* Reviews

e Reader Reviews

e Errata

Copyright

Preface

SSH, The Secure Shell: The Definitive Guide
By Daniel J. Barrett, Richard Silverman
Publisher: O'Reilly
Pub Date: January 2001
ISBN: 0-596-00011-1
Pages: 558

Protect Your Network with SSH

Intended Audience

Reading This Book

Our Approach

Which Chapters Are for You?

Supported Platforms

Disclaimers

Conventions Used in This Book

Comments and Questions

Acknowledgments

Chapter 1. Introduction to SSH

Section 1.1.
Section 1.2.
Section 1.3.
Section 1.4.
Section 1.5.
Section 1.6.

Section 1.7.

What Is SSH?

What SSH Is Not

The SSH Protocol
Overview of SSH Features
History of SSH

Related Technologies

Summary

Chapter 2. Basic Client Use

Section 2.1.
Section 2.2.
Section 2.3.
Section 2.4.
Section 2.5.
Section 2.6.
Section 2.7.

Section 2.8.

A Running Example

Remote Terminal Sessions with ssh

Adding Complexity to the Example
Authentication by Cryptographic Key

The SSH Agent

Connecting Without a Password or Passphrase
Miscellaneous Clients

Summary

http://www.oreilly.com/catalog/sshtdg/reviews.html
http://www.oreilly.com/cgi-bin/reviews?bookident=sshtdg
http://www.oreilly.com/catalog/sshtdg/errata/
http://www.oreillynet.com/cs/catalog/view/au/426?x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/552?x-t=book.view

Chapter 3. Inside SSH

Section 3.1.
Section 3.2.
Section 3.3.
Section 3.4.
Section 3.5.
Section 3.6.
Section 3.7.
Section 3.8.

Section 3.9.

Overview of Features

A Cryptography Primer

The Architecture of an SSH System
Inside SSH-1

Inside SSH-2

As-User Access (userfile)
Randomness

SSH and File Transfers (scp and sftp)
Algorithms Used by SSH

Section 3.10. Threats SSH Can Counter

Section 3.11. Threats SSH Doesn't Prevent

Section 3.12. Summary

Chapter 4. Installation and Compile-Time Configuration

Section 4.1.
Section 4.2.
Section 4.3.
Section 4.4.
Section 4.5.

Section 4.6.

SSH1 and SSH2

F-Secure SSH Server

OpenSSH

Software Inventory

Replacing R-Commands with SSH

Summary

Chapter 5. Serverwide Configuration

Section 5.1.
Section 5.2.
Section 5.3.
Section 5.4.
Section 5.5.
Section 5.6.
Section 5.7.
Section 5.8.

Section 5.9.

The Name of the Server

Running the Server

Server Configuration: An Overview

Getting Ready: Initial Setup

Letting People in: Authentication and Access Control
User Logins and Accounts

Subsystems

History, Logging, and Debugging

Compatibility Between SSH-1 and SSH-2 Servers

Section 5.10. Summary

Chapter 6. Key Management and Agents

Section 6.1.
Section 6.2.
Section 6.3.
Section 6.4.

Section 6.5.

What Is an Identity?
Creating an ldentity
SSH Agents

Multiple ldentities

Summary

Chapter 7. Advanced Client Use
Section 7.1. How to Configure Clients
Section 7.2. Precedence
Section 7.3. Introduction to Verbose Mode
Section 7.4. Client Configuration in Depth
Section 7.5. Secure Copy with scp

Section 7.6. Summary

Chapter 8. Per-Account Server Configuration
Section 8.1. Limits of This Technique
Section 8.2. Public Key-Based Configuration
Section 8.3. Trusted-Host Access Control
Section 8.4. The User rc File

Section 8.5. Summary

Chapter 9. Port Forwarding and X Forwarding
Section 9.1. What Is Forwarding?
Section 9.2. Port Forwarding
Section 9.3. X Forwarding
Section 9.4. Forwarding Security: TCP-wrappers and libwrap

Section 9.5. Summary

Chapter 10. A Recommended Setup
Section 10.1. The Basics
Section 10.2. Compile-Time Configuration
Section 10.3. Serverwide Configuration
Section 10.4. Per-Account Configuration
Section 10.5. Key Management
Section 10.6. Client Configuration
Section 10.7. Remote Home Directories (NFS, AFS)

Section 10.8. Summary

Chapter 11. Case Studies
Section 11.1. Unattended SSH: Batch or cron Jobs
Section 11.2. FTP Forwarding
Section 11.3. Pine, IMAP, and SSH
Section 11.4. Kerberos and SSH

Section 11.5. Connecting Through a GatewayHost

Chapter 12. Troubleshooting and FAQ

Section 12.1. Debug Messages: Your First Line of Defense

Section 12.2. Problems and Solutions
Section 12.3. Other SSH Resources

Section 12.4. Reporting Bugs

Chapter 13. Overview of Other Implementations
Section 13.1. Common Features
Section 13.2. Covered Products
Section 13.3. Table of Products

Section 13.4. Other SSH-Related Products

Chapter 14. SSH1 Port by Sergey Okhapkin (Windows)
Section 14.1. Obtaining and Installing Clients
Section 14.2. Client Use
Section 14.3. Obtaining and Installing the Server
Section 14.4. Troubleshooting

Section 14.5. Summary

Chapter 15. SecureCRT (Windows)
Section 15.1. Obtaining and Installing
Section 15.2. Basic Client Use
Section 15.3. Key Management
Section 15.4. Advanced Client Use
Section 15.5. Forwarding
Section 15.6. Troubleshooting

Section 15.7. Summary

Chapter 16. F-Secure SSH Client (Windows, Macintosh)
Section 16.1. Obtaining and Installing
Section 16.2. Basic Client Use
Section 16.3. Key Management
Section 16.4. Advanced Client Use
Section 16.5. Forwarding
Section 16.6. Troubleshooting

Section 16.7. Summary

Chapter 17. NiftyTelnet SSH (Macintosh)
Section 17.1. Obtaining and Installing
Section 17.2. Basic Client Use
Section 17.3. Troubleshooting

Section 17.4. Summary

Appendix A. SSH2 Manpage for sshregex
SSHREGEX(1) SSH2

Appendix B. SSH Quick Reference
Section 2.1. Legend
Section 2.2. sshd Options
Section 2.3. sshd Keywords
Section 2.4. ssh and scp Keywords
Section 2.5. ssh Options
Section 2.6. scp Options
Section 2.7. ssh-keygen Options
Section 2.8. ssh-agent Options
Section 2.9. ssh-add Options
Section 2.10. Identity and Authorization Files

Section 2.11. Environment Variables

Colophon

Index

Copyright © 2001 O'Rellly & Associates, Inc. All rights reserved.
Printed in the United States of America
Published by O'Rellly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. Many of the designations used by manufacturers
and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps. The association between
the image of aland snail and the topic of SSH is atrademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the use of
the information contained herein.

Preface

Privacy is abasic human right, but on today's computer networks, privacy isn't guaranteed.
Much of the data that travels on the Internet or local networksis transmitted as plain text,
and may be captured and viewed by anybody with alittle technical know-how. The email
you send, the files you transmit between computers, even the passwords you type may be
readable by others. Imagine the damage that can be done if an untrusted third party-a
competitor, the CIA, your in-laws- intercepted your most sensitive communicationsin
trangit.

Network security is big business as companies scramble to protect their information assets
behind firewalls, establish virtual private networks (VPNs), and encrypt files and
transmissions. But hidden away from all the bustle, there is a small, unassuming, yet robust
solution many big companies have missed. It's reliable, reasonably easy to use, cheap, and
available for most of today's operating systems.

It's SSH, the Secure Shell.

Protect Your Network with SSH

SSH is alow-cost, software-based solution for keeping prying eyes away from the data on
anetwork. It doesn't solve every privacy and security problem, but it eliminates several of
them effectively. Its major features are:

. A secure, client/server protocol for encrypting and transmitting data over a network

. Authentication (recognition) of users by password, host, or public key, plus
optional integration with other popular authentication systems, including Kerberos,
SecurlD, PGP, TIS Gauntlet, and PAM

. Theability to add security to insecure network applications such as Telnet, FTP,
and many other TCP/IP-based programs and protocols

. Almost complete transparency to the end user

. Implementations for most operating systems

| ntended Audience

We've written this book for system administrators and technically minded users. Some
chapters are suitable for awide audience, while others are thoroughly technical and
intended for computer and networking professionals.

End-User Audience

Do you have two or more computer accounts on different machines? SSH lets you connect
one to another with a high degree of security. Y ou can copy files between accounts,
remotely log into one account from the other, or execute remote commands, all with the
confidence that nobody can intercept your username, password, or datain transit.

Do you connect from a personal computer to an Internet service provider (ISP)?In
particular, do you connect to a Unix shell account at your |SP? If so, SSH can make this
connection significantly more secure. An increasing number of 1SPs are running SSH
serversfor their users. In case your | SP doesn't, we'll show you how to run a server
yourself.

Do you devel op software? Are you creating distributed applications that must communicate
over anetwork securely? Then don't reinvent the wheel: use SSH to encrypt the
connections. It's a solid technology that may reduce your development time.

Even if you have only a single computer account, as long as it's connected to a network,
SSH can still be useful. For example, if you've ever wanted to let other people use your
account, such as family members or employees, but didn't want to give them unlimited use,
SSH can provide a carefully controlled, limited access channel into your account.

Prerequisites

We assume you are familiar with computers and networking as found in any modern
business office or home system with an Internet connection. Ideally, you are familiar with
the Telnet and FTP applications. If you are a Unix user, you should be familiar with the
programsrsh, rlogin, and rcp, and with the basics of writing shell scripts.

System-Administrator Audience

If you're a Unix system administrator, you probably know that the Berkeley r-commands
(rsh, rcp, rlogin, rexec, etc.) are inherently insecure. SSH provides secure, drop-in
replacements, eliminates .rhosts and hosts.equiv files, and can authenticate users by
cryptographic key. SSH aso can increase the security of other TCP/IP-based applications

on your system by transparently "tunneling” them through SSH encrypted connections.
You will love SSH.

Prerequisites

In addition to the end-user prerequisites in the previous section, you should be familiar
with Unix accounts and groups, networking concepts such as TCP/IP and packets, and
basic encryption techniques.

Reading This Book

This book isroughly divided into three parts. The first three chapters are a general
introduction to SSH, first at a high level for al readers (Chapter 1 and Chapter 2), and then

in detail for technical readers (Chapter 3).

The next nine chapters cover SSH for Unix. The first two (Chapter 4 and Chapter 5) cover
SSH installation and serverwide configuration for system administrators. The next four
(Chapter 6-Chapter 9) cover advanced topics for end users, including key management,
client configuration, per-account server configuration, and forwarding. We complete the
Unix sequence with our recommended setup (Chapter 10), some detailed case studies
(Chapter 11), and troubleshooting tips (Chapter 12).

The remaining chapters cover SSH products for Windows and the Macintosh, plus brief
overviews of implementations for other platforms (Chapter 13).

Each section in the book is numbered, and we provide cross-references throughout the text.
If further details are found in Section 7.1.3.2, we use the notation [Section 7.1.3.2] to

indicateit.

Our Approach

This book is organized by concept rather than syntax. We begin with an overview and
progressively lead you deeper into the functionality of SSH. So we might introduce atopic
in Chapter 1, show its basic use in Chapter 2, and reveal advanced usesin Chapter 7. If you
would prefer the whole story at once, Appendix B presents all commands and their options
in one location.

We focus strongly on three levels of server configuration, which we call compile-time,
serverwide, and per-account configuration. Compile-time configuration (Chapter 4) means
sel ecting appropriate options when you build the SSH clients and servers. serverwide
configuration (Chapter 5) applies when the SSH server isrun and is generally done by
system administrators, while per-account configuration (Chapter 8) can be done any time
by end users. It's vitally important for system administrators to understand the relationships
and differences among these three levels. Otherwise, SSH may seem like a morass of
random behaviors.

Although the bulk of material focuses on Unix implementations of SSH, you don't have to
be a Unix user to understand it. Fans of Windows and Macintosh may stick to the later
chapters devoted to their platforms, but alot of the meaty details are in the Unix chapters
so we recommend reading them, at |least for reference.

Which Chapters Arefor You?

We propose several "tracks' for readers with different interests and skills:
System administrators

Chapter 3-Chapter 5 and Chapter 10 are the most important for understanding SSH

and how to build and configure servers. However, as the administrator of a security
product, you should read the whole book.
Unix users (not system administrators)

Chapter 1-Chapter 2 provide an overview, and Chapter 6 through Chapter 9 discuss

SSH clientsin depth.
Windows end users

Read Chapter 1, Chapter 2, and Chapter 13 through Chapter 16, for starters, and

then others as your interests guide you.
Macintosh end users

Read Chapter 1, Chapter 2, Chapter 13, Chapter 16, and Chapter 17, for starters,

and then others as your interests guide you.
Users of other computer platforms

Read Chapter 1, Chapter 2, and Chapter 13, for starters, and then others as your
Interests guide you.

Even if you are experienced with SSH, you will likely find value in Chapter 3-Chapter 12.

We cover significant details the Unix manpages leave unclear or unmentioned, including
major concepts, compile-time flags, server configuration, and forwarding.

Supported Platforms

This book covers Unix, Windows, and Macintosh implementations of SSH. Products are
also available for the Amiga, BeOs, Java, OS2, Pam Pilot, VMS, and Windows CE, and

although we don't cover them, their principles are the same.

This book is current for the following Unix SSH versions:

SSH1 1.2.30
F-Secure SSH1 1.3.7
OpenSSH 2.2.0
SSH Secure Shell (a.k.a. SSH2) 2.3.0
F-Secure SSH2 2.0.13

The F-Secure products for Unix differ little from SSH1 and SSH2, so we won't discuss
them separately except for unique features. See Appendix B for asummary of the

differences.

Version information for non-Unix products is found in their respective chapters.

Disclaimers

We identify some program features as "undocumented.” This means the feature isn't
mentioned in the official documentation but worksin the current release and/or is clear
from the program source code. Undocumented features may not be officially supported by

the software authors and can disappear in later releases.

Conventions Used in This Book
This book uses the following typographic conventions:
Const ant wi dt h

For configuration files, things that can be found in configuration files (such as
keywords and configuration file options), source code, and interactive terminal
Sessions.

Constant wdthitalic

For replaceabl e parameters on command lines or within configuration files.
Italic

For filenames, URL s, hostnames, command names, command-line options, and
new terms whre they are defined.
Ak

In figures, the object labeled A has been secured using a cryptographic key labled
K. "Secured" means encrypted, signed, or some more complex relationship,
depending on the context. If A is secured using multiple keys (say K and L), they
will be listed in the subscript, separated by commas: A ¢ |

o> This icon designates a note, which is an important aside to the
nearby text.

Thisicon designates a warning relating to the nearby text.

Comments and Questions

The information in this book has been tested and verified, but you may find that features
have changed (or even find mistakes!). Y ou can send any errorsyou find, aswell as
suggestions for future editions, to:

OReilly & Associ ates, Inc.

1005 Gravenstein H ghway North

Sebast opol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is aweb page for this book, which lists errata, examples, or any additional
information. Y ou can access this page at:

http://www.oreilly.com/catal og/sshtdg/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the
O'Reilly Network, see the O'Reilly web site at:

http://www.oreilly.com/

http://www.oreilly.com/catalog/sshtdg/
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

Acknowledgments

First and foremost, we'd like to thank O'Reilly & Associates for the opportunity to write
this book, especially our editor, Mike Loukides, who let us stretch the schedule to cover
advanced topics in depth. We thank Frank Willison for believing in our idea, Christien
Shangraw for administrative excellence and for heroically performing the first typesetting
pass, Mike Sierrafor tools and advice, and Rob Romano for turning our hasty sketchesinto
polished illustrations.

We thank our excellent technical review team for their thorough reading and insightful
comments. Anne Carasik, Markus Friedl, Joseph Galbraith, Sergey Okhapkin, Jari Ollikka,
Niels Provos, Theo de Raadt, Jim Sheafer, Drew Simonis, Mike Smith, and Dug Song.

Big thanks to the vendors and developers of SSH products who provided us with free
copies and answered our questions. Tatu Y |6nen, Anne Carasik, and Arlinda Sipiléa (SSH
Communication Security, Ltd.); Sami Sumkin, Heikki Nousiainen, Petri Nyman, Hannu
Eloranta, and Alexander Sayer (F-Secure Corporation); Dan Rask (Van Dyke
Technologies, Inc.); Gordon Chaffee (Windows SSH port); lan Goldberg (Top Gun SSH);
Douglas Mak (FiSSH); Jonas Walldén (NiftyTelnet SSH); and Stephen Pendleton (sshCE).
SSH Communication Security also gave us permission to include the sshregex manpage
(Appendix A) and the sshdebug.h error codes (Table 5-6).

We thank Rob Figenbaum, James Mathiesen, and J.D. Paul for tips and inspirations
incorporated into the text; and Chuck Bogorad, Ben Gould, David Primmer, and Brandon
Zehm for their web pages about SSH on NT. Richard Silverman would like to thank his co-
workers at the company formerly known as, especially Michelle Madelien, for being very
flexible and accommodating with his erratic hours and behavior while working on this
tome. He would also like to thank Deborah Kaplan for her judicious and inspired
application of the LART. Lastly, we thank the many contributors to comp.security.ssh on
Usenet, for asking good questions that improved the book, especially Chapter 12.

Chapter 1. Introduction to SSH

Many people today have multiple computer accounts. If you're areasonably savvy user,
you might have a personal account with an Internet service provider (1SP), awork account
on your employer's local network, and one or more PCs at home. Y ou might also have
permission to use other accounts owned by family members or friends.

If you have multiple accounts, it's natural to want to make connections between them. For
instance, you might want to copy files between computers over a network, log into one
account remotely from another, or transmit commands to a remote computer for execution.
Various programs exist for these purposes, such as ftp and rcp for file transfers, telnet and
rlogin for remote logins, and rsh for remote execution of commands.

Unfortunately, many of these network-related programs have a fundamental problem: they
lack security. If you transmit a sensitive file viathe Internet, an intruder can potentially
intercept and read the data. Even worse, if you log onto another computer remotely using a
program such as telnet, your username and password can be intercepted as they travel over
the network. Yikes!

How can these serious problems be prevented? Y ou can use an encryption programto
scramble your data into a secret code nobody else can read. You caninstall afirewall, a
device that shields portions of a computer network from intruders. Or you can use awide
range of other solutions, alone or combined, with varying complexity and cost.

1.1 What 1sSSH?

SSH, the Secure Shell, is a popular, powerful, software-based approach to network security.

[\Whenever dataiis sent by a computer to the network, SSH automatically encryptsit.
When the data reaches its intended recipient, SSH automatically decrypts (unscrambles) it.
The result is transparent encryption: users can work normally, unaware that their
communications are safely encrypted on the network. In addition, SSH uses modern, secure
encryption algorithms and is effective enough to be found within mission-critical
applications at major corporations.

SSH has a client/server architecture, as shown in Figure 1-1. An SSH server program,
typically installed and run by a system administrator, accepts or rejects incoming
connectionsto its host computer. Users then run SSH client programs, typically on other
computers, to make requests of the SSH server, such as"Pleaselog mein," "Please send me
afile" or "Please execute this command.” All communications between clients and servers
are securely encrypted and protected from modification.

Figure 1.1. SSH architecture

354 —

{ il_="1 qum"mﬂr

Huuﬂ

L.

Child

Process

ul.q me iﬂ" ﬂH GH "sﬂ'l'd fh I"
= Process Process

“Here is file X”

“Denied” -
® Child

Process

35H
Ll i

“Run this command”™
l'|:-| H L] -t
I ht

=

Our description is simplified but should give you a general idea of what SSH does. We'll go
into depth later. For now, just remember that SSH clients communicate with SSH servers
over encrypted network connections.

An SSH-based product might include clients, servers, or both. Unix products generally
contain both clients and servers; those on other platforms are usually just clients, though
Windows-based servers are beginning to appear.

If you're aUnix user, think of SSH as a secure form of the Unix r-commands: rsh (remote
shell), rlogin (remote login), and rcp (remote copy). In fact, the original SSH for Unix
includes the similarly named commands ssh, scp, and slogin as secure, drop-in replacements
for the r-commands. Y es, you can finally get rid of those insecure .rhosts and hosts.equiv
files! (Though SSH can work with them aswell, if you like.) If you're still using the r-

commands, switch to SSH immediately: the learning curve is small, and security isfar
better.

(4 sy is pronounced by spelling it aloud: S-S-H. Y ou might find the name " Secure Shell" a
little puzzling, becauseit is not, in fact, ashell at al. The name was coined from the existing rsh
utility, a ubiquitous Unix program that also provides remote logins but is very insecure.

1.2 What SSH IsNot

Although SSH stands for Secure Shell, it is not atrue shell in the sense of the Unix Bourne
shell and C shell. It is not acommand interpreter, nor does it provide wildcard expansion,
command history, and so forth. Rather, SSH creates a channel for running ashell on a
remote computer, in the manner of the Unix rsh command, but with end-to-end encryption
between the local and remote computer.

SSH is also not a complete security solution-but then, nothing is. It won't protect computers
from active break-in attempts or denial-of-service attacks, and it won't eliminate other
hazards such as viruses, Trojan horses, and coffee spills. It does, however, provide robust
and user-friendly encryption and authentication.

1.3 The SSH Protocol

SSH isaprotocol, not a product. It is a specification of how to conduct secure

communication over a network.[z]

The SSH protocol covers authentication, encryption, and the integrity of data transmitted
over anetwork, as shown in Figure 1-2. Let's define these terms:

Authentication

Reliably determines someone's identity. If you try to log into an account on a
remote computer, SSH asks for digital proof of your identity. If you pass the test,
you may log in; otherwise SSH rejects the connection.

Encryption

Scrambles data so it is unintelligible except to the intended recipients. This protects
your data as it passes over the network.

Integrity

Guarantees the data traveling over the network arrives unaltered. If athird party
captures and modifies your datain transit, SSH detects this fact.

Figure 1.2. Authentication, encryption, and integrity

Authentication

” “ am me"
35H
=l “1 am me tos™ *
\ike f, Enerynfi g
,5; 7 -'-'gp merypian =z
%’mwbb § o Py, o
p ? .fwjﬁ-@
T Integrity
S (m>

In short, SSH makes network connections between computers, with strong guarantees that
the parties on both ends of the connection are genuine. It also ensures that any data passing
over these connections arrives unmodified and unread by eavesdroppers.

1.3.1 Protocols, Products, Clients, and Confusion

SSH-based products-i.e., products that implement the SSH protocol-exist for many flavors
of Unix, Windows, Macintosh, and other operating systems. Both freely distributable and
commercial products are available. [Section 13.3]

Thefirst SSH product, created by Tatu YI6nen for Unix, was simply called "SSH." This
causes confusion because SSH is al so the name of the protocol. Some people call YIdnen's
software "Unix SSH," but other Unix-based implementations are now available so the
name is unsatisfactory. In this book, we use more precise terminology to refer to protocols,
products, and programs, summarized in Sidebar "Terminology: SSH Protocols and
Products’, In short:

. Protocols are denoted with dashes; SSH-1, SSH-2.
« Products are denoted in uppercase, without dashes: SSH1, SSH2.
. Client programs are in lowercase: ssh, sshl, ssh2, etc.

SSH-1

SSH-2

SSH1

SSH2

Terminology: SSH Protocols and Products

A generic term referring to SSH protocols or software products.

The SSH protocol, Version 1. This protocol went through several
revisions, of which 1.3 and 1.5 are the best known, and we will write
SSH-1.3 and SSH-1.5 should the distinction be necessary.

The SSH protocol, Version 2, as defined by several draft standards
documents of the IETF SECSH working group.[Section 3.5.1]

Tatu YI6nen's software implementing the SSH-1 protocol; the original
SSH. Now distributed and maintained (minimally) by SSH
Communications Security, Inc.

The "SSH Secure Shell” product from SSH Communications Security,
Inc. (http://www.ssh.com). Thisisacommercial SSH-2 protocol

implementation, though it is licensed free of charge in some
circumstances.

ssh (all lowercase letters)

A client program included in SSH1, SSH2, OpenSSH, F-Secure SSH,
and other products, for running secure terminal sessions and remote
commands. In SSH1 and SSH2, it is aso named sshl or ssh2,
respectively.

OpenSSH

The product OpenSSH from the OpenBSD project (see http://www.
openssh.com/), which implements both the SSH-1 and SSH-2 protocols.

OpenSH/1

OpenSSH, referring specifically to its behavior when using the SSH-1
protocol.

OpenSsH/2

OpenSSH, referring specifically to its behavior when using the SSH-2
protocol.

http://www.ssh.com/
http://www.openssh.com/
http://www.openssh.com/

(2] Although we say "the SSH protocol,” there are actually two incompatible versions of the
protocolsin common use: SSH-1 (a.k.a SSH-1.5) and SSH-2. We will distinguish these protocols
later.

1.4 Overview of SSH Features

So, what can SSH do? Let's run through some examples that demonstrate the major features of SSH, such as secure remote logins,
secure file copying, and secure invocation of remote commands. We use SSH1 in the examples, but all are possible with
OpenSSH, SSH2, and F-Secure SSH.

1.4.1 Secure Remote L ogins

Suppose you have accounts on several computers on the Internet. Typically, you connect from a home PC to your ISP, and then
use atelnet program to log into your accounts on other computers. Unfortunately, telnet transmits your username and password in

plaintext over the Internet, where a malicious third party can intercept them.l®l Additional ly, your entire telnet session is readable
by anetwork snooper.

Terminology: Networking
Local computer (local host, local machine)

A computer on which you are logged in and, typically, running an SSH client.
Remote computer (remote host, remote machine)

A second computer you contact from your local computer. Typically, the remote computer is running an
SSH server and is contacted viaan SSH client. As a degenerate case, the local and remote computers can be
the same machine.

Local user

A user logged into alocal computer.
Remote user

A user logged into a remote computer.
Server

An SSH server program.
Server machine

A computer running an SSH server program. We will sometimes simply write "server” for the server
machine when the context makes clear (or irrelevant) the distinction between the running SSH server
program and its host machine.

Client

An SSH client program.
Client machine

A computer running an SSH client. Aswith the server terminology, we will simply write "client" when the
context makes the meaning clear.
~or $SHOME

A user's home directory on a Unix machine, particularly when used in afile path such as ~/filename. Most
shells recognize ~ as a user's home directory, with the notable exception of Bourne shell. $SHOME is
recognized by all shells.

SSH completely avoids these problems. Rather than running the insecure telnet program, you run the SSH client program ssh. To
log into an account with the username smith on the remote computer host.example.com, use this command:

$ ssh -1 smith host.exanple.com

The client authenticates you to the remote computer's SSH server using an encrypted connection, meaning that your username and
password are encrypted before they |eave the local machine. The SSH server then logs you in, and your entire login session is
encrypted asit travels between client and server. Because the encryption is transparent, you won't notice any differences between
telnet and the telnet-like SSH client.

1.4.2 Secure File Transfer

Suppose you have accounts on two Internet computers, me@firstaccount.com and metoo@secondaccount.com, and you want to
transfer afile from the first to the second account. The file contains trade secrets about your business, however, that must be kept
from prying eyes. A traditional file-transfer program, such as ftp, rcp, or even email, doesn't provide a secure solution. A third
party can intercept and read the packets as they travel over the network. To get around this problem, you can encrypt the file on
firstaccount.com with a program such as Pretty Good Privacy (PGP), transfer it viatraditional means, and decrypt the file on
secondaccount.com, but such a process is tedious and nontransparent to the user.

Using SSH, the file can be transferred securely between machines with a single secure copy command. If the file were named
myfile, the command executed on firstaccount.com might be:

$ scp nyfile netoo@econdaccount. com

When transmitted by scp, the file is automatically encrypted as it leaves firstaccount.com and decrypted asit arrives on
secondaccount.com.

1.4.3 Secure Remote Command Execution

Suppose you are a system administrator who needs to run the same command on many computers. You'd like to view the active
processes for each user on four different computers-grape, lemon, kiwi, and melon-on alocal area network using the Unix
command /usr/ucb/w. Traditionally, one could use rsh, assuming that the rsh daemon, rshd, is configured properly on the remote
computers:

#1/ bin/ sh This is a shell script.
for machine in grape | enon kiwi nelon On each of these four machines in turn...
do

rsh $machi ne /usr/ucb/w i nvoke the "/usr/ucbh/w' program which
done prints a list of all running processes.

Although this method works, it's insecure. The results of /usr/ucb/w are transmitted as plaintext across the network; if you consider
this information sensitive, the risk might be unacceptable. Worse, the rsh authentication mechanism is extremely insecure and
easily subverted. Using the ssh command instead, you have:

#!/ bi n/ sh
for machine in grape | enmon kiw nmnelon
do
ssh $machi ne /usr/ucb/w Note "ssh" instead of "rsh"
done

The syntax is nearly identical, and the visible output isidentical, but under the hood, the command and its results are encrypted as
they travel across the network, and strong authentication techniques may be used when connecting to the remote machines.

1.4.4 Keysand Agents

Suppose you have accounts on many computers on a network. For security reasons, you prefer different passwords on al accounts;
but remembering so many passwords is difficult. It's also a security problem in itself. The more often you type a password, the
more likely you'll mistakenly typeit in the wrong place. (Have you ever accidently typed your password instead of your username,
visible to the world? Ouch! And on many systems, such mistakes are recorded in a system log file, revealing your password in
plaintext.) Wouldn't it be great to identify yourself only once and get secure access to all the accounts without continually typing
passwords?

SSH has various authentication mechanisms, and the most secure is based on keys rather than passwords. Keys are discussed in
great detail in Chapter 6, but for now we define akey as asmall blob of bitsthat uniquely identifies an SSH user. For security, a

key is kept encrypted; it may be used only after entering a secret passphrase to decrypt it.

Using keys, together with a program called an authentication agent, SSH can authenticate you to all your computer accounts
securely without requiring you to memorize many passwords or enter them repeatedly. It works like this:

1. Inadvance (and only once), place special files called public key filesinto your remote computer accounts. These enable
your SSH clients (ssh, scp) to access your remote accounts.

2. Onyour local machine, invoke the ssh-agent program, which runsin the background.
3. Choose the key (or keys) you will need during your login session.
4. Load the keysinto the agent with the ssh-add program. This requires knowledge of each key's secret passphrase.

At this point, you have an ssh-agent program running on your local machine, holding your secret keysin memory. Y ou're now
done. Y ou have password-less access to al your remote accounts that contain your public key files. Say goodbye to the tedium of
retyping passwords! The setup lasts until you log out from the local machine or terminate ssh-agent.

1.4.5 Access Control

Suppose you want to permit another person to use your computer account, but only for certain purposes. For example, while you're
out of town you'd like your secretary to read your email but not to do anything else in your account. With SSH, you can give your
secretary access to your account without revealing or changing your password, and with only the ability to run the email program.
No system-administrator privileges are required to set up this restricted access. (This topic is the focus of Chapter 8.)

1.4.6 Port Forwarding

SSH can increase the security of other TCP/IP-based applications such as telnet, ftp, and the X Window System. A technique
called port forwarding or tunneling reroutes a TCP/I P connection to pass through an SSH connection, transparently encrypting it
end-to-end. Port forwarding can a so pass such applications through network firewalls that otherwise prevent their use.

Suppose you are logged into a machine away from work and want to access the internal news server at your office, news.yoyodyne.
com. The Y oyodyne network is connected to the Internet, but a network firewall blocks incoming connections to most ports,
particularly port 119, the news port. The firewall does alow incoming SSH connections, however, since the SSH protocol is
secure enough that even Y oyodyne's rabidly paranoid system administrators trust it. SSH can establish a secure tunnel on an
arbitrary local TCP port-say, port 3002-to the news port on the remote host. The command might look a bit cryptic at this early
stage, but hereit is:

$ ssh -L 3002:1ocal host: 119 news. yoyodyne. com

This says "ssh, please establish a secure connection from TCP port 3002 on my local machineto TCP port 119, the news port, on
news.yoyodyne.com.” So, in order to read news securely, configure your news-reading program to connect to port 3002 on your
local machine. The secure tunnel created by ssh automatically communicates with the news server on news.yoyodyne.com, and the
news traffic passing through the tunnel is protected by encryption. [Section 9.1]

B3I Thisistrue of standard Tel net, but some implementations add security features.

1.5 History of SSH

SSH1 and the SSH-1 protocol were developed in 1995 by Tatu Y16nen, aresearcher at the
Helsinki University of Technology in Finland. After his university network was the victim
of a password-sniffing attack earlier that year, Y |6nen whipped up SSH1 for himself. When
beta versions started gaining attention, however, he realized that his security product could
be put to wider use.

In July 1995, SSH1 was released to the public as free software with source code, permitting
people to copy and use the program without cost. By the end of the year, an estimated
20,000 usersin 50 countries had adopted SSH1, and Y |6nen was fending off 150 email
messages per day reguesting support. In response, Yl6nen founded SSH Communications
Security, Ltd., (SCS, http://www.ssh.com/) in December of 1995 to maintain,

commercialize, and continue development of SSH. Today he is chairman and chief
technology officer of the company.

Also in 1995, Yl6nen documented the SSH-1 protocol as an Internet Engineering Task
Force (IETF) Internet Draft, which essentially described the operation of the SSH1
software after the fact. It was a somewhat ad hoc protocol with a number of problems and
limitations discovered as the software grew in popularity. These problems couldn't be fixed
without losing backward compatibility, so in 1996, SCS introduced a new, major version of
the protocol, SSH 2.0 or SSH-2, that incorporates new algorithms and is incompatible with
SSH-1. In responsg, the IETF formed aworking group called SECSH (Secure Shell) to
standardize the protocol and guide its development in the public interest. The SECSH
working group submitted the first Internet Draft for the SSH-2.0 protocol in February 1997.

In 1998, SCS released the software product "SSH Secure Shell” (SSH2), based on the
superior SSH-2 protocol. However, SSH2 didn't replace SSH1 in the field, for two reasons.
First, SSH2 was missing a number of useful, practical features and configuration options of
SSH1. Second, SSH2 had a more restrictive license. The original SSH1 had been freely
available from YI6nen and the Helsinki University of Technology. Newer versions of
SSH1 from SCS were still freely available for most uses, even in commercia settings, as
long as the software was not directly sold for profit or offered as a service to customers.
SSH2, on the other hand, was a commercial product, allowing gratis use only for qualifying
educational and non-profit entities. As aresult, when SSH2 first appeared, most existing
SSH1 users saw few advantages to SSH2 and continued to use SSH1. As of thiswriting,
three years after the introduction of the SSH-2 protocol, SSH-1 is still the most widely
deployed version on the Internet, even though SSH-2 is a better and more secure protocol.

This situation promises to change, however, as aresult of two developments: aloosening
of the SSH2 license and the appearance of free SSH-2 implementations. As this book went
to pressin late 2000, SCS broadened the SSH2 license to permit free use by individual

http://www.ssh.com/

contractors working for qualifying noncommercial entities. It also extends free use to the
Linux, NetBSD, FreeBSD, and OpenBSD operating systems, in any context at all including
acommercial one. At the same time, OpenSSH (http://www.openssh.com/) is gaining
prominence as an SSH implementation, developed under the auspices of the OpenBSD
project (http://www.openbsd.org/) and freely available under the OpenBSD license. Based

on the last free release of the original SSH, 1.2.12, OpenSSH has devel oped rapidly.
Though many people have contributed to it, OpenSSH is largely the work of software
developer Markus Friedl. It supports both SSH-1 and SSH-2 in asingle set of programs,
whereas SSH1 and SSH2 have separate executables, and the SSH-1 compatibility features
in SSH2 require both products to be installed. While OpenSSH was devel oped under
OpenBSD, it has been ported successfully to Linux, Solaris, AlX, and other operating
systems, in tight synchronization with the main releases. Although OpenSSH isrelatively
new and missing some features present in SSH1 and SSH2, it is developing rapidly and
promises to be amajor SSH flavor in the near future.

At presstime, development of SSH1 has ceased except for important bug fixes, while
development of SSH2 and OpenSSH remains active. Other SSH implementations abound,
notably the commercial versions of SSH1 and SSH2 maintained and sold by F-Secure
Corporation, and numerous ports and original products for the PC, Macintosh, Palm PFilot,
and other operating systems. [Section 13.3] It is estimated there are over two million SSH

users worldwide, including hundreds of thousands of registered users of SCS products.

e Sometimes we use the term "SSH1/SSH2 and their derivatives."
Thisrefersto SCS's SSH1 and SSH2, F-Secure SSH Server

w) &+ (Vesionsl1and 2), OpenSSH, and any other ports of the SSH1 or
SSH2 code base for Unix or other operating systems. The term
doesn't encompass other SSH products (SecureCRT, NiftyTelnet
SSH, F-Secure's Windows and Macintosh clients, etc.).

http://www.openssh.com/
http://www.openbsd.org/

1.6 Related Technologies

SSH is popular and convenient, but we certainly don't claim it is the ultimate security
solution for al networks. Authentication, encryption, and network security originated long
before SSH and have been incorporated into many other systems. Let's survey afew
representative systems.

1.6.1 rsh Suite (R-Commands)

The Unix programs rsh, rlogin, and rcp-collectively known as the r-commands-are the
direct ancestors of the SSH1 clients ssh, slogin, and scp. The user interfaces and visible
functionality are nearly identical to their SSH1 counterparts, except that SSH1 clients are
secure. The r-commands, in contrast, don't encrypt their connections and have aweak,
easily subverted authentication model.

An r-command server relies on two mechanisms for security: a network naming service
and the notion of "privileged" TCP ports. Upon receiving a connection from aclient, the
server obtains the network address of the originating host and trandates it into a hostname.
This hostname must be present in a configuration file on the server, typically /etc/hosts.
equiv, for the server to permit access. The server also checks that the source TCP port
number isin the range 1-1023, since these port numbers can be used only by the Unix
superuser (or root uid). If the connection passes both checks, the server believesitis
talking to atrusted program on atrusted host and logs in the client as whatever user it
regquests!

These two security checks are easily subverted. The trandlation of a network addressto a
hostname is done by a naming service such as Sun's Network Information Service (NIS) or
the Internet Domain Name System (DNS). Most implementations and/or deployments of
NIS and DNS services have security holes, presenting opportunities to trick the server into
trusting a host it shouldn't. Then, aremote user can log into someone else's account on the
server simply by having the same username.

Likewise, blind trust in privileged TCP ports represents a serious security risk. A cracker
who gains root privilege on atrusted machine can smply run atailored version of thersh
client and log in as any user on the server host. Overall, reliance on these port numbersis
no longer trustworthy in aworld of desktop computers whose users have administrative
access as a matter of course, or whose operating systems don't support multiple users or
privileges (such as Windows 9x and the Macintosh).

If user databases on trusted hosts were always synchronized with the server, installation of
privileged programs (setuid root) strictly monitored, root privileges guaranteed to be held

by trusted people, and the physical network protected, the r-commands would be
reasonably secure. These assumptions made sense in the early days of networking, when
hosts were few, expensive, and overseen by a small and trusted group of administrators, but
they have far outlived their usefulness.

Given SSH's superior security features and that ssh is backward-compatible with rsh (and
scp with rep), we see no compelling reason to run the r-commands any more. Install SSH
and be happy.

1.6.2 Pretty Good Privacy (PGP)

PGP is apopular encryption program available for many computing platforms, created by
Phil Zimmerman. It can authenticate users and encrypt data files and email messages.

SSH incorporates some of the same encryption algorithms as PGP, but applied in a
different way. PGP isfile-based, typically encrypting one file or email message at atime
on asingle computer. SSH, in contrast, encrypts an ongoing session between networked
computers. The difference between PGP and SSH is like that between a batch job and an
interactive process.

- PGP and SSH are related in another way as well: SSH2 can
optionally use PGP keys for authentication. [Section 5.5.1.6]

More PGP information is available at http://www.pgpi.com/.

1.6.3Kerberos

Kerberos is a secure authentication system for environments where networks may be
monitored, and computers aren't under central control. It was developed as part of Project
Athena, awide-ranging research and development effort at the Massachusetts I nstitute of
Technology (MIT). Kerberos authenticates users by way of tickets, small sequences of
bytes with limited lifetimes, while user passwords remain secure on a central machine.

Kerberos and SSH solve similar problems but are quite different in scope. SSH is
lightweight and easily deployed, designed to work on existing systems with minimal
changes. To enable secure access from one machine to another, smply install an SSH
client on the first and a server on the second, and start the server. Kerberos, in contrast,
requires significant infrastructure to be established before use, such as administrative user
accounts, a heavily secured central host, and software for network-wide clock
synchronization. In return for this added complexity, Kerberos ensures that users
passwords travel on the network as little as possible and are stored only on the central host.
SSH sends passwords across the network (over encrypted connections, of course) on each

http://www.pgpi.com/

login and stores keys on each host from which SSH is used. Kerberos also serves other
purposes beyond the scope of SSH, including a centralized user account database, access
control lists, and a hierarchical model of trust.

Another difference between SSH and Kerberos is the approach to securing client
applications. SSH can be easily integrated with programs that use rsh in the background,
such as Pine, the popular mail reader. [Section 11.3] Configureit to use ssh instead of rsh,
and the program's remote connections are transparently secure. For programs that open
direct network connections, SSH's port-forwarding feature provides another convenient
form of integration. Kerberos, on the other hand, contains a set of programming libraries
for adding authentication and encryption to other applications. Devel opers can integrate
applications with Kerberos by modifying their source code to make calls to the Kerberos

Iibraries.[4] The MIT Kerberos distribution comes with a set of common services that have
been "kerberized," including secure versions of telnet, ftp, and rsh.

If the features of Kerberos and SSH both sound good, you're in luck: they've been
integrated. [Section 11.4] More information on Kerberos can be found at:

http://web.mit.edu/kerberos/www/
http://nii.isi.edu/info/kerberos/

1.6.41PSEC

Internet Protocol Security (IPSEC) is an evolving Internet standard for network security.
Developed by an IETF working group, IPSEC comprises authentication and encryption
implemented at the IP level. Thisisalower level of the network stack than SSH addresses.
It isentirely transparent to end users, who don't need to use a particular program such as
SSH to gain security; rather, their existing insecure network traffic is protected
automatically by the underlying system. IPSEC can securely connect a single machineto a
remote network through an intervening untrusted network (such as the Internet), or it can
connect entire networks (thisisthe idea of the "Virtual Private Network," or VPN).

SSH is often quicker and easier to deploy as a solution than IPSEC, since SSH isasimple
application program, whereas |PSEC requires additions to the host operating systems on
both sides if they don't aready come with it, and possibly to network equipment such as
routers, depending on the scenario. SSH also provides user authentication, whereas |PSEC
deals only with individual hosts. On the other hand, IPSEC is more basic protection and
can do things SSH can't. For instance, in Section 11.2, we discuss in detail the difficulties

of trying to protect the FTP protocol using SSH. If you need to secure an existing insecure
protocol such as FTP, which isn't amenable to treatment with SSH, IPSEC isaway to do it.

IPSEC can provide authentication alone, through a means called the Authentication Header
(AH), or both authentication and encryption, using a protocol called Encapsulated Security
Payload (ESP). Detailed information on IPSEC can be found at:

http://web.mit.edu/kerberos/www/
http://nii.isi.edu/info/kerberos/

http://www.ietf.org/ids.by.wg/ipsec.html

1.6.5 Secure Remote Password (SRP)

The Secure Remote Password (SRP) protocol, created at Stanford University, is a security
protocol very different in scope from SSH. It is specifically an authentication protocol,
whereas SSH comprises authentication, encryption, integrity, session management, etc., as
an integrated whole. SRP isn't a complete security solution in itself, but rather a technol ogy
that can be a part of a security system.

The design goal of SRP isto improve on the security properties of password-style
authentication, while retaining its considerable practical advantages. Using SSH public-key
authentication is difficult if you're traveling, especialy if you're not carrying your own
computer, but instead are using other people's machines. Y ou have to carry your private
key with you on a diskette and hope that you can get the key into whatever machine you
need to use. Oops, you've been given an X terminal. Oh well.

Carrying your encrypted private key with you is also a weakness, because if someone steals
it, they can subject it to adictionary attack in which they try to find your passphrase and
recover the key. Then you're back to the age-old problem with passwords: to be useful they
must be short and memorable, whereas to be secure, they must be long and random.

SRP provides strong two-party mutual authentication, with the client needing only to
remember a short password which need not be so strongly random. With traditional
password schemes, the server maintains a sensitive database that must be protected, such as
the passwords themselves, or hashed versions of them (as in the Unix /etc/passwd and /etc/
shadow files). That data must be kept secret, since disclosure allows an attacker to
impersonate users or discover their passwords through a dictionary attack. The design of
SRP avoids such a database and allows passwords to be less random (and therefore more
memorable and useful), since it prevents dictionary attacks. The server still has sensitive
data that should be protected, but the consequences of its disclosure are less severe.

SRPisalso intentionally designed to avoid using encryption algorithmsin its operation.
Thus it avoids running afoul of cryptographic export laws, which prohibits certain
encryption technologies from being shared with foreign countries.

SRP is an interesting technology we hope gains wider acceptance; it is an excellent
candidate for an additional authentication method in SSH. The current SRP implementation
includes secure clients and servers for the Telnet and FTP protocols for Unix and
Windows. More SRP information can be found at:

http://srp.stanford.edu/

http://www.ietf.org/ids.by.wg/ipsec.html
http://srp.stanford.edu/

1.6.6 Secure Socket Layer (SSL) Protocol

The Secure Socket Layer (SSL) protocol is an authentication and encryption technique
providing security servicesto TCP clients by way of a Berkeley sockets-style API. It was
initially developed by Netscape Communications Corporation to secure the HTTP protocol
between web clients and servers, and that is still its primary use, though nothing about it is
specificto HTTP. It ison the IETF standards track as RFC-2246, under the name"TLS"
for Transport Layer Security.

An SSL participant provesitsidentity by adigital certificate, a set of cryptographic data. A
certificate indicates that atrusted third party has verified the binding between an identity
and a given cryptographic key. Web browsers automatically check the certificate provided
by aweb server when they connect by SSL, ensuring that the server is the one the user
intended to contact. Thereafter, transmissions between the browser and the web server are
encrypted.

SSL is used most often for web applications, but it can also "tunnel” other protocols. It is
secure only if a"trusted third party” exists. Organizations known as certificate authorities
(CAs) servethisfunction. If acompany wants a certificate from the CA, the company must
prove itsidentity to the CA through other means, such as legal documents. Once the proof
is sufficient, the CA issues the certificate.

For more information, visit the OpenSSL project at:

http://www.openssl.org/

1.6.7 SSL-Enhanced Telnet and FTP

Numerous TCP-based communication programs have been enhanced with SSL, including
telnet (e.g., SSLtelnet, SRA telnet, SSLTel, STel) and ftp (SSLftp), providing some of the
functionality of SSH. Though useful, these tools are fairly single-purpose and typicaly are
patched or hacked versions of programs not originally written for secure communication.
The major SSH implementations, on the other hand, are more like integrated tool sets with
diverse uses, written from the ground up for security.

1.6.8 stunnd

stunnel isan SSL tool created by Micha Trojnara of Poland. It adds SSL protection to
existing TCP-based services in a Unix environment, such as POP or IMAP servers, without
requiring changes to the server source code. It can be invoked from inetd as a wrapper for
any number of service daemons or run standalone, accepting network connections itself for
aparticular service. stunnel performs authentication and authorization of incoming
connectionsvia SSL; if the connection is allowed, it runs the server and implements an

SSL -protected session between the client and server programs.

http://www.openssl.org/

Thisis especially useful because certain popular applications have the option of running
some client/server protocols over SSL. For instance, both Netscape Communicator and
Microsoft Internet Explorer allow you to connect POP, IMAP, and SMTP servers using
SSL. For more stunnél information, see:

http://www.stanton.dtcc.edu/stanton/cs/admin/notes/ss

1.6.9 Firewalls

A firewall is a hardware device or software program that prevents certain data from
entering or exiting a network. For example, afirewall placed between aweb site and the
Internet might permit only HTTP and HTTPS traffic to reach the site. As another example,
afirewall can rgect all TCP/IP packets unless they originate from a designated set of
network addresses.

Firewalls aren't areplacement for SSH or other authentication and encryption approaches,
but they do address similar problems. The techniques may be used together.

(4] SSH2 has moved toward this model aswell, organized as a set of librariesimplementing the
SSH2 protocol and accessed viaan API.

http://www.stanton.dtcc.edu/stanton/cs/admin/notes/ssl

1.7 Summary

SSH is a powerful, convenient approach to protecting communications on a computer
network. Through secure authentication and encryption technologies, SSH supports secure
remote logins, secure remote command execution, secure file transfers, access control,
TCP/IP port forwarding, and other important features.

Chapter 2. Basic Client Use

SSH isasimpleidea, but it has many complex parts. This chapter is designed to get you
started with SSH quickly. We cover the basics of SSH's most immediately useful features:

. Logging into aremote computer over a secure connection
. Transferring files between computers over a secure connection

We also introduce authentication with cryptographic keys, a more secure alternative to
ordinary passwords. Advanced uses of client programs, such as multiple keys, client
configuration files, and TCP port forwarding, will be covered in later chapters.

We use SSH1 and SSH2 (and occasionally OpenSSH) for all examples. If the syntax
differs among the products, we'll discuss each of them.

2.1 A Running Example

Suppose you're out of town on a business trip and want to read your email, which sitson a
Unix machine belonging to your ISP, shell.isp.com. A friend at a nearby university agrees
to let you log into her Unix account on the machine local .university.edu, and then remotely
log into yours. For the remote login you could use the telnet or rlogin programs, but as
we've seen, this connection between the machinesis insecure. (No doubt some subversive
college student would grab your password and turn your account into a renegade web
server for pirated software and Ani DiFranco MP3s.) Fortunately, both your friend's Unix
machine and your 1SP's have an SSH product installed.

In the exampl e running through the chapter, we represent the shell prompt of the local
machine, local.university.edu, as adollar sign ($) and the prompt on shell.isp.com as
shel | . i sp. conp.

2.2 Remote Terminal Sessionswith ssh

Suppose your remote username on shell.isp.comis"pat". To connect to your remote account
from your friend's account on local.university.edu, you type:

$ ssh -1 pat shell.isp.com

pat's password: ****x*

Last login: Mon May 24 19:32:51 1999 from quondam nefertiti.org
You have new mail .

shel | .isp.conp

This leads to the situation shown in Figure 2-1. The ssh command runs a client that contacts
the SSH server on shell.isp.com over the Internet, asking to be logged into the remote account

with username pat.[l] Y ou can aso provide user @host syntax instead of the - option to
accomplish the same thing:

$ ssh pat @hell.isp.com

Figure 2.1. Our example scenario

University Meiwerk ISP Network
Internet
ﬁir.‘-l;r s SN A .
local wniversity.edu shell isp.com

On first contact, SSH establishes a secure channel between the client and the server so all
transmissions between them are encrypted. The client then prompts for your password, which
it suppliesto the server over the secure channel. The server authenticates you by checking
that the password is correct and permits the login. All subsequent client/server exchanges are
protected by that secure channel, including the contents of the email you proceed to read
using amail program on shell.isp.com.

It's important to remember that the secure channel exists only between the SSH client and
server machines. After logging into shell.isp.com viassh, if you then telnet or ftp to athird
machine, insecure.isp.com, the connection between shell.isp.com and insecure.isp.comis not
secure. However, you can run another ssh client from shell.isp.com to insecure.isp.com,
creating another secure channel, which keeps the chain of connections secure.

We've covered only the simplest use of ssh. Chapter 7 goes into far greater depth about its
many features and options.

2.2.1 File Transfer with scp

Continuing the story, suppose that while reading your email, you encounter a message with
an attached file you'd like to print. In order to send the file to alocal printer at the university,
you must first transfer the file to local .university.edu. Once again, you reject as insecure the
traditional file-transfer programs, such as ftp and rcp. Instead, you use another SSH client
program, scp, to copy the file across the network via a secure channel.

First, you write the attachment to afile in your home directory on shell.isp.com using your
mail client, naming the file print-me. When you've finished reading your other email
messages, log out of shell.isp.com, ending the SSH session and returning to the shell prompt
on local .university.edu. Y ou're now ready to copy the file securely.

The scp program has syntax much like the traditional Unix cp program and nearly identical to
the insecure rcp program. It isroughly:

scp nane- of - source nane-of -destinati on

In this example, scp copies the file print-me on shell.isp.com over the network to alocal file
in your friend's account on local .university.edu, also caled print-me:

$ scp pat @hell.isp.comprint-nme print-ne

Thefileistransferred over an SSH-secured connection. The source and destination files may
be specified not only by filename, but also by username ("pat” in our example) and hosthame
(shell.isp.com), indicating the location of the file on the network. Depending on your needs,
various parts of the source or destination name can be omitted, and defaults values used. For
example, omitting the username and the "at" sign (pat@) makes scp assume that the remote
username is the same as the local one.

Like ssh, scp prompts for your remote password and passes it to the SSH server for
verification. If successful, scp logs into the pat account on shell.isp.com, copies your remote
file print-meto the local file print-me, and logs out of shell.isp.com. The local file print-me
may now be sent to a printer.

The destination filename need not be the same as the remote one. For example, if you're
feeling French, you could call the local file imprime-moi :

$ scp pat @hell.isp.comprint-nme inprimnme-noi

The full syntax of scp can represent local and remote filesin powerful ways, and the program
also has numerous command-line options. [Section 7.5]

(41'1f the local and remote usernames areidentical, you can omit the -I option (- pat) and just type
ssh shell.isp.com

2.3 Adding Complexity to the Example

The preceding example session provided a quick introduction to the most often-used client programs-ssh and
scp-in aformat to follow while sitting at your computer. Now that you have the basics, |et's continue the
example but include situations and complications glossed over the first time. These include the "known hosts"
security feature and the SSH escape character.

- If you're following at the computer as you read, your SSH clients might behave
unexpectedly or differently from ours. Asyou will see throughout the book, SSH
wh 4. implementations are highly customizable, by both yourself and the system
administrator, on either side of the secure connection. Although this chapter
describes common behaviors of SSH programs based on their installation defaults,
your system might be set up differently.

If commands don't work as you expect, try adding the -v ("verbose") command-line
option, for example:

$ ssh -v shell.isp.com

This causes the client to print lots of information about its progress, often revealing
the source of the discrepancy.

2.3.1 Known Hosts

The first time an SSH client encounters a new remote machine, it does some extrawork and prints a message
like the following:

$ ssh -1 pat shell.isp.com
Host key not found fromthe list of known hosts.
Are you sure you want to continue connecting (yes/no)?

Assuming you respond yes (the most common response), the client continues:
Host 'shell.isp.com added to the |list of known hosts.

This message appears only the first time you contact a particular remote host. The message is a security feature
related to SSH's concept of known hosts.

Suppose an adversary wants to obtain your password. He knows you are using SSH, and so he can't monitor
your connection by eavesdropping on the network. Instead, he subverts the naming service used by your local
host so that the name of your intended remote host, shell.isp.com, trandates falsely to the IP address of a
computer run by him! He then installs an altered SSH server on the phony remote host and waits. When you
log in viayour trusty SSH client, the altered SSH server records your password for the adversary's later use (or
misuse, more likely). The bogus server can then disconnect with a preplanned error message such as " System
down for maintenance-please try again after 4:00 p.m." Even worsg, it can fool you completely by using your

password to log into the real shell.isp.com and transparently pass information back and forth between you and
the server, monitoring your entire session. This hostile strategy is called a man-in-the-middle attack. [Section

3.10.4] Unless you think to check the originating | P address of your session on the server, you might never
notice the deception.

The SSH known-host mechanism prevents such attacks. When an SSH client and server make a connection,
each of them provesitsidentity to the other. Y es, not only does the server authenticate the client, as we saw
earlier when the server checked pat's password, but the client also authenticates the server by public-key
cryptography. [Section 3.4.1] In short, each SSH server has a secret, unique ID, called a host key, to identify

itself to clients. The first time you connect to aremote host, a public counterpart of the host key gets copied and
stored in your local account (assuming you responded "yes" to the client's prompt about host keys, earlier).
Each time you reconnect to that remote host, the SSH client checks the remote host's identity using this public

key.

Of course, it's better to have recorded the server's public host key before connecting to it the first time, since
otherwise you are technically open to a man-in-the-middle attack that first time. Administrators can maintain
system-wide known-hosts lists for given sets of hosts, but this doesn't do much good for connecting to random
new hosts around the world. Until areliable, widely deployed method of retrieving such keys securely exists
(such as secure DNS, or X.509-based public-key infrastructure), this record-on-first-use mechanismisan
acceptable compromise.

If authentication of the server fails, various things may happen depending on the reason for failure and the SSH
configuration. Typically awarning appears on the screen, ranging from arepeat of the known-hosts message:

Host key not found fromthe list of known hosts.
Are you sure you want to continue connecting (yes/no)?

to more dire words:

Soneone coul d be eavesdroppi ng on you right now (man-in-the-m ddle attack)!
It is also possible that the host key has just been changed.

Pl ease contact your system adm nistrator.

Add correct host key in <path>/known _hosts to get rid of this nessage.
Agent forwarding is disabled to avoid attacks by corrupted servers.

X11 forwarding is disabled to avoid attacks by corrupted servers.

Are you sure you want to continue connecting (yes/no)

If you answer yes, ssh alows the connection, but disables various features as a security precaution and doesn't
update your personal known-hosts database with the new key; you must do that yourself to make this message

go away.

Asthe text of the message says, if you see this warning, you aren't necessarily being hacked: for example, the
remote host may have legitimately changed its host key for some reason. In some cases, even after reading this
book, you won't know the cause of these messages. Contact your system administrator if you need assistance,
rather than take a chance and possibly compromise your password. We'l cover these issues further when we
discuss persona known hosts databases and how to alter the behavior of SSH clients with respect to host keys.
[Section 7.4.3]

2.3.2 The Escape Character

Let usreturn to the shell.isp.com example, just after you'd discovered the attachment in your remote email
message and saved it to the remote file print-me. In our origina example, you then logged out of shell.isp.com
and ran scp to transfer the file. But what if you don't want to log out? If you're using a workstation running a
window system, you can open a new window and run scp. But if you're using alowly text terminal, or you're
not familiar with the window system running on your friend's computer, there is an alternative. Y ou can
temporarily interrupt the SSH connection, transfer the file (and run any other local commands you desire), and
then resume the connection.

ssh supports an escape character, a designated character that gets the attention of the SSH client. Normally, ssh
sends every character you type to the server, but the escape character is caught by the client, alerting it that
special commands may follow. By default, the escape character isthetilde (~), but you can changeit. To
reduce the chances of sending the escape character unintentionally, that character must be the first character on
the command line, i.e., following anewline (Cont r ol - J) or return (Cont r ol - \) character. If not, the client
treatsit literally, not as an escape character.

After the escape character gets the client's attention, the next character entered determines the effect of the
escape. For example, the escape character followed by a Cont r ol - Z suspends ssh like any other shell job,
returning control to the local shell. Such a pair of charactersis called an escape sequence. Table 2-1

summarizes the supported escape sequences. It's followed by alist that describes each sequence's meaning.

Table 2.1. ssh Escape Sequences

Sequence | Examplewith <ESC> =~ Meaning
<ESC 7Z ~ NZ Suspend the connection (* Z means Cont r ol - Z)
<ESC> . ~ . Terminate the connection
<ESC> # ~ # List all forwarded connections [

Send ssh into the background (when waiting for connections to

B & - & terminate)
<ESC>r ~r Request rekeying immediately (SSH2 only)
<ESC><ESCs |~ ~ Send the escape character (by typing it twice)

<ESC> ? ~ ? Print a help message

<ESC> - ~ - Disable the escape character (SSH2 only)

<ESC> V ~V Print version information (SSH2 only)

<ESC> s ~'s Print statistics about this session (SSH2 only)

. "Suspend the connection™ puts ssh into the background, suspended, returning control of the terminal to
the local shell. To return to ssh, use the appropriate job control command of your shell, typically fg.
While suspended, ssh doesn't run, and if left suspended long enough, the connection may terminate
since the client isn't responding to the server. Also, any forwarded connections are similarly blocked
while ssh is suspended. [Section 9.2.9]

. "Terminate the connection” ends the SSH session immediately. Thisis most useful if you have lost
control of the session: for instance, if ashell command on the remote host has hung and become
unkillable. Any X or TCP port forwardings are terminated immediately as well. [Section 9.2.9]

. "List al forwarded connections” prints alist of each X forwarding or TCP port forwarding connection
currently established. Thislists only active instances of forwarding; if forwarding services are available
but not currently in use, nothing islisted here.

. "Send ssh into the background,” like the "suspend connection” command, reconnects your terminal to
the shell that started ssh, but it doesn't suspend the ssh process. Instead, ssh continuesto run. Thisisn't

ordinarily useful, since the backgrounded ssh process immediately encounters an error.l! This escape
sequence becomes useful if your ssh session has active, forwarded connections when you log out.
Normally in this situation, the client prints a message:

Waiting for forwarded connections to termnate...
The foll owi ng connecti ons are open:
X11 connection fromshell.isp.comport 1996

as it waits for the forwarded connections to close before it exits. While the client isin this state, this
escape sequence returns you to the local shell prompt.

. "Request rekeying immediately" causes the SSH2 client and server to generate and use some new
internal keys for encryption and integrity.

. "Send the escape character” tells the client to send areal tilde (or whatever the escape character is) to
the SSH server as plaintext, not to interpret it as an escape. "Disable the escape character” prevents
further escape sequences from having any effect. The rest of the escape sequences are self-explanatory.

To change the ssh escape character, use the -e command-line option. For example, type the following to make
the percent sign (%) the escape character when connecting to shell.isp.com as user pat:

$ ssh -e "% -1 pat shell.isp.com

(2 For SSH2, this option is documented but not implemented as of Version 2.3.0.

(31 The error occurs as ssh attempts to read input from the now disconnected pseudo-terminal.

2.4 Authentication by Cryptographic Key

In our running example, the user pat is authenticated by the SSH server vialogin password. Passwords, however, have
serious drawbacks:

. Inorder for a password to be secure, it should be long and random, but such passwords are hard to memorize.

. A password sent across the network, even protected by an SSH secure channel, can be captured when it arrives
on the remote host if that host has been compromised.

. Most operating systems support only a single password per account. For shared accounts (e.g., a superuser
account), this presents difficulties:

o Password changes are inconvenient because the new password must be communicated to all people with
access to the account.

o Tracking usage of the account becomes difficult because the operating system doesn't distinguish
between the different users of the account.

To address these problems, SSH supports public-key authentication: instead of relying on the password scheme of the
host operating system, SSH may use cryptographic keys. [Section 3.2.2] Keys are more secure than passwords in general
and address all the weaknesses mentioned earlier.

2.4.1 A Brief Introduction to Keys

A key isadigital identity. It'saunique string of binary datathat means, "Thisis me, honestly, | swear." And with alittle
cryptographic magic, your SSH client can prove to a server that its key is genuine, and you are really you.

An SSH identity uses a pair of keys, one private and one public. The private key is a closely guarded secret only you
have. Your SSH clients use it to prove your identity to servers. The public key is, like the name says, public. Y ou place
it freely into your accounts on SSH server machines. During authentication, the SSH client and server have alittle
conversation about your private and public key. If they match (according to a cryptographic test), your identity is
proven, and authentication succeeds.

The following sequence demonstrates the conversation between client and server. [Section 3.4.1] (It occurs behind the
scenes, so you don't need to memorize it or anything; we just thought you might be interested.)

1. Your client says, "Hey server, I'd like to connect by SSH to an account on your system, specifically, the account
owned by user smith."

2. The server says, "Well, maybe. First, | challenge you to prove your identity!" And the server sends some data,
known as a challenge, to the client.

3. Your client says, "l accept your challenge. Hereis proof of my identity. | made it myself by mathematically
using your challenge and my private key." This response to the server is called an authenticator.

4. The server says, "Thanks for the authenticator. | will now examine the smith account to see if you may enter.”
Specifically, the server checks smith's public keysto seeif the authenticator "matches' any of them. (The
"match” is another cryptographic operation.) If so, the server says, "OK, come on in!" Otherwise, the
authentication fails.

Before you can use public-key authentication, some setup is required:

1. You need aprivate key and a public key, known collectively as akey pair. Y ou also heed a secret passphrase to

protect your private key. [Section 2.4.2]
2. You need to install your public key on an SSH server machine. [Section 2.4.3]

2.4.2 Generating Key Pairswith ssh-keygen

To use cryptographic authentication, you must first generate a key pair for yourself, consisting of a private key (your
digital identity that sits on the client machine) and a public key (that sits on the server machine). To do this, use the ssh-
keygen program. Its behavior differsfor SSH1, SSH2, and OpenSSH. On an SSH1 system, the program is called ssh-
keygen or ssh-keygenl. When you invoke it, ssh-keygen creates an RSA key pair and asks you for a secret passphrase to

protect the private key.[4]

$ ssh-keygenl

Initializing random nunber generator..

Generati Ng P. o ++ (di stance 1368)
CGenerating gq:++ (distance 58)

Computing the keys. ..

Testing the keys. ..

Key generation conpl ete.

Enter file in which to save the key (/hone/pat/.ssh/identity):

Enter passphrase R I b b b b S S I

Enter the sanme passphrase again: *******xkkskxskx

Your identification has been saved in identity.

Your public key is:

1024 35 11272721957877936880509167858732970485872567486703821636830\
1950099934876023218886571857276011133767701853088352661186539160906\
9214986989240214507621864063548908730298546478215446737245984456708\
9631066077107611074114663544313782992987840457273825436579285836220\
2493395730648451296601594344979290457421809236729 pat h@hel | . i sp. com
Your public key has been saved in identity. pub

On SSH2 systems, the command is either ssh-keygen or ssh-keygen2, and its behavior is a bit different and produces
either aDSA key (the default) or an RSA key:

$ ssh-keygen2
Cenerating 1024-bit dsa key pair
1 ..000.000.00
2 0.000. 000. 00
3 0.000. 000. 00
4 0.000. 000. 00
Key gener at ed.
1024-bit dsa, created by pat @hell.isp.com Mon Mar 20 13:01: 15 2000
Passphrase kkkkkhkkhkhkkhkkkk*k
Agaln R IR b b b b S S I b
Private key saved to /hone/pat/.ssh2/id dsa 1024 a
Public key saved to /hone/pat/.ssh2/id dsa 1024 a. pub

The OpenSSH version of ssh-keygen aso can produce either RSA or DSA keys, defaulting to RSA. Itsoperation is
similar to that of ssh-keygenl.

Normally, ssh-keygen performs all necessary mathematics to generate akey, but on some operating systems you might
be asked to assist it. Key generation reguires some random numbers, and if your operating system doesn't supply a
random-number generator, you may be asked to type some random text. ssh-keygen uses the timings of your keystrokes
toinitializeitsinternal random-number generator. On a 300-MHz Pentium system running Linux, generating a 1024-bit
RSA key takes about three seconds; if your hardware is slower than this or heavily loaded, generation may take
significantly longer, up to aminute or more. It can also take longer if the process runs out of random bits, and ssh-

keygen has to wait to collect more.

ssh-keygen then creates your local SSH directory (~/.ssh for SSH1 and OpenSSH or ~/.ssh2 for SSH2) if it doesn't
aready exist, and stores the private and public components of the generated key in two files there. By default, their
names are identity and identity.pub (SSH1, OpenSSH) or id _dsa 1024 aandid dsa 1024 a.pub (SSH2). SSH clients
consider these to be your default identity for authentication purposes.

Never reveal your private key and passphrase to anyone else. They are just as sensitive as
“"@ your login password. Anyone possessing them can log in as you!

When created, the identity fileis readable only by your account, and its contents are further protected by encrypting
them with the passphrase you supplied during generation. We say "passphrase” instead of "password" both to
differentiate it from alogin password, and to stress that spaces and punctuation are alowed and encouraged. We
recommend a passphrase at least 10 -15 characters long and not a grammatical sentence.

ssh-keygen has numerous options for managing keys. changing the passphrase, choosing a different name for the key
file, and so forth. [Section 6.2]

2.4.3 Installing a Public Key on an SSH Server Machine

When passwords are used for authentication, the host operating system maintains the association between the username
and the password. For cryptographic keys, you must set up a similar association manually. After creating the key pair on
the local host, you must install your public key in your account on the remote host. A remote account may have many
public keysinstalled for accessing it in various ways.

Returning to our running example, you must install a public key into the "pat" account on shell.isp.com. Thisis done by

editing afilein the SSH configuration directory: ~/.ssh/authorized keys for SSH1 and OpenSSH[S] or ~/.ssh2/
authorization for SSH2.

For SSH1 or OpenSSH, create or edit the file ~/.ssh/authorized keys and append your public key, i.e., the contents of
the identity.pub file you generated on the local machine. A typical authorized keysfile contains alist of public key data,
one key per line. The example contains only two public keys, each onits own line of thefile, but they are too long to fit
on this page. The line breaks inside the long numbers are printing artifact; if they were actually in thefile, it would be
incorrectly formatted and wouldn't work:

1024 35 8697511247987525784866526224505474204292260357215616159982327587956883143
362147028876494426516682677550219425827002174890309672203219700937187777979705864
107549106608811204142046600066790196940691100768682518506600601481676686828742807
11088849408310989234142475694298520575977312478025518391 ny personal key

1024 37 1140868200916227508775331982659387253607752793422843620910258618820621996
941824516069319525136671585267698112659690736259150374130846896838697083490981532
877352706061107257845462743793679411866715467672826112629198483320167783914580965
674001731023872042965273839192998250061795483568436433123392629 ny work key

These are RSA public keys: the first number in each entry is the number of bitsin the key, while the second and third
are RSA-specific parameters called the public exponent and modulus. After these comes an arbitrary amount of text
treated as a comment. [Section 8.2.1]

For SSH2, you need to edit two files, one on the client machine and one on the server machine. On the client machine,
create or edit the file ~/.ssh2/identification and insert aline to identify your private key file:

| dKey id dsa 1024 a

On the server machine, create or edit the file ~/.ssh2/authorization, which contains information about public keys, one
per line. But unlike SSH1's authorized keys file, which contains copies of the public keys, the authorization file lists
only the filename of the key:

Key id _dsa 1024 a. pub
Finally, copy id _dsa 1024 a.pub from your local machine to the remote SSH2 server machine, placing it in ~/.ssh2.

Regardless of which SSH implementation you use, make sure your remote SSH directory and associated files are
writable only by your account:[6]

SSH1, OpenSSH
$ chnod 755 ~/.ssh
$ chnod 644 ~/.ssh/ aut horized_keys

OpenSSH only
chnod 644 ~/.ssh/authorized_keys2

&

SSH2 only

chnmod 755 ~/.ssh2

chnod 644 ~/.ssh2/id_dsa_1024_a. pub
chnmod 644 ~/.ssh2/authorization

BB H

The SSH server is picky about file and directory permissions and may refuse authentication if the remote account's SSH
configuration files have insecure permissions. [Section 5.4.2.1]

Y ou are now ready to use your new key to access the "pat" account:

SSH1, SSH2, OpenSSH; out put shown is for SSH1

$ ssh -1 pat shell.isp.com

Ent er passphrase for RSA key 'Your Nane <you@ ocal .org>': ******xkkxkx
Last login: Mon May 24 19:44:21 1999 from qui ncunx. nefertiti.org

You have new mail .

shel | . i sp. conm>

If all goeswell, you are logged into the remote account. Figure 2-2 shows the entire process.

Figure 2.2. Public-key authentication

locol.university.edu shellisp.com
SSH
S5 L
(i ¢ outheticator,)
............... I e S
. ideniiy fle
i : B " *% :
S— perte
encrypled

Note the similarity to the earlier example with password authentication. [Section 2.2] On the surface, the only difference
isthat you provide the passphrase to your private key, instead of providing your login password. Underneath, however,

something quite different is happening. In password authentication, the password is transmitted to the remote host. With
cryptographic authentication, the passphrase serves only to decrypt the private key to create an authenticator. [Section
2.4.1]

Public-key authentication is more secure than password authentication because:

. It requires two secret components-the identity file on disk, and the passphrase in your head-so both must be
captured in order for an adversary to access your account. Password authentication requires only one component,
the password, which might be easier to steal.

. Neither the passphrase nor the key is sent to the remote host, just the authenticator discussed earlier. Therefore,
no secret information is transmitted off the client machine.

. Machine-generated cryptographic keys are infeasible to guess. Human-generated passwords are routinely
cracked by a password-guessing technique called a dictionary attack. A dictionary attack may be mounted on the
passphrase as well, but this requires stealing the private key filefirst.

A host's security can be greatly increased by disabling password authentication altogether and permitting only SSH
connections by key.

2.4.41f You Change Your Key

Suppose you have generated a key pair, identity and identity.pub, and copied identity.pub to a bunch of SSH server
machines. All iswell. Then one day, you decide to change your identity, so you run ssh-keygen a second time,
overwriting identity and identity.pub. Guess what? Y our previous public key fileis now invalid, and you must copy the
new public key to all those SSH server machines again. This is a maintenance headache, so think carefully before
changing (destroying!) akey pair. Some caveats:

. You arenot limited to one key pair. Y ou can generate as many as you like, stored in different files, and use them
for diverse purposes. [Section 6.4]

. If you just want to change your passphrase, you don't have to generate a new key pair. ssh-keygen has command-
line options for replacing the passphrase of an existing key: -p for SSH1 and OpenSSH [Section 6.2.1] and -e for
SSH2 [Section 6.2.2]. In this case your public key remains valid since the private key hasn't changed, just the
passphrase for decrypting it.

[l RsA isan encryption algorithm for SSH keys, among other things. [Section 3.9.1] DSA is another, asyou'll see later.

(5] OpenSSH uses authorized_keys2 for SSH-2 connections. For simplicity, we'll discuss OpenSSH later. [Section 8.2.3]
(6] \We make files world-readable and directories world-searchable, to avoid NFS problems. [Section 10.7.2]

2.5 The SSH Agent

Each time you run ssh or scp with public-key authentication, you have to retype your passphrase. The first
few times you might not mind, but eventually this retyping gets annoying. Wouldn't it be nicer to identify
yourself just once and have ssh and scp remember your identity until further notice (for example, until you
log out), not prompting for your passphrase? In fact, thisisjust what an SSH agent does for you.

An agent is a program that keeps private keys in memory and provides authentication services to SSH
clients. If you preload an agent with private keys at the beginning of alogin session, your SSH clients won't
prompt for passphrases. Instead, they communicate with the agent as needed. The effects of the agent |ast
until you terminate the agent, usually just before logging out. The agent program for SSH1, SSH2, and
OpenSSH is called ssh-agent.

Generally, you run asingle ssh-agent in your local login session, before running any SSH clients. Y ou can
run the agent by hand, but people usually edit their login files (for example, ~/.login or ~/.xsession) to run

the agent automatically. SSH clients communicate with the agent via the process envi ronment,m so all
clients (and all other processes) within your login session have access to the agent. To try the agent, type:

$ ssh-agent $SHELL

where SHELL is the environment variable containing the name of your login shell. Alternatively, you could
supply the name of any other shell, such as sh, bash, csh, tcsh, or ksh. The agent runs and then invokes the
given shell asachild process. The visua effect is simply that another shell prompt appears, but this shell has
access to the agent.

Once the agent is running, it'stime to load private keysinto it using the ssh-add program. By default, ssh-
add loads the key from your default identity file:

$ ssh-add

Need passphrase for /u/you/.ssh/identity ('Your Name <you@ ocal.org>").
Ent er passphrase: ****x*xxkxkx

| dentity added: /u/you/.ssh/identity ('Your Nane <you@ ocal.org>").

Now ssh and scp can connect to remote hosts without prompting for your passphrase. Figure 2-3 shows the
process.

Figure 2.3. How the SSH agent works

prsssmsnssnsnnngssssens || ENTYAED plointext key!

- ddentity fle e ssh-ogent
i / "\ dacryps private ke
: rar private key & @-
@ p '-1:5‘”) stores n agent
i e *pn;s;h}m“‘ .
please sign
Awith key Ul Ay

SSH
ssh outhenticator A,

ssh-add reads the passphrase from your terminal by default or optionally from standard input
noninteractively. Otherwise, if you are running the X Window System with the DISPLAY environment
variable set, and standard input isn't aterminal, ssh-add reads your passphrase using a graphical X program,
ssh-askpass. This behavior is useful when calling ssh-add from X session setup scripts.[8]

ssh-add has further capabilities, particularly in SSH2, and can operate with multiple identity files. [Section
6.3.3] For now, here are afew useful commands. To load a key other than your default identity into the
agent, provide the filename as an argument to ssh-add:

$ ssh-add ny-ot her-key-file

Y ou can also list the keys the agent currently holds:

$ ssh-add -|I

delete a key from the agent:

$ ssh-add -d nane-of -key-file

or delete all keys from the agent:

$ ssh-add -D

in. While your private keys are loaded in an agent, anyone may use your terminal
to connect to any remote accounts accessible via those keys, without needing
your passphrase! Even worse, a sophisticated intruder can extract your keys from
the running agent and steal them.

‘ When running an SSH agent, don't leave your terminal unattended while logged

If you use an agent, make sure to lock your terminal if you leave it while logged
in. Youcanasousessh-add - Dto clear your loaded keys and reload them
when you return. In addition, ssh-agent2 has a"locking" feature that can protect
it from unauthorized users. [Section 6.3.3]

2.5.1 Other Uses For Agents

Because ssh and rsh command lines have such similar syntax, you naturally might want to replace rsh with
ssh. Suppose you have an automation script that uses rsh to run remote processes. If you use ssh instead,
your script prompts for passphrases, which isinconvenient for automation. If the script runs ssh many times,
retyping that passphrase repeatedly is both annoying and error-prone. If you run an agent, however, the
script can run without a single passphrase prompt. [Section 11.1]

2.5.2 A More Complex Passphrase Problem
In our running example, we copied a file from the remote to the local host:
$ scp pat @hell.isp.comprint-me inprine-noi

In fact, scp can copy afile from remote host shell.isp.com directly to athird host running SSH on which you
have an account named, say, "psmith":

$ scp pat @hell.isp.comprint-nme psmth@ther. host.net:inprine-noi

Rather than copying the file first to the local host and then back out again to the final destination, this
command has shell.isp.com send it directly to other.host.net. However, if you try this, you will run into the
following problem:

$ scp pat @hell.isp.comprint-ne psmth@ther. host.net:inprime-noi
Enter passphrase for RSA key 'Your Nanme <you@ocal.org>': ***x***xxkkxx
You have no controlling tty and no DI SPLAY. Cannot read passphrase.

| ost connecti on

What happened? When you run scp on your local machine, it contacts shell.isp.com and internally invokes a
second scp command to do the copy. Unfortunately, the second scp command al so needs the passphrase for
your private key. Since there is no terminal session to prompt for the passphrase, the second scp fails,
causing the original scp to fail. The SSH agent solves this problem: the second scp command simply queries
your local SSH agent, so no passphrase prompting is needed.

The SSH agent also solves another more subtle problem in this example. Without the agent, the second scp
(on shell.isp.com) needs access to your private key file, but the fileis on your local machine. So you have to
copy your private key file to shell.isp.com. Thisisn't ideal; what if shell.isp.comisn't a secure machine?
Also, the solution doesn't scale: if you have a dozen different accounts, it is a maintenance headache to keep
your private key file on all of them. Fortunately, the SSH agent comes to the rescue once again. The remote
scp process simply contacts your local SSH agent, authenticates, and the secure copy proceeds successfully,
through a process called agent forwarding.

2.5.3 Agent Forwarding

In the preceding example, the remote instance of scp has no direct access to your private key, since the agent
isrunning on the local host, not the remote. SSH provides agent forwarding [Section 6.3.5] to address this

problem.

When agent forwarding is turned on,[g] the remote SSH server masquerades as a second ssh-agent as shown
in Figure 2-4. It takes authentication requests from your SSH client processes there, passes them back over
the SSH connection to the local agent for handling, and relays the results back to the remote clients. In short,
remote clients transparently get access to the local ssh-agent. Since any programs executed via ssh on the
remote side are children of the server, they all have accessto the local agent just asif they were running on
thelocal host.

Figure 2.4. How agent forwarding works

forwarded
T requet
ool
SN e forvur#ed
A T
J-Efipl.llll'
forworded
request :
— .
keys .
‘.'-_.|-|
Agent Clieny
Machine X Machine ¥

In our double-remote scp example, here is what happens when agent forwarding comes into play (see Figure
2-5):

1. You run the command on your local machine:
$ scp pat @hell.isp.comprint-nme psmth@ther.host.net:inprine-noi
2. This scp process contacts your local agent and authenticates you to shell.isp.com.

3. A second scp command is automatically launched on shell.isp.comto carry out the copy to other.host.
net.

4. Since agent forwarding is turned on, the SSH server on shell.isp.com poses as an agent.

5. The second scp process tries to authenticate you to other.host.net by contacting the "agent"” that is
really the SSH server on shell.isp.com.

6. Behind the scenes, the SSH server on shell.isp.com communicates with your local agent, which
constructs an authenticator proving your identity and passes it back to the server.

7. The server verifies your identity to the second scp process, and authentication succeeds on other.host.
net.

8. Thefile copying occurs.

Figure 2.5. Third-party scp with agent forwarding

other.host.net

impaine-rmod

P .?

_ fs:p - imprime-mai

sshd

ssh shelLisp.com
local.university.edu connet fo cozount
psmith

e o

”5"-*'31;'5_‘_ d hﬂ:p prini-me psmittrEofhes host nef:imprime-mai

it soh
Lo conned fo occount pel

&|i3

“sep pati@shell.isp.comeprini-me psmithi@ather host.netimprime-moi*

Agent forwarding works over multiple connections in a series, allowing you to ssh from one machine to
another, and then to another, with the agent connection following aong the whole way. These machines may
be progressively less secure, but since agent forwarding doesn't send your private key to the remote host but
rather relays authentication requests back to the first host for processing, your key stays safe.

Mn Unix, they talk to the agent over anamed pipe whose filename is stored in an environment variable.
[Section 6.3.2]

8 7o force ssh-add to use X to read the passphrase, typessh- add </ dev/ nul | a acommand line.
Ol 1tison by default in SSH1 and SSH2, but off in OpenSSH.

2.6 Connecting Without a Password or Passphrase

One of the most frequently asked questions about SSH is: "How can | connect to aremote
machine without having to type a password or passphrase?' Asyou've seen, an SSH agent
can make this possible, but there are other methods as well, each with different tradeoffs.
Here we list the available methods with pointers to the sections discussing each one.

To use SSH clients for interactive sessions without a password or passphrase, you have
severa options:

. Public-key authentication with an agent [Section 2.5] [Section 6.3]
. Trusted-host authentication [Section 3.4.2.3]
. Kerberos authentication [Section 11.4]

Another way to achieve password-less loginsisto use an
“'@ unencrypted private key with no passphrase. Although this
technique can be appropriate for automation purposes, never do
thisfor interactive use. Instead, use the SSH agent, which
provides the same benefits with much greater security. Don't use
unencrypted keys for interactive SSH!

On the other hand, noninteractive, unattended programs such as cron jobs or batch scripts
may also benefit from not having a password or passphrase. In this case, the different
techniques raise some complex issues, and we will discuss their relative merits and security
issues later. [Section 11.1]

2.7 Miscellaneous Clients

Several other clients are included in addition to ssh and scp :

. dftp, an ftp-like client for SSH2
. dogin, alink to ssh, analogous to the rlogin program
. Hostname linksto ssh

2.7.1 sftp

The scp command is convenient and useful, but many users are already familiar with FTP
(File Transfer Protocol), a more widely used technique for transferring files on the Internet.

[10] sftp is a separate file-transfer tool layered on top of SSH. It was developed by SSH
Communications Security and was originally available only in SSH2, but other
implementations have since appeared (e.g., client support in SecureFX and server support
in OpenSSH). sftp is available only in SSH2: it isimplemented as an SSH2 subsystem
[Section 5.7] and thus not readily adaptable to use with SSH1.

sftp is advantageous for several reasons:

. Itissecure, using an SSH-protected channel for data transfer.

. Multiple commands for file copying and manipulation can be invoked within a
single sftp session, whereas scp opens a new session each time it isinvoked.

. It can be scripted using the familiar ftp command language.

. In other software applications that run an FTP client in the background, you can try
substituting sftp, thus securing the file transfers of that application.

Y ou may need an agent when trying this or similar FTP replacements, since programs that
use FTP might not recognize the prompt sftp issues for your passphrase, or they might
expect you to have suppressed FTP's password prompt (using a .netrc file, for example).

Anyone familiar with FTP will feel right at home with sftp, but sftp has some additional
features of note:

. Command-line editing using GNU Emacs-like keystrokes (Cont r ol - B for
backward character, Cont r ol - E for end of line, and so forth)

. Regular-expression matching for filenames, as documented in the sshregex
manpage supplied with SSH2 and found in Appendix A

. Severa command-line options:

-b filename

Read commands from the given file instead of the terminal
-S path

L ocate the ssh2 program using the given path
Print a help message and exit

Print the program version number and exit
-D module=level

Print debugging output [Section 5.8.2.2]

Also, sftp doesn't have the separate ASCII and binary transfer modes of standard FTP, only
binary. All filesare transferred literally. Therefore, if you copy ASCII text files between
Windows and Unix with sftp, end-of-line characters aren't translated properly. Normally,
FTP's ASCII mode transl ates between Windows' "carriage return plus newling" and Unix's
newline, for example.

2.7.2 dogin

slogin is an alternative name for ssh, just asrlogin is asynonym for rsh. On Unix systems,
dogin issimply asymbolic link to ssh. Note that the dlogin link isfound in SSH1 and
OpenSSH but not SSH2. We recommend using just ssh for consistency: it's found in al
these implementations and is shorter to type.

2.7.3 Hosthame Links

ssh for SSH1 and OpenSSH also mimics rlogin in another respect: support for hostname
links. If you make alink to the ssh executable, and the link name isn't in the set of standard

names ssh recognizes,[ll] ssh has specia behavior. It treats the link name as a hostname
and attempts to connect to that remote host. For example, if you create alink called
terpsichore.muses.org and then run it:

$1n-s /usr/local/bin/ssh terpsichore. muses.org

$ terpsichore. muses.org

Wel cone to Terpsichore! Last |ogin January 21st, 201 B.C
t er psi chore>

It's equivalent to running:

$ ssh terpsichore. nuses. org
Wel cone to Terpsichore! Last |ogin January 21st, 201 B.C
t er psi chore>

Y ou can create a collection of these links for all commonly used remote hosts. Note that
support for hostname links has been removed in SSH2. (We have never found them to be
very useful, ourselves, but the capability does exist in SSH1 and OpenSSH.)

(19 bue to the nature of the FTP protocol, FTP clients are difficult to secure using TCP port
forwarding, unlike most other TCP-based clients. [Section 11.2]

(11] These arersh, ssh, rlogin, slogin, sshl, sloginl, ssh.old, slogin.old, sshl.old, sloginl.old, and
remsh.

2.8 Summary

From the user's point of view, SSH consists of several client programs and some
configuration files. The most commonly used clients are ssh for remote login and scp for
file transfer. Authentication to the remote host can be accomplished using existing login
passwords or with public-key cryptographic techniques. Passwords are more immediately
and easily used, but public-key authentication is more flexible and secure. The ssh-keygen,
ssh-agent, and ssh-add programs generate and manage SSH keys.

Chapter 3. Inside SSH

SSH secures your datawhile it passes over a network, but how exactly doesit work ? In
this chapter, we move firmly onto technical ground and explain the inner workings of SSH.
Let'sroll up our sleeves and dive into the bits and bytes.

This chapter iswritten for system administrators, network administrators, and security
professionals. Our goal is to teach you enough about SSH to make an intelligent,
technically sound decision about using it. We cover the SSH-1 and SSH-2 protocols
separately since they have important differences.

Of course, the ultimate references on SSH are the protocol standards and the source code of
an implementation. We don't completely analyze the protocols or recapitul ate every step
taken by the software. Rather, we summarize them to provide a solid, technical overview of
their operation. If you need more specifics, you should refer to the standards documents.
The SSH Version 2 protocol isin draft status on the IETF standards track; it is available at:

http://www.ipsec.com/tech/archive/secsh.html
http://www.ietf.org/

The older protocol implemented in SSH1 and OpenSSH/1isVersion 1.5and is
documented in afile named RFC included in the SSH1 source package.

http://www.ipsec.com/tech/archive/secsh.html
http://www.ietf.org/

3.1 Overview of Features
The major features and guarantees of the SSH protocol are:

. Privacy of your data, via strong encryption

. Integrity of communications, guaranteeing they haven't been altered
. Authentication, i.e., proof of identity of senders and receivers

. Authorization, i.e., access control to accounts

. Forwarding or tunneling to encrypt other TCP/IP-based sessions

3.1.1 Privacy (Encryption)

Privacy means protecting data from disclosure. Typical computer networks don't guarantee
privacy; anyone with access to the network hardware, or to hosts connected to the network
may be able to read (or sniff) all data passing over the network. Although modern switched
networks have reduced this problem in local area networks, it is still a serious issue;
passwords are regularly stolen by such sniffing attacks.

SSH provides privacy by encrypting data that passes over the network. This end-to-end
encryption is based on random keys that are securely negotiated for that session and then
destroyed when the session is over. SSH supports avariety of encryption agorithms for
session data, including such standard ciphers as ARCFOUR, Blowfish, DES, IDEA, and
triple-DES (3DEYS).

3.1.2 Integrity

Integrity means assuring that data transmitted from one end of a network connection
arrives unaltered on the other side. The underlying transport of SSH, TCP/IP, does have
integrity checking to detect alteration due to network problems (electrical noise, lost
packets due to excessive traffic, etc.). Nevertheless, these methods are ineffective against
deliberate tampering and can be fooled by a clever attacker. Even though SSH encrypts the
data stream so an attacker can't easily change selected parts to achieve a specific result,
TCP/IP'sintegrity checking alone can't prevent, say, an attacker's deliberate injection of
garbage into your session.

A more complex example is areplay attack. Imagine that Attila the Attacker is monitoring
your SSH session and also simultaneously watching over your shoulder (either physically,
or by monitoring your keystrokes at your terminal). In the course of your work, Attila sees
you typethecommand r m - r f * within asmall directory. He can't read the encrypted
SSH session data, of course, but he could correlate a burst of activity on that connection
with your typing the command and capture the packets containing the encrypted version of

your command. Later, when you're working in your home directory, Attilainserts the
captured bits into your SSH session, and your terminal mysteriously erases all your files!

Attilas replay attack succeeds because the packets he inserted are valid; he could not have
produced them himself (due to the encryption), but he can copy and replay them later. TCP/
IP'sintegrity check is performed only on a per-packet basis, so it can't detect Attila's attack.
Clearly, the integrity check must apply to the data stream as a whole, ensuring that the bits
arrive as they were sent: in order and with no duplication.

The SSH-2 protocol uses cryptographic integrity checking, which verifies both that
transmitted data hasn't been altered and that it truly comes from the other end of the
connection. SSH-2 uses keyed hash algorithms based on MD5 and SHA-1 for this purpose:
well known and widely trusted algorithms. SSH-1, on the other hand, uses a comparatively
weak method: a 32-bit cyclic redundancy check (CRC-32) on the unencrypted data in each
packet. [Section 3.9.3]

3.1.3 Authentication

Authentication means verifying someone's identity. Suppose | claim to be Richard
Silverman, and you want to authenticate that claim. If not much is at stake, you might just
take my word for it. If you're alittle concerned, you might ask for my driver'slicense or
other photo ID. If you're a bank officer deciding whether to open a safe-deposit box for me,
you might also require that | possess a physical key, and so on. It all depends on how sure
you want to be. The arsenal of high-tech authentication techniquesis growing constantly
and includes DNA-testing microchips, retina and hand scanners, and voice-print analyzers.

Every SSH connection involves two authentications: the client verifies the identity of the
SSH server (server authentication), and the server verifies the identity of the user
requesting access (user authentication). Server authentication ensures that the SSH server
IS genuine, not an impostor, guarding against an attacker's redirecting your network
connection to a different machine. Server authentication also protects against man-in-the-
middle attacks, wherein the attacker sitsinvisibly between you and the server, pretending
to be the client on one side and the server on the other, fooling both sides and reading all
your traffic in the process!

There is difference of opinion asto the granularity of server authentication: should it be
distinguish between different server hosts, or between individual instances of the SSH
server? That is, must all SSH servers running on a particular host have the same host key,
or might they have different ones? The term "host key," of course, reflects a bias towards
the first interpretation, which SSH1 and OpenSSH follow: their known-hosts lists can only
associate a single key with any particular hostname. SSH2, on the other hand, uses the
second approach: "host keys" are actually associated with individual listening sockets,
allowing multiple keys per host. This may reflect a pragmatic need rather than a considered
changein principle. When SSH2 first appeared, it supported only DSA host keys, whereas
SSH-1 supports only RSA keys. It was therefore impossible, as a matter of implementation,

for asingle host to run both SSH-1 and SSH2 servers and have them share a host key.

User authentication is traditionally done with passwords, which unfortunately are a weak
authentication scheme. To prove your identity you have to reveal the password, exposing it
to possible theft. Additionally, in order to remember a password, people are likely to keep
it short and meaningful, which makes the password easier for third parties to guess. For
longer passwords, some people choose words or sentences in their native languages, and
these passwords are likely to be crackable. From the standpoint of information theory,
grammatical sentences contain little real information (technically known as entropy):
generally less than two bits per character in English text, far less than the 8 -16 bits per
character found in computer encodings.

SSH supports authentication by password, encrypting the password asit travels over the
network. Thisisavast improvement over other common remote-access protocols (Telnet,
FTP) which generally send your password in the clear (i.e., unencrypted) over the network,
where anyone with sufficient network access can steal it! Nevertheless, it's still only ssimple
password authentication, so SSH provides other stronger and more manageable
mechanisms:. per-user public-key signatures, and an improved rlogin-style authentication,
with host identity verified by public key. In addition, various SSH implementations support
some other systems, including Kerberos, RSA Security's Securl D tokens, S/Key one-time
passwords, and the Pluggable Authentication Modules (PAM) system. An SSH client and
server negotiate to determine which authentication mechanism to use, based on their
configurations. SSH2 can even require multiple forms of authentication.

3.1.4 Authorization

Authorization means deciding what someone may or may not do. It occurs after
authentication, since you can't grant someone privileges until you know who sheis. SSH
servers have various ways of restricting clients' actions. Access to interactive login
sessions, TCP port and X window forwarding, key agent forwarding, etc., can al be
controlled, though not all these features are available in all SSH implementations, and they
aren't aways as general or flexible as you might want. Authorization may be controlled at a
serverwide level (e.g., the /etc/sshd_config file for SSH1), or per account, depending on the
authentication method used (e.g., each user's files ~/.ssh/authorized keys, ~/.ssh2/
authorization, ~/.shosts, ~/.k5login, etc.).

3.1.5 Forwarding (Tunneling)

Forwarding or tunneling means encapsulating another TCP-based service, such as Telnet or
IMAP, within an SSH session. This brings the security benefits of SSH (privacy, integrity,
authentication, authorization) to other TCP-based services. For example, an ordinary Telnet
connection transmits your username, password, and the rest of your login session in the
clear. By forwarding telnet through SSH, all of this datais automatically encrypted and
integrity-checked, and you may authenticate using SSH credentials.

SSH supports three types of forwarding. General TCP port forwarding operates as
described earlier for any TCP-based service. [Section 9.2] X forwarding comprises

additional features for securing the X protocol (i.e., X windows). [Section 9.3] The third

type, agent forwarding, permits SSH clients to access SSH public keys on remote
machines. [Section 6.3.5]

3.2 A Cryptography Primer

We've covered the basic properties of SSH. Now we focus on cryptography, introducing
important terms and ideas regarding the technology in general. There are many good
references on cryptographic theory and practice, and we make no attempt here to be
comprehensive. (For more detailed information, check out Bruce Schneier's excellent book,
Applied Cryptography, published by John Wiley & Sons.) We introduce encryption and
decryption, plaintext and ciphertext, keys, secret-key and public-key cryptography, and
hash functions, both in general and as they apply to SSH.

Encryption is the process of scrambling data so that it can't be read by unauthorized parties.
An encryption algorithm (or cipher) is a particular method of performing the scrambling;
examples of currently popular encryption algorithms are RSA, RC4, DSA, and IDEA. The
original, readable datais called the plaintext, or datain the clear, while the encrypted
version is called the corresponding ciphertext. To convert plaintext to ciphertext, you apply
an encryption algorithm parameterized by akey, a string that is typically known only to
you. An encryption algorithm is considered secure if it isinfeasible for anyone to read (or
decrypt) the encrypted data without the key. An attempt to decrypt data without itskey is
called cryptanalysis.

3.2.1 How Securels Secure?

It's important to understand the word "infeasibl€" in the previous paragraph. Today's most
popular and secure ciphers are vulnerable to brute-force attacks: if you try every possible
key, you will eventually succeed in decryption. However, when the number of possible
keysislarge, abrute-force search requires agreat deal of time and computing power.
Based on the state of the art in computer hardware and algorithms, it is possible to pick
sufficiently large key sizes so asto render brute-force key search infeasible for your
adversary. What counts as infeasible, though, varies depending on how valuable the dataiis,
how long it must stay secure, and how motivated and well-funded your adversary is.

K eeping something secret from your rival startup for afew daysis one thing; keeping it
secret from amgor world government for 10 yearsis quite another.

Of course, for al thisto make sense, you must be convinced that brute force is the only
way to attack your cipher. Encryption algorithms have structure and are susceptible to
mathematical analysis. Over the years, many ciphers previously thought secure have falen
to advancesin cryptanalysis. It isn't currently possible to prove a practical cipher secure.
Rather, a cipher acquires respectability through intensive study by mathematicians and
cryptographers. If anew cipher exhibits good design principles, and well-known
researchers study it for some time and fail to find a practical, faster method of breaking it

than brute force, then people will consider it secure. !

3.2.2 Public- and Secret-Key Cryptography

Encryption algorithms as described so far are called symmetric or secret-key ciphers; the
same key is used for encrypting and decrypting. Examples are Blowfish, DES, IDEA, and
RCA4. Such a cipher immediately introduces the key-distribution problem: how do you get
the key to your intended recipient? If you can meet in person every once and awhile and
exchange alist of keys, all well and good, but for dynamic communication over computer
networks, this doesn't work.

Public-key, or asymmetric, cryptography replaces the single key with a pair of related keys:
public and private. They are related in a mathematically clever way: data encrypted with
the public key may be decrypted with its private counterpart, and it is infeasible to derive
the private key from the public one. Y ou keep your private key, well... private, and give the
public key to anyone who wants it, without worrying about disclosure. Ideally, you publish
it in adirectory next to your name, like atelephone book. When someone wants to send
you a secret message, they encrypt it with your public key. Other people may have your
public key, but that won't allow them to decrypt the message; only you can do that with the
corresponding private key. Public-key cryptography goes along way towards solving the

key-distribution problem.[z]

Public-key methods are also the basis for digital signatures. extrainformation attached to a
digital document to provide evidence that a particular person has seen and agreed to it,
much as a pen-and-ink signature does with a paper document. Any asymmetric cipher
(RSA, ElGamal, Elliptic Curve, etc.) may be used for digital signatures, though the reverse
isn't true. For instance, the DSA algorithm, which is used by the SSH-2 protocol for its

keys, isasignature-only public-key scheme and can't be used for encrypti on®!

Secret- and public-key encryption algorithms differ in another way: performance. All
common public-key algorithms are enormously slower than secret-key ciphers-by orders of
magnitude. It is simply infeasible to encrypt large quantities of data using a public-key
cipher. For this reason, modern data encryption uses both methods together. Suppose you
want to send some data securely to your friend Bob Bitflipper. Here's what a modern
encryption program does:

1. Generate arandom key, called the bulk key, for afast, secret-key algorithm such as
3 DES (a.k.athe bulk cipher).

2. Encrypt the plaintext with the bulk key.

3. Securethe bulk key by encrypting it with Bob Bitflipper's public key, so only Bob
can decrypt it. Since secret keys are small (afew hundred bitslong at most), the
speed of the public-key algorithm isn't an issue.

To reverse the operation, Bob's decryption program first decrypts the bulk key, and then

uses it to decrypt the ciphertext. This method yields the advantages of both kinds of
encryption technology, and in fact, SSH uses this technique. User data crossing an SSH
connection is encrypted using a fast secret-key cipher, the key for which is shared between
the client and server using public-key methods.

3.2.3 Hash Functions

In cryptography (and elsewhere in computing and network technology), it is often useful to
know if some collection of data has changed. Of course, one can just send along (or keep
around) the original data for comparison, but that can be prohibitively expensive both in
time and storage. The common tool addressing this need is called a hash function. Hash
functions are used by SSH-1 for integrity checking (and have various other usesin
cryptography we won't discuss here).

A hash function is simply a mapping from alarger set of data valuesto asmaller set. For
instance, a hash function H might take an input bit string of any length up to 50,000 bits,
and uniformly produce a 128-bit output. The ideais that when sending a message mto
Alice, | dso send aong the hash value H(m). Alice computes H(m) independently and
comparesit to the H(m) value | sent; if they differ, she concludes that the message was
modified in transit.

This simple technique can't be completely effective. Since the range of the hash function is
strictly smaller than its domain, many different messages have the same hash value. To be
useful, H must have the property that the kinds of alterations expected to happen to the
messages in transit, must be overwhelmingly likely to cause a change in the message hash.
Put another way: given a message m and atypical changed message m, it must be
extremely unlikely that H(m) = H(m).

Thus a hash function must be tailored to its intended use. One common useisin
networking: datagrams transmitted over a network frequently include a message hash that
detects transmission errors due to hardware failure or software bugs. Another useisin
cryptography, to implement digital signatures. Signing a large amount of datais
prohibitively expensive, sinceit involves slow public-key operations as well as shipping
along a complete encrypted copy of the data. What is actually done isto first hash the
document, producing a small hash value, and then sign that, sending the signed hash along
instead. A verifier independently computes the hash, then decrypts the signature using the
appropriate public key, and compares them. If they are the same, he concludes (with high
probability) that the signature is valid, and that the data hasn't changed since the private
key holder signed it.

These two uses, however, have different requirements, and a hash function suitable for
detecting transmission errors due to line noise might be ineffective at detecting deliberate
aterations introduced by a human attacker! A cryptographic hash function must make it
computationally infeasible to find two different messages having the same hash or to find a
message having a particular fixed hash. Such afunction is said to be collision-resistant (or

collision-proof, though that's a bit misleading), and pre-image-resistant . The Cyclic
Redundancy Check hash commonly used to detect accidental data changes (e.g., in
Ethernet frame transmissions) is an example of a non-collision-resistant hash. It iseasy to
find CRC-32 hash collisions, and the SSH-1 insertion attack is based on this fact. [Section

3.10.5] Examples of cryptographically strong hash functions are MD5 and SHA-1.

W10 his pioneering works on information theory and encryption, the mathematician Claude
Shannon defined amodel for cipher security and showed there is a cipher that is perfectly secure
under that model: the so-called one-time pad. It is perfectly secure: the encrypted data gives an
attacker no information whatsoever about the possible plaintexts. The ciphertext literally can
decrypt to any plaintext at al with equal likelihood. The problem with the one-time pad is that it
cumbersome and fragile. It requires that keys be as large as the messages they protect, be
generated perfectly randomly, and never be reused. If any of these requirements are violated, the
one-time pad becomes extremely insecure. The ciphersin common use today aren't perfectly
secure in Shannon's sense, but for the best of them, brute-force attacks are infeasible.

(2 There is still the issue of reliably determining whose public key iswhose; but that gets into
public-key infrastructure, or PKI systems, and is a broader topic.

Bl Thar'sthe idea, anyway, although it has been pointed out that it's easy to use a general DSA
implementation for both RSA and EIGamal encryption. That was not the intent, however.

3.3 The Architecture of an SSH System

SSH has about a dozen distinct, interacting components that produce the features we've
covered. [Section 3.1] Figure 3-1 illustrates the major components and their relationships to

one another.

Figure 3.1. SSH architecture

Client Server
known-hosis
host key
f 9 H
& | ot
RV s SSH connection ' st
: i T hennel: inferoctive sessian
: \E{Er_:: t /7 seasion Key :hu ¢ session key "

: P g ned: Fowarded TCP port : :
: . (I channed: remate key ogent [.
il forget Arrount
o vt |
identity file ar ogen owthorization file

By "component” we don't necessarily mean "program:” SSH also has keys, sessions, and
other fun things. In this section we provide a brief overview of all the components, so you
can begin to get the big picture of SSH:

Server

A program that allows incoming SSH connections to a machine, handling
authentication, authorization, and so forth. In most Unix SSH implementations, the
server isssnd.

Client

A program that connects to SSH servers and makes requests, such as "log mein" or
"copy thisfile." In SSH1, SSH2, and OpenSSH, the major clients are ssh and scp.
Session

An ongoing connection between a client and a server. It begins after the client
successfully authenticates to a server and ends when the connection terminates.
Sessions may be interactive or batch.

Key

A relatively small amount of data, generally from tensto one or two thousand bits,
used as a parameter to cryptographic algorithms such as encryption or message
authentication. The use of the key binds the algorithm operation in some way to the
key holder: in encryption, it ensures that only someone else holding that key (or a
related one) can decrypt the message; in authentication, it allows you to later verify
that the key holder actually signed the message. There are two kinds of keys:
symmetric or secret-key, and asymmetric or public-key. [Section 3.2.2] An
asymmetric key has two parts: the public and private components. SSH deals with
four types of keys, as summarized in Table 3-1 and described following the table.

Table3.1. Keys, Keys, Keys

Name Lifetime Created by Type Purpose

User key Persistent | User Public | Identify a user to the server

Session key | One session | Client (and server) | Secret | Protect communications

Host key Persistent | Administrator Public | Identify a server/machine
Server key | Onehour | Server Public E:l(;?/ pt the session key (SSH1
User key

A persistent, asymmetric key used by clients as proof of auser'sidentity. (A single
user may have many keys/identities.)
Host key

A persistent, asymmetric key used by a server as proof of itsidentity, aswell asby a
client when proving its host's identity as part of trusted-host authentication. [Section

3.4.2.3] If amachine runs asingle SSH server, the host key also uniquely identifies

the machine. (If amachineis running multiple SSH servers, each may have a
different host key, or they may share.) Often confused with the server key.

Server key

A temporary, asymmetric key used in the SSH-1 protocol. It is regenerated by the
server at regular intervals (by default every hour) and protects the session key
(defined shortly). Often confused with the host key. This key is never explicitly
stored on disk, and its private component is never transmitted over the connection in
any form; it provides "perfect forward secrecy” for SSH-1 sessions. [Section 3.4.1]

Session key

A randomly generated, symmetric key for encrypting the communication between an
SSH client and server. It is shared by the two parties in a secure manner during the
SSH connection setup, so that an eavesdropper can't discover it. Both sides then have
the session key, which they use to encrypt their communications. When the SSH
session ends, the key is destroyed.

. SSH-1 uses a single session key, but SSH-2 has several: each

o direction (server to client, and client to server) has keys for

w! & encryption and others for integrity checking. In our discussions we
treat all SSH-2's session keys as a unit and speak of "the session
key" for convenience. If the context requires it, we specify which
individual key we mean.

Key generator

A program that creates persistent keys (user keys and host keys) for SSH. SSH1,
SSH2, and OpenSSH have the program ssh-keygen.

Known hosts database

Agent

Sgner

A collection of host keys. Clients and servers refer to this database to authenticate
one another.

A program that caches user keysin memory, so users needn't keep retyping their
passphrases. The agent responds to requests for key-related operations, such as
signing an authenticator, but it doesn't disclose the keys themselves. Itisa
convenience feature. SSH1, SSH2, and OpenSSH have the agent ssh-agent, and the
program ssh-add loads and unloads the key cache.

A program that signs hostbased authentication packets. We explain thisin our

discussion of trusted-host authentication. [Section 3.4.2.3]
Random seed

A pool of random data used by SSH components to initialize software pseudo-
random number generators.
Configuration file

A collection of settingsto tailor the behavior of an SSH client or server.

Not all these components are required in an implementation of SSH. Certainly servers,
clients, and keys are mandatory, but many implementations don't have an agent, and some
even don't include a key generator.

3.4 1nside SSH-1

Now that we've seen the major features and components of SSH, let's delve into the details of the SSH-1
protocol. SSH-2 is covered separately. [Section 3.5] The architecture of SSH-1 is summarized in Figure 3-2.

We will cover:

. How the secure session is established

. Authentication by password, public key, or trusted host
. Integrity checking

. Datacompression

Figure 3.2. SSH-1 architecture

Client Server

- pullic host keys l st key :

feto/ssh_known_hosts i private
—f . msh fknown hosts ! —]

wer channel
ferminal

1'FI‘I:P|'1|.|'IE|I ill’“l

MUX
Compression |
Encryption
Intagrity |

Compresson

SSH chonnel 0 TE LM B R homnel agent
rgent sacket

)
e {1 e e
rtP mr Emra s e —— '-...-..--:.-.-.-..-: i....-:-....'..-.--.. s mmm—————
sestien ey, ; vemsion key ",

3.4.1 Establishing the Secure Connection

Before meaningful interaction can take place, the SSH client and server must establish a secure connection.
This lets them share keys, passwords, and ultimately, whatever data they transmit to each other.

We will now explain how the SSH-1 protocol guarantees security of a network connection. Through a
multistep process, starting from scratch, the SSH-1 client and server agree on an encryption algorithm and
generate and share a secret session key, establishing a secure connection:

1. Theclient contacts the server.

2. Theclient and server disclose the SSH protocol versions they support.
3. Theclient and server switch to a packet-based protocol.

4. The server identifiesitself to the client and provides session parameters.
5. The client sends the server a secret (session) key.

6. Both sides turn on encryption and complete server authentication.

7. The secure connection is established.

Now the client and server can communicate by encrypted messages. Let's examine each step in detail; the
complete process is summarized in Figure 3-3.

Figure 3.3. SSH-1 protocol exchange

Client Server

T T
i It ¥

“55H-1,99-OpenSSH_2.2.0°

"§56-1.5-1.2.30°
pishlic bost keay: H
public server key: S
bulk data ciphers: 30ES, Blowish
owlhenticofion methods: RS54, possword
mnfi-spoofing cookia
seleched doda cigher: 30E5
encrypled session key: K{H,5)
anfi-spoofing cookie
oK
sarver occound ba log inbo: smith
need authenfication for smith
R5A owthentication: is public key P1 authorized fo connect to the smith account?
WO
RS outhentivation: is public key P2 authorized fo connect fo fhe smith account?
YES; prove that you have the P2 private key. Challenge: ([P2)
::I-.- f I : LsIm B IR KEY, COMmpuies auinemicosor | 0sed an
Al
SUCCESS

..and the connection is esteblshed. The client now requests services, such as setfing up X forwarding, running a progrom, or
eocaling o pseude-berminal and execufing o shell for an inlerodive session,

Lill
[I - (| i K
R0 A o INe auneniearer; o Al]

SUCCESS

..ond the connection is estoblshed. The client new requests services, such as seffing up ¥ forwarding, running o progrom, or
alocaling o pseude-serminal ond executing o shell for an interodive session,

1. Theclient contacts the server.

Thisis done without fanfare, simply by sending a connection request to the server's TCP port, which is
port 22 by convention.

2. Theclient and server disclose the SSH protocol versions they support.

These protocols are represented as ASCI| strings, such as "SSH-1.5-1.2.27", which means SSH
protocol Version 1.5 asimplemented by SSH1 Version 1.2.27. Y ou can see this string by connecting to
an SSH server port with a Telnet client:

$ tel net server 22

Trying 192.168.10. 1

Connected to server (192.168.10.1).
Escape character is '""]'.
SSH-1.5-1. 2. 27

The implementation version (1.2.27) isjust acomment and is optional in the string. But, some
implementations examine the comment to recognize particular software versions and work around

known bugs or incompatibiliti es!

If the client and server decide their versions are compatible, the connection process continues,
otherwise either party may decide to terminate the connection. For instance, if an SSH-1-only client
encounters an SSH-2-only server, the client disconnects and prints an error message. Other actions are
possible: for example, the SSH-2-only server can invoke an SSH-1 server to handle the connection.

3. Theclient and server switch to a packet-based protocaol.

Once the protocol version exchange is complete, both sides switch to a packet-based protocol over the
underlying TCP connection. Each packet consists of a 32-bit length field, 1- 8 bytes of random padding
to foil known-plaintext attacks, a one-byte packet type code, the packet payload data, and afour-byte
integrity check field.

4. The server identifiesitself to the client and provides session parameters.
The server sends the following information to the client (all still unencrypted):
o Itshost key, used to prove the server host identity later.
o Its server key, which helps establish the secure connection.

o A sequence of eight random bytes, called check bytes. The client must include these check
bytesin its next response, or the server rejects the response. This measure protects against some
I P spoofing attacks.

o Lists of encryption, compression, and authentication methods that the server supports.

At this point, both sides also compute a common 128-bit session identifier, which is used in some

subsequent protocol operations to uniquely identify this SSH session. Thisis an MD5 hash of the host
key, server key, and check bytes taken together.

When the client receives the host key, it asks the question: "Have | spoken with this server before, and
if so, what was its host key then?' To answer this question, the client consults its known hosts
database. If the newly arrived host key matches a previous one in the database, all iswell. However,
there are two other possihilities: the server might not appear in the known hosts database, or it might be
present but with a different host key. In each of these cases, the client elects to trust the newly arrived
key or to reject it. [Section 7.4.3.1] Human guidance may be needed: for example, the client's user can

be prompted to accept or reject the key.

If the client rejects the host key, the connection ends. Let's assume the host key is acceptable and
continue.

. The client sends the server a secret (session) key.

Now the client randomly generates anew key for a bulk cipher [Section 3.2.2] that both client and

server support; thisis called the session key. Its purpose is to encrypt and decrypt messages sent
between the client and the server. All that's needed isto give this session key to the server, and both
sides can turn on encryption and begin communicating securely.

Of course, the client can't simply send the session key to the server. Encryption isn't operating yet, and
if athird party intercepts this key, it can decrypt the client's and server's messages. Goodbye security!
So the client must send the session key securely. Thisis done by encrypting it twice: once with the
server's public host key and once with the server key. This step ensures that only the server can read it.
After the session key is double-encrypted, the client sendsit to the server, along with the check bytes
and a choice of algorithms (picked from the server'slist of supported algorithms sent in Step 4.

. Both sides turn on encryption and complete server authentication.

After sending the session key, both sides begin encrypting the session data with the key and the
selected bulk cipher. Before sending anything further, though, the client waits for a confirmation
message from the server, which (like all subsequent data) must be encrypted with the session key. This
final step provides the server authentication: only the intended server can have decrypted the session
key, since it was encrypted with the host key verified earlier against the known hosts list.

Without the session key, an impostor server can't decrypt the subsequent protocol traffic or produce
valid traffic in return, and the client will notice and terminate the connection.

Note that server authentication isimplicit; there's no explicit exchange to verify the server host key.
Therefore it'simportant for the client to wait for avalid server response using the new session key
before sending anything further, in order to verify the server's identity before proceeding. The SSH-1
protocol isn't specific about this point, but SSH-2 requires it when server authentication isimplicit in
the session key exchange.

Encrypting the session key a second time with the server key provides a property called perfect
forward secrecy. This means there are no persistent keys lying around whose disclosure can jeopardize
the secrecy of past or future SSH sessions. If the server host key aloneis used to protect the session
key, then disclosure of the host private key compromises future communications and allows decryption
of old, recorded sessions. Using the server key in tandem for this purpose removes this weakness, as it
istemporary, never explicitly stored on disk, and replaced periodically (by default, once an hour).

Having stolen the server private key, an interloper must still perform an active man-in-the-middle or
server spoofing attack to compromise a session.

7. The secure connection is established.

Since both the client and server now know the session key, and nobody el se does, they can send each
other encrypted messages (using the bulk cipher they agreed on) only they can decrypt. Also, the client
has completed server authentication. We're ready to begin client authentication.

3.4.2 Client Authentication

Once the secure connection is established, the client attempts to authenticate itself to the server. The client may
try any authentication methods at its disposal until one succeeds, or all have failed. For example, the six
authentication methods defined by the SSH-1.5 protocol, in the order attempted by the SSH1 implementation,
are:

1. Kerberos[S]
2. Rhosts
3. RhostsRSA

4. Public-key

5. TIS®!

6. Password (flavors: host login password, Kerberos, SecurlD, S/Key, etc.)
F-Secure SSH Client for Windows (see Chapter 16) tries these in order:

1. Public-key

2. Password

Knowing the order for your client isagood idea. It helps to diagnose problems when authentication fails or
acts unexpectedly.

3.4.2.1 Passwor d authentication

During password authentication, the user supplies a password to the SSH client, which the client transmits
securely to the server over the encrypted connection. The server then checks that the given password is
acceptable for the target account, and allows the connection if so. In the ssmplest case, the SSH server checks
this through the native password-authentication mechanism of the host operating system.

Password authentication is quite convenient because it requires no additional setup for the user. Y ou don't need
to generate akey, create a~/.ssh directory on the server machine, or edit any configuration files. Thisis
particularly convenient for first-time SSH users and for users who travel alot and don't carry their private keys.
Y ou might not want to use your private keys on other machines, or there may be no way to get them onto the
machine in question. If you frequently travel, you should consider setting up SSH to use one-time passwords if

your implementation supports them, improving the security of the password scheme. [Section 3.4.2.5]

On the other hand, password authentication is inconvenient because you have to type a password every time
you connect. Also, password authentication is less secure than public-key because the sensitive password is
transmitted off the client host. It is protected from snooping while on the network but is vulnerable to capture
onceit arrives at the server if that machine has been compromised. Thisisin contrast with public-key
authentication, as even a compromised server can't learn your private key through the protocol. Therefore,
before choosing password authentication, you should weigh the trustworthiness of the client and the server, as
you will be revealing to them the key to your electronic kingdom.

Password authentication is simple in concept, but different Unix variants store and verify passwordsin
different ways, leading to some complexities. OpenSSH uses PAM for password authentication by default,
which must be carefully configured. [Section 4.3] Most Unix systems encrypt passwords with DES (viathe
crypt() library routine), but recently some systems have started using the MD5 hash agorithm, leading to
configuration issues. [Section 4.3] The behavior of password authentication also changes if Kerberos [Section
5.5.1.7] or SecurlD support [Section 5.5.1.9] is enabled in the SSH server.

3.4.2.2 Public-key authentication

Public-key authentication uses public-key cryptography to verify the client'sidentity. To access an account on
an SSH server machine, the client proves that it possesses a secret: specifically, the private counterpart of an
authorized public key. A key is"authorized" if its public component is contained in the account's authorization
file (e.g., ~/.ssh/authorized keys). The sequence of actionsis:

1. Theclient sends the server arequest for public-key authentication with a particular key. The request
contains the key's modulus as an identifi er 10

The key isimplicitly RSA; the SSH-1 protocol specifies the RSA agorithm particularly and
exclusively for public-key operations.

2. The server reads the target account's authorization file, and looks for an entry with the matching key. If
there is no matching entry, this authentication request fails.

3. If thereisamatching entry, the server retrieves the key and notes any restrictions on its use. The server
can then reject the request immediately on the basis of arestriction, for example, if the key shouldn't be
used from the client host. Otherwise, the process continues.

4. The server generates a random 256-bit string as a challenge, encrypts it with the client's public key, and
sends this to the client.

5. Theclient receives the challenge and decrypts it with the corresponding private key. It then combines
the challenge with the session identifier, hashes the result with M D5, and returns the hash value to the
server asits response to the challenge. The session identifier is mixed in to bind the authenticator to the
current session, protecting against replay attacks taking advantage of weak or compromised random-
number generation in creating the challenge.

The hashing operation is there to prevent misuse of the client's private key viathe protocol, including a

chosen-plaintext attack [1f the client s mply returns the decrypted challenge instead, a corrupt server
can present any data encrypted with the client's public key, and the unsuspecting client dutifully
decrypts and returnsit. It might be the data-encryption key for an enciphered email message the

attacker intercepted. Also, remember that with RSA, "decrypting”" some data with the private key is
actually the same operation as "signing"” it. So the server can supply chosen, unencrypted data to the
client asa"challenge,”" to be signed with the client's private key-perhaps a document saying, "OWAH
TAGU SIAM" or something even more nefarious.

6. The server computes the same M D5 hash of the challenge and session ID; if the client's reply matches,
the authenti cation succeeds.

The public-key method is the most secure authentication option available in SSH, generally speaking. First of
all, the client needs two secrets to authenticate: the private key, and the passphrase to decrypt it. Stealing either
one aone doesn't compromise the target account (assuming a strong passphrase). The private key isinfeasible
to guess and never leaves the client host, making it more difficult to steal than a password. A strong passphrase
isdifficult to guess by brute force, and if necessary, you can change your passphrase without changing the
associated key. Also, public-key authentication doesn't trust any information supplied by the client host; proof
of possession of the private key isthe sole criterion. Thisisin contrast to RhostsRSA authentication, in which
the server delegates partial responsibility for the authentication process to the client host: having verified the
client host's identity and privilege of the client running on it, it trusts the client software not to lie about the
user'sidentity. [Section 3.4.2.3] If someone can impersonate a client host, he can impersonate any user on that
host without actually having to steal anything from the user. This can't happen with public-key authentication.
(8]

Public-key authentication is also the most flexible method in SSH for its additional control over authorization.
Y ou may tag each public key with restrictions to be applied after authentication succeeds: which client hosts
may connect, what commands may be run, and so on. [Section 8.2] Thisisn't an intrinsic advantage of the

public-key method, of course, but rather an implementation detail of SSH, albeit an important one.?

On the down side, public-key authentication is more cumbersome than the other methods. It requires users to
generate and maintain their keys and authorization files, with all the attendant possibilities for error: syntax
errorsin authorized keys entries, incorrect permissions on SSH directories or files, lost private key files
requiring new keys and updates to all target accounts, etc. SSH doesn't provide any management infrastructure
for distributing and maintaining keys on alarge scale. Y ou can combine SSH with the Kerberos authentication
system, which does provide such management, to obtain the advantages of both. [Section 11.4]

with the RSAref encryption library. [Section 3.9.1.1] RSAref supports key lengths
only up to 1024 bits, whereas the SSH internal RSA software supports longer keys.
If you try to use alonger key with SSH/RSAref, you get an error. This can happen
with either user or host keys, perhaps preexisting onesif you've recently switched
to RSAref, or keys transferred from systems running the non-RSAref version of
SSH. In all these cases, you have to replace the keys with shorter ones.

‘ One technical limitation regarding public-key authentication arisesin connection

3.4.2.3 Trusted-host authentication (Rhosts and RhostsRSA)

Password and public-key authentication require the client to prove itsidentity by knowledge of a secret: a
password or a private key particular to the target account on the server. In particular, the client's location-the
computer on which it is running-isn't relevant to authentication.

Trusted-host authentication is different.'”) Rather than maki ng you prove your identity to every host that you

visit, trusted-host authentication establishes trust rel ationships between machines. If you are logged in as user
andrew on machine A, and you connect by SSH to account bob on machine B using trusted-host
authentication, the SSH server on machine B doesn't check your identity directly. Instead, it checks the identity
of host A, making sure that A isatrusted host. It further checks that the connection is coming from atrusted
program on A, one installed by the system administrator that won't lie about andrew's identity. If the
connection passes these two tests, the server takes A's word you have been authenticated as andrew and
proceeds to make an authorization check that andrew@A is allowed to access the account bob@B.

Let's follow this authentication process step by step:
1. The SSH client requests a connection from the SSH server.

2. The SSH server usesits local naming service to look up a hostname for the source address of the client
network connection.

3. The SSH server consults authorization rulesin several local files, indicating whether particular hosts
are trusted or not. If the server finds a match for the hostname, authentication continues; otherwise it
falls.

4. The server verifies that the remote program is atrusted one by following the old Unix convention of
privileged ports. Unix-based TCP and UDP stacks reserve the ports numbered 1 through 1023 as
privileged, allowing only processes running as root to listen on them or use them on the local side of a
connection. The server simply checks that the source port of the connection isin the privileged range.
Assuming the client host is secure, only its superuser can arrange for a program to originate such a
connection, so the server believesit istalking to atrusted program.

5. If al goeswell, authentication succeeds.

This process has been practiced for years by the Berkeley r-commands: rsh, rlogin, rcp, rexec, etc.
Unfortunately, it is a notoriously weak authentication method within modern networks. | P addresses can be
spoofed, naming services can be subverted, and privileged ports aren't so privileged in aworld of desktop PCs
whose end users commonly have superuser (administrator) privileges. Indeed, some desktop operating systems
lack the concept of a user (such as MacOS), while others don't implement the privileged-port convention
(Windows), so any user may access any free port.

Nevertheless, trusted-host authentication has advantages. For one, it is simple: you don't have to type
passwords or passphrases, or generate, distribute, and maintain keys. It also provides ease of automation.
Unattended processes such as cron jobs may have difficulty using SSH if they need a key, passphrase, or
password coded into a script, placed in a protected file, or stored in memory. Thisisn't only a potential security
risk but also a maintenance nightmare. If the authenticator ever changes, you must hunt down and change these
hard coded copies, a situation just begging for things to break mysteriously later on. Trusted-host
authentication gets around this problem neatly.

Since trusted-host authentication is a useful idea, SSH1 supports it in two ways. Rhosts authentication simply
behaves as described in Steps 1-5, just like the Berkeley r-commands. This method is disabled by default, since
it isquite insecure, though it's still an improvement over rsh since it provides server host authentication,
encryption, and integrity. More importantly, though, SSH1 provides a more secure version of the trusted-host
method, called RhostsRSA authentication, which improves Steps 2 and 4 using the client's host key.

Step 2 isimproved by a stronger check on the identity of the client host. Instead of relying on the source IP
address and a naming service such as DNS, SSH uses public-key cryptography. Recall that each host on which

SSH isinstalled has an asymmetric "host key" identifying it. The host key authenticates the server to the client
while establishing the secure connection. In RhostsRSA authentication, the client's host key authenticates the
client host to the server. The client host provides its name and public key, and then must prove it holds the
corresponding private key via a challenge-response exchange. The server maintains alist of known hosts and
their public keys to determine the client's status as a known, trusted host.

Step 4, checking that the server istalking to atrusted program, isimproved again through use of the client's
host key. The private key is kept protected so only a program with special privileges (e.g., setuid root) can read
it. Therefore, if the client can accessitslocal host key at all-which it must do to complete authentication in
Step 2-the client must have those special privileges. Therefore the client was installed by the administrator of

the trusted host and can be trusted. SSH1 retains the privileged-port check, which can't be turned off. 'Y ssH2
does away with this check entirely since it doesn't add anything.

3.4.2.3.1 Trusted-host accessfiles

Two pairs of files on the SSH server machine provide access control for trusted-host authentication, in both its
weak and strong forms:

. letc/hosts.equiv and ~/.rhosts
. /etc/shosts.equiv and ~/.shosts

Thefilesin /etc have machine-global scope, while those in the target account's home directory are specific to
that account. The hosts.equiv and shosts.equiv files have the same syntax, as do the .rhosts and .shostsfiles,
and by default they are al checked.

If any of the four accessfiles allows access for a particular connection, it's allowed,
even if another of thefilesforbidsit.

The /etc/hosts.equiv and ~/.rhosts files originated with the insecure r-commands. For backward compatibility,
SSH can also use these files for making its trusted-host authentication decisions. If using both the r-commands
and SSH, however, you might not want the two systems to have the same configuration. Also, because of their
poor security, it's common to disable the r-commands, by turning off the serversin your inetd.conf files and/or
removing the software. In that case, you may not want to have any traditional control fileslying around, asa
defensive measure in case an attacker managed to get one of these services turned on again.

To separate itself from the r-commands, SSH reads two additional files, /etc/shosts.equiv and ~/.shosts, which
have the same syntax and meaning as /etc/hosts.equiv and ~/.rhosts, but are specific to SSH. If you use only

the SSH-specific files, you can have SSH trusted-host authentication without leaving any files the r-commands

would look at.[lz]

All four files have the same syntax, and SSH interprets them very similarly-but not identically-to the way ther-
commands do. Read the following sections carefully to make sure you understand this behavior.

3.4.2.3.2 Control file details

Here is the common format of all four trusted-host control files. Each entry isasingle line, containing either
one or two tokens separated by tabs and/or spaces. Comments begin with #, continue to the end of the line, and
may be placed anywhere; empty and comment-only lines are allowed.

exanple control file entry
[+-][@hostspec [+-][@userspec # comment

The two tokens indicate host(s) and user(s), respectively; the userspec may be omitted. If the at-sign (@) is
present, then the token is interpreted as a netgroup (see Sidebar "Netgroups'), looked up using the innetgr()
library call, and the resulting list of user or hostnames is substituted. Otherwise, the token isinterpreted as a
single host or username. Hostnames must be canonical as reported by gethostbyaddr () on the server host; other
names won't work.

Netgroups

A netgroup defines alist of (host, user, domain) triples. Netgroups are used to define lists of users, machines,
or accounts, usually for access-control purposes; for instance, one can usualy use a netgroup to specify what
hosts are allowed to mount an NFSfilesystem (e.g., in the Solaris share command or BSD exportfs).

Different flavors of Unix vary in how they implement netgroups, though you must always be the system
administrator to define a netgroup. Possible sources for netgroup definitions include:

. A planfile e.g., /etc/netgroup
. A databasefilein various formats, e.g., /etc/netgroup.db
. Aninformation service, such as Sun's YP/NIS

On many modern Unix flavors, the source of netgroup information is configurable with the Network Service
Switch facility; see the file /etc/nsswitch.conf. Be aware that in some versions of SUnOS and Solaris,
netgroups may be defined only in NIS; it doesn't complain if you specify "files" as the source in nsswitch.
conf, but it doesn't work either. Recent Linux systems support /etc/netgroup, though C libraries before glibc
2.1 support netgroups only over NIS.

Some typical netgroup definitions might look like this:

defines a group consisting of two hosts: hostnanes

"printl" and

"print2", in the (probably NI'S) domains one.foo.org and two.foo.com
print-servers (printl,,one.foo.conm (print2,,two.foo.com

a list of three login servers

| ogi n-servers (l oginl,,foo.com (login2,,foo.com (loginl,,foo.com

Use two existing netgroups to define a list of all hosts, throwng in
anot her.foo.comas wel .

al | -hosts print-servers |ogin-servers (another,,foo.com

A list of users for some access-control purpose. Mary is allowed from
anywhere in the foo.comdomain, but Peter only fromone host. Alice

is allowed fromanywhere at all.

al | owed- users (, mary, foo.con (Iloginl, peter,foo.com (,alice,)

When deciding membership in a netgroup, the thing being matched is always construed as an appropriate
triple. A triple (X, y, 2) matches a netgroup N if there exists atriple (a, b, ¢) in N which matches (x, y, 2). In
turn, you define that these two triples match if and only if the following conditions are met:

x=aor xisnull or aisnull

and:
y=bor yisnull or bisnull
and:
z=cor zisnull or cisnull

This means that anull field in atriple acts as wildcard. By "null,” we mean missing; that is, in thetriple (,
user, domain), the host part is null. Thisisn't the same as the empty string: (", user, domain). In thistriple,
the host part isn't null. It is the empty string, and the triple can match only another whose host part is aso the
empty string.

When SSH matches a username U againsta netgroup, it matches the triple (, U,); similarly, when matching a
hostname H, it matches (H, ,). Y ou might expect it to use (, U, D) and (H, , D) where D is the host's domain,
but it doesn't.

If either or both tokens are preceded by a minus sign (-), the whole entry is considered negated. It doesn't
matter which token has the minus sign; the effect is the same. Let's see some examples before explaining the
full rules.

The following hostspec allows anyone from fred.flintstone.gov to log in if the remote and local usernames are
the same:

/etc/shosts. equiv
fred.flintstone. gov

The following hostspecs allow anyone from any host in the netgroup "trusted-hosts" to log in, if the remote and
local usernames are the same, but not from evil.empire.org, even if it isin the trusted-hosts netgroup.

/etc/shosts. equiv
-evil.enpire.org
@r ust ed- host s

This next entry (hostspec and user spec) allows mark@way.too.trusted to log into any local account! Even if a
user has -way.too.trusted mark in ~/.shosts, it won't prevent access since the global file is consulted first. You
probably never want to do this.

/etc/shosts. equiv
way. t oo.trusted mark

On the other hand, the following entries alow anyone from sister.host.org to connect under the same account
name, except mark, who can't access any local account. Remember, however, that atarget account can override
thisrestriction by placing si st er . host . or g nar k in~/.shosts. Note also, as shown earlier, that the
negated line must come first; in the other order, it's ineffective.

[etc/shosts. equiv
sister.host.org -mark
sister.host.org

This next hostspec allows user wilma on fred.flintstone.gov to log into the local wilma account:

~w | ma/ . shosts
fred.flintstone. gov

This entry allows user fred on fred.flintstone.gov to log into the local wilma account, but no one else-not even
wilma@fred.flintstone.gov:

~w | ma/ . shosts
fred.flintstone.gov fred

These entries allow both fred and wilma on fred.flintstone.gov to log into the local wilma account:

~wi |l ma/ . shosts
fred.flintstone.gov fred
fred.flintstone. gov

Now that we've covered some examples, let's discuss the precise rules. Suppose the client username is C, and
the target account of the SSH command is T. Then:

1. A hostspec entry with no userspec permits access from all hostspec hostswhen T = C.

2. In aper-account file (~/.rhosts or ~/.shosts), a hostspec user spec entry permits access to the containing
account from hostspec hosts when C is any one of the user spec usernames.

3. Inaglobal file (/etc/hosts.equiv or /etc/shosts.equiv), a hostspec userspec entry permits access to any
local target account from any hostspec host, when C is any one of the userspec usernames.

4. For negated entries, replace "permits’ with "denies’ in the preceding rules.

Note Rule #3 carefully. Y ou never, ever want to open your machine to such a security hole. The only
reasonable use for such aruleisif it is negated, thus disallowing access to any local account for a particular
remote account. We present some examples shortly.

The files are checked in the following order (amissing file is simply skipped, with no effect on the
authorization decision):

1. /etc/hosts.equiv
2. /etc/shosts.equiv
3. ~/.shosts
4. ~/.rhosts

SSH makes a special exception when the target user isroot: it doesn't check the global files. Access to the root
account can be granted only viathe root account's /.rhosts and /.shosts files. If you block the use of those files
withthe | gnor eRoot Rhost s server directive, this effectively prevents access to the root account via
trusted-host authentication.

When checking these files, there are two rules to keep in mind. Thefirst ruleis: the first accepting line wins.
That is, if you have two netgroups:

set (one,,) (two,,) (three,,)
subset (one,,) (two,,)

the following /etc/shosts.equiv file permits access only from host three:

- @ubset
et

But this next one allows access from all three:

@ et
- @ubset

The second line has no effect, because all its hosts have already been accepted by a previous line.

The second ruleis: if any file accepts the connection, it's allowed. That is, if /etc/shosts.equiv forbids a
connection but the target user's ~/.shosts file acceptsit, then it is accepted. Therefore the sysadmin can't rely on
the global file to block connections. Similarly, if your per-account file forbids a connection, it can be
overridden by aglobal file that acceptsit. Keep these facts carefully in mind when using trusted-host

authenticati on.[ls]

3.4.2.3.3 Netgroups as wildcards

Y ou may have noticed the rule syntax has no wildcards; this omission is deliberate. The r-commands recognize
bare + and - characters as positive and negative wildcards, respectively, and a number of attacks are based on
surreptitiously adding a"+" to someone's .rhosts file, immediately allowing anyone to rlogin as that user. So
SSH deliberately ignores these wildcards. Y ou'll see messages to that effect in the server's debugging output if
it encounters such a wildcard:

Renote: Ignoring wild host/user names in /etc/shosts. equiv

However, there's still away to get the effect of awildcard: using the wildcards available in netgroups. An
empty netgroup:

enpty # nothing here
matches nothing at all. However, this netgroup:
wild (,,)

matches everything. In fact, a netgroup containing (,,) anywhere matches everything, regardless of what elseis
in the netgroup. So this entry:

~/.shosts
@ild

allows access from any host at aII,[l4]

as long as the remote and local usernames match. This one:
~/ .shosts
way.too.trusted @vld

allows any user on way.too.trusted to log into this account, while this entry:

~/.shosts
@ild @ivld

allows any user access from anywhere.

Given thiswildcard behavior, it's important to pay careful attention to netgroup definitions. It's easier to create
awildcard netgroup than you might think. Including the null triple (,,) is the obvious approach. However,
remember that the order of elementsin anetgroup triple is (host,user,domain). Suppose you define a group
"oops' likethis:

oops (fred,,) (wilm,,) (barney,,)

Y ou intend for this to be a group of usernames, but you've placed the usernames in the host slots, and the
username fields are left null. If you use this group as the userspec of arule, it will act asawildcard. Thusthis
entry:

~/.shosts
hone. fli nt st ones. gov @ops

allows anyone on home.flintstones.gov, not just your three friends, to log into your account. Beware!
3.4.2.3.4 Summary

Trusted-host authentication is convenient for users and administrators, because it can set up automatic
authentication between hosts based on username correspondence and inter-host trust relationships. This
removes the burden of typing passwords or dealing with key management. However, it is heavily dependent on
the correct administration and security of the hosts involved; compromising one trusted host can give an
attacker automatic access to all accounts on other hosts. Also, the rules for the access control files are
complicated, fragile, and easy to get wrong in ways that compromise security. In an environment more
concerned with eavesdropping and disclosure than active attacks, it may be acceptable to deploy RhostsRSA
(SSH-2 "hostbased") authentication for general user authentication. In a more security-conscious scenario,
however, it is probably inappropriate, though it may be acceptable for limited use in special-purpose accounts,
such as for unattended batch jobs. [Section 11.1.3]

We don't recommend the use of weak ("Rhosts") trusted-host authentication at al in SSH1 and OpenSSH/1. It
istotally insecure.

3.4.2.4 Kerberos authentication

SSH1 and OpenSSH provide support for Kerberos-based authentication; SSH2 doesn't yet.[ls] [Section 11.4]
Table 3-2 summarizes the support features in these products.

Table 3.2. Kerberos Authentication Support in SSH

Product KerberosVersion Tickets Password Authentication AFS Forwarding

SSH1

5 Yes Yes No Yes

OpenSSH | 4 Yes Yes Yes |Only with AFS

The following list explains the columns:

Tickets

Performs standard Kerberos authentication. The client obtains aticket for the "host" (v5) or

"remd" (v4) service on the server and sends that to the SSH server as proof of identity; the server
validates it in the standard fashion. Both SSH1 and OpenSSH do Kerberos mutual authentication. This
isn't strictly necessary given that SSH has already authenticated the server as part of connection setup,
but the extra check can't hurt.

Password Authentication

AFS

Option to perform server-side password authentication using Kerberos. Instead of checking the
password using the operating system's account database, the SSH server instead attempts to obtain
Kerberosinitial credentials for the target user (a "ticket-granting-ticket" or TGT). If this succeeds, the
user is authenticated. Also, the server storesthe TGT for the session so that the user has accessto it,
thus removing the need for an explicit kinit.

The Andrew File System (http://www.fags.org/fags/afs-fag/), or AFS, uses Kerberos-4 in a specialized

way for its authentication. OpenSSH has extra support for obtaining and forwarding AFS credentials.
This can be critical in environments using AFS for file sharing. Before it performs authentication, sshd
must read the target account's home directory, for instance to check ~/.shosts, or ~/.ssh/
authorized_keys. If the home directory is shared via AFS, then depending on AFS permissions sshd
might not be able to read it unless it has valid AFS credentials for the owning user. The OpenSSH AFS
code provides this, forwarding the source user's Kerberos-4 TGT and AFS ticket to the remote host for
use by sshd.

Forwarding

Kerberos credentials are normally usable only on the machine to which they are issued. The Kerberos-5
protocol allows a user to forward credentials from one machine to another on which he has been
authenticated, avoiding the need for repeated kinit invocations. SSH1 supports this with the

Ker ber osTgt Passi ng option. Kerberos-4 doesn't do ticket forwarding, so OpenSSH doesn't
provide this feature-unlessit is using AFS, whose modified Kerberos-4 implementation provides a
form of ticket forwarding.

http://www.faqs.org/faqs/afs-faq/)

o OpenSSH provides Kerberos support only when using the SSH-1 protocol.

3.4.2.5 One-time passwor ds

Password authentication is convenient because it can be used easily from anywhere. If you travel alot and use
other peopl€e's computers, passwords might be your best bet for SSH authentication. However, it's precisely in
that situation that you're most concerned about someone stealing your password-by monitoring keyboard
activity on a hacked computer or by old-fashioned shoulder-surfing. One-time password, or OTP systems,
preserve the convenience of password access while mitigating the risk: each login requires a different,
unpredictable password. Here are the properties of some OTP systems:

. With the free S/Key software OTP system, you carry a printed list of passwords or calculate the next
one needed using a piece of software on your laptop or PDA.

. With the SecurlD system from RSA Security, Inc., you carry a small hardware token (credit-card or
key-fob size) with an LCD screen, which displays a passcode that changes frequently and is
synchronized with the Securl D server, which verifies the passcode.

. The OTP system from Trusted Information Systems, Inc. (TIS) isavariant called challenge-response :
the server displays a challenge, which you type into your software or hardware token. The token
supplies the corresponding response, which you supply to be authenticated.

SSH1 supports Securl D as a variant behavior of password authentication, and TIS as a separate method with
the TI SAut hent i cat i on configuration keyword (as noted earlier, thisis actually a separate authentication
type in the SSH-1 protocol). OpenSSH doesn't support TIS but instead reuses the T1S message types in the
SSH-1 protocol to implement S/Key. This works because both TIS and S/Key fit the model of a challenge/
response exchange.

Using these systems involves obtaining the requisite libraries and header files, compiling SSH with the
appropriate configure switches, enabling the right SSH authentication method, and setting up the system
according to itsinstructions. If you are using SecurlD or TIS, the requisite libraries and header files should
have come with the software or be available from the vendor. S/Key iswidely available on the Net, though it
has diverged into many versions, and we don't know a canonical site for it. One popular implementation is
found in the logdaemon package by Wietse Venema; see http://www.porcupine.org/wietse/. The details of

these external packages are mostly outside the scope of SSH proper, so we won't delve into them.
3.4.3 Integrity Checking

The SSH-1 protocol uses aweak integrity check: a 32-bit cyclic redundancy check or CRC-32. This sort of
check is sufficient for detecting accidental changesto data, but isn't effective against deliberate corruption. In
fact, the "insertion attack™ of Futoransky and Kargieman specifically targets this weaknessin SSH-1. [Section

3.10.5] The use of the CRC-32 integrity check is a serious inherent weakness in SSH-1 that helped prompt the
evolution of SSH-2, which uses cryptographically strong integrity checking invulnerable to this attack.

3.4.4 Compression

The SSH-1 protocol supports compression of session data using the "deflate” algorithm of the GNU gzp utility
(ftp://ftp.gnu.org/pub/gnu/gzip/). Packet data bytes in each direction are compressed separately, each asa
single large stream without regard to packet boundaries.

http://www.porcupine.org/wietse/
ftp://ftp.gnu.org/pub/gnu/gzip/

While not typically needed on LAN or fast WAN links, compression can improve speed noticeably over
slower links, such as an analog modem line. It is especially beneficial for file transfers, X forwarding, and
running curses-style programsin aterminal session, such as text editors. Also, since compression is done
before encryption, using compression can reduce delays due to encryption. This may be especially effective
with 3DES, which is quite slow.

(4 some system administrators remove the comment, preferring not to announce their software package and version
to the world, which provides clues to an attacker.
(5]

6] An RSA key consists of two parts: the exponent and the modulus. The modulus is the long number in the public
key (.pub) file.

Mna chosen-plaintext attack, the cryptanalyst is allowed to examine plaintext/ciphertext pairs of her choosing,
encrypted with the key she'strying to break. The RSA algorithm is particularly vulnerable to chosen-plaintext
attacks, so it'simportant for a protocol using RSA to avoid them.

8 Don't confuse imper sonating the client host with compromising it, however. If you actually break into the client
host and compromise its security, all bets are off; you can then steal the keys, passwords, etc., of any users on that
host. SSH doesn't protect against host compromise.

[T \we wish this were done differently. Rather than entangling the authentication and authorization functions in this
way, SSH should be able to apply any restriction to any connection, regardless of the authentication method.
However, no implementation of SSH, to our knowledge, keeps authentication and authorization truly orthogonal.

[10] The term "trusted-host” is our own; it refers to the Rhosts, SSH-1 RhostsRSA, and SSH-2 hostbased

authentication methods as a related group.
[1

This method isn't available by default; it must be requested at compile time.

1 SSH1 hasaUsePri vi | egedPor t configuration keyword, but it tells the client not to use a privileged port in
its source socket, which renders the session unusable for rhosts or RhostsRSA authentication. The purpose of this
featureisto get around firewalls that might block connections coming from privileged ports and requires that some
other authentication method be used.

[12] Unfortunately, you can't configure the server to look at one set but not the other. If it looks at ~/.shosts, then it
also considers ~/.rhosts, and both global files are always considered.

[13] By setting the server's | gnor eRhost s keyword to yes, you can cause the server to ignore the per-account

files completely and consult the global files exclusively instead. [Section 5.5.1.3]

(141 1 strong trusted-host authentication isin use, this means any host verified by public key against the server's

known hosts database.
(151 At press time, experimental Kerberos support is being integrated into SSH2 2.3.0.

3.5Inside SSH-2

In this section, we discuss the design and internals of SSH-2, focusing particularly on its differences and
improvements as compared to SSH-1. We won't repeat the information common to the two protocols. We also
compare the products SSH1 and SSH2, their software implementation differences, and their protocol support.
Figure 3-4 summarizes the architecture of SSH-2.

Figure 3.4. SSH-2 ar chitecture

.......

user chanme!

sh charnme! agent

Iocally channel TP

$$H User Authenication Protocol

publickey @@F chient hast

ssh-signer
@@m hostbused s st > :
private

TCP

k\ﬂ-‘ Server Authentication

s

The most important distinction between SSH1 and SSH2 is that they support different, incompatible versions of the

SSH protocol: SSH-1.5 and SSH-2.0. [Section 1.5] These products also have important implementation differences,
some due to the differing protocols, but many are simply omissions due to SSH2's being a compl ete rewrite.

3.5.1 Protocol Differences (SSH-1 Versus SSH-2)

SSH-1 is monolithic, encompassing multiple functionsin asingle protocol. SSH-2, on the other hand, has been
separated into modules and consists of three protocols working together:

. SSH Transport Layer Protocol (SSH-TRANS)
« SSH Authentication Protocol (SSH-AUTH)
« SSH Connection Protocol (SSH-CONN)

Each of these protocols has been specified separately, and a fourth document, SSH Protocol Architecture (SSH-
ARCH), describes the overall architecture of the SSH-2 protocol as realized in these three separate specifications.

Figure 3-5 outlines the division of |abor between these modules and how they relate to each other, application

programs, and the network. SSH-TRANS is the fundamental building block, providing theinitial connection,
packet protocol, server authentication, and basic encryption and integrity services. After establishing an SSH-
TRANS connection, an application has a single, secure, full-duplex byte stream to an authenticated peer.

Figure 3.5. SSH-2 protocol family

applicefion suftware (e.g, sh, sshd, s, sfip, sHp_server)
SSH Avthentication Protocol [SSH-AUTH] S5H Comnection Protecel [S5H-CONN]

chientt authenfication TCP port o X Forwarding
publickey authenticafion agent farwarding
passward interaclive session supparl
hosthased remole progrom execulion
password changing Flow amirel
pseuda-ferminals
lerminal hondling
miodes, window sze
signal propagafion
tluta compression

55H Tramsport Pratocal [SSH-TRAMNS]

servar oulhenticofion
algorithm negefiafian
session ey exchange
privey

inlegrity

segsion 10

TCP {ar other fransparent, relicble, duplex bybe-stream vin the PrasyCommand feature)

Next, the client can use SSH-AUTH over the SSH-TRANS connection to authenticate itself to the server. SSH-
AUTH defines three authentication methods: publickey, hostbased, and password. Publickey is similar to the SSH-1
"RSA" method, but it is more general and can accommodate any public-key signature algorithm. The standard

requires only one algorithm, DSA, since RSA until recently was encumbered by patent restrictions. "% Hostbased iis
similar to the SSH-1 RhostsRSA method, providing trusted-host authentication using cryptographic assurance of
the client host'sidentity. The password method is equivalent to SSH-1's password authentication; it also provides
for changing a user's password, though we haven't seen any implementations of this feature. The weak, insecure
Rhosts authentication of SSH-1 is absent.

Finally, the SSH-CONN protocol provides avariety of richer servicesto clients over the single pipe provided by

SSH-TRANS. This includes everything needed to support multiple interactive and noninteractive sessions:
multiplexing severa streams (or channels) over the underlying pipe; managing X, port, and agent forwarding;
forwarding application signals across the connection (such as SIGWINCH, indicating termina window resizing);
terminal handling; data compression; and remote program execution. Unlike SSH-1, SSH-CONN can handle
multiple interactive sessions over the same connection, or none. This means SSH-2 supports X or port forwarding
without the need for a separate terminal session, which SSH-1 can't do.

Note that SSH-CONN isn't layered on SSH-AUTH; they are both at the same level above SSH-TRANS. A
specialized SSH server for a particular, limited purpose might not require authentication. Perhaps it just prints out
"Nice to meet you!" to anyone who connects. More practically, an anonymous sftp server might provide freely
available downloads to all comers. Such a server could simply alow aclient to engage in SSH-CONN immediately
after establishing an SSH-TRANS connection, whereas a general login server would always require successful
authentication via SSH-AUTH first.

We now survey the major differences between SSH-1 and SSH-2. These include:

. Expanded algorithm negotiation between client and server

. Multiple methods for key-exchange

. Certificates for public keys

. Moreflexibility with authentication, including partial authentication
. Stronger integrity checking through cryptography

« Periodic replacement of the session key ("rekeying")

3.5.1.1 Algorithm choice and negotiation

A nice feature of SSH-1 is algorithm negotiation, in which a client selects a bulk encryption cipher from among
those supported by the server. Other algorithms within SSH-1, however, are hardcoded and inflexible. SSH-2
improves upon this by making other algorithms negotiable between client and server: host key, message
authentication, hash function, session key exchange, and data compression. SSH-2 requires support of one method
per category to ensure interoperability and defines several other recommended and optional methods. [Section 3.9]

Another improvement of SSH-2 is an extensible namespace for algorithms. SSH-1 identifies the negotiable bulk
ciphers by anumerical code, with no values set aside for local additions. In contrast, SSH-2 algorithms (as well as
protocols, services, and key/certificate formats) are named by strings, and local definitions are explicitly supported.
From SSH-ARCH:

"Names that do not contain an at-sign (@) are reserved to be assigned by IANA (Internet Assigned
Numbers Authority). Examples include 3des-cbc, sha-1, hmac-shal, and zlib. Additional names of
this format may be registered with IANA [and] MUST NOT be used without first registering with
IANA. Registered names MUST NOT contain an at-sign (@) or acomma (,). Anyone can define
additional algorithms by using names in the format name@domainname, e.g., ourcipherchc@ssh.fi.
The format of the part preceding the at sign is not specified; it must consist of US-ASCII characters
except at-sign and comma. The part following the at-sign must be avalid fully qualified internet
domain name [RFC-1034] controlled by the person or organization defining the name. Each domain
decides how it manages its local namespace.”

Thisformat allows new, nonstandard algorithms to be added for internal use without affecting interoperability with
other SSH-2 implementations, even those with other local additions. OpenSSH makes use of this ability, defining
an integrity-checking algorithm called hrac- r i pend160@penssh. com

3.5.1.2 Session key exchange and the server key

Recall that the session key is the shared symmetric key for the bulk data cipher-the one used directly to encrypt user

data passing over the SSH connection. [Section 3.3] In SSH-1, this key is generated by the client and passed

securely to the server by double-encrypting it with the server key and server's host key. The server key's purposeis
to provide perfect forward secrecy. [Section 3.4.1]

In keeping with its design, SSH-2 introduces a more general mechanism to accommodate multiple key-exchange
methods, from which one is negotiated for use. The chosen method produces a shared secret that isn't used directly
as the session key, but rather is input to afurther process that produces the session key. The extra processing
ensures that neither side can fully determine the session key (regardless of the exchange method used) and provides
protection against replay attacks. [Section 3.1.2] The key-exchange phase of the SSH-2 protocol is also responsible
for server authentication, asin SSH-1.

SSH-2 currently defines only one key-exchange method, di f i e- hel | man- groupl-shal, anddl
implementations must support it. Asthe nameimplies, it is the Diffie-Hellman key-agreement algorithm with a

fixed group,[17] together with the SHA-1 hash function. The Diffie-Hellman agorithm provides forward secrecy by
itself, so no server key is needed. Also, independent of the processing just described, the Diffie-Hellman algorithm
alone ensures that neither side can dictate the shared secret.

diffie-hellman-groupl-shal aready providesforward secrecy, so SSH-2 implementations using it don't
need a server key. Since other key-exchange methods may be defined for SSH-2, someone could conceivably
implement the SSH-1 key-exchange algorithm, requiring a server key or similar method to provide perfect forward
secrecy. But such a method hasn't been defined, so server keys are found only in SSH1 and OpenSSH/1. Therefore,
an SSH-2-only server is more amenable to control by inetd, since it avoids the overhead of generating a server key
on startup. [Section 5.4.3.2] Examples are SSH2, or OpenSSH with SSH-1 support turned off.

3.5.1.3 Key/identity binding

In any public-key system, a crucial problem is verifying the owner of a key. Suppose you want to share encrypted
messages with your friend Alice, but an intruder, Mallory, tricks you into accepting one of his public keys as
Alice's. Now any messages you encrypt (supposedly) to Alice are readable by Mallory. Of course, you and Alice
will quickly discover the problem when she finds that she can't decrypt your messages, but by then the damageis
done.

The key-ownership prablem is addressed using a technique called public-key certificates. A certificateis adata
structure attesting that a trusted third party vouches for the key's owner. More precisely, the certificate attests to the
binding between a public key and a particular identity (a persona or company name, email address, URL, €tc.), or
an ability (the right to access a database, modify afile, log into an account, etc.). The attestation is represented by a
digital signature from the third party. So in our example, you and Alice could arrange for atrusted third party, Pete,
to sign your respective public keys, and you would therefore not believe Mallory's bogus, unsigned key.

Thisisall well and good, but who vouches for the voucher? How do you know the signer of Alice'skey isredly
Pete? This problem continues recursively, as you need the signer's public key, and a certificate for that, and so on.
These chains of certificates can be arranged in a hierarchy rooted at well-known Certificate Authorities, or they may
be arranged in a decentralized network, the so-called "web of trust" used by PGP. Such arrangements, or trust
models, are the basis for a public-key infrastructure (PK1).

In SSH, the key-ownership problem shows up in the bindings between hostnames and host keys. In al current SSH
implementations, thisis done using simple databases of hostnames, addresses, and keys which must be maintained
and distributed by the user or system administrator. Thisisn't a scalable system. SSH-2 permits certificates to be
included with public keys, opening the door for PK1 techniques. The current SSH-2 specification defines formats
for X.509, SPK1, and OpenPGP certificates, although no current SSH implementation supports their use.

Certificates, in theory, can also apply to user authentication. For instance, a certificate can bind a usernameto a
public key, and SSH servers can accept valid certificates as authorization for the private key holder to access an

account. This system provides the benefits of hostbased authentication without the fragile dependence on peer host
security. If PKIs become more common, perhaps such features will appear.

3.5.1.4 Authentication

In order to authenticate, an SSH-1 client tries a sequence of authentication methods chosen from the set allowed by
the server-public-key, password, trusted host, etc.-until one succeeds or al fail. This method is an all-or-nothing
proposition; there's no way for a server to require multiple forms of authentication, since as soon as one method
succeeds, the authentication phase ends.

The SSH-2 protocol is more flexible: the server informs the client which authentication methods are usable at any
point in the exchange, as opposed to just once at the beginning of the connection, asin SSH-1. Thus, an SSH-2
server can, for example, decide to disallow public-key authentication after two unsuccessful attempts but still
continue allowing the password method only. One use of this feature is interesting to note. SSH-2 clients usually
first make an authentication request using a special method, "none." It always fails and returns the real
authentication methods permitted by the server. If you see puzzling references in the SSH logs indicating that the
method "none" has "failed,” now you know what's going on (and it's normal).

An SSH-2 server also may indicate partial success: that a particular method succeeded, but further authentication is
necessary. The server therefore can require the client to pass multiple authentication tests for login, say, both
password and hostbased. The SSH2 server configuration keyword Requi r edAut hent i cat i ons controlsthis
feature, which OpenSSH/2 currently lacks. [Section 5.5.1]

3.5.1.5 Integrity checking

Improving on SSH-1's weak CRC-32 integrity check, SSH-2 uses cryptographically strong Message Authentication
Code (MAC) algorithms to provide integrity and data origin assurance. The MAC methods and keys for each
direction (separate from the session encryption keys) are determined during the key-exchange phase of the protocol.
SSH-2 defines several MAC agorithms, and requires support for hnac- shal, a 160-bit hash using the standard
keyed HMAC construction with SHA-1. (See RFC-2104, "HMAC: Keyed-Hashing for Message Authentication.")

3.5.1.6 Hostbased authentication

An SSH server needs some sort of client host identifier to perform hostbased authentication. Specifically, it needs
this for two operations:

. Looking up the client host key
. Matching the client host while performing authorization via the hostbased control files (shosts.equiv, etc.)

Call these operations the HAUTH process. Now, there is an important difference between trusted-host
authentication in protocols 1 and 2: in SSH-2, the authentication request contains the client hostname, whereasin
SSH-1 it doesn't. This means that SSH-1 is constrained to use the client |P address, or a name derived from the
address viathe naming service, asthe identifier. Since the SSH-1 server's idea of the client host identity istied to
the client's network address, RhostsRSA authentication can't work completely (or sometimes at all) in the following
COMMON scenarios:

. Mohile client with achanging I P address (e.g., alaptop being carried around and connected to different
networks)

. Client behind a network-visible proxy, such as SOCKS

. Client with multiple network addresses ("multihomed"), unless the corresponding DNS entries are arranged
in a particular way

The SSH-2 protocol, on the other hand, doesn't impose this restriction: the hostbased authentication processisin

principle independent of the client's network address. An SSH-2 server has two candidates at hand for the client
identifier: the name in the authentication request, N+, and the name looked up via the client’s network address,
Npet- It can simply ignore N, atogether, using N 4, for HAUTH instead. Of course, the known-hosts list and
hostbased authorization files must be maintained using that namespace. Indeed, N+, can be chosen from any space

of identifiers, not necessarily tied or related to the network naming service at all. For clarity's sake, it should
probably continue to be the client's canonical hostname.

As currently implemented, SSH2 doesn't do this. sshd2 behaves just as sshdl does, using N, for HAUTH and uses
Nayth Only as asanity check. If Npg == Ny, Sshd2 fails the authentication. Thisisreally backwards and causes

hostbased authentication to be much less useful than it could be, since it continues to not work in the scenarios
noted earlier. The authors have suggested to SCS to instead use N 4, for HAUTH and implement the Ny,gt = Ngh
check as a per-host option. It makes sense as an extra bit of security, in cases where it's known that the client host
address should never change. Thisis analogous to public-key authentication, which isindependent of the client host
address, but which admits additional restrictions based on the source address when appropriate (viathe " host s="
authorized_keys option).

3.5.1.7 Session rekeying

The more data that's encrypted with a particular key and available for analysis, the better an attacker's chances of
breaking the encryption. It is therefore wise to periodically change keysif large amounts of data are being
encrypted. Thisisn't much of an issue with asymmetric keys, since they are typically used only to encrypt small
amounts of data, producing digital signatures over hash values or encrypting symmetric keys. A key for the bulk
data cipher of an SSH connection, however, might encrypt hundreds of megabytes of data, if it's being used to
transfer large files or perform protected backups, for example. The SSH-2 protocol provides away for either side of
an SSH connection to initiate a re-keying of the session. This causes the client and server to negotiate new session
keys and take them into use. SSH-1 doesn't provide away to change the bulk cipher key for a session.

3.5.1.8 SSH-1/SSH-2: summary

Table 3-3 summarizes the important differences between Versions 1.5 and 2.0 of the SSH protocol.

Table 3.3. SSH-1 and SSH-2 Differences

SSH-2 SSH-1

Separate transport, authentication, and connection One monalithic protocol.

protocols.
Strong cryptographic integrity check. Weak CRC-32 integrity check.
Supports password changing. N/A

Exactly one session channel per connection (requires
issuing a remote command even when you don't want
one).

Any number of session channels per connection
(including none).

Full negotiation of modular cryptographic and
compression algorithms, including bulk encryption,
MAC, and public-key.

Negotiates only the bulk cipher; all others are fixed.

Encryption, MAC, and compression are negotiated
separately for each direction, with independent keys.

The same algorithms and keys are used in both
directions (although RC4 uses separate keys, since the
algorithm's design demands that keys not be reused).

Extensible algorithm/protocol naming scheme allows
local extensions while preserving interoperability.

Fixed encoding precludes interoperable additions.

User authentication methods:

. public-key (DSA, RSA, OpenPGP)
. hostbased
. password
. (Rhosts dropped due to insecurity)

Supports awider variety:

. public-key (RSA only)
. RhostsRSA

. password

« Rhosts (rsh-style)

. TIS

. Kerberos

Use of Diffie-Hellman key agreement removes the
need for a server key.

Server key used for forward secrecy on the session key.

Supports public-key certificates.

N/A

User authentication exchange is more flexible and
alows requiring multiple forms of authentication for
access.

Allows exactly one form of authentication per session.

Hostbased authentication is in principle independent
of client network address, and so can work with

proxying, mobile clients, etc. (but see Section 3.5.1.6).

RhostsRSA authentication is effectively tied to the
client host address, limiting its usefulness.

Periodic replacement of session keys.

N/A

3.5.2 Implementation Differences

There are many differences among the current crop of SSH-1 and SSH-2 implementations. Some are direct results
of the different protocols, such as the ability to require multiple forms of authentication or support of the DSA
public-key algorithm. Others are feature differences that aren't dictated by the protocols, but are simply inclusions
or omissions by the software authors. Here we discuss some nonprotocol-related design and feature differences

among OpenSSH, SSH1, and SSH2:

. Host keys
. Nofalback torsh
. Setuid client

« SSH-1 backward compatibility
3.5.2.1 Host keys

SSH host keys are long-term asymmetric keys that distinguish and identify hosts running SSH, or instances of the
SSH server, depending on the SSH implementation. This happens in two placesin the SSH protocol:

1. Server authentication verifying the server host's identity to connecting clients. This process occurs for every

SSH connection.[ls]

2. Authentication of aclient host to the server; used only during RhostsRSA or hostbased user authentication.

Unfortunately, the term "host key" is confusing. It implies that only one such key may belong to agiven host. This
istrue for client authentication but not for server authentication, because multiple SSH servers may run on asingle

machine, each with a different identifying key.!'™” This so-called "host key" actually identifies a running instance of
the SSH server program, not a machine.

SSH1 maintains a single database serving both server authentication and client authentication. It is the union of the
system known_hosts file (/etc/ssh_known_hosts), together with the user's ~/.ssh/known_hosts file on either the
source machine (for server authentication) or the target machine (for client authentication). The database maps a
hostname or addressto a set of keys acceptable for authenticating a host with that name or address. One hame may
be associated with multiple keys (more on this shortly).

SSH2, on the other hand, maintains two separate maps for these purposes.

. The hostkeys map for server host authentication
. The knownhosts map for client host authentication

Hooray, more confusing terminology. Here, the term "known hosts" is reused with slightly different formatting
(knownhosts versus known_hosts) for an overlapping but not identical purpose.

While SSH1 keeps host keys in afile with multiple entries, SSH2 stores them in a filesystem directory, one key per
file, indexed by filename. For instance, a knownhosts directory looks like:

$ Is -1 /etc/ssh2/knownhost s/
total 2
-r-r-r-
1 root r oot 697 Jun 5 22:22 wynken. sl eepy. net. ssh-dss. pub
-r-r-r-
1 root r oot 697 Jul 21 1999 bl ynken. sl eepy. net. ssh-dss. pub

Note that the filename is of the form <hostname>.< key type>.pub.

The other map, hostkeys, is keyed not just on name/address, but also on the server's TCP listening port; that isto
say, it iskeyed on TCP sockets. This alows for multiple keys per host in a more specific manner than before. Here,
the filenames are of the form key < port number > _ <hostname> .pub. The following example shows the public
keys for one SSH server running on wynken, port 22, and two running on blynken, ports 22 and 220. Furthermore,
we've created a symbolic link to make "nod" another name for the server at wynken:22. End users may add to these
maps by placing keys (either manually or automatically by client) into the directories ~/.ssh2/knownhosts and ~/.
ssh2/hostkeys.

$ Is -1 /etc/ssh2/ hostkeys/

total 5

STWTr--1-- 1 root r oot 757 May 31 14:52 key_ 22 bl ynken. sl eepy. net. pub
STWTr--r1-- 1 root r oot 743 May 31 14:52 key_ 22 wynken. sl eepy. net. pub
SFTWTr--r1-- 1 root r oot 755 May 31 14:52 key 220 _wynken. sl eepy. net. pub
[WX WX WX 1 root r oot 28 May 31 14:57 key_ 22 nod. pub ->

key 22 wynken. sl eepy. net. pub

Even though it allows for multiple keys per host, SSH2 is missing one useful feature of SSH1: multiple keys per
name. This sounds like the same thing, but there's a subtle difference: names can refer to more than one host. A
common example is a set of load-sharing login servers hidden behind a single hostname. A university might have a
set of three machines intended for general login access, each with its own name and address:

loginl.foo.edu —» 10.0.0.1
login2.foo.edu —» 10.0.0.2
login3.foo.edu —» 10.0.0.3

In addition, thereis asingle generic name that carries al three addresses:
login.foo.edu —» {10.0.0.1, 10.0.0.2, 10.0.0.3}

The university computing center tells people to connect only to login.foo.edu, and the university's naming service
hands out the three addresses in round-robin order (e.g., using round-robin DNS) to share the load among the three
machines. SSH has problems with this setup by default. Each time you connect to login.foo.edu, you have a 2/3
chance of reaching a different machine than you reached last time, with a different host key. SSH repeatedly
complains that the host key of login.foo.com has changed and issues a warning about a possible attack against your
client. This soon gets annoying. With SSH1, you can edit the known_hosts fil e to associate the generic name with
each of the individual host keys, changing this:

| ogi nl1. foo.edu 1024 35 1519086808544755383. ..
| ogi n2. foo. edu 1024 35 1508058310547044394. ..
| ogi n3. foo. edu 1024 35 1087309429906462914. ..

to this:

| ogi nl. f 0o. edu, | ogi n. foo. edu 1024 35 1519086808544755383. ..
| ogi n2. f 0o. edu, | ogi n. foo. edu 1024 35 1508058310547044394. ..
| ogi n3. foo. edu, | ogi n. foo. edu 1024 35 1087309429906462914. . .

With SSH2, however, there's no general way to do this; since the database is indexed by entriesin adirectory, with
one key per file, it can't have more than one key per name.

It might seem that you're losing some security by doing this, but we don't think so. All that's really happening is the
recognition that a particular name may refer to different hosts at different times, and thus you tell SSH to trust a
connection to that name if it's authenticated by any of a given set of keys. Most of the time, that set happens to have
size 1, and you'retelling SSH, "When | connect to this name, | want to make sure I'm connecting to this particular
host." With multiple keys per name, you can also say, "When | connect to this name, | want to make sure that | get
one of the following set of hosts." That's a perfectly valid and useful thing to do.

Another way to solve this problem is for the system administrators of login. foo.comto install the same host key on
all three machines. But this defeats the ability for SSH to distinguish between these hosts, even if you want it to.
We prefer the former approach.

3.5.2.2 No fallback torsh

Not only does SSH1 support rsh-style authentication, but also ssh can invoke rsh automatically if aremote host has
no SSH server running. Along with Rhosts authentication support, this feature is deliberately absent from SSH2,
due to the poor security of rsh. [Section 7.4.5.8]

3.5.2.3 Setuid client

The SSH1 client needsto be installed as setuid root in order to use RhostsRSA authentication. There are two
reasons for this: host key access and privileged source ports. The privileged port requirement from theclientisa
holdover from rsh-style authentication that adds no security to RhostsRSA, and that requirement has been dropped
from SSH2 hostbased authentication. [Section 3.4.2.3]

The remaining reason for a setuid client is access to the private host key file. The host key is stored unencrypted, so
SSH can access it without a human to type a passphrase. Therefore the file containing the private host key must be
protected from general read access. The SSH server usually runs as root for other reasons, and so can read any file.
The client, though, isrun by ordinary users, yet must have access to the private host key to engage in trusted-host
authentication. Thefileis usualy installed as readable only by the root user, and so the client needs to be setuid root.

Now, on general security grounds, onetriesto avoid installing setuid programsif at all possible-most especially
those that setuid to root. Any such program must be carefully written to prevent abuse. Preferably, a setuid program
should be small and simple with little user interaction. The big, complicated SSH client, which talks constantly with
users as well as other machines, is definitely not a safe candidate.

SSH2 sidesteps this problem by introducing the ssh-signer2 program. ssh-signer2 factors into a separate program
that portion of the client that requires access to the private host key. It speaks the SSH packet protocol onits
standard input and output and takes as input a hostbased authentication request to be signed. It carefully checksthe
request for validity; most particularly, it checks that the username in the request is that of the user running ssh-
signer2, and that the hostname is the canonical name of the current host. If the request is valid, ssh-signer2 signs the
request with the host key and returnsit.

Since ssh-signer2 isarelatively small and simple, it is easier to be confident that it is securely written and safe to
make setuid. In turn, the SSH client itself is no longer setuid; when it needsto sign a hostbased authentication
request, it runs ssh-signer2 as a subprocess to get the signature.

Although the SSH2 installation process makes the private host key readable only by root, and ssh-signer2 setuid
root, there is no real need to use the root account for this purpose, and indeed every reason not to. It sufficesto
create a new, unprivileged user for this specific purpose, say, "ssh.” It should be alocked account with no password
and no way to log into it, and the account information should be stored in local files (e.g., /etc/passwd, /etc/group)
rather than NIS. Y ou should then make the host key file readable only by this account and make ssh-signer2 setuid
and owned by it. For example:

chown ssh /etc/ssh _host key

chrmod 400 /etc/ssh_host _key

chown ssh /usr/| ocal /bin/ssh-signer2
chnmod 04711 /usr/ | ocal/bin/ssh-signer?2

HHHFH

This has the same effect as the default installation and is even less risky since it doesn't involve a setuid root
program.

Y ou can do the same thing with sshl, but it renders trusted-host authentication unusable, since the server demands a
privileged source port for the RhostsRSA mechanism.

3.5.2.4 SSH-1 backward compatibility

SSH2 can provide backward compatibility for the SSH-1 protocal if the entire SSH1 package is also installed on the
same machine. The SSH2 client and server simply run their SSH1 counterparts when they connect to a partner
running the older protocol. Thisis rather cumbersome. It's also wasteful and slow, since each new sshdl needsto
generate its own server key, which otherwise the single master server only regenerates once an hour. This wastes
entropy, sometimes a precious commodity, and can cause noticeable delays in the startup of SSH-1 connections to
an SSH2 server. Further, it is an administrative headache and a security problem, since one must maintain two
separate SSH server configurations and try to make sure all desired restrictions are adequately covered in both.

Beginning with Version 2.1.0, OpenSSH supports both SSH-1 and SSH-2 in asingle set of programs, though the
support isn't yet as complete as that found in SSH2. (For example, hostbased authentication is missing; this doesn't
affect compliance with SSH-2, though, since that support is optional.) This technique avoids the problems inherent
in the SSH2 mechanism. The SSH-1 protocal is still considered the primary option; if you're contacting a server that
supports both protocols, the OpenSSH client uses SSH-1. Y ou can force it to use SSH-2 with the -2 switch, or the
"protocol 2" configuration statement.

[16] RSA entered the public domain in September 2000, after many years as a patented algorithm.

(171 group isamathematical abstraction relevant to the Diffie-Hellman procedure; see references on group theory,
number theory, or abstract algebraif you're curious.

(38 1 SSH-1, the host key also encrypts the session key for transmission to the server. However, this use is actually for
server authentication, rather than for data protection per se; the server later provesitsidentity by showing that it correctly
decrypted the session key. Protection of the session key is obtained by encrypting it a second time with the ephemeral
server key.

(19 or shari ng the same key, if you wish, assuming the servers are compatible with one another.

3.6 As-User Access (userfile)

The SSH server usually runs as root (as does the client, in some circumstances). At various
points, SSH needs to access files belonging to the source or target accounts. The root
account privilege overrides most access controls, but not all. For instance, the root account
on an NFS client doesn't necessarily have any specia accessto files on aremote
filesystem. Another exampleis POSIX access control lists (ACLS); only the file owner can
change afile ACL, and root doesn't override this restriction.

In Unix, thereisaway for a process to take on the identity of adifferent user than its
current user ID: the setuid system call. Root can use this facility to "become" any user.
However, this cal isirreversible for the duration of the process; a program can't regain its
previous privileges, making setuid unsuitable for SSH. Some Unix implementations have a
reversible form, seteuid (set effective user ID), but it isn't universally available and isn't

part of POSIX 120

To aid in portability, SSH1 and SSH2 use the reliably available setuid system call. The first
time they need to access afile asaregular user, they start a subprocess. The subprocess
calls setuid to change (irrevocably) to the desired uid, but the main SSH program continues
running as root. Then, whenever SSH needs file access as that user, the main program
sends a message to the subprocess, asking it to perform the needed operation and return the
results. Internally, thisfacility is called the userfile module.

Keep this behavior in mind when debugging an SSH process with SunOS trace, Solaris
truss, Linux strace, or another process tracer. By default, these programs trace only the
topmost process, so always remember to trace subprocesses as well. (See the tracer's
manpage for the appropriate option, though it isusually -f.) If you forget to do this, and the
problem iswith file access, you might not see it, since the userfile subprocess performs the
file-access system calls (open, read, write, stat, etc.).

(20 A ctual ly, POSIX does have the same feature under a different name, but it isn't always
present, either.

3.7 Randomness

Cryptographic algorithms and protocols require a good source of random bits, or entropy.
Randomness is used in various ways.

. To generate data-encryption keys

. Asplaintext padding and initialization vectors in encryption algorithms, to help foil
cryptanalysis

. For check bytes or cookiesin protocol exchanges, as a measure against packet
spoofing attacks

Randomness is harder to achieve than you might think; in fact, even defining randomness
isdifficult (or picking the right definition for a given situation). For example, "random"
numbers that are perfectly good for statistical modeling might be terrible for cryptography.
Each of these applications requires certain properties of its random input, such as an even
distribution. Cryptography, in particular, demands unpredictability so an attacker reading
our data can't guess our keys.

True randomness-in the sense of complete unpredictability-can't be produced by a
computer program. Any sequence of bits produced as the output of a program eventually
repeatsitself. For true randomness, you have to turn to physical processes, such as fluid
turbulence or the quantum dice of radioactive decay. Even there, you must take great care
that measurement artifacts don't introduce unwanted structure.

There are algorithms, however, that produce long sequences of practically unpredictable
output, with good statistical randomness properties. These are good enough for many
cryptographic applications, and such algorithms are called pseudo-random number
generators, or PRNGs. A PRNG requires asmall random input, called the seed, so it
doesn't always produce the same output. From the seed, the PRNG produces a much larger
string of acceptably random output; essentially, it is arandomness "stretcher." So a
program using a PRNG still needs to find some good random bits, just fewer of them, but
they had better be quite unpredictable.

Since various programs require random bits, some operating systems have built-in facilities
for providing them. Some Unix variants (including Linux and OpenBSD) have a device
driver, accessed through /dev/random and /dev/urandom, that provides random bits when
opened and read as afile. These bits are derived by all sorts of methods, some quite clever.
Correctly filtered timing measurements of disk accesses, for example, can represent the
fluctuations due to air turbulence around the drive heads. Another technique isto look at
the least significant bits of noise coming from an unused microphone port. And of course,
they can track fluctuating events such as network packet arrival times, keyboard events,
interrupts, etc.

SSH implementations make use of randomness, but the processis largely invisible to the
end user. Here's what happens under the hood. SSH1 and SSH2, for example, use a kernel-
based randomness source if it is available, along with their own sampling of (one hopes)
fluctuating system parameters, gleaned by running such programs such as ps or netstat. It
uses these sources to seed its PRNG, aswell asto "stir in" more randomness every once in
awhile. Since it can be expensive to gather randomness, SSH storesits pool of random bits
in afile between invocations of the program, as shown in the following table:

SSH1 SSH2
Server /etc/ssh_random seed /etc/ssh2/random _seed
Client ~/.ssh/random_seed ~/.ssh2/random_seed

These files should be kept protected, since they contain sensitive information that can
weaken SSH's security if disclosed to an attacker, although SSH takes steps to reduce that
possibility. The seed information is always mixed with some new entropy before being
used, and only half the pool is ever saved to disk, to reduce its predictive value if stolen.

In SSH1 and SSH2, al this happens automatically and invisibly. When compiling
OpenSSH on platform without /dev/random, you have a choice. If you have installed an
add-on randomness source, such as the OpenSSH-recommended " Entropy Gathering
Daemon" (EGD, http://www.lothar.com/tech/crypto/), you can tell OpenSSH to use it with
the switch - wi t h- egd- pool . If you don't specify a pool, OpenSSH uses an internal
entropy-gathering mechanism. Y ou can tailor which programs are run to gather entropy
and "how random" they're considered to be, by editing the file /etc/ssh_prng_cmds. Also,
note that OpenSSH random seed is kept in the ~/.ssh/prng_seed file, even the daemon's,
which isjust the root user's seed file.

http://www.lothar.com/tech/crypto/

3.8 SSH and File Transfers (scp and sftp)
The first thing to understand about SSH and file transfers, isthat SSH doesn't do file transfers.
Ahem.

Now that we have your attention, what can we possibly mean by that? After all, there are entire sections of this book
dedicated to explaining how to use scpl, scp2, and sftp for file transfers. What we mean is that there is nothing in the
SSH protocol about transferring files: an SSH speaker can't ask its partner to send or receive afile through the
protocol. And the programs we just mentioned don't actually implement the SSH protocol themselves nor incorporate
any security features at al. Instead, they actually run the SSH client in a subprocess, in order to connect to the remote
host and run the other half of the file-transfer process there. There is nothing very SSH-specific about these programs,
they use SSH in much the same way as do other applications we cover, such as CVS and Pine.

The only reason it was necessary to come up with scpl in the first place was that there was no widely used, general-
purpose file-transfer protocol available that operated over athe single, full-duplex byte stream connection provided by
the SSH remote program execution. If existing FTP implementations could easily be made to operate over SSH, there
would be no need for ssh, but aswelll see, FTP isentirely unsuited to this. [Section 11.2] So Tatu Y |6nen wrote scpl
and made it part of SSH1. The protocol it uses (let'scall it "SCP1") remained entirely undocumented, even when
Y16nen wrote the first RFC documenting the SSH-1 protocal.

Later, when SSH Communications Security was writing SSH2, they wanted to continue to include afile-transfer toal.
They stayed with the model of layering it on top of SSH proper, but decided to entirely reimplement it. Thus, they
replaced the "scpl protocol” with the " SFTP protocol,” asit is commonly known. The SFTP protocol isagain simply a
way to do bidirectional file transfers over asingle, reliable, full-duplex byte stream connection. It happens to be based
on the same packet protocol used as the substrate for the SSH Connection Protocol, presumably as a matter of
convenience. The implementers already had atool available for sending record-oriented messages over a byte pipe, so
they reused it. SFTP remains an undocumented, proprietary protocol at press time, though there iswork beginning in
the IETF SECSH working group to document and standardize it.

The name SFTPisreally unfortunate, because it confuses people on a number of levels. Most take it to stand for
"Secure FTP." First, just aswith scpl, as a protocol it isn't secure at all; the implementation derives its security by
speaking the protocol over an SSH connection. And second, it has nothing whatsoever to do with the FTP protocol. It
isacommon mistake to think you can somehow use SFTP to talk securely to an FTP server-a reasonable enough
supposition, given the name.

Another confusing aspect of file transfer in SSH2, is the relationship among the two programs scp2 and sftp, and the
SFTP protacol. In SSH1, thereis asingle file-transfer protocol, SCP1, and a single program embodying it: scpl. In
SSH2, thereisalso asingle, new file-transfer protocol: SFTP. But there are three separate programs implementing it
and two different clients. The server side is the program sftp-server. The two clients are scp2 and sftp. scp2 and sftp are
simply two different front-ends for the same process: each runs the SSH2 client in a subprocess to start and speak to
sftp-server on the remote host. They merely provide different user interfaces: scp2 is more like the traditional rcp, and
sftp is deliberately similar to an FTP client.

None of this confusing terminology is made any easier by the fact that both SSH1 and SSH2 when installed make
symbolic links allowing you to use the plain names "scp," "ssh," etc., instead of "scpl" or "ssh2." When we speak of
the two SSH-related file-transfer protocols, we call them the SCP1 and SFTP protocols. SCP1 is sometimes also just
called the "scp" protocol, which istechnically ambiguous but usually understood. We suppose you could refer to SFTP

asthe "scp2 protocol,” but we've never heard it and don't recommend it if you want to keep your aanity.[Zl]

3.8.1 scpl Details

When you run scpl to copy afile from client to server, it invokes sshl like this:
ssh -x -a -0 "FallBackToRsh no" -o "C earAll Forwardi ngs yes" server-host scp ...

This runs another copy of scp on the remote host. That copy isinvoked with the undocumented switches -t and -f (for
"to" and "from™), putting it into SCP1 server mode. This next table shows some examples; Figure 3-6 shows the details.

Thisclient scp command: Runsthisremote command:
scp foo server: bar scp -t bar
scp server: bar foo scp -f bar
scp *.txt server:dir scp -d -t dir

Figure 3.6. scpl operation
et e Server

I -

acpl file.txt server:renamed.txt renamed. Lit

ﬁ sepl sepl

file, txt

i run "sshl -x -a...server scpl -t renamed, txt* run "scpl -t renamed.txt®!

sepl pﬂllml |

If you run scpl to copy afile between two remote hosts, it simply executes another scpl client on the source host to
copy thefileto the target. For example, this command:

scpl source: nusic.au target: playne

runs this in the background:

sshl -x -a ... as above ... source scpl rnusic.au target:playne
3.8.2 scp2/sftp Details

When you run scp2 or sftp, they run ssh2 behind the scenes, using this command:

ssh2 -x -a -0 passwordpronpt "%J@4\'s password:”
-0 "nodel ay yes"

-0 "authenticationnotify yes"”
server host
-s sftp

Unlike scpl, here the command doesn't vary depending on the direction or type of file transfer; all the necessary
information is carried inside the SFTP protocol.

Note that they don't start sftp-server with aremote command, but rather with the SSH2 "subsystem” mechanism viathe
-s sftp option. [Section 5.7] This means that the SSH2 server must be configured to handle this subsystem, with aline
like thisin /etc/sshd2_config:

subsystem sftp [usr/local /sbin/sftp-server

Assuming the ssh2 command succeeds, sftp and sftp-server start speaking the SFTP protocol over the SSH session, and
the user can send and retrieve files. Figure 3-7 shows the details.

Figure 3.7. scp2/sftp operation

Cient o Server

% scp? file.bxt sorvcr:rcnnmnd.txtié
r'~ or

% sltp Server =
N renamned. LXL
aftp> put file.txt renamed.txt

] [1 L

file, txt

run *ssh -z -a...server -5 sftp* il run *sftp server*

sttp prnhmi |

Our testing shows roughly a factor-of-four reduction in throughput from scpl to scp2. We observe that the SFTP
mechanism uses the SSH packet protocol twice, one encapsulated inside the other: the SFTP protocol itself usesthe
packet protocol asits basis, and that runs on top of an SSH session. While thisis certainly inefficient, it seems unlikely
to be the reason for such a dramatic reduction in performance; perhaps there are simply implementation problems that
can be fixed, such as bad interactions between buffering in different layers of the protocol code. We have not dug into
the code ourselves to find a reason for the slowdown.

(21] Especially since scp2 may run scpl for SSH1 compatibility! Oy gevalt!

3.9 Algorithms Used by SSH

Table 3-4 through Table 3-6 summarize the available ciphers in the SSH protocols and

their implementations. Required algorithms are in bold;, recommended ones are italic; the
others are optional. Parentheses indicate an algorithm not defined in the protocol, but
provided in some implementation. The meanings of the entries are:

The implementation supports the algorithm and is included in the default build.

The implementation supports the algorithm, but it isn't included in the default build
(it must be specifically enabled when compiling).

The implementation doesn't support the algorithm.

Table 3.4. Algorithmsin the SSH Protocols

SSH-1.5 SSH-2.0

Public-key RSA DSA, DH

Hash MD5, CRC-32 SHA-1, MD5

3DES, Blowfish, Twofish, CAST-128,

Symmetric | 3DES, IDEA ARCFOUR DES || 5en" ApeFoUR

Compression | zlib zlib

Note that Table 3-4 ssmply lists algorithms in different categories used in the two protocol

specifications, without regard to purpose. So for example, SSH-1 uses both MD5 and CRC-
32, but for different purposes; this listing doesn't imply that SSH-1 has option to employ

MDS5 for integrity checking.

Table 3.5. SSH-1 Ciphers

3DES IDEA RC4 DES (Blowfish)

SSH1 X X 0 0 X

OpenSSH X - - - X

Table 3.6. SSH-2 Ciphers

3DES | Blowfish | Twofish CAST-128 | IDEA | RC4

SSH?2 X X X - - X
F-Secure SSH2 X X X X - X
OpenSSH X X - X - X

Why are some algorithms unsupported by different programs? DES is often omitted from
SSH-1 software as insufficiently secure. RC4 is omitted because of problemsin the way it
isused in the SSH-1 protocol, permitting vulnerabilities to active network-level attacks;
this problem has been fixed in SSH-2. IDEA is omitted from OpenSSH and the
noncommercial SSH1 and SSH2 because it is patented and requires royalties for
commercia use. Twofishisn't in OpenSSH because it isn't yet part of the OpenSSL toolkit,
which OpenSSH uses. CAST-128 isfree, so we don't know why it is missing from the
noncommercial SSH2.

The free version of SSH2 supports only the required DSA for public keys, while the
commercial F-Secure SSH2 Server adds partial support for RSA keys for user
authentication. [Section 6.2.2]. The F-Secure server startsif its host key is RSA and reports
that it successfully read the key. However, it still advertisesits host key typeas DSA in its
key-exchange messages and then supplies the RSA key anyway, causing clientsto fail

when they try to read the supplied key. Of course, this problem masks the question of
whether the client can handle an RSA host key even if it were properly identified.
OpenSSH/2 doesn't contain RSA support at all, but now that the RSA patent has expired,
the ssh-rsa key type will be added to the SSH-2 protocol, and support should follow shortly.

We now summarize each of the algorithms we have mentioned. Don't treat these
summaries as complete analyses, however. Y ou can't necessarily extrapolate from
characteristics of individual agorithms (positive or negative) to whole systems without
considering the other parts. Security is complicated that way.

3.9.1 Public-Key Algorithms
3.9.1.1 Rivest-Shamir-Adleman (RSA)

The Rivest-Shamir-Adleman public-key algorithm (RSA) is the most widely used
asymmetric cipher. It derivesits security from the difficulty of factoring large integers that
are the product of two large primes of roughly equal size. Factoring iswidely believed to
be intractable (i.e., infeasible, admitting no efficient, polynomial-time solution), although
thisisn't proven. RSA can be used for both encryption and signatures.

Until September 2000, RSA was claimed to be patented in the United States by Public Key
Partners, Inc., acompany in which RSA Security, Inc. is apartner. (The algorithm is now
in the public domain.) While the patent wasin force, PKP claimed that it controlled the use
of the RSA algorithm in the USA, and that the use of unauthorized implementations was
illegal. Until the mid-1990s, RSA Security provided afreely available reference
implementation, RSAref, with alicense allowing educationa and broad commercial use (as
long as the software itself was not sold for profit). They no longer support or distribute this
toolkit, though it is commonly available. Since RSA is now in the public domain, there's no
longer any reason to use RSAref. It is no longer supported, some versions contain security
flaws, and there are better implementations out there; we discourage its use.

The SSH-1 protocol specifies use of RSA explicitly. SSH-2 can use multiple public-key
algorithms, but it defines only DSA.. [Section 3.9.1.2] The SECSH working group plans to
add the RSA agorithm to SSH-2 now that the patent has expired. In the meantime, only the
F-Secure SSH2 Server implements RSA keysin SSH2, using the global key-format
identifier "ssh-rsa’. Thisisn't yet part of the draft standard: to be technically correct it
should use alocalized name, e.g., ssh-rsa@datafellows.com. [Section 3.5.1.1] However,
thisisunlikely to cause areal problem. The feature is useful for authentication to an SSH2
server with an existing SSH1 key, so you don't need to generate a new (DSA) key.

3.9.1.2 Digital Signature Algorithm (DSA)

The Digital Signature Algorithm (DSA) was developed by the U.S. National Security
Agency (NSA), and promulgated by the U.S. National Institute of Standards and

Technology (NIST) as part of the Digital Signature Standard (DSS). The DSS was issued
as a Federal Information Processing Standard, FIPS-186, in May 1994. It is a public-key
algorithm, based on the Schnorr and ElGamal methods, and relies on the difficulty of
computing discrete logarithms in afinite field. It is designed as a signature-only scheme
that can't be used for encryption, although afully general implementation may easily
perform both RSA and ElGamal encryption.

DSA has also been surrounded by a swirl of controversy sinceitsinception. The NIST first
claimed that it had designed DSA, then eventually revealed that the NSA had done so.
Many question the motives and ethics of the NSA, with ample historical reason to do so.

[22] Researcher Gus Simmons discovered a sublimina channel in DSA that allows an

implementor to leak information-for instance, secret key bits-with every signatture.[23]

Since the algorithm was to be made available as a closed hardware implementation in
smart cards as part of the government's Capstone program, many people considered this
property highly suspicious. Finally, NIST intended DSA to be available royalty-free to all
users. To that end it was patented by David Kravitz (patent #5,231,668), then an employee
of the NSA, who assigned the patent to the U.S. government. There have been claims,
however, that DSA infringes existing cryptographic patents, including the Schnorr patent.
To our knowledge, thisissue has yet to be settled in court.

The SSH-2 protocol uses DSA asits required (and currently, only defined) public-key
algorithm for host identification.

3.9.1.3 Diffie-Hellman key agreement

The Diffie-Hellman key agreement algorithm was the original public-key system, invented
by Whitfield Diffie, Martin Hellman, and Ralph Merklein 1976. It was patented by them
in 1977 (issued in 1980, patent #4,200,770); that patent has now expired, and the algorithm
isin the public domain. Like DSA, it is based on the discrete logarithm problem, and it
allows two partiesto derive a shared secret key securely over an open channel. That is, the
parties engage in an exchange of messages, at the end of which they share a secret key. It
isn't feasible for an eavesdropper to determine the shared secret merely from observing the
exchanged messages.

SSH-2 uses the Diffie-Hellman algorithm asiits required (and currently, its only defined)
key-exchange method.

3.9.2 Secret-Key Algorithms
3.9.2.1 International Data Encryption Algorithm (IDEA)

The International Data Encryption Algorithm (IDEA) was designed in 1990 by XuegjiaLai

and James M assey,[24] and went through several revisions, improvements, and renamings

before reaching its current form. Although relatively new, it is considered secure; the well-

known cryptographer Bruce Schneier in 1996 pronounced it "the best and most secure
block algorithm available to the public at thistime."

IDEA is patented in Europe and the United States by the Swiss company Ascom-Tech AG.

(25 The name "IDEA" is a trademark of Ascom-Tech. The attitude of Ascom-Tech towards
this patent and the use of IDEA in the United States has changed over time, especially with
regard to itsinclusion in PGP. It is free for noncommercial use. Government or commercial
use may require aroyalty, where "commercial use" includes use of the algorithm internal to
acommercial organization, not just directly selling an implementation or offering its use
for profit. Here are two sites for more information:

http://www.ascom.ch/infosec/idea.html
http://www.it-sec.com/index_e.php

3.9.2.2 Data Encryption Standard (DEYS)

The Data Encryption Standard (DES) is the aging workhorse of symmetric encryption
algorithms. Designed by researchers at IBM in the early 1970s under the name Lucifer, the
U.S. government adopted DES as a standard on November 23, 1976 (FIPS-46). It was
patented by IBM, but IBM granted free worldwide rights to its use. It has been used
extensively in the public and private sectors ever since. DES has stood up well to
cryptanalysis over the years and is becoming viewed as outdated only because its 56-bit
key sizeistoo small relative to modern computing power. A number of well-publicized
designs for special-purpose "DES-cracking" machines have been put forward, and their
putative prices are falling more and more into the realm of plausibility for governments and
large companies. It seems sure that at least the NSA has such devices. Because of these
weaknesses, NIST is currently in the process of selecting a successor to DES, called the
Advanced Encryption Standard (AES).

3.9.23Triple-DES

Triple-DES, or 3DES, isavariant of DES intended to increase its security by increasing the

key length. It has been proven that the DES function doesn't form a group over its keys,[26]

which means that encrypting multiple times with independent keys can increase security.
3DES encrypts the plaintext with three iterations of the DES agorithm, using three
separate keys. The effective key length of 3DES is 112 bits, avast improvement over the
56-bit key of plain DES.

3.9.2.4 ARCFOUR (RC4)

Ron Rivest designed the RC4 cipher in 1987 for RSA Data Security, Inc. (RSADSI); the
name isvariously claimed to stand for "Rivest Cipher" or "Ron’'s Code." It was an
unpatented trade secret of RSADSI, used in quite anumber of commercial products by
RSADSI licensees. In 1994, though, source code claiming to implement RC4 appeared

http://www.ascom.ch/infosec/idea.html
http://www.it-sec.com/index_e.php

anonymously on the Internet. Experimentation quickly confirmed that the posted code was
indeed compatible with RC4, and the cat was out of the bag. Since it had never been
patented, RC4 effectively entered the public domain. This doesn't mean that RSADSI won't
sue someone who triesto use it in acommercial product, so it isless expensive to settle and
license than to fight. We aren't aware of any test cases of thisissue. Since the name "RC4"
istrademarked by RSADS!, the name "ARCFOUR" has been coined to refer to the
publicly revealed version of the algorithm.

ARCFOUR isvery fast but less studied than many other algorithms. It uses a variable-sized
key; SSH-1 employs independent 128-bits keys for each direction of the SSH session. The
use of independent keys for each direction is an exception in SSH-1, and crucial:
ARCFOUR is essentially a pad using the output of a pseudo-random number generator. As
such, it isimportant never to reuse akey because to do so makes cryptanalysistrivially
easy. If this caveat is observed, ARCFOUR is considered secure by many, despite the
dearth of public cryptanalytic results.

3.9.2.5 Blowfish

Blowfish was designed by Bruce Schneier in 1993, as a step toward replacing the aging
DES. It ismuch faster than DES and IDEA, though not as fast as ARCFOUR, and is
unpatented and free for all uses. It isintended specifically for implementation on large,
modern, general-purpose microprocessors and for situations with relatively few key
changes. It isn't particularly suited to low-end environments such as smart cards. It employs
avariable-sized key of 32 to 448 bits; SSH-2 uses 128-bit keys. Blowfish has received a
fair amount of cryptanalytic scrutiny and has proved impervious to attack so far.
Information is available from Counterpane, Schneier's security consulting company, at:

http://www.counterpane.com/blowfish.html

3.9.2.6 Twofish

Twofish is another design by Bruce Schneier, together with J. Kelsey, D. Whiting, D.
Wagner, C. Hall, and N. Ferguson. It was submitted in 1998 to the NIST as a candidate for
the Advanced Encryption Standard, to replace DES as the U.S. government's symmetric
data encryption standard. Two years later, it is one of the five finalists in the AES selection
process, out of 15 initial submissions. Like Blowfish, it is unpatented and free for all uses,
and Counterpane has provided uncopyrighted reference implementations, also freely usable.

Twofish admits keys of lengths 128, 192, or 256 bits; SSH-2 specifies 256-bit keys.
Twofish is designed to be more flexible than Blowfish, allowing good implementation in a
larger variety of computing environments (e.g., Slower processors, small memory, in-
hardware). It isvery fast, itsdesign is conservative, and it islikely to be quite strong. Y ou
can read more about Twofish at:

http://www.counterpane.com/twofish.html

http://www.counterpane.com/blowfish.html
http://www.counterpane.com/twofish.html

Y ou can read more about the NIST AES program at:

http://www.nist.gov/aes/

3.9.2.7 CAST

CAST was designed in the early 1990s by Carlisle Adams and Stafford Tavares. Tavaresis
on the faculty of Queen's University at Kingston in Canada, while Adams is an employee
of Entrust Technologies of Texas. CAST is patented, and the rights are held by Entrust,
which has made two versions of the algorithm available on a worldwide royalty-free basis
for all uses. These versions are CAST-128 and CAST-256, described in RFC-2144 and
RFC-2612, respectively. SSH-2 uses CAST-128, which is named for its 128-bit key length.

3.9.2.8 Speed comparisons

We ran some simple experiments to rank the bulk ciphersin order of speed. Sincethereis
no single SSH package that contains all of the ciphers, we present two experiments to
cover them al. Table 3-7 and Table 3-8 show the time required to transfer a5-MB file
from a 300-MHz Linux box to a 100-MHz Sparc-20 over an otherwise unloaded 10-base-T
Ethernet.

Table 3.7. Transferring with scp2 (F-Secure SSH2 2.0.13)

Cipher Transfer Time (seconds) Throughput (KB/second)
RC4 22.5 2274
Blowfish 24.5 208.6
CAST-128 26.4 193.9
Twofish 28.2 181.3
3DES 51.8 98.8

http://www.nist.gov/aes/

Table 3.8. Same Test with scpl (SSH-1.2.27)

Cipher Transfer Time (seconds) Throughput (KB/second)
RC4 5 1024.0
Blowfish 6 853.3
CAST-128 7 7314
Twofish 14 365.7
3DES 15 341.3

Thisis necessarily a gross comparison, and we provide it only as arough guideline.
Remember that these numbers reflect the performance of particular implementations, not
the algorithms themselves, tested in a single configuration. Y our mileage may vary.
Objectsin mirror are closer than they appear.

Note that scpl is roughly four times faster than scp2. Thisis due to a mgor implementation
difference: scpl usesthe scpl -t server, whereas scp2 uses the SFTP subsystem. [Section

7.5.9] Nonetheless, the relative cipher speed comparisons do agree where they overlap.

We must emphasize that we included RC4 in the SSH1 test only for completeness; dueto
security vulnerabilities, RC4 shouldn't ordinarily be used with the SSH-1 protocol.

3.9.3 Hash Functions

3.9.3.1 CRC-32

The 32-hit Cyclic Redundancy Check (CRC-32), defined in 1SO 3309,%" isa
noncryptographic hash function for detecting accidental changes to data. The SSH-1
protocol uses CRC-32 (with the polynomia OXEDB88320) for integrity checking, and this
weakness admits the "insertion attack™ discussed later. [Section 3.10.5] The SSH-2
protocol employs cryptographically strong hash functions for integrity checking, obviating
this attack.

3.9.3.2MD5

MD5 ("Message Digest algorithm number 5") is a cryptographically strong, 128-bit hash
algorithm designed by Ron Rivest in 1991, one of a series he designed for RSADSI (MD2
through MD5). MD5 is unpatented, placed in the public domain by RSADSI, and
documented in RFC-1321. It has been a standard hash agorithm for several years, used in
many cryptographic products and standards. A successful collision attack against the MD5
compression function by den Boer and Bosselaers in 1993 caused some concern, and
though the attack hasn't resulted in any practical weaknesses, there is an expectation that it
will, and people are beginning to avoid MD5 in favor of newer agorithms. RSADSI

themselves recommend moving away from MD5 in favor of SHA-1 or RIPEMD-160 for

future applications demanding collision-res stance.!?®!

3.9.3.3SHA-1

SHA-1 (Secure Hash Algorithm) was designed by the NSA and NIST for use with the U.S.
government Digital Signature Standard. Like MD5, it was designed as an improvement on
MD4, but takes a different approach. It produces 160-bit hashes. There are no known
attacks against SHA-1, and, if secure, it is stronger than MD5 simply for its longer hash
value. It is starting to replace MD5 in some applications; for example, SSH-2 uses SHA-1
asitsrequired MAC hash function, as opposed to MD5 in SSH-1.

3.9.3.4 RIPEM D-160

Y et another 160-bit MD4 variant, RIPEMD-160, was developed by Hans Dobbertin,
Antoon Bosselaers, and Bart Prenedl as part of the European Community RIPE project.

RIPE stands for RACE Integrity Primitives Eval uation;[zg] RACE, in turn, wasthe
program for Research and Development in Advanced Communications Technologiesin
Europe, an EC-sponsored program which ran from June 1987 to December 1995 (http://
www.analysys.com). RIPE was part of the RACE effort, devoted to studying and

devel oping data integrity techniques. Hence, RIPEMD-160 should be read as "the RIPE
Message Digest (160 bits)." In particular, it has nothing to do with RIPEM, an old Privacy-
Enhanced Mail (PEM) implementation by Mark Riordan (http://ripem.msu.edu/).

RIPEMD-160 isn't defined in the SSH protocol, but it is used for an implementation-
specific MAC agorithm in OpenSSH, under the name hirac-r i pend160@penssh.
com RIPEMD-160 is unpatented and free for all uses. Y ou can read more about it at:

http://www.esat.kuleuven.ac.be/~bossel ae/ripemd160.html

3.9.4 Compression Algorithms: zlib

zZlib is currently the only compression algorithm defined for SSH. In the SSH protocol

http://www.analysys.com/
http://www.analysys.com/
http://ripem.msu.edu/
http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html

documents, the term "zlib" refers to the "deflate" 1ossless compression algorithm asfirst
implemented in the popular gzip compression utility, and later documented in RFC-1951. It
isavailable as a software library caled ZLIB at:

http://www.info-zip.org/pub/infozip/zlib/

[22] See James Bamford's book, The Puzzle Palace (Penguin), for an investigative history of the
NSA.

PG s mmons, "The Subliminal Channelsin the U.S. Digital Signature Algorithm (DSA)."
Proceedings of the Third Symposium on: State and Progress of Research in Cryptography, Rome:
Fondazione Ugo Bordoni, 1993, pp. 35-54.

(241 % Lai and J. Massey, "A Proposal for a New Block Encryption Standard,” Advancesin
Cryptology-EUROCRYPT "92 Proceedings, Springer-Verlag, 1992, pp 389-404.

[y.s, patent #5,214,703, 25 May 1993; international patent PCT/CH91/00117, 28 November
1991; European patent EP 482 154 B1.

(261 ¢ w. Campbell and M. J. Wiener, "DES Is Not a Group,” Advances in Cryptology-CRYPTO
92 Proceedings, Springer-Verlag, pp. 512-520.

(271 | nternational Organization for Standardization, S0 Information Processing Systems-Data
Communication High-Level Data Link Control Procedure-Frame Structure, 1S 3309, October
1984, 3rd Edition.

(28] RsA Laboratories Bulletin #4, 12 November 1996, ftp://ftp.rsasecurity.com/pub/pdfs/bulletnd.
pdf.
[29) Not to be confused with another "RI PE," Réseaux |P Européens ("European |P Networks"), a

technical and coordinating association of entities operating wide area | P networks in Europe and
elsewhere (http://www.ripe.net).

http://www.info-zip.org/pub/infozip/zlib/
ftp://ftp.rsasecurity.com/pub/pdfs/bulletn4.pdf
ftp://ftp.rsasecurity.com/pub/pdfs/bulletn4.pdf
http://www.ripe.net/

3.10 Threats SSH Can Counter

Like any security tool, SSH has particular threats against which it is effective and others
that it doesn't address. We'll discuss the former first.

3.10.1 Eavesdropping

An eavesdropper is a network snooper who reads network traffic without affecting it in any
way. SSH's encryption prevents eavesdropping. The contents of an SSH session, even if
intercepted, can't be decrypted by a snooper.

3.10.2 Name Service and | P Spoofing

If an attacker subverts your naming service (DNS, NIS, etc.), network-related programs
may be coerced to connect to the wrong machine. Similarly, an attacker can impersonate a
host by stealing use of its IP address(es). In either case, you're in trouble: your client
program can connect to afalse server that steals your password when you supply it. SSH
guards against this attack by cryptographically verifying the server host identity. When
setting up a session, the SSH client validates the server's host key against alocal list
associating server names and addresses with their keys. If the supplied host key doesn't
match the one on the list, SSH complains. This feature may be disabled in less security-
conscious settings if the warning messages get annoying. [Section 7.4.3.1]

The SSH-2 protocol allows for including PKI certificates along with keys. In the future, we
hope that implementation of this feature in SSH products along with more common
deployment of PKI will ease the burden of key management and reduce the need for this
particular security trade-off.

3.10.3 Connection Hijacking

An "active attacker"-one who not only can listen to network traffic but al'so can inject his
own-can hijack a TCP connection, literaly stealing it away from one of its legitimate
endpoints. Thisis obviously disastrous: no matter how good your authentication method is,
the attacker can simply wait until you've logged in, then steal your connection and insert
his own nefarious commands into your session. SSH can't prevent hijacking, sincethisisa
weakness in TCP, which operates below SSH. However, SSH renders it ineffective (except
as a denial-of-service attack). SSH's integrity checking detectsif a session is modified in
transit, and shuts the connection down immediately without using any of the corrupted data.

3.10.4 Man-in-the-Middle Attacks

A man-in-the-middle attack is a particularly subtle type of active attack and isillustrated in
Figure 3-8. An adversary sits between you and your real peer (i.e., between the SSH client

and server), intercepting all traffic and altering or deleting messages at will. Imagine that
you try to connect to an SSH server, but Malicious Mary intercepts your connection. She
behaves just like an SSH server, though, so you don't notice, and she ends up sharing a
session key with you. Simultaneously, she aso initiates her own connection to your
intended server, obtaining a separate session key with the server. She canlogin asyou
because you used password authentication and thus conveniently handed her your
password. Y ou and the server both think you have a connection to each other, when in fact
you both have connections to Mary instead. Then she just sitsin the middle, passing data
back and forth between you and the server (decrypting on one side with one key and re-
encrypting with the other for retransmission). Of course, she can read everything that goes
by and undetectably modify it if she chooses.

Figure 3.8. Man-in-the-middle attack

Irwe chient mochine frue server machine

1

| i,
T 54 encrypled connections
._,.-"

7

"'.

e — unencryphed dinto axposed!

——

SSH counters this attack in two ways. Thefirst is server host authentication. Unless Mary
has broken into the server host, she is unable to effect her impersonation, because she
doesn't have the server's private host key. Note that for this protection to work, it is crucial
that the client actually check the server-supplied public host key against its known hosts
list; otherwise, there is no guarantee that the server is genuine. If you connect for the first
time to a new server and let ssh accept the host key, you are actually open to a man-in-the-
middle attack. However, assuming you aren't spoofed that one time, future connections to
this server are safe aslong as the server host key isn't stolen.

The second protection SSH affordsisto limit the authentication methods vulnerable to this
attack. The password method is vulnerable, but public-key and hostbased/RhostsRSA are
immune. Mary can't discover the session key simply by observing the key exchange; she
must perform an active attack in which she carries out separate exchanges with each side,

obtaining separate keys of her own with the client and server. In both SSH-1 and SSH-2,

(30 the key exchange is so designed that if she does this, the session identifiers for each
side will be diferent. When aclient provides adigital signature for either public-key or
trusted-host authentication, it includes the session identifier in the data signed. Thus, Mary
can't just pass on the client-supplied authenticator to the server, nor does she have any way
of coercing the client into signing the other session ID.

If you don't verify the server name/key correspondence, Mary can still perform the man-in-
the-middle attack, even though she can't log in as you on the server side. Perhaps she can
log into her own account or another she has cracked. With some cleverness, she might still
deceive you long enough to do damage.

3.10.5 Thelnsertion Attack

Recall that SSH-1 uses aweak integrity mechanism. This weakness was exploited in a
successful attack discovered by Ariel Futoransky and Emiliano Kargieman in June 1998;
see http://www.core-sdi.com/advisories/ssh-advisory.htm for the gory details. This

"insertion” (or "compensation™) attack allows an adversary who can perform an active
network attack to insert arbitrary data into the plaintext data stream bound for either the
client or server. That is, it alowsinsertion of encrypted datainto the connection that then
successfully decrypts to the attacker's desired plaintext and is delivered by SSH. The server
direction is the most serious problem, since this lets the attacker insert arbitrary commands
into auser's terminal session. Although not an especially easy attack to mount, thisisa
serious vulnerability. The attack results from composition properties of CRC-32 together
with certain bulk ciphersin certain modes. The attack can be avoided altogether by using
the 3DES cipher, which isimmune.

SSH1 1.2.25, F-Secure SSH1 1.3.5, and later versions, aswell as all versions of OpenSSH,
include the crc32 compensation attack detector, designed to detect and prevent this attack.
The detector renders the attack harder to mount, but doesn't prevent it entirely. SSH-2 uses
cryptographically strong integrity checks to avoid such problems.

(300 At least, withthedi f fi e- hel | man- gr oupl- shal key exchange. We assume that if
more exchange methods are added later, they will also have this property.

http://www.core-sdi.com/advisories/ssh-advisory.htm

3.11 Threats SSH Doesn't Prevent

SSH isn't atotal security solution. We'll now present some examples of attacks that SSH
wasn't designed to prevent.

3.11.1 Password Cracking

SSH dramatically improves password security by encrypting your password as it passes
over the network. Nevertheless, a password is still aweak form of authentication, and you
must take care with it. Y ou must choose a good password, memorable to you but not
obvious to anyone else, and not easily guessable. Y ou must also avoid having your
password stolen, since possession alone is sufficient to grant access to your account. So
watch out: the guy at the next terminal might be surreptitiously "shoulder-

surfing” (watching as you type). That computer kiosk you're about to use may have been
tricked up to log al keystrokesto Cracker Central Command. And the nice-sounding
fellow who calls from Corporate I T and asks for your password to "fix your account” might
not be who he claims.

Consider public-key authentication instead, since it is two-factor : a stolen passphraseis
useless without the private key file, so an attacker needs to steal both. Of course, the SSH
client on the computer you're borrowing can be rigged to squirrel away your key after you
blithely supply your passphrase to decrypt it. If you're that worried, you shouldn't use
strange computers. In the future, one hopes, cryptographic smartcards and readers will be
ubiquitous and supported by SSH, so that you can carry your keys conveniently and use
them in other computers without fear of disclosure.

If you must use password authentication because of its convenience, consider using a one-
time password scheme such as S/Key to reduce risk. [Section 3.4.2.5]

3.11.2 1P and TCP Attacks

SSH operates on top of TCP, so it is vulnerable to some attacks against weaknessesin TCP
and IP. The privacy, integrity, and authentication guarantees of SSH limit this vulnerability
to denial-of-service attacks.

TCP/IPisresistant to network problems such as congestion and link failure. If the enemy
blows up arouter, IP can route around it. It wasn't designed to resist an adversary injecting
bogus packets into the network, however. The origin of TCP or IP control messagesisn't
authenticated. As aresult, TCP/IP has a number of inherent exploitable weaknesses, such
as

SYN flood

SYN stands for "synchronize," and is a TCP packet attribute. In this case, it refers
to theinitial packet sent to start the setup of a TCP connection. This packet often
causes the receiver to expend resources preparing for the coming connection. If an
attacker sends large numbers of these packets, the receiving TCP stack may run out
of space and be unable to accept legitimate connections.

TCP RST, bogus ICMP

Another TCP packet typeis RST, for "reset.” Either side of a TCP connection can
send an RST packet at any time, which causes immediate teardown of the
connection. RST packets may be injected easily into a network, immediately
disconnecting any target TCP connection.

Similarly, thereis ICMP, the Internet Control Message Protocol. ICMP alows IP
hosts and routers to communicate information about network conditions and host
reachability. But again, there is no authentication, so that injecting bogus ICMP
packets can have drastic effects. For instance, there are ICMP messages that say a
particular host or TCP port is unreachable; forging such packets can cause
connections to be torn down. There are also ICM P messages that communicate
routing information (redirects and router discovery); forging such messages can
cause sensitive data to be routed through unintended and possibly compromised
systems.

TCP desynchronization and hijacking

By clever manipulation of the TCP protocol, an attacker can desynchronize two
sides of a TCP connection with respect to data byte sequence numbers. In this state,
it ispossible to inject packets that are accepted as a legitimate part of the
connection, allowing the attacker to insert arbitrary information into the TCP data
Stream.

SSH provides no protection against attacks that break or prevent setup of TCP connections.
On the other hand, SSH's encryption and host authentication are effective against attacks
that involve inappropriate routing that would otherwise permit reading of sensitive traffic
or redirect a connection to a compromised server. Likewise, attacks that hijack or alter TCP
datawill fail, because SSH detects them, but they also break the SSH connection, because
SSH responds to such problems by termination.

Because these threats focus on problems with TCP/IP, they can be effectively countered
only by lower, network-level techniques, such as hardware link encryption or IPSEC.
[Section 1.6.4] IPSEC isthe IP Security protocol that is part of the next-generation IP
protocol, IPv6, and available as an add-on to the current | P standard, |Pv4. It provides
encryption, integrity, and data origin-authentication services at the |P packet level.

3.11.3 Traffic Analysis

Even if an attacker can't read your network traffic, he can glean a great deal of useful
information by simply watching it-noting the amount of data, the source and destination
addresses, and timing. A sudden increase in traffic with another company might tip him off
that an impending business deal isin the works. Traffic patterns can also indicate backup
schedules or times of day most vulnerable to denial-of-service attacks. Prolonged silence
on an SSH connection from a sysadmin's desktop might indicate that she's stepped out, and
that now is agood time to break in, electronically or physically.

SSH doesn't address traffic-analysis attacks. SSH connections are easily identifiable as they
generally go to awell-known port, and the SSH protocol makes no attempt to obfuscate
traffic analysis. An SSH implementation could concelvably send random, no-op traffic
over a connection when it's otherwise idle, to frustrate activity correlation, but we know of
no SSH package with this feature.

3.11.4 Covert Channels

A covert channel is ameans of signaling information in an unanticipated and unnoticed
fashion. Suppose that one day, Sysadmin Sally decides her users are having too much fun,
and she turns off email and instant messaging so they can't chat. To get around this, you
and your friend agree to put messages to each other into world-readable files in your home
directories, which you'll check every once awhile for new messages. This unanticipated
communication mechanism is a covert channel.

Covert channels are hard to eliminate. If Sysadmin Sally discovers your file-based
technique, she can make all home directories unreadable and unsearchable by anyone but
their owners, and prevent the owners from changing this restriction. While she's at it, she
can also make sure you can't create files anywhere else, like /tmp. (Most of your programs
don't work now, but that doesn't matter to Sally.) Even so, you and your friend can still list
each other's home directory nodes themselves, which reveals the directory modification
date and number of files, so you devise a secret code based on these visible parameters and
communicate by modifying them. Thisis amore complex covert channel, and you can
imagine even more outlandish ones in the face of further restrictions from Sally.

SSH doesn't attempt to eliminate covert channels. Their analysis and control are generally
part of highly secure computer systems, such as those designed to handle information
safely at various security classification levels within the same system. Incidentally, the
SSH data stream itself can be used perfectly well as a covert channel: the encrypted
contents of your SSH session might be a recipe for chocolate chip cookies, while a secret
message about an impending corporate merger is represented in Morse code using even/
odd packet lengths for dashes and dots.

3.11.5 Car elessness

Mit der Dummheit kampfen Gotter selbst vergebens.
(Against stupidity, even the Gods struggle in vain.)
-Friedrich von Schiller

Security tools don't secure anything; they only help people to do so. It's almost a cliché, but
so important that it bears any amount of repeating. The best cryptography or most secure
protocolsin the world won't help if users pick bad passwords, or write their passphrases on
Post-it notes stuck to the undersides of their keyboards. They also won't help sysadmins
who neglect other aspects of host security, allowing host-key theft or wiretapping of
terminal sessions.

As Bruce Schneier isfond of saying, "Security is aprocess, not a product.” SSH isagood
tool, but it must be part of an overall and ongoing process of security awareness. Other
aspects of host integrity must still be attended to; security advisories for relevant software
and operating systems monitored, appropriate patches or workarounds applied promptly,
and people educated and kept aware of their security responsibilities. Don't just install SSH
and think that you're now secure; you're not.

3.12 Summary

The SSH protocol uses openly published, strong cryptographic tools to provide network
connections with privacy, integrity, and mutual authentication. The SSH-1 protocol (a.k.a
SSH-1.5) iswildly popular, despite being somewhat ad hoc: essentially a documentation of
SSH1's program behavior. It has a number of shortcomings and flaws, of which the weak
integrity check and resulting Futoransky/K argieman insertion attack is perhaps the most
egregious example. The current protocol version, SSH-2, is more practically flexible and
fixes the known earlier problems but has unfortunately seen limited deployment due to
licensing restrictions and the continued availability of the free SSH1 software for many
commercial purposes.

SSH counters many network-related security threats, but not all. In particular, itis
vulnerable to denial-of-service attacks based on weaknesses in TCP/IP, its underlying
transport. It also doesn't address some methods of attack that may be of concern depending
on the environment, such as traffic analysis and covert channels.

Chapter 4. Installation and Compile-Time Configuration

Now that you know what SSH is and how it works, where do you get it and how do you
install it? This chapter surveys several popular and robust Unix implementations of SSH
and explains how to obtain, compile, and install them:

SSH1 and SSH Secure Shell (SSH2)
Products from SSH Communications Security, Ltd., that implement the SSH-1 and
SSH-2 protocols, respectively.

F-Secure SSH Server

F-Secure Corporation's versions of SSH1 and SSH2.
OpenSSH

A free offshoot of SSH1 with independently implemented support for the SSH-2
protocol; part of OpenBSD.

Non-Unix implementations of SSH are covered in Chapter 13 through Chapter 17.

4.1 SSH1 and SSH?2

SSH1 and SSH2 (a.k.a SSH Secure Shell) were written for Unix and have been ported to several other
operating systems. Both products are distributed as source code that must be compiled before use,
although precompiled executables for various platforms are also available.

SSH1 and SSH2 may be distributed without cost for noncommercial use. If you plan to use either for
commercial purposes, then according to the license, you must purchase the software. Commercial
versions are sold by SSH Communication Security, Ltd., and F-Secure Corporation, and we'll be
discussing these later. The precise terms for copying and using each version are spelled out in afile
called COPYING (for SSH1) or LICENSING (for SSH2). Be sure to read and understand the terms before
using the software. Also, because these products involve cryptography, your local laws may dictate
whether you may use or distribute the software.

4.1.1 Features

SSH1 and SSH2 define the de facto standard for SSH features and have tremendous flexibility and
power. Both products include:

. Client programs for remote logins, remote command execution, and secure file copying across a
network, all with many runtime options

. A highly configurable SSH server

. Command-lineinterfacesfor al programs, facilitating scripting with standard Unix tools (shells,
Perl, etc.)

. Numerous, selectable encryption agorithms and authentication mechanisms

« An SSH agent, which caches keys for ease of use

. Support for SOCKS proxies

« Support for TCP port forwarding and X11 forwarding

. History and logging featuresto aid in debugging

4.1.2 Obtaining the Distribution

SSH1 and SSH2 are available by anonymous FTP from ftp://ftp.ssh.com in the directory /pub/ssh, or
equivalently from the URL:

ftp://ftp.ssh.com/pub/ssh/

Y ou may reach this repository from the web site of SSH Communications Security:
http://www.ssh.com/

4.1.2.1 Extracting thefiles

Distributions are packaged in gzipped tar format. To extract the files, apply gunzip followed by tar. For

ftp://ftp.ssh.com/
ftp://ftp.ssh.com/pub/ssh/
http://www.ssh.com/

example, to extract SSH1 Version 1.2.27 from the gzipped tar file ssh-1.2.27.tar.gz, type:

$ gunzip ssh-1.2.27.tar.gz
$ tar xvf ssh-1.2.27.tar

Alternatively, use a single command with a pipe:

$ gunzip < ssh-1.2.27.tar.gz | tar xvf -

Or, if you have GNU Tar (called gtar or tar on some systems), smply type:

$ gtar xzvf ssh-1.2.27.tar.gz

The result is anew subdirectory containing all filesin the distribution.

4.1.2.2 Verifying with PGP

Along with each SSH1 and SSH2 distribution is a PGP signature file for Pretty Good Privacy that
guarantees the distribution is genuine and has not been modified. [Section 1.6.2] Thefile ssh-1.2.27.tar.
gz, for example, is accompanied by ssh-1.2.27.tar.gz.sig containing the PGP signature. To verify thefile

is genuine, you need PGP installed. Then:

1. If you have not done so previously, obtain the PGP public keys for the distributions. Separate
keys are used for verifying SSH1 and SSH2:

ftp://ftp.ssh.com/pub/ssh/SSH1-DISTRIBUTION-KEY -RSA .asc

ftp://ftp.ssh.com/pub/ssh/SSH2-DISTRIBUTION-KEY -RSA .asc
ftp://ftp.ssh.com/pub/ssh/SSH2-DISTRIBUTION-KEY -DSA .asc

Add them to your PGP key ring by saving each one to atemporary file and typing:
$ pgp -ka tenporary file_nane

2. Download both the distribution file (e.g., ssh-1.2.27.tar.gz) and the signature file (e.g., ssh-1.2.27.
tar.gz.sig).

3. Verify the signature with the command:
$ pgp ssh-1.2.27.tar.gz
If no warning messages are produced, the distribution file is genuine.

Always check the PGP signatures. Otherwise, you can be fooled by a hacked version of SSH1 created by
an untrusted third party. If you blindly install it without checking the PGP signature, you can compromise
your system security.

ftp://ftp.ssh.com/pub/ssh/SSH1-DISTRIBUTION-KEY-RSA.asc
ftp://ftp.ssh.com/pub/ssh/SSH2-DISTRIBUTION-KEY-RSA.asc
ftp://ftp.ssh.com/pub/ssh/SSH2-DISTRIBUTION-KEY-DSA.asc

4.1.3 Building and Installing SSH1

Generally, SSH1 is compiled and installed by the following steps. Y ou should read any README,
INSTALL, etc., documentsin the distribution to seeif there are any particular known problems or extras
steps for installation in your environment.

1. Run the supplied configure script. [Section 4.1.5] To accept all defaults, change the directory to
the root of the SSH1 distribution and type:

$./configure
2. Compile everything:
$ make
3. Install everything. Y ou need root privilegesif you plan to install filesin system directories:

$ su root
Passwor d: ***xxxxx
make install

Thefollowing files are installed:
o The server program, sshdl, and alink to it called sshd
o Theclients sshl and scpl, and respective links called ssh and scp

o The symbolic link sloginl, pointing to sshl, and likewise alink called slogin pointing to
sloginl

o Support programs ssh-add1, ssh-agentl, ssh-askpassl, ssh-keygenl, and links to them
called ssh-add, ssh-agent, ssh-askpass, and ssh-keygen, respectively

o The support program make-ssh-known-hosts

5 A newly generated host key pair, created by ssh-keygen and placed by default into /etc/
ssh_host_key (private key) and /etc/ssh_host_key.pub (public key)

o The server configuration file, /etc/sshd_config by default [Section 5.3.1]
o Theclient configuration file, /etc/ssh_config by default [Section 7.1.3]

» Manpages for the various programs

4. Create the known hostsfile. [Section 4.1.6]

4.1.4 Building and Installing SSH2
SSH2 is compiled and installed much like SSH1, using the configure script and a pair of make commands:

1. Perform compile-time configuration as with SSH1. [Section 4.1.5] To accept all defaults, simply
change directory to the root of the SSH2 distribution and type:

$./configure
2. Compile everything:
$ make
3. Install everything, remembering to becomeroot if you areinstalling files in system directories:

$ su root
Passwor d: ****x**xx*
make install

Thefollowing files are installed:
o The server programs sshd2, and alink to it called sshd
o The secure FTP server program sftp-server
o Theclients ssh2, scp2, and sftp2, and links to them called ssh, scp, and sftp, respectively

o Support programs ssh-add2, ssh-agent2, ssh-askpass2, ssh-keygen2, ssh-probe2, and ssh-
signer2, and links to them called ssh-add, ssh-agent, ssh-askpass, ssh-keygen, ssh-probe,
and ssh-signer, respectively

o Additional support programs ssh-dummy-shell and ssh-pubkeymgr

o A newly generated host key pair, created by ssh-keygen2 and placed by default into /etc/
ssh2/hostkey (private key) and /etc/ssh2/hostkey.pub (public key)

o The server configuration file, /etc/ssh2/sshd2_config by default [Section 5.3.1]
o Theclient configuration file, /etc/ssh2/ssh2_config by default [Section 7.1.3]
n Manpages for the various programs

4.1.4.1 SSH1 and SSH2 on the same machine

Notice that SSH1 and SSH2, when installed, create some files with the same names, such as the link
sshd. What happensif you install both SSH1 and SSH2 on the same machine? Happily, everything works

out, even if you install them into the same bin and etc directories, provided you install the most recent
versions. Each of their Makefiles is constructed to check for the existence of the other version and

respond appropriately.

Specificaly, both SSH1 and SSH2 create symbolic links called sshd, ssh, scp, ssh-add, ssh-agent, ssh-
askpass, and ssh-keygen. If you install SSH1 and then SSH2, the SSH2 M akefile renames these files by
appending the suffix .old and then creates new symbolic links pointing to its own SSH2 programs. For
instance, ssh originally pointsto sshl; after installing SSH2, ssh points to ssh2, and ssh.old pointsto
sshl. Thisis appropriate since SSH2 is considered a later version than SSH1.

On the other hand, if you install SSH2 and then SSH1, the SSH1 Makefile leaves SSH2's links
untouched. As aresult, ssh remains pointing to ssh2, and no link pointsto sshl. Thisis consistent with
the practice of installing SSH1 to alow SSH2 to provide fallback SSH1 support.

4.1.5 Compile-Time Configuration

Building SSH1 and SSH2 seems pretty simple, eh? Just type configure and afew make commands, and
you're done. Well, not so fast. When building and installing a new security product, you shouldn't blindly
accept its defaults. These SSH products have dozens of options that may be set at compile-time, and you
should carefully consider each one. We call this process compile-time configuration.

Compile-time configuration is performed by running a script, called configure, just before compiling the
distribution.™ Roughly speaking, configure accomplishes two tasks:

. It examinesthe local computer, setting various computer-specific and operating system-specific
options. For example, configure notices which header files and libraries are available and whether
your C compiler is ANSI or not.

. Itincludes or excludes certain features found in the SSH source code. For example, configure can
keep or remove support for Kerberos authentication.

WEe'l discuss only the second task, since it's SSH-specific, and cover only the configuration options that
aredirectly related to SSH or security. For example, we won't cover flags that related to the compiler (e.
g., whether warnings should be printed or suppressed) or operating system (e.g., whether particular Unix
library functions should be used). To see the full set of configure flags, type:

$ configure --help
and also read the files README and INSTALL in the root of the distribution.

Incidentally, the behavior of SSH1 and SSH2 may be controlled at three levels. The first is compile-time
configuration as discussed in this chapter. In addition, server-wide configuration (Chapter 5) controls

global settings for arunning SSH server, and per-account configuration (Chapter 8) controls settings for
each user account accepting SSH connections. Figure 4-1 illustrates where compile-time configuration

fits into the whole spectrum. We'll remind you of this picture each time we introduce a new type of
configuration.

Figure 4.1. SSH compile-time configuration (highlighted parts)

Fillers Configuration types Configuration types Files

(mmmdine _ _ Command-ine
opinms oplions
foaah/faRhkec
Eerronment _ Cuslem wrision | yescimshro
sorishles shortup - ¥ femviroment
— g — Jats farrl romen s
. . 5H
J.eshioantig : e fambed
anteg User's chiend f.l.._.n. [T ‘ero/eshd_contig
J.ash2 ieEhE_aomfig fion Hh'_ —_— _ mm Jarcaak2 faahA?_config
I:lll“lll] — — WIHI.I'IJ

fete/ssh_config - ; i s ;.
rete a2 iaahe. config Gloha dient [Serverde fare haske, spaiy

- - m“m H'h, b P Il:ﬂ1h||‘|'|'.-5 feTe/ ENOETE el
-f.sghy/identlicy X
-4 s HEIHEHH - caEhfanthari pad ey

¢ aashiid_dee = -/ .osh/mathorized_keyes
-f.Eshifidentiticatian [Tovget ncount's Joasha jasrherizak Lon

mm"ﬁ - orhtaes

fabef Eesh_onows_hoats -y _shosts
‘eto/eshz fhostheys
fabe/f ekl oo Kmawn hesk)
R ol _— TOP-+areppers ‘ezo/hosts . sl o

-7 .sghZ /mostheys m feTo/hasts . demy
- F-1 e TR T]

Jerofkeb. ¥, fetofkebS.
— Harheros ferTc/srviab
u:-‘qul:rimﬂa‘s- - ¢ JEbigian, f-, kS legin

— i

4.1.5.1 Configuration standards

The configure script accepts command-line flags, each beginning with a double dash (-), to control its
actions. Flags are of two types.

With/without flags

Include a package during compilation. These flags begin with - wi t h or - wi t hout . For
example, support for the X Window System may be included using the flag - wi t h- x or omitted
using - wi t hout - x.

Enable/disable flags

Set the default behavior of SSH1. These flags begin with - enabl e or - di sabl e. For example,
the X forwarding feature in SSH2 is enabled by theflag - enabl e- X11-f or war di ng or
disabled with - di sabl e- X11-f or war di ng . Some of these defaults may be overridden later
by serverwide or per-account configuration.

Flags beginning with - wi t h or - enabl e may optionaly be followed by an equals sign and a string
value, such as:

-with-etcdir=/usr/local/etc
- enabl e- X11-f or war di ng=no

Various string values are used, but the most common areyes and no. For agiven package P, the flags -
wi th-Pand-w t h-P= yes areequivalent. The following tables illustrate the relationships:

If

you write: It'sequivalent to:

-wW t h- P=yes

-With-P

-wi t h- P=no

-w thout-P

This next table shows the relationships for agiven feature F :

If you write: It's equivalent to:

- enabl e- F=yes

-enabl e-F

- enabl e- F=no

-di sabl e-F

In the sections that follow, we show many examples of configure with different command-line flags.
Most examples demonstrate only one flag at atime, so we use ellipses like this:

$ configure ...

--enabl e-fancy-feature ...

to indicate other flags might be present on the command line. The proper way to run configure is just
once, before compilation, with all desired flags on the same command line.

=

Be careful when choosing configure flags, or you might waste alot of time.
The configure script is not very smart, performing little or no sanity checking
onitsinput. If you provide an invalid flag, configure can naively run for
several minutes, handling a hundred other configuration options, before
finally reaching the bad flag and dying. Now you have to run the script all
over again.

Also, don't depend on flags default values since they might differ among SSH
implementations. For maximum security and control, specify all flags
explicitly when running configure.

4.1.5.2 Installation,

files, and directories

Let's begin our discussion of configure 's SSH-related flags. First, we discuss file-related flags for

choosing installation directories, turning setuid bits on and off, and permitting files and directoriesto be

group writable.

The SSH executables are installed in adirectory of your choosing-/usr/local by default-within a
subdirectory called bin. Thisis specified with the configure flag - pr ef i x. For example, to place the bin
directory in /usr/local/ssh and install the executablesin /usr/local/ssh/bin:

SSH1, SSH2, OpenSSH
$ configure ... --prefix=/usr/local/ssh ...

Some SSH-related system files are installed in the directory /etc. This default location can be overridden
with the configureflag - wi t h- et cdi r, supplying an aternative directory name (for OpenSSH, thisis
--sysconfdir):

SSH1, SSH2
$ configure ... --with-etcdir=/usr/local/etc ...

Theflag - wi t h- et cdi risunique among flags because there is no corresponding - wi t hout -
et cdi r flag. SSH1 and SSH2 must have installation directories or their Makefiles will refuse to
compile the software.

Next, certain executables are installed as setuid root by default: sshl (for SSH1) and ssh-signer2 (for
SSH?2). sshl needsto be setuid root for trusted-host authentication (i.e., host-based authentication of
various kinds), for the following reasons:

. Toaccesstheloca host key, which is readable only by root
. Toallocate aprivileged port, which only root can do

In SSH2, privileged ports are no longer used, and the first function has migrated into a separate program,
ssh-signer 2, which signs authentication packets for trusted-host authentication. If you don't make this
program setuid root, hostbased authentication will fail. [Section 3.5.2.3]

SSH1's ssh client hasiits setuid root permissions controlled with the configure flags - enabl e- sui d-
sshand - di sabl e- sui d- ssh:

SSH1 only
$ configure ... --disable-suid-ssh ...

Similarly, the setuid bit of ssh-signer2 for SSH2 is controlled by - enabl e- sui d- ssh-si gner and -
di sabl e- sui d-ssh-si gner; for example:

SSH2 only
$ configure ... --disable-suid-ssh-signer

Finally, the SSH server requires certain permissions on files and directories in user accounts, such asthe.

rhosts file and the authorized_keys fil el In particular, group write and world write permissions are
forbidden. Group write permission may be useful for shared accounts (so members of a group can
conveniently modify the account's SSH files). This restriction may be relaxed using the - enabl e-

group-witeability configureflag:[3]

SSH1, SSH2
$ configure ... --enable-group-witeability ...

Now the server permits SSH connections to accounts with group-writable SSH files.
4.1.5.3 TCP/IP support

Most TCP/IP features of SSH1 and SSH2 are controlled by serverwide configuration [Section 5.4.3], but

afew are available through compile-time configuration. These include the TCP NODELAY feature, TCP-
wrappers, the SO_LINGER socket option, and alimit on the maximum number of connections.

If you plan to operate SSH over awide-area network as opposed to a speedy Ethernet connection, you
might consider disabling TCP/IPsNODELAY feature, a.k.athe Nagle Algorithm, for SSH connections.
The Nagle Algorithm reduces the number of TCP segments sent with very small amounts of data, such as
the small byte sequences of atermina session. You may disableit at compile time with the - di sabl e-
tcp-nodel ay flag:

SSH1, SSH2
$ configure ... --disable-tcp-nodelay ...

Alternatively, you may enable or disable it during serverwide configuration using the NoDel ay
configuration keyword. [Section 5.4.3.8]

TCP-wrappers is a security feature for applying access control to incoming TCP connections based on
their source address. [Section 9.4] For example, TCP-wrappers can verify the identity of a connecting
host by performing DNS lookups, or it can reject connections from given addresses, address ranges, or
DNS domains. Although SSH already includes some of this kind of control with features such as

Al I owHost s, DenyHost s, etc., TCP-wrappers is more complete. It allows some controls not
currently implemented in any SSH version, such as restricting the source of forwarded X connections.

SSH1 and SSH2 both include support for TCP-wrappersif theflag - wi t h- 1 i bwr ap isgiven at
compile time, providing the path to the wrapper library, libwrap.a:

SSH1, SSH2
$ configure ... --with-libwap=/usr/local/lib ...

If your Unix installation doesn't include the TCP-wrappers library, you can retrieve and compile it
yourself from:

ftp://ftp.porcupine.org/pub/security/index.html

For more information on TCP-wrappers, read the manpages for tcpd and hosts_access.

A rather low-level option for SSH1 concerns the SO_LINGER socket flag, which may be turned on or
off at compile time. Suppose SSH1 is communicating via an open socket, but the socket gets closed
while datais still queued. What happens to the data? The setting of the SO_LINGER flag determines
what should be done. With the flag enabled, the socket close "lingers' (delayed) until the datais

ftp://ftp.porcupine.org/pub/security/index.html

delivered or until a specified timeout occurs. Monkeying with this flag requires a detailed knowledge of
TCP/IP and socket behavior, so if you know what you're doing, usethe - enabl e- so- | i nger flag:

SSH1 only
$ configure ... --enable-so-Ilinger

Finally, you may instruct sshd2 to limit the maximum number of simultaneous connectionsit supports.
By default it accepts an unlimited number of connections, but if you want to conserve resources on the
server machine, you may set alimit. The appropriate flagis- wi t h- ssh-connection-11 m t with
anonnegative integer argument; for example:

SSH2 only
$ configure ... --with-ssh-connection-limt=50 ...

Y ou may override this value at runtime with the serverwide configuration keyword VaxConnect i ons.
[Section 5.4.3.6]

4.1.5.4 X window support

If you plan to use SSH to communicate between hosts running the X Window System, make sure to
include support for X at compiletime. (By default, it isincluded.) Conversely, if you never have
anything to do with X, you can leave out the support and save some disk space. Usetheflag - wi t h- x
or-wi t hout - x asdesired:

SSH1, SSH2
$ configure ... --without-x ...

Few people have a strong need to eliminate X support, but configure has afew other, more useful, X-
related flags. Specifically, you may enable or disable support for X forwarding, which allows X
applications opened on the SSH server machine to appear on the SSH client machine's display. [Section

9.3]

For SSH1, X forwarding support is separately controllable for SSH clients and servers:

SSH1 only
$ configure ... --disable-server-x1l-forwarding ...
$ configure ... --disable-client-x11-forwarding ...

For SSH2, X forwarding support is controlled as awhole by the compile-timeflag - enabl e- X11-
f or war di ng (or - di sabl e- X11-f or war di ng):

SSH2 only
$ configure ... --disable-x11-forwarding ...

Remember, these enable/disable flags set only SSH's default behavior. X forwarding may be further
enabled or disabled through serverwide configuration using the X1 1For war di ng (SSH1, OpenSSH) or
Forwar dX11 (SSH2) configuration keywords. [Section 9.3.3]

4.1.55TCP port forwarding

Port forwarding enables SSH to encrypt the data passing through any TCP/IP-based program. [Section
9.2] Thisfeature can be disabled at compiletimeif desired. X window forwarding isn't affected by these
general port-forwarding flags.

In SSH1, port forwarding can be disabled for the server, the clients, or both. To disable port forwarding
on the SSH1 server, use the configureflag - di sabl e- server-port-forwardi ng. Likewise, to
prevent SSH1 clients from using port forwarding, use the configureflag - di sabl e-cl i ent - port -
forwar di ngs. By default, port forwarding is enabled at compile time.

In SSH2, support for port forwarding isn't controlled separately for the clients and server. The configure
flags- enabl e-t cp- port-forwardi ngand-di sabl e-t cp-port-forwarding,
respectively, enable or disable the feature.

4.1.5.6 Encryption and ciphers

SSH1 may be compiled with or without support for particular encryption algorithms, such as IDEA,
Blowfish, DES, and ARCFOUR. (In SSH2, this support is controlled with the Ci pher s keyword during
serverwide configuration. [Section 5.4.5]) Flags to include this support are:

-wi t h-idea

Include the IDEA agorithm
-wi t h- bl owfi sh

Include the Blowfish algorithm
-wi t h-des

Include the DES algorithm
-wi t h-arcfour

Include the ARCFOUR algorithm
-wi t h- none

Permit unencrypted transmissions
To exclude support, usethe - wi t hout form of theflag:

SSH1 only
$ configure ... --without-blowfish ...

We recommend using - - wi t hout - none to forbid unencrypted
‘5 transmissions. Otherwise, an intruder who breaks into your server machine
can turn off SSH encryption for clients by adding asimplelineto a
configuration file ("Ciphers None"). Y ou may also incur other security risks.
[Section 5.4.5] If you need unencrypted transmissions for testing, build a
second SSH1 server using - - wi t h- none and make it executable only by
the system administrator. Also, be aware that with the SSH-1 protocol,
turning off encryption doesn't just eliminate data privacy; it also renders the
server authentication and data integrity features ineffective.

Some implementations of SSH include the RSA encryption algorithm for public-key authentication.
[Section 3.9.1.1] At presstime, the algorithm is absent from some implementations because RSA was
protected by patent until September 2000; it is now in the public domain. While the patent wasin force,
the company made available a "reference implementation” of RSA, called RSAREF, that was freely used
for educational and noncommercial purposes and didn't run afoul of the patent. We suspect that RSAREF
will fall into disuse now that other more popular RSA implementations are available to al. Furthermore,
we discourage its use because it contains security flaws and is no longer supported. However, you may
till instruct SSH1 to use RSAREF instead of its own implementation of RSA viathe configureflag -
Wt h-rsaref:

SSH1 only
$ configure ... --with-rsaref

Then, unpack the RSAREF package into a directory named rsaref2 at the top of the SSH1 distribution.
RSA encryption is used by default or if you specify the configureflag - wi t hout - r sar ef . (Thereis
no - wi t h-r sa flag.) For more information about RSAREF, visit http://www.rsa.com/.

4.1.5.7 Authentication

SSH1 and SSH2 may be compiled with support for several optional authentication techniques. For SSH1,
the techniques in question are Kerberos, SecurlD, and the Gauntlet firewall toolkit from Trusted

Information Systems (T1S). SSH2 can support authentication using OpenPGP keys.[4] Thereisalso
experimental code for Kerberos-5 authentication in SSH 2.3.0, although it is not yet supported, and the
relevant definitions haven't yet been added to the SSH-2 draft standard.

Kerberos [Section 11.4] is an authentication mechanism that passes around tickets, small sequences of
bytes with limited lifetimes, in place of user passwords. The configuration flags- wi t h- ker ber 0s5
and - wi t hout - ker ber os5 control whether Kerberos support isincluded or excluded during the

build.® The - wi t h- ker ber 0s5 flag is optionally followed by a string value indicating the directory
containing Kerberosfiles:

SSH1 only
$ configure ... --wth-kerberos5=/usr/kerberos ...

If the directory name is omitted from - wi t h- ker ber 0s5, the default location is /usr/local.
Additionally, the Kerberos feature of forwarding ticket-granting tickets is enabled by default by the flag -

http://www.rsa.com/

enabl e- ker ber os-t gt - passi ng:

SSH1 only
$ configure ... --enable-kerberos-tgt-passing ...

SecurID is an authentication mechanism in which users carry electronic cards, approximately the size of
acredit card, that display randomly changing integers. During authentication, the user is prompted to
type whatever number appears on the card at the time, in addition to a username and password.

To compile SSH1 with SecurlD support, usetheflag - wi t h- secur i d, providing the path to the
directory containing SecurlD's header files and libraries:

SSH1 only
$ configure ... -with-securid=/usr/ace

Gauntlet isafirewall toolkit containing an authentication server program, authserv. If you are running
Gauntlet and want SSH1 to communicate with its authentication server, usethe- wi t h- 11 s flag,
providing the path to your local Gauntlet directory:

SSH1, SSH2
$ configure ... --with-tis=/usr/local/gauntl et

Pretty Good Privacy, or PGP, is a popular encryption and authentication program available for many
computing platforms. [Section 1.6.2] SSH2 optionally authenticates users based on their PGP keys, so
long as those keys comply with the OpenPGP standard (RFC-2440, " OpenPGP Message Format"; some
PGP versions, especially older ones, may not be OpenPGP-compliant). To include this support, compile
using theflag - wi t h- pgp:

SSH2 only
$ configure ... --with-pgp ...
4.1.5.8 SOCK S proxy support

SOCKSisanetwork protocol for proxies. A proxy is a software component that masquerades as another
component to hide or protect it. For example, suppose a company permits its employees to surf the Web
but doesn't want the hostnames of its internal machines to be exposed outside the company. A proxy
server can be inserted between the internal network and the Internet, so that all web requests appear to be
coming from the proxy. In addition, a proxy can prevent unwanted transmissions from entering the
internal network, acting as a firewall.

SSH1 and SSH2 both have SOCK'S support, meaning that they can create connections passing through a
SOCKS proxy server. With SSH1, this support is optionally enabled at compile time and can handle
either Versions 4 or 5 of the SOCKS protocol. The SSH2 support is SOCK S4-only but is built in and
always available (no external library or special compilation option needed).

SSH1 relies on an external SOCKS library for its SOCK S support, so you must install such alibrary
before compiling SSH1 with SOCKS. We did our testing with the socks5 package available from the

NEC Networking Systems Laboratory (http://www.socks.nec.com/).[6]

There are three SSH1 SOCK S configure options:
-wi t h-socks4

Use SOCK$4
-wi t h-socksb5

Use SOCK S5
-wi t h-socks

Use either SOCK S5 or SOCK $4, preferring SOCK S5 if both are available

The SSH2 SOCK Sfeatureis controlled by the Socks Ser ver client configuration option. [Section
7.4.6] In addition to the usual methods of setting thisin a configuration file or on the command line with -
0, you can aso set it using the SSH_SOCKS_SERVER environment variable.

SocksSer ver hasan empty default value, causing SSH2 to assume there's no SOCK S server. The
configuration flag:

-W t h-socks-server=string

gives nonempty default value to this parameter, alowing you to install an SSH2 that assumes the
presence of a SOCK S server. Note that thisisn't the same as using the Socks Ser ver directivein the
global client configuration file, because the configuration parameter always overrides the value of the
environment variable. If you use the compilation option, users can specify an alternate SOCK S server
with SSH_SOCKS _SERVER,; if you use the global file, they can't (although they can still override using
their own Socks Ser ver directive).

See Section 7.4.6 for adetailed discussion of how SSH SOCK'S support works and http://www.socks.nec.
com/ for more information on SOCKS.

4.1.5.9 User logins and shells

Several aspects of logins and shells may be controlled during compile-time configuration. Y ou may use a
custom login program instead of /bin/login and set the user's search path to something other than the
system defaullt.

When a user logs into a remote machine via ssh or slogin, the remote SSH server executes a process to
accomplish the login. By default, the SSH1 server runs alogin shell. Alternatively, the server canrun a
dedicated login program, either /bin/login (by default) or another of your choosing, such as the Kerberos
login program or a modified version of /bin/login with additional features.

The choice of an aternative login program is made at compile time, using the configureflag - - wi t h-
| ogi n, and providing the path to the program:

http://www.socks.nec.com/
http://www.socks.nec.com/
http://www.socks.nec.com/

SSH1 only
$ configure ... -with-login=/usr/local/bin/m-login ...

Y our aternative login program must support the same command-line flags as /bin/login, including -h
(specify the hostname), -p (pass environment variables to the login shell), and -f (force login without
checking the password). Thisis because sshd1 spawns the login program using the command line:

name_of | ogi n_program -h hostnane -p -f --usernane

If you specify - - wi t h- 1 ogi n, and you wish to use the alternative login program, you must also turn
onthe Uselogi n keyword during serverwide configuration: [Section 5.5.3]

Keyword in SSH1 server-wi de configuration file
UselLogi n yes

Login programs do useful things like set the default search path for users. If sshdl doesn't invoke alogin
program (i.e., it was compiled using - wi t hout - | ogi n), you can tell it to set the default search path
for SSH-invoked sessions. This is done with the configuration flag - - wi t h- pat h:

SSH1 only
$ configure ... --with-path="/usr/bin:/usr/local/bin:/usr/mne/bin"

If you don't specify - wi t h- pat h, and your Unix environment doesn't provide a default path, the sshdl
default is:

PATH="/ bi n: /fusr/ bi n:/usr/ucb:/usr/bin/ X11:/usr/local/bin"
4.1.5.10 Forbidding logins

Thefile /etc/nologin has special meaning to many versions of Unix. If thefile exists, al logins are
disabled. sshd respects this file. However, you may instruct sshdl to bypass the /etc/nologin file to permit
designated usersto log in. Thisis done by creating a second file, such as/etc/nologin.allow, to contain
exceptions: names of users who may log in even if /etc/nologin exists. For example, placing system
administrators names in /etc/nologin.allow might be a wise idea, to prevent them from being denied
access to the machine. Y ou must then enable the feature using the configureflag - - wi t h- nol ogi n-

al | ow, supplying the path to the file of exceptions:

SSH1 only
$ configure ... --with-nologin-allow=/etc/nologin.allow...

4.1.5.11 scp behavior

The secure copy client optionally prints statistics about its progress. During afile copy across the
network, scp can display the percentage of the file transferred so far. The SSH1 distribution has several
configure flags relating to these statistics. One pair of flags controls whether the statistics codeis
compiled into scp, and others control scp's default behavior for displaying (or not displaying) statistics.

Theflags- wi t h-scp-statsand-w t hout - scp- st at s control whether the statistics code is
included in scp at all. By default, the code isincluded. To prevent itsinclusion:

SSH1 only
$ configure ... --without-scp-stats ...

If the statistics code isincluded, further configure flags control scp's default behavior for statistics
display. Theflags- enabl e- scp-stats and- di sabl e- scp- st at s set the default for singlefile
transfers. If neither flag is used, statistics are enabled. To disable:

SSH1 only
$ configure ... --disable-scp-stats ...

Likewise, theflags- enabl e-al | -scp-stat s and-di sabl e-al | -scp- st at s set the default
for multiple file transfers. Again, if neither flag is used, statistics are enabled. To disable:

SSH1 only
$ configure ... --disable-all-scp-stats ...

Regardless of the configuration for single and multiple file transfers, statistics may be turned on or off
using scp's command-line options (-Q and -a) and user environment variables (SSH_SCP_STATS,
SSH_NO _SCP STATS, SSH_ALL_SCP STATS, and SSH_ NO _ALL_SCP _STATS). [Section 7.5.7]
Of course, the statistics code must be present (- wi t h- scp- st at s) for this runtime configuration to
work.

4.1.5.12 R-commands (r sh) compatibility

In SSH1 and OpenSSH, if ssh can't achieve a secure connection to a remote host, then optionally an
insecure connection is established using the r-commands (rsh, rcp, rlogin). Thisfeature is helpful for
backward compatibility but might be undesirable in a secure setting. SSH2 specifically doesn't include
thisinsecure feature.

The SSH1 configureflags- wi t h-rsh and-w t hout - r sh determine whether ssh may establish
connections by rsh. To permit use of rsh, provide a path to its executable:

SSH1, OpenSSH
$ configure ... --with-rsh=/usr/ucb/rsh ...

If you include rsh support, individual users can selectively control it for clients launched in their accounts
with the keywords Fal | BackToRsh and UseRsh. [Section 7.4.5.8] Or, to prevent ssh from using rsh

entirely, compile with:
SSH1, OpenSSH

$ configure ... -without-rsh

4.1.5.13 SSH-1/SSH-2 agent compatibility

Agents [Section 2.5] that use the protocols SSH-1 and SSH-2 are normally not compatible. That is, each
can't store keys or forward connections from the other version. [Section 6.3.2.4] However, the SSH2
agent has an optional feature to serve SSH-1 protocol applicationsif three criteria are met:

. Your SSH2 implementation must include RSA support, since SSH1 uses RSA to encrypt keys. At
press time, the F-Secure SSH2 Server includes RSA support, but SSH2 doesn't.
. The SSH2 configure script must be run with theflag - wi t h- ssh-agent 1- conpat :

SSH2 only
$ configure ... --wth-ssh-agent1-conpat

. The SSH2 agent, ssh-agent2, must be run with the command line flag -1 (that's a one, not a
lowercaseL):

SSH2 only
$ ssh-agent2 -1

4.1.5.14 Debug output

SSH servers produce detailed debugging output on demand. [Section 5.8] At compile time, you may

enable different levels of debugging and optionally include support for the Electric Fence memory
allocation debugger.

If desired, the SSH2 server may be compiled with or without two levels of debugging output. Without the
debugging code, the programs may experience a slight increase in performance, but with it, the programs
are easier to maintain. We recommend including at |east some debugging code, because you never know
when you'll need to diagnose a problem.

"Light" and "heavy" debugging are two levels of debugging that may be specified in the source code.
Light debugging output is controlled by the configureflags - enabl e- debug and - di sabl e- debug
(the default). Heavy debugging output is controlled by the configure flags - enabl e- debug- heavy
and - di sabl e- debug- heavy (the default). For example:

SSH2 only
$ configure ... --enabl e-debug --disabl e-debug-heavy ...

The two debug levels aren't mutually exclusive: you may select light, heavy, both, or neither. We
recommend turning on heavy debugging; otherwise the messages contain too little information to be
useful.

Finally, SSH2 memory allocations may be tracked by Electric Fence, afreely distributable memory
allocation debugger created by Bruce Perens of Pixar. You must have Electric Fence installed on the
server machinein order for thisto work. The configureflags- enabl e- ef ence and - di sabl e-
ef ence (the default) control whether Electric Fenceis used:

SSH2 only
$ configure ... -enable-efence

Thisflag causes SSH2's programs to be linked with the Electric Fence library, libefence.a, which
provides instrumented versions of malloc(), freg(), and other memory-related functions. Electric Fence
isavailable from:

http://sources.isc.org/devel/memleak/

4.1.6 Creating the Serverwide Known-Hosts File

After configuring and installing SSH1 on a hogt, it'stime to create a machinewide known hostsfile.
[Section 2.3.1] Normally /etc/ssh_known_hosts, this file contains the public host keys of all hosts in the

local domain or remote hosts that people in this domain connect to frequently via SSH1. For example, the
known hosts file on myhost.example.com likely contains the host keys of all machinesin the example.
com domain and perhaps others.

Y ou can get by without populating thisfile, if the SSH client is configured to add new host keysto users
persona known_hostsfiles. [Section 7.4.3.1] However, it's better to fill the central file with as many

common hosts as possible, for these reasons:

. It makesusers lives easier, avoiding the various prompts for adding keys.
. It'smore secure. When you accept a key for anew SSH server, you are open to man-in-the-
middle attacks. [Section 3.10.4] If the remote host key is known in advance, and an intruder tries

to masquerade as aremote host, the SSH client will detect the fake host key.

The known-hostsfileis required for trusted-host authentication. [Section 3.4.2.3] Only users connecting
from hosts whose keys appear in the file may be authenticated by this method.

Y ou can collect al the host keys by hand while or after you install SSH on your hosts. But if you have a
large number of hosts, SSH1 comes with a utility to help with task: make-ssh-known-hosts. This Perl
script queries the Domain Name Service (DNS) to find all hostnames in the local domain, and connects
to them using SSH to obtain their host keys. The keys are then written to standard output as alist ready
for inclusion in the known-hosts file.

Inits simplest form, the program is invoked with one argument, the name of the local domain:

SSH1 only
$ make- ssh- known- hosts exanpl e.com > /etc/ssh_known_hosts

make-ssh-known-hosts has quite afew command-line flags for tailoring its behavior. [Section 4.1.6.1] In
addition, you may limit which machines are queried by providing Perl-style regular expressions as
arguments following the domain name. For example, to print the host keys of al hosts in example.com
whose names begin with z:

$ make- ssh- known- hosts exanpl e.com' "z’

A second regular expression argument performs the opposite task: it excludes the keys of hosts that
match the regular expression. Y ou can extend the previous example to exclude hosts ending in x:

http://sources.isc.org/devel/memleak/

$ make- ssh- known- hosts exanple.com'”z' ' x$

Just for fun, here'sa command that produces no host keys at all:

$ make- ssh- known- hosts exanpl e. com nymachi ne nynmachi ne

because it includes and excludes the same string.

4.1.6.1 make-ssh-known-hosts command-line flags

Each flag may appear in two forms, both of which we present in the discussion that follows:

. A full word preceded by a double-dash, such as- passwor dt i neout
. An abbreviated form with asingle dash, such as- pa

The following flags are related to program locations:
-nsl ookup (-n) path

Inform the script of the full path to nslookup, a program to make DNS queries. The default isto
locate nslookup in the shell's current search path.
-ssh (-ss) path

Inform the script of the full path to the SSH client. Y ou may also provide command-line options
to ssh here. The default isto locate ssh in the shell's current search path.

These flags are related to timeouts:
- passwor dt i neout (-pa) tinmeout

How long to wait for the user to type a password, in seconds. The default is not to prompt for
passwords. A value of means prompt for a password with timeouts disabled.
- pi ngti meout (-pi) timeout

How long to wait for a ping response from a host's SSH port, in seconds. The default is 3 seconds.
-timeout (-ti) timeout

How long to wait for an SSH command to complete, in seconds. The default is 60 seconds.
Here are flags related to domain information:
-initialdns (-i) naneserver

Initial nameserver to query; otherwise, uses the resolver list. Thefirst query isfor the zone SOA
record of the domain argument to make-ssh-known-hosts. It then does a zone transfer from the
master nameserver listed in the SOA record.

-server (-se) naneserver

If thisis given, skip the SOA record lookup and immediately do the zone transfer from this
nameserver.

- subdomai ns (-su) donai nl, domai n2, ...

Normally, make-ssh-known-hosts includes aliases for each host using al domain-name
abbreviations starting from the leftmost label and moving to the right, except for the second-to-
last one. So for example, host foo.bar.baz. geewhiz.edu gets these names:

foo

foo.bar

foo.bar.baz
foo.bar.baz.geewhiz.edu

This option allows you to pick a subset of these subdomains to be included, instead of all of them.
- domai nnanesplit (-do)

Create aliases for each host key in the output by splitting the domain name into prefixes. For
example, domain name a.b.c is split into the prefixes a, a.b, and a.b.c, and each prefix is
appended to each hostname to create an alias.

- nhor ecursive (-nor)

Obtain keys only for the domain listed and not (recursively) its subdomains. The default isto
examine subdomains.

These are flags related to output and debugging:
-debug (-de) | evel

Specify anonnegative integer debugging level. The higher the level, the more debugging output
is produced. The default is 5. At presstime, the highest level used within make-ssh-known-hosts
is 80.

-silent (-si)

Don't ring the terminal bell. The default isto make noise.
-keyscan (-Kk)

Print resultsin an aternative format used by ssh-keyscan, a program for gathering SSH public
keys. ssh-keyscan is a separate piece of software, not part of SSH1. [Section 13.4]

Finally, thisflag isrelated to failure recovery:

- not rust daenon (-notr)

make-ssh-known-hosts invokes ssh host cat /etc/ssh_host_key.pub to obtain a host's public key. If
that command fails for some reason (e.g., the key file is elsewhere), SSH may still have gotten the
key viathe SSH protocol and stored it in the user's ~/.ssh/known_hosts file. Normally, make-ssh-
known-hosts uses that key; with - not r ust daenon, the key isincluded but commented out.

(4 The configure script is generated by a Free Software Foundation package called autoconf. Y ou don't need
to know thisto compile SSH1 or SSH2, but if you're interested in learning more about autoconf, visit the
GNU web site at http://www.gnu.org/.

(2] Only if Stri ct Modes isturned oninthe server. [Section 5.4.2.1]

(3] Y es, "writeability" is correct, even though it's a misspelling.

[l Securl D and Gauntlet-related flags are accepted by the SSH2 configure script, but at press time the source
code contains no support for these techniques.

I pontt compile Kerberos support in SSH1 Version 1.2.27 or earlier because there is a serious security bug.
[Section 11.4.4.5] Use 1.2.28 or later. OpenSSH doesn't have this bug.

(6] The NEC socksS reference implementation is licensed free of charge for "for noncommercial purposes
only, such as academic, research and internal business use." The full text of the license is available on their
web site.

http://www.gnu.org/

4.2 F-Secure SSH Server

F-Secure Corporation, formerly DataFellows, Ltd., a Finnish software company, produces
commercia implementations of SSH derived from those of SSH Communications Security.
F-Secure's server product line, F-Secure SSH Server, runs on Unix, and SSH-1 and SSH-2
servers are available as separate products. They are repackagings of SSH1 and SSH2 with
commercia licenses and afew added features:

. A manual covering F-Secure SSH products for all platforms (Unix, Windows,
Macintosh)

. Additional encryption algorithmsin the SSH-2 product, such as RSA and IDEA.
(see the F-Secure manual for the current list)

. Anadditional SSH client, edd (Encryption Data Dump), a Unix filter that applies
SSH encryption or decryption to standard input, writing the results to standard
output

. A few additional optionsin SSH1 (see Appendix B)

4.2.1 Obtaining and I nstalling

F-Secure SSH Server is available from http://www.f-secure.com/. In addition to their

commercia SSH products, which may be purchased and downloaded from the web site,
free "evaluation versions' are available.

Except for the few additional features listed in the previous section, installation,
configuration, and operation of F-Secure Unix SSH is amost identical to that of the SCS
versions. SSH2 has moved ahead with new features not present in its F-Secure counterpart,
however, so check the F-Secure documentation to see if particular features are available.

http://www.f-secure.com/

4.3 OpenSSH
OpenSSH is a free implementation of SSH-1 and SSH-2, obtained from the OpenSSH web site:

http://www.openssh.com/

Sinceit is developed by the OpenBSD Project, the main version of OpenSSH is specifically for the
OpenBSD Unix operating system, and isin fact included in the base OpenBSD installation. As a separate
but related effort, another team maintains a " portable” version that compiles on avariety of Unix flavors
and tracks the main development effort. The supported platforms include Linux, Solaris Al X, IRIX, HF/
UX, FreeBSD, and NetBSD (OpenSSH isincluded in FreeBSD as well). The portable version carries a
"p" suffix. For example, 2.1.1p4 is the fourth release of the portable version of OpenSSH 2.1.1.

4.3.1 Prerequisites

OpenSSH depends on two other software packages: OpenSSL and zlib. OpenSSL is a cryptographic
library available at http://www.openssl.com/; all the cryptography used in OpenSSH is pulled from

OpenSSL. zlibisalibrary of data-compression routines, available at http://www.info-zip.org/pub/infozip/
zlib/. Before compiling OpenSSH, you must obtain and install these packages.

4.3.2 Building

Building OpenSSH is similar to building SSH1 and SSH2, with the same configure; make; make install
sequence. In some versions of OpenSSH prior to 2.2.0, though, make install didn't generate and install
the host keys automatically. If your host keys are missing, you can install them with make host-key.

4.3.3 PAM

By default, OpenSSH uses PAM for password authentication. PAM, the Pluggable Authentication
Modules system, is ageneric framework for authentication, authorization, and accounting (AAA). The
ideais that programs call PAM to perform AAA functions, leaving the sysadmin free to configure
individual programs to use various kinds of authentication, via dynamically loaded libraries. Visit http://

www.kernel.org/pub/linux/libs/pam/ for more information on PAM.

Generally, if aprogram uses PAM, some host configuration is necessary to describe how PAM should
behave for that program. The PAM configuration files are usually in the directory /etc/pam.d.

http://www.openssh.com/
http://www.openssl.com/
http://www.info-zip.org/pub/infozip/zlib/
http://www.info-zip.org/pub/infozip/zlib/
http://www.kernel.org/pub/linux/libs/pam/
http://www.kernel.org/pub/linux/libs/pam/

On many operating systems that use PAM, including RedHat Linux,
Jé OpenSSH builds with PAM support by default (you can turn this off using

configure -w thout-par). However, you must then configure PAM
on the host to know about sshd, or password authentication will not work. By
default, PAM normally denies authentication for programs not specifically
configured to useit.

PAM configuration for SSH is usually just a matter of copying the appropriate sshd.pamfile from the
distribution's contrib directory into place as /etc/pam.d/sshd. Sample files are included for various flavors
of Unix.

Note that you don't need to restart sshd when you change the PAM configuration; the configuration files
are checked on every use of PAM.

4.3.4 Randomness

The main OpenSSH code base relies on the host operating system to provide a source of entropy, or
randomness, via a device driver accessed through /dev/urandom. This is because the OpenBSD operating
system has this device. If you build OpenSSH on a platform lacking such adevice, such as Solaris, it
needs an alternative source of randomness. There are two choices:

. Usethebuilt-in, "internal entropy-gathering" system
. Install the "Entropy Gathering Daemon" (EGD) package (http://www.lothar.com/tech/crypto/)

OpenSSH defaults to the first choice, the internal system, unless you configure it with EGD. The internal
system uses a configurable set of commands that monitor changing aspects of the system operation,
mixing their output together. Y ou can control which commands are used and how, with the file /etc/
ssh_prng_cmds.

4.3.5 Compilation Flags

Aswith the other SSH implementations, OpenSSH has a number of compilation flags, many the same,
some different. Here are the most important ones to know:

-W t hout - pam Di sabl e PAM support

Omit PAM support from OpenSSH. This flag isn't normally necessary, since the configure
process detects whether the host has PAM, and if so, you probably want to useit.

-W t h- nd5- passwor ds Enabl e use of NMD5 passwords
-w t hout - shadow Di sabl e shadow password support

These options control OpenSSH's treatment of the Unix account database (passwd map). They are
relevant only if OpenSSH isn't using PAM, since otherwise PAM deal s with reading the account

http://www.lothar.com/tech/crypto/

information, not the OpenSSH code proper.

Enable- wi t h- nd5- passwor ds if your system uses MD5 instead of the traditional crypt
function to hash passwords, and you are not using PAM.

"Shadow passwords' refers to the practice of keeping the hashed password in arestricted file /etc/
shadow (/etc/passwd must be world-readable). Use - wi t hout - shadowto suppress reading of
the /etc/shadow file, should it be necessary.

-wWith-ssl-dir= PATH Set path to OpenSSL installation

If OpenSSL isn't installed in the usual place, /usr/local/sdl, use this flag to indicate its location.
- W t h- xaut h=PATH Set path to xauth program

In OpenSSH, the default location of the xauth program is a compile-time parameter.
-wW t h-randoneFI LE Read randommess fromgiven file

Specify the character device file providing a source of random bits, normally /dev/urandom.

-w t h- egd- pool =FI LE
Read randommess from EGD pool FILE (default none)

If you install EGD as described earlier, use this flag to have OpenSSH use EGD asiits
randomness source.

-wi t h- ker ber 0s4=PATH
Enabl e Kerberos-4 support

-w t h- af s=PATH Enabl e AFS support

These flags apply to Kerberos-4 and AFS. [Section 3.4.2.4] Note that there's no Kerberos-5
support in OpenSSH.

-wW t h- skey Enabl e S/ Key support

Enable support for the S/Key one-time password system for password authentication. [Section
3.4.2.5]

-W t h-tcp-w appers Enabl e TCP-wr appers support
Equivalent to the SSH1 configureflag- wi t h- | 1 bwr ap . [Section 4.1.5.3]

-wW t h-i paddr-di spl ay Use | P address instead of hostnane in $DI SPLAY

In X forwarding, use DISPLAY values of the form 192.168.10.1:10.0 instead of hostname:10.0.
This flag works around certain buggy X libraries that do weird things with the hostname version,
using some sort of IPC mechanism for talking to the X server rather than TCP.

-w t h- def aul t - pat h=PATH
Default server PATH

The default path OpenSSH uses when attempting to run a subprogram.
-wW t h-ipv4-default Use I Pv4 unless "-6" is given
-W t h-4i n6 Check for and convert IPv4 in | Pv6 napped addresses

OpenSSH supports IPv6, the next-generation TCP/IP protocol suite that is still in the
development and very early deployment stages in the Internet (the current version of 1P is1Pv4).
The default configuration of OpenSSH attempts to use |Pv6 where possible, and sometimes this
results in problems. If you encounter errors mentioning "af=10" or "address family 10," that's
IPv6, and you should try the -4 runtime option, or compiling - wi t h- 1 pv4- def aul t.

-wW t h- pi d-di r =PATH Specify location of ssh.pid file

L ocation of the OpenSSH pid file, where it stores the pid of the currently running daemon. The
default is /var/run/sshd.pid.

4.4 Softwar e Inventory

Table 4.1. Software Inventory

Component SSH1 OpenSSH SSH2
: : : /etc/ssh2/
Server config /etc/sshd_config /etc/sshd_config sshd2_ config
Global client : : /etc/ssh2/
config /etc/ssh_config /etc/ssh_config ssh?2._config
Host private key /etc/ssh_host_key /etc/ssh_host_dsa key | /etc/ssh2/hostkey
. /etc/ssh_host_dsa_key. |/etc/ssh2/
Host public key /etc/ssh_host_key.pub oub hostkey.pub
/etc/ssh_known_hosts
/etc/ssh2/
/etc/ssh_known _hosts sy hostkeys
Client host keys ey ssh_known_hosts
' ~/.ssh2/hostkeys/
ssh_kn host
_known_hosts sy N
ssh_known_hosts2
~/.ssh/
kn h
Remote host keys /s nonnfoss ~/.sn2f
&y ssh_known_hosts ey knownhosts/*

ssh_known_hosts2

libwrap control
files

/etc/hosts.allow

/etc/hosts.deny

/etc/hosts.allow

/etc/hosts.deny

/etc/hosts.allow

/etc/hosts.deny

Authorization for
login via public key

~/.ssh/authorized keys

~/.ssh/authorized_keys

~/.ssh/
authorized_keys2

~/.ssh2/
authorization

/etc/hosts.equiv /etc/hosts.equiv /etc/hosts.equiv
Authorization for | /etc/shosts.equiv /etc/shosts.equiv /etc/shosts.equiv
login viatrusted-
host ~/.shosts ~/.shosts ~/.shosts
~/.rhosts ~/.rhosts ~/.rhosts
SSH-1/RSA:
Default keypair for ~/.ssh/identity{.pub}
public-key ~/.ssh/identity{.pub} (No default)
authentication SSH-2/D3A:
~/.sshiid_dsa{.pub} |
~/.ssh2/
~/.ssh/random_seed random_seed
Random seed ~/.ssh/prng_seed [8]
/etc/ssh_random seed /etc/ssh2/
random seed
Commands for
generating - /etc/ssh_prng_cmds -

randomness

/etc/krb5.conf /etc/krb.conf
Kerberos -

~/.k5login ~/.klogin

sshl ssh
Terminal client ssh2

slogin link to sshl slogin link to ssh
Secure file copy
client sepl P Sep2
Signer program - - ssh-signer2
sftp2/scp2 server - - sftp-server2
Atthentication ssh-agentl ssh-agent ssh-agent2
agent
Key generator ssh-keygenl ssh-keygen ssh-keygen2
Key add/remove ssh-addl ssh-add ssh-add2
Find SSH servers | - - ssh-probe2
Get passphrase via i i i
terminal or X ssh-askpassl SSh-askpass?
Server program sshdl sshd sshd2

[l This can't be changed using -i asit can with OpenSSH/1; use -0 Identity2=key_file instead.

8 present only if using OpenSSH's internal entropy-gathering mechanism (i.e., no /dev/random or
equivalent on system). SSH1 and SSH2 use seed files even when /dev/irandom exists.

4.5 Replacing R-Commands with SSH

SSH and the r-commands (rsh, rcp, rlogin) can coexist peacefully on the same machine. Since ther-
commands are insecure, however, some system administrators prefer to replace them by their SSH
counterparts (ssh, scp, slogin). This replacement has two parts:

. Installing SSH and removing rsh, rcp, and rlogin; requires some user retraining
. Modifying other programs or scripts that invoke the r-commands

The r-commands are so similar to their analogous SSH commands, you might be tempted to rename
the SSH commands as the r-commands (e.g., rename ssh asrsh, etc.). After all, common commands
like these are practically identical in syntax:

$ rsh -1 jones renote.exanple.com
$ ssh -1 jones renote.exanple.com

$ rcp nyfile renote. exanpl e. com
$ scp nyfile renote. exanpl e. com

Why not just rename? Well, the two sets of programs are incompatible in some ways. For example,
not all versions of ssh support the "hostname link™ feature of rsh [Section 2.7.3], and some old

versions of rcp use adifferent syntax for specifying remote filenames.

In the following sections, we discuss some common Unix programs that invoke the r-commands and
how to adapt them to use SSH instead.

4.5.1 The/usr/hosts Directory

The program rsh has an interesting feature called hostname links. [Section 2.7.3] If you rename the
executable from "rsh" to something else, the program treats its new name as a hostname and
connectsto it by default. For example, if you rename rsh as "petunia,” on invocation it executes rsh
petunia. The renaming may be done literally or by creating a hard link or symbolic link to rsh:

$Is -1 petunia
| rwxrwxrwx 1 root 12 Jan 31 1996 petunia -> /usr/ucb/rsh
$ petunia

Vel come to petuni a!
Last login was Wed Cct 6 21:38:14 from rhododendron
You have mail .

Some Unix machines have a directory, commonly /usr/hosts, that contains symbolic links to rsh
representing various hosts on the local network (or beyond):

$ Is -1 /usr/hosts

| rwxrwxrwx 1 root 12 Jan 31 1996 lily -> [/usr/ucb/rsh
| rwxrwxrwx 1 root 12 Jan 31 1996 petunia -> /usr/ucb/rsh
| rwxrwxrwx 1 root 12 Jan 31 1996 rhododendron -> /usr/uchb/rsh

If you eliminate /usr/ucb/rsh from such a machine, obviously these links become orphaned. Delete
them and replace them with links to ssh, perhaps with a shell script like this:

#!/ bi n/ sh
SSH=/ usr/ 1 ocal / bi n/ ssh
cd /usr/hosts
for filein *
do
rm-f $file
In -s $SSH $file
echo "Linked $file to $SSH'
done

4.5.2 Concurrent Version System (CVYS)

CVSisaversion-control system. It maintains a history of changes to sets of files, and helps
coordinate the work of multiple people on the samefiles. It can use rsh to connect to repositories on
remote hosts. For example, when you check in anew version of afile:

$ cvs commit nyfile

iIf the repository islocated on a remote machine, CVS may invoke rsh to access the remote
repository. For amore secure solution, CV S can run ssh instead of rsh. Of course, the remote
machine must be running an SSH server, and if you use public-key authentication, your remote

account must contain your key in the appropriate pl ace”)

To make CV S use ssh, simply set the environment variable CVS_RSH to contain the path to your
ssh client:

Bourne shell famly

Put in ~/.profile to make permanent.
CVS RSH=/usr/ | ocal / bi n/ ssh

export CVS_RSH

C shell famly
Put in ~/.login to nake pernmanent.
setenv CVS RSH /usr /1 ocal/bin/ssh

This approach has one problem: each time you check in afile, the logger's name is the remote
account owner, which might not be your own. The problem is solved by manually setting the remote

LOGNAME variable using the "environment=" option in your remote authorized keysfile. [Section
8.2.6.1]

4.5.3 GNU Emacs

The Emacsvariabler enot e- shel | - pr ogr amcontains the path to any desired program for
invoking aremote shell. Simply redefine it to be the full path to your ssh executable. Also, therlogin
package, rlogin.el, definesavariabler | ogi n- pr ogr amyou can redefine to use slogin.

45.4 Pine

The Pine mail reader uses rsh to invoke mail-server software on remote machines. For example, it
might invoke the IMAP daemon, imapd, on aremote mail server. Another program may be
substituted for rsh by changing the value of a Pine configuration variable, r sh- pat h. Thisvariable
holds the name of the program for opening remote shell connections, normally /usr/ucb/rsh. A new
value may be assigned in an individual user's Pine configuration file, ~/.pinerc, or in the system-wide
Pine configuration file, typically /usr/local/lib/pine.conf. For example:

Set in a Pine configuration file
rsh- pat h=/usr/ | ocal / bi n/ ssh

A second variable, r sh- conmmrand, constructs the actual command string to be executed for the
remote mail server. The value is a pattern in the style of the C function printf(). Most likely, you
won't need to change the value because both rsh and ssh fit the default pattern, which is:

"O%s % -1 Y% exec /etc/r%sd"

Thefirst three "%s" pattern substitutions refer to ther sh- pat h value, the remote hostname, and
the remote username. (The fourth forms the remote mail daemon name, which doesn't concern us.)
So by default, if your username is alice and the remote mail server is mail.example.com, r sh-
conmmand evaluatesto:

/usr/ucb/rsh mail.exanple.com-| alice ...
By changing ther sh- pat h, it becomes instead:
/usr/local/bin/ssh nail.exanple.com-| alice ...

Aswe said, you probably don't need to do anything with r sh- conmand, but just in case, we've
included it for reference. We present a detailed case study of integrating Pine and SSH1 |ater.
[Section 11.3]

4.5.5rsync, rdist

rsync and rdist are software tools for synchronizing sets of files between different directories on the

same machine or on two different hosts. Both can call rsh to connect to a remote host, and both can
easily use SSH instead: ssmply set the RSYNC_RSH for rsync and use the -P option with rdist.
rsync with SSH is a particularly simple and effective method to securely maintain remote mirrors of

whole directory trees.

(1 cv/'s al'so has a remote-access method involvi ng its own server, called pserver. This mechanism can
be secured using SSH port forwarding instead; see Chapter 9.

4.6 SUmmary

SSH1, SSH2, F-Secure SSH Server, and OpenSSH may all be tailored in various ways by
compile-time configuration with the configure script. We've covered the SSH-specific
flags, but remember that other operating system-specific flags may also apply to your
installation, so be sure to read the installation notes supplied with the software.

Onceinstalled, SSH software may replace the insecure r-commands on your Unix system,

not only when run directly, but also within other programs that invoke rsh, such as Emacs
and Pine.

Chapter 5. Serverwide Configuration

After installing an SSH server (sshd), it's time to make informed decisions about your
server's operation. Which authentication techniques should be permitted? How many bits
should the server key contain? Should idle connections be dropped after atime limit or left
connected indefinitely? These and other questions must be considered carefully. sshd has
reasonabl e defaults, but don't accept them blindly. Y our server should conformto a
carefully planned security policy. Fortunately, sshd is highly configurable so you can make
it do all kinds of interesting tricks.

sshd may be configured at three levels, and this chapter covers the second one: serverwide
configuration, in which a system administrator controls the global runtime behavior of the
server. Thisincludes alarge, rich set of features, such as TCP/IP settings, encryption,
authentication, access control, and error logging. Some features are controlled by
modifying a serverwide configuration file, and others by command-line options passed to
the server at invocation.

The other two levels of configuration are compile-time configuration (Chapter 4), in which
the server is compiled with or without certain functionality; and per-account configuration
(Chapter 8), in which the server's behavior is modified by end users for their accounts only.
WEe'll discuss the distinction between the three levels in more detail later in this chapter.

This chapter covers only the servers from SSH1/SSH2 and their derivatives OpenSSH and
F-Secure SSH Server. Our reference implementations, however, are SSH1 and SSH2 for
Unix. We've tried to indicate which features are found or not found in the various flavors of
sshd, but these will certainly change as new versions appear, so read each product's
documentation for the latest information.

5.1 The Name of the Server

The SSH server is named sshdl for SSH1, sshd2 for SSH2, and sshd for OpenSSH.
However, you may also be able to invoke sshdl or sshd2 as sshd, because their Makefiles
create a symbolic link called sshd. [Section 4.1.3] [Section 4.1.4] The link points to sshd2
if it'sinstalled, otherwise sshdl (the SSH1 Makefile doesn't supersede links installed by
SSH2).

Some features in this chapter apply to sshdl only, sshd2 only, OpenSSH's sshd only, or
various combinations. We indicate this in the following ways:

. If acommand-line option applies to only one package, e.g., SSH1, we present the
example using sshdl and a comment. For instance, in SSH1 the -d option (debug
mode) may appear alone:

SSH1 only
$ sshdl -d

. |If acommand-line option applies only to SSH2, we use sshd2. Its -d option requires
an argument:

SSH2 only
$ sshd2 -d 2

. Wesimilarly identify OpenSSH-specific and F-Secure-specific features with
comments:

QpenSSH onl y
F-Secure SSH only

. If acommand-line option works for several packages, we refer to the server as
sshd. For example, the -b option (set the number of bitsin the server key) isthe
same for SSH1 and OpenSSH, so you write:

SSH1, OpenSSH
$ sshd -b 1024

. Likewise, when we discuss configuration keywords, some apply to SSH1, SSH2,
OpenSSH, or various combinations. We precede examples with a comment for
clarity. For example, the VaxConnect | ons keyword, which limits the number of

available TCP/IP connections, is supported only by SSH2, so an example looks like:

SSH2 only
MaxConnecti ons 32

5.2 Running the Server

Ordinarily, an SSH server isinvoked when the host computer is booted, and it isleft running
as adaemon. Thisworks fine for most purposes. Alternatively, you can invoke the server
manually. This is advantageous when you're debugging a server, experimenting with server
options, or running a server as a nonsuperuser. Manual invocation requires a bit more work
and forethought but might be the only alternative for some situations.

Most commonly, a computer has just one SSH server running on it. It handles multiple

connections by spawning child processes, one per connecti on.Y Y ou can run multi ple servers
if you like, however. For example, you might run both sshdl and sshd2, or severa versions of
aserver, each listening on adifferent TCP port.

5.2.1 Running as the Superuser
The SSH server isinvoked by simply typing its name:

SSH1, SSH2, OQpenSSH
$ sshd

The server automatically runs in the background, so no ampersand is required at the end of the
line.

To invoke the server when the host computer boots, add appropriate lines to /etc/rc.local or the
appropriate startup file on your system. For example:

Specify the path to sshd.
SSHD=/ usr /|1 ocal / bi n/ sshd
If sshd exists, run it and echo success to the system consol e.
if [-x "$SSHD']
t hen
$SSHD && echo 'Starting sshd'
fi

SSH2 comes with a sample SysV-style init control script, named sshd2.startup.
5.2.2 Running asan Ordinary User

Any user can run sshd, provided that several steps are completed beforehand:

1. Get permission from your system administrator.
2. Generate a host key.

3. Select aport number.

4. Create aserver configuration file (optional).

Before starting, ask your system administrator if you may run an SSH server. While thisisn't
necessary from atechnical standpoint, it isawise idea. An administrator might not appreciate
your creating a new avenue for logins behind his back. Likewise, if the administrator has
disabled SSH or certain SSH features, there's probably a good security reason, and you
shouldn't just work around it!

Next, you must generate your own host key. Any other existing host key is probably readable
only by the superuser. Host keys are generated with the program ssh-keygen. [Section 6.2] For
now, to create a 1024-hit host key and store it in the file ~/myserver/hostkey, type the
following for SSH1 or OpenSSH:

SSH1, OpenSSH
$ ssh-keygen -N'' -b 1024 -f ~/nyserver/ hostkey

This command generates the files hostkey and hostkey.pub in the directory ~/myserver (so
make sure the directory exists). Here's the analogous command for SSH2:

SSH2 only
$ ssh-keygen2 -P -b 1024 ~/ nyserver/ host key

The -P and -N cause the generated key to be saved in plaintext, because sshd expectsto read it
without prompting someone for a passphrase.

Third, you must select a port number on which the SSH server listens for connections. The
port number is set with the -p command-line option of sshd or the Por t keyword in the
configuration file, as we discuss later. Y our server can't listen on port 22, the default, because
only the superuser may run processes to listen on that port. Y our port number must be greater
than or equal to 1024, as lower port numbers are reserved by the operating system for use by
privileged programs. [Section 3.4.2.3] The port number also must not conflict with those in use
by other programs on the server computer; if it does, you get an error message when you try to
start the server:

error: bind: Address already in use

If you receivethiserror, try another integer in the free range (above 1024). Avoid numbers
mentioned in the computer's services map (usually /etc/services or the Network Information

Service (NIS) "services' map, which you can view with the Unix command ypcat -k services).
These numbers have been designated by the system administrator for use with particular
programs or protocols, so you might be causing trouble if you steal one.

Finally, you must create your own SSH server configuration file. Otherwise, the server uses
built-in defaults or a systemwide configuration file (if one exists) and might not operate as you
intend.

Assuming you have generated a host key in ~/myserver/hostkey, selected the port number
2345, and created a configuration file in ~/myserver/config, the server isinvoked with the
command:

SSH1, SSH2, OpenSSH
$ sshd -h ~/nmyserver/hostkey -p 2345 -f ~/nyserver/config

A server run by an ordinary user has some disadvantages:

. It runsunder the uid of the ordinary user, not root, so it can connect only to that user's
account.

. Itisinvoked manualy, rather than automatically when the computer boots. As aresult,
to run the server, you must connect once without SSH to the computer. And each time
the computer is rebooted, the server dies, and you need to redo this step. Conceivably
you can set up acron job to keep it running automatically.

. While setting up a server, it's useful to read the diagnostic messages printed by the
server, in case something isn't working right. Unfortunately, your server's log messages
are written to the system log files, which you don't own and possibly can't access.
Because sshd does its logging viathe syslog service, an ordinary user can't control
where the log messages are sent. To see them, you need to locate the system logs,
which might be in /var/adm/messages, /var/log/messages, or someplace else depending
on how syslogd is set up, and you need appropriate permissions to read these files. To
get around this annoyance, consider running the server in debug mode, so messages
will appear on your terminal (as well asin the system logs). [Section 5.8] Thisway,

you can more easily see error messages until you get the server working.

Nevertheless, for many users, the advantages of SSH outweigh these inconveniences.
Assuming your system administrator approves, you can secure your logins with sshd even if
you aren't a superuser.

() or sshd can be invoked by inetd, creating one sshd process per connection. [Section 5.4.3.2]

5.3 Server Configuration: An Overview

As mentioned at the beginning of the chapter, the behavior of the server, sshd, may be controlled at
three levels:

. Compile-time configuration (Chapter 4) is accomplished when sshd is built. For example, a

server may be compiled with or without support for rhosts authentication.

. Serverwide configuration, the subject of this chapter, is performed by a system
administrator and applies to a running instance of the server. For instance, an administrator
may deny SSH access by all hosts in a given domain or make the server listen on a
particular port.

Serverwide configuration can be dependent on compile-time configuration. For example, a
server's trusted-host authentication options work only if the server is compiled with trusted-
host authentication support included. Otherwise, the options have no effect. We identify

such dependencies throughout the book. Figure 5-1 highlights the serverwide configuration

tasks.
Figure 5.1. Serverwide configuration (highlighted parts)
Fles Configurotion types Configurotion types Flles
(ommmd-ine __ _
ol
. - o aEh feahee
Eedronment _ Jeto/oghee
srizhles £ . AEh e L srue
— 6 — ‘et femvirooment
et ey ede O jesermscontla
¢ LdBRorakio C I:lllllll’.lﬂ“ﬂ'l file ransfashd S ashdl _config
ete/pani sens caneig Gobd dent | ML seressde y i=zcmaste. mquis
‘etoieshd foshd_oonflg | Hex File L A JaresanhoRed . agaiv
cenliguiation aulbarimaiion files
h‘m‘sﬁ“" = | {uﬁilm
§-aahfident i by Key fated -/ .osh/aothorized_keye
'sfhi |:d_-:_-3 . et —_— - ¢ JeEh faathorized Keysd
-¢ .sgh2fidentification | [ljng un[:;mm"s. o BERE Fau T LA R
autborizoiion fles. - choses
fesh_jown_hosts £ abhoaes
fEEhE fhostheys
Jate ek Tkncemdnos bl Faawm I'IIH’S.
iy i —_—] feto/hasts . allow
/ .ssh/kmown_hosts T — TCPwreppers | (750008t e
J . aah fhog eheaen ey T
JopER? P encamdnaE b
fecoikrh. t, feto/kebS. *
I _':Hh'efm fare g et
csfigur nbon Bl - klogin, /-. &9 login
PAM filess fere fpan. A/ ssha

« Per-account configuration (Chapter 8) is performed by the end user, specifically, the owner

of the account to which an SSH connection has been requested. For example, users may
permit or deny access to their own accounts from particular hosts, overriding the serverwide
configuration.

Suppose user deborah on the machine client.unc.edu invokes an SSH client. The clients's behavior
is determined by the compile-time options selected when the software was built, the machinewide
client configuration file on client.unc.edu, deborah's own client configuration file, and the
command-line options used by deborah when invoking the client. An SSH server running on server.
unc.edu accepts deborah's connection to the account charlie. The server's behavior is determined by
the compile-time options used when sshd was built, the machinewide server configuration file on
server.unc.edu, the command-line options used when the SSH server was run, and charlie's personal
server configuration file (e.g., an authorized keysfile), plus several filesthat set environment
variables for the successful login session.

With three levels of server configuration, and multiple entry points for modifying the behavior at
each level, things can get complicated. In particular, different options may work together or cancel
each other. For example, user charlie can configure his account on server.unc.edu to accept
connections from client.unc.edu, while the system administrator of server.unc.edu can configure the
SSH server to regject them. (In this case, Charlie loses.) Administrators must understand not only
how to configure the server themselves, but also how their choices interact with compile-time and
per-account settings.

5.3.1 Server Configuration Files

Serverwide configuration is accomplished in two ways: through a server configuration file, or
through command-line options. In a server configuration file, numerous configuration variables,
called keywords, may have their values set. For example, to set the TCP port on which the server
will listen, a configuration file can contain the line:

SSH1, SSH2, OpenSSH
Port 1022

The configuration file istypically /etc/sshd_config for SSH1 and OpenSSH or /etc/ssh2/
sshd2_config for SSH2. The file contains keywords and their values, asin the Por t example, with
one pair (keyword and value) per line. Keywords are case-insensitive: Por t, port , and PoRt are
all treated identically. Comments may appear in the file as well: any line beginning with a hash sign
(#) isacomment:

This is a comment

To use a configuration file other than the default, invoke sshd with the -f command-line option,
providing the alternative filename as an argument:

SSH1, SSH2, OpenSSH
$ sshd -f /usr/local/ssh/nmy _config

For SSH2, the configuration file format has the following extensions in addition to keywords:
Sections

Thelabel * : often appears at the beginning of the configuration file, sinceit is present in
the sample configuration file distributed with SSH2. This actually serves no purpose and is
confusing; see the following sidebar.

Subsystems

Keywords beginning with the string "subsystem-", such as:

SSH2 only
subsystem sftp sftp-server

indicate a subsystem, a predefined command that SSH2 clients may invoke by name.
Subsystems are alayer of abstraction and a convenience feature. [Section 5.7]

What'sThat *: ?

The sshd2_config file supplied with SSH2 contains the following lines at the top, just
above the keyword settings:

The "*" defines for all hosts

* .

Thisis unnecessary and misleading. In the client configuration file, a colon introduces a
labelled section of the configuration file [Section 7.1.3.3], which limits the following
configuration statements (up to the next label, or the end of thefile) to apply only when
the client is connecting to a host whose name matches the label.

The section label syntax is also recognized in the server configuration file, but it serves
no purpose. The way the code is written, the only label that can ever match on the server
sideis*, and that is the effective default label, anyway, so it is unnecessary.

The section label is misleading because it suggests you can label a section in the server
configuration file like this:

client. host. net:
Al'l owdsers smth

By analogy with the client configuration file, you might expect that this restrictslogins
from the machine client.host.net to only accessing the account "smith". Thiswon't work.
In fact, statements labelled with anything besides * will be silently ignored by sshd.
Beware!

5.3.2 Command-L ine Options

Additionally, when invoking the server, you may supply command-line options. For example, the
port value may be specified on the command line with the -p option:

SSH1, SSH2, OpenSSH
$ sshd -p 1022

Command-line options override settings in the configuration file. Thus, if the configuration file says
port 1022 but the server isinvoked with -p 2468, the port used will be 2468.

Most command-line options duplicate the features found in the configuration file, for convenience,
while afew provide unique functionality. For instance, the -f option instructs sshd to use a different
configuration file, afeature that's useless to put in a configuration file,

On the other hand, keywords don't necessarily have command-line equivalents. Most SSH1 and
OpenSSH keywords don't. Any SSH2 keyword, however, may be set by the -0 server command-
line option. For example, to set the TCP port number by this method:

SSH2 only
$ sshd2 -o "Port 1022"

5.3.3 Changing the Configuration

sshd reads its configuration file at startup. Therefore, if you modify the file while the server is
running, the changes don't affect the server. Y ou must force the server to reread the file in order

accept the changes. Thisis done by sending a SIGHUP signal to the server proc&s.[z] The pid of
the server isfound in afile, usually /etc/sshd.pid for SSH1, /var/run/sshd2_22.pid for SSH2, or /var/
run/sshd.pid for OpenSSH. [Section 5.4.1.3]

Suppose the PID fileis/etc/sshd.pid, the default for sshdl. To send the SIGHUP signal, run the
Unix kill command:

$ cat /etc/sshd. pid
119384
$ kill -HUP 119384

or more succinctly, with backquotes:
$ kill -HUP “cat /etc/sshd. pid

The SIGHUP signal restarts sshd (with a different pid) but doesn't terminate existing SSH
connections, so the signal is safe to send while clients are connected. The new sshd process reads

and conforms to the new configuration.

The SIGHUP technique works only for settings in the configuration file, not command-line options.
To change those, you must kill and restart the server with the new options. For example:

SSH1, SSH2, OpenSSH
$ kill 119384
$ sshd new options

5.3.4 A Tricky Reconfiguration Example

Because command-line options override their configuration file equivalents, some interesting
Situations can arise. Suppose the configuration file defines the number of bits in the server key to be
1024:

SSH1, OpenSSH
ServerKeyBits 1024

but the server isinvoked with the -b command-line option, overriding this value with 512:

SSH1, OpenSSH
$ sshd -b 512

The server uses a 512-hit key. Now, suppose you restart sshd with SIGHUP:

SSH1 only
$ kill -HUP “cat /etc/sshd. pid

OpenSSH onl y
$ kill -HUP “cat /var/run/sshd. pid’

forcing sshd to reread the configuration file. What do you think happens to the key length? Does the
server set the length to 1024 after rereading the configuration file, or does the command-line option
remain in effect for a512-bit key? In fact, the command-line option takes precedence again, and the
key remains 512 hits. sshd saves its argument vector (argv) and reappliesit on restart.

(2 The SSH2 server supports SIGHUP restartsin Version 2.0.12 and up.

5.4 Getting Ready: Initial Setup

We now embark on a detailed discussion of SSH server configuration, using both keywords and
command-line options. Please keep in mind that SSH2 and OpenSSH are still evolving products and
their features may change. Be sure to read their documentation for the latest information. SSH1 is no
longer actively developed, so its feature set is unlikely to change.

We begin with initial setup decisions, such as. where should important files be kept? What should
their permissions be? What TCP/IP settings should be used? What are the properties of the server
key? Which encryption algorithms are supported?

5.4.1 File L ocations

sshd expects certain files to exist, containing the server's host key, the random seed, and other data.
The server looks for these files in default locations, or you may override them with keywords and
command-line options as described later.

Although you may place these files anywhere you like, we strongly recommend keeping them on a
local disk on your server machine, not on a remotely mounted disk (e.g., viaNFS). Thisisfor
security reasons, as NFS will gleefully transmit your sensitive files unencrypted across the network.
Thiswould be especially disastrous for the unencrypted private host key!

As arunning example, we use an invented directory, /usr/local/ssh, as our preferred (nondefault)
location for the SSH server'sfiles.

5.4.1.1 Host key files

The host key of sshd uniquely identifies a server to SSH clients. The host key is stored in apair of
files, one containing the private key and the other the public key. For SSH1 and OpenSSH, the
private key is stored in /etc/ssh_host_key and is readable only by privileged programs such as the
SSH server and clients. Its location may be changed with the Host Key keyword:

SSH1, QpenSSH
Host Key /usr/ | ocal / ssh/ key

The server's public key is stored in a second file with the same name but with .pub appended. So the
default for SSH1 and OpenSSH is/etc/ssh_host_key.pub, and the preceding Host Key example
implies /usr/local/ssh/key.pub.

The OpenSSH server also has an SSH-2 host key, located by default in /etc/ssh_host_dsa key, and
its location may be moved with the Host DsaKey keyword:

OpenSSH only
Host DsaKey /usr/ | ocal / openssh/ key?2

For SSH2, the default private key file is/etc/ssh2/hostkey if the server is run by the superuser or ~/.
ssh2/hostkey if run by any other user. To specify adifferent private key file, usethe Host KeyFi | e

keyword:

SSH2 only
Host KeyFi |l e /usr/| ocal / ssh/ key

The server's public key file, normally /etc/ssh2/hostkey.pub for superusers or ~/.ssh2/hostkey.pub for
others, may be changed independently with the Publ | c- Host KeyFi | e keyword:

SSH2 only
Publ i cHost KeyFi | e /usr/ | ocal / ssh/ pubkey

If you prefer command-line options, sshd supports the -h command-line option to specify the private
key file:

SSH1, SSH2, OpenSSH
$ sshd -h /usr/local/ssh/key

Once again, the public key filename is derived by appending .pub to the private key filename, in this
case, /usr/local/ssh/key.pub.

5.4.1.2 Random seed file

The SSH server generates pseudo-random numbers for cryptographic operations. [Section 3.7] It

maintains a pool of random data for this purpose, derived either from the operating system if
provided (e.g., /devirandom on some Unix flavors) or from various bits of changing machine state (e.
0., clock time, statistics on resource use by processes, etc.). Thispool is called the random seed.
SSH1 storesit in /etc/ssh_random _seed, and its location may be changed with the Randonteed

keyword:

SSH1 only
RandonSeed /usr/ | ocal / ssh/ seed

Likewise for SSH2, the random seed is stored in /etc/ssh2/random_seed, and the location may be
overridden with the RandonteedFi | e keyword:

SSH2 only
RandonSeedFi |l e /usr/ | ocal / ssh/ seed2

If running on a system with a random-bit source, such as /dev/urandom, OpenSSH doesn't create a
random seed file.

5.4.1.3 Process|D file

We said earlier that the SSH1 server's pid is stored in /etc/ssh.pid, and this location may be
overridden with the Pi dFi | e keyword:

SSH1, OpenSSH
PidFile /usr/local/ssh/pid

There is no corresponding keyword for SSH2. Its pid file is aways named /var/run/sshd2_N.pid,
where N isthe TCP port number of the server. Since the default port is 22, the default pid file is /var/
run/sshd2_22.pid. If multiple sshd2 processes are run simultaneously on different ports of the same
machine, their pid files can be distinguished by this naming convention.

5.4.1.4 Server configuration file

The server configuration file is normally /etc/sshd_config for the SSH1 and OpenSSH servers and /
etc/ssh2/sshd2_config for the SSH2 server. An alternative configuration file can be specified with the
-f command-line option:

SSH1, SSH2, OpenSSH
$ sshd -f /usr/local/ssh/config

Thisis useful when testing a new server configuration: create a new file and instruct sshd to read it.
It isalso necessary if you are running multiple sshd s on the same machine and want them to operate
with different configurations.

5.4.1.5 User SSH directory

sshdl expects a user's SSH-related files to be found in the directory ~/.ssh. Thislocation can't be
changed by serverwide configuration. (Y ou have to modify the source code.)

sshd2 expects user filesto be in the directory ~/.ssh2 by default, but this can be changed with the
User Confi gD rect ory keyword. The directory name may be literal, asin:

SSH2 only
User ConfigDirectory /usr/local/ssh/ny_dir

or it may be specified with printf-like patterns, asin:

SSH2 only
User ConfigDirectory %/ . ny-ssh

The %D pattern expands to the user's home directory. So the preceding example expands to ~/.my-
ssh. The following table shows the available patterns:

Pattern Meaning
%D User's home directory
%J User'slogin name
% U User's uid (Unix user ID)
% G User's gid (Unix group ID)

For the system administrator, the User Conf i gDi r ect or y keyword provides a quick way to
override all users SSH2 preferences. Specifically, you can cause sshd2 to ignore everybody's ~/.ssh2
directories, substituting your own instead. For instance, the line:

SSH2 only
User ConfigDirectory /usr/sneaky/ssh/ % U

tells sshd2 to seek the preferences for each user in /usr/sneaky/ssh/<username> instead of ~/.ssh.
This powerful feature can also be misused if your machine is compromised. If an intruder inserted
the following line into sshd2_config :

SSH2 only
User ConfigDirectory /tnp/ hack

and uploaded his own public key file into /tmp/hack, he would gain SSH2 access to every user's
account.

5.4.1.6 Per-account authorization files

The SSH1 and OpenSSH servers expect to find a user's public-key authorization file in ~/.ssh/
authorized keys (and ~/.ssh/authorized _keys2 for OpenSSH/2). These locations can't be changed by
serverwide configuration.

The SSH2 server uses adifferent key file layout. [Section 6.1.2] The authorization file, normally ~/.

ssh2/authorization, contains names of separate public key files, rather than the keys themselves.
sshd2 can be instructed to find the authorization file elsewhere via the keyword
Aut hori zationFil e.

SSH2 only
Aut hori zationFile ny_public_keys

Filenames can be absolute or are relative to the user's SSH2 directory. The preceding lines specifies
thefile ~/.ssh2/my_public_keys.

5.4.2 File Permissions

As security products, SSH1, SSH2, and OpenSSH require certain files and directories on the server

machine to be protected from unwanted access. Imagine if your authorized_keys or .rhosts file were
world-writable; anyone on that host could modify them and gain convenient access to your account.
sshd has severa configuration keywords for reducing this risk.

5.4.2.1 Acceptable permissionsfor user files

Users aren't aways careful to protect important files and directories in their accounts, such astheir .
rhosts file or personal SSH directory. Such lapses can lead to security holes and compromised
accounts. To combat this, you can configure sshd to reject connections to any user account that has
unacceptable permissions.

The St ri ct Mbdes keyword, with avalue of yes (the default), causes sshd to check the
permissions of important files and directories. They must be owned by the account owner or by root,
and group and world write permission must be disabled. For SSH1, St ri ct Mbdes checks:

« User'shome directory

. User's~/.rhosts and ~/.shostsfile

« User's SSH configuration directory, ~/.ssh
« User's SSH ~/.ssh/authorized _keysfile

For OpenSSH, St r i ct Mbdes checks the samefiles asfor SSH1, plus the user's authorization file
for SSH-2 connections, ~/.ssh/authorized keys2.

For SSH2, the list issmaller and is checked only for trusted-host authentication: " [Section 3.4.2.3]

 User'shome directory
. User's~/.rhostsand ~/.shosts file

If any check fails, the server rgjects SSH connection attempts to the account. If St ri ct Modes is
given the value no, these checks aren't performed.

SSH1, SSH2, OpenSSH
Strict Modes no

However, we strongly suggest you leave these checks enabled.
Evenif St ri ct Mbdes isenabled, though, it can be defeated in two ways. First, sshd can be

compiled with theflag - enabl e- gr oup-wr i t eabi | 1ty [Section 4.1.5.2], which makes group-
writable files acceptableto St r i ¢t Mbdes. This can be useful for shared accounts, permitting all

members of a group to modify SSH-related files in an account. Second, you can use POSIX ACLSs,
which are supported in Solaris and some other flavors of Unix, to set file permissions with greater
precision. sshd doesn't check ACLs, so one could arguethat St ri ct Vbdes isan incomplete test.

5.4.2.2 Permissions for newly created files

The umask of a Unix process determines the default permissions for files and directories that the
process creates. sshdl's umask may be specified with the keyword Unask, so any filesit creates
have the desired permissions. The valueis an ordinary Unix umask value, usually given in octal:

SSH1 only
Create files rwr-r-

and directories rwx-r-xr-x:
Unmask 022

Remember that aleading zero is necessary for sshdl to interpret the value as octal. For more
information on umasks, see the Unix manpages for umask or for most shells.

sshdl creates apid file (/etc/sshd.pid or the value of Pi dFi |) and arandom seed file (/etc/
ssh_random_seed or the value of Randonfeed). Only the pid fileis affected by the server's umask.
The random seed fileis explicitly created with mode 0600, readable and writable only by the owner.
Strictly speaking, this umask also applies to other processes spawned by sshdl-specifically, user
shells-but the value is typically overridden by shells.

5.4.3 TCP/IP Settings

Since the SSH protocol operates over TCP/IP, sshd permits control over various parameters related
to TCP/IP.

5.4.3.1 Port number and network interface
By default, sshd listens on TCP port 22. The port number may be changed with the Por t keyword:

SSH1, SSH2, OpenSSH
Port 9876

or the -p command-line option:

SSH1, SSH2, OpenSSH
$ sshd -p 9876

The SSH1 and OpenSSH servers accept integers in decimal, octal, or hexadecimal, while the SSH2
server reads all numbers as decimal. See Sidebar "Numeric Valuesin Configuration Files'.

Y ou may also configure sshd to bind its listening port on a particular network interface. By defaullt,

the port is bound on all active network interfaces on the host. The Li st enAddr ess keyword
limits sshd to listen on only one interface, with default value 0.0.0.0.

For example, suppose a computer has two Ethernet cards and is attached to two different networks.
One interface has the address 192.168.10.23, and the other, 192.168.11.17. By default, sshd listens
on both interfaces; therefore, you can reach the server by connecting to port 22 at either address.
However, this may not always be what you want; perhaps you want to provide SSH service only to
hosts on one network and not the other:

SSH1, SSH2, OpenSSH
Li st enAddress 192.168. 10. 23

Of course, this represents areal restriction only if the two networks aren't otherwise connected

together (say, by arouter), so that port 22 on 192.168.10.23 is not reachable from the network
192.168.11/24.

OpenSSH permits morethan Li st enAddr ess linein the configuration file, permitting listening
on selected multiple interfaces:

OpenSSH only
Li st enAddress 192.168. 10. 23
Li st enAddress 192.168.11.17

Numeric Valuesin Configuration Files

SSH1 and OpenSSH accept numeric values in decimal, octal, or hexadecimal, using
standard C language notation. If avalue beginswith Ox, it istreated as hexadecimal. If it

begins with aleading zero, it is considered octal. Any other numeric valueisread as
decimal.

SSH2, in contrast, requires al numbers to be given in decimal.

5.4.3.2 Invocation by inetd

sshd normally runs as a daemon, spawning child processes to handle connections. Alternatively, the
server may be invoked by inetd as are many other network daemons. In this case, inetd invokes a
new instance of the server for each connection.

If the inetd behavior is desired, you must have an entry for SSH in the server machine's TCP/IP
services map, either /etc/services or /etc/inet/services, such as:

ssh tcp/ 22

and an appropriate line in the inetd configuration file, /etc/inetd.conf, for the SSH service. Thisline

must invoke sshd with the -i command-line option, which turns on inetd behavior:
ssh stream tcp nowai t root [usr/ 1 ocal /sbin/sshd sshd -i

What this means, exactly, isthat sshd ssimply starts up and expects to handle a single connection on a
TCP socket attached to its standard input and output. Thisis opposed to its behavior without -i,
where it becomes a master server listening for TCP connections and starting subprocesses to handle
individual connections.

The inetd approach has advantages and disadvantages. On the down side, inetd-based SSH
connections are slower to start up if the session uses a server key, because sshd generates a new key
each time. This applies to connections using the SSH-1 protocal, i.e., the servers of SSH1 and
OpenSSH/1. [Section 3.5.1.2] Whether that's an issue, of course, depends on the speed of the server
machine in question. On the up side, the inetd approach allows using awrapper program to invoke
sshd, should that be needed. Also, inetd provides asingle, centralized point of control for all types of
network connections, which simplifies maintenance. If you want to forbid all types of TCF/IP
connections, for example, you can simply disable inetd instead of running around killing other
daemons.

5.4.3.3 I dle connections

Suppose an SSH connection is established between a server and a client, but no data passes over the
connection for along time. What should the server do: keep the connection alive, or terminate it?

SSH1 providesthe | dl eTi neout keyword, which tells the server what to do if aconnection is
idle, i.e., if the user doesn't transmit any datain agiven period. If | dl eTi neout iszero (the
default), the server does nothing, leaving idle connections intact:

SSH1 only
| dl eTi meout O

Otherwise, the server terminates the connection after a specified interval of idleness. In this case, the
valueof | dl eTi neout isapositive integer, optionally followed by letter: s for seconds, mfor
minutes, h for hours, d for days, or wfor weeks. If no letter is given, the number represents seconds.

Here are several waystosetan | dl eTi neout of exactly one day:

SSH1 only

| dl eTi nreout 1d

| dl eTi reout 24h

| dl eTi neout 1440m
| dl eTi mreout 86400s
| dl eTi nreout 86400

Theidle timeout can also be set for agiven key in auser's authorized_keys file using the idle-timeout
option. [Section 8.2.7] Notably, this option overridesthe server's| dl eTi neout value but only for

that key. Thisis arare instance of a per-account option overriding a serverwide option.
5.4.3.4 KeepAlive

KeepAl | ve isarelated but distinct featureto | dl eTi neout . Where | dl eTi neout detectsand
ends healthy but unused connections, KeepAl | ve isconcerned with recognizing when a
connection has failed. Suppose a client establishes an SSH connection, and some time later, the
client host crashes abruptly. If the SSH server has no reason to send unsolicited messages to the
client, it may never notice the half-dead TCP connection to its partner, and the sshd remains around
indefinitely, using up system resources such as memory and a process slot (and making the
sysadmin's ps output messy).

The KeepAl | ve keyword instructs sshd how to proceed if a connection problem occurs, such asa
prolonged network outage or a client machine crash:

SSH1, SSH2, OpenSSH
KeepAlive yes

Thevalueyes (the default) tells the server to set the TCP keepalive option on its connection to the
client. This causes TCP to periodically transmit and expect keepalive messages. If it doesn't receive
responses to these messages for awhile, it returns an error to sshd, which then shuts down the
connection. The value no means not to use keepalive messages.

The TCP keepalive feature, and hence SSH's KeepAl 1 ve, isintended to prevent half-dead
connections from building up over time. The keepalive message interval and timeout period reflect
this: they are quite long, typically on the order of hours. Thisisto minimize the network load
Imposed by the keepalive messages and also to prevent connections from being unnecessarily torn
down because of transient problems, such as atemporary network outage or routing flap. These
timers aren't set in SSH; they are properties of the host's TCP stack. They shouldn't be altered lightly,
since they affect every TCP connection using keepalives on that host.

5.4.3.4.1 KeepAlive and connection timeouts

It'simportant to note that KeepAl | ve isn't intended to deal with the problem of losing connections
dueto firewall, proxying, NAT, or |P masquerading timeouts. This problem occurs when your SSH
connection is going across one of these entities, which decides to tear it down because it's been idle
for awhile. Since thisis done to conserve shared resources (such as alimited pool of external,
routable I P addresses), these timeouts are typically quite short, perhaps a few minutes to an hour or
so. The name "KeepAlive" suggests that it might be the right thing to use, since that's what you want
to do-keep your connection alive. But really, KeepAl i ve isthe wrong name for it; it would be
better named "DetectDead" (but that sounds like a spell a second-level cleric would use to avoid
being eaten by zombies). In order for KeepAl | ve to dea with this problem, you have to
dramatically shorten the TCP keepalive interval on the SSH host. Thisis contrary to its purpose and
unwise because it affects not only SSH connections, but every TCP connection using keepalives,
even those that don't need it. Doing this on the server side is an especially bad idea as a general
principle, since a busy server may be using lots of TCP connections, and enabling KeepAl | ve on
many of them since it's supposed to be an inexpensive feature. This can impose an unnecessary and

damaging additional network load, especially if it becomes awidespread practice.

It's good to remember that the timeout annoying you so much is there for areason. Y ou may like to
leave an SSH connection up for along time unused, but if it's occupying one of alimited number of
simultaneous outbound Internet TCP connections for your company, perhapsit's better if you just
suck it up for the common good. Typing ssh again oncein awhileisreally not that hard; use your
shell's aliasfeature if you find the number of keystrokes onerous. If you genuinely think the timeout
IS inappropriate or unnecessary, argue the case with the network administrator, and try to get it
changed.

For the occasions when it's really necessary, the right way to accomplish this sort of keepalive
behavior is with an application-level mechanism implemented in SSH-having it periodically send
SSH protocol messages over the connection to make it appear nonidle. Thisfeature isn't available in
any SSH implementation we know of, but we encourage its addition. NAT, etc., timeouts are a
common problem, and we would like to discourage the misuse of TCP keepalives as a solution. In
the meantime, the better low-tech solution is simply to have something that sends characters over
your connection once in awhile. Run Emacs and have it display the timein the mode line. Run a
program in the background that prints "Boo!" to your terminal if it's been idle for 20 minutes. Y ou
get the idea.

5.4.3.5 Failed logins

Suppose a user attemptsto log in via SSH but fails to authenticate. What should the server do? The
keywords Logi nGraceTi me and Passwor dGuesses control the server's response.

Users are given alimited time to authenticate successfully, 10 minutes by default. Thistimeout is
controlled by the Logi nGr aceTi ne keyword, given avalue in seconds:

SSH1, SSH2, OpenSSH
Logi nG aceTi ne 60

or the -g command-line option:

SSH1, SSH2, OpenSSH
$ sshd -g 60

To disablethisfeature, provideal.ogi nG aceTi e value of zero:

SSH1, SSH2, OpenSSH
Logi nGraceTine 0O

or by command-line option:

SSH1, SSH2, OpenSSH
$ sshd -g O

If password authentication is used for a connection request, sshd2 permits aclient only three triesto
authenticate before dropping the connection. This restriction may be modified with the
Passwor dGuesses keyword:

SSH2 only
Passwor dGuesses 5

The situation with public-key authentication is slightly more complicated. There are two sorts of
requests a client can make in thisregard: a query whether a particular public key is authorized to log
into the target account, and an actual authentication attempt including a signature of the
corresponding private key. It's good to alow an unlimited number of queries, since otherwise it
limits the number of keys one can have in an agent, for example. But it's reasonable to limit the
number of failed attempts. None of the current SSH servers do what we consider to be the right
thing. SSH1 and SSH2 simply alow an unlimited number of public-key queries or attempts.
OpenSSH, on the other hand, limits the overall number of authentication attempts or queries of any
kind, and it uses a built-in, nonconfigurable limit of 5 (the source code says 6, but the way it's coded
it comesout to 5). So if you have five keysin your agent, you never get to use password
authentication with the OpenSSH server, because it rejects your connection after determining that
you can't use any of those keys. Or if you have six keys and the sixth is the one you need to use,
you're out of luck; you have to remove some keys from your agent (or not use the agent) to get it to
work (these numbers are one fewer for OpenSSH/2, by the way).

Of course, there's a security argument to be made here. It's better in a sense to not allow queries and
aways force the client to perform an attempt. That way, if it fails, the client doesn't know whether it
was because the signature was wrong or the key is simply not authorized. This makes it harder for an
attacker to determine which keys are the ones to try to steal. But in normal use it's computationally
expensive for legitimate clients to do this, and so the protocol does allow queries.

5.4.3.6 Limiting simultaneous connections

sshd can handle an arbitrary number of simultaneous connections by default. SSH2 provides the
VexConnect i ons keyword for limiting this number, say, if you want to conserve resources on the
server machine:

SSH2 only
MaxConnecti ons 32

To specify an unlimited number of connections, provide avalue of zero:

SSH2 only
MaxConnecti ons O

Of course, the number of connections can also be limited by available memory or other operating
system resources. VaxConnect i ons has no effect on these other factors. (Sorry, you can't
increase your CPU speed by setting a keyword!)

5.4.3.7 Reverse | P mappings

The SSH2 server optionally does areverse DNS lookup on aclient's P address. That is, it looks up
the name associated with the address, then looks up the addresses for that name and makes sure that
the client's address is among them. If this check fails, the server refuses the connection.

sshd2 uses the gethostbyname() and gethostbyaddr () system services to perform these mappings, so
the databases that are consulted depend on the host operating system configuration. It might use the
DNS, the Network Information Service (NIS or YP), static files on server machine, or some
combination.

To enable this check, usethe Requi r eRever seVappi ng keyword with avalue of yes or no
(the default):

SSH2 only
Requi r eRever seMappi ng yes

Thisfeature is abit of security-oriented consistency checking. SSH uses cryptographic signatures to
determine a peer's identity, but the list of peer public keys (the known hosts database) is often
indexed by hostname, and so SSH must translate the address to a name in order to check the peer's
identity. Reverse mapping tries to ensure that someone isn't playing games with the naming service
in a cracking attempt. There is atradeoff, however, since in today's Internet, the DNS reverse-
address mappings aren't always kept up to date. The SSH server might reject legitimate connection
attempts because of poorly maintained reverse-address mappings over which you have no contral. In
general, we recommend turning off this feature; it isn't usually worth the hassle.

5.4.3.8 Controlling TCP_NODELAY

TCP/IP has afeature called the Nagle Algorithm, which is designed to reduce the number of TCP
segments sent with very small amounts of data (e.g., one byte), usually as part of an interactive
terminal session. Over fast links such as Ethernet, the Nagle algorithm generally isn't needed. Over a
wide-area network, however, it can cause noticeable delays in the responsiveness of X clients and
character terminal displays, as multibyte terminal control sequences may be transmitted
inconveniently by the algorithm. In such cases, you should turn off the Nagle Algorithm using the
NoDel ay keyword:

SSH2 only
NoDel ay yes

NoDel ay disablesthe Nagle Algorithm by toggling the TCP_NODELAY bit when requesting a
TCP connection from the Unix kernel. Legal valuesare yes (to disable) and no (to enable; the
default).

In order to work, this feature must be enabled at compiletime using - enabl e-t cp- nodel ay.
[Section 4.1.5.3] Note aso that NoDel ay can be enabled or disabled by the SSH2 client, rather than

serverwide, using the client configuration keyword NoDel ay. [Section 7.4.4.4]

5.4.3.9 Discovering other servers

SSH2 2.1.0 adds a feature for seeking out and discovering SSH2 servers automatically. The keyword
VexBroadcast sPer Second, when given an integer value greater than zero, causes an SSH2
server to listen to UDP broadcasts sent to port 22:

SSH2 only
MaxBr oadcast sPer Second 10

A new program supplied with SSH2, ssh-probe2, sends broadcast queries and prints the locations
and versions of any SSH2 serversit finds. The server only responds to this many queries per second;
the rate-limiting prevents a denial-of-service attack that floods the server with queries, causing it to
spend all itstime replying to them.

VaxBroadcast sPer Second and ssh-probe2 are arather ad hoc solution for locating SSH2
servers. Perhaps when Dynamic DNS and SRV records become more widely used, such tricks won't
be necessary.

5.4.3.10 Agent forwarding

Agent forwarding permits a series of SSH connections (from one machine to another to another, ...)
to operate seamlessly using a single agent. [Section 6.3.5] Agent forwarding may be enabled or
disabled in the SSH2 server using the keyword For war dAgent or Al | owAgent For war di ng
with avalue of yes (the default) or no:

SSH2 only
For war dAgent no

It may also be enabled or disabled by the client. [Section 6.3.5.3]

Agent forwarding is convenient, but in a security-sensitive environment, it might be appropriate to
disable this feature. Because forwarded agent connections are implemented as Unix domain sockets,
an attacker can conceivably gain access to them. These sockets are just nodes in the filesystem,
protected only by file permissions that can be compromised.

For example, suppose you maintain a network of exposed, untrusted machines that you access from a
more secure network using SSH. Y ou might consider disabling agent forwarding on the untrusted
machines. Otherwise, an attacker can compromise an untrusted machine; take control of a forwarded
agent from alegitimate, incoming SSH connection; and use the agent's loaded keys to gain accessto
the secure network via SSH. (The attacker can't retrieve the keys themselves in this way, however.)

5.4.3.11 Forwarding
SSH's forwarding or tunneling feature protects other TCP/IP-based applications by encrypting their

connections. We cover forwarding in great detail in Chapter 9, but we introduce here the serverwide
configuration keywords for enabling and disabling it.

TCP port forwarding can be enabled or disabled by the keyword Al | owTcp- For war di ng with
thevalueyes (the default) or no:

SSH1, SSH2, OpenSSH
Al | owTcpForwar di ng no

or more selectively for particular users or Unix groups:

SSH2 only

Al | owTcpFor war di ngFor Users smth jones roberts
Al | owTcpFor war di ngFor G oups students faculty
DenyTcpFor war di ngFor User s badguys

DenyTcpFor war di ngFor G oups bad*

Forwarding for X, the popular window system, can be separately enabled or disabled with the
keyword X11For war di ng (SSH1, SSH2, OpenSSH), or For war dX11 or

Al T owX11Forwar di ng (SSH2 synonymsfor X11For war di ng). The default valueisyes, to
enable forwarding:

SSH1, SSH2, OpenSSH
X11Forwar di ng no

SSH2 only: either will work
Forwar dX11 no
Al | owX11lForwar di ng no

5.4.4 Server Key Generation

All SSH servers maintain a host key, which is persistent, generated by the system administrator
when installing SSH, and identifies the host for authentication purposes. [Section 5.4.1.1]

Separately, an SSH-1 server maintains another key while running, called the server key, which
protects client/server communications. This key istemporary and never explicitly stored on disk.
The server generates it at startup, and regenerates it at regular intervals. SSH1 and OpenSSH can
specify the length of the server key in bits. The key length is 768 bits by default, 512 bits at a
minimum, and you may choose another length using the Ser ver KeyBi t s keyword:

SSH1, QpenSSH
ServerKeyBits 1024

or the -b command-line option:

SSH1, OpenSSH
$ sshd -b 1024

Y ou may also specify the lifetime or regeneration interval of the server key. When the lifetime ends,
another server key is generated and the process repeats, say, every 10 minutes. Thisis a security
feature: if an intruder captures a server key, it can decrypt transmissions for only alimited time (10
minutes in our example). Likewise, if an encrypted transmission is captured by a sniffer, the server
key necessary to decrypt the session is destroyed in the server after 10 minutes.

Key regeneration is specified in seconds. Regeneration occurs every 3600 seconds (one hour) by
default. Theinterval is specified with the KeyRegener at i on- | nt er val keyword:

SSH1, OpenSSH
KeyRegener ati onl nterval 1200

or the -k command-line option:

SSH1, OQpenSSH
$ sshd -k 1200

A zero value turns off the key regeneration feature:

SSH1, QpenSSH
KeyRegenerationlnterval O

or:

SSH1, OpenSSH
$ sshd -k O

The Rekeyl nt er val Seconds keyword specifies how often (in seconds) sshd2 performs key
exchange with the client to replace the session data-encryption and integrity keys. The default is

3600 seconds (one hour), and a zero value disables rekeyi ng:[4]

SSH2 only
Rekeyl nt er val Seconds 7200

5.4.5 Encryption Algorithms

The SSH server supports a number of data-encryption algorithms for its secure connection; the client
selects a cipher to use from the list the server supports. SSH2 has a server configuration option to set
thelist of allowable ciphers, selected from those the server software supports. The Ci pher s
keyword serves this purpose. Its value may have two different forms:

. A comma-separated list of algorithm names (strings), indicating which algorithms are
permissible. The following table displays the supported values.

Value Meaning
3des-chc The 3DES (Triple DES) algorithm
bl owf i sh-chc The Blowfish algorithm
t wof i sh-chc The TwoFish algorithm
ar cf our The ARCFOUR algorithm
none No encryption

. Thenone agorithmisavailable only when SSH is compiled with the - wi t h- none flag.
The - cbc suffixesindicate cipher block chaining. These algorithms arein aclass called
block ciphers, which may operate in avariety of modes; CBC is one of them.

. A single string indicating a set of algorithms. The following table displays the supported

values:
Value Meaning
none Unencrypted transmission
any Any algorithm implemented in the server, including none
anyci pher Sameas any, but excluding none
anyst d Any standard _aI gorithm four_ld in the IETF SecSH draft (assuming itis
implemented in the server), including none
anystdci pher |Sameasanyst d, but excluding none

Here are some examples:

SSH2, OpenSSH 2
Ci phers 3des-cbc

C phers 3des-cbc, bl owfi sh-cbc, ar cf our
C phers any

Individual algorithms and sets of algorithms can't be mixed:

This is | LLEGAL
C phers 3des, anystd

The Ci pher s keyword is useful for quickly disabling individual encryption algorithms, say, if a
security holeis discovered in one of them. Just omit that algorithm from the C' pher s list and
restart the server.

Support for some algorithms can be omitted from the SSH1 server at compile time. [Section 4.1.5.6]

In particular, support for the none cipher type is not compiled in by default. Thisomissionisa
security feature to make insecure SSH sessions more difficult to create. Otherwise, if an attacker
gained access to your account for afew moments, he could add " Ciphers none" to your SSH client
configuration file. Y ou might never notice this small change, but all of your future SSH connections

would be insecure.[5]

Usethe none cipher only for testing. Using the SSH-1 protocol with no encryption seriously
weakensit: not only do you lose data privacy, but also you effectively lose server authentication and
integrity protection. SSH-2 doesn't suffer from these problems. In either case, however, password
authentication isn't available, since the password would be sent in the clear.

5.4.5.1 MAC algorithms

The VAC keyword lets you select the alowed integrity-checking algorithms, known as the Message
Authentication Code, used by sshd2. [Section 3.2.3] Here are the available algorithms: [Section 3.9.3]

hnmac- shal
hmac- nd5
hmac- nd5- 96

The following table shows keywords with special meanings that can also be used:

Value M eaning

any Any supported algorithm

anynac Any supported algorithm, except none

Any standard algorithm; that is, one defined in the current working draft of the

anystd SSH-2 protocol

anyst dmac | Sameasanyst d, but excludesnone

none No MAC; thisisinsecure

5.4.6 SSH Protocol Selection

OpenSSH lets you limit its protocol support to SSH-1, SSH-2, or both, using the Protocol keyword.
Permissible values are 1 (for SSH-1, the default), 2 (for SSH-2), or both 1 and 2 separated by a
comma

OpenSSH only
Protocol 1,2

(3 The sshd2_config manpage for SSH2 2.2.0 saysthat St ri ct Mbdes isn't implemented, but this
statement is obsol ete.

[l Note that at press time, you must disable session rekeying in the SSH2 server if you wish to use it
with many other SSH clients, since the latter don't yet support session rekeying; the connection dies
with an error once the rekeying interval expires.

ST you do connect using the none cipher, ssh prints awarning message, "WARNING: Encryptionis
disabled!" Even so, an attacker can enable Qui et Mode inyour clients and suppress this message.
[Section 5.8.1.3]

5.5 Letting Peoplein: Authentication and Access Control

A large part of the SSH server'sjob isto grant or deny connection requests from clients. Thisis done at two levels:
authentication and access control (a.k.a authorization).

Authentication, as we've seen, means verifying the identity of the user requesting a connection. Access control means
permitting or denying SSH connections from particular users, machines, or Internet domains.

5.5.1 Authentication

sshd supports several different techniques for authentication that may be enabled or disabled. [Section 3.1.3] [Section
3.4.2] For example, if you don't trust password authentication, you can turn it off serverwide but still permit public-key
authentication.

As SSH has evolved, the syntax for configuring authentication has changed severa times. We cover not only the current
keywords but & so the deprecated or obsolete ones, in case you're running an older version of sshd.

In SSH1 and OpenSSH, different authentication techniques are turned on and off with keywords of the form:
Nane O Techni queAut henti cati on

For example, password authentication is controlled by the keyword Passwor d- Aut henti cat i on, RSA public-key
authentication by RSA- Aut hent i cat i on, and so forth, one keyword per technique. Valuesmay beyes or no:

SSH1, OpenSSH, deprecated for SSH2
RSAAut henti cati on yes

Early versions of SSH2 also used one keyword per authentication technique, but keywords were a bit more generic.
Instead of RSAAuUt hent i cat i on, which mentions the algorithm RSA, the keyword was changed to
PubKeyAut hent i cat i on without naming a specific agorithm.

SSH2 only, but deprecated
PubKeyAut henti cati on yes

This | eft the door open for the support of other public key algorithms. The older keywords such as
RSAAut hent i cat i on were till usable as synonyms for the more generic keywords.

SSH2 today uses an entirely different syntax. Instead of creating a new keyword for each technique, it uses only two
keywords, Al | owedAut hent i cati ons and Requi r edAut hent i cati ons. Eachisfollowed by the names of
one or more authentication techniques, for example:

SSH2 only; recomrended techni que
Al | onedAut henti cati ons password, host based, publ i ckey

Al'l onedAut hent i cat i ons specifieswhich techniques can be used to connect to this SSH server.[G] In contrast,
Requi r edAut hent i cat i ons specifieswhich ones must be used.'”) A configuration line like:

SSH2 only; recomrended techni que
Al | owedAut henti cati ons publickey, password
Requi r edAut henti cati ons publickey, password

means that the server requires both public-key and password authentication before allowing a connection. The
Requi redAut hent i cat i ons list must be asubset of Al | owedAut hent i cati ons: arequired technique must
also be alowed. By default, sshd2 allows only password and public-key authentication.

If you think about it, these keywords are alittle confusing, or at least not well-chosen. In practice, if you use

Requi redAut henti cat i ons atal, it dways has exactly the samevalueas Al | owedAut hent i cati ons:
there's no point in having a method allowed but not in the "required” set, since that method doesn't get you a connection.
It would be more useful to be able to specify multiple subsets of the allowed methods, which are the combinations
acceptable for authenticating a client.

Table 5-1 displays the authentication-related keywords.

Table5.1. Authentication-Related K eywords

Type SSH1 OpenSSH New SSH2 Old SsH2
Al | onedAut henti cati ons No No Yes No
DSAAut henti cati on No Yes!®l No No
Ker ber osAut henti cati on Yes Yes No No
Passwor dAut henti cati on Yes Yes Deprecated Yes
PubKeyAut henti cati on No No Deprecated Yes
Requi r edAut henti cati ons No No Yes No
Rhost sAut henti cati on Yes Yes No Yes
Rhost sPubKeyAut hent i cati on No No No Yes
Rhost sRSAAut henti cati on Yes Yes No Yes
RSAAut henti cati on Yes Yes Deprecated Yes
SKeyAut henti cati on No Yes No No
Tl SAut hent i cati on Yes ved No No

We now describe how to enable and disable each type of authentication.

5.5.1.1 Password authentication

Password authentication accepts your login password as proof of identity. [Section 3.4.2.1] In SSH1 and OpenSSH,

password authentication is permitted or forbidden with the Passwor dAut hent i cat i on keyword, given the value
yes (the default) or no:

SSH1, OpenSSH; deprecated for SSH2
Passwor dAut henti cation yes

Passwor dAut hent i cat i on works for SSH2, but this keyword is discouraged. Instead, use the keyword
Al l owedAut hent i cat i ons withavalue of passwor d:

SSH2 only
Al | owedAut henti cati ons password

Normally, password authentication requires your ordinary login password. However, this may be changed by compile-
time configuration. For SSH1, if Kerberos or Securl D support has been compiled into the server, password
authentication changes to support Kerberos [Section 5.5.1.7] or SecurlD. [Section 5.5.1.9]

5.5.1.2 Public-key authentication

Public-key authentication verifies a user's identity by way of cryptographic keys. [Section 3.4.2.2] In SSH1 and

OpenSSH/1, public-key authentication uses RSA encryption and is permitted or forbidden with the
RSAAut hent i cat i on keyword. It may have the value yes (the default) or no:

SSH1, OpenSSH, deprecated for SSH2
RSAAut henti cati on yes

The keyword RSAAUt hent i cat i on worksfor SSH2, as does the more general-sounding keyword
PubKeyAut hent i cat i on, which has the same function, but both are no longer recommended. Instead, use the
keyword Al | owed- Aut hent i cat i ons withavaueof publ i ckey:

SSH2 only
Al | owedAut henti cati ons publickey

OpenSSH provides public-key authentication for SSH-2 connections with the DSAAut hent | cat i on keyword:

OpenSSH 2 only
DSAAut henti cati on yes

Public-key authentication is marvelously configurable for most Unix SSH implementations. See Chapter 8 for details on
tailoring authentication for individual accounts.

5.5.1.3 Rhosts authentication

Trusted-host authentication verifies an SSH client's identity by checking the remote hostname and username associated
with it. [Section 3.4.2.3] In SSH1 and OpenSSH, two types of trusted-host authentication are supported. The weaker
Rhosts authentication mimics the behavior of the Berkeley r-commands (rsh, rep, rlogin), checking the server files /etc/
hosts.equiv and ~/.rhosts for permission to authenticate and using the network naming service (e.g., DNS, NIS) and
privileged TCP source port to verify the client host's identity. SSH2 doesn't support this insecure technique.

Rhosts authentication is permitted or forbidden with the Rhost sAut hent i cat i on keyword, given thevalueyes
(the default) or no:

SSH1, OpenSSH
Rhost sAut henti cati on yes

Rhosts authentication can be useful, but unfortunately it aso enables connections via the insecure r-commands, since it
uses the same permission files. To eliminate this potential security risk, use the SSH-specific files /etc/shosts.equiv and
~/.shosts instead, deleting /etc/hosts.equiv and ~/.rhosts. Y ou can aso tell the SSH server toignore al users .rhostsand .
shosts files with the keyword | gnor eRhost s. Permissible valuesare yes (to ignore them) or no (the default):

SSH1, SSH2, OpenSSH
| gnor eRhosts yes

Some subtleties: although the keyword name contains "Rhosts," remember that it appliesto .shosts files as well. Also,
although user filesareignored by | gnor e- Rhost s, /etc/hosts.equiv and /etc/shosts.equiv remain in force.

SSH1 and SSH2 also permit separate control over Rhosts authentication for root. The keyword | gnor eRoot Rhost s
permits or prevents use of the superuser's .rhosts and .shostsfiles, overriding | gnor eRhost s:

SSH1, SSH2
| gnor eRoot Rhost s yes

Vauesof yes (ignorethefiles) or no (don't ignore) are permitted. If not specified, the value of | gnor eRoot Rhost s
defaultsto that of | gnor eRhost s. For example, you can permit all .rhosts files except root's:

SSHL only
| gnor eRhosts no
| gnor eRoot Rhost s yes

You can asoignore al .rhosts files except root's:

SSH1 only
| gnor eRhost s yes
| gnor eRoot Rhosts no

Again, | gnor eRoot Rhost s doesn't stop the server from considering /etc/hosts.equiv and /etc/shosts.equiv. For
stronger security, it's best to disable .rhosts access entirely.

Rhosts authentication can be complicated by other aspects of your server machine's environment, such as DNS, NIS, and
the ordering of entriesin static host files. It may also open new avenues for attack on a system. [Section 3.4.2.3]

5.5.1.4 Stronger trusted-host authentication

The second, stronger type of trusted-host authentication is supported by SSH1, SSH2, and OpenSSH. For SSH1 and
OpenSSH/1, it is called RhostsRSA authentication, and for SSH2, hostbased authenti cation.*” In either case, the less
secure parts of rhosts authentication are supplemented by cryptographic tests of host keys. [Section 3.4.2.3] Thefiles/

etc/hosts.equiv and ~/.rhosts (and the SSH-specific /etc/shosts.equiv and ~/.shosts) are still consulted, but they aren't
sufficient to pass the test.

SSH1 and OpenSSH use the keyword Rhost sRSAAut hent | cat i on (surprise!) to enable or disable this type of
authentication:

SSH1, OpenSSH, deprecated for SSH2
Rhost sRSAAut henti cati on yes

The keyword Rhost sRSAAut hent i cat i on isaccepted by sshd2, asis the more general-sounding keyword
Rhost sPubKeyAut hent i cat i on, which has the same function; however, both keywords are considered obsolete.
Instead, use the keyword Al | owedAut hent i cat i ons withthevauehost based:

SSH2 only
Al | owedAut henti cati ons host based

5.5.1.5 Fetching public keys of known hosts

sshd2 needs the public keys of al hosts from which it accepts connections via hostbased authentication. These keys are
kept in separate filesin the directory /etc/ssh2/knownhosts. A host's public key is fetched from this directory whenever
that host requests a connection. Optionally, the server also searches the directory ~/.ssh2/knownhosts in the target user's
account. This optional feature is enabled with the keyword User KnownHost s, with avalue of yes (the default) or no:

SSH2 only
User KnownHost s no

OpenSSH supports the same functionality, but reversed, with the | gnor eUser - KnownHost s keyword. The value
yes causes the user's known hosts database to be ignored; the default isno:

OpenSSH only
| gnor eUser KnownHost s yes

Having sshd consult the user's known hosts database might be unacceptable in a security-conscious environment. Since
hostbased authentication relies on the integrity and correct administration of the client host, the system administrator
usually grants hostbased authentication privilegesto only alimited set of audited hosts. If the user'sfileis respected,
however, a user can extend this trust to a possibly insecure remote host. An attacker can then:

1. Compromise the insecure, remote host

2. Impersonate the user on the remote host

3. Accessthe user'slocal account via SSH, without needing a key passphrase or the local account password
5.5.1.6 PGP authentication
Pretty Good Privacy (PGP) is another security product employing public-key authentication. [Section 1.6.2] PGP keys
and SSH keys are implemented differently and aren't interchangeable. However, recent versions of SSH2 now support
authentication by PGP key, following the OpenPGP standard. Y es, you can use your favorite PGP key to prove your

identity to an SSH2 server (as long as the key file is OpenPGP-compatible; some PGP keys, especially those produced
by older software versions, aren't). At presstime, this featureis only sketchily documented. Here's how to make it work.

First, you need SSH2 2.0.13 or higher, or the corresponding version from F-Secure, installed on both the client and
server machines. Also, both implementations must be compiled with PGP support included, using the compile-time flag
-wi t h-pgp.[Section 4.1.5.7]

On the client machine, you need to make your PGP secret key ring and the desired secret key for authentication
available to SSH2 clients. Here's how:

1. Copy your PGP secret key ring to your account's SSH2 directory, ~/.ssh2. Suppose it is called secring.pgp.

2. Inanidentification file, either ~/.ssh2/identification or another of your choice, indicate the secret key ring with
the keyword PgpSecr et KeyFi | e:

SSH2 only
PgpSecr et KeyFi | e secring. pgp

3. ldentify the PGP key you wish to use for authentication. This may be done with any of three keywords:
o Toidentify the key by name, use | dPgpKeyNane:

SSH2 only
| dPgpKeyName nykey

o Toidentify the key by its PGP fingerprint, use | dPgpKeyFi nger print:

SSH2 only
| dPgpKeyFi ngerprint 48 B5 EA 28 80 5E 29 4D 03 33 7D 17 5E 2E CD 20

o Toidentify thekey by itskey ID, use | dPgpKeyl d:

SSH2 only
| dPgpKeyl d 0xD914738D

For | dPgpKeyl d, theleading Ox is necessary, indicating that the valueisin hexadecimal. Y ou can give the valuein
decimal instead, without the leading 0x, but since PGP displays the value in hex aready, it's unlikely you'd want to do
this.

On the server machine (say, server.example.com), you need to make your public key ring and the desired public key for
authentication available to the SSH2 server:

1. Copy your public key ring from the client machine to the server machine. (Note that thisis akey ring, not alone
public key.) Place the ring into your ~/.ssh2 directory on the server. Supposeit is called pubring.pgp.

2. Inyour authorization file, ~/.ssh2/authorization, identify the public key ring with the keyword
PgpPubl i cKeyFi | e:

SSH2 only
PgpPubl i cKeyFi | e pubri ng. pgp

3. Identify the public key by name, fingerprint, or key ID asin the client'sidentification file. The relevant keywords
are dightly different: PgpKeyNane, PgpKeyFi nger pri nt,and PgpKey| d, respectively. (The keywords
for the identification file begin with "1d".)

SSH2 only: use any ONE of these

PgpKeyNane nykey

PgpKeyFi ngerprint 48 B5 EA 28 80 5E 29 4D 03 33 7D 17 5E 2E CD 20
PgpKeyl d 0xD914738D

You are done! From the client, initiate an SSH2 session. Suppose you create an alternative identification file to use PGP
authentication, called ~/.ssh2/idpgp, containing your PgpSecr et KeyFi | e and other lines. Use the -i flag to indicate
thisfile, and initiate a connection:

$ ssh2 -i idpgp server.exanple.com
If everything is set up properly, you are prompted for your PGP passphrase:

Passphrase for pgp key "nmykey":

Enter your PGP passphrase, and authentication should succeed.
5.5.1.7 Kerberos authentication

Kerberos can be used as an authentication mechanism by SSH1 and OpenSSH.[11] We summarize the Kerberos-related

configuration keywords here and defer amore detailed treatment of the topic. [Section 11.4] Just as this book went to
press, SSH2 2.3.0 was rel eased with "experimental” Kerberos-5 support, which we don't discuss here.

First, note that Kerberos authentication is supported only if it is enabled at compile time. Unless the configuration option
-wWi t h-kerberos5 (SSH1) or-wi t h- ker ber os4 (OpenSSH) is used, Kerberos support isn't present in sshd.

Assuming the server supportsit, Kerberos authentication is enabled or disabled by the keyword
Ker ber osAut henti cat i on withthevalueyes or no:

SSH1, OpenSSH
Ker ber osAut henti cati on yes

Thedefaultisyes if Kerberos support has been compiled into the server; otherwise, the default isno.

Connections may be authenticated by Kerberos ticket or by password (authenticated by the K erberos server) if password
authentication is also enabled:

SSH1, OpenSSH
Ker ber osAut henti cati on yes
Passwor dAut henti cati on yes

Instead of checking against the local login password, sshd instead requests a Kerberos TGT for the user and alowslogin

if the ticket matches the paSSNOI’d.[lZ] It also storesthat TGT in the user's credentials cache, eliminating the need to do a
separate kinit.

If Kerberos fails to validate a password, the server optionally validates the same password by ordinary password
authentication. Thisis useful in an environment where Kerberosisin use, but not by everyone. To enable this option,
use the keyword Ker ber osOr Local Passwd withavaue of yes; thedefaultisno:

SSH1, OpenSSH
Ker ber osOr Local Passwd yes

Finaly, the keyword Ker ber osTgt Passi ng controls whether the SSH server does Kerberos ticket-granting-ticket
(TGT) forwarding:

SSH1, OpenSSH
Ker ber osTgt Passi ng yes

Its default value follows the samerule as Ker ber osAut hent | cat i on: if Kerberos support is compiled into the
server, the default isyes, otherwise no.

OpenSSH adds the keyword Ker ber osTi cket Cl eanup, which deletes the user's Kerberos ticket cache on logout.
Vauesareyes and no, and the default isy es, to perform the del etion:

OpenSSH only
Ker ber osTi cket Cl eanup yes

5.5.1.8 TIS authentication

The SSH1 server may authenticate users viathe Gauntlet firewall toolkit from Trusted Information Systems (T1S).
When an SSH client tries to authenticate via Gauntlet, the SSH server communicates with Gauntlet's authentication
server, authsrv, forwarding authsrv 's requests to the client, and the client's responses to authsrv.

TIS authentication is a compile-time option, controlled by the configuration flag - wi t h- 11 s. [Section 4.1.5.7]

Assuming support has been compiled into sshd, TIS authentication is enabled and disabled by the keyword
TI SAut henti cati on withavaueof yes or no (the default):

SSH1 only
Tl SAut henti cati on yes

See the file README.TISin the SSH1 distribution for further details about TIS authentication. Additional information
on Trusted Information Systems and authsrv can be found at:

http://www.tis.com/
http://www.msg.net/utility/FWTK/
http://www.fwtk.org/

5.5.1.9 Secur| D authentication

Securl D from Security Dynamics is a hardware-based authentication technique. Users need aphysical card, called a
SecurlD card, in order to authenticate. The card contains a microchip that displays (on alittle LCD) an integer that
changes at regular intervals. To authenticate, you must provide this integer along with your password. Some versions of
the Securl D card also have a keypad that supports entering a password, for two-factor authentication.

If the SSH1 server is compiled with support for SecurlD, using - wi t h- secur i d, password authentication is
transformed into Securl D authentication. [Section 4.1.5.7] Users must provide the current integer from their card in
order to authenticate.

5.5.1.10 S/K ey authentication

S/Key is aone-time password system, created by Bellcore, supported as an SSH authenti cation method only by
OpenSSH. "One-time" means that each time you authenticate, you provide a different password, helping to guard against
attacks, since a captured password will likely be useless. Here's how it works:

1. When you connect to aremote service, it provides you with an integer and a string, called the sequence number
and the key, respectively.

2. You enter the sequence number and key into an s'key calculator program on your local machine.

3. You also enter a secret passphrase into the calculator, known only to yourself. This passphrase isn't transmitted
over the network, only into the calculator on your local machine, so security is maintained.

4. Based on the three inputs you provided, the calculator produces your one-time password.
5. You enter the password to authenticate to the remote service.

The OpenSSH server optionally supports S/Key authentication if you set the keyword SKey Aut hent i cati on. The
default isyes, to support it. To turn it off, use no.

OpenSSH only
SkeyAut henti cati on no

http://www.tis.com/
http://www.msg.net/utility/FWTK/
http://www.fwtk.org/

More information on one-time passwords is found at:
http://www.ietf.cnri.reston.va.ushtml.charters/otp-charter.html

5.5.1.11 PAM authentication

The Pluggable Authentication Modules system (PAM) by Sun Microsystemsis an infrastructure for supporting multiple
authentication methods. Ordinarily when a new authentication mechanism comes along, programs need to be rewritten
to accommodate it. PAM eliminates this hassle. Programs are written to support PAM, and new authentication
mechanisms may be plugged in at runtime without further source-code modification. More PAM information isfound at:

http://www.sun.com/sol aris/pam/

OpenSSH includes support for PAM. SSH1 1.2.27 has been integrated with PAM by athird party, but the combination
requires changes to the SSH1 source code. Details are found at:

http://diamond.rug.ac.be/sshd_PAM/

5.5.1.12 AFStoken passing

The Andrew File System (AFS) is a distributed filesystem with goals similar to NFS, but more sophisticated and
scalable. It uses amodified version of the Kerberos 4 protocol for authentication. OpenSSH can be compiled with
support for AFS, using the compile-timeflags- wi t h- af s and-wi t h- ker ber os4. The keyword
AFSTokenPassi ng controlsthis feature, given avalue of yes (accept forwarded tokens, the default) or no:

OpenSSH only

Ker ber osAut henti cation vyes
Ker ber osTGTPassi ng yes
AFSTokenPassi ng yes

AFSTokenPassi ng causes OpenSSH to establish Kerberos/AFS credentials on the remote host, based on your
existing credentials on the client (which you must have previously obtained using klog or kinit). This can be a necessity
for using OpenSSH at all in an AFS environment, not just a convenience: if your remote home directory ison AFS, sshd
needs AFS credentials to access your remote ~/.ssh directory in order to perform public-key authentication, for example.
In that case, you may also need to use AFStools to adjust the permissions on the remote ~/.ssh directory, to allow sshd
to read what it needs to. Just make sure that others cannot read your sensitive files (~/.ssh/identity, any other private key
files, and ~/.ssh/random _seed). For more information on AFS, visit:

http://www.alw.nih.gov/Docs AFS/AFS_toc.html
http://www.fags.org/faqs/afs-fag/

5.5.2 Access Control

Serverwide access control permits or denies connections from particular hosts or Internet domains, or to specific user
accounts on the server machine. It is applied separately from authentication: for example, even if a user'sidentity is
legitimate, you might still want to reject connections from her computer. Similarly, if a particular computer or Internet
domain has poor security policies, you might want to reject all SSH connection attempts from that domain.

SSH access control is scantily documented and has many subtleties and "gotchas.” The configuration keywords |ook
obviousin meaning, but they aren't. Our primary goal in this section isto illuminate the murky corners so you can
develop a correct and effective access-control configuration.

Keep in mind that SSH access to an account is permitted only if both the server and the account are configured to allow

http://www.ietf.cnri.reston.va.us/html.charters/otp-charter.html
http://www.sun.com/solaris/pam/
http://diamond.rug.ac.be/sshd_PAM/
http://www.alw.nih.gov/Docs/AFS/AFS_toc.html
http://www.faqs.org/faqs/afs-faq/

it. If aserver accepts SSH connections to all accounts it serves, individual users may still deny connections to their
accounts. [Section 8.2] Likewise, if an account is configured to permit SSH access, the SSH server on its host can
nonetheless forbid access. This two-level system appliesto all SSH access control, so we won't state it repeatedly.

Figure 5-2 summarizes the two-level access control wstem.[lg’]

Figure5.2. Access control levels

siiy (., Coomwclionroqust Access

¢ i-.=|1.1 granted
serverwids per-oeoount
mecess comfrod mecess confrol SSH Server

5.5.2.1 Account access control

Ordinarily, any account may receive SSH connections aslong asit is set up correctly. This access may be overridden by
the server keywords Al | owlUser s and DenyUser s. Al | owlser s specifiesthat only alimited set of local accounts
may receive SSH connections. For example, the line:

SSH1, SSH2, OpenSSH
Al l owldsers smth

permits the local smith account and only the smith account, to receive SSH connections. The configuration file may have
multiple Al | owlUser s lines:

SSH1, SSH2, OpenSSH
Al |l owUsers smth

Al | owUsers j ones

Al'l owUsers oreilly

in which case the results are cumulative: the local accounts smith, jones, and oreilly, and only those accounts, may
receive SSH connections. The SSH server maintainsalist of al Al | owUser s values, and when a connection request
arrives, it does a string comparison (really a pattern match, as we'll see in amoment) against the list. If amatch occurs,
the connection is permitted; otherwise, it is rejected.

A single Al | owUser s keyword in the configuration file cuts off SSH access for all other
"'@ accounts not mentioned. If the configuration filehasno Al | owlUser s keywords, the
server's Al | owlser s listisempty, and connections are permissible to al accounts.

DenyUser s isthe opposite of Al | owlUser s: it shuts off SSH access to particular accounts. For example:

SSH1, SSH2, OpenSSH
DenyUsers smith

states that the smith account may not receive SSH connections. Deny User s keywords may appear multiple times, just
like Al | owlUser s, and the effects are again cumulative. Asfor Al | owlUser s, the server maintains alist of all
DenyUser s values and compares incoming connection requests against them.

Both Al | owUser s and DenyUser s can accept more complicated values than simple account names. An interesting
but potentially confusing syntax supported by sshdl and sshd2 is to specify both an account name and a hostname (or
numeric | P address), separated by an @ symbol:

SSH1, SSH2
Al | owUsers | ones@xanpl e. com

Despite its appearance, this string isn't an email address, and it doesn't mean “the user jones on the machine example.
com." Rather, it describes a relationship between alocal account, jones, and a remote client machine, example.com. The
meaning is: "clients on example.com may connect to the server's jones account." Although this meaning is surprising, it
would be even stranger if jones were aremote account, since the SSH server has no way to verify account names on
remote client machines (except when using hostbased authentication).

For SSH1 and OpenSSH, wildcard characters are acceptable in the user and host portions of Al | owlUser s and
DenyUser s arguments. The ? symbol represents any single character except @, and the * represents any sequence of
characters, again not including @. For SSH2, you may use full regular expressions, although the syntax is alittle
different from usual to accommodate "fileglob" syntax as well; see Appendix A.

The SSH2 regular-expression language includes keywords with a colon character in them,
“'@ such as[:digit:]. Using a colon in an SSH2 access-control pattern can cause a nasty,
difficult-to-track-down problem: it isignored, along with the rest of your configuration file!
The problem is that the parser is abit dumb and interprets the colon as introducing a
labelled section of thefile. The label doesn't match anything, and so the rest of the file, now
included in the section, is silently ignored. Y ou can avoid this problem simply by placing
the pattern inside quotation marks:

Al'l owHosts "10.1.1.[:digit:]##"

Though undocumented, this quoting syntax works.

Here are some examples. SSH connections are permitted only to accounts with five-character names ending in "mith":

SSH1, SSH2, OpenSSH
Al l owldsers ?mth

SSH connections are permitted only to accounts with names beginning with the letter "s*, coming from hosts whose
namesend in".edu":

SSH1, SSH2, OpenSSH
Al l owlsers s*@. edu

SSH2 connections are permitted only to account names of the form "testN " where N isanumber, e.g., "test123".

SSH2 only
Al |l owUsers test[O0-9]##

One unfortunate, glaring omission isthat you can't specify IP networks with traditional "address/masklength” syntax, e.

0., 10.1.1.0/28 to mean the addresses 10.1.1.0 through 10.1.1.15.* 7o restrict connections to come from this range of
addresses with Al | owHost s [Section 5.5.2.3] is rather more verbose:

SSH1
Al'l owHosts *@0.1.1.7? *@0.1.1.10 *@0.1.1.11 *@0.1.1.12 *@0.1.1.13
Al'l owHosts *@0.1.1.14 *@0.1.1.15

or complicated:

SSH2
Al owHosts *@0.1.1.(?|(1[0-5]))

Restricting to a network that falls on an octet boundary, of course, is easier:

SSH1, SSH2
Al'l ow connections only from10.1.1.0/24
Al |l owHosts *@0.1.1.*

Note, though, that this can be easily circumvented; an attacker need only control a domain server somewhere and
connect from a machine named 10.1.1.evil.org. A more effective statement is:

SSH2 only
Al lowUsers "*@0.1.1.[:isdigit:]##"

Even thisisn't foolproof. Address and hostname-based restrictions are weak restrictions at best; they should be used only
as an adjunct to a strong authentication method.

Multiple strings may appear on asingle Al | owUser s line. SSH1 and OpenSSH separate strings with whitespace;
however, the syntax differs between SSH1/OpenSSH and SSH2:

SSH1, OpenSSH
Al l owUsers smth jones cs*

and SSH2 separates them with commas, no whitespace permitted:

SSH2 only
Al'l owUsers smith,jones, cs*

Al'l owser s and DenyUser s may be combined effectively. Suppose you're teaching a course and want your
students to be the only users with SSH access to your server. It happens that only student usernames begin with "stu”, so

you specify:

SSH1, SSH2, QOpenSSH
Al | owlsers stu*

Later, one of your students, stu563, drops the course so you want to disable her SSH access. Simply change the
configuration to:

SSH1, SSH2, OpenSSH
Al l owUsers st u*
DenyUsers st u563

Hmm... this seems strange. The two lines appear to conflict because the first permits stu563 but the second rejectsit. The
server handles thisin the following way: if any line prevents access to an account, the account can't be accessed. Soin
the preceding example, stu563 is denied access by the second line.

Consider another example:

SSH1, SSH2, OpenSSH
Al'l owUsers smth
DenyUsers s*

It permits SSH connections to the smith account but denies connections to any account beginning with "s'. What does

the server do with this clear contradiction? It rejects connections to the smith account, following the same rule: if any
restriction prevents access, such asthe Deny User s line shown, accessis denied. Accessis granted only if there are no
restrictions against it.

sshd can store at most 256 user stringsfor Al | owlUser s and 256 for Deny User s. This undocumented static limit
appliesif the strings follow a single keyword (e.g., Al | owUser s followed by 256 strings) or multiple keywords (e.g.,
16 Al | owUser s keywords with 16 strings each). That is, the limit isinternal to the server, not related to the length of a
line in the configuration file.

Finally, here is a useful configuration example, expressed in SSH1 syntax:
Al l owUsers wal rus@ carpenter@ *@.beach. net

This restricts access for most accounts to connections originating inside the domain beach.net-except for the accounts
"walrus' and "carpenter", which may be accessed from anywhere. The @* following walrus and carpenter isn't strictly
necessary, but it helps make clear the intent of the line.

It'sworth noting that hostnames in these access-control statements are dependent on the integrity of DNS, which is
easily spoofed. If thisisaconcern, consider using | P addresses instead, even though maintenance might be more
cumbersome.

5.5.2.2 Group access control

sshd may permit or deny SSH access to all accountsin a Unix group on the server machine. The keywords
Al'l owGr oups and Deny G oups serve this purpose. They are followed by one or more Unix group names:

SSH1, OpenSSH (separation by whitespace)
Al | owG oups faculty
DenyG oups students secretaries

SSH2 only (separation by conmm)
Al | owG oups faculty
DenyG oups students, secretaries

These keywords operate much like Al | owlser s and DenyUser s. SSH1 and OpenSSH accept the wildcards * and ?
within group names, whereas SSH2 acceptsits usual regular expressions (see Appendix A), and you may provide

multiple strings per line:

SSH1, OpenSSH
Al | owG oups ?aculty s*s

SSH2 only
Al | owG oups ?aculty, s*s

Unfortunately, these directives apply only to the target user's primary group, the one listed in the passwd record for the
account. An account may belong to other groups as well (e.g., by entry in the /etc/groups file or NIS map), but SSH
doesn't natice. It's a pity: if supplementary groups were supported, you could easily designate a subset of SSH-accessible
accounts by defining a group-say, sshusers-and configure the SSH server with Al | owG oups sshuser s. This
feature also automatically prevents access to system accounts such as bin, news, and uucp that don't require SSH.
Perhaps some SSH implementors will fix this someday.

By default, accessis alowed to al groups. If any Al | owG oups keyword appears, access is permitted to only the
primary groups specified (and may be further restricted with Deny G- oups).

Aswasthecasefor Al | owUser s and DenyUser s, conflicts are resolved in the most restrictive way. If any

Al'l owGr oups or Deny G oups line prevents access to a given group, access is denied to that group even if another
line appearsto permit it. Also as before, there is a static limit of 256 strings that may follow Al | ow- Gr oups or
Deny G oups keywordsin the configuration file.

5.5.2.3 Hosthame access contr ol

Inthediscussion of Al | owlser s and DenyUser s, we described how to permit or reject SSH-1 connections from a
given host, say, example.com:

SSH1, QOpenSSH
Al'l owUsers *@xanpl e. com
DenyUsers *@xanpl e. com

SSH1 and SSH2 provide the keywords Al | owHost s and DenyHost s to restrict access by s host more concisely,
getting rid of the unnecessary account-name wildcard:

SSH1, SSH2
Al | owHost s exanpl e. com
DenyHost s exanpl e. com

The Al | owHost s and DenyHost s keywords permit or prevent (respectively) SSH connections from given hosts.*®)

Aswith Al | owlUser s and DenyUser s:

. Vaues may contain the wildcards ? and * (SSH1, OpenSSH) or regular expressions (SSH2, Appendix A).

. Vaues may contain multiple strings separated by whitespace (SSH1, OpenSSH) or commas (SSH2).
. Keywords may appear multiple timesin the configuration file, and the results are cumulative.

« Hostnames or IP addresses may be used.

. At most 256 strings may follow Al | owHost s or DenyHost s keywordsin the configuration file.

Al'l owHost s and DenyHost s have aunique feature among the access-control keywords. If sshdl refuses a
connection based on Al | owHost s or DenyHost s, it optionaly prints an informative message for the client:

Sorry, you are not allowed to connect.

This printing is controlled by the Si | ent Deny keyword. If itsvalueis no (the default), the message is printed, but if
thevalueisyes, the message is suppressed (i.e., silent denial):

SSH1 only
Si | ent Deny no

Asasideeffect, Si | ent Deny also prevents the failed connection attempt from appearing in the server's log messages.
With Si | ent Deny turned off, you seethisin thelog:

| og: Connection fromclient.marceau. net not allowed.
fatal: Local: Sorry, you are not allowed to connect.

When Si | ent Deny isturned on, these messages don't appear in the server logs. Si | ent Deny doesn't apply to any
other access-control keywords (DenyUser s, Deny SHost s, etc.), nor isit related to authentication.

5.5.2.4 shosts access contr ol

Al I owHost s and DenyHost s offer total hostname-based access control, regardless of the type of authentication
requested. A similar but less restrictive access control is specific to trusted-host authentication. Y ou can deny access to
hosts that are named in .rhosts, .shosts, /etc/hosts.equiv, and /etc/shosts.equiv files. Thisis accomplished with the

keywords Al | owSHost s and Deny SHost s [16]

For example, the line:

SSH1, SSH2
DenySHost s badguy. com

forbids access by connections from badguy.com, but only when trusted-host authentication is being attempted. Likewise,
Al | owSHost s permits access only to given hosts when trusted-host authentication is used. Values follow the same
syntax asfor Al | owHost s and DenyHost s. Asaresult, system administrators can override valuesin users' .rhosts
and .shosts files (which is good, because this can't be done viathe /etc/hosts.equiv or /etc/shosts.equiv files).

Asfor Al | owHost s and DenyHost s:

. Vaues may contain the wildcards ? and * (SSH1) or regular expressions (SSH2, Appendix A).

. Vaues may contain multiple strings separated by whitespace (SSH1) or commas (SSH2).

. Keywords may appear multiple timesin the configuration file, and the results are cumulative.

. Hostnames or | P addresses may be used.

. Thereisasdtatic limit of 256 stringsthat may follow Al | owSHost s or Deny SHost s keywordsin the
configuration file.

5.5.2.5 Root access control

sshd has a separate access-control mechanism for the superuser. The keyword Per mi t Root Logi n alows or denies
access to the root account by SSH:

SSH1, SSH2, QpenSSH
Per m t Root Logi n no

Permissible values for this keyword are yes (the default) to alow access to the root account by SSH, no to deny al
such access, and nopwd (SSH1, SSH2) or wi t hout - passwor d (OpenSSH) to allow access except by password
authentication.

In SSH1 and OpenSSH, Per m t Root Logi n applies only to logins, not to forced commands specified in
authorized_keys. [Section 8.2.4] For example, if root's authorized keys file contains a line beginning with:

comand="/ bi n/ dunp"

then the root account may be accessed by SSH to run the dump command, no matter what the value of
Per m t Root Logi n. This capability lets remote clients run superuser processes, such as backups or filesystem checks,
but not unrestricted login sessions.

The server checks Per mi t Root Logi n after authentication is complete. In other words, if Per i t Root Logi n is
no, aclient is offered the opportunity to authenticate (e.g., is prompted for a password or passphrase) but is shut down
afterward regardless.

We've previously seen asimilar keyword, | gnor eRoot Rhost s, that controls access to the root account by trusted-
host authentication. It prevents entries in ~root/.rhosts and ~root/.shosts from being used to authenticate root. Because
sshd checks Per m t Root Logi n after authentication is complete, it overrides any value of | gnor eRoot Rhost s.
Table 5-2 illustrates the interaction of these two keywords.

Table5.2. Canroot Log In?

IgnoreRootRhosts yes I gnoreRootRhosts no

Per m t Root Logi n yes Y es, except by trusted-host Yes

Per m t Root Logi n no No No

Per m t Root Logi n nopwd

(nopasswor d) Y es, except by trusted-host or password | Y es, except by password

5.5.2.6 Restricting directory access with chroot

The Unix system call chroot causes a processto treat a given directory asthe root directory. Any attempt to cd outside
the subtree rooted at the given directory fails. Thisis useful for restricting a user or process to a subset of afilesystem
for security reasons.

SSH2 provides two keywords for imposing this restriction on incoming SSH clients. ChRoot User s specifies that SSH
clients, when accessing a given account, are restricted to the account's home directory and its subdirectories:

SSH2 only
ChRoot Users snith

Several accounts may be specified on the same line, separated by commas, meaning that each of these accounts are
individually restricted when accessed via SSH2:

SSH2 only
ChRoot Users snith,jones, ntnal ly

The other keyword, ChRoot G- oups, works similarly but applies to all accountsin agiven Unix group:

SSH2 only
ChRoot Groups users, wheel , mygr oup

ChRoot Gr oups only examines an account's primary group; supplementary groups aren't
~“M&ap| considered. Thismakesit amuch less useful feature than it would otherwise be. Hopefully,
afuller implementation will comein the future.

To make this chroot functionality work, you might need to copy some system files into the account in question.
Otherwise the login might fail because it can't access needed resources, such as shared libraries. On our Linux system,
we needed to copy the following programs and libraries into the account:

/bin/ls

/bin/bash
Nlib/Id-linux.s0.2
Nlib/libc.s0.6
Nlib/libtermcap.so.2

This sort of thing can be reduced by statically linking the SSH executables. SSH2 recently added atool called ssh-
chrootmgr to help with this process; unfortunately, it occurred too close to presstime for usto review it. See the

manpage for details.

5.5.2.7 Summary of authentication and access control

SSH provides several ways to permit or restrict connections to particular accounts or from particular hosts. Table 5-3

and Table 5-4 summarize the available options.

Table5.3. SSH1 and OpenSSH Summary of Authentication and Access Control

If vou are And you want to allow or Then use
y restrict...
Connections to your account . .
: . authorized_keys[Section 8.2.1

User by public-key authentication keys|]
Administrator | Connections to an account Al l owmUser s, DenyUser s
User Connections by a host authorized_keys from="..." option [Section 8.2.5.1]
Administrator | Connections by a host Al | owHost s, DenyHost s (or Al | owUser s, DenyUser s)

Connections to your account
User by trusted-host .rhosts, .shosts

authentication

Rhost sAut henti cat i on, Rhost sRSAAut henti cati on,
Administrator | Trusted-host authentication I gnor eRhost s, Al | owSHost s, DenySHost s, fetc/hosts.equiv, /
etc/shosts.equiv
Administrator | Root logins | gnor eRoot Rhost s, Permi t Root Logi n
Table5.4. SSH2 Summary of Authentication and Access Control
If you are... Andyou wanf[toallow or Then use...
restrict...
Connections to your account T :
: . authorization file [Section 8.2.2

User by public-key authentication []
Administrator | Connections to an account Al'l owlUser s, DenyUser s

User Connections by a host N/A

Administrator | Connections by a host Al | owHost s, DenyHost s

Connections to your account

User by trusted-host authentication

.rhosts, .shosts

Al | owedAut henti cati ons, Al | owSHost s, DenySHost s, /

Administrator | Trusted-host authentication etc/hosts.equiv, /etc/shosts.equiv

Administrator | Root logins Per m t Root Logi n

5.5.3 Selecting a Login Program

Another way to control authentication and access to a machine is to replace the Unix login program. SSH1 provides a
hook for doing so, though it requires solid knowledge of your operating system's login procedure.

When an SSH1 client initiates aterminal session with the server, normally the server invokes the local account'slogin
shell directly. Y ou can override this choice by specifying - wi t h- | ogi n [Section 4.1.5.9] during compile-time

configuration, causing the server to invoke alogin program instead (e.g., /bin/login or Kerberos'slogi n.krb5).[17]

What's the difference? That depends on the operating system on the server machine. The login program might set some
additional environment variables (such as DISPLAY for the X Windows system), perform additional auditing or
logging, or take other actions a shell doesn't.

In order for the login program specified by - wi t h- 1 ogi n to be invoked by sshdl, you must also set the
undocumented keyword UselLogi n. It takesavalue of yes (to use an alternative login program) or no, the default:

SSH1, OpenSSH
UselLogi n yes

OpenSSH doesn't have - wi t h- | 0ogi n, so you can't specify an aternative login program. The OpenSSH UselLogi n
statement chooses only between /bin/login and alogin shell.

The behavior of alogin program versus alogin shell is entirely implementation-specific, so we won't cover the
intricacies. If you need to muck with Usel.ogi n, you first need to understand the features of your operating system and
your login program in detail.

%] The order is not significant, since the client drives the authentication process.

(7 Requi r edAut hent i cat i ons wasbrokenin SSH2 2.0.13, causing authentication to always fail. The problem was fixed
in2.1.0.

(8 sgH-2 protocol only.

(9] Actually means S/Key authentication, not TIS.

[10] OpenSSH 2.3.0 doesn't yet support hostbased authentication for SSH-2 connections.

(11 They use different versions of Kerberos: Kerberos-5 for SSH1, and Kerberos-4 for OpenSSH.

112 1t also requires a successful granting of a host ticket for the local host as an antispoofing measure.

(13 This concept istrue for the configuration keywords discussed in this section but not for trusted-host control files, e.g., ~/.
rhosts and /etc/hosts.equiv. Each of these may in fact override the other. [Section 3.4.2.3]

34 |1 this notation, the mask specifies the number of 1 bitsin the most-significant portion of the netmask. Y ou might be more
familiar with the older, equivalent notation giving the entire mask, e.g., 10.1.1.0/255.255.255.240.

(19 F ner-grained control is provided by the "from" option in authorized_keys. [Section 8.2.5] Each public key may be tagged
with alist of acceptable hosts that may connect viathat key.

1361 Even though the keywords have "SHosts" in their names, they apply aso to .rhosts and /etc/hosts.equiv files.

17 1¢ /i n/login isinvoked, you might wonder why it doesn't prompt every SSH client for alogin password. Well, the server
runs /bin/login -f, which disables login's password authentication. The -f option is left unmentioned in the login manpage of
many operating systems.

5.6 User Loginsand Accounts
When alogin occurs, the SSH server can take special actions. Here, we discuss:

. Printing welcome messages for the user
. Handling expired accounts or passwords
. Handling empty passwords

. Taking arbitrary actions with /etc/sshrc

5.6.1 Welcome M essages for the User

When userslog in, sshd prints informative messages such as the " message of the day" file
(/etc/motd) and whether the user has email. This output may be turned on and off in the
configuration file. Since most Unix shells print this information on login, these SSH
features are frequently redundant and turned off.

To enable or disable the message of the day, usethe Pr i nt Vbt d keyword with the value
yes (the default) or no:

SSH1, SSH2, OpenSSH
PrintMtd no

Incidentally, sshd obeys the Unix "hushlogin™ convention. If the file ~/.hushlogin exists, /
etc/motd isn't printed on login, regardless of the Pr i nt Vot d value.

A message about email (e.g., "You have mail") is printed on login if the CheckVai |
keyword has the value of yes (the default), or the message is skipped if the valueisno:

SSH1, SSH2, OpenSSH
CheckMai | yes

5.6.2 Expired Account or Password

If auser's password or computer account is expiring soon, sshdl can optionally print
warning messages when the user logsin via SSH:

WARNI NG Your password expires in 7 days
WARNI NG Your account expires in 10 days

These messages are turned on and off by the keywords Passwor dExpi r e-

VVar ni ngDays and Account Expi reV\ar ni ngDays, respectively:

SSH1 only
Passwor dExpi r eWar ni ngbDays 7
Account Expi r eWar ni ngbays 10

The value following the keyword is a number of days, and by default, both values are 14. A

zero value means that the warning message is suppressed. Note that account and password

expiration aren't features of SSH, but of the host operating wstem.[lS]

If apassword has expired, the SSH1 server can prompt the user to change it upon login.
Thisfeature is controlled by the keyword For cedPasswdChange, givenavaue of yes
or no (the default). If the feature is enabled:

SSH1 only
For cedPasswdChange yes

the user is prompted to change a password if expired. Until this password is changed, SSH
connections aren't accepted.

5.6.3 Empty Passwords

If password authentication is used, and an account has an empty password, the SSH server
may refuse access to the account. This feature is controlled by the keyword
Perm t Enpt yPasswor ds with avalue of yes (the default) or no. If enabled:

SSH1, SSH2, OQpenSSH
Per m t Enpt yPasswor ds yes

empty passwords are permissible; otherwise not.

The SSH1 server additionally may require users with empty passwords to change them.
The keyword For cedEnpt yPasswdChange controlsthis feature much like

For cedPasswdChange for expired passwords. The For cedEnpt yPasswdChange
keyword may have avalue of yes or no (the default):

SSH1 only
For cedEnpt yPasswdChange yes

If thevalueisyes and the password is empty, then upon login, the user is prompted to
change his or her password and can't log in until the change is made.

5.6.4 Arbitrary Actionswith /etc/sshrc

When auser logs in, the normal Unix login system typically runs some shell scripts, such
as /etc/profile. In addition, sshd runs the script /etc/sshrc for each SSH-based login. This
feature lets the system administrator run special commands for SSH logins that don't occur
for ordinary logins. For example, you can do some additional logging of SSH connections,
print welcome messages for SSH users only, and set SSH-related environment variables.

In all three, SSH1, SSH2, and OpenSSH, /etc/sshrc is processed by the Bourne shell (/bin/
sh) specifically, rather than the user's shell, so that it can run reliably for all accounts
regardless of their various shells. It isrun for logins (e.g., ssh my-host) and remote
commands (ssh my-host /bin/who), just before the user's shell or command is invoked. It
runs under the target account's uid, so it can't take privileged actions. If the script exits due
to an error (say, asyntax error), the SSH session continues normally.

Note that thisfileis run as input to the Bourne shell: sshd runs /bin/sh /etc/sshrc, not /bin/
sh -c /etc/sshrc. This means that it can't be an arbitrary program; it must be afile containing
Bourne-shell commands (and it doesn't need the execute mode bit set).

/etc/sshrc operates machinewide: it is run for every incoming SSH connection. For more
fine-grained control, each user may create the script ~/.ssh/rc to be run instead of /etc/
sshrc. [Section 8.4] /etc/sshrc isn't executed if ~/.ssh/rc exists in the target account. Note

that SSH rc filesinteract with X authentication. [Section 9.3.5.2]

5.6.4.1 /etc/nologin

If the file /etc/nologin exists, sshd allows only root to log in; no other accounts are allowed
access. Thus, touch /etc/login is a quick way to restrict access to the system administrator
only, without having to reconfigure or shut down SSH.

(18 Account expiration requires that your operating system support /etc/shadow. Password
expiration requires struct passwd to have apw_expire field ala FreeBSD.

5.7 Subsystems

Subsystems are a (mostly undocumented) layer of abstraction for defining and invoking
remote commands in SSH2 and OpenSSH/2. Normally you invoke remote commands ad
hoc by providing them on the client command line. For instance, the following line invokes
the Unix backup program tar remotely to copy the /home directory to tape:

SSH2, QpenSSH 2
$ ssh server.exanple.com/bin/tar ¢ /hone

Subsystems are a set of remote commands predefined on the server machine so they can be

executed conveni ently.[lg] These commands are defined in the server configuration file,
and the syntax is slightly different between OpenSSH and SSH2. A subsystem for invoking
the preceding backup command is:

SSH2

subsyst em backups /bin/tar ¢ /hone
OpenSSH 2

subsyst em backups /bin/tar ¢ /hone

Note that SSH2 uses a keyword of the form "subsystem-name" with one argument,
whereas OpenSSH uses the keyword "subsystem” with two arguments. This SSH2 syntax
is quite odd and unlike anything else in its configuration language; we don't know how it
ended up that way.

To run this command on the server machine, invoke ssh with the -s option:

SSH2, QpenSSH 2
$ ssh -s backups server. exanpl e.com

This command behaves identically to the previous one in which /bin/tar was invoked
explicitly.

The default sshd2 _config file defines one subsystem:

subsystem sftp sftp-server

Don't removethesubsyst em sf t p linefrom sshd2_config: it
isrequired for scp2 and sftp to work. Internally, both programs

run ssh2 -s sftp to perform file transfers.

Subsystems are mainly a convenience feature to predefine commands for SSH clients to
invoke easily. The additional level of abstraction can be helpful to system administrators,
who can define and advertise useful subsystems for their users. Suppose your users run the
Pine email reader to connect to your IMAP server using SSH2 to secure the connection.
[Section 11.3] Instead of telling everyone to use the command:

$ ssh2 server. exanpl e.com /usr/sbin/impd

and revealing the path to the IMAP daemon, imapd, you can define a subsystem to hide the
path in case it changesin the future:

SSH2 only
subsystem i map [usr/sbin/impd

Now users can run the command:

$ ssh2 -s imap server. exanpl e.com

to establish secure IMAP connections via the subsystem.
5.7.1 Disabling the Shell Startup File

If your remote shell is C shell or tcsh, it normally reads your remote shell startup file (.
cshrc, .tcshrc) at the beginning of the session. Some commands in these startup files,
particularly those that write to standard output, may interfere with the file-copy commands
scp2 and sftp. In SSH2, file copying is accomplished by the sftp-server subsystem, so
SSH2 disables reading of .cshrc and .tcshre for subsystems. [Section 3.5.2.4] You can
reenable this with the keyword Al | owCshr c- Sour ci ngW t hSubsyst ens,
providing avalue of yes (permit .cshrc and .tcshrc sourcing) or no (the default):

SSH2 only
Al | owCshr cSour ci ngW t hSubsyst ens yes

SSH2 disables the sourcing of remote .cshrc and .tcshrce files by passing the -f command-
line option to the remote C shell or tcsh invocation.

(191 Abstractly, a subsystem need not be a separate program,; it can invoke a function built into the
SSH server itself (hence the name). But there are no such implementations at the moment.

5.8 History, Logging, and Debugging

Asan SSH server runs, it optionally produces log messages to describe what it is doing. Log messages aid the system administrator in
tracking the server's behavior and detecting and diagnosing problems. For example, if a server is mysteriously rejecting connections it
should accept, one of the first places to seek the cause is the server's log output.

Logging works differently for the SSH1, SSH2, and OpenSSH servers, so we discuss each separately.
5.8.1 Logging and SSH1

By default, sshd1 writes log messages to syslog, the standard Unix logging facility (see Sidebar "The Syslog Logging Service"). For
example, aserver startup generates these syslog entries:

| og: Server listening on port 22.
| og: Generating 768 bit RSA key.
| og: RSA key generation conpl ete.

and a client connection and disconnection appear as:

| og: Connection from 128.11.22.33 port 1022
| og: Rhosts with RSA host authentication accepted for smth, smth on nyhost. net
| og: Closing connection to 128.11.22.33

sshdl permits logging to be controlled in three ways:
Fascist Logging mode

Prints additional debug messages to the system log file. Enabled by the Fasci st Loggi ng keyword.
Debug mode

A superset of Fascist Logging mode. Enabled by the -d command-line option.
Quiet mode

Suppresses al log messages except fatal errors. Enabled by the Qui et Mbde keyword or the - command-line option.

The Syslog L ogging Service

Sydlog isthe standard Unix logging service. Programs send their log messages to the syslog daemon, syslogd, which
forwards them to another destination such as a console or afile. Destinations are specified in the syslog configuration
file, /etc/syslog.conf.

Messages received by syslogd are processed according to their facility, which indicates a message's origin. Standard
syslog facilities include KERN (messages from the operating system kernel), DAEMON (messages from system daemons),
USER (messages from user processes), VAl L (messages from the email system), and others. By default, the facility for
SSH server messages is DAEMON. This choice may be changed with the SSH keyword Sys| ogFaci | i ty, which
determines the syslog facility code for logging SSH messages:

SSH1, SSH2, OpenSSH
Sysl ogFaci lity USER

Other possible values are USER, AUTH, LOCALO, LOCALL, LOCAL2, LOCAL3, LOCAL4, LOCALS, LOCALG, and
LOCAL7. See the manpages for syslog, syslogd, and syslog.conf for more information about this logging service.

5.8.1.1 SSH1 Fascist L ogging mode

Fascist Logging mode causes sshd1 to print debug messages to the system log file asit proceeds. For example:

debug: dient protocol version 1.5; client software version 1.2.26
debug: Sent 768 bit public key and 1024 bit host key.

debug: Encryption type: idea

debug: Recei ved session key; encryption turned on.

Fascist Logging mode is controlled by the Fasci st Loggi ng keyword in the server configuration file, given an argument of yes or
no (the default):(%

SSHL (and SSH2)
Fasci st Loggi ng yes

5.8.1.2 SSH1 Debug mode

Like Fascist Logging mode, Debug mode causes the server to print debug messages. It is disabled by default, and is enabled by the -d
command-line option of sshd:

SSH1, OpenSSH
$ sshd -d

Debug mode prints the same diagnostic messages as Fascist Logging mode but also echoes them to standard error. For example, a
server run in Debug mode on TCP port 9999 produces diagnostic output like the following:

SSH1, OpenSSH

$ sshd -d -p 9999

debug: sshd version 1.2.26 [sparc-sun-solaris2.5.1]
debug: Initializing random nunber generator; seed file /etc/ssh_random seed
| og: Server listening on port 9999.

| og: Generating 768 bit RSA key.

Generating p: ++ (di stance 100)

Cenerating q: , ++ (di stance 122)
Computi ng the keys..

Testing the keys..

Key generation conplete.

| og: RSA key generation conpl ete.

The server then waits in the foreground for connections. When one arrives, the server prints:

debug: Server will not fork when running in debuggi ng node

 og: Connection from 128.11.22.33 port 1022

debug: Cdient protocol version 1.5; client software version 1.2.26
debug: Sent 768 bit public key and 1024 bit host key.

debug: Encryption type: idea

debug: Recei ved session key; encryption turned on

debug: Installing crc conpensation attack detector

debug: Attenpting authentication for smth.

debug: Trying rhosts with RSA host authentication for smth

debug: Rhosts RSA aut hentication: canonical host myhost. net

| og: Rhosts with RSA host authentication accepted for smth, smth on nyhost. net
debug: Allocating pty.

debug: Forking shell

debug: Entering interactive session

When the client exits, the server exits as well, since (as the preceding messages show) the server doesn't fork subprocesses while
running in Debug mode but handles a single connection within the one process:

debug: Recei ved S| GCHLD.

debug: End of interactive session; stdin 13, stdout (read 1244, sent 1244), stderr 0 bytes.
debug: pty_cl eanup_proc call ed

debug: Command exited with status O.

debug: Received exit confirnmation.

| og:

Cl osing connection to 128.11.22. 33

Debug mode has the following features beyond those of Fascist Logging mode:

It echoes log messages to standard error.

It prints a few extra messages to standard error that aren't written to the log file, such as RSA key generation messages.

It makes the server single-threaded, preventing it from forking subprocesses. (Hence the message " Server will not fork when
running in debugging mode" in the preceding output.) The server exits after handling one connection request. Thisis helpful
while troubleshooting so you can focus on a single client connection.

ItsetsLogi nGraceTi e to zero, so the connection doesn't drop while you are debugging a problem. (Very sensible.)

It causes a Unix SSH client, upon connection, to print the server-side environment variable settings on standard error. This can
aid in debugging connection problems. For example, a connection on port 9999 to the server shown earlier produces diagnostic
output like:

$ ssh -p 9999 nyserver. net
[...login output begins...]
Envi ronnent :

HOVE=/ home/ smi t h

USER=smi t h

LOGNAME=smi t h

PATH=/ bi n: /usr/bin:/usr/ucb
MAI L=/var/mail /sm th

SHELL=/ usr/ bi n/ ksh

TZ=US/ East er n

HZ=100

SSH _CLI ENT=128. 11. 22. 33 1022 9999
SSH TTY=/dev/ pts/3

TERMEVt 220

REMOTEUSER=smi t h

[...login output continues...]

Because of these convenience features, Debug mode is generally more useful than Fascist Logging mode.

5.8.1.3 SSH1 Quiet mode

Quiet mode suppresses some diagnostic messages from sshdl, depending on the settings of the Fascist Logging and Debug modes.
Table 5-5 illustrates the behavior of Quiet mode when used in tandem with these modes.

Table5.5. Behavior of SSH1 Quiet Mode

Quiet Debug Fascist Logging Results
No No No Default logging (syslog); no "debug:" messages
No No Yes Fascist Logging mode (syslog)
No Yes Yes/No Debug mode (syslog, stderr)
Yes No No Log fatal errors only (syslog)
Yes No Yes Log fatal errorsonly (syslog)
Yes Yes Yes/No Log fatal errors (syslog, stderr) and key generation messages

Quiet mode is controlled by the Qui et Mode keyword in the server configuration file, given an argument of yes or no (the default):

SSH1, SSH2
Qui et Mode yes

or by the -q command-line option:

SSH1, SSH2, OpenSSH
$ sshd -q

5.8.2 Logging and SSH2

The logging modes for SSH2 differ from those of SSH1. The keywords and options appear mostly the same, but their behaviors are
different:

Debug mode
Prints debug messages on standard error. Enabled by the -d command-line option, followed by an integer (a debug level) or a
modul e specification (for finer-grained logging).

Verbose mode

A shorthand for Debug mode level 2. Enabled with the -v command-line option or the Ver boseMbde keyword.
Fascist Logging mode

Undocumented and has almost no purpose. Enabled by the Fasci st Loggi ng keyword.
Quiet mode

Suppresses all log messages except fatal errors. Enabled by the Qui et Mode keyword or the -q command-line option.

] We strongly recommend compiling SSH2 with heavy debugging turned on, using theflag - enabl e-
=) debug- heavy. [Section 4.1.5.14] The resulting log messages are far more detailed than those printed
W 4. by default.

'{_

5.8.2.1 SSH2 Debug maode (general)

SSH2's Debug mode is enabled only by command-line option, not keyword. Asisthe case for SSH1, Debug mode is controlled by the -
d command-line option. Unlike its SSH1 counterpart, the option requires an argument indicating the debug level, and output is sent to
standard error (stderr).

A debug level may be indicated in two ways. The first is a nonnegative integer:

SSH2 only
$ sshd2 -d 1

The integer levels supported at presstime are illustrated in Example 5-1. Specifying a debug level of n means that messages for all
levelsless than or equal to n will be printed. For instance, a debug level of 9 means that debug messages for levels 0-9 are printed.

Example 5.1. SSH2 Debug L evels

Not to be used inside | oops:

0) Software mal functions

1)

2) (0-2 should also be |ogged using | og-event)

3) External non-fatal high Ievel errors
- incorrect format received froman outside source
- failed negotiation

4) Positive high level info

- succeeded negotiation
5) Start of a high or mddle | evel operation
- start of a negotiation
- opening of a device
- not to be used by functions which are called frominside | oops

Can be used inside | oops:

6) Uncommon situations which m ght be caused by a bug
7) N ce-to-know info
- Entering or exiting a function
- Aresult of a low level operation
8) Data bl ock dunps
- hash
- keys
- certificates
- ot her non-nassive data bl ocks
9) Protocol packet dunps
- TCP
- UDP
- ESP
- AH
10) Md-results
- inside | oops
- non-final results
11-15) For progranmmers own debug use
- own discretion
- needed only by a person doi ng bughunt

5.8.2.2 SSH2 Debug mode (module-based)

Debug levels can also be set differently for each source code "module” of SSH2. This permits finer-grained control over logging, as
well as producing tons of output. This type of debugging is documented only within the source code (lib/sshutil/sshcore/sshdebug.h),
so to use this mode effectively, you should have some C programming knowledge.

A SSH2 source fileis defined to be a"module” for debugging purposes, by defining SSH_DEBUG_MODULE within the file. For
example, the file apps/ssh/auths-passwd.c has the module name Ssh2A uthPasswdServer because it contains the line:

#define SSH DEBUG MODULE " Ssh2Aut hPasswdSer ver"

The complete set of module names for SSH2 2.3.0 isfound in Table 5-6.

Table5.6. SSH2 M odule Names

Ar cFour Get Opt Conpat Mai n

Scp2 Sftp2 Sft pOnd

Sft pPager SshlKeyDecode Ssh2

Ssh2Aut hd i ent Ssh2Aut hConmonSer ver Ssh2Aut hHost BasedCl i ent
Ssh2Aut hHost BasedRhost s Ssh2Aut hHost BasedSer ver Ssh2Aut hKer ber osd i ent
Ssh2Aut hKer ber osSer ver Ssh2Aut hKer ber osTgt d i ent Ssh2Aut hKer ber osTgt Ser ver

Ssh2Aut hPasswdd i ent

Ssh2Aut hPasswdSer ver

Ssh2Aut hPubKeyd i ent

Ssh2Aut hPubKey Ser ver

Ssh2Aut hSer ver

Ssh2Channel Agent

Ssh2Channel Sessi on

Ssh2Channel Ssh1Agent

Ssh2Channel TcpFwd

Ssh2Channel X11 Ssh2d i ent Ssh2Conmon
Ssh2PgpPubl i ¢ Ssh2PgpSecr et Ssh2PgpUti |

Ssh2Tr ans Ssh2Tr ansport SshADT

SshADTAr r ay SshADTAssoc SshADTLI st
SshADTMap SshADTTest SshAdd

SshAgent SshAgent d i ent SshAgent Pat h
SshAppCommon SshAskPass SshAut hMet hodd i ent
SshAut hMet hodSer ver SshBuf ZI P SshBuf f er

SshBuf f er Aux SshConfi g SshConnecti on
SshDSpri nt f SshDebug SshDecay
SshDirectory SshEPri nt f SshEncode

SshEvent Loop SshFCA ob SshFCRecur se
SshFCTr ansf er SshFSM SshFast al | oc

SshFi | eBuf f er SshFi | eCopy SshFi | eCopyConn
SshFi |l eXferC i ent SshFil ter Stream SshGenCi ph
SshGenvP SshGet Ond Sshd ob

Sshl net SshKeyGen SshPacket | npl ement at i on
SshPacket W apper SshPgpCi pher SshPgpFi | e
SshPgpGen SshPgpKey SshPgpKey DB

SshPgpPacket

SshPgpSt ri ngToKey

SshPr obe

SshPr ot 0SshCr Down

SshPr ot 0SshCr up

SshPr ot oTr Kex

SshReadLi ne SshReadPass SshRegex

SshSPri nt f SshSer ver SshSer ver Pr obe

SshSft pServer SshSi gner 2 SshStdl OFilter

SshSt ream SshSt reanPai r SshSt reanst ub

SshTUser Aut h SshTi ne SshTi neMeasur e

SshTi neMeasur eTest SshTt yFl ags SshUdp

SshUdpCGeneri c SshUni xConfi g SshUni xPt ySt r eam

SshUni xTcp SshUni xUser SshUni xUser Fi | es
SshUser Fi | eBuf f er SshUser Fi | es Sshd2
Test Mod Test SshFi | eCopy Test Sshd ob

Test Tt yFl ags t-fsm

To extract the current set of module names from the source code, search for SSH_DEBUG_MODULE in al source files from the root
of the SSH2 distribution:

$ find . -type f -exec grep SSH DEBUG MODULE '{}' \;

Once you have identified the name of your desired module, run the server in debug mode, providing the modul€e's name and debug
level:

$ sshd2 -d "nodul e_nane=debug_I evel _i nteger"
This causes the given module to print log messages at the given debug level. For example:
$ sshd2 -d "Ssh2Aut hPasswdSer ver =2"

causes the Ssh2A uthPasswdServer module to log at debug level 2. The messages provide the name of the function in which they occur
and the name of the source file in which the code is found.

Multiple modules may be specified, separated by commas, each set to individual debug levels:
$ sshd2 -d "Ssh2Aut hPasswdSer ver =2, SshAdd=3, SshSf t p=1"
Additionally, the wildcards * and ? can specify multiple module names:

$ sshd2 -d ' Ssh2*=3'

Remember to enclose the patternsin single quotes to prevent their expansion by the Unix shell.

Note that just because a source code file has a debugging module name associated with it, doesn't mean it actually logs any information
that way. Y ou may find that turning on debugging for specific modules doesn't produce any extra debugging output.

5.8.2.3 Debugging sshd2 -i

If you use SSH2 from inetd, debugging isalittle tricky. If you don't take extra steps, the debugging output goes to the client along with
the normal protocol conversation, messing it up and causing the connection to fail. What you need to do is redirect sshd 's standard
error to afile. Ideally, you do thisin /etc/inetd.conf :

ssh streamtcp nowait root /bin/sh /bin/sh -c "/usr/sbin/sshd2 -i -d2 2> /tnp/foo"

However, many inetd 's don't allow embedded spaces in program arguments (i.e., they don't recognize the quoting used in this
example). You can get around this using a separate script, like so:

/etc/inetd. conf
ssh streamtcp nowait root /path/to/debug-sshd2-i debug-sshd2-i

debug- sshd2-i

#!/ bin/sh

redirect sshd2 standard error to a file

exec /usr/local/sbin/sshd2 -i -d2 2> /tnp/sshd2. debug
5.8.2.4 SSH2 verbose mode

Verbose mode is exactly equivalent to Debug mode level two. It may be enabled by the -v command-line option of sshd2 :

SSH2 only

$ sshd2 -v Usi ng

-V

$ sshd2 -d 2 Identical to the preceding line

or by the Ver boselMbde keyword in the server configuration file, with avalue of yes or no (the default):

SSH2 only
Ver boseMbde yes

5.8.2.5 SSH2 Fascist L ogging mode

Fascist Logging mode is undocumented in SSH2. Its only purpose seems to be to override Quiet mode. [Section 5.8.2.6] Permissible
valuesareyes and no (the default):

SSH1, SSH2
Fasci st Loggi ng yes

5.8.2.6 SSH2 quiet mode

In Quiet mode, only fatal errors are logged. It can be overridden by the undocumented Fascist Logging mode. Asin SSH1, Quiet mode
is controlled by the Qui et Mode keyword in the serverwide configuration file, given an argument of yes or no (the default):

SSH1, SSH2
Qui et Mode yes

Or by the - command-line option of sshd:

SSH1, SSH2, OpenSSH
$ sshd -q

5.8.3 Logging and OpenSSH

Logging in OpenSSH is done via syslog, and is controlled by two configuration keywords: Sys| ogFaci | ity and LogLevel .
Sysl ogFaci | i ty determinesthe "facility" code used when sending a message to the syslog service; depending on the syslog
configuration, this helps determine what's done with the log messages (written to the console, stored in afile, etc.). LogLevel
determines how much detail is supplied in the information logged. The values in order of increasing verbosity are:

QUI ET, FATAL, ERROR, | NFO, VERBOSE, DEBUG
Logging with level DEBUG violates user privacy and should be used only to diagnose problems, not for normal operation.

If sshd isrunin debug mode (-d), logging goes to standard error instead of to syslog. Quiet mode (LogLevel Qui et or sshd -q)
sends nothing to the system log (although some messages resulting from OpenSSH activity may still be recorded, such as those from
PAM).

5.8.3.1 Absence of RSA support

OpenSSH doesn't need to be compiled with RSA support if restricted to protocol 2, but if this support is missing, sshd prints an error
message. To suppress this error message, use the -Q option:

OpenSSH only
$ sshd -Q

20 gt s barely supported in SSH2, aswe'll see. [Section 5.8.2.5]

5.9 Compatibility Between SSH-1 and SSH-2 Servers

OpenSSH Version 2 has support for both the SSH-1 and SSH-2 protocols within asingle
daemon accepting both types of connections. For SSH1 and SSH2, however, the story is more
complicated.

The SSH2 server can accept connections from SSH1 clients. This compatibility is achieved by
having the SSH2 server run the SSH1 server program instead whenever an SSH-1 connection is
requested. This compatibility feature is enabled and disabled with the SSH2

SshilConpati biI'1ty keyword, givenavaueof yes or no:

SSH2 only
SshlConpatibility yes

When SshlConpati bi |1ty isenabled, and an SSH-1 client connects to the SSH2 server,
the two programs exchange strings indicating their versions. [Section 3.4.1] sshd2 then locates

the sshdl executable by examining the value of the Sshd1Pat h keyword:

SSH2 only
SshdlPat h /usr/ | ocal / bi n/ sshdl

sshd2 then invokes an sshdl process, passing the client's version string to sshdl using the -V

command-line option: (2]

SSH2 only, invoked automatically by sshd2
/usr/local/bin/sshdl -V "client version string" <other argunents>

The -V command-line option is for internal use only by sshd2. It is necessary because when
sshdl starts thisway, the client has already sent itsinitial version announcement, which sshdl
needs to get somehow. We can't think of any practical reason to use this option manually, but
we mention it here for completeness.

When you compile and install SSH2, if SSH1 is aready installed, then the configure script
[Section 4.1.4] automatically sets the internal, compiled-in defaults for
SshlConpatibilitytoyes,andfor SshdlPat h tothe correct path to sshdl. If SSH1
isn't installed, then the compiled defaults are no for Ssh1Conpat i bi | 1ty andthenull string
for SshdlPat h.

The OpenSSH server aso implements the -V option, so that you can use OpenSSH instead of
SSH1 for SSH2 backward-compatibility mode.

Although sshd2 can accept and reroute SSH1 client connections, the
reverse isn't true: sshdl can't accept SSH2 connections.

5.9.1 Security Issueswith SSH-1 Compatibility Mode in SSH2

There's one vital thing to keep in mind if you're using the SSH-1 compatibility feature in SSH2:
you must maintain two separate SSH server configurations. When sshd2 starts sshdl, it isan
entirely new process, with its own SSH1 server configuration file. No restrictions set in your
SSH2 server configuration apply to it. Even restrictions that could apply, such as

Al 'l owHost s, don't, because sshd2 invokes sshdl before performing such checks.

This means you must keep the two configurations synchronized with respect to your security
intent. Otherwise, an attacker can circumvent your carefully crafted SSH2 configuration simply
by connecting with an SSH-1 client.

(21 Note that you need at least Version 1.2.26 (F-Secure 1.3.6) of SSH1 to use the compatibility

mode, since this option isn't implemented in earlier versions.

5.10 Summary

Asyou can see, SSH servers have atremendous number of configuration options, and in
some cases, multiple ways to achieve the same results. All this power comes at aprice,
however. When setting up a secure system, it isvital to consider each option carefully and
select appropriate values. Don't skimp on understanding: the security of your systems may
depend on it. Chapter 10 lists configurations for SSH1, SSH2, and OpenSSH. In addition,

al the keywords and options in this chapter appear in Appendix B.

Remember that serverwide configuration is only one avenue for affecting server behavior.
We discuss compile-time configuration in Chapter 4 and per-account configuration in

Chapter 8.

Chapter 6. Key Management and Agents

Y our SSH private key is a precious thing. When you use public-key authentication, your
key proves your identity to SSH servers. We've encountered several programs related to

keys:
ssh-keygen

Creates key pairs
ssh-agent

Holds private keys in memory, saving you from typing your passphrase repeatedly
ssh-add

L oads private keys into the agent

However, we haven't gone into much depth, covering only the most basic operations with
keys. Now it's time to examine these concepts and programs in detail.

We begin with an overview of SSH identities and the keys that represent them. After that,
we thoroughly cover SSH agents and their many features. Finally, we extol the virtues of
having multiple SSH identities. If you've been getting by with asingle key and only light
agent use, we have alot of cool stuff in store for you. Figure 6-1 summarizes the role of key
management in the overall configuration process.

This chapter isthefirst in a sequence on advanced SSH for end users, as opposed to system
administrators. Once you've covered key management in this chapter, we'll take you through
client configuration, server configuration, and forwarding.

Figure6.1. SSH user key and agent configuration (highlighted parts)

Fizs Configuration types

-y sshfconfig
- .aehdfashd_senfig

fetcissh_config
fetedeeh fashl_oonfig

-y .sshyfldenticy
=S aaEhfid dea
-/ .sshisidentification

fabefaeh oo _hosta
‘etofeshi Fhostheys
fabe/ anhl FEnosnnog La
-/ LpEh e _hoste
-¢ .5zhZ /mastheys

J -aahd FEnoennca LA

(mmmd-fne _
opdins

fmironment
wirishles

5
Ve’ dind Gl

cenfiguration file

Globd dient |
cerffiguration file

tuﬂ;;m 1

Knawn hast
d mabases

—_—

Canfiguration fypes

Commandine
oplioms

_ Cuslem wision
shorfug

Server-dde
mnfiquratisn fils

Serverside
"~ auibati zuntian Hes

[mﬂ;l’rm-

| Toeged nceount's
auiorizafion files

TCP-vamapipicas
il

Harhere:

~ omfigurotion fles

— PAM fils

Filas

¥ ashy ashee
‘e=rofashro
-¢ .sshyemrylroment
Jansfesrririment

Jetofsshd_conflg
Faroe ash fashal_conlly

Jatd i haake , apaiv
fereSEhosTs . eqquiy

= 8Eh fapthoss ped _ceys

=/ .sshimachorized_keyel
Joaah fmpehor Leair Lon

=forhiate

-7 .shoots

feroihoste. allow
fereshasts . dery

ferofkrbh. Y fetofkelS L
fETCfEEvLab
= kLsgin, S~ kS legin

deroipan.d/eshd

6.1 What Isan lIdentity?

An SSH identity is a sequence of bitsthat says, "I am really me." It isa mathematical
construct that permits an SSH client to prove itself to an SSH server, so the SSH server will
say, "Ah, | see, it'sreally you. You hereby are authenticated. Comein."

Anidentity consists of two parts, called the private key and the public key. Together, they
are known as akey pair.

The private key represents your identity for outgoing SSH connections. When you run an
SSH client in your account, such as ssh or scp, and it requests a connection with an SSH
server, the client uses this private key to prove your identity to the server.

Private keys must be kept secret. An intruder with your private
"@ key can access your account as easily as you can.

The public key represents your identity for incoming connections to your account. When
an SSH client requests access to your account, using a private key as proof of identity, the
SSH server examines the corresponding public key. If the keys "match" (according to a
cryptographic test [Section 3.4.2.2]), authentication succeeds and the connection proceeds.

Public keys don't need to be secret; they can't be used to break into an account.

A key pair istypically stored in apair of fileswith related names. In SSH, the public key
filename is formed by adding the suffix .pub to the private key filename. For example, if

the file mykey holds a private key, its corresponding public key isfound in mykey.pub.[z]

Y ou may have as many SSH identities as you like. Most SSH-1 and SSH-2
implementations let you specify a default identity clients use unless told otherwise. To use
an alternative identity, you must change a setting by command-line argument,
configuration file, or some other configuration tool.

The structure of identity files differsfor SSH1, SSH2, and OpenSSH, so we will explain
them separately. Their locations in the filesystem are shown in Figure 6-2 (private keys)
and Figure 6-3 (public keys).

Figure 6.2. SSH identity files (private keys) and the programsthat use them

SHOME

!

identity

=

privade key

§5H-1
SSHI

id_dsa

=

privade key

55H-2

OpenSSH

.asha

l

identificacion

T Dkesy one

IDkeny hwo

§5H2

Figure 6.3. SSH authorization files (public keys) and the programsthat usethem

SHOME

LG5h

!

authorized_keys

=

public key #1
public key 2

S5H-1
§5H1

6.1.1 SSH1 Identities

!

authorized_keys?

55H-2
OpenSSH

.5s5h?

l

55H2

authorizatian

An SSH1 identity is stored in two files. By default in SSH1, the private key is stored in the
file identity and the public key in identity.pub. This key pair, which is kept in your ~/.ssh
directory, isyour default identity clients use unlesstold otherwise.

The .pub file containing your public key has no function by itself. Before it can be used for
authentication, this public key must be copied into an authorization file on an SSH-1 server

machine, such as ~/.ssh/authorized keys for SSH1 or OpenSSH. Thereafter, when an SSH-
1 client requests a connection to your server account using a private key as proof of
identity, the SSH1 server consults your authorized_keysfile to find the matching public
key. [Section 3.4.2.2]

6.1.2 SSH2 | dentities

An SSH2 key pair, like its SSH1 ancestor, is stored in two files with the same relationship
between their names (i.e., the private key filename plus .pub yields the public key
filename). SSH2 key files are often named based on the key's cryptographic properties. For
example, a 1024-hit, DSA-encrypted key is generated by default in the SSH2 files

id dsa 1024 aandid dsa 1024 a.pub.

Unlike SSH1, however, an SSH2 identity is not a single key but a collection of keys. When
an SSH2 client tries to authenticate, it may use al keysin the collection. If the first key
fails to authenticate, the SSH2 client automatically tries the second, and so forth, until it
succeeds or fails completely.

To create an identity in SSH2, private keys must be listed in afile called an identification

file. Y our default identity is stored in ~/.ssh2/identification.””) Inside the file, private keys
are listed one per line. For public-key authentication, aline begins with the keyword
| dKey, followed by the name of the private key file:

SSH2 identification file

The follow ng nanes are relative to ~/.ssh2
| dKey id dsa 1024 a

| dKey ny- ot her-ssh2-key

Absolute paths work for SSH2 2.1.0 and | ater
| dKey /usr/local/etc/third-key

Y ou may recall that SSH2 supports PGP key authentication. [Section 5.5.1.6] The
identification file may also contain PGP-related keywords:

SSH2 identification file
PgpSecret KeyFile ny-file. pgp
| dPgpKeyNane ny- key- nane

Using a separate identification file might seem cumbersome, but it provides flexibility
SSH1 doesn't. Aswe've said, it permits an identity to contain multiple keys, any one of
which may authenticate you. Another advantage of the SSH2 system is ease of deletion. To
remove an SSH2 private key from consideration, simply delete or comment out itsline
from the identification file. To accomplish the same task with SSH1, you have to rename
the private key file.

Like SSH1, SSH2 has an authorization file for incoming connections but with a difference.
Instead of containing copies of public keys, the SSH2 authorization file merely lists the
public key filesusing the Key keyword:

SSH2 authorization file
Key id dsa 1024 a. pub
Key sonet hi ng- el se. pub

Thisiseasier to maintain than SSH1's authorized_keys file because only one copy of each
public key exists. For SSH1 and OpenSSH, in contrast, there are separate copiesin the .pub
and authorized_keysfiles. [Section 8.2.2]

6.1.3 OpenSSH |dentities

For SSH-1 connections, OpenSSH uses exactly the same identity and authorization files as
SSH1. For SSH-2 connections, your default identity is stored in the file ~/.ssh/id_dsa
(private key) and ~/.ssh/id_dsa.pub (public key). The SSH-2 authorization file for
OpenSSH is ~/.ssh/authorized keys2, and its format is similar to that of ~/.ssh/
authorized_keys. [Section 8.2.1]

R contrast, some Windows implementations such as F-Secure SSH Client store keysin the
Windows Registry.

2ln fact, in SSH1, the so-called "private key file" contains the public key aswell, for
completeness, and only the part of the file containing the private key is encrypted with the
passphrase. But the private key fileisin a private binary format; the public key file is there for
human convenience, to make it easy to add the public key to an authorized keysfile with atext
editor, for example.

B3I This default may be changed with the | dent i t yFi | e keyword. [Section 7.4.2]

6.2 Creating an I dentity

Most SSH implementations include a program for creating key pairs. We will cover ssh-keygen from SSH1, SSH2, and OpenSSH.
6.2.1 Generating RSA Keysfor SSH1

SSH1 and its derivatives use the program ssh-keygenl to create key pairs. [Section 2.4.2] The program might also be called ssh-
keygen, depending on how SSH1 wasinstalled. Let's go into more detail about this program than we have before. Appendix B

summari zes the ssh-keygen options.

ssh-keygenl can create new keys or modify existing keys. When creating a new key, you may indicate the following with command-
line options:

. The number of bitsin the key, using -b. The default is 1024 bits.
$ ssh-keygenl -b 2048

. The name of the private key file to be generated, using -f. The name isrelative to your current directory. Recall that the
public key fileis named after the private one with .pub appended. If you omit this option, you are prompted for the
information.

$ ssh-keygenl -f nykey Creat es
nykey and nykey. pub

$ ssh-keygenl
Enter file in which to save the key (/hone/barrett/.ssh/identity): nykey

. The passphrase to decode the key, using -N. If you omit this option, you'll be prompted after generation.

$ ssh-keygenl -N secretword

$ ssh-keygenl

Ent er passphrase: [nothing is echoed]
Enter the sane passphrase again: [nothing is echoed]

. A textua comment associated with the key, using -C. If you omit this option, the comment will be "username@host", where
username is your username on the local machine and host is the fully qualified domain name of the local machine:

$ ssh-keygenl -C "ny favorite key"

If you specify both -f (specify output file) and -N (specify password), ssh-keygenl issues no prompts. Therefore, you can automate
key generation using these options (and perhaps redirecting output to /dev/null) :

$ ssh-keygenl -f nykey -N secretword

Y ou might use this technique to automate generation of alarge number of keys for some purpose. Use it carefully, though, on a
secure machine. The password on the command line is probably visible to other users on the same Unix machine via ps or similar
programs, and if you're scripting with this technique, obviously the passphrases shouldn't be kept in files for long.

In addition to creating keys, ssh-keygenl can modify existing keysin the following ways:

. By changing the passphrase of an existing key, using -p. Y ou can specify the filename with -f and the old and new
passphrases with -P and -N, respectively:

$ ssh-keygenl -p -f nykey -P secretword -N newword

but if you omit them, you are prompted:

$ ssh-keygenl -p

Enter file key is in (/hone/barrett/.ssh/identity): nykey
Enter ol d passphrase: [nothing is echoed]

Key has comrent 'ny favorite key'

Ent er new passphrase: [nothing is echoed]

Enter the sane passphrase agai n:

Note that this changes the passphrase but doesn't change the key, it just re-encrypts the key with the new passphrase. So, the
corresponding public key file doesn't change or need to be replaced on the SSH server machines to which you've copied it.

Before using any option that places your passphrase on the shell command line, such as-N or -P,
“"@ carefully consider the security implications. Because the passphrase appears on your screen, it may be
visible to onlookers, and while running, it may be visible in the machine's process list. Because itison
the command line, it is visible to other users on the same host using the ps command. In addition, if
your shell creates history files of the commands you type, the passphrase isinserted into a history file
where it can be read by athird party.

Also, if you think have a good reason to just type Ret ur n and give your key no passphrase, think
again. Doing that is essentially equivalent to putting your password in afile in your home directory
named MY-PASSWORD.PLEASE-STEAL-ME. If you don't want to have to type a passphrase, the right
thing to do is to use ssh-agent, trusted-host authentication, or Kerberos. There are very limited
circumstances having to do with unattended usage (e.g., cron jobs) where a plaintext, passphrase-less
client key might be acceptable. [Section 11.1]

. By changing the comment of an existing key, using -c. Y ou may specify the filename, passphrase, and new comment with -f,
-P, and -C, respectively, or you are prompted for them:

$ ssh-keygen -c -f nykey -P secretword -C "nmy second-favorite key"
$ ssh-keygen -c

Enter file key is in (/home/barrett/.ssh/identity): mykey

Ent er passphrase: [nothing is echoed]

Key now has conment 'ny favorite key'

Enter new comment: ny second-favorite key

The conment in your key file has been changed.

. By upgrading an old SSH1 key to work with the current version of SSH1, with -u. Older versions of SSH1 used the IDEA
agorithm to encrypt akey with its passphrase, but nowadays SSH1 uses 3DES for this purpose, rendering these older keys
unusable. The -u option causes ssh-keygenl to decrypt the key and reencrypt it with SSH1's default algorithm (normally
3DES) to use with the current version of SSH1.:

$ ssh-keygenl -u -f nykey -P secretword

$ ssh-keygenl -u

Enter file key is in (/hone/barrett/.ssh/identity): nykey
Ent er passphrase: [nothing is echoed]

Key' s ci pher has been updat ed.

When you make changes to a key, such asits passphrase or comment, the changes are applied to the key file only. If you have keys
loaded into an SSH agent, the copies in the agents aren't changed. For instance, if you list the keys in the agent with ssh-add1 -
(lowercase L) after changing the comment, you still see the old comment in the agent. To make the changes take effect in the agent,
unload and reload the affected keys.

6.2.2 Generating RSA/DSA Keysfor SSH2

SSH2 and its derivatives use the cleverly named program ssh-keygen2 to create key pairs. The program might also be called ssh-
keygen, depending on how SSH2 was installed. As with ssh-keygenl, you can create new keys or modify existing ones; however,
the command-line options are significantly different. ssh-keygen2 also has afew other options for printing diagnostics.

When creating a new key, you may choose the name of the private key file to be generated, by specifying the name at the end of the

command line:
$ ssh-keygen2 nykey creates nykey and nykey. pub

The nameisrelative to your current directory, and as usual, the public key file is named after the private one with .pub appended. If
you omit this option, the key is saved in the directory ~/.ssh2, in afile whose name indicates the encryption a gorithm and number
of bits. An exampleisid_dsa_1024 a, which was generated by the DSA algorithm with 1024 bits.

Y ou also may indicate the following with command-line options:
« The number of bitsin the key, using -b. The default is 1024 hits.

$ ssh-keygen2 -b 2048

. Thekey type, such as DSA or RSA, using -t. The default-and only option-for SSH2 is DSA (given as "dsa"):[‘l]
$ ssh-keygen2 -t dsa
. A textua comment associated with the key, using -c:
$ ssh-keygen2 -c "ny favorite SSH2 key"
. If you omit this option, the generated comment describes how and by whom the key was generated. For example:
"1024-bit dsa, barrett @erver.exanple.com Tue Feb 22 2000 02: 03: 36"
. The passphrase to decode the key, using -p. If you omit this option, you are prompted after generation.
$ ssh-keygen2 -p secretword

Y ou can a'so designate an empty password using -P. This shouldn't be donein general but is appropriate in some specia
cases. [Section 11.1.2.2]

$ ssh-keygen2 -P
In addition to creating keys, ssh-keygen2 can operate on existing keysin the following ways:

. By changing the passphrase and comment of an existing key, using -e. This option causes ssh-keygen2 to become
interactive, prompting for the new information. Thisinteractive mode is primitive and annoying, requiring nearly 10 user
responses to change the passphrase and comment, but it does the job:

$ ssh-keygen2 -e nykey
Passphrase needed for key "ny favorite SSH2 key"
Passphrase : [nothing is echoed]
Do you want to edit key "ny favorite SSH2 key" (yes or no)? yes
Your key conment is "mny favorite SSH2 key".
Do you want to edit it (yes or no)? yes
New key comrent: this is tedious
Do you want to edit passphrase (yes or no)? yes
New passphrase : [nothing is echoed]
Agai n : [nothing is echoed]
Do you want to continue editing key "this is tedious" (yes or no)? god no
(yes or no)? no
Do you want to save key "this is tedious" to file nykey (yes or no)? yes

As with ssh-keygenl, changes are applied to the key files but not propagated to the copies currently loaded in an agent. (So if
you do an ssh-add2 -1 to list the keys, for example, you see the old comment.)

. By printing the public key, deriving it from the private key, with -D, in case you ever lose your private key file:

$ ssh-keygen2 -D nykeyfile
Passphrase : *****x*x*x
Public key saved to nmykeyfile. pub

. By converting an SSH-1 format key to SSH-2 format, using -1 (that's the digit "one", not alowercase L). Thisisn't currently
implemented.

$ ssh-keygen2 -1 sshilkey
ssh-keygen?2 also gives you some control over input, output and diagnostics:

. By printing the fingerprint of agiven key file, with -F. See Sidebar "Key Fingerprints" for more information. The fingerprint
can be calculated from the public key:

SSH2 only

$ ssh-keygen2 -F stevekey. pub

Fi ngerprint for key:

Xitot-larit-gumet-fyfi msozev-vyned-cigeb-sariv-tekuk-badus-bexax

« By printing the program version number, with -V:

$ ssh-keygen2 -V
ssh2: SSH Secure Shell 2.1.0 (nonconmercial version)

. By printing a help message, with -h or -?. Most Unix shells require you to escape the question mark, to prevent the shell
from interpreting it as awildcard.

$ ssh-keygen2 -h
$ ssh-keygen2 -\? Escapi ng the question nark

. By suppressing the progress indicator, using -g. The progressindicator is a sequence of O's and periods that displays while
ssh-keygen2 runs, like this: .000.000.000.000.

$ ssh-keygen2

Generating 1024-bit dsa key pair
. 000. 000. 000. 0o

Key gener at ed.

$ ssh-keygen2 -q
Cenerating 1024-bit dsa key pair
Key gener at ed.

. By displaying information about an existing key, using -i:
$ ssh-keygen2 -i nykey
Thisisn't currently implemented.

Finally, ssh-keygen2 has one guru-level advanced option, -r, for affecting the random numbers used for key generation. It causes ssh-
keygen2 to modify ~/.ssh2/random_seed using data you enter on standard input. [Section 3.7] The SSH2 manpages call this "stirring

datainto the random pool." Note that the program doesn't prompt you to enter data; it just sits there looking like it's hung. When this
occurs, type as much data as you like and press the EOF character (Cont r ol - Din most shells).

$ ssh-keygen2 -r

| amstirring the random pool.
bl ah bl ah bl ah

"D

Stirred in 46 bytes.

6.2.3 Generating RSA/DSA Keysfor OpenSSH

OpenSSH's ssh-keygen program supports all the same features and options of its SSH1 counterpart. It also adds the capability to
generate DSA keys for SSH-2 connections and a few more options:

. -d generates a DSA key instead of an RSA key:

QpenSSH only
$ ssh-keygen -d

« =X, -X, and -y convert between SSH2 and OpenSSH key-storage formats. The following table illustrates this:

Option Extract/Convert from... To..
-X OpenSSH DSA private key file SSH2 public key
-X SSH2 public key file OpenSSH DSA public key
-y OpenSSH DSA private key file OpenSSH DSA public key

An OpenSSH "private" key file actually contains both the public and private keys of apair, so the -x and -y options simply
extract the public key and print it out in the desired format. Use -x to add an OpenSSH public key to your ~/.ssh2/
authorization file on an SSH2 server host and -X to do the opposite. The -y option is useful if you accidentally delete your
OpenSSH public key file and need to restoreit.

A function that's missing is converting the private keys aswell. Thisis useful if you have an OpenSSH server host on which
you also want to also run SSH2, and you want the two SSH servers to share a host key.

. -l printsthe fingerprint of a given key file. See Sidebar "Key Fingerprints' for more information. The fingerprint can be
calculated from the public key:

QpenSSH only
$ ssh-keygen -1 -f stevekey. pub
1024 5c:f6:e2:15:39:14: 1a: 8b: 4c: 93: 44:57: 6b: c6:f4: 17 steve@shbook. com

Key Fingerprints

Fingerprints are a common cryptographic feature for checking that two keys in different places are the same, when
comparing them literally-bit by bit-isinfeasible. OpenSSH and SSH2 can compute fingerprints.

Suppose Steve wants SSH access to Judy's account. He sends his public key to Judy by email, and sheinstallsitin
her SSH authorization file. While this key exchange seems straightforward, it isinsecure: a hostile third party
could intercept Steve's key and substitute his own, gaining access to Judy's account.

To prevent this risk, Judy needs some way to verify that the key she receivesis Steve's. She could call Steve on the
telephone and check, but reading a 500-byte encrypted public key over the phone is annoying and error-prone.
Thisiswhy fingerprints exist.

A fingerprint is a short value computed from akey. It's analogous to a checksum, verifying that a string of datais
unaltered-in our case, akey. To check the validity of akey using fingerprints, Steve and Judy can do the following:

1. Judy receives apublic key that is supposed to be Steve's, storing it in the file stevekey.pub.

2. Separately, Judy and Steve view the fingerprint of the key:

OQpenSSH onl y
$ ssh-add -I stevekey. pub
1024 5c:f6:e2:15:39:14: 1a: 8b: 4c: 93:44: 57: 6b: c6:f4: 17 Steve@shbook. com

SSH2 only

$ ssh-keygen2 -F stevekey. pub

Fi ngerprint for key:

xitot-larit-gumet-fyfimsozev-vyned-ci geb-sariv-tekuk-badus-bexax

3. Judy calls Steve on the telephone and asks him to read the fingerprint over the phone. Judy verifiesthat it
matches the fingerprint of the key she received. Fingerprints aren't unique, but for any two keys, the
probability that their fingerprints are identical is small. Therefore, keys are a quick and convenient method
for checking that akey is unaltered.

As you can see, OpenSSH and SSH2 use different output formats for fingerprints. OpenSSH's numeric format is
more traditional and should be familiar to users of PGP. SSH2 uses a textual format called "Bubble Babble" which
is claimed to be easier to read and remember.

Fingerprints also surface when you connect to an SSH server whose host key has changed. In this case, OpenSSH
prints awarning message and the fingerprint of the new key, which may be conveniently compared with the
fingerprint of the real host key, should you haveit.

. -Rdetects whether OpenSSH supports RSA keys or not. Because RSA was patented technology until September 2000, a
particular installation of OpenSSH may or may not include this algorithm. [Section 3.9.1.1] If you invoke ssh-keygen with

this option, it immediately exits with acode of O if RSA issupported, or 1 if itisn't.

QpenSSH only, with RSA support
$ ssh-keygen -R echo $?
0

OpenSSH only, w thout RSA support
$ ssh-keygen -R echo $?
1

6.2.4 Selecting a Passphrase

Choose your passphrases carefully. Make them at least 10 characters long, containing amix of uppercase and lowercase |etters,
digits, and nonal phanumeric symbols. At the same time, you want the passphrase to be easy to remember, but hard for othersto
guess. Don't use your name, username, phone number, or other easily guessed information in the passphrase. Coming up with an
effective passphrase can be a chore, but the added security isworth it.

If you forget a passphrase, you are out of luck: the corresponding SSH private key becomes unusable because you can't decrypt it.
The same encryption that makes SSH so secure also makes passphrases impossible to recover. Y ou have to abandon your SSH key,
generate a new one, and choose a new passphrase for it. Y ou must also install the new public key on every machine that had your
original.

[l F-Secure SSH2 Server adds support for RSA (argument "rsa") but only in alimited sense. [Section 3.9]

6.3 SSH Agents

An SSH agent is a program that caches private keys and responds to authentication-related queries from SSH clients.
[Section 2.5] They are terrific labor-saving devices, handling all key-related operations and eliminating the need to

retype your passphrase.

The programs related to agents are ssh-agent and ssh-add. ssh-agent runs an agent, and ssh-add inserts and removes
keys from the agent's key cache. A typical use might look like this:

Start the agent

$ ssh-agent $SHELL

Load your default identity

$ ssh-add

Need passphrase for /hone/barrett/.ssh/identity (barrett@xanple.comnm
Ent er passphrase: ****x*xx*

By typing your passphrase a single time, you decrypt the private key which is then stored in memory by the agent.
From now on, until you terminate the agent or log out, SSH clients automatically contact the agent for all key-related
operations. Y ou needn't type your passphrase again.

We now briefly discuss how agents work. After that we get practical and illustrate the two ways to start an agent,
various configuration options, and several techniques for automatically loading your keys into the agent. Finally, we
cover agent security, agent forwarding, and compatibility between SSH-1 and SSH-2 agents.

6.3.1 Agents Don't Expose Keys
Agents perform two tasks:

. Store your private keysin memory
. Answer questions (from SSH clients) about those keys

Agents don't, however, send your private keys anywhere. Thisisimportant to understand. Once loaded, private keys
remain within an agent, unseen by SSH clients. To access akey, aclient says, "Hey agent! | need your help. Please
perform a key-related operation for me." The agent obeys and sends the results to the client (see Figure 6-4).

Figure 6.4. How an SSH agent workswith itsclients

Agent for user “bob”

!la.ﬁ’sprfrm hp, unm?rrypl'ed'
SSH request for a key related computation ; n

Mun | :
Eult:y result 5 @_

.............................

For example, if ssh needs to sign an authenticator, it sends the agent a signing request containing the authenticator
data and an indication of which key to use. The agent performs the cryptographic operation itself and returns the
signature.

In this manner, SSH clients use the agent without ever seeing the agent's private keys. This technigue is more secure

than handing out keys to clients. The fewer places that private keys get stored or sent, the harder it isto sted them.[”!

6.3.2 Starting an Agent
There are two ways to invoke an agent in your login account:

. Thesingle-shell method that uses your current login shell
. The subshell method that forks a subshell to facilitate the inheritance of some environment variables

Don't invoke an agent with the "obvious" but wrong command:

N

$ ssh-agent

Although the agent runs without complaint, SSH clients can't contact it, and the
termination command (ssh-agent -k) doesn't kill it, because some environment variables
aren't properly set.

6.3.2.1 Single-shell method

The single-shell method runs an agent in your current login shell. Thisis most convenient if you're running alogin
shell on asingle terminal, as opposed to a Unix window system such as X. Type:

SSH1, SSH2, OpenSSH
$ eval “ssh-agent’

and an ssh-agent process is forked in the background. The process detaches itself from your terminal, returning a
prompt to you, so you needn't run it in the background manually (i.e., with an ampersand on the end). Note that the
guotes around ssh-agent are backquotes, not apostrophes.

What purpose does the eval serve? Well, when ssh-agent runs, it not only forks itself in the background, it also
outputs some shell commands to set several environment variables necessary for using the agent. The variables are
SSH_AUTH_SOCK (for SSH1 and OpenSSH) or SSH2_AUTH_SOCK (SSH2), and SSH_AGENT_PID (SSH1,

OpenSSH) or SSH2_AGENT_PID (SSH 2).[6] The eval command causes the current shell to interpret the commands
output by ssh-agent, setting the environment variables. If you omit the eval, these commands are printed on standard
output as ssh-agent isinvoked. For example:

$ ssh-agent

SSH AUTH SOCK=/t np/ ssh-barrett/ssh-22841-agent; export SSH AUTH SOCK;
SSH _AGENT_PI D=22842; export SSH AGENT_PI D,

echo Agent pid 22842;

Now you've got an agent running but inaccessible to the shell. Y ou can either kill it using the pid printed in the
previous output:

$ kill 22842
or connect your shell manually by setting the environment variables exactly as given:

$ SSH AUTH SOCK=/t np/ ssh-barrett/ssh-22841-agent; export SSH AUTH SOCK;

$ SSH ACGENT_PI D=22842; export SSH AGENT_PI D

Nevertheless, it's easier to use the single-shell form of the command so everything is set up for you.m
To terminate the agent, kill its pid:

SSH1, SSH2, OpenSSH
$ kill 22842

and unset the environment variables:;

$ unset SSH AUTH SOCK
SSH2 uses SSH2 AUTH SOCK i nstead
$ unset SSH AGENT_PI D

Or for SSH1 and OpenSSH, use the more convenient -k command-line option:

SSH1, OpenSSH
$ eval “ssh-agent -k’

This prints termination commands on standard output so the eval can invoke them. If you eliminate the eval, the
agent is still killed, but your environment variables don't unset automatically:

SSH1, OpenSSH
$ ssh-agentl -k

unset SSH AUTH_ SCCK # This won't get
unset,

unset SSH AGENT _PI D # and neither wll
this,

echo Agent pid 22848 killed # but the agent gets kill ed.

Running an agent in a single shell, as opposed to the method we cover next (spawning a subshell), has one problem.
When your login session ends, the ssh-agent process doesn't die. After several logins, you see many agents running,

serving no purpose.[8]

$ /usr/uch/ps uax | grep ssh-agent

barrett 7833 0.4 0.4 828 608 pts/1 S 21:06:10 0:00 grep agent
barrett 4189 0.0 0.6 1460 844 ? S Feb 21 0:06 ssh-agent
barrett 6134 0.0 0.6 1448 828 7 S 23:11:41 0:00 ssh-agent
barrett 6167 0.0 0.6 1448 828 ? S 23:24:19 0:00 ssh-agent
barrett 7719 0.0 0.6 1456 840 7 S 20:42:25 0:02 ssh-agent

Y ou can get around this problem by running ssh-agent -k automatically when you log out. In Bourne style shells (sh,
ksh, bash), this may be done with atrap of Unix signal at the top of ~/.profile:

~/.profile

trap '
test -n "$SSH AGENT _PI D' && eval “ssh-agentl -k ;
test -n "$SSH2 AGENT PID' && kill $SSH2 AGENT PI D
0

For C shell and tcsh, terminate the agent in your ~/.1ogout file:

~/ .1 ogout

if ("$SSH AGENT PID' !'="") then
eval “ssh-agent -k’

endi f

if ("$SSH2_AGENT_PID' I'="") then
kill $SSH2 AGENT_PI D

endi f

Oncethistrap is set, your ssh-agent process is killed automatically when you log out, printing a message like:
Agent pid 8090 killed
6.3.2.2 Subshell method

The second way to invoke an agent spawns a subshell. Y ou provide an argument to ssh-agent, which is apath to a
shell or shell script. Examples are:

ssh-agent /bin/sh

ssh-agent /bin/csh

ssh-agent $SHELL

ssh-agent ny-shell-script # Run a shell script instead of a shell

& B BB

Thistime, instead of forking a background process, ssh-agent runs in the foreground, spawning a subshell and setting
the aforementioned environment variables automatically. The rest of your login session runs within this subshell, and
when you terminate it, ssh-agent terminates as well. This method, as you will see later, is most convenient if you run

awindow system such as X and invoke the agent in your initialization file (e.g., ~/.xsession). However, the method is
also perfectly reasonable for single-terminal logins.

When using the subshell method, invoke it at an appropriate time. We recommend the last line of your login
initialization file (e.g., ~/.profile or ~/.login) or the first typed command after you log in. Otherwise, if you first run
some background processes in your shell, and then invoke the agent, those initial background processes become
inaccessible until you terminate the agent's subshell. For example, if you run the vi editor, suspend it, and then run
the agent, you lose access to the editor session until you terminate the agent.

$ vi myfile # Run your editor

NZ # Suspend it

$ jobs # Vi ew your background

processes

[1] + Stopped (SI GISTP) vi

$ ssh-agent $SHELL # Run a

subshel |

$ j obs # No jobs here! They're
in the parent shel

$ exit # Term nate the agent's
subshel |

$ jobs # Now we can see our

processes again
[1] + Stopped (SIGISTP) vi

The advantages and disadvantages of the two methods are shown in Table 6-1.

Table6.1. Prosand Cons of Invoking an Agent

M ethod Pros Cons

eval “ssh-agent Simple, intuitive Must be terminated manually

Y our login shell becomes dependent on
the agent's health; if the agent dies,
your login shell may die

Agent's environment variables are propagated

ssh-agent $SHELL automatically; terminates on logout

6.3.2.3 Format of environment variable commands

Aswe've said, ssh-agent prints a sequence of shell commands to set several environment variables. The syntax of
these commands differs depending on which shell is being used. Y ou can force the commands to use Bourne-style or
C shell-style syntax with the -s and -c options, respectively:

Bourne-shell style commands

$ ssh-agent -s

SSH AUTH SOCK=/t np/ ssh-barrett/ssh-3654-agent; export SSH AUTH SOCK;
SSH AGENT_PI D=3655; export SSH AGENT_PI D

echo Agent pid 3655;

C-shell style comuands

$ ssh-agent -c

setenv SSH AUTH SOCK /tnp/ssh-barrett/ssh-3654-agent;
setenv SSH AGENT _PI D 3655;

echo Agent pid 3655;

Normally ssh-agent detects your login shell and prints the appropriate lines, so you don't need -c or -s. One situation
where you need these optionsisif you invoke ssh-agent within a shell script, but the script's shell is not the same type
asyour login shell. For example, if your login shell is/bin/csh, and you invoke this script:

#!/ bi n/ sh
“ssh-agent”

ssh-agent outputs C shell-style commands, which will fail. So you should use:

#!/ bi n/ sh
“ssh-agent -s°

Thisis particularly important if you run an agent under X, and your ~/.xsession file (or other startup file) is executed
by ashell different from your login shell.

6.3.2.4 SSH-1 and SSH-2 agent compatibility

An SSH-1 agent can't service requests from SSH-2 clients. The reverse, however, is supported by SSH2. If ssh-
agent2 isinvoked with the -1 option (that's a numeral one, not alowercase L), the agent services requests from SSH-
1 clients, even from ssh-addl. This works only for SSH-2 implementations that support RSA, because SSH-1 uses
RSA keys. At presstime, only F-Secure SSH2 Server is capable of SSH-1 agent compatibility.

I nvoke an SSH2 agent in SSH1 conpatibility node
$ eval “ssh-agent2 -1°

Add an SSH1 key

$ ssh-addl

Need passphrase for /honme/smth/.ssh/identity (smth SSH1 key).
Ent er passphrase: ****

Identity added (smith SSH1 key).

Add an SSH2 key
$ ssh-add2
Addi ng identity: /home/smth/.ssh2/id _dsa 1024 a. pub
Need passphrase for /honme/smth/.ssh2/id _dsa 1024 a
(1024-bit dsa, smth SSH2 key, Thu Dec 02 1999 22: 25:09-0500).
Ent er passphrase:; ****x*xx*

ssh-addl lists only the SSH1 key
$ ssh-addl -1
1024 37 1425047358166328978851045774063877571270... and so forth

ssh-add2 |ists both keys

F-Secure SSH Server only

$ ssh-add2 -|

Listing identities.

The aut hori zati on agent has 2 keys:

id_dsa_1024_a: 1024-bit dsa, smth SSH2 key, Thu Dec 02 1999 22:25: 09- 0500
smth SSH1 key

Now an SSH-1 client contacts ssh-agent2 transparently, believing it to be an SSH-1 agent:

$ sshl server. exanpl e.com
[no passphrase pronpt appears]

ssh-agent2 achieves compatibility by setting the same environment variables normally set by ssh-agent1.
SSH_AUTH_SOCK and SSH_AGENT_PID. Therefore, any SSH-1 agent requests are directed to ssh-agent2.

If you have an ssh-agent1 process running, and you invoke ssh-agent2 -1, your old ssh-
agentl process becomes inaccessible as ssh-agent2 overwrites its environment variables.

Agent compatibility works only if the SSH2 distribution is compiled with theflag - wi t h- ssh- agent 1- conpat .
[Section 4.1.5.13] It aso depends on the value of the client configuration keyword Ssh1Agent Conpati bility.
[Section 7.4.14]

6.3.3 Loading Keyswith ssh-add

The program ssh-add is your personal communication channel to an ssh-agent process. (Again, this command may
be ssh-add1 under SSH1 and ssh-add2 under SSH2, with ssh-add alink to one program or the other.)

When you first invoke an SSH agent, it contains no keys. ssh-add, as you might guess from its name, can add private
keysto an SSH agent. But the name is misleading, because it also controls the agent in other ways, such aslisting
keys, deleting keys, and locking the agent from accepting further keys.

If you invoke ssh-add with no arguments, your default SSH key isloaded into the agent, once you have typed its
passphrase. For example:

$ ssh-addl

Need passphrase for /home/smth/.ssh/identity (smth@lient).
Ent er passphrase: ****x*xx*

Identity added: /hone/smth/.ssh/identity (smth@lient).

$ ssh-add2
Adding identity: /hone/snith/.ssh2/id dsa 1024 a. pub
Need passphrase for /honme/smth/.ssh2/id dsa 1024 a
(1024-bit dsa, snmth@lient, Thu Dec 02 1999 22:25:09-0500).
Ent er passphrase: ****x*xx*

Normally, ssh-add reads the passphrase from the user's terminal. If the standard input isn't aterminal, however, and
the DISPLAY environment variable is set, ssh-add instead invokes an X window graphical program called ssh-

askpass that pops up awindow to read your passphrase. Thisis especially convenient in xdm start-up scri pts.[g]

Both ssh-add1 and ssh-add2 support the following command-line options for listing and deleting keys, and for
reading the passphrase:

. List al identities loaded in the agent, with -I:

$ ssh-addl -1

1024 35

1604921766775161379181745950571099412502846. .. and so
forth

1024 37

1236194621955474376584658921922152150472844. .. and so
forth

$ ssh-add2 -|

Listing identities.

The aut hori zati on agent has one key:

id_dsa_1024_a: 1024-bit dsa, smth@lient, Thu Dec 02 1999 22:25:09- 0500

For OpenSSH, the -I option operates differently, printing the key's fingerprint rather than the public key (see
Sidebar "Key Fingerprints' earlier for more detail):

OpenSSH only
$ ssh-add -|
1024 1c: 3d:cc:la:db:74:f8:e6:46: 6f:55:57:9e:ec:d5:fc smth@lient

To print the public key with OpenSSH, use -L instead:

OpenSSH only

$ ssh-add -L

1024 35

1604921766775161379181745950571099412502846. .. and so
forth

1024 37 1236194621955474376584658921922152150472844. .. and so forth
. Delete an identity from the agent, with -d:

$ ssh-add -d ~/.ssh/second_id
Identity renoved: /hone/smith/.ssh/second id (nmy alternative key)

$ ssh-add2 -d ~/.ssh2/id _dsa_1024_a
Deleting identity: id dsa 1024 _a. pub

If you don't specify akey file, ssh-add1 deletes your default identity from the agent:

$ ssh-add -d
Identity renoved: /honme/smith/.ssh/identity (smth@lient)

ssh-add2, on the other hand, requires you to specify akey file:

$ ssh-add2 -d
(not hi ng happens)

. Deleteall identities from the agent, with -D. This unloads every currently loaded key but leaves the agent
running:

$ ssh-add -D
All identities renoved.

$ ssh-add2 -D
Deleting all identities.

. Read the passphrase from standard input, with -p, as opposed to reading directly from your tty. Thisis useful
if you want to send your passphrase to ssh-add in aprogram, as in this Perl fragment:

open(SSHADD, "| ssh-add -p") || die "can't start ssh-add";
print SSHADD $passphrase;
cl ose(SSHADD) ;

In addition, ssh-add2 has further features controlled by command-line options:

. Lock and unlock the agent with a password using -L and -U. A locked agent refuses all ssh-add2 operations
except an unlock request. Specifically:

o If you try to modify the state of the agent (adding or deleting keys, etc.), you are told:
The requested operation was deni ed.
o If youtry tolist the keysin the agent, you are told:

The aut hori zati on agent has no
keys.

To lock:

$ ssh-add2 -L
Enter | ock password: ****
Agai n: ****

and to unlock:

$ ssh-add2 -U

Enter | ock password: ****

Locking is a convenient way to protect the agent if you step away from your computer but leave yourself
logged in. You can unload all your keys with ssh-add -D, but then you'd have to reload them again when you
return. If you have only one key, there's no difference, but if you use severdl, it's apain. Unfortunately, the
locking mechanism isn't tremendously secure. ssh-agent2 simply stores the lock password in memory,
refusing to honor any more requests until it receives an unlock message containing the same password. The
locked agent is still vulnerable to attack: if an intruder gains access to your account (or the root account), he
can dump the agent's process address space and extract your keys. The lock feature certainly deters casua
misuse, but the potential for an attack isreal. If you're seriously concerned about key disclosure, think twice
before relying on locking. We prefer to see this feature implemented by encrypting all the agent's loaded keys
with the lock password. This gives the same user convenience and provides better protection.

Set atimeout on akey, with -t. Normally when you add a key, it remains |oaded in the agent indefinitely,
until the agent terminates or you unload the key manually. The -t option indicates the lifetime of akey,
measured in minutes. After thistime has passed, the agent automatically unloads the key.

Unload this key after 30 m nutes
$ ssh-add2 -t 30 nykey

Place limits on agent forwarding with -f and -F. (Agent forwarding, which we'll cover soon, transmits agent
requests between hosts.) The -f option lets you limit, for a given key, the distance that requests for this key
may traverse. If arequest is made from too far away, measured in hops from machine to machine, the request
fails. A hop count of zero disables forwarding for this key alone:

Load a key that may be used only locally
$ ssh-agent2 -f 0 nykey

Load a key and accept requests fromup to 3 hops away
$ ssh-agent2 -f 3 nykey

The -F option lets you limit the set of hosts that may make requests relating to this key. It takes as an
argument a set of hosthames, domains, and |P addresses that may make or forward requests. The argument is
acomma-separated list of wildcard patterns, as for the serverwide configuration keywords Al | owHost s and
DenyHost s. [Section 5.5.2.3]

Permt request forwarding for a key only in the exanpl e.com domai n
$ ssh-agent2 -F '*. exanpl e.com nykey

Permit forwarding fromserver.exanple.comand the harvard. edu donai n
$ ssh-agent2 -F 'server.exanple.com*. harvard. edu’ nykey

Sanme as the preceding command, but limt forwarding to 2 hops
ssh-agent2 -F 'server.exanple.com*®*. harvard. edu’ -f 2 nykey

& HF

SSH1 agents don't support this feature. If you use an SSH2 agent in SSH1
“'@ compatibility mode, these forwarding features won't necessarily work.

Make the given key invisible to SSH-1 client requests if ssh-agent2 is running in SSH1 compatibility mode,
with -1 (that's a one, not alowercase L). It must be an RSA key, since all SSH1 public keys are RSA, and the
only SSH-2 implementation that supports RSA keys (at presstime) is F-Secure SSH2 Server. We
demonstrate this feature by example:

1. Generate an SSH2 RSA key, ny-r sa- key:
$ ssh-keygen2 -t rsa ny-rsa-key
2. Run an agent in SSH1 compatibility mode:
$ eval “ssh-agent2 -1°
3. Load the key into the agent normally:

$ ssh-add2 ny-rsa-key
Ent er passphrase: **x****x*

Asthe agent isrunning in SSH1 compatibility mode, notice that the key is visible to both SSH1 clients:

$ ssh-addl -|
1023 33 753030143250178784431763590... ny-rsa-key ...

and SSH2 clients:

$ ssh-add2 -1

Listing identities.

The aut horizati on agent has one key:

nmy-rsa-key: 1024-bit rsa, snmth@lient, Mon Jun 05 2000 23:37:19 -040
Now let's unload the key and repeat the experiment:

$ ssh-add2 -D
Deleting all identities.

Thistime, load the key using the -1 option, so SSH1 clients don't seeiit:

$ ssh-add2 -1 ny-rsa-key
Ent er passphrase: *****x*xx*

Notice that the key is till visible to SSH2 clients:

$ ssh-add2 -|

Listing identities.

The aut hori zati on agent has one key:

nmy-rsa-key: 1024-bit rsa, smth@lient, Mon Jun 05 2000 23:37:19 -040

But SSH1 clients can't seeit:

$ ssh-addl -1
The agent has no identities.

. Perform PGP key operations. The ssh-add2 manpage documents the options -R, -N, -P, and -F for OpenPGP
keyring operations, but at press time they aren't implemented.

6.3.3.1 Automatic agent loading (single-shell method)

It's a pain to invoke ssh-agent and/or ssh-add manually each time you log in. With some clever linesin your login
initialization file, you can automatically invoke an agent and load your default identity. We demonstrate this with
both methods of agent invocation, single-shell and subshell.

With the single-shell method, here are the major steps:

1. Make sure you're not already running an agent, by testing environment variable SSH_AUTH_SOCK or
SSH2 AUTH_SOCK.

2. Run the agent, ssh-agent1 or ssh-agent2, using eval.
3. If your shell is attached to atty, load your default identity with ssh-addl or ssh-add2.
For the Bourne shell and its derivatives (ksh, bash), the following lines can be placed into ~/.profile :

Make sure ssh-agentl and ssh-agent2 die on | ogout
trap '
test -n "$SSH AGENT_PID' && eval “ssh-agentl -k°
test -n "$SSH2 AGENT PI D' && kill $SSH2 AGENT PI D
0

If no agent is running and we have a term nal, run ssh-agent and ssh-add.
(For SSH2, change this to use SSH2 AUTH SOCK, ssh-agent2 and ssh-add2.)
if ["$SSH AUTH SOCK" = ""]
t hen

eval "~ssh-agent’

fusr/bin/tty > /dev/null && ssh-add
fi

For the C shell and tcsh, the following lines can be placed into ~/.login:

Use SSH2_ AUTH SOCK i nstead for SSH2
if (! $?SSH AUTH SOCK) then

eval “ssh-agent’

fusr/bin/tty > /dev/null && ssh-add
endi f

and termination code in ~/.logout :

~/ .| ogout
if ("$SSH_AGENT_PID' !'="") eval "ssh-agent -k’
if ("$SSH2 AGENT PID' I'="") kill $SSH2 AGENT_PI D

6.3.3.2 Automatic agent loading (subshell method)

The second way to load an agent on login uses the subshell method to invoke the agent. Thistime, you need to add
lines to both your login initialization file (~/.profile or ~/.login), an optional second file of your choice, and your shell
initialization file (~/.cshrc, ~/.bashrc, etc.). This method doesn't work for the Bourne shell, which has no shell
initialization file.

1. Inyour logininitialization file, make sure you're not already running an agent, by testing environment
variable SSH_AUTH_SOCK or SSH2 AUTH_SOCK.

2. Asthelast line of your login initialization file, exec ssh-agent, which spawns a subshell. Optionally run a
second initialization file to configure aspects of the subshell.

3. Inyour shell initidization file, check whether the shell is attached to atty and that the agent has no identities
loaded yet. If so, load your default identity with ssh-addl1 or ssh-add?2.

Now let's see how to do this with Bourne shell and C shell families. For derivatives of Bourne shell (ksh, bash), put
the following lines at the end of ~/.profile:

test -n "$SSH AUTH SOCK" && exec ssh-agent $SHELL

This runs the agent, spawning a subshell. If you want to tailor the environment of the subshell, create a script (say, ~/.
profile2) to do so, and use this instead:

test -n "$SSH AUTH SOCK"' && exec ssh-agent $SHELL $HOVE/ . profile2

Next, in your shell initialization file (SENV for ksh, or ~/.bashrc for bash), place the following lines to load your
default identity only if it's not loaded already:

Make sure we are attached to a tty
if /fusr/bin/tty > /dev/null

t hen
Check the output of "ssh-add -1" for identities.
For SSH2, use the line:
ssh-add2 -1 | grep 'no keys' > /dev/null
#
ssh-addl -1 | grep 'no identities' > /dev/null
if [$? -eq 0]
t hen
Load your default identity. Use ssh-add2 for SSH2.

ssh-addl
fi
fi

6.3.3.3 Automatic agent loading (X Window System)

If you're using X and want to run an agent and load your default identity automatically, it's simple. Just use the single-
shell method. For example, in your X startup file, usualy ~/.xsession, you can use these two lines:

eval " ssh-agent”
ssh-add

6.3.4 Agents and Security

Aswe mentioned earlier, agents don't expose private keysto SSH clients. Instead, they answer requests from clients
about the keys. This approach is more secure than passing keys around, but it still has some security concerns. It is
important to understand these concerns before compl etely trusting the agent model:

. Agentsrely on external access control mechanisms.
. Agents can be cracked.

6.3.4.1 Access control

When your agent is loaded with private keys, a potential security issue arises. How does your agent distinguish
between legitimate requests from your SSH clients and illegitimate requests from unauthorized sources?
Surprisingly, the agent does not distinguish at al. Agents don't authenticate their clients. They will respond to any
well-formed request received over their IPC channel, which isa Unix domain socket.

How is agent security maintained then? The host operating system is responsible for protecting the |PC channel from
unauthorized access. For Unix, this protection is accomplished by the file permissions on the socket. SSH1 and SSH2
keep your agent sockets in a protected directory, /tmp/ssh-USERNAME, where USENRAME is your login name,
while OpenSSH names the directory /tmp/ssh-STRING, where STRI NGis random text based on the agent's pid. In
either case, the directory is protected from al other users (mode 700) and owned by you:

$1s -la/tnp/ssh-smth/

dr wx------ 2 smth smth 1024 Feb 17 18:18 .

dr wxr wxr wt 9 root r oot 1024 Feb 17 18:01 ..

SrWX------ 1 smth smth 0 May 14 1999 agent-socket-328
S- W - W - W 1 root r oot 0 Feb 14 14: 30 ssh-24649- agent

SIW------ 1 smth snmith 0 Dec 3 00:34 ssh2-29614-agent

In this case, user smith has several agent-related socketsin this directory. The two sockets owned by smith were
created by agents run and owned by smith. The third, which is world-writable and owned by root, was created by the

SSH server to effect an agent forwarding.[lo] [Section 6.3.5]

This organization of a user's sockets into a single directory is not only for neatness but also for security and
portability, because different operating systems treat socket permissions in different ways. For example, Solaris
appears to ignore them completely; even a socket with permission 000 (no access for anyone) accepts all
connections. Linux respects socket permissions, but awrite-only socket permits both reading and writing. To deal
with such diverse implementations, SSH keeps your sockets in a directory owned by you, with directory permissions
that forbid anyone el se to access the sockets inside.

Using a subdirectory of /tmp, rather than /tmp itself, also prevents a class of attacks called temp races. A temp-race
attack takes advantage of race conditions inherent in the common setting of the "sticky" mode bit on the Unix /tmp
directory, allowing anyone to create afile there, but only allowing deletion of files owned by the same uid asthe
deleting process.

6.3.4.2 Cracking an agent

If the machine running your agent is compromised, an attacker can easily gain access to the |PC channel and thus to
your agent. This permits the interloper to make requests of the agent, at least for atime. Once you log out or unload
your keys from the agent, the security hole is closed. Therefore, you should run agents only on trusted machines,
perhaps unloading your keys (ssh-agent -D) if you're away from the computer for an extended time, such as
overnight.

Since agents don't give out keys, your keys would seem safe from theft if the machine is compromised. Alas, that's
not the case. An enterprising cracker, once logged into the machine, has other means for getting your keys, such as:

. Stealing your private key file and attempting to guess your passphrase

. Tracing processes that you're running, and catching your passphrase while you type it

. Trojan horse attacks: installing modified versions of system programs, such as the login program, shells, or
the SSH implementation itself, that steal your passphrase

. Obtaining a copy of the memory space of your running agent and picking the keys out of it directly (thisisa
bit harder than the others)

The bottom line is this: run agents only on trusted machines. SSH does not excuse you from securing other aspects of
your system.

6.3.5 Agent Forwarding

So far, our SSH clients have conversed with an SSH agent on the same machine. Using afeature called agent
forwarding, clients can also communicate with agents on remote machines. Thisis both a convenience feature-
permitting your clients on multiple machines to work with a single agent-and a means for avoiding some firewall-
related problems.

6.3.5.1 A firewall example

Suppose you want to connect from your home computer, H, to a computer at work, W. Like many corporate
computers, W is behind a network firewall and not directly accessible from the Internet, so you can't create an SSH
connection from H to W. Hmm... what can you do? Y ou call technical support and for once, they have good news.
They say that your company maintains a gateway or "bastion” host, B, that is accessible from the Internet and runs an
SSH server. This means you should be able to reach W by opening an SSH connection from H to B, and then from B
to W, since the firewall permits SSH traffic. Tech support gives you an account on the bastion host B, and the
problem seems to be solved... or isit?

For security reasons, the company permits access to its computers only by public-key authentication. So, using your
private key on home machine H, you successfully connect to bastion host B. And how you run into a roadblock: also
for security reasons, the company prohibits users from storing SSH keys on the exposed bastion host B, since they
can be stolen if B were hacked. That's bad news, since the SSH client on B needs a key to connect to your work
account on W. Your key is at home on H. (Figure 6-5 illustrates the praoblem.) What now?

Figure 6.5. Bastion host scenario

mo S5H keys permitied

Notice that this problem doesn't arise with telnet or rsh. You'd simply type your password to reach W (insecurely, of
course).[ll] For asolution, we turn to SSH agents and agent forwarding.

SSH agent forwarding allows a program running on a remote host, such as B, to access your ssh-agent on H
transparently, asif the agent were running on B. Thus, aremote SSH client running on B can now sign and decrypt
data using your key on H as shown in Figure 6-6. As aresult, you can invoke an SSH session from B to your work

machine W, solving the problem.

Figure 6.6. Solution with SSH agent forwarding

H Corporate Network
e gl = ...m - W
: Internet i o
i i
)k s 554 m
ssh-ogent wser keys —l

6.3.5.2 How agent forwarding works

Agent forwarding, like all SSH forwarding (Chapter 9), works "behind the scenes.” In this case, an SSH client hasiits

agent requests forwarded across a separate, previously established SSH session, to an agent holding the needed keys,
shown in Figure 6-7. The transmission takes place over a secure SSH connection, of course. Let's examine, in detail,

the steps that occur.

Figure6.7. How agent forwarding works

S5H
Agent Clien
Machive ¥ Machine ¥

1. Suppose you're logged onto machine X, and you invoke ssh to establish aremote terminal session on machine
Y:

On nmachi ne X
$ ssh Y

2. Assuming that agent forwarding is turned on, the client saysto the SSH server, "I would like to request agent
forwarding, please,” when establishing the connection.

3. sshd on machine Y checks its configuration to seeiif it permits agent forwarding. Let's assume that it's enabled.

4. sshd on machine Y sets up an interprocess communication (IPC) channel local to Y by creating some Unix

domain sockets and setting some environment variables. [Section 6.3.2.1] The resulting IPC mechanismis
just like the one ssh-agent sets up. As aresult, sshd is now prepared to pose as an SSH agent.

5. Your SSH session is now established between X and Y.
6. Next, from machine Y, you run another ssh command to establish an SSH session with a third machine, Z:

On nmachi ne Y:
$ ssh Z

7. This new ssh client now needs a key to make the connection to Z. It believes there's an agent running on
machineY, because sshd on Y is posing as one. So, the client makes an authentication request over the agent
IPC channel.

8. sshd intercepts the request, masquerading as an agent, and says, "Hello, I'm the agent. What would you like to
do?' The processis transparent: the client believesit's talking to an agent.

9. sshd then forwards the agent-related request back to the original machine, X, over the secure connection
between X and Y. The agent on machine X receives the request and accesses your local key, and its response
is forwarded back to sshd on machine Y.

10. sshdon'Y passes the response on to the client, and the connection to machine Z proceeds.

Thanks to agent forwarding, you have transparent access from machine Y to any SSH keys on machine X. Thus, any
SSH clientson Y can access any hosts permitted by your keys on X. To test this, run this command on machine Y to
list your keys:

On nachine Y:
$ ssh-agent -|

You will see dl keysthat are loaded in your agent on machine X.

It's worth noting that the agent-forwarding relationship is transitive: if you repeat this process, making a chain of SSH
connections from machine to machine, then clients on the final host will still have access to your keys on the first
host (X). (This assumes, of course, that agent forwarding is permitted by sshd on each intermediate host.)

6.3.5.3 Enabling agent forwar ding

Before an SSH client can take advantage of agent forwarding, the feature must be turned on. SSH implementations

vary in their default settings of this feature, and of course the system administrator can change it. If necessary, you

can turn it on manually with the configuration keyword For war dAgent [12]

config, giving avalue of yes (the default) or no:

in the client configuration file ~/.ssh/

SSH1, SSH2, QpenSSH
Forwar dAgent yes

Likewise, you can use command-line options. In addition to the -o command-line option, which accepts any
configuration keyword and its value:

SSH1, SSH2, QpenSSH
$ ssh -o "ForwardAgent yes"

The ssh option -a turns off agent forwarding:

SSH1, SSH2, OpenSSH
$ ssh -a ...

In addition, ssh2 and OpenSSH's ssh accept options to turn on agent forwarding, even though it's on by default:

SSH2 only
$ ssh2 +a ...

OQpenSSH only
$ ssh -A ...

6.3.6 Agent CPU Usage

Before we leave our discussion of agents, we'll make one final note about performance. Agents carry out al
cryptographic work that would otherwise be done by SSH clients. This means an agent can accumulate substantial
CPU time. In one case we saw, some friends of ours were using SSH1 for a great deal of automation, running
hundreds of short-lived SSH sessionsin arow. Our friends were quite puzzled to find that the single ssh-agent used
by all these processes was eating the lion's share of CPU on that machine.

5 This des gn also fits well with token-based key storage, in which your keys are kept on a smart card carried with you.
Examples are the U.S. government-standard Fortezza card or RSA Security's Keon system. Like agents, smart cards
respond to key-related requests but don't give out keys, so integration with SSH would be straightforward. Though adoption
of tokens has been slow, we believe it will be commonplace in the future.

6] Older versions of SSH1 use SSH_AUTHENTICATION_SOCKET instead of SSH_AUTH_SOCK. If this appliesto
you, we recommend setting SSH_AUTH_SOCK yourself, for example (in C shell):

(7 Why can't ssh-agent set its environment variables without all this trickery? Because under Unix, a program can't set
environment variablesin its parent shell.

8 Actual ly, you can reconnect to an agent launched in a previous login by modifying your SSH_AUTH_SOCK variable to
point to the old socket, but thisis gross.

1 % hasits own security problems, of course. If someone can connect to your X server, they can monitor all your
keystrokes, including your passphrase. Whether thisis an issue in using ssh-askpass depends on your system and security
needs.

119 Even though this socket is world-writable, only user smith can access it due to the permissions on the parent directory, /
tmp/ssh-smith.

M This key-distribution problem can also be solved with network file-sharing protocols, such as NFS, SMB, or AFP, but
these aren't usually available in the remote-access situation we're discussing.

(12 sg2 supports the keyword Al | owAgent For war di ng asasynonym for For war dAgent .

6.4 Multiple I dentities

Until now, we've assumed you have a single SSH identity that uniquely identifies you to an SSH server. You do have a default
identity-our earlier ssh-add examples operated on it-but you may create as many other identities as you like.

Why use several identities? After al, with asingle SSH identity, you can connect to remote machines with a single passphrase.
That's very simple and convenient. In fact, most people can survive perfectly well with just one identity. Multiple identities
have important uses, however:

Additional security

If you use different SSH keys for different remote accounts, and one of your keysis cracked, only some of your remote
accounts will be vulnerable.
Secure batch processes

Using an SSH key with an empty passphrase, you can create secure, automated processes between interacting
computers, such as unattended backups. [Section 11.1.2.2] However, you definitely don't want your regular logins to
use an unencrypted private key, so you should create a second key for this purpose.

Different account settings

Y ou can configure your remote account to respond differently based on which key is used for connecting. For example,
you can make your Unix login session run different startup files depending on which key is used.
Triggering remote programs

Y our remote account can be set up to run specific programs when an alternative key is used, viaforced commands.
[Section 8.2.4]

In order to use multiple identities, you need to know how to switch between them. There are two ways: manually, and
automatically with an agent.

6.4.1 Switching I dentities Manually

ssh and scp let you switch your identity with the -i command-line option andthe | dent i t yFi | e configuration keyword. For
either of these techniques, you provide the name of your desired private key file (SSH1, OpenSSH) or identification file
(SSH2). [Section 7.4.2] Table 6-2 displays a summary of the syntax.

Table 6.2. Syntax Summary

Version ssh scp IdentityFile Keyword
SSH1, OpenSSH sshl -i key file... scpl -i key file... I dentityFil e key file
SSH2 ssh2-iid file... scp2 -i id file... | dentityFileidfile

6.4.2 Switching I dentitieswith an Agent

If you use an SSH agent, identity-switching is handled automatically. Simply load all the desired identities into the agent using
ssh-add. Thereafter, when you attempt a connection, your SSH client requests and receives alist of al your identities from the
agent. The client then tries each identity in turn until one authenticates successfully, or they all fail. Even if you have 10

different identities for 10 different SSH servers, a single agent (containing these keys) provides appropriate key information to
your SSH clients for seamless authentication with all 10 servers.

All this happens transparently with no effort on your part. Well, amost no effort. There are two potential problems that can
strike if you have two SSH identities that can connect to the same SSH server.

Thefirst problem occurs because the agent stores identitiesin the order in which it receives them from ssh-add. As we've said,
the SSH client triesidentities "in turn," i.e., in the order it gets them from the agent. Therefore, it is your responsibility to add
identities to the agent in a careful, useful order. Otherwise, if two or more identities apply in a situation, an SSH client might
authenticate with the wrong one.

For example, suppose you have two SSH1 identities stored in the filesid-normal and id-backups. Y ou use id-normal for normal
terminal sessions to server.example.com and id-backups for invoking a remote backup program on server.example.com (e.g.,
using aforced command [Section 8.2.4]). Each day when you log in, you load both keysinto an agent, using a clever script that

locates and loads all key filesin a given directory:

#!/ bi n/ csh
cd ~/.ssh/ ny-keys # An exanple directory

foreach keyfile (*)

ssh-add $keyfile
end

What happens when you invoke an SSH client?
$ ssh server. exanpl e. com

In this case, the remote backup program gets run, authenticating with the key in file id-backups. Y ou see, the wildcard in your
script returns alist of key filesin alphabetical order, so id-backups is added before id-normal, as if you'd typed:

$ ssh-add id-backups
$ ssh-add id-nornal

Therefore, your SSH clients will always use the key id-backups when connecting to server.example.com because the agent
providesit first in response to a client request. This might not be what you intended.

The second problem only makes this behavior worse: identities in an agent take precedence over identities used manually. If an
identity in the agent can successfully authenticate, there's no way to override the agent manually with the -i command-line
optionorthel dent it yFi | e keyword. So in the earlier example, thereisliterally no way to use the identity id-normal. The
obvious attempt:

$ ssh -i id-normal server.exanple.com

still authenticates with id-backup s because it is loaded first into the agent. Even nonloaded identities can't override the agent's
selection. For example, if you load only one identity into the agent and try authenticating with the other:

$ ssh-add id- nor nal
$ ssh -i id-backups server.exanple.com

your ssh connection authenticates with the loaded identity, in this case id-normal, regardless of the -i option.[13]

Asageneral rule, if you have two SSH identities valid on an SSH server, don't load either identity into an agent. Otherwise, one
of those identities will be unable to access that server.

6.4.3 Tailoring Sessions Based on | dentity

Despite the gloom and doom in the previous section, multiple identities can be extremely useful. In particular, you can

configure your remote accounts to respond differently to different identities. Thisis athree-step process:
1. Generate anew SSH identity, as we have discussed in this chapter.

2. Set up adetailed client configuration that does what you want, using your new identity. Thisisthe subject of Chapter 7.

3. Set up your account on the SSH server machine to respond to your new identity in a desired manner. Thisis covered in
detail in Chapter 8.

We strongly encourage you to experiment with this technique. Y ou can do some really powerful and interesting things with
SSH thisway. If you're just running simple terminal sessions with SSH, you are missing half the fun.

131 This undocumented behavior drove usinsane until we figured out what was happening. Similar behavior occurs with Kerberos
authentication in SSH1. If you have Kerberos credentials that allow you to connect, you aren't running an agent, and you specify akey
with -i, that key isn't used unless you destroy your Kerberos credentials (or otherwise make them unusable, for instance, hiding them by
setting the KRB5CCNAME variable), because Kerberosis tried first.

6.5 Summary

In this chapter, we've seen how to create and use SSH identities, represented by key pairs,

either individually (SSH-1) or in collections (SSH-2). Keys are created by ssh-keygen and

are accessed by clients as needed. SSH-2 provides an additional layer of configuration, the
identification file, which lets you use a set of identities as asingle identity. Y ou may have

as many identities as you like.

SSH agents are useful timesaversto avoid retyping passphrases. Their operation has
numerous subtleties, but once you get the hang of it, running an agent should become
second nature.

Chapter 7. Advanced Client Use

SSH clients are marvelously configurable. Chapter 2 introduced remote logins and file
copying but covered only the tip of the iceberg. Y ou can also connect with multiple SSH
identities, use avariety of authentication and encryption techniques, exercise control over
TCP/IP settings, and generally tailor the feel and operation of SSH clients to your liking.

Y ou can even save common collections of SSH settings in configuration files for ease of use.

WE'll be focusing on outgoing SSH use, running SSH clients to connect to remote hosts,
using the components highlighted in Figure 7-1. A related topic, not covered in this chapter,

Is how to control incoming SSH connections to your account. That sort of access control isa
function of the SSH server, not the clients, and is covered in Chapter 8.

Figure 7.1. Client configuration (highlighted parts)

Files Configuration types Configuration types Filos
[ommand-ine
oplioms
§.ash)aphee
terar onmen| | i Crslem fesian J=zofsshro
virishiles shortug -/ .sgh/ erlroment
— Jase Sastrd roman
-4 .sshfoonfig s fonlem -
o . U’ cliend [F—— ‘eroisshd_config
fopEh2faEshd aonfic . S —_— L} . ifSige e
d |::|||I':u||:|h|:||| file fr— Siauriien file JareSarh? f asha?_conf g
feto/fssh_config - - -] f ks TR .
jote i saha {asha_sonfig L|.rl1ri r:lml. | Server-side -.;:..__..Il "Ni:':'"ﬂ"“_ -
cerffiguration file = auilbearizotian Bllecll 2" e
- o
-y .sshrsidentity .

4 e K - caEh fapthos i med ey
-4 by llrl =L wﬂrﬂ —_— - ¢ .oshfeathorlzad_keved
-f.gshafidentiticatian - Tl:lﬂd' aeounl's Foashl faschorizarbon

mlﬂim“ﬁ -f L rhoats
fabefaeh oo _hosta -/ . shoETE
‘etofeshi Fhostheys
fabe/ anhl FEnosnnog La Kmaawn hesk)
-/ b e _hoste dmsbmes B T(Psareppers | /=tcoihocts.olliow
/- 5ghz /Mostheys e ™™ ferefhasts . dery
J -aahd FEnoennca LA
f=toikrb. ¥, fetodkebs . *
S _l'"h"fm fercisrviab
Mﬂl’ﬂmiﬁ- - ELagin, -, kS logrin
f=topan.ds sshid
— PAM files P

7.1 How to Configure Clients

The clients ssh and scp are quite configurable, with many settings that can be changed to suit your
whim. If you want to modify the behavior of these clients, three general techniques are at your
disposal:

Environment variables

For minor changes to the behavior of scp
Command-line options

For changing the behavior of ssh or scp for asingle invocation
Configuration keywords

For changes that remain in force until you change them again; these are stored in aclient
configuration file

We now present ageneral overview of these three methods.
7.1.1 Environment Variables

Several client features are controlled by environment variables. For example, scp prints statistics
about each file it transfersif the environment variable SSH_ALL_SCP_STATS s set.
Environment variables may be set in your current shell by the standard methods:

C shell famly (csh, tcsh)
$ setenv SSH ALL SCP STATS 1

Bourne shell famly (sh, ksh, bash)
$ SSH ALL_SCP_STATS=1
$ export SSH ALL_SCP STATS

Alternatively, environment variables and values may be specified in afile. System administrators
can set environment variables for all usersin /etc/environment, and users can set them in ~/.ssh/
environment (SSH1, OpenSSH) and ~/.ssh2/environment (SSH2). These files contain lines of the
format:

NAVE=VALUE

where NAVE is the name of an environment variable, and VAL UE isits value. Thevalueis taken
literally, read from the equals sign to the end of the line. Don't enclose the value in quotes, even if

it contains whitespace, unless you want the quotes to be part of the value.
7.1.2 Command-Line Options

Command-line options let you change a client's behavior just once at invocation. For example, if
you're using sshl over a slow modem connection, you can tell SSH1 to compress the data with the
-C command-line option:

$ sshl -C server. exanpl e.com

ssh, scp, and most of their support programs, when invoked with the -h option, print ahelp
message listing all of their command-line options. For example:

SSH1, SSH2
$ ssh -h
$ ssh-keygen2 -h

7.1.3 Client Configuration Files

If you don't want to retype command-line options continually, configuration files let you change a
client's behavior now and in the future, until you change the configuration file again. For

example, you can enable compression for all clients you invoke by inserting this line into aclient
configuration file:

Conpr essi on yes
In aclient configuration file, client settings are changed by specifying 276

keywords and values. In the example, the keyword is Conpr essi on and thevalueisyes. In
SSH1 and OpenSSH, you may optionally separate the keyword and value with an equals sign:

Conpression = yes

SSH2 doesn't support this syntax, however, so it can be easier always to use the "keyword
<space> value" format to avoid confusion.

Y ou may configure clients to behave differently for each remote host you visit. This can be done
on the fly with command-line options, but for anything reasonably complex, you'll end up typing
long, inconvenient command lines like:

$ sshl -a -p 220 -c blowfish -1 sally -i nyself server.exanple.com

Alternatively, you can set these options within a configuration file. The following entry duplicates
the function of the command-line options above, collecting them under the name "myserver":

SSH1, OpenSSH
Host nyserver
For war dAgent no
Port 220
C pher bl owfi sh
User sally
| dentityFile nyself
Host Nane server. exanpl e. com

To run aclient with these options enabled, ssmply type:
$ sshl nyserver
Configuration files take some time to set up, but in the long run they are significant timesavers.

We've given you a peek at the structure of a configuration file: aHost specification, followed by
abunch of keyword/value pairs. In the coming sections, we continue this philosophy, defining the
structure and general rules before explaining the meanings of keywords. Once the generalities are
covered, we'll dive into specific keywords. Sound good? Let's go.

7.1.3.1 Keywords ver sus command-line options

Aswe cover the many configuration keywords, note that all can be supplied on the command line
if desired. The -o command-line option exists for this purpose. For any configuration line of the
form:

Keywor d Val ue

you may type:[l]

SSH1, SSH2, OpenSSH
$ ssh -o "Keyword Val ue"

For example, the configuration lines:

User sally
Port 220

can be specified as:

SSH1, SSH2, OpenSSH
$ ssh -0 "User sally" -0 "Port 220" server.exanpl e.com

SSH1 additionally permits an equals sign between the keyword and the value:
$ sshl -0 User=sally -0 Port=220 server.exanpl e.com

This example shows that the -0 option may be specified multiple times on the command line. The
option also works for scp in SSH1 and OpenSSH:

SSH1, OpenSSH
$ scp -0 "User sally" -o "Port 220" nyfile server.exanple.com

Another relationship between command-line options and configuration keywords is found in the -
F option (SSH2 only). This option instructs an SSH2 client to use a different configuration file
instead of ~/.ssh2/ssh2_config. For example:

$ ssh2 -F ~/.ssh2/other_config
Unfortunately there's no equivalent option for SSH1 or OpenSSH clients.
7.1.3.2 Global and local files

Client configuration files comein two flavors. A single, global client configuration file, usualy
created by a system administrator, governs client behavior for an entire computer. Thefileis
traditionally /etc/ssh_config (SSH1, OpenSSH) or /etc/ssh2/ssh2_config (SSH2). (Don't confuse
these with the server configuration filesin the same directories.) Each user may also create a
local client configuration file within his or her account, usually ~/.ssh/config (SSH1, OpenSSH)
or ~/.ssh2/ssh2_config (SSH2). Thisfile controls the behavior of clients runin the user'slogin

seﬁion.[z]

Vauesinauser'slocal file take precedence over those in the global file. For instance, if the
global file turns on data compression, and your local file turnsit off, the local file winsfor clients
run in your account. We cover precedence in more detail soon. [Section 7.2]

7.1.3.3 Configuration file sections

Client configuration files are divided into sections. Each section contains settings for one remote
host or for a set of related remote hosts, such as all hosts in a given domain.

The beginning of asection is marked differently in different SSH implementations. For SSH1 and
OpenSSH, the keyword Host begins a new section, followed by a string called a host
specification. The string may be a hostname:

Host server. exanpl e.com

an |P address:

Host 123.61.4.10

anickname for a host: [Section 7.1.3.5]

Host my-ni cknane

or awildcard pattern representing a set of hosts, where ? matches any single character and * any
sequence of characters (just like filename wildcards in your favorite Unix shell):

Host *.exanpl e.com
Host 128.220.19.*

Some further examples of wildcards:

Host *.edu

Any hostnane in the edu domain

Host a* Any host name whose

name begins with "a"

Host *1* Any host nane

(or IP address!) with 1 in it

Host * Any hostnane or | P address

For SSH2, anew section is marked by a host specification string followed by a colon. The string,
like the argument of Host , may be a computer name:

server. exanpl e. com
an |P address:
123.61. 4. 10:
anickname:

nmy- ni cknane:

or awildcard pattern:

* exanpl e. com

128. 220. 19. *:

Following the host-specification line are one or more settings, i.e., configuration keywords and
values, asin the example we saw earlier. The following table contrasts SSH1 and SSH2

configuration files:

SSH1, OpenSSH SSH?2
Host nyserver nyserver:
User sally User sally
| dentityFile nyself | dentityFile nyself
For war dAgent no For war dAgent no
Port 220 Port 220
C pher bl owfish Ci phers bl owfi sh

The settings apply to the hosts named in the host specification. The section ends at the next host
specification or the end of the file, whichever comesfirst.

7.1.3.4 Multiple matches

Because wildcards are permitted in host specifications, a single hostname might match two or
more sections in the configuration file. For example, if one section begi ns[’

Host *. edu
and another begins:
Host *. harvard. edu

and you connect to server.harvard.edu, which section applies? Believe it or not, they both do.
Every matching section applies, and if akeyword is set more than once with different values, the
earliest value takes precedence.

Suppose your client configuration file contains two sections to control data compression,
password authentication, and password prompting:

Host *. edu
Conpr essi on yes
Passwor dAut henti cati on yes

Host *. harvard. edu

Conpr essi on no
Passwor dPr onpt Logi n no

and you connect to server.harvard.edu:

$ ssh server. harvard. edu

Notice that the string ser ver . har var d. edu matches both Host patterns, *. edu and *.
harvar d. edu. Aswe've said, the keywords in both sections apply to your connection.
Therefore, the previous ssh command sets values for keywords Conpr essi on,

Passwor dAut hent i cat i on, and Passwor dPr onpt Logi n.

But notice, in the example, that the two sections set different valuesfor Conpr essi on. What
happens? The ruleis that the first value prevails, in this case, yes. So in the previous example,
the values used for server.harvard.edu are:

Conpr essi on yes The first of the Conpression |ines
Passwor dAut henti cati on yes Uni que to first section
Passwor dPr onpt Logi n no Uni que to second section

and as shown in Figure 7-2. Conpr essi on no isignored becauseit is the second

Conpr essi on line encountered. Likewise, if 10 different Host lines match server.harvard.
edu, all 10 of those sections apply, and if a particular keyword is set multiple times, only the first
valueisused.

Figure 7.2. SSH1 client configuration file with multiple matches (SSH2 not shown)

Clieat configuration file
ot gy —
! Compression yes Sy i
Passwordiuthentication yes!: i Imﬂﬁwrnrd.an'ummﬁgwﬂm
. ~* Compressicn yes
HDE":. - com . Passwordhuthentication ves
e ;w PasswordPromptLogin no

HusL'har v R
| Compression no :
i PasswordPromptLogin no :

While this feature might seem confusing, it has useful properties. Suppose you want some settings
applied to all remote hosts. Simply create a section beginning with:

Host *

and place the common settings within it. This section should be either the first or the last in the
file. If first, its settings take precedence over any others. This can be used to guard against your
own errors. For example, if you want to make sure you never, ever, accidentally configure SSH
sessions to fall back to the insecure rsh protocol, at the beginning of your configuration file put:

First section of file

Host *
Fal | BackToRsh no

Alternatively, if you place Host * asthe last section in the configuration file, its settings are used
only if no other section overrides them. Thisis useful for changing SSH's default behavior, while

still permitting overrides. For example, by default, data compression is disabled. Y ou can make it

enabled by default by ending your configuration file with:

Last section of file
Host *
Conpr essi on yes

Vail4, you have changed the default behavior of ssh and scp for your account! Any other section,
earlier in the configuration file, can override this default ssmply by setting Conpr essi on to no.

7.1.3.5 Making nicknames for hosts

Suppose your client configuration file contains a section for the remote host myserver.example.
com:

Host mnyserver. exanpl e.com

One day, while logged onto ourclient.example.com, you decide to establish an SSH connection to
myserver .example.com. Since both computers are in the same domain, example.com, you can omit
the domain name on the command line and simply type:

$ ssh nyserver

This does establish the SSH connection, but you run into an unexpected nuance of configuration
files. ssh compares the command-line string "myserver" to the Host string "myserver.example.
com", determines that they don't match, and doesn't apply the section of the configuration file.

Y es, the software requires an exact textual match between the hosthames on the command line
and in the configuration file.

Y ou can get around this limitation by declaring nyser ver to be anickname for myserver.
example.com. In SSH1 and OpenSSH, thisis done with the Host and Host Nane keywords.
Simply use Host with the nickname and Host Nane with the fully qualified hostname:

SSH1, OpenSSH
Host nyserver
Host Nane nyserver. exanpl e. com

ssh will now recognize that this section applies to your command ssh myserver. Y ou may define

any nickname you like for a given computer, even if it isn't related to the original hostname:

SSH1, OpenSSH
Host sinple
Host Name myserver. exanpl e. com
Then you can use the nickname on the command line:

$ sshl sinple

For SSH2, the syntax is different but the effect is the same. Use the nickname in the host
specification, and provide the full name to the Host keyword:

SSH2 only

si npl e:
Host nyserver. exanpl e. com

Then type:
$ ssh2 sinple

Nicknames are convenient for testing new client settings. Suppose you have an SSH1
configuration for server.example.com:

Host server. exanpl e.com
and you want to experiment with different settings. Y ou can just modify the settings in place, but

if they don't work, you have to waste time changing them back. The following steps demonstrate
amore convenient way:

1. Within the configuration file, make a copy of the section you want to change:

Oigi nal
Host server. exanpl e. com

Copy for testing
Host server. exanpl e. com

2. Inthe copy, change "Host" to "HostName":

Origi nal
Host server. exanpl e. com

Copy for testing
Host Nane server. exanpl e. com

3. Add anew Host line at the beginning of the copy, using a phony name, for example,
"Host my-test":

Origi nal
Host server. exanpl e. com

Copy for testing
Host ny-test
Host Nanme server. exanpl e. com

4. Setupisdone. Inthecopy (my- t est), make all the changes you want and connect using
ssh my-test. Y ou can conveniently compare the old and new behavior by running ssh
server.example.com versus ssh my-test. If you decide against the changes, simply delete
themy-t est section. If you like the changes, copy them to the original section (or delete
the original and keep the copy).

Y ou can do the same with SSH2:

Oigi nal
server. exanpl e. com

Copy for testing
nmy-test:
Host server. exanpl e.com

7.1.3.6 Comments, indenting, and style

Y ou probably noticed in the previous examples that we are using the # symbol to represent
comments:

This is a coment

In fact, any line beginning with # in the configuration file is treated as a comment and ignored.
Likewise, blank lines (empty or containing only whitespace) are also ignored.

Y ou might also have noticed that the lines following a host specification are indented:

SSH1, OpenSSH

Host server. exanpl e. com
Keywor dl val uel
Keywor d2 val ue2

SSH2 only

server. exanpl e.com
Keywor dl val uel
Keywor d2 val ue2

Indenting is considered good style because it visually indicates the beginning of a new section. It
isn't required, but we recommend it.

[1] Again, SSH1 and OpenSSH allow use of the equals sign (=) between the keyword and value,
which allows you to omit the quotes on the command line: ssh -o Keyword=Value.

(2 The system administrator may change the locations of client configuration files, using the
compile-timeflag- - wi t h- et cdi r Section 4.1.5.1 or the serverwide keyword

User Confi gDi rect ory. [Section 5.4.1.5] If thefilesaren't in their default locations on your
computer, contact your system administrator.

B we use only the SSH1 file syntax here to keep things tidy, but the explanation is true of SSH2 as
well.

7.2 Precedence

Perhaps you are wondering: what happens if some configuration settings conflict? For
instance, if you usethe Conpr essi on keyword to turn compression off, and also the -C
command-line option to turn it on, who wins? In other words, who has precedence ?

For SSH1, SSH2, and OpenSSH clients, the order of precedenceis, from strongest to
weakest:

1. Command-line options

2. The user'slocal client configuration file

3. Theglobal client configuration filel

Command-line options have the highest precedence, overriding any client configuration
files. The user'slocal file has next highest precedence, and the global file has lowest
precedence. So in our compression example, -C takes precedence over the Conpr essi on
keyword, and compression is enabled. If a setting isn't changed by any keyword or
command-line option, the client's default setting is used.

Remember that we're speaking only of outgoing connections initiated by clients. Incoming
connections, controlled by the SSH server, have other precedence rules. For servers, the
user'slocal configuration file definitely doesn't override the global file; otherwise, users
could override global server settings, creating security holes and wreaking other havoc.
[Section 8.1.1]

(4] Environment variables are not mentioned in this list because they don't compete for precedence.
Environment variables control different features that don't overlap with command-line options and
configuration files.

7.3 Introduction to Verbose M ode

Now that we've covered the generalities of command-line options and configuration files, we're about to launch
into an extended discussion of configuration. Before we begin, let's practice some defense. Asyou try these
options, occasionally you might see behavior that's not what you expected. Whenever this occurs, your first
instinct should be: turn on verbose mode with the -v command-line option to track down the problem:

SSH1, SSH2, OpenSSH
$ ssh -v server. exanpl e.com

In verbose mode, the client prints messages as it proceeds, providing clues to the problem. New SSH users (and
quite afew experienced ones) frequently forget or neglect to use verbose mode when problems arise. Don't
hesitate! Many questions we've seen in the Usenet SSH newsgroup, comp.security.ssh [Section 12.3], could have

been answered immediately by running ssh -v and examining the output.

Suppose you just installed your public key on server.example.com and are trying to authenticate with it.
Strangely, you are prompted for your login password instead of your public-key passphrase:

$ ssh server. exanpl e.com
barrett @erver. exanpl e. com s password:

Don't just sit there scratching your head in wonder. Let verbose mode come to the rescue:

$ ssh -v server. exanpl e. com

SSH Version 1.2.27 [sparc-sun-solaris2.5.1], protocol version 1.5.

client: Connecting to server.exanple.com][128.9.176.249] port 22.

client: Connection established.

client: Trying RSA authentication with key '"barrett@lient

client: Renote: Bad file nodes for /users/barrett/.ssh Unh oh!

client: Server refused our key.
client: Doing password aut hentication.
barrett @erver. exanpl e. com s password:

These messages (which are abbreviated for this example) confirm that the SSH connection is succeeding, but
public-key authentication isfailing. The reason is "bad file modes': the remote SSH directory, /home/barrett/.
ssh, has incorrect permissions. A quick trip to the server and a well-placed chmod command later, the problemis
solved:

On the server
$ chnod 700 ~/.ssh

Verbose mode also works for scp :

$ scp -v nyfile server. exanpl e.com
Executing: host bel vedere, user (unspecified), command scp -v -t
SSH Version 1.2.27 [sparc-sun-solaris2.5.1], protocol version 1.5.

Verbose mode isyour friend. Useit liberally. Now we're ready to learn those dozens of options.

7.4 Client Configuration in Depth

ssh and scp take their cues from command-line options, configuration-file keywords, and environment variables. SSH1, SSH2, and
OpenSSH clients behave differently and obey different settings, but as usual, we cover them simultaneously. When a setting is supported
by only some of these products, we'll say so.

7.4.1 Remote Account Name
ssh and scp assume that your local and remote usernames are the same. If your local username is henry and you run:

SSH1, SSH2, OpenSSH
$ ssh server. exanpl e. com

ssh will assume your remote username is also henry and requests a connection to that account on server.example.com. If your remote
account name differs from the local one, you must tell the SSH client your remote account name. For henry to connect to a remote account
caled sdly, he can use the -I command-line option:

SSH1, SSH2, OpenSSH
$ ssh -1 sally server.exanple.com

If copying files with scp, the syntax is different for specifying the remote account name, looking more like an email address. [Section
7.5.1] To copy the file myfile to the remote account sally on server.example.com:

SSH1, SSH2, OpenSSH
$ scp nyfile sally@erver. exanpl e. com

If you frequently connect to a remote machine using a different username, instead of monkeying with command-line options, specify the
remote username in your client configuration file. The User keyword serves this purpose, and both ssh and scp pay attention to it. The
following table shows how to declare that your remote usernameis sally on a given remote host:

SSH1, OpenSSH SSH?2

Host server.exanpl e.com server. exanpl e. com
User sally User sally

Now, when connecting to server.example.com, you don't have to specify that your remote username is saly:

The renpte usernane sally will be used automatically
$ ssh server. exanpl e. com

7.4.1.1 Trickswith remote account names

With User and nicknames, you can significantly shorten the command lines you type for ssh and scp. Continuing the preceding example
with "sally", if you have the configuration shown in this table;

SSH1, OpenSSH SSH2
Host sinple si npl e:
Host Nane server. exanpl e. com Host server.exanpl e.com
User sally User sally

then these long commands:

$ ssh server.exanple.com-1 sally
$ scp nyfile sally@erver. exanpl e. com

may be reduced to:

$ ssh sinple
$ scp nyfile sinple:

This table shows how you can specify separately several different accounts names on different hosts, each in its own section of the
configuration file:

SSH1, OpenSSH SSH2
Host server.exanpl e.com server. exanpl e. com
User sally User sally
Host anot her. exanpl e. com anot her. exanpl e. com
User sharon User sharon

This techniqueis convenient if you have only one account on each remote machine. But suppose you have two accounts on server.
example.com, called sally and sally2. Isthere some way to specify both in the configuration file? The following attempt doesn't work (we
show SSH1 syntax only):

THLS WLL NOT WORK PROPERLY
Host server.exanpl e.com

User sally

User sally2

Conpr essi on yes

because only the first value (sally) prevails. To get around this limitation, you can use nicknames to create two sections for the same
machine in your configuration file, each with a different User :

SSH1, OpenSSH
Section 1: Convenient access to the sally account
Host sal | y-account

Host Nane server. exanpl e. com

User sally

Conpr essi on yes

Section 2: Convenient access to the sally2 account
Host sal | y2-account

Host Nane server. exanpl e. com

User sally2

Conpr essi on yes

Now you can access the two accounts easily by nickname:

$ ssh sal |l y-account
$ ssh sal l y2-account

Thisworks, but it isn't ideal. Y ou've duplicated your settings (Host Narne and Conpr essi on) in each section. Duplication makes a
configuration file harder to maintain, since any future changes needs to be applied twice. (In general, duplication isn't good software
engineering.) Are you doomed to duplicate? No, there's a better solution. Immediately after the two sections, create a third section with a
Host wildcard that matches both sally-account and sally2-account. Suppose you use sally*-account and move all duplicated settings into
this new section:

SSH1, OpenSSH

Host sal | y*-account
Host Nane server. exanpl e. com
Conpr essi on yes

The end result is shown in this table:

SSH1, OpenSSH SSH2

Host sal |l y-account sal |l y-account :

User sally User sally
Host sal |l y2-account sal | y2-account:

User sally2 User sally2
Host sal | y*-account sal | y*-account:

Host Name server. exanpl e. com Host server.exanpl e.com

Conpr essi on yes Conpr essi on yes

Since sally* -account matches both previous sections, its full name and compression settings apply to both sally-account and sally2-
account. Any settings that differ between sally-account and sally2-account (in this case, User) are kept in their respective sections.

Y ou've now achieved the same effect as in the previous example-two accounts with different settings on the same remote machine-but
with no duplication of settings.

7.4.2 User ldentity
SSH identifies you by an identity represented by a key pair (SSH-1) or a collection of key pairs (SSH-2). [Section 6.1] Normally, SSH
clients use your default key file (SSH1, OpenSSH) or default identification file (SSH2) to establish an authenticated connection. However,

if you've created other keys, you may instruct SSH clients to use them to establish your identity. A command-line option (-i) and
configuration keyword (I dent i t yFi | e) areavailable for this purpose.

In SSH1 and OpenSSH, for example, if you have a private key file called my-key, you can make clients use it with the commands:

$ sshl -i ny-key server. exanpl e.com
$ scpl -i ny-key nyfile server.exanple.com

or with the configuration keyword:
IdentityFile ny-key
Thefilelocation is assumed to be relative to the current directory, i.e., in these cases thefileis ./my-key.

SSH2 asohas-i and | dent it yFi | e, but their useis dlightly different. Instead of akey file, you supply the name of an identification

file:l!

$ ssh2 -i ny-id-file server.exanple.com
IdentityFile ny-id-file

Take note of this difference between sshl and ssh2. If you mistakenly provide a key filename to ssh2, the client attempts to read the key
fileasif it'san identification file, sending arandom result to the SSH2 server. Authentication mysteriously fails, possibly with the log
message "No further authentication methods available," or you may be prompted for your login password rather than your public key
passphrase.

Multiple identities can be quite useful. [Section 6.4] For example, you can set up your remote account to run specific programs when a
second key is used. The ordinary command:

$ ssh server.exanpl e. com
initiates aregular login session, but:
$ ssh -i other_identity server.exanpl e.com

can run acomplex batch process on server.example.com. Using configuration keywords, you can accomplish the same effect by specifying
an alternative identity as shown in thistable:

SSH1, OpenSSH SSH2

Host SoneConpl exActi on SomeConpl exAct i on:
Host Nane server. exanpl e. com Host server. exanpl e. com
IdentityFile other_identity ldentityFile other_identity

Y ou can then invoke:
$ ssh SonmeConpl exActi on

SSH1 and OpenSSH can specify multiple identitiesin asingle command:®!

SSH1, OpenSSH
$ ssh -i idl -i id2 -i id3 server.exanple.com

or:

SSH1, OpenSSH

Host server. exanpl e. com
IdentityFile idl
IdentityFile id2
IdentityFile id3

Multipleidentities are tried in order until one successfully authenticates. However, SSH1 and OpenSSH limit you to 100 identities per
command.

If you plan to use multiple identities frequently, remember that an SSH agent can eliminate hassle. Simply load each identity's key into the
agent using ssh-add, and you won't have to remember multiple passphrases while you work.

7.4.3 Host Keysand Known-Hosts Databases

Every SSH server has a host key [Section 3.3] that uniquely identifies the server to clients. This key helps prevent spoofing attacks. When

an SSH client requests a connection and receives the server's host key, the client checksit against alocal database of known host keys. If
the keys match, the connection proceeds. If they don't, the client behaves according to several options you can control.

In SSH1 and OpenSSH, the host key database is maintained partly in a serverwide location (/etc/ssh_known_hosts) and partly in the user's

SSH directory (~/.ssh/known_hosts).[7] In SSH2, there are two databases of host keys for authenticating server hosts (the "hostkeys' map
in /etc/ssh2/hostkeys) and client hosts (the "knownhosts' map); in this section we are concerned only with the former. Similar to its SSH1
counterpart, the SSH2 hostkeys map is maintained in a serverwide directory (/etc/ssh2/hostkeys/) and a per-account directory (~/.ssh2/
hostkeys/). In this section, we refer to the SSH1, SSH2, and OpenSSH map simply as the host key database.

7.4.3.1 Strict host key checking

Suppose you regquest an SSH connection with server.example.com, which sends its host key in response. Y our client looks up server.
example.comin its host key database. |dedlly, a match is found and the connection proceeds. But what if this doesn't happen? Two
scenarios may arise:

SCENARIO 1
A host key isfound for server.example.comin the database, but it doesn't match the incoming key. This can indicate a security
hazard, or it can mean that server.example.com has changed its host key, which can happen legitimately. [Section 3.10.4]

SCENARIO 2

No host key for server.example.com exists in the database. In this case, the SSH client is encountering server.example.com for the
first time.

In each scenario, should the client proceed or fail? Should it store the new host key in the database, or not? These decisions are controlled

by the keyword St r i ct Host KeyChecki ng, which may have three values:

yes
Be strict. If akey isunknown or has changed, the connection fails. Thisisthe most secure value, but it can be inconvenient or
annoying if you connect to new hosts regularly, or if your remote host keys change frequently.

no
Not strict. If akey isunknown, automatically add it to the user's database and proceed. If akey has changed, |eave the known hosts
entry intact, print awarning, and permit the connection to proceed. Thisis the least secure value.

ask

Prompt the user. If akey isunknown, ask whether it should be added to the user's database and whether to connect. If akey has
changed, ask whether to connect. Thisis the default and a sensible value for knowledgeable users. (Less experienced users might
not understand what they're being asked and therefore may make the wrong decision.)

Here's an example:

SSH1, SSH2, OpenSSH
Strict Host KeyChecki ng yes

Table 7-1 summarizes SSH's St r i ¢t Host KeyChecki ng'sbehavior.

Table7.1. StrictHostK eyChecking Behavior

Key Found? Match? Strict? Action
Yes Yes - Connect
Yes No Yes Warn and fail
Yes No No Warn and connect
Yes No Ask Warn and ask whether to connect
No - Yes Warn and fail
No - No Add key and connect
No - Ask Ask whether to add key and to connect

OpenSSH has an additional keyword, CheckHost | P, to make a client verify the |P address of an SSH server in the database. Its values
may beyes (the default, to verify the address) or no. Thevalue yes provides security against name service spoofing attacks. [Section
3.10.2]

OpenSSH only
CheckHost I P no

7.4.3.2 Moving the known hostsfiles

SSH1 and OpenSSH permit the locations of the host key database, both the serverwide and per-account parts, to be changed using
configuration keywords. G obal KnownHost sFi | e defines an aternative location for the serverwide file. It doesn't actually move the
file-only the system administrator can do that-but it does force your clients to use another file in its place. This keyword is useful if the file
is outdated, and you want your clientsto ignore the serverwide file, particularly if you're tired of seeing warning messages from your

clients about changed keys.

SSH1, OpenSSH
d obal KnownHost sFil e /users/smth/.ssh/my_gl obal _hosts file

Similarly, you can change the location of your per-user part of the database with the keyword User KnownHost sFi | e:

SSH1, OpenSSH
User KnownHost sFil e /users/smith/.ssh/my_l ocal _hosts file

7.4.4 TCP/IP Settings

SSH uses TCP/IP as its transport mechanism. Most times you don't need to change the default TCP settings, but in such situations as the
following, it's necessary:

« Connecting to SSH servers on other TCP ports

« Using privileged versus nonprivileged ports

. Keeping an idle connection open by sending keepalive messages
. Enabling the Nagle Algorithm (TCP_NODELAY)

« Requiring IP addresses to be Version 4 or 6

7.4.4.1 Selecting aremote port

Most SSH servers listen on TCP port 22, so clients connect to this port by default. Nevertheless, sometimes you need to connect to an SSH
server on adifferent port number. For example, if you are a system administrator testing a new SSH server, you can run it on adifferent
port to avoid interference with an existing server. Then your clients need to connect to this alternate port. This can be done with the client's
Por t keyword, followed by a port number:

SSH1, SSH2, OpenSSH
Port 2035

or the -p command-line option followed by the port number:

SSH1, SSH2, OpenSSH
$ ssh -p 2035 server.exanpl e.com

Y ou can also specify an aternative port for scp, but the command-line option is-P instead of -p: (8l

SSH1, SSH2, OpenSSH
$ scp -P 2035 nyfile server.exanpl e.com

In SSH2 2.1.0 and later, you can also provide a port number as part of the user and host specification, preceded by a hash sign. For
example, the commands:

SSH2 only

$ ssh2 server. exanpl e. com#2035

$ ssh2 smith@erver. exanpl e. com#2035

$ scp2 smth@erver. exanpl e. con#2035: nyfile localfile

each create SSH-2 connections to remote port 2035. (We don't see much use for this alternative syntax, but it's available.)

After connecting to the server, ssh sets an environment variable in the remote shell to hold the port information. For SSH1 and OpenSSH,
thevariableiscalled SSH_CLIENT, and for SSH2 it is SSH2_CLIENT. The variable contains a string with three values, separated by a
space character: the client's | P address, the client's TCP port, and the server's TCP port. For example, if your client originates from port
1016 on IP address 24.128.23.102, connecting to the server's port 22, the value is:

SSH1, OpenSSH
$ echo $SSH CLI ENT
24.128.23.102 1016 22

SSH2 only
$ echo $SSH2_CLI ENT

24.128.23.102 1016 22

These variables are useful for scripting. In your shell's startup file (e.g., ~/.profile, ~/.1ogin), you can test for the variable, and if it exists,
take actions. For example:

#!'/ bin/ sh

Test for an SSH_CLI ENT val ue of nonzero |ength
if [-n "$SSH CLI ENT"]

t hen

W | ogged in via SSH.
echo 'Wel cone, SSH-1 user!'
Extract the I P address from SSH CLI ENT
| P="echo $SSH CLIENT | awk '{print $1}'"
Translate it to a hostnane.
HOSTNAME="host $IP | grep Nanme: | awk '{print $2}'°
echo "I see you are connecting from $HOSTNAME. "
el se
We logged in not by SSH, but by some other neans.
echo 'Wel cone, O cluel ess one. Feeling insecure today?
fi

7.4.4.2 Forcing a nonprivileged local port

SSH connections get locally bound to a privileged TCP port, one whose port number is below 1024. [Section 3.4.2.3] If you ever need to
override this feature-say, if your connection must pass through afirewall that doesn't permit privileged source ports-use the -P command-
line option:

SSH1, SSH2, OpenSSH
$ ssh -P server. exanpl e.com

The -P option makes ssh select aloca port that is nonprivileged.[g] Let's watch thiswork by printing the value of SSH_CLIENT on the
remote machine, with and without -P. Recall that SSH_CLIENT lists the client |P address, client port, and server port, in order.

Default: bind to privileged port.
$ ssh server.exanpl e.com'echo $SSH CLI ENT'
128. 119. 240. 87 1022 22 1022 < 1024

Bind to non-privileged port.

$ ssh -P server.exanple.com'echo $SSH CLI ENT'
128.119. 240. 87 36885 22 36885 >= 1024

The configuration keyword UsePr i vi | egedPor t (SSH1, OpenSSH) has the same function as -P, with values y es (use a privileged
port, the default) and no (use a nonprivileged port):

SSH1, OpenSSH
UsePrivil egedPort no

scp also permits binding to nonprivileged ports with these configuration keywords. However, the command-line options are different from

those of ssh. For scpl, the option -L means to bind to a nonprivileged port, the same as setting UsePr i vi | egedPor t to no:110

SSH1 only
$ scpl -L nyfile server. exanpl e.com

scp2 has no command-line option for this feature.

For trusted-host authentication you must use a privileged port. In other words, if you use-P or UsePr i vi | egedPort no, you disable
Rhosts and RhostsRSA authentication. [Section 3.4.2.3]

7.4.4.3 K eepalive messages

The KeepAl i ve keyword instructs the client how to proceed if a connection problem occurs, such as a prolonged network outage or a
server machine crash:

SSH1, SSH2, OpenSSH
KeepAl i ve yes

Thevalueyes (the default) tells the client to transmit and expect periodic keepalive messages. If the client detects a lack of responsesto
these messages, it shuts down the connection. The value no means not to use keepalive messages.

Keepalive messages represent a tradeoff. If they are enabled, afaulty connection is shut down, even if the problem is transient. However,
the TCP keepalive timeout on which this feature is based istypically severa hours, so this shouldn't be a big problem. If keepalive
messages are disabled, an unused faulty connection can persist indefinitely.

KeepAl | ve isgeneraly more useful in the SSH server, since auser sitting on the client side will certainly notice if the connection
becomes unresponsive. However, SSH can connect two programs together, with the one running the SSH client waiting for input from the
other side. In such a situation, it can be necessary to have a dead connection be eventually detected.

KeepAl i ve isn'tintended to deal with the problem of SSH sessions being torn down because of firewall, proxying, NAT, or IP
masquerading timeouts. [Section 5.4.3.4]

7.4.4.4 Controlling TCP_NODELAY

TCP/IP has afeature called the Nagle Algorithm, an optimization for reducing the number of TCP segments sent with very small amounts
of data. [Section 4.1.5.3] SSH2 clients may also enable or disable the Nagle Algorithm using the NoDel ay keyword:

SSH2 only
NoDel ay yes

Legal valuesare yes (to disable the agorithm) and no (to enable it; the default).
7.4.4.5 Requiring | Pv4 and |1 Pv6

OpenSSH can force its clients to use Internet Protocol Version 4 (IPv4) or 6 (IPv6) addresses. IPv4 is the current version of |P used on the
Internet; IPv6 isthe future, permitting far more addresses than 1Pv4 can support. For more information on these address formats visit:

http://www.ipv6.org

To force IPv4 addressing, use the -4 flag:

OpenSSH only
$ ssh -4 server.exanpl e. com

or likewisefor IPv6, use -6 :

OpenSSH only
$ ssh -6 server.exanpl e.com

7.4.5 Making Connections

Under the best conditions, an SSH client attempts a secure connection, succeeds, obtains your authentication credentials, and executes
whatever command you've requested, be it a shell or otherwise. Various steps in this process are configurable, including:

. Thenumber of times the client attempts the connection

. Thelook and behavior of the password prompt (for password authentication only)

. Suppressing al prompting

« Running remote commands interactively with atty

« Running remote commands in the background

« Whether or not to fall back to an insecure connection, if a secure one can't be established
. The escape character for interrupting and resuming an SSH session

7.4.5.1 Number of connection attempts

If you run an SSH1 or OpenSSH client and it can't establish a secure connection, it will retry. By default, it tries four timesin rapid
succession. Y ou can change this behavior with the keyword Connect i onAt t enpt s:

http://www.ipv6.org/

SSH1, OpenSSH
Connecti onAttenpts 10

In this example, sshl tries 10 times before admitting defeat, after which it either quits or falls back to an insecure connection. We'll come
back to this when we discuss the keyword Fa