cached objects generally occupy more than one block in the coss file.

The coss block size is configurable with a cache_dir option. Because Squid's file numbers are
only 24 bits, the block size determines the maximum size of a coss cache directory: size =
block_size x 224. For example, with a 512-byte block size, you can store up to 8 GB in a coss
cache_dir.

coss doesn't implement any of Squid's normal cache replacement algorithms (see Section 7.5).
Instead, cache hits are "moved" to the end of the cyclic file. This is, essentially, the LRU
algorithm. It does, unfortunately, mean that cache hits cause disk writes, albeit indirectly.

With coss, there is no need to unlink or remove cached objects. Squid simply forgets about the
space allocated to objects that are removed. The space will be reused eventually when the end

of the cyclic file reaches that place again.

8.6.2 Compiling and Configuring coss

To use coss, you must add it to the —enable-storeio list when running ./configure:

% ./configure --enable-storeio=ufs,coss ...

coss cache directories require a max-size option. Its value must be less than the stripe size (1
MB by default, but configurable with the —enable-coss-membuf-size option). Also note that you
must omit the L1 and L2 values that are normally present for ufs-based schemes. Here is an
example:

cache_dir coss /cache0/coss 7000 max-size=1000000

cache_dir coss /cache1/coss 7000 max-size=1000000

cache_dir coss /cache2/coss 7000 max-size=1000000

cache_dir coss /cache3/coss 7000 max-size=1000000

cache_dir coss /cache4/coss 7000 max-size=1000000

Furthermore, you can change the default coss block size with the block-size option:

cache_dir coss /cache0/coss 30000 max-size=1000000 block-size=2048

One tricky thing about coss is that the cache_dir directory argument (e.g., /cache0/coss) isn't
actually a directory. Instead, it is a regular file that Squid opens, and creates if necessary. This
is so you can use raw partitions as coss files. If you mistakenly create the coss file as a
directory, you'll see an error like this when starting Squid:

2003/09/29 18:51:42| /usr/local/squid/var/cache: (21) Is a directory

FATAL: storeCossDirInit: Failed to open a coss file.

Because the cache_dir argument isn't a directory, you must use the cache_swap_log directive
(see Section 13.6). Otherwise Squid attempts to create a swap.state file in the cache_dir
directory. In that case, you'll see an error like this:

2003/09/29 18:53:38| /usr/local/squid/var/cache/coss/swap.state:

 (2) No such file or directory

FATAL: storeCossDirOpenSwapLog: Failed to open swap log.

coss uses asynchronous I/Os for better performance. In particular, it uses the aio_read() and
aio_write() system calls. These may not be available on all operating systems. At this time,
they are available on FreeBSD, Solaris, and Linux. If the coss code seems to compile okay, but
you get a "Function not implemented" error message, you need to enable these system calls in

your kernel. On FreeBSD, your kernel must have this option:

options VFS_AIO

8.6.3 coss Issues

coss is still an experimental feature. The code has not yet proven stable enough for everyday
use. If you want to play with and help improve it, be prepared to lose any data stored in a coss
cache_dir. On the plus side, coss's preliminary performance tests are very good. For an
example, see Appendix D.

coss doesn't support rebuilding cached data from disk very well. When you restart Squid, you
might find that it fails to read the coss swap.state files, thus losing any cached data.
Furthermore, Squid doesn't remember its place in the cyclic file after a restart. It always starts
back at the beginning.

coss takes a nonstandard approach to object replacement. This may cause a lower hit ratio
than you might get with one of the other storage schemes.

Some operating systems have problems with files larger than 2 GB. If this happens to you, you
can always create more, smaller coss areas. For example:

cache_dir coss /cache0/coss0 1900 max-size=1000000 block-size=128

cache_dir coss /cache0/coss1 1900 max-size=1000000 block-size=128

cache_dir coss /cache0/coss2 1900 max-size=1000000 block-size=128

cache_dir coss /cache0/coss3 1900 max-size=1000000 block-size=128

Using a raw disk device (e.g., /dev/da0s1c) doesn't work very well yet. One reason is that disk
devices usually require that I/Os take place on 512-byte block boundaries. Another concern is
that direct disk access bypasses the systems buffer cache and may degrade performance. Many
disk drives, however, have built-in caches these days.

 < Day Day Up >

 < Day Day Up >

8.7 The null Storage Scheme

Squid has a fifth storage scheme called null. As the name implies, this is more of a nonstorage
scheme. Files that are "written" to a null cache_dir aren't actually written to disk.

Most people won't have any reason to use the null storage system. It's primarily useful if you

want to entirely disable Squid's disk cache.
[4]

 You can't simply remove all cache_dir lines from
squid.conf because then Squid adds a default ufs cache_dir. The null storage system is also
sometimes useful for testing and benchmarking Squid. Since the filesystem is typically the
performance bottleneck, using the null storage scheme gives you an upper limit of Squid's
performance on your hardware.

[4] Some responses may still be cached in memory, however.

To use this scheme you must first specify it on the —enable-storeio list when running ./
configure:

% ./configure --enable-storeio=ufs,null ...

You can then create a cache_dir of type null in squid.conf:

cache_dir /tmp null

It may seem odd that you need to specify a directory for the null storage scheme. However,
Squid uses the directory name as a cache_dir identifier. For example, you'll see it in the cache
manager output (see Section 14.2.1.39).

 < Day Day Up >

 < Day Day Up >

8.8 Which Is Best for Me?

Squid's storage scheme choices may seem a little overwhelming and confusing. Is aufs better
than diskd? Does my system support aufs or coss? Will I lose my data if I use one of these
fancy schemes? Is it okay to mix-and-match storage schemes?

First of all, if your Squid is lightly used (say, less than five requests per second), the default ufs
storage scheme should be sufficient. You probably won't see a noticeable performance
improvement from the other schemes at this low request rate.

If you are trying to decide which scheme to try, your operating system may be a determining
factor. For example, aufs runs well on Linux and Solaris but seems to have problems on other
systems. The coss code uses functions that aren't available on certain operating systems (e.g.,
NetBSD) at this time.

It seems to me that higher-performing storage schemes are also more susceptible to data loss
in the event of a system crash. This is the tradeoff for better performance. For many people,
however, cached data is of relatively low value. If Squid's cache becomes corrupted due to a
crash, you may find it easier to simply newfs the disk partition and let the cache fill back up
from scratch. If you find it difficult or expensive to replace the contents of Squid's cache, you
probably want to use one of the slow, but reliable, filesystems and storage schemes.

Squid certainly allows you to use different filesystems and storage schemes for each cache_dir.
In practice, however, this is uncommon. You'll probably have fewer hassles if all cache
directories are approximately the same size and use the same storage scheme.

 < Day Day Up >

 < Day Day Up >

8.9 Exercises

● Try to compile all possible storage schemes on your system.
● Run Squid with a separate cache_dir for each storage scheme you can get to compile.
● Run Squid with one or more diskd cache_dirs. Then run the ipcs -o command.

 < Day Day Up >

 < Day Day Up >

Chapter 9. Interception Caching

Interception caching is a popular technique for getting traffic to Squid without configuring any
clients. Instead, you configure a router or switch to divert HTTP connections to the machine on
which Squid is running. Squid's operating system is configured to accept the foreign packets
and deliver them to the Squid process. To make HTTP interception work, you need to configure
three separate components: a network device, Squid's operating system, and Squid itself.

This chapter begins with an overview of HTTP interception. I'll explain how it all works and
define some terms so that the remaining sections make sense. I also explain the tradeoffs
involved with HTTP interception.

Following that, I'll discuss your options for devices and configurations that can intercept client
traffic. In particular, I cover Cisco policy routing, Cisco's WCCP, layer four switches, and
running Squid on a host that also functions as a router or bridge.

Next, I'll show how to configure the operating system to handle the intercepted connections.
This functionality is a feature of the IP packet filtering software, which varies from system to
system. It is called iptables (Netfilter) on Linux; ipfw on FreeBSD; pf on OpenBSD; and IPFilter
on NetBSD, Solaris, and other BSD variants.

Squid is the final component you need to configure. Fortunately, this is relatively
straightforward because it doesn't depend on your operating system or network device.

I finish the chapter with a little checklist that may help you debug HTTP interception problems.

 < Day Day Up >

 < Day Day Up >

9.1 How It Works

Interception caching involves some network trickery, so it is helpful for you to understand what
happens between the client and Squid. I'll use Figure 9-1 and the following sample tcpdump
output to explain how the packets are intercepted as they flow through your network.

Figure 9-1. How HTTP interception works

1. The user-agent wants to request a resource, say /index.html from an origin server, say
www.oreilly.com. It needs the origin server's IP address, so it makes a DNS request:

Packet 1

TIME: 19:54:41.317310

UDP: 206.168.0.3.2459 -> 206.168.0.2.53

DATA: .d...........www.oreilly.com.....

Packet 2

TIME: 19:54:41.317707 (0.000397)

UDP: 206.168.0.2.53 -> 206.168.0.3.2459

file:///index.html

DATA: .d...........www.oreilly.com.............PR.....%........PR.

 $........PR...ns1.sonic.net.........PR...ns2.Q........PR

 ...ns...M...............h.............!.z.......b......

2. Now that it has the IP address, the user-agent initiates a TCP connection to the origin
server on port 80:

Packet 3

TIME: 19:54:41.320652 (0.002945)

TCP: 206.168.0.3.3897 -> 208.201.239.37.80 Syn

DATA: <No data>

3. The switch/router notices a TCP SYN packet with destination port 80. What happens next
depends on the particular interception technology. In the case of layer four switches and
policy routing, the device simply forwards the TCP packet to Squid's datalink layer
(Ethernet) address. This works only when Squid is directly attached to the network device.
For WCCP, the router encapsulates the TCP packet into a GRE packet. Because the GRE
packet has its own IP address, it can be routed through multiple subnets. In other words,
WCCP doesn't require Squid to be directly attached to the router.

4. The Squid host's operating system receives the intercepted packet. For layer four switches,
the TCP/IP packet is unchanged from the earlier explanation.

If the packet is encapsulated with GRE, the host removes the outer IP and GRE headers
and places the original TCP/IP packet on the input queue.

Note that the Squid host receives an IP packet for a foreign address (the origin server's).
Normally this packet is dropped because its destination address doesn't match any of the
local interface addresses. To make the host accept the foreign packet, you must enable IP
forwarding on most operating systems.

5. The client's TCP/IP packet is processed by the packet filtering code. The packet matches a
rule that instructs the kernel to forward or divert this packet to Squid. Without this rule,
the kernel simply forwards this packet on its way to the origin server, which isn't what you
want.

Note that the SYN packet's destination port is 80, but Squid may be listening on a different
port, such as 3128. The packet filtering rules allow you to change the port number. You
don't need to make Squid listen on port 80. You can't see this step with tcpdump because
the diverted packet doesn't flow through the network interface code again.

The packet filter's redirection rule is still necessary even if you have Squid listen on port
80. Simply making the port numbers match doesn't allow Squid to receive the intercepted
packets. The redirection rule is the magic that delivers foreign packets to Squid.

6. Squid receives notification of the new connection, which it accepts. The kernel sends a SYN/
ACK packet back to the client:

Packet 4

TIME: 19:54:41.320735 (0.000083)

TCP: 208.201.239.37.80 -> 206.168.0.3.3897 SynAck

DATA: <No data>

As you can see, the source address is the origin server's, even though this packet didn't
reach the origin. The operating system simply copies and swaps the source and destination
IP addresses from the SYN packet into the reply.

7. The user-agent receives the SYN/ACK packet, fully establishing the TCP connection. The
user-agent now believes it is connected to the origin server, so it writes the HTTP request:

Packet 5

TIME: 19:54:41.323080 (0.002345)

TCP: 206.168.0.3.3897 -> 208.201.239.37.80 Ack

DATA: <No data>

Packet 6

TIME: 19:54:41.323482 (0.000402)

TCP: 206.168.0.3.3897 -> 208.201.239.37.80 AckPsh

DATA: GET / HTTP/1.0

 User-Agent: Wget/1.8.2

 Host: www.oreilly.com

 Accept: */*

 Connection: Keep-Alive

8. Squid receives the HTTP request. It uses the HTTP Host header to convert the partial URL
into a full URL. In this case, you'll see http://www.oreilly.com/ in the access.log file.

9. From this point on, Squid treats the request normally. As usual, cache hits are returned
immediately. Cache misses are forwarded to the origin server.

10. Lastly, here is the response that Squid receives from the origin server:

Packet 8

TIME: 19:54:41.448391 (0.030030)

TCP: 208.201.239.37.80 -> 206.168.0.3.3897 AckPsh

http://www.oreilly.com/

DATA: HTTP/1.0 200 OK

 Date: Mon, 29 Sep 2003 01:54:41 GMT

 Server: Apache/1.3.26 (Unix) PHP/4.2.1 mod_gzip/1.3.19.1a mo

 d_perl/1.27

 P3P: policyref="http://www.oreillynet.com/w3c/p3p.xml",CP="C

 AO DSP COR CURa ADMa DEVa TAIa PSAa PSDa IVAa IVDa CONo OUR

 DELa PUBi OTRa IND PHY ONL UNI PUR COM NAV INT DEM CNT STA P

 RE"

 Last-Modified: Sun, 28 Sep 2003 23:54:44 GMT

 ETag: "1b76bf-b910-3ede86c4"

 Accept-Ranges: bytes

 Content-Length: 47376

 Content-Type: text/html

 X-Cache: MISS from www.oreilly.com

 X-Cache: MISS from 10.0.0.1

 Connection: keep-alive

You don't want your switch/router to intercept the connections that Squid makes to origin servers.
If that happens, Squid ends up talking to itself and can't satisfy any cache misses. The best way to
avoid forwarding loops like this is to make sure that your users and Squid connect to separate
interfaces on the switch/router. Whenever feasible, you should apply the interception rules to
specific interfaces. Obviously, you should not enable interception on the interface that Squid uses.

 < Day Day Up >

 < Day Day Up >

9.2 Why (Not) Intercept?

Many organizations find interception caching attractive because they can't, or would rather not,
configure all their user's web browsers. It's probably easier to perform a little network trickery
on a single switch or router than it is to configure hundreds or thousands of workstations. As
with many choices we face, interception caching is really a tradeoff. It brings both benefits and
drawbacks. It may make your life easier, or more difficult.

The obvious benefit of interception caching is that all HTTP requests leaving your network
automatically go through Squid. You don't need to worry about configuring any browsers or
that users might disable their proxy settings. Interception caching puts you, the network
administrator, in control of the HTTP traffic. You can change, add, or remove Squid caches from
service without significantly interrupting your users' web surfing.

Most of the disadvantages surrounding HTTP interception are because this technique violates
the TCP/IP standards. These protocols mandate that routers (and switches) forward TCP/IP
packets to the host specified by the destination IP address. Diverting the packets to a caching
proxy breaks the rules. The proxy accepts diverted connections under false pretense. User
agents are tricked into believing they have established a TCP connection with the origin server.

This confusion causes a serious problem with older versions of Microsoft's Internet Explorer.
The browser's Reload button is the easiest way to refresh an HTML page. When Explorer is
configured to use a caching proxy, a reload request includes a Cache-Control: no-cache
header to force a cache miss (or validation) and ensure that the response is up to date.
Explorer omits this header when not explicitly configured for proxying. With interception
caching, Explorer thinks it is connecting to the origin server anyway, and there is no need to
send this header. Squid can't tell that the user pressed the Reload button in this case and may
not validate the cached response. Squid's ie_refresh provides a partial workaround for this bug
(see Appendix A). According to Microsoft, this problem has been corrected in Explorer Version

5.5, Service Pack 1.
[1]

[1] See Microsoft support knowledge base article Q266121 for more (or less)
information: http://support.microsoft.com/support/kb/articles/Q266/1/21.ASP.

For similar reasons, you can't use HTTP proxy authentication in combination with interception
caching. Because the client is unaware of the proxy, it doesn't send the necessary Proxy-
Authorization header. Additionally, the 407 (Proxy Authorization Required) response code is
inappropriate because the response should look like it came from the origin server, which would
never send such a reply.

You also can't use RFC 1413 ident lookups (see Section 6.1.2.11) with interception. Squid can't
bind a new TCP socket to the necessary IP address. The operating system cheats when
forwarding the intercepted connection to Squid. However, it can't cheat when Squid wants to
bind a new TCP socket to the foreign IP address. The address that it wants to bind to isn't really
local, so the bind system call fails.

Interception caching is also incompatible with IP filtering designed to prevent address spoofing
(See also RFC 2267: Network Ingress Filtering: Defeating Denial of Service Attacks Which

http://support.microsoft.com/support/kb/articles/Q266/1/21.ASP

Employ IP Source Address Spoofing). Consider the network shown in Figure 9-2. The router has
two LAN interfaces: lan0 and lan1. The network administrator uses packet filters on the router
to make sure that the internal hosts don't transmit packets with spoofed source addresses. The
router forwards only packets with source addresses corresponding to the connected networks.
The packet filter rules might look something like this:

lan0

allow ip from 172.16.1.0/24 to any via lan0

deny ip from any to any via lan0

lan1

allow ip from 10.0.0.0/16 to any via lan1

deny ip from any to any via lan1

Figure 9-2. Interception caching breaks address spoofing filters

Now consider what happens when the router and Squid box on lan1 are configured to intercept
HTTP connections coming from lan0. Squid pretends to be the origin server, which means that
the TCP packets carrying response data from Squid back to the users have spoofed source
addresses. These lan0 filter rules cause the router to deny these packets. To make interception
caching work, the network administrator must remove the lan0 rules. This, in turn, leaves the
network vulnerable to being the source of denial-of-service attacks.

As I explained in the previous section, clients must make DNS queries before opening a
connection. This may be undesirable or difficult in certain firewall environments. A host whose
HTTP traffic you want to intercept must be able to query the DNS. Clients that know they are
using a proxy (due to manual configuration or proxy auto-configuration, for example) don't
usually try to resolve hostnames. Instead, they simply forward full URLs to Squid, and it
becomes Squid's job to look up origin server IP addresses.

Another little problem is that Squid accepts connections for any destination IP address.
Consider, for example, a web site that still has a DNS entry even though the site and server
have been taken down. Squid accepts the TCP connection for this bogus site. The client believes
the site is up and running, because it's connection is established. When Squid fails to connect to
the origin server, it is forced to return an error message.

In case it's not clear, HTTP interception can be tricky and difficult to get working the first time.
A number of different components must all work together and be correctly configured.
Furthermore, it can be difficult to recreate the entire configuration from memory. I strongly
encourage you to set up a test environment before attempting this on a production system.
Once you get it all working, be sure to document every little step.

 < Day Day Up >

 < Day Day Up >

9.3 The Network Device

Now that you know all the ins and outs of interception caching, let's see how to actually make it
work. We'll start by configuring the network devices that will be intercepting your HTTP
connections.

9.3.1 Inline Squid

In this configuration, you don't need a switch or network router to intercept HTTP connections.
Instead, Squid runs on a Unix system that is also your router (or perhaps bridge), as shown in
Figure 9-3.

Figure 9-3. A system that combines routing and caching can easily
intercept HTTP traffic

This configuration essentially skips the first three steps shown in Section 9.1. The Squid host
already receives the HTTP connection packets because it is the router for your network. If you
are taking this approach, feel free to skip ahead to Section 9.4.

9.3.2 Layer Four Switches

Many organizations use layer four switches specifically for their HTTP interception support.
These products offer additional features as well, such as health checks and load balancing. I'll
only cover interception here. For information on health checks and load balancing, see O'Reilly's
Server Load Balancing and Load Balancing Servers, Firewalls, and Caches (John Wiley & Sons).
The following subsections contain working-example configurations for a number of products and
techniques.

9.3.2.1 Alteon/Nortel

The following configuration is from an ACEswitch 180 and Alteon's WebOS 8.0.21. The network
setup is shown in Figure 9-4.

Figure 9-4. Sample network for layer four switch interception, for
Alteon and Foundry examples

Clients are connected to port 1, the connection to the Internet is via port 2, and Squid is on
port 3. The following lines are the relevant output of a /cfg/dump command on the switch. You
don't necessarily need to type all of these lines. Furthermore, some of the commands may have
changed for newer versions of Alteon's software. Note that Alteon calls this feature Web Cache
Redirection (WCR). Here's the process, step by step:

1. First, you must give the Alteon switch an IP address. This seems necessary so that the
switch can perform health checks with Squid:

/cfg/ip/if 1

 ena

 addr 172.16.102.1

 mask 255.255.255.0

 broad 172.16.102.255

2. Alteon's WCR is a feature of its Server Load Balancing (SLB) configuration. Thus, you
need to enable SLB features on the switch with this command:

/cfg/slb

 on

3. Next, you define a real server with Squid's IP address:

/cfg/slb/real 1

 ena

 rip 172.16.102.66

4. You must also define a group and make the real server a member:

/cfg/slb/group 1

 health tcp

 add 1

5. The next step is to define two filters. The first filter matches HTTP connections—TCP
packets with destination port 80—and redirects them to a server in group 1. The second
filter matches all other packets and forwards them normally:

/cfg/slb/filt 1

 ena

 action redir

 sip any

 smask 0.0.0.0

 dip any

 dmask 0.0.0.0

 proto tcp

 sport any

 dport http

 group 1

 rport 0

/cfg/slb/filt 224

 ena

 action allow

 sip any

 smask 0.0.0.0

 dip any

 dmask 0.0.0.0

 proto any

6. The final step is to configure specific switch ports for SLB. On port 1, you enable client
processing (this is where the clients connect), and add the two filters. On the second
port you need only configure it for servers (i.e., the upstream Internet connection):

/cfg/slb/port 1

 client ena

 filt ena

 add 1

 add 224

/cfg/slb/port 2

 server ena

To verify that HTTP interception is configured and working correctly, you can use the
commands under the /stats/slb and /info/slb menus. The /info/slb/dump command is a
quick and easy way to see the entire SLB configuration:

>> Main# /info/slb/dump

Real server state:

 1: 172.16.102.66, 00:c0:4f:23:d7:05, vlan 1, port 3, health 3, up

Virtual server state:

Redirect filter state:

 1: dport http, rport 0, group 1, health tcp, backup none

 real servers:

 1: 172.16.102.66, backup none, up

Port state:

 1: 0.0.0.0, client

 filt enabled, filters: 1 224

 2: 0.0.0.0, server

 filt disabled, filters: empty

 3: 0.0.0.0

 filt disabled, filters: empty

In this output, notice that the switch says Squid is reachable via port 3 and that the health
checks show Squid is up. You can also see that filter 1 has been applied to port 1, where the
clients connect. In the Port state section, port 1 is designated as a place where clients connect,
and port 2 is similarly marked as a server port.

The /stats/slb/real command shows a handful of statistics for the real server (i.e., Squid):

>> Main# /stats/slb/real 1

--

Real server 1 stats:

Health check failures: 0

Current sessions: 41

Total sessions: 760

Highest sessions: 55

Octets: 0

Most of the statistics relate to the number of sessions (i.e., TCP connections). The Total
sessions counter should increase if you execute the command again.

Lastly, the /stats/slb/group command shows almost the same information:

>> Main# /stats/slb/group 1

--

Real server group 1 stats:

 Current Total Highest

Real IP address Sessions Sessions Sessions Octets

---- --------------- -------- ---------- -------- ---------------

 1 172.16.102.66 65 2004 90 0

---- --------------- -------- ---------- -------- ---------------

 65 2004 90 0

This output would be more interesting if there was more than one real server in the group.

9.3.2.2 Foundry

The configuration in the following example comes from a ServerIron XL, running software
version 07.0.07T12. As before, clients are on port 1, the Internet link is on port 2, and Squid is
on port 3. However, that matters less for this particular configuration because you can enable
HTTP interception globally. Foundry's name for interception caching is Transparent Cache
Switching (TCS). Refer back to Figure 9-4 for this example.

The first step is to give the switch an IP address so it can perform health checks:

ip address 172.16.102.1 255.255.255.0

Foundry allows you to enable or disable TCS on particular ports. However, for the sake of
simplicity, let's enable it globally:

ip policy 1 cache tcp http global

In this line, cache is a keyword that corresponds to the TCS feature. The next line defines a
web cache. I've given it the name squid1 and told the switch its IP address:

server cache-name squid1 172.16.102.66

The final step is to add the web cache to a cache group:

server cache-group 1

 cache-name squid1

If you're having problems getting the Foundry switch to divert connections, have a look at the
show cache-group output:

ServerIron#show cache-group

Cache-group 1 has 1 members Admin-status = Enabled Active = 0

Hash_info: Dest_mask = 255.255.255.0 Src_mask = 0.0.0.0

Cache Server Name Admin-status Hash-distribution

squid1 6 3

HTTP Traffic From <-> to Web-Caches

Name: squid1 IP: 172.16.102.66 State: 6 Groups = 1

 Host->Web-cache Web-cache->Host

 State CurConn TotConn Packets Octets Packets Octets

Client active 441 12390 188871 15976623 156962 154750098

Web-Server active 193 11664 150722 151828731 175796 15853612

Total 634 24054 339593 167805354 332758 170603710

Some of this output is cryptic, but you can tell interception is working by repeating the
command and watching the counters increase.

The show server real command provides almost the same information:

ServerIron#show server real squid1

Real Servers Info

Name : squid1 Mac-addr: 00c0.4f23.d705

IP:172.16.102.66 Range:1 State:Active Wt:1 Max-conn:1000000

Src-nat (cfg:op):(off:off) Dest-nat (cfg:op):(off:off)

squid1 is a TRANSPARENT CACHE in groups 1

Remote server : No Dynamic : No Server-resets:0

Mem:server: 02009eae Mem:mac: 045a3714

Port State Ms CurConn TotConn Rx-pkts Tx-pkts Rx-octet Tx-octet Reas

---- ----- -- ------- ------- ------- ------- -------- -------- ----

http active 0 855 29557 379793 471713 373508204 39425322 0

default active 0 627 28335 425106 366016 38408994 368496301 0

Server Total 1482 57892 804899 837729 411917198 407921623 0

Finally, you can use the show logging command to see if the switch believes Squid is up or
down:

ServerIron#show logging

...

00d00h11m51s:N:L4 server 172.16.102.66 squid1 port 80 is up

00d00h11m49s:N:L4 server 172.16.102.66 squid1 port 80 is down

00d00h10m21s:N:L4 server 172.16.102.66 squid1 port 80 is up

00d00h10m21s:N:L4 server 172.16.102.66 squid1 is up

Note that the ServerIron thinks the server is running on port 80. As you'll see later, my
examples have Squid running on port 3128. The packet filtering rules actually change the
packet's destination port from 80 to 3128. This has some interesting consequences for health
checks, which I address later in Section 9.3.2.5.

9.3.2.3 Extreme Networks

In this example, the hardware is a Summit1i, and the software is Version 6.1.3b11. Once
again, the clients are on port 1, the Internet link is on port 2, and Squid is on port 3. The
network configuration is shown in Figure 9-5.

Figure 9-5. Sample network for intercepting with a router, for the
Extreme and Cisco policy routing examples

The Extreme switch can intercept HTTP connections only for packets that it routes between
subnets. In other words, if you use the Extreme switch in layer two mode (with a single VLAN),
you can't divert traffic to Squid. To make HTTP interception work, you must configure separate
VLANs for users, Squid, and the Internet:

configure Default delete port 1-8

create vlan Users

configure Users ip 172.16.102.1 255.255.255.192

configure Users add port 1

create vlan Internet

configure Internet ip 172.16.102.129 255.255.255.192

configure Internet add port 2

create vlan Squid

configure Squid ip 172.16.102.65 255.255.255.192

configure Squid add port 3

The next step is to enable and configure routing in the switch:

enable ipforwarding

configure iproute add default 172.16.102.130

Lastly, you configure the switch to redirect HTTP connections to Squid:

create flow-redirect http tcp destination any ip-port 80 source any

configure http add next-hop 172.16.102.66

9.3.2.4 Cisco Arrowpoint

The following configuration is based on notes from an old test I ran. However, I don't have
access to an arrowpoint switch now and can't verify that these lines are correct.

circuit VLAN1

 ip address 172.16.102.1 255.255.255.0

service pxy1

 type transparent-cache

 ip address 172.16.102.66

 port 80

 protocol tcp

 active

owner foo

 content bar

 add service pxy1

 protocol tcp

 port 80

 active

9.3.2.5 A comment on HTTP servers and health checks

I've set up these examples so that the router/switch forwards packets without changing the
destination TCP port. The packet filtering rules that I'll cover in Section 9.4 change the
destination port. An interesting problem arises when you also run an HTTP server on the Squid
box.

To run an HTTP server on port 80 while running Squid on port 3128, your packet filter
configuration must have a special rule that accepts TCP connections for the HTTP server.
Otherwise, the connection gets diverted to Squid. The special rule is simple to construct. If the
destination port is 80, and the destination address is the server's, accept the packet normally.
All the intercepted packets have foreign destination addresses, so they won't match the special
rule.

However, when the router/switch makes an HTTP health check, it connects to the server's IP
address. Thus, the health-check packet matches the special rule and isn't diverted to Squid.
The router/switch is checking the health of the wrong server. If the HTTP server is down, but
Squid is up (or vice versa), the health check will be wrong.

If you find yourself in this situation, you have a few options:

● Don't run an HTTP server on the Squid host.
● Add a specific packet filtering rule that diverts TCP health check connections from the

router/switch to Squid.
● Configure your router/switch to change the destination port to 3128.
● Disable layer four health checks.

9.3.3 Cisco Policy Routing

Policy routing isn't that different from what I've talked about with layer four switches. It is
implemented in routing products made by Cisco and others. The primary difference is that
policy routing doesn't include any health checking. Thus, if Squid becomes overloaded or fails
entirely, the router continues to forward packets to Squid, rather than route them directly to
origin servers. Policy routing requires that Squid be on one of the router's directly connected
subnets.

In this example, I'm using a Cisco 7204 router running IOS Version 12.0(5)T. The network
configuration is the same as the previous example, shown in Figure 9-5.

The first configuration step is to define an access list that matches port 80 packets coming from
clients. You must make sure that port 80 packets coming from Squid aren't reintercepted. One
way to do this is with a specific rule that denies packets coming from Squid, followed by a rule
that allows all others:

access-list 110 deny tcp host 172.16.102.66 any eq www

access-list 110 permit tcp any any eq www

Alternatively, if Squid and your users are on different subnets, you can permit only those
packets that originate from the client network:

access-list 110 permit tcp 10.102.0.0 0.0.255.255 any eq www

The next step is to define a route map. This is where you tell the router where to forward the
intercepted packets:

route-map proxy-redirect permit 10

 match ip address 110

 set ip next-hop 172.16.102.66

Those commands say, "If the IP address matches access-list 110, forward the packet to
172.16.102.66." The 10 on the route-map line is a sequence number in case you have multiple
route maps. The final step is to apply the route map to interfaces where your clients connect:

interface Ethernet0/0

 ip policy route-map proxy-redirect

IOS doesn't provide much in the way of debugging for policy routing. However, the show route-
map command may be sufficient:

router#show route-map proxy-redirect

route-map proxy-redirect, permit, sequence 10

 Match clauses:

 ip address (access-lists): 110

 Set clauses:

 ip next-hop 172.16.102.66

 Policy routing matches: 730 packets, 64649 bytes

9.3.4 Web Cache Coordination Protocol

Cisco's answer to layer four switching technology (before they acquired Arrowpoint) is the Web

Cache Coordination Protocol (WCCP).
[2]

 WCCP is different from the typical layer four
interception in a couple of ways.

[2] At various times it has also been called Web Cache Control Protocol.

First, intercepted packets are encapsulated with GRE (Generic Routing Encapsulation). This
simply allows them to traverse subnets, which means Squid doesn't need to be directly
connected to the router. Because they are encapsulated, the Squid host must unencapsulate
them. Not all Unix systems have the code for unwrapping GRE packets.

The second difference is in how the router decides to spread the load among multiple caches. In
fact, the router doesn't make this decision, the cache does. When a router has a group of
WCCP-enabled caches, one nominates itself to be the leader. The leader decides how to spread
the load and informs the router. This is an extra step that must occur before the router can
redirect any connections.

Because WCCP uses GRE, the router may be forced to fragment large TCP packets from HTTP
requests. Fortunately, this shouldn't occur very often because most HTTP requests are smaller
than the Ethernet MTU size (1500 octets). The default TCP and IP packet headers are 20 octets
each, which means an Ethernet frame can carry 1460 octets of actual data. GRE encapsulation
adds 20 octets for the GRE header, plus another 20 for the second IP header. Thus a normal
1500-octet TCP/IP packet from the client becomes 1540 octets after encapsulation. This is too
large to transmit in a single Ethernet frame, so the router fragments the original packet into
two packets.

9.3.4.1 WCCPv1

The configuration examples in this section were tested on a Cisco 7204 running IOS Version
12.0(5)T. The network configuration is the same as shown in Figure 9-5.

First, enter these two lines in the IOS configuration to enable WCCP for the router:

ip wccp version 1

ip wccp web-cache

Second, you must enable WCCP on individual router interfaces. You should do this only on
interfaces where HTTP packets leave the router. In other words, select interfaces that connect
to origin servers or your Internet gateway:

interface Ethernet0/1

 ip address 172.16.102.129 255.255.255.192

 ip wccp web-cache redirect out

Be sure to save your configuration changes.

You may need to use an access list to prevent interception for certain web sites. You can also
use the access list to prevent forwarding loops. For example:

! don't re-intercept connections coming from Squid:

access-list 112 deny tcp host 172.16.102.66 any eq www

! don't intercept this broken web site

access-list 112 deny tcp any 192.16.8.7 255.255.255.255 eq www

! allow other HTTP traffic

access-list 110 permit tcp any any eq www

ip wccp web-cache redirect-list 112

The router doesn't send any traffic to Squid until Squid announces itself to the router. I explain
how to configure Squid for WCCP in Section 9.5.1.

9.3.4.2 WCCPv2

The standard Squid distribution currently only supports WCCPv1. However, you can find a patch
for WCCPv2 on the http://devel.squid-cache.org/ site. This code is still experimental.

Note that the GRE packets sent from the router to Squid contain an additional four octets.
WCCPv2 inserts a redirect header between the GRE header, and the encapsulated IP packet.
You may need to modify your kernel code to account for this additional header.

9.3.4.3 Debugging

IOS provides a couple of commands to monitor and debug WCCP. The show ip wccp web-cache
command provides some basic information:

router#show ip wccp web-cache

Global WCCP information:

 Router information:

 Router Identifier: 172.16.102.129

 Protocol Version: 1.0

 Service Identifier: web-cache

 Number of Cache Engines: 1

 Number of routers: 1

 Total Packets Redirected: 1424

 Redirect access-list: -none-

http://devel.squid-cache.org/

 Total Packets Denied Redirect: 0

 Total Packets Unassigned: 0

 Group access-list: -none-

 Total Messages Denied to Group: 0

 Total Authentication failures: 0

For a few more details, add the word detail to the end of the previous command:

router#show ip wccp web-cache detail

WCCP Cache-Engine information:

 IP Address: 172.16.102.66

 Protocol Version: 0.4

 State: Usable

 Initial Hash Info: 00000000000000000000000000000000

 00000000000000000000000000000000

 Assigned Hash Info: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

 Hash Allotment: 256 (100.00%)

 Packets Redirected: 1424

 Connect Time: 00:17:40

Here you can see Squid's IP address and state. If more than one cache speaks WCCP to the
router, the hash assignment information should look different. Most likely, each cache receives
an equal proportion of the hash buckets.

Note that the detailed output has a Protocol Version line with a different value than the first
command. Unfortunately, the word "version" is overloaded. The show ip wccp web-cache
command appears to report the WCCP protocol major version number (i.e., 1 or 2), while the
detail version seems to be a different (perhaps internal, or minor version) number that matches
the value of Squid's wccp_version directive.

 < Day Day Up >

 < Day Day Up >

9.4 Operating System Tweaks

You must enable certain networking features in your operating system to make interception
caching work. First, you need to enable IP packet forwarding. This allows the operating system
to receive packets with foreign destination addresses. Second, you must enable and configure
optional code in the kernel that redirects the foreign packets to Squid.

9.4.1 Linux

The instructions in this section should work for the 2.4 series of Linux kernels. I used RedHat
Linux 7.2 (kernel 2.4.7-10). If you are using an older or newer version, these may not work. I
recommend searching the Squid FAQ and other places for updated or historical information.

In my tests with iptables, it wasn't necessary to enable IP forwarding. However, you may want
to enable it initially and see if you can disable it after everything else is working. The best way
to enable packet forwarding is to add this line to /etc/sysctl.conf:

net.ipv4.ip_forward = 1

Most likely you'll need to make a new kernel before HTTP interception will work. See O'Reilly's
Running Linux by Matt Welsh, Matthias Kalle Dalheimer, and Lar Kaufman, if you don't know
how to configure and create a Linux kernel. When you configure the kernel, make sure these
options are enabled:

o General setup

 Networking support (CONFIG_NET=y)

 Sysctl support (CONFIG_SYSCTL=y)

o Networking options

 Network packet filtering (CONFIG_NETFILTER=y)

 TCP/IP networking (CONFIG_INET=y)

 Netfilter Configuration

 Connection tracking (CONFIG_IP_NF_CONNTRACK=y)

 IP tables support (CONFIG_IP_NF_IPTABLES=y)

 Full NAT (CONFIG_IP_NF_NAT=y)

 REDIRECT target support (CONFIG_IP_NF_TARGET_REDIRECT=y)

o File systems

 /proc filesystem support (CONFIG_PROC_FS=y)

Additionally, make sure this option isn't enabled:

o Networking options

 Fast switching (CONFIG_NET_FASTROUTE=n)

The code that redirects foreign packets to Squid is part of the Netfilter software. Here is a rule
that sends the intercepted HTTP connections to Squid:

iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 80 -j REDIRECT --to-port 3128

The Linux kernel maintains a number of different tables. The -t nat option indicates that we are
modifying the Network Address Translation (NAT) table. In essence, we're using iptables to
translate origin server TCP/IP addresses to Squid's local TCP/IP address.

Each iptables table has a number of chains. The -A PREROUTING option indicates that we are
appending a rule to the built-in chain named PREROUTING. The PREROUTING chain applies only to
packets entering the system from the outside network.

The next three options determine which packets match this rule. The -i eth0 option restricts the
rule to packets received on the eth0 interface. The -p tcp option specifies TCP packets, and —
dport 80 specifies packets with destination port equal to 80. If all three conditions are true, the
packet matches the rule.

The -j REDIRECT option indicates the target, or action to take, for packets that match the rule.
REDIRECT is a built-in target name that causes iptables to change the packet's destination
address to 127.0.0.1. The —to-port 3128 option instructs iptables also to change the destination
TCP port number to 3128.

If you are also running an HTTP server (such as Apache) on the Squid host, you must add
another iptables rule. The additional rule is necessary to allow connections to your HTTP server.
Otherwise, the REDIRECT rule causes iptables to send those connections to Squid on port 3128.
You can use the -I option to insert a new rule at the top of the list:

iptables -t nat -I PREROUTING -i eth0 -p tcp -d 172.16.102.66 --dport 80 -j ACCEPT

Once you have all your iptables rules working correctly, be sure to save them with this
command:

/sbin/service iptables save

This saves the current rules to /etc/sysconfig/iptables so they get automatically loaded when
you reboot.

9.4.1.1 Linux and WCCP

Version 2.4 of the Linux kernel comes with a GRE pseudo-interface. However, it doesn't work for
decoding GRE-encapsulated packets from a WCCP session. The problem seems to be that the
router sets the Protocol Type field to 0x883E for WCCP/GRE packets. Linux's GRE driver doesn't

know what to do with these packets because it doesn't know about protocol type 0x883E.

You can try patching Linux's GRE module so that it works with WCCP. The Squid FAQ contains a
link to such a patch. However, you'll probably find it easier to use the WCCP-specific module for
Linux. You can find it at http://www.squid-cache.org/WCCP-support/Linux/ip_wccp.c.

You need to compile the ip_wccp.c file as a loadable kernel module. This can be a little tricky
because the specific compiler options may change depending on your kernel version. One thing
you can do is go to your kernel source directory, type make modules and watch the compiler
commands scroll by. Then copy one of those commands and change the last argument to
ip_wccp.c. Here are the commands that I used with the 2.4.7-10 Linux kernel:

% gcc -Wall -D_ _KERNEL_ _ -I/usr/src/linux-2.4.7-10/include \

 -DMODULE -DMODVERSIONS -DEXPORT_SYMBAB \

 -include /usr/src/linux-2.4.7-10/include/linux/modversions.h \

 -O2 -c ip_wccp.c

The gcc command should leave you with an ip_wccp.o file in the current directory. The next
step is to load that file into the kernel with the insmod command:

insmod ip_wccp.o

Note that the ip_wccp module accepts GRE/WCCP packets from any source address. In other
words, a malicious person might be able to send traffic to your Squid cache. If you use this
module, you should also install an iptables rule to deny foreign GRE packets. For example:

iptables -A INPUT -p gre -s 172.16.102.65 -j ACCEPT

iptables -A INPUT -p gre -j DROP

Again, don't forget to save your working rules with the /sbin/service iptables save command.

9.4.2 FreeBSD

The examples in this section are based on FreeBSD-4.8 and should work for any later version of
FreeBSD-4 and FreeBSD-5.

To enable IP packet forwarding, add this line to /etc/sysctl.conf:

net.inet.ip.forwarding=1

You'll need a kernel with two special options enabled. If you don't know how to make a kernel,
refer to Section 9 of the FreeBSD Handbook (http://www.freebsd.org/handbook/index.html).
Edit your kernel config file and make sure these lines are present:

options IPFIREWALL

http://www.squid-cache.org/WCCP-support/Linux/ip_wccp.c
http://www.freebsd.org/handbook/index.html

options IPFIREWALL_FORWARD

If the Squid box is in an unattended machine room, I also recommend using the
IPFIREWALL_DEFAULT_TO_ACCEPT option. In case you mess up the firewall rules, you'll still be
able to log in.

These ipfw commands tell the kernel to redirect intercepted connections to Squid:

/sbin/ipfw add allow tcp from 172.16.102.66 to any out

/sbin/ipfw add allow tcp from any 80 to any out

/sbin/ipfw add fwd 127.0.0.1,3128 tcp from any to any 80 in

/sbin/ipfw add allow tcp from any 80 to 172.16.102.66 in

The first rule matches packets originating from the Squid host. It ensures that outgoing TCP

connections won't be redirected back to Squid.
[3]

 The second rule matches TCP packets sent
from Squid back to the clients. I've added it here in case you have additional ipfw rules later
that would deny these packets. The third rule is the one that actually redirects incoming
connections to Squid. The fourth rule matches packets coming back from origin servers to
Squid. Again, this is in case you have subsequent deny rules.

[3] Although a misconfiguration on the switch/router may still reintercept these
packets.

If you're also running an HTTP server on the Squid host, you must add another rule that passes,
rather than redirects, TCP packets destined for the origin server. The following rule goes before
the fwd rule:

/sbin/ipfw add allow tcp from any to 172.16.102.66 80 in

FreeBSD typically stores ipfw rules in /etc/rc.firewall. Once you get your rule set working
properly, be sure to save them. Add this line to /etc/rc.conf to make FreeBSD automatically run
the /etc/rc.firewall script when it boots:

firewall_enable="YES"

9.4.2.1 FreeBSD and WCCP

FreeBSD Version 4.8 and later have built-in support for GRE and WCCP. Earlier versions require
patches, which you can still find at http://www.squid-cache.org/WCCP-support/FreeBSD/. The
built-in implementation is much better, however, as it is written by real kernel gurus. You'll
probably need to make a new kernel that supports GRE. Add this line to your kernel
configuration:

pseudo-device gre

For FreeBSD-5, use device instead of pseudo-device. Of course, you also need the FIREWALL

http://www.squid-cache.org/WCCP-support/FreeBSD/

options mentioned in the preceding section.

After installing and booting from the new kernel, you must configure a GRE tunnel to accept
GRE packets from the router. For example:

ifconfig gre0 create

ifconfig gre0 172.16.102.66 172.16.102.65 netmask 255.255.255.255 up

ifconfig gre0 tunnel 172.16.102.66 172.16.102.65

route delete 172.16.102.65

The ifconfig command adds a routing table entry for the router (172.16.102.65) over the gre0
interface. I found it necessary to delete that route so that Squid can talk to the router.

You may want or need to add an ipfw rule for the GRE packets coming from the router:

/sbin/ipfw add allow gre from 172.16.102.65 to 172.16.102.66

9.4.3 OpenBSD

The examples in this section are based on OpenBSD 3.3.

To enable packet forwarding, uncomment or add this line in /etc/sysctl.conf:

net.inet.ip.forwarding=1

Now, configure the packet filter rules for interception by adding lines like these to /etc/pf.conf:

rdr inet proto tcp from any to any port = www -> 127.0.0.1 port 3128

pass out proto tcp from 172.16.102.66 to any

pass out proto tcp from any port = 80 to any

pass in proto tcp from any port = 80 to 172.16.102.66

If you aren't already using OpenBSD's packet filter, you need to enable it with this line in /etc/rc.
conf.local:

pf=YES

9.4.3.1 OpenBSD and WCCP

First, tell the system to accept and process GRE and WCCP packets by adding these lines to /etc/
sysctl.conf:

net.inet.gre.allow=1

net.inet.gre.wccp=1

Then, configure a GRE interface with commands like these:

ifconfig gre0 172.16.102.66 172.16.102.65 netmask 255.255.255.255 up

ifconfig gre0 tunnel 172.16.102.66 172.16.102.65

route delete 172.16.102.65

As with FreeBSD, I found it necessary to delete the route that is automatically added by ifconfig.
Finally, depending on your packet filter configuration, you may need to add a rule that allows
the GRE packets:

pass in proto gre from 172.16.102.65 to 172.16.102.66

9.4.4 IPFilter on NetBSD and Others

The examples in this section are based on NetBSD 1.6.1. They might also work on Solaris, HP-
UX, IRIX, and Tru64 since IPFilter runs on those systems as well.

To enable packet forwarding (on NetBSD), add this line to /etc/sysctl.conf:

net.inet.ip.forwarding=1

Then, insert a line like this into the NAT (network address translation) configuration file, /etc/
ipnat.conf:

rdr fxp0 0/0 port 80 -> 172.16.102.66 port 3128 tcp

Your interface name may be different from fxp0 in this example.

9.4.4.1 NetBSD and WCCP

I was not able to make WCCP work with NetBSD, even after patching the GRE code to accept
WCCP packets. The problem seems to arise because the IPFilter rdr rule is bound to a specific
interface. Packets coming from the router go through NetBSD's gre0 interface (where they are
unencapsulated). However, packets going the other way, back to the router, aren't
encapsulated and don't go through the same network interface. Therefore, the IPFilter code
doesn't translate Squid's local IP address back to the origin server's address.

 < Day Day Up >

 < Day Day Up >

9.5 Configure Squid

If you are using Linux 2.4 and iptables, you should probably use the —enable-linux-netfilter
option when you run (or re-run) ./configure. It enables some Linux-specific code so that Squid
can find the IP address of the origin server from where the request was originally sent. Squid
normally gets the origin server name (and/or address) from the Host header. The —enable-
linux-netfilter feature is necessary only for requests that don't have a Host header. Statistics
show that almost all requests have the Host header, so you may actually be able to get by
without the —enable-linux-netfilter option.

If you are using the IPFilter package (with NetBSD, Solaris, and others), you should use the —
enable-ipf-transparent option for the same reason. On OpenBSD, you should use the —enable-
pf-transparent option. Each time you run ./configure you must recompile Squid, as described in
Section 3.8.

After you get the ./configure options figured out, and Squid recompiled, you can edit squid.
conf. As a starting point, make sure the following directives are defined with the given values:

httpd_accel_host virtual

httpd_accel_port 80

httpd_accel_uses_host_header on

httpd_accel_with_proxy on

httpd_accel_single_host off

The httpd_accel_host directive is the key. It instructs Squid to accept HTTP requests with
partial URIs. The httpd_accel_uses_host_header directive is enabled so that Squid uses the
Host header to reconstruct full URIs. The virtual keyword instructs Squid to put the origin
server's IP address in the URL when the Host header is absent.

The httpd_accel_with_proxy directive controls whether or not Squid accepts both HTTP server
(partial URI) requests, and proxy (full URI) requests. It should probably be enabled for
interception caching. Squid may still work if httpd_accel_with_proxy is disabled as long as none
of your clients are explicitly configured for Squid as a proxy.

The httpd_accel_single_host directive is normally disabled, but it was enabled by default in
some earlier versions of Squid. I've listed it here to make sure that it is disabled for
interception caching.

If you are intercepting more than just port 80, you may want to set httpd_accel_port to 0. See
Appendix A for more information.

If you're not using WCCP, you should be ready to start sending intercepted traffic to Squid.
Give it a try by surfing the Web with your browser or by making some test requests with
squidclient. If you are using WCCP, there is just one more step that you must complete.

9.5.1 Configuring WCCPv1

The router doesn't send any traffic to Squid until Squid announces itself to the router. To make
Squid do that, add these lines to your squid.conf:

wccp_router 172.16.102.65

wccp_version 4

Your router has many interfaces. Be sure to use the IP address of the interface closest to Squid.
This is necessary because the WCCP messages coming from the router have the source IP
address set to the address of the outgoing interface. Squid rejects WCCP messages if the
source address doesn't match the wccp_router value.

The WCCPv1 document specifies 4 as the protocol version number. However, some users report
that Cisco IOS 11.2 supports only Version 3. If you are using this version of IOS, change the
version in squid.conf:

wccp_version 3

 < Day Day Up >

 < Day Day Up >

9.6 Debugging Problems

HTTP interception is complicated because many different devices must all work correctly together.
To help you track down problems, here's a trouble-shooting check list:

Are client packets going through the router/switch?

This should be obvious for simple networks. You can trace the cables and watch the activity
lights blink. In a large, complex network, however, packets may be taking an alternate path.
If your organization is large enough to have a network sniffer, you may want to observe the
traffic on the link that should carry requests from web clients. A low-tech approach is to
disconnect the link in question and see if it affects the client's web browsing.

Is the router/switch configured properly?

You may want to double-check your router/switch configuration. If you configured specific
interfaces, did you get the right ones?

Is your new configuration actually running on the device? Perhaps the router/switch was
rebooted before you could save the configuration. You may need to reboot before the
changes take effect.

Can the switch/router talk to the Squid host?

Can you ping Squid from the router/switch? Most layer four interception configurations
require that the device and Squid be on the same subnet. Log into the router/switch, and
make sure you can ping Squid's IP address.

Does the switch/router believe that Squid is up?

Many traffic interception devices don't send traffic to Squid unless they know it's healthy.
Use the debugging commands to view Squid's health status. You may find that a layer three
health check (e.g., ICMP ping) is simpler than a layer four check (e.g., HTTP), and more
likely to make the network device mark Squid as up.

Is Squid actually running?

Double-check that Squid is really running, especially if the system has recently been
rebooted.

Are packets arriving at the Squid host?

You should be able to see intercepted TCP connections with tcpdump. Here's an example:

tcpdump -n -i eth0 port 80

If you use WCCP, check for GRE packets coming from the router:

tcpdump -n -i eth0 ip proto gre

If you don't see any output from tcpdump, the router/switch is probably not sending
anything. In that case, return to the previous suggestions.

Note, if the device is using layer four health checks, you should see those in the tcpdump
output. Health checks come from the router/switch IP address, so they should be easy to
spot. If you see health checks, but no other traffic, it probably means the router/switch is
interpreting Squid's reply as unhealthy. For example, the device may want to see a 200
(OK) response, but Squid returns an error, such as 401 (Unauthorized) or 404 (Not Found).
You may want to run tail -f on the access.log.

Did you enable IP forwarding?

Double-check that Squid's operating system is configured to forward IP packets. If not, the
host may drop intercepted packets because the destination IP address isn't local.

Did you configure the packet filter?

Make sure that the packet filter (i.e., ipfw, iptables, pf, etc.) is configured correctly. When
everything is working well, you should be able to run the command periodically that displays
the filtering rules and see the counters increase. For example:

ipfw show 300 ; sleep 3; ipfw show 300

00300 86216 8480458 fwd 127.0.0.1,3128 tcp from any to any 80 in

00300 86241 8482240 fwd 127.0.0.1,3128 tcp from any to any 80 in

Note that in this example on FreeBSD, the packet and byte counters (second and third
columns) are being incremented.

Is the loopback interface up and configured?

If you have a rule to forward/redirect packets to 127.0.0.1, make sure that the loopback (e.
g., lo0, lo) interface is up and configured. If not, the kernel may simply skip the forward/
redirect rule.

Are WCCP/GRE packets being unencapsulated correctly?

If you use WCCP, make sure that the GRE packets are being unencapsulated. If, for some
reason, your system doesn't know what to do with GRE packets, it probably increments the
"unknown/unsupported protocol" counter in netstat -s output:

netstat -s | grep unknown

 46 packets for unknown/unsupported protocol

If your OS has a GRE interface, run netstat -i every so often and look for increasing packet
counts:

netstat -in | grep ^gre0

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll

gre0 1476 <Link#4>

304452 0 0 4 0

Also, try running tcpdump on the GRE interface:

tcpdump -n -i gre0

Can Squid talk back to the clients?

You may have a situation in which the router/switch is able to send packets to Squid, but
Squid can't send packets back to the clients. This can happen if your firewall filter rules
reject those outgoing packets or if Squid just doesn't have a route to the client addresses.
To check for this condition, run netstat -n and look for a lot of sockets in the SYN_RCVD state:

% netstat -n

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp4 0 0 10.102.129.246.80 10.102.0.1.36260 SYN_RCVD

tcp4 0 0 10.102.129.226.80 10.102.0.1.36259 SYN_RCVD

tcp4 0 0 10.102.128.147.80 10.102.0.1.36258 SYN_RCVD

tcp4 0 0 10.102.129.26.80 10.102.0.2.36257 SYN_RCVD

tcp4 0 0 10.102.129.29.80 10.102.0.2.36255 SYN_RCVD

tcp4 0 0 10.102.129.226.80 10.102.0.1.36254 SYN_RCVD

tcp4 0 0 10.102.128.117.80 10.102.0.1.36253 SYN_RCVD

tcp4 0 0 10.102.128.149.80 10.102.0.1.36252 SYN_RCVD

If you see this, use ping and traceroute to make sure that Squid has bidirectional
communication with the clients.

Can Squid talk to origin servers?

Intercepted HTTP connections get stuck if Squid can't connect to origin servers. When this
happens, netstat should show you a lot of connections in the SYN_SENT state:

% netstat -n

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp4 0 0 172.16.102.66.5217 10.102.129.145.80 SYN_SENT

tcp4 0 0 172.16.102.66.5216 10.102.129.224.80 SYN_SENT

tcp4 0 0 172.16.102.66.5215 10.102.128.71.80 SYN_SENT

tcp4 0 0 172.16.102.66.5214 10.102.129.209.80 SYN_SENT

tcp4 0 0 172.16.102.66.5213 10.102.129.62.80 SYN_SENT

tcp4 0 0 172.16.102.66.5212 10.102.129.160.80 SYN_SENT

tcp4 0 0 172.16.102.66.5211 10.102.128.129.80 SYN_SENT

tcp4 0 0 172.16.102.66.5210 10.102.129.44.80 SYN_SENT

tcp4 0 0 172.16.102.66.5209 10.102.128.73.80 SYN_SENT

tcp4 0 0 172.16.102.66.5208 10.102.128.43.80 SYN_SENT

Again, use ping and traceroute to make sure that Squid can talk to origin servers.

Are outgoing connections being intercepted?

If Squid can ping origin servers, and you still see a lot of connections in the SYN_SENT state,
the router/switch may be intercepting Squid's outgoing TCP connections. In some cases,
Squid can detect such forwarding loops, and it writes a warning message to cache.log. Such
a forwarding loop can quickly exhaust all of Squid's file descriptors, which also generates a
warning in cache.log.

If you suspect this problem, use the squidclient program to make some simple HTTP requests. For
example, this command makes an HTTP request directly to the origin server:

% /usr/local/squid/bin/squidclient -p 80 -h slashdot.org /

If this command succeeds, you should see a bunch of ugly HTML from the Slashdot site on your
screen. You can then try the same request through Squid:

% /usr/local/squid/bin/squidclient -r -p 3128 -h 127.0.0.1 http://slashdot.org/

Again, you should see some HTML on your screen. If not check for error messages in cache.log. If
you see forwarding loop errors, you need to reconfigure your router/switch so that it allows Squid's
outgoing connections to pass without being intercepted.

 < Day Day Up >

 < Day Day Up >

9.7 Exercises

● Try running Squid with a bogus httpd_accel_host value. For example:

httpd_accel_host blah.blah.blah

Does it still work, or do you get error messages?
● Disconnect Squid's network connection while your router/switch is diverting traffic to it.

Does the network device bypass Squid? How long does it take to notice the problem?
● Repeat the same experiment, but this time kill the Squid process instead of unplugging

the network cable.
● Enable Squid's user-agent log and see if you are intercepting any nonbrowser web

traffic.

 < Day Day Up >

 < Day Day Up >

Chapter 10. Talking to Other Squids

For one reason or another, you may find that you want Squid to forward its cache misses to
another cache or HTTP proxy. This is necessary, for example, if you are using Squid inside a
large corporate network that has one or more firewalls protecting you from the outside world. If
your caching service is actually a cluster of Squid caches, you probably want them to cooperate
with each other to minimize duplication of cached responses. You can also use Squid as a
content router—routing web traffic in different directions based on some aspect of the request.
Or, perhaps you'd like to participate in an informal collection of caches to further improve
response time and reduce wide-area network traffic.

Intercache communication is a complex undertaking, and Squid has numerous features and
protocols to accomplish the task. After explaining some of the terminology and discussing the
issues, I'll introduce the configuration file directives that control request routing. Following that
I describe the nifty network measurement database.

Most likely, you'll use one or more of Squid's intercache protocols to assist in communicating
with the other caches or proxies. The Internet Cache Protocol (ICP) is the oldest but not
necessarily the best. It is widely implemented in non-Squid products, so you may need to use it
for that reason alone. The newer protocols are Cache Digests, the Hypertext Caching Protocol
(HTCP), and the Cache Array Routing Protocol (CARP).

There are many choices here, so I'll spend a bit of time explaining how everything works inside
Squid.

 < Day Day Up >

 < Day Day Up >

10.1 Some Terminology

Caching hierarchy is the name generally given to a collection of caches (or proxies) that
forward requests to one another. We say that the members of the hierarchy are neighbors or
peers.

Neighbor caches have either a parent or sibling relationship. Topologically, parent caches are
one level up in the hierarchy, while siblings are on the same level. The real difference is that
parents can forward cache misses for their children. Siblings, on the other hand, aren't allowed
to forward cache misses. This means that, before sending a request to a sibling, the originator
should know that it will be a cache hit. Intercache protocols like ICP, HTCP, and Cache Digests
can predict cache hits in neighbors. CARP, however, can't.

Sometimes, cache hierarchies aren't really hierarchical. Consider, for example, a group of five
sibling caches. Because there are no parents or children, there is no sense of up or down. In
this case, you could call it a cache mesh, or even an array, instead of a hierarchy.

 < Day Day Up >

 < Day Day Up >

10.2 Why (Not) Use a Hierarchy?

A neighbor cache improves performance by providing some extra fraction of requests as cache
hits. In other words, some of the requests that are misses in your cache may be hits in the
neighbor cache. If your cache can download these neighbor hits faster than from the origin
server, the hierarchy should improve performance overall. The downside is that neighbor
caches usually provide only a small percentage of requests as hits. About 5%, or maybe 10% if
you're lucky, of your requests that are cache misses will be hits in a neighbor. In some cases,
this small benefit doesn't justify the hassle of joining a hierarchy. In other cases, such as
networks with poor or overutilized connectivity, hierarchies definitely improve performance for
end users.

If you use Squid inside a firewalled network, you may need to configure the firewall proxy as a
parent. In this case, Squid forwards every request to the firewall because it can't connect
directly to outside origin servers. If you have some origin servers inside the firewall, you can
instruct Squid to connect to them directly.

You can also use a hierarchy to send web traffic in different directions. This is sometimes called
application-layer routing, or more recently, content routing. Consider, for example, a large
organization with two Internet connections. Perhaps the second connection costs less, or has
higher latency, than the other. This organization may want to use the second connection for
low-priority traffic, such as downloading binaries, audio and video files, or other kinds of large
transfers. Or, perhaps they want to send all HTTP traffic over one link, and non-HTTP traffic
over the other. Or, perhaps certain users' traffic should go through the low-priority connection,
while premium customers get to use the more expensive link. You can accomplish any of these
scenarios with a hierarchy of caching proxies.

Trust is one of the most important issues for the members of a cache hierarchy. You must trust
your neighbors to serve correct, unmodified responses. You must trust them with sensitive
information, such as the URIs requested by your users. You must trust that they maintain
secure and up-to-date systems to minimize the chances of unauthorized access and denials of
service.

Another problem with hierarchies is the way that they normally propagate errors. When a
neighbor cache experiences an error, such as an unreachable server, it generates an HTML
page that explains the error and its origin. Your users may become confused if they get errors
from neighbor caches outside the immediate organization. If the problem persists, they'll have
a hard time finding an administrator who can help them.

Sibling relationships are subject to special problem, known as false hits. This occurs when Squid
sends a request to a sibling, believing it will be a cache hit, but the sibling is unable to satisfy
the request without contacting the origin server. False hits happen in a number of
circumstances, but usually with a low probability. Furthermore, Squid and other HTTP proxies
have features for automatically retrying such requests so that the user isn't even aware of the
problem.

A forwarding loop is another problem sometimes seen in cache hierarchies. It occurs when
Squid forwards a request somewhere, but that request comes back to Squid again, as shown in
Figure 10-1.

Figure 10-1. A forwarding loop

Forwarding loops typically happen when two caches consider each other parents. If you have
such an arrangement, make sure that you use the cache_peer_access directive to prevent
loops. For example, if the neighbor's IP address is 192.168.1.1, the following lines ensure Squid
won't cause a forwarding loop:

acl FromNeighbor src 192.168.1.1

cache_peer_access the.neighbor.name deny FromNeighbor

Forwarding loops can also occur with HTTP interception, especially if the interception device is
on the path between Squid and an origin server.

Squid detects forwarding loops by looking for its own hostname in the Via header. You may
actually get false forwarding loops if two cooperating caches have the same hostname. The
unique_hostname directive is useful in this situation. Note that if the Via header is filtered out
(e.g., with headers_access), Squid can't detect forwarding loops.

 < Day Day Up >

 < Day Day Up >

10.3 Telling Squid About Your Neighbors

The cache_peer directive defines your neighbor caches and tells Squid how to communicate
with them:

cache_peer hostname type http-port icp-port [options]

The first argument is the neighbor's hostname, or IP address. You can safely use hostnames
here because Squid doesn't block while resolving them. In fact, Squid periodically resolves the
hostname in case the IP address changes while Squid is running. Neighbor hostnames must be
unique: you can't have two neighbors with the same name, even if they have different ports.

The second argument specifies the type of neighbor cache. The choices are: parent, sibling, or
multicast. Parent and sibling are straightforward. I'll talk about multicast in Section 10.6.3.

The third argument is the neighbor's HTTP port number. It should correspond to the neighbor's
http_port (or equivalent) setting. You must always specify a nonzero HTTP port number.

The fourth argument specifies either the ICP or HTCP port number. By default, Squid uses ICP
to query other caches. That is, Squid sends ICP queries to the neighbor on the port given here.
If you add the htcp option, Squid sends HTCP queries to this port instead. The default ICP port
is 3130, and the default HTCP port is 4827. Make sure that you change the port number if you
add the htcp option. Setting this port number to zero disables both ICP and HTCP. However,
you should instead (or also) use the no-query option to disable these protocols.

10.3.1 cache_peer Options

The cache_peer directive has quite a few options. I'll describe some of them here, and the
others in the sections relating to specific protocols.

proxy-only

This option instructs Squid not to store any responses it receives from the neighbor.
This is often useful when you have a cluster and don't want a resource to be stored on
more than one cache.

weight= n

This option is specific to ICP/HTCP. See Section 10.6.2.1.

ttl= n

This option is specific to multicast ICP. See Section 10.6.3.

no-query

This option is specific to ICP/HTCP. See Section 10.6.2.1.

default

This option specifies the neighbor as a suitable choice in the absence of other hints.
Squid normally prefers to forward a cache miss to a parent that is likely to have a
cached copy of the particular resource. Sometimes Squid won't have any clues (e.g., if
you disable ICP/HTCP with no-query). In these cases, Squid looks for a parent that has
been marked as a default choice.

round-robin

This option is a simple load-sharing technique. It makes sense only when you mark two
or more parent caches as round-robin. Squid keeps a counter for each parent. When it
needs to forward a cache miss, Squid selects the parent with the lowest counter.

multicast-responder

This option is specific to multicast ICP. See Section 10.6.3.

closest-only

This option is specific to ICP/HTCP. See Section 10.6.2.1.

no-digest

This option is specific to Cache Digests. See Section 10.7.

no-netdb-exchange

This option tells Squid not to request the neighbor's netdb database (see Section 10.5).
Note, this refers to the bulk transfer of the RTT measurements, not the inclusion of
these measurements in ICP miss replies.

no-delay

This option tells Squid to ignore any delay pools settings for requests to the neighbor.
See Appendix C for more information on delay pools.

login= credentials

This option instructs Squid to send HTTP authentication credentials to the neighbor. It
has three different formats:

login =user:password

This is the most commonly used form. It causes Squid to add the same
username and password in every request going to the neighbor. Your users don't
need to enter any authentication information.

login=PASS

Setting the value to PASS causes Squid to pass the user's authentication
credentials to the neighbor cache. It works only for HTTP basic authentication.
Squid doesn't add or modify any authentication information.

If your Squid is configured to require proxy authentication (i.e., with a
proxy_auth ACL), the neighbor cache must use the same username and
password database. In other words, you should use the PASS form only for a
group of caches owned and operated by a single organization. This feature is
dangerous because Squid doesn't remove the authentication credentials from
forwarded requests.

login =* :password

With this form, Squid changes the password, but not the username, in requests
that it forwards. It allows the neighbor cache to identify individual users, but
doesn't expose their passwords. This form is less dangerous than using PASS, but
does have some privacy implications.

Use this feature with extreme caution. Even if you ignore the privacy issues, this feature
may cause undesirable side effects with upstream proxies. For example, I know of at
least one other caching product that only looks at the credentials of the first request on
a persistent connection. It apparently assumes (incorrectly) that all requests on a single
connection come from the same user.

connect-timeout= n

This option specifies how long Squid should wait when establishing a TCP connection to
the neighbor. Without this option, the timeout is taken from the global connect_timeout
directive, which has a default value of 120 seconds. By using a lower timeout, Squid
gives up on the neighbor quickly and may try to send the request to another neighbor or
directly to the origin server.

digest-url= url

This option is specific to Cache Digests. See Section 10.7.

allow-miss

This option instructs Squid to omit the Cache-Control: only-if-cached directive for
requests sent to a sibling. You should use this only if the neighbor has enabled the
icp_hit_stale directive and isn't using a miss_access list.

max-conn= n

This option places a limit on the number of simultaneous connections that Squid can
open to the neighbor. When this limit is reached, Squid excludes the neighbor from its
selection algorithm.

htcp

This option designates the neighbor as an HTCP server. In other words, Squid sends
HTCP queries, instead of ICP, to the neighbor. Note that Squid doesn't accept ICP and
HTCP queries on the same port. When you add this option, don't forget to change the
icp-port value as well. See Section 10.8.1. HTCP support requires the —enable-htcp
option when running ./configure.

carp-load-factor= f

This option makes the neighbor, which must be a parent, a member of a CARP array.
The sum of all f values, for all parents, must equal 1. I cover CARP in Section 10.9.
CARP support requires the —enable-carp option when running ./configure.

10.3.2 Neighbor State

Squid keeps a variety of statistics and state information about each of its neighbors. One of the
most important is whether Squid thinks the neighbor is alive (up) or dead (down). The
neighbor's alive/dead state affects many aspects Squid's selection procedures. The algorithm
for determining the alive/dead state is a little bit complicated, so I'll go through it here. If you
want to follow along in the source code, look at the neighborUp() function.

Squid uses both TCP (HTTP) and UDP (ICP/HTCP) communication to determine the state. The
TCP state defaults to alive, but changes to dead if 10 consecutive TCP connections fail. When
this happens, Squid initiates probe connections, no more than once every connect_timeout time
period (the global directive, not the cache_peer option). The state remains dead until one of the
probe connections succeeds.

If the no-query option isn't set (meaning Squid is sending ICP/HTCP queries to the neighbor),
the UDP layer communication also factors into the alive/dead algorithm. The UDP state defaults
to alive, but changes to dead if Squid doesn't get any ICP/HTCP replies for a certain amount of
time—the value of the dead_peer_timeout directive.

Squid also marks a neighbor dead if its hostname doesn't resolve to any IP addresses. When
Squid determines a neighbor is dead, it writes an entry in cache.log. Here's an example:

2003/09/29 01:13:46| Detected DEAD Sibling: bo2.us.ircache.net/3128/3130

When communication with the neighbor is reestablished, Squid logs a message like this:

2003/09/29 01:13:49| Detected REVIVED Sibling: bo2.us.ircache.net/3128/3130

A neighbor's state affects neighbor-selection algorithms in the following ways:

● Squid doesn't expect to receive ICP/HTCP replies from dead neighbors. Squid sends ICP
queries to dead neighbors no more than once each dead_peer_timeout interval. See
Appendix A.

● A dead parent is excluded from the following algorithms: Cache Digests, round-robin
parent, first up parent, default parent, and closest parent.

● CARP is special: any failed TCP connections (not the 10 required to become dead)
excludes the parent from the CARP algorithm.

There is no way to force Squid to send HTTP requests to a dead neighbor. If all neighbors are
dead, Squid will try connecting to the origin server. If you don't allow Squid to talk to the origin
server (with never_direct, for example), Squid returns a cannot forward error message:

This request could not be forwarded to the origin server or to any

parent caches. The most likely cause for this error is that:

 * The cache administrator does not allow this cache to make

 direct connections to origin servers, and

 * All configured parent caches are currently unreachable.

10.3.3 Altering the Relationship

The neighbor_type_domain directive allows you to change the relationship with your neighbor
based on the origin server's hostname. This is useful, for example, if your neighbor is willing to
serve cache hits for any request but misses only for certain nearby domains. The syntax is:

neighbor_type_domain neighbor.host.name relationship [!]domain ...

For example:

cache_peer squid.uk.web-cache.net sibling 3128 3130

neighbor_type_domain squid.uk.web-cache.net parent .uk

Of course, the squid.uk.web-cache.net cache in this example should utilize appropriate
miss_access rules to enforce the sibling relationship for non-UK requests. Note that domain
names are matched to hostnames as described in Section 6.1.1.2.

 < Day Day Up >

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/squid.uk.web-cache.net

 < Day Day Up >

10.4 Restricting Requests to Neighbors

Many people who use hierarchical caching need to control or limit requests that Squid sends to
its neighbors. Squid has seven different directives that affect request routing:
cache_peer_access, cache_peer_domain, never_direct, always_direct, hierarchy_stoplist,
nonhierarchical_direct, and prefer_direct.

10.4.1 cache_peer_access

The cache_peer_access directive defines an access list for a neighbor cache. That is, it
determines which requests may, or may not, be sent to the neighbor.

You can use this, for example, to split the flow of FTP and HTTP requests. You can send all FTP
URIs to one parent and all HTTP URIs to another:

cache_peer A-parent.my.org parent 3128 3130

cache_peer B-parent.my.org parent 3128 3130

acl FTP proto FTP

acl HTTP proto HTTP

cache_peer_access A-parent allow FTP

cache_peer_access B-parent allow HTTP

This configuration ensures that A-parent receives only requests for FTP URIs, while B-parent
receives only requests for HTTP URIs. This includes ICP/HTCP queries as well.

You might also use cache_peer_access to enable or disable a neighbor cache during certain
times of the day:

cache_peer A-parent.my.org parent 3128 3130

acl DayTime time 07:00-18:00

cache_peer_access A-parent.my.org deny DayTime

10.4.2 cache_peer_domain

The cache_peer_domain directive is an earlier form of cache_peer_access. Rather than using
the full access control feature set, it only uses domain names in URIs. It is often used to
partition a group of parent caches by domain name. For example, if you have a global intranet,
you may want to send requests to caches located on each continent:

cache_peer europe-cache.my.org parent 3128 3130

cache_peer asia-cache.my.org parent 3128 3130

cache_peer aust-cache.my.org parent 3128 3130

cache_peer africa-cache.my.org parent 3128 3130

cache_peer na-cache.my.org parent 3128 3130

cache_peer sa-cache.my.org parent 3128 3130

cache_peer_domain europe-cache.my.org parent .ch .dk .fr .uk .nl .de .fi ...

cache_peer_domain asia-cache.my.org parent .jp .kr .cn .sg .tw .vn .hk ...

cache_peer_domain aust-cache.my.org parent .nz .au .aq ...

cache_peer_domain africa-cache.my.org parent .dz .ly .ke .mz .ma .mg ...

cache_peer_domain na-cache.my.org parent .mx .ca .us ...

cache_peer_domain sa-cache.my.org parent .br .cl .ar .co .ve ...

Of course, this scheme doesn't address the popular global top-level domains, such as .com.

10.4.3 never_direct

The never_direct directive is an access list for requests that must never be sent directly to an
origin server. When a request matches this access list, it must be sent to a neighbor (usually
parent) cache.

For example, if Squid is behind a firewall, it may be able to talk to your "internal" servers
directly but must send all requests for external servers via the firewall proxy (a parent). You
can tell Squid "never connect directly to sites outside the firewall." To do so, tell Squid what is
inside the firewall:

acl InternalSites dstdomain .my.org

never_direct allow !InternalSites

The syntax is a little strange. never_direct allow foo means Squid will not go directly for
requests that match "foo." Since the set of internal sites is easy to specify, I used the negation
operator (!) to match external sites, which Squid must never directly contact.

Note that this example doesn't force Squid to connect directly to sites that match the
InternalSites ACL. The never_direct access rule can only force Squid not to contact certain
origin servers. You must use the always_direct rule to force direct connections to origin servers.

You must take care when using never_direct in combination with the other directives that
control request routing. You can easily create an impossible situation. Here's an example:

cache_peer A-parent.my.org parent 3128 3130

acl COM dstdomain .com

cache_peer_access A-parent.my.org deny COM

never_direct allow COM

This configuration creates a contradiction because any request whose domain name ends with .
com must go through a neighbor cache. However, I defined only one neighbor cache, and don't
allow the .com requests to go there. When this happens, Squid emits the "cannot forward"
error message mentioned earlier in Chapter 10.

10.4.4 always_direct

As you can probably guess, the list of always_direct rules tell Squid that some requests must
be forwarded directly to the origin server. For example, many organizations want to keep their
local traffic local. An easy way to do this is to define an IP address-based ACL and put it in the
always_direct rule list:

acl OurNetwork src 172.16.3.0/24

always_direct allow OurNetwork

10.4.5 hierarchy_stoplist

Internally, Squid flags each client request as either hierarchical or nonhierarchical. A
nonhierarchical request is one that is unlikely to result in a cache hit. For example, responses to
POST requests are almost never cachable. Forwarding requests for uncachable objects to
neighbors is a waste of resources when Squid can simply connect to the origin server.

Some of the rules for differentiating hierarchical and nonhierarchical requests are hardcoded in
Squid. For example, the POST and PUT methods are always nonhierarchical. However, the
hierarchy_stoplist directive allows you to customize the algorithm. It contains a list of strings
that, when found in a URI, make the request nonhierarchical. The default list is:

hierarchy_stoplist ? cgi-bin

Thus, any request that contains a question mark or the cgi-bin string matches the stoplist and
becomes nonhierarchical.

By default, Squid prefers to send nonhierarchical requests directly to origin servers. Because
they are unlikely to result in cache hits, they are generally an extra burden on neighbor caches.
However, the never_direct access control rules override hierarchy_stoplist. In particular, Squid:

● Never sends ICP/HTCP queries for nonhierarchical requests unless the request matches
a never_direct rule

● Never sends ICP/HTCP queries to sibling caches for nonhierarchical requests
● Never looks in neighbor cache digests for nonhierarchical requests

10.4.6 nonhierarchical_direct

This directive controls the way that Squid forwards nonhierarchical (i.e., probably uncachable)
requests. By default, Squid prefers to send nonhierarchical requests directly to origin servers.
This is because such requests are unlikely to result in cache hits. I feel it is always better to get
them directly from the origin server, rather than waste time looking for them in neighbor
caches. If, for some reason, you want to route such requests through the hierarchy, disable this
directive:

nonhierarchical_direct off

10.4.7 prefer_direct

This directive controls the way that Squid forwards hierarchical (i.e., probably cachable)
requests. By default, Squid prefers to send such requests to a neighbor cache first and then
directly to the origin server. You can reverse this behavior by enabling the directive:

prefer_direct on

In this way, your neighbor caches become a backup if communication with the origin server
fails.

 < Day Day Up >

 < Day Day Up >

10.5 The Network Measurement Database

Squid's network measurement database (netdb) is designed to measure the proximity of origin
servers. In other words, by querying this database, Squid knows how close it is to the origin
server. The database includes ICMP round-trip time (RTT) measurements and hop counts.
Squid normally uses only the RTT measurements but can also use the hop counts in some
situations.

To enable netdb, you must configure Squid with the —enable-icmp option. You must also install
the pinger program with superuser permissions, as described in Section 3.6. When everything
is working correctly, you should see a message like this in cache.log:

2003/09/29 00:01:03| Pinger socket opened on FD 28

When netdb is enabled, Squid sends ICMP "pings" to origin servers. The ICMP messages are
actually sent and received by the pinger program, which runs as root. Squid is careful not to
send pings too frequently, which may annoy web site administrators. By default, Squid waits at
least five minutes before sending another ping to the same host, or to any other host on the
same /24 subnet. You can adjust the interval with the netdb_ping_period directive.

The ICMP pings are generally small in size (less than 100 bytes). Squid includes the origin
server hostname in the payload of the ICMP message, along with a timestamp.

To reduce memory requirements, Squid aggregates the netdb data by /24 subnets. Squid
assumes that all hosts within the subnet have similar RTT and hop-count measurements. This
scheme also allows Squid to estimate the proximity of a new origin server when other servers
in the subnet have already been measured.

Along with the RTT and hop-count measurements, Squid also stores a list of hostnames
associated with the subnet. A typical record may look something like this:

Subnet 140.98.193.0

RTT 76.5

Hops 20.0

Hosts services1.ieee.org

 www.spectrum.ieee.org

 www.ieee.org

The netdb measurements are primarily used by ICP and HTCP. When you enable the
query_icmp directive in squid.conf, Squid sets a flag in the ICP/HTCP queries that it sends to
neighbors. This flag is a request to include proximity measurements in the ICP/HTCP reply. If
your neighbors also enabled netdb, their replies should include RTT and hop-count
measurements if available. Note that Squid always sends ICP replies immediately. It doesn't
wait for an ICMP measurement before replying to the query. See Section 10.6.2.2 for details on

how ICP uses netdb.

Squid remembers the RTT values it learns from ICP/HTCP replies. These values may be used
later to optimize forwarding decisions. Squid also supports a "bulk transfer" of netdb
measurements via what is called netdb exchange. Squid periodically makes an HTTP request to
a neighbor for its netdb data. You can disable these requests with the no-netdb-exchange
option on the cache_peer line.

The netdb_low and netdb_high directives control the size of the measurement database. When
the number of stored subnets reaches netdb_high, Squid deletes the least recently used entries
until the count is less than netdb_low.

The minimum_direct_hops and minimum_direct_rtt directives instruct Squid to connect directly
to origin servers that are no more than some number of hops, or milliseconds, away. Requests
that meet this criteria are logged with CLOSEST_DIRECT in access.log.

The cache manager's netdb page displays the entire network measurement database, including
values from neighbor caches. For example:

Network DB Statistics:

Network recv/sent RTT Hops Hostnames

63.241.84.0 1/ 1 25.0 9.0 www.xyzzy.com

 sd.us.ircache.net 21.5 15.0

 bo1.us.ircache.net 27.0 13.0

 pb.us.ircache.net 70.0 11.0

206.100.24.0 5/ 5 25.0 3.0 wcarchive.cdrom.com ftp.cdrom.com

 uc.us.ircache.net 23.5 11.0

 bo1.us.ircache.net 27.7 7.0

 pb.us.ircache.net 35.7 10.0

 sd.us.ircache.net 72.9 10.0

146.6.135.0 1/ 1 25.0 13.0 www.cm.utexas.edu

 bo1.us.ircache.net 32.0 11.0

 sd.us.ircache.net 55.0 8.0

216.234.248.0 2/ 2 25.0 8.0 postfuture.com www1.123india.com

 pb.us.ircache.net 44.0 14.0

216.148.242.0 1/ 1 25.0 9.0 images.worldres.com

 sd.us.ircache.net 25.2 15.0

mailto:netdb

 bo1.us.ircache.net 27.0 13.0

 pb.us.ircache.net 69.5 11.0

Here you can see that the server www.xyzzy.com has an IP address in the 63.241.84.0/24
block. The RTT from this cache to the origin server is 25 milliseconds. The neighbor cache sd.us.
ircache.net is a little closer, at 21.5 milliseconds.

 < Day Day Up >

 < Day Day Up >

10.6 Internet Cache Protocol

ICP is a lightweight object location protocol invented as a part of the Harvest project.
[1]

 An ICP
client sends a query message to one or more ICP servers, asking if they have a particular URI
cached. Each server replies with an ICP_HIT, ICP_MISS, or other type of ICP message. The ICP
client uses the information in the ICP replies to make a forwarding decision.

[1] For more information, see the following papers: "A Hierarchical Internet
Object Cache," by Danzig, Chankhunthod, et al, USENIX Annual Technical
Conference, 1995, and "The Harvest information discovery and access system,"
by C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and Michael F.
Schwartz, Proceedings of the Second International World Wide Web Conference.

In addition to predicting cache hits, ICP is also useful for providing hints about network
conditions between Squid and the neighbor. ICP messages are similar to ICMP pings in this
regard. By measuring the query/response round-trip time, Squid can estimate network
congestion. In the extreme case, ICP messages may be lost, indicating that the path between
the two is down or congested. From this, Squid decides to avoid the neighbor for that particular
request.

Increased latency is perhaps the most significant drawback to using ICP. The query/response
exchange takes some time. Caching proxies are supposed to decrease response time, not add
more latency. If ICP helps us discover cache hits in neighbors, then it may lead to an overall
reduction in response time. See Section 10.10 for a description of the query algorithm
implemented in Squid.

ICP also suffers from a number of design deficiencies: security, scalability, false hits, and the
lack of a request method. The protocol doesn't include any security features. In general, Squid
can't verify that an ICP message is authentic; it relies on address-based access controls to filter
out unwanted ICP messages.

ICP has poor scaling properties. The number of ICP messages (and bandwidth) grows in
proportion to the number of neighbors. Unless you use some kind of partitioning scheme, this
places a practical limit on the number of neighbors you can have. I don't recommend having
more than five or six neighbors.

ICP queries contain only URIs, with no additional request headers. This makes it difficult to
predict cache hits with perfect accuracy. An HTTP request may include additional headers (such
as Cache-Control: max-stale=N) that turn a cache hit into a cache miss. These false hits are
particularly awkward for sibling relationships.

Also missing from the ICP query message is the request method. ICP assumes that all queries
are for GET requests. A caching proxy can't use ICP to locate cached objects for non-GET
request methods.

You can find additional information about ICP by reading:

● My book Web Caching (O'Reilly)
● RFCs 2186 and 2187
● My article with kc claffy: "ICP and the Squid Web Cache" in the IEEE Journal on Selected

Areas in Communication, April 1998
● http://icp.ircache.net/

10.6.1 Being an ICP Server

When you use the icp_port directive, Squid automatically becomes an ICP server. That is, it
listens for ICP messages on the port you've specified, or port 3130 by default. Be sure to tell
your sibling and/or child caches if you decide to use a nonstandard port.

By default, Squid denies all ICP queries. You must use the icp_access rule list to allow queries
from your neighbors. It's usually easiest to do this with src ACLs. For example:

acl N1 src 192.168.0.1

acl N2 src 172.16.0.2

acl All src 0/0

icp_access allow N1

icp_access allow N2

icp_access deny All

Note that only ICP_QUERY messages are subject to the icp_access rules. ICP client functions,
such as sending queries and receiving replies, don't require any special access controls. I also
recommend that you take advantage of your operating system's packet filtering features (e.g.,
ipfw, iptables, and pf) if possible. Allow UDP messages on the ICP port from your trusted
neighbors and deny them from all other hosts.

When Squid denies an ICP query due to the icp_access rules, it sends back an ICP_DENIED
message. However, if Squid detects that more than 95% of the recent queries have been
denied, it stops responding for an hour. When this happens, Squid writes a message in cache.
log:

WARNING: Probable misconfigured neighbor at foo.web-cache.com

WARNING: 150 of the last 150 ICP replies are DENIED

WARNING: No replies will be sent for the next 3600 seconds

If you see this message, you should contact the administrator responsible for the misconfigured
cache.

Squid was designed to answer ICP queries immediately. That is, Squid can tell whether or not it
has a fresh, cached response by checking the in-memory index. This is also why Squid is a bit
of a memory hog. When an ICP query comes in, Squid calculates the MD5 hash of the URI and
looks for it in the index. If not found, Squid sends back an ICP_MISS message. If found, Squid

http://icp.ircache.net/

checks the expiration time. If the object isn't fresh, Squid returns ICP_MISS. For fresh objects,
Squid returns ICP_HIT.

By default, Squid logs all ICP queries (but not responses) to access.log. If you have a lot of
busy neighbors, your log file may become too large to manage. Use the log_icp_queries
directive to prevent logging of these queries. Although you'll lose the detailed logging for ICP,
you can still get some aggregate stats via the cache manager (see Section 14.2.1.24).

If you have sibling neighbors, you'll probably want to use the miss_access directive to enforce
the relationship. It specifies an access rule for cache misses. It is similar to http_access but is
checked only for requests that must be forwarded. The default rule is to allow all cache misses.
Unless you add some miss_access rules, any sibling cache can become a child cache and
forward cache misses through your network connection, thus stealing your bandwidth.

Your miss_access rules can be relatively simple. Don't forget to include your local clients (i.e.,
web browsers) as well. Here's a simple example:

acl Browsers src 10.9.0.0/16

acl Child1 src 172.16.3.4

acl Child2 src 192.168.2.0/24

acl All src 0/0

miss_access allow Browsers

miss_access allow Child1

miss_access allow Child2

miss_access deny All

Note that I haven't listed any siblings here. The child caches are allowed to request misses
through us, but the siblings are not. Their cache miss requests are denied by the deny All rule.

10.6.1.1 The icp_hit_stale directive

One of the problems with ICP is that it returns ICP_MISS for cached but stale responses. This is
true even if the response is stale, but valid (such that a validation request returns "not
modified"). Consider a simple hierarchy with a child and two parent caches. An object is cached
by one parent but not the other. The cached response is stale, but unchanged, and needs
validation. The child's ICP query results in two ICP_MISS replies. Not knowing that the stale
response exists in the first parent, the child forwards its request to the second parent. Now the
object is stored in both parents, wasting resources.

You might find the icp_hit_stale directive useful in this situation. It tells Squid to return an
ICP_HIT for any cached object, even if it is stale. This is perfectly safe for parent relationships
but can create problems for siblings.

Recall that in a sibling relationship, the client cache is only allowed to make requests that are

cache hits. Enabling the icp_hit_stale directive increases the number of false hits because Squid
must validate the stale responses. Squid normally handles false hits by adding the Cache-
Control: only-if-cached directive to HTTP requests sent to siblings. If the sibling can't
satisfy the HTTP request as a cache hit, it returns an HTTP 504 (Gateway Timeout) message
instead. When Squid receives the 504 response, it forwards the request again, but only to a
parent or the origin server.

It makes little sense to enable icp_hit_stale for sibling relationships if all the false hits must be
reforwarded. This is where the ICP client's allow-miss option to cache_peer becomes useful.
When the allow-miss option is set, Squid omits the only-if-cached directive in HTTP
requests it sends to siblings.

If you enable icp_hit_stale, you also need to make sure that miss_access doesn't deny cache-
miss requests from siblings. Unfortunately, there is no way to make Squid allow only cache-
misses for cached, stale objects. Allowing cache misses for siblings also leaves your cache open
to potential abuse. The administrator of the sibling cache may change it to a parent relationship
without your knowledge or permission.

10.6.1.2 The ICP_MISS_NOFETCH feature

The command-line -Y option to Squid causes it to return ICP_MISS_NOFETCH, instead of
ICP_MISS, while rebuilding the in-memory indexes. ICP clients that receive ICP_MISS_NOFETCH
responses should not send HTTP requests for those objects. This reduces the load placed on
Squid and allows the rebuild process to complete sooner.

10.6.1.3 The test_reachability directive

If you enable the netdb feature (see Section 10.5), you might also be interested in enabling the
test_reachability directive. The goal behind it is to accept only requests for origin servers Squid
can reach. Enabling test_reachability causes Squid to return ICP_MISS_NOFETCH, instead of
ICP_MISS, for origin server sites that don't respond to ICMP pings. This can help reduce the
number of failed HTTP requests and increase the chance that the end user receives the data
promptly. However, a significant percentage of origin server sites intentionally filter out ICMP
traffic. For these, Squid returns ICP_MISS_NOFETCH even though an HTTP connection would
succeed.

Enabling test_reachability also causes Squid to make netdb measurements in response to ICP
queries. If Squid doesn't have any RTT measurements for the origin server in question, it sends
out an ICMP ping (subject to the rate limiting mentioned previously).

10.6.2 Being an ICP Client

First, you must use the cache_peer directive to define your neighbor caches. See the section
Section 10.3.

Second, you must also use the icp_port directive, even if your Squid is only an ICP client. This
is because Squid uses the same socket for sending and receiving ICP messages. It is perhaps a
bad design decision in retrospect. If you are a client only, use icp_access to block queries. For
example:

acl All src 0/0

icp_access deny All

Squid sends ICP queries to its neighbors for most requests by default. See Section 10.10 for a
complete description of the way that Squid decides when, and when not, to query its neighbors.

After sending one or more queries, Squid waits some amount of time for ICP replies to arrive. If
Squid receives an ICP_HIT from one of its neighbors, it forwards the request there
immediately. Otherwise, Squid waits until all replies arrive or until a timeout occurs. The
timeout is calculated dynamically, based on the following algorithm.

Squid knows the average round-trip time between itself and each neighbor, taken from recent
ICP transactions. When querying a group of neighbors, Squid calculates the mean of all the
neighbor ICP RTTs, and then doubles it. In other words, the query timeout is twice the mean of
RTTs for each neighbor queried. Squid ignores neighbors that appear to be down when
calculating the timeout.

In some cases, the algorithm doesn't work well, especially if you have neighbors with widely
varying RTTs. You can change the upper limit on the timeout using the
maximum_icp_query_timeout directive. Alternatively, you can make Squid always use a
constant timeout value with the icp_query_timeout directive.

10.6.2.1 cache_peer options for ICP clients

weight=n allows you to weight parent caches artificially when using ICP/HTCP. It comes into
play only when all parents report a cache miss. Normally, Squid selects the parent whose reply
arrives first. In fact, it remembers which parent has the best RTT for the query. Squid actually
divides the RTT by the weight, so that a parent with weight=2 is treated as if it's closer to
Squid than it really is.

no-query disables ICP/HTCP for the neighbor. That is, your cache won't send any queries to the
neighbor for cache misses. It is often used with the default option.

closest-only refers to one of Squid's netdb features. It instructs Squid to select the parent
based only on netdb RTT measurements and not the order in which replies arrive. This option
requires netdb at both ends.

10.6.2.2 ICP and netdb

As mentioned in the section Section 10.5, netdb is mostly used with ICP queries. In this
section, we'll follow all the steps involved in this process.

1. A Squid cache, acting as an ICP client, prepares to send a query to one or more
neighbors. If query_icmp is set, Squid sets the SRC_RTT flag in the ICP query. This
informs the ICP server that Squid would like to receive an RTT measurement in the ICP
reply.

2. The neighbor receives the query with the SRC_RTT flag set. If the neighbor is configured
to make netdb measurements, it searches the database for the origin server hostname.
Note that the neighbor doesn't query the DNS for the origin server's IP address. Thus, it
finds a netdb entry only if that particular host has already been measured.

3. If the host exists in the netdb database, the neighbor includes the RTT and hop count in
the ICP reply. The SRC_RTT flag is set in the reply to indicate the measurement is
present.

4. When Squid receives the ICP reply with the SRC_RTT flag set, it extracts the RTT and
hop count. These are added to the local netdb so that, in the future, Squid knows the
approximate RTT from the neighbor to the origin server.

5. An ICP_HIT reply causes Squid to forward the HTTP request immediately. If, on the
other hand, Squid receives only ICP_MISS replies, it selects the parent with the smallest
(nonzero) measured RTT to the origin server. The request is logged to access.log with
CLOSEST_PARENT_MISS.

6. If none of the parent ICP_MISS replies contain RTT values, Squid selects the parent
whose ICP reply arrived first. In this case, the request is logged with
FIRST_PARENT_MISS. However, if the closest-only option is set for a parent cache,
Squid never selects it as a "first parent." In other words, the parent is selected only if it
is the closest parent to the origin server.

10.6.3 Multicast ICP

As you already know, ICP has poor scaling properties. The number of messages is proportional
to the number of neighbors. Because Squid sends identical ICP_QUERY messages to each
neighbor, you can use multicast to reduce the number of messages transmitted on the network.
Rather than send N messages to N neighbors, Squid sends one message to a multicast address.
The multicast routing infrastructure makes sure each neighbor receives a copy of the message.
See the book Interdomain Multicast Routing: Practical Juniper Networks and Cisco Systems
Solutions by Brian M. Edwards, Leonard A. Giuliano, and Brian R. Wright (Addison Wesley) for
more information on the inner workings of multicast.

Note that ICP replies are always sent via unicast. This is because ICP replies may be different
(e.g., hit versus miss) and because the unicast and multicast routing topologies may differ.
Because ICP is also used to indicate network conditions, an ICP reply should follow the same
path an HTTP reply takes. The bottom line is that multicast only reduces message counts for
queries.

Historically, I've found multicast infrastructure unstable and unreliable. It seems to be a low
priority for many ISPs. Even though it works one day, something may break a few days or
weeks later. You're probably safe using multicast entirely within your own network, but I don't
recommend using it for ICP on the public Internet.

10.6.3.1 Multicast ICP server

A multicast ICP server joins one or more multicast group addresses to receive messages. The
mcast_groups directive specifies these group addresses. The values must be multicast IP

addresses or hostnames that resolve to multicast addresses. The IPv4 multicast address range
is 224.0.0.0-239.255.255.255. For example:

mcast_groups 224.11.22.45

An interesting thing about multicast is that hosts, rather than applications, join a group. When
a host joins a multicast group, it receives all packets that are transmitted to that group. This
means that you need to be a little bit careful when selecting a multicast group to use for ICP.
You don't want to select an address that's already being used by another application. When this
kind of group overlap occurs, the two groups become joined and receive each other's traffic.

10.6.3.2 Multicast ICP client

Multicast ICP clients transmit queries to one or more multicast group addresses. Thus, the
hostname argument of the cache_peer line must be, or resolve to, a multicast address. For
example:

cache_peer 224.0.14.1 multicast 3128 3130 ttl=32

The HTTP port number (e.g., 3128) is irrelevant in this case because Squid never makes HTTP
connections to a multicast neighbor.

Realize that multicast groups don't have any access controls. Any host can join any multicast
group address. This means that, unless you're careful, others may be able to receive the
multicast ICP queries sent by your Squid. IP multicast has two ways to prevent packets from
traveling too far: TTLs and administrative scoping. Because ICP queries may carry sensitive
information (i.e., URIs that your users access), I recommend using an administratively scoped
address and properly configured routers. See RFC 2365 for more information.

The ttl=n option is for multicast neighbors only. It is the multicast TTL value to use for ICP
queries. It controls how far away the ICP queries can travel. The valid range is 0-128. A larger
value allows the multicast queries to travel farther, and possibly be intercepted by outsiders.
Use a lower number to keep the queries close to the source and within your network.

Multicast ICP clients must also tell Squid about the neighbors that will be responding to queries.
Squid doesn't blindly trust any cache that happens to send an ICP reply. You must tell Squid
about legitimate, trusted neighbors. The multicast-responder option to cache_peer identifies
such neighbors. For example, if you know that 172.16.2.3 is a trusted neighbor on the
multicast group, you should add this line to squid.conf:

cache_peer 172.16.3.2 parent 3128 3130 multicast-responder

You can, of course, use a hostname instead of an IP address. ICP replies from foreign (unlisted)
neighbors are ignored, but logged in cache.log.

Squid normally expects to receive an ICP reply for each query that it sends. This changes,
however, with multicast because one query may result in multiple replies. To account for this,
Squid periodically sends out "probes" on the multicast group address. These probes tell Squid
how many servers are out there listening. Squid counts the number of replies that arrive within
a certain amount of time. That amount of time is given by the mcast_icp_query_timeout

directive. Then, when Squid sends a real ICP query to the group, it adds this count to the
number of ICP replies to expect.

10.6.3.3 Multicast ICP example

Since multicast ICP is tricky, here's another example. Let's say your ISP has three parent
caches that listen on a multicast address for ICP queries. The ISP needs only one line in its
configuration file:

mcast_groups 224.0.14.255

The configuration for you (the child cache) is a little more complicated. First, you must list the
multicast neighbor to which Squid should send queries. You must also list the three parent
caches with their unicast addresses so that Squid accepts their replies:

cache_peer 224.0.14.225 multicast 3128 3130 ttl=16

cache_peer parent1.yourisp.net parent 3128 3130 multicast-responder

cache_peer parent2.yourisp.net parent 3128 3130 multicast-responder

cache_peer parent3.yourisp.net parent 3128 3130 multicast-responder

mcast_icp_query_timeout 2 sec

Keep in mind that Squid never makes HTTP requests to multicast neighbors, and it never
sends ICP queries to multicast-responder neighbors.

 < Day Day Up >

 < Day Day Up >

10.7 Cache Digests

One of the most common complaints about ICP is the additional delay added for each request.
In many cases, Squid waits for all ICP replies to arrive before making a forwarding decision.
Squid's Cache Digest feature offers similar functionality but without per-request network delays.

Cache Digests are based on a technique first published by Pei Cao, called Summary Cache. The
fundamental idea is to use a Bloom filter to represent the cache contents. Neighboring caches
download each other's Bloom filters, or digests in this terminology. Then, they can query the
digest to determine whether or not a particular URI is in the neighbor's cache.

Compared to ICP, Cache Digests trade time for space. Whereas ICP queries incur time penalties
(latency), digests incur space (memory, disk) penalties. In Squid, a neighbor's digest is stored
entirely in memory. A typical digest requires about 625 KB of memory for every million objects.

The Bloom filter is an interesting data structure that provides lossy encoding of a collection of
items. The filter itself is simply a large array of bits. Given a Bloom filter (and the parameters
used to generate it), you can find, with some uncertainty, if a particular item is in the
collection. In Squid, items are URIs, and the digest is sized at 5 bits per cached object. For
example, you can represent the collection of 1,000,000 cached objects with a filter of
5,000,000 bits, or 625,000 bytes.

Due to their nature, Bloom filters aren't a perfect representation of the collection. They
sometimes incorrectly indicate that a particular item is present in the collection because two or
more items may turn on the same bit. In other words, the filter can indicate that object X is in
the cache, even though X was never cached or requested. These false positives occur with a
certain probability you can control by adjusting the parameters of the filter. For example,
increasing the number of bits per object decreases the false positive probability. See my
O'Reilly book, Web Caching, for many more details about Cache Digests.

10.7.1 Configuring Squid for Cache Digests

First of all, you must compile Squid with the Cache Digest code enabled. Simply add the —
enable-cache-digests option when running ./configure. Taking this step causes two things to
happen when you run Squid:

● Your Squid cache generates a digest of its own contents. Your neighbors may request
this digest if they are also configured to use Cache Digests.

● Your Squid requests a Cache Digest from each of its neighbors.

If you don't want to request digests for a particular neighbor, use the no-digest option on the
cache_peer line. For example:

cache_peer neighbor.host.name parent 3128 3130 no-digest

Squid stores its own digest under the following URL: http://my.host.name:port/squid-internal-
periodic/store_digest. When Squid requests a neighbor's digest, it simply requests http://
neighbor.host.name:port/squid-internal-periodic/store_digest. Obviously, this naming scheme

is specific to Squid. If you have a non-Squid neighbor that supports Cache Digests, you may
need to tell your Squid that the neighbor's digest has a different address. The digest-url=url
option to cache_peer allows you to configure the URL for the neighbor's Cache Digest. For
example:

cache_peer neighbor.host.name parent 3128 3130 digest-url=http://blah/digest

squid.conf has a number of directives that control the way in which Squid generates its own
Cache Digest. First, the digest_generation directive controls whether or not Squid generates a
digest of its cache. You might want to disable digest generation if your cache is a child to a
parent, but not a parent or sibling to any other caches. The remaining directives control low-
level underlying details of digest generation. You should change them only if you fully
understand the Cache Digest implementation.

The digest_bits_per_entry determines the size of the digest. The default value is 5. Increasing
the value results in larger digests (consuming more memory and bandwidth) and lower false-hit
probabilities. A lower setting results in smaller digests and more false hits. I feel that the
default setting is a very nice tradeoff. A setting of 3 or lower has too many false hits to be
useful, and a setting of 8 or higher simply wastes bandwidth.

Squid uses a two-step process to create a cache digest. First, it builds the cache digest data
structure. This is basically a large Bloom filter and small header that contains the digest
parameters. Once the data structure is filled, Squid creates a cached HTTP response for the
digest. This simply involves prepending some HTTP headers and storing the response on disk
with the other cached responses.

A Cache Digest represents a snapshot in time of the cache's contents. The
digest_rebuild_period controls how frequently Squid rebuilds the digest data structure (but not
the HTTP response). The default is once per hour. More frequent rebuilds mean Squid's digest is
more up to date, at the expense of higher CPU utilization. The rebuild procedure is relatively
CPU-intensive. Your users may experience a slowdown while Squid rebuilds its digest.

The digest_rebuild_chunk_percentage directive controls how much of the cache to add to the
digest each time the rebuild procedure is called. The default is 10%. During each invocation of
the rebuild function, Squid adds some percentage of the cache to the digest. Squid doesn't
process user requests while this function runs. After adding the specified percentage, the
function reschedules itself and then exits so that Squid can process normal HTTP requests.
After processing pending requests, Squid returns to the rebuild function and adds another
chunk of the cache to the digest. Decreasing this value should give better response time to
your users, while increasing the total time needed to rebuild the digest.

The digest_rewrite_period directive controls how often Squid creates an HTTP response from
the digest data structure. In most cases, this should match the digest_rebuild_period value.
The default is one hour. The rewrite procedure consists of numerous calls to a function that
simply appends some amount of the digest data structure to the cache entry (as though Squid
were reading an origin server response from the network). Each time this function is called,
Squid appends digest_swapout_chunk_size bytes of the digest.

 < Day Day Up >

 < Day Day Up >

10.8 Hypertext Caching Protocol

HTCP and ICP have many common characteristics, although HTCP is broader in scope and
generally more complex. Both use UDP for transport, and both are per-request protocols.
However, HTCP addresses a number of problems with ICP, namely:

● An ICP query contains only a URI, without even a request method. HTCP queries contain
full HTTP request headers.

● ICP provides no security. HTCP has optional message authentication via shared secret
keys, although it isn't yet implemented in Squid. Neither protocol supports encrypted
messages.

● ICP uses a simple, fixed-sized binary message format that is difficult to extend. HTCP uses
a complex, variable-sized binary message format.

HTCP supports four basic opcodes:

TST

Tests for the presence of a cached response

SET

Tells a neighbor to update cached object headers

CLR

Tells a neighbor to remove an object from its cache

MON

Monitors a neighbor cache's activity

In Squid, only the TST opcode is currently implemented. This book won't cover the others.

The primary advantage of using HTCP over ICP is fewer false hits. HTCP has fewer false hits
because the query messages include full HTTP request headers, including any Cache-Control
requirements from the client. The primary disadvantages are that HTCP queries are larger, and
they require additional CPU processing to generate and parse. Measurements indicate that HTCP
queries are about six times larger than ICP queries, due to the presence of HTTP request headers.
However, Squid's HTCP replies are typically smaller than ICP replies.

HTCP is documented as an experimental protocol in RFC 2756. For more information about the
message format, see the RFC at http://www.htcp.org or my O'Reilly book, WebCaching.

http://www.htcp.org/
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/WebCaching

10.8.1 Configuring Squid for HTCP

To use HTCP, you must configure Squid with the —enable-htcp option. With this option enabled,
Squid becomes an HTCP server by default. The htcp_port specifies the HTCP port number, which
defaults to 4827. Setting the port to 0 disables the HTCP server mode.

To become an HTCP client, you need to add the htcp option to a cache_peer line. When you add
this option, Squid always sends HTCP messages, instead of ICP, to the neighbor. You can't use
both HTCP and ICP with a single neighbor. The ICP port number field actually becomes an HTCP
port number, so you need to change that as well. For example, let's say you want to convert an
ICP neighbor to HTCP. Here's the neighbor configured for ICP:

cache_peer neighbor.host.name parent 3128 3130

To switch over to HTCP, the line becomes:

cache_peer neighbor.host.name parent 3128 4827 htcp

Sometimes people forget to change the port number, and they end up sending HTCP messages to
the ICP port. When this happens, Squid writes warnings to cache.log:

2003/09/29 02:28:55| WARNING: Unused ICP version 23 received from 64.216.111.20:4827

Squid doesn't currently log HTCP queries as it does for ICP queries. HTCP queries aren't tracked in
the client_list page either. However, when you enable HTCP for a peer, the cache manager
server_list page (see Section 14.2.1.50) shows the count and percentage of HTCP replies that
were hits and misses:

Histogram of PINGS ACKED:

 Misses 5085 98%

 Hits 92 2%

Note that none of the current Squid versions support HTCP authentication yet.

 < Day Day Up >

 < Day Day Up >

10.9 Cache Array Routing Protocol

CARP is an algorithm that partitions URI-space among a group of caching proxies. In other
words, each URI is assigned to one of the caches. CARP maximizes hit ratios and minimizes
duplication of objects among the group of caches. The protocol consists of two major
components: a Routing Function and a Proxy Array Membership Table. Unlike ICP, HTCP, and
Cache Digests, CARP can't predict whether a particular request will be a cache hit. Thus, you
can't use CARP with siblings—only parents.

The basic idea behind CARP is that you have a group, or array, of parent caches to handle all
the load from users or child caches. A cache array is one way to handle ever-increasing loads.
You can add more array members whenever you need more capacity. CARP is a deterministic
algorithm. That is, the same request always goes to the same array member (as long as the
array size doesn't change). Unlike ICP and HTCP, CARP doesn't use query messages.

Another interesting thing about CARP is that you have the choice to deploy it in a number of
different places. For example, one approach is to make all user-agents execute the CARP
algorithm. You could probably accomplish this with a Proxy Auto-Configuration (PAC) function,
written in JavaScript (see Appendix F). However, you're likely to have certain web agents on
your network that don't implement or support PAC files. Another option is to use a two-level
cache hierarchy. The lower level (child caches) accept requests from all user-agents, and they
execute the CARP algorithm to select the parent cache for each request. However, unless your
network is very large, many caches can be more of a burden than a benefit. Finally, you can
also implement CARP within the array itself. That is, user-agents connect to a random member
of the cache array, but each member forwards cache misses to another member of the array
based on the CARP algorithm.

CARP was designed to be better than a simple hashing algorithm, which typically works by
applying a hash function, such as MD5, to URIs. The algorithm then calculates the modulus for
the number of array members. It might be as simple as this pseudocode:

N = MD5(URI) % num_caches;

next_hop = Caches[N];

This technique uniformly spreads the URIs among all the caches. It also provides a consistent
mapping (maximizing cache hits), as long as the number of caches remains constant. When
caches are added or removed, however, this algorithm changes the mapping for most of the
URIs.

CARP's Routing Function improves on this technique in two ways. First, it allows for unequal
sharing of the load. For example, you can configure one parent to receive twice as many
requests as another. Second, adding or removing array members minimizes the fraction of
URIs that get reassigned.

The downside to CARP is that it is relatively CPU-intensive. For each request, Squid calculates a
"score" for each parent. The request is sent to the parent cache with the highest score. The
complexity of the algorithm is proportional to the number of parents. In other words, CPU load
increases in proportion to the number of CARP parents. However, the calculations in CARP have
been designed to be faster than, say, MD5, and other cryptographic hash functions.

In addition to the load-sharing algorithm, CARP also has a protocol component. The
Membership Table has a well-defined structure and syntax so that all clients of a single array
can have the same configuration. If some clients are configured differently, CARP becomes less
useful because not all clients send the same request to the same parent. Note that Squid
doesn't currently implement the Membership Table feature.

Squid's CARP implementation is lacking in another way. The protocol says that if a request can't
be forwarded to the highest-scoring parent cache, it should be sent to the second-highest-
scoring member. If that also fails, the application should give up. Squid currently uses only the
highest-scoring parent cache.

CARP was originally documented as an Internet Draft in 1998, which is now expired. It was
developed by Vinod Valloppillil of Microsoft and Keith W. Ross of the University of Pennsylvania.
With a little searching, you can still find the old document out there on the Internet. You may
even be able to find some documentation on the Microsoft sites. You can also find more
information on CARP in my O'Reilly book Web Caching.

10.9.1 Configuring Squid for CARP

To use CARP in Squid, you must first run the ./configure script with the —enable-carp option.
Next, you must add carp-load-factor options to the cache_peer lines for parents that are
members of the array. The following is an example.

cache_peer neighbor1.host.name parent 3128 0 carp-load-factor=0.3

cache_peer neighbor2.host.name parent 3128 0 carp-load-factor=0.3

cache_peer neighbor3.host.name parent 3128 0 carp-load-factor=0.4

Note that all carp-load-factor values must add up to 1.0. Squid checks for this condition and
complains if it finds a discrepancy. Additionally, the cache_peer lines must be listed in order of
increasing load factor values. Only recent versions of Squid check that this condition is true.

Remember that CARP is treated somewhat specially with regard to a neighbor's alive/dead
state. Squid normally declares a neighbor dead (and ceases sending requests to it) after 10
failed connections. In the case of CARP, however, Squid skips a parent that has one or more
failed connections. Once Squid is working with CARP, you can monitor it with the carp cache
manager page. See Section 14.2.1.49 for more information.

 < Day Day Up >

 < Day Day Up >

10.10 Putting It All Together

As you probably realize by now, Squid has many different ways to decide how and where
requests are forwarded. In many cases, you can employ more than one protocol or technique at
a time. Just by looking at the configuration file, however, you'd probably have a hard time
figuring out how Squid uses the different techniques in combination. In this section I'll explain
how Squid actually makes the forwarding decision.

Obviously, it all starts with a cache miss. Any request that is satisfied as an unvalidated cache
hit doesn't go through the following sequence of events.

The goal of the selection procedure is to create a list of appropriate next-hop locations. A next-
hop location may be a neighbor cache or the origin server. Depending on your configuration,
Squid may select up to three possible next-hops. If the request can't be satisfied by the first,
Squid tries the second, and so on.

10.10.1 Step 1: Determine Direct Options

The first step is to determine if the request may, must, or must not be sent directly to the
origin server. Squid evaluates the never_direct and always_direct access rule lists for the
request. The goal is to set a flag to one of three values: DIRECT_YES, DIRECT_MAYBE, or
DIRECT_NO. This flag later determines whether Squid should, or should not, try to select a
neighbor cache for the request. Squid checks the following conditions in order. If any condition
is true, it sets the direct flag and proceeds to the next step. If you're following along in the
source code, this step corresponds to the beginning of the peerSelectFoo() function:

1. Squid looks at the always_direct list first. If the request matches this list, the direct flag
is set to DIRECT_YES.

2. Squid looks at the never_direct list next. If the request matches this list, the direct flag
is set to DIRECT_NO.

3. Squid has a special check for requests that appear to be looping. When Squid detects a
forwarding loop, it sets the direct flag to DIRECT_YES to break the loop.

4. Squid checks the minimum_direct_hops and minimum_direct_rtt settings, but only if
you've enabled netdb. If the measured hop count or round-trip time is lower than the
configured values, Squid sets the direct flag to DIRECT_YES.

5. If none of the previous conditions are true, Squid sets the direct flag to DIRECT_MAYBE.

If the direct flag is set to DIRECT_YES, the selection process is complete. Squid forwards the
request directly to the origin server and skips the remaining steps in this section.

10.10.2 Step 2: Neighbor Selection Protocols

Here Squid uses one of the hierarchical protocols to select a neighbor cache. As before, once

Squid selects a neighbor in this step, it exits the routine and proceeds to Step 3. This step
roughly corresponds to the peerGetSomeNeighbor() function:

1. Squid examines the neighbor's Cache Digests. If it indicates a hit, that neighbor is
placed on the next-hop list.

2. Squid tries CARP if enabled. CARP always succeeds (i.e., selects a parent), unless the
cache_peer_access or cache_peer_domain rules forbid communication with any of the
parent caches for a particular request.

3. Squid checks netdb measurements (if enabled) for a "closest parent." If Squid knows
that the round-trip time from one or more parents to the origin server is less than its
own RTT to the origin server, Squid selects the parent with the least RTT. For this to
happen, the following conditions must be met:

❍ Both your Squid and the parent cache(s) must have enabled netdb
measurements.

❍ query_icmp must be enabled in your configuration file.

❍ The origin server must respond to ICMP pings.

❍ The parent(s) must have previously measured the RTT to the origin server and
returned those measurements in ICP/HTCP replies, or through a netdb exchange.

4. Squid sends ICP/HTCP queries as the last resort. Squid loops through all neighbors and
checks a number of conditions. Squid doesn't query a neighbor if:

❍ The direct flag is DIRECT_MAYBE and the request is nonhierarchical (see Section
10.4.5). Because Squid is allowed to go directly to the origin server, it doesn't
bother the neighbor with this request, which is likely to be uncachable.

❍ The direct flag is DIRECT_NO, the neighbor is a sibling, and the request is
nonhierarchical. Because Squid is forced to use a neighbor, it only queries
parents, which can always handle a cache miss.

❍ The cache_peer_access or cache_peer_domain rules forbid sending this request
to the neighbor.

❍ The neighbor's no-query flag is set, or its ICP/HTCP port number is zero.

❍ The neighbor is a multicast responder.

5. Squid counts how many queries it sends and calculates how many replies to expect. If it
expects at least one reply, the rest of the next-hop selection procedure is postponed
until the replies arrive, or a timeout occurs. Squid expects to receive replies from
neighbors that are alive, but not neighbors that are dead (see Section 10.3.2).

10.10.3 Step 2a: ICP/HTCP Reply Processing

If Squid sends out any ICP or HTCP queries, it waits for some number of replies. Just after
transmitting the queries, Squid knows how many replies to expect and the maximum amount of
time to wait for them. Squid expects a reply from every alive neighbor queried. If you're using
multicast, Squid adds the current group size estimate to the expected reply count. While
waiting for replies, Squid schedules a timeout, in case one or more of the replies don't arrive.

When Squid receives an ICP/HTCP reply from a neighbor, it takes the following actions:

1. If the reply is a hit, Squid forwards the request to that neighbor immediately. Any
replies arriving after this point are ignored.

2. If the reply is a miss, and it is from a sibling, it is ignored.

3. Squid doesn't immediately act on ICP/HTCP misses from parents. Instead, it remembers
which parents meet the following criteria:

The closest-parent miss

If the reply includes a netdb RTT measurement, Squid remembers the parent
that has the least RTT to the origin server.

The first-parent miss

Squid remembers the parent that had the first reply. In other words, the parent
with least RTT to your cache. Two cache_peer options affect this part of the
algorithm: weight=N and closest-only.

The weight=N option makes a parent closer than it really is. When calculating
RTTs, Squid divides the actual RTT by this artificial weight. Thus you can give
higher preference to certain parents by increasing their weight value.

The closest-only option disables the first-parent miss feature for a neighbor
cache. In other words, Squid selects a parent (based on ICP/HTCP miss replies)
only if that parent is the closest to the origin server.

4. If Squid receives the expected number of replies (all misses), or if the timeout occurs, it
selects the closest-parent miss neighbor if set. Otherwise, it selects the first-parent miss
neighbor if set.

Squid may not receive any ICP/HTCP replies from parent caches, either because they weren't
queried or because the network dropped some packets. In this case, Squid relies on the
secondary parent (or direct) selection algorithm described in the next section.

If the ICP/HTCP query timeout occurs before receiving the expected number of replies, Squid
prepends the string TIMEOUT_ to the result code in access.log.

10.10.4 Step 3: Secondary Parent Selection

This step is a little tricky. Remember that if the direct flag is DIRECT_YES, Squid never
executes this step. If the flag is DIRECT_NO, Squid calls the getSomeParent() function
(described subsequently) to select a backup parent, in case Step 2 failed to select one.
Following that, Squid adds to the list all parents it believes are alive. Thus, it tries all possible
parent caches before returning an error message to the user.

In the case of DIRECT_MAYBE, Squid adds both a parent cache, and the origin server. The
order, however, depends on the prefer_direct setting. If prefer_direct is enabled, Squid inserts
the origin server into the list first. Next, Squid calls getSomeParent() if the request is
hierarchical or if the nonhierarchical_direct directive is disabled. Finally, Squid adds the origin
server last if prefer_direct is disabled.

The getSomeParent() function selects one of the parents based on the following criteria. In
each case, the parent must be alive and allowed to handle the request according to the
cache_peer_access and cache_peer_domain rules:

● The first parent with the default cache_peer option
● The parent with the round-robin cache_peer option that has the lowest request count
● The first parent that is known to be alive

10.10.5 Retrying

Occasionally, Squid's attempt to forward a request to an origin server or neighbor may fail for
one reason or another. This is why Squid creates a list of appropriate next-hop locations during
the neighbor selection procedure. When one of the following types of errors occurs, Squid can
retry the request at the next server in the list:

● Network congestion or other errors can cause a "connection timeout."
● The origin server or neighbor cache may be temporarily unavailable, causing a

"connection refused" error.
● A sibling may return a 504 (Gateway Timeout) error if the request would cause a cache

miss.
● A neighbor may return an "access denied" error message if the two caches have a

mismatch in access control policies.
● A read error may occur on an established connection before Squid reads the HTTP

message body.
● There may be race conditions with persistent connections.

Squid's algorithm for retrying failed requests is relatively aggressive. It is better for Squid to
keep trying (causing some extra delay), rather than return an error to the user.

 < Day Day Up >

 < Day Day Up >

10.11 How Do I ...

New Squid users often ask the same, or similar, questions about getting Squid to forward
requests in the right way. Here I'll show you how to configure Squid for some common
scenarios.

10.11.1 Send All Requests Through Another Proxy?

You simply need to define a parent and tell Squid it isn't allowed to connect directly to origin
servers. For example:

cache_peer parent.host.name parent 3128 0

acl All src 0/0

never_direct allow All

The drawback to this configuration is that Squid can't forward cache misses if the parent goes
down. If that happens, your users receive the "cannot forward" error message.

10.11.2 Send All Requests Through Another Proxy Unless It's Down?

Try this configuration:

nonhierarchical_direct off

prefer_direct off

cache_peer parent.host.name parent 3128 0 default no-query

Or, if you'd like to use ICP with the other proxy:

nonhierarchical_direct off

prefer_direct off

cache_peer parent.host.name parent 3128 3130 default

With this configuration, Squid forwards all cache misses to the parent as long as it is alive.
Using ICP should cause Squid to detect a dead parent quickly, but at the same time may
incorrectly declare the parent dead on occasion.

10.11.3 Make Sure Squid Doesn't Use Neighbors for Some Requests?

Define an ACL to match the special request:

cache_peer parent.host.name parent 3128 0

acl Special dstdomain special.server.name

always_direct allow Special

In this case, cache misses for requests in the special.server.name domain are always sent to
the origin server. Other requests may, or may not, go through the parent cache.

10.11.4 Send Some Requests Through a Parent to Bypass Local Filters?

Some ISPs (and other organizations) have upstream providers that force HTTP traffic through a
filtering proxy (perhaps with HTTP interception). You might be able to get around their filters if
you can use a different proxy beyond their network. Here's how you can send only special
requests to the far-away proxy:

cache_peer far-away-parent.host.name parent 3128 0

acl BlockedSites dstdomain www.censored.com

cache_peer_access far-away-parent.host.name allow BlockedSites

never_direct allow BlockedSites

 < Day Day Up >

 < Day Day Up >

10.12 Exercises

● Toggle your prefer_direct and/or nonhierarchical_direct settings and look for any
changes in the access.log.

● Enable netdb and view the netdb cache manager page after Squid has been running for
a while.

● If using ICP or HTCP, count the percentage of requests that experienced a timeout
waiting for replies to arrive.

● If you used —enable-cache-digests and have a reasonably full cache, disable the
digest_generation directive and note any change in memory usage.

● Use your operating system's packet filters to block ICP or HTCP messages to your
neighbors. How quickly does Squid change their state from alive to dead, and back
again?

 < Day Day Up >

 < Day Day Up >

Chapter 11. Redirectors

A redirector is an external process that rewrites URIs from client requests. For example,
although a user requests the page http://www.example.com/page1.html, a redirector can
change the request to something else, such as http://www.example.com/page2.html. Squid
fetches the new URI automatically, as though the client originally requested it. If the response
is cachable, Squid stores it under the new URI.

The redirector feature allows you to implement a number of interesting things with Squid. Many
sites use them for access controls, removing advertisements, local mirrors, or even working
around browser bugs.

One of the nice things about using a redirector for access control is that you can send the user
to a page that explains exactly why her request is denied. You may also find that a redirector
offers more flexibility than Squid's built-in access controls. As you'll see shortly, however, a
redirector doesn't have access to the full spectrum of information contained in a client's request.

Many people use a redirector to filter out web page advertisements. In most cases, this
involves changing a request for a GIF or JPEG advertisement image into a request for a small,
blank image, located on a local server. Thus, the advertisement just "disappears" and doesn't
interfere with the page layout.

So in essence, a redirector is really just a program that reads a URI and other information from
its input and writes a new URI on its output. Perl and Python are popular languages for
redirectors, although some authors use compiled languages such as C for better performance.

The Squid source code doesn't come with any redirector programs. As an administrator, you
are responsible for writing your own or downloading one written by someone else. The first part
of this chapter describes the interface between Squid and a redirector process. I also provide a
couple of simple redirector examples in Perl. If you're interested in using someone else's
redirector, rather than programming your own, skip ahead to Section 11.3.

 < Day Day Up >

 < Day Day Up >

11.1 The Redirector Interface

A redirector receives data from Squid on stdin one line at a time. Each line contains the
following four tokens separated by whitespace:

● Request-URI
● Client IP address and fully qualified domain name
● User's name, via either RFC 1413 ident or proxy authentication
● HTTP request method

For example:

http://www.example.com/page1.html 192.168.2.3/user.host.name jabroni GET

The Request-URI is taken from the client's request, including query terms, if any. Fragment
identifier components (e.g., the # character and subsequent text) are removed, however.

The second token contains the client IP address and, optionally, its fully qualified domain name
(FQDN). The FQDN is set only if you enable the log_fqdn directive or use a srcdomain ACL
element. Even then, the FQDN may be unknown because the client's network administrators
didn't properly set up the reverse pointer zones in their DNS. If Squid doesn't know the client's
FQDN, it places a hyphen (-) in the field. For example:

http://www.example.com/page1.html 192.168.2.3/- jabroni GET

The client ident field is set if Squid knows the name of the user behind the request. This
happens if you use proxy authentication, ident ACL elements, or enable ident_lookup_access.
Remember, however, that the ident_lookup_access directive doesn't cause Squid to delay
request processing. In other words, if you enable that directive, but don't use the access
controls, Squid may not yet know the username when writing to the redirector process. If Squid
doesn't know the username, it displays a -. For example:

http://www.example.com/page1.html 192.168.2.3/- - GET

Squid reads back one token from the redirector process: a URI. If Squid reads a blank line, the
original URI remains unchanged.

A redirector program should never exit until end-of-file occurs on stdin. If the process does exit
prematurely, Squid writes a warning to cache.log:

WARNING: redirector #2 (FD 18) exited

If 50% of the redirector processes exit prematurely, Squid aborts with a fatal error message.

11.1.1 Handling URIs That Contain Whitespace

If the Request-URI contains whitespace, and the uri_whitespace directive is set to allow, any
whitespace in the URI is passed to the redirector. A redirector with a simple parser may become
confused in this case. You have two options for handling whitespace in URIs when using a
redirector.

One option is to set the uri_whitespace directive to anything except allow. The default setting,
strip, is probably a good choice in most situations because Squid simply removes the
whitespace from the URI when it parses the HTTP request. See Appendix A for information on
the other values for this directive.

If that isn't an option, you need to make sure the redirector's parser is smart enough to detect
the extra tokens. For example, if it finds more than four tokens in the line received from Squid,
it can assume that the last three are the IP address, ident, and request method. Everything
before the third-to-last token comprises the Request-URI.

11.1.2 Generating HTTP Redirect Messages

When a redirector changes the client's URI, it normally doesn't know that Squid decided to
fetch a different resource. This is, in all likelihood, a gross violation of the HTTP RFC. If you
want to be nicer, and remain compliant, there is a little trick that makes Squid return an HTTP
redirect message. Simply have the redirector insert 301:, 302:, 303:, or 307:, before the new
URI.

For example, if a redirector writes this line on its stdout:

301:http://www.example.com/page2.html

Squid sends a response like this back to the client:

HTTP/1.0 301 Moved Permanently

Server: squid/2.5.STABLE4

Date: Mon, 29 Sep 2003 04:06:23 GMT

Content-Length: 0

Location: http://www.example.com/page2.html

X-Cache: MISS from zoidberg

Proxy-Connection: close

 < Day Day Up >

 < Day Day Up >

11.2 Some Sample Redirectors

Example 11-1 is a very simple redirector written in Perl. Its purpose is to send HTTP requests
for the squid-cache.org site to a local mirror site in Australia. If the requested URI looks like it
is for www.squid-cache.org or one of its mirror sites, this script outputs a new URI with the
hostname set to www1.au.squid-cache.org.

A common problem first-time redirector writers encounter is buffered I/O. Note that here I
make sure stdout is unbuffered.

Example 11-1. A simple redirector in Perl

#!/usr/bin/perl -wl

$|=1; # don't buffer the output

while (<>) {

 ($uri,$client,$ident,$method) = ();

 ($uri,$client,$ident,$method) = split;

 next unless ($uri =~ m,^http://.*\.squid-cache\.org(\S*),);

 $uri = "http://www1.au.squid-cache.org$1";

} continue {

 print "$uri";

}

Example 11-2 is another, somewhat more complicated, example. Here I make a feeble attempt
to deny requests when the URI contains "bad words." This script demonstrates an alternative
way to parse the input fields. If I don't get all five required fields, the redirector returns a blank
line, leaving the request unchanged.

This example also gives preferential treatment to some users. If the ident string is equal to
"BigBoss," or comes from the 192.168.4.0 subnet, the request is passed through. Finally, I use
the 301: trick to make Squid return an HTTP redirect to the client. Note, this program is neither
efficient nor smart enough to correctly deny so-called bad requests.

Example 11-2. A slightly less simple redirector in Perl

#!/usr/bin/perl -wl

$|=1; # don't buffer the output

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/squid-cache.org
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/www.squid-cache.org
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/www1.au.squid-cache.org

$DENIED = "http://www.example.com/denied.html";

&load_word_list();

while (<>) {

 unless (m,(\S+) (\S+)/(\S+) (\S+) (\S+),) {

 $uri = '';

 next;

 }

 $uri = $1;

 $ipaddr = $2;

 #$fqdn = $3;

 $ident = $4;

 #$method = $5;

 next if ($ident eq 'TheBoss');

 next if ($ipaddr =~ /^192\.168\.4\./);

 $uri = "301:$DENIED" if &word_match($uri);

} continue {

 print "$uri";

}

sub load_word_list {

 @words = qw(sex drugs rock roll);

}

sub word_match {

 my $uri = shift;

 foreach $w (@words) { return 1 if ($uri =~ /$w/); }

 return 0;

}

For more ideas about writing your own redirector, I recommend reading the source code for the
redirectors mentioned in Section 11.5.

 < Day Day Up >

 < Day Day Up >

11.3 The Redirector Pool

A redirector can take an arbitrarily long time to return its answer. For example, it may need to
make a database query, search through long lists of regular expressions, or make some
complex computations. Squid uses a pool of redirector processes so that they can all work in
parallel. While one is busy, Squid hands a new request off to another.

For each new request, Squid examines the pool of redirector processes in order. It submits the
request to the first idle process. If your request rate is very low, the first redirector may be able
to handle all requests itself.

You can control the size of the redirector pool with the redirect_children directive. The default
value is five processes. Note that Squid doesn't dynamically increase or decrease the size of the
pool depending on the load. Thus, it is a good idea to be a little liberal. If all redirectors are
busy, Squid queues pending requests. If the queue becomes too large (bigger than twice the
pool size), Squid exits with a fatal error message:

FATAL: Too many queued redirector requests

In this case, you need to increase the size of the redirector pool or change something so that
the redirectors can process requests faster. You can use the cache manager's redirector page to
find out if you have too few, or too many redirectors running. For example:

% squidclient mgr:redirector

...

Redirector Statistics:

program: /usr/local/squid/bin/myredir

number running: 5 of 5

requests sent: 147

replies received: 142

queue length: 2

avg service time: 953.83 msec

 # FD PID # Requests Flags Time Offset Request

 1 10 35200 46 AB 0.902 0 http://...

 2 11 35201 29 AB 0.401 0 http://...

 3 12 35202 25 AB 1.009 1 cache_o...

 4 14 35203 25 AB 0.555 0 http://...

 5 15 35204 21 AB 0.222 0 http://...

If, as in this example, you see that the last redirector has almost as many requests as the
second to last, you should probably increase the size of the redirector pool. If, on the other
hand, you see many redirectors with no requests, you can probably decrease the pool size.

 < Day Day Up >

 < Day Day Up >

11.4 Configuring Squid

The following five squid.conf directives control the behavior of redirectors in Squid.

11.4.1 redirect_program

The redirect_program directive specifies the command line for the redirector program. For
example:

redirect_program /usr/local/squid/bin/my_redirector -xyz

Note, the redirector program must be executable by the Squid user ID. If, for some reason,

Squid can't execute the redirector, you should see an error message in cache.log.
[1]

 For
example:

[1] This message appears only in cache.log, and not on stdout, if you use the -d
option, or in syslog, if you use the -s option.

ipcCreate: /usr/local/squid/bin/my_redirector: (13) Permission denied

Due to the way Squid works, the main Squid process may be unaware of problems executing
the redirector program. Squid doesn't detect the error until it tries to write a request and read a
response. It then prints:

WARNING: redirector #1 (FD 6) exited

Thus, if you see such a message for the first request sent to Squid, check cache.log closely for
other errors, and make sure the program is executable by Squid.

11.4.2 redirect_children

The redirect_children directive specifies how many redirector processes Squid should start. For
example:

redirect_children 20

Squid warns you (via cache.log) when all redirectors are simultaneously busy:

WARNING: All redirector processes are busy.

WARNING: 1 pending requests queued.

If you see this warning, you should increase the number of child processes and restart (or
reconfigure) Squid. If the queue size becomes twice the number of redirectors, Squid aborts
with a fatal message.

Don't attempt to disable Squid's use of the redirectors by setting redirect_children to 0.
Instead, simply remove the redirect_program line from squid.conf.

11.4.3 redirect_rewrites_host_header

Squid normally updates a request's Host header when using a redirector. That is, if the
redirector returns a new URI with a different hostname, Squid puts the new hostname in the
Host header. If you use Squid as a surrogate (see Chapter 15), you might want to disable this
behavior by setting the redirect_rewrites_host_header directive to off:

redirect_rewrites_host_header off

11.4.4 redirector_access

Squid normally sends every request through a redirector. However, you can use the
redirector_access rules to send certain requests through selectively. The syntax is identical to
http_access:

redirector_access allow|deny [!]ACLname ...

For example:

acl Foo src 192.168.1.0/24

acl All src 0/0

redirector_access deny Foo

redirector_access allow All

In this case, Squid skips the redirector for any request that matches the Foo ACL.

11.4.5 redirector_bypass

If you enable the redirector_bypass directive, Squid bypasses the redirectors when all of them
are busy. Normally, Squid queues pending requests until a redirector process becomes
available. If this queue grows too large, Squid exits with a fatal error message. Enabling this
directive ensures that Squid never reaches that state.

The tradeoff, of course, is that some user requests may not be redirected when the load is
high. If that's all right with you, simply enable the directive with this line:

redirector_bypass on

 < Day Day Up >

 < Day Day Up >

11.5 Popular Redirectors

As I already mentioned, the Squid source code doesn't include any redirectors. However, you
can find a number of useful third-party redirectors linked from the Related Software page on
http://www.squid-cache.org. Here are some of the more popular offerings:

11.5.1 Squirm

http://squirm.foote.com.au/

Squirm comes from Chris Foote. It is written in C and distributed as source code under the GNU
General Public License (GPL). Squirm's features include:

● Being very fast with minimal memory usage
● Full regular expression pattern matching and replacement
● Ability to apply different redirection lists to different client groups
● Interactive mode for testing on the command line
● Fail-safe mode passes requests through unchanged in the event that configuration files

contain errors
● Writing debugging, errors, and more to various log files

11.5.2 Jesred

http://www.linofee.org/~elkner/webtools/jesred/

Jesred comes from Jens Elkner. It is written in C, based on Squirm, and also released under the
GNU GPL. Its features include:

● Being faster than Squirm, with slightly more memory usage
● Ability to reread its configuration files while running
● Full regular expression pattern matching and replacement
● Fail-safe mode passes requests through unchanged in the event that configuration files

contain errors
● Optionally logging rewritten requests to a log file

11.5.3 squidGuard

http://www.squidguard.org/

squidGuard comes from Pål Baltzersen and Lars Erik Håland at Tele Danmark InterNordia. It is
released under the GNU GPL. The authors also make sure squidGuard compiles easily on
modern Unix systems. Their site contains a lot of good documentation. Here are some of
squidGuard's features:

● Highly configurable; you can apply different rules to different groups of clients or users
and at different times or days

http://www.squid-cache.org/
http://squirm.foote.com.au/
http://www.linofee.org/~elkner/webtools/jesred/
http://www.squidguard.org/

● URI substitution, not just replacement, à la sed
● printf-like substitutions allow passing parameters to CGI scripts for customized messages
● Supportive of the 301/302/303/307 HTTP redirect status code feature for redirectors
● Selective logging for rewrite rule sets

At the squidGuard site, you can also find a blacklist of more than 100,000 sites categorized as
porn, aggressive, drugs, hacking, ads, and more.

11.5.4 AdZapper

http://www.adzapper.sourceforge.net

AdZapper is a popular redirector because it specifically targets removal of advertisements from
HTML pages. It is a Perl script written by Cameron Simpson. AdZapper can block banners
(images), pop-up windows, flash animations, page counters, and web bugs. The script includes
a list of regular expressions that match URIs known to contain ads, pop-ups, etc. Cameron
updates the script periodically with new patterns. You can also maintain your own list of
patterns.

 < Day Day Up >

http://www.adzapper.sourceforge.net/

 < Day Day Up >

11.6 Exercises

● Write a redirector that never changes the requested URI and configure Squid to use it.
● While running tail -f cache.log, kill Squid's redirector processes one by one until

something interesting happens.
● Download and install one of the redirectors mentioned in the previous section.

 < Day Day Up >

 < Day Day Up >

Chapter 12. Authentication Helpers

I originally talked about proxy authentication in Section 6.1.2.12. However, I only explained
how to write access control rules that use proxy authentication. Here, I'll show you how to
select and configure the particular authentication helpers.

Recall that Squid supports three methods for gathering authentication credentials from users:
Basic, Digest, and NTLM. These methods specify how Squid receives the username and
password from a client. From a security standpoint, Basic authentication is extremely weak.
Digest and NTLM are significantly stronger. For each method, Squid provides some
authentication modules, or helper processes, which actually validate the credentials.

All of the authentication helpers that I mention here are included in the Squid source code
distribution. You can compile them with ./configure options that match their directory names.
For example:

% ls helpers/basic_auth

LDAP NCSA getpwnam

MSNT PAM multi-domain-NTLM

Makefile SASL winbind

Makefile.am SMB

Makefile.in YP

% ./configure --enable-basic-auth-helpers=LDAP,NCSA ...

Helper programs are normally installed in the $prefix/libexec directory.

As with redirectors, Squid uses a pool of authentication helper processes. A request for
authentication is sent to the first idle helper. When all authenticator processes are busy, Squid
queues pending requests. If the queue becomes too large, Squid exits with a fatal error
message. In most cases, Squid caches authentication results. This reduces the load on the
helper processes and improves response time.

 < Day Day Up >

 < Day Day Up >

12.1 Configuring Squid

The auth_param directive controls every aspect of configuring Squid's authentication helpers.
The different methods (Basic, Digest, NTLM) have some things in common, and some unique
parameters. The first argument following auth_param must be one of basic, digest, or ntlm.
I'll cover this directive in detail for each authentication scheme later in the chapter.

In addition to auth_param, Squid has two more directives that affect proxy authentication. You
can use the max_user_ip ACL to prevent users from sharing their username and password with
others. If Squid detects the same username coming from too many different IP addresses, the
ACL is a match and you can deny the request. For example:

acl FOO max_user_ip 2

acl BAR proxy_auth REQUIRED

http_access deny FOO

http_access allow BAR

In this case, if a user submits requests from three or more different IP addresses, Squid denies
the request. The authenticate_ip_ttl directive controls how long Squid remembers the source IP
addresses for each user. A smaller TTL makes it easier for users with frequently changing IP
addresses. You can use larger TTLs in an environment where users have the same IP address
for long periods of time.

 < Day Day Up >

 < Day Day Up >

12.2 HTTP Basic Authentication

Basic authentication is the simplest and least secure that HTTP has to offer. It essentially transmits
user passwords as cleartext, although they are encoded into printable characters. For example, if
the user types her name as Fannie and her password as FuRpAnTsClUb, the user-agent first
combines the two into a single string, with name and password separated by a colon:

Fannie:FuRpAnTsClUb

Then it encodes this string with base64 encoding, as defined in RFC 2045. It looks like this in the
HTTP headers:

Authorization: Basic RmFubmllOkZ1UnBBblRzQ2xVYgo=

Anyone who happens to capture your users' HTTP requests can easily get both the username and
password:

% echo RmFubmllOkZ1UnBBblRzQ2xVYgo= | /usr/local/lib/python1.5/base64.py -d

Fannie:FuRpAnTsClUb

As required by the HTTP/1.1 RFC, Squid doesn't forward "consumed" authorization credentials to
other servers. In other words, if the credentials are for access to Squid, the Authorization header

is removed from outgoing requests.
[1]

[1] Unless you configure a peer with the login=PASS option.

You'll notice that some of the Basic authenticators can be configured to check the system password
file. Because Basic credentials aren't encrypted, it is a bad idea to combine login passwords with
cache access passwords. If you choose to use the getpwnam authenticator, make sure you fully
understand the implications of having your users' passwords transmitted in the clear across your
network.

HTTP Basic authentication supports the following auth_param parameters:

● auth_param basic program command
● auth_param basic children number
● auth_param basic realm string
● auth_param basic credentialsttl time-specification

The program parameter specifies the command, including arguments, for the helper program. In
most cases, this will be the pathname to one of the authentication helper programs that you
compiled. By default, they live in /usr/local/squid/libexec.

The children parameter tells Squid how many helper processes to use. The default value is 5,
which is a good starting point if you don't know how many Squid needs to handle the load. If you
specify too few, Squid warns you with messages in cache.log.

The realm parameter is the authentication realm string that the user-agent should present to the
user when prompting for a username and password. You can use something simple, such as
"access to the Squid caching proxy."

The credentialsttl parameter specifies the amount of time that Squid internally caches
authentication results. A larger value reduces the load on the external authenticator processes, but
increases the amount of time until Squid detects changes to the authentication database. Note, this
only affects positive results (i.e., successful validations). Negative results aren't cached inside
Squid. The default TTL value is two hours.

Here is a complete example:

auth_param basic program /usr/local/squid/libexec/pam_auth

auth_param basic children 10

auth_param basic realm My Awesome Squid Cache

auth_param basic credentialsttl 1 hour

acl KnownUsers proxy_auth REQUIRED

http_access allow KnownUsers

Next I will discuss the Basic authentication helper programs that come with Squid.

12.2.1 NCSA

./configure —enable-basic-auth-helpers=NCSA

The NCSA authentication helper is relatively popular due to its simplicity and history. It stores
usernames and passwords in a single text file, similar to the Unix /etc/passwd file. This password
file format was originally developed as a part of the NCSA HTTP server project.

You pass the path to the password file as the program's single command-line argument in squid.
conf:

auth_param basic program /usr/local/squid/libexec/ncsa_auth

 /usr/local/squid/etc/passwd

You can use the htpasswd program that comes with Apache to create and update the password file.
Also, you can download it from http://www.squid-cache.org/htpasswd/. From that page, you can
also download the chpasswd CGI script, which allows users to change their own passwords if
necessary.

12.2.2 LDAP

./configure —enable-basic-auth-helpers=LDAP

http://www.squid-cache.org/htpasswd/

The LDAP helper interfaces to a Lightweight Directory Access Protocol server. The OpenLDAP
libraries and header files must be installed before you can compile the squid_ldap_auth helper. You
can find OpenLDAP at http://www.openldap.org/.

The squid_ldap_auth program requires at least two arguments: the base distinguished name (DN)
and the LDAP server hostname. For example:

auth_param basic program /usr/local/squid/libexec/squid_ldap_auth

 -b "ou=people,dc=example,dc=com" ldap.example.com

The LDAP helper has a Unix manual page that describes all of its options and parameters. However,
Squid's manual pages aren't normally installed when you run make install. You can read the manual
page by locating it in the source tree and manually running nroff. For example:

% cd helpers/basic_auth/LDAP

% nroff -man squid_ldap_auth.8 | less

12.2.3 MSNT

./configure —enable-basic-auth-helpers=MSNT

The MSNT authenticator interfaces to a Microsoft NT domain database via the Server Message Block
(SMB) protocol. It uses a small configuration file, named msntauth.conf, which must be placed in
the $prefix/etc or —sysconfidr directory. You can specify up to five NT domain controllers in the
configuration file. For example:

server pdc1_host bdc1_host my_nt_domain

server pdc2_host bdc2_host another_nt_domain

By default, the MSNT authenticator allows any user validated by the server. However, it also has
the ability to allow or deny specific usernames. If you create an allowusers file, only the users listed
there are allowed access to Squid. You might want to use this feature if you have a large number of
users on the NT server, but only a small number who are allowed to use the cache. Alternatively,
you can create a denyusers file. Any user listed in that file is automatically denied access, even
before checking the allowusers file.

Alternatively, you can allow or deny specific usernames by placing them in the proxy_auth ACL as
described in Section 6.1.2.12.

For additional documentation, see the README.html file in the helpers/basic_auth/MSNT directory.

12.2.4 Multi-domain-NTLM

./configure —enable-basic-auth-helpers=multi-domain-NTLM

The multi-domain-NTLM authenticator is similar to MSNT. Both send queries to a Windows NT
domain database. Whereas MSNT queries up to five domain controllers, the multi-domain-NTLM

http://www.openldap.org/

authenticator requires users to insert the NT domain name before their username, like this:

ntdomain\username

The multi-domain-NTLM helper program is a relatively short Perl script. It relies on the Authen::
SMB package from CPAN (http://www.cpan.org). If you don't hardcode the domain controller
hostnames in the Perl script, it utilizes the nmblookup program from the Samba package (www.
samba.org) to discover them automatically.

The Perl script is named smb_auth.pl. It might look like this in squid.conf:

auth_param basic program /usr/local/squid/libexec/smb_auth.pl

Documentation for multi-domain-NTLM is thin, but if you understand Perl, you should be able to
figure it out by reading the code.

12.2.5 PAM

./configure —enable-basic-auth-helpers=PAM

In a sense, Pluggable Authentication Modules (PAM) are the glue between authentication methods
(e.g., one-time passwords, kerberos, smart cards) and applications requiring authentication
services (e.g., ssh, ftp, imap). Your system's /etc/pam.conf file describes which methods to use for
each application.

To use Squid's PAM authentication helper, you need to add "squid" as a service in the /etc/pam.
conf file and specify which PAM modules to use. For example, to use the Unix password file on
FreeBSD, you might put this in pam.conf:

squid auth required pam_unix.so try_first_pass

To check the Unix password database, the pam_auth process must run as
root. This is a security risk and you must manually make the executable
setuid root. If pam_auth doesn't run as root, and it is configured to check
the Unix password database, every request for authentication fails.

The PAM authenticator is documented with a manual page that you can find in the helpers/
basic_auth/PAM directory.

12.2.6 SASL

./configure —enable-basic-auth-helpers=SASL

The Simple Authentication and Security Layer (SASL) is an IETF proposed standard, documented in
RFC 2222. It is a protocol for negotiating security parameters for connection-based protocols (e.g.,
FTP, SMTP, HTTP). However, the SASL authenticator is similar to the PAM authenticator. It
interfaces with a third-party library to query a number of different authentication databases.

http://www.cpan.org/
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/www.samba.org
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/www.samba.org

Specifically, Squid's SASL authenticator requires the Cyrus SASL library developed by Carnegie
Mellon University. You can find it at http://asg.web.cmu.edu/sasl/.

You can configure the SASL authenticator to check the traditional password file, the PAM system, or
any of the other databases supported by CMU's library. For further information, see the README file
in the helpers/basic_auth/SASL directory.

12.2.7 SMB

./configure —enable-basic-auth-helpers=SMB

SMB is another authenticator for Microsoft Windows databases. The authenticator itself is a C
program. That program executes a shell script each time it talks to the Windows domain controller.
The shell script contains commands from the Samba package. Thus, you'll need to install Samba
before using the SMB authenticator.

The SMB authenticator program, smb_auth takes the Windows domain name as an argument. For
example:

auth_param basic program /usr/local/squid/libexec/smb_auth -W MYNTDOMAIN

You can list multiple domains by repeating the -W option. For full documentation, see http://www.
hacom.nl/~richard/software/smb_auth.html.

12.2.8 YP

./configure —enable-basic-auth-helpers=YP

The YP authenticator checks a system's "Yellow Pages" (a.k.a. NIS) directory. To use it with Squid,
you need to provide the NIS domain name and the name of the password database, usually passwd.
byname on the authenticator command line:

auth_param basic program /usr/local/squid/libexec/yp_auth my.nis.domain passwd.byname

The yp_auth program is relatively simple, but doesn't have any documentation.

12.2.9 getpwnam

./configure —enable-basic-auth-helpers=getpwnam

This authenticator is simply an interface to the getpwnam() function found in the C library on Unix
systems. The getpwnam() function looks in the system password file for a given username. If you
use YP/NIS, getpwnam() checks those databases as well. On some operating systems, it may also
utilize the PAM system. You can use this authenticator if your cache users have login accounts on
the system where Squid is running. Alternatively, you could set up "nologin" accounts in the
password file for your cache users.

12.2.10 winbind

http://asg.web.cmu.edu/sasl/
http://www.hacom.nl/~richard/software/smb_auth.html
http://www.hacom.nl/~richard/software/smb_auth.html

./configure —enable-basic-auth-helpers=winbind

Winbind is a feature of the Samba suite of software. It allows Unix systems to utilize Windows NT
user account information. The winbind authenticator is a client for the Samba winbindd daemon.
You must have Samba installed and the winbindd daemon running before you can use this
authenticator.

The name of the winbind Basic authenticator is wb_basic_auth. It typically looks like this in squid.
conf:

auth_param basic program /usr/local/squid/libexec/wb_basic_auth

12.2.11 The Basic Auth API

The interface between Squid and a Basic authenticator is quite simple. Squid sends usernames and
passwords to the authenticator process, separated by a space and terminated by a newline. The
authenticator reads the username and password pairs on stdin. After checking the credentials, the
authenticator writes either OK or ERR to stdout.

Any "URL-unsafe" characters are encoded according to the RFC 1738
rules. Thus, the name "jack+jill" becomes "jack%2bjill". Squid accepts
usernames and passwords that contain whitespace characters. For
example "a password" becomes "a%20password". The authenticator
program should be prepared to handle whitespace and other special
characters after decoding the name and password.

You can easily test a Basic authenticator on the command line. Simply run the authenticator
program in a terminal window and enter usernames and passwords. Or, you can do it like this:

% echo "bueller pencil" | ./ncsa_auth /tmp/passwd

OK

Here is a simple template authenticator written in Perl:

#!/usr/bin/perl -wl

use URI::Escape;

$|=1; # don't buffer stdout

while (<>) {

 ($u,$p) = split;

 $u = uri_unescape($u);

 $p = uri_unescape($p);

 if (&valid($u,$p)) {

 print "OK";

 } else {

 print "ERR";

 }

}

sub valid {

 my $user = shift;

 my $pass = shift;

 ...

}

 < Day Day Up >

 < Day Day Up >

12.3 HTTP Digest Authentication

Digest authentication is designed to be significantly more secure than Basic. It makes extensive
use of cryptographic hash functions and other tricks. Essentially, instead of sending a cleartext
password, the user-agent sends a "message digest" of the password, username, and other
information. (See RFC 2617 and O'Reilly's HTTP: The Definitive Guide for more information.)

HTTP Digest authentication supports the following auth_param parameters:

● auth_param digest program command
● auth_param digest children number
● auth_param digest realm string
● auth_param digest nonce_garbage_interval time-specification
● auth_param digest nonce_max_duration time-specification
● auth_param digest nonce_max_count number
● auth_param digest nonce_strictness on|off

The program, children, and realm parameters are the same as for Basic authentication. All of
the unique parameters relate to Digest authentication's use of something called nonce.

A nonce is a special string of data, which changes occasionally. During the authentication
process, the server (Squid in this case) provides a nonce value to the client. The client uses the
nonce value when generating the digest. Without the nonce data, an attacker could simply
intercept and replay the digest values to gain access to Squid.

The nonce_garbage_interval parameter tells Squid how often to clean up the nonce cache.
The default value is every 5 minutes. A very busy cache with many Digest authentication clients
may benefit from more frequent nonce garbage collection.

The nonce_max_duration parameter specifies how long each nonce value remains valid. When
a client attempts to use a nonce value older than the specified time, Squid generates a 401
(Unauthorized) response and sends along a fresh nonce value so the client can re-authenticate.
The default value is 30 minutes. Note that any captured Authorization headers can be used in
a replay attack until the nonce value expires. Setting the nonce_max_duration too low,
however, causes Squid to generate 401 responses more often. Each 401 response essentially
wastes the user's time as the client and server renegotiate their authentication credentials.

The nonce_max_count parameter places an upper limit on how many times a nonce value may
be used. After the specified number of requests, Squid returns a 401 (Unauthorized) response
and a new nonce value. The default is 50 requests.

Nonce counts are another feature designed to prevent replay attacks. Squid sends qop=auth in
its 401 responses. This causes user-agents to include a nonce count in their requests, and to
use the nonce count when generating the digest itself. Nonce count values must always
increase over time. A decreasing nonce count indicates a replay attack. However, the counts
may increase, but skip some values, for example: 5,6,8,9. The nonce_strictness parameter

determines what Squid does in this case. If set to on, Squid returns a 401 response if a nonce
count doesn't equal the previous nonce count plus one. If set to off, Squid allows gaps in the
nonce count values.

Here is a complete example:

auth_param digest program /usr/local/squid/libexec/digest_pw

auth_param digest children 8

auth_param digest realm Access to Squid

auth_param digest nonce_garbage_interval 10 minutes

auth_param digest nonce_max_duration 45 minutes

auth_param digest nonce_max_count 100

auth_param digest nonce_strictness on

acl KnownUsers proxy_auth REQUIRED

http_access allow KnownUsers

Next I will discuss the Digest authentication helper programs that come with Squid.

12.3.1 password

./configure —enable-auth=digest —enable-digest-auth-helpers=password

This is a simple, reference implementation of Digest authentication for Squid. It demonstrates
how to write a Digest-based authentication helper. This code simply reads usernames and
passwords from a plaintext file. The format of this file is as follows:

username:password

The password file pathname is the single argument to the digest_pw_auth program. For
example:

auth_param digest program /usr/local/squid/libexec/digest_pw_auth

 /usr/local/squid/etc/digest_passwd

auth_param digest realm Some Nifty Realm

Squid doesn't provide any tools to maintain a password file in this format. If you choose to use
Digest authentication, you must manage the file on your own, perhaps with a text editor or Perl
scripts.

12.3.2 Digest Authentication API

If you'd like to write your own Digest authentication helper, you need to understand the
communication between Squid and the helper process. The exchange is similar to that for Basic
authentication, albeit a little more complicated.

The first difference is that Squid writes the username and realm string, rather than username
and password, to the helper process. These strings are quoted and separated by a colon. For
example:

"bobby":"Tom Landry Middle School"

The second difference is that the helper process returns an MD5 digest string, rather than OK, if
the username is valid. As with Basic authentication, the helper process writes ERR if the user
doesn't exist or if the input from Squid is unparseable for some reason.

The helper returns an MD5 digest with the username, realm, and password. The three strings
are concatenated together and separated by colons:

username:realm:password

Remember that the password isn't sent in the HTTP request. Rather, the helper retrieves the
user's password from a database (like the plaintext file used by the password helper). For
example, let's say that Bobby's password is CapeRs. The helper process receives the username
and realm from Squid, gets the password from its database, and calculates an MD5 checksum
of this string:

bobby:Tom Landry Middle School:CapeRs

The Squid source code includes a library function, DigestCalcHA1(), which implements this
calculation. We can test all this in a terminal window to see what the helper returns:

% echo 'bobby:CapeRs' > /tmp/pw

% echo bogus_input | digest_pw_auth /tmp/pw

ERR

% echo "nouser":"some realm" | digest_pw_auth /tmp/pw

ERR

% echo '"bobby":"Tom Landry Middle School"' | digest_pw_auth /tmp/pw

c7ca3efda238c65b2d48684a51baa90e

Squid stores this MD5 checksum and uses it in other parts of the Digest authentication
algorithm. Note that the checksum only changes when the user changes his password. In
Squid's current Digest implementation, these checksums are kept in memory as long as the
user remains active. If the user is inactive for authenticate_ttl seconds, the MD5 checksum may
be removed from Squid's memory. Upon the next request from that user, Squid asks the

external helper process to calculate it again.

 < Day Day Up >

 < Day Day Up >

12.4 Microsoft NTLM Authentication

NTLM
[2]

 is a proprietary connection authentication protocol from Microsoft. A number of
groups, including the Squid developers, have reverse-engineered the protocol from what little
information is available and by examining network traffic. You can find some technical details at
http://www.innovation.ch/java/ntlm.html.

[2] NTLM apparently stands for "NT LanMan" or perhaps "NT Lan Manager."

NTLM uses a three-way handshake to authenticate a connection. First, the client sends its
request with a couple of identifiers. Second, the server sends back a challenge message. Third,
the client sends its request again with a response to the challenge. At this point, the connection
is authenticated and any further requests on the same connection don't require any challenge/
response information. If the connection is closed, the client and server must repeat the entire
three-way handshake. Persistent connections help reduce this overhead for NTLM.

NTLM uses cryptographic hash functions and nonce values, similar to Digest authentication,
although experts believe NTLM is weaker.

NTLM authentication supports the following auth_param parameters:

● auth_param ntlm program command
● auth_param ntlm children number
● auth_param ntlm max_challenge_reuses number
● auth_param ntlm max_challenge_lifetime time-specification

The program and children parameters are the same as for Basic and Digest authentication.
The remaining parameters determine how often Squid may reuse a single challenge token.

The max_challenge_reuses parameter specifies how many times a challenge token may be
reused. The default value is 0, so that challenges are never reused. Increasing this value may
reduce the computational load on Squid and the NTLM helper processes, at the risk of
weakening the protocol's security.

Similarly, the max_challenge_lifetime parameter places a time limit on challenge reuses,
even if the max_challenge_reuses count has not been reached. The default value is 60
seconds.

Here is a complete example:

auth_param ntlm program /usr/local/squid/libexec/ntlm_auth foo\bar

auth_param ntlm children 12

auth_param ntlm max_challenge_reuses 5

http://www.innovation.ch/java/ntlm.html

auth_param ntlm max_challenge_lifetime 2 minutes

acl KnownUsers proxy_auth REQUIRED

http_access allow KnownUsers

Squid comes with the following NTLM authentication helper programs:

12.4.1 SMB

./configure —enable-auth=ntlm —enable-ntlm-auth-helpers=SMB

The Server Message Block (SMB) authenticator for NTLM is similar to those for Basic
authentication. Your users can simply supply their Windows NT domain, username, and
password. This authenticator can load balance between multiple domain controllers. The
domain and controller names go on the command line:

auth_param ntlm program /usr/local/squid/libexec/ntlm_auth

 domain\controller [domain\controller ...]

12.4.2 winbind

./configure —enable-auth=ntlm —enable-ntlm-auth-helpers=winbind

This authenticator is similar to winbind for Basic authentication. Both require that you have the
Samba winbindd daemon installed and running. The name of the winbind Basic authenticator is
wb_nltm_auth. It typically looks like this in squid.conf:

auth_param basic program /usr/local/squid/libexec/wb_ntlm_auth

12.4.3 NTLM Authentication API

The communication between Squid and an NTLM authenticator is much more complicated than
for Basic and Digest. One reason is that each helper process actually creates its own challenge.
Thus, helpers become "stateful" and Squid must remember which connections belong to which
helpers.

Squid and the helper processes use a handful of two-character codes to indicate what they are
sending. Those codes are as follows:

YR

Squid sends this to a helper when it needs a new challenge token. This is always the
first communication between the two processes. It may also occur at any time that
Squid needs a new challenge, due to the auth_param max_challenge_lifetime and

max_challenge_uses parameters. The helper should respond with a TT message.

TT challenge

A helper sends this message back to Squid and includes a challenge token. It is sent in
response to a YR request. The challenge is base64-encoded, as defined by RFC 2045.

KK credentials

Squid sends this to a helper when it wants to authenticate a user's credentials. The
helper responds with either AF, NA, BH, or LD.

AF username

The helper sends this message back to Squid when the user's authentication credentials
are valid. The helper sends the username with this message because Squid doesn't try
to decode the NTLM Authorization header.

NA reason

The helper sends this message back to Squid when the user's credentials are invalid. It
also includes a "reason" string that Squid can display on an error page.

BH reason

The helper sends this message back to Squid when the validation procedure fails. This
might happen, for example, when the helper process is unable to communicate with a
Windows NT domain controller. Squid rejects the user's request.

LD username

This helper-to-Squid response is similar to BH, except that Squid allows the user's
request. Like AF, it returns the username. To use this feature, you must compile Squid
with the —enable-ntlm-fail-open option.

Since this protocol is relatively complicated, you'll probably be better off to start with one of the
two skeleton authenticators included in the Squid source distribution. The no_check helper is
written in Perl, and fakeauth is written in C. You can find them in the helpers/ntlm_auth
directory.

 < Day Day Up >

 < Day Day Up >

12.5 External ACLs

As of Version 2.5, Squid includes a new feature known as external ACLs. These are ACL elements
that are implemented in external helper processes. You instruct Squid to write certain information
to the helper, which then responds with either OK or ERR. Refer to Section 6.1.3 for a description of
the external_acl_type syntax. Here, I'll only discuss the particular external ACL helper programs
that come with the Squid source code.

12.5.1 ip_user

./configure —enable-external-acl-helpers=ip_user

This helper reads usernames and client IP addresses as input. It checks the two values against a
configuration file to decide whether or not the combination is valid. To use this ACL helper, you
would add lines like this to squid.conf:

external_acl_type ip_user_helper %SRC %LOGIN

 /usr/local/squid/libexec/ip_user -f /usr/local/squid/etc/ip_user.conf

acl AclName external ip_user_helper

%SRC is replaced with the client's IP address and %LOGIN is replaced with the username for each
request. The ip_user.conf configuration file has the following format:

ip_addr[/mask] user|@group|ALL|NONE

For example:

127.0.0.1 ALL

192.168.1.0/24 bob

10.8.1.0/24 @lusers

172.16.0.0/16 NONE

This configuration file causes ip_user to return OK for any request coming from 127.0.0.1, for Bob's
requests coming from the 192.168.1.0/24 network, for any name in the luser group when the
request comes from the 10.8.1.0/24 network, and returns ERR for any request from the
172.16.0.0/16 network. It also returns ERR for any address and username pair that doesn't appear
in the list.

12.5.2 ldap_group

./configure —enable-external-acl-helpers=ldap_group

This helper determines whether or not a user belongs to a particular LDAP group. You specify the

LDAP group names on the acl line. It might look like this in your configuration file:

external_acl_type ldap_group_helper %LOGIN /usr/local/squid/libexec/squid_ldap_group

 -b "ou=people,dc=example,dc=com" ldap.example.com

acl AclName external ldap_group_helper GroupRDN ...

Note that you must have the OpenLDAP (http://www.openldap.org) libraries installed on your
system to compile the squid_ldap_group helper program.

12.5.3 unix_group

./configure —enable-external-acl-helpers=unix_group

This helper looks for usernames in the Unix group database (e.g., /etc/group file). You specify the
groups to check on the helper command line as follows:

external_acl_type unix_group_helper %LOGIN

 /usr/local/squid/libexec/check_group -g group1 -g group2 ...

acl AclName external unix_group_helper

Alternatively, you can specify groups on the acl line. This allows you to use the same helper for
different groups:

external_acl_type unix_group_helper %LOGIN /usr/local/squid/libexec/check_group

acl AclName1 external unix_group_helper group1 ...

acl AclName2 external unix_group_helper group2 ...

12.5.4 wbinfo_group

./configure —enable-external-acl-helpers=wbinfo_group

This helper is a short Perl script that utilizes the wbinfo program from the Samba package. wbinfo is
a client for the winbindd daemon. The script expects a single Unix group name following the
username on each request. Thus, you must put a group name on the acl line:

external_acl_type wbinfo_group_helper %LOGIN /usr/local/squid/libexec/wbinfo_group.pl

acl AclName external wbinfo_group_helper group

12.5.5 winbind_group

./configure —enable-external-acl-helpers=winbind_group

This helper, written in C, also queries a winbindd server about group membership of Windows NT

http://www.openldap.org/

usernames. It is based on the winbind helpers for Basic and NTLM authentication. You can specify
multiple group names on the acl command line:

external_acl_type winbind_group_helper %LOGIN /usr/local/squid/libexec/wb_check_group

acl AclName external winbind_group_helper group1 group2 ...

12.5.6 Write Your Own

The external ACL interface offers a lot of flexibility. Chances are you can use it to implement almost
any access control check not supported by the built-in methods. Writing an external ACL is a two-
step process. First, you must decide what request information the helper program needs to make a
decision. Place the appropriate keywords on an external_acl_type line, along with the pathname to
the helper program. For example, if you want to write an external ACL helper that uses the client's
IP address, the user's name, and the value of the Host header, you would write something like:

external_acl_type MyAclHelper %SRC %LOGIN %{Host}

 /usr/local/squid/libexec/myaclhelper

The second step is to write the myaclhelper program. It must read the request tokens on stdin,
make its decision, then write either OK or ERR to stdout. Continuing with the previous example, this
Perl script illustrates how to do it:

#!/usr/bin/perl -wl

require 'shellwords.pl';

$|=1;

while (<>) {

 ($ip,$name,$host) = &shellwords;

 if (&valid($ip,$name,$host)) {

 print "OK";

 } else {

 print "ERR";

 }

}

sub valid {

 my $ip = shift;

 my $name = shift;

 my $host = shift;

 ...

}

Refer to Section 6.1.3 for the list of tokens (%SRC, %LOGIN, etc.) that you can pass from Squid to
the helper. Note that when a token contains whitespace, Squid wraps it in double quotes. As the
example shows, you can use Perl's shellwords library to parse quoted tokens easily.

Of course, to utilize the external ACL, you must reference it in an acl line. The ACL element is a
match whenever the external helper returns OK.

The external ACL helper interface allows you to pass additional information from the helper to Squid
(on the OK/ERR line). These take the form of keyword=value pairs. For example:

OK user=hank

Currently, the only keywords that Squid knows about are error and user. If the user value is set,
Squid uses it in the access.log. The error value isn't currently used by Squid.

 < Day Day Up >

 < Day Day Up >

12.6 Exercises

● Write a fake helper for Basic authentication that always returns either OK or ERR.
● Use tcpdump or ethereal to capture some HTTP requests. Decode the authorization

credentials.
● If you're using NTLM, capture some HTTP requests and attempt a replay attack.
● Kill Squid's authentication helper processes one-by-one while running tail -f cache.

log.
● Find out what happens to your favorite NTLM-based authenticator when it can't

communicate with the NT domain controller.

 < Day Day Up >

 < Day Day Up >

Chapter 13. Log Files

Log files are the primary sources of persistent information about Squid's operation. In other
words, they provide a record of what Squid has been doing. This includes URIs requested by
users, objects that have been saved to disk, and various warnings and errors. When Squid
appears to be malfunctioning, you'll want to check the log files first. By the end of this chapter,
you'll know how to interpret and manage all of Squid's various log files.

Depending on your configuration, Squid maintains, at most, seven log files. The three primary
files are: cache.log, access.log, and store.log. Two optional log files, useragent.log and referer.
log, are similar to access.log but contain additional information. I'll also talk about the swap.
state and netdb_state files. These are databases, used by Squid when it restarts.

Note that the filenames, such as access.log, are the default values. You can change most of the
log file names with various squid.conf directives.

The following list contains a brief description of each log file:

cache.log

This log file contains human-oriented, informational messages about Squid's operation.
The filename is defined by the cache_log directive. Under normal conditions, the file
grows by about 10-100 KB per day.

access.log

This log file contains an entry for every HTTP and (optionally) ICP transaction made by
Squid's clients. The filename is defined by the cache_access_log directive. It grows at a
rate of 100-200 bytes per transaction.

store.log

This log file contains low-level information about objects that enter and leave the cache.
The filename is defined by the cache_store_log directive. It grows at a rate of about 150
bytes per transaction.

referer.log

This optional log file contains HTTP Referer
[1]

 headers for each client request. You
must enable referer logging with the —enable-referer-log option when running ./
configure. The filename is defined by the referer_log directive. It grows at a rate of
about 80 bytes per transaction.

[1] No, this isn't a typo. "Referer" has been historically misspelled by HTTP
developers.

useragent.log

This optional log file contains HTTP User-Agent headers for each client request. You
must enable user-agent logging with the —enable-useragent-log option when running ./
configure. The filename is defined by the useragent_log directive. It grows at a rate of
about 75 bytes per transaction.

swap.state

These files contain internal metadata about the objects stored on disk. Squid uses them
to reconstruct the cache upon startup. By default, they are located in the cache_dir
directories. However, you can change the location with the cache_swap_log directive.
They grow at a rate of 100 bytes per cache miss.

netdb_state

This file holds the contents of the Network Measurement Database (see Section 10.5). It
is always located in the first cache_dir directory. Its size is determined by the
netdb_high value.

If Squid receives an error while writing a log file, it doesn't silently continue. Instead, it exits
with a fatal error message to get your attention. Make sure that you periodically rotate the log
files, as described in Section 13.7, to reduce the possibility of filling your disks. For the same
reason, I also recommend placing your log files on a partition separate from any of your cache
directories.

 < Day Day Up >

 < Day Day Up >

13.1 cache.log

cache.log contains various messages such as information about Squid's configuration, warnings
about possible performance problems, and serious errors. Here is some sample cache.log
output:

2003/09/29 12:09:45| Starting Squid Cache version 2.5.STABLE4 for i386-

unknown-freebsd4.8...

2003/09/29 12:09:45| Process ID 18990

2003/09/29 12:09:45| With 1064 file descriptors available

2003/09/29 12:09:45| Performing DNS Tests...

2003/09/29 12:09:45| Successful DNS name lookup tests...

2003/09/29 12:09:45| DNS Socket created at 0.0.0.0, port 1154, FD 5

2003/09/29 12:09:45| Adding nameserver 24.221.192.5 from /etc/resolv.conf

2003/09/29 12:09:45| Adding nameserver 24.221.208.5 from /etc/resolv.conf

2003/09/29 12:09:45| helperOpenServers: Starting 5 'redirector.pl' processes

2003/09/29 12:09:45| Unlinkd pipe opened on FD 15

2003/09/29 12:09:45| Swap maxSize 10240 KB, estimated 787 objects

2003/09/29 12:09:45| Target number of buckets: 39

2003/09/29 12:09:45| Using 8192 Store buckets

2003/09/29 12:09:45| Max Mem size: 8192 KB

2003/09/29 12:09:45| Max Swap size: 10240 KB

2003/09/29 12:09:45| Rebuilding storage in /usr/local/squid/var/cache (CLEAN)

2003/09/29 12:09:45| Using Least Load store dir selection

2003/09/29 12:09:45| Set Current Directory to /usr/local/squid/var/cache

2003/09/29 12:09:45| Loaded Icons.

2003/09/29 12:09:45| Accepting HTTP connections at 0.0.0.0, port 3128, FD 16.

2003/09/29 12:09:45| Accepting ICP messages at 0.0.0.0, port 3130, FD 17.

2003/09/29 12:09:45| WCCP Disabled.

2003/09/29 12:09:45| Ready to serve requests.

Each cache.log entry starts with a timestamp showing when the message was generated. The
very first entry in this sample reports the Squid version (2.5.STABLE4) and a string identifying
the operating system for which Squid was configured (i386-unknown-freebsd4.8). The process
ID (18990) follows. Many cache.log entries may look cryptic (Target number of buckets:
39). In most cases, under normal conditions, you can ignore entries you don't understand. On
the other hand, you may want to look over essential configuration details such as name-server
addresses or HTTP server address. This sample output ends with a statement that Squid is
ready to serve requests. At this point, Squid can accept HTTP connections from clients.

Usually, the cache.log file grows slowly. However, an unusual HTTP transaction or similar event
may cause Squid to emit a debugging message. If such an event happens often (e.g., a DoS
attack, a new virus, or sudden disk failure), the log file may grow quickly. Rotating log files
reduces the chance that you'll run out of disk space.

Major errors and abnormal conditions are likely to be reported in cache.log. I recommend
archiving these logs so that it is possible to go back and find the first occurrence of an unusual
event. When describing a particular Squid problem on the mailing list or a similar forum, the
relevant lines from cache.log may be very useful. You may also want to increase debugging
levels for some sections so that others can better understand and fix your problem.

13.1.1 Debugging Levels

The debug_options directive controls the level of detail for cache.log messages. The default
value (ALL,1) is usually the best choice. At higher levels, the unimportant messages make it
harder to find the important ones. Refer to Section 16.2 for a thorough description of the
debug_options directive.

Note that debugging at the highest levels (9 or 10) may add thousands of lines for each
request, quickly consuming disk space and significantly degrading Squid's performance.

You can use Squid's -X command-line option to enable full debugging for all sections. This
mode is particularly useful if Squid refuses to start, and the debugging levels in squid.conf are
insufficient to diagnose the problem. This is also a good way to enable full debugging of the
configuration file parser, before it gets to the debug_options directive. You should never use
the -X when Squid is operating properly.

You can use Squid's -k debug command-line option to enable full debugging immediately on a
running Squid process. This command operates as a toggle: the first invocation turns on full
debugging, and the second invocation turns it off. See Chapter 5 for a general discussion about
the -k option.

As I already mentioned, full debugging generates an overwhelming amount of data. This can
make Squid, and the operating system, very slow. In extreme cases, you may find your
terminal session becomes unresponsive after executing the first squid -k debug command.
Locking yourself out while Squid is spitting megabytes of cache.log entries per second is an
unpleasant experience. I find the following trick useful to get a compact, five-second debugging
snapshot with less risk:

% squid -k debug; sleep 5; squid -k debug

13.1.2 Forwarding cache.log Messages to the System Log

To have Squid send copies of cache.log messages to the system log, use the -s command-line
option. Only messages with debugging levels 0 and 1 are forwarded. Level 0 messages are
logged with syslog level LOG_WARNING. Level 1 messages use syslog level LOG_NOTICE. All
messages use the LOCAL4 syslog facility. Here is one way to configure syslogd so that these
messages are saved:

local4.warning /var/log/squid.log

Using syslog in addition to cache.log is especially handy when you maintain several Squid
boxes. You can configure each local syslog daemon to forward these messages to a central host
and enjoy a unified view of all caches in one location. For example, you might use this entry in /
etc/syslogd.conf:

local4.notice @192.168.45.1

13.1.3 Dumping cache.log Messages to Your Terminal

The -d level command-line option instructs Squid to dump cache.log messages to your terminal
(i.e., stderr). The level argument specifies the maximum level for messages that are dumped.
Note that you'll see only messages that would appear in cache.log, subject to the
debug_options setting. For example, if you have debug_options ALL,1, and run squid -d2, you
won't see any level 2 debugging messages.

The -d level and -N options are most useful for debugging Squid problems or quickly testing a
change to the configuration file. They allow you to start Squid easily and see the cache.log
messages. This option may also be useful when Squid starts from cron or a similar facility that
automatically captures a program's standard error output and reports it back to the user. For
example, you may have a cron job that automatically reconfigures the running Squid process:

15 */4 * * * /usr/local/squid/sbin/squid -d1 -k reconfigure

 < Day Day Up >

 < Day Day Up >

13.2 access.log

Squid saves key information about HTTP transactions in access.log. This file is line-based, such that
each line corresponds to one client request. Squid records the client IP address (or hostname),
requested URI, response size, and other information.

Squid records all HTTP accesses in access.log, except for those that disconnect before sending any
data. Squid also records all ICP (but not HTCP) transactions unless you disable them with the
log_icp_queries directive. Section 13.2.4 describes the other squid.conf directives that affect the
access log.

The default access.log format contains 10 fields. Here are some examples, with long lines split and
indented:

1066037222.011 126389 9.121.105.207 TCP_MISS/503 1055

 GET http://home.gigigaga.com/n8342133/Miho.DAT.019 -

 DIRECT/203.187.1.180 -

1066037222.011 19120 12.83.179.11 TCP_MISS/200 359

 GET http://ads.x10.com/720x300/Z2FtZ3JlZXRpbmcxLmRhd/7/AMG -

 DIRECT/63.211.210.20 text/html

1066037222.011 34173 166.181.33.71 TCP_MISS/200 559

 GET http://coursesites.blackboard.com:8081/service/collab/../1010706448190/ -

 DIRECT/216.200.107.101 application/octet-stream

1066037222.011 19287 41.51.105.27 TCP_REFRESH_MISS/200 500

 GET http://fn.yam.com/include/tsemark/show.js -

 DIRECT/210.59.224.59 application/x-javascript

1066037222.011 19395 41.51.105.27 TCP_MISS/304 274

 GET http://fnasp.yam.com/image/coin3.gif -

 DIRECT/211.72.254.133 -

1066037222.011 19074 30.208.85.76 TCP_CLIENT_REFRESH_MISS/304 197

 GET http://ads.icq.com/content/B0/0/..bC6GygEYNeHGjBUin5Azfe68m5hD1jLk$/aol -

 DIRECT/64.12.184.121 -

1066037222.011 19048 12.83.179.11 TCP_MISS/200 261

 GET http://ads.adsag.com/js.ng/...ne&cat=friendship&subcat=girltalk -

 DIRECT/209.225.54.119 application/x-javascript

1066037222.118 106 41.51.105.27 TCP_HIT/200 536

 GET http://rcm-images.amazon.com/images/G/01/rcm/privacy.gif -

 NONE/- image/gif

1066037222.352 19475 27.34.49.248 TCP_MISS/200 12387

 GET http://espanol.geocities.com/lebastias/divulgacion/budismo-tarot.html -

 DIRECT/209.1.225.139 text/html

1066037222.352 132 144.157.100.17 TCP_MISS/504 1293

 GET http://ar.atwola.com/image/93101912/aol -

 NONE/- -

Here are the definitions for all fields:

1: timestamp

The completion time of the request, expressed as the number of seconds since the Unix epoch
(Thu Jan 1 00:00:00 UTC 1970), with millisecond resolution. Squid uses this format, instead of
something more human-friendly, to simplify the work of various log file processing programs.

You can use a simple Perl command to convert the Unix timestamps into local time. For
example:

perl -pe 's/^\d+\.\d+/localtime($&)/e;' access.log

2: response time

For HTTP transactions, this field indicates how much time it took to process the request. The
timer starts when Squid receives the HTTP request and stops when the response has been fully
delivered. The response time is given in milliseconds.

The response time is usually 0 for ICP queries. This is because Squid answers ICP queries very
quickly. Furthermore, Squid doesn't update the process clock between receiving an ICP query
and sending the reply.

While time values are reported with millisecond resolution, the precision of those entries is
probably about 10 milliseconds. Timing becomes even less precise when Squid is heavily
loaded.

3: client address

This field contains the client's IP address, or hostname if you enable log_fqdn. For security or
privacy reasons, you may want to mask a part of client's address out using the client_netmask
directive. However, that also makes it impossible to group requests coming from the same
client.

4: result/status codes

This field consists of two tokens separated by a slash. The first token, result code, classifies
the protocol and the result of a transaction (e.g., TCP_HIT or UDP_DENIED). These are Squid-
specific codes, defined in Section 13.2.1. The codes that begin with TCP_ refer to HTTP
requests, while UDP_ refers to ICP queries.

The second token is the HTTP response status code (e.g, 200, 304, 404, etc.). The status code
normally comes from the origin server. In some cases, however, Squid may be responsible for
selecting the status code. These codes, defined by the HTTP RFC, are summarized later in
Table 13-1.

5: transfer size

This field indicates the number of bytes transferred to the client. Strictly speaking, it is the
number of bytes that Squid told the TCP/IP stack to send to the client. Thus, it doesn't include
overheads from TCP/IP headers. Also note that the transfer size is normally larger than the
response's Content-Length. This value includes the HTTP response headers, while Content-
Length does not.

These properties make the transfer size field useful for approximate bandwidth usage analysis
but not for exact HTTP entity size calculations. If you need to know a response's Content-
Length, you can find it in the store.log file.

6: request method

This field contains the request method. Because Squid clients may use ICP or HTTP, the
request method is either HTTP- or ICP-specific. The most common HTTP request method is
GET. ICP queries are always logged with ICP_QUERY. See Section 6.1.2.8 for a list of HTTP
methods Squid knows about.

7: URI

This field contains the URI from the client's request. The vast majority of logged URIs are
actually URLs (i.e., they have hostnames).

Squid uses a special format for certain failures. These are cases when Squid can't parse the
HTTP request or otherwise determine the URI. Instead of a URI/URL, you'll see a string such as
"error:invalid-request." For example:

1066036250.603 310 192.0.34.70 NONE/400 1203 GET error:invalid-request - NONE/- -

Also in this field look out for whitespace characters in the URI. Depending on your
uri_whitespace setting, Squid may print the URI in the log file with whitespace characters.
When this happens, the tools that read access.log files may become confused by the extra
fields.

When logging, Squid strips all URI characters after the first question mark unless the
strip_query_terms directive is disabled.

8: client identity

Squid can determine a user's identity in two different ways. One is with the RFC 1413 ident
protocol; the other is from HTTP authentication headers.

Squid attempts ident lookups based on the ident_lookup_access rules, if any (see Section 6.2).
Alternatively, if you use proxy authentication (or regular server authentication in surrogate
mode), Squid places the given username in this field. If both methods provide Squid with a
username, and you're using the native access.log format, the HTTP authentication name is
logged, and the RFC 1413 name is ignored. The common log file format has separate fields for
both names.

9: peering code/peerhost

The peering information consists of two tokens, separated by a slash. It is relevant only for
requests that are cache misses. The first token indicates how the next hop was chosen. The
second token is the address of that next hop. The peering codes are listed in Section 13.2.3.

When Squid sends a request to a neighbor cache, the peerhost address is the neighbor's
hostname. If the request is sent directly to the origin server, however, Squid writes the origin
server's IP address or its hostname if log_ip_on_direct is disabled. The value NONE/- indicates
that Squid didn't forward this request to any other servers.

10: content type

The final field of the default, native access.log is the content type of the HTTP response. Squid
obtains the content type value from the response's Content-Type header. If that header is
missing, Squid uses a hyphen (-).

If you enable the log_mime_headers directive, Squid appends two additional fields to each line:

11: HTTP request headers

Squid encodes the HTTP request headers and prints them between a pair of square brackets.
The brackets are necessary because Squid doesn't encode space characters. The encoding
scheme is a little strange. Carriage return (ASCII 13) and newline (ASCII 10) are printed as \r
and \n, respectively. Other non-printable characters are encoded with the RFC 1738 style,
such that Tab (ASCII 9) becomes %09.

12: HTTP response headers

Squid encodes the HTTP response headers and prints them between a pair of square brackets.
Note that these are the headers sent to the client, which may be different from headers
received from the origin server.

Squid writes to access.log only after the entire response has been sent to the client. This allows Squid
to include both request and response information in the log file. However, transactions that take

minutes, or even hours, to complete aren't visible in access.log at the time of the request. When these
types of transactions present a performance or policy concern, the access.log may be unable help you.
Instead, use the cache manager to view a list of pending transactions (see Section 14.2.1.37).

13.2.1 access.log Result Codes

The following labels may appear in the fourth field of the access.log file in response to HTTP requests:

TCP_HIT

Squid found a likely fresh copy of the requested resource and sent it immediately to the client.

TCP_MISS

Squid didn't have a cached copy of the requested resource.

TCP_REFRESH_HIT

Squid found a likely stale copy of the requested resource and sent a validation request to the
origin server. The origin server sent a 304 (Not Modified) response, indicating that Squid's
copy is still fresh.

TCP_REF_FAIL_HIT

Squid found a likely stale copy of the requested resource and sent a validation request to the
origin server. However, the origin server failed to respond or sent a response that Squid didn't
understand. In any case, Squid sent the cached (and likely stale) copy to the client.

TCP_REFRESH_MISS

Squid found a likely stale copy of the requested resource and sent a validation request to the
origin server. The server responded with new content, indicating the cached response was
indeed stale.

TCP_CLIENT_REFRESH_MISS

Squid found a copy of the requested resource, but the client's request included a Cache-
Control: no-cache directive. Squid forwarded the client's request to the origin server, forcing
a cache validation.

TCP_IMS_HIT

The client sent a validation request, and Squid found a more recent, and likely fresh, copy of
the requested resource. Squid sent the newer content to the client, without contacting the
origin server.

TCP_SWAPFAIL_MISS

Squid found a valid copy of the requested resource but failed to load it from disk. Squid then
sent the request to the origin server as though it were a cache miss.

TCP_NEGATIVE_HIT

When a request to an origin server results in an HTTP error, Squid may cache the response
anyway. Repeated requests for these resources, within a short amount of time, result in
negative hits. The negative_ttl directive controls the amount of time these errors may be
cached. Also note that errors are cached only in memory and never written to disk. The
following HTTP status codes may be negatively cached, subject to additional constraints: 204,
305, 400, 403, 404, 405, 414, 500, 501, 502, 503, 504.

TCP_MEM_HIT

Squid found a valid copy of the requested resource in the memory cache and sent it
immediately to the client. Note that this doesn't accurately represent all responses served from
memory. For example, responses that are cached in memory, but require validation, are
logged with TCP_REFRESH_HIT, TCP_REFRESH_MISS, etc.

TCP_DENIED

The client's request was denied, due to either the http_access or http_reply_access rules. Note
that requests denied by http_access have NONE/- in the ninth field, whereas those denied by
http_reply_access have a valid entry.

TCP_OFFLINE_HIT

When offline_mode is enabled, Squid returns cache hits for almost any cached response,
without considering its freshness.

TCP_REDIRECT

A redirector program told Squid to generate an HTTP redirect to a new URI (see Section 11.1).
Normally, Squid doesn't log these redirects. To do so, you must manually define the
LOG_TCP_REDIRECTS preprocessor directive before compiling Squid.

NONE

Unclassified result used for certain errors, such as invalid hostnames.

The following labels may appear in the fourth field of the access.log file in response to ICP queries:

UDP_HIT

Squid found a likely fresh copy of the requested resource in the cache.

UDP_MISS

Squid didn't find a likely fresh copy of the requested resource in the cache. If the same object
is requested via HTTP, it would probably be a cache miss. Compare with UDP_MISS_NOFETCH.

UDP_MISS_NOFETCH

Like UDP_MISS, except that this also indicates Squid's reluctance to handle the corresponding
HTTP request. If you use the -Y command-line option, Squid returns this, instead of UDP_MISS,
while rebuilding its in-memory indexes at startup.

UDP_DENIED

The ICP query is denied due to the icp_access rules. If more than 95% of the ICP replies to a
client are UDP_DENIED, and the client database is enabled (see Appendix A), Squid stops
sending any ICP replies to the client for an hour. When this happens you'll also see a warning
in cache.log.

UDP_INVALID

Squid received an invalid query (e.g., truncated message, invalid protocol version, whitespace
in the URI, etc.). Squid sent an ICP_INVALID reply back to the client.

13.2.2 HTTP Response Status Codes

Table 13-1 lists the numerical HTTP response codes and reason phrases. Note that Squid and other
HTTP agents care only about the numeric value. The reason phrase is purely informational and doesn't
affect the meaning of the response. For each status code, I also provide a reference to the particular
section in RFC 2616 that describes it. Note that status codes 0 and 600 are nonstandard values used
by Squid, and aren't mentioned in the RFC.

Table 13-1. HTTP response status codes

Code Reason phrase RFC 2616 section

0 No Response Received (Squid-specific) N/A

1xx Informational 10.1

100 Continue 10.1.1

101 Switching Protocols 10.1.2

2xx Successful 10.2

200 OK 10.2.1

201 Created 10.2.2

202 Accepted 10.2.3

203 Non-Authoritative Information 10.2.4

204 No Content 10.2.5

205 Reset Content 10.2.6

206 Partial Content 10.2.7

3xx Redirection 10.3

300 Multiple Choices 10.3.1

301 Moved Permanently 10.3.2

302 Found 10.3.3

303 See Other 10.3.4

304 Not Modified 10.3.5

305 Use Proxy 10.3.6

306 (Unused) 10.3.7

307 Temporary Redirect 10.3.8

4xx Client Error 10.4

400 Bad Request 10.4.1

401 Unauthorized 10.4.2

402 Payment Required 10.4.3

403 Forbidden 10.4.4

404 Not Found 10.4.5

405 Method Not Allowed 10.4.6

406 Not Acceptable 10.4.7

407 Proxy Authentication Required 10.4.8

408 Request Timeout 10.4.9

409 Conflict 10.4.10

410 Gone 10.4.11

411 Length Required 10.4.12

412 Precondition Failed 10.4.13

413 Request Entity Too Large 10.4.14

414 Request-URI Too Long 10.4.15

415 Unsupported Media Type 10.4.16

416 Requested Range Not Satisfiable 10.4.17

417 Expectation Failed 10.4.18

5xx Server Error 10.5

500 Internal Server Error 10.5.1

501 Not Implemented 10.5.2

502 Bad Gateway 10.5.3

503 Service Unavailable 10.5.4

504 Gateway Timeout 10.5.5

505 HTTP Version Not Supported 10.5.6

6xx Proxy Error N/A

600 Unparseable Response Headers (Squid-specific) N/A

You'll see status code 0 in the access.log if Squid doesn't receive any response from the origin server.
You'll see status code 600 if Squid received a response but couldn't find any HTTP headers. In a small
fraction of cases, certain origin servers send only the response body and omit any headers.

13.2.3 access.log Peering Codes

The following codes may appear in the ninth field of the access.log. Refer to Section 10.10 for a
description of how Squid selects the next-hop for cache misses.

NONE

This indicates that Squid didn't communicate with any other servers (neighbors, origin) for this
request. You'll see it in association with various types of cache hits, denied requests, cache
manager requests, errors, and all ICP queries.

DIRECT

Squid forwarded the request directly to the origin server. The second half of the field shows
the origin server's IP address, or hostname if you've disabled log_ip_on_direct.

SIBLING_HIT

Squid sent the request to this sibling cache after the sibling returned an ICP or HTCP hit.

PARENT_HIT

Squid sent the request to this parent cache after the parent returned an ICP or HTCP hit.

DEFAULT_PARENT

Squid selected this parent because it was marked as default on the cache_peer line in squid.
conf.

FIRST_UP_PARENT

Squid forwarded the request to this parent because it is the first parent in the list known to be
alive.

FIRST_PARENT_MISS

Squid forwarded the request to the parent cache that was first to respond with an ICP/HTCP
miss message. In other words, for this particular ICP/HTCP query, at this particular time, the
selected parent had the best round-trip time. Note that measured RTTs may be artificially
adjusted by the weight option to the cache_peer directive.

CLOSEST_PARENT_MISS

Squid selected this parent because it reports the lowest RTT to the origin server. This occurs
only if both caches have netdb enabled (see Section 10.5), and the origin server (or other
servers on its subnet) returns ICMP pings.

CLOSEST_PARENT

This is similar to CLOSEST_PARENT_MISS, except that the RTT measurements don't come from
the ICP/HTCP reply messages. Instead, they come from older measurements saved by Squid,
such as the netdb exchange feature.

CLOSEST_DIRECT

Squid forwarded the request to the origin server based on netdb measurements. This happens
if any of these conditions occur:

❍ The RTT between Squid and the origin server is less than the configured
minimum_direct_rtt value.

❍ The measured number of router hops between Squid and the origin server is less than
the configured minimum_direct_hops value.

❍ The RTT values returned in ICP/HTCP replies indicate that Squid is closer to the origin
server than any of its neighbors.

ROUNDROBIN_PARENT

Squid forwarded the request to this parent because the round-robin option was set, and it
had the lowest usage counter.

CD_PARENT_HIT

Squid forwarded the request to this parent based on the Cache Digest algorithm (see Section
10.7).

CD_SIBLING_HIT

Squid forwarded the request to this sibling based on the Cache Digest algorithm.

CARP

Squid selected this parent based on the Cache Array Routing Protocol algorithm (see Section
10.9).

ANY_PARENT

Squid selected this parent as a last resort because none of the other methods resulted in a
viable next-hop.

Note that most of these codes may be preceded by TIMEOUT_ to indicate that a timeout occurred
while waiting for ICP/HTCP replies. For example:

1066038165.382 345 193.233.46.21 TCP_MISS/200 2836

 GET http://www.caida.org/home/images/home.jpg

 TIMEOUT_CLOSEST_DIRECT/213.219.122.19 image/jpeg

You can adjust the timeout with the icp_query_timeout directive.

13.2.4 Configuration Directives That Affect access.log

Following are the configuration file directives that affect the access.log in one way or another.

13.2.4.1 log_icp_queries

This directive, enabled by default, causes Squid to log all ICP queries. If you're running a busy parent
cache, this may make your access.log files huge. To save space, disable this directive:

log_icp_queries off

If you disable ICP query logging, I suggest that you monitor the number of queries, either through the
cache manager or with SNMP.

13.2.4.2 emulate_httpd_log

The access.log file has two formats: common and native. The common format is the same as most
HTTP servers (e.g., Apache) use. It contains less information than Squid's native format. However,
you might want to use the common log-file format if you use Squid as a surrogate (see Chapter 15).
The common format may also be useful if you have log-file analysis tools that know how to parse it.
Use this directive to enable the common format:

emulate_httpd_log on

See the site http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format, for a
description of this format.

13.2.4.3 log_mime_hdrs

Use the log_mime_hdrs directive to make Squid log the HTTP request and response headers:

log_mime_headers on

When enabled, Squid appends the request and response headers to access.log. This adds two fields to
each line. Each field is surrounded by square brackets to make parsing easier. Certain characters are
encoded to keep the log file readable. Table 13-2 shows the encoding scheme.

Table 13-2. Character encoding rules for HTTP headers in access.log

Character Encoding

Newline \n

Carriage return \r

Backslash \\

[%5b

] %5d

% %25

http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format

ASCII 0-31 %xx (hexadecimal value)

ASCII 127-255 %xx (hexadecimal value)

13.2.4.4 log_fqdn

By default, Squid puts client IP addresses in the access.log. You can record hostnames, when
available, by enabling this directive:

log_fqdn on

This causes Squid to make reverse DNS lookups for the client's address when it receives a request. If
an answer is available by the time the request is complete, Squid places it in the third field.

13.2.4.5 ident_lookup_access

This access rule list determines whether or not Squid makes an RFC 1413 ident query for the client's
TCP connection. By default, Squid doesn't issue ident queries. To enable this feature, simply add one
or more rules:

acl All src 0/0

ident_lookup_access allow All

If an answer is available by the time the request is complete, Squid places it in the eighth field. If you
are also using HTTP authentication, that username is written instead of the ident answer.

13.2.4.6 log_ip_on_direct

When Squid forwards a cache miss to an origin server, it records the origin server's IP address in the
ninth field. You can disable this directive so that Squid writes the hostname instead:

log_ip_on_direct off

In this case, the hostname comes from the URI. If the URI contains an IP address, Squid doesn't
convert it to a hostname.

13.2.4.7 client_netmask

This directive exists to provide some level of privacy for your users. Rather than logging the entire
client IP address, you can mask off some bits. For example:

client_netmask 255.255.255.0

With this setting, all client IP addresses in access.log have 0 as the last octet:

1066036246.918 35 163.11.255.0 TCP_IMS_HIT/304 266 GET http://...

1066036246.932 16 163.11.255.0 TCP_IMS_HIT/304 266 GET http://...

1066036247.616 313 140.132.252.0 TCP_MISS/200 1079 GET http://...

1066036248.598 44459 140.132.252.0 TCP_MISS/500 1531 GET http://...

1066036249.230 17 170.210.173.0 TCP_IMS_HIT/304 265 GET http://...

1066036249.752 2135 140.132.252.0 TCP_MISS/200 50230 GET http://...

1066036250.467 4 170.210.173.0 TCP_IMS_HIT/304 265 GET http://...

1066036250.762 102 163.11.255.0 TCP_IMS_HIT/304 265 GET http://...

1066036250.832 20 163.11.255.0 TCP_IMS_HIT/304 266 GET http://...

1066036251.026 74 203.91.150.0 TCP_CLIENT_REFRESH_MISS/304 267 GET http://...

13.2.4.8 strip_query_terms

This directive is another privacy feature. It removes query terms from URIs before logging them. If
your log files somehow fall into the wrong hands, they won't be able to find any usernames and
passwords. When this directive is enabled, all characters after a question mark (?) are removed. For
example, a URI like this:

http://auto.search.msn.com/response.asp?MT=www.kimo.com.yw&srch=3

&prov=&utf8

is logged like this:

http://auto.search.msn.com/response.asp?

13.2.4.9 uri_whitespace

Earlier, I mentioned the problem with whitespace appearing in some URIs. The RFCs state that URIs
must not contain whitespace, but in reality it happens all too often. The uri_whitespace directive
dictates how Squid should handle such cases. The allowed settings are: strip (default), deny, allow,
encode, and chop. Of these, strip, encode, and chop ensure that the URI field doesn't contain any
whitespace (thus adding more fields to access.log).

The allow setting allows the request to pass through Squid unmodified. It is likely to cause trouble for
redirectors and log file parsers. The deny setting, on the other hand, causes Squid to deny the
request. The user receives an error message, but the request is still written to access.log with the
whitespace characters.

If you set it to encode, Squid changes the whitespace characters to their RFC 1738 equivalents. This is
probably what the user-agent should have done in the first place. The chop setting causes Squid to
cut off the URI at the first whitespace character.

The default setting is strip, which makes Squid remove the whitespace characters from the URI. It
ensures that your log-file parsers and redirectors will be happy, but it might break certain things, such
as improperly encoded search engine queries.

13.2.4.10 buffered_logs

By default, Squid disables buffering for the cache.log file, which allows you to run tail -f and watch log
file entries appear in real time. If you think this will cause an unnecessary overhead, you can disable
buffering:

buffered_logs off

However, it probably doesn't matter unless you are running Squid with full debugging. Note that this
option affects only cache.log. The others always use unbuffered writes.

13.2.5 access.log Analysis Tools

The access.log file contains a wealth of information, much more than you can see by just browsing
through it. In order to get the big picture view, you'll need to use a third-party log-file analysis
package. You can find a long list of them linked from the Squid web page, or by going directly to
http://www.squid-cache.org/Scripts/.

One of the most popular tools is Calamaris—a Perl script that parses the log file and generates either
text or HTML-based reports. It provides a breakdown of traffic by request method, client IP address,
origin server domain name, content types, filename extensions, reply size, and more. Calamaris also
reports on ICP query traffic and even understands log files from other caching products. Check it out
by visiting http://calamaris.cord.de/.

Squeezer, and its derivative, Squeezer2, are Squid-specific analysis tools. They provide many
statistics that can help you understand Squid's performance, especially when you have neighbors.
Both generate HTML pages as output. Visit the Logfile Analysis page on the squid-cache.org site for
links to these programs.

Webalyzer is another good utility. It is designed to be fast and produces HTML pages with tables and
bar charts. It was originally designed for origin server access logs. Although it can parse Squid's logs,
it doesn't report on such things as hit ratios and response times. It also uses some terms differently
than I do. For example, Webalyzer calls any request a "hit," which isn't the same as a cache hit. It
also makes a distinction between "pages" and "files." For more information, visit the Webalyzer home
page at http://www.mrunix.net/webalyzer/.

 < Day Day Up >

http://www.squid-cache.org/Scripts/
http://calamaris.cord.de/
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/squid-cache.org
http://www.mrunix.net/webalyzer/

 < Day Day Up >

13.3 store.log

The store.log is a record of Squid's decisions to store and remove objects from the cache. Squid
creates an entry for each object it stores in the cache, each uncachable object, and each object
that is removed by the replacement policy. The log file covers both in-memory and on-disk
caches.

The store.log provides the following you can't get from access.log:

● Whether or not a particular response was cached.
● The file number for cached objects. For UFS-based storage schemes, you can convert

this to a pathname and examine the contents of the cache file.
● The response's content length: the Content-Length value, and the actual body length.
● Values for the Date, Last-Modified, and Expires headers.
● The response's cache key (i.e., MD5 hash value).

As you can see, this is mostly low-level information you won't need on a daily basis. Unless you
do sophisticated analyses, or wish to debug a problem, you can probably get by without the
store.log. You can disable it with a special setting:

cache_store_log none

As with other log files, Squid appends new store.log entries to the end of the file. A given URI
may appear in the file more than once. For example, it gets cached, then released, then cached
again. Only the most recent entry reflects the object's current status.

The store.log is text-based and looks something like this:

1067299212.411 RELEASE -1 FFFFFFFF A5964B32245AC98592D83F9B6EA10B8D 206

 1067299212 1064287906 -1 application/octet-stream 6840/6840

 GET http://download.windowsupdate.com/msdownload/update/v3-19990518/cab...

1067299212.422 SWAPOUT 02 0005FD5F 6F34570785CACABC8DD01ABA5D73B392 200

 1067299210 1057899600 -1 image/gif 1125/1125

 GET http://forum.topsportsnet.com/shfimages/nav_members1.gif

1067299212.641 RELEASE -1 FFFFFFFF B0616CB4B7280F67672A40647DD08474 200

 1067299212 -1 -1 text/html -1/67191

 GET http://www.tlava.com/

1067299212.671 RELEASE -1 FFFFFFFF 5ECD93934257594825659B596D9444BC 200

 1067299023 1034873897 1067299023 image/jpeg 3386/3386

 GET http://ebiz0.ipixmedia.com/abc/ebiz/_EBIZ_3922eabf57d44e2a4c3e7cd234a...

1067299212.786 RELEASE -1 FFFFFFFF B388F7B766B307ADEC044A4099946A21 200

 1067297755 -1 -1 text/html -1/566

 GET http://www.evenflowrocks.com/pages/100303pic15.cfm

1067299212.837 RELEASE -1 FFFFFFFF ABC862C7107F3B7E9FC2D7CA01C8E6A1 304

 1067299212 -1 1067299212 unknown -1/0

 GET http://ebiz0.ipixmedia.com/abc/ebiz/_EBIZ_3922eabf57d44e2a4c3e7cd234a...

1067299212.859 RELEASE -1 FFFFFFFF 5ED2726D4A3AD83CACC8A01CFDD6082B 304

 1066940882 1065063803 -1 application/x-javascript -1/0

 GET http://www.bellsouth.com/scripts/header_footer.js

Each entry contains the following 13 fields:

1: timestamp

The timestamp when the event took place, expressed as seconds since the Unix epoch
with millisecond resolution.

2: action

The action taken on the object. This field has three possible values: SWAPOUT, RELEASE,
and SO_FAIL.

❍ A SWAPOUT occurs when Squid successfully completes saving the object data to
disk. Some objects, such as those that are negatively cached, are kept in
memory, but not on disk. Squid doesn't make a store.log entry for them.

❍ A SO_FAIL entry indicates that Squid could not completely save the object to
disk. Most likely it means that the storage scheme implementation refused to
open a new disk file for writing.

❍ A RELEASE occurs when Squid removes an object from the cache, or decides that
the response isn't cachable in the first place.

3: directory number

The directory number is a 7-bit index to the list of cache directories that's written as a
decimal number. For objects that aren't saved to disk, this field contains the value -1.

4: file number

The file number is a 25-bit identifier used internally by Squid. It is written as an 8-
character hexadecimal number. The UFS-based storage schemes have an algorithm for
mapping file numbers to pathnames (see Section 13.3.1).

Objects that aren't saved to disk don't have a valid file number. For these, the file
number field contains FFFFFFFF. This value appears only for RELEASE and SO_FAIL
entries.

5: cache key

Squid uses MD5 hash values for the primary index to locate cached objects. The key is
based on the request method, URI, and possibly other information.

You might be able to use the cache key to match up store.log entries. Note, however,
that an object's cache key can change. This happens, for example, whenever Squid logs
a TCP_REFRESH_MISS request in access.log. It looks like this:

1065837334.045 SWAPOUT ... 554BACBD2CB2A0C38FF9BF4B2239A9E5 ... http://blah

1066031047.925 RELEASE ... 92AE17121926106EB12FA8054064CABA ... http://blah

1066031048.074 SWAPOUT ... 554BACBD2CB2A0C38FF9BF4B2239A9E5 ... http://blah

So what's going on? The object is originally cached under one key (554B...). Some time
later, Squid receives another request for the object and forwards a validation request to
the origin server. When the response comes back with new content, Squid changes the
cache key of the old object (to 92AE...) so that it can give the new object the correct
key (554B...). The old object is then removed, and the new object is saved to disk.

6: status code

This field shows the HTTP status code of the response, just like access.log. See Table 13-
1 for a list of status codes.

7: date

The value of the Date header in the HTTP response, expressed as seconds since the
Unix epoch. The value -1 indicates an unparseable Date header, and -2 means the
header was entirely absent.

8: last-modified

The value of the Last-Modified header in the HTTP response, expressed as seconds
since the Unix epoch. The value -1 indicates an unparseable Last-Modified header,
and -2 means the header was entirely absent.

9: expires

The value of the Expires header in the HTTP response, expressed as seconds since the
Unix epoch. The value -1 indicates an unparseable Expires header, and -2 means the
header was entirely absent.

10: content-type

The value of the Content-Type header in the HTTP response, excluding any media-type
parameters. Squid inserts the value unknown if the Content-Type is missing.

11: content-length/size

This field contains two numbers, separated by a slash. The first is the value of the
Content-Length header. A -1 indicates the Content-Length header is absent. The
second is the actual size of the HTTP message body. You can use these two numbers to
identify partially received responses and origin servers that incorrectly calculate the
content length. In most cases, the two numbers are the same.

12: method

The HTTP request method for the object, as in access.log.

13: URI

The final field is the requested URI, as in access.log. This field also has the whitespace
problem mentioned in the previous section. However, it is less worrisome here because
you can safely ignore any extra fields.

For many of the RELEASE entries, you'll see question marks (?) for the last eight fields. This is
because most of those field values come from what Squid calls the MemObject structure. This
structure is present only for objects that have just been received, or are being stored entirely in
memory. Most of the objects in Squid's cache don't have a MemObject because they exist only
on disk. For these, Squid puts question marks in the fields with missing information.

13.3.1 Mapping File Numbers to Pathnames

If you find you need to examine a particular cache file, you can, with some effort, turn a file
number into a pathname. You'll also need the directory number, and L1 and L2 values. In the
Squid source code, the storeUfsDirFullPath() function does this. You can find it in the src/fs/ufs/
store_dir_ufs.c file. This short Perl program mimics the current algorithm:

#!/usr/bin/perl

$L1 = 16;

$L2 = 256;

while (<>) {

 $filn = hex($_);

 printf("%02X/%02X/%08X\n",

 (($filn / $L2) / $L2) % $L1,

 ($filn / $L2) % $L2,

 $filn);

}

And here's how you can use it:

% echo 000DCD06 | ./fileno-to-pathname.pl

0D/CD/000DCD06

To find this file in the Nth cache_dir, simply go to the corresponding directory and list or view
the file:

% cd /cache2

% ls -l 0D/CD/000DCD06

-rw------- 1 squid squid 391 Jun 3 12:40 0D/CD/000DCD06

% less 0D/CD/000DCD06

 < Day Day Up >

 < Day Day Up >

13.4 referer.log

The optional referer.log contains Referer header values from client requests. To use this
feature, you must run ./configure with the —enable-referer-log option. You must also enter a
pathname for the referer_log directive. For example:

referer_log /usr/local/squid/var/logs/referer.log

Set the filename to none if you want to disable referer logging.

The Referer header normally contains the URI from which the request was obtained (see
Section 14.36 of RFC 2616). For example, when a web browser issues a request for an
embedded image, the Referer header is set to the URI of the (HTML) page containing the
images. It is also set when you click on an HTML link. Some web site operators use Referer
values to find so-called dead links. You may find referer.log particularly useful if you use Squid
as a surrogate.

The referer.log has a simple format, with only four fields. Here are a few examples:

1068047502.377 3.0.168.206

 http://www.amazon.com/exec/obidos/search-handle-form/002-7230223-8205634

 http://www.amazon.com/exec/obidos/ASIN/0596001622/qid=1068047396/sr=2-1/...

1068047503.109 3.0.168.206

 http://www.amazon.com/exec/obidos/ASIN/0596001622/qid=1068047396/sr=2-1/...

 http://g-images.amazon.com/images/G/01/gourmet/gourmet-segway.gif

1068047503.196 3.0.168.206

 http://www.amazon.com/exec/obidos/ASIN/0596001622/qid=1068047396/sr=2-1/...

 http://g-images.amazon.com/images/G/01/marketing/cross-shop/arnold/appar...

1068047503.198 3.0.168.206

 http://www.amazon.com/exec/obidos/ASIN/0596001622/qid=1068047396/sr=2-1/...

 http://g-images.amazon.com/images/G/01/marketing/cross-shop/arnold/appar...

1068047503.825 3.0.168.206

 http://www.amazon.com/exec/obidos/ASIN/0596001622/qid=1068047396/sr=2-1/...

 http://images.amazon.com/images/P/B00005R8BC.01.TZZZZZZZ.jpg

1068047503.842 3.0.168.206

 http://www.amazon.com/exec/obidos/ASIN/0596001622/qid=1068047396/sr=2-1/...

 http://images.amazon.com/images/P/0596001622.01._PE_PI_SCMZZZZZZZ_.jpg

Note that requests that lack a Referer header aren't logged. The four fields are as follows:

1: timestamp

The time of the request, expressed as the number of seconds since Unix epoch with
millisecond resolution.

Note that, unlike access.log, a referer.log entry is made as soon as Squid receives the complete
request. Thus, the referer.log entry occurs before the access.log, which waits for the end of the
response.

2: client address

The same as the client address in access.log. The log_fqdn and client_netmask
directives affect this log file as well.

3: referer

The value of the Referer header from the client's request. Note that the referer value
might have whitespace (or any other) characters. Squid doesn't encode the value before
writing to referer.log.

4: URI

The URI that the client is requesting. It matches the URI in access.log.

 < Day Day Up >

 < Day Day Up >

13.5 useragent.log

The optional useragent.log contains User-Agent header values from client requests. To use this
feature, you must supply the —enable-useragent-log option when running ./configure. You also
must enter a pathname for the useragent_log directive. For example:

useragent_log /usr/local/squid/var/logs/useragent.log

The User-Agent header normally contains a description of the agent that made the request. In
most cases, the description is simply a list of product names with optional version information.
You should be aware that applications can easily provide false user-agent information. Modern
user-agents provide a way to customize the description. Even Squid can alter the User-Agent
header in forwarded requests.

The useragent.log format is relatively simple. It looks like this:

3.0.168.206 [05/Nov/2003:08:51:43 -0700]

 "Mozilla/5.0 (compatible; Konqueror/3; FreeBSD)"

3.0.168.207 [05/Nov/2003:08:52:18 -0700]

 "Opera/7.21 (X11; FreeBSD i386; U) [en]"

4.241.144.204 [05/Nov/2003:08:55:11 -0700]

 "Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en-us) AppleWebKit/103u (KHTM..."

3.0.168.206 [05/Nov/2003:08:51:43 -0700]

 "Java1.3.1_01"

64.68.82.28 [05/Nov/2003:08:52:50 -0700]

 "Googlebot/2.1 (http://www.googlebot.com/bot.html)"

3.0.168.205 [05/Nov/2003:08:52:50 -0700]

 "WebZIP/4.1 (http://www.spidersoft.com)"

4.241.144.201 [05/Nov/2003:08:52:50 -0700]

 "Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt; Hotbar 3.0)"

3.0.168.206 [05/Nov/2003:08:54:40 -0700]

 "Bookmark Renewal Check Agent [http://www.bookmark.ne.jp/] (Version 2.0..."

Unlike the other log files, it has just three fields:

1: client address

The same as the client address in access.log. The log_fqdn and client_netmask
directives affect this log file as well.

2: timestamp

Unlike the other log files, which represent the time as seconds since the Unix epoch, this
one uses a human-readable format. It is the HTTP common log-file format timestamp,
which looks like this:

[10/Jun/2003:22:38:36 -0600]

Note that the square brackets delimit the timestamp, which includes a space character.
Also note that, like referer.log, these entries are created as soon as Squid receives the
complete request.

3: user-agent

The value of the User-Agent header. These strings almost always contain whitespace.
Squid doesn't encode User-Agent values before writing them in this log file.

 < Day Day Up >

 < Day Day Up >

13.6 swap.state

A swap.state file is a journal of objects that have been added to, and removed from, a cache
directory. Each cache_dir has its own swap.state file. When Squid starts up, it reads the swap.
state files to rebuild its in-memory indexes of cached objects. These files are a relatively critical
part of Squid's operation.

By default, each swap.state file is located in its corresponding cache directory. Thus, each state
file automatically stays with each cache_dir. This is important if you ever decide to reorder your
cache_dir lines or if you remove one or more from the list.

If you prefer to put them in a different location, you can use the cache_swap_log directive:

cache_swap_log /usr/local/squid/var/logs/swap.state

In this case, Squid creates a swap.state file for each directory by appending a numeric suffix.
For example, if you have four cache directories, Squid creates the following:

/usr/local/squid/var/logs/swap.state.00

/usr/local/squid/var/logs/swap.state.01

/usr/local/squid/var/logs/swap.state.02

/usr/local/squid/var/logs/swap.state.03

In this situation, if you add, remove, or rearrange cache_dir lines, you may need to rename the
swap.state files manually to keep everything consistent.

Technically, the swap.state format is storage scheme-dependent. However, all storage schemes
use the same format in the current versions of Squid. The swap.state file uses a fixed-size (48-
byte) binary format. Fields are written in host-byte order and are thus not necessarily portable
between different operating systems. Table 13-3 describes the fields of a swap.state entry.

Table 13-3. swap.state entry fields

Name Size, in bytes Description

op 1 Operation on the entry: added (1) or deleted (2).

file number 4 Same as the fourth field of store.log, except it is stored in
binary.

timestamp 4

A timestamp corresponding to the time when the response
was generated or last validated. Taken from the Date header
for responses that have one. Stored as the number of
seconds since the Unix epoch.

lastref 4 A timestamp corresponding to the most recent access to the
object.

expires 4
The object's expiration time, taken from an Expires header
or Cache-Control max-age directive.

last-modified 4 The object's Last-Modified value.

swap file size 4
The amount of space the object occupies on disk. This
includes HTTP headers and other Squid-specific meta-
information.

refcount 2 The number of times this object has been requested.

flags 2 Various internal flags used by Squid.

key 16 The MD5 hash of the corresponding URI. Same as the key in
store.log, except this one is stored in binary.

 < Day Day Up >

 < Day Day Up >

13.7 Rotating the Log Files

Squid always appends new entries to its log files. If your cache is busy, some of these files can
become very large after a few days. Some operating systems even place limits on the size of a
file (e.g., 2 GB) and return an error for writes beyond that size. To keep your log files
manageable, and Squid happy, you must regularly rotate them.

Squid has a built-in feature for rotating log files. You can invoke it with the squid -k rotate
command. You then tell Squid how many old copies of each file to keep with the logfile_rotate
directive. For example, if you set it to 7, you'll have eight versions of each log file: the current
file and seven old ones.

Old log files are renamed with numeric extensions. For example, when you execute a rotation,
Squid renames log.6 to log.7, then log.5 to log.6, and so on. The current log becomes log.0,
and Squid creates a new, empty file named log.

Each time you execute squid -k rotate, Squid rotates the following files: cache.log, access.log,
store.log, useragent.log (if enabled), and referer.log (if enabled). Squid also creates up-to-date
versions of the swap.state files. Note, however, that swap.state isn't archived with numeric
extensions.

Squid doesn't rotate the log files automatically. The best way to make it happen is with a daily
cron job. For example:

0 0 * * * /usr/local/squid/sbin/squid -k rotate

If you'd rather write your own scripts to manage the log files, Squid has a special mode that
you'll find useful. Simply set the logfile_rotate directive to 0. Then, when you run squid -k
rotate, Squid simply closes the current log files and opens new ones. This is very useful when
the operating system allows you to rename files opened by another process. The following shell
script illustrates the idea:

#!/bin/sh

set -e

yesterday_secs=`perl -e 'print time -43200'`

yesterday_date=`date -r $yesterday_secs +%Y%m%d`

cd /usr/local/squid/var/logs

rename the current log file without interrupting the logging process

mv access.log access.log.$yesterday_date

tell Squid to close the current logs and open new ones

/usr/local/squid/sbin/squid -k rotate

give Squid some time to finish writing swap.state files

sleep 60

mv access.log.$yesterday_date /archive/location/

gzip -9 /archive/location/access.log.$yesterday_date

 < Day Day Up >

 < Day Day Up >

13.8 Privacy and Security

Squid's log files, especially access.log, contain a record of users' activities and, hence, are
subject to privacy concerns. As the Squid administrator, you should take every precaution to
keep the log files safe and secure. One of the best ways to do that is limit the number of people
who have access to the system on which Squid runs. If that isn't possible, carefully examine
the file and directory permissions to make sure they can't be viewed by untrusted or
unauthorized users.

You can also help protect your users' privacy by taking advantage of the client_netmask and
strip_query_terms directives. The former makes it harder to identify individual users in the
access.log; the latter removes URI query terms that may contain personal information. See
Section 13.2.4 for more information.

You may also want to develop a policy for keeping old log files. Obviously access.log helps keep
users accountable for their activities, but how far back would you ever need to go searching for
something? A week? A year? What would you do if presented with a court order to hand over
your log files for the last three months?

If you like to keep historical data for a long time, perhaps you can make the log files
anonymous or somehow reduce the dataset. If you are interested only in which URIs were
accessed, but not by whom, you can extract only that field from access.log. This not only
makes the file smaller, it also reduces the risk of a privacy violation. Another technique is to
randomize the client IP addresses. In other words, create a filter that maps real IP addresses to
fake ones, such that the same real address is always changed to the same fake address. If you
are using RFC 1413 identification or HTTP authentication, consider making those fields
anonymous as well.

 < Day Day Up >

 < Day Day Up >

13.9 Exercises

● Configure Squid so that it doesn't create any log files, except for the swap.state file(s).
● Write a simple Perl or awk script to calculate your cache hit ratio from access.log.
● How does an "access denied" response appear in the access.log?
● Does store.log have the same number of, more, or fewer, entries than access.log?
● Take a file number from store.log and find the corresponding file in the disk cache.

Examine the file and make sure you've found the correct response.
● Develop and implement a policy for archiving old cache log files. Consider where and

how they will be stored, for how long, and who has permission to access them.

 < Day Day Up >

 < Day Day Up >

Chapter 14. Monitoring Squid

How can you tell if Squid is performing well? Does Squid have enough memory, bandwidth, and
disk space? When the Internet seems slow, is it Squid's fault or a problem somewhere else? Is
the operating system giving enough resources to Squid? Is someone trying to abuse or hack
into my proxy? You can find the answers to these, and many more, questions in this chapter.
Squid provides information about itself in three different ways: cache.log messages, the cache
manager, and an SNMP MIB.

Squid writes various messages to cache.log as it runs. Most of these are abnormal events of
one sort or another. Unfortunately, Squid isn't always smart enough to differentiate serious
problems from those that can be safely ignored. Even so, cache.log is a good place to start
when investigating a Squid problem.

The cache manager and SNMP interfaces allow you to query Squid for a variety of data. The
cache manager, which has its own shortcomings, probably provides the most information in
current versions of Squid. It has a TCP socket-based interface and tries to generate output
suitable for both human and computer processing. The bulk of this chapter is devoted to
explaining all the information available from the cache manager.

Squid supports SNMP as well. Unfortunately, the data available through SNMP is only a subset
of the cache-manager information. Additionally, the Squid MIB has not evolved much over the
years; it's essentially unchanged since its first incarnation. I'll explain how to make Squid
process SNMP queries and describe all objects in the current MIB.

 < Day Day Up >

 < Day Day Up >

14.1 cache.log Warnings

This is one of the first places you should look whenever you perceive a problem with Squid.
During normal operation, you'll find various warnings and informational messages that may or
may not indicate a problem. I covered the mechanics of cache.log back in Section 13.1. Here,
I'll go over a few of the warning messages you might see in your log file.

The high_response_time_warning directive makes Squid print a warning whenever the median
response time exceeds a threshold. The value is in milliseconds and is disabled by default. If
you add this line to squid.conf:

high_response_time_warning 1500

Squid will print the following warning if the median response time, measured over a 1-minute
interval, exceeds 1.5 seconds:

2003/09/29 03:17:31| WARNING: Median response time is 2309 milliseconds

Before setting this directive, you should have a good idea of Squid's normal response time
levels. If you set it too low, you'll get false alarms. In this particular example, it means that half
of your user's requests take more than 2.3 second to complete. High response times may be
caused by local problems, such as running out of file descriptors, or by remote problems, such
as a severely congested Internet link.

The high_page_fault_warning directive is similar. It causes Squid to emit a warning if the
number of page faults per minute exceeds a given value. A high page-fault rate usually
indicates that the Squid process can't fit entirely in memory and must be swapped out to disk.
This swapping severely impacts Squid's performance, so you should remedy the situation as
soon as possible, as I'll discuss in Section 16.1.8.

Squid uses the Unix getrusage() function to get page fault counts. On some operating systems
(e.g., Solaris), the page fault counter represents something besides swapping. Therefore, the
high_page_fault_warning may cause false alarms on those systems.

The high_memory_warning directive is also similar to the previously mentioned warnings. In
this case, it checks the size of the Squid process; if it exceeds the threshold, you get the
warning in cache.log. On some operating systems, the process size can only grow and never
shrink. Therefore, you'll constantly get this warning until Squid shuts down.

Process size information comes from either the mallinfo(), mstats(), or sbrk() functions. If
these are unavailable on your operating system, the high_memory_warning warning won't
work.

Squid has a number of other hardcoded warnings you may see in cache.log:

DNS lookup for 'neighbor.host.name' failed!

This occurs whenever Squid fails to look up the IP address for a cache neighbor. Squid
refreshes the neighbor addresses every hour or so. As long as the neighbor's address is
unknown, Squid doesn't send any traffic there.

Detected DEAD Sibling: neighbor.host.name/3128/3130

Squid logs this message when it believes it can't communicate with a neighbor cache.
This happens, for example, when too many consecutive ICP queries go unacknowledged.
See Section 10.3.2 for more information.

95% of replies from 'neighbor.host.name' are UDP_DENIED

This message indicates that a neighbor cache is refusing to answer Squid's queries. It
probably means that you are sending queries to the neighbor without their permission.
If they are using address-based access controls, and you have recently changed your
address, they won't know about the change. Squid refuses to send any more queries to
the neighbor after detecting this condition.

Probable misconfigured neighbor at 192.168.121.5

This occurs when you have an unauthorized cache client sending you ICP or HTCP
queries. The best thing to do in this case is try to find out the person or organization
responsible for the given address. Ask why they are querying your cache.

Forwarding loop detected for:

Recall that a forwarding loop occurs when a single request flows through Squid a second
time. The request's Via header contains a list of all proxies that have seen the request.
If Squid detects its own name in the Via list, it emits the forwarding loop warning and
sends the request directly to the origin server. See Section 10.2 for an explanation of
forwarding loops.

Closing client 192.168.121.5 connection due to lifetime timeout

The client_lifetime directive places an upper limit on the duration for a single HTTP
request. Squid warns you when such a request is terminated because it may indicate
someone is abusing your cache with very long-lived connections, for example, by
downloading infinitely long objects.

As you can see, cache.log provides only notification of abnormal events. For periodic
monitoring, you need something else. The cache manager is perhaps the best choice, even
though its interface is less than perfect.

 < Day Day Up >

 < Day Day Up >

14.2 The Cache Manager

The Cache Manager is an interface to Squid for receiving information about various components. It
is accessed via normal HTTP requests with a special protocol name: cache_object. A full cache
manager URL looks like cache_object://cache.host.name/info. Squid provides two easy ways to

access the cache manager information: the command-line squidclient program
[1]

 or the cachemgr.
cgi CGI program.

[1] In older versions of Squid, it was called just client.

The squidclient utility is a simple HTTP client, with a few special features for use with Squid. For
example, you can use a shortcut to request the cache manager pages. Rather than typing a long
URL like this:

% squidclient cache_object://cache.host.name/info

you can use this shorter version:

% squidclient mgr:info

squidclient is a convenient way to quickly see some of the cache manager pages. It's also useful
when you need to save the cache manager output to disk for later analysis. However, some pages,
such as the memory utilization table, are difficult to read in a terminal window. They are really
designed to be formatted as an HTML page and viewed with your web browser. In that case, you
may want to use cachemgr.cgi.

To use cachemgr.cgi, you must have an HTTP server that can execute the program. You can use an
existing server or install one alongside Squid if you prefer. Keep in mind that the cache manager
has only weak security (cleartext passwords). If the HTTP server is on a different host, you need to
add its IP address to a cache manager access list (see Section 14.2.2). You may also want to add
access controls to the HTTP server so that others can't access cachemgr.cgi.

If you use Apache, I recommend making a special cgi-bin directory so you can protect cachemgr.cgi
with access controls. For example, create a new directory, and copy the binary to it:

mkdir /usr/local/apache/squid-cgi

cp /usr/local/squid/libexec/cachemgr.cgi /usr/local/apache/squid-cgi

chmod 755 /usr/local/apache/squid-cgi/cachemgr.cgi

Now, add a ScriptAlias line to Apache's httpd.conf:

ScriptAlias /squid-cgi/ "/usr/local/apache/squid-cgi/"

Finally, create an .htaccess file in the squid-cgi directory that contains access controls. To allow
requests from only one IP address, use something like this:

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/cache_object://cache.host.name/info

Allow from 192.168.4.2

Deny from all

Once cachemgr.cgi is installed, simply enter the appropriate URL into your web browser. For
example:

http://www.server.name/squid-cgi/cachemgr.cgi

If the CGI program is working, you should see a page with four fields. See Figure 14-1 for an
example. The Cache Host field contains the name of the host on which Squid is running—localhost
by default. You can set it with the —enable-cachemgr-hostname option when running ./configure.
Similarly, Cache Port contains the TCP port number to which Squid listens for requests. It's 3128 by
default and can be changed with the —enable-cachemgr-port option. The Manager name and
Password fields are for access to protected pages, which I'll talk about shortly.

Figure 14-1. The cachemgr.cgi login screen

After clicking on the Continue... button, you should see a list of all cache manager pages currently
available. The following section describes the various pages, some of which are available only when
you enable certain features at compile time.

14.2.1 Cache Manager Pages

This section describes the cache manager pages, in the same order in which they appear in the
menu. Each section title has both the page name (for use with squidclient), followed by its
description. Descriptions that contain an asterisk indicate pages that are disabled by default, unless
you configure a password for them. Table 14-1 shows the table of contents and the section number
for each page.

Table 14-1. Cache manager pages

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/localhost

Short name Description

leaks Memory Leak Tracking

mem Memory Utilization

cbdata Callback Data Registry Contents

events Event Queue

squidaio_counts Async IO Function Counters

diskd DISKD Stats

config Current Squid Configuration*

comm_incoming comm_incoming() Stats

ipcache IP Cache Stats and Contents

fqdncache FQDN Cache Stats and Contents

idns Internal DNS Statistics

dns Dnsserver Statistics

redirector URL Redirector Stats

basicauthenticator Basic User Authenticator Stats

digestauthenticator Digest User Authenticator Stats

ntlmauthenticator NTLM User Authenticator Stats

external_acl External ACL Stats

http_headers HTTP Header Statistics

via_headers Via Request Headers

forw_headers X-Forwarded-For Request Headers

menu This Cache Manager Menu

shutdown Shut Down the Squid Process*

offline_toggle Toggle offline_mode Setting*

info General Runtime Information

filedescriptors Process File Descriptor Allocation

objects All Cache Objects

vm_objects In-Memory and In-Transit Objects

openfd_objects Objects with Swapout Files Open

io Server-Side Network read() Size Histograms

counters Traffic and Resource Counters

peer_select Peer Selection Algorithms

digest_stats Cache Digest and ICP Blob

5min 5 Minute Average of Counters

60min 60 Minute Average of Counters

utilization Cache Utilization

histograms Full Histogram Counts

active_requests Client-Side Active Requests

store_digest Store Digest

storedir Store Directory Stats

store_check_cachable_stats storeCheckCachable() Stats

store_io Store IO Interface Stats

pconn Persistent Connection Utilization Histograms

refresh Refresh Algorithm Statistics

delay Delay Pool Levels

forward Request Forwarding Statistics

client_list Cache Client List

netdb Network Measurement Database

asndb AS Number Database

carp CARP Information

server_list Peer Cache Statistics

non_peers List of Unknown Sites Sending ICP Messages

14.2.1.1 leaks: Memory Leak Tracking

This page is available only with the ./configure —enable-leakfinder option and is intended for
developers trying to track down memory leaks. The page shows each memory pointer being tracked

and where and when it was most recently referenced. See the Squid Programmer's Guide (http://
www.squid-cache.org/Doc/Prog-Guide/) for more information about Squid's leak-finder feature.

14.2.1.2 mem: Memory Utilization

The memory utilization page shows a large table of numbers. Each row corresponds to a different
pool of memory. The pools have names like acl_list and MemObject. Much of this information is of
interest to developers only. However, a few columns are worth mentioning here.

It is important to keep in mind that this table doesn't represent all the
memory allocated by Squid. Some memory allocations aren't tracked and
don't appear in the table. Thus, the Total row may be much less than
Squid's actual memory usage.

The impact column shows each pool's contribution to the total amount of memory allocated.
Usually, the StoreEntry, MD5 digest, and LRU policy node pools take up most of the memory.

If you are a developer, you can use this page to look for memory leaks. The column labeled high
(hrs) shows the amount of time elapsed since the pool reached its maximum size. A small value in
this column may indicate that memory for that pool isn't being freed correctly.

You can also use this page to find out if certain features, such as netdb, the ipcache, and client_db
consume too much memory. For example, the ClientInfo pool is associated with the client_db
feature. The memory utilization page shows you how much memory you can save if you disable
client_db in squid.conf.

14.2.1.3 cbdata: Callback Data Registry Contents

The Callback Data Registry is an internal Squid programming feature for managing memory
pointers. Currently, this cache manager page doesn't provide much useful information, apart from
the number of active cbdata pointers being tracked. In earlier Squid versions, the cbdata feature
was implemented differently and this page provided some information to developers debugging
their code.

14.2.1.4 events: Event Queue

Squid maintains an event queue for a number of tasks that must occur separately from user
requests. Perhaps the most important of these is the periodic task that maintains the disk cache
size. Every second or so, this task runs and looks for cache files to remove. On this page, you can
see all tasks currently scheduled for execution. Most likely, you'll not find this very interesting
unless you are hacking the source code.

14.2.1.5 squidaio_counts: Async IO Function Counters

This page is available only with the ./configure —enable-storeio=aufs option. It shows counters for
the number of open, close, read, write, stat, and unlink requests received. For example:

http://www.squid-cache.org/Doc/Prog-Guide/
http://www.squid-cache.org/Doc/Prog-Guide/

ASYNC IO Counters:

Operation # Requests

open 15318822

close 15318813

cancel 15318813

write 0

read 19237139

stat 0

unlink 2484325

check_callback 311678364

queue 0

The cancel counter is normally equal to the close counter. This is because the close function
always calls the cancel function to ensure that any pending I/O operations are ignored.

The write counter is zero because this version of Squid performs writes synchronously, even for
aufs.

The check_callback counter shows how many times the main Squid process has checked the done
queue for completed operations.

The queue value indicates the current length of the request queue. Normally, the queue length
should be less than the number of threads x 5. If you repeatedly observe a queue length larger
than this, you may be pushing Squid too hard. Adding more threads may help, but only to a certain
point.

14.2.1.6 diskd: DISKD Stats

This page is available only with the ./configure —enable-storeio=diskd option. It provides various
statistics relating to the diskd storage scheme.

The sent_count and recv_count lines are counters for the number of I/O requests sent between
Squid and the group of diskd processes. The two numbers should be very close to each other and
could possibly be equal. The difference indicates how many requests are currently outstanding.

The max_away value indicates the largest number of outstanding requests. Similarly, the
max_shmuse counter indicates the maximum number of shared memory blocks in use at once.
These two values are reset (to zero) each time you request this page. Thus, if you wait longer
between requests for this page, these maximum counters are likely to be larger.

The open_fail_queue_len counter indicates the number of times that the diskd code decided to
return failure in response to a request to open a file because the message queue exceeded its
configured limit. In other words, this is the number of times a diskd queue reached the Q1 limit.

Similarly, block_queue_len shows how many times the Q2 limit has been reached. See the
descriptions of Q1 and Q2 in Section 8.5.1.

The diskd page also shows how many requests Squid sent to the diskd processes for each of the six
I/O operations: open, create, close, unlink, read, and write. It also shows how many times each
operation succeeded or failed. Note, these counters are incremented only for requests sent. The
open_fail_queue_len check occurs earlier, and in that case, Squid doesn't send a request to a
diskd process.

14.2.1.7 config: Current Squid Configuration*

This option dumps Squid's current configuration in the squid.conf format. Thus, if you ever
accidentally remove the configuration file, you can recover it from the running Squid process. By
saving the output to a file, you can also compare (e.g., with the diff command) the running
configuration to the saved configuration. Note, however, that comments and blank lines aren't
preserved.

This option reveals potentially sensitive information, so it's available only with a password. You
must add a cache manager password for the config option with the cachemgr_passwd directive. See
Section 14.2.2 for specifics. Additionally, these cache manager passwords aren't displayed in this
output.

14.2.1.8 comm_incoming: comm_incoming() Stats

This page provides low-level network I/O information to developers and Squid wizards. The loop
that checks for activity on file descriptors is called comm_poll(). Over the years, this function has
become increasingly complicated in order to improve Squid's performance. One of those
performance improvements relates to how often Squid checks certain network sockets relative to
the others.

For example, the incoming HTTP socket is where Squid accepts new client connections. This socket
tends to be busier than a normal data socket because each new connection comes through the
incoming socket. To provide good performance, Squid makes an extra effort to check the incoming
socket more frequently than the others.

At the top of the comm_incoming page, you'll see three incoming interval numbers: one each for
ICP, DNS, and HTTP. The interval is the number of normal I/O events that Squid handles before
checking the incoming socket again. For example, if incoming_dns_interval is set to 140, Squid
checks the incoming DNS socket after 140 I/Os on normal connections. Unless your Squid is very
busy, you'll probably see 256 for all incoming intervals.

The page also contains three histograms that show how many events occur for each incoming
function call. Normally, the majority of the histogram counts occur in the low values. In other
words, functions such as comm_select_http_incoming() usually handle between one and four
events.

14.2.1.9 ipcache: IP Cache Stats and Contents

The IP cache contains cached results of hostname-to-address lookups. This cache manager page
displays quite a lot of information. At the top of this page you'll see a handful of statistics like these:

IPcache Entries: 10034

IPcache Requests: 1066445

IPcache Hits: 817880

IPcache Negative Hits: 6846

IPcache Misses: 200497

In this example, you can see that the IP cache contains slightly more than 10,000 entries
(hostnames). Since Squid was started, there have been 1,066,445 name-to-address requests,
817,880 of which were cache hits. This is a cache hit ratio of 77%. An IP cache negative hit occurs
when Squid receives a subsequent request for a hostname that it recently failed to resolve. Rather
than retry the DNS lookup immediately, Squid assumes it will fail again and returns an error
message to the user.

Following these brief statistics, you'll see a long list of the IP cache contents. For each hostname in
the cache, Squid prints six fields:

● The hostname itself
● Flags: N for negatively cached entries and H if the addresses came from the local hosts file,

rather than the DNS
● The number of seconds since the hostname was last requested or used
● The number of seconds until the cached entry expires
● The number of IP addresses known for the host, and, in parentheses, the number of BAD

addresses
● A list of IP addresses and whether each is OK or BAD

Here is a short sample (formatted to fit the page):

 Hostname Flg lstref TTL N

 ads.x10.com 9 110 1(0) 63.211.210.20-OK

 us.rd.yahoo.com 640 -340 4(0) 216.136.232.150-OK

 216.136.232.147-OK

 216.136.232.149-OK

 216.136.232.148-OK

 www.movielodge.com 7143 -2161 1(0) 66.250.223.36-OK

 shell.windows.com 10865 -7447 2(1) 207.46.226.48-BAD

 207.46.248.237-OK

 www.surf3.net 126810 -40415 1(0) 212.74.112.95-OK

The list is sorted by the time since last reference. Recently referenced names are at the top of the
list, and unused (about to be removed) names are at the bottom.

IP addresses are marked OK by default. An address is marked BAD when Squid receives an error or
timeout during a TCP connection attempt. Subsequent IP cache requests don't return BAD

addresses. If all the host's addresses become BAD, Squid resets them all back to OK.

14.2.1.10 fqdncache: FQDN Cache Stats and Contents

The FQDN cache is similar to the IP cache, except that it stores address-to-hostname lookups.
Another difference is that the FQDN cache doesn't mark hostnames as OK or BAD.

Your FQDN cache may be empty, unless you enable the log_fqdn directive, use domain-based ACLs
(such as srcdomain, dstdomain, srcdom_regex, and dstdom_regex), or use a redirector.

14.2.1.11 idns: Internal DNS Statistics

Squid contains an internal DNS client implementation, which is enabled by default. Disabling
internal DNS with the —disable-internal-dns option also disables this page. Here is some sample
output:

Internal DNS Statistics:

The Queue:

 DELAY SINCE

 ID SIZE SENDS FIRST SEND LAST SEND

------ ---- ----- ---------- ---------

001876 44 1 0.010 0.010

001875 44 1 0.010 0.010

Nameservers:

IP ADDRESS # QUERIES # REPLIES

--------------- --------- ---------

192.168.19.124 4889 4844

192.168.19.190 91 51

192.168.10.2 73 39

Rcode Matrix:

RCODE ATTEMPT1 ATTEMPT2 ATTEMPT3

 0 6149 4 2

 1 0 0 0

 2 38 34 32

 3 0 0 0

 4 0 0 0

 5 0 0 0

The Internal DNS page contains three tables. First, you'll see the queue of unanswered queries.
Unfortunately, you can't see the contents of the query (the hostname or IP address). Instead,
Squid prints the ID, size, number of transmissions, and elapsed times for each query. You should
see relatively few queries in the queue. If you see a lot relative to your total traffic rate, make sure
your DNS servers are functioning properly.

The second table (Nameservers) shows how many queries have been sent to, and replies received
from, each DNS server. Squid always queries the first server in the list first. Second (and third,
etc.) servers are queried only when the previous server times out for a given query. If you see zero
replies from the first address, make sure a server is actually running at that address.

Finally, you'll see a table of DNS response codes versus number of attempts. The cell for response
code 0 and ATTEMPT1 should have the highest count. Response code 0 indicates success, while
others are different types of errors (see RFC 1035 for their descriptions). You may see some
smaller numbers for response code 0 in the columns for ATTEMPT2 and ATTEMPT3. This shows the
cases when retransmitting a query, after initially receiving an error, resulted in a successful reply.
Note that Squid retries only response code 2 (server failure) errors.

14.2.1.12 dns: Dnsserver Statistics

This cache manager page is available only when you use the —disable-internal-dns option. In this
case, Squid uses a number of external dnsserver processes to perform DNS lookups. The dnsserver
program is one of a number of helper processes Squid can use. The other types of helpers are
redirectors, authenticators, and external ACLs. All Squid's helpers have cache manager pages that
display the same statistics. For example:

Dnsserver Statistics:

number running: 5 of 5

requests sent: 3001

replies received: 3001

queue length: 0

avg service time: 23.10 msec

 # FD PID # Requests Flags Time Offset Request

 1 6 20110 128 AB 0.293 0 www.nlanr.net

 2 7 20111 45 A 0.000 0 (none)

 3 8 20112 4 A 0.000 0 (none)

 4 9 20113 0 A 0.000 0 (none)

 5 10 20114 0 A 0.000 0 (none)

The number running line shows how many helper processes are running and how many should be
running. The dns_children directive specifies how many dnsserver processes to use. The two
numbers should match, but they may not if a helper process dies unexpectedly or if some
processes could not be started. Recall that when you reconfigure a running Squid instance, all the
helpers are killed and restarted. See the discussion in Appendix A.

The requests sent and replies received values display the number of requests sent to (and
responses received from) the helpers since Squid started. The difference between these two, if any,
should correspond to the number of outstanding requests.

The queue length line shows how many requests are queued, waiting for one of the helpers to
become free. The queue length should usually be zero. If not, you should add more helpers to
reduce delays for your users.

The avg service time line shows the running average service time for all helpers. Your particular
value may depend on numerous factors, such as your network bandwidth and processing power.

The next section displays a table of statistics for the running dnsserver processes. The FD column
shows the file descriptor for the socket between Squid and each dnsserver process. Similarly, the
PID column shows each helper's process ID number.

The # Requests column shows how many requests have been sent to each helper. These numbers
are zeroed each time you reconfigure Squid, so they many not add up to the total number of
requests sent, as shown earlier. Note that Squid always chooses the first idle helper in the list, so
the first process should receive the largest number of requests. The last few processes may not
receive any requests at all.

The Flags column shows a few flags describing the state of the helper process. You should normally
see A (for Alive) in each column. Occasionally, when the helper process is handling a request, you'll
see B (for Busy).

The Time column displays the amount of time elapsed (in seconds) for the current, or last, request.
Offset shows how many bytes of the response message Squid has read on the socket. This is
almost always zero. Finally, the Request column shows the request that was sent to the helper
process. In this case, it is either a hostname or an IP address.

14.2.1.13 redirector: URL Redirector Stats

The Redirector Stats page is available only if you are using a redirector (see Chapter 11). The
format of this page is identical to Dnsserver Statistics, described earlier.

14.2.1.14 basicauthenticator: Basic User Authenticator Stats

This page is available only with the ./configure —enable-auth=basic option and when you define a
Basic authenticator with the auth_param basic program directive. The format of this page is

identical to Dnsserver Statistics, described earlier.

14.2.1.15 digestauthenticator: Digest User Authenticator Stats

This page is available only with the ./configure —enable-auth=digest option and when you define a
Digest authenticator with the auth_param digest program directive. The format of this page is
identical to Dnsserver Statistics, described earlier.

14.2.1.16 ntlmauthenticator: NTLM User Authenticator Stats

This page is available only with the ./configure —enable-auth=ntlm option and when you define a
NTLM authenticator with then auth_param ntlm program directive. The format of this page is
similar to Dnsserver Statistics, described earlier, with a few additions.

The table of helper processes includes an extra column: # Deferred Requests. NTLM requires
"stateful" helpers because the helper processes themselves generate the challenges. Squid receives
a challenge from a helper, sends that challenge to a user, and receives a response. Squid must
send the user's challenge response back to the same helper for validation. For this protocol to work,
Squid must defer some messages to be sent to a helper until the helper is ready to accept them.

These helpers also have two new flags: R (reserved or deferred) and P (placeholder). The R flag is
set when the helper has at least one deferred request waiting. The P flag is set when Squid is
waiting for the NTLM helper to generate a new challenge token.

14.2.1.17 external_acl: External ACL Stats

This page displays helper statistics for your external ACLs. If you don't have any external_acl_type
lines in squid.conf, this page will be empty. Otherwise, Squid displays the statistics for each
external ACL. The format is the same as for the Dnsserver Statistics.

14.2.1.18 http_headers: HTTP Header Statistics

This page displays a number of tables containing statistics about HTTP headers. It contains up to
four sections: HTCP reply stats (if HTCP is enabled), HTTP request stats, HTTP reply stats, and a
final section called HTTP Fields Stats. The HTCP reply statistics refer to HTCP replies received by
your cache. The HTTP request section refers to HTTP requests either sent or received by your
cache. Similarly, the HTTP reply section refers to replies either sent or received by Squid.

The first three sections have the same format. Each section contains three tables: Field type
distribution, Cache-control directives distribution, and Number of fields per header distribution.

The Field type distribution table shows the number of times that each header value occurs and the
percentage of cases in which it occurs. For example, in Table 14-2 you can see that the Accept
header occurs in 98% of HTTP requests.

Table 14-2. Sample Field type distribution values for HTTP requests

ID Name Count #/header

0 Accept 1416268 0.98

1 Accept-Charset 322077 0.22

2 Accept-Encoding 709715 0.49

3 Accept-Language 1334736 0.92

...

Unfortunately, these (and the following) statistics are tricky because they don't correspond one-to-
one for client requests. For example, Squid may report 1,416,268 Accept headers in requests but
only 800,542 client requests. This happens because Squid creates more than one HTTP header data
structure for each request. In the case of HTTP replies, it seems that Squid may create up to four
separate header structures, depending on the circumstances.

The Cache-Control directives distribution is similar, but applies only to the values of the Cache-
Control header. Table 14-3 shows some of the possible field values.

Table 14-3. Sample Cache-Control directives distribution values for HTTP
requests

ID Name Count #/cc_field

0 public 6866 0.02

1 private 69783 0.24

2 no-cache 78252 0.27

3 no-store 9878 0.03

4 no-transform 168 0.00

5 must-revalidate 10983 0.04

6 proxy-revalidate 2480 0.01

7 max-age 165034 0.56

8 s-maxage 4995 0.02

9 max-stale 0 0.00

10 only-if-cached 0 0.00

11 Other 9149 0.03

The Number of fields per header distribution table shows how many headers occur in each
request or reply. Usually, you should see something like a normal distribution with a peak around
10-13 headers per request or response.

Finally, this page ends with a table labeled Http Fields Stats (replies and requests). For each
header, this table shows three values: #alive, %err, and %repeat.

The #alive column shows how many instances of this header are currently stored in memory. HTTP
headers are kept in memory for both active requests/responses and for completed objects stored in
the memory cache.

The %err column shows the percentage of times Squid encountered an error while parsing this
header. Common errors include incorrect date formats for Date, Expires, Last-Modified, and
similar headers. The value -1 indicates no errors.

The %repeat column indicates the number of times that a particular header is repeated in a single
request or response. These aren't errors because HTTP allows headers to be repeated.

14.2.1.19 via_headers: Via Request Headers

This page is available only with the ./configure —enable-forw-via-db option. The information in this
page is intended to help cache administrators understand where client requests come from. When
enabled, Squid counts the number of times each unique Via header occurs in client requests.

The Via header contains a list of downstream proxies that have forwarded the request so far. When
a proxy forwards a request, it should append its hostname and other identifying information to the
Via header. With the information in this database, you can, in theory, reconstruct the hierarchy of
proxies forwarding requests through yours.

Squid prints the Via database entries in a random order. The output may look something like this:

 4 1.0 proxy.firekitten.org:3128 (squid/2.5.STABLE1)

 1 1.0 xnsproxy.dyndns.org:3128 (squid/2.5.PRE3-20020125)

1751 1.0 nt04.rmtcc.cc.oh.us:3128 (Squid/2.4.STABLE6),

 1.0 tasksmart.rmtcc.cc.oh.us:3128 (Squid/2.4.STABLE7)

 137 1.0 reg3.bdg.telco.co.id:8080 (Squid/2.2.STABLE5),

 1.0 c1.telco.co.id:8080 (Squid/2.4.STABLE6),

 1.0 cache2.telco.co.id:8080 (Squid/2.4.STABLE1)

 53 1.0 IS_GW_312:3128 (Squid/2.4.STABLE6)

 60 1.0 proxy.kiltron.net:3128 (Squid/2.4.STABLE7)

 815 1.1 DORM

In this example, Squid received 1751 requests that previously passed through two other proxies
(nt04 and tasksmart). Note that only proxies add a Via header. Requests from user-agents usually
don't have the header and, therefore, aren't counted in this database.

As you can see, the Via headers reveal some semiprivate information, such as hostnames, port
numbers, and software versions. Please take care to respect the privacy of your users if you enable
this feature.

The Via database is stored entirely in memory and is lost if Squid restarts. The database is cleared
whenever you rotate the log files (see Section 13.7).

14.2.1.20 forw_headers: X-Forwarded-For Request Headers

This page is available only with the ./configure —enable-forw-via-db option. It is similar to the
via_headers page, except that it displays the accumulation of X-Forwarded-For headers.

X-Forwarded-For is a nonstandard HTTP header that originated with the Squid project. Its value is
a list of client IP addresses. In other words, when Squid receives and forwards a request, it
appends the client's IP address to this header. It is similar to Via because the header grows each
time a proxy passes the request on towards the origin server.

The forw_headers output is similar to via_headers. Each line begins with an integer, followed by a
header value. The integer indicates how many times that particular X-Forwarded-For value was
received. For example:

 1 10.37.1.56, 10.1.83.8

 3 10.3.33.77, 10.1.83.8

569 116.120.203.54

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/nt04
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/tasksmart

 21 10.65.18.200, 10.1.83.120

 31 116.120.204.6

 5 10.1.92.7, 10.1.83.120

 1 10.3.65.122, 10.3.1.201, 10.1.83.8

 2 10.73.73.51, 10.1.83.120

 1 10.1.68.141, 10.1.83.8

 3 10.1.92.7, 10.1.83.122

As with via_headers, this database is also stored in memory and is lost if Squid exits. The database
is cleared each time you rotate Squid's log files.

14.2.1.21 menu: This Cache Manager Menu

This page simply displays a listing of the other cache manager pages. You can use it if you forget
the name of a page or if you want to know if certain optional pages are available. When using
cachemgr.cgi, each item in the menu is a clickable link.

14.2.1.22 shutdown: Shut Down the Squid Process*

This is one of the few cache manager functions that doesn't simply display some information.
Rather, this "page" allows you to shut down Squid remotely. To allow shutdown via the cache
manager, you must assign it a password with the cachemgr_passwd (see Section 14.2.2) directive
in squid.conf. Without a password, the shutdown operation is disabled (but you can still use squid -
k shutdown).

Because the cache manager has very weak security—passwords are sent in cleartext—I don't
recommend enabling this operation.

14.2.1.23 offline_toggle: Toggle offline_mode Setting*

This is another function that allows you to control Squid, rather than simply receive information. It
also requires a password (see Section 14.2.2) in order to become active.

Each time you request this page, Squid toggles the offline_mode setting. Squid reports the new
setting on your screen and in cache.log.

14.2.1.24 info: General Runtime Information

This page provides a lot of basic information about the way that Squid is operating. It is a good
starting point for using the cache manager and for tracking down performance problems.

At the top, you'll see the release version (e.g., Version 2.5.STABLE4) and two timestamps: the
starting and current times. For example:

Squid Object Cache: Version 2.5.STABLE4

Start Time: Mon, 22 Sep 2003 03:10:37 GMT

Current Time: Mon, 13 Oct 2003 10:25:16 GMT

Following that, you'll see seven different sections. The first section, Connection information,
displays a few statistics about the number and rate of connections, and the number of cache clients:

Connection information for squid:

 Number of clients accessing cache: 386

 Number of HTTP requests received: 12997469

 Number of ICP messages received: 16302149

 Number of ICP messages sent: 16310714

 Number of queued ICP replies: 0

 Request failure ratio: 0.00

 Average HTTP requests per minute since start: 423.7

 Average ICP messages per minute since start: 1063.2

 Select loop called: 400027445 times, 4.601 ms avg

Number of clients accessing cache

Here, "client" actually means IP address. Squid assumes that each client has a unique IP
address.

Number of HTTP requests received

The total number of HTTP requests since Squid was started.

Number of ICP messages received

The total number of ICP messages received since Squid was started. Note, received
messages includes both queries and responses. These values don't include HTCP messages,
however.

Number of ICP messages sent

The total number of ICP messages sent since Squid was started. Note, received messages
includes both queries and responses. Doesn't include HTCP messages. Most likely, your sent
and received counts will be about the same.

Number of queued ICP replies

ICP messages are sent over UDP. The sendto() system call rarely fails, but if it does, Squid
queues the ICP message for retransmission. This counter shows how many times an ICP
message was queued for retransmission. Most likely, you'll see 0 here.

Request failure ratio

The failure ratio is a moving average ratio between the number of failed and successful
requests. In this context, a failed request is caused by either a DNS error, TCP connection
error, or network read error. When this ratio exceeds 1.0—meaning Squid returns more
errors than successful responses— Squid goes into hit-only mode. In this mode, Squid
returns ICP_MISS_NOFETCH instead of ICP_MISS. Thus, your neighbor caches that use ICP
won't forward cache misses to you until the problem goes away.

Average HTTP requests per minute since start

This value is simply the number of HTTP requests divided by the amount of time Squid has
been running. This average doesn't reflect short-term variations in load. To get a better
instantaneous load measurement, use the 5min or 60min page.

Average ICP messages per minute since start

The number of ICP queries received by Squid divided by the amount of time that it has been
running.

Select loop called

This number is probably meaningful only to Squid developers. It represents the number of
times the select() (or poll()) function has been called and the average time between calls.
During normal operation, the time between calls should be in the 1-100 millisecond range.

The Cache information section displays hit ratio and cache size statistics:

Cache information for squid:

 Request Hit Ratios: 5min: 22.6%, 60min: 25.8%

 Byte Hit Ratios: 5min: 24.6%, 60min: 38.7%

 Request Memory Hit Ratios: 5min: 0.7%, 60min: 1.4%

 Request Disk Hit Ratios: 5min: 6.0%, 60min: 12.4%

 Storage Swap size: 41457489 KB

 Storage Mem size: 10180 KB

 Mean Object Size: 14.43 KB

 Requests given to unlinkd: 0

Request Hit Ratios

Here, and on subsequent lines, you'll see two hit ratio numbers: one for the last five
minutes, and one for the last hour. These values are simply the percentage of HTTP
requests that result in a cache hit. Here, hits include cases in which Squid validates a cached
response and receives a 304 (Not Modified) reply.

Byte Hit Ratios

Squid calculates byte hit ratio by comparing the number of bytes received from origin
servers (or neighbors) to the number of bytes sent to clients. When received bytes are less
than sent bytes, the byte hit ratio is positive. However, it is possible to see a negative byte
hit ratio. This might occur, for example, if you have a lot of clients that abort their request
before receiving the entire response.

Request Memory Hit Ratios

These values represent the percentage of all cache hits that were served from memory. Or,
more accurately, the percentage of all hits (not requests!) logged as TCP_MEM_HIT.

Request Disk Hit Ratios

Similarly, these values represent the percentage of "plain" cache hits served from disk. In
particular, these values are the percentage of all hits logged as TCP_HIT. You'll see that the
memory and disk hit percentages don't add up to 100%. This is because the other cases
(such as TCP_IMS_HIT, etc.) aren't included in either disk or memory hits.

Storage Swap size

The amount of data currently cached on disk. It is always expressed in kilobytes. To
compensate for space wasted in partial blocks at the end of files, Squid rounds up file sizes
to the nearest filesystem block size.

Storage Mem size

The amount of data currently cached in memory. It is always expressed in kilobytes and is
always a multiple of Squid's memory page size: 4 KB.

Mean Object Size

Simply the storage swap size divided by the number of cached objects. You should set the
configuration directive store_avg_object_size close to the actual value reported here. Squid
uses the configured value for a number of internal estimates.

Requests given to unlinkd

The unlinkd process handles file deletion external to Squid (depending on your
configuration). This value simply shows how many files Squid has asked unlinkd to remove.
It is zero when unlinkd isn't used.

The Median Service Times section displays the median of various service time (or response time)
distributions. You'll see a value for the last five minutes and for the last hour. All values are in
seconds. Squid uses the median, rather than the mean, because these distributions often have
heavy tails that can significantly skew the mean value. The output looks like this:

Median Service Times (seconds) 5 min 60 min:

 HTTP Requests (All): 0.19742 0.15048

 Cache Misses: 0.22004 0.17711

 Cache Hits: 0.05951 0.04047

 Near Hits: 0.37825 0.14252

 Not-Modified Replies: 0.01309 0.01387

 DNS Lookups: 0.05078 0.03223

 ICP Queries: 0.00000 0.07487

HTTP Requests (All)

These are the median response times for all HTTP requests taken together. For an HTTP
request, the timer starts as soon as Squid receives the request and ends when Squid writes
the last byte of the response. Thus, this time also includes DNS lookups (if any), and ICP
queries to upstream neighbors (if you have them) for cache misses.

Cache Misses

This line shows the response time for cache misses only. Unless your cache hit ratio is close
to 50%, the cache miss response time is close to (but a little larger than) the overall
response time.

Cache Hits

The cache hit response time includes only requests logged as TCP_HIT, TCP_MEM_HIT, and
TCP_OFFLINE_HIT. These are unvalidated cache hits served directly from Squid, without any
communication to the origin server. Thus, your cache hit response time should be
significantly less than the miss time. You should keep track of this value over time; if it
climbs too high, your disk filesystem may be a performance bottleneck.

Near Hits

A near hit is a validated cache hit. It corresponds to TCP_REFRESH_HIT in access.log. For
these, Squid contacts the origin server (or parent cache), which adds some latency to the
response time. The server's response is a small 304 (Not Modified) message. Thus, the near
hit response time is typically in between cache hits and cache misses.

Not-Modified Replies

This line shows the response times for requests logged as TCP_IMS_HIT. This occurs when
the client sends a conditional (a.k.a. validation) request, and Squid serves a response
without contacting the origin server. The name "not-modified" is somewhat misleading for
this category because the status code received by the client isn't necessarily 304. For
example, the client may send an If-modified-since request, and Squid has a fresh, cached
response with a more recent modification time. Squid knows that its response is fresh and
that the client's copy is stale. In this case, the client receives a 200 (OK) reply with the new
object data.

DNS Lookups

The DNS service time shows how long it takes, on average, to query the DNS. This includes
both name-to-address and address-to-name lookups. It doesn't include IP- and FQDN-cache
hits, however. DNS queries can be a significant source of latency. If you experience
performance problems with Squid, be sure to check this value. If you see a high median
service time (i.e., around five seconds), make sure your primary DNS server (usually listed
in /etc/resolv.conf) is up and running.

ICP Queries

The ICP query time represents the elapsed time between an ICP query and response that
causes Squid to select the corresponding neighbor as the next hop. Thus, it includes only
requests logged as PARENT_HIT, SIBLING_HIT, FIRST_PARENT_MISS, and
CLOSEST_PARENT_MISS. This value may not be a good estimate of the overall ICP response
time because ICP query/response transactions that don't result in Squid selecting a neighbor
are ignored. Due to a bug in Squid Versions 2.5.STABLE1 and earlier, ICP response time
statistics aren't collected, and these values always appear as 0.

The Resource usage section includes a few statistics relating to CPU and memory usage:

Resource usage for squid:

 UP Time: 1840478.681 seconds

 CPU Time: 70571.874 seconds

 CPU Usage: 3.83%

 CPU Usage, 5 minute avg: 1.33%

 CPU Usage, 60 minute avg: 4.41%

 Process Data Segment Size via sbrk(): 342739 KB

 Maximum Resident Size: 345612 KB

 Page faults with physical i/o: 65375

UP Time

This line simply shows the amount of time this Squid process has been running. It is
expressed in seconds.

CPU Time

The amount of CPU time used by Squid, also in seconds. This value comes from the
getrusage() system call, which might not be available on all operating systems.

CPU Usage

This section has three CPU Usage lines. The first is the CPU Time value divided by the UP
Time value. It is a long-term average CPU usage measurement. The next two lines show the
CPU usage for the last five minutes and the last hour.

Process Data Segment Size via sbrk()

This line offers an estimate of Squid's process size. sbrk() is a low-level system call used by
the memory allocation library (malloc()). The sbrk() technique provides only an estimate,
which usually differs from values reported by programs such as ps and top. When the sbrk
() value is greater than the Maximum Resident Size (discussed next), the Squid process is
probably page faulting, and performance may be degrading.

Maximum Resident Size

This is another estimate of memory usage and process size. The maximum resident set size
(RSS) value comes from the getrusage() system call. Although the definition of RSS may
vary between operating systems, you can think of it as the maximum amount of physical
memory used by the process at any one time. Squid's process size may be larger than the
RSS, in which case some parts of the process are actually swapped to disk.

Page faults with physical i/o

This value also comes from getrusage(). A page fault occurs when the operating system
must read a page of the process's memory from disk. This usually happens when the Squid
process becomes too large to fit entirely in memory, or when the system has other
programs competing for memory. Squid's performance suffers significantly when page faults
occur. You probably won't notice any problems as long as the page-faults rate is an order of
magnitude lower than the HTTP request rate.

You'll see a section called Memory usage for squid via mstats() if your system has the mstats
() function. In particular, you'll have this function if the GNU malloc library (libgnumalloc.a) is

installed. Squid reports two statistics from mstats():

Memory usage for squid via mstats():

 Total space in arena: 415116 KB

 Total free: 129649 KB 31%

Total space in arena

This represents the total amount of memory allocated to the process. It may be similar to
the value reported by sbrk(). Note that this value only increases over time.

Total free

This represents the amount of memory allocated to the process but not currently in use by
Squid. For example, if Squid frees up some memory, it goes into this category. Squid can
later reuse that memory, perhaps for a different data structure, without increasing the
process size. This value fluctuates up and down over time.

The Memory accounted for section contains a few tidbits about Squid's internal memory
management techniques:

Memory accounted for:

 Total accounted: 228155 KB

 memPoolAlloc calls: 2282058666

 memPoolFree calls: 2273301305

Total accounted

Squid keeps track of some, but not nearly all, of the memory allocated to it. This value
represents the total size of all data structures accounted for. Unfortunately, it is typically
only about two-thirds of the actual memory usage. Squid uses a significant amount of
memory in ways that make it difficult to track properly.

memPoolAlloc calls

memPoolAlloc() is the function through which Squid allocates many fixed-size data
structures. This line shows how many times that function has been called.

memPoolFree calls

memPoolFree() is the companion function through which Squid frees memory allocated with
memPoolAlloc(). In a steady-state condition, the two values should increase at the same
rate and their difference should be roughly constant over time. If not, the code may contain

a bug that frees pooled memory back to the malloc library.

The File descriptor usage section shows how many file descriptors are available to Squid and
how many are in use:

File descriptor usage for squid:

 Maximum number of file descriptors: 7372

 Largest file desc currently in use: 151

 Number of file desc currently in use: 105

 Files queued for open: 0

 Available number of file descriptors: 7267

 Reserved number of file descriptors: 100

 Store Disk files open: 0

Maximum number of file descriptors

This is the limit on open file descriptors for the squid process. This should be the same value
reported by ./configure when you compiled Squid. If you don't see at least 1024 here, you
should probably go back and recompile Squid after reading Section 3.3.1.

Largest file desc currently in use

This is the highest file descriptor currently open. Its value isn't particularly important but
should be within 15-20% of the next line (number currently in use). This value is more
useful for developers because it corresponds to the first argument of the select() system
call.

Number of file desc currently in use

The number of currently open descriptors is an important performance metric. In general,
Squid's performance decreases as the number of open descriptors increases. The kernel
must work harder to scan the larger set of descriptors for activity. Meanwhile, each file
descriptor waits longer (on average) to be serviced.

Files queued for open

This value will always be zero, unless you are using the aufs storage scheme (see Section
8.4). It shows how many file-open requests have been dispatched to the thread processes
but have not yet returned. aufs is the only storage scheme in which disk file descriptors are

opened asynchronously.
[2]

[2] diskd also opens files asynchronously, but those file descriptors belong to the

diskd processes, not the squid process.

Available number of file descriptors

The number of available descriptors is the maximum, minus the number currently open and
the number queued for open. It represents the amount of breathing room Squid has to
handle more load. When the available number gets close to the reserved number (next
line), Squid stops accepting new connections so that existing transactions continue receiving
service.

Reserved number of file descriptors

The number of reserved file descriptors starts out at the lesser of 100 or 25% of the
maximum. Squid refuses new client connections if the number of available (free) descriptors
reaches this limit. It is increased if Squid encounters an error while trying to create a new
TCP socket. In this case, you'll see a message in cache.log:

Reserved FD adjusted from 100 to 150 due to failures

Store Disk files open

This counter shows the number of disk files currently open for reading or writing. It is
always zero if you are using the diskd storage scheme because disk files are opened by the
diskd processes, rather than Squid itself. If you use the max_open_disk_fds directive in
squid.conf, Squid stops opening more cache files for reading or writing when it reaches that
limit. If your filesystem is a bottleneck, this is a simple way to sacrifice a few cache hits for
stable performance.

The Internal Data Structures section gives a quick overview of how many objects are in the
cache and how many are on disk or in memory. You can find more detail about Squid's data
structure allocations in the mem page (see Section 14.2.1.2). This section has a few stats:

Internal Data Structures:

 2873586 StoreEntries

 1336 StoreEntries with MemObjects

 1302 Hot Object Cache Items

 2873375 on-disk objects

StoreEntries

This represents the number of objects cached by Squid. Each object in the cache uses one
StoreEntry structure.

StoreEntries with MemObjects

MemObject is the data structure used for objects currently being requested and for objects
stored in the memory cache.

Hot Object Cache Items

The Hot Object Cache is another name for the memory cache (see Appendix B). These
objects are stored entirely in memory (as well as on disk). This number should always be
less than the number of entries with MemObjects.

on-disk objects

This counter shows how many objects are currently stored on disk. The counter is
incremented when the entire object has been successfully written. Thus, this number isn't
necessarily equal to the number of StoreEntries minus the number of Hot Objects.

14.2.1.25 filedescriptors: Process File Descriptor Allocation

This page displays a table of all file descriptors currently opened by Squid. It looks like this:

File Type Tout Nread * Nwrite * Remote Address Description

---- ------ ---- -------- -------- ----------------- ------------------------------

 3 File 0 0 0 /usr/local/squid/logs/cache.log

 6 File 0 0 2083739 /usr/local/squid/logs/access.log

 12 Pipe 0 0 0 unlinkd -> squid

 13 File 0 0 2485913 /usr/local/squid/logs/store.log

 15 Pipe 0 0 0 squid -> unlinkd

 16 Socket 24 220853* 1924 65.200.216.110.80 http://downloads.mp3.com/

 18 Pipe 0 0 0 squid -> diskd

 19 Socket 179 476* 1747 202.59.16.30.4171 http://ads.vesperexchange.com/

 21 Pipe 0 0 0 squid -> diskd

 22 Socket 20 158783* 998 210.222.20.8.80 http://home.hanmir.com/a

 24 Pipe 0 0 0 squid -> diskd

 25 Socket 1 0 0* 210.222.20.8.80 http://home.hanmir.com/b

 26 Socket 0 9048307* 1578290 .0 DNS Socket

 27 Pipe 0 0 0 squid -> diskd

 28 Socket 0 0 0* 66.28.234.77.80 http://updates.hotbar.com/

 29 Socket 0 0* 0 .0 HTTP Socket

 30 Pipe 0 0 0 squid -> diskd

 31 Socket 0 93 1126 127.0.0.1.3434 ncsa_auth #1

 32 Socket 0 3 31 127.0.0.1.3438 ncsa_auth #3

 33 Socket 0 0 0 127.0.0.1.3440 ncsa_auth #4

 34 Socket 164 8835* 1070222* 212.47.19.52.2201 http://www.eyyubyaqubov.com/

 35 Socket 177 6137* 249899* 212.47.19.25.3044 http://files10.rarlab.com/

 36 Socket 0 0 0 127.0.0.1.3442 ncsa_auth #5

 37 Socket 7 158783* 774 210.222.20.8.80 http://home.hanmir.com/c

 38 Socket 166 1000* 148415* 202.17.13.8.5787 http://home.hanmir.com/d

The table has seven columns:

File

This is simply the file descriptor number. The list always starts with 3 because descriptors 0,
1, and 2 are reserved for stdin, stdout, and stderr. Any other gaps in the list represent
closed descriptors.

Type

The type field contains one of the following values: File, Pipe, or Socket. The File type is
used both for files storing cached responses and for log files, such as cache.log and access.
log. The Pipe type represents kernel pipes used for interprocess communication. The Socket
type is also occasionally used for interprocess communication, but it's mostly used for HTTP
(and FTP) connections to clients and servers.

Tout

This is the general-purpose timeout value for the descriptor. It is expressed in minutes. Files
and Pipes usually don't have a timeout, so this value is zero. For Sockets, however, if this
number of minutes go by without any activity on the descriptor, Squid calls a timeout
function.

Nread

This is where Squid reports the number of bytes read from the descriptor. An asterisk (*)
after the number means Squid has a function (a read handler) registered to read additional
data, if there is some available.

mailto:Pipe

Nwrite

This column shows the number of bytes written to the descriptor. Again, the asterisk (*)
indicates that a write handler is present for the descriptor. You can usually tell if a given
socket is connected to a client or to a server by comparing the number of bytes read and
written. Because requests are normally smaller than responses, a server connection has a
higher Nread count than Nwrite. The opposite is true for client connections.

Remote Address

For Sockets, this field shows the remote TCP address of the connection. The format is
similar to what you would find in netstat -n output: an IP address followed by the TCP port
number.

Description

The description field indicates the descriptor's use. For Files, you'll see a pathname; for
Pipes, a description to what the pipe is connected; and for Sockets, a URI, or at least the
first part of it. A description such as web.icq.com idle connection indicates an idle
persistent connection to an origin server. Similarly, Waiting for next request is an idle
client-side persistent connection.

By default, the File Descriptor page isn't password-protected. However, you may want to give it a
password because it contains some sensitive and, perhaps, personally identifiable information.

14.2.1.26 objects: All Cache Objects

Requesting this page results in a list of all objects in the cache. Be careful with this page because it
can be extremely long. Furthermore, it contains low-level information that is probably useful only to
developers.

For each cached object, Squid prints a sequence of lines, most of which look like this:

KEY FF1F6736BCC167A4C3F93275A126C5F5

 STORE_OK NOT_IN_MEMORY SWAPOUT_DONE PING_NONE

 CACHABLE,DISPATCHED,VALIDATED

 LV:1020824321 LU:1020824671 LM:1020821288 EX:-1

 0 locks, 0 clients, 1 refs

 Swap Dir 0, File 0X010AEE

The first line shows the cache key—a 128-bit MD5 checksum of the URI. The same MD5 checksum
appears in store.log and in the metadata at the beginning of each response cached on disk.

The second line shows four state variables of the StoreEntry data structure: store_status,
mem_status, swap_status, and ping_status. Refer to the Squid source code if you'd like more
information about them.

The third line is a list of the StoreEntry flags that are set. Search the source code for e->flags for
more information.

The fourth line shows the values of four timestamps: last-validation, last-use, last-modification, and
expiration. The last-modification and expiration timestamps are taken from the origin server's HTTP
response. The others are maintained by Squid.

The fifth line shows a few counters: locks, clients, and references. An entry with locks can't be
removed. The clients counter shows how many clients are currently receiving data for this object.
The refs counter shows how many times the object has been requested.

The sixth line shows the object's index to the on-disk storage. Each object has a 7-bit swap
directory index and a 25-bit file number. Each storage scheme has a function to map these
numbers into pathnames.

14.2.1.27 vm_objects: In-Memory and In-Transit Objects

This page is similar to All Cache Objects, except that it displays only objects that have a MemObject
data structure. In other words, objects that are currently being requested or are stored in the
memory cache. These objects are displayed like this:

KEY 5107D49BA7F9C6BA9559E006D6DDC4B2

 GET http://www.rpgplanet.com/ac2hq/cartography/dynamic/LinvakMassif.jpg

 STORE_PENDING NOT_IN_MEMORY SWAPOUT_WRITING PING_DONE

 CACHABLE,DISPATCHED,VALIDATED

 LV:1043286120 LU:1043286122 LM:1036015230 EX:-1

 4 locks, 1 clients, 1 refs

 Swap Dir 1, File 00X31BD9

 inmem_lo: 184784

 inmem_hi: 229840

 swapout: 229376 bytes queued

 swapout: 229509 bytes written

 Client #0, 1533a1018

 copy_offset: 217552

 seen_offset: 217552

 copy_size: 4096

 flags:

As you can see, many of the lines are the same. However, the in-memory objects have a few
additional lines. Directly following the cache key (MD5 checksum), Squid prints the request method
and URI.

The inmem_lo and inmem_hi lines are byte offsets of the HTTP reply. They indicate the section of
object data currently in memory. In most cases, the difference between these two should be less
than the value of the maximum_object_size_in_memory directive.

The swapout: bytes queued line shows the offset for how many bytes have been given to the
storage layer for writing. For objects in the SWAPOUT_DONE state, this value is the same as the
object size. If the state is SWAPOUT_WRITING, Squid also shows the bytes written line, which
indicates how many bytes have been successfully stored on disk.

If one or more clients are currently receiving the response, you'll see a section for each of them
(Client #0 in this example). For each client, Squid reports another pair of offset values. The first,
copy_offset, is the starting point for the last time the client-side asked for data from the storage
system. The second, seen_offset, is the point at which the response data has been sent to the
client. Note that copy_offset is always greater than or equal to seen_offset. The copy_size
indicates the maximum amount of data the client can receive from the storage system.

14.2.1.28 openfd_objects: Objects with Swapout Files Open

The format of this page is the same as for In-Memory and In-Transit Objects. The objects reported
on this page should all be in the SWAPOUT_WRITING state. The page is primarily useful to developers
when trying to track down file-descriptor leaks.

14.2.1.29 io: Server-Side Network read() Size Histograms

This page displays a histogram for each of the following four server-side protocols: HTTP, FTP,
Gopher, and WAIS. The histograms show how many bytes each read() call received. The
information is primarily useful to developers for tuning buffer sizes and other aspects of the source
code.

The bins of the histogram are logarithmic to accommodate the large scale of read sizes. Here is an
example:

HTTP I/O

number of reads: 9016088

Read Histogram:

 1- 1: 3082 0%

 2- 2: 583 0%

 3- 4: 905 0%

 5- 8: 2666 0%

 9- 16: 16690 0%

 17- 32: 88046 1%

 33- 64: 19712 0%

 65- 128: 116655 1%

 129- 256: 749259 8%

 257- 512: 633075 7%

 513- 1024: 903145 10%

 1025- 2048: 3664862 41%

 2049- 4096: 1643747 18%

 4097- 8192: 789796 9%

 8193-16384: 99476 1%

16385-32768: 30059 0%

In this case, you can see that the bin for 1025-2048 bytes is the most popular. When reading from
an HTTP server, Squid got between 1025 and 2048 bytes per read 41% of the time.

14.2.1.30 counters: Traffic and Resource Counters

Squid maintains a data structure of counters. Actually, it is an array of counters. Squid shifts the
array every 60 seconds and calculates 1-, 5-, and 60-minute averages from this array. This page is
simply a dump of the current counter values in a format more suitable for computer processing
than for reading by humans. The counters are as follows:

sample_time

The sample time is actually the time of the last shift, rather than the current time. The
sample time is always within 60 seconds of the current time.

client_http.requests

The number of HTTP requests received from clients.

client_http.hits

The number of cache hits in response to client requests. A hit is any transaction logged with
one of the TCP_HIT codes in access.log.

client_http.errors

The number of client transactions that resulted in an error.

client_http.kbytes_in

The amount of traffic (in kilobytes) received from clients in their requests. This is measured
at the HTTP layer and doesn't include TCP, IP, and other packet headers.

client_http.kbytes_out

The amount of traffic (in kilobytes) sent to clients in responses. Also measured at the HTTP
layer.

client_http.hit_kbytes_out

The amount of traffic sent to clients in responses that are cache hits. Keep in mind that
some cache hits are 304 (Not Modified) responses.

server.all.requests

The number of requests forwarded to origin servers (or neighbor caches) for all server-side
protocols (HTTP, FTP, Gopher, etc.).

server.all.errors

The number of server-side requests (all protocols) that resulted in some kind of error.

server.all.kbytes_in

The amount of traffic (in kilobytes) read from the server-side for all protocols.

server.all.kbytes_out

The amount of traffic written to origin servers and/or neighbor caches for server-side
requests.

server.http.requests

The number of server-side requests to HTTP servers, including neighbor caches.

server.http.errors

The number of server-side HTTP requests that resulted in an error.

server.http.kbytes_in

The amount of traffic read from HTTP origin servers and neighbor caches.

server.http.kbytes_out

The amount of traffic written to HTTP origin servers and neighbor caches.

server.ftp.requests

The number of requests sent to FTP servers.

server.ftp.errors

The number of requests sent to FTP servers that resulted in an error.

server.ftp.kbytes_in

The amount of traffic read from FTP servers, including control channel traffic.

server.ftp.kbytes_out

The amount of traffic written to FTP servers, including control channel traffic.

server.other.requests

The number of "other" server-side requests. Currently, the other protocols are Gopher,
WAIS, and SSL.

server.other.errors

The number of Gopher, WAIS, and SSL requests that resulted in an error.

server.other.kbytes_in

The amount of traffic read from Gopher, WAIS, and SSL servers.

server.other.kbytes_out

The amount of traffic written to Gopher, WAIS, and SSL servers.

icp.pkts_sent

The number of ICP messages sent to neighbors. This includes both queries and replies but
doesn't include HTCP messages.

icp.pkts_recv

The number of ICP messages received from neighbors, including both queries and replies.

icp.queries_sent

The number of ICP queries sent to neighbors.

icp.replies_sent

The number of ICP replies sent to neighbors.

icp.queries_recv

The number of ICP queries received from neighbors.

icp.replies_recv

The number of ICP replies received from neighbors.

icp.query_timeouts

The number of times that Squid timed out waiting for ICP replies to arrive.

icp.replies_queued

The number of times Squid queued an ICP message after the initial attempt to send failed.
See Section 14.2.1.24.

icp.kbytes_sent

The amount of traffic sent in all ICP messages, including both queries and replies.

icp.kbytes_recv

The amount of traffic received in all ICP messages, including both queries and replies.

icp.q_kbytes_sent

The amount of traffic sent to neighbors in ICP queries.

icp.r_kbytes_sent

The amount of traffic sent to neighbors in ICP replies.

icp.q_kbytes_recv

The amount of traffic received from neighbors in ICP queries.

icp.r_kbytes_recv

The amount of traffic received from neighbors in ICP replies.

icp.times_used

The number of times ICP resulted in the selection of a neighbor as the next-hop for a cache
miss.

cd.times_used

The number of times Cache Digests resulted in the selection of a neighbor as the next-hop
for a cache miss.

cd.msgs_sent

The number of Cache Digest messages sent to neighbors.

cd.msgs_recv

The number of Cache Digest messages received from neighbors.

cd.memory

The amount of memory (in kilobytes) used by enabling the Cache Digests' feature.

cd.local_memory

The amount of memory (in kilobytes) used to store Squid's own Cache Digest.

cd.kbytes_sent

The amount of traffic sent to neighbors in Cache Digest messages.

cd.kbytes_recv

The amount of traffic received from neighbors in Cache Digest messages.

unlink.requests

The number of unlink requests given to the (optional) unlinkd process.

page_faults

The number of (major) page faults as reported by getrusage().

select_loops

The number of times Squid called select() or poll() in the main I/O loop.

cpu_time

The amount of CPU time (in seconds) accumulated, as reported by getrusage().

wall_time

The amount of human time (in seconds) elapsed since Squid was started.

swap.outs

The number of objects (swap files) saved to disk.

swap.ins

The number of objects (swap files) read from disk.

swap.files_cleaned

The number of orphaned cache files removed by the periodic cleanup procedure.

aborted_requests

The number of server-side HTTP requests aborted due to client-side aborts.

14.2.1.31 peer_select: Peer Selection Algorithms

This page contains a lot of low-level detail about cache digests that I won't discuss. Most of the
numbers are meaningful only to the developers that originally wrote the Cache Digest
implementation.

However, at the end of this page is a little table that compares Algorithm usage:

Algorithm usage:

Cache Digest: 27 (24%)

Icp: 84 (76%)

Total: 111 (100%)

In this example, you can see that Squid sent 111 requests to one of its neighbors: 27 are due to
Cache Digests and 84 are due to ICP. In this context, ICP also includes HTCP.

14.2.1.32 digest_stats: Cache Digest and ICP Blob

This page is actually just a concatenation of the following other cache manager pages:

● Traffic and Resource Counters
● 5 Minute Average of Counters
● Full Histogram Counts
● Peer Selection Algorithms
● Store Digest

Its only purpose is to enable developers to take a snapshot of a number of statistics with a single
request.

14.2.1.33 5min: 5 Minute Average of Counters

This page shows a five-minute average of the data in the Traffic and Resource Counters page. In
addition to the counters mentioned in Section 14.2.1.30, this page also contains the following
values:

client_http.all_median_svc_time

The median service (response) time for all client requests from the last five minutes.

client_http.miss_median_svc_time

The median service time for cache misses from the last five minutes.

client_http.nm_median_svc_time

The five-minute median service time for requests logged as TCP_IMS_HIT. See "Not-Modified
Replies" in Section 14.2.1.24.

client_http.nh_median_svc_time

The five-minute median service time for Near Hits (TCP_REFRESH_HIT requests).

client_http.hit_median_svc_time

The five-minute median service time for unvalidated cache hits.

icp.query_median_svc_time

The five-minute median service time for ICP queries sent by Squid (how long it takes for the
neighbors to reply to our queries).

icp.reply_median_svc_time

The five-minute median service time for ICP queries received by Squid (how long it takes
Squid to reply to its neighbor's queries). ICP processing normally occurs faster than the
process clock is updated, so this value is always zero.

dns.median_svc_time

The five-minute median service time for DNS queries.

select_fds

The mean rate at which the main I/O loop scans file descriptors with select() or poll().
Note: a low number doesn't necessarily indicate poor performance. It may just be that
Squid often has no work to do.

average_select_fd_period

The mean number of seconds required to scan a file descriptor in the main I/O loop.

median_select_fds

The five-minute median number of ready file descriptors each time Squid calls select() or
poll() (the median of the select()/poll() return value). Unfortunately, this value is almost
always zero because Squid's functions for calculating the median don't work very well with

the select_fds histogram, in which 0 and 1 are the most common values.

syscalls.selects

The five-minute mean rate of calls to select()/poll(). If Squid is using poll() on your
system, the variable is called syscalls.polls. This value may be a little larger than
select_loops, because the latter only includes calls in the main I/O loop.

syscalls.disk.opens

The five-minute mean rate of open() calls for disk files.

syscalls.disk.closes

The five-minute mean rate of close() calls for disk files.

syscalls.disk.reads

The five-minute mean rate of read() calls for disk files.

syscalls.disk.writes

The five-minute mean rate of write() calls for disk files.

syscalls.disk.seeks

The five-minute mean rate of seek() calls for disk files. Probably zero unless you are using
aufs, which always calls seek() before reading.

syscalls.disk.unlinks

The five-minute mean rate of unlink() (or, in some cases, truncate()) calls for disk files.

syscalls.sock.accepts

The five-minute mean rate of accept() calls for network sockets.

syscalls.sock.sockets

The five- minute mean rate of socket() calls for network sockets.

syscalls.sock.connects

The five-minute mean rate of connect() calls for network sockets.

syscalls.sock.binds

The five-minute mean rate of bind() calls for network sockets.

syscalls.sock.closes

The five-minute mean rate of close() calls for network sockets.

syscalls.sock.reads

The five-minute mean rate of read() calls for network sockets.

syscalls.sock.writes

The five-minute mean rate of write() calls for network sockets.

syscalls.sock.recvfroms

The five-minute mean rate of recvfrom() calls for network sockets. Used for UDP-based
protocols, such as DNS, ICP, HTCP, and some interprocess communication.

syscalls.sock.sendtos

The five-minute mean rate of sendto() calls for network sockets. Used for UDP-based
protocols, such as DNS, ICP, HTCP, and some interprocess communication.

14.2.1.34 60min: 60 Minute Average of Counters

This page shows a 60-minute average of the data in the Traffic and Resource Counters page. The
descriptions are identical to those for the 5 Minute Average of Counters page, except the
measurements are taken over one hour.

14.2.1.35 utilization: Cache Utilization

This page displays averages of the counters (see Traffic and Resource Counters and 5 Minute
Average of Counters) over various time spans. The same values are reported for 5-minute, 15-
minute, 1-hour, 8-hour, 1-day, and 3-day intervals.

This page, with a poorly chosen name, exists primarily so that developers can take a quick
snapshot of statistics for testing purposes.

14.2.1.36 histograms: Full Histogram Counts

This page displays the current histogram values (since Squid was started) for a number of
measurements:

● client_http.all_svc_time
● client_http.miss_svc_time
● client_http.nm_svc_time
● client_http.nh_svc_time
● client_http.hit_svc_time
● icp.query_svc_time
● icp.reply_svc_time
● dns.svc_time
● select_fds_hist

These are the same measurements described in Section 14.2.1.33, except that here Squid gives the
full histogram, instead of the mean or median.

Depending on the type of histogram, you may see two or three columns. The first column is the bin
number and lower bound on the bin value. The second column is the number of counts for that bin.
The optional third column is the number of counts divided by the "size" of the bin. The last column
is probably only interesting for log-based histograms, in which the bin size isn't constant.

14.2.1.37 active_requests: Client-Side Active Requests

This page shows a list of currently active client-side requests. The list is sorted starting with the
most recent, and ending with the oldest requests. The information given here is primarily useful to
developers. A typical entry looks like this:

Connection: 0x84ecd10

 FD 132, read 1273, wrote 12182

 FD desc: http://www.squid-cache.org/Doc/FAQ/FAQ.html

 in: buf 0xa063000, offset 0, size 4096

 peer: 206.168.0.9:1058

 me: 192.43.244.42:3128

 nrequests: 3

 defer: n 0, until 0

uri http://www.squid-cache.org/Doc/FAQ/FAQ.html

log_type TCP_MISS

out.offset 0, out.size 0

req_sz 392

entry 0x960c680/3B49762ABF444D80B6465552F6CFAD4C

old_entry 0x0/N/A

start 1066036250.669955 (2.240814 seconds ago)

Connection

The internal memory address of the connection structure.

FD

The file descriptor for the TCP connection, followed by the number of bytes read and written.

FD desc

A short description of the socket, usually a URI. This is the same as in Section 14.2.1.25.

in

The internal memory location of the input buffer, the offset at which Squid will place data
after the next read() call, and the size of the input buffer.

peer

The remote socket address of the TCP connection. You can correlate this value with what
you see in netstat -n output.

me

The local socket address of the TCP connection.

nrequests

The number of HTTP requests received on this connection. A value greater than 1 indicates
persistent connection reuse.

defer

Indicates whether Squid is postponing reads on the socket.

uri

The URI from the client's request. Unlike FD desc, this one isn't truncated.

log_type

The cache status code that appears in access.log when this transaction is complete.

out.offset

The offset, relative to the start of the HTTP reply message, in which the client side has
requested data from the storage system.

out.size

The number of response bytes written to the client.

req_sz

The size of the client's HTTP request. Note, for persistent connections, this refers only to the
current request.

entry

The memory address and MD5 hash of the corresponding StoreEntry structure.

old_entry

For validation requests, this is the memory address and MD5 hash of the cached response
StoreEntry.

start

The time at which Squid began processing this request.

14.2.1.38 store_digest: Store Digest

This page is available only with the ./configure —enable-cache-digests option. It displays a few
statistics about Squid's own cache digest. It looks like this:

store digest: size: 620307 bytes

 entries: count: 324806 capacity: 992490 util: 33%

 deletion attempts: 0

 bits: per entry: 5 on: 1141065 capacity: 4962456 util: 23%

 bit-seq: count: 1757902 avg.len: 2.82

 added: 324806 rejected: 611203 (65.30 %) del-ed: 0

 collisions: on add: 0.08 % on rej: 0.07 %

size

The number of bytes that the digest occupies in memory.

entries count

The number of cached objects entered into the digest.

entries capacity

The target capacity for the digest. Note, this isn't a hard limit, but rather an estimate for
optimally sizing the digest.

entries util

The percentage of entries added compared to the capacity.

deletion attempts

Squid doesn't currently support deletion of cache digest entries, so this is always zero.

bits per entry

The number of bits that each item turns on. The same as the digest_bits_per_entry value
from squid.conf.

bits on

The number of bits that have been turned on so far.

bits capacity

The total number of bits in the digest. Equal to the digest size multiplied by eight.

bit-seq count

The number of same-bit sequences in the digest. For example, the pattern 110100011111

has 5 sequences of 1s and 0s.

bit-seq avg.len

The mean length of same-bit sequences.

added

The number of entries added to the digest since it was created.

rejected

The number of entries not added to the digest. An entry may not be added because it isn't
cachable, is too large, stale, or about to become stale, etc.

del-ed

Squid doesn't currently support deletion of cache digest entries, so this is always zero.

collisions on add

This is the percentage of additions that didn't turn on any new bits. Recall that Bloom filters
have the property that two or more entries may turn on the same bit.

collisions on rej

This is the percentage of rejected additions that wouldn't have turned on any new bits.

14.2.1.39 storedir: Store Directory Stats

This page displays some statistics from the storage system. First, you'll see a few global values. For
example:

Store Directory Statistics:

Store Entries : 2873564

Maximum Swap Size : 46080000 KB

Current Store Swap Size: 41461672 KB

Current Capacity : 90% used, 10% free

Store Entries

The number of StoreEntry objects. Most, but not necessarily all, of these are for on-disk
objects.

Maximum Swap Size

The sum of all cache_dir sizes.

Current Store Swap Size

The total amount of cached data currently stored on disk. Note that Squid rounds response
sizes (e.g., 1722 bytes) up to the nearest multiple filesystem block size (e.g., 2048 bytes)
when incrementing and decrementing this value.

Current Capacity

The percentage of the maximum disk space currently in use. The percentage in use should
normally stay below the cache_swap_high value.

Next, you'll see a section for each cache_dir. It looks something like this:

Store Directory #1 (diskd): /cache1

FS Block Size 1024 Bytes

First level subdirectories: 16

Second level subdirectories: 64

Maximum Size: 15360000 KB

Current Size: 13823996 KB

Percent Used: 90.00%

Filemap bits in use: 958439 of 2097152 (46%)

Filesystem Space in use: 14030485/17370434 KB (81%)

Filesystem Inodes in use: 959440/4340990 (22%)

Flags: SELECTED

Pending operations: 0

Removal policy: lru

LRU reference age: 23.63 days

Store Directory #

The directory number, type, and pathname.

FS Block Size

The filesystem block size, determined by the statfs() or statvfs() system calls. If these
functions aren't available or return an error, the block size defaults to 2048 bytes.

The next few lines are actually storage scheme-dependent. For the most part, ufs, aufs, and diskd
are very similar and all report the same statistics.

First level subdirectories

The number of first-level subdirectories you told Squid to use on the cache_dir line.

Second level subdirectories

The number of second-level subdirectories you told Squid to use on the cache_dir line.

Maximum Size

The maximum allowed size for this cache directory.

Current Size

The amount of disk space currently in use.

Percent Used

The percentage of cache_dir space currently in use.

Filemap bits in use

Squid uses a bitmap to keep track of file numbers that are allocated and free. This line
shows the number and percentage of bits in use. The filemap grows automatically as
needed, so don't worry if it shows up as 99% full.

Filesystem Space in use

These numbers come from the statfs()/statvfs() system calls. These should be the same
values as you'd see from the df command. Squid doesn't use these numbers, other than to
report them here for your information. Note that these values may be larger than Current
Size, especially if the partition is used for more than Squid's cache.

Filesystem Inodes in use

These numbers also come from statfs()/statvfs(). They are present to remind you that
running out of inodes is just as bad as running out of free space. Unfortunately, if you run
out of inodes, you'll probably be forced to newfs the partition.

Flags

Possible values include SELECTED and READ-ONLY. The SELECTED flag means that this
particular cache_dir was most recently selected by the cache directory selection algorithm
(see Section 7.4). The READ-ONLY flag means that the cache directory has been marked
read-only in the configuration file (see Section 7.1.5).

Pending operations

This line appears only for diskd cache directories. It shows the number of I/O requests
dispatched to the diskd process that have not yet been acknowledged.

That's the end of the scheme-specific data. The remaining lines are specific to the cache_dir
replacement algorithm:

Removal policy

Possible values include lru (the default) or heap. Note that for heap, you won't see the
algorithm name (LFU, GDSF, or LRU).

LRU reference age

If the removal policy is lru, you'll also see this line. It shows the age of the oldest object in
the LRU list.

14.2.1.40 store_check_cachable_stats: storeCheckCachable() Stats

This page displays a table of counters from the storeCheckCachable() function. It is called for most
responses, just before Squid attempts to open a disk file for writing.

Squid knows that some responses can't be cached, based entirely on the
request. These responses aren't included in the storeCheckCachable()
statistics.

The table includes the following lines:

no.not_entry_cachable

The ENTRY_CACHABLE flag was cleared for some reason.

no.release_request

The RELEASE_REQUEST flag was set while reading the response. This may be due to an error
(such as receiving a partial response) or to the rules of the transfer protocol.

In some versions of Squid, this counter is always zero because the storeReleaseRequest()
function always clears the ENTRY_CACHABLE bit, causing such objects to be counted as no.
not_entry_cachable instead.

no.wrong_content_length

The actual content length doesn't match the Content-Length header value.

In some versions of Squid, this counter is always zero because storeReleaseRequest() is always
called if the response size doesn't match the expected content length.

no.negative_cached

The ENTRY_NEGCACHED flag was set. See the description for TCP_NEGATIVE_HIT in Section
13.2.1.

no.too_big

The response body was larger than the maximum_object_size value.

no.too_small

The response body was smaller than the minimum_object_size value.

no.private_key

The response has a private cache key, indicating that it can't be shared with other users.

no.too_many_open_files

The Squid process was low on free file descriptors.

no.too_many_open_fds

Squid had more than max_open_disk_fds opened at one time.

yes.default

The response was cachable because it did not meet any of the preceding criteria.

14.2.1.41 store_io: Store IO Interface Stats

This short table contains four lines related to allocating disk storage for a new response. For
example:

Store IO Interface Stats

create.calls 2825670

create.select_fail 0

create.create_fail 0

create.success 2825670

create.calls

The number of calls to the function that creates a new disk file.

create.select_fail

The number of times that the create operation failed because the cache_dir selection
algorithm did not select a cache directory. The default selection algorithm, least-load, fails
if it thinks all cache directories are too busy.

create.create_fail

The number of times that the create operation failed at the storage layer. This may happen
if the open() call returns an error or if the storage system (e.g., diskd) elects to not open a
disk file for some reason (e.g., overload condition).

create.success

The number of times the create operation succeeded.

14.2.1.42 pconn: Persistent Connection Utilization Histograms

This page displays two histograms. The first is for client-side persistent connection usage. For
example:

Client-side persistent connection counts:

 req/

 conn count

 ---- ---------

 0 74292

 1 14362705

 2 3545955

 3 2068486

 4 1411423

 5 1030023

 6 778722

 7 603649

 8 474592

 9 376154

 10 301396

On the left is the number of requests per connection. On the right is the number of times a client
connection had that many requests. Most likely, you'll see that one request/connection has the
highest count and that the counts decrease as the number of requests/connection increases.

The second table has the same information, but for server-side HTTP connections. You should see
the same sort of pattern here, with one request/connection having the highest count.

14.2.1.43 refresh: Refresh Algorithm Statistics

The refresh page shows a few tables relating to the freshness of cached objects. Internally, Squid
keeps track of the way different modules use the refresh functions. The first table shows how many
calls each module has made. The really interesting data is contained in the remaining tables,
however.

The HTTP histogram shows the breakdown of freshness checks for client HTTP requests. For
example:

HTTP histogram:

Count %Total Category

 0 0.00 Fresh: request max-stale wildcard

 0 0.00 Fresh: request max-stale value

173984 9.76 Fresh: expires time not reached

462757 25.97 Fresh: refresh_pattern last-mod factor percentage

 42 0.00 Fresh: refresh_pattern min value

 0 0.00 Fresh: refresh_pattern override expires

 0 0.00 Fresh: refresh_pattern override lastmod

 5521 0.31 Stale: response has must-revalidate

 0 0.00 Stale: changed reload into IMS

 0 0.00 Stale: request has no-cache directive

470912 26.43 Stale: age exceeds request max-age value

455073 25.54 Stale: expires time reached

 65612 3.68 Stale: refresh_pattern max age rule

144706 8.12 Stale: refresh_pattern last-mod factor percentage

 3274 0.18 Stale: by default

1781881 100.00 TOTAL

Note, the rules aren't necessarily evaluated in the order in which they appear in the table. Here's
what each line means:

Fresh: request max-stale wildcard

Squid considers the cached response fresh because the request includes a max-stale
directive without any value. For example:

GET /blah... HTTP/1.1

Cache-control: max-stale

According to RFC 2616: "If no value is assigned to max-stale, then the client is willing to
accept a stale response of any age."

Fresh: request max-stale value

Squid considers the cached response fresh because the request includes a max-stale
directive with a particular value, which is larger than the amount of time since the object
expired.

Fresh: expires time not reached

Squid considers the cached response fresh because its expiration time has not yet been
reached.

Fresh: refresh_pattern last-mod factor percentage

Squid considers the cached response fresh because it matches one of the refresh_pattern
rules and has a last-modified factor (LM-factor) value that's less than that specified by the
rule. See Section 7.7.

Fresh: refresh_pattern min value

Squid considers the cached response fresh because it matches one of the refresh_pattern
rules and its age is less than the min value specified by the rule. See Section 7.7.

Fresh: refresh_pattern override expires

Squid considers the cached response fresh because it matched one of the refresh_pattern
rules with the override-expire option. This option causes Squid to give precedence to the
refresh_pattern minimum value over the object's expiration time. Note: using the
override-expire option is a violation of RFC 2616.

Fresh: refresh_pattern override lastmod

Squid considers the cached response fresh because it matched one of the refresh_pattern
rules with the override-lastmod option. This option causes Squid to give precedence to the
refresh_pattern minimum value over the LM-factor value. Note: using the override-
lastmod option is a violation of RFC 2616.

Stale: response has must-revalidate

Squid considers the cached response stale because it contains a Cache-Control: must-
revalidate directive.

Stale: changed reload into IMS

Squid considers the cached response stale because it matches one of the refresh_pattern
rules with the reload-into-ims option. With this option, Squid turns a request with Cache-
Control: no-cache (or similar) into a cache validation. Note: using the reload-into-ims
option is a violation of RFC 2616.

Stale: request has no-cache directive

Squid considers the cached response stale because the request contains a Cache-Control:

no-cache directive.

Stale: age exceeds request max-age value

Squid considers the cached response stale because the request has a max-age directive,
which is less than the response's age.

Stale: expires time reached

Squid considers the cached response stale because its expiration time has been reached.

Stale: refresh_pattern max age rule

Squid considers the cached response stale because it matches one of the refresh_pattern
rules, and its age is greater than the max value specified by the rule.

Stale: refresh_pattern last-mod factor percentage

Squid considers the cached response stale because it matches one of the refresh_pattern
rules, and its LM-factor value is greater than the factor specified by the rule.

Stale: by default

Squid considers the cached response stale by default, because it didn't meet any of the
other criteria.

Following the HTTP histogram, you'll see the same data for ICP, HTCP, Cache Digests, and On
Store.

The On Store table represents freshness checks for responses that are coming into Squid's cache (i.
e., cachable misses). Note, however, that Squid does store stale responses (as long as they have a
cache validator). Don't be alarmed if you see some stale responses in the On Store histogram.

14.2.1.44 delay: Delay Pool Levels

This page displays the Delay Pool statistics. Squid has three classes of pools (1, 2, 3) and three
types of buckets (aggregate, individual, and network). A class 1 pool has only an aggregate bucket,
a class 2 pool has both aggregate and individual, and a class 3 pool has all three.

An aggregate bucket looks like this:

Aggregate:

 Max: 16384

 Restore: 4096

 Current: 6144

The values are all in bytes. Max is the size of the bucket, which is the number of bytes the bucket
can hold. Restore is the number of bytes added to the bucket each second. Current is the number
of bytes currently in the bucket. If nobody uses the bytes, the bucket fills until it reaches the
maximum size.

An individual bucket is almost the same:

Individual:

 Max: 20000

 Restore: 5000

 Current: 1:18760 9:4475 14:20000

The only difference is that the Current line displays a number of different values, one for each host
number. The host number is defined as the last octet of an IPv4 address. In this example, the host
numbers are 1, 9, and 14. In a class 2 delay pool, the host numbers from different networks share
the same bucket. For example, 192.168.0.1 and 192.168.44.1 both share the bucket for host
number 1. In a class 3 pool, however, each network number (third octet) has its own array of
individual buckets. Thus, for a class 3 pool, the individual buckets appear this way:

Individual:

 Max: 20000

 Rate: 5000

 Current [Network 0]: 1:12000

 Current [Network 44]: 1:17000

A network bucket (for class 3 pools only) is similar as well:

Network:

 Max: 30000

 Rate: 15000

 Current: 0:3912 7:30000

In this case, the Current line shows the current level for each network number (third octet). See
Appendix C for more information about Delay Pools.

14.2.1.45 forward: Request Forwarding Statistics

The table on this page shows how many attempts were made to forward each request, with their
results. Upon receiving some status codes, Squid gives up immediately. For others, however, Squid
keeps trying. Each row of the table is a different HTTP status code (200, 401, 404, etc.). Each

column is the number of forwarding attempts. The value in each cell is how many requests were
forwarded that many times, resulting in the corresponding status code. This information helps
developers understand whether or not it makes sense to retry a request after receiving certain
types of responses. Here is an example:

Status try#1 try#2 try#3 try#4 try#5 try#6 try#7 try#8 try#9 try#10

 0 1 0 0 0 0 0 0 0 0 0

200 3970083 111015 51185 29002 18242 12097 8191 6080 4490 6140

201 57 0 0 0 0 0 0 0 0 0

202 162 0 0 0 0 0 0 0 0 0

204 1321 11 0 0 0 0 0 0 0 0

206 624288 453 25 9 4 3 0 1 0 0

207 147 0 0 0 0 0 0 0 0 0

300 23 0 0 0 0 0 0 0 0 0

301 23500 25 2 0 0 0 1 0 0 0

302 339332 3806 153 26 6 4 2 3 0 1

303 101 1 0 0 0 0 0 0 0 0

304 772831 3510 125 21 7 8 8 5 3 2

307 7 0 0 0 0 0 0 0 0 0

400 529 1 0 0 0 0 0 0 0 0

401 1559 0 0 0 0 0 0 0 0 0

403 5098 30 1 1 0 0 0 0 0 0

404 100800 216 25 6 7 1 2 4 1 5

405 1 0 0 0 0 0 0 0 0 0

...

A value of 29,002 in the cell under try#4 and in the row for status 200 means that there were
29,002 times when Squid finally got a successful response after 4 forwarding attempts. If you look
at the table, you may see some unknown status codes. Squid keeps track of all status codes up to
600, even those it doesn't know about. See Table 13-1 for the list of codes that Squid does know
about.

14.2.1.46 client_list: Cache Client List

The cache client list shows a handful of statistics for each client IP address accessing Squid, which
looks like this:

Address: 206.168.0.9

Name: 206.168.0.9

Currently established connections: 0

 ICP Requests 59000

 UDP_HIT 1609 3%

 UDP_MISS 57388 97%

 UDP_INVALID 3 0%

 HTTP Requests 11281

 TCP_HIT 656 6%

 TCP_MISS 3464 31%

 TCP_REFRESH_HIT 4477 40%

 TCP_REFRESH_MISS 767 7%

 TCP_CLIENT_REFRESH_M 397 4%

 TCP_IMS_HIT 1082 10%

 TCP_SWAPFAIL_MISS 7 0%

 TCP_NEGATIVE_HIT 13 0%

 TCP_MEM_HIT 418 4%

The Address line, obviously, shows the client's IP address. Name is the same, unless you have
log_fqdn enabled, and the DNS reports a name for the address. The Currently established
connections line shows how many HTTP connections are currently open between the client and
Squid.

If the client has sent any ICP queries, you'll see a breakdown of the results here. In this example,
only 3% of this client's ICP queries were hits. Note, this page doesn't currently include HTCP result
statistics. Finally, you'll see a breakdown of HTTP request result codes.

The client database consumes a fair amount of memory, especially if you have a large number of
client IP addresses accessing Squid. You can disable the database entirely, thus conserving
memory, with the client_db directive. Also note that there is no way to clear the counters or to
remove entries while Squid is running.

14.2.1.47 netdb: Network Measurement Database

This page is available only with the ./configure —enable-icmp option (see Section 10.5). On this
page you'll find quite a lot of IP addresses, hostnames, packet counters, and RTT values. It looks
something like this:

Network DB Statistics:

Network recv/sent RTT Hops Hostnames

165.123.34.0 7/ 7 12.7 8.6 onlinebooks.library.upenn.edu

 www.library.upenn.edu

 digital.library.upenn.edu

 rtp.us.ircache.net 17.0 11.0

 sj.us.ircache.net 71.0 17.3

209.202.204.0 4/ 4 12.8 10.0 adbuyer3.lycos.com

 rtp.us.ircache.net 20.6 15.0

 sj.us.ircache.net 77.6 15.0

63.151.139.0 17/ 17 12.8 9.0 www.originlab.com

 sj.us.ircache.net 80.0 12.0

209.68.20.0 23/ 23 12.8 11.7 www6.tomshardware.com www.guestbook.nu

 rtp.us.ircache.net 34.9 15.1

 sj.us.ircache.net 73.9 14.7

Each /24 network is listed, in order of increasing round-trip time. You can see how many ICMP
pings have been sent and received, the average RTT, and the estimated router hop-count. The
Hostnames field shows the hostnames that resolve to addresses within the /24 network. If Squid
has ICMP measurements from its neighbors for the network, those are printed as well. In this
example, the local cache is closer to all the networks than its neighbors (rtp.us.ircache.net and sj.
us.ircache.net).

14.2.1.48 asndb: AS Number Database

Although this page is always available, it contains interesting data only if you are using one of the
Autonomous System (AS) ACLs, such as src_as or dst_as.

When you use an AS-based ACL, Squid queries the Routing Arbiter database (whois.ra.net) to
discover the IP networks associated with the AS number. The results of those queries are displayed
on this page. The output looks like this:

 Address AS Numbers

 128.98.0.0/16 7

 146.80.0.0/16 7

 192.5.28.0/24 7

 192.5.29.0/24 7

 192.5.30.0/24 7

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/rtp.us.ircache.net
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/sj.us.ircache.net
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/sj.us.ircache.net
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/whois.ra.net

192.107.178.0/24 7

192.135.183.0/24 5637

 194.61.177.0/24 7

 194.61.180.0/24 7

 194.61.183.0/24 7

 194.83.162.0/24 7

14.2.1.49 carp: CARP Information

This page is available only with the ./configure —enable-carp option and if you have some CARP
parents configured. Squid displays a table of all CARP parents, which looks like this:

 Hostname Hash Multiplier Factor Actual

bo1.us.ircache.net f142425b 0.894427 0.400000 0.527950

bo2.us.ircache.net 12180f04 1.118034 0.600000 0.472050

Hash is the neighbor's hash value from the CARP algorithm. Multiplier is another value used by
the algorithm. Factor is taken from the carp-load-factor option on the cache_dir line in squid.
conf. Actual is the actual distribution of requests among the CARP parents. Ideally, it should match
the Factor value.

14.2.1.50 server_list: Peer Cache Statistics

This page displays various counters and statistics for your neighbor caches. For example:

Sibling : pa.us.ircache.net/3128/4827

Flags : htcp

Address[0] : 192.6.19.203

Status : Up

AVG RTT : 14 msec

OPEN CONNS : 19

LAST QUERY : 4 seconds ago

LAST REPLY : 4 seconds ago

PINGS SENT : 9119

PINGS ACKED: 9115 100%

FETCHES : 109 1%

IGNORED : 9114 100%

Histogram of PINGS ACKED:

 Misses 9114 100%

 Hits 1 0%

keep-alive ratio: 100%

Type

The first line shows the neighbor type (parent, sibling, or multicast group), followed by the
hostname and port numbers. The first port number is for HTTP requests, while the second is
for ICP or HTCP.

Flags

Here you'll see any of the cache_peer options that you may have specified, such as no-
query, closest-only, and more. See Section 10.3.1 for the complete list.

Address[]

This line displays the IP address(es) associated with the hostname. The number in brackets
is the number of addresses. Squid stores up to 10 addresses for each neighbor.

Status

The status line indicates whether Squid thinks the neighbor is Up or Down. See Section
10.3.2.

AVG RTT

This is the running average RTT for ICP/HTCP queries to the neighbor.

OPEN CONNS

This is the number of HTTP connections currently open to the neighbor.

LAST QUERY

This indicates the amount of time since Squid last sent an ICP/HTCP query to the neighbor.

LAST REPLY

This indicates the amount of time since Squid last received an ICP/HTCP reply from the
neighbor.

PINGS SENT

The number of ICP/HTCP queries sent to the neighbor.

PINGS ACKED

The number of ICP/HTCP replies received back from the neighbor.

FETCHES

The number of HTTP requests sent to the neighbor. The percentage is based on the PINGS
ACKED number. Unfortunately, the FETCHES number counts requests forwarded for any
reason (ICP, HTCP, Cache Digests, default parent, etc.). Thus, the percentage doesn't
always make sense and may be higher than 100%.

IGNORED

The number of ICP/HTCP replies ignored. The most common reason that Squid ignores an
ICP/HTCP reply is that it is too late.

Histogram of PINGS ACKED

Here you'll see a breakdown of ICP/HTCP results. For ICP neighbors, Squid prints the ICP
status codes (ICP_HIT, ICP_MISS, etc.). For HTCP neighbors, the only categories are Hits
and Misses.

keep-alive ratio

This shows the percentage of times that Squid wanted an HTTP connection to be persistent,
and the neighbor agreed. Note, this doesn't indicate anything about whether the connection
was actually reused, only that both sides agreed that it could be.

14.2.1.51 non_peers: List of Unknown Sites Sending ICP messages

This page shows a list of clients that send unauthorized ICP (but not HTCP) queries. The list is the
same format as the Cache Client List page.

14.2.2 Cache Manager Access Controls

The cache manager interface provides a lot of information. Much of it is sensitive and should be

kept private. For example, the Cache Client List reveals the IP addresses of users, the Process
Filedescriptor Allocation page shows URIs currently being requested, and the Current Squid
Configuration displays the values from squid.conf, including passwords and access control rules. To
keep unwanted visitors from browsing the cache manager pages, you must carefully configure
access to it.

14.2.2.1 http_access

All cache manager requests use the pseudo-protocol scheme cache_object. The best way to
protect the cache manager is restrict the IP addresses allowed to make cache_object requests.
The default squid.conf contains these lines:

acl Manager proto cache_object

acl Localhost src 127.0.0.1/255.255.255.255

http_access allow Manager Localhost

http_access deny Manager

Thus, cache manager requests from the local host (127.0.0.1) are allowed, but all others are
denied. If you have additional trusted hosts, you may want to add them to the access rules also.
Make sure these lines are at the top of your http_access rules.

14.2.2.2 cachemgr_passwd

You may also want to modify the default cachemgr_passwd settings. Some of the cache manager
pages require a password, so you won't be able to view those until you add one. For example, if
you want to use the Current Squid Configuration page, you must assign it a password:

cachemgr_passwd JeckCy config

You can have a number of different passwords, but each action may have only one password. You
may want to use a different password for less sensitive pages:

cachemgr_passwd byDroth filedescriptors client_list netdb

To disable a cache manager action, use disable as the password:

cachemgr_passwd disable netdb

To enable the sensitive actions without requiring a password, use none:

cachemgr_passwd none offline_toggle

If you want to give the same password to all actions, use the keyword all:

cachemgr_passwd Knoujush all

When using the command-line cache manager interface (e.g., squidclient), put an @ sign and the

password after the action name. For example:

squidclient mgr:objects@byDroth | less

Note that cache manager passwords aren't printed when you request the Current Squid
Configuration page (see Section 14.2.1.7).

14.2.2.3 cachemgr.cgi

If you use cachemgr.cgi, the IP address of your HTTP server must be able to make cache manager
requests to Squid. This opens up a back-door security hole. Anyone who can execute the CGI
program on your server will be able to view the cache manager pages. The passwords described
earlier can help, but you may also want to install access controls on your HTTP server so that only
certain people can execute cachemgr.cgi.

The main cachemgr.cgi page has a form with Username and Password fields. The username is
purely informational. If you have multiple administrators in your organization, each person can
enter their own name for auditing purposes.

If you leave the password field blank, the password-protected pages are disabled. Entering a
password activates links for those pages. cachemgr.cgi is stateless, so the password must be
included as a URI parameter in links. Furthermore, the password encoding scheme isn't very
sophisticated and trivial to break. Because many applications (such as Squid!) log the URIs of HTTP
requests, your cache-manager password may be logged or even observed by an untrusted third
party. If you really want to keep your cache manager passwords secret, never use them with
cachemgr.cgi or from any remote system.

14.2.3 Reasons to Dislike the Cache Manager

The cache manager interface leaves much to be desired. It has a very unpolished feel. Novice
administrators will probably find it difficult to use and understand. One of the first problems you
might notice is that the menu (or table of contents) is unorganized. There is no logical order or
grouping. The first items in the list provide low-level information primarily meant for developers.
Currently, the order is determined by the initialization sequence in the source code.

The output is often ugly. The cachemgr.cgi program renders very bland-looking HTML pages. There
are no icons or graphics of any kind. Furthermore, many of the pages are simply presented as
unformatted text. cachemgr.cgi doesn't do much more than format tab-delimited lines as HTML
tables and put <A> tags around some URIs. Some of the cache manager pages are structured so
that the output can be easily parsed by computer programs, rather than humans.

By today's standards, the cache manager has very weak security. You are essentially forced to use
address-based controls and cleartext passwords. If you allow cache manager requests only from
localhost, and your system security is good, you'll be relatively safe.

14.2.4 Squid-RRD

I personally use the cache manager to populate a number of RRDTool databases (http://www.
rrdtool.com/). RRDTool is nice package for storing and displaying time-series data. It allows you to
archive data at different time scales (e.g., days, weeks, months, years) in a database that doesn't
grow in size over time.

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/localhost
http://www.rrdtool.com/
http://www.rrdtool.com/

I use a Perl script that runs every five minutes from cron. It issues cache manager requests for a
number of pages and extracts the values that I am interested in. These values are stored in the
RRD files.

RRDTool also generates nice-looking graphs, from either a CGI script or standalone program. I use
the CGI program and check the graphs at least daily. See Figure 14-2 for some samples from one
of my own Squid boxes.

Figure 14-2. Some sample RRD graphs from RRDTool and cache manager
data

You can find my scripts and instructions for integrating the cache manager and RRDTool at http://

http://www.squid-cache.org/~wessels/squid-rrd/

www.squid-cache.org/~wessels/squid-rrd/.

 < Day Day Up >

http://www.squid-cache.org/~wessels/squid-rrd/

 < Day Day Up >

14.3 Using SNMP

Squid has a built-in SNMP agent that you can query with various SNMP client tools. It allows you
to collect a few basic statistics from Squid. Unfortunately, the Squid MIB has not evolved much
since its initial implementation. Many of the parameters that you'd like to monitor aren't available
through the SNMP MIB. Perhaps this will be rectified in a future version.

To enable SNMP in Squid, use the —enable-snmp option when running ./configure and recompile if
necessary. Squid uses UDP port 3401 for SNMP by default. You can use a different port by setting
the snmp_port directive.

Use the snmp_access access list and snmp_community ACL type to define an access policy for the
SNMP agent. For example:

acl Snmppublic snmp_community public

acl Adminhost src 192.168.1.1

snmp_access allow Adminhost Snmppublic

In this case, Squid accepts SNMP requests from 192.168.1.1 with the community name set to
public.

14.3.1 Using snmpwalk and snmpget

The NET-SNMP package (http://net-snmp.sourceforge.net/) provides a good implementation of
the snmpwalk and snmpget command-line tools for Unix. The former walks through an SNMP MIB
tree, displaying every value, while the latter prints the value for a single MIB object.

After installing NET-SNMP, copy the Squid MIB file to the directory where the utilities can find it.
By default, this is the /usr/local/share/snmp/mibs directory:

cp squid-2.5.STABLE4/src/mib.txt /usr/local/share/snmp/mibs/SQUID-MIB.txt

chmod 644 /usr/local/share/snmp/mibs/SQUID-MIB.txt

You should then be able to use the snmpget command. Note that Squid is an SNMPv1 agent:

% snmpget -v 1 -c public -m SQUID-MIB localhost:3401 cacheDnsSvcTime.5

SQUID-MIB::cacheDnsSvcTime.5 = INTEGER: 44

If you want to see the entire Squid MIB tree, use snmpwalk. The -Cc option tells snmpwalk to
ignore nonincreasing OIDs:

% snmpwalk -v 1 -c public -m SQUID-MIB -Cc localhost:3401 squid | less

If you can't get the Squid MIB installed so that snmpwalk sees it, you can use the numeric OID

http://net-snmp.sourceforge.net/

value instead:

% snmpwalk -v 1 -c public -m SQUID-MIB -Cc localhost:3401 .1.3.6.1.4.1.3495.1 | less

14.3.2 The Squid MIB

In this section, I provide a brief description for each OID in the Squid MIB, which lives in the
global MIB tree under iso.org.dod.internet.private.enterprises.nlanr.squid, or .1.3.6.1.4.1.3495.1.
The full MIB names, such as cachePerf.cacheProtoStats.cacheMedianSvcTable.
cacheMedianSvcEntry.cacheHttpMissSvcTime.60, take up too much space on the page. Instead, I'll
just use the last nonnumeric component of the OID name, which is unique.

cacheSysVMsize

The amount of memory (in kilobytes) currently used to store in-memory objects. For
example:

SQUID-MIB::cacheSysVMsize = INTEGER: 10224

cacheSysStorage

The amount of disk space (in kilobytes) currently used to store on-disk objects. For
example:

SQUID-MIB::cacheSysStorage = INTEGER: 19347723

cacheUptime

The amount of time (number of seconds) since Squid was started.

SQUID-MIB::cacheUptime = Timeticks: (33239630) 3 days, 20:19:56.30

cacheAdmin

The email address, or name, of the cache administrator. For example:

SQUID-MIB::cacheAdmin = STRING: wessels@bo2.us.ircache.net

cacheSoftware

The name of the application. For example:

SQUID-MIB::cacheSoftware = STRING: squid

cacheVersionId

The application's version identification. For example:

SQUID-MIB::cacheVersionId = STRING: "2.5.STABLE4"

cacheLoggingFacility

The current debugging levels, from the debug_options directive. For example:

SQUID-MIB::cacheLoggingFacility = STRING: ALL,1

cacheMemMaxSize

The value of the cache_mem directive, in megabytes. For example:

SQUID-MIB::cacheMemMaxSize = INTEGER: 10

cacheSwapMaxSize

The total amount of disk storage, in megabytes, taken from the sum of all cache_dir lines.
For example:

SQUID-MIB::cacheSwapMaxSize = INTEGER: 21000

cacheSwapHighWM

The high watermark percentage for disk storage, taken from the cache_swap_high
directive. For example:

SQUID-MIB::cacheSwapHighWM = INTEGER: 95

cacheSwapLowWM

The low watermark percentage for disk storage, taken from the cache_swap_low directive.
For example:

SQUID-MIB::cacheSwapLowWM = INTEGER: 90

cacheSysPageFaults

The number of page faults for the Squid process since it was started. (See "Page faults
with physical i/o" in Section 14.2.1.24.) For example:

SQUID-MIB::cacheSysPageFaults = Counter32: 9

cacheSysNumReads

The number of times this process called read() on HTTP sockets connected to origin
servers and neighbor caches. For example:

SQUID-MIB::cacheSysNumReads = Counter32: 15941979

cacheMemUsage

The amount of memory allocated by the memory pooling routines. Not the same as the
total memory used by Squid. (See "Total accounted" in Section 14.2.1.24.) For example:

SQUID-MIB::cacheMemUsage = INTEGER: 143709

cacheCpuTime

The amount of CPU time, in seconds, accumulated by the Squid process. For example:

SQUID-MIB::cacheCpuTime = INTEGER: 79313

cacheCpuUsage

The mean CPU utilization, as a percentage, since Squid was started. Unfortunately, since
this value is an integer, any graphs that you make will be "quantized." For example:

SQUID-MIB::cacheCpuUsage = INTEGER: 23

cacheMaxResSize

The maximum resident set size, in kilobytes, for the Squid process. (See "Maximum
Resident Size" in Section 14.2.1.24.) For example:

SQUID-MIB::cacheMaxResSize = INTEGER: 219128

cacheNumObjCount

The total number of objects currently in the cache. For example:

SQUID-MIB::cacheNumObjCount = Counter32: 1717181

cacheCurrentLRUExpiration

Current versions of Squid don't have a global LRU expiration age value, so this is always
reported as zero. For example:

SQUID-MIB::cacheCurrentLRUExpiration = Timeticks: (0) 0:00:00.00

cacheCurrentUnlinkRequests

The number of files given to the external unlinkd process for removal. Note that Squid
doesn't use unlinkd with the diskd and aufs storage schemes. For example:

SQUID-MIB::cacheCurrentUnlinkRequests = Counter32: 0

cacheCurrentUnusedFDescrCnt

The current number of available (unused) file descriptors. For example:

SQUID-MIB::cacheCurrentUnusedFDescrCnt = Gauge32: 7253

cacheCurrentResFileDescrCnt

The number of reserved file descriptors. (See "Reserved number of file descriptors" in
Section 14.2.1.24.) For example:

SQUID-MIB::cacheCurrentResFileDescrCnt = Gauge32: 100

cacheProtoClientHttpRequests

The total number of HTTP requests received from cache clients. For example:

SQUID-MIB::cacheProtoClientHttpRequests = Counter32: 7277019

cacheHttpHits

The number of client requests that were cache hits. For example:

SQUID-MIB::cacheHttpHits = Counter32: 2526484

cacheHttpErrors

The number of client requests that resulted in an error. For example:

SQUID-MIB::cacheHttpErrors = Counter32: 0

cacheHttpInKb

The amount of network traffic, in kilobytes, read from cache clients. For example:

SQUID-MIB::cacheHttpInKb = Counter32: 4231883

cacheHttpOutKb

The amount of network traffic, in kilobytes, written to cache clients. For example:

SQUID-MIB::cacheHttpOutKb = Counter32: 56894945

cacheIcpPktsSent

The number of ICP messages (both queries and replies) sent to neighbors. For example:

SQUID-MIB::cacheIcpPktsSent = Counter32: 5296120

cacheIcpPktsRecv

The number of ICP messages (both queries and replies) received from neighbors. For
example:

SQUID-MIB::cacheIcpPktsRecv = Counter32: 5271238

cacheIcpKbSent

The amount of network traffic, in kilobytes, used for ICP messages sent to neighbors, not
including UDP and IP headers. For example:

SQUID-MIB::cacheIcpKbSent = Counter32: 428112

cacheIcpKbRecv

The amount of network traffic, in kilobytes, used for ICP messages received from
neighbors, not including UDP and IP headers. For example:

SQUID-MIB::cacheIcpKbRecv = Counter32: 447762

cacheServerRequests

The number of requests forwarded to origin servers and neighbor caches. For example:

SQUID-MIB::cacheServerRequests = INTEGER: 5338305

cacheServerErrors

The number of errors received from origin servers and neighbor caches. Currently
unimplemented and always reported as zero. For example:

SQUID-MIB::cacheServerErrors = INTEGER: 0

cacheServerInKb

The amount of network traffic, in kilobytes, read from origin servers and neighbor caches.
For example:

SQUID-MIB::cacheServerInKb = Counter32: 49196559

cacheServerOutKb

The amount of network traffic, in kilobytes, written to origin servers and neighbor caches.
For example:

SQUID-MIB::cacheServerOutKb = Counter32: 3404717

cacheCurrentSwapSize

The amount of disk space, in kilobytes, currently in use by Squid. Compare to
cacheSysStorage. For example:

SQUID-MIB::cacheCurrentSwapSize = Counter32: 19347723

cacheClients

The number of clients that sent HTTP requests to Squid since it was started. For example:

SQUID-MIB::cacheClients = Counter32: 498

cacheMedianTime.X

These OIDs report the time intervals, in minutes, over which median values are computed
for subsequent OIDs. The value is the same as the last number of the OID. For example:

SQUID-MIB::cacheMedianTime.1 = INTEGER: 1

cacheHttpAllSvcTime.X

The 1-, 5-, and 60-minute median service time values, in milliseconds, for all client HTTP
requests. For example:

SQUID-MIB::cacheHttpAllSvcTime.1 = INTEGER: 78

cacheHttpMissSvcTime.X

The 1-, 5-, and 60-minute median service time values for cache misses. For example:

SQUID-MIB::cacheHttpMissSvcTime.1 = INTEGER: 114

SQUID-MIB::cacheHttpMissSvcTime.5 = INTEGER: 87

SQUID-MIB::cacheHttpMissSvcTime.60 = INTEGER: 74

cacheHttpNmSvcTime.X

The 1-, 5-, and 60-minute median service time values for requests logged as TCP_IMS_HIT.
(See "Not-Modified Replies" in Section 14.2.1.24.) For example:

SQUID-MIB::cacheHttpNmSvcTime.1 = INTEGER: 12

SQUID-MIB::cacheHttpNmSvcTime.5 = INTEGER: 34

SQUID-MIB::cacheHttpNmSvcTime.60 = INTEGER: 32

cacheHttpHitSvcTime .X

The 1-, 5-, and 60-minute median service time values for cache hits, logged as TCP_HIT.
For example:

SQUID-MIB::cacheHttpHitSvcTime.1 = INTEGER: 45

SQUID-MIB::cacheHttpHitSvcTime.5 = INTEGER: 45

SQUID-MIB::cacheHttpHitSvcTime.60 = INTEGER: 40

cacheIcpQuerySvcTime.X

The 1-, 5-, and 60-minute service time values for ICP queries sent by Squid (the time
elapsed between sending your query and receiving a neighbor's reply). For example:

SQUID-MIB::cacheIcpQuerySvcTime.1 = INTEGER: 0

SQUID-MIB::cacheIcpQuerySvcTime.5 = INTEGER: 0

SQUID-MIB::cacheIcpQuerySvcTime.60 = INTEGER: 3563

cacheIcpReplySvcTime.X

The 1-, 5-, and 60-minute median service time values for ICP queries received by Squid. In
current implementations, these are always zero because processing occurs faster than the
process clock is updated. For example:

SQUID-MIB::cacheIcpReplySvcTime.1 = INTEGER: 0

SQUID-MIB::cacheIcpReplySvcTime.5 = INTEGER: 0

SQUID-MIB::cacheIcpReplySvcTime.60 = INTEGER: 0

cacheDnsSvcTime.X

The 1-, 5-, and 60-minute median service time values for Squid's DNS queries. For
example:

SQUID-MIB::cacheDnsSvcTime.1 = INTEGER: 40

SQUID-MIB::cacheDnsSvcTime.5 = INTEGER: 42

SQUID-MIB::cacheDnsSvcTime.60 = INTEGER: 42

cacheRequestHitRatio.X

Squid's cache hit ratio (percentage) over the last 1, 5, and 60 minutes. For example:

SQUID-MIB::cacheRequestHitRatio.1 = INTEGER: 16

SQUID-MIB::cacheRequestHitRatio.5 = INTEGER: 18

SQUID-MIB::cacheRequestHitRatio.60 = INTEGER: 22

cacheRequestByteRatio.X

Squid's byte hit ratio (percentage) over the last 1, 5, and 60 minutes. For example:

SQUID-MIB::cacheRequestByteRatio.1 = INTEGER: 73

SQUID-MIB::cacheRequestByteRatio.5 = INTEGER: 43

SQUID-MIB::cacheRequestByteRatio.60 = INTEGER: 34

cacheIpEntries

The number of entries in Squid's IP (name-to-address) cache. For example:

SQUID-MIB::cacheIpEntries = Gauge32: 10033

cacheIpRequests

The number of requests received by Squid's IP cache. For example:

SQUID-MIB::cacheIpRequests = Counter32: 8195627

cacheIpHits

The number of lookups that were hits in the IP cache. For example:

SQUID-MIB::cacheIpHits = Counter32: 6040658

If the ratio of hits to requests is less than 60-75%, you may want to increase the size of
your IP cache.

cacheIpPendingHits

Always zero in the current implementation. For example:

SQUID-MIB::cacheIpPendingHits = Gauge32: 0

Older versions of Squid had the notion of IP cache hits for outstanding queries.

cacheIpNegativeHits

The number of lookups that were negative hits in the IP cache. Certain failed queries may
be negatively cached for an amount of time determined by the negative_dns_ttl directive.
For example:

SQUID-MIB::cacheIpNegativeHits = Counter32: 49433

cacheIpMisses

The number of IP cache misses. For example:

SQUID-MIB::cacheIpMisses = Counter32: 1807438

cacheBlockingGetHostByName

Always zero in the current implementation. For example:

SQUID-MIB::cacheBlockingGetHostByName = Counter32: 0

Older versions occasionally called the gethostbyname() function if the IP cache couldn't
provide an answer.

cacheAttemptReleaseLckEntries

Always zero in the current implementation. Older versions would, in some cases, want to
release locked IP cache entries. For example:

SQUID-MIB::cacheAttemptReleaseLckEntries = Counter32: 0

cacheFqdnEntries

The number of entries in the FQDN (address-to-name) cache. For example:

SQUID-MIB::cacheFqdnEntries = Gauge32: 1

cacheFqdnRequests

The number of requests to the FQDN cache. For example:

SQUID-MIB::cacheFqdnRequests = Counter32: 0

cacheFqdnHits

The number of FQDN cache requests satisfied as hits. For example:

SQUID-MIB::cacheFqdnHits = Counter32: 0

cacheFqdnPendingHits

Always zero in the current implementation. For example:

SQUID-MIB::cacheFqdnPendingHits = Gauge32: 0

cacheFqdnNegativeHits

The number of FQDN requests satisfied as negative cache hits. For example:

SQUID-MIB::cacheFqdnNegativeHits = Counter32: 0

cacheFqdnMisses

The number of FQDN cache misses. For example:

SQUID-MIB::cacheFqdnMisses = Counter32: 0

cacheBlockingGetHostByAddr

Always zero in the current implementation. For example:

SQUID-MIB::cacheBlockingGetHostByAddr = Counter32: 0

cacheDnsRequests

The number of DNS queries made by Squid. This counter is reset each time you
reconfigure the running Squid process. For example:

SQUID-MIB::cacheDnsRequests = Counter32: 3262

cacheDnsReplies

The number of DNS replies received by Squid. This counter is reset each time you
reconfigure the running Squid process. For example:

SQUID-MIB::cacheDnsReplies = Counter32: 2440

cacheDnsNumberServers

When using internal DNS (the default), this OID reports the number of nameservers that
Squid knows about. For external DNS, it reports the number of (running) dnsserver helper
processes. For example:

SQUID-MIB::cacheDnsNumberServers = Counter32: 2

cachePeerName.A.B.C.D

This, and the next group of OIDs, come from the list of neighbor caches. (See Section
14.2.1.50.) These OIDs are indexed by the IPv4 address of the peer. This particular OID
returns the neighbor cache's hostname. For example:

SQUID-MIB::cachePeerName.192.203.230.19 = STRING: sv.us.ircache.net

cachePeerAddr.A.B.C.D

This is the IP address of the peer, which, of course, you already know from the OID itself.
For example:

SQUID-MIB::cachePeerAddr.192.203.230.19 = IpAddress: 192.203.230.19

cachePeerPortHttp.A.B.C.D

This is the neighbor cache's HTTP port number. For example:

SQUID-MIB::cachePeerPortHttp.192.203.230.19 = INTEGER: 3128

cachePeerPortIcp.A.B.C.D

This is the neighbor cache's ICP or HTCP port number. For example:

SQUID-MIB::cachePeerPortIcp.192.203.230.19 = INTEGER: 3130

cachePeerType.A.B.C.D

The type of the neighbor: 1 for sibling, 2 for parent, and 3 for multicast. For example:

SQUID-MIB::cachePeerType.192.203.230.19 = INTEGER: 1

cachePeerState.A.B.C.D

The state of the peer: 1 for up, 0 for down. (See Section 10.3.2.) For example:

SQUID-MIB::cachePeerState.192.203.230.19 = INTEGER: 1

cachePeerPingsSent.A.B.C.D

The number of ICP/HTCP queries sent to the neighbor. For example:

SQUID-MIB::cachePeerPingsSent.192.203.230.19 = Counter32: 924

cachePeerPingsAcked.A.B.C.D

The number of ICP/HTCP queries received from the neighbor. For example:

SQUID-MIB::cachePeerPingsAcked.192.203.230.19 = Counter32: 901

cachePeerFetches.A.B.C.D

The number of HTTP requests sent to the neighbor. (See the discussion about FETCHES in
Section 14.2.1.50.) For example:

SQUID-MIB::cachePeerFetches.192.203.230.19 = Counter32: 34

cachePeerRtt.A.B.C.D

The average round-trip time for ICP/HTCP queries to this peer. For example:

SQUID-MIB::cachePeerRtt.192.203.230.19 = INTEGER: 26

cachePeerIgnored.A.B.C.D

The number of ICP/HTCP replies that Squid ignored. (See the discussion about IGNORED in
Section 14.2.1.50.) For example:

SQUID-MIB::cachePeerIgnored.192.203.230.19 = Counter32: 201

cachePeerKeepAlSent.A.B.C.D

The number of HTTP requests sent to the neighbor with a request to keep the connection
open. For example:

SQUID-MIB::cachePeerKeepAlSent.192.203.230.19 = Counter32: 34

cachePeerKeepAlRecv.A.B.C.D

The number of HTTP replies received from the neighbor with a request to keep the
connection open. For example:

SQUID-MIB::cachePeerKeepAlRecv.192.203.230.19 = Counter32: 34

cacheClientAddr.A.B.C.D

The cacheClientAddr OIDs come from the same database as the Cache Client List (see
Section 14.2.1.46). This particular OID's value is the IPv4 address, just like the last four
octets of the OID itself. For example:

SQUID-MIB::cacheClientAddr.206.168.0.9 = IpAddress: 206.168.0.9

cacheClientHttpRequests.A.B.C.D

The number of HTTP requests received from this client. For example:

SQUID-MIB::cacheClientHttpRequests.206.168.0.9 = Counter32: 108281

cacheClientHttpKb.A.B.C.D

The amount of traffic, in kilobytes, sent to this client. For example:

SQUID-MIB::cacheClientHttpKb.206.168.0.9 = Counter32: 921447

cacheClientHttpHits.A.B.C.D

The number of cache hits sent to this client. For example:

SQUID-MIB::cacheClientHttpHits.206.168.0.9 = Counter32: 32365

cacheClientHTTPHitKb.A.B.C.D

The amount of traffic, in kilobytes, sent to this client for cache hits. For example:

SQUID-MIB::cacheClientHTTPHitKb.206.168.0.9 = Counter32: 141638

cacheClientIcpRequests.A.B.C.D

The number of ICP (but not HTCP) queries received from this client. For example:

SQUID-MIB::cacheClientIcpRequests.206.168.0.9 = Counter32: 79120

cacheClientIcpKb.A.B.C.D

The amount of traffic, in kilobytes, received from this client in ICP queries. For example:

SQUID-MIB::cacheClientIcpKb.206.168.0.9 = Counter32: 5986

cacheClientIcpHits.A.B.C.D

The number of ICP_HIT replies sent to this client. For example:

SQUID-MIB::cacheClientIcpHits.206.168.0.9 = Counter32: 21897

cacheClientIcpHitKb.A.B.C.D

The amount of traffic, in kilobytes, sent to this client for ICP_HIT messages. A somewhat

silly measurement because ICP_HIT and ICP_MISS messages have the same size.
However, old versions of Squid used the now-obsolete ICP_HIT_OBJ opcode, which
included the object content. For example:

SQUID-MIB::cacheClientIcpHitKb.206.168.0.9 = Counter32: 1679

 < Day Day Up >

 < Day Day Up >

14.4 Exercises

● Write a shell script that uses squidclient to collect and save the total number of HTTP
requests and the five-minute median overall response time.

● Write a shell script to periodically retrieve and archive the running configuration. It
should also compare the current and most recent configurations and email you the
changes, if any.

● Download, compile, and install the NET-SNMP package. Use snmpwalk to view Squid's
entire MIB tree.

● Create and deploy a simple redirector (Chapter 11) that sleeps for 250 milliseconds on
each request. Watch the cache manager's redirector page as Squid runs.

 < Day Day Up >

 < Day Day Up >

Chapter 15. Server Accelerator Mode

Throughout most of this book, I've been talking about Squid as a client-side caching proxy.
However, with just a few special squid.conf settings, Squid is able to function as an origin
server accelerator as well. In this mode, it accepts normal HTTP requests and forwards cache
misses to the real origin server (or backend server). In the parlance of RFC 3040, Squid is
operating as a surrogate. This configuration is similar to what I talked about in Chapter 9. The
primary difference is that, as a surrogate, Squid accepts requests for one, or maybe a few,
origin server(s), rather than any and all origins. HTTP interception isn't required for server
acceleration.

As the name implies, server acceleration is generally used as a technique to improve the
performance of slow, or heavily loaded, backend servers. It works well because origin servers
tend to have a relatively small hot set. Most likely, the objects responsible for 90% of origin
server traffic can fit entirely in memory. Depending on your particular backend server software
and configuration, Squid may be able to serve requests much faster.

Security is another good reason to consider Squid as a surrogate. Think of Squid as a dedicated
firewall in front of your origin server. The Squid source code is too large to be trusted as
completely secure. However, you may sleep better with Squid protecting your backend server.
It is simply a cache, so it doesn't permanently store the source of your data. If the Squid box is
attacked or compromised, you won't lose any data. You may find it easier to secure a system
running Squid than the system running your backend server application(s).

You might also be interested in server acceleration to implement load balancing. If your origin
server runs on expensive boxes, you can save money by deploying Squid on a number of
cheaper boxes. By placing Squid at a number of different locations, you can even build your
own content delivery network (CDN).

 < Day Day Up >

 < Day Day Up >

15.1 Overview

Assuming that you already have an origin server in place, you need to move it to a different IP
address or TCP port. For example, you can (1) install Squid on a separate machine, (2) give the
origin server a new IP address, and (3) give Squid the origin server's old IP address. In the
interest of security, you can use non-globally routable addresses (i.e., from RFC 1918) on the
link between Squid and the backend server. See Figure 15-1.

Figure 15-1. How to replace your origin server with Squid

Another option is to configure Squid for HTTP interception, as described in Chapter 9. For
example, you can configure the origin server's nearest router or switch to intercept HTTP
requests and divert them to Squid.

If you don't have the resources to put Squid on a dedicated system, you can run it alongside
the HTTP server. However, both applications can't share the same IP address and port number.
You need to make the backend server bind to a different address (e.g., 127.0.0.1) or move it to
another port number. It might seem easiest to change the port number, but I recommend
changing the IP address instead.

Changing the port number can be problematic. For example, when the backend server
generates an error message, it may expose the "wrong" port. Even worse, if the server
generates an HTTP redirect, it typically appends the nonstandard port number to the Location
URI:

HTTP/1.1 301 Moved Permanently

Date: Mon, 29 Sep 2003 03:36:13 GMT

Server: Apache/1.3.26 (Unix)

Location: http://www.squid-cache.org:81/Doc/

If a client receives this response, it makes a connection to the nonstandard port (81), thus
bypassing the server accelerator. If you must run Squid on the same host as your backend
server, it is better to tell the backend server to listen on the loopback address (127.0.0.1). With
Apache, you'd do it like this:

BindAddress 127.0.0.1

ServerName www.squid-cache.org

Once you've decided how to relocate your origin server, the next step is to configure Squid.

 < Day Day Up >

 < Day Day Up >

15.2 Configuring Squid

Technically, a single configuration file directive is all it takes to change Squid from a caching
proxy into a surrogate. Unfortunately, life is never quite that simple. Due to the myriad of ways
that different organizations design their web services, Squid has a number of directives to
worry about.

15.2.1 http_port

Most likely, Squid is acting as a surrogate for your HTTP server on port 80. Use the http_port
directive to make Squid listen on that port:

http_port 80

If you want Squid to act as surrogate and a caching proxy at the same time, list both port
numbers:

http_port 80

http_port 3128

You can configure your clients to send their proxy requests to port 80 as well, but I strongly
discourage that. By using separate ports, you'll find it easier to migrate the two services to
separate boxes later if it becomes necessary.

15.2.2 https_port

You can configure Squid to terminate encrypted HTTP (SSL and TLS) connections. This feature
requires the —enable-ssl option when running ./configure. In this mode, Squid decrypts SSL/
TLS connections from clients and forwards unencrypted requests to your backend server. The
https_port directive has the following format:

https_port [host:]port cert=certificate.pem [key=key.pem] [version=1-4]

 [cipher=list] [options=list]

The cert and key arguments are pathnames to OpenSSL-compatible certificate and private key
files. If you omit the key argument, the OpenSSL library looks for the private key in the
certificate file.

The (optional) version argument specifies your requirements for various SSL and TLS protocols
to support: 1=automatic, 2=SSLv2 only, 3=SSLv3 only, 4=TLSv1 only.

The (optional) cipher argument is a colon-separated list of ciphers. Squid simply passes it to
the SSL_CTX_set_cipher_list() function. For more information, read the ciphers(1) manpage
on your system or try running: openssl ciphers.

The (optional) options argument is a colon-separated list of OpenSSL options. Squid simply
passes these to the SSL_CTX_set_options() function. For more information, read the
SSL_CTX_set_options(3) manpage on your system.

Here are a few example https_port lines:

https_port 443 cert=/usr/local/etc/certs/squid.cert

https_port 443 cert=/usr/local/etc/certs/squid.cert version=2

https_port 443 cert=/usr/local/etc/certs/squid.cert cipher=SHA1

https_port 443 cert=/usr/local/etc/certs/squid.cert options=MICROSOFT_SESS_ID_BUG

15.2.3 httpd_accel_host

This is where you tell Squid the IP address, or hostname, of the backend server. If you use the
loopback trick described previously, you write:

httpd_accel_host 127.0.0.1

Squid then prepends this value to partial URIs that get accelerated. It also changes the value of

the Host header.
[1]

 For example, if the client makes this request:

[1] Technically, the Host header is changed only in requests Squid forwards to
the backend server (cache misses).

GET /index.html HTTP/1.1

Host: squidbook.org

Squid turns it into this request:

GET http://127.0.0.1/index.html HTTP/1.1

Host: 127.0.0.1

As you can see, the request no longer contains any information that indicates the request is for
squidbook.org. This shouldn't be a problem as long as the backend server isn't configured for
virtual hosting of multiple domains.

If you want Squid to use the origin server's hostname, you can put it in the httpd_accel_host
directive:

httpd_accel_host squidbook.org

Then the request is as follows:

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/squidbook.org

GET http://squidbook.org/index.html HTTP/1.1

Host: squidbook.org

Another option is to enable the httpd_accel_uses_host_header directive. Squid then inserts the
Host header value into the URI for most requests, and the httpd_accel_host value is used only
for requests that lack a Host header.

When you use a hostname, Squid goes through the normal steps to look up its IP address.
Because you want the hostname to resolve to two different addresses (one for clients
connecting to Squid and another for Squid connecting to the backend server), you should also
add a static DNS entry to your system's /etc/hosts file. For example:

127.0.0.1 squidbook.org

You might want to use a redirector instead. For example, you can write a simple Perl program
that changes http://squidbook.org/... to http://127.0.0.1/.... See Chapter 11 for the
nuts and bolts of redirecting client requests.

The httpd_accel_host directive has a special value. If you set it to virtual, Squid inserts the
origin server's IP address into the URI when the Host header is missing. This feature is useful
only when using HTTP interception, however.

15.2.4 httpd_accel_port

This directive tells Squid the port number of the backend server. It is 80 by default. You won't
need to change this unless the backend server is running on a different port. Here is an
example:

httpd_accel_port 8080

If you are accelerating origin servers on multiple ports, you can use the value 0. In this case,
Squid takes the port number from the Host header.

15.2.5 httpd_accel_uses_host_header

This directive controls how Squid determines the hostname it inserts into accelerated URIs. If
enabled, the request's Host header value takes precedence over httpd_accel_host.

The httpd_accel_uses_host_header directive goes hand in hand with virtual domain hosting on
the backend server. You can leave it disabled if the backend server is handling only one
domain. If, on the other hand, you are accelerating multiple origin server names, turn it on:

httpd_accel_uses_host_header on

If you enable httpd_accel_uses_host_header, be sure to install some access controls as
described later in this chapter. To understand why, consider this configuration:

httpd_accel_host does.not.exist

httpd_accel_uses_host_header on

Because most requests have a Host header, Squid ignores the httpd_accel_host setting and
rarely inserts the bogus does.not.exist name into URIs. This essentially turns your surrogate
into a caching proxy for anyone smart enough to fake an HTTP request. If I know that you are
using Squid as a surrogate without proper access controls, I can send a request like this:

GET /index.html HTTP/1.1

Host: www.mrcranky.com

If you've enabled httpd_accel_uses_host_header and don't have any destination-based access
controls, Squid should forward my request to www.mrcranky.com. Read Section 15.4 and
install access controls to ensure that Squid doesn't talk to foreign origin servers.

15.2.6 httpd_accel_single_host

Whereas the httpd_accel_uses_host_header directive determines the hostname Squid puts into
a URI, this one determines where Squid forwards its cache misses. By default (i.e., with
httpd_accel_single_host disabled), Squid forwards surrogate cache misses to the host in the
URI. If the URI contains a hostname, Squid performs a DNS lookup to get the backend server's
IP address.

When you enable httpd_accel_single_host, Squid always forwards surrogate cache misses to
the host defined by httpd_accel_host. In other words, the contents of the URI and the Host
header don't affect the forwarding decision. Perhaps the best reason to enable this directive is
to avoid DNS lookups. Simply set httpd_accel_host to the backend server's IP address. Another
reason to enable it is if you have another device (load balancer, virus scanner, etc.) between
Squid and the backend server. You can make Squid forward the request to this other device
without changing any aspect of the HTTP request.

Note that enabling both httpd_accel_single_host and httpd_accel_uses_host_header is a
dangerous combination that might allow an attacker to poison your cache. Consider this
configuration:

httpd_accel_single_host on

httpd_accel_host 172.16.1.1

httpd_accel_uses_host_header on

and this HTTP request:

GET /index.html HTTP/1.0

Host: www.othersite.com

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/does.not.exist
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/www.mrcranky.com

Squid forwards the request to your backend server at 172.16.1.1 but stores the response under
the URI http://www.othersite.com/index.html. Since 172.16.1.1 isn't actually www.othersite.
com, Squid now contains a bogus response for that URI. If you enable httpd_accel_with_proxy
(next section) or your cache participates in a hierarchy or mesh, it may give out the bad
response to unsuspecting users. To prevent such abuse, be sure to read Section 15.4.

Server-side persistent connections may not work if you use the httpd_accel_single_host
directive. This is because Squid saves idle connections under the origin server hostname, but
the connection-establishment code looks for an idle connection named by the httpd_accel_host
value. If the two values are different, Squid fails to locate an appropriate idle connection. The
idle connections are closed after the timeout, without being reused. You can avoid this little
problem by disabling server-side persistent connections with the server_persistent_connections
directive (see Appendix A).

15.2.7 httpd_accel_with_proxy

By default, whenever you enable the httpd_accel_host directive, Squid goes into strict
surrogate mode. That is, it refuses proxy HTTP requests and accepts only surrogate requests,
as though it were truly an origin server. Squid also disables the ICP port (although not HTCP, if
you have it enabled). If you want Squid to accept both surrogate and proxy requests, enable
this directive:

httpd_accel_with_proxy on

 < Day Day Up >

 < Day Day Up >

15.3 Gee, That Was Confusing!

Yeah, it was for me too. Let's look at it another way. The settings that you need to use depend
on how many backend boxes you have and how many origin server names you are
accelerating. Let's consider the four separate cases in the following sections.

15.3.1 One Box, One Server Name

This is the simplest sort of configuration. Because you have only one box and one hostname,
the Host header values don't matter much. You should probably use:

httpd_accel_host www.example.com

httpd_accel_single_host on

httpd_accel_uses_host_header off

If you like, you can use an IP address for httpd_accel_host, although it will appear in URIs in
your access.log.

15.3.2 One Box, Many Server Names

Because you have many origin server names being virtually hosted on a single box, the Host
header becomes important. We want Squid to insert it into the URIs it generates from partial
requests. Your configuration should be:

httpd_accel_host www.example.com

httpd_accel_single_host on

httpd_accel_uses_host_header on

In this case, Squid generates the URI based on the Host header. If absent, Squid inserts www.
example.com. You can disable httpd_accel_single_host if you prefer. As before, you can use an
IP address in httpd_accel_host to avoid DNS lookups.

15.3.3 Many Boxes, One Server Name

This sounds like a load-balancing configuration. One way to accomplish it is to create a DNS
name for the backend servers with multiple IP addresses. Squid iterates between all addresses
(a.k.a. round-robin) for each cache miss. In this situation, the configuration is the same as for
the one box/one name case:

httpd_accel_host roundrobin.example.com

httpd_accel_single_host on

httpd_accel_uses_host_header off

The only difference is that the httpd_accel_host name resolves to multiple addresses. It might
look like this in a Berkeley Internet Name Daemon (BIND) zone file:

$ORIGIN example.com.

roundrobin IN A 192.168.1.2

 IN A 192.168.1.3

 IN A 192.168.1.4

With this DNS configuration, Squid uses the next address in the list each time it opens a new
connection to roundrobin.example.com. When it gets to the end of the list, it starts over at the
top. Note that Squid caches these DNS answers internally according to their TTLs. You aren't
relying on the name server to return the address list in a different order for each DNS query.

Another option is to use a redirector (see Chapter 11) to select the backend server. You can
write a simple script to replace the URI hostname (e.g., roundrobin.example.com) with a
different hostname or an IP address. You might even make the redirector smart enough to
make its selection based on the current state of the backend servers. Use the following
configuration with this approach:

httpd_accel_host roundrobin.example.com

httpd_accel_single_host off

httpd_accel_uses_host_header off

15.3.4 Many Boxes, Many Server Names

In this case, you want to use the Host header. You also want Squid to select the backend
server based on the origin server's name (i.e., a DNS lookup). The configuration is as follows:

httpd_accel_host www.example.com

httpd_accel_single_host off

httpd_accel_uses_host_header on

You might be tempted to set httpd_accel_host to virtual. However, that would be a mistake
unless you are using HTTP interception.

 < Day Day Up >

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/roundrobin.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/roundrobin.example.com

 < Day Day Up >

15.4 Access Controls

A typically configured surrogate accepts HTTP requests from the whole Internet. This doesn't
mean, however, that you can forget about access controls. In particular, you'll want to make
sure Squid doesn't accept requests belonging to foreign origin servers. The exception is when
you have httpd_accel_with_proxy enabled.

For a surrogate-only configuration, use one of the destination-based access controls. For
example, the dst type accomplishes the task:

acl All src 0/0

acl TheOriginServer dst 192.168.3.2

http_access allow TheOriginServer

http_access deny All

Alternatively, you can use a dstdomain ACL if you prefer:

acl All src 0/0

acl TheOriginServer dstdomain www.squidbook.org

http_access allow TheOriginServer

http_access deny All

Note that enabling httpd_accel_single_host somewhat bypasses the access control rules. This is
because the origin server location (i.e., the httpd_accel_host value) is then set after Squid
performs the access control checks.

Access controls become really tricky when you combine surrogate and proxy modes in a single
instance of Squid. You can no longer simply deny all requests to foreign origin servers. You can,
however, make sure that outsiders aren't allowed to make proxy requests to random origin
servers. For example:

acl All src 0/0

acl ProxyUsers src 10.2.0.0/16

acl TheOriginServer dst 192.168.3.2

http_access allow ProxyUsers

http_access allow TheOriginServer

http_access deny All

You can also use the local port number in your access control rules. It doesn't really protect you
from malicious activity, but does ensure, for example, that user-agents send their proxy
requests to the appropriate port. This also makes it easier for you to split the service into
separate proxy- and surrogate-only systems later. Assuming you configure Squid to listen on
ports 80 and 3128, you might use:

acl All src 0/0

acl ProxyPort myport 3128

acl ProxyUsers src 10.2.0.0/16

acl SurrogatePort myport 80

acl TheOriginServer dst 192.168.3.2

http_access allow ProxyUsers ProxyPort

http_access allow TheOriginServer SurrogatePort

http_access deny All

Unfortunately, these access control rules don't prevent attempts to poison your cache when you
enable httpd_accel_single_host, httpd_accel_uses_host_header, and httpd_accel_with_proxy
simultaneously. This is because the valid proxy request:

GET http://www.bad.site/ HTTP/1.1

Host: www.bad.site

and the bogus surrogate request:

GET / HTTP/1.1

Host: www.bad.site

have the same access control result but are forwarded to different servers. They have the same
access control result because, after Squid rewrites the surrogate request, it has the same URI
as the proxy request. However, they don't get sent to the same place. The surrogate request
goes to the server defined by httpd_accel_host because httpd_accel_single_host is enabled.

You can take steps towards solving this problem. Make sure your backend server generates an
error for unknown server names (e.g., when the Host header refers to a nonlocal server).
Better yet, don't run Squid as a surrogate and proxy at the same time.

 < Day Day Up >

 < Day Day Up >

15.5 Content Negotiation

Recent versions of Squid support the HTTP/1.1 Vary header. This is good news if your backend
server uses content negotiation. It might, for example, send different responses depending on
which web browser makes the request (e.g., the User-Agent header), or based on the user's
language preferences (e.g., the Accept-Language header).

When the response for a URI varies on some aspect of the request, the origin (backend) server
includes a Vary header. This header contains the list of request headers used to select the
variant. These are the selecting headers. When Squid receives a response with a Vary header,
it includes the selecting header values when it generates the internal cache key. Thus, a
subsequent request with the same values for the selecting headers may generate a cache hit.

If you use the —enable-x-accelerator-vary option when running ./configure, Squid looks for a
response header named X-Accelerator-Vary. Squid treats this header exactly like the Vary
header. Because this is an extension header, however, it is ignored by downstream agents. It
essentially provides a means for private content negotiation between Squid and your backend
server. In order to use it you must also modify your server application to send the header in its
responses. I don't know of any situation in which this header would be useful. If you serve
negotiated responses, you probably want to use the standard Vary header so that all agents
know what's going on.

 < Day Day Up >

 < Day Day Up >

15.6 Gotchas

Using Squid as a surrogate may improve your origin server's security and performance.
However, there are some potentially negative side effects as well. Here are a few things to keep
in mind.

15.6.1 Logging

When using a surrogate, the origin server's access log contains only the cache misses from
Squid. Furthermore, those log-file entries have Squid's IP address, rather than the client's. In
other words, Squid's access.log is where all the good information is now stored.

Recall that, by default, Squid doesn't use the common log-file format. You should use the
emulate_httpd_log directive to make Squid's access.log look just like Apache's default log-file
format.

15.6.2 Ignoring Reloads

The Reload button found on most browsers generates HTTP requests with the Cache-Control:
no-cache directive set. While this is usually desirable for client-side caching proxies, it may ruin
the performance of a surrogate. This is especially true if the backend server is heavily loaded. A
reload request forces Squid to purge the currently cached response while retrieving the new
response from the origin server. If those origin server responses arrive slowly, Squid consumes
a larger than normal number of file descriptors and network resources.

To help in this situation, you may want to use one of the refresh_pattern options. When the
ignore-reload option is set, Squid pretends that the request doesn't contain the no-cache
directive. The ignore-reload option is generally safe for surrogates, although it does,
technically, violate the HTTP protocol.

To make Squid ignore reloads for all requests, use a line like this in squid.conf:

refresh_pattern . 0 20% 4320 ignore-reload

For a somewhat safer alternative, you can use the reload-into-ims option. It causes Squid to
validate its cached response when the request contains no-cache. Note, however, that this
works only for responses that have cache validators (such as Last-Modified timestamps).

15.6.3 Uncachable Content

As a surrogate, Squid obeys the standard HTTP headers for caching responses from your
backend server. This means, for example, that certain dynamic responses might not be cached.
You might want to use the refresh_pattern directive to force caching of these objects. For
example:

refresh_pattern \.dhtml$ 60 80% 180

This trick only works for certain types of responses, namely, those without a Last-Modified or
Expires header. By default, Squid doesn't cache such responses. However, using a nonzero
minimum time in a refresh_pattern rule instructs Squid to cache the response, and serve it as a
cache hit for that amount of time anyway. See Section 7.7 for the details.

If your backend server generates other types of uncachable responses, you may not be able to
trick Squid into storing them.

15.6.4 Errors

With Squid as a surrogate in front of your origin server, you should be aware that visitors to
your site may see an error message from Squid, rather than the origin server itself. In other
words, your use of Squid may be "exposed" through certain error messages. For example,
Squid returns its own error message when it fails to parse the client's HTTP request, which
could happen if the request is incomplete or is malformed in some way. Squid also returns an
error message if it can't connect to the backend server for some reason.

If your site is consistent and functioning properly, you probably don't need to worry about
Squid's error messages. Nonetheless, you may want to take a close look at the access.log from
time to time and see what sort of errors, if any, your users might be seeing.

15.6.5 Purging Objects

You may find the PURGE method particularly useful when operating a surrogate. Because you
have a good understanding of the content being served, you are more likely to know when a
cached object must be purged. The technique for purging an object is the same as I mentioned
previously. See Section 7.6 for a refresher.

15.6.6 Neighbors

Although I don't recommend it, you can configure Squid as a surrogate and as part of a mesh
or hierarchy. If you choose to take on such an arrangement, note that, by default, Squid
forwards cache misses to parents (rather than the backend server). Assuming that isn't what
you really want, be sure to use the cache_peer_access directives so that requests for your
backend server don't go to your neighbors instead.

 < Day Day Up >

 < Day Day Up >

15.7 Exercises

● Install and configure Squid as a surrogate on the same system where you run an HTTP
server.

● Make a few test requests with squidclient. Pay particular attention to the reply headers
and notice how the requests appear in both access logs.

● Try to poison your own surrogate with fake HTTP requests. It is probably easier with
httpd_accel_single_host enabled.

● Estimate the size of your origin server's document set. What percentage of the data can
fit into 1 GB of memory or disk space?

 < Day Day Up >

 < Day Day Up >

Chapter 16. Debugging and Troubleshooting

No matter how hard the Squid developers try to be perfect, you may encounter some problems
with Squid. These problems range from misbehaving clients and servers to fatal bugs in the
Squid code. In this chapter, I'll talk about various ways you can debug these problems.

Some Squid problems may require you to turn on debugging. In most cases, you'll want to
increase the debugging levels for specific parts of the code. I'll describe how to find out what
those debugging sections are and how to change the settings. Also, I'll talk about the
importance of providing detailed debugging when reporting bugs.

Finally, you may experience fatal bugs in the Squid code. These can result in segmentation
violations, aborts, assertions, and core dumps. The core dump is a useful debugging aid. With a
debugger, such as gdb, you can generate a process stack trace and send it to the developers
for assistance.

If you suspect you have a Squid bug, but aren't sure, check with the squid-users mailing list or
one of the other resources described in Section 1.6.

 < Day Day Up >

 < Day Day Up >

16.1 Some Common Problems

Before discussing debugging in general, I'll mention a few specific problems that commonly arise.

16.1.1 "Failed to make swap directory"

Failed to make swap directory /var/spool/cache: (13) Permission denied

This happens when you run squid -z, and the Squid user ID doesn't have write permission to the /
var/spool directory. Remember that if you start Squid as root and don't add a
cache_effective_user line, Squid runs as the user nobody by default. Thus, your solution may be
to simply run:

chown nobody:nobody /var/spool

16.1.2 "Address already in use"

commBind: Cannot bind socket FD 10 to *:3128: Address already in use

This message appears when the bind() system call fails because the requested port is already
opened by another application. Usually, this happens when you try to start a second instance of
Squid when the first one is still running. If you see this error message, use ps to see if Squid is
already running.

Squid uses the SO_REUSEADDR socket option, so that the bind() call should succeed even if there
are some leftover sockets in the TIME_WAIT state. If you get the message, even though Squid
isn't already running, your operating system may be buggy or especially finicky. Rebooting your
system is one way to get around this problem.

Another possibility to consider is that the port (e.g., 3128) is currently being used by a different
application. If you suspect this, you can use the lsof program (ftp://lsof.itap.purdue.edu/pub/
tools/unix/lsof) to find which application is listening on the port. FreeBSD users can use sockstat
instead.

16.1.3 "Could not determine fully qualified hostname"

FATAL: Could not determine fully qualified hostname. Please set 'visible_hostname'

You'll see this if Squid can't figure out its own fully qualified domain name. Here is the algorithm
Squid uses:

● If you told Squid to bind the HTTP port to a specific interface address, Squid attempts a
reverse DNS lookup of that address. If successful, the answer is used.

● Squid calls the gethostname() function, and then attempts to resolve its IP address with
gethostbyname(). If successful, Squid uses the official hostname string returned by the
latter function.

ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof
ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof

If neither technique works, Squid exits with the fatal message shown earlier. In this case, you
must tell Squid its hostname with the visible_hostname directive. For example:

visible_hostname my.host.name

16.1.4 "DNS name lookup tests failed"

By default, Squid makes a few DNS queries before starting. This ensures that your DNS servers
are reachable and functioning properly. If these tests fail, you'll see the following message in
cache.log and/or syslog:

FATAL: ipcache_init: DNS name lookup tests failed

If you use Squid on an intranet, Squid may be unable to query its standard list of hostnames.
You can specify your own hostnames with the dns_testnames directive. Squid considers the DNS
test successful as soon as it receives any reply.

If you want to skip the DNS tests altogether, simply use the -D command-line option when
starting Squid:

% squid -D ...

16.1.5 "Illegal character in hostname"

urlParse: Illegal character in hostname 'super_bikes.tripod.com'

By default, Squid checks the characters in the hostname part of URLs and complains if it finds
nonstandard characters. According to RFCs 1034 and 1035, names must consist of the letters A-
Z, the digits 0-9, and a hyphen (-). The underscore (_) is one of the most problematic characters.

Squid validates hostnames because, in some cases, DNS resolvers behave differently with
respect to illegal characters. For example:

% host super_bikes.tripod.com

super_bikes.tripod.com has address 209.202.196.70

% ping super_bikes.tripod.com

ping: cannot resolve super_bikes.tripod.com: Unknown server error

Rather than return the Unknown server error message, Squid checks the hostname first. It can
then tell the user when the hostname contains illegal characters.

Some DNS resolvers do work with underscores and other nonstandard characters. If you'd prefer
that Squid not check hostnames, use the —disable-hostname-checks option when running ./
configure. If you want to allow underscores as the only exception, use the —enable-underscores

option.

16.1.6 "Running out of filedescriptors"

WARNING! Your cache is running out of filedescriptors

The above message appears when Squid uses up all available file descriptors. If this happens
under normal conditions, you need to increase the kernel's file-descriptor limits and recompile
Squid. See Section 3.3.1.

You might also see this message if Squid is the target of a denial-of-service attack. Someone
may be intentionally, or unintentionally, sending Squid hundreds or thousands of requests at
once. If this is the case, you can probably add a packet-filtering rule to block incoming TCP
connections from the offending address(es). If the attack is distributed or using a spoofed source
address, you'll have a harder time stopping it.

Forwarding loops (see Section 10.2) might also consume all of Squid's file descriptors, but only if
Squid can't detect the loop. The Via header contains the hostname of all proxies that have seen
a particular request. Squid looks for its own hostname in the header, and, if found, reports the
loop. If, for some reason, the Via header is filtered from outgoing or incoming HTTP requests,
Squid can't detect the loop. In this case, all file descriptors are quickly consumed by the same
request going through Squid over and over.

16.1.7 "icmpRecv: Connection refused"

You'll see the following message if the pinger program isn't correctly installed:

icmpRecv: recv: (61) Connection refused

Most likely, the pinger program exits immediately because it doesn't have permission to open a
raw ICMP socket. Because the process isn't running, Squid receives an I/O error when trying to
talk to it. To alleviate the problem, go to the source directory and, as root, type:

make install-pinger

If successful, you should find that the pinger program has the following file ownership and
permission settings:

ls -l /usr/local/squid/libexec/pinger

-rws--x--x 1 root squid 140728 Sep 16 19:58 /usr/local/squid/libexec/pinger

16.1.8 Squid Becomes Slow After Running for Some Time

Most likely, Squid is competing with other processes, or with itself, for memory on your system.
When the Squid process no longer fits entirely in memory, the operating system is forced to read
and write areas of memory to and from the swap space. This has a drastic effect on Squid's
performance.

To validate this theory, check the Squid process size with utilities such as top and ps. Also check
Squid's own page fault counter, as described in Section 14.2.1.24. Once you've identified
memory consumption as the problem, try the following steps to reduce Squid's memory usage:

1. Reduce the value of cache_mem and read Appendix B.

2. Turn off memory pooling with this option:

memory_pools off

3. Reduce the size of the disk cache by lowering the size of one or more cache directories.
See Section 7.1.

16.1.9 Debugging Access Controls

If you're having no luck getting your access controls to work properly, here's a little tip that
might help. Edit your squid.conf file and set the debug_options line to this:

debug_options ALL,1 33,2

Then, reconfigure Squid:

% squid -k reconfigure

Now, Squid writes a message to cache.log for each client request and another for each reply. The
messages contain the request method, URI, whether the request/reply is allowed or denied, and
the name of the last ACL that matched it. For example:

2003/09/29 20:22:05| The request

 GET http://images.slashdot.org:80/topics/topicprivacy.gif is ALLOWED,

 because it matched 'localhost'

2003/09/29 20:22:05| The reply for

 GET http://images.slashdot.org/topics/topicprivacy.gif is ALLOWED,

 because it matched 'all'

Knowing the name of the ACL doesn't always tell you the corresponding http_access line, but it
gets you pretty close. If necessary, you can replicate your acl lines and give them unique names
so that a given ACL name appears on only one http_access rule.

 < Day Day Up >

 < Day Day Up >

16.2 Debugging via cache.log

You already know from Section 13.1 that cache.log contains various operational messages
Squid thinks are important enough to tell you about. We also refer to these as debugging
messages. You can use the debug_options directive to control the verbosity of messages that
appear in cache.log. By increasing the debugging levels, you'll see more detailed messages that
may help you understand what Squid is doing. For example:

debug_options ALL,1 11,3 20,3

Every debugging message in the Squid source code has two numeric attributes: a section and a
level. Sections range from 0 to 100, and levels range from 0 to 10. In general, section numbers
correspond to particular components of the source code. In other words, all the messages
within a single source file have the same section number. In some cases, multiple files use the
same debugging section. This tends to happen when a source file becomes too large and is split
into smaller chunks.

The top of each source file has line that mentions the debugging section. It looks like this:

 * DEBUG: section 9 File Transfer Protocol (FTP)

I don't expect you to look at the source files to find the section numbers. The same information
appears here in Table 16-1.

Table 16-1. Debugging section numbers for the debug_options directive

Number Description Source file(s)

0 Client Database client_db.c

1 Startup and Main Loop main.c

2 Unlink Daemon unlinkd.c

3 Configuration File Parsing cache_cf.c

4 Error Generation errorpage.c

5 Socket Functions comm.c

5 Socket Functions comm_select.c

6 Disk I/O Routines disk.c

7 Multicast multicast.c

8 Swap File Bitmap filemap.c

9 File Transfer Protocol (FTP) ftp.c

10 Gopher gopher.c

11 Hypertext Transfer Protocol (HTTP) http.c

12 Internet Cache Protocol icp_v2.c

12 Internet Cache Protocol icp_v3.c

13 High Level Memory Pool Management mem.c

14 IP Cache ipcache.c

15 Neighbor Routines neighbors.c

16 Cache Manager Objects cache_manager.c

17 Request Forwarding forward.c

18 Cache Manager Statistics stat.c

19 Store Memory Primitives stmem.c

20 Storage Manager store.c

20 Storage Manager Client-Side Interface store_client.c

20 Storage Manager Heap-Based Replacement repl/heap/store_heap_replacement.c

20 Storage Manager Logging Functions store_log.c

20 Storage Manager MD5 Cache Keys store_key_md5.c

20 Storage Manager Swapfile Metadata store_swapmeta.c

20 Storage Manager Swapin Functions store_swapin.c

20 Storage Manager Swapout Functions store_swapout.c

20 Store Rebuild Routines store_rebuild.c

21 Misc Functions tools.c

22 Refresh Calculation refresh.c

23 URL Parsing url.c

24 WAIS Relay wais.c

25 MIME Parsing mime.c

26 Secure Sockets Layer Proxy ssl.c

27 Cache Announcer send-announce.c

28 Access Control acl.c

29 Authenticator auth/basic/auth_basic.c

29 Authenticator auth/digest/auth_digest.c

29 Authenticator authenticate.c

29 NTLM Authenticator auth/ntlm/auth_ntlm.c

30 Ident (RFC 1413) ident.c

31 Hypertext Caching Protocol htcp.c

32 Asynchronous Disk I/O fs/aufs/async_io.c

33 Client-Side Routines client_side.c

34 Dnsserver Interface dns.c

35 FQDN Cache fqdncache.c

37 ICMP Routines icmp.c

38 Network Measurement Database net_db.c

39 Cache Array Routing Protocol carp.c

40 Referer Logging referer.c

40 User-Agent Logging useragent.c

41 Event Processing event.c

42 ICMP Pinger Program pinger.c

43 AIOPS fs/aufs/aiops.c

44 Peer Selection Algorithm peer_select.c

45 Callback Data Registry cbdata.c

45 Callback Data Registry leakfinder.c

46 Access Log access_log.c

47 Store COSS Directory Routines fs/coss/store_dir_coss.c

47 Store Directory Routines fs/aufs/store_dir_aufs.c

47 Store Directory Routines fs/diskd/store_dir_diskd.c

47 Store Directory Routines fs/null/store_null.c

47 Store Directory Routines fs/ufs/store_dir_ufs.c

47 Store Directory Routines store_dir.c

48 Persistent Connections pconn.c

49 SNMP Interface snmp_agent.c

49 SNMP Support snmp_core.c

50 Log File Handling logfile.c

51 File Descriptor Functions fd.c

52 URN Parsing urn.c

53 AS Number Handling asn.c

54 Interprocess Communication ipc.c

55 HTTP Header HttpHeader.c

56 HTTP Message Body HttpBody.c

57 HTTP Status-Line HttpStatusLine.c

58 HTTP Reply (Response) HttpReply.c

59 Auto-Growing Memory Buffer with printf MemBuf.c

60 Packer: A Uniform Interface to Store Like
Modules Packer.c

61 Redirector redirect.c

62 Generic Histogram StatHist.c

63 Low Level Memory Pool Management MemPool.c

64 HTTP Range Header HttpHdrRange.c

65 HTTP Cache Control Header HttpHdrCc.c

66 HTTP Header Tools HttpHeaderTools.c

67 String String.c

68 HTTP Content-Range Header HttpHdrContRange.c

69 HTTP Header: Extension Field HttpHdrExtField.c

70 Cache Digest CacheDigest.c

71 Store Digest Manager store_digest.c

72 Peer Digest Routines peer_digest.c

73 HTTP Request HttpRequest.c

74 HTTP Message HttpMsg.c

75 WHOIS Protocol whois.c

76 Internal Squid Object handling internal.c

77 Delay Pools delay_pools.c

78 DNS Lookups; interacts with lib/rfc1035.c dns_internal.c

79 Squid-Side DISKD I/O Functions fs/diskd/store_io_diskd.c

79 Storage Manager COSS Interface fs/coss/store_io_coss.c

79 Storage Manager UFS Interface fs/ufs/store_io_ufs.c

80 WCCP Support wccp.c

82 External ACL external_acl.c

83 SSL Accelerator Support ssl_support.c

84 Helper Process Maintenance helper.c

Debugging levels are assigned such that more important messages have smaller values and
less important messages have higher values. Level is for very important messages, while level
10 is for those that are relatively unimportant. Other than that, there are no strict guidelines or

requirements. Developers are generally free to choose which debugging levels are appropriate.

The debug_options directive determines which messages appear in cache.log. Its syntax is:

debug_options section,level section,level ...

The default setting is ALL,1 such that Squid prints any debugging message with level 0 or 1. If
you want to make even less output appear in cache.log, you can set debug_options to ALL,0.

If you want to see additional debugging for a particular component, simply add the appropriate
section and level to the end of the debug_options list. For example, this line adds level 5
debugging for the FTP server-side code:

debug_options ALL,1 9,5

As with other configuration directives, you can change debug_options, then send Squid the
reconfigure signal:

% squid -k reconfigure

Note that the debug_options parameters are processed sequentially, and a later value can
override an earlier one. This is of particular concern if you use the ALL keyword. Consider this
example:

debug_options 9,5 20,9 4,2 ALL,1

In this case, the final value overwrites all of the preceding settings because ALL,1 sets the
debugging level to 1 for all sections.

Selecting appropriate debugging sections and levels is sometimes quite difficult, especially for
novice Squid users. Many of the more detailed debugging messages are meaningful only to
developers and those familiar with the source code. Inexperienced Squid users are likely to find
many of the debugging messages meaningless and overwhelming. Furthermore, you may have
difficulty isolating the debugging for a particular request or event if Squid is relatively busy. The
higher debugging levels are often more useful if you can test Squid with one request at a time.

You must also be particularly careful about running Squid with high debugging levels for a long
amount of time. If Squid is busy, the cache.log file grows very quickly and may eventually
consume all free space on its partition. If this happens, Squid exits with a fatal message.
Another concern is that performance may degrade significantly. Due to the high number of
debugging messages, Squid devotes a lot of CPU resources to formatting and printing strings. It
also consumes a lot of disk bandwidth writing them all to cache.log.

 < Day Day Up >

 < Day Day Up >

16.3 Core Dumps, Assertions, and Stack Traces

If you are unlucky, Squid may experience a fatal error while running. These sorts of errors
come in three flavors: assertions, bus errors, and segmentation violations.

An assertion is a sanity check in the source code. It is a tool, used by developers, to make sure
that some condition is always true before proceeding. If the condition is false, the program
exits and creates a core file so that the developer can analyze the situation. Here is a typical
example:

int some_array[100];

void

some_func(int idx)

{

 ...

 assert(idx < 100);

 some_array[idx]++;

 ...

}

Here, the assertion makes sure that the value of the array index is within the bounds of the
array. It would be an error to access array elements greater than (or equal to) 100. If,
somehow, the value of idx isn't less than 100, the program prints a message like this when it
runs:

assertion failed: filename.c:123: "idx < 100"

If this happens with Squid, you'll see an "assertion failed" message in cache.log. In addition,
your operating system should create a core file, which is helpful in the post-mortem analysis.
I'll explain what to do with a core file at the end of this section.

A bus error is "a fatal failure in the execution of a machine language instruction resulting from

the processor detecting an anomalous condition on its bus."
[1]

 They typically occur when the
processor attempts an operation on a nonaligned memory address. You are, perhaps, more
likely to see a bus error on a 64-bit processor system, such as the Alpha and some SPARC
CPUs. Fortunately, they are easy to fix.

[1] From the Free On-line Dictionary of Computing (FOLDOC), http://wombat.doc.
ic.ac.uk/foldoc/.

http://wombat.doc.ic.ac.uk/foldoc/
http://wombat.doc.ic.ac.uk/foldoc/

Segmentation violation errors are, unfortunately, more common and sometimes harder to fix. A
"SEGV" usually occurs when the process tries to access an invalid memory area. It might be a
NULL pointer or a memory address outside the scope of the process. They are particularly
difficult to track down when the cause (the bug) and effect (the SEGV) are separated in time.

By default, Squid traps bus errors and segmentation violations, and attempts a clean shutdown
when they occur. You'll see something like this in cache.log:

FATAL: Received Bus Error...dying.

2003/09/29 23:18:01| storeDirWriteCleanLogs: Starting...

In most cases, Squid is able to write clean versions of the swap.state files. Just before exiting,
Squid calls abort() to create a core file. The core file may help you, or other developers, track
down and fix the bug.

A core file is generally more useful when it is created immediately following the error, rather
than calling the clean shutdown procedure first. You can tell Squid not to trap bus errors and
segmentation violations with the -C command line option:

% squid -C ...

Note that some operating systems use the filename core, while others prepend the process
name (i.e., squid.core). Once you have the core file, use a debugger to get a stack trace. gdb is
the GNU debugger—a companion to the GNU C compiler. If you don't have gdb, try running dbx
or adb instead. Here's how you can use gdb to get a stack trace:

% gdb /usr/local/squid/sbin/squid /path/to/squid.core

...

Core was generated by 'squid'.

Program terminated with signal 6, Abort trap.

...

Then, type where to print the stack trace:

(gdb) where

#0 0x28168b54 in kill () from /usr/lib/libc.so.4

#1 0x281aa0ce in abort () from /usr/lib/libc.so.4

#2 0x80a2316 in death (sig=10) at tools.c:301

#3 0xbfbfffac in ?? ()

#4 0x80abe0a in storeDiskdSend (mtype=4, sd=0x82101e0, id=1214000,

 sio=0x9e90a10, size=4096, offset=-1, shm_offset=0)

 at diskd/store_io_diskd.c:485

#5 0x80ab726 in storeDiskdWrite (SD=0x82101e0, sio=0x9e90a10,

 buf=0x13e94000 "...", size=4096, offset=-1, free_func=0)

 at diskd/store_io_diskd.c:251

#6 0x809d2fb in storeWrite (sio=0x9e90a10, buf=0x13e94000 "...",

 size=4096, offset=-1, free_func=0) at store_io.c:89

#7 0x80a1c2d in storeSwapOut (e=0xc5a7800) at store_swapout.c:259

#8 0x809b667 in storeAppend (e=0xc5a7800, buf=0x810f9a0 "...", len=57344)

 at store.c:533

#9 0x807873b in httpReadReply (fd=134, data=0xc343590) at http.c:642

#10 0x806492f in comm_poll (msec=10) at comm_select.c:445

#11 0x8084404 in main (argc=2, argv=0xbfbffa8c) at main.c:742

#12 0x804a465 in _start ()

As you can see, the stack trace prints the name of each function, its arguments, and the source
code filenames and line numbers. This information is extremely useful when tracking down
bugs. In some cases, however, it isn't sufficient. You might be asked to execute additional
commands in the debugger, such as printing the value of a variable from within a certain
function:

(gdb) frame 4

#4 0x80abe0a in storeDiskdSend (mtype=4, sd=0x82101e0, id=1214000,

 sio=0x9e90a10, size=4096, offset=-1, shm_offset=0)

 at diskd/store_io_diskd.c:485

485 x = msgsnd(diskdinfo->smsgid, &M,

 msg_snd_rcv_sz, IPC_NOWAIT);

(gdb) set print pretty

(gdb) print M

$2 = {

 mtype = 4,

 id = 1214000,

 seq_no = 7203103,

 callback_data = 0x9e90a10,

 size = 4096,

 offset = -1,

 status = -1,

 shm_offset = 0

}

After you've reported a bug, try to keep the core file around for a few days, in case you need
additional information from it.

16.3.1 Can't Find the Core File?

core files are written in the process' current directory. By default, Squid doesn't change its
current directory at startup. Thus, your core file, if any, should be written in the directory in
which Squid was started. You won't find a core file if the filesystem doesn't have enough free
space or if the process owner doesn't have write permission in the directory. You can use the
coredump_dir directive to make Squid use a specific location—somewhere with plenty of space
and sufficient permissions.

Process resource limits may also prevent the creation of a core file. One of the process limit
parameters is the size of the core dump file. Usually, most systems set this to "unlimited" by
default. You can check the current limit from your shell with the limits or ulimit commands.
Note, however, that your shell's limit might be different than the Squid process limit, especially
when Squid is started automatically at boot time. If you suspect process limits prevent
generation of a core file, try this:

csh% limit coredumpsize unlimited

csh% squid -NCd1

On FreeBSD, a sysctl parameter controls whether or not the operating system generates a core
file for processes that call setuid() and/or setgid(). Squid uses those functions if you start it as
root. To get a core dump, then, you must tell the kernel to create the core file with this
command:

sysctl kern.sugid_coredump=1

See the sysctl.conf manpage for information on how to set the variable automatically when
your system boots.

 < Day Day Up >

 < Day Day Up >

16.4 Replicating Problems

Occasionally you may encounter a certain request or origin server that seems not to work with
Squid. You can use the following technique to determine if the problem lies with Squid, the
client, or the origin server. The trick is to capture the HTTP request, then replay it in different
ways until you identify the problem.

Capturing the HTTP request means getting more than just the URL. You also need the request
method, HTTP version number, and all of the request headers. One way to capture the request
is by enabling full debugging in Squid for a short time. On the Squid box, type:

% squid -kdebug

Then, go to the web browser and issue the request. Squid should receive the request almost
immediately. After a few seconds, go back to the Squid box and issue the same command:

% squid -kdebug

Now your cache.log file should contain the client's request. If your Squid is busy, the cache.log
will contain a lot of requests, so you'll have to search for it. It looks something like this:

2003/09/29 10:37:40| parseHttpRequest: Method is 'GET'

2003/09/29 10:37:40| parseHttpRequest: URI is 'http://squidbook.org/'

2003/09/29 10:37:40| parseHttpRequest: Client HTTP version 1.1.

2003/09/29 10:37:40| parseHttpRequest: req_hdr = {

User-Agent: Mozilla/5.0 (compatible; Konqueror/3)

Pragma: no-cache

Cache-control: no-cache

Accept: text/*, image/jpeg, image/png, image/*, */*

Accept-Encoding: x-gzip, gzip, identity

Accept-Charset: iso-8859-1, utf-8;q=0.5, *;q=0.5

Accept-Language: en

Host: squidbook.org

Note that Squid prints the components of the first line separately. You'll have to manually
reassemble them like this:

GET http://squidbook.org/ HTTP/1.1

Another way to capture the full request is with a utility such as netcat or socket (http://www.
jnickelsen.de/socket/). Start the socket program listening on some port, then configure the
browser to use that port as the proxy address. When you make the request again, socket prints
the HTTP request:

% socket -s 8080

GET http://squidbook.org/ HTTP/1.1

User-Agent: Mozilla/5.0 (compatible; Konqueror/3)

Pragma: no-cache

Cache-control: no-cache

Accept: text/*, image/jpeg, image/png, image/*, */*

Accept-Encoding: x-gzip, gzip, identity

Accept-Charset: iso-8859-1, utf-8;q=0.5, *;q=0.5

Accept-Language: en

Host: squidbook.org

Finally, you can also use a network packet capture utility, such as tcpdump or ethereal. After
capturing a few packets with tcpdump, you can then use tcpshow to view them:

tcpdump -w tcpdump.log -c 10 -s 1500 port 80

tcpshow -noHostNames -noPortNames < tcpdump.log | less

...

Packet 4

TIME: 08:39:29.593051 (0.000627)

LINK: 00:90:27:16:AA:75 -> 00:00:24:C0:0D:25 type=IP

 IP: 10.0.0.21 -> 206.168.0.6 hlen=20 TOS=00 dgramlen=304 id=4B29

 MF/DF=0/1 frag=0 TTL=64 proto=TCP cksum=15DC

 TCP: port 2074 -> 80 seq=0481728885 ack=4107144217

 hlen=32 (data=252) UAPRSF=011000 wnd=57920 cksum=EB38 urg=0

DATA: GET / HTTP/1.0.

 Host: www.ircache.net.

 Accept: text/html, text/plain, application/pdf, application/

http://www.jnickelsen.de/socket/
http://www.jnickelsen.de/socket/

 postscript, text/sgml, */*;q=0.01.

 Accept-Encoding: gzip, compress.

 Accept-Language: en.

 Negotiate: trans.

 User-Agent: Lynx/2.8.1rel.2 libwww-FM/2.14.

 .

Note that tcpshow prints a period where the data contains a newline character.

Once you've captured a request, save it to a file. Then you can replay it through Squid with
netcat or socket:

% socket squidhost 3128 < request | less

If the response looks normal, the problem might be with the user-agent. Otherwise, you can
change various things to isolate the problem. For example, if you see some funny-looking HTTP
headers, delete them from the request and try it again. You may also find it useful to try the
request directly with the origin server, instead of going through Squid. To do that, remove the
http://host.name/ from the request and send it to the origin server:

% cat request

GET / HTTP/1.1

User-Agent: Mozilla/5.0 (compatible; Konqueror/3)

Pragma: no-cache

Cache-control: no-cache

Accept: text/*, image/jpeg, image/png, image/*, */*

Accept-Encoding: x-gzip, gzip, identity

Accept-Charset: iso-8859-1, utf-8;q=0.5, *;q=0.5

Accept-Language: en

Host: squidbook.org

% socket squidbook.org 80 < request | less

When working with HTTP in this manner, you might find it useful to refer to RFC 2616 and
O'Reilly's HTTP: The Definitive Guide.

 < Day Day Up >

 < Day Day Up >

16.5 Reporting a Bug

If your Squid version is more than a few months old, you should probably update it before
reporting any bugs. Chances are that others noticed the same bug, and it may already be fixed.

If you discover a legitimate bug in Squid, please enter it into the Squid bug tracking database:
http://www.squid-cache.org/bugs/. This is currently a "bugzilla" database, which requires you
to create an account. You will receive updates as the bug is processed by Squid developers.

If you are new at reporting bugs, please take the time to read "How to Report Bugs Effectively,"
by Simon Tatham (http://www.chiark.greenend.org.uk/~sgtatham/bugs.html).

When reporting a bug, be sure to include the following information:

● Squid version number. If the bug happens with more than one version, include the other
versions as well.

● Your operating system name and version.
● Whether the bug happens every time or occasionally.
● A good description of exactly what happens. Phrases such as "it doesn't work," and "the

request fails" are essentially useless to bug fixers. Be very specific.
● A stack trace in the case of an assertion, bus error, or segmentation violation.

Remember that Squid developers are generally unpaid volunteers, so be patient. Critical bugs
have more priority over minor annoyances.

 < Day Day Up >

http://www.squid-cache.org/bugs/
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

 < Day Day Up >

16.6 Exercises

● Use tcpdump or ethereal to capture some real HTTP requests. Save them to a file and
replay the requests through Squid. Feel free to modify or delete some of the HTTP
headers.

● Try to make Squid run out of file descriptors.
● Run tail -f cache.log and start Squid with debug_options set to ALL,3. If that is too

overwhelming, try ALL,2.
● Force Squid to generate a core file by sending each of the following signals: SIGBUS,

SIGSEGV, and SIGABRT. Find the core file and use gdb or another debugger to get a
stack trace.

 < Day Day Up >

 < Day Day Up >

Appendix A. Config File Reference

This appendix contains descriptions and examples for every squid.conf directive. I present them
here in the same order they appear in the default squid.conf. That means certain related
directives are grouped together, and some recently added directives are at the end. You may
want to use the book's index to locate a particular directive by name.

In the following sections, the descriptive text is followed by a table that contains the directive's
syntax, a default value, an example, and related directives.

 < Day Day Up >

 < Day Day Up >

http_port

This is the port, or ports, Squid uses to listen for HTTP requests from cache clients. If your
system has more than one network interface, you can use the optional hostname prefix to
make Squid bind the socket to a specific IP address. The hostname must correspond to one of
your interface addresses. I recommend using an IP address here, instead of a hostname, to
avoid DNS lookup delays at startup.

If you run Squid as a surrogate (accelerator), you probably want to accept HTTP connections on
port 80. Binding to privileged ports requires root permissions.

Syntax http_port [hostname:]port [[hostname:]port] ...

Default http_port 3128

Example

http_port 8080

http_port 3128 3129 3130 3131

http_port 192.168.1.1:3128

Related https_port, icp_port, htcp_port, snmp_port, httpd_accel_port, http_access

 < Day Day Up >

 < Day Day Up >

https_port

This directive allows Squid to accept encrypted (SSL or TLS) connections. It is available only when
you use the /configure —enable-ssl option.

The mandatory cert= argument specifies the pathname to an SSL certificate file in PEM format.
This is the format commonly used by OpenSSL and other security software for portable
representation of encryption keys.

The optional key= argument is the path to a private key file. If you omit this option, Squid
assumes the former key file also contains a private key.

You can use the version= argument to tell Squid which protocol versions are allowed:
1=automatic, 2=SSLv2 only, 3=SSLv3 only, 4=TLSv1 only.

The cipher= argument is an optional colon-separated list of allowed ciphers. Squid simply passes
this list to the SSL_CTX_set_cipher_list() function.

Lastly, the options= argument allows you to pass additional configuration parameters to the
OpenSSL library. For example, NO_SSLv2, NO_SSLv3, and NO_TLSv1 disable the use of those
particular protocols. Additional option keywords are defined in Squid's src/ssl_support.c file.

Syntax
https_port [hostname:]port cert=certificate.pem [key=key.pem] [version=N]

[cipher=list] [options=SSL_Options]

Default No default

Example https_port 443 cert=/etc/squid-cert.pem key=/etc/squid-privkey.pem

Related http_port, http_access

 < Day Day Up >

 < Day Day Up >

ssl_unclean_shutdown

This a hack borrowed from mod_ssl for Apache. Certain user-agents, notably Microsoft Internet
Explorer, may not execute the SSL shutdown procedure correctly, especially when persistent
connections are involved. Enabling this directive violates the SSL/TLS standard but may
eliminate error messages from broken clients.

Syntax ssl_unclean_shutdown on|off

Default ssl_unclean_shutdown off

Example ssl_unclean_shutdown on

Related https_port

 < Day Day Up >

 < Day Day Up >

icp_port

This is the UDP port Squid uses for ICP messages. In particular, it is used both for sending and
receiving queries and replies. Your Squid receives ICP queries from other caches on this port. It
also receives ICP replies from other caches, in response to its own queries, on this port.

Unlike http_port, you can't specify a list of ICP port numbers. Furthermore, you must use the
udp_incoming_address and udp_outgoing_address directives if you want to restrict ICP traffic
to a specific interface address.

Setting icp_port to 0 disables ICP.

Syntax icp_port port

Default icp_port 3130

Example icp_port 4130

Related icp_query_timeout, icp_access, log_icp_queries, icp_hit_stale,
udp_incoming_address, htcp_port, http_port, cache_peer

 < Day Day Up >

 < Day Day Up >

htcp_port

The Hypertext Caching Protocol is an alternative to ICP. It provides better security and better
cache hit predictions. However, HTCP messages are larger and more complicated. HTCP must
be enabled at compile-time with the —enable-htcp option.

This directive specifies the UDP port Squid uses to send and receive HTCP queries and replies.
You may only specify one HTCP port number. As with ICP, the udp_incoming_address and
udp_outgoing_address directives also control HTCP packets.

You may configure Squid to receive both ICP and HTCP queries at the same time. Setting
htcp_port to 0 disables HTCP.

Syntax htcp_port port

Default htcp_port 4827

Example htcp_port 9999

Related icp_port, http_port, udp_incoming_address, udp_outgoing_address, cache_peer

 < Day Day Up >

 < Day Day Up >

mcast_groups

As discussed in Section 10.6.3, Squid supports receiving ICP queries via multicast. This option
specifies a list of multicast addresses Squid should join to receive these ICP queries.

IP multicast is a very tricky and often fragile feature of the Internet. I
strongly recommend you avoid using multicast for ICP unless you are
already familiar with it. Don't try to guess appropriate values for these
directives, and don't expect it to work the first time.

Syntax mcast_groups multicast-address [multicast-address] ...

Default No default

Example mcast_groups 239.128.16.128

Related cache_peer, mcast_icp_query_timeout

 < Day Day Up >

 < Day Day Up >

udp_incoming_address

This directive causes Squid to bind all UDP sockets to a specific interface address. The IP
address must correspond to one of the system's network interfaces. This directive affects the
DNS (when using the internal implementation), ICP, HTCP, and SNMP sockets.

If your system has just one IP address, you probably shouldn't use this directive.

If you set udp_outgoing_address to one of your other network interface addresses, Squid can
receive UDP datagrams on that interface as well.

Syntax udp_incoming_address ip-address

Default udp_incoming_address 0.0.0.0

Example udp_incoming_address 192.168.4.5

Related udp_outgoing_address, icp_port, htcp_port, snmp_port

 < Day Day Up >

 < Day Day Up >

udp_outgoing_address

This directive specifies the source address for UDP messages that Squid sends. It affects DNS
(when using the internal implementation), ICP, HTCP, and SNMP messages. The specified
address must correspond to one of the system's network interfaces. You should use this
directive only if your system has multiple IP addresses.

The default value of 255.255.255.255 causes Squid to use the incoming address for sending, as
well as receiving. In other words, rather than creating a separate UDP socket for sending, Squid
sends and receives messages through a single socket.

If you use this directive, it must have a different value than udp_incoming_address. Squid can't
create two UDP sockets bound to the same IP address and port number.

Syntax udp_outgoing_address ip-address

Default udp_outgoing_address 255.255.255.255

Example udp_outgoing_address 192.168.5.6

Related udp_outgoing_address, icp_port, htcp_port, snmp_port

 < Day Day Up >

 < Day Day Up >

cache_peer

Okay, this one's long, so hang on...

This directive defines your neighbor caches and tells Squid how to communicate with them. See
Chapter 10 for the lowdown on neighbor caches.

The first argument is the neighbor cache's hostname, or IP address. You can safely use
hostnames here because Squid doesn't block while resolving them. In fact, Squid periodically re-
resolves the hostname so that if the address changes, you won't need to restart. Neighbor
hostnames must be unique; you can't have two neighbors with the same name, even if they
have different ports.

The second argument specifies the type of neighbor cache. The choices are parent, sibling, or
multicast. Recall from Section 10.6.3 that for a multicast neighbor, Squid sends ICP queries
only to the neighbor's IP address, which must be a valid multicast address. Squid makes HTTP
requests to parents and siblings but never to a multicast neighbor.

The third and fourth arguments are HTTP and ICP/HTCP port numbers. The HTTP port number
corresponds to the neighbor cache's http_port (or equivalent) setting. A value of 0 for the ICP/
HTCP port disables those protocols for the neighbor. If you add the htcp option (described in
the subsequent paragraphs), Squid sends HTCP queries to the neighbor. Otherwise, Squid
sends ICP queries. If you choose not to use ICP or HTCP, you must specify the neighbor as a
parent cache.

This brings us to the options field. The cache_peer directive has numerous options, which can
be very confusing:

proxy-only

Instructs Squid to not store any responses received from the neighbor. This is often
useful when you have a cluster and don't want a resource to be stored on more than
one cache.

weight= n

Allows you to weight parent caches artificially when using ICP/HTCP and all parents
report a cache miss. Normally Squid selects the parent whose reply arrived first. In fact,
it remembers which parent has the best round-trip time for the query. Squid actually
divides the RTT by the weight, so that a parent with weight=2 has lower (better) round-
trip times and should be selected more often.

ttl= n

An option for multicast neighbors only. It is the multicast TTL value to use for ICP
queries and it controls how far away the ICP queries can travel. The valid range is 0-
128. A larger value allows the multicast queries to travel farther and possibly be
intercepted by outsiders. Use a lower number to keep the queries close to the source
and within your network.

no-query

Disables ICP/HTCP for the neighbor. That is, your cache won't send any queries to the
neighbor for cache misses. It is often used with the default option.

default

Specifies the neighbor as a suitable choice in the absence of other hints. Squid would
prefer to forward a cache miss to a parent that is likely to have a cached copy of the
particular resource. Sometimes Squid won't have any clues (e.g., if you disable ICP/
HTCP with no-query). In these cases, Squid looks for a parent that has been marked as
a default choice.

round-robin

A simple load-sharing technique. It only makes sense when you mark two or more
parent caches as round-robin. Squid keeps a counter for each parent. When it needs to
forward a cache miss, Squid selects the parent with the lowest counter.

multicast-responder

Tells Squid to expect ICP replies from the neighbor in response to multicast queries.

closest-only

Refers to Squid's netdb features. When your neighbor has enabled the network
database, it may return ICMP RTT measurements in ICP miss replies. This option
instructs Squid to select a parent based on the RTT between the parent and the origin
server, rather than the RTT between your cache and the parent.

no-digest

Tells Squid not to request a Cache Digest from the neighbor. See Section 10.7.

no-netdb-exchange

Tells Squid not to request the neighbor's netdb database. Note, this refers to the bulk
transfer of the RTT measurements, not the inclusion of these measurements in ICP miss
replies.

no-delay

Tells Squid to ignore any delay pools settings for requests to the neighbor. See
Appendix C.

login= credentials

Instructs Squid to send authentication credentials to the neighbor. This option has three
different formats, which I've fully described in Section 10.3.1.

connect-timeout=n

Specifies how long Squid should wait when establishing a TCP connection to the
neighbor. Without this option, the timeout is taken from the global connect_timeout
directive. By using a lower timeout, Squid gives up on the neighbor quickly and tries
forwarding the request elsewhere.

digest-url=url

Specifies the URL for the neighbor's Cache Digest. Without this option, Squid assumes
the digest URL is http://neighbor.host.name:port/squid-internal-periodic/store_digest.

allow-miss

Instructs Squid to omit the Cache-control: only-if-cached directive for requests
sent to a sibling. You should use this only if the neighbor is using the icp_hit_stale and
isn't using a miss_access list.

max-conn

Places a limit on the number of simultaneous connections that Squid can open to the
neighbor. When this limit is reached, Squid excludes the neighbor from its selection
algorithm.

htcp

Tells Squid to send HTCP, instead of ICP, queries to this neighbor. If you add this
option, don't forget to also change the port number. Squid uses 4827 as the default
HTCP port. See Chapter 10.

carp-load-factor= f

Tells Squid that this neighbor is a member of a CARP array. The load factor value
specifies the fraction of requests that this neighbor will receive. The load factor values
for all neighbors must add up to 1.0. See Chapter 10.

Syntax cache_peer hostname type http-port icp-port [options]

Default No default

Example

cache_peer bigcache.isp.net parent 3128 3130

cache_peer medcache.isp.net sibling 3128 4827 htcp

cache_peer 172.16.45.111 parent 3128 0 no-query default

Related
cache_peer_access, http_port, icp_port, htcp_port, icp_query_timeout,
dead_peer_timeout, peer_connect_timeout, cache_peer_domain,
neighbor_type_domain

 < Day Day Up >

 < Day Day Up >

cache_peer_domain

This directive allows you to restrict forwarded requests by their domain names. For example,
you can make sure that URIs in a certain domain never go to your parent cache. Similarly, you
can make sure that requests for only a few specific domain names are sent to a neighbor. The
cache_peer_domain directive has been largely superseded by cache_peer_access, which is
much more flexible.

Following the neighbor's hostname, you can specify a list of domain names. These are searched
in order, until Squid finds a match. A match means that the request can be sent to the
neighbor, unless you prefix the domain name with ! ("not"). For example, .foo.com means
"allow .foo.com," while !.bar.net means "disallow .bar.net." If none of the listed domains
match the URL, the default action (allow or deny) is the opposite of the last one in the list.

Note, the domain name matching algorithm is somewhat tricky. See the description in Section
6.1.1.2.

Syntax cache_peer_domain hostname domain ...

Default No default

Example
cache_peer_domain bigcache.isp.net .net .org

cache_peer_domain aol.web-cache.net !.ads.aol.com .aol.com

Related cache_peer, cache_peer_access, neighbor_type_domain

 < Day Day Up >

 < Day Day Up >

neighbor_type_domain

You can use this directive to modify the relationship for a neighbor cache selectively. For
example, you may have a sibling neighbor that allows you to fetch misses for certain, nearby
domains. The neighbor_type_domain option overrides the type given in the cache_peer line for
requests that match the listed domains.

The syntax and algorithms for matching domain names are identical to the cache_peer_domain
directive.

Syntax neighbor_type_domain parent|sibling hostname domain ...

Default No default

Example neighbor_type_domain bigcache.isp.net parent .customer.isp.net

Related cache_peer, cache_peer_domain

 < Day Day Up >

 < Day Day Up >

icp_query_timeout

When Squid sends an ICP/HTCP query to one or more neighbors, it waits some amount of time
for the replies to arrive. Because the messages are unreliable UDP datagrams, the queries and/
or replies may never arrive. Squid automatically figures out how long to wait for ICP/HTCP
replies. For a particular query, the timeout is twice the mean of how long it took for recent
replies to arrive. In other words, Squid averages the query RTT values from previous requests,
doubles it, and waits that amount of time. This algorithm works best when all your neighbors
have about the same RTT, and when network conditions are consistent.

You can override this algorithm with the icp_query_timeout directive. Instead of dynamically
calculating the timeout, Squid waits a fixed amount of time for every ICP/HTCP query.

Syntax icp_query_timeout milliseconds

Default No default

Example icp_query_timeout 1500

Related icp_port, htcp_port, maximum_icp_query_timeout, mcast_icp_query_timeout,
dead_peer_timeout

 < Day Day Up >

 < Day Day Up >

maximum_icp_query_timeout

I described Squid's dynamic ICP/HTCP timeout algorithm under icp_query_timeout. If you'd like
to use that algorithm, but wish to place an upper limit on the timeout, use the
maximum_icp_query_timeout directive instead. Rather than a fixed timeout, Squid uses the
dynamic timeout but makes sure it doesn't exceed the limit that you specify.

Syntax maximum_icp_query_timeout milliseconds

Default No default

Example maximum_icp_query_timeout 3000

Related icp_port, htcp_port, icp_query_timeout

 < Day Day Up >

 < Day Day Up >

mcast_icp_query_timeout

When you use multicast ICP, Squid doesn't know in advance how many multicast-capable
neighbors are listening for its messages. Squid determines this by sending periodic probes to
the multicast group and counting the number of replies. Squid uses this count when waiting for
replies to real multicast queries.

The mcast_icp_query_timeout directive specifies how long Squid should wait when counting
replies to its fake probe queries. Why not just use this timeout when sending real multicast ICP
queries? The reason is that Squid might be sending queries to both multicast and unicast
neighbors.

The mcast_icp_query_timeout directive essentially controls how long Squid waits for replies to
real multicast queries. Let's say you have an ICP multicast group with 10 neighbor caches, and
that it typically takes 3000 msec for all 10 replies to arrive but only takes 1000 msec to receive
5 replies. If you set mcast_icp_query_timeout to 1000 msec, Squid's periodic probes will count
5 neighbors. Then, for a real multicast ICP query, Squid waits for only 5 replies from multicast
responders. On average, this should take only 1000 milliseconds.

Another nice feature of this algorithm is that Squid does the right thing if, for some reason, all
your multicast neighbors stop responding. In that case, Squid counts zero neighbors and
doesn't wait for any replies from multicast responders.

Squid doesn't send multicast HTCP queries.

Syntax mcast_icp_query_timeout milliseconds

Default mcast_icp_query_timeout 2000

Example mcast_icp_query_timeout 750

Related icp_port, icp_query_timeout

 < Day Day Up >

 < Day Day Up >

dead_peer_timeout

This is another directive that controls the way Squid waits for ICP/HTCP replies. Squid marks
each of its peers as either dead (down) or alive (up). Squid uses ICP/HTCP replies (and other
techniques) to determine a peer's state. If Squid doesn't receive any replies for the time
specified by dead_peer_timeout, the peer is declared dead.

When a peer is declared dead, Squid continues to send it ICP/HTCP queries. However, it doesn't
expect to receive replies. That is, a dead peer isn't included in the algorithm that decides when
all ICP replies have been received. As soon as Squid receives an ICP/HTCP reply from a dead
peer, its state is changed to alive.

Squid tends to be paranoid about the state of its peers. Additionally, Squid doesn't proactively
monitor the peers when there are no client requests. When Squid has no occasion to send ICP/
HTCP queries, the state of the peer is unknown. If Squid doesn't send any ICP/HTCP queries for
an amount of time longer than dead_peer_timeout, Squid treats the peer as dead.

Syntax dead_peer_timeout time-specification

Default dead_peer_timeout 10 seconds

Example dead_peer_timeout 30 seconds

Related icp_port, htcp_port, icp_query_timeout

 < Day Day Up >

 < Day Day Up >

hierarchy_stoplist

Every HTTP request that Squid receives is marked as either hierarchical or nonhierarchical. This
terminology is somewhat confusing. A request is hierarchical when there is a possibility it could
be a cache hit in one of the neighbors. In other words, if the information in the request
indicates that the response may be cachable, the request is hierarchical. A request is marked
nonhierarchical when Squid thinks there is no chance of getting a hit from a neighbor.

Squid uses the hierarchical flag to decide whether or not it should query neighbors for the
request. If the request is hierarchical, Squid may perform ICP/HTCP queries, or use Cache
Digests, to locate cache hits in neighbors. Otherwise, Squid may forward the request directly to
the origin server or select a parent based on some other technique.

Squid has a few hardcoded rules that determine if a request is hierarchical. For example, only
GET requests are hierarchical. Squid never expects cache hits on non-GET requests. Another
rule is that requests including authentication information are nonhierarchical. The
hierarchy_stoplist directive allows you to customize the algorithm further. The stoplist is simply
a list of strings. Squid searches the requested URL for these strings. The string comparison is
case-sensitive. In the case of a match, the request becomes nonhierarchical. The default
configuration is to search for cgi-bin and ? so that queries and other CGI responses aren't
hierarchical.

Note that the hierarchical flag determines only whether or not Squid queries its neighbor
caches. It doesn't determine which requests must, or must not, be sent to parent caches. The
always_direct and never_direct access lists have that responsibility.

Syntax hierarchy_stoplist string ...

Default hierarchy_stoplist cgi-bin ?

Example
hierarchy_stoplist .cgi

hierarchy_stoplist http://www.mysite.org

Related always_direct, never_direct

 < Day Day Up >

 < Day Day Up >

no_cache

no_cache is a sequence of access control rules (see Section 6.2) that specify responses that
must not be cached by Squid. Of course, Squid has some hardcoded rules for responses that
must not be cached according to the HTTP RFC. The no_cache rules are in addition to those.

The no_cache syntax is a little tricky. You must use deny for rules where the response must not
be cached. Consider this example:

acl GoodStuff url_regex /foo/bar/

acl BadStuff url_regex /bar/

no_cache allow GoodStuff

no_cache deny BadStuff

Here, a URL containing /foo/bar/ may be cached, but any other URL containing only /bar/
isn't cached. The meaning of the allow and deny might be the opposite of what you expect.
Just remember that deny carries the same negative connotation as "not caching" something.

Syntax no_cache allow|deny [!]ACLname ...

Default No default

Example
acl LocalServers dst 192.168.8.0/24

no_cache deny LocalServers

Related always_direct, never_direct, http_access

 < Day Day Up >

 < Day Day Up >

cache_access_log

This is the location of Squid's access.log, which contains one entry for each client request. See
Section 13.2 for the details. If you want to disable the access log, set this to /dev/null.

Syntax cache_access_log pathname

Default cache_access_log $prefix/var/logs/access.log

Example cache_access_log /var/log/squid-access.log

Related emulate_httpd_log, cache_log, cache_store_log, log_ip_on_direct, logfile_rotate

 < Day Day Up >

 < Day Day Up >

cache_log

This log file contains various operational and debugging messages from Squid. See Section 13.1
for more information. If you want to disable cache.log, set this directive to /dev/null.

Syntax cache_log pathname

Default cache_log $prefix/var/logs/cache.log

Example cache_log /var/log/squid.log

Related debug_options, cache_access_log, cache_store_log, logfile_rotate

 < Day Day Up >

 < Day Day Up >

cache_store_log

The store.log contains details about Squid's interaction with the disk cache. You'll see entries as
objects are stored to disk, read from disk, and removed from the cache. See Section 13.3 for
the details. You can disable this log by setting it to none.

Syntax cache_store_log pathname

Default cache_store_log $prefix/var/logs/store.log

Example cache_store_log /var/log/squid-store.log

Related cache_access_log, cache_log, logfile_rotate

 < Day Day Up >

 < Day Day Up >

cache_swap_log

Each cache directory has its own swap log file. These are binary-format journal files Squid uses
to rebuild the in-memory indexes when in starts up. Each swap log file is located in the
corresponding cache directory by default. If you use this option, Squid puts all swap log files in
one directory. See Section 13.6 for more information.

Syntax cache_swap_log pathname

Default swap.state in each cache_dir

Example cache_swap_log /var/log/squid-swap-state

Related cache_store_log, logfile_rotate, cache_dir

 < Day Day Up >

 < Day Day Up >

emulate_httpd_log

Squid uses its own native format for the access.log by default. If you enable this directive, the
access log is written in the HTTPD common log file format. Often useful when Squid is
accelerating an origin server site.

Syntax emulate_httpd_log on|off

Default emulate_httpd_log off

Example emulate_httpd_log on

Related cache_access_log, httpd_accel_host

 < Day Day Up >

 < Day Day Up >

log_ip_on_direct

By default, Squid puts origin server IP addresses into the ninth field of the access.log. If you
enable this directive, Squid puts the origin server hostname there instead.

Syntax log_ip_on_direct on|off

Default log_ip_on_direct on

Example log_ip_on_direct off

Related cache_access_log

 < Day Day Up >

 < Day Day Up >

cache_dir

This directive instructs Squid where, and how, to store cached objects on disk. See Section 7.1
for the details on cache directories.

The second parameter selects the storage scheme. Your choices are ufs, aufs, diskd, coss,
and null. To use any scheme other than ufs, you must use the --enable-storeio option
with ./configure. See Section 3.4.

The third parameter is the amount of disk space to use for the cache. The units are in
megabytes.

The fourth and fifth parameters are the number of L1 and L2 directories. Don't change these
values for directories that already contain cached objects.

Some cache_dir schemes have additional, optional parameters. Refer to the scheme-specific
sections in Chapter 8.

Syntax cache_dir scheme directory size-MB L1 L2 [options...]

Default cache_dir ufs $prefix/var/cache 100 16 256

Example cache_dir ufs /cache0 3072 16 128

Related cache_replacement_policy, cache_mem

 < Day Day Up >

 < Day Day Up >

cache_mem

Squid uses memory to store recently received objects and to buffer active responses. This
directive specifies the amount of memory to use for storing these objects.

This directive doesn't entirely control the size of the Squid process.
See Appendix B for additional information.

Syntax cache_mem bytes-specification

Default cache_mem 8 MB

Example cache_mem 16 MB

Related cache_dir, maximum_object_size_in_memory, memory_replacement_policy

 < Day Day Up >

 < Day Day Up >

cache_swap_low

This directive, along with cache_swap_high controls the replacement of objects stored on disk.
It is a percentage of the maximum cache size, which comes from the sum of all cache_dir sizes.
See Section 7.2 for additional information.

Syntax cache_swap_low percent

Default cache_swap_low 90

Example cache_swap_low 85

Related cache_swap_high, cache_dir

 < Day Day Up >

 < Day Day Up >

cache_swap_high

See the description for cache_swap_low. Note that changing cache_swap_high probably won't
have a big impact on Squid's disk usage. See Section 7.2 for additional information.

Syntax cache_swap_high percent

Default cache_swap_high 95

Example cache_swap_high 99

Related cache_swap_low, cache_dir

 < Day Day Up >

 < Day Day Up >

maximum_object_size

This directive places a limit on the largest object that Squid can store on disk. Responses larger
than this size aren't cached. See Section 7.3 for additional information.

Syntax maximum_object_size bytes-specification

Default maximum_object_size 4096 MB

Example maximum_object_size 250 MB

Related minimum_object_size, maximum_object_size_in_memory, reply_body_max_size

 < Day Day Up >

 < Day Day Up >

minimum_object_size

With this directive, you can also place lower limits on the size of cached objects. Responses
smaller than this size aren't stored on disk or in memory. See Section 7.3 for additional
information.

Syntax minimum_object_size bytes-specification

Default minimum_object_size 0 bytes

Example minimum_object_size 300 bytes

Related maximum_object_size

 < Day Day Up >

 < Day Day Up >

maximum_object_size_in_memory

This directive allows you to control the size of objects stored in memory. Objects that are larger
than this value aren't kept in memory. See Section 7.3 for additional information.

Syntax maximum_object_size_in_memory bytes-specification

Default maximum_object_size_in_memory 8 KB

Example maximum_object_size_in_memory 12 KB

Related cache_mem, maximum_object_size

 < Day Day Up >

 < Day Day Up >

cache_replacement_policy

This directive controls the replacement policy for Squid's disk cache. Version 2.5 offers three
different replacement policies: least recently used (LRU), greedy dual-size frequency (GDSF),
and least frequently used with dynamic aging (LFUDA). Note that the keywords (lru, GDSF,
etc.) are case-sensitive! See Section 7.5 for additional information.

Syntax
cache_replacement_policy lru

cache_replacement_policy heap GDSF|LFUDA|LRU

Default cache_replacement_policy lru

Example cache_replacement_policy heap GDSF

Related memory_replacement_policy, cache_dir

 < Day Day Up >

 < Day Day Up >

memory_replacement_policy

This directive controls the replacement policy for objects cached in memory. See Section 7.5 for
additional information.

Syntax
memory_replacement_policy lru

memory_replacement_policy heap GDSF|LFUDA|LRU

Default memory_replacement_policy lru

Example memory_replacement_policy heap LFUDA

Related cache_replacement_policy, cache_mem

 < Day Day Up >

 < Day Day Up >

store_dir_select_algorithm

This directive controls the algorithm Squid uses when selecting a cache_dir for a new cache file.
The possible choices are: least-load and round-robin. See Section 7.4 for additional
information.

Syntax store_dir_select_algorithm round-robin|least-load

Default store_dir_select_algorithm least-load

Example store_dir_select_algorithm round-robin

Related cache_dir

 < Day Day Up >

 < Day Day Up >

mime_table

Squid uses the information in this file for FTP and Gopher requests. Unlike HTTP, these
protocols don't inform clients about the type of data they transfer. When Squid gateways the
response from an FTP server to an HTTP client, it must insert Content-Type and other headers.
Squid uses the MIME table file to convert filename extensions into:

● Values for the Content-Type header
● Icons that are displayed for directory listings
● Content-Encoding header values for compressed data
● Transfer type options for FTP servers, either image or ascii; this corresponds to the TYPE

command in the FTP protocol

Please refer to the sample mime.conf for an explanation of the format of this file.

Syntax mime_table pathname

Default mime_table $prefix/etc/mime.conf

Example mime_table /usr/local/squid/etc/my-mime-types.txt

 < Day Day Up >

 < Day Day Up >

ipcache_size

Squid's IP cache holds recent DNS name-to-address lookups. This directive limits the number of
names in the cache. Each IP cache entry uses a relatively small amount of memory, so you can
safely increase this limit to 10,000 or more.

Syntax ipcache_size count

Default ipcache_size 1024

Example ipcache_size 5000

Related ipcache_low, ipcache_high, fqdncache_size

 < Day Day Up >

 < Day Day Up >

ipcache_low

This directive controls the IP cache LRU replacement algorithm. The replacement function runs
periodically and removes the least recently used IP cache entries until reaching this low
watermark. You should have almost no reason to change this value. You'd be better off
changing ipcache_size instead.

Syntax ipcache_low percent

Default ipcache_low 90

Example ipcache_low 95

Related ipcache_size, ipcache_high

 < Day Day Up >

 < Day Day Up >

ipcache_high

This directive is essentially unused in current versions of Squid. The LRU replacement routine
uses only ipcache_low. The only time that Squid uses ipcache_high is when calculating the hash
table size for the IP cache at startup.

Syntax ipcache_high percent

Default ipcache_high 95

Example ipcache_high 99

Related ipcache_size, ipcache_low

 < Day Day Up >

 < Day Day Up >

fqdncache_size

Squid's FQDN cache holds recent DNS address-to-name lookups. However, Squid makes these
reverse DNS lookups only when you enable the log_fqdn directive or use a dstdomain ACL. This
directive limits the number of names in the cache. Each FQDN cache entry uses a relatively
small amount of memory, so you can safely increase this limit to 10,000 or more.

Syntax fqdncache_size count

Default fqdncache_size 1024

Example fqdncache_size 6000

Related ipcache_size, log_fqdn

 < Day Day Up >

 < Day Day Up >

log_mime_hdrs

When you enable this directive, Squid writes the HTTP request and response headers to the
access.log file. The headers appear as two additional fields on each line. All whitespace and
other special characters are encoded with URL-style escape codes. Enabling this option may
assist in tracking down certain problems. Note that HTTP headers are relatively large (a few
hundred bytes each). Logging them dramatically increases the size of your access.log file.

Syntax log_mime_hdrs on|off

Default log_mime_hdrs off

Example log_mime_hdrs on

Related cache_access_log

 < Day Day Up >

 < Day Day Up >

useragent_log

This directive causes Squid to create a log file of User-Agent strings. The file contains three
fields: client identifier, timestamp, and user-agent string. The client identifier is an IP address,
unless you enable the log_fqdn directive, in which case it is a hostname if one is available.
Squid writes an entry for every HTTP request that has a User-Agent header. Unlike access.log,
entries are written to this file when the request is received.

Syntax useragent_log pathname

Default No default

Example useragent_log /usr/local/squid/var/logs/useragent.log

Related log_fqdn, cache_access_log, referer_log

 < Day Day Up >

 < Day Day Up >

referer_log

This directive causes Squid to create a log file of Referer values from client requests. The file
contains four fields: time, client identifier, Referer value, and the URI request. For example,
when a client requests the image foo.png embedded in an index.html, the referer log contains:

1068047502.377 192.168.1.2 /index.html /foo.png

Squid writes an entry for every HTTP request that has a Referer header. Unlike access.log,
entries are written to this file when the request is received.

Syntax referer_log pathname

Default No default

Example referer_log /usr/local/squid/var/logs/referer.log

Related log_fqdn, cache_access_log, useragent_log

 < Day Day Up >

 < Day Day Up >

pid_filename

This is the file in which Squid writes its process ID (PID) number. Squid uses the PID file in a
couple of ways. First, it looks for and reads this file when starting. If the file exists and contains
a valid PID, Squid reports it is already running under that PID so that you don't accidentally
start Squid twice. The PID file is also read when you use one of the -k commands such as squid
-k rotate.

You probably don't need to worry about this directive unless you actually do want to run two
(or more) Squid processes on the same machine. Each instance of Squid requires a unique PID
filename.

Syntax pid_filename pathname

Default pid_filename $prefix/var/logs/squid.pid

Example pid_filename /var/run/squid.pid

 < Day Day Up >

 < Day Day Up >

debug_options

This directive controls the amount of debugging information written to cache.log. Each source
code module has a section number. Individual debugging statements in the code have a level.
Higher debugging levels correspond to more verbose debugging. For a list of section numbers,
refer to Table 16-1 or the doc/debug-sections.txt file in the source distribution.

Syntax debug_options section,level ...

Default debug_options ALL,1

Example debug_options ALL,1 42,5

Related cache_log

 < Day Day Up >

 < Day Day Up >

log_fqdn

This directive controls whether or not Squid places client IP addresses or hostnames in the log
files. By default Squid writes the IP address. If you enable this feature, Squid queries the DNS
for client hostnames or fully qualified domain names (FQDN). These address-to-name lookups
sometimes take a long time. Squid never postpones logging to wait for an answer. If the FQDN
isn't available when Squid is ready to write the log entry, it uses the IP address.

Syntax log_fqdn on|off

Default log_fqdn off

Example log_fqdn on

Related cache_access_log, useragent_log, referer_log, fqdncache_size, client_netmask

 < Day Day Up >

 < Day Day Up >

client_netmask

This directive is available to provide privacy for users. When Squid writes access.log and other
log files, it applies this mask to the client's IP address. For example, if you set the netmask to
255.255.255.0, Squid logs a request from 1.2.3.0 instead of 1.2.3.4. Thus, if someone
manages to read the log file, they know only approximately, not exactly, which host (or user)
made each request.

If you use log_fqdn, Squid applies the client_netmask before issuing the DNS lookup. For
example, Squid will try to find a hostname record for 1.2.3.0 instead of 1.2.3.4.

Syntax client_netmask IPv4-netmask

Default client_netmask 255.255.255.255

Example client_netmask 255.255.255.0

Related cache_access_log, useragent_log, referer_log, log_fqdn

 < Day Day Up >

 < Day Day Up >

ftp_user

This directive contains the password Squid sends when logging in to anonymous FTP servers.
Convention dictates that anonymous FTP clients send the user's email address as the login
password. Most anonymous FTP servers accept an abbreviated form with only a username
followed by @ (e.g., joe_blow@). You probably won't need to change this directive unless you
encounter a very picky FTP server.

Syntax ftp_user email-address

Default ftp_user Squid@

Example ftp_user joe_blow@company.com

Related ftp_list_width, ftp_passive

 < Day Day Up >

 < Day Day Up >

ftp_list_width

This directive controls the width of the filename column in FTP directory listings that Squid
generates. The default value is chosen so that the listings fit inside a typical browser window.
This also means that long filenames may be truncated. If you'd like to see more characters in
long filenames, increase this value.

Syntax ftp_list_width character-count

Default ftp_list_width 32

Example ftp_list_width 64

Related ftp_user

 < Day Day Up >

 < Day Day Up >

ftp_passive

Squid normally uses FTP's so-called passive mode for file transfers. This means that the FTP
server creates a TCP socket for data transfer and waits for the client to connect. Passive mode
works much better through most Internet firewalls. The alternative is to have the FTP client
(Squid in this case) create a TCP socket and wait for a connection from the server. Most likely,
you'll never have problems with FTP passive mode. However, you can force nonpassive
operation by turning off this directive.

Syntax ftp_passive on|off

Default ftp_passive on

Example ftp_passive off

Related ftp_user, ftp_list_width, ftp_sanitycheck

 < Day Day Up >

 < Day Day Up >

ftp_sanitycheck

When using FTP passive mode (the default), the FTP server tells Squid the IP address and port
number for each data connection. Squid normally checks the given values to make sure they
match the server's IP address. In other words, an FTP server should always use its own IP
address in the PASV reply message. If it doesn't, Squid complains to cache.log and attempts a
data connection with the PORT command. Disable the ftp_sanitycheck directive if you want
Squid to skip the IP address sanity check.

Syntax ftp_sanitycheck on|off

Default ftp_sanitycheck on

Example ftp_sanitycheck off

Related ftp_passive

 < Day Day Up >

 < Day Day Up >

cache_dns_program

Recall that, by default, Squid uses an internal DNS client implementation. However, you also
have the choice of using an external helper program to perform DNS lookups. This choice must
be made when you run ./configure, with the --disable-internal-dns option.

If you elect to use the external DNS, this directive specifies the pathname to the dnsserver
program. This is a misleading name in that the program isn't really a DNS server. It is more like
a DNS proxy. The program reads hostnames (or IP addresses) from Squid, executes the
necessary lookup, and writes IP addresses (or hostnames) back.

You probably won't need to use this directive, unless you move the Squid binaries after running
make install or you're inclined to experiment with the external DNS program.

Syntax cache_dns_program pathname

Default cache_dns_program $prefix/libexec/dnsserver

Example cache_dns_program /usr/local/squid/libexec/better_dnsserver

Related dns_children

 < Day Day Up >

 < Day Day Up >

dns_children

This directive is meaningful only with the —disable-internal-dns option.

The interface between Squid and the external DNS program is built around the gethostbyname
() function. Squid writes a request to a dnsserver process, which performs the query. The
gethostbyname() call blocks the process until the reply arrives. This is why Squid can't use
the function internally.

Each dnsserver handles only one request at a time, so you need enough of them to handle the
load from your cache. Unfortunately, you may need to experiment with different values to
discover the appropriate setting for your particular situation. In theory, you can calculate the
number of child processes if you know the rate of DNS lookups and how long lookups take on
average. Unfortunately, both values can vary significantly over time.

Squid writes a warning into cache.log if you have too few dnsserver child processes. If all
helper processes are busy, Squid queues up new lookups. If the queue grows too large, Squid
emits an error message and exits. Thus, too many child processes are better than too few.

You can use the dns entry in the cache manager menu to see dnsserver utilization information.
Requests are always sent to the first idle process, so you can see if some processes never
receive any DNS lookup requests. In that case you may want to lower the dns_children value.

Why doesn't Squid just create and destroy child processes as necessary? The primary reason is
that the creation of a child process, via fork(), is a relatively "heavy" operation. It may
introduce significant delays for active HTTP requests. A Squid process typically consumes a lot
of memory. In some cases, fork() may fail due to lack of available memory or swap space.
Rather than try to fix all these issues with the external DNS implementation, Squid can read
and write DNS messages internally.

Syntax dns_children number

Default dns_children 5

Example dns_children 16

Related cache_dns_program

 < Day Day Up >

 < Day Day Up >

dns_retransmit_interval

This directive is meaningful only when you use the internal DNS implementation (the default).

This directive is the initial retransmission interval for unacknowledged DNS queries. Each time
Squid retransmits a DNS query, it's sent to the next DNS server in the list. If none of the
servers answer, Squid starts at the top of the list again and doubles the retransmit interval.

Syntax dns_retransmit_interval time-specification

Default dns_retransmit_interval 5 seconds

Example dns_retransmit_interval 10 seconds

Related dns_timeout

 < Day Day Up >

 < Day Day Up >

dns_timeout

This directive is meaningful only when you use the internal DNS implementation (the default).

This directive is the total amount of time that Squid waits for a DNS answer. If the timeout
occurs, Squid returns an error message to the user.

Syntax dns_timeout time-specification

Default dns_timeout 5 minutes

Example dns_timeout 2 minutes

Related dns_retransmit_interval

 < Day Day Up >

 < Day Day Up >

dns_defnames

This directive is meaningful only with the —disable-internal-dns option.

By default, Squid's dnsserver program doesn't attempt to expand single-word hostnames (such
as www) into fully qualified domain names. If your users are accustomed to using single-word
hostnames, you may want to enable this directive.

Syntax dns_defnames on|off

Default dns_defnames off

Example dns_defnames on

Related append_domain

 < Day Day Up >

 < Day Day Up >

dns_nameservers

By default, Squid sends DNS queries to the name servers listed in the /etc/resolv.conf file. If
you want Squid to use a different set of name servers, you can specify them with this directive.
Of course, you can also just change your resolv.conf file.

Syntax dns_nameservers ip-address ...

Default No default

Example dns_nameservers 127.0.0.1 192.168.0.1

 < Day Day Up >

 < Day Day Up >

hosts_file

When you use the internal DNS implementation (the default), Squid always uses the DNS name
servers to resolve names and addresses. The external dnsserver program, on the other hand,
may check a local database—the hosts file—before querying the DNS. With this directive, you
can make Squid preload the contents of a hosts file into its IP and FQDN caches.

Squid rereads the hosts file when you send it the reconfigure signal (squid -k reconfigure).

If you configure the append_domain directive, it's appended to any single-component names in
the hosts file.

Syntax hosts_file pathname

Default No default

Example hosts_file /usr/local/squid/etc/hosts

Related dns_defnames, append_domain

 < Day Day Up >

 < Day Day Up >

diskd_program

This is the pathname to the diskd helper program. It gets executed for each cache_dir of type
diskd.

Syntax diskd_program pathname

Default diskd_program $prefix/libexec/diskd

Example diskd_program /usr/local/squid-2.4/libexec/squid/diskd

Related cache_dir

 < Day Day Up >

 < Day Day Up >

unlinkd_program

This is the pathname to the unlinkd program. By executing the unlink operations in this
external process, Squid's performance improves significantly. You can disable the external
unlinker with the —disable-unlinkd option to ./configure.

Syntax unlinkd_program pathname

Default unlinkd_program $prefix/libexec/unlinkd

Example unlinkd_program /usr/local/squid-2.4/libexec/unlinkd

 < Day Day Up >

 < Day Day Up >

pinger_program

Squid uses the pinger program to send ICMP pings to origin server sites. Squid uses these ICMP
measurements to estimate network proximity. Note that the pinger program must be installed
as setuid root because it opens a raw ICMP socket. To enable the ICMP measurement
features, use the ./configure —enable-icmp option.

Syntax pinger_program pathname

Default pinger_program $prefix/libexec/pinger

Example pinger_program /usr/local/squid-2.4/libexec/pinger

Related netdb_low, netdb_high, netdb_ping_period

 < Day Day Up >

 < Day Day Up >

redirect_program

This directive specifies the pathname of a redirector program. It must be executable by the
Squid user ID. See Chapter 11.

Syntax redirect_program pathname

Default No default

Example redirect_program /usr/local/squid/libexec/my_redirector

Related redirect_children, redirect_rewrites_host_header, redirector_access,
redirector_bypass

 < Day Day Up >

 < Day Day Up >

redirect_children

This directive specifies how many redirector processes Squid should start. Client requests are
written to the first idle redirector process. Squid warns you (via cache.log) when all processes
are simultaneously busy. If you see this warning, you should increase the number of child
processes and restart Squid.

Syntax redirect_children number

Default redirect_children 5

Example redirect_children 20

Related redirect_program, sleep_after_fork, redirector_bypass

 < Day Day Up >

 < Day Day Up >

redirect_rewrites_host_header

Squid normally updates a request's Host header when using a redirector. If you use Squid as a
surrogate (HTTP accelerator), you might want to disable this behavior by setting this directive
to off.

Syntax redirect_rewrites_host_header on|off

Default redirect_rewrites_host_header on

Example redirect_rewrites_host_header off

Related httpd_accel_single_host

 < Day Day Up >

 < Day Day Up >

redirector_access

If you use this directive, only the requests that match the access list rules are sent to the
redirector processes. Without any redirector_access rules, all requests are sent to the redirector
processes.

Syntax redirector_access allow|deny [!]ACLname ...

Default No default

Example

acl Foo src 192.168.1.0/24

acl All src 0/0

redirector_access deny Foo

redirector_access allow All

Related acl, http_access

 < Day Day Up >

 < Day Day Up >

redirector_bypass

Squid uses a pool of redirectors to service client requests. This directive determines Squid's
behavior when all redirectors in the pool are busy. Normally, Squid queues subsequent
requests, waiting for one of the redirectors to become free. If the queue becomes too large,
Squid exits with a fatal message. If you enable this directive, however, Squid simply skips the
redirection step if all redirectors are busy.

Syntax redirector_bypass on|off

Default redirector_bypass off

Example redirector_bypass on

Related redirect_program, redirector_access

 < Day Day Up >

 < Day Day Up >

auth_param

The auth_param directive controls almost every aspect of Squid's external user authentication interface. Squid
currently supports three authentication schemes: Basic, Digest, and NTLM. Basic authentication support is
compiled by default. For the others, you must use the —enable-auth option with ./configure.

Since the auth_param directive is very complex, I'm presenting it here as a separate directive for each
combination of parameters.

Syntax See the following subsections

Default See the following subsections

Example See the following subsections

Related authenticate_cache_garbage_interval, authenticate_ttl, authenticate_ip_ttl

auth_param basic program

The command for the HTTP Basic authentication helper. You need to specify the full pathname to the program,
plus any command-line options.

Syntax auth_param basic program command ...

Default No default

Example
auth_param basic program /usr/local/squid/libexec/ncsa_auth /usr/local/squid/etc/

ncsa_passwd

Related auth_param basic children, auth_param basic realm, auth_param basic credentialsttl

auth_param basic children

This is the number of Basic authentication helper processes Squid uses.

Syntax auth_param basic children count

Default auth_param basic children 5

Example auth_param basic children 10

Related auth_param basic program, auth_param basic realm, auth_param basic credentialsttl

auth_param basic realm

This is the Basic authentication realm Squid sends in 407 (Proxy Authentication Required) responses. User
agents typically display the realm string to the user when requesting a username and password. Refer to RFC
2617, Section 2.

Syntax auth_param basic realm string

Default No default

Example auth_param basic realm Squid proxy-caching web server

Related auth_param basic program, auth_param basic children, auth_param basic credentialsttl

auth_param basic credentialsttl

To reduce load on the external authentication processes, Squid caches successful answers for this amount of
time. In other words, once a user is authenticated, Squid doesn't query the helper program again until this TTL
expires. If you change the external database (e.g., password file), Squid may not notice the change until the
cached credentials time out.

Syntax auth_param basic credentialsttl time-specification

Default auth_param basic credentialsttl 5 minutes

Example auth_param basic credentialsttl 15 minutes

Related auth_param basic program, auth_param basic children, auth_param basic realm

auth_param digest program

As with Basic authentication, this specifies the command to execute for the external Digest authentication
program.

Syntax auth_param digest program command ...

Default No default

Example
auth_param digest program /usr/local/squid/libexec/digest_auth /usr/local/squid/etc/

digest_passwd

Related
auth_param digest children, auth_param digest realm, auth_param digest
nonce_garbage_interval, auth_param digest nonce_max_duration, auth_param digest
nonce_max_count

auth_param digest children

This is the number of Digest authentication helper processes that Squid uses.

Syntax auth_param digest children count

Default auth_param digest children 5

Example auth_param digest children 11

Related
auth_param digest program, auth_param digest realm, auth_param digest
nonce_garbage_interval, auth_param digest nonce_max_duration, auth_param digest
nonce_max_count

auth_param digest realm

This is the Digest authentication realm that Squid sends in 407 (Proxy Authentication Required) responses.
User agents typically display the realm string to the user when requesting a username and password. Refer to
RFC 2617, Section 3.2.1.

Syntax auth_param digest realm string

Default No default

Example auth_param digest realm Squid proxy-caching web server

Related
auth_param digest program, auth_param digest children, auth_param digest
nonce_garbage_interval, auth_param digest nonce_max_duration, auth_param digest
nonce_max_count

auth_param digest nonce_garbage_interval

As I explained in Section 12.3, a nonce is a special string of data that changes from time to time. Its purpose

is to prevent replay attacks with captured digest authentication data.

Squid maintains a cache of nonce values it has sent to clients requiring authentication. This cache must be
pruned occasionally because nonce strings expire. This directive specifies how often Squid executes the
garbage collection procedure for the nonce cache.

If Squid is very busy, you may want to clean the nonce cache more frequently to reduce the amount of time
spent in the garbage collection function each time it runs.

Syntax auth_param digest nonce_garbage_interval time-specification

Default auth_param digest nonce_garbage_interval 5 minutes

Example auth_param digest nonce_garbage_interval 5 minutes

Related auth_param digest program, auth_param digest children, auth_param digest realm, auth_param
digest nonce_max_duration, auth_param digest nonce_max_count

auth_param digest nonce_max_duration

This directive specifies how long a Digest nonce value remains valid. It is similar to the credentialsttl directive
for Basic authentication.

If an attacker captures the client's digest authentication headers from an HTTP request, a simple replay attack
provides authenticated access to Squid until the nonce value times out or until the maximum usage count is
reached. Decrease this value to reduce that risk.

Syntax auth_param digest nonce_max_duration time-specification

Default auth_param digest nonce_max_duration 5 minutes

Example auth_param digest nonce_max_duration 30 minutes

Related
auth_param digest program, auth_param digest children, auth_param digest realm, auth_param
digest nonce_garbage_interval, auth_param digest nonce_max_count, auth_param basic
credentialsttl

auth_param digest nonce_max_count

This directive specifies a limit on the number of requests for a Digest nonce value. If a client issues this many
requests with the same nonce value, Squid invalidates it and causes a new one to be generated. See Section
4.3 of RFC 2617.

Syntax auth_param digest nonce_max_count count

Default auth_param digest nonce_max_count 50

Example auth_param digest nonce_max_count 50

Related auth_param digest program, auth_param digest children, auth_param digest realm, auth_param
digest nonce_garbage_interval, auth_param digest nonce_max_duration

auth_param ntlm program

This directive specifies the command, including options, to execute for the external NTLM authentication
program.

Syntax auth_param ntlm program command

Default No default

Example
auth_param ntlm program /usr/local/squid/libexec/ntlm_auth /usr/local/

squid/etc/ntlm_db

Related auth_param ntlm children, auth_param ntlm max_challenge_reuses, auth_param ntlm
max_challenge_lifetime

auth_param ntlm children

Specifies the number of NTLM authentication helper process that Squid uses.

Syntax auth_param ntlm children count

Default auth_param ntlm children 5

Example auth_param ntlm children 14

Related auth_param ntlm program, auth_param ntlm max_challenge_reuses, auth_param ntlm
max_challenge_lifetime

auth_param ntlm max_challenge_reuses

In Squid's NTLM implementation, the NTLM challenge token comes from the external helper process, rather
than Squid itself. Each helper process generates its own challenge token. This directive specifies how many
times each token may be reused. By default, the tokens are never reused. Challenge reuse is also subject to
the max_challenge_lifetime restriction.

Syntax auth_param ntlm max_challenge_reuses count

Default auth_param ntlm max_challenge_reuses 0

Example auth_param ntlm max_challenge_reuses 5

Related auth_param ntlm program, auth_param ntlm children, auth_param ntlm max_challenge_lifetime

auth_param ntlm max_challenge_lifetime

This directive also controls whether the external NTML helper processes can reuse their challenge tokens. It
specifies the maximum amount of time a single challenge can be used.

Syntax auth_param ntlm max_challenge_lifetime time-specification

Default auth_param ntlm max_challenge_lifetime 1 minute

Example auth_param ntlm max_challenge_lifetime 2 minutes

Related auth_param ntlm program, auth_param ntlm children, auth_param ntlm max_challenge_reuses

 < Day Day Up >

 < Day Day Up >

authenticate_ttl

Squid maintains a cache of proxy authentication usernames and credentials. Squid periodically
removes unused entries to keep memory usage down. This directive specifies how long Squid
keeps entries in the proxy authentication username cache. A user's TTL is extended each time
Squid receives a request from that user.

This directive doesn't determine how long credentials remain valid. It
only affects whether or not an entry is removed from the username
cache. Squid may decide to revalidate the credentials of a user that is
in the cache. Each authentication scheme has its own way of
determining when to revalidate credentials with the external helper.

Syntax authenticate_ttl time-specification

Default authenticate_ttl 1 hour

Example authenticate_ttl 30 minutes

Related authenticate_cache_garbage_interval, auth_param

 < Day Day Up >

 < Day Day Up >

authenticate_cache_garbage_interval

This directive specifies how often Squid executes the function to clean up the proxy
authentication username cache. During this process, usernames that have been inactive for
some amount of time (defined by authenticate_ttl) are purged.

Syntax authenticate_cache_garbage_interval time-specification

Default authenticate_cache_garbage_interval 1 hour

Example authenticate_cache_garbage_interval 8 hours

Related authenticate_ttl, auth_param

 < Day Day Up >

 < Day Day Up >

authenticate_ip_ttl

This directive causes Squid to deny requests if the same proxy authentication username comes
from more than one IP address within a given amount of time. It's designed to discourage
users from sharing their username and password with others. When Squid detects the same
username from multiple IP addresses, it forces the user to reauthenticate by denying the
request.

This feature is disabled by default (0 seconds). If your users normally have the same IP
address (e.g., static addressing or DHCP with long leases), you can set authenticate_ip_ttl to a
large value such as 1 hour. However, if your users are on dial-up connections, they may be
more likely to change IP addresses within a short period of time. To make their lives easier, use
a small authenticate_ip_ttl value, such as 1 minute.

Syntax authenticate_ip_ttl time-specification

Default authenticate_ip_ttl 0 seconds

Example authenticate_ip_ttl 1 minute

Related auth_param

 < Day Day Up >

 < Day Day Up >

external_acl_type

This directive defines new ACL types implemented as external programs. See Section 6.1.3.

Syntax external_acl_type type-name [options] format helper-command

Default No default

Example external_acl_type MyAcltype %LOGIN /usr/local/squid/libexec/my-acl-prog.pl

Related acl, http_access

 < Day Day Up >

 < Day Day Up >

wais_relay_host

The Wide Area Information Service (WAIS) is an obsolete protocol that predates the Web. This
directive is largely historical. Its purpose is to make Squid forward all WAIS requests to another
proxy, perhaps a dedicated WAIS gateway. You can accomplish the same effect with ACLs and
cache_peer_access.

Syntax wais_relay_host hostname

Default No default

Example wais_relay_host some.host.name

Related wais_relay_port

 < Day Day Up >

 < Day Day Up >

wais_relay_port

If, for some reason, you use wais_relay_host, you must set the WAIS relay port number with
this directive. Arguably you should be able to specify both with a single directive. However,
they were split some time ago to simplify Squid's parsing code.

Syntax wais_relay_port port-number

Default No default

Example wais_relay_port 8001

Related wais_relay_host

 < Day Day Up >

 < Day Day Up >

request_header_max_size

This directive places an upper limit on the size of headers in an HTTP request. When Squid
receives an HTTP request with headers that exceed this value, it returns a 413 (Request Entity
Too Large) error response. In most cases, request headers are smaller than 512 bytes. This
directive exists to catch certain abnormal conditions, such as persistent connection bugs, buffer
overflow attempts, and denial-of-service attacks.

Syntax request_header_max_size size-specification

Default request_header_max_size 10 KB

Example request_header_max_size 35 KB

Related request_body_max_size, reply_body_max_size

 < Day Day Up >

 < Day Day Up >

request_body_max_size

This directive, if nonzero, places an upper limit on the size of a client's HTTP request body. Most
requests (i.e., GET requests) don't have request bodies. This directive applies to PUT and POST
requests. A request that exceeds this limit generates a 413 (Request Entity Too Large) error
response.

Syntax request_body_max_size size-specification

Default No limit

Example request_body_max_size 100 KB

Related request_header_max_size, reply_body_max_size

 < Day Day Up >

 < Day Day Up >

refresh_pattern

This directive provides a way to customize Squid's algorithm for validating cached responses.
HTTP has a relatively complex procedure for determining whether or not a cached response is
fresh or stale. In some cases, origin servers provide an explicit expiration time. However, the
majority of responses don't have this information. For these, Squid applies some heuristics to
the response. See Section 7.7 for more information.

Syntax refresh_pattern regex mintime percent maxtime [options]

Default refresh_pattern . 0 20% 4320

Example refresh_pattern \.jpg$ 0 75 7200

 < Day Day Up >

 < Day Day Up >

quick_abort_min

This directive controls Squid's behavior for requests aborted by the user. In some cases, Squid
continues reading data from the origin server so that future requests may be satisfied as cache
hits. If Squid knows that the transfer (between itself and the origin server) has no more than
this many bytes remaining, it continues receiving the object. Otherwise, Squid checks the
quick_abort_max setting next.

Syntax quick_abort_min size-specification

Default quick_abort_min 16 KB

Example quick_abort_min 50 KB

Related quick_abort_max, quick_abort_pct

 < Day Day Up >

 < Day Day Up >

quick_abort_max

After checking quick_abort_min, Squid checks the value of this directive. If an aborted request
has more than this many bytes remaining in the transfer, Squid terminates the connection to
the origin server. Otherwise, it checks the quick_abort_pct setting.

Syntax quick_abort_max size-specification

Default quick_abort_max 16 KB

Example quick_abort_max 1 MB

Related quick_abort_min, quick_abort_pct

 < Day Day Up >

 < Day Day Up >

quick_abort_pct

Squid checks this value last, after checking quick_abort_max, for a transfer aborted by the
user. If Squid has already received at least this percentage of the response, it continues
reading the data from the origin server so the entire response is cached.

Syntax quick_abort_pct percentage

Default quick_abort_pct 95%

Example quick_abort_pct 75%

Related quick_abort_min, quick_abort_max

 < Day Day Up >

 < Day Day Up >

negative_ttl

Squid takes the liberty of caching certain error responses, such as "connection refused" and
404 (Not Found) messages. In most cases, repeating the request again immediately is likely to
result in the same error. This directive specifies how long Squid caches these errors. Cache hits
for negatively cached responses are logged with TCP_NEGATIVE_HIT in access.log.

Syntax negative_ttl time-specification

Default negative_ttl 5 min

Example negative_ttl_1 minute

Related refresh_pattern

 < Day Day Up >

 < Day Day Up >

positive_dns_ttl

Each and every DNS resource record carries an explicit TTL that specifies how long the
information may be cached. In most situations, Squid has access to the TTL values and doesn't
store DNS answers longer than allowed. This is certainly true when you use Squid's internal
DNS implementation, which is enabled by default.

However, if you elect to use the (external) dnsserver processes, Squid may not receive TTL
values for DNS answers. In this case, successful DNS answers are cached for the amount of
time specified by this directive.

Syntax positive_dns_ttl time-specification

Default positive_dns_ttl 6 hours

Example positive_dns_ttl 1 hour

Related negative_dns_ttl

 < Day Day Up >

 < Day Day Up >

negative_dns_ttl

This is similar to positive_dns_ttl, except that it applies only to failed DNS queries. That is,
when Squid receives an error for a DNS lookup, it negatively caches the error for this amount of
time. It doesn't retry the query until the negative TTL expires. This applies to both internal and
external DNS implementation choices.

Syntax negative_dns_ttl time-specification

Default negative_dns_ttl 5 minutes

Example negative_dns_ttl 1 minute

Related positive_dns_ttl

 < Day Day Up >

 < Day Day Up >

range_offset_limit

A range request comes from a client that wants only some subset of an HTTP response. They
are sometimes used to resume a failed transfer of a large file. Squid isn't yet able to cache
partial responses and thus must make a decision when forwarding a range request: either
remove the Range header or leave it in.

If Squid leaves the Range header in, the origin server sends only the subset that the client
wants, and the client receives the response immediately. However, this partial response isn't
cached.

On the other hand, if Squid removes the header before forwarding, it receives the entire
response, which may be cached. Squid is then responsible for ensuring that the client receives
only the subset it needs. The origin server may send a lot of data the client doesn't want.
Depending on the speed of your connection, the client may be forced to wait a long time until
its range is available.

If the beginning of the requested range is larger than the range_offset_limit value, Squid
forwards the Range header and doesn't cache the response. Setting range_offset_limit to 0
causes Squid to always forward the Range header (the default). Setting it to -1 causes Squid to
never forward the header.

Syntax range_offset_limit size-specification

Default range_offset_limit 0 KB

Example range_offset_limit 100 KB

 < Day Day Up >

 < Day Day Up >

connect_timeout

This directive tells Squid how long to wait when trying to connect to an origin server. After this
amount of time, Squid gives up and tries another location or returns an error to the user. Your
operating system's TCP implementation has its own connection timeout. If the TCP timeout
occurs before connect_timeout, Squid creates a new TCP connection and tries again.

Syntax connect_timeout time-specification

Default connect_timeout 2 minutes

Example connect_timeout 30 seconds

Related peer_connect_timeout, read_timeout, write_timeout, request_timeout,
pconn_timeout, minimum_retry_timeout

 < Day Day Up >

 < Day Day Up >

peer_connect_timeout

This is similar to connect_timeout, except that it applies to connections to your neighbors. Most
likely, you'll want a smaller timeout for neighbor connections because they should be closer to
you than most origin servers. If a neighbor is down, you want the connection to time out
quickly so that you can try another source. Note that you can also specify individual neighbor
timeouts with the connect-timeout option of the cache_peer directive.

Syntax peer_connect_timeout time-specification

Default peer_connect_timeout 30 seconds

Example peer_connect_timeout 15 seconds

Related connect_timeout

 < Day Day Up >

 < Day Day Up >

read_timeout

This timeout applies to server connections (between Squid and origin servers or neighbor
caches). If Squid doesn't receive any data for this amount of time, it closes the connection. If
the user hasn't yet received any part of the response, Squid generates a "read timeout" error
message.

Syntax read_timeout time-specification

Default read_timeout 15 minutes

Example read_timeout 1 hour

Related connect_timeout, write_timeout, request_timeout, client_lifetime

 < Day Day Up >

 < Day Day Up >

request_timeout

This timeout applies to client connections. Once a client establishes a connection, Squid waits
this long to receive the client's HTTP request. If the client fails to send a complete request,
Squid simply closes the connection without sending any error message.

Syntax request_timeout time-specification

Default request_timeout 5 minutes

Example request_timeout 30 seconds

Related read_timeout, connect_timeout

 < Day Day Up >

 < Day Day Up >

persistent_request_timeout

This timeout is similar to request_timeout, except that it applies only to idle, persistent
connections.

Syntax persistent_request_timeout time-specification

Default persistent_request_timeout 1 minute

Example persistent_request_timeout 30 seconds

Related request_timeout

 < Day Day Up >

 < Day Day Up >

client_lifetime

This timeout specifies the maximum amount of time for a client connection. In most cases,
client connections should never last longer than a few hours. Long-lived client connections may
be the result of a network outage, user-agent bugs, or mischievous activity.

Syntax client_lifetime time-specification

Default client_lifetime 1 day

Example client_lifetime 3 hours

Related read_timeout

 < Day Day Up >

 < Day Day Up >

half_closed_clients

TCP allows applications to close connections in one direction. That is, a client may close its
connection for writing but keep it open for reading. These half-closed connections are confusing
because Squid can't easily tell the difference between a client that intentionally closed half the
connection and a client that simply aborted the entire connection. The only way Squid knows
for sure is when its attempt to write some data returns an error. Most user-agents don't use
the TCP half-close, but some may.

When the half_closed_clients directive is enabled (the default), Squid keeps these connections
open until a write error (or some other error) occurs. When disabled, Squid fully closes the
connection. Thus, if you disable this directive and have clients that use the TCP half-close, they
can't receive any data from Squid.

Syntax half_closed_clients on|off

Default half_closed_clients on

Example half_closed_clients off

Related client_lifetime, read_timeout

 < Day Day Up >

 < Day Day Up >

pconn_timeout

This timeout applies to idle server persistent connections (i.e., connections between Squid and
origin servers or neighbors). If the idle connection isn't reused within this amount of time,
Squid closes it to conserve resources.

Syntax pconn_timeout time-specification

Default pconn_timeout 2 minutes

Example pconn_timeout 45 seconds

Related persistent_request_timeout, connect_timeout, read_timeout

 < Day Day Up >

 < Day Day Up >

ident_timeout

This timeout applies to ident (RFC 1413) requests made to client hosts. Squid makes ident
lookups for one of two reasons: to satisfy an ACL check or for logging in access.log. In the ACL
case, Squid blocks the request until the ident lookup returns, or this timeout occurs. When only
logging, Squid doesn't block on the ident lookup.

Syntax ident_timeout time-specification

Default ident_timeout 10 seconds

Example ident_timeout 1 minute

Related ident_lookup_access, acl ident

 < Day Day Up >

 < Day Day Up >

shutdown_lifetime

When you shut down the Squid process, some user requests will still be active. This directive
specifies how long to wait until all client requests are complete. Squid finally exits when all
client connections have been closed or when this timeout occurs.

Syntax shutdown_lifetime time-specification

Default shutdown_lifetime 30 seconds

Example shutdown_lifetime 60 seconds

 < Day Day Up >

 < Day Day Up >

acl

The acl directive defines an access control element, such as a client IP address, origin server
hostname, or server port number. The syntax depends on the particular ACL type you wish to
define. See Section 6.1 for the full-blown explanation.

Syntax acl name type data...

Default No default

Example acl MyClients src 172.16.1.0/24

Related
http_access, icp_access, miss_access, no_cache, redirector_access,
http_reply_access, ident_lookup_access, always_direct, never_direct,
snmp_access, broken_posts

 < Day Day Up >

 < Day Day Up >

http_access

The http_access directive is one of the most important aspects of your configuration. It
determines whether or not Squid allows or denies a client's request. If you don't get your
access-control rules just right, savvy Internet users can abuse your resources (e.g., bandwidth,
disk storage, address space). Some people find the access control rule syntax confusing. Be
sure to read Section 6.2 closely.

Syntax http_access allow|deny [!]ACLname ...

Default http_access deny all

Example http_access allow MyClients

Related acl, http_reply_access, miss_access, icp_access

 < Day Day Up >

 < Day Day Up >

http_reply_access

The http_reply_access rules are similar to http_access, except that they are checked after
Squid receives the HTTP response headers for a cache miss. You might want to use this access
list to deny requests based on some characteristic of the response, such as the content type.

Syntax http_reply_access allow|deny [!]ACLname ...

Default http_reply_access allow all

Example http_reply_access deny MP3Files

Related acl, http_access

 < Day Day Up >

 < Day Day Up >

icp_access

This access list applies to ICP queries. If a particular ICP query is denied by the icp_access
rules, Squid returns an ICP_DENIED message to the neighbor.

Syntax icp_access allow|deny [!]ACLname ...

Default icp_access deny all

Example icp_access allow Neighbor1

Related acl, http_access

 < Day Day Up >

 < Day Day Up >

miss_access

The miss_access rules are similar to http_access. However, they are applied to cache misses
only. This allows you to enforce sibling relationships with your neighbor caches. See Section
6.3.7.

Syntax miss_access allow|deny [!]ACLname ...

Default miss_access allow all

Example miss_access deny MySiblings

Related acl, http_access

 < Day Day Up >

 < Day Day Up >

cache_peer_access

The cache_peer_access rules determine which requests Squid will forward to a particular
neighbor. If a particular request is denied by a cache_peer_access list, Squid doesn't forward
the request to that neighbor. See Section 10.4.1.

Syntax cache_peer_access peername allow|deny [!]ACLname ...

Default No default

Example cache_peer_access neighbor.host.name allow SomeOriginDomains

Related acl, cache_peer, cache_peer_domain, http_access

 < Day Day Up >

 < Day Day Up >

ident_lookup_access

The ident_lookup_access rules determine whether or not Squid performs an RFC 1413
username lookup for a client's TCP connection. These rules are checked before Squid reads any
part of the HTTP request. Thus, only TCP/IP-based ACL elements (e.g., client address, port
number) should be used in these rules.

Syntax ident_lookup_access allow|deny [!]ACLname ...

Default ident_lookup_access deny all

Example ident_lookup_access allow TheseClients

Related acl, ident_timeout

 < Day Day Up >

 < Day Day Up >

tcp_outgoing_tos

This directive allows you to set specific DSCP (differential services code point) values for
outgoing TCP connections—those made to origin servers and neighbors. The differential
services protocol is quite complex. Simply using the example in the following table will get you
nowhere. Make sure that you understand what you are doing before using this directive. See
RFCs 2474, 2475, and 3140 for additional information on differential services.

Syntax tcp_outgoing_tos byte-value [!]ACLname ...

Default No default

Example

acl NormalService src 10.0.0.0/255.255.255.0

acl BetterService src 10.0.1.0/255.255.255.0

tcp_outgoing_tos 0x00 NormalService

tcp_outgoing_tos 0x20 BetterService

 < Day Day Up >

 < Day Day Up >

tcp_outgoing_address

You can use this access list-based directive to bind outgoing TCP connections to specific local
addresses. It might be useful if your system has multiple network interfaces, and you want to
make sure all of Squid's traffic leaves through one and not the other. Another possibility is that
you have two or more interfaces with different costs or characteristics. You may want to send
privileged user's traffic through the expensive, uncongested link, while other users go out the
cheap, low-quality connection. Don't use this directive if your system has only one network
interface.

If you have an tcp_outgoing_address rule with no ACLs, that address is used for requests that
don't match any of the other rules.

Syntax tcp_outgoing_address ipaddr [[!]ACLname] ...

Default No default

Example

acl SomeUsers src 10.0.0.0/24

acl OtherUsers src 10.0.1.0/24

tcp_outgoing_address 172.16.0.1 SomeUsers

tcp_outgoing_address 192.168.0.1 OtherUsers

tcp_outgoing_address 172.16.5.1

Related udp_incoming_address, udp_outgoing_address

 < Day Day Up >

 < Day Day Up >

reply_body_max_size

This directive allows you to limit the size of HTTP reply bodies based on ACL elements. When a
request matches one of the reply_body_max_size rules, Squid places a limit on the size of the
HTTP response. A value of 0 indicates no limit. Squid checks the reply size first when all HTTP
headers have been received. If the headers contain a Content-Length value that exceeds the
specified limit, the user receives a message that states "the request or reply is too large." If the
content length is unavailable, Squid continues checking the limit as data comes in from the
server. If the reply size exceeds the limit, Squid closes the client's connection, which causes the
client to receive a partial reply.

Downstream caches often can't detect partial replies. Because the headers lack a content
length value, the downstream cache (or user-agent) doesn't know that additional data is
missing. Thus, you shouldn't use reply_body_max_size if you have child or sibling caches.

The code that checks the reply_body_max_size list ignores deny rules. In other words, it is
pointless to include deny rules in this list.

Make sure that the maximum reply size is large enough for a Squid error message (typically 1K-
2K bytes). An error message that is larger than the maximum reply body size causes Squid to
crash.

Syntax reply_body_max_size bytes allow [!]ACLname ...

Default reply_body_max_size 0 allow all

Example
acl WorkingHours time 08:00-17:00

reply_body_max_size 10485760 allow WorkingHours

Related maximum_object_size, request_body_max_size, request_header_max_size

 < Day Day Up >

 < Day Day Up >

cache_mgr

This email address is printed in error messages generated by Squid. Set this as an address to
which your users should send support messages and problem reports. This address also
receives a notification message if Squid dies unexpectedly.

Syntax cache_mgr email@address

Default cache-mgr webmaster

Example cache_mgr support@example.com

 < Day Day Up >

 < Day Day Up >

cache_effective_user

In the interest of security, Squid doesn't allow itself to run as root. If you start the process as
root, Squid changes its effective userid to a nonprivileged user. This user ID must have write
permission to the cache directories and log file directory.

You need to set this directive only if you're starting Squid as root. If you start Squid as a non-
root user, this directive is ignored.

Syntax cache_effective_user username

Default cache_effective_user nobody

Example cache_effective_user squid

Related cache_effective_group

 < Day Day Up >

 < Day Day Up >

cache_effective_group

If you start Squid as root, it changes the process' user ID to the username specified by
cache_effective_user. By default, Squid sets the process' group ID to the group associated with
the cache_effective_user. You can set the cache_effective_group directive if you want Squid to
use some other group ID.

You only need to set this directive if you're starting Squid as root. If you start Squid as a non-
root user, this directive is ignored.

Syntax cache_effective_group groupname

Default No default

Example cache_effective_group squid

Related cache_effective_user

 < Day Day Up >

 < Day Day Up >

visible_hostname

Use this directive when Squid can't determine the fully qualified domain name on its own or if
you want to present a special, external name to the world. Squid uses this name in error
messages, FTP directory listings, X-Cache header values, cache announcements, and for
internal URLs.

Squid also puts the visible hostname into HTTP Via headers, unless you also define the
unique_hostname directive. Note that you must use unique_hostname if you have a cluster of
caches that have the same visible hostname.

Syntax visible_hostname hostname

Default No default

Example visible_hostname my.host.name

Related unique_hostname, hostname_aliases, announce_period

 < Day Day Up >

 < Day Day Up >

unique_hostname

If you have a cluster of caches talking to each other and sharing a single visible_hostname
value, you must use this directive to give each a unique name. Squid uses the unique name in
HTTP Via headers to detect forwarding loops (see Section 10.2).

Syntax unique_hostname hostname

Default No default

Example unique_hostname cache1.host.name

Related visible_hostname, hostname_aliases

 < Day Day Up >

 < Day Day Up >

hostname_aliases

You may find yourself in a situation where more than one hostname resolves to Squid's IP
address. For example, both sv.us.ircache.net and sv.cache.nlanr.net resolve to
192.203.230.19. If you have neighbors, they may send requests for certain Squid-specific
internal URLs, as in the case of Cache Digests. These URLs might contain either hostname. You
must use this directive to tell Squid that it is known by names other than its visible_hostname.

Syntax hostname_aliases hostname ...

Default No default

Example hostname_aliases this.host.name that.host.name

Related visible_hostname, unique_hostname

 < Day Day Up >

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/sv.us.ircache.net
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/sv.cache.nlanr.net

 < Day Day Up >

announce_period

Squid's announcement feature allows Squid administrators to find nearby caches that might be
interested in joining a cache hierarchy. When you enable this directive, Squid periodically sends
a small announcement message to a central server. By default, the announcement message
contains five fields:

● The IP address and hostname that sent the announcement
● The Squid version
● The hostname Squid uses internally—either your hostname if Squid can figure it out or

the value of the visible_hostname directive
● The value of the cache_mgr directive
● The date and time of the announcement

Setting announce_period to 0 disables the announcement feature.

Syntax announce_period time-specification

Default announce_period 0

Example announce_period 4 hours

Related announce_host, announce_file, announce_port

 < Day Day Up >

 < Day Day Up >

announce_host

This is the host setup to receive Squid's announcement messages. The default value, tracker.
ircache.net is the only server I know about. You can search the tracker.ircache.net database by
visiting http://www.ircache.net/Tracker/.

Note that if you set cache_mgr, your email address may be available to random people. On
more than one occasion I have seen commercial caching vendors target Squid users by
collecting their email addresses from this database.

Syntax announce_host hostname

Default announce_host tracker.ircache.net

Example announce_host some.host.name

Related announce_period, announce_file, announce_port

 < Day Day Up >

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/tracker.ircache.net
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/tracker.ircache.net
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/tracker.ircache.net
http://www.ircache.net/Tracker/

 < Day Day Up >

announce_file

You can customize your cache announcement message by setting this directive to a file
containing additional information. For example, you can include information about your
upstream service provider, telephone number, other caches that you peer with, etc.

Announcement messages are sent via UDP, so this file shouldn't be too large. Some systems
can't send or receive UDP messages larger than 9 KB. Furthermore, larger messages are more
likely to be dropped before reaching their destination.

Syntax announce_file pathname

Default No default

Example announce_file /usr/local/squid/etc/announce.txt

Related announce_period, announce_host, announce_port

 < Day Day Up >

 < Day Day Up >

announce_port

This is the UDP port number to which the announcement messages are sent.

Syntax announce_port port-number

Default announce_port 3131

Example announce_port 1234

Related announce_period, announce_host, announce_file

 < Day Day Up >

 < Day Day Up >

httpd_accel_host

This directive enables HTTP server acceleration (see Chapter 15) and HTTP interception (see
Chapter 9). When Squid is configured for server acceleration, this directive specifies the
hostname or IP address of the backend server. When used in an interception configuration, you
should probably use the keyword virtual here.

When this directive is set, Squid disables ICP and rejects proxy-HTTP requests unless you also
enable httpd_accel_with_proxy.

Syntax httpd_accel_host hostname|virtual

Default No default

Example httpd_accel_host virtual

Related httpd_accel_port, httpd_accel_single_host, httpd_accel_with_proxy,
httpd_accel_uses_host_header, emulate_httpd_log

 < Day Day Up >

 < Day Day Up >

httpd_accel_port

This is the TCP port number to which accelerated/intercepted requests are sent. In most cases,
you should leave it set to port 80. If you are accelerating/intercepting more than one port, set
it to 0. That is similar to the virtual setting for httpd_accel_host.

Syntax httpd_accel_port port-number

Default httpd_accel_port 80

Example httpd_accel_port 0

Related httpd_accel_host, httpd_accel_single_host, httpd_accel_with_proxy,
httpd_accel_uses_host_header

 < Day Day Up >

 < Day Day Up >

httpd_accel_single_host

When enabled, this directive makes Squid forward all accelerated/intercepted requests to the
httpd_accel_host address. See Section 15.2.6.

If you enable this directive and httpd_accel_with_proxy, Squid may
become susceptible to cache poisoning. Please read Chapter 15
thoroughly before running such a configuration.

Syntax httpd_accel_single_host on|off

Default httpd_accel_single_host off

Example httpd_accel_single_host on

Related httpd_accel_host, httpd_accel_port, httpd_accel_with_proxy,
httpd_accel_uses_host_header

 < Day Day Up >

 < Day Day Up >

httpd_accel_with_proxy

Enabling HTTP acceleration/interception normally disables proxy-HTTP caching. That is, Squid
refuses to handle proxy requests (with a full URI) when in HTTP server accelerator mode.
Although I don't recommend it, you can force Squid to accept both types of requests by
enabling this directive.

Syntax httpd_accel_with_proxy on|off

Default httpd_accel_with_proxy off

Example httpd_accel_with_proxy on

Related httpd_accel_host, httpd_accel_port, httpd_accel_single_host,
httpd_accel_uses_host_header

 < Day Day Up >

 < Day Day Up >

httpd_accel_uses_host_header

When this directive is enabled, Squid uses a request's Host header when rewriting accelerated/
intercepted requests. When disabled, Squid uses either the origin server's IP address or the
httpd_accel_host value.

You should probably enable httpd_accel_uses_host_header when running Squid as an HTTP-
intercepting proxy. If Squid is a surrogate (accelerator), you only need to enable this directive
if the backend server is configured for virtual hosting.

Syntax httpd_accel_uses_host_header on|off

Default httpd_accel_uses_host_header off

Example httpd_accel_uses_host_header on

Related httpd_accel_host, httpd_accel_port, httpd_accel_single_host,
httpd_accel_with_proxy

 < Day Day Up >

 < Day Day Up >

dns_testnames

Squid uses these hostnames to test the DNS before starting. If Squid can't resolve any of these
names, it prints an error and refuses to run. If the default list doesn't seem to work on your
network, try listing some local hostnames instead.

Syntax dns_testnames hostname ...

Default dns_testnames netscape.com internic.net nlanr.net microsoft.com

Example dns_testnames yahoo.com example.com squid-cache.org

 < Day Day Up >

 < Day Day Up >

logfile_rotate

You must periodically signal Squid to rotate its log files. If you don't, they will increase in size
and eventually fill up the disk partition. This directive specifies how many old copies of each log
file to keep around. See Section 13.7 for more information.

Syntax logfile_rotate N

Default logfile_rotate 10

Example logfile_rotate 5

Related cache_access_log, cache_log, cache_store_log, cache_swap_log, useragent_log,
referer_log

 < Day Day Up >

 < Day Day Up >

append_domain

This directive helps Squid turn single-component hostnames into fully qualified domain names.
For example, http://www/ becomes www.example.com/. This is especially important if you are
participating in a cache hierarchy.

Syntax append_domain .domain.name

Default No default

Example append_domain .example.com

Related dns_defnames, hosts_file

 < Day Day Up >

http://www/

 < Day Day Up >

tcp_recv_bufsize

If you use this directive, Squid sets the receive buffer size for each TCP socket that it creates.
This value refers to the amount of data that the TCP/IP stack will buffer on behalf of the
application. You can see how much data is being buffered at any given time by looking at the
Recv-Q column of netstat -n output. Larger TCP buffers lead to increased memory usage and
better performance.

In general, you shouldn't need to use this directive. Most operating systems in use today have
default TCP buffer sizes greater than 32 KB. Empirical evidence suggests that fewer than 5% of
typical web objects are larger than 32 KB.

When tcp_recv_bufsize is set to 0, Squid doesn't change the TCP buffer size from its default
value.

Syntax tcp_recv_bufsize size-specification

Default tcp_recv_bufsize 0

Example tcp_recv_bufsize 8 kb

 < Day Day Up >

 < Day Day Up >

err_html_text

This directive is one way to customize Squid's error messages. The error message files contain
printf-like tokens. Squid dynamically replaces the tokens with appropriate values for each
error. If Squid encounters the token %L, it inserts the contents of this directive. Note that none
of the default error messages contain a %L. Thus, to use this feature, you must modify the
default error files.

Syntax err_html_text character string

Default No default

Example
err_html_text Call 555-

1234 to report problems with Squid.

Related error_directory

 < Day Day Up >

 < Day Day Up >

deny_info

This directive allows you to show specific error messages to users when a request matches
certain ACL elements. This is more informative than sending a generic "access denied" error
message, as happens by default.

When Squid checks its access control rules to see whether or not a particular request is allowed
or denied, it remembers the ACL element that causes the search to terminate. You can use
these ACL element names in a deny_info line to correlate error messages with a specific
request characteristic. Consider, for example, this configuration:

acl Unsafe_Ports 7 9 19 22 23 25 53 109 110 119

...

http_access deny Unsafe_Ports

...

deny_info ERR_PORT_IS_UNSAFE Unsafe_Ports

When a user makes a request to an origin server on one of the ports listed in the Unsafe_Ports
ACL, Squid denies the request. Furthermore, Squid generates an error message from the
ERR_PORT_IS_UNSAFE file, found in the error_directory directory.

Alternatively, you can specify a URI instead of an error message template. In this case, Squid
sends an HTTP 302 (Moved Temporarily) redirect to the given URI.

Finally, if you specify TCP_RESET as the error message template, Squid closes the client's
connection in a way that generates a TCP reset.

Syntax deny_info error-page-name|URI acl-name

Default No default

Example deny_info ERR_PORT_IS_UNSAFE Unsafe_Ports

Related error_directory, acl

 < Day Day Up >

 < Day Day Up >

memory_pools

Squid's memory pools are an attempt to optimize the way Squid allocates and frees memory.
Certain data structures inside Squid are pooled. This means that rather than freeing unused
memory, Squid holds onto it for future use. It also means that a particular chunk of memory is
normally used for the same type of data structure. Memory pools may improve Squid's
performance by avoiding frequent calls to malloc() and free(). The downside, however, is
that the overall memory usage may be higher. If memory is a precious resource on your
system, you might want to disable memory pools.

Syntax memory_pools on|off

Default memory_pools on

Example memory_pools off

Related cache_mem, memory_pools_limit

 < Day Day Up >

 < Day Day Up >

memory_pools_limit

This directive specifies an upper limit on the amount of unused memory to hold onto. If the
total size of all unused, pooled memory exceeds this value, Squid begins returning unused
memory to the malloc library by calling free().

If set to 0 (the default), Squid doesn't place any limit on the amount of unused memory to keep
in the pools.

Syntax memory_pools_limit size-specification

Default memory_pools_limit 0

Example memory_pools_limit 100 MB

Related memory_pools

 < Day Day Up >

 < Day Day Up >

forwarded_for

Squid appends an item to the X-Forwarded-For header in requests sent to origin servers and
neighbors. When this directive is enabled, Squid places the client's IP address there. When it is
disabled, Squid prints the word unknown instead. Thus, disabling forwarded_for increases your
user's privacy.

Syntax forwarded_for on|off

Default forwarded_for on

Example forwarded_for off

 < Day Day Up >

 < Day Day Up >

log_icp_queries

By default, ICP queries appear in Squid's access.log. If Squid receives a large amount of ICP
queries from neighbors, your access.log file may become too large to effectively manage. If you
disable this directive, ICP queries are never logged.

Syntax log_icp_queries on|off

Default log_icp_queries on

Example log_icp_queries off

Related access_log, icp_port

 < Day Day Up >

 < Day Day Up >

icp_hit_stale

Squid normally returns ICP_MISS for queries to stale objects. This causes an annoying problem
described in Chapter 10. If you enable this directive, Squid returns ICP_HIT messages instead.

Syntax icp_hit_stale on|off

Default icp_hit_stale off

Example icp_hit_stale on

Related cache_peer, miss_access

 < Day Day Up >

 < Day Day Up >

minimum_direct_hops

If you're using netdb (see Section 10.5), and a cache hierarchy, Squid forwards requests
directly to origin servers that are within this many router hops. Such requests are marked with
CLOSEST_DIRECT in access.log.

Syntax minimum_direct_hops N

Default minimum_direct_hops 4

Example minimum_direct_hops 6

Related minimum_direct_rtt, always_direct

 < Day Day Up >

 < Day Day Up >

minimum_direct_rtt

Similar to minimum_direct_hops. If Squid is within minimum_direct_rtt milliseconds (as
measured by ICMP pings) to the origin server, the request is sent there directly. These requests
are marked with CLOSEST_DIRECT in access.log.

Syntax minimum_direct_rtt milliseconds

Default minimum_direct_rtt 400

Example minimum_direct_rtt 100

Related minimum_direct_hops, always_direct

 < Day Day Up >

 < Day Day Up >

cachemgr_passwd

This directive allows you to protect cache manager pages with a password. Unfortunately, this
is an extremely weak authorization scheme, because passwords are sent as cleartext in the
cache manager HTTP request. See Section 14.2.2.2 for a discussion of cache manager
passwords.

Syntax cachemgr_passwd password cachemgr-page ...

Default No default

Example cachemgr_passwd SekrIt config objects vm_objects

Related http_access

 < Day Day Up >

 < Day Day Up >

store_avg_object_size

Squid uses this value as a hint for estimating the size of certain data structures. In particular,
Squid calculates an estimate for the total number of objects in the cache, based on this value
and the sum of all cache_dir sizes. This estimate is, in turn, used to calculate the number of
hash buckets for the primary index to cached objects. Additionally, it can estimate the cache
digest size, if that feature is enabled.

In most cases the default should be sufficient. You can find the actual value for your cache by
querying the cache manager. Look for "Mean Object Size" on the info page (see Section
14.2.1.24).

Syntax store_avg_object_size size-specification

Default store_avg_object_size 13 KB

Example store_avg_object_size 10 KB

Related cache_dir, digest_bits_per_entry, store_objects_per_bucket

 < Day Day Up >

 < Day Day Up >

store_objects_per_bucket

This directive allows you to tune the tradeoff between increased memory usage and longer
searching times. Squid calculates the number of hash table buckets, depending on this
directive, the average object size, and the total cache size. Squid's goal is to have this many
objects in each bucket of the hash table.

A larger value here leads to reduced memory usage but longer search times. Conversely, a
smaller value leads to faster search times, at the expense of increased memory usage.

Syntax store_objects_per_bucket N

Default store_objects_per_bucket 20

Example store_objects_per_bucket 15

Related store_avg_object_size

 < Day Day Up >

 < Day Day Up >

client_db

Squid keeps a number of statistics for each cache client (IP address). You can view them by
visiting the cache manager client_list page. The ClientInfo data structure is about 240 bytes
on 32-bit systems and 300 bytes on 64-bit systems. If you have thousands of clients, this
database can consume a significant amount of memory. You can disable this directive and free
up that memory for other uses.

Syntax client_db on|off

Default client_db on

Example client_db off

 < Day Day Up >

 < Day Day Up >

netdb_low

The netdb database contains round-trip time and hop-count measurements derived from ICMP
pings. This directive specifies the lower limit for the netdb replacement policy. In other words,
when Squid is removing netdb entries, it stops when the total number reaches netdb_low.

Syntax netdb_low N

Default netdb_low 900

Example netdb_low 9900

Related netdb_high, query_icmp

 < Day Day Up >

 < Day Day Up >

netdb_high

The netdb database contains round-trip time and hop-count measurements derived from ICMP
pings. This directive specifies an upper limit on the number entries in the database. When
Squid finds more than netdb_high entries, it removes least-recently used networks until the
size reaches netdb_low.

Syntax netdb_high N

Default netdb_high 1000

Example netdb_high 10000

Related netdb_low, query_icmp

 < Day Day Up >

 < Day Day Up >

netdb_ping_period

This directive specifies how long Squid must wait between sending consecutive ICMP pings to
the same /24 network. The interval is relatively long so that Squid's ICMP traffic doesn't upset
server administrators.

Syntax netdb_ping_period time-specification

Default netdb_ping_period 5 min

Example netdb_ping_period 3 min

Related pinger_program, query_icmp

 < Day Day Up >

 < Day Day Up >

query_icmp

Enabling this directive instructs Squid to ask its neighbors for their ICMP measurements, which
are included in ICP/HTCP replies. This, essentially, populates your netdb database with your
neighbors' ICMP measurements. The bulk "netdb exchange" is another way to receive those
measurements (see Section 10.5).

Squid uses the neighbors' netdb measurements when making forwarding decisions. If one of
the parents is closer to the origin server, Squid forwards the request there and marks it with
CLOSEST_PARENT_MISS in access.log.

Syntax query_icmp on|off

Default query_icmp off

Example query_icmp on

Related pinger_program, netdb_ping_period

 < Day Day Up >

 < Day Day Up >

test_reachability

When you enable this directive, Squid looks at its netdb database while processing ICP queries.
If Squid normally returns ICP_MISS, but the origin server isn't in the database or doesn't
respond to ICMP pings, it returns ICP_MISS_NOFETCH instead. The ICP_MISS_NOFETCH reply
signals the neighbor cache that Squid might not be able to communicate with the origin server.

Syntax test_reachability on|off

Default test_reachability off

Example test_reachability on

Related pinger_program, query_icmp, netdb_ping_period

 < Day Day Up >

 < Day Day Up >

buffered_logs

While this directive used to affect multiple log files, it now only applies to cache.log. Squid uses
the stdio library for cache.log. If this directive is enabled, Squid calls fflush() after every
write. This allows you to see log file entries as they are written. You might want to disable
buffered_logs if you are debugging Squid in a way that creates a large number of cache.log
entries.

Syntax buffered_logs on|off

Default buffered_logs off

Example buffered_logs on

Related cache_log

 < Day Day Up >

 < Day Day Up >

reload_into_ims

If you enable this directive, Squid adds an If-Modified-Since header to requests that contain
a no-cache directive. This is a global version of the reload-into-ims option for the
refresh_pattern directive (see Section 7.7).

Altering the client's request in this manner is a violation of HTTP.

Syntax reload_into_ims on|off

Default reload_into_ims off

Example reload_into_ims on

Related refresh_pattern

 < Day Day Up >

 < Day Day Up >

always_direct

The always_direct access rules define a class of requests that must always be forwarded
directly to the origin server. For these, Squid doesn't query or otherwise consider any neighbor
caches. See Section 10.4.4.

Syntax always_direct allow|deny [!]ACLname ...

Default No default

Example
acl LocalServers dst 172.17.0.0/24

always_direct allow LocalServers

Related acl, never_direct, prefer_direct, nonhierarchical_direct, minimum_direct_hops,
minimum_direct_rtt, cache_peer_access

 < Day Day Up >

 < Day Day Up >

never_direct

The never_direct access rules define a class of requests that must never be forwarded to the
origin server. For these, Squid must select an appropriate neighbor cache to handle the
request. See Section 10.4.3.

Syntax never_direct allow|deny [!]ACLname ...

Default No default

Example
acl SpecialServers dstdomain .example.com

never_direct allow SpecialServers

Related acl, always_direct, prefer_direct, nonhierarchical_direct, minimum_direct_hops,
minimum_direct_rtt, cache_peer_access

 < Day Day Up >

 < Day Day Up >

header_access

This directive defines a set of access rules for filtering HTTP headers from both requests and
responses. You can use it to remove headers that may violate your privacy, or that cause
interoperation issues. For example, this configuration removes Cookie headers sent to a well-
known web advertising company:

acl DC dstdomain .doubleclick.net

header_access Cookie deny DC

The header-name field must be one of the HTTP headers Squid knows about or one of the
keywords Other or All. Squid currently knows the following HTTP headers:

Accept Accept-Charset Accept-Encoding

Accept-Language Accept-Ranges Age

Allow Authentication-Info Authorization

Cache-Control Connection Content-Base

Content-Encoding Content-Language Content-Length

Content-Location Content-MD5 Content-Range

Content-Type Cookie Date

ETag Expires From

Host If-Match If-Modified-Since

If-None-Match If-Range Last-Modified

Link Location Max-Forwards

Mime-Version Negotiate Pragma

Proxy-Authenticate Proxy-Authentication-Info Proxy-Authorization

Proxy-Connection Public Range

Referer Request-Range Retry-After

Server Set-Cookie Title

Transfer-Encoding Upgrade User-Agent

Vary Via WWW-Authenticate

Warning X-Accelerator-Vary X-Cache

X-Cache-Lookup X-Forwarded-For X-Request-URI

X-Squid-Error

Unfortunately, you can't refer to an unknown header individually. The best you can do is use
the keyword Other to refer to all unknown HTTP headers. The keyword All refers to all (known
and unknown) HTTP headers.

Note that if you deny the Via header, Squid can't detect forwarding loops (see Section 10.2).

Removing headers from requests and responses is a violation of HTTP.

Syntax header_access header-name allow|deny [!]ACLname ...

Default No default

Example header_access From deny All

Related acl, header_replace

 < Day Day Up >

 < Day Day Up >

header_replace

This directive works in conjunction with header_access. If you use header_replace, Squid
replaces HTTP headers that are denied (removed) by an header_access rule. In other words, an
HTTP header must be filtered out by header_access before it can be replaced by
header_replace.

header_replace isn't especially flexible. You can only define one replacement value for each
header. You can't, for example, use one value for some requests and a different value for
others.

Changing HTTP request and response headers is a violation of HTTP.

Syntax header_replace header-name string

Default No default

Example header_replace User-Agent Nutscrape/1.0 (CP/M; 8-bit)

Related header_access

 < Day Day Up >

 < Day Day Up >

icon_directory

This directive specifies the location of the icons Squid uses in FTP and Gopher directory listings.
The icon filenames are defined in mime.conf (see the Appendix A section). If you don't like
Squid's icons, you can use your own, as long as the filenames found in mime.conf exist in the
icon_directory directory.

Syntax icon_directory directory

Default icon_directory $prefix/share/icons

Example icon_directory /usr/local/squid/share/myicons

Related error_directory, mime_table

 < Day Day Up >

 < Day Day Up >

error_directory

This directive specifies the location of Squid's error message files. If you want to customize the
error messages, you should put them into a nondefault directory. Otherwise, they may be
overwritten if you run make install in the future.

Syntax error_directory directory

Default error_directory $prefix/share/errors/$language

Example error_directory /usr/local/squid/share/my_errors

Related icon_directory, err_html_text, deny_info

 < Day Day Up >

 < Day Day Up >

maximum_single_addr_tries

This directive places a limit on the number of times Squid attempts to connect to a single IP
address when forwarding a request. It can't be set higher than 10.

Syntax maximum_single_addr_tries N

Default maximum_single_addr_tries 3

Example maximum_single_addr_tries 5

Related connect_timeout

 < Day Day Up >

 < Day Day Up >

snmp_port

This is the UDP port to which Squid listens for SNMP queries. SNMP support requires the —
enable-snmp option to ./configure. Set the SNMP port to 0 if Squid shouldn't accept any SNMP
messages.

Syntax snmp_port port-number

Default snmp_port 3401

Example snmp_port 3161

Related snmp_access, snmp_incoming_address, snmp_outgoing_address

 < Day Day Up >

 < Day Day Up >

snmp_access

The snmp_access rules apply to SNMP queries. Although this is a standard Squid access list
rule, many ACL elements are undefined for SNMP. In fact, you can only use src and
snmp_community ACLs.

Syntax snmp_access allow|deny [!]ACLname ...

Default No default (all queries denied by default)

Example

acl SNMPPasswd snmp_community sekrit

acl SNMPClients src 172.16.1.2 10.0.5.1

acl All src 0/0

snmp_access allow SNMPClients SNMPPasswd

snmp_access deny All

Related acl, snmp_port

 < Day Day Up >

 < Day Day Up >

snmp_incoming_address

By default, Squid opens the SNMP socket to receive packets on all local interfaces. You can use
this directive to bind the SNMP socket to a particular interface.

Syntax snmp_incoming_address ip-address

Default snmp_incoming_address 0.0.0.0

Example snmp_incoming_address 172.16.0.1

Related snmp_port, snmp_access, udp_incoming_address

 < Day Day Up >

 < Day Day Up >

snmp_outgoing_address

Squid uses a single SNMP socket by default. If you set this directive, however, Squid opens a
separate socket for SNMP replies only. In most cases, you shouldn't use this directive because
SNMP queries should come from the same address to which the queries are sent.

Syntax snmp_outgoing_address ip-address

Default No default

Example snmp_outgoing_address 192.168.5.5

Related snmp_port, snmp_access, udp_outgoing_address

 < Day Day Up >

 < Day Day Up >

as_whois_server

This is the hostname of the whois server Squid uses to resolve Autonomous System numbers
into IP networks. You only need to worry about this if you use AS-based ACLs (src_as, dst_as).

The default server, whois.ra.net, seems to work relatively well. It may be too far away (and
unreliable) for non-U.S. users. If you know of a local whois server that returns AS queries, feel
free to use it instead.

Syntax as_whois_server hostname

Default as_whois_server whois.ra.net

Example as_whois_server whois.host.name

Related acl

 < Day Day Up >

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/whois.ra.net

 < Day Day Up >

wccp_router

This directive defines Squid's home router for WCCP. When you enter an IP address (or
hostname) here, Squid sends WCCP "Here I Am" messages to the router. See Section 9.3.4 for
more information.

Routers, by definition, have multiple network interfaces. You should probably use the address
of the interface that is connected, or has the route, to Squid. Squid ignores WCCP messages
that don't have the wccp_router value as their source address.

Syntax wccp_router ip-address

Default No default

Example wccp_router 172.16.5.1

Related wccp_version, wccp_incoming_address, wccp_outgoing_address

 < Day Day Up >

 < Day Day Up >

wccp_version

This particular version number refers to second field of the WCCP "Here I Am" message. It isn't
the same as WCCPv1 versus WCCPv2. Some users report that older installations of Cisco IOS
only work when this directive is set to 3.

Syntax wccp_version N

Default wccp_version 4

Example wccp_version 3

Related wccp_router

 < Day Day Up >

 < Day Day Up >

wccp_incoming_address

Squid listens for WCCP messages on all local interfaces by default. If you set this directive,
Squid listens on only the specified address.

Syntax wccp_incoming_address ip-address

Default wccp_incoming_address 0.0.0.0

Example wccp_incoming_address 10.1.2.3

Related wccp_router, wccp_outgoing_address, udp_incoming_address

 < Day Day Up >

 < Day Day Up >

wccp_outgoing_address

If, for some reason, you want Squid to send and receive WCCP messages on different
interfaces, set this directive to the address of the outgoing interface. If this directive isn't set,
as is the default, Squid uses the same socket for incoming and outgoing messages.

Syntax wccp_outgoing_address ip-address

Default No default

Example wccp_outgoing_address 172.16.1.1

Related wccp_router, wccp_incoming_address, udp_outgoing_address

 < Day Day Up >

 < Day Day Up >

delay_pools

This directive specifies the number of delay pools that you will later define with the delay_class
and delay_parameters directives. It tells Squid the size of certain arrays used in the delay pools
implementation. It must appear in the configuration file before the other delay pools directives.

Note that in order to use delay pools, you must give the —enable-delay-pools option to ./
configure.

Syntax delay_pools N

Default delay_pools 0

Example delay_pools 4

Related delay_class, delay_access, delay_parameters, delay_initial_bucket_level

 < Day Day Up >

 < Day Day Up >

delay_class

This directive defines the class of each delay pool. The first argument is the delay pool index.
Index values start at 1 and must be less than or equal to the delay_pools value. The second
argument is the delay class, which has three possible values:

● A class 1 pool uses a single, aggregate bucket for all traffic that applies to the pool.
● A class 2 pool uses a single, aggregate bucket, as well as 256 individual buckets. The

individual bucket is chosen by the last octet of the client's IPv4 address.
● A class 3 bucket uses a single, aggregate bucket, 256 network buckets, and 65,536

individual buckets. The network bucket is chosen based on the third octet of the client's
IPv4 address. The individual bucket is chosen by the third and fourth octets.

Note that the class 2 and class 3 pools have multiple types of buckets (aggregate, network,
individual). A client receives a traffic allocation from all relevant buckets, not just one of them.
In other words, if any of the relevant buckets are empty, the client doesn't receive any traffic
allocation.

Syntax delay_class pool-number class

Default No default

Example
delay_class 1 2

delay_class 2 3

Related delay_pools, delay_access, delay_parameters, delay_initial_bucket_level

 < Day Day Up >

 < Day Day Up >

delay_access

This directive maps a client request to a particular delay pool. A client's cache miss is delayed
only if it is "allowed" by one of the delay_access rules. Squid checks the access rules for all
pools in order. If a particular request is denied by all delay_access rules, it isn't delayed. You
must define at least one rule to use delay pools.

Syntax delay_access pool-number allow|deny [!]ACLname ...

Default No default

Example
acl Dorms src 172.17.0.0/16

delay_access 1 allow Dorms

Related delay_pools, delay_class, delay_parameters, delay_initial_bucket_level

 < Day Day Up >

 < Day Day Up >

delay_parameters

The delay_parameters directive determines the fill rate and capacity for each delay pools
bucket. Following the pool number, you must write one, two, or three pairs of numbers. The
number of pairs is the same as the pool's class. A class 1 pool takes one pair, a class 2 pool
takes two pairs, and a class 3 pool takes three pairs.

Each pair of numbers specifies the fill rate and maximum bucket size. The fill rate should not be
larger than the maximum size. The units are number of bytes. Thus, if you are thinking in
terms of bits per second, you must divide by 8 to get bytes per second. For example, if you
want to define a bucket that refills at a rate of 100 Kbits/sec, and holds no more than 300 Kbits
(3 seconds) of traffic, you would write 12500/37500.

Syntax
delay_parameters pool-number aggr-rate/aggr-max [ind-rate/ind-max [net-

rate/net-max]]

Default No default

Example delay_parameters 2 16000/32000 4000/8000

Related delay_pools, delay_class, delay_access, delay_initial_bucket_level

 < Day Day Up >

 < Day Day Up >

delay_initial_bucket_level

This directive determines the amount of traffic that Squid puts into newly created buckets. A
bucket is created when Squid starts up or is reconfigured. For class 2 and 3 pools, individual
and network buckets are created upon the first client request that uses the bucket. The
delay_initial_bucket_level value is a percentage of the bucket's maximum size.

Syntax delay_initial_bucket_level percent

Default delay_initial_bucket_level 50

Example delay_initial_bucket_level 100

Related delay_pools, delay_class, delay_access, delay_parameters

 < Day Day Up >

 < Day Day Up >

incoming_icp_average

This directive controls the low-level routines that periodically check the ICP socket for incoming
queries and replies. The algorithm is relatively complex to fully describe here. The idea is to
make sure Squid checks the ICP socket frequently enough to handle the ICP load but not so
often that it is a waste of time. This directive specifies the number of normal I/O events that
should occur between checks to the ICP socket. A normal I/O event refers to reading from, and
writing to, client- and server-side TCP sockets.

Unless you have a thorough understanding of the polling algorithms in the source code, I
strongly recommend that you leave this directive set to its default value.

Syntax incoming_icp_average number

Default incoming_icp_average 6

Example incoming_icp_average 20

Related incoming_http_average, incoming_dns_average

 < Day Day Up >

 < Day Day Up >

incoming_http_average

This directive is similar to incoming_icp_average, except that it refers to the HTTP socket with
which Squid accepts new client requests. Unless you have a thorough understanding of the
polling algorithms in the source code, I strongly recommend that you leave this directive set to
its default value.

Syntax incoming_http_average number

Default incoming_http_average 4

Example incoming_http_average 15

Related incoming_icp_average, incoming_dns_average

 < Day Day Up >

 < Day Day Up >

incoming_dns_average

This directive is similar to incoming_icp_average, except that it refers to the UDP socket with
which Squid receives DNS responses. Unless you have a thorough understanding of the polling
algorithms in the source code, I strongly recommend that you leave this directive set to its
default value.

Syntax incoming_dns_average number

Default incoming_dns_average 4

Example incoming_dns_average 8

Related incoming_icp_average, incoming_http_average

 < Day Day Up >

 < Day Day Up >

min_icp_poll_cnt

This directive controls the low-level routines that periodically check the ICP socket for incoming
queries and replies. It specifies a lower limit on the number of normal I/O events that must
occur between checks to the ICP socket. Unless you have a thorough understanding of the
polling algorithms in the source code, I strongly recommend that you leave this directive set to
its default value.

Syntax min_icp_poll_cnt number

Default min_icp_poll_cnt 8

Example min_icp_poll_cnt 10

Related incoming_icp_average

 < Day Day Up >

 < Day Day Up >

min_dns_poll_cnt

This directive is similar to min_icp_poll_cnt, except that it applies to the UDP socket with which
Squid receives DNS replies. Unless you have a thorough understanding of the polling algorithms
in the source code, I strongly recommend that you leave this directive set to its default value.

Syntax min_dns_poll_cnt number

Default min_dns_poll_cnt 8

Example min_dns_poll_cnt 10

Related incoming_dns_average

 < Day Day Up >

 < Day Day Up >

min_http_poll_cnt

This directive is similar to min_icp_poll_cnt, except that it applies to the TCP socket with which
Squid accepts new client requests. Unless you have a thorough understanding of the polling
algorithms in the source code, I strongly recommend that you leave this directive set to its
default value.

Syntax min_http_poll_cnt number

Default min_http_poll_cnt 8

Example min_http_poll_cnt 12

Related incoming_http_average

 < Day Day Up >

 < Day Day Up >

max_open_disk_fds

This directive defines an upper limit on the number of file descriptors that Squid should open
for reading and writing cache files on disk. It is relevant for only the ufs and aufs storage
schemes. It is a relatively simple hack for measuring the level of Squid's disk activity.
Experience shows that performance degrades significantly when Squid hits a filesystem
bottleneck.

If Squid reaches this limit, it doesn't attempt to store subsequent cachable responses. Each
time that happens, Squid increments the no.too_many_open_files counter (see Section
14.2.1.40). Note that hitting this limit has a negative impact on your hit ratio. You can monitor
the number of open disk files by requesting the info page from the cache manager (see Section
14.2.1.24).

If you set this directive to 0, Squid doesn't place any limits on the number of open disk file
descriptors.

Syntax max_open_disk_fds N

Default max_open_disk_fds 0

Example max_open_disk_fds 100

 < Day Day Up >

 < Day Day Up >

offline_mode

When you enable offline_mode, Squid returns every cached response as an unvalidated cache
hit. These are tagged with TCP_OFFLINE_HIT in access.log. When in this mode, Squid still
attempts to forward cache misses. If your system truly is offline, some requests may hang
while waiting for the DNS or HTTP transaction to timeout.

Syntax offline_mode on|off

Default offline_mode off

Example offline_mode on

 < Day Day Up >

 < Day Day Up >

uri_whitespace

This directive tells Squid what to do about URIs that contain whitespace characters (i.e., space
and tab). The default action is to strip out the whitespace and shift the valid characters down as
necessary. This is the behavior recommended by RFC 2396.

If you set this directive to allow, Squid doesn't change the URI. It is passed through to the
origin server as is. This setting may cause some problems with redirectors and log file parsers.
Both use whitespace as a field delimiter, and a URI with whitespace adds an additional field (or
fields) to the redirector input line and the access.log entry.

The deny setting instructs Squid to deny such a request, as though it were blocked by the
access control rules. Note, however, that the URI is still written to access.log with the
whitespace characters.

With the encode setting, Squid changes whitespace characters into their RFC 1738 equivalents.
When some origin servers generate URIs that contain whitespace, this is what they should be
doing in the first place.

Finally, the chop setting instructs Squid to simply cut off the URI at the first whitespace
character.

Syntax uri_whitespace allow|deny|strip|encode|chop

Default uri_whitespace strip

Example uri_whitespace deny

Related access_log, redirector_program

 < Day Day Up >

 < Day Day Up >

broken_posts

Certain buggy HTTP servers expect two extra bytes, CR and LF characters, following an HTTP
POST message body. It seems unlikely that such uncompliant servers are still in use today.
Nonetheless, this access rule list exists to accommodate them. When a request matches a
broken_posts rule, Squid appends the extra CRLF characters.

Syntax broken_posts allow|deny [!]ACLname ...

Default No default

Example
acl NeedsExtraCRLF dstdomain broken.server.com

broken_posts allow NeedsExtraCRLF

Related http_access, acl

 < Day Day Up >

 < Day Day Up >

mcast_miss_addr

The multicast miss stream is a largely undocumented and unsupported Squid feature. The basic
idea is to send a multicast message, containing a URI, for each cache miss. The messages are
encrypted with a modest algorithm to prevent casual eavesdropping.

To use this feature, you must manually define the MULTICAST_MISS_STREAM preprocessor
symbol before compiling Squid. To learn more about this feature, read the source code
surrounded by #if MULTICAST_MISS_STREAM in src/access_log.c.

Syntax mcast_miss_addr multicast-address

Default No default

Example mcast_miss_addr 224.0.1.1

Related mcast_miss_ttl, mcast_miss_port, mcast_miss_encode_key

 < Day Day Up >

 < Day Day Up >

mcast_miss_ttl

This is the multicast TTL assigned to outgoing miss stream messages. See the discussion of
multicast TTLs in Section 10.6.3.2.

Syntax mcast_miss_ttl N

Default mcast_miss_ttl 16

Example mcast_miss_ttl 32

Related mcast_miss_addr, mcast_miss_port, mcast_miss_encode_key

 < Day Day Up >

 < Day Day Up >

mcast_miss_port

This is the UDP port number to which multicast miss stream messages are sent.

Syntax mcast_miss_port port-number

Default mcast_miss_port 3135

Example mcast_miss_port 999

Related mcast_miss_addr, mcast_miss_ttl, mcast_miss_encode_key

 < Day Day Up >

 < Day Day Up >

mcast_miss_encode_key

Squid uses the Tiny Encryption Algorithm (TEA) to encrypt multicast miss messages. This
directive specifies the encryption key, which should be 128 bits long.

Syntax mcast_miss_encode_key string

Default mcast_miss_encode_key XXXXXXXXXXXXXXXX

Example mcast_miss_encode_key MySekRitPassWord

Related mcast_miss_addr, mcast_miss_ttl, mcast_miss_port

 < Day Day Up >

 < Day Day Up >

nonhierarchical_direct

A hierarchical request is one that looks like it might result in a cachable response, and therefore
might be cached by one of Squid's neighbors. If your Squid doesn't have any neighbors, you
don't need to worry about this directive.

By default, Squid prefers to skip the neighbor selection step for nonhierarchical requests
(uncachable responses) because the request probably won't result in a cache hit. You can
reverse this behavior by disabling the nonhierarchical_direct directive. See Section 10.10.

Syntax nonhierarchical_direct on|off

Default nonhierarchical_direct on

Example nonhierarchical_direct off

Related prefer_direct, never_direct, always_direct

 < Day Day Up >

 < Day Day Up >

prefer_direct

This directive affects Squid's neighbor selection algorithm for hierarchical requests (cachable
responses). It is only relevant if you have one or more neighbor caches. When Squid builds a
list of next-hop locations for cache misses, it puts neighbor caches before the origin server by
default. If you would rather have Squid put the origin server before neighbors, enable the
prefer_direct directive. See Section 10.10.

Syntax prefer_direct on|off

Default prefer_direct off

Example prefer_direct on

Related nonhierarchical_direct, never_direct, always_direct

 < Day Day Up >

 < Day Day Up >

strip_query_terms

When this directive is enabled, Squid doesn't log URI query terms in access.log. This feature is
intended to give your users some privacy. It is enabled by default.

Syntax strip_query_terms on|off

Default strip_query_terms on

Example strip_query_terms off

Related access_log, client_netmask

 < Day Day Up >

 < Day Day Up >

coredump_dir

Normally Squid doesn't change its current directory at startup. While this isn't usually a
problem, it can be if Squid wants to leave a core-dump file. If the core file is very large, it
might fill up a disk partition. Additionally, the core won't be created at all if Squid doesn't have
permission to write in the current directory.

This directive changes Squid's current directory. You should set it to a location that has
sufficient space, and appropriate permissions, for a large core file.

Note that the coredump_dir directive is used only when Squid starts up. If you change the
value while Squid is running and then reconfigure, Squid doesn't change the current directory.

Syntax coredump_dir pathname

Default No default

Example coredump_dir /squid/var

 < Day Day Up >

 < Day Day Up >

ignore_unknown_nameservers

Squid normally checks that DNS replies come from the same IP address to which the query was
sent. If the addresses don't match, Squid writes a warning to cache.log and ignores the reply.
Some installations use an /etc/resolv.conf trick to query any local name server. If the name
server IP address is 0.0.0.0, DNS queries are broadcast on the local area network. The replies,
however, come from specific addresses. If you want to use this trick, you must disable the
ignore_unknown_nameservers directive.

Syntax ignore_unknown_nameservers on|off

Default ignore_unknown_nameservers on

Example ignore_unknown_nameservers off

Related dns_nameservers

 < Day Day Up >

 < Day Day Up >

digest_generation

This directive controls whether or not Squid generates a Cache Digest for its own contents. It is
enabled by default, when you give the —enable-cache-digests option to ./configure. You may
want to disable it if you know that you don't have any neighbors who request your digest.

Syntax digest_generation on|off

Default digest_generation on

Example digest_generation off

Related cache_peer, digest_bits_per_entry, digest_rebuild_period, digest_rewrite_period,
digest_swapout_chunk_size, digest_rebuild_chunk_percentage

 < Day Day Up >

 < Day Day Up >

digest_bits_per_entry

This directive affects the size of Squid's Cache Digest, based on the estimate for the total
number of cache entries. Reducing the size of the digest results in lower memory usage but a
higher false hit probability.

Syntax digest_bits_per_entry number

Default digest_bits_per_entry 5

Example digest_bits_per_entry 4

Related digest_generation, store_avg_object_size, cache_dir

 < Day Day Up >

 < Day Day Up >

digest_rebuild_period

The digest rebuild period is how often Squid generates the digest of its own cache. This is a
fairly CPU-intensive procedure, so you don't want to run it too often. On the other hand, the
digest becomes less representative of Squid's contents as more time passes.

Syntax digest_rebuild_period time-specification

Default digest_rebuild_period 1 hour

Example digest_rebuild_period 4 hours

Related digest_generation, digest_rewrite_period, digest_swapout_chunk_size,
digest_rebuild_chunk_percentage

 < Day Day Up >

 < Day Day Up >

digest_rewrite_period

The digest rewrite period is how often Squid generates an on-disk cached HTTP response for its
Cache Digest. This is the response sent to neighbors that request Squid's digest. In most cases
digest_rewrite_period should be the same as digest_rebuild_period.

Syntax digest_rewrite_period time-specification

Default digest_rewrite_period 1 hour

Example digest_rewrite_period 4 hours

Related digest_generation, digest_rebuild_period, digest_swapout_chunk_size,
digest_rebuild_chunk_percentage

 < Day Day Up >

 < Day Day Up >

digest_swapout_chunk_size

This directive controls the amount of data written to disk for each call to the digest swapout
function. Squid services normal cache traffic (client requests, server responses, etc.) in
between digest swapout calls. If the value is too large, Squid blocks on the disk I/O and delays
normal cache traffic.

Syntax digest_swapout_chunk_size size-specification

Default digest_swapout_chunk_size 4 KB

Example digest_swapout_chunk_size 16 KB

Related digest_generation, digest_rewrite_period, digest_rebuild_chunk_percentage

 < Day Day Up >

 < Day Day Up >

digest_rebuild_chunk_percentage

This directive specifies the percentage of hash-table buckets Squid scans during each call to the
digest rebuild procedure. Squid services normal cache traffic in between these calls. Since this
scanning is CPU-intensive, user requests may be delayed for a small, but noticeable amount of
time. If you suspect a performance problem during the rebuild phase, decrease the
digest_rebuild_chunk_percentage value.

Syntax digest_rebuild_chunk_percentage percentage

Default digest_rebuild_chunk_percentage 10

Example digest_rebuild_chunk_percentage 3

Related digest_generation, digest_rebuild_period, store_objects_per_bucket

 < Day Day Up >

 < Day Day Up >

chroot

When you specify a value for this directive, Squid passes it to the chroot() system call. This
provides an extra level of security by isolating the Squid process(es) from the rest of your
filesystem. See Section 5.7 for more information.

Syntax chroot pathname

Default No default

Example chroot /squid

 < Day Day Up >

 < Day Day Up >

client_persistent_connections

This directive controls whether or not Squid uses persistent HTTP connections to cache clients.
When disabled, Squid sends Connection: close headers in its responses to clients. If you
suspect problems caused by client-side persistent connections, disable this directive.

Syntax client_persistent_connections on|off

Default client_persistent_connections on

Example client_persistent_connections off

Related server_persistent_connections, pipeline_prefetch

 < Day Day Up >

 < Day Day Up >

server_persistent_connections

This directive controls whether or not Squid uses persistent HTTP connections to origin servers
and neighbors. When disabled, Squid sends Connection: close headers in forwarded requests.
If you suspect problems caused by server-side persistent connections, disable this directive.

Syntax server_persistent_connections on|off

Default server_persistent_connections on

Example server_persistent_connections off

Related client_persistent_connections

 < Day Day Up >

 < Day Day Up >

pipeline_prefetch

This directive controls whether or not Squid prefetches pipelined requests. It is disabled by
default, so Squid acts only on one request at a time (per connection). If you enable this
directive, Squid processes up to two client requests at once.

Note that the order of responses must match the order of requests. Thus, if the prefetched
(second) request completes before the first, it is delayed until the first response is sent.

Squid doesn't implement pipelining on the server-side. It always opens a new connection to an
origin server (or neighbor) if there are no idle persistent connections.

Syntax pipeline_prefetch on|off

Default pipeline_prefetch off

Example pipeline_prefetch on

Related client_persistent_connections

 < Day Day Up >

 < Day Day Up >

extension_methods

HTTP (RFC 2616) allows clients and servers to use their own extension methods. If requests
with nonstandard HTTP methods go through Squid, the client receives an "Invalid Request"
error message. Squid also writes a cache.log entry, such as this:

2003/09/29 13:40:24| parseHttpRequest: Unsupported method 'XGET'

If you want Squid to accept such requests, you must tell it about the nonstandard methods by
listing them after the extension_methods directive.

Syntax extension_methods HTTP-method ...

Default No default

Example extension_methods XGET XPOST

 < Day Day Up >

 < Day Day Up >

request_entities

This directive determines how Squid handles GET and HEAD requests that have message bodies
(entities). Such requests normally don't contain bodies. There is some confusion about whether
or not RFC 2616 allows entities in GET/HEAD requests. Squid denies such requests by default.
If you would rather have Squid accept them, enable the request_entities directive.

Syntax request_entities on|off

Default request_entities off

Example request_entities on

 < Day Day Up >

 < Day Day Up >

high_response_time_warning

If you provide a non-zero value for this directive, Squid periodically checks the client-side
median response time. If it's above this threshold, Squid prints a warning message in cache.
log. The value is given in milliseconds.

Syntax high_response_time_warning milliseconds

Default high_response_time_warning 0

Example high_response_time_warning 2000

Related high_page_fault_warning, high_memory_warning

 < Day Day Up >

 < Day Day Up >

high_page_fault_warning

If you provide a nonzero value for this directive, Squid periodically checks the process page
fault rate. Page faults generally occur when the Squid process doesn't fit entirely in memory. A
moderate number of page faults can significantly degrade performance. If the one-minute
average rate (page faults per second) exceeds this threshold, Squid prints a warning message
in cache.log.

Syntax high_page_fault_warning number

Default high_page_fault_warning 0

Example high_page_fault_warning 5

Related high_response_time_warning, high_memory_warning

 < Day Day Up >

 < Day Day Up >

high_memory_warning

If you provide a nonzero value for this directive, Squid periodically checks process size. A large
process size can lead to page faults and a significant performance degradation. Squid uses
either mstats(), mallinfo(), or sbrk() to get the process size. If it exceeds the given
threshold, Squid prints a warning message in cache.log.

Syntax high_memory_warning size-specification

Default high_memory_warning 0

Example high_memory_warning 400 MB

Related high_response_time_warning, high_page_fault_warning

 < Day Day Up >

 < Day Day Up >

ie_refresh

In Section 9.2, I explained that Internet Explorer versions prior to 5.5 SP1 have a bug that
make it unable to force a validation of cached responses when using HTTP interception. This
directive provides a partial workaround for the bug. When enabled, Squid pretends that the
request contains a no-cache directive. Thus, Squid always forwards these requests on to the
origin server or a neighbor.

Note this affects only requests that meet the following requirements:

● The User-Agent header indicates Internet Explorer Version 3, 4, 5.0, or 5.01.
● The If-Modified-Since header is present.
● The request contains a partial URI because it was intercepted (see Chapter 9) or Squid

is a surrogate (see Chapter 15).

Squid versions prior to 2.5.STABLE3 contain a bug related to this feature. Although Squid
behaves as though the client's request contains a no-cache directive, it doesn't add that
directive to the outgoing request. This is a problem if you have one or more neighbor caches.
Because the request received by the neighbor doesn't contain a no-cache directive, it may
decide to return a cache hit, rather than forward it on to the origin server.

Later versions include the no-cache directive so that such requests should always reach the
origin server.

Syntax ie_refresh on|off

Default ie_refresh off

Example ie_refresh on

 < Day Day Up >

 < Day Day Up >

vary_ignore_expire

When certain HTTP/1.1 origin servers receive an HTTP/1.0 request (e.g., from Squid), and the
response contains a Vary header, they also add an Expires header set to the current time. This
is to prevent HTTP/1.0 caches, which may not understand the Vary header, from incorrectly
reusing a cached response.

Squid understands and implements the Vary header but still sends the string "HTTP/1.0" in its
requests. You'll need to enable this directive if you want to get cache hits from responses with
Vary and with Expires equal to Date. This directive is somewhat dangerous because the origin
server may have its own reasons (other than maintaining backward compatibility) for setting
the Expires header.

Syntax vary_ignore_expire on|off

Default vary_ignore_expire off

Example vary_ignore_expire on

 < Day Day Up >

 < Day Day Up >

sleep_after_fork

Squid uses the fork() system call to spawn helper processes, such as redirectors,
authenticators, and DNS resolvers. On some systems, a rapid sequence of fork() calls
consumes all available real and virtual memory. Thus, a fork() call may fail with an "out of
memory" error. Note that this isn't necessarily a fatal error. Squid continues running as long as
at least 50% of helper processes are successfully started.

To alleviate this problem, you can instruct Squid to sleep for a small amount of time after each
fork() call. This gives the recently forked process time to complete its exec() call and free up
the memory.

Don't set this value too high, especially if you have a large number of helper processes. Squid
doesn't service any client requests until all helpers have been started.

Syntax sleep_after_fork microseconds

Default sleep_after_fork 0

Example sleep_after_fork 10000

 < Day Day Up >

 < Day Day Up >

Appendix B. The Memory Cache

Squid stores some of its recently retrieved objects fully in memory. As you might expect,
serving objects from memory is generally faster than reading the data from the disk. In some
places, Squid calls this the hot object cache. The cache_mem directive specifies how much
memory Squid should use for in-memory objects.

I usually recommend setting cache_mem to a small size, such as something between 8 and 32
MB. If you happen to have tons of extra memory, you can set it higher. In most cases,
however, your extra memory is better used by increasing your disk cache size (see Section
7.1.3.2).

Many people misunderstand the cache_mem directive. They expect it to limit the total amount
of memory that Squid uses. Unfortunately, for them, this assumption is incorrect. Squid doesn't
have a directive that limits total memory consumption. See Section 7.1.3.2 and Section 16.1.8.

The current version of Squid (2.5) stores objects in memory only if they come from the network
(origin server or neighbor cache). If Squid reads an object from disk, it doesn't also store it in
memory. Older versions of Squid had that functionality. However, it was removed during a
major rewrite to simplify the source code.

Only objects smaller than a certain size are held in memory. The
maximum_object_size_in_memory directive controls this setting. Its default value is 8 KB,
which is typically large enough to fit more than half of all responses Squid receives. This
directive also limits the amount of memory used for each cache miss as the response is being
received. If you have a high request rate but are low on memory, you may want to lower this
value to 4 KB. Squid allocates memory for object data in 4-KB chunks. Thus, it makes sense to
assign this directive a multiple of 4 KB. Other values end up wasting memory.

In-memory objects fall into one of two groups: in-transit or complete. Squid uses the memory
cache for both types. Complete objects are held in memory only if there is some free space.
They have lower priority than in-transit objects. If your cache is busy, the memory cache may
contain nothing but in-transit objects (or, maximum_object_size_in_memory chunks of in-
transit objects, actually). Furthermore, Squid always allocates memory for in-transit objects,
even if it must exceed the cache_mem limit. When an in-transit object becomes a complete
object, it is kept in memory only if the memory cache size is below the limit.

The memory_replacement_policy directive is analogous to replacement_policy. It controls the
replacement policy for objects cached in memory. Because the memory cache is typically much
smaller than the disk cache, your choice of replacement policy may have a bigger impact. See
Section 7.5 for a description of available replacement policies.

 < Day Day Up >

 < Day Day Up >

Appendix C. Delay Pools

Delay pools are Squid's answer to rate limiting and traffic shaping. They work by limiting the
rate at which Squid returns data for cache misses. Cache hits are sent as quickly as possible,
under the assumption that local bandwidth is plentiful.

Delay pools were written by David Luyer while at the University of Western Australia. The
feature was designed for a LAN environment in which different groups of users (for example,
students, instructors, and staff) are on different subnets. You'll see some evidence of this in the
following descriptions.

 < Day Day Up >

 < Day Day Up >

C.1 Overview

The delay pools are, essentially "bandwidth buckets." A response is delayed until some amount
of bandwidth is available from an appropriate bucket. The buckets don't actually store
bandwidth (e.g., 100 Kbit/s), but rather some amount of traffic (e.g., 384 KB). Squid adds
some amount of traffic to the buckets each second. Cache clients take some amount of traffic
out when they receive data from an upstream source (origin server or neighbor).

The size of a bucket determines how much burst bandwidth is available to a client. If a bucket
starts out full, a client can take as much traffic as it needs until the bucket becomes empty. The
client then receives traffic allotments at the fill rate.

The mapping between Squid clients and actual buckets is a bit complicated. Squid uses three
different constructs to do it: access rules, delay pool classes, and types of buckets. First, Squid
checks a client request against the delay_access list. If the request is a match, it points to a
particular delay pool. Each delay pool has a class: 1, 2, or 3. The classes determine which types
of buckets are in use. Squid has three types of buckets: aggregate, individual, and network:

● A class 1 pool has a single aggregate bucket.
● A class 2 pool has an aggregate bucket and 256 individual buckets.
● A class 3 pool has an aggregate bucket, 256 network buckets, and 65,536 individual

buckets.

As you can probably guess, the individual and network buckets correspond to IP address octets.
In a class 2 pool, the individual bucket is determined by the last octet of the client's IPv4
address. In a class 3 pool, the network bucket is determined by the third octet, and the
individual bucket by the third and fourth octets.

For the class 2 and 3 delay pools, you can disable buckets you don't want to use. For example,
you can define a class 2 pool with only individual buckets by disabling the aggregate bucket.

When a request goes through a pool with more than one bucket type, it takes bandwidth from
all buckets. For example, consider a class 3 pool with aggregate, network, and individual
buckets. If the individual bucket has 20 KB, the network bucket 30 KB, but the aggregate
bucket only 2 KB, the client receives only a 2-KB allotment. Even though some buckets have
plenty of traffic, the client is limited by the bucket with the smallest amount.

 < Day Day Up >

 < Day Day Up >

C.2 Configuring Squid

Before you can use delay pools, you must enable the feature when compiling. Use the —enable-
delay-pools option when running ./configure. You can then use the following directives to set up
the delay pools.

C.2.1 delay_pools

The delay_pools directive tells Squid how many pools you want to define. It should go before
any other delay pool-configuration directives in squid.conf. For example, if you want to have
five delay pools:

delay_pools 5

The next two directives actually define each pool's class and other characteristics.

C.2.2 delay_class

You must use this directive to define the class for each pool. For example, if the first pool is
class 3:

delay_class 1 3

Similarly, if the fourth pool is class 2:

delay_class 4 2

In theory, you should have one delay_class line for each pool. However, if you skip or omit a
particular pool, Squid doesn't complain.

C.2.3 delay_parameters

Finally, this is where you define the interesting delay pool parameters. For each pool, you must
tell Squid the fill rate and maximum size for each type of bucket. The syntax is:

delay_parameters N rate/size [rate/size [rate/size]]

The rate value is given in bytes per second, and size in total bytes. If you think of rate in
terms of bits per second, you must remember to divide by 8.

Note that if you divide the size by the rate, you'll know how long it takes (number of seconds)
the bucket to go from empty to full when there are no clients using it.

A class 1 pool has just one bucket and might look like this:

delay_class 2 1

delay_parameters 2 2000/8000

For a class 2 pool, the first bucket is the aggregate, and the second is the group of individual
buckets. For example:

delay_class 4 2

delay_parameters 4 7000/15000 3000/4000

Similarly, for a class 3 pool, the aggregate bucket is first, the network buckets are second, and
the individual buckets are third:

delay_class 1 3

delay_parameters 1 7000/15000 3000/4000 1000/2000

C.2.4 delay_initial_bucket_level

This directive sets the initial level for all buckets when Squid first starts or is reconfigured. It
also applies to individual and network buckets, which aren't created until first referenced. The
value is a percentage. For example:

delay_initial_bucket_level 75%

In this case, each newly created bucket is initially filled to 75% of its maximum size.

C.2.5 delay_access

This list of access rules determines which requests go through which delay pools. Requests that
are allowed go through the delay pools, while those that are denied aren't delayed at all. If you
don't have any delay_access rules, Squid doesn't delay any requests.

The syntax for delay_access is similar to the other access rule lists (see Section 6.2), except
that you must put a pool number before the allow or deny keyword. For example:

delay_access 1 allow TheseUsers

delay_access 2 allow OtherUsers

Internally, Squid stores a separate access rule list for each delay pool. If a request is allowed
by a pool's rules, Squid uses that pool and stops searching. If a request is denied, however,
Squid continues examining the rules for remaining pools. In other words, a deny rule causes
Squid to stop searching the rules for a single pool but not for all pools.

C.2.6 cache_peer no-delay Option

The cache_peer directive has a no-delay option. If set, it makes Squid bypass the delay pools
for any requests sent to that neighbor.

 < Day Day Up >

 < Day Day Up >

C.3 Examples

Let's start off with a simple example. Suppose that you have a saturated Internet connection,
shared by many users. You can use delay pools to limit the amount of bandwidth that Squid
consumes on the link, thus leaving the remaining bandwidth for other applications. Use a class
1 delay pool to limit the bandwidth for all users. For example, this limits everyone to 512 Kbit/s
and keeps 1 MB in reserve if Squid is idle:

delay_pools 1

delay_class 1 1

delay_parameters 1 65536/1048576

acl All src 0/0

delay_access 1 allow All

One of the problems with this simple approach is that some users may receive more than their
fair share of the bandwidth. If you want to try something more balanced, use a class 2 delay
pool that has individual buckets. Recall that the individual bucket is determined by the fourth
octet of the client's IPv4 address. Thus, if you have more than a /24 subnet, you might want to
use a class 3 pool instead, which gives you 65536 individual buckets. In this example, I won't
use the network buckets. While the overall bandwidth is still 512 Kbit/s, each individual is
limited to 128 Kbit/s:

delay_pools 1

delay_class 1 3

delay_parameters 1 65536/1048576 -1/-1 16384/262144

acl All src 0/0

delay_access 1 allow All

You can also use delay pools to provide different classes of service. For example, you might
have important users and unimportant users. In this case, you could use two class 1 delay
pools. Give the important users a higher bandwidth limit than everyone else:

delay_pools 2

delay_class 1 1

delay_class 2 1

delay_parameters 1 65536/1048576

delay_parameters 2 10000/50000

acl ImportantUsers src 192.168.8.0/22

acl All src 0/0

delay_access 1 allow ImportantUsers

delay_access 2 allow All

 < Day Day Up >

 < Day Day Up >

C.4 Issues

Squid's delay pools are often useful, but not perfect. You need to be aware of a few drawbacks
and limitations before you use them.

C.4.1 Fairness

One of the most important things to realize about the current delay pools implementation is
that it does nothing to guarantee fairness among all users of a single bucket. This is especially
important for aggregate buckets (where sharing is high), but less so for individual buckets
(where sharing is low).

Squid generally services requests in order of increasing file descriptors. Thus, a request whose
server-side TCP connection has a lower file descriptor may receive more bandwidth from a
shared bucket than it should.

C.4.2 Application Versus Transport Layer

Bandwidth shaping and rate limiting usually operate at the network transport layer. There, the
flow of packets can be controlled very precisely. Delay pools, however, are implemented in the
application layer. Because Squid doesn't actually send and receive TCP packets (the kernel
does), it has less control over the flow of individual packets. Rather than controlling the
transmission and receipt of packets on the wire, Squid controls only how many bytes to read
from the kernel.

This means, for example, that incoming response data is queued up in the kernel. The TCP/IP
stack can buffer some number of bytes that haven't yet been read by Squid. On most systems,
the default TCP receive buffer size is usually between 32 KB and 64 KB. In other words, this
much data can arrive over the network very quickly, regardless of anything Squid can do. On
the one hand, it seems silly to read this data slowly even though it is already on your system.
On the other hand, because the client doesn't receive the whole response right away, it is likely
to postpone any future requests until the delayed responses are complete.

If you are concerned that the kernel buffers too much server-side data, you can decrease the
TCP receive buffer size with the tcp_recv_bufsize directive. Even better, your operating system
probably has a way to set this parameter for the whole system. On NetBSD/FreeBSD/OpenBSD,
you can use the sysctl variable named net.inet.tcp.recvspace. For Linux, read about /proc/sys/
net/ipv4/tcp_rmem in Documentation/networking/ip-sysctl.txt.

C.4.3 Fixed Subnetting Scheme

The current delay pools implementation assumes that your LAN uses /24 (class C) subnets, and
that all users are in the same /16 (class B) subnet. This might not be so bad, depending on how
your network is configured. However, it would be nice if the delay pools subnetting scheme
were fully customizable.

If your address space is larger than a /24 and smaller than a 16/, you can always create a class

3 pool and treat it as a class 2 pool (that is one of the examples given earlier).

If you use just one class 2 pool with more than 256 users, some users will share the individual
buckets. That might not be so bad, unless you happen to have a bunch of heavy users fighting
over one measly bucket.

You might also create multiple class 2 pools and use delay_access rules to divide them up
among all users. The problem with this approach is that you can't have all users share a single
aggregate bucket. Instead, each subgroup has their own aggregate bucket. You can't make a
single client go through more than one delay pool.

 < Day Day Up >

 < Day Day Up >

C.5 Monitoring Delay Pools

You can monitor the delay pool levels with the cache manager interface. Request the delay
page from the CGI interface or with the squidclient utility:

% squidclient mgr:delay | less

See Section 14.2.1.44 for a description of the output.

 < Day Day Up >

 < Day Day Up >

Appendix D. Filesystem Performance Benchmarks

You have a myriad of choices to make when installing and configuring Squid, especially when it
comes to the way Squid stores files on disk. Back in Chapter 8, I talked about the various
filesystems and storage schemes. Here, I'll provide some hard data on their relative
performance.

These tests were done with Web Polygraph, a freely available, high-performance tool for
benchmarking HTTP intermediaries (http://www.web-polygraph.org/). Over the course of many
months, I ran approximately 40 different tests on 5 different operating systems.

 < Day Day Up >

http://www.web-polygraph.org/

 < Day Day Up >

D.1 The Benchmark Environment

The primary purpose of these benchmarks is to provide a number of measurements that allow
you to compare different Squid configurations and features. In order to produce comparable
results, I've taken care to minimize any differences between systems being tested.

D.1.1 Hardware for Squid

I used five identical computer systems—one for each of the following operating systems:
FreeBSD, Linux, NetBSD, OpenBSD, and Solaris. The boxes are IBM Netfinity servers with one
500-MHz PIII CPU, 1 GB of RAM, an Intel fast-Ethernet NIC, and three 8-GB disk SCSI drives. I
realize that these aren't particularly powerful machines by today's standards, but they are good
enough for these tests. Anyway, it is more important that they be identical than powerful.

The requirement to use identical hardware means that I can't generate comparable results for
other hardware platforms, such as Sun, Digital/Compaq/HP, and others.

D.1.2 Squid Version and Configuration

Except for the coss tests, all results are from Squid Version 2.5.STABLE2. The coss results are
from a patched version of 2.5.STABLE3. Those patches have been committed to the source tree
for inclusion into 2.5.STABLE4.

Unless otherwise specified, I used only the —enable-storeio option when running ./configure
before compiling Squid. For example:

% ./configure --enable-storeio=diskd,ufs,null,coss

In all cases, Squid is configured to use 7500 MB of each 8.2-GB disk. This is a total cache size
of 21.5 GB. Additionally, access.log and store.log have been disabled in the configuration file.
Here is a sample squid.conf file:

visible_hostname linux-squid.bench.tst

acl All src 0/0

http_access allow All

cache_dir aufs /cache0 7500 16 256

cache_dir aufs /cache1 7500 16 256

cache_dir aufs /cache2 7500 16 256

cache_effective_user nobody

cache_effective_group nobody

cache_access_log /dev/null

cache_store_log none

logfile_rotate 0

D.1.3 Web Polygraph Workload

All the tests in this appendix use the same Polygraph workload file.
[1]

 Meeting this requirement
was, perhaps, the hardest part of running these tests. Normally, the desired throughput is a
configuration parameter in a Polygraph workload. However, because the sustainable throughput
is different for each configuration, my colleague Alex Rousskov and I developed a workload that

can be used for all tests.
[2]

 We call this the "peak finder" workload because it finds the peak
throughput for a device under test.

[1] Except for the number-of-spindles tests, in which the cache size depends on
the number of disks in use.

[2] You can download this workload at http://squidbook.org/extras/pf2-pm4.pg.
txt.

The name "peak finder" is somewhat misleading because, at least in Squid's case, sustainable
throughput decreases over time. The workload is designed to periodically adjust the offered
load (throughput) subject to response time requirements. If the measured response time is
below a given threshold, Polygraph increases the load. If response time is above the threshold,
it decreases the load. Thus, at any point in time during the test, we know the maximum
throughput that still satisfies the response time requirements.

In order to reach a steady-state condition, the test runs until the cache has been filled twice.
Polygraph knows the total cache size (21.5 GB) and keeps track of the amount of fill traffic
pulled into the cache. These are responses that are cachable but not cache hits. The test
duration, then, depends on the sustainable throughput. When the throughput is low, the test
takes longer to complete. Some of these tests took more than 10 days to run.

 < Day Day Up >

http://squidbook.org/extras/pf2-pm4.pg.txt
http://squidbook.org/extras/pf2-pm4.pg.txt

 < Day Day Up >

D.2 General Comments

I show, for each test, how the sustainable throughput varies over time. The y-axis shows the
throughput (responses per second). The x-axis is the ratio of fill-traffic volume to cache size.
Because each test takes a different amount of time, this is a nice way to normalize all the
results. The test is over when the cache has been filled twice.

In most traces, you'll see that sustainable throughput decreases over time. At the beginning of
the test, the throughput is very high. Here, the disks are empty, and Squid doesn't need to
replace old objects. The throughput for a full cache is usually worse than for an empty cache.
This is a common characteristic of proxy benchmarks and emphasizes the importance of
reaching steady-state conditions. Don't be fooled by impressive results from short tests.

The Throughput, Response Time, and Hit Ratio values given in the summary tables are taken
from the last 25% of the test. Here, between 1.5 and 2.0 on the x-axis, the throughput is more
or less stable and flat. I report the mean of the throughput, response time, and hit ratio values
in this range from the trace data.

Throughput is the most interesting metric in these tests. It is given in responses per second.
The rows in each summary table are sorted by throughput.

The response time numbers are less interesting because they are all about the same. I decided
to report them to show that, indeed, the results stay within the response time window defined
by the workload. The target response time is around 1.5 seconds, but the actual response time
varies depending on the particular test.

The response hit ratio values are also not particularly interesting. The ideal hit ratio for this
workload is about 58%. Due to an as-yet unresolved Polygraph bug, however, the hit ratio
decreases slightly as the test progresses.

Keep in mind that these results are meant to demonstrate the relative performance of different
options, rather than the absolute values. You'll get different numbers if you repeat the tests on
different hardware.

 < Day Day Up >

 < Day Day Up >

D.3 Linux

Linux is obviously a popular choice for Squid. It supports a wide variety of filesystems and
storage schemes. These results come from Linux kernel Version 2.4.19 (released August 2,
2002) with SGI's XFS patches Version 1.2.0 (released Feb 11, 2003) and ReiserFS Version
3.6.25.

The kernel's file descriptor limit is set to 8192. I used this command to configure Squid before
compiling:

% ./configure --enable-storeio=diskd,ufs,aufs,null,coss --with-aufs-threads=32

The Linux results are summarized in Table D-1, and Figure D-1 shows the traces. You can see
that coss is the best performer, with aufs coming in second and diskd third. As I'm writing this,
coss is an experimental feature and not necessarily suitable for a production system. In the
long run, you'll probably be better off with aufs.

Table D-1. Linux benchmarking results

Storage
scheme Filesystem Mount

options
Throughput
(xact/sec)

Response
time (sec)

Hit
ratio
(%)

coss

326.3 1.59 53.9

aufs(1) ext2fs noatime 168.5 1.45 56.3

diskd(1) ext2fs noatime 149.4 1.53 56.1

aufs(2) ext2fs

110.0 1.46 55.6

ufs(1) ext2fs

54.9 1.52 55.6

ufs(2) ext3fs

48.4 1.49 56.8

ufs(3) xfs

40.7 1.54 55.3

ufs(4) reiserfs
notail,
noatime 29.7 1.55 55.0

ufs(5) reiserfs

21.4 1.55 55.1

Figure D-1. Linux filesystem benchmarking traces

Note that the noatime option gives a significant boost in performance to aufs. The throughput
jumps from 110 to 168 transactions per second with the addition of this mount option. Linux
also has an async option, but it is enabled by default. I did not run any tests with async
disabled.

Of the many filesystem choices, ext2fs seems to give the best performance. ext3fs (ext2 plus
journaling) is only slightly lower, followed by xfs, and reiserfs.

 < Day Day Up >

 < Day Day Up >

D.4 FreeBSD

FreeBSD is another popular Squid platform, and my personal favorite. Table D-2 and Figure D-2
summarize the results for FreeBSD. Again, coss exhibits the highest throughput, followed by
diskd. The aufs storage scheme doesn't currently run on FreeBSD. These results come from
FreeBSD Version 4.8-STABLE (released April 3, 2003). I built a kernel with the following
noteworthy options:

options MSGMNB=16384

options MSGMNI=41

options MSGSEG=2049

options MSGSSZ=64

options MSGTQL=512

options SHMSEG=16

options SHMMNI=32

options SHMMAX=2097152

options SHMALL=4096

options MAXFILES=8192

options NMBCLUSTERS=32768

options VFS_AIO

Table D-2. FreeBSD benchmarking results

Storage
scheme Filesystem Mount options Throughput Response time Hit ratio

coss

330.7 1.58 54.5

diskd(1) UFS
async, noatime,
softupdate 129.0 1.58 54.1

diskd(2) UFS

77.4 1.47 56.2

ufs(1) UFS
async, noatime,
softupdate 38.0 1.49 56.8

ufs(2) UFS noatime 31.1 1.54 55.0

ufs(3) UFS async 30.2 1.51 55.9

ufs(4) UFS softupdate 29.9 1.51 55.7

ufs(5) UFS

24.4 1.50 56.4

Figure D-2. FreeBSD filesystem benchmarking traces

Enabling the async, noatime, and softupdate
[3]

 options boosts the standard ufs performance
from 24 to 38 transactions per second. However, using one of the other storage schemes
increases the sustainable throughput even more.

[3] On FreeBSD, softupdates aren't a mount option, but must be set with the
tunefs command.

FreeBSD's diskd performance (129/sec) isn't quite as good as on Linux (169/sec), perhaps
because the underlying filesystem (ext2fs) is better.

Note that the trace for coss is relatively flat. Its performance doesn't change much over time.
Furthermore, both FreeBSD and Linux report similar throughput numbers: 326/sec and 331/
sec. This leads me to believe that the disk system isn't a bottleneck in these tests. In fact, the
test with no disk cache (see Section D.8) achieves essentially the same throughput (332/sec).

 < Day Day Up >

 < Day Day Up >

D.5 OpenBSD

The results in this section are from OpenBSD Version 3.3 (released May 1, 2003). I built a
kernel with the following notable configuration options:

option MSGMNB=8192

option MSGMNI=40

option MSGSEG=512

option MSGSSZ=64

option MSGTQL=2048

option SHMSEG=16

option SHMMNI=32

option SHMMAX=2048

option SHMALL=4096

option NMBCLUSTERS=32768

option MAXFILES=8192

Table D-3 and Figure D-3 summarize the OpenBSD results. The choices for OpenBSD are
similar to those for FreeBSD. Unfortunately, however, coss doesn't run on OpenBSD, which
lacks the aio_read() and aio_write() functions.

Table D-3. OpenBSD benchmarking results

Storage
scheme Filesystem Mount options Throughput Response

time
Hit
ratio

diskd(1) UFS async, noatime, softupdate 91.1 1.45 56.3

diskd(2) UFS

63.7 1.44 56.2

ufs(1) UFS softupdate 27.6 1.51 56.3

ufs(2) UFS noatime 25.1 1.52 56.3

ufs(3) UFS

22.7 1.52 56.1

ufs(4) UFS async 22.1 1.51 56.6

Figure D-3. OpenBSD filesystem benchmarking traces

In general, the OpenBSD results are slightly worse than FreeBSD. This isn't too surprising,
given that the OpenBSD project emphasizes security and perhaps spends less time on
filesystem performance.

One odd result is that using the async option (alone) caused a slight decrease in performance
for the ufs storage scheme.

 < Day Day Up >

 < Day Day Up >

D.6 NetBSD

These results come from NetBSD Version 1.6.1 (released April 21, 2003). Table D-4 and Figure
D-4 summarize the NetBSD results. NetBSD actually performs almost the same as OpenBSD.
The best configuration yields about 90 transactions per second. Unfortunately, NetBSD doesn't
support coss or aufs. I built a custom kernel with these options:

options NMBCLUSTERS=32768

options MAXFILES=8192

options MSGSSZ=64

options MSGSEG=512

options MSGMNB=8192

options MSGMNI=40

options MSGTQL=2048

Table D-4. NetBSD benchmarking results

Storage
scheme Filesystem Mount options Throughput Response time Hit

ratio

diskd(1) UFS
softupdate,
noatime,async 90.3 1.49 57.2

diskd(2) UFS softupdate 73.5 1.51 55.8

diskd(3) UFS

60.1 1.48 55.9

ufs(1) UFS
softupdate,
noatime,async 34.9 1.51 56.2

ufs(2) UFS softupdate 31.7 1.52 55.5

ufs(3) UFS

23.6 1.53 55.4

Figure D-4. NetBSD filesystem benchmarking traces

 < Day Day Up >

 < Day Day Up >

D.7 Solaris

These results come from Solaris Version 8 for Intel (released February 2002). Solaris 9 was
available when I started these tests, but Sun no longer makes it freely available. I tweaked the
kernel by adding these lines to /etc/system:

set rlim_fd_max = 8192

set msgsys:msginfo_msgmax=8192

set msgsys:msginfo_msgmnb=8192

set msgsys:msginfo_msgmni=40

set msgsys:msginfo_msgssz=64

set msgsys:msginfo_msgtql=2048

set shmsys:shminfo_shmmax=2097152

set shmsys:shminfo_shmmni=32

set shmsys:shminfo_shmseg=16

Table D-5 and Figure D-5 summarize the Solaris results. This is the only other operating
system, in addition to Linux, in which the aufs storage scheme works well. Interestingly, both
aufs and diskd have about the same performance on Solaris, although the actual numbers are
much lower than on Linux.

Table D-5. Solaris benchmarking results

Storage scheme Filesystem Mount options Throughput Response time Hit ratio

diskd(1) UFS noatime 56.3 1.53 55.7

aufs(1) UFS noatime 53.6 1.49 56.6

diskd(2) UFS

37.9 1.53 55.5

aufs(2) UFS

37.4 1.49 56.4

coss

32.4 1.47 54.6

ufs(1) UFS noatime 24.0 1.53 55.6

ufs(2) UFS

19.0 1.50 56.3

Figure D-5. Solaris filesystem benchmarking traces

Solaris also supports coss, but at nowhere near the rates for Linux and FreeBSD. For some
unknown reason, coss on Solaris is limited to 32 transactions per second.

 < Day Day Up >

 < Day Day Up >

D.8 Number of Disk Spindles

In this section, I compare Squid's performance for different number of disk drives (spindles).
These tests are from the Linux system with the aufs storage scheme and ext2fs filesystems.

Table D-6 and Figure D-6 summarize the results. The test with no disk drives has the best
throughput, but the worst response time and hit ratio. Note that Squid does serve a few cache
hits from memory, so the hit ratio isn't zero.

Table D-6. Comparison of 0-3 disk spindles on Linux with aufs

#Disks Throughput Response time Hit ratio

0 332.1 2.99 0.4

3 109.6 1.44 56.2

2 85.3 1.49 53.9

1 66.0 1.50 53.5

Figure D-6. Benchmarking results for 0, 1, 2, and 3 disk drives on Linux
with aufs

The primary purpose of these tests is to show that Squid's performance doesn't increase in
proportion to the number of disk drives. Excluding other factors, you may be able to get better
performance from three systems with one disk drive each, rather than a single system with
three drives.

 < Day Day Up >

 < Day Day Up >

Appendix E. Squid on Windows

Squid has been designed to run on Unix, but you can also get it to run on Microsoft Windows.
Perhaps the easiest way is to use Red Hat's Cygwin emulation layer. It gives a Windows box
everything it needs to run a variety of Unix applications. Another option is to use SquidNT. This
is a version of the source code that has been modified to compile under a native Windows C
compiler.

 < Day Day Up >

 < Day Day Up >

E.1 Cygwin

Cygwin is a Unix emulation package for Microsoft Windows. It provides an environment that
allows you to build and run software primarily designed for Unix. You can also download and
install a number of precompiled binary packages, including Squid.

Cygwin runs on Windows 95, 98, ME, NT, 2000, and XP. The Cygwin FAQ, however, makes this
disclaimer:

Keep in mind that Cygwin can only do as much as the underlying OS supports.
Because of this, Cygwin will behave differently, and exhibit different limitations,
on the various versions of Windows.

When writing this appendix, I installed Cygwin Version 1.3.21 on Windows 2000.

E.1.1 Installing Cygwin

The first step is to install Cygwin on your Windows system. Visit the http://www.cygwin.com/
site and click on the Install Cygwin link. After running Cygwin Setup, you'll have the base
environment with a number of standard Unix tools. You might want to spend a little time
playing with it to see how it works. Once you're comfortable with the Cygwin environment,
decide if you'd like to use the precompiled package or compile Squid from its source.

E.1.2 The Squid Package

The Cygwin project provides a precompiled Squid binary. To download and install it, run the
Cygwin Setup program again. When you see the Select Packages window, find the Web group
and select squid for installation. Continue with the setup procedure as before.

When Setup completes, you should find the Squid binary at /usr/bin/squid and the
configuration file at /etc/squid.conf.

E.1.3 Compiling Squid

You can also compile the Squid source code under Cygwin. This might be necessary if you want
to run a more recent version than the precompiled binary available from the Cygwin site. To
compile on Cygwin, you need to install at least the following packages:

● Archive/sharutils
● Devel/make
● Devel/gcc
● Interpreters/Perl

After installing those tools, you should be able to configure and compile Squid as described in
Chapter 3.

http://www.cygwin.com/

E.1.4 Configuring and Running

Since Cygwin is essentially a Unix environment, you can run Squid as described throughout this
book. Some special features may or may not work. For example, you won't be able to build
certain authentication helpers without additional libraries and header files. Here are a few
things to watch out for:

● The cache_effective_user directive is set to nobody by default. When you run Squid
under Cygwin, you may get an error that the nobody doesn't exist. You can either create
that user or set cache_effective_user to a username that does exist.

● Cygwin doesn't have a /etc/resolv.conf by default, and Squid won't pick up your DNS
server settings from the Windows registry. You can either create a fake /etc/resolv.conf
or list your name server addresses in squid.conf with a dns_nameserver directive.

 < Day Day Up >

 < Day Day Up >

E.2 SquidNT

Guido Serassio is maintaining a project called SquidNT. It is branch of Squid's development tree
that contains changes necessary for a native port of Squid to Windows NT, 2000, XP, and 2003.
In other words, you can compile and run this version of Squid on Windows without any Unix
emulation libraries. The code is known to compile with Microsoft's Visual C++ 6.0 compiler and
under the MSYS+MinGW environment. Guido also provides some precompiled SquidNT binaries.
You can find his work and more information on SquidNT by visiting http://www.serassio.it/
SquidNT.htm.

 < Day Day Up >

http://www.serassio.it/SquidNT.htm
http://www.serassio.it/SquidNT.htm

 < Day Day Up >

Appendix F. Configuring Squid Clients

This appendix contains information on setting up various browsers and user-agents to use
Squid. Although it is more extensively covered in my O'Reilly book Web Caching, I'll include
some brief instructions here.

I have instructions for the following HTTP user-agents: Internet Explorer v6, Konqueror v3,
Lynx v2.8, Netscape v7 a.k.a. Mozilla v5, Opera v7, libwww-perl v5, Python's urllib/urllib2, and
Wget v1.8. If you think this is all a huge hassle, consider using HTTP interception, as described
in Chapter 9.

 < Day Day Up >

 < Day Day Up >

F.1 Manually

Web browsers and other HTTP-based user-agents have methods for explicitly setting a proxy
address. For large organizations, this is a real hassle. You may simply have too many desktops
to visit one at a time. Additionally, this approach isn't as flexible as the others. For example,
you can't temporarily stop the flow of requests to the proxy or easily bypass the cache for
certain troublesome sites.

Browsers usually give you the option to send HTTPS URLs to a proxy. Squid can handle HTTPS
requests, although it can't cache the responses. Squid simply tunnels the encrypted traffic.
Thus, you should configure the browser to proxy HTTPS requests only if your firewall prevents
direct connections to secure sites.

F.1.1 Netscape/Mozilla

To manually configure proxies with Netscape and Mozilla, follow this sequence of menus:

● Edit
● Preferences
● Advanced
● Proxies
● Manual proxy configuration
● Fill in the HTTP Proxy address and Port fields. Enter the same values for FTP Proxy if you

like.

F.1.2 Explorer

To manually configure proxies in Internet Explorer, select the following sequence of menus:

● View from the main window menu
● Internet Options
● Connections tab
● LAN Settings
● Enable Use a proxy server and enter its address in the Address and Port fields

The Advanced button opens a new window in which you can enter different proxy addresses for
different protocols (HTTP, FTP, etc.).

F.1.3 Konqueror

You can manually configure proxies in Konqueror by clicking on the following sequence of
menus:

● Settings
● Configure Konqueror
● Proxies & Cache
● Use Proxy

● Fill in the address for HTTP Proxy, and Port. Use the same values for other protocols if
you like.

F.1.4 Opera

Here's how to find the proxy configuration screen in Opera browsers:

● File
● Preferences
● Network
● Proxy Servers
● Enter an IP address (or hostname) and port number for HTTP, FTP, and other protocols

as necessary.

F.1.5 Lynx

The Lynx browser uses a configuration file, typically /usr/local/etc/lynx.cfg. There you'll find a
number of settings for proxies. For example:

http_proxy:http://proxy.example.com:3128/

https_proxy:http://proxy.example.com:3128/

ftp_proxy:http://proxy.example.com:3128/

Lynx also accepts proxy configuration via environment variables, as described in the next
section.

F.1.6 Environment Variables

Some browsers and other user-agents look for proxy settings in environment variables. Note
that the variable names are lowercase, unlike most environment variable names:

csh% setenv http_proxy http://proxy.example.com:3128/

csh% setenv ftp_proxy http://proxy.example.com:3128/

sh$ http_proxy=http://proxy.example.com:3128/

sh$ ftp_proxy=http://proxy.example.com:3128/

export http_proxy ftp_proxy

I've convinced myself that the following products and packages check for these environment
variables:

● Opera
● Lynx

● Wget
● Python's urllib and urllib2
● libwww-perl

 < Day Day Up >

 < Day Day Up >

F.2 Proxy Auto-Configuration

Proxy Auto-Configuration is a technique that allows more control over the way user-agents
select a proxy. The configuration file is simply a text file containing a JavaScript function.
Browsers download the configuration file when they start up and then evaluate the function
before each request. The function's return value determines where the request is sent.

Proxy Auto-Configuration is attractive because it gives the network administrator more control.
For example, you can temporarily disable your caching service, implement load balancing, or
migrate the service to new systems. Additionally, the function can return a list of proxy
addresses, which the browser tries in sequence. If the first is unavailable, it tries the second,
and so on.

The following browsers support Proxy Auto-Configuration:

● Internet Explorer
● Opera
● Netscape
● Konqueror
● Mozilla

All these browsers have a place in which you can type in the Proxy Auto-Configuration URL.
You'll find it in the same place as the manual proxy settings, earlier described in Section F.1.
Configuring hundreds or thousands of workstations is a real hassle, which is why a handful of
companies came up with WPAD, described in the next section.

Writing a Proxy Auto-Configuration function is relatively straightforward. The function, named
FindProxyForURL, takes two arguments and returns a list of proxy addresses, separated by
semicolons. The word DIRECT instructs the browser to forward the request directly to the origin
server, rather than to a proxy. Here is a simple example:

function FindProxyForURL(url, host) {

 if (isPlainHostName(host))

 return "DIRECT";

 if (!isResolvable(host))

 return "DIRECT";

 if (url.substring(0, 5) = = "http:")

 return "PROXY 172.16.5.1:3128; DIRECT";

 if (url.substring(0, 4) = = "ftp:")

 return "PROXY 172.16.5.1:3128; DIRECT";

 return "DIRECT";

}

The first if statement makes the browser connect directly to the origin server if the user types a
single-component hostname, such as www. This is generally a good idea because the browser's
interpretation of the hostname might be different from the proxy's. The second if statement
ensures that the hostname exists in the DNS. If not, the user sees an error message from the
browser itself, rather than from Squid. The next two if statements return a proxy address,
followed by DIRECT for HTTP and FTP URLs. If the proxy doesn't respond, the browser attempts
to make a direct connection to the origin server.

If you have a firewall in place, the browser probably won't be able to
make a direct connection.

After writing the function, save it somewhere in your web server's data directory. Next, you
need to configure the server to return a specific content type for the file. The convention is to
give the file a .pac extension, such as proxy.pac. Then, ensure that the HTTP server returns the
content type application/x-ns-proxy-autoconfig. With Apache, you can add this line to
your server config file:

AddType application/x-ns-proxy-autoconfig .pac

Refer to Section 4.3 of Web Caching (O'Reilly), for more information on Proxy Auto-
Configuration files, including more complicated FindProxyForURL ideas and examples.

 < Day Day Up >

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/www

 < Day Day Up >

F.3 WPAD

The Web Proxy Auto Discovery (WPAD) protocol is a technique for user-agents to find a nearby
caching proxy automatically. The idea is relatively simple. The protocol provides a number of
methods for generating a URL that refers to a Proxy Auto-Configuration file. Those methods
include DHCP, DNS lookups, and SLP (the Service Location Protocol).

DHCP is the first method the user-agent should try. It sends a query for "option 252" to a local
DHCP server. The response is a string: the URL. Here's how to configure ISC's DHCP server for
WPAD:

option wpad code 252 = text;

option wpad "http://172.16.1.1/proxy.pac";

The second method is SLP. However, its implementation is optional. I do not know if any user-
agents actually support WPAD via SLP.

DNS is the last resort. The protocol specification outlines a number of DNS techniques a user-
agent might use to find a wpad.dat URL. The most straightforward technique is to perform an
address lookup for the hostname wpad in the local domain. For example, if the system's
hostname is orion.example.com, the agent requests the IP address of wpad.example.com. If
the lookup is successful, the agent makes a TCP connect to that address on port 80 and
requests /wpad.dat.

To make this work in Apache, you need to set the content type for the wpad.dat file like this:

AddType application/x-ns-proxy-autoconfig .dat

This may have negative side effects if your server has other files that end with .dat. One trick
some people use is to redirect requests for wpad.dat to proxy.pac, with commands like this in
httpd.conf:

Redirect /wpad.dat http://wpad.example.com/proxy.pac

Note that you probably won't be able to set up a separate virtual host for the wpad name in
your domain. This is because some user-agents set the Host header to the IP address, rather
than the hostname. The following is an example.

GET /wpad.dat HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Win32)

Host: 206.168.0.13

file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/wpad
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/orion.example.com
file:///C|/Documents%20and%20Settings/ORV/Escritorio/XxX/O'Reilly%20-%20Squid%20The%20Definitive%20Guide%202004/0596001622/wpad.example.com
file:///wpad.dat

WPAD is enabled by default in Microsoft Internet Explorer. Konqueror also supports WPAD but
disables it by default. You can enable WPAD in Konqueror by visiting the proxy configuration
page (described in the Section F.1) and selecting Auto Configure Proxy. Although the current
stable versions of Netscape (v7.02) and Mozilla (v5.0) don't implement WPAD, future versions
will.

 < Day Day Up >

 < Day Day Up >

F.4 Summary

Table F-1 summarizes the various proxy configuration options for the user-agents mentioned in
this appendix.

Table F-1. Proxy configuration techniques for popular user-agents

User agent Manual Environment PAC WPAD

Explorer Yes No Yes Yes

Konqueror Yes No Yes Yes

libwww-perl N/A Yes No No

Lynx Yes Yes No No

Netscape/Mozilla Yes No Yes No

Opera Yes Yes Yes No

Wget N/A Yes No No

 < Day Day Up >

 < Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Squid: The Definitive Guide is a giant squid (Architeuthis dux). Of
the class Cephalopoda, which means "head foot," the giant squid holds much fascination for
humans, part of which has to do with the fact that it has never been observed alive in its
natural habitat. Scientists have only been able to study specimens that have been caught or
found washed up on beaches. This invertebrate can grow to 60 feet in length and weigh as
much as a ton. It's a deep-sea dweller (660-2,300 feet) that is found throughout the world's
oceans.

A giant squid consists of seven parts. Its head houses a complex brain. Its eyes are the largest
in the animal kingdom-up to 10 inches in diameter. (Most deep-sea animals have very large
eyes so they can gather the small amounts of light available in the depths of the ocean.) Its
fins are relatively small and help it to balance and maneuver as it swims. Its main body is
called a mantle: it's a muscular sac that contains most of the organ systems. Its eight arms are
studded with two rows of suckers; it also has two much longer feeding tentacles, the ends of
which also have suckers and are called clubs. Finally, its funnel is a multipurpose tube used to
breathe, squirt ink, lay eggs, expel waste, and propel itself.

To eat, a giant squid captures its prey with its two long feeding tentacles. Holding the intended
dinner with its shorter arms, its sharp horny beak cuts the food up, and a file-like radula sends
it down the throat and esophagus; the food then passes directly through the brain to the
stomach. Scientists believe giant squid may be solitary hunters because no more than one has
ever been caught in the same fishing net.

Mary Anne Weeks Mayo was the production editor and copyeditor for Squid: The Definitive
Guide . Sada Preisch proofread the book, and Marlowe Shaeffer and Claire Cloutier provided
quality control. Jamie Peppard and Mary Agner provided production assistance. Johnna Dinse
wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman.
The cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby
produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. This book
was converted by Joe Wizda to FrameMaker 5.5.6 with a format conversion tool created by Erik
Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced
by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6.
The tip and warning icons were drawn by Christopher Bing. This colophon was compiled by
Mary Anne Weeks Mayo.

The online edition of this book was created by the Safari production group (John Chodacki,
Becki Maisch, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools
written and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

5min, cache manager page

60min, cache manager page

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

-a option, command-line

access controls

 cache manager

 client blocking

 debugging

 delays due to

 ICP queries

 IP addresses, request denial and

 local clients

 non-HTTP servers and

 pornography denials

 redirectors and

 rules

 checks

 matching

 syntax

 server acceleration

 squid.conf file

 surrogate mode and

 syntax

 testing

 usage restriction

 user access

access.log 2nd 3rd

 Calamaris

 configuration directives

 fields

 HTTP response field, status codes

 peering codes

 result codes

 Squeezer

 store.log comparison

 Webalyzer

acl directive 2nd

ACL elements

 arp type

 AS numbers

 browser type

 domain names

 dst type

 dst_as type

 dstdom_regex type

 dstdomain type

 external

 authentication helpers and

 writing

 ident type

 ident_regex type

 IP addresses

 long lists

 matching

 maxconn type

 method type

 myip type

 myport type

 port type

 proto type

 proxy_auth type

 proxy_auth_regex type

 regular expressions

 reply_body_max_size

 req_mime_type

 snmp_community type

 src type

 src_as type

 srcdom_regex type

 srcdomain type

 syntax

 TCP port numbers

 usernames

 values

ACL rules

ACLs (access control lists)

 always_direct

 broken_posts

 cache_peer_access

 cachemgr.cgi rule

 cachemgr_passwd rule

 delay_access

 elements

 header_access

 header_replace

 http_access

 http_access rule, cache manager and

 http_reply_access rule

 example

 icp_access

 ident_lookup_access

 miss_access

 never_direct

 no_cache

 redirector_access

 rep_mime_type type

 snmp_access

 tcp_outgoing_address

 tcp_outgoing_tos

 time type

 url_regex type

 urlpath_regex type

action field, store.log

active_requests, cache manager page

Address already in use message

addresses, ACLs and

administrator contact information

AdZapper redirector

Alteon/Nortel, interception caching and

always_direct ACL

always_direct directive

 neighbor caches

announce_file directive

announce_host directive

announce_period directive

announce_port directive

APIs

 Basic Auth API

 Digest authentication

 NTLM authentication

append_domain directive

application layer, transport layer and

application-layer routing

arp ACL type

arrowpoint (Cisco), interception caching and

AS (Autonomous System) numbers, ACLs

as_whois_server directive

asndb, cache manager page

assertions, debugging and

aufs storage scheme 2nd

 issues with

 monitoring

auth_param directive 2nd

 arguments

 Basic authentication, parameters supported

 Digest authentication, parameters supported

 NTLM authentication support, parameters supported

authenticate_cache_garbage_interval directive

authenticate_ip_ttl directive 2nd

authenticate_ttl directive

authentication

 Basic 2nd

 Basic Auth API

 Digest

 Digest API

 helpers

 configuration

 external ACLs and

 getpwnam (Basic authentication) 2nd

 LDAP (Basic authentication)

 MSNT (Basic authentication)

 multi-domain-NTLM (Basic authentication)

 NCSA (Basic authentication)

 PAM (Basic authentication)

 SASL (Basic authentication)

 SMB (Basic authentication)

 SMB (NTLM authentication)

 winbind (Basic authentication)

 winbind (NTLM authentication)

 YP (Basic authentication)

 HTTP Digest

 NTLM 2nd

 API

 proxy authentication, directives

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

backend servers

 boxes, surrogate configuration and

 content negotiation

 IP addresses and

 server acceleration and

bandwidth

 application layer

 transport layer

bandwidth buckets

Basic authentication 2nd

 auth_param directive, parameters supported

 Basic Auth API

 getpwnam helper

 LDAP helper

 MSNT helper

 multi-domain NTLM helper

 NCSA helper

 PAM helper

 SASL helper

 SMB helper

 winbind helper

 YP helper

basicauthenticator, cache manager page

benchmarks

 filesystem

 disk spindles

 FreeBSD

 Linux

 NetBSD

 Solaris

 filesystem performance

 configuration

 hardware

 Squid versions

 I/O bottleneck and

blocking clients, access controls and

Bloom filters, Cache Digests

boot scripts

 /etc/inittab scheme

 /etc/rc.local

 init.d scheme

 rc.d scheme

broken_posts ACL

broken_posts directive

browser ACL type

BSD-based code, mbufs and

buffered I/O, redirectors

buffered_logs directive

 access.log and

bus errors, debugging

byte hit ratio

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

-C option, command-line

cache

 hits on local sites, access controls and

 Squid as

Cache Digests 2nd

 Bloom filter

 configuration for

cache directories, initialization

cache hierarchies

 forwarding loops

 neighbor caches, cache_peer directive

cache hit ratio

cache hits

cache key field, store.log

cache manager 2nd

 access controls

 disadvantages

 http_access ACL rule

 Squid-RRD and

 squidclient utility and

cache manager pages

 5min

 60min

 active_requests

 asndb

 basicauthenticator

 carp

 cbdata

 client_list

 comm_incoming

 config

 counters

 delay

 digest_stats 2nd

 digestauthenticator

 diskd

 dns

 events

 external_acl

 filedescriptors

 forw_headers

 forward

 fqdncache

 histograms

 http_headers

 info

 io

 ipcache

 leaks

 mem

 menu

 netdb

 non_peers

 ntlmauthenticator

 objects

 offline_toggle

 openfd_objects

 pconn

 peer_select

 redirector

 refresh

 server_list

 shutdown

 squidaio_counts

 store_check_cachable_stats

 store_digest

 store_io

 storedir

 utilitization

 via_headers

 vm_objects

cache misses

cache validation

cache.log 2nd 3rd 4th

 debugging and 2nd

 messages

 system log

 terminal

 warnings

 hardcoded

 page fault excesses

 process size

 response time

cache_access_log directive

cache_dir directive 2nd

 options

cache_dns_program directive

cache_effective_group directive

cache_effective_user directive

cache_log directive

cache_mem directive 2nd

cache_mgr directive

 squid.conf (administrator contact)

cache_peer directive

 neighbor caches and

 no-delay option

 options

cache_peer_access directive 2nd

 loops and

 neighbor cache access list

cache_peer_domain directive

 neighbor cache access

cache_replacement_policy directive 2nd

cache_store_log directive

cache_swap_high directive 2nd

cache_swap_log directive

cache_swap_low directive

 disk cache

cachemgr.cgi ACL rule

cachemgr_passwd directive

caches

 memory cache

 retrying requests

 web caching

Calamaris

Cannot determine fully qualified hostname, debugging and

CARP (Cache Array Routing Protocol) 2nd

 configuration for

carp, cache manager page

case sensitivity, squid.conf file

cbdata page, cache manager pages

CDN (content delivery network)

children parameter, auth_param directive

chroot directive

chroot environment

Cisco

 arrowpoint, interception caching and

 policy routing, interception caching and

 WCCP, interception caching and

client address field

 access.log

 referer.log

 useragent.log

client identity field, access.log

client-side of Squid

client_db directive

client_lifetime directive

client_list, cache manager page

client_netmask directive

 access.log and

client_persistent_connections directive

clients

 blocking, access controls and

 configuration, manual

 local, access controls

comm_incoming, cache manager page

command-line options

 -a

 -C

 -d

 -D

 -f

 -F

 -h

 -k

 -N

 -R

 -s

 -u

 -v

 -V

 -X

 -Y

 -z

commands

 make, ./configure script

 squid -k shutdown

compiling

 ./configure script

 options

 coss

 diskd

 file descriptors

 installing programs

 kernel and

 preparations

 unpacking source

complete objects, memory

config, cache manager page

configuration [See also squid.conf]

 authentication helpers

 automatic, Proxy Auto-Configuration

 Cache Digests and

 CARP and

 coss storage scheme

 delay pools

 devices, interception caching and

 directives, access.log and

 diskd

 filesystem benchmarks

 HTCP and

 interception caching and

 WCCP

 redirectors

 running processes, reconfiguring

 surrogate mode and

./configure script

 make command

 options

 rerunning

 running

connect_timeout directive

contact info for administrator

content routers

 Squid as

content type field, access.log

content, uncachable

content-length/size field, store.log

content-type field, store.log

controls [See access controls]

core dumps, debugging and

coredump_dir directive

coss (Cyclic Object Storage Scheme)

counters, cache manager page

credentialsttl parameter, auth_param directive

CVS (Concurrent Versioning System)

Cygwin

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

-d option, command-line

-D option, command-line

daemon processes, Squid as

 squid_start script

date field, store.log

dead_peer_timeout directive

debug_options directive

 cache.log

debugging

 access controls

 Address already in use

 assertions and

 bus errors and

 cache.log

 cache.log and

 core dumps and

 DNS name lookup and

 filedescriptors and

 fully qualified hostname message

 hostnames and

 HTTP interception

 icmpRecv and

 replicating problems and

 reporting bugs

 segmentation violations and

 stack traces and

 swap directory error

 system speed

delay pools

 configuration

 monitoring

 overview

 subnetting scheme and

delay, cache manager page

delay_access ACL

delay_access directive 2nd

delay_class directive 2nd

delay_initial_bucket_level directive 2nd

delay_parameters directive 2nd

delay_pools directive 2nd

deny_info directive

DEVEL releases

developers, devel.squid-cache.org site

devices, interception caching and

diffs, applying

Digest authentication

 API

 auth_param directive, parameters supported

digest_bits_per_entry directive

digest_generation directive

digest_rebuild_chunk_percentage directive

digest_rebuild_period directive

digest_rewrite_period directive

digest_stats, cache manager page

digest_swapout_chunk_size directive

digestauthenticator, cache manager page

direct options

directories

 cache directories, initialization

 disk cache, object allocation

directory argument, cache_dir directive

directory number field, store.log

disk cache

 cache_dir directive

 cache_replacement_policy directive

 cache_swap_high directive

 cache_swap_low directive

 directories, object allocation

 I/O bottleneck

 object removal

 object size

 refresh_pattern directive

 replacement policy

 usage

disk space, process size and

disk spindles, benchmarks and

diskd storage scheme

diskd, cache manager page

diskd_program directive

DNS name lookup tests failed message, debugging and

dns, cache manager page

dns_children directive

dns_defnames directive

dns_nameservers directive

dns_retransmit_interval directive

dns_testnames directive

dns_timeout directive

domain names, ACLs

dst ACL type

dst_as ACL type

dstdom_regex ACL type

dstdomain ACL type

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

emulate_httpd_log directive

 access.log and

environment variables, proxy manual configuration

environments, chroot

ephemeral ports

err_html_text directive

error checking, squid.conf file

error messages, surrogate mode and

error_directory directive

ESI (Edge Side Includes)

/etc/inittab scheme

/etc/rc.local script

events page, cache manger pages

expires field, store.log

Explorer, manual configuration

ext2fs

extension_methods directive

external ACLs

 authentication helpers and

 writing

external_acl, cache manager page

external_acl_type directive

Extreme Networks, interception caching and

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

-f option, command-line

-F option, command-line

false hits, sibling caches

FAQ document

FFS (Fast File System)

fields, access.log

file descriptors

 compiling and

 FreeBSD and

 Linux and

 NetBSD and

 OpenBSD and

 Solaris and

file number field, store.log

file numbers, mapping to pathnames

filedescriptors

 cache manager page

 debugging and

filesystems

 alternative

 aufs storage scheme

 benchmarks

 configuration

 disk spindles

 FreeBSD

 hardware

 Linux

 NetBSD

 OpenBSD

 Solaris

 Squid versions

 coss (Cyclic Object Storage Scheme)

 disk cache, object size

 disk space, process size and

 disk usage

 diskd storage scheme

 ext2fs

 FFS

 I/O bottleneck

 inodes

 journaling systems

 null storage scheme

 soft updates

 storage schemes

 system calls

 tuning options

 UFS

filters, redirectors and

forw_headers, cache manager page

forward, cache manager pages

forwarded_for directive

forwarding loops, cache hierarchies

Foundry, interception caching and

FQDN (fully qualified domain name)

fqdncache, cache manager page

fqdncache_size directive

FreeBSD

 file descriptors and

 filesystem benchmarks

 interception caching and

FTP (File Transfer Protocol) servers

ftp_list_width directive

ftp_passive directive

ftp_sanitycheck directive

ftp_user directive

fully qualified hostname, debugging

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

GDSF (greedy dual-size frequency) replacement policy

getpwnam authentication helper (Basic authentication)

getrusage() function

GNU (General Public License)

Gopher servers

GRE (Generic Routing Encapsulation), interception caching and

groups

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

-h option, command-line

half_closed_clients directive

hardcoded warnings, cache.log

hardware requirements

hardware, filesystem benchmarks

header_access ACL 2nd

header_replace ACL 2nd

health checks, interception caching and

hierarchies

 cache hierarchies

 surrogate mode and

hierarchy_stoplist directive

 neighbor caches

high_memory_warning directive 2nd

high_page_fault_warning directive 2nd

high_response_time_warning directive 2nd

histograms, cache manager page

hostname, debugging and

hostname_aliases directive

hosts_file directive

hot object cache

HTCP (Hypertext Caching Protocol) 2nd

 configuring for

 ICP and

 reply processing

htcp_port directive

HTTP (Hypertext Transfer Protocol)

 Basic authentication

 auth_param directive parameters

 Digest authentication

 interception, debugging

 proxy authentication, interception caching and

 redirect messages

 servers

 servers, interception caching and

HTTP interception 2nd

 layer four switches and

HTTP request headers field, access.log

HTTP response field, access.log, status codes

HTTP response headers field, access.log

HTTP servers, access controls and

http_access ACL rule, cache manager and

http_access ACL type

http_access directive

http_headers, cache manager page

http_port directive 2nd 3rd

http_reply_access ACL

http_reply_access ACL rule, example

http_reply_access directive

httpd_accel_host directive 2nd

httpd_accel_port directive 2nd

httpd_accel_single_host directive 2nd

httpd_accel_uses_host_header directive 2nd

httpd_accel_with_proxy directive 2nd

https_port directive 2nd

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

I/O

 aufs storage system and

 bottleneck

 buffered I/O, redirectors and

ICAP (Internet Content Adaptation Protocol)

icmpRecv, debugging and

icon_directory directive

ICP (Internet Cache Protocol) 2nd

 clients

 cache_peer directive

 icp_port directive

 multicast ICP

 HTCP and

 multicast

 clients

 example

 servers

 neighbor caches and

 netdb and

 reply processing

 requests

 server, Squid as

 stale responses, icp_hit_stale directive

ICP queries, access controls and

icp_access ACL

icp_access directive

icp_hit_stale directive 2nd

ICP_MISS_NOFETCH

icp_port directive 2nd

 Squid as ICP server

icp_query_timeout directive 2nd

ident ACL elements

ident ACL type

ident_lookup_access directive 2nd 3rd

 access.log and

ident_regex ACL type

ident_timeout directive

ie_refresh directive

ignore_unknown_nameservers directive

in-transit objects, memory 2nd

incoming_dns_average directive

incoming_http_average directive

incoming_icp_average directive

info, cache manager page

init.d scheme, boot scripts

initializing cache directories

inodes 2nd

installation

 compiled programs

 Cygwin

 pinger program

intercache communication

interception caching

 benefits and disadvantages

 configuration and

 device configuration

 FreeBSD and

 HTTP

 debugging

 proxy authentication and

 IPFilter, NetBSD

 layer four switches and

 Linux systems

 OpenBSD

 operating systems and

io, cache manager page

IP addresses

 access controls and, request denial and

 ACLs

IP packet filtering software

ipcache, cache manager page

ipcache_high directive

ipcache_low directive

ipcache_size directive

IPFilter

 interception caching, NetBSD

ipfw (filtering software)

iptables (filtering software)

IRCache (Information Resource Caching)

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

Jesred redirector

journaling filesystems

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

-k option, command-line

kernel

 compiling and

 precompiled binaries and

Konqueror, manual configuration

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

L1 argument, cach_dir directive

L2 argument, cache_dir directive

last-modified field, store.log

last-modified timestamps

layer four switches, HTTP interception and

LDAP authentication helper (Basic authentication)

leaks, cache manager page

libraries, shared

Linux

 file descriptors and

 filesystem benchmarks

 interception caching and

local clients, access controls

local site cache hits, preventing with access controls

log files

 access.log 2nd 3rd

 cache.log 2nd 3rd

 netdb_state file

 pathnames

 privacy issues

 referer.log 2nd

 rotating 2nd

 security

 storage space

 store.log 2nd 3rd

 surrogate mode and

 swap.state file 2nd

 useragent.log 2nd

log_fqdn directive

 access.log and

log_icp_queries directive

 access.log and

log_ip_on_direct directive

 access.log and

log_mime_hdrs directive

 access.log and

logfile_rotate directive

loops, cache_peer_access directive and

LRU (lease recently used) replacement policy

Lynx proxies, manual configuration

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

mailing lists

 squid-announce

 squid-dev

 squid-users 2nd

make command, ./configure script

max-size option, cache_dir directive

max_challenge_lifetime parameter, auth_param directive

max_challenge_reuses parameter, auth_param directive

max_open_disk_fds directive

max_user_ip ACL, proxy authentication and

maxconn ACL type

maximum_object_size directive

maximum_object_size_in_memory directive

maximum_single_addr_tries directive

mbufs (BSD-based code)

mcast_groups directive

 multicast groups

mcast_icp_query_timeout directive

mcast_miss_addr directive

mcast_miss_encode_key directive

mcast_miss_port directive

mcast_miss_ttl directive

mem, cache manager page

memory

 netdb and

 requirements

memory cache

memory_pools directive

memory_pools_limit directive

memory_replacement_policy directive 2nd

menu, cache manager page

method ACL type

method field, store.log

Microsoft NTLM authentication [See NTLM authentication]

mime_table directive

min_dns_poll_cnt directive

min_http_poll_cnt directive

min_icp_poll_cnt directive

minimum_direct_hops directive

minimum_direct_rtt directive

minimum_object_size directive

miss_access ACL

miss_access directive

monitoring

 Cache Manager 2nd

 cache manager pages

 cache.log and

 warnings

 delay pools

 SNMP and

 snmpget and

 snmpwalk and

 SNMP MIB

 Squid MIB

Mozilla proxies, manual configuration

MSNT authentication helper (Basic authentication)

multicast ICP

 clients

 example

 servers

myip ACL type

myport ACL type

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

-N option, command-line

NCSA authentication helper (Basic authentication)

negative_dns_ttl directive

negative_ttl directive

neighbor caches 2nd

 always_direct directive

 cache_peer directive and

 cache_peer_access directive

 cache_peer_domain directive

 hierarchy_stoplist directive

 ICP and

 limiting requests

 never_direct directive and

 nonhierarchical_direct directive and

 prefer_direct directive

 selection algorithm

 up/down state

neighbor_type_domain directive 2nd

NetBSD

 file descriptors and

 filesystem benchmarks

 interception caching, IPFilter

netdb (network measurement database)

 enabling

 ICP and

 memory requirements

 test_reachability directive

netdb, cache manager page

netdb_high directive

netdb_low directive

netdb_ping_period directive

netdb_state file

netmasks

Netscape proxies, manual configuration

network hardware requirements

never_direct ACL

never_direct directive

 neighbor cache access list

NLANR (National Laboratory for Applied Network Research)

no_cache ACL

no_cache directive

non_peers, cache manager page

nonce_garbage_interval parameter, auth_param directive

nonce_max_count parameter, auth_param directive

nonce_max_duration parameter, auth_param directive

nonhierarchical_direct directive

 neighbor caches and

NTLM authentication 2nd

 API

 auth_param directive, parameters supported

 SMB helper 2nd

NTLM authentication helper (Basic authentication), multi-domain

ntlmauthenticator, cache manager page

null storage scheme

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

object size, disk cache

objects

 allocating to cache directories

 disk cache, removing from

 memory

 complete

 in-transit

objects, cache manager page

offline_mode directive

offline_toggle, cache manager page

open source code

 precompiled binaries

OpenBSD

 file descriptors and

 filesystem benchmarks

 interception caching and

openfd_objects, cache manager page

Opera, manual configuration

operating system

 interception caching and

 requirements

origin servers

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

page faults

 excessive

 getrusage() function

PAM authentication helper (Basic authentication)

parent caches

 secondary selection

patches, applying

pathnames

 log files

 mapping file numbers to

pconn, cache manager page

pconn_timeout directive

peer caches

peer_connect_timeout directive

peer_select, cache manager page

peering code/peerhost field, access.log

peering codes, access.log

persistent connections

 client_persistent_connections directive

 pconn_timeout directive

 persistent_request_timeout directive

 pipeline_prefetch directive

 server_persistent connections directive

persistent_request_timeout directive

pf (filtering software)

pid_filename directive

pinger program, installation

pinger_program directive

pipeline_prefetch directive

policy routing (Cisco), interception caching and

pornography, access controls and

port ACL type

port number, changing

ports

 ephemeral ports

 squid.conf directives

 TCP port numbers, ACLs

positive_dns_ttl directive

precompiled binaries 2nd

 kernel and

prefer_direct directive

 neighbor caches

privacy issues, log files

processes, reconfiguring running

program parameter, auth_param directive

proto ACL type

proxies

 all requests

 request through different

 Squid as

proxy authentication

 directives

 HTTP interception caching and

Proxy Auto-Configuration

proxy_auth ACL type

proxy_auth_regex ACL type

pthreads library, aufs storage scheme

purging, surrogate mode and

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

query_icmp directive

quick_abort_max directive

quick_abort_min directive

quick_abort_pct directive

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

-R option, command-line

range requests

 range_offset_limit directive

range_offset_limit directive

rc.d scheme

read-only option, cache_dir directive

read_timeout directive

Ready to serve requests message

realm parameter, auth_param directive

redirect_children directive 2nd 3rd

redirect_program directive 2nd

redirect_rewrites_host_header directive 2nd

redirector pool

redirector, cache manager page

redirector_access ACL

redirector_access directive 2nd

redirector_bypass directive 2nd

redirectors

 access controls and

 AdZapper

 buffered I/O

 configuration for

 definition

 filters and

 interface

 Jesred

 samples

 squidGuard

 Squirm

referer field, referer.log

referer.log

referer.log file

referer_log directive

refresh, cache manager page

refresh_pattern directive

refresh_pattern directive, disk cache

regular expressions, ACLs type

releases of Squid

reload_into_ims directive

reloads, surrogate mode and

removing objects

 entire cache directories

 groups of

 individually

rep_mime_type ACL type

replacement policy, disk cache

replicating problems, debugging and

reply_body_max_size ACL

reply_body_max_size directive

reporting bugs

req_mime_type ACL type

request method field, access.log

Request-URI

 FQDN

 HTTP redirect messages

 ident_lookup_access directive

 whitespace

request_body_max_size directive

request_entities directive

request_header_max_size directive

request_timeout directive

requests

 denying, access controls and

 different proxy

 single proxy

resources for support

response time field, access.log

responses, median time

restricting usage, access controls and

result code, access.log

result/status codes field, access.log

root, starting as

rotating log files 2nd

routers

 application-layer

 content routers

RTT (round-trip time), netdb and

rules

 access controls

 checks

 matching

 syntax

 ACLs

running processes, reconfiguring

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

-s option, command-line

samples, redirectors

SASL (Simple Authentication and Security Layer), authentication and

scaling, ICP

scheme argument, cache_dir directive

security

 log files

 surrogate mode and

segmentation violations, debugging

server acceleration [See also surrogate mode]2nd

 content negotiation

 overview

server-side of Squid

server_list, cache manager page

server_persistent_connections directive

servers

 FTP servers

 Gopher

 HTTP

 multicast ICP

 origin servers

sever acceleration, access controls

shells, file-descriptor limits

shutdown

shutdown, cache manager page

shutdown_lifetime directive

sibling caches

 false hits

size argument

 cache_dir directive

sleep_after_fork directive

slow speed, debugging and

SMB (authentication helper)

 Basic authentication

 NTLM authentication

SNMP

 monitoring and

 snmpget and

 snmpwalk and

SNMP MIB

snmp_access ACL

snmp_access directive

snmp_community ACL type

snmp_incoming_address directive

snmp_outgoing_address directive

snmp_port directive

snmpget

snmpwalk

soft updates, filesystem tuning and

Solaris

 file descriptors and

 filesystem benchmarks

source code

 CVS and

 patches, applying

 precompiled binaries 2nd

 shared libraries and

 Squid ports

 unpacking

speed, debugging and

Squeezer

Squid

 as daemon process

 squid_start script

 history of

squid -k shutdown command

Squid MIB

Squid ports

Squid RPMs

squid-announce mailing list

squid-cache Web site

squid-dev mailing list

Squid-RRD, cache manager and

squid-users mailing list 2nd 3rd

squid.conf

 access controls

 cache_mgr directive

 case sensitivity

 directives 2nd 3rd

 error checking

 http_port directive

 syntax

 visible_hostname directive

squid.pid file, shutdown and

squid_start script, Squid as daemon process

squidaio_counts, cache manager page

squidclient utility, Cache Manager and

squidGuard redirector

SquidNT

Squirm redirector

src ACL type

src_as ACL type

srcdom_regex ACL type

srcdomain ACL type

SSL connections

 https_port directive

 surrogate mode

ssl_unclean_shutdown directive

STABLE releases

stack traces

 debugging

status code field, store.log

stderr, terminal window and

storage

 aufs storage scheme

 coss storage scheme

 diskd storage scheme

 filesystems

 I/O bottleneck

 null storage scheme

store.log

 access.log comparison

 file numbers, mapping to pathnames

store.log file 2nd

store_avg_object_size directive

store_check_cachable_stats, cache manager page

store_digest, cache manager page

store_dir_select_algorithm directive

store_io, cache manager page

store_objects_per_bucket directive

storedir, cache manager page

strip_query_terms directive

 access.log and

subnets, delay pools and

surrogate mode

 access controls

 configuration

 content negotiation

 directives

 error messages and

 hierarchies and

 log files and

 purge operations and

 reloads and

 uncachable content

swap directory error, debugging and

swap.state file 2nd

syntax

 access control rules

 access controls

 ACL elements

 squid.conf

system calls, filesystems and

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

tar command, unpacking source

TCP (Transmission Control Protocol), port numbers

tcp_outgoing_address directive 2nd

tcp_outgoing_tos directive 2nd

tcp_recv_bufsize directive

technical support

terminal window

 cache.log messages

 testing and

test_reachability directive

 netdb and

testing

 access controls

 terminal window and

time ACL type

timestamp field

 access.log

 referer.log 2nd

 store.log

timestamps

traffic shaping [See Delay Pools]

transfer size field, access.log

transparent caching [See HTTP interception]

transport layer, application layer and

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

-u option, command-line

udp_incoming_address directive

udp_outgoing_address directive

UFS (Unix File System)

 performance tuning

uncacheable content, surrogate mode and

unique_hostname directive

Unix, Cygwin

unlinkd_program directive

unpacking source

URI field

 access.log

 referer.log

 store.log

uri_whitespace directive 2nd

 access.log and

url_regex ACL type

urlpath_regex ACL type

usage restriction, access controls and

user-agent field, useragent.log

useragent.log 2nd

useragent_log directive

usernames, ACLs type

users

 access controls and

utilization, cache manager page

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

-v option, command-line

-V option, command-line

vary_ignore_expire directive

versions of Squid

via_headers, cache manager page

visible_hostname directive 2nd

vm_objects, cache manager page

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

wais_relay_host directive

wais_relay_port directive

WCCP (Web Cache Coordination Protocol) interception caching

 configuration

 FreeBSD

 Linux systems

 NetBSD

 OpenBSD

wccp_incoming_address directive

wccp_outgoing_address directive

wccp_router directive

wccp_version directive

Web caching

Web Polygraph, workload file

 filesystem benchmarks

Webalyzer

whitespace, Request-URI

winbind authentication helper

 Basic authentication

 NTLM authentication

Windows, Cygwin

workload files, Polygraph

WPAD (Web Proxy Auto Discovery) proxy configuration

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

-X option, command-line

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

-Y option, command-line

YP authentication helper (Basic authentication)

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

-z option, command-line

 < Day Day Up >

	Disco local
	main
	Table of Contents
	Day Day Up
	Dedication
	Preface
	About This Book
	Recommended Reading
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments
	Chapter 1. Introduction
	1.1 Web Caching
	1.2 A Brief History of Squid
	1.3 Hardware and Operating System Requirements
	1.4 Squid Is Open Source
	1.5 Squid's Home on the Web
	1.6 Getting Help
	1.7 Getting Started with Squid
	1.8 Exercises
	Chapter 2. Getting Squid
	2.1 Versions and Releases
	2.2 Use the Source, Luke
	2.3 Precompiled Binaries
	2.4 Anonymous CVS
	2.5 devel.squid-cache.org
	2.6 Exercises
	Chapter 3. Compiling and Installing
	3.1 Before You Start
	3.2 Unpacking the Source
	3.3 Pretuning Your Kernel
	3.4 The configure Script
	3.5 make
	3.6 make Install
	3.7 Applying a Patch
	3.8 Running configure Later
	3.9 Exercises
	Chapter 4. Configuration Guide for the Eager
	4.1 The squid.conf Syntax
	4.2 User IDs
	4.3 Port Numbers
	4.4 Log File Pathnames
	4.5 Access Controls
	4.6 Visible Hostname
	4.7 Administrative Contact Information
	4.8 Next Steps
	4.9 Exercises
	Chapter 5. Running Squid
	5.1 Squid Command-Line Options
	5.2 Check Your Configuration File for Errors
	5.3 Initializing Cache Directories
	5.4 Testing Squid in a Terminal Window
	5.5 Running Squid as a Daemon Process
	5.6 Boot Scripts
	5.7 A chroot Environment
	5.8 Stopping Squid
	5.9 Reconfiguring a Running Squid Process
	5.10 Rotating the Log Files
	5.11 Exercises
	Chapter 6. All About Access Controls
	6.1 Access Control Elements
	6.2 Access Control Rules
	6.3 Common Scenarios
	6.4 Testing Access Controls
	6.5 Exercises
	Chapter 7. Disk Cache Basics
	7.1 The cache_dir Directive
	7.2 Disk Space Watermarks
	7.3 Object Size Limits
	7.4 Allocating Objects to Cache Directories
	7.5 Replacement Policies
	7.6 Removing Cached Objects
	7.7 refresh_pattern
	7.8 Exercises
	Chapter 8. Advanced Disk Cache Topics
	8.1 Do I Have a Disk I/O Bottleneck?
	8.2 Filesystem Tuning Options
	8.3 Alternative Filesystems
	8.4 The aufs Storage Scheme
	8.5 The diskd Storage Scheme
	8.6 The coss Storage Scheme
	8.7 The null Storage Scheme
	8.8 Which Is Best for Me?
	8.9 Exercises
	Chapter 9. Interception Caching
	9.1 How It Works
	9.2 Why (Not) Intercept?
	9.3 The Network Device
	9.4 Operating System Tweaks
	9.5 Configure Squid
	9.6 Debugging Problems
	9.7 Exercises
	Chapter 10. Talking to Other Squids
	10.1 Some Terminology
	10.2 Why (Not) Use a Hierarchy?
	10.3 Telling Squid About Your Neighbors
	10.4 Restricting Requests to Neighbors
	10.5 The Network Measurement Database
	10.6 Internet Cache Protocol
	10.7 Cache Digests
	10.8 Hypertext Caching Protocol
	10.9 Cache Array Routing Protocol
	10.10 Putting It All Together
	10.11 How Do I ...
	10.12 Exercises
	Chapter 11. Redirectors
	11.1 The Redirector Interface
	11.2 Some Sample Redirectors
	11.3 The Redirector Pool
	11.4 Configuring Squid
	11.5 Popular Redirectors
	11.6 Exercises
	Chapter 12. Authentication Helpers
	12.1 Configuring Squid
	12.2 HTTP Basic Authentication
	12.3 HTTP Digest Authentication
	12.4 Microsoft NTLM Authentication
	12.5 External ACLs
	12.6 Exercises
	Chapter 13. Log Files
	13.1 cache.log
	13.2 access.log
	13.3 store.log
	13.4 referer.log
	13.5 useragent.log
	13.6 swap.state
	13.7 Rotating the Log Files
	13.8 Privacy and Security
	13.9 Exercises
	Chapter 14. Monitoring Squid
	14.1 cache.log Warnings
	14.2 The Cache Manager
	14.3 Using SNMP
	14.4 Exercises
	Chapter 15. Server Accelerator Mode
	15.1 Overview
	15.2 Configuring Squid
	15.3 Gee, That Was Confusing!
	15.4 Access Controls
	15.5 Content Negotiation
	15.6 Gotchas
	15.7 Exercises
	Chapter 16. Debugging and Troubleshooting
	16.1 Some Common Problems
	16.2 Debugging via cache.log
	16.3 Core Dumps, Assertions, and Stack Traces
	16.4 Replicating Problems
	16.5 Reporting a Bug
	16.6 Exercises
	Appendix A. Config File Reference
	http_port
	https_port
	ssl_unclean_shutdown
	icp_port
	htcp_port
	mcast_groups
	udp_incoming_address
	udp_outgoing_address
	cache_peer
	cache_peer_domain
	neighbor_type_domain
	icp_query_timeout
	maximum_icp_query_timeout
	mcast_icp_query_timeout
	dead_peer_timeout
	hierarchy_stoplist
	no_cache
	cache_access_log
	cache_log
	cache_store_log
	cache_swap_log
	emulate_httpd_log
	log_ip_on_direct
	cache_dir
	cache_mem
	cache_swap_low
	cache_swap_high
	maximum_object_size
	minimum_object_size
	maximum_object_size_in_memory
	cache_replacement_policy
	memory_replacement_policy
	store_dir_select_algorithm
	mime_table
	ipcache_size
	ipcache_low
	ipcache_high
	fqdncache_size
	log_mime_hdrs
	useragent_log
	referer_log
	pid_filename
	debug_options
	log_fqdn
	client_netmask
	ftp_user
	ftp_list_width
	ftp_passive
	ftp_sanitycheck
	cache_dns_program
	dns_children
	dns_retransmit_interval
	dns_timeout
	dns_defnames
	dns_nameservers
	hosts_file
	diskd_program
	unlinkd_program
	pinger_program
	redirect_program
	redirect_children
	redirect_rewrites_host_header
	redirector_access
	redirector_bypass
	auth_param basic program
	authenticate_ttl
	authenticate_cache_garbage_interval
	authenticate_ip_ttl
	external_acl_type
	wais_relay_host
	wais_relay_port
	request_header_max_size
	request_body_max_size
	refresh_pattern
	quick_abort_min
	quick_abort_max
	quick_abort_pct
	negative_ttl
	positive_dns_ttl
	negative_dns_ttl
	range_offset_limit
	connect_timeout
	peer_connect_timeout
	read_timeout
	request_timeout
	persistent_request_timeout
	client_lifetime
	half_closed_clients
	pconn_timeout
	ident_timeout
	shutdown_lifetime
	acl
	http_access
	http_reply_access
	icp_access
	miss_access
	cache_peer_access
	ident_lookup_access
	tcp_outgoing_tos
	tcp_outgoing_address
	reply_body_max_size
	cache_mgr
	cache_effective_user
	cache_effective_group
	visible_hostname
	unique_hostname
	hostname_aliases
	announce_period
	announce_host
	announce_file
	announce_port
	httpd_accel_host
	httpd_accel_port
	httpd_accel_single_host
	httpd_accel_with_proxy
	httpd_accel_uses_host_header
	dns_testnames
	logfile_rotate
	append_domain
	tcp_recv_bufsize
	err_html_text
	deny_info
	memory_pools
	memory_pools_limit
	forwarded_for
	log_icp_queries
	icp_hit_stale
	minimum_direct_hops
	minimum_direct_rtt
	cachemgr_passwd
	store_avg_object_size
	store_objects_per_bucket
	client_db
	netdb_low
	netdb_high
	netdb_ping_period
	query_icmp
	test_reachability
	buffered_logs
	reload_into_ims
	always_direct
	never_direct
	header_access
	header_replace
	icon_directory
	error_directory
	maximum_single_addr_tries
	snmp_port
	snmp_access
	snmp_incoming_address
	snmp_outgoing_address
	as_whois_server
	wccp_router
	wccp_version
	wccp_incoming_address
	wccp_outgoing_address
	delay_pools
	delay_class
	delay_access
	delay_parameters
	delay_initial_bucket_level
	incoming_icp_average
	incoming_http_average
	incoming_dns_average
	min_icp_poll_cnt
	min_dns_poll_cnt
	min_http_poll_cnt
	max_open_disk_fds
	offline_mode
	uri_whitespace
	broken_posts
	mcast_miss_addr
	mcast_miss_ttl
	mcast_miss_port
	mcast_miss_encode_key
	nonhierarchical_direct
	prefer_direct
	strip_query_terms
	coredump_dir
	ignore_unknown_nameservers
	digest_generation
	digest_bits_per_entry
	digest_rebuild_period
	digest_rewrite_period
	digest_swapout_chunk_size
	digest_rebuild_chunk_percentage
	chroot
	client_persistent_connections
	server_persistent_connections
	pipeline_prefetch
	extension_methods
	request_entities
	high_response_time_warning
	high_page_fault_warning
	high_memory_warning
	ie_refresh
	vary_ignore_expire
	sleep_after_fork
	Appendix B. The Memory Cache
	Appendix C. Delay Pools
	C.1 Overview
	C.2 Configuring Squid
	C.3 Examples
	C.4 Issues
	C.5 Monitoring Delay Pools
	Appendix D. Filesystem Performance Benchmarks
	D.1 The Benchmark Environment
	D.2 General Comments
	D.3 Linux
	D.4 FreeBSD
	D.5 OpenBSD
	D.6 NetBSD
	D.7 Solaris
	D.8 Number of Disk Spindles
	Appendix E. Squid on Windows
	E.1 Cygwin
	E.2 SquidNT
	Appendix F. Configuring Squid Clients
	F.1 Manually
	F.2 Proxy Auto-Configuration
	F.3 WPAD
	F.4 Summary
	Day Day Up
	index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Y
	index_Z

