

 Ruby in a Nutshell

By Yukihiro Matsumoto

Publisher: O'Reilly
Pub Date: November 2001

ISBN: 0-59600-214-9
Pages: 218

 Foreword

 Preface

 How This Book Is Organized

 Conventions Used in This Book

 Comments and Questions

 Acknowledgments

 Chapter 1. Introduction

 Section 1.1. Ruby's Elegance

 Section 1.2. Ruby in Action

 Chapter 2. Language Basics

 Section 2.1. Command-Line Options

 Section 2.2. Environment Variables

 Section 2.3. Lexical Conventions

 Section 2.4. Literals

 Section 2.5. Variables

 Section 2.6. Operators

 Section 2.7. Methods

 Section 2.8. Control Structures

 Section 2.9. Object-Oriented Programming

 Section 2.10. Security

 Chapter 3. Built-in Library Reference

 Section 3.1. Predefined Variables

 Section 3.2. Predefined Global Constants

 Section 3.3. Built-in Functions

 Section 3.4. Built-in Library

 Chapter 4. Standard Library Reference

 Section 4.1. Standard Library

 Chapter 5. Ruby Tools

 Section 5.1. Standard Tools

 Section 5.2. Additional Tools

 Section 5.3. Ruby Application Archive

 Chapter 6. Ruby Updates

 Section 6.1. Summary of Changes

 Section 6.2. Changes from 1.6.5 to 1.7.1

 Section 6.3. The Future of Ruby

 Section 6.4. Participate in Ruby

 Colophon

Foreword
Ruby is an object-oriented programming language developed for the purpose of
making programming both enjoyable and fast. With its easy-to-use interpreter,
easy-to-understand syntax, complete object-oriented functionality, and powerful
class libraries, Ruby has become a language that can be used in a broad range of
fields: from text processing and CGI scripts to professional, large-scale
programs.

As a programmer and a programming-language geek, I know what makes me
happy while programming, and I designed Ruby with these elements in mind. I
based the language on an object-oriented paradigm, provided a solid feature set
(e.g., exceptions, iterators, etc.), and made sure to keep things consistent and
balanced. Ruby will help you concentrate on solving problems. It is
straightforward and not the least bit enigmatic.

It's my sincere hope that this book will help you enjoy programming in Ruby.

Happy programming!

—Yukihiro "Matz" Matsumoto, Japan

Preface
Ruby in a Nutshell is a practical reference covering everything from Ruby syntax to the
specifications of its standard class libraries. With portability and convenience in mind, I have
arranged it into a concise tool that provides just the information you need while
programming. Although this book is based on Ruby 1.6.5, its contents should remain
applicable to future versions of Ruby, and many of the changes that will be included in
Version 1.8 are shown in Chapter 6.

This book covers all the built-in features and standard bundled libraries of Ruby. It isn't an
introductory book; rather it works best sitting top of your desk when you program in Ruby.
The book assumes you have prior programming experience, preferably in Ruby. System
programming experience may be required to understand some parts of the book, for example,
network programming using sockets.

This book doesn't cover the Ruby C API for extending and embedding Ruby, nor does it
cover additional libraries, e.g., those available from RAA
(http://www.ruby-lang.org/en/raa.html). For information on these topics, please consult the
online documents available at http://www.ruby-lang.org, other books, or you can wait for
O'Reilly to publish books on them. :-)

http://www.ruby-lang.org/en/raa.html
http://www.ruby-lang.org/

How This Book Is Organized

Chapter 1 briefly introduces the Ruby programming language, highlights the language
features, and discusses what makes Ruby unique.

Chapter 2 describes Ruby language syntax and covers command-line options, environment
variables, lexical convention, literals, variables, operators, methods, control structures,
object-oriented programming, and security.

Chapter 3 describes the core functionality built into the standard Ruby interpreter. This part
contains descriptions for more than 800 built-in methods in 42 classes and modules.

Chapter 4 describes the useful libraries that come with the standard Ruby distribution, from
network access via HTTP and CGI programming to data persistence using the DBM library.

Chapter 5 describes the tools that come with the standard Ruby distribution—debugger,
profiler, and irb (Interactive Ruby)—and some useful tools not bundled with the Ruby
standard distribution.

Chapter 6 describes the features added to the development version of Ruby (1.7). Those
features aren't yet available in the current stable Version 1.6.5 but will be in the next stable
version (1.8).

Conventions Used in This Book

The following conventions are used in this book:

Italic

Used for strings to be replaced for particular value.

Constant width

Indicates command-line options; environment variable names; fragments of Ruby
code, i.e., names and reserved words, including method names, variable names, class
names, etc.; examples; user input.

[]

Text in brackets is usually optional.

...

Text followed by an ellipsis can be any number of sequences of the text.

[...] or {...}

Ellipses between brackets or braces refers to omitted text.

This icon designates a note, which is an important aside to the
nearby text.

This icon designates a warning relating to the nearby text.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/ruby

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly
Network, see the O'Reilly web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/ruby
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

Acknowledgments

I wish to thank the editors who made the impossible possible: Yumi Hayatsu for the original
Japanese version and Laura Lewin for this English version. Without their efforts, you
wouldn't be reading this book. The time I worked with Laura was fun and busy; she
succeeded in driving the lazy programmer to do the work of a technical writer.

Thanks to David L. Reynolds, Jr., the translator of O'Reilly Japan's Ruby Pocket Reference
(from which this book was derived). He not only decrypted the mysterious Oriental language
but also fixed bugs in the book and polished up descriptions. I would also like to thank the
technical reviewers, Colin Steele and Todd Faulkner; they helped take a pocket reference
and expand it to the full-sized book you are reading.

Finally, thanks to my family, who endured their husband/father spending too many hours
before the computer.

-- A wife of noble character who can find? She is worth far more than rubies.

Proverbs 31:10

Chapter 1. Introduction
Ruby has been readily adopted by programmers in Japan and has had much documentation
written for it in Japanese. As programmers outside of Japan learn about the benefits of Ruby,
there is a growing need for documentation in English. The first book I wrote for O'Reilly,
Ruby Pocket Reference, was in Japanese. Since then Ruby has changed significantly. To
meet the needs of non-Japanese programmers, we translated, updated, and expanded Ruby
Pocket Reference into Ruby in a Nutshell.

Ruby is an object-oriented programming language that makes programming both enjoyable
and fast. With the easy-to-use interpreter, familiar syntax, complete object-oriented
functionality, and powerful class libraries, Ruby has become a language that can be applied
to a broad range of fields from text processing and CGI scripts to professional, large-scale
programs.

While Ruby is easy to learn, there are many details that you can't be expected to remember.
This book presents those details in a clean and concise format. It is a reference to keep next
to your desktop or laptop, designed to make Ruby even easier to use.

For those of you who are new to Ruby, there are several online tutorials available to get you
started: Ruby's home page (http://www.ruby-lang.org) is a good starting pointing as it offers
Ruby tutorials and the Ruby Language FAQ.

http://www.ruby-lang.org/

1.1 Ruby's Elegance

Ruby is a genuine object-oriented scripting language designed from the ground up to support
the OOP model.

Most modern languages incorporate aspects of object-oriented programming. Because Ruby
was designed from the beginning to support OOP, most programmers feel it is elegant, easy
to use, and a pleasure to program. Everything in Ruby is an object; there's no exception.

While Ruby is object-oriented, you can also use Ruby to do procedural programming. But as
you do, Ruby is secretly turning your nifty procedures into methods on a globally accessible
object.

Throughout the development of the Ruby language, I've focused my energies on making
programming faster and easier. To do so, I developed what I call the principle of least
surprise. All features in Ruby, including object-oriented features, are designed to work as
ordinary programmers (e.g., me) expect them to work. Here are some of those features:

Interpretive programming

No compilation is needed; you can edit and feed your program to the interpreter. The
faster development cycle helps you enjoy the programming process.

Dynamic programming

Almost everything in Ruby is done at runtime. Types of variables and expressions are
determined at runtime as are class and method definitions. You can even generate
programs within programs and execute them.

Familiar syntax

If you've been programming in Java, Perl, Python, C/C++, or even Smalltalk, Ruby's
syntax is easy to learn. The following simple factorial function illustrates how easily
you can decipher its meaning:

def factorial(n)
 if n == 0
 return 1
 else
 return n * factorial(n-1)
 end
end

Iterators

The iterator feature for loop abstraction is built into the language, which means a
block of code can be attached to a method call. The method can call back the block
from within its execution. For example, Array has the each method to iterate over
its contents. With this feature, you don't need to worry about the loop counter or
boundary condition.

ary = [1,2,3,4,5]

ary.each do |i|
 puts 1*2
end # prints 2,3,4,8,10 for each line

A block is used not only for loops. It can be used for various purposes including the
select method of Array, which uses blocks to choose values that satisfy conditions from
contents:

ary = [1,2,3,4,5]
ary = ary.select do |i|
 i %2 == 0
end # returns array of even numbers.

Exceptions

Just as you'd expect in a modern OOP language, Ruby provides language-level
support for exception handling. For example, an attempt to open a file that doesn't
exist raises an exception, so that your program doesn't run, assuming an unmet
precondition. This feature obviously enhances the reliability of your programs.
Exceptions can be caught explicitly using the rescue clause of the begin
statement:

begin
 f = open(path)
rescue
 puts "#{path} does not exist."
 exit 1
end

Class libraries

Ruby comes with a strong set of bundled class libraries that cover a variety of
domains, from basic datatypes (strings, arrays, and hashes) to networking and thread
programming. The following program retrieves the current time string from the local
host via a network socket connection:

require "socket"
print TCPSocket.open("localhost","daytime").gets

In addition to bundled libraries, if you go to http://www.ruby-lang.org/en/raa.html
shows a list of the many unbundled useful libraries along with applications and
documentation. Since Ruby is rather young, the number of libraries available is
smaller than that of Perl, for example, but new libraries are becoming available each
day.

Portable

Ruby ports to many platforms, including Unix, DOS, Windows, OS/2, etc. Ruby
programs run on many platforms without modification.

Garbage collection

http://www.ruby-lang.org/en/raa.html

Object-oriented programming tends to allocate many objects during execution. Ruby's
garbage collector recycles unused object automatically.

Built-in security check

Ruby's taint model provides safety when handling untrusted data or programs.

1.2 Ruby in Action

Like Python or Perl, Ruby is a scripting language. Scripting languages offer some great
advantages over other languages, such as C++ and Java. They allow programmers to show
off a lot of programming concepts and principles in a relatively small amount of space. Ruby
does this, while maintaining code readability.

the "Hello World."
print "Hello World.\n"
output file contents in reverse order
print File::readlines(path).reverse
print lines that contains the word "Ruby".
while line = gets()
 if /Ruby/ =~ line
 print line
 end
end
class and methods
class Animal
 def legs
 puts 4
 end
end
class Dog<Animal
 def bark
 puts "bow!"
 end
end
fred = Dog::new
fred.legs # prints 4
fred.bark # prints bow!
exception handling
begin
 printf "size of %s is %d\n", path, File::size(path)
rescue
 printf "error! probably %s does not exist\n", path
end
rename all files to lowercase names
ARGV.each {|path| File::rename(path, path.downcase)}
network access
require 'socket'
print TCPSocket::open("localhost", "daytime").read
Ruby/Tk
require 'tk'
TkButton.new(nil, 'text'=>'hello', 'command'=>'exit').pack

Tk.mainloop

Chapter 2. Language Basics
Ruby does what you'd expect it to do. It is highly consistent, and allows you to get down to
work without having to worry about the language itself getting in your way.

2.1 Command-Line Options

Like most scripting language interpreters, Ruby is generally run from the command line. The
interpreter can be invoked with the following options, which control the environment and
behavior of the interpreter itself:

ruby [options] [—] [programfile] [argument ...]

-a

Used with -n or -p to split each line. Split output is stored in $F.

-c

Checks syntax only, without executing program.

-C dir

Changes directory before executing (equivalent to -X).

-d

Enables debug mode (equivalent to -debug). Sets $DEBUG to true.

-e prog

Specifies prog as the program from the command line. Specify multiple -e options
for multiline programs.

-F pat

Specifies pat as the default separator pattern ($;) used by split.

-h

Displays an overview of command-line options (equivalent to -help).

-i [ext]

Overwrites the file contents with program output. The original file is saved with the
extension ext. If ext isn't specified, the original file is deleted.

-I dir

Adds dir as the directory for loading libraries.

-K [kcode]

Specifies the multibyte character set code (e or E for EUC (extended Unix code); s or
S for SJIS (Shift-JIS); u or U for UTF-8; and a, A, n, or N for ASCII).

-l

Enables automatic line-end processing. Chops a newline from input lines and appends
a newline to output lines.

-n

Places code within an input loop (as in while gets; ... end).

-0[octal]

Sets default record separator ($/) as an octal. Defaults to \0 if octal not specified.

-p

Places code within an input loop. Writes $_ for each iteration.

-r lib

Uses require to load lib as a library before executing.

-s

Interprets any arguments between the program name and filename arguments fitting
the pattern -xxx as a switch and defines the corresponding variable.

$xxx.-S

Searches for a program using the environment variable PATH.

-T [level]

Sets the level for tainting checks (1 if level not specified). Sets the $SAFE variable.

-v

Displays version and enables verbose mode (equivalent to --verbose).

-w

Enables verbose mode. If programfile not specified, reads from STDIN.

-x [dir]

Strips text before #!ruby line. Changes directory to dir before executing if dir is
specified.

-X dir

Changes directory before executing (equivalent to -c).

-y

Enables parser debug mode (equivalent to --yydebug).

--copyright

Displays copyright notice.

--debug

Enables debug mode (equivalent to -d).

--help

Displays an overview of command-line options (equivalent to -h).

--version

Displays version.

--verbose

Enables verbose mode (equivalent to -v). Sets $VERBOSE to true.

--yydebug

Enables parser debug mode (equivalent to -y).

Single character command-line options can be combined. The following
two lines express the same meaning:

ruby -ne 'print if /Ruby/' /usr/share/dict/words
ruby -n -e 'print if /Ruby/' /usr/share/dict/words

2.2 Environment Variables

In addition to using arguments and options on the command line, the Ruby interpreter uses
the following environment variables to control its behavior. The ENV object contains a list of
current environment variables.

DLN_LIBRARY_PATH

Search path for dynamically loaded modules.

HOME

Directory moved to when no argument is passed to Dir::chdir. Also used by
File::expand_path to expand "~".

LOGDIR

Directory moved to when no arguments are passed to Dir::chdir and environment
variable HOME isn't set.

PATH

Search path for executing subprocesses and searching for Ruby programs with the -S
option. Separate each path with a colon (semicolon in DOS and Windows).

RUBYLIB

Search path for libraries. Separate each path with a colon (semicolon in DOS and
Windows).

RUBYLIB_PREFIX

Used to modify the RUBYLIB search path by replacing prefix of library path1 with
path2 using the format path1;path2 or path1path2. For example, if RUBYLIB
is:

 /usr/local/lib/ruby/site_ruby

and RUBYLIB_PREFIX is:

 /usr/local/lib/ruby;f:/ruby

Ruby searches f:/ruby/site_ruby. Works only with DOS, Windows, and OS/2
versions.

RUBYOPT

Command-line options passed to Ruby interpreter. Ignored in taint mode (where
$SAFE is greater than 0).

RUBYPATH

With -S option, search path for Ruby programs. Takes precedence over PATH.
Ignored in taint mode (where $SAFE is greater than 0).

RUBYSHELL

Specifies shell for spawned processes. If not set, SHELL or COMSPEC are checked.

2.3 Lexical Conventions

Ruby programs are composed of elements already familiar to most programmers: lines,
whitespace, comments, identifiers, reserved words, literals, etc. Particularly for those
programmers coming from other scripting languages such as Perl, Python or tcl, you'll find
Ruby's conventions familiar, or at least straightforward enough not to cause much trouble.

2.3.1 Whitespace

We'll leave the thorny questions like "How much whitespace makes code more readable and
how much is distracting?" for another day. If you haven't already caught onto this theme, the
Ruby interpreter will do pretty much what you expect with respect to whitespace in your
code.

Whitespace characters such as spaces and tabs are generally ignored in Ruby code, except
when they appear in strings. Sometimes, however, they are used to interpret ambiguous
statements. Interpretations of this sort produce warnings when the -w option is enabled.

a + b

Interpreted as a+b (a is a local variable)

a +b

Interpreted as a(+b) (a, in this case, is a method call)

2.3.2 Line Endings

Ruby interprets semicolons and newline characters as the ending of a statement. However, if
Ruby encounters operators, such as +, -, or backslash at the end of a line, they indicate the
continuation of a statement.

2.3.3 Comments

Comments are lines of annotation within Ruby code that are ignored at runtime. Comments
extend from # to the end of the line.

This is a comment.

Ruby code can contain embedded documents too. Embedded documents extend from a line
beginning with =begin to the next line beginning with =end. =begin and =end must
come at the beginning of a line.

=begin
This is an embedded document.
=end

2.3.4 Identifiers

Identifiers are names of variables, constants, and methods. Ruby distinguishes between

identifiers consisting of uppercase characters and those of lowercase characters. Identifier
names may consist of alphanumeric characters and the underscore character (_). You
can distinguish a variable's type by the initial character of its identifier.

2.3.5 Reserved Words

The following list shows the reserved words in Ruby:

BEGIN do next then

END else nil true

alias elsif not undef

and end or unless

begin ensure redo until

break false rescue when

case for retry while

class if return yield

def in self _ _FILE_ _

defined? module super _ _LINE_ _

These reserved words may not be used as constant or local variable names. They can,
however, be used as method names if a receiver is specified.

2.4 Literals

I've often wondered why we programmers are so enamored with literals. I'm waiting for the
day when a language comes along and introduces "figuratives." In the interim, the rules Ruby
uses for literals are simple and intuitive, as you'll see the following sections.

2.4.1 Numbers

Strings and numbers are the bread and butter of literals. Ruby provides support for both
integers and floating-point numbers, using classes Fixnum, Bignum, and Float.

2.4.1.1 Integers

Integers are instances of class Fixnum or Bignum:

123 # decimal
1_234 # decimal with underline
0377 # octal
0xff # hexadecimal
0b1011 # binary
?a # character code for 'a'
12345678901234567890 # Bignum: an integer of infinite length

2.4.1.2 Floating-point numbers

Floating-point numbers are instances of class Float:

123.4 # floating point value
1.0e6 # scientific notation
4E20 # dot not required
4e+20 # sign before exponential

2.4.2 Strings

A string is an array of bytes (octets) and an instance of class String:

"abc"

Double-quoted strings allow substitution and backslash notation.

'abc'

Single-quoted strings don't allow substitution and allow backslash notation only for \\
and \'.

2.4.2.1 String concatenation

Adjacent strings are concatenated at the same time Ruby parses the program.

"foo" "bar" # means "foobar"

2.4.2.2 Expression substitution

#$var and #@var are abbreviated forms of #{$var} and #{@var}. Embeds value of
expression in #{...} into a string.

2.4.2.3 Backslash notation

In double-quoted strings, regular expression literals, and command output, backslash notation
can be represent unprintable characters, as shown in Table 2-1.

Table 2-1. Backslash notations

Sequence Character represented
\n Newline (0x0a)

\r Carriage return (0x0d)

\f Formfeed (0x0c)

\b Backspace (0x08)

\a Bell (0x07)

\e Escape (0x1b)

\s Space (0x20)

\nnn Octal notation (n being 0-7)

\xnn Hexadecimal notation (n being 0-9, a-f, or A-F)

\cx, \C-x Control-x

\M-x Meta-x (c | 0x80)

\M-\C-x Meta-Control-x

\x Character x

`command`

Converts command output to a string. Allows substitution and backslash notation

2.4.2.4 General delimited strings

The delimiter ! in expressions like this: %q!...! can be an arbitrary character. If the
delimiter is any of the following: ([{ <, the end delimiter becomes the corresponding
closing delimiter, allowing for nested delimiter pairs.

%!foo!

%Q!foo!

Equivalent to double quoted string "foo"

%q!foo!

Equivalent to single quoted string 'foo'

%x!foo!

Equivalent to `foo` command output

2.4.2.5 here documents

Builds strings from multiple lines. Contents span from next logical line to the line that starts
with the delimiter.

<<FOO
FOO

Using quoted delimiters after <<, you can specify the quoting mechanism used for String
literals. If a minus sign appears between << and the delimiter, you can indent the delimiter, as
shown here:

puts <<FOO # String in double quotes ("")
 hello world
 FOO
 puts <<"FOO" # String in double quotes ("")
 hello world
 FOO
 puts <<'FOO' # String in single quotes ('')
 hello world
 FOO
 puts <<`FOO` # String in backquotes (``)
 hello world
 FOO
 puts <<-FOO # Delimiter can be indented
 hello world
 FOO

2.4.3 Symbols

A symbol is an object corresponding to an identifier or variable:

:foo # symbol for 'foo'
:$foo # symbol for variable '$foo'

2.4.4 Arrays

An array is a container class that holds a collection of objects indexed by an integer. Any kind
of object may be stored in an array, and any given array can store a heterogeneous mix of
object types. Arrays grow as you add elements. Arrays can be created using array.new or
via literals. An array expression is a series of values between brackets []:

[]

An empty array (with no elements)

[1, 2, 3]

An array of three elements

[1, [2, 3]]

A nested array

2.4.4.1 General delimited string array

You can construct arrays of strings using the shortcut notation, %W. Only whitespace
characters and closing parentheses can be escaped in the following notation:

%w(foo bar baz) # ["foo", "bar", "baz"]

2.4.5 Hashes

A hash is a collection of key-value pairs or a collection that is indexed by arbitrary types of
objects.

A hash expression is a series of key=>value pairs between braces.

{key1 => val1, key2 => val2}

2.4.6 Regular Expressions

Regular expressions are a minilanguage used to describe patterns of strings. A regular
expression literal is a pattern between slashes or between arbitrary delimiters followed by %r:

/pattern/
/pattern/im # option can be specified
%r!/usr/local! # general delimited regular expression

Regular expressions have their own power and mystery; for more on this topic, see O'Reilly's
Mastering Regular Expressions by Jeffrey E.F. Friedl.

2.4.6.1 Regular-expression modifiers

Regular expression literals may include an optional modifier to control various aspects of
matching. The modifier is specified after the second slash character, as shown previously and
may be represented by one of these characters:

i

Case-insensitive

o

Substitutes only once

x

Ignores whitespace and allows comments in regular expressions

m

Matches multiple lines, recognizing newlines as normal characters

2.4.6.2 Regular-expression patterns

Except for control characters, (+ ? . * ^ $ () [] { } | \), all characters match
themselves. You can escape a control character by preceding it with a backslash.

Regular characters that express repetition (* + { }) can match very long strings, but when
you follow such characters with control characters ?, you invoke a nongreedy match that
finishes at the first successful match (i.e., +, *, etc.) followed by ? (i.e., +?, *?, etc.).

^

Matches beginning of line.

$

Matches end of line.

.

Matches any single character except newline. Using m option allows it to match
newline as well.

[...]

Matches any single character in brackets.

[^...]

Matches any single character not in brackets.

re*

Matches 0 or more occurrences of preceding expression.

re+

Matches 1 or more occurrences of preceding expression.

re?

Matches 0 or 1 occurrence of preceding expression.

re{ n}

Matches exactly n number of occurrences of preceding expression.

re{ n,}

Matches n or more occurrences of preceding expression.

re{ n, m}

Matches at least n and at most m occurrences of preceding expression.

a| b

Matches either a or b.

(re)

Groups regular expressions and remembers matched text.

(?imx)

Temporarily toggles on i, m, or x options within a regular expression. If in parentheses,
only that area is affected.

(?-imx)

Temporarily toggles off i, m, or x options within a regular expression. If in
parentheses, only that area is affected.

(?: re)

Groups regular expressions without remembering matched text.

(?imx: re)

Temporarily toggles on i, m, or x options within parentheses.

(?-imx: re)

Temporarily toggles off i, m, or x options within parentheses.

(?#...)

Comment.

(?= re)

Specifies position using a pattern. Doesn't have a range.

(?! re)

Specifies position using pattern negation. Doesn't have a range.

(?> re)

Matches independent pattern without backtracking.

\w

Matches word characters.

\W

Matches nonword characters.

\s

Matches whitespace. Equivalent to [\t\n\r\f].

\S

Matches nonwhitespace.

\d

Matches digits. Equivalent to [0-9].

\D

Matches nondigits.

\A

Matches beginning of string.

\Z

Matches end of string. If a newline exists, it matches just before newline.

\z

Matches end of string.

\G

Matches point where last match finished.

\b

Matches word boundaries when outside brackets. Matches backspace (0x08) when
inside brackets.

\B

Matches nonword boundaries.

\n, \t, etc.

Matches newlines, carriage returns, tabs, etc.

\1...\9

Matches nth grouped subexpression.

\10...

Matches nth grouped subexpression if it matched already. Otherwise refers to the octal
representation of a character code.

2.5 Variables

There are five types of variables in Ruby: global, instance, class, locals and constants. As you might
expect, global variables are accessible globally to the program, instance variables belong to an object, class
variables to a class and constants are, well... constant. Ruby uses special characters to differentiate between
the different kinds of variables. At a glance, you can tell what kind of variable is being used.

Global Variables

$foo

Global variables begin with $. Uninitialized global variables have the value nil (and produce warnings
with the -w option). Some global variables have special behavior. See Section 3.1 in Chapter 3.

Instance Variables

@foo

Instance variables begin with @. Uninitialized instance variables have the value nil (and produce
warnings with the -w option).

Class Variables

@@foo

Class variables begin with @@ and must be initialized before they can be used in method definitions.
Referencing an uninitialized class variable produces an error. Class variables are shared among
descendants of the class or module in which the class variables are defined. Overriding class variables
produce warnings with the -w option.

Local Variables

foo

Local variables begin with a lowercase letter or _. The scope of a local variable ranges from class,
module, def, or do to the corresponding end or from a block's opening brace to its close brace {}. The
scope introduced by a block allows it to reference local variables outside the block, but scopes introduced
by others don't. When an uninitialized local variable is referenced, it is interpreted as a call to a method that
has no arguments.

Constants

Foo

Constants begin with an uppercase letter. Constants defined within a class or module can be accessed from
within that class or module, and those defined outside a class or module can be accessed globally.
Constants may not be defined within methods. Referencing an uninitialized constant produces an error.

Making an assignment to a constant that is already initialized produces a warning, not an error. You may
feel it contradicts the name "constant," but remember, this is listed under "variables."

Pseudo-Variables

In addition to the variables discussed, there are also a few pseudo-variables. Pseudo-variables have the
appearance of local variables but behave like constants. Assignments may not be made to
pseudo-variables.

self

The receiver object of the current method

true

Value representing true

false

Value representing false

nil

Value representing "undefined"; interpreted as false in conditionals

__FILE__

The name of the current source file

__LINE__

The current line number in the source file

Assignment

target = expr

The following elements may assign targets:

Global variables

Assignment to global variables alters global status. It isn't recommended to use (or abuse) global
variables. They make programs cryptic.

Local variables

Assignment to uninitialized local variables also serves as variable declaration. The variables start to
exist until the end of the current scope is reached. The lifetime of local variables is determined when
Ruby parses the program.

Constants

Assignment to constants may not appear within a method body. In Ruby, re-assignment to constants
isn't prohibited, but it does raise a warning.

Attributes

Attributes take the following form:

expr.attr

Assignment to attributes calls the attr= method of the result of expr.

Elements

Elements take the following form:

expr [arg ...]

Assignment to elements calls the []= method of the result of expr.

Parallel Assignment

target [, target ...][, *target] = expr [, expr ...][, *expr]

Targets on the left side receive assignment from their corresponding expressions on the right side. If the
last left-side target is preceded by *, all remaining right-side values are assigned to the target as an array. If
the last right-side expression is preceded by *, the array elements of expression are expanded in place
before assignment.

If there is no corresponding expression, nil is assigned to the target. If there is no corresponding target,
the value of right-side expression is just ignored.

Abbreviated Assignment

target op = expr

This is the abbreviated form of:

target = target op expr

The following operators can be used for abbreviated assignment:

+= -= *= /= %= **= <<= >>= &= |= ^= &&= ||=

2.6 Operators

Ruby supports a rich set of operators, as you'd expect from a modern language. However, in
keeping with Ruby's object-oriented nature, most operators are in fact method calls. This
flexibility allows you to change the semantics of these operators wherever it might make
sense.

2.6.1 Operator Expressions

Most operators are actually method calls. For example, a + b is interpreted as a.+(b),
where the + method in the object referred to by variable a is called with b as its argument.

For each operator (+ - * / % ** & | ^ << >> && ||), there is a corresponding form of
abbreviated assignment operator (+= -= etc.)

Here are the operators shown in order of precedence (highest to lowest):

::

[]

**

+(unary) -(unary) ! ~

* / %

+ -

<< >>

&

| ^

> >= < <=

<=> == === != =~ !~

&&

||

.. ...

?:

= (and abbreviated assignment operators such as +=, -=, etc.)

not

and or

2.6.1.1 Nonmethod operators

The following operators aren't methods and, therefore, can't be redefined:

...

!

not

&&

and

||

or

::

=

+=, -=, (and other abbreviated assignment operators)

? : (ternary operator)

2.6.1.2 Range operators

Range operators function differently depending on whether or not they appear in
conditionals, if expressions, and while loops.

In conditionals, they return true from the point right operand is true until left operand is
true:

expr1 .. expr2

Evaluates expr2 immediately after expr1 turns true.

expr1 ... expr2

Evaluates expr2 on the iteration after expr1 turns true.

In other contexts, they create a range object:

expr1 .. expr2

Includes both expressions (expr1 <= x <= expr2)

expr1 ... expr2

Doesn't include the last expression (expr1 <= x < expr2)

2.6.1.3 Logical operators

If the value of the entire expression can be determined with the value of the left operand
alone, the right operand isn't evaluated.

&& and

Returns true if both operands are true. If the left operand is false, returns the
value of the left operand, otherwise returns the value of the right operand.

|| or

Returns true if either operand is true. If the left operand is true, returns the value
of the left operand, otherwise returns the value of the right operand.

The operators and and or have extremely low precedence.

2.6.1.4 Ternary operator

Ternary ?: is the conditional operator. It's another form of the if statement.

a ? b : c

If a is true, evaluates b, otherwise evaluates c. It's best to insert spaces before and
after the operators to avoid mistaking the first part for the method a? and the second
part for the symbol :c.

2.6.1.5 defined? operator

defined? is a special operator that takes the form of a method call to determine whether or
not the passed expression is defined. It returns a description string of the expression, or nil
if the expression isn't defined.

defined? variable

True if variable is initialized

foo = 42
defined? foo # => "local-variable"
defined? $_ # => "global-variable"
defined? bar # => nil (undefined)

defined? method_call

True if a method is defined (also checks arguments)

defined? puts # => "method"
defined? puts(bar) # => nil (bar is not defined here)
defined? unpack # => nil (not defined here)

defined? super

True if a method exists that can be called with super

defined? super # => "super" (if it can be called)
defined? super # => nil (if it cannot be)

defined? yield

True if a code block has been passed

defined? yield # => "yield" (if there is a block passed)
defined? yield # => nil (if there is no block)

2.7 Methods

Methods are the workhorses of Ruby; all of your carefully crafted algorithms live in methods on objects (and
classes). In Ruby, "method" means both the named operation (e.g. "dump") and the code that a specific class
provides to perform an operation.

Strictly speaking, Ruby has no functions, by which I mean code not associated with any object. (In C++, this is
what you might call a "global-scope function".) All code in Ruby is a method of some object. But Ruby allows
you the flexibility of having some methods appear and work just like functions in other languages, even though
behind the scenes they're still just methods.

Normal Method Calls

obj .method ([expr ...[, *expr [, &expr]]])
obj .method [expr ...[, *expr [, &expr]]]
obj ::method ([expr ...[, *expr [, &expr]]])
obj ::method [expr ...[, *expr [, &expr]]]

method ([expr ...[, *expr [, &expr]]])
method [expr ...[,
*expr [, &expr]]]

Calls a method. May take as arguments any number of expr followed by *expr and &expr. The last expression
argument can be a hash declared directly without braces. *expr expands the array value of that expression and
passes it to the method. &expr passes the Proc object value of that expression to the method as a block. If it isn't
ambiguous, arguments need not be enclosed in parentheses. Either . or :: may be used to separate the object
from its method, but it is customary in Ruby code to use :: as the separator for class methods.

Calls a method of self. This is the only form by which private methods may be called.

Within modules, module methods and private instance methods with the same name and definition are referred to
by the general term module functions. This kind of method group can be called in either of the following ways:

Math.sin(1.0)

or:

include Math
sin(1.0)

You can append ! or ? to the name of a Ruby method. Traditionally, ! is appended to a
method that requires more caution than the variant of the same name without !. A
question mark ? is appended to a method that determines the state of a Boolean value,
true or false.

Attempting to call a method without specifying either its arguments or parentheses in a
context in which a local variable of the same name exists results in the method call
being interpreted as a reference to the local variable, not a call to the method.

2.7.1 Specifying Blocks with Method Calls

Methods may be called with blocks of code specified that will be called from within the method.

method_call {[|[variable [, variable ...]]|] code }
method_call do [|[variable [, variable ...]]|] code end

Calls a method with blocks specified. The code in the block is executed after a value is passed from the method to
the block and assigned to the variable (the block's argument) enclosed between ||.

A block introduces its own scope for new local variables. The local variables that appear first in the block are local
to that block. The scope introduced by a block can refer local variables of outer scope; on the other hand, the scope
introduced by class, module and def statement can't refer outer local variables.

The form {...} has a higher precedence than do ... end. The following:

identifier1 identifier2 {|varizable| code}

actually means:

identifier1(identifier2 {|variable| code})

On the other hand:

identifier1 identifier2 do |variable| code end

actually means:

identifier1(identifier2) do |variable| code end

def Statement

def method([arg ..., arg =default ..., *arg , &arg])
code
[rescue [exception_class [, exception_class ...]] [=> variable] [then]
code]...
[else
code]
[ensure
code]
end

Defines a method. Arguments may include the following:

arg

Mandatory argument.

arg= default

Optional argument. If argument isn't supplied by that which is calling the method, the default is assigned
to arg. The default is evaluated at runtime.

* arg

If there are remaining actual arguments after assigning mandatory and optional arguments, they are assigned
to arg as an array. If there is no remainder, empty array is assigned to arg.

& arg

If the method is invoked with a block, it is converted to a Proc object, then assigned to arg. Otherwise,
nil is assigned.

Operators can also be specified as method names. For example:

def +(other)
 return self.value + other.value
end

You should specify +@ or -@ for a single plus or minus, respectively. As with a begin block, a method definition
may end with rescue, else, and ensure clauses.

2.7.2 Singleton Methods

In Ruby, methods can be defined that are associated with specific objects only. Such methods are called singleton
methods. Singleton methods are defined using def statements while specifying a receiver.

Defines a singleton method associated with a specific object specified by a receiver. The receiver may be a
constant (literal) or an expression enclosed in parentheses.

def Statement for Singleton Methods

def
receiver.method ([arg ...,arg =default ..., *arg , &arg])
code
[rescue [exception_class [, exception_class ...]] [=> variable] [then]
 code]...
[else
 code]
[ensure
 code]
end

A period . after receiver can be replaced by two colons (::). They work the
same way, but :: is often used for class methods.

A restriction in the implementation of Ruby prevents the definition of singleton methods associated with instances
of the Fixnum or Symbol class.

a = "foo"
def a.foo
 printf "%s(%d)\n", self, self.size
end
a.foo # "foo" is available for a only

2.7.3 Method Operations

Not only can you define new methods to classes and modules, you can also make aliases to the methods and even
remove them from the class.

alias Statement

alias new old

Creates an alias new for an existing method, operator or global variable, specified by old. This functionality is
also available via Module#alias_method. When making an alias of a method, it refers the current definition
of the method.

def foo
 puts "foo!"
 end
alias foo_orig foo
def foo
 puts "new foo!"
end
foo # => "new foo!"
foo_orig # => "foo!"

undef Statement

undef method ...

Makes method defined in the current class undefined, even if the method is defined in the superclass. This
functionality is also available via Module#undef_method.

class Foo
def foo
end
end
class Bar<Foo
Bar inherits "foo"
undef foo
end
b = Bar.new
b.foo # error!

2.7.4 Other Method-Related Statements

The following statements are to be used within method definitions. The yield statement executes a block that is
passed to the method. The super statement executes the overridden method of the superclass.

yield Statement

yield([expr ...])
yield [expr ...]

Executes the block passed to the method. The expression passed to yield is assigned to the block's arguments.
Parallel assignment is performed when multiple expressions are passed. The output of the block, in other words
the result of the last expression in the block, is returned.

super Statement

super
super([expr ...])
superexpr ...

super executes the method of the same name in the superclass. If neither arguments nor parentheses are
specified, the method's arguments are passed directly to the superclass method. In other words, a call to super(
), which passes no arguments to the superclass method, has a different meaning from a call to super, where
neither arguments nor parentheses are specified.

2.8 Control Structures

Ruby offers control structures that are pretty common to modern languages, but it also has a few unique ones.

if Statement

if conditional [then]
code
[elsif conditional [then]
code]...
[else
code]
end

Executes code if the conditional is true. True is interpreted as anything that isn't false or nil. If the
conditional isn't true, code specified in the else clause is executed. An if expression's conditional
is separated from code by the reserved word then, a newline, or a semicolon. The reserved word if can be used
as a statement modifier.

code if conditional

Executes code if conditional is true.

unless Statement

unless conditional [then]
code
[else
code]
end

Executes code if conditional is false. If the conditional is true, code specified in the else clause
is executed. Like if, unless can be used as a statement modifier.

code unless conditional

Executes code unless conditional is true.

case Statement

case expression
[when expression [, expression ...] [then]
code]...
[else
code]
end

Compares the expression specified by case and that specified by when using the === operator and executes
the code of the when clause that matches. The expression specified by the when clause is evaluated as the
left operand. If no when clauses match, case executes the code of the else clause. A when statement's
expression is separated from code by the reserved word then, a newline, or a semicolon.

while Statement

while conditional [do]
code
end

Executes code while conditional is true. A while loop's conditional is separated from code by the
reserved word do, a newline,\, or a semicolon. The reserved word while can be used as statement modifier.

code while conditional

Executescode while conditional is true.

begin code end while conditional

If a while modifier follows a begin statement with no rescue or ensure clauses, code is executed once
before conditional is evaluated.

until Statement

until conditional [do]
code
end

code untilconditional

begin
code
end until conditional

Executes code while conditional is false. An until statement's conditional is separated from code
by the reserved word do, a newline, or a semicolon. Like while, until can be used as statement modifier.

Executescode while conditional is false.

If an until modifier follows a begin statement with no rescue or ensure clauses, code is executed once
before conditional is evaluated.

for Statement

for variable [, variable ...] in expression [do]
code
end

Executes code once for each element in expression. Almost exactly equivalent to:

expression.each do |variable[, variable...]| code end

except that a for loop doesn't create a new scope for local variables. A for loop's expression is separated
from code by the reserved word do, a newline, or a semicolon.

break Statement

break

Terminates a while/until loop. Terminates a method with an associated block if called within the block (with
the method returning nil).

next Statement

next

Jumps to the point immediately before the evaluation of a loop's conditional. Terminates execution of a block if
called within a block (with yield or call returning nil).

redo Statement

redo

Jumps to the point immediately after the evaluation of the loop's conditional. Restarts yield or call if called
within a block.

retry Statement

retry

Repeats a call to a method with an associated block when called from outside a rescue clause.

Jumps to the top of a begin/end block if called from within a rescue clause.

begin Statement

begin
code
[rescue [exception_class [, exception_class ...]] [=> variable] [then]
code]...
[else
code]
[ensure
code]
end

The begin statement encloses code and performs exception handling when used together with the rescue and
ensure clauses.

When a rescue clause is specified, exceptions belonging to the exception_class specified are caught, and
the code is executed. The value of the whole begin enclosure is the value of its last line of code. If no
exception_class is specified, the program is treated as if the StandardError class had been specified. If
a variable is specified, the exception object is stored to it. The rescue exception_class is separated
from the rest of the code by the reserved word then, a newline, or a semicolon. If no exceptions are raised, the
else clause is executed if specified. If an ensure clause is specified, its code is always executed before the
begin/end block exits, even if for some reason the block is exited before it can be completed.

rescue Statement

code rescue expression

Evaluates the expression if an exception (a subclass of StandardError) is raised during the execution of
the code. This is exactly equivalent to:

begin

 code
rescue StandardError
 expression
end

raise method

raise exception_class , message
raise exception_object
raisemessage
raise

Raises an exception. Assumes RuntimeError if no exception_class is specified. Calling raise without
arguments in a rescue clause re-raises the exception. Doing so outside a rescue clause raises a message-less
RuntimeError.

BEGIN Statement

BEGIN {
code
}

Declares code to be called before the program is run.

END Statement

END {
code
}

Declares code to be called at the end of the program (when the interpreter quits).

2.9 Object-Oriented Programming

Phew, seems like a long time since I introduced Ruby as "the object-oriented scripting
language," eh? But now you have everything you need to get the nitty-gritty details on how
Ruby treats classes and objects. After you've mastered a few concepts and Ruby's syntax for
dealing with objects, you may never want to go back to your old languages, so beware!

2.9.1 Classes and Instances

All Ruby data consists of objects that are instances of some class. Even a class itself is an
object that is an instance of the Class class. As a general rule, new instances are created
using the new method of a class, but there are some exceptions (such as the Fixnum class).

a = Array::new
s = String::new
o = Object::new

class Statement

class class_name [< superclass]
code
end

Defines a class. A class_name must be a constant. The defined class is assigned to that
constant. If a class of the same name already exists, the class and superclass must
match, or the superclass must not be specified, in order for the features of the new class
definition to be added to the existing class. class statements introduce a new scope for
local variables.

2.9.2 Methods

Class methods are defined with the def statement. The def statement adds a method to the
innermost class or module definition surrounding the def statement. A def statement
outside a class or module definition (at the top level) adds a method to the Object class
itself, thus defining a method that can be referenced anywhere in the program.

When a method is called, Ruby searches for it in a number of places in the following order:

Among the methods defined in that object (i.e., singleton methods).1.

Among the methods defined by that object's class.2.

Among the methods of the modules included by that class.3.

Among the methods of the superclass.4.

Among the methods of the modules included by that superclass.5.

Repeats Steps 4 and 5 until the top-level object is reached.6.

2.9.3 Singleton Classes

Attribute definitions for a specific object can be made using the class definition construction.
Uses for this form of class definition include the definition and a collection of singleton
methods.

class << object
 code
end

Creates a virtual class for a specific object, defining the properties (methods and constants)
of the class using the class definition construction.

2.9.4 Modules

A module is similar to a class except that it has no superclass and can't be instantiated. The
Module class is the superclass of the Class class.

module Statement

module module_name
 code
end

A module statement defines a module. module_name must be a constant. The defined
module is assigned to that constant. If a module of the same name already exists, the features
of the new module definition are added to the existing module. module statements
introduce a new scope for local variables.

2.9.5 Mix-ins

Properties (methods and constants) defined by a module can be added to a class or another
module with the include method. They can also be added to a specific object using the
extend method. See Module#include in Section 3.4.9, and the Object#extend in
Section 3.4.1.

2.9.6 Method Visibility

There are three types of method visibility:

Public

Callable from anywhere

Protected

Callable only from instances of the same class

Private

Callable only in functional form (i.e., without the receiver specified)

Method visibility is defined using the public, private, and protected methods in
classes and modules.

public([symbol ...])

Makes the method specified by symbol public. The method must have been
previously defined. If no arguments are specified, the visibility of all subsequently
defined methods in the class or module is made public.

protected([symbol...])

Makes the method specified by symbol protected. The method must have been
previously defined. If no arguments are specified, the visibility of all subsequently
defined methods in the class or module is made protected.

private([symbol...])

Makes the method specified by symbol private. The method must have been
previously defined. If no arguments are specified, the visibility of all subsequently
defined methods in the class or module is made private.

2.9.7 Object Initialization

Objects are created using the new method of each object's class. After a new object is
created by the new method, the object's initialize method is called with the arguments
of the new method passed to it. Blocks associated with the new method are also passed
directly to initialize. For consistency, you should initialize objects by redefining the
initialize method, rather than the new method. The visibility of methods named
initialize is automatically made private.

2.9.8 Attributes

Attributes are methods that can be referenced and assigned to externally as if they were
variables. For example, the Process module attribute egid can be manipulated in the
following way:

Process.egid # Reference
Process.egid=id # Assignment

These are actually two methods, one that takes no argument and another with a name ending
with = that takes one argument. Methods that form such attributes are referred to as accessor
methods.

2.9.9 Hooks

Ruby notifies you when a certain event happens, as shown in Table 2-2.

Table 2-2. Events and their hook methods

Event Hook method Of
Defining an instance method method_added Class

Defining a singleton method singleton_method_added Object

Make subclass inherited Superclass

These methods are called hooks. Ruby calls hook methods when the specific event occurs (at
runtime). The default behavior of these methods is to do nothing. You have to override the
method if you want to do something on a certain event:

class Foo
 def Foo::inherited(sub)
 printf "you made subclass of Foo, named %s\n", sub.name
 end
end
class Bar<Foo # prints "you made subclass of Foo, named Bar"
end

There are other types of hook methods used by the mix-in feature. They are called by
include and extend to do the actual mixing-in, as shown in Table 2-3. You can use
these as hooks, but you have to call super when you override them.

Table 2-3. Mix-In hook methods

Event Hook method Of From
Mixing in a module append_features Mix-in module Module#include

Extending a object extend_object Mix-in module Object#extend

Ruby 1.7 and later provide more hooks. See Chapter 6 for more information on future
versions.

2.10 Security

Ruby is portable and can easily use code distributed across a network. This property gives
you tremendous power and flexibility but introduces a commensurate burden: how do you
use this capability without possibly causing damage?

Part of the answer lies in Ruby's security system, which allows you to "lock down" the Ruby
environment when executing code that may be suspect. Ruby calls such data and code
tainted. This feature introduces mechanisms that allow you to decide how and when
potentially "dangerous" data or code can be used inside your Ruby scripts.

2.10.1 Restricted Execution

Ruby can execute programs with security checking turned on. The global variable $SAFE
determines the level of the security check. The default safe level is 0, unless specified
explicitly by the command-line option -T, or the Ruby script is run setuid or setgid.

$SAFE can be altered by assignment, but it isn't possible to lower the value of it:

$SAFE=1 # upgrade the safe level
$SAFE=4 # upgrade the safe level even higher
$SAFE=0 # SecurityError! you can't do it

$SAFE is thread local; in other words, the value of $SAFE in a thread may be changed
without affecting the value in other threads. Using this feature, threads can be sandboxed for
untrusted programs.

Thread::start { # starting "sandbox" thread
 $SAFE = 4 # for this thread only
 ... # untrusted code
}

Level 0

Level 0 is the default safe level. No checks are performed on tainted data.

Any externally supplied string from IO, environment variables, and ARGV is automatically
flagged as tainted.

The environment variable PATH is an exception. Its value is checked, and tainted only if any
directory in it is writable by everybody.

Level 1

In this level, potentially dangerous operations using tainted data are forbidden. This is a
suitable level for programs that handle untrusted input, such as CGI.

Environment variables RUBYLIB and RUBYOPT are ignored at startup.●

Current directory (.) isn't included in $LOAD_PATH.●

The command-line options -e, -i, -I, -r, -s, -S, and -X are prohibited.●

Process termination if the environment variable PATH is tainted.●

Invoking methods and class methods of Dir, IO, File, and FileTest for tainted
arguments is prohibited.

●

Invoking test, eval, require, load, and trap methods for tainted argument is
prohibited.

●

Level 2

In this level, potentially dangerous operations on processes and files are forbidden, in
addition to all restrictions in level 1. The following operations are prohibited:

Dir::chdir

Dir::chroot

Dir::mkdir

Dir::rmdir

File::chown

File::chmod

File::umask

File::truncate

File#lstat

File#chmod

File#chown

File#truncate

File#flock

IO#ioctl

IO#fctrl

Methods defined in the FileTest module

Process::fork

Process::setpgid

Process::setsid

Process::setpriority

Process::egid=

Process::kill

load from a world-writable directory

syscall

exit!

trap

Level 3

In this level, all newly created objects are considered tainted, in addition to all restrictions in
Level 2.

All objects are created tainted.●

Object#untaint is prohibited.●

Proc objects retain current safe level to restore when their call methods are
invoked.

●

Level 4

In this level, modification of global data is forbidden, in addition to all restrictions in Level
3. eval is allowed again in this level, since all dangerous operations are blocked in this
level.

def safe_eval(str)
Thread::start { # start sandbox thread
 $SAFE = 4 # upgrade safe level
 eval(str) # eval in the sandbox
}.value # retrieve result
end
eval('1 + 1') # => 2
eval('system "rm -rf /"') # SecurityError

The following operations are prohibited:

Object#taint●

autoload, load, and include●

Modifying Object class●

Modifying untainted objects●

Modifying untainted classes or modules●

Retrieving meta information (e.g., variable list)●

Manipulating instance variables●

Manipulating threads other than current●

Accessing thread local data●

Terminating process (by exit, abort)●

File input/output●

Modifying environment variables●

srand●

Chapter 3. Built-in Library Reference
We will now explore the core functionality that is built into the standard Ruby interpreter.
You will find descriptions of more than 800 built-in methods in 42 classes and modules.
Topics covered include predefined variables, predefined global constants, and built-in
functions.

3.1 Predefined Variables

Ruby's predefined (built-in) variables affect the behavior of the entire program, so their use
in libraries isn't recommended. The values in most predefined variables can be accessed by
alternative means.

$!

The last exception object raised. The exception object can also be accessed using =>
in rescue clause.

$@

The stack backtrace for the last exception raised. The stack backtrace
information can retrieved by Exception#backtrace method of the last
exception.

$/

The input record separator (newline by default). gets, readline, etc., take their
input record separator as optional argument.

$\

The output record separator (nil by default).

$,

The output separator between the arguments to print and Array#join (nil by
default). You can specify separator explicitly to Array#join.

$;

The default separator for split (nil by default). You can specify separator
explicitly for String#split.

$.

The number of the last line read from the current input file. Equivalent to
ARGF.lineno.

$<

Synonym for ARGF.

$>

Synonym for $defout.

$0

The name of the current Ruby program being executed.

$$

The process.pid of the current Ruby program being executed.

$?

The exit status of the last process terminated.

$:

Synonym for $LOAD_PATH.

$DEBUG

True if the -d or --debug command-line option is specified.

$defout

The destination output for print and printf ($stdout by default).

$F

The variable that receives the output from split when -a is specified. This variable
is set if the -a command-line option is specified along with the -p or -n option.

$FILENAME

The name of the file currently being read from ARGF. Equivalent to
ARGF.filename.

$LOAD_PATH

An array holding the directories to be searched when loading files with the load and
require methods.

$SAFE

The security level. See Section 2.10.

0

No checks are performed on externally supplied (tainted) data. (default)

1

Potentially dangerous operations using tainted data are forbidden.

2

Potentially dangerous operations on processes and files are forbidden.

3

All newly created objects are considered tainted.

4

Modification of global data is forbidden.

$stdin

Standard input (STDIN by default).

$stdout

Standard output (STDOUT by default).

$stderr

Standard error (STDERR by default).

$VERBOSE

True if the -v, -w, or --verbose command-line option is specified.

$- x

The value of interpreter option -x (x=0, a, d, F, i, K, l, p, v).

The following are local variables:

$_

The last string read by gets or readline in the current scope.

$~

MatchData relating to the last match. Regex#match method returns the last match
information.

The following variables hold values that change in accordance with the current value of $~
and can't receive assignment:

$ n ($1, $2, $3...)

The string matched in the nth group of the last pattern match. Equivalent to m[n],
where m is a MatchData object.

$&

The string matched in the last pattern match. Equivalent to m[0], where m is a
MatchData object.

$`

The string preceding the match in the last pattern match. Equivalent to
m.pre_match, where m is a MatchData object.

$'

The string following the match in the last pattern match. Equivalent to
m.post_match, where m is a MatchData object.

$+

The string corresponding to the last successfully matched group in the last pattern
match.

3.2 Predefined Global Constants

TRUE, FALSE, and NIL are backward-compatible. It's preferable to use true, false, and
nil.

TRUE

Synonym for true.

FALSE

Synonym for false.

NIL

Synonym for nil.

ARGF

An object providing access to virtual concatenation of files passed as command-line
arguments or standard input if there are no command-line arguments. A synonym for
$<.

ARGV

An array containing the command-line arguments passed to the program. A synonym
for $*.

DATA

An input stream for reading the lines of code following the __END__ directive. Not
defined if __END__ isn't present in code.

ENV

A hash-like object containing the program's environment variables. ENV can be
handled as a hash.

RUBY_PLATFORM

A string indicating the platform of the Ruby interpreter, e.g., i686-linux.

RUBY_RELEASE_DATE

A string indicating the release date of the Ruby interpreter, e.g., 2001-09-19.

RUBY_VERSION

A string indicating the version of the Ruby interpreter, e.g., 1.6.5.

STDERR

Standard error output stream. Default value of $stderr.

STDIN

Standard input stream. Default value of $stdin.

STDOUT

Standard output stream. Default value of $stdout.

TOPLEVEL_BINDING

A Binding object at Ruby's top level.

3.3 Built-in Functions

Since the Kernel module is included by Object class, its methods are available everywhere in the Ruby
program. They can be called without a receiver (functional form), therefore, they are often called functions.

abort

Terminates program. If an exception is raised (i.e., $! isn't nil), its error message is displayed.

Array(obj)

Returns obj after converting it to an array using to_ary or to_a.

at_exit {...}

Registers a block for execution when the program exits. Similar to END statement (referenced in
Section 2.8), but END statement registers the block only once.

autoload(classname, file)

Registers a class classname to be loaded from file the first time it's used. classname may be a
string or a symbol.

autoload :Foo, "foolib.rb".

binding

Returns the current variable and method bindings. The Binding object that is returned may be
passed to the eval method as its second argument.

block_given?

Returns true if the method was called with a block.

callcc {| c|...}

Passes a Continuation object c to the block and executes the block. callcc can be used for
global exit or loop construct.

def foo(c)
 puts "in foo" #
 c.call # jump out
 puts "out foo" # this line never be executed
end
callcc{|c| foo(c)} # prints "in foo"

caller([n])

Returns the current execution stack in an array of the strings in the form file:line. If n is
specified, returns stack entries from nth level on down.

catch(tag) {...}

Catches a nonlocal exit by a throw called during the execution of its block.

def throwing(n)
 throw(:exit, n+2)
end
catch(:exit) {
 puts "before throwing"
 throwing(5)
 puts "after throwing" # this line never be executed
} # returns 7

chomp([rs=$/])

Returns the value of variable $_ with the ending newline removed, assigning the result back to $_.
The value of the newline string can be specified with rs.

$_ = "foo\n"
chomp # $_ => "foo"
$_ = "foo"
chomp # no chomp

chomp!([rs=$/])

Removes newline from $_, modifying the string in place.

chop

Returns the value of $_ with its last character (one byte) removed, assigning the result back to $_.

$_ = "foo\n"
chop # $_ => "foo"
$_ = "foo"
chop # $_ => "fo"

chop!

Removes the last character from $_, modifying the string in place.

eval(str[, scope[, file, line]])

Executes str as Ruby code. The binding in which to perform the evaluation may be specified with
scope. The filename and line number of the code to be compiled may be specified using file and
line.

exec(cmd[, arg...])

Replaces the current process by running the command cmd. If multiple arguments are specified, the
command is executed with no shell expansion.

exec "echo *" # wild card expansion
exec "echo", "*" # no wild card expansion

exit([result=0])

Exits program, with result as the status code returned.

exit!([result=0])

Kills the program bypassing exit handling such as ensure, etc.

fail(...)

See raise(...)

Float(obj)

Returns obj after converting it to a float. Numeric objects are converted directly; nil is converted
to 0.0; strings are converted considering 0x, 0b radix prefix. The rest are converted using
obj.to_f.

Float(1) # => 1.0
Float(nil) # => 0.0
Float("1.5") # => 1.5
Float("0xaa") # => 170.0

fork

fork {...}

Creates a child process. nil is returned in the child process and the child process' ID (integer) is
returned in the parent process. If a block is specified, it's run in the child process.

traditional fork
if cpid = fork
 # parent process
else
 # child process
 exit! # child process termination
end
fork using a block
fork {
 # child process
 # child terminates automatically when block finish
}

format(fmt[, arg...])

See sprintf.

gets([rs=$/])

Reads the filename specified in the command line or one line from standard input. The record
separator string can be specified explicitly with rs.

easiest cat(1) imitation
while gets
 print $_ # gets updates $_
end

global_variables

Returns an array of global variable names.

gsub(x, y)

gsub(x) {...}

Replaces all strings matching x in $_ with y. If a block is specified, matched strings are replaced
with the result of the block. The modified result is assigned to $_. See String#gsub in the next
section.

gsub!(x, y)

gsub!(x) {...}

Performs the same substitution as gsub, except the string is changed in place.

Integer(obj)

Returns obj after converting it to an integer. Numeric objects are converted directly; nil is
converted to 0; strings are converted considering 0x, 0b radix prefix. The rest are converted using
obj.to_i.

Integer(1.2) # => 1
Integer(1.9) # => 1
Integer(nil) # => 0
Integer("55") # => 55
Integer("0xaa") # => 170

lambda {| x|...}

proc {| x|...}

lambda

proc

Converts a block into a Proc object. If no block is specified, the block associated with the calling
method is converted.

load(file[, private=false])

Loads a Ruby program from file. Unlike require, it doesn't load extension libraries. If
private is true, the program is loaded into an anonymous module, thus protecting the namespace
of the calling program.

local_variables

Returns an array of local variable names.

loop {...}

Repeats a block of code.

open(path[, mode="r"])

open(path[, mode="r"]) {| f|...}

Opens a file. If a block is specified, the block is executed with the opened stream passed as an
argument. The file is closed automatically when the block exits. If path begins with a pipe |, the
following string is run as a command, and the stream associated with that process is returned.

p(obj)

Displays obj using its inspect method (often used for debugging).

print([arg...])

Prints arg to $defout. If no arguments are specified, the value of $_ is printed.

printf(fmt[, arg...])

Formats arg according to fmt using sprintf and prints the result to $defout. For formatting
specifications, see sprintf for detail.

proc {| x|...}

proc

See lamda.

putc(c)

Prints one character to the default output ($defout).

puts([str])

Prints string to the default output ($defout). If the string doesn't end with a newline, a newline is
appended to the string.

puts "foo" # prints: foo\n
puts "bar\n" # prints: bar\n

raise(...)

fail(...)

Raises an exception. Assumes RuntimeError if no exception class is specified. Calling raise
without arguments in a rescue clause re-raises the exception. Doing so outside a rescue clause raises a
message-less RuntimeError. fail is an obsolete name for raise. See "raise method" in

Chapter 2.

rand([max=0])

Generates a pseudo-random number greater than or equal to 0 and less than max. If max is either not
specified or is set to 0, a random number is returned as a floating-point number greater than or equal
to 0 and less than 1. srand may be used to initialize pseudo-random stream.

rand(10) # => 8 (initialized by arbitrary seed)
srand(42) # initialize pseudo random stream
rand # => 0.7445250001
rand # => 0.3427014787
srand(42) # re-initialize pseudo random stream
rand # => 0.7445250001 (repeated random value)
rand # => 0.3427014787 (repeated random value)

readline([rs=$/])

Equivalent to gets except it raises an EOFError exception on reading EOF.

readlines([rs=$/])

Returns an array of strings holding either the filenames specified as command-line arguments or the
contents of standard input.

require(lib)

Loads the library (including extension libraries) lib when it's first called. require will not load
the same library more than once. If no extension is specified in lib, require tries to add .rb,
.so, etc., to it.

scan(re)

scan(re) {|x|...}

Equivalent to $_.scan. See String#scan in the next section.

select(reads[, writes=nil[, excepts=nil[, timeout=nil]]])

Checks for changes in the status of three types of IO objects—input, output, and exceptions—which
are passed as arrays of IO objects. nil is passed for arguments that don't need checking. A
three-element array containing arrays of the IO objects for which there were changes in status is
returned. nil is returned on timeout.

set_trace_func(proc)

Sets a handler for tracing. proc may be a string or Proc object. set_trace_func is used by the
debugger and profiler.

sleep([sec])

Suspends program execution for sec seconds. If sec isn't specified, the program is suspended
forever.

sleep 1
sleep 1.5 # wait for 1.5 sec.

split([sep[, max]])

Equivalent to $_.split. See String#split in the next section.

sprintf(fmt[, arg...])

format(fmt[, arg...])

Returns a string in which arg is formatted according to fmt. Formatting specifications are
essentially the same as those for sprintf in the C programming language. Conversion specifiers
(% followed by conversion field specifier) in fmt are replaced by formatted string of corresponding
argument.

The following conversion specifiers, are supported by Ruby's format:

b

Binary integer

c

Single character

d,i

Decimal integer

e

Exponential notation (e.g., 2.44e6)

E

Exponential notation (e.g., 2.44E6)

f

Floating-point number (e.g., 2.44)

g

use %e if exponent is less than -4, %f otherwise

G

use %E if exponent is less than -4, %f otherwise

o

Octal integer

s

String, or any object converted using to_s

u

Unsigned decimal integer

x

Hexadecimal integer (e.g., 39ff)

X

Hexadecimal integer (e.g., 39FF)

Optional flags, width, and precision can be specified between % and conversion field specifiers.

sprintf("%s\n", "abc") # => "abc\n" (simplest form)
sprintf("d=%d", 42) # => "d=42" (decimal output)
sprintf("%04x", 255) # => "00ff" (width 4, zero padded)
sprintf("%8s", "hello") # => " hell" (space padded)
sprintf("%.2s", "hello") # => "he" (trimmed by precision)

srand([seed])

Initializes an array of random numbers. If seed isn't specified, initialization is performed using the
time and other system information for the seed. Also see rand.

String(obj)

Returns obj after converting it to a string using obj.to_s.

String(1) # => "1"
String(Object) # => "Object"
String("1.5") # => "1.5"

syscall(sys[, arg...])

Calls an operating system call function specified by number sys. The numbers and meaning of sys
is system-dependant.

system(cmd[, arg...])

Executes cmd as a call to the command line. If multiple arguments are specified, the command is run
directly with no shell expansion. Returns true if the return status is 0 (success).

system "echo *" # wild card expansion
system "echo", "*" # no wild card expansion

sub(x, y)

sub(x) {...}

Replaces the first string matching x in $_ with y. If a block is specified, matched strings are replaced
with the result of the block. The modified result is assigned to $_. See String#sub in Section 3.4.

sub!(x, y)

sub!(x) {...}

Performs the same replacement as sub, except the string is changed in place.

test(test, f1[, f2])

Performs one of the following file tests specified by the character test. In order to improve
readability, you should use File class methods (for example File::readable?) rather than this
function. Here are the file tests with one argument:

?r

Is f1 readable by the effective uid of caller?

?w

Is f1 writable by the effective uid of caller?

?x

Is f1 executable by the effective uid of caller?

?o

Is f1 owned by the effective uid of caller?

?R

Is f1 readable by the real uid of caller?

?W

Is f1 writable by the real uid of caller?

?X

Is f1 executable by the real uid of caller?

?O

Is f1 owned by the real uid of caller?

?e

Does f1 exist?

?z

Does f1 have zero length?

?s

File size of f1(nil if 0)

?f

Is f1 a regular file?

?d

Is f1 a directory?

?l

Is f1 a symbolic link?

?p

Is f1 a named pipe (FIFO)?

?S

Is f1 a socket?

?b

Is f1 a block device?

?c

Is f1 a character device?

?u

Does f1 have the setuid bit set?

?g

Does f1 have the setgid bit set?

?k

Does f1 have the sticky bit set?

?M

Last modification time for f1.

?A

Last access time for f1.

?C

Last inode change time for f1.

File tests with two arguments are as follows:

?=

Are modification times of f1 and f2 equal?

?>

Is the modification time of f1 more recent than f2 ?

?<

Is the modification time of f1 older than f2 ?

?-

Is f1 a hard link to f2 ?

throw(tag[, value=nil])

Jumps to the catch function waiting with the symbol or string tag. value is the return value to be
used by catch.

trace_var(var, cmd)

trace_var(var) {...}

Sets tracing for a global variable. The variable name is specified as a symbol. cmd may be a string or
Proc object.

trace_var(:$foo) {|v|
 printf "$foo changed to %s\n", v
}
$foo = 55 # prints: $foo changed to 55

trap(sig, cmd)

trap(sig) {...}

Sets a signal handler. sig may be a string (like SIGUSR1) or an integer. SIG may be omitted from
signal name. Signal handler for EXIT signal or signal number 0 is invoked just before process
termination.

cmd may be a string or Proc object. If cmd is IGNORE or SIG_IGN, the signal will be ignored. If
cmd is DEFAULT or SIG_DFL, the default signal handler defined by the operating system will be
invoked.

trap("USR1") {
 puts "receives SIGUSR1"
}
prints message if SIGUSR1 is delivered to the process.

untrace_var(var[, cmd])

Removes tracing for a global variable. If cmd is specified, only that command is removed.

3.4 Built-in Library

Ruby's built-in library provides you with a rich set of classes that form the foundation for your Ruby
programs. There are classes for manipulating text (String), operating system services and abstractions (IO,
File, Process, etc.), numbers (Integer, Fixnum, etc.), and so on.

Using these basic building blocks, you can build powerful Ruby programs. But wait, in the next chapter, I lay
out the Standard Library, which extends Ruby's flexibility.

3.4.1 Objects

Ruby couldn't lay claim to being an "object-oriented scripting language" without providing fundamental tools
for OOP. This basic support is provided through the Object class.

Object Superclass of all classes

Object is the parent class of all other classes. When a method is defined at the top level, it becomes a
private method of this class, making it executable by all classes as if it were a function in other languages.

Included Modules

Kernel

Private Instance Methods

initialize

Initializes an object. Any block and arguments associated with the new method are passed directly to
initialize. It's assumed that this method will be redefined by subclasses for object initialization.

Kernel Module containing built-in functions

Kernel is the module in which Ruby's built-in functions are defined as module functions. Since it's included
in Object, Kernel is indirectly included in all classes.

Private Instance Methods

Function-like methods are private methods of Kernel. Although the following methods fall into the same
category, they are more similar to standard private instance methods than function-like methods.

remove_instance_variable(name)

Removes instance variable specified by name.

Instance Methods

o == other

Determines if the values are equal.

o === other

Comparison operator used by case statement (compares equality or confirms class membership).

o =~ other

Checks for pattern matches. The definition in Kernel calls ===.

o.class

o.type

Returns the class of the object o.

o.clone

Creates a copy of the object o (in as far as possible, including singleton methods).

o.display([out=$defout])

Prints the object. The output is specified in the argument.

o.dup

Creates a copy of the object (copying the content).

o.eql?(obj)

Performs a hash comparison. In order for eql? to return true, the hash value of both objects must
have equal hash values.

o.equal?(obj)

Returns true if the two objects are the same.

o.extend(mod)

Adds module features (instance methods, etc.) of mod to the object o.

o.freeze

Freezes the object o, preventing further modification.

o.frozen?

Returns true if the object is frozen.

o.hash

Creates a hash value for the object o. Used together with eql? when the object is used as the key of a
hash.

o.id

o. __id __

Returns the unique identifier value (integer) of the object o.

o.inspect

Returns the human readable string representation of the object o.

o.instance_eval(str)

o.instance_eval { ...}

Evaluates the string or block in the context of the object. Features of the object, such as its instance
variables, can be accessed directly.

o.instance_of?(c)

Returns true if o is an instance of the class c.

o.instance_variables

Returns an array of the object's instance variable names.

o.kind_of?(mod)

o.is_a?(mod)

Returns true if the object is an instance of mod, one of its descendants, or includes mod.

o.method(name)

Returns a Method object corresponding to name. An exception is raised if the corresponding method
doesn't exist.

plus = 1.method(:+)
plus.call(2) # => 3 (1+2)

o.methods

o.public_methods

Returns an array of the object's public method names.

o.nil?

Returns true if o is nil.

o.private_methods

Returns an array of the object's private method names.

o.protected_methods

Returns an array of the object's protected method names.

o.public_methods

See o.methods.

o.respond_to?(name)

Returns true if method named name exists in the object o.

o.send(name[, arg...])

o. __send __(name[, arg...])

Calls the method named name in the object.

o.singleton_methods

Returns an array of the object's singleton method names.

o.taint

Marks the object as tainted (unsafe).

o.tainted?

Returns true if the object o is tainted.

o.to_a

Returns an array representation of the object o. For objects that can't be naturally converted into an
array, an array containing that o as the sole element is returned.

o.to_s

Returns a string representation of the object.

o.type

See o.class.

o.untaint

Removes the taint from the object.

3.4.2 Strings and Regular Expressions

Death, taxes, and ... processing text. Yes, these are virtually inescapable in a programmer's life. In Ruby, I
share your pain. Using the String, Regexp, and MatchData classes, Ruby provides sharp tools to slice,
dice, and manipulate text to your heart's content.

String Character String class

String is one of Ruby's basic datatypes, which contain arbitrary sequences of bytes. String can contain
\0.

Included Module

Enumerable, Comparable

Class Method

String::new(str)

Creates a string.

Instance Methods

Methods of the String class ending in ! modify their receiver and return a string if modification took
place, otherwise nil. Methods without a ! return a modified copy of the string.

~ s

Attempts to match pattern s against the $_ variable. This method is obsolete.

s % arg

An abbreviated form of sprintf(s, arg...). Multiple elements are specified using an array.

s * n

Returns a string consisting of s copied end to end n times.

s + str

Returns a string with str concatenated to s.

s << str

Concatenates str to s.

s =~ x

Performs a regular expression match. If x is a string, it's turned into a Regexp object.

s[n]

Returns the code of the character at position n. If n is negative, it's counted as an offset from the end of
the string.

s[n.. m]

s[n, len]

Returns a partial string.

"bar"[1..2] # => "ar"
"bar"[1..-1] # => "ar"
"bar"[-2..2] # => "ar"
"bar"[-2..-1] # => "ar"
"bar"[1,2] # => "ar"
"bar"[-1, 1] # => "r"

s[n]= value

Replaces the n th element in the string with value. value may be a character code or string.

s[n.. m]= str

s[n, len]= str

Replaces a part of the string with str.

s.capitalize

s.capitalize!

Returns a copy of s with the first character converted to uppercase and the remainder to lowercase.

"fooBar".capitalize # => "Foobar"

s.center(w)

Returns a string of length w with s centered in the middle. s is padded with spaces if it has a length of
less than w.

"foo".center(10) # => " foo "
"foo".center(2) # => "foo"

s.chomp([rs=$/])

s.chomp!([rs=$/])

Deletes the record separator from the end of the string. The record separator string can be specified
with rs.

"foo\n".chomp # => "foo"
"foo".chomp # => "foo" (no chomp)
a = "foo\n"
a.chomp! # => "foo"
a # => "foo" (original changed)
a = "foo"
a.chomp! # => nil (no chomp)

s.chop

s.chop!

Deletes the last character (byte) from the string.

"foo\n".chop # => "foo"
"foo".chop # => "fo" (last byte chopped off)

s.concat(str)

Concatenates str to the string.

s.count(str...)

Returns the number of occurrences of the characters included in str (intersection of str if multiple

str given) in s. str is negated if str starts with ^. The sequence c1-c2 means all characters
between c1 and c2.

"123456789".count("2378") # => 4
"123456789".count("2-8", "^4-6") # => 4

s.crypt(salt)

Encrypts the string s using a one way hash function. salt is a two-character string for seed. See
crypt(3).

s.delete(str...)

s.delete!(str...)

Deletes the characters included in str (intersection of str if multiple str given) from s. Uses the
same rules for building the set of characters as s.count.

"123456789".delete("2378") # =>"14569"
"123456789".delete("2-8", "^4-6") # =>"14569"

s.downcase

s.downcase!

Replaces all uppercase characters in the string with lowercase characters.

s.dump

Returns version of string with all nonprinting and special characters converted to backslash notation.

s.each([rs=$/]) {|line| ...}

s.each_line([rs=$/]) {|line| ...}

Invokes the block for each line in s. The record separator string can be specified with rs.

s.each_byte {| byte| ...}

Invokes the block for each byte in s.

s.empty?

Returns true if s has a length of 0.

s.gsub(x, y)

s.gsub(x) { ...}

s.gsub!(x, y)

s.gsub!(x) { ...}

Replaces all strings matching x in the string with y. If a block is specified, matched strings are
replaced with the result of the block.

"hello world".gsub(/[aeiou]/, ".") # => "h.ll. w.rld"
"hello world".gsub(/[aeiou]/){|x|x.upcase} # => "hEllO wOrld"

s.hex

Treats s as a string of hexadecimal digits and returns its integer value.

s.include?(x[, pos=0])

Returns true if str is present in s. x may be an integer representing the character code, a string, or a
regular expression. If pos is given, the search is started at offset pos.

s.index(x[, pos=0])

Returns the index of x in string s, or nil if x isn't present. x may be an integer representing the

character code, a string, or a pattern. If pos is given, the search is started at offset pos.

s.intern

Returns the symbol corresponding to s.

s.length

See s.size.

s.ljust(w)

Returns a string of length w with s left-justified. s is padded with spaces if it has a length of less than
w.

s.next

s.next!

s.succ

s.succ!

Retrieves the next logical successor of the string s.

"aa".succ # => "ab"
"99".succ # => "100"
"a9".succ # => "b0"
"Az".succ # => "Ba"
"zz".succ # => "aaa"

s.oct

Treats s as a string of octal digits and returns its integer value. If s begins with 0x, it's treated as a
hexidecimal string; if s begins with 0b, it's treated as a binary string.

s.replace(str)

Replaces contents of s with that of str.

s = "abc"
s.replace("foobar") # => "foobar"
s # => "foobar" (contents replaced)

s.reverse

s.reverse!

Reverses the characters in the string s.

s.rindex(x[, pos])

Returns the index of last occurrence of x in s as calculated from the end of the string, or nil if x isn't
present. x may be an integer representing the character code, a string, or a pattern. If pos is given, the
search is ended at offset pos.

s.rjust(w)

Returns a string of length w with s right-justified. s is padded with spaces if it has a length of less than
w.

"foo".rjust(10) # => " foo"
"foo".rjust(2) # => "foo"

s.scan(re)

s.scan(re) {|x| ...}

Attempts to match the regular expression re, iterating through the string s. scan returns an array

containing either arrays, which hold the matched results from groups, or strings, which represent the
matched results if there were no groups in the expression. If a block is specified, it executes, iterating
through each element in the array that would have been returned had scan been called without a
block.

"foobarbaz".scan(/(ba)(.)/) # => [["ba", "r"], ["ba", "z"]]
"foobarbaz".scan(/(ba)(.)/) {|s| p s}
prints:
["ba", "r"]
["ba", "z"]

s.size

s.length

Returns the length of the string.

s.slice(n)

s.slice(n.. m)

s.slice(n, len)

Returns a partial string.

s.slice!(n)

s.slice!(n.. m)

s.slice!(n, len)

Deletes the partial string specified and returns it.

a = "0123456789"
p a.slice!(1,2) # "12"
p a # "03456789"

s.split([sep[, max]])

Splits the contents of the string using sep as the delimiter and returns the resulting substrings as an
array. If sep isn't specified, whitespace (or the value of $; if it isn't nil) is used as the delimiter. If
max is specified, the string is split into a maximum of max elements.

"a b c".split # => ["a","b","c"]
"a:b:c".split(/:/) # => ["a","b","c"]
"a:b:c:::".split(/:/,4) # => ["a","b","c","",":"]
"a:b:c::".split(/:/,-1) # => ["a","b","c","",""]
"abc".split(//) # => ["a","b","c"]

s.squeeze([str...])

s.squeeze!([str...])

Reduces all running sequences of the same character included in str (intersection of str if multiple
str given) to a single character. If str isn't specified, running sequences of all characters are reduced
to a single character.

"112233445".squeeze # =>"12345"
"112233445".squeeze("1-3") # =>"123445"

s.strip

s.strip!

Deletes leading and trailing whitespace.

s.sub(x, y)

s.sub(x) { ...}

s.sub!(x, y)

s.sub!(x) { ...}

Replaces the first string matching x with y. If a block is specified, matched strings are replaced with
the result of the block.

s.succ

See s.next.

s.succ!

See s.next.

s.sum([n=16])

Returns an n-bit checksum of the string s.

s.swapcase

s.swapcase!

Converts uppercase characters to lowercase and vice-versa.

s.to_f

Converts the string into a floating point number. Returns 0.0 for uninterpretive string. For more strict
conversion, use Float().

"1.5".to_f # => 1.5
"a".to_f # => 0.0
Float("a") # error!

s.to_i

Converts the string into an integer. Returns 0 for uninterpretive string. For more strict conversion, use
Integer().

"1".to_i # => 1
"a".to_i # => 0
Integer("a") # error!

s.to_str

Returns s itself. Every object that has to_str method is treated as if it's a string.

s.tr(str, r)

s.tr!(str, r)

Replaces the characters in str with the corresponding characters in r.

s.tr_s

s.tr_s!

After replacing characters as in tr, replaces running sequences of the same character in sections that
were modified with a single character.

"foo".tr_s("o", "f") # => "ff"
"foo".tr("o", "f").squeeze("f") # => "f"

s.succ

See s.next.

s.succ!

See s.next.

s.unpack(template)

Unpacks s into arrays, decoding the string by performing the opposite of
Array#pack(template). template can consist of a combination of the following directives:

a

ASCII string

A

ASCII string (deletes trailing spaces and null characters)

b

Bit string (ascending bit order)

B

Bit string (descending bit order)

c

Char

C

Unsigned char

d

Double (native format)

e

Little endian float (native format)

E

Little endian double (native format)

f

Float (native format)

g

Big endian float (native format)

G

Big endian double (native format)

h

Hex string (low nibble first)

H

Hex string (high nibble first)

i

Integer

I

Unsigned integer

l

Long

L

Unsigned long

m

Base64 encoded string

M

Quoted printable string

n

Big-endian short (network byte order)

N

Big-endian long (network byte order)

p

Pointer to a null-terminated string

P

Pointer to a structure (fixed-length string)

s

Short

S

Unsigned short

u

UU-encoded string

U

UTF-8 string

v

Little-endian short (VAX byte order)

V

Little-endian long (VAX byte order)

w

BER-compressed integer

x

Null byte

X

Backs up one byte

Z

ASCII string (deletes trailing null characters.)

@

Moves to absolute position

Each directive may be followed by a decimal number, indicating the number of elements to
convert, or an asterisk, indicating that all remaining elements should be converted. Directives
may be separated with a space. Directives sSiIlL followed by _ use the native size for that
type on the current platform.

"\001\002\003\004".unpack("CCCC") # => [1, 2, 3, 4]
"\001\002\003\004".unpack("V") # => [67305985]
"\001\002\003\004".unpack("N") # => [16909060]

s.upcase

s.upcase!

Replaces all lowercase characters in the string with uppercase characters.

s.upto(max) {| x| ...}

Returns x and continues to iterate to the next logical successor up to max. The method s.next is
used to generate each successor.

"a".upto("ba") {|x|
 print x

}# prints a, b, c, ... z,aa, ... az, ba

Regexp Regular expression class

Regex is object representation of regular expression. Regular expression is a mini-language to describe
patterns of strings. For its syntax, see "Regular-expression patterns," which is under Section 2.4.6 in Chapter
2.

Class Methods

Regexp::new(str[, option[, code]])

Regexp::compile(str[, option[, code]])

Creates a Regexp object. option may be a logical OR of Regexp::IGNORECASE,
Regexp::EXTENDED, and Regexp::MULTILINE. code may be a string specifying a multibyte
character set code.

Regexp::escape(str)

Regexp::quote(str)

Returns a copy of str with all regular expression meta characters escaped.

Instance Methods

~ r

Performs a regular expression match against $_. Equivalent to r =~ $_. This method is obsolete.

r === str

Synonym for r =~ str used in case statements.

r =~ str

Performs a regular expression match, returning the offset of the start of the match, or nil if the match

failed.

r.casefold?

Returns true if the Regexp object is case-insensitive.

r.match(str)

Performs a regular expression match, returning the resulting match information as a MatchData
object, or nil if the match failed.

if m = /fo*b.r+/.match(str)
 puts m[0] # print matched string
end

r.source

Returns the original regular expression pattern string.

MatchData Class for holding regular expression pattern match data

MatchData objects can be retrieved from the variable $~ or as return values from Regexp.match.

Example

if m = pat.match(str) # MatchData object on success
 print "matched: ", m[0], "\n"
 print "pre: ", m.pre_match, "\n"
 print "post: ", m.post_match, "\n"
end

Instance Methods

m[n]

Returns the match corresponding to the nth group of the regular expression. If n is 0, the entire
matched string is returned.

m.begin(n)

Returns the offset of the start of the match corresponding to the nth group of the regular expression. If
n is 0, the offset of the start of the entire matched string is returned.

m.end(n)

Returns the offset of the end of the match corresponding to the nth group of the regular expression. If
n is 0, the offset of the end of the entire matched string is returned.

m.length

See m.size

m.offset(n)

Returns a two-element array containing the beginning and ending offsets of the string corresponding to
the nth group of the regular expression.

m.post_match

Returns the part of the original string following the matched string.

m.pre_match

Returns the part of the original string preceding the matched string.

m.size

m.length

Returns the number of groups in the regular expression +1.

m.string

Returns the original string used for the match.

m.to_a

Returns an array of the matches (i.e.,[$&, $1, $2...]).

3.4.3 Arrays and Hashes

One of the cornerstones of scripting languages is simple, flexible and powerful mechanisms for manipulating
program data. In Ruby, the Array and Hash classes provide intuitive and rich capabilities for doing just
that.

Array Array class

Array is a class for an ordered collection of objects, indexed by integer. Any kind of object may be stored in
an Array. Arrays grow as you add elements.

Included Module

Enumerable

Class Methods

Array[x...]

Creates an array.

Array::new([size=0[, fill=nil]])

Creates an array. Its size and initial values may also be specified.

Array::new(4, "foo") # => ["foo","foo","foo","foo"]

Instance Methods

Methods of the Array class ending in ! modify their receiver and return an array if modification took place,
otherwise nil. Methods without a ! return a modified copy of the array.

arr & array

Returns an array of elements common to both arrays.

[1,3,5]|[1,2,3] # => [1,3]
[1,3,5]|[2,4,6] # => [1,2,3,4,5,6]

arr| array

Returns an array combining elements from both arrays.

[1,3,5]|[2,4,6] # => [1,2,3,4,5,6]

arr * n

If n is an integer, returns a copy of array with n copies of arr concatenated to it. If n is a string, the
equivalent of arr.join(n) is performed.

[5] * 3 # => [5, 5, 5].
["foo", "bar"] * "-" # => "foo-bar"

arr + array

Returns a copy of arr with array concatenated to its end.

arr - array

Returns a new array that is a copy of arr, removing any items in array.

[1, 2, 3, 4] - [2, 3] # => [1, 4]

arr << item

Appends item to arr.

arr[n]

References the nth element of arr. If n is negative, it's interpreted as an offset from the end of arr.

arr[n.. m]

arr[n, len]

Returns a partial string.

arr[n]= item

arr[r.. m]= array

arr[r, len]= array

Assigns item or arr to the specified elements.

arr = [0, 1, 2, 3, 4, 5]
arr[0..2] = ["a", "b"] # arr => ["a", "b", 3, 4, 5]
arr[1, 0] = ["c"] # arr => ["a", "c", "b", 3, 4, 5]

arr.assoc(key)

Searches through an array of arrays, returning the first array with an initial element matching key.

a = [[1,2],[2,4],[3,6]]
a.assoc(2) # => [2, 4]

arr.at(n)

Returns the nth element of arr.

arr.clear

Removes all elements from arr.

arr.collect {| x| ...}

arr.collect! {| x| ...}

arr.map {| x| ...}

arr.map! {| x| ...}

Invokes the block on each element returning an array holding the results.

[1,2,3].collect{|x|x*2} # => [2,4,6].

arr.compact

arr.compact!

Removes all nil elements from arr.

arr.concat(array)

Appends the elements of array to arr.

arr.delete(item)

arr.delete(item) {| item| ...}

Deletes all elements matching item using ==. With a block, it returns the result of the block if no
elements were deleted.

arr.delete_at(n)

Deletes the nth element of arr.

arr.delete_if {| x| ...}

Deletes elements where the value of block is true.

arr.each {| x| ...}

Invokes the block on each element of arr.

arr.each_index {| i| ...}

Invokes the block on each element, passing the index, which is an integer ranging from 0 to
arr.length - 1.

arr.empty?

Returns true if the array length is 0.

arr.fill(value[, beg[, len]])

arr.fill(value, n.. m)

Sets the specified element (or range of elements) in arr to value.

arr.first

Returns the first element of arr. Equivalent to arr[0].

arr.flatten

arr.flatten!

Returns a flattened, one-dimensional array by moving all elements and subelements of arr into the
new array.

[1, [2, 3, [4], 5]].flatten #=> [1, 2, 3, 4, 5]

arr.include?(item)

arr.member?(item)

Returns true if arr contains item as an element.

arr.index(item)

Returns the index number of the first item in arr equal to item (with 0 being the first index number),
or nil if item isn't present.

arr.indexes([index...])

arr.indices([index...])

Returns an array of elements from the specified indexes.

arr.join([s=$,])

Returns a string by joining together all elements in arr, separating each substring with s.

["foo", "bar].join # => "foobar"
["hello", "world].join(" ") # => "hello world"

arr.last

Returns the last element of arr. Equivalent to arr[-1].

arr.length

See arr.size

arr.map {| x| ...}

See arr.collect {|x|...}

arr.map! {| x| ...}

See arr.collect {|x|...}

arr.member?(item)

See arr.include?(item)

arr.nitems

Returns the number of elements with non-nil values.

arr.pack(template)

Packs the elements of an array into a string according to the directives in template. template
may consist of a combination of these directives:

a

ASCII string (null padded)

A

ASCII string (space padded)

b

Bit string (ascending bit order)

B

Bit string (descending bit order)

c

Char

C

Unsigned char

d

Double (native format)

e

Little endian float (native format)

E

Little endian double (native format)

f

Float (native format)

g

Big endian float (native format)

G

Big endian double (native format)

h

Hex string (low nibble first)

H

Hex string (high nibble first)

i

Integer

I

Unsigned integer

l

Long

L

Unsigned long

m

Base64-encoded string

M

Quoted printable string

n

Big-endian short (network byte order)

N

Big-endian long (network byte order)

p

Pointer to a null-terminated string

P

Pointer to a structure (fixed-length string)

s

Short

S

Unsigned short

u

UU-encoded string

U

UTF-8 string

v

Little-endian short (VAX byte order)

V

Little-endian long (VAX byte order)

w

BER-compressed integer

x

Null byte

X

Backs up one byte

Z

ASCII string (space padded)

@

Moves to absolute position

Each directive may be followed by either a decimal number, indicating the number of elements
to convert, or an asterisk, indicating that all remaining elements should be converted. Directives
may be separated with a space. Directives sSiIlL followed by _ use the native size for that
type on the current platform.

[1, 2, 3, 4].pack("CCCC") # => "\001\002\003\004"
[1234].pack("V") # => "\322\004\000\000"
[1234].pack("N") # => "\000\000\004\322"

arr.pop

Removes the last element from arr and returns it.

arr.push(obj...)

Appends obj to arr.

arr.rassoc(value)

Searches through an array of arrays, returning the first array with a second element matching value.

[[1,2],[2,4],[3,6]].rassoc(2) # => [1, 2]

arr.reject {| x| ...}

arr.reject! {| x| ...}

Deletes elements where the value of block is true.

arr.replace(array)

Replaces the contents of arr with that of array.

arr.reverse

arr.reverse!

Puts the elements of the array in reverse order.

arr.reverse_each {| x| ...}

Invokes the block on each element of arr in reverse order.

arr.rindex(item)

Returns the index of the last object in arr equal to item.

a = [1, 2, 3, 1, 3, 4]
a.rindex(3) #=> 4
a.rindex(9) #=> nil

arr.shift

Removes the first element from arr and returns it.

a = [1, 2, 3, 1, 3, 4]
a.shift #=> 1
a #=> [2, 3, 1, 3, 4]

arr.size

arr.length

Returns the number of elements in arr.

arr.slice(n)

arr.slice(n.. m)

arr.slice(n, len)

Deletes the partial string specified and returns it.

a = "0123456789"
a.slice!(1,2) # => "12"
a # => "03456789"

arr.slice!(n)

arr.slice!(n.. m)

arr.slice!(n, len)

Deletes the partial string specified and returns it.

a = [0,1,2,3,4]
a.slice!(4) # => 4
a # => [0,1,2,3]
a.slice!(1..2) # => [1,2]
a # => [0,3]

arr.sort

arr.sort!

Sorts the array.

arr.sort {| a, b| ...}

arr.sort! {| a, b| ...}

Arrays can be sorted by specifying the conditions for the comparison using a block. The block must
compare a and b, returning 0 when a == b, a negative number when a < b, and a positive number
when a > b.

arr.uniq

arr.uniq!

Deletes duplicate elements from arr.

arr.unshift(item)

Prepends item to arr.

a = [1,2,3]
 a.unshift(0) #=> [0,1,2,3]

Hash Hash class

Hash is a class for collection of key-value pairs, or in other words, a collection indexed by arbitrary type of
objects, which define proper hash and eql? methods.

Included Module

Enumerable

Class Methods

Hash[key, value ...]

Creates a Hash.

Hash[1,2,2,4] # => {1=>2, 2=>4}

Hash::new([default=nil])

Creates a Hash. A default value may also be specified.

h = Hash::new(15) # => {}
h[44] # => 15 (no key; default returned)

Instance Methods

Methods of the Hash class ending in a pipe ! modify their receiver and return a hash if modification took
place, otherwise nil. Methods without a ! return a modified copy of the hash.

h[key]

Returns the value associated with key.

h[key]= value

Associates value with key.

h.clear

Deletes all key-value pairs from h.

h = {1=>2, 2=>4}
h.clear
h # => {}
h = {1=>2, 2=>4}
h.delete_if{|k,v| k % 2 == 0}
h # => {1=>2}

h.default

Returns the default value for a key that doesn't exist. Note that the default value isn't copied, so that
modifying the default object may affect all default values thereafter.

h.default= value

Sets the default value.

h.delete(key)

Deletes a key-value pair with a key equal to key.

h.delete_if {| key, value| ...}

Deletes key-value pairs where the evaluated result of block is true.

h.each {| key, value| ...}

h.each_pair {| key, value| ...}

Executes the block once for each key-value pair. Pairs are in unspecified order.

h.each_key {| key| ...}

Executes the block once for each key. Keys are in unspecified order.

h.each_value {| value| ...}

Executes the block once for each value. Values are in unspecified order.

h.empty?

Returns true if the hash is empty.

h.fetch(key[, ifnone=nil])

h.fetch(key) {| key| ...}

Returns the value associated with key. If key isn't present in h, the value of the block is returned. If
no block is specified, ifnone is returned.

h.has_value?(value)

See h.value?(value)

h.index(value)

Returns the key for value, or nil if it isn't present.

h = {1=>2, 2=>4}
h.index(4) # => 2
h.index(6) # => nil

h.indexes([key...])

h.indices([key...])

Returns an array of values associated with the specified keys.

h.invert

Returns a hash containing h's values as keys and h's keys as values. If more than one keys have same
value, arbitrary key is chosen.

h = {"y" => 365, "m" => 31, "d" => 24, "h" => 60}
p h.invert # => {60=>"h", 365=>"y", 31=>"m", 24=>"d"}

h.key?(key)

h.has_key?(key)

h.include?(key)

h.member?(key)

Returns true if key is present in h.

h.keys

Returns an array of all keys.

h.rehash

Rebuilds the hash. If a hash isn't rebuilt after one of its key hash values is changed, that key will no
longer be accessible.

a = [1,2] # array as key
h = {a=>3}
h[a] # => 3
a[0] = 2 # modify key
h[a] # => nil (cannot find)
h.rehash
h[a] # => 3

h.reject {| key, value| ...}

h.reject! {| key, value| ...}

Deletes key-value pairs where the value of block is true.

h.replace(hash)

Replaces the contents of h with that of hash.

h.shift

Removes a key-value pair from h and returns it.

h.size

h.length

Returns the number of key-value pairs in h.

h.sort

h.sort {| a, b| ...}

Produces an array using h.to_a and returns it sorted.

h.store(key, value)

Synonym for h[key]=value.

h.to_a

Returns an array containing the array equivalent (key, value) of h.

h = {"y" => 365, "m" => 31, "d" => 24}
h.to_a # => [["m", 31], ["d", 24], ["y", 365]]

h.to_hash

Returns h itself. Every object that has a to_hash method is treated as if it's a hash by h.replace
and h.update.

h.update(hash)

Updates h with the contents of the specified hash. If duplicate keys exist, the associated value of
hash takes precedence and overwrites that of h.

h1 = { "a" => 100, "b" => 200 }
h2 = { "b" => 300, "c" => 400 }
h1.update(h2) #=> {"a"=>100, "b"=>300, "c"=>300}

h.value?(value)

h.has_value?(value)

Returns true if value is present in h.

h.values

Returns an array of all values.

h = {"y" => 365, "m" => 31, "d" => 24}

p h.values # => [31, 24, 365]

Enumerable Enumerable mix-in module

The Enumerable module assumes that the including class has an each method. You can add the following
methods to a class that provides each, by just including this module.

Instance Methods

e.collect {| x| ...}

e.map {| x| ...}

Returns an array containing the results of running the block on each item in e.

e.detect {| x| ...}

See e.find {|x|...}

e.each_with_index {| x, i| ...}

Executes the block once for each item in e, passing both the item and its index to the block.

["foo","bar","baz"].each_with_index {|x,i|
 printf "%d: %s\n", i, x
}
prints:
0: foo
1: bar
2: baz.

e.entries

e.to_a

Returns an array containing the items passed to it by e.each.

e.find {| x| ...}

e.detect {| x| ...}

Returns the first item for which the block returns true.

["foo","bar","baz"].detect {|s| /^b/ =~ s} # => "bar"

e.find_all {| x| ...}

e.select {| x| ...}

Returns an array of all items for which the block returns true.

["foo","bar","baz"].select {|s| /^b/ =~ s} # => ["bar","baz"]

e.grep(re)

e.grep(re) {| x| ...}

Returns an array containing all items matching re. Uses ===. If a block is specified, it's run on each
matching item, with the results returned as an array.

["foo","bar","baz"].grep(/^b/) # => ["bar","baz"]
[1,"bar",4.5].grep(Numeric) # => [1,4.5]
[1,"bar",4.5].grep(Numeric) {|x|
 puts x+1
}
prints:
2
5.5

e.include?(item)

e.member?(item)

Returns true if an item equal to item is present in e. Items are compared using ==.

e.map {| x| ...}

See e.collect {|x|...}

e.max

Returns the item in e with the maximum value. Assumes a <=> comparison is possible between the
items.

[1,5,3,2].max # => 5

e.member?(item)

See e.include?(item)

e.min

Returns the item in e with the minimum value. Assumes a <=> comparison is possible between the
items.

[1,5,3,2].min # => 1

e.reject {|x| ...}

Returns an array of all items for which the block returns false.

["foo","bar","baz"].reject {|s| /^b/ =~ s} # => ["foo"]

e.select {| x| ...}

See e.find_all {|x|...}

e.sort

e.sort {| a, b| ...}

Returns an array of sorted items from e. If a block is specified, it's used for the comparison. Like <=>,
the block must compare the two items and return a positive number (a> b), 0(a == b), or a negative
number (a<b).

e.to_a

See e.entries

3.4.4 Numbers

As you'd expect, Ruby provides a suitably powerful set of classes for manipulating numeric data, through the
classes Numeric, Integer, Fixnum, Bignum, and Float. In addition, further tools are available in the
Precision and Math modules for manipulating numeric data.

Numeric Superclass of all concrete numbers

Numeric provides common behavior of numbers. Numeric is an abstract class, so you should not
instantiate this class.

Included Module

Comparable

Instance Methods

+ n

Returns n.

- n

Returns n negated.

n + num

n - num

n * num

n / num

Performs arithmetic operations: addition, subtraction, multiplication, and division.

n % num

Returns the modulus of n.

n ** num

Exponentiation.

n.abs

Returns the absolute value of n.

n.ceil

Returns the smallest integer greater than or equal to n.

n.coerce(num)

Returns an array containing num and n both possibly converted to a type that allows them to be
operated on mutually. Used in automatic type conversion in numeric operators.

n.divmod(num)

Returns an array containing the quotient and modulus from dividing n by num.

n.floor

Returns the largest integer less than or equal to n.

1.2.floor #=> 1
2.1.floor #=> 2

(-1.2).floor #=> -2
(-2.1).floor #=> -3

n.integer?

Returns true if n is an integer.

n.modulo(num)

Returns the modulus obtained by dividing n by num and rounding the quotient with floor.
Equivalent to n.divmod(num)[1].

n.nonzero?

Returns n if it isn't zero, otherwise nil.

n.remainder(num)

Returns the remainder obtained by dividing n by num and removing decimals from the quotient. The
result and n always have same sign.

(13.modulo(4)) #=> 1
(13.modulo(-4)) #=> -3
((-13).modulo(4)) #=> 3
((-13).modulo(-4)) #=> -1
(13.remainder(4)) #=> 1
(13.remainder(-4)) #=> 1
((-13).remainder(4)) #=> -1
(-13).remainder(-4)) #=> -1

n.round

Returns n rounded to the nearest integer.

1.2.round #=> 1
2.5.round #=> 3
(-1.2).round #=> -1
(-2.5).round #=> -3

n.truncate

Returns n as an integer with decimals removed.

1.2.truncate #=> 1
2.1.truncate #=> 2
(-1.2).truncate #=> -1
(-2.1).truncate #=> -2

n.zero?

Returns zero if n is 0.

Integer Integer class

Integer provides common behavior of integers (Fixnum and Bignum). Integer is an abstract class,
so you should not instantiate this class.

Inherited Class

Numeric

Included Module

Precision

Class Method

Integer::induced_from(numeric)

Returns the result of converting numeric into an integer.

Instance Methods

~ i

Bitwise operations: AND, OR, XOR, and inversion.

i & int

i | int

i ^ int

i << int

i >> int

Bitwise left shift and right shift.

i[n]

Returns the value of the nth bit from the least significant bit, which is i[0].

5[0] # => 1
5[1] # => 0
5[2] # => 1.

i.chr

Returns a string containing the character for the character code i.

65.chr # => "A"
?a.chr # => "a"

i.downto(min) {| i| ...}

Invokes the block, decrementing each time from i to min.

3.downto(1) {|i|
 puts i
}
prints:
3
2
1

i.next

i.succ

Returns the next integer following i. Equivalent to i + 1.

i.size

Returns the number of bytes in the machine representation of i.

i.step(upto, step) {| i| ...}

Iterates the block from i to upto, incrementing by step each time.

10.step(5, -2) {|i|
 puts i
}
prints:
10
8
6

i.succ

See i.next

i.times {| i| ...}

Iterates the block i times.

3.times {|i|
 puts i
}
prints:
0
1
2 .

i.to_f

Converts i into a floating point number. Float conversion may lose precision information.

1234567891234567.to_f # => 1.234567891e+15

i.to_int

Returns i itself. Every object that has to_int method is treated as if it's an integer.

i.upto(max) {| i| ...}

Invokes the block, incrementing each time from i to max.

1.upto(3) {|i|
 puts i
}
prints:
1
2

3

Fixnum Fixed-length number class

Fixnum objects are fixed-length numbers with a bit length of either 31 bits or 63 bits. If an operation
exceeds this range, it's automatically converted to a Bignum.

Inherited Class

Integer

Bignum Infinite-length integer class

Bignum objects are infinite-length integers capable of handling numbers as large as memory can hold.
Conversions between Fixnum and Bignum integers are performed automatically.

Inherited Class

Integer

Float Floating-point number class

Float objects represent floating-point numbers. They use double precision floating-point numbers as
internel representation of the platform architecture.

Inherited Class

Numeric

Included Module

Precision

Class Method

Float::induced_from(num)

Returns the result of converting num to a floating-point number.

Instance Methods

f.finite?

Returns true if f isn't infinite and f.nan is false.

f.infinite?

Returns 1 if f is positive infinity, -1 if negative infinity, or nil if anything else.

f.nan?

Returns true if f isn't a valid IEEE floating point number.

Precision Precision conversion module

Precision is a module to provide a conversion system between numbers.

Instance Methods

prec(c)

Returns the result of converted self to the precision of class c. The definition in the Precision module
actually returns c.induced_from(self).

prec_f

Equivalent to prec(Float).

prec_i

Equivalent to prec(Integer).

Comparable Comparable mix-in module

The Comparable module assumes that the including class has a <=> method defined. The <=> method
compares two objects and returns a positive number if the left operand is greater, 0 if it's equal to the right
operand, or a negative number if it's smaller. You can add the following methods to a class that provides
<=>, by just including this module.

Instance Methods

c < other

Returns true if c is less than other (i.e., c <=> other returns a negative number).

c <= other

Returns true if c is less than or equal to other (i.e., c <=> other returns either a negative number
or 0).

c > other

Returns true if c is greater than other (i.e., c <=> other returns a positive number).

c >= other

Returns true if c is greater than or equal to other (i.e., c <=> other returns either a positive
number or 0).

c == other

Returns true if the objects are equal (i.e., c <=> other returns 0).

c.between?(min, max)

Returns true if c is between min and max.

Math Module of math functions

The Math module provides a collection of math functions. The Math module defines private instance
methods and module methods that possess the same name and definition.

Module Functions

atan2(x, y)

Calculates the arc tangent.

cos(x)

Calculates the cosine of x.

exp(x)

Calculates an exponential function (e raised to the power of x).

frexp(x)

Returns a two-element array containing the nominalized fraction and exponent of x.

ldexp(x, exp)

Returns the value of x times 2 to the power of exp.

log(x)

Calculates the natural logarithm of x.

log10(x)

Calculates the base 10 logarithm of x.

sin(x)

Calculates the sine of x.

sqrt(x)

Returns the square root of x. x must be positive.

tan(x)

Calculates the tangent of x.

Constants

E

e, the base of natural logarithms

pi; the Ludolphian number

3.4.5 Operating System Services

Ruby's portability necessitates some level of abstraction between your Ruby scripts and the underlying
operating system. Abstractions of I/O, filesystems and processes are provided through the Ruby built-in
classes IO, File, File::Stat, FileTest, Dir, and Process.

IO I/O class

IO is object-oriented representation of stdio. IO is a superclass of other IO related classes, such as File,
BasicSocket, etc.

Included Module

Enumerable

Class Methods

IO::foreach(path) {| x| ...}

Opens the file and executes the block once for each line, closing the file when the block exits.

n = 1
IO::foreach(path) {|line|

 print n, ":", lib
 n+=1
}

IO::new(fd[, mode="r"])

Returns a new IO stream for the specified integer file descriptor fd.

IO::pipe

Creates a pair of IO streams connected to each other and returns them as an array ([readIO,
writeIO]).

IO::popen(cmd[, mode="r"])

IO::popen(cmd[, mode="r"]) {| io| ...}

Executes the command specified by cmd as a subprocess and creates an associated stream connected to
it. If cmd is -, a new instance of Ruby is started as a subprocess with an IO object returned in the
parent and nil returned in the child process. If a block is specified, it's run with the IO object as a
parameter. The stream is closed when the block exits.

IO::readlines(path)

Returns the contents of a file as an array of strings.

IO::select(reads[, writes=nil[, excepts=nil[, timeout=nil]]])

Checks for changes in the status of three types of IO objects, input, output, and exceptions, which are
passed as arrays of IO objects. nil is passed for arguments that don't need checking. A three-element
array containing arrays of the IO objects for which there were changes in status is returned. nil is
returned on timeout.

IO::select([STDIN], nil, nil, 1.5) # wair data for STDIN for 1.5 sec

Instance Methods

io << str

Prints str to IO.

io.binmode

Enables binary mode (for use on DOS/Windows). Once a stream is in binary mode, it can't be reset to
non-binary mode.

io.close

Closes the io.

io.close_read

Closes the read-only end of a duplex IO stream.

io.close_write

Closes the write-only end of a duplex IO stream.

io.closed?

Returns true if io is closed.

io.each {| x| ...}

io.each_line {| x| ...}

Reads in the contents of io one line at a time, invoking the block each time.

f = open(path)
n = 1
f.each_line {|line|
 print n, ":", lib
 n+=1
}.

io.each_byte {| x| ...}

Reads in the contents of io one byte at a time, invoking the block each time.

io.eof

io.eof?

Returns true if EOF has been reached.

io.fcntl(req[, arg])

Calls fcntl(2) system call. Arguments and results are platform dependent. Not implemented on all
platforms.

io.fileno

io.to_i

Returns the file descriptor number for io.

io.flush

Flushes output buffers.

io.getc

Reads one character (8-bit byte) from io and returns its character code. Returns nil on EOF.

io.gets([rs=$/])

Reads one line from io. Returns nil on EOF.

io.ioctl(req[, arg])

Calls ioctl(2) system call. Arguments and results are platform dependent. Not implemented on all
platforms.

io.isatty

See io.tty?

io.lineno

Returns the current line number in io.

io.lineno=n

Sets the current line number in io.

io.pid

Returns the process ID associated with io. Returns nil if no process exists.

io.pos

io.tell

Returns the current position of the file pointer.

io.pos= offset

Sets the position of the file pointer.

io.print(arg...)

Writes the specified arguments to io.

io.printf(fmt[, arg...])

Writes the specified arguments to io after formatting them. For formatting specifiers, see sprintf in
Section 3.3.

io.putc(c)

Writes one character to io.

io.puts(str)

Writes str to io, appending newline if str doesn't end with newline.

io.puts("foo") # prints "foo" and newline
io.puts("bar\n") # prints "bar" and newline

io.read([len])

Reads only the specified number of bytes from io. If len isn't specified, the entire file is read.

io.readchar

Reads one character (8-bit byte) from io. Raises an exception on EOF.

io.readline([rs=$/])

Reads one line from io. Raises an exception on EOF.

io.readlines([rs=$/])

Reads all lines in io and returns them in an array.

io.reopen(f)

Resets io to a copy of f. The class of io may be changed as well.

io.rewind

Moves the file pointer to the beginning of io.

io.seek(pos[, whence=IO::SEEK_SET])

Moves the file pointer. The starting point whence may be set to IO::SEEK_SET (beginning of
stream), IO::SEEK_CUR (current position) or IO::SEEK_END (end of stream).

io.stat

Calls fstat(2) system call and returns a File::Stat object.

io.sync

Returns true if sync mode is enabled for output. In sync mode, the buffer is flushed after each write.

io.sync= mode

Sets the sync mode for output to true or false.

io.sysread(len)

Reads len bytes from io using read(2) system call. sysread should not be mixed with other
reading IO methods.

io.syswrite(str)

Writes str to io using write(2) system call. syswrite should not be mixed with other writing
IO methods, or you may get unpredictable results.

io.tell

See io.pos

io.to_i

See io.fileno

io.to_io

Returns io itself. Every object that has to_io method is treated as if it's an IO by IO::select and
io.reopen.

io.tty?

io.isatty

Returns true if io is connected to tty (terminal device).

io.ungetc(c)

Pushes one character back onto io.

io.write(str)

Writes str to io. Every object that has a write method can be assigned to $defout, the default
output destination.

File File class

A File represents an stdio object that connected to a regular file. open returns an instance of this class
for regular files.

Inherited Class

IO

Class Methods

File::atime(path)

Returns the last access time for path.

File::basename(path[, suffix])

Returns the filename at the end of path. If suffix is specified, it's deleted from the end of the
filename.

File.basename("/home/matz/bin/ruby.exe") #=> "ruby.exe"
File.basename("/home/matz/bin/ruby.exe", ".exe") #=> "ruby"

File::blockdev?(path)

Returns true if path is a block device.

File::chardev?(path)

Returns true if path is a character device.

File::chmod(mode, path...)

Changes the permission mode of the specified files.

File::chown(owner, group, path...)

Changes the owner and group of the specified files.

File::ctime(path)

Returns the last inode change time for path.

File::delete(path...)

File::unlink(path...)

Deletes the specified files.

File::directory?(path)

Returns true if path is a directory.

File::dirname(path)

Returns the directory portion of path, without the final filename.

File::executable?(path)

Returns true if path is executable.

File::executable_real?(path)

Returns true if path is executable with real user permissions.

File::exist?(path)

Returns true if path exists.

File::expand_path(path[, dir])

Returns the absolute path of path, expanding ~ to the process owner's home directory, and ~user to
the user's home directory. Relative paths are resolved from the directory specified by dir, or the
current working directory if dir is omitted.

File::file?(path)

Returns true if path is a regular file.

File::ftype(path)

Returns one of the following strings representing a file type:

file

Regular file

directory

Directory

characterSpecial

Character special file

blockSpecial

Block special file

fifo

Named pipe (FIFO)

link

Symbolic link

socket

Socket

unknown

Unknown file type

File::grpowned?(path)

Returns true if path is owned by the user's group.

File::join(item...)

Returns a string consisting of the specified items joined together with File::Separator separating
each item.

File::join("", "home", "matz", "bin") # => "/home/matz/bin"

File::link(old, new)

Creates a hard link to file old.

File::lstat(path)

Same as stat, except that it returns information on symbolic links themselves, not the files they point
to.

File::mtime(path)

Returns the last modification time for path.

File::new(path[, mode="r"])

File::open(path[, mode="r"])

File::open(path[, mode="r"]) {|f| ...}

Opens a file. If a block is specified, the block is executed with the new file passed as an argument. The
file is closed automatically when the block exits. These methods differ from Kernel#open in that
even if path begins with |, the following string isn't run as a command.

File::owned?(path)

Returns true if path is owned by the effective user.

File::pipe?(path)

Returns true if path is a pipe.

File::readable?(path)

Returns true if path is readable.

File::readable_real?(path)

Returns true if path is readable with real user permissions.

File::readlink(path)

Returns the file pointed to by path.

File::rename(old, new)

Changes the filename from old to new.

File::setgid?(path)

Returns true if path's set-group-id permission bit is set.

File::setuid?(path)

Returns true if path's set-user-id permission bit is set.

File::size(path)

Returns the file size of path.

File::size?(path)

Returns the file size of path, or nil if it's 0.

File::socket?(path)

Returns true if path is a socket.

File::split(path)

Returns an array containing the contents of path split into File::dirname(path) and
File::basename(path).

File::stat(path)

Returns a File::Stat object with information on path.

File::sticky?(path)

Returns true if path's sticky bit is set.

File::symlink(old, new)

Creates a symbolic link to file old.

File::symlink?(path)

Returns true if path is a symbolic link.

File::truncate(path, len)

Truncates the specified file to len bytes.

File::unlink(path...)

See File::delete(path...)

File::umask([mask])

Returns the current umask for this process if no argument is specified. If an argument is specified, the
umask is set, and the old umask is returned.

File::utime(atime, mtime, path...)

Changes the access and modification times of the specified files.

File::writable?(path)

Returns true if path is writable.

File::writable_real?(path)

Returns true if path is writable with real user permissions.

File::zero?(path)

Returns true if the file size of path is 0.

Instance Methods

f.atime

Returns the last access time for f.

f.chmode(mode)

Changes the permission mode of f.

f.chown(owner, group)

Changes the owner and group of f.

f.ctime

Returns the last inode change time for f.

f.flock(op)

Calls flock(2). op may be 0 or a logical or of the File class constants LOCK_EX, LOCK_NB,
LOCK_SH, and LOCK_UN.

f.lstat

Same as stat, except that it returns information on symbolic links themselves, not the files they point
to.

f.mtime

Returns the last modification time for f.

f.path

Returns the pathname used to create f.

f.reopen(path[, mode="r"])

Reopens the file.

f.truncate(len)

Truncates f to len bytes.

Constants

Constants in the File class are also defined in the module File::Constants so that they may be
included separately if necessary.

open constants

RDONLY

Read-only mode

WRONLY

Write-only mode

RDWR

Read and write mode

APPEND

Append mode

CREAT

Create file

EXCL

Exclusive open

ioctl constants

NONBLOCK

Nonblocking mode

TRUNC

Truncate to 0 bytes

NOCTTY

Don't allow a terminal device to become the controlling terminal

BINARY

Binary mode

SYNC

Sync mode

flock constants

LOCK_EX

Exclusive lock

LOCK_NB

Don't block when locking

LOCK_SH

Shared lock

LOCK_UN

Unlock

File::Stat File status class

File::Stat contains file status information given by File#stat and other similar methods.

Included Module

Comparable

Instance Methods

s <=> stat

Compares the modification times of s and stat.

s.atime

Returns the last access time for s.

s.blksize

Returns the block size of s's file system.

s.blockdev?

Returns true if s is a block device.

s.blocks

Returns the number of blocks allocated to s.

s.chardev?

Returns true if s is a character device.

s.ctime

Returns the last inode change time for s.

s.dev

Returns an integer representing the device on which s is located.

s.directory?

Returns true if s is a directory.

s.executable?

Returns true if s is executable.

s.executable_real?

Returns true if s is executable with real user permissions.

s.file?

Returns true if s is a regular file.

s.ftype

Returns one of the following strings representing a file type of s:

file

Regular file

directory

Directory

characterSpecial

Character special file

blockSpecial

Block special file

fifo

Named pipe (FIFO)

link

Symbolic link

socket

Socket

unknown

Unknown file type

s.gid

Returns the group ID.

s.grpowned?

Returns true if s is owned by the user's group.

s.ino

Returns the inode number for s.

s.mode

Returns the access permission mode for s.

s.mtime

Returns the modification time for s.

s.nlink

Returns the number of hard links to s.

s.owned?

Returns true if s is owned by the effective user.

s.pipe?

Returns true if s is a pipe.

s.rdev

Returns an integer representing the device type on which s is located.

s.readable?

Returns true if s is readable.

s.readable_real?

Returns true if s is readable with real user permissions.

s.setgid?

Returns true if s's set-group-id permission bit is set.

s.setuid?

Returns true if s's set-user-id permission bit is set.

s.size

Returns the file size of s

s.size?

Returns the file size of s, or nil if it's 0.

s.socket?

Returns true if s is a socket.

s.sticky?

Returns true if s's sticky bit is set.

s.symlink?

Returns true if s is a symbolic link.

s.uid

Returns the user ID.

s.writable?

Returns true if s is writable.

s.writable_real?

Returns true if s is writable with real user permissions.

s.zero?

Returns true if the file size of s is 0.

FileTest File testing module

The FileTest module contains methods for testing files. The methods in this module are also provided as
class methods of the File class.

Module Functions

blockdev?(path)

Returns true if path is a block device.

chardev?(path)

Returns true if path is a character device.

directory?(path)

Returns true if path is a directory.

executable?(path)

Returns true if path is executable.

executable_real?(path)

Returns true if path is executable with real user permissions.

exist?(path)

Returns true if path exists.

file?(path)

Returns true if path is a regular file.

grpowned?(path)

Returns true if path is owned by the user's group.

owned?(path)

Returns true if path is owned by the effective user.

pipe?(path)

Returns true if path is a pipe.

readable?(path)

Returns true if path is readable.

readable_real?(path)

Returns true if path is readable with real user permissions.

setgid?(path)

Returns true if path's set-group-id permission bit is set.

setuid?(path)

Returns true if path's set-user-id permission bit is set.

size(path)

Returns the file size of path.

size?(path)

Returns the file size of path or nil if it's 0.

socket?(path)

Returns true if path is a socket.

sticky?(path)

Returns true if path's sticky bit is set.

symlink?(path)

Returns true if path is a symbolic link.

writable?(path)

Returns true if path is writable.

writable_real?(path)

Returns true if path is writable with real user permissions.

zero?(path)

Returns true if the file size of path is 0.

Dir Directory class

A Dir is a class to represent a directory stream that gives filenames in the directory in the operating system.
Dir class also holds directory related operations, such as wild card filename matching, changing current
working directory, etc. as class methods

Included Module

Enumerable

Class Methods

Dir[pat]

Dir::glob(pat)

Returns an array of filenames matching the specified wildcard pattern pat :

*

Matches any string including the null string

**

Matches any string recursively

?

Matches any single character

[...]

Matches any one of enclosed characters

{a,b...}

Matches any one of strings

Dir["foo.*"] # matches "foo.c", "foo.rb", etc.
Dir["foo.?"] # matches "foo.c", "foo.h", etc.
Dir["*.[ch]"] # matches "main.c", "ruby.h", etc.
Dir["*.{rb,c}"] # matches "main.c", "config.rb", etc.
Dir["**/*.c"] # recursively matches any ".c" file

Dir::chdir(path)

Changes the current directory.

Dir::chroot(path)

Changes the root directory (only allowed by super user). Not available on all platforms.

Dir::delete(path)

See Dir::rmdir(path).

Dir::entries(path)

Returns an array of filenames in directory path.

Dir::foreach(path) {| f| ...}

Executes the block once for each file in the directory specified by path.

Dir::getwd

Dir::pwd

Returns the current directory.

Dir::glob(pat)

See Dir[pat].

Dir::mkdir(path[, mode=0777])

Creates the directory specified by path. Permission mode may be modified by the value of
File::umask and is ignored on Win32 platforms.

Dir::new(path)

Dir::open(path)

Dir::open(path) {| dir| ...}

Returns a new directory object for path. If open is given a block, a new directory object is passed to
the block, which closes the directory object before terminating.

Dir::pwd

See Dir::getwd.

Dir::rmdir(path)

Dir::unlink(path)

Dir::delete(path)

Deletes the directory specified by path. The directory must be empty.

Instance Methods

d.close

Closes the directory stream.

d.each {| f| ...}

Executes the block once for each entry in d.

d.pos

d.tell

Returns the current position in d.

d.pos= offset

Sets the position in the directory stream.

d.pos= pos

d.seek(po s)

Moves to a position in d. pos must be a value returned by d.pos or 0.

d.read

Returns the next entry from d.

d.rewind

Moves position in d to the first entry.

d.seek(po s)

See d.pos=pos.

d.tell

See d.pos.

Process Process handling module

The Process module provides methods to manipulate processes. Some operations are platform dependent.

Module Methods

Process.egid

Returns the effective group ID of this process.

Process.egid= gid

Sets the effective group ID of this process.

Process.euid

Returns the effective user ID of this process.

Process.euid= uid

Sets the effective user ID of this process.

Process.gid

Returns the group ID of this process.

Process.gid= gid

Sets the group ID of this process.

Process.pid

Returns the process ID of this process.

Process.ppid

Returns the process ID of the parent of this process.

Process.uid

Returns the user ID of this process.

Process.uid= uid

Sets the user ID of this process.

Module Functions

exit!([result=0])

Kills the program bypassing exit handling such as ensure, etc.

fork

fork { ...}

Creates a child process. nil is returned in the child process, and the child process' ID (Integer) is
returned in the parent process. If a block is specified, it's executed in the child process.

getpgid(pid)

Returns the process group ID for process pid. pid 0 means the current process ID.

getpgrp([pid=$$])

Returns the process group ID for this process.

getpriority(which, who)

Returns the current priority.

kill(sig, pid...)

Sends signal to a process. sig is specified with a string such as KILL or an integer.

setpgid(pid)

Sets the process group ID for process pid.

setpgrp

Equivalent to setpgid(0,0).

setpriority(which, who, prio)

Sets process priority.

setsid

Establishes this process as a new session.

wait

Waits for a child process to exit and returns its process ID.

wait2

Waits for a child process to exit and returns its process ID and exit status as an array.

waitpid(pid[, flags])

Waits for child process pid to exit and returns its process ID. Waits for any child process if pid=0 is
specified. Flags may be 0 or a logical or of the constants WNOHANG and WUNTRACE.

waitpid2(pid[, flags])

Waits for child process pid to exit and returns its process ID and exit status as an array.

Constants

PRIO_PROCESS

Process priority. Specified in a logical or as the third argument of the setpriority method.

PRIO_PGRP

Process group priority. Specified in a logical or as the third argument of the setpriority method.

PRIO_USER

User priority. Specified in a logical or as the third argument of the setpriority method.

WNOHANG

Terminate immediately without blocking if no child has exited. Specified in a logical or as the second
argument of the waitpid and waitpid2 methods.

WUNTRACED

Terminate any stopped children whose status has not been reported. Specified in a logical or as the
second argument of the waitpid and waitpid2 methods.

3.4.6 Threads

Threads are a powerful tool for creating and maintaining cleaner code, and in many implementations, for
making your software more responsive. In Ruby, the former benefit is the one emphasized—cleaner
code—since Ruby implements "microthreads." Microthreads are in-process threads simulated with
setjmp/longjmp in the Ruby interpreter itself. Hence, Ruby's Thread class isn't dependent on the
underlying threads library or operating systems, making Ruby more portable.

Thread Thread class

The class for user-level threads. When the main thread terminates, the other threads are killed, and the
interpreter quits.

Class Methods

Thread::abort_on_exception

Returns true if thread is set to abort on an exception.

Thread::abort_on_exception= bool

Sets whether or not to abort on an exception. When aborting on an exception, displays an error
message for exceptions raised in the thread and quits the program.

Thread::critical

Returns true when scheduling of existing threads is prohibited.

Thread::critical= bool

Sets the status of thread-scheduling prohibition.

Thread::current

Returns the current thread.

Thread::exit

Terminates the current thread.

Thread::fork([arg...]) {| x...| ...}

See Thread::start([arg...]) {|x...|...}.

Thread::kill(th)

Terminates the specified thread.

Thread::list

Returns an array of all threads.

Thread::main

Returns the main thread.

Thread::new([arg...]) {| x...| ...}

See Thread::start([arg...]) {|x...|...}.

Thread::pass

Passes execution to another thread.

Thread::start([arg...]) {| x...| ...}

Thread::fork([arg...]) {| x...| ...}

Thread::new([arg...]) {| x...| ...}

Creates a new thread and executes the block in it. Arguments are passed directly to the block.

Thread::stop

Stops the current thread.

Instance Methods

t[name]

Retrieves the value of a thread-local variable associated with name. The name is either a string or a
symbol.

t[name]= value

Sets the value of a thread-local variable.

t.abort_on_exception

Returns true if thread is set to abort on an exception.

t.abort_on_exception= bool

Sets whether or not this thread will abort on an exception. When aborting on an exception, displays an

error message for exceptions raised in the thread and quits the program.

t.alive?

Returns true if the thread is alive (sleeping or running).

t.exit

See t.kill.

t.join

Waits for the thread to terminate. If the thread is terminated with an exception, that exception is raised
again.

t.key?(name)

Returns true if a thread-local variable associated with name exists.

t.kill

t.exit

Terminates the thread.

t.raise(exc[, mesg])

Raises an exception from the thread.

t.run

Makes the thread eligible for scheduling and invokes the scheduler.

t.safe_level

Returns the value of $SAFE, the thread's safe level.

t.status

Returns the status of thread (true if alive, false if terminated normally, and nil if terminated with
an exception).

t.stop?

Returns true if the thread is stopped.

t.value

Waits for the thread to terminate and returns the value of the last expression evaluated. If the thread is
terminated with an exception, that exception is raised again.

t.wakeup

Marks the thread as eligible for scheduling.

ThreadGroup Thread group class

A thread can belong to only one thread group at a time. Until a change of group is specified, a newly created
thread belongs to the same thread group as the thread that originally created it.

Class Method

ThreadGroup::new

Creates a new thread group.

Instance Methods

tg.add(th)

Adds th to the thread group. A thread can belong to only one group at a time.

tg.list

Returns an array of threads belonging to the thread group.

Constants

Default

The default thread group.

3.4.7 Exceptions

Ruby's exception handling class, Exception, and its descendents provide support for the notion that the
code discovering some sort of error condition may not be the same code that can handle that error condition.

Exception Superclass for exceptions

Instance Methods

e.backtrace

Returns backtrace information (from where exception occurred) as an array of strings.

e.exception

Returns clone of the exception object e. This method is used by raise method.

e.message

Returns exception message.

Errno System call exceptions module

Errno::ENOENT and other errors are defined in this module.

3.4.8 Built-in Exceptions

Exception and the classes derived from it provide a variety of fundamental building blocks for handling
error conditions in your Ruby scripts. Of course with the power you know and love from OOP, you can easily
extend and adapt these basic classes as you see fit.

The following are abstract Exception classes:

Exception

Superclass of all exceptions

ScriptError

Error originating from program mistakes

StandardError

Superclass of standard error exceptions; caught if no class is specified by rescue

The following are subclasses of StandardError:

ArgumentError

Argument error (incorrect number of arguments, etc.)

EOFError

End of file reached

FloatDomainError

Float calculation error

IndexError

Error related to index.

IOError

Error related to input or output.

LocalJumpError

Error related to break, next, redo, retry, or return from wrong place.

NoMemoryError

Insufficient memory.

RangeError

Error produced when range exceeded

RegexpError

Regular expression error

RuntimeError

General runtime error

SecurityError

Error related to security

SystemCallError

Superclass of system call exceptions

SystemStackError

Insufficient stack area

TypeError

Error produced when types don't match

ZeroDivisionError

Error produced when attempting to divide by zero

The following are two subclasses of SystemCallError. See <sys/errno.h> for details.

Errno::ENOENT

File or directory doesn't exist

Errno::EPERM

Insufficient access rights

The following are subclasses of ScriptError:

LoadError

Error occurring during the loading of libraries

NameError

Name error caused by accessing undefined name, etc.

NotImplementedError

Function not supported by interpreter called

SyntaxError

Error related to syntax

The following are subclasses of Exception:

Fatal

Fatal error that can't ever be caught

Interrupt

Interrupt (SIGINT) received

SystemExit

exit called

3.4.9 Classes and Modules

Support for OOP in Ruby can be found in the Ruby classes Class and Module. All class objects are of
class Class, and the Module class provides support for namespaces and mix-ins.

Module Module class

A Module is similar to a class, except that it has no superclass and can't be instantiated.

Class Methods

Module::class_variables

Returns an array of class variable names.

Module::constants

Returns an array of constant names.

Module::nesting

Returns an array of classes and modules nested at the point of call.

Module::new

Creates a new anonymous module.

Instance Methods

m < mod

Returns true if m is a descendant of mod.

m <= mod

Returns true if m is a descendant of or equal to mod.

m <=> mod

Returns +1 if m is an ancestor of mod, 0 if m is the same as mod, and -1 if m is a descendant of mod.

m === obj

Returns true if obj is an instance of m or one of its descendants.

m > mod

Returns true if m is an ancestor of mod.

m >= mod

Returns true if m is an ancestor of or equal to mod.

m.ancestors

Returns an array of ancestors, including both classes and modules.

m.const_defined?(name)

Returns true if the constant specified by name is defined.

m.const_get(name)

Returns the value of the specified constant.

m.const_set(name, value)

Sets the value of a constant.

m.constants

Returns an array of constant names.

m.included_modules

Returns an array of names of included modules.

m.instance_method(name)

Returns a UnboundMethod object corresponding to name. An exception is raised if the
corresponding method doesn't exist. UnboundMethod should be bound before invocation.

unbound_plus = Fixnum.instance_method(:+)
plus = unbound_plus.bind(1)
p plus.call(2) # => 3 (1+2)

m.instance_methods([all=false])

Returns an array of instance method names. If all is true, instance methods from superclasses are
also returned.

m.method_defined?(name)

Returns true if the method specified by name is defined m.

m.module_eval(str)

m.module_eval { ...}

Evaluates str or block in the context of m. If a method is defined, that method is added to m.

m.name

Returns the module's name.

m.private_class_method(name...)

Sets visibility of class methods to private. name can be either a symbol or string.

m.private_instance_methods([all=false])

Returns an array of instance methods whose visibility is private. If all is true, instance methods
from superclasses are also returned.

m.protected_instance_methods([all=false])

Returns an array of instance methods whose visibility is protected. If all is true, instance methods
from superclasses are also returned.

m.public_class_method(name...)

Sets visibility of class methods to public. name can be either a symbol or string.

m.public_instance_methods([all=false])

Returns an array of instance methods whose visibility is public. If all is true, instance methods
from superclasses are also returned.

Private Instance Methods

alias_method(new, old)

Creates an alias for a method. Equivalent to the alias statement except that the name is specified
with a symbol or string.

append_features(mod)

Adds module definitions (methods and constants) of mod to the current module. This is the callback
method used by include. Can be redefined for callback processing during the inclusion of modules.
Used as a hook.

attr(name[, flag=false])

Defines a named attribute, creating a method, name, for accessing the instance variable @name. If
flag is true, also defines a writable method name= for setting the attribute.

attr_accessor(name...)

Defines read accessor (name) and write accessor (name=) for each instance variable @name.

attr_reader(name...)

Defines read accessor (name) for each instance variable @name.

attr_writer(name...)

Defines write accessor (name=) for each instance variable @name.

extend_object(obj)

Adds the current module's methods and constants to obj. This is the callback method used by
Object#extend. Used as a hook.

include(mod...)

Includes the methods and constants of mod.

method_added(name)

Method called by the interpreter every time a method is defined with the def statement. The standard
definition does nothing. Used as a callback.

module_function(name...)

Copies the definition of each of the instance methods specified by name as a class method and
converts it to a module function.

private([name...])

Sets the visibility of each instance method specified by name to private. If used with no arguments,
sets the visibility of subsequently defined methods to private.

protected([name...])

Sets the visibility of each instance method specified by name to be protected. If used with no
arguments, sets the visibility of subsequently defined methods to be protected.

public([name...])

Sets the visibility of each instance method specified by name to public. If used with no arguments, sets
the visibility of subsequently defined methods to public.

remove_const(name)

Removes the definition of constant, name.

remove_method(name)

Removes method (name) from the current class. If a method of the same name is defined in a
superclass, it becomes visible.

class Foo
 def foo
 puts "Foo"
 end
 end
 class Bar<Foo
 def foo
 puts "Bar"
 end
 end
 b = Bar.new
 b.foo
 class Bar
 remove_method :foo
 end
 b.foo

undef_method(name)

Turns method (name) into an undefined method. Even if a method of the same name is defined in a
superclass, it becomes invisible to that class or module.

class Foo
 def foo
 end
 end
 class Bar<Foo
 undef_method :foo

 end
 b = Bar.new
 b.foo

Class Class class

A class named Class is a class for every class of Ruby :-). This means classes are first-class objects in
Ruby. Class can be created by a class statement. In addition, even unnamed classes can be created by
Class::new.

Inherited Class

Module

Inherited Class

Object

Class Methods

Class::inherited(c)

Called when a subclass is defined. Used as a callback.

Class::new([superclass=Object])

Creates a new class.

Instance Methods

Class class doesn't inherit the module_function method.

c.class_eval

Alias for c.module_eval.

c.name

Returns the class name.

c.new([arg ...])

Creates an instance of the class. Any arguments or blocks get passed directly to the initialize method of
the object created.

c.superclass

Returns the class's superclass.

3.4.10 Proc Objects and Bindings

The Proc class provides support for converting blocks into objects and manipulating them just like other
objects in Ruby. The nice thing is that the Proc object you create can recreate its execution environment
when you need to call it. Ruby also provides you with a tool for packaging up an execution environment for
use later, via the Binding class.

Proc Procedure object class

Proc is an objectified block that is given to a method. You can create a Proc object by calling the proc
method or by using the block argument of the method.

p1 = proc{|a| a + 1} # Proc from a block
p2 = proc # Proc from a block given to this method
def foo(&proc) # Proc from a block given to this method
 proc.call(42) # invoke Proc, equivalent to yield
end

Proc::new

Proc::new {| x| ...}

Converts the block into a Proc object. If a block isn't passed, the block associated with the calling
method is converted into a Proc object. Equivalent to built-in functions lambda and proc.

Instance Methods

p[arg...]

p.call([arg...])

Calls a Proc object.

p.arity

Returns the number of arguments accepted by a Proc object p. For p that take a variable number of
arguments, returns -n-1, where n is the number of mandatory arguments. Notice {|a|} gives -1,
since it works like {|*a|} when multiple arguments are passed.

Proc.new{||}.arity #=> 0
Proc.new{|a|}.arity #=> -1
Proc.new{|a,b|}.arity #=> 2
Proc.new{|a,b,c|}.arity #=> 3
Proc.new{|*a|}.arity #=> -1
Proc.new{|a,*b|}.arity #=> -2

Method Method object class

The method of an object that has been made into an object in its own right. Created using the method
obj.method(name).

Instance Methods

m[arg...]

m.arity

Returns the number of arguments accepted by m. For methods that take a variable number of
arguments, returns -n-1, where n is the number of least required arguments.

m.call([arg...])

Calls a method object.

m.to_proc

Converts m into a Proc object.

m.unbind

Returns an UnboundMethod object corresponding to m.

UnboundMethod Method without receiver bind class

The method definition without a receiver relationship. You can't invoke UnboundMethod. You have to
bind UnboundMethod to get a callable Method object. Created using the method
Module#instance_method(name) or Method#unbind.

Inherited Class

Method

Instance Method

um.bind(obj)

Returns callable Method object bound to obj. obj must be an instance of the class from which
UnboundMethod retrieved.

unbound_plus = String.instance_method(:+)
plus = unbound_plus.bind("a") # bind it first
p plus.call("b") # => "ab" ("a"+"b")
unbound_plus.bind(1) # error! 1 is not a String.

Binding Encapsulated execution context class

An object encapsulating the execution context (variables, methods, self, blocks, etc.) at some place in the
code. Created using the built-in function binding. Used as the second argument of the built-in function
eval. See eval in the previous section.

Continuation Continuation class

Allows a return to (continuation of) execution from a certain place in the code. Created using the built-in
function callcc. See callcc in the previous section.

Instance Method

c.call([arg...])

Continues execution from the end of the callcc block that created the Continuation. callcc returns
arg..., or nil if no arguments are specified.

3.4.11 Miscellaneous Classes and Modules

Of course, there's a whole lot of other stuff that you need in just about every Ruby program: things like
garbage collection (GC module), Truth (via TrueClass and FalseClass), the ability to poke around at
the objects inside a running Ruby script (via ObjectSpace), and so on. There's nothing here that you won't

find consistent with Ruby's philosophy of transparency, so dive right in.

GC GC module

GC module is a collection of garbage collection related operations.

Module Methods

disable

Disables GC

enable

Enables GC

start

Starts GC

Instance Method

g.garbage_collect

Starts GC

ObjectSpace ObjectSpace module

ObjectSpace module provides manipulation on collection of existing objects.

Module Functions

_id2ref(id)

Obtains object from id. Do not use this method (intended for internal use only), especially in
finalizers. id is already made unavailable when finalizers are called.

define_finalizer(obj, proc)

define_finalizer(obj) {| id| ...}

Creates a finalizer for obj. obj should not be referenced directly nor indirectly from the finalizers.

class Foo
def Foo::finalizer(io) # typical idiom for finalizers
io.close
end
def initialize(path)
@io = open(path)
ObjectSpace.define_finalizer(self, Foo::finalizer(@io))
end

each_object([c]) {| x| ...}

Calls the block once for all objects. When c is specified, executes the block once for all objects that
match c or are subclasses of c (for which kind_of?(c) is true).

garbage_collect

Starts GC. Alias for GC::start.

undefine_finalizer(obj)

Removes all finalizers for obj.

NilClass Nil class

The only instance of NilClass is nil. NilClass has no special methods of its own.

TrueClass True class

The only instance of TrueClass is true. TrueClass provides a few logical operations, which evaluate
both operands before executing the methods, unlike && or || operators.

Instance Methods

true & other

Logical AND, without short circuit behavior

true | other

Logical OR, without short circuit behavior

true ^ other

Logical exclusive Or (XOR)

FalseClass False class

The only instance of FalseClass is false. FalseClass provides a few logical operations, which do
evaluate both operands before, unlike && or || operators.

Instance Methods

false & other

Logical AND, without short circuit behavior

false | other

Logical OR, without short circuit behavior

false ^ other

Exclusive Or (XOR)

Data C data wrapper class

Data is an external language data wrapper used by extension libraries. It has no special methods of its own.

Marshal Object storage module

Marshal is a module for dumping objects to and loading them from a file or string.

Module Functions

dump(obj[, port][, level])

Dumps an object. Dumps to port if an IO object is specified as port. If port isn't specified, obj is
returned as a dumped string. If level is specified, subobjects up to that depth are dumped.

load(from)

restore(from)

Restores a dumped object. The string or IO object dumped to is specified in from.

Range Range class

Range is a class for interval. Ranges can be created using .. or ... operators or using the Range::new
method.

Included Module

Enumerable

Class Method

Range::new(first, last[, excl=false])

Creates a Range object. Does not include the end value if excl is true. first and last should
be comparable using <=> and should have succ method.

Instance Methods

r === other

Returns true if other is within the range.

r.begin

r.first

Returns the first object in the range.

r.each {| x| ...}

Executes the block for each object within the range.

(1..5).each {|x|
puts x # prints 1 to 5
}
(1...5).each {|x|
puts x # prints 1 to 4

}

r.end

r.last

Returns the last object in the range.

r.size

r.length

Returns the number of objects in the range. If the range is specified by something other than an integer,
the number of objects is counted using the each method.

Struct Structure class

Stuct is a abstract class that collects named attributes bundled in an object. You have to generate your own
Struct class (subclass of Struct) using Struct::new, which returns new Struct class.

Example

S = Struct::new(:foo, :bar)
s = S::new(1,2)
s.foo # => 1
s.bar = 5 # update the member
s.bar # => 5
s # => #<S foo=1, bar=5>

Included Module

Enumerable

Class Method

Struct::new([name,] mem...)

Creates a new structure class containing members specified by mem... . If name is given, the
structure class is bound to the constant under Struct, for example Struct::Passwd. Note that
Struct::new doesn't return a structure object itself, but rather a class that is used as a template for
creating each structure.

Structure Class Methods

S::members

Returns an array of member names.

S::new(value...)

Creates a new structure object. value objects specify the initial value of each member and must
match the number of members specified when the structure was created.

Instance Methods

s[mem]

Returns the value of member mem where mem is a symbol or integer. If mem is an integer, the value of
the memth member is returned.

s[mem]= value

Sets the value of member mem. mem may be a symbol or integer.

s.each {| x|...}

Calls block once for each member.

s.members

Returns an array of member names.

s.values

Returns an array containing the value of each member.

Time Time class

Time is an object corresponding to a certain time. Internally, it's stored as a number of seconds since the
epoch, 00:00:00, January 1, 1970 UTC. Time class can handle both a system's local time and UTC at the
same time, but no other time zones can be handled.

Included Module

Comparable

Class Methods

Time::at(time[, usec=0])

Creates a Time object. time may be a Time object or an integer representing the number of seconds
elapsed since the epoch, 00:00:00, January 1, 1970 UTC.

Time::gm(year[, month=1[, day=1[, hour=0[, min=0[, sec=0[, usec=0]]]]])

see Time::utc(year[,month=1[,day=1[,hour=0[,min=0[,sec=0
[,usec=]]]]]])

Time::local(year[, month=1[, day=1[, hour=0[, min=0[, sec=0 [, usec=0]]]]]])

Time::mktime(year[, month=1[, day=1[, hour=0[, min=0[, sec=0 [, usec=0]]]]]])

Creates a Time object interpreted in the local time zone.

Time::new

Time::now

Creates a Time object expressing the current system time.

Time::times

Returns a Tms structure containing user and system CPU times retrieved by the times system call.
Here are the Tms structure members:

utime

User CPU time

stime

System CPU time

cutime

CPU time elapsed for user child processes

cstime

CPU time elapsed for system child processes

Time::utc(year[, month=1[, day=1[, hour=0[,min=0[, sec=0 [, usec=0]]]]]])

Time::gm(year[, month=1[, day=1[, hour=0[, min=0[, sec=0[, usec=0]]]]])

Creates a Time object interpreted as UTC (Coordinated Universal Time, formally known as GMT).

Instance Methods

t + n

Returns a Time object with n number of seconds added.

t - x

If x is another Time object, the time difference is returned in seconds as a Float. If x is a number, a
Time object with x number of seconds subtracted is returned.

t <=> other

t > other

t >= other

t < other

t <= other

Time comparisons.

t.asctime

t.ctime

Returns t as a string.

t.day

t.mday

Returns the day of the month (1-31) for t.

t.gmtime

See t.utc

t.gmtime?

See t.utc?

t.hour

Returns the hour of the day (0-23) for t.

t.isdst

Returns true if t occurs during daylight saving time.

t.localtime

Turns on representation mode of t to local time.

t.min

Returns the minute of the hour (1-59) for t.

t.mon

t.month

Returns the month of the year (1-12) for t.

t.sec

Returns the second of the minute (1-60) for t. There can be a 60th second of the minute due to leap
second.

t.strftime(format)

Formats t according to formatting directives, which may be any of these:

%A Full weekday name (Sunday, Monday...)

%a Abbreviated weekday name (Sun, Mon...)

%B Full month name (January, February...)

%b Abbreviated month name (Jan, Feb...)

%c Date and time

%d Day of the month in decimal (01-31)

%H Hour, 24-hour clock (00-23)

%I Hour, 12-hour clock (01-12)

%j Day of the year (001-366)

%M Minutes (00-59)

%m Month in decimal (01-12)

%p Meridian indicator (A.M. or P.M.)

%S Seconds (00-60)

%U Week number, with the first Sunday as the first day of the first week (00-53)

%W Week number, with the first Monday as the first day of the first week (00-53)

%w Day of the week, Sunday being 0 (0-6)

%X Time only

%x Date only

%Y Year with century

%y Year without century (00-99)

%Z Time zone

%% Literal % character

t.to_f

Returns the value of t as a Float of seconds since the epoch, including microseconds.

t.to_i

t.tv_sec

Returns the value of t as an integer number of seconds since the epoch.

t.tv_usec

t.usec

Returns just the number of microseconds of t.

t.utc

t.gmtime

Converts t to UTC, modifying the receiver.

t.utc?

t.gmt?

Returns true if t represents a time in UTC.

t.wday

Returns the day of the week (0-6, Sunday being 0) for t.

t.yday

Returns the day of the year (1-366) for t.

t.year

Returns the year for t.

t.zone

Returns the local time zone for t.

Chapter 4. Standard Library Reference
We will now explore the useful libraries that come with the standard Ruby distribution, from
network access via HTTP and CGI programming to data persistence using the DBM library.

4.1 Standard Library

The Ruby standard library extends the foundation of the Ruby built-in library with classes and abstractions for a variety of
programming needs, including network programming, operating-system services, threads, and more. These classes provide flexible
capabilities at a high level of abstraction, giving you the ability to create powerful Ruby scripts useful in a variety of problem
domains.

Many common tasks are performed by Ruby programmers all over the world. Some of these tasks include network access such as
TCP/IP and CGI, OS access, database access, controlling processes with threads, numeric calculations, implementing design classes,
and manipulating dates. These are used so frequently that they are included with all standard distributions of Ruby; when you access
these classes and methods from your programs, they will be available from the Standard Library. Could you write these libraries
yourself? Probably. Would you feel confident they have been exhaustively tested, optimized, and debugged? Usually not. The
Standard Library is a great time saver. And as Ruby grows and evolves, so will its Standard Library, to everyone's benefit.

Although not every library section will contain all these entries, the basic format for each section is as follows:

Required library●

Example●

Inherited class●

Class methods●

Instance methods●

4.1.1 Network

Use Ruby's network classes to let your scripts speak basic protocols such as TCP and UDP as a client, a server, or both. These
libraries provide socket access to a variety of Internet protocols and classes that make access to those protocols easier. You can even
crawl up the protocol stack and find support for higher-level protocols like FTP, HTTP, IMAP, and so on. All have an intuitive,
transparent interface that won't get in your way. This is the largest group of libraries and one of the most frequently used.

Oh, and don't worry. There's support for doing web programming through the CGI, CGI::Cookie and CGI::Session classes.

BasicSocket Socket-related superclass

BasicSocket is an abstract base class for network socket-related classes. This class provides common behavior among Socket
classes.

Required Library

require 'socket'

Inherited Class

IO

Class Methods

BasicSocket::do_not_reverse_lookup

Returns true if a query returns numeric address, not hostname

BasicSocket::do_not_reverse_lookup= bool

Sets reverse_lookup status

Instance Methods

s.getpeername

Returns information on this connection's peer socket as a struct sockaddr packed into a string.

s.getsockname

Returns information on s as a struct sockaddr packed into a string.

s.getsockopt(lev, optname)

Gets the specified socket option.

s.setsockopt(lev, optname, value)

Sets the specified socket option.

s.shutdown([how=2])

Shuts down the socket connection. 0 shuts down receiving, 1 sending, and 2 both.

s.recv(len[, flags])

Receives data from s, and returns it as a string.

s.send(mesg, flags[, to])

Sends data over the socket s, returning the length of the data sent. to may be a struct sockaddr packed into a string
indicating the recipient address.

IPSocket IP socket class

IPSocket class is a base class of TCPSocket and UDPSocket. IPSocket class provides common behavior among Internet
Protocol (IP) sockets. Sockets classes in Ruby support IPv6, if the native platform supports it.

Required Library

require 'socket'

Inherited Class

BasicSocket

Class Method

IPSocket::getaddress(host)

Returns the IP address of the specified host. The IP address is returned as a string such as 127.10.0.1 (IPv4) or ::1
(IPv6).

Instance Methods

s.addr

Returns an array containing information on the socket connection (AF_INET, port, hostname, and IP address)

s = TCPSocket.open("www.ruby-lang.org", "http")
s.addr# => ["AF_INET", 4030, "dhcp198.priv.netlab.jp",
 "192.168.1.198"]

s.peeraddr

Returns an array containing information on the peer socket in the same format as s.addr

s = TCPSocket.open("www.ruby-lang.org", "daytime")
s.recvfrom(255)
=> ["Wed Aug 1 00:30:54 2001\r\n", ["AF_INET", 13, "www",
 "210.251.121.214"]]

s.recvfrom(len[, flags])

Receives data and returns it in an array that also includes information on the sender's socket in the same format as s.addr

UDPSocket UDP socket class

UDPSocket is a class for User Datagram Protocol (UDP), which is a connectionless, unreliable protocol.

Required Library

require 'socket'

Inherited Class

IPSocket

Class Methods

UDPSocket::new([socktype=Socket::AF_INET])

UDPSocket::open([socktype=Socket::AF_INET])

Creates a UDP datagram socket

Instance Methods

s.bind(host, port)

Binds the socket to port on host. host may be an empty string ("") for INADDR_ANY or <broadcast> for
INADDR_BROADCAST.

s.connect(host, port)

Connects the socket to port on host. host may be an empty string ("") for INADDR_ANY or <broadcast> for
INADDR_BROADCAST.

s.send(mesg, flags[, to])

s.send(mesg, flags[, host, port])

Sends data on a socket s, returning the length of the data sent. If only two arguments are specified, the destination is assumed
to be the port of the existing connection. Otherwise, it may be specified using a struct sockaddr when calling the
method with three arguments or by indicating host and port when specifying four arguments.

TCPSocket TCP/IP socket class

TCPSocket is a class for Transmission Control Protocol (TCP), which is connection-oriented, reliable protocol.

Required Library

require 'socket'

Example

require 'socket'
host=(if ARGV.length == 2; ARGV.shift; else "localhost"; end)
print("Trying ", host, " ...")
STDOUT.flush
s = TCPsocket.open(host, ARGV.shift)
print(" done\n")
print("addr: ", s.addr.join(":"), "\n")
print("peer: ", s.peeraddr.join(":"), "\n")
while gets()
 s.write($_)
 print(s.readline)
end
s.close

Inherited Class

IPSocket

Class Methods

TCPSocket::new(host, service)

TCPSocket::open(host, service)

Opens a TCP connection to host for service, which may also be a port number

TCPServer TCP/IP server socket class

TCPServer is a class for server-side TCP sockets. A TCPServer waits for client connection by the accept method, then returns
a TCPSocket object connected to the client.

Required Library

require 'socket'

Example

require 'socket'
gs = TCPserver.open(0)
addr = gs.addr
addr.shift # removes "AF_INET"
printf("server is on %s\n", addr.join(":"))
while true
 Thread.start(gs.accept) do |s|
 print(s, " is accepted\n")
 while s.gets
 s.write($_)
 end
 print(s, " is gone\n")
 s.close
 end
 end

Inherited Class

TCPSocket

Class Methods

TCPServer::new([host="localhost",] service)

TCPServer::open([host="localhost",] service)

Creates a server socket

Instance Method

s.accept

Waits for a connection and returns a new TCPSocket object once one is accepted

UNIXSocket Unix domain socket class

UNIXSocket is a class for the Unix domain, which can be specified by the path.

Required Library

require 'socket'

Inherited Class

BasicSocket

Class Methods

UNIXSocket::new(path)

UNIXSocket::open(path)

Creates a Unix domain socket

Instance Methods

s.addr

Returns an array containing information on the socket (AF_UNIX and the path)

s.path

Returns the path of the Unix domain socket

s.peeraddr

Returns an array containing information on the peer socket in the same format as s.addr

s.recvfrom(len[, flag=0])

Receives data and returns it in an array that also includes information on the sender's socket in the same format as s.addr

UNIXServer Unix domain server socket class

UNIXServer is a class for server-side Unix domain sockets. A UNIXServer waits for client connection by the accept method,
then returns a UNIXSocket object connected to the client.

Required Library

require 'socket'

Inherited Class

UNIXSocket

Class Methods

UNIXServer::new(path)

UNIXServer::open(path)

Creates a server socket

Instance Method

s.accept

Waits for a connection and returns a new UNIXSocket object once one is accepted

Socket General socket class

The Socket class is necessary to gain access to all the operating system's socket interfaces. Interface structures can be created using
String#pack.

Required Library

require 'socket'

Inherited Class

BasicSocket

Class Methods

Socket::for_fd(fd)

Creates a socket object corresponding to the file descriptor fd (an integer).

Socket::getaddrinfo(host, port[, family[, type[, proto[, flags]]]])

Returns an array containing socket address information (address family, port number, hostname, host IP address, protocol
family, socket type, and protocol).

Socket::getaddrinfo("www.ruby-lang.org", "echo", Socket::AF_INET, Socket::SOCK_DGRAM)
=> [["AF_INET", 7, "www", "210.251.121.214", 2, 2, 17]]

Socket::gethostbyaddr(addr[, type=Socket::AF_INET)

Returns an array containing socket address information (address family, port number, hostname, host IP address, protocol
family, socket type, and protocol).

Socket::getaddrinfo("www.ruby-lang.org", "echo", Socket::AF_INET, Socket::SOCK_DGRAM)
=> [["AF_INET", 7, "www", "210.251.121.214", 2, 2, 17]]

Socket::gethostbyname(name)

Returns an array containing host information retrieved from a host name.

Socket.gethostbyaddr(([127,0,0,1].pack("CCCC")))
=> ["ev", ["localhost", "ev.netlab.jp"], 2, "\177\000\000\001"]

Socket::gethostname

Returns the current hostname.

Socket::getnameinfo(addr[, flags])

Returns an array containing the name of the host and service retrieved from the specified socket address information. addr
may be a struct sockaddr packed into a string or an array (address family, port, and hostname).

sockaddr = [Socket::AF_INET, 80, 127,0,0,1,""].pack("snCCCCa8")
Socket::getnameinfo(sockaddr) # => ["ev","www"]
Socket::getnameinfo(["AF_INET",80,"localhost"]) # => ["ev","www"]

Socket::getservbyname(service[, proto="tcp"])

Returns the port number for service and proto specified.

Socket::getservbyname("http") # => 80

Socket::new(domain, type, proto)

Socket::open(domain, type, proto)

Creates a socket.

Socket::socketpair(domain, type, proto)

Socket::pair(domain, type, proto)

Returns an array containing a pair of connected sockets.

Instance Methods

s.accept

Waits for a connection and, once one is accepted, returns a new socket object in an array that also includes a struct
sockaddr packed into a string.

s.addr

Synonym for s.getsockname. Returns struct socaddr packed in a string.

s.bind(addr)

Binds s to addr, a sockaddr structure packed into a string.

s.connect(addr)

Connects s to addr, a sockaddr structure packed into a string.

s.listen(backlog)

Specifies the size of the backlog queue.

s.recvfrom(len[, flags])

Receives data and returns it in an array that also includes information on the sender's socket in the form of a sockaddr
structure packed into a string.

s.peeraddr

Synonym for s.getpeername. Returns struct socaddr packed in a string.

Constants

The following constants are defined for use in socket specifications:

AF_INET

AF_UNIX

MSG_OOB

MSG_PEEK

SOCK_DGRAM

SOCK_STREAM

SOL_SOCKET

SO_KEEPALIVE

SO_LINGER

SO_SNDBUF

...

These constants are also defined in the module Socket::Constants and are used by including them in your code.

Net::FTP FTP connection class

Net::FTP is a class for File Transfer Protocol (FTP) client-side connection.

Required Library

require 'net/ftp'

Example

require 'net/ftp'
ftp = Net::FTP::new("ftp.ruby-lang.org")
ftp.login("anonymous", "matz@ruby-lang.org")
ftp.chdir("/pub/ruby")
tgz = ftp.list("ruby-*.tar.gz").sort.last
print "the latest version is ", tgz, "\n"
ftp.getbinaryfile(tgz, tgz)
ftp.close

Class Methods

Net::FTP::new([host[, user[, passwd[, acct]]]])

Net::FTP::open(host[, user[, passwd[, acct]]])

Creates a Net::FTP object

Instance Methods

f.abort

Aborts the previous command.

f.acct(acct)

Sets the account.

f.chdir(path)

Changes the current directory.

f.close

Closes the connection.

f.closed?

Returns true if the connection is closed.

f.connect(host[, port=21])

Connects to host.

f.debug_mode

Returns the debug mode status.

f.debug_mode= bool

Sets the debug mode status.

f.delete(file)

Deletes a file.

f.getbinaryfile(remote, local[, blocksize=4096[, callback]])

f.getbinaryfile(remote, local[, blocksize=4096]) {| data| ...}

f.gettextfile(remote, local[, callback])

f.gettextfile(remote, local) {| data| ...}

Retrieves a remote file from the server. If callback or a block is specified, it's executed with the retrieved data. gettextfile
performs newline code conversion.

f.help([arg])

Displays help.

f.lastresp

Returns the server's last response.

f.list(path...)

f.dir(path...)

f.ls(path...)

Returns an array of file information in the directory. If a block is specified, it iterates through the listing.

f.list("/pub/ruby") # =>
 ["drwxr-xr-x 2 matz users 4096 Jul 17 1998 1.0",...]

f.login([user="anonymous"[, passwd[, acct]]])

Logs into the server.

f.mkdir(path)

Creates a directory.

f.mtime(file[, local=false])

Returns the last modification time of file. If local is true, it's returned as a local time, otherwise as Coordinated
Universal Time (UTC) time.

f.nlst([dir])

Returns an array of filenames in the directory.

f.nlst("/pub/ruby") # => ["/pub/ruby/1.0",...]

f.putbinaryfile(remote, local[, blocksize=4096[, callback]])

f.putbinaryfile(remote, local[, blocksize=4096]) {| data| ...}

f.puttextfile(remote, local[, callback])

f.puttextfile(remote, local) {| data| ...}

Transfers a file. If callback or a block is specified, the data is passed to it and is run. puttextfile performs newline code
conversion.

f.pwd

f.getdir

Returns the current directory.

f.passive

Returns true if passive mode is enabled.

f.passive= bool

Sets passive mode on or off.

f.quit

Exits the FTP session.

f.rename(old, new)

Renames filename old to new.

f.rmdir(path)

Removes the directory specified by path.

f.resume

Returns true if resumption of file transfers is enabled.

f.resume= bool

Sets file transfer resumption on or off.

f.return_code

Returns the newline code of the current session.

f.return_code= ret

Sets the newline code of the current session.

f.size(file)

Returns the size of file.

f.status

Returns the status.

f.system

Returns system information.

f.welcome

Returns the server's welcome message.

Net::HTTP HTTP connection class

Net::HTTP is a class for Hypertext Transfer Protocol (HTTP) client-side connection.

Required Library

require 'net/http'

Example

require 'net/http'
h = Net::HTTP::new("www.ruby-lang.org")
resp, data = h.get("/en/index.html")
print data

Class Methods

Net::HTTP::new([host="localhost"[, port=80[, proxy[, proxy_port]]]])

Net::HTTP::start([host="localhost"[, port=80[, proxy[, proxy_port]]]])

Net::HTTP::start([host="localhost"[, port=80[, proxy[, proxy_port]]]]) {| http| ...}

Creates a Net::HTTP connection object. If a block is specified, the block is executed with the Net::HTTP object passed as
an parameter. The connection is closed automatically when the block exits.

Instance Methods

h.finish

Closes the HTTP session.

h.get(path[, header[, dest]])

h.get(path[, header]) {| str| ...}

Retrieves data from path using a GET request, and returns an array containing an HTTPResponse object and the data.
header may be a hash indicating header names and values. dest may be a string to which the data is appended. If a block is
specified, the retrieved data is passed to it.

h.head(path[, header])

Sends a HEAD request for path, and returns the response.

h.post(path, data[, header[, dest]])

h.post(path, data[, header]) {| str| ...}

Sends data to path using a POST request, and returns an array containing an HTTPResponse object and the reply body.
Although the post method's HTTP request type is different, the block and arguments, such as header and dest, are handled
in the same way as h.get.

h.start

h.start {| http| ...}

Starts an HTTP session. If a block is specified, the session is terminated when the block exits.

Net::IMAP IMAP access class

Net::IMAP is a class for Internet Message Access Protocol Version 4 (IMAP4) client-side connection. IMAP4 allows you to store
and manage messages in the server side.

Required Library

require "net/imap"

Example

require "net/imap"
imap = Net::IMAP::new("imap.ruby-lang.org")
 imap.login("matz", "skwkgjv;")
 imap.select("inbox")
 fetch_result = imap.fetch(1..-1, "UID")
 search_result = imap.search(["BODY", "hello"])
 imap.disconnect

Class Methods

Net::IMAP::add_authenticator(auth_type, authenticator)

Adds an authenticator for Net::IMAP#authenticate.

Net::IMAP::debug

Returns true if in the debug mode.

Net::IMAP::debug= bool

Sets the debug mode.

Net::IMAP::new(host[, port=143])

Creates a new Net::IMAP object and connects it to the specified port on the named host.

Instance Methods

imap.append(mailbox, message[, flags [, date_time]])

Appends the message to the end of the mailbox.

imap.append("inbox", <<EOF.gsub(/\n/, "\r\n"), [:Seen], Time.now)
Subject: hello
From: shugo@ruby-lang.org
To: shugo@ruby-lang.org
hello world
EOF

imap.authenticate(auth_type, arg...)

Authenticates the client. The auth_type parameter is a string that represents the authentication mechanism to be used.
Currently Net::IMAP supports "LOGIN" and "CRAM-MD5" for the auth_type.

imap.authenticate('CRAM-MD5", "matz", "crampass")

imap.capability

Returns an array of capabilities that the server supports.

imap.capability # => ["IMAP4", "IMAP4REV1", "NAMESPACE", ...]

imap.check

Requests a checkpoint of the current mailbox.

imap.close

Closes the current mailbox. Also permanently removes from the mailbox all messages that have the \Deleted flag set.

imap.copy(mesgs, mailbox)

Copies mesgs in the current mailbox to the end of the specified mailbox. mesgs is an array of message sequence numbers
or a Range object.

imap.create(mailbox)

Creates a new mailbox.

imap.delete(mailbox)

Removes the mailbox.

imap.disconnect

Disconnects from the server.

imap.examine(mailbox)

Selects a mailbox as a current mailbox so that messages in the mailbox can be accessed. The selected mailbox is identified
as read-only.

imap.expunge

Removes from the current mailbox all messages that have \Deleted flag set.

imap.fetch(mesgs, attr)

Fetches data associated with a message in the mailbox. mesgs is an array of message sequence numbers or an Range object.
The return_value is an array of Net::IMAP::FetchData.

data = imap.uid_fetch(98, ["RFC822.SIZE", "INTERNALDATE"])[0]
data.seqno #=> 6
data.attr["RFC822.SIZE"] #=> 611
data.attr["INTERNALDATE"] #=> "12-Oct-2000 22:40:59 +0900"
data.attr["UID"] #=> 98

imap.greeting

Returns an initial greeting response from the server.

imap.list(dir, pattern)

Returns an array of mailbox information in dir matching pattern. The return value is an array of
Net::IMAP::MailboxList. pattern may contain wildcards * (which matches any characters) and % (which matches
any characters except delimiter).

imap.list("foo", "*")# matches any mailbox under foo recursively
imap.list("foo", "f%")
 # matches any mailbox start with "f" under "foo"

imap.login(user, password)

Logs into the server.

imap.logout

Logs out from the server.

imap.lsub(refname, mailbox)

Returns an array of subscribed mailbox information in dir matching pattern. The return value is an array of

Net::IMAP::MailboxList. pattern may contain wildcards * (which matches any characters) and % (which matches
any characters except delimiter).

imap.noop

Sends a NOOP command to the server. It does nothing.

imap.rename(mailbox, newname)

Renames the mailbox to newname.

imap.responses

Returns recorded untagged responses.

imap.select("inbox")
imap.responses["EXISTS"][-1] #=> 2
imap.responses["UIDVALIDITY"][-1] #=> 968263756

imap.search(keys[, charset])

Searches the mailbox for messages that match the given searching criteria, and returns an array of message sequence numbers.

imap.search(["SUBJECT", "hello"]) #=> [1, 6, 7, 8]
imap.search('SUBJECT "hello"') #=> [1, 6, 7, 8]

imap.select(mailbox)

Selects a mailbox as a current mailbox so that messages in the mailbox can be accessed.

imap.sort(sort_keys, search_keys, charset)

Returns an array of message sequence numbers that matches search_keys_sorted according to the sort_keys.

imap.sort(["FROM"], ["ALL"], "US-ASCII")
 #=> [1, 2, 3, 5, 6, 7, 8, 4, 9]
imap.sort(["DATE"], ["SUBJECT", "hello"], "US-ASCII")
 #=> [6, 7, 8, 1]

imap.status(mailbox, attr)

Returns the status of the mailbox. The return value is a hash of attributes.

imap.status("inbox", ["MESSAGES", "RECENT"]) #=>
 {"RECENT"=>0, "MESSAGES"=>44}

imap.store(mesgs, attr, flags)

Stores data associated with a message in the mailbox. mesgs is an array of message sequence numbers or a Range object.

add \Deleted to FLAGS attribute to mails No.6,7,8.
imap.store(6..8, "+FLAGS", [:Deleted])

imap.subscribe(mailbox)

Appends the specified mailbox to the list of active or subscribed mailboxes.

imap.unsubscribe(mailbox)

Removes the specified mailbox from the list of active or subscribed mailboxes.

imap.uid_copy(mesg, mailbox)

Copies mesgs in the current mailbox to the end of the specified mailbox. mesgs is an array of unique message identifiers
or a Range_object.

imap.uid_fetch(mesgs, attr)

Fetches data associated with a message in the current mailbox. mesgs is an array of unique message identifiers or an Range
object. The return value is an array of Net::IMAP::FetchData.

imap.uid_search(keys[, charset])

Searches the mailbox for messages that match the given search criteria, and returns an array of unique identifiers.

imap.uid_sort(sort_keys, search_keys, charset)

Returns an array of unique message identifiers that matches search_keys sorted according to the sort_keys.

imap.uid_store(mesgs, attr, flags)

Stores data associated with a message in the mailbox. mesgs is an array of unique message identifiers or a Range object. The
return value is an array of Net::IMAP::FetchData.

Net::POP3 POP3 connection class

Net::POP3 is a class for Post Office Protocol Version 3 (POP3) client-side connection. POP3 is a simple protocol that retrieves
incoming mail from the server.

Required Library

require 'net/pop'

Example

require 'net/pop'
pop = Net::POP3::new("pop.ruby-lang.org")
authenticate just for SMTP before POP
pop.start("matz", "skwkgjv;") {
 mails = pop.mails # array of Net::POPMail
}

Class Methods

Net::POP3::new([addr="localhost"[, port=80]])

Creates a new Net::POP3 object.

Net::POP3::start([addr="localhost"[, port=80[, ...]]])

Net::POP3::start([addr="localhost"[, port=80[, ...]]]) {| pop| ...}

Equivalent to Net::POP3::new(addr, port).start(...). A newly created Net::POP3 object is passed to the
block, if specified. The POP3 session is terminated when the block exits.

Instance Methods

p.each {|mail| ...}

Synonym for p.mails.each.

p.finish

Closes the POP3 session.

p.mails

Returns an array of Net::POPMail objects.

p.start(acct, passwd)

p.start(acct, passwd) {|pop| ...}

Starts a POP3 session. If a block is specified, the session is terminated when the block exits.

Net::APOP APOP connection class

The Net::APOP class has the same interface as Net::POP3. They differ only in their method of authentication.

Required Library

require 'net/pop'

Inherited Class

Net::POP3

Net::POPMail POP mail class

The Net::POPMail class is used by classes Net::POP3 and Net::APOP to return individual message objects.

Required Library

require 'net/pop'

Instance Methods

m.all([dest])

m.mail([dest])

m.pop([dest])

Retrieves the contents of mail messages. If dest is specified, each message is appended to it using the << method. If a block
is specified, it's passed the contents of each message as a string and run once for each line in the message.

m.delete

Deletes the message.

m.deleted?

Returns true if the message has been deleted.

m.header([dest])

Returns the message header.

m.size

Returns the message size in bytes.

m.top(lineno[, dest])

Returns the message header and lineno number of lines of the body.

Net::SMTP SMTP connection class

Net::SMTP is a class for Simple Mail Transfer Protocol (SMTP) client-side connection. SMTP is a protocol to talk to Mail
Transfer Agent (MTA).

Required Library

require 'net/smtp'

Example

require 'net/smtp'
user = "you@your-domain.com"
from = "matz@ruby-lang.org"
server = "localhost"
smtp = Net::SMTP::new(server)
smtp.start
smtp.sendmail(<<BODY, from, user)
From: matz@ruby-lang.org
Subject: this is a test mail.
this is body
BODY
smtp.finish

Class Methods

Net::SMTP::new([addr="localhost"[, port=25]])

Creates a new Net::SMTP object.

Net::SMTP::start([addr="localhost"[, port=25[, ...]]])

Net::SMTP::start([ad dr="localhost"[, port=25[, ...]]]) {| smtp| ...}

Equivalent to Net::SMTP::new(addr, port).start(...). A newly created Net::SMTP object is passed to the

block, if specified. The SMTP session is terminated when the block exits.

Instance Methods

s.finish

Closes an SMTP session.

s.ready(from, to) {| adapter| ...}

Sends a message, passing an adapter object to the block. The message is sent by calling the adapter's write method.

s.start([domain[, account[, password[, authtype]]]])

s.start([domain[, account[, password[, authtype]]]]) {| smtp| ...}

Starts an SMTP session. An Net::SMTP object is passed to the block, if specified. The session is terminated when the block
exits.

s.send_mail(mailsrc, from, to)

s.sendmail(mailsrc, from, to)

Sends mail. to may be either a string or an array of strings.

Net::Telnet Telnet connection class

Net::Telnet is a class for a Telnet connection. This class isn't only a Telnet protocol client but also a useful tool to interact with
interactive services.

When a block is specified with class and instance methods of the Net::Telnet class, it's passed status output strings from the
server as they are received by the method.

Required Library

require 'net/telnet'

Class Method

Net::Telnet::new(options)

Creates a Net::Telnet object. options may be a hash specifying zero or more of the following options:

Key Function Default
Binmode Binary mode false

Host Telnet server "localhost"

Output_log Output log nil (no output)

Dump_log Dump log nil (no output)

Port Port to connect to 23

Prompt Pattern matching the server's prompt /[$%#>/ \z/n

Telnetmode Telnet mode true

Timeout Timeout 10

Waittime Wait time 0

Proxy Proxy nil

Instance Methods

Besides the following methods, the Net::Telnet object delegates its methods to Socket object, so that methods provided by the
Socket class (and its parent classes) are also available for Net::Telnet.

t.binmode

Returns true if binary mode is enabled.

t.binmode= bool

Sets binary mode on or off.

t.cmd(options)

Sends a command to the server. options may be the command string to be sent to the server or a hash specifying one or
more of the following options:

Key Function Default value
String String to be sent (Required)

Match Pattern to match Value of Prompt option

Timeout Timeout Value of Timeout option

t.login(options)

t.login(user[, passwd])

Logs in to the server. The following hash options may be specified.:

Key Function
Name Username

Password Password

t.print(str)

Sends str to the server, performing Telnet protocol translation.

t.telnetmode

Returns true if Telnet mode is enabled.

t.telnetmode= bool

Sets Telnet mode on or off.

t.waitfor(options)

Waits for a response from the server. The same hash options may specified as with t.cmd.

t.write(str)

Sends str to the server without performing Telnet protocol translation.

CGI CGI support class

CGI provides useful features to implement Common Gateway Interface (CGI) programs, such as retrieving CGI data from server,
manipulating cookies, and generating the HTTP header and the HTML body.

Example

require 'cgi'
 cgi = CGI::new("html3")
 input, = cgi["input"]
 if input
 input = CGI::unescape(input)
 end
 p input
 begin
 value = Thread::new{
 $SAFE=4
 eval input
 }.value.inspect
 rescue SecurityError
 value = "Sorry, you can't do this"
 end
 cgi.out {
 cgi.html{
 cgi.head{cgi.title{"Walter's Web Arithmetic Page"}} +
 cgi.body{
 cgi.form("post", "/cgi-bin/arith.rb") {
 "input your favorite expression: " +
 cgi.text_field("input", input) +
 cgi.br +

 "the result of you input: " +
 CGI::escapeHTML(value) +
 cgi.br +
 cgi.submit
 }
 }
 }
 }

Required Library

require 'cgi'

Class Methods

CGI::new([level="query"])

Creates a CGI object. level may be one of the following options. If one of the HTML levels is specified, the following
methods are defined for generating output conforming to that level:

query

No HTML output generated

html3

HTML3.2

html4

HTML4.0 Strict

html4Tr

HTML4.0 Transitional

html4Fr

HTML4.0 Frameset

CGI::escape(str)

Escapes an unsafe string using URL-encoding.

CGI::unescape(str)

Expands a string that has been escaped using URL-encoding.

CGI::escapeHTML(str)

Escapes HTML special characters, including: & < >.

CGI::unescapeHTML(str)

Expands escaped HTML special characters, including: & < >.

CGI::escapeElement(str[, element...])

Escapes HTML special characters in the specified HTML elements.

CGI::unescapeElement(str, element[, element...])

Expands escaped HTML special characters in the specified HTML elements.

CGI::parse(query)

Parses the query and returns a hash containing its key-value pairs.

CGI::pretty(string[, leader=" "])

Returns a neatly formatted version of the HTML string. If leader is specified, it's written at the beginning of each line. The
default value for leader is two spaces.

CGI::rfc1123_date(time)

Formats the data and time according to RFC-1123 (for example, Sat, 1 Jan 2000 00:00:00 GMT).

Instance Methods

c[name]

Returns an array containing the value of the field name corresponding to name.

c.checkbox(name[, value[, check=false]])

c.checkbox(options)

Returns an HTML string defining a checkbox field. Tag attributes may be specified in a hash passed as an argument.

c.checkbox_group(name, value...)

c.checkbox_group(options)

Returns an HTML string defining a checkbox group. Tag attributes may be specified in a hash passed as an argument.

c.file_field(name[, size=20[, max]])

c.file_field(options)

Returns an HTML string defining a file field.

c.form([method="post"[, url]]) { ...}

c.form(options)

Returns an HTML string defining a form. If a block is specified, the string produced by its output creates the contents of the
form. Tag attributes may be specified in a hash passed as an argument.

c.cookies

Returns a hash containing a CGI::Cookie object containing keys and values from a cookie.

c.header([header])

Returns a CGI header containing the information in header. If header is a hash, its key-value pairs are used to create the
header.

c.hidden(name[, value])

c.hidden(options)

Returns an HTML string defining a HIDDEN field. Tag attributes may be specified in a hash passed as an argument.

c.image_button(url[, name[, alt]])

c.image_button(options)

Returns an HTML string defining an image button. Tag attributes may be specified in a hash passed as an argument.

c.keys

Returns an array containing the field names from the form.

c.key?(name)

c.has_key?(name)

c.include?(name)

Returns true if the form contains the specified field name.

c.multipart_form([url[, encode]]) { ...}

c.multipart_form(options) { ...}

Returns an HTML string defining a multipart form. If a block is specified, the string produced by its output creates the contents
of the form. Tag attributes may be specified in a hash passed as an argument.

c.out([header]) { ...}

Generates HTML output. Uses the string produced by the block's output to create the body of the page.

c.params

Returns a hash containing field names and values from the form.

c.params= hash

Sets field names and values in the form using a hash.

c.password_field(name[, value[, size=40[, max]]])

c.password_field(options)

Returns an HTML string defining a password field. Tag attributes may be specified in a hash passed as an argument.

c.popup_menu(name, value...)

c.popup_menu(options)

c.scrolling_list(name, value...)

c.scrolling_list(options)

Returns an HTML string defining a pop-up menu. Tag attributes may be specified in a hash passed as an argument.

c.radio_button(name[, value[, checked=false]])

c.radio_button(options)

Returns an HTML string defining a radio button. Tag attributes may be specified in a hash passed as an argument.

c.radio_group(name, value...)

c.radio_group(options)

Returns an HTML string defining a radio button group. Tag attributes may be specified in a hash passed as an argument.

c.reset(name[, value])

c.reset(options)

Returns an HTML string defining a reset button. Tag attributes may be specified in a hash passed as an argument.

c.text_field(name[, value[, size=40[, max]]])

c.text_field(options)

Returns an HTML string defining a text field. Tag attributes may be specified in a hash passed as an argument.

c.textarea(name[, cols=70[, rows=10]]) { ...}

c.textarea(options) { ...}

Returns an HTML string defining a text area. If a block is specified, the string produced by its output creates the contents of
the text area. Tag attributes may be specified in a hash passed as an argument.

HTML Generation Methods

In addition to the previous instance methods, each CGI object provides the following methods, which generate HTML tag strings
corresponding to the HTML level specified when the CGI object was created. These methods return a string that is produced by
adding any specified tags to a body created from the string output of the block. Tag attributes may be specified in a hash that is
passed as an argument to each method.

Here are the tags common to html3, html4, html4Tr, and html4Fr:

a address area b base

big blockquote body br caption

cite code dd dfn div

dl doctype dt em form

h1 h2 h3 h4 h5

h6 head hr html i

img input kbd li link

map meta ol option p

param pre samp script select

small strong style sub submit

sup table td th title

tr tt ul var

Here are the html3 tags:

applet basefont center dir font

isindex listing menu plaintext strike

u xmp

Here are the html4 tags:

abbr acronym bdo button col

colgroup del fieldset ins label

legend noscript object optgroup q

span tbody tfoot thead

Here are the html4Tr tags:

abbr acronym applet basefont bdo

button center col colgroup del

dir fieldset font iframe ins

isindex label legend map menu

noframes noscript object optgroup q

s span strike tbody tfoot

thead u

Here are the htmlFr tags:

abbr acronym applet basefont bdo

button center col colgroup del

dir fieldset font frame frameset

iframe ins isindex label legend

menu noframes noscript object optgroup

q s span strike tbody

tfoot thead u

Object Attributes

The CGI class has the following accessors:

accept Acceptable MIME type

accept_charset Acceptable character set

accept_encoding Acceptable encoding

accept_language Acceptable language

auth_type Authentication type

raw_cookie Cookie data (raw string)

content_length Content length

content_type Content type

From Client email address

gateway_interface CGI version string

path_info Extra path

path_translated Converted extra path

Query_string Query string

referer Previously accessed URL

remote_addr Client host address

remote_host Client hostname

remote_ident Client name

remote_user Authenticated user

request_method Request method (GET, POST, etc.)

script_name Program name

server_name Server name

server_port Server port

server_protocol Server protocol

server_software Server software

user_agent User agent

CGI::Cookie HTTP cookie class

CGI::Cookie represents the HTTP cookie that carries information between HTTP sessions.

Required Library

require 'cgi'

Object Attributes

The CGI::Cookie class has the following accessors:

c.name Cookie name

c.value An array of cookie values

c.path The cookie's path

c.domain The domain

c.expires The expiration time (as a Time object)

c.secure True if secure cookie

CGI::Session CGI session class

CGI::Session maintains a persistent session between HTTP accesses. Session information is represented by string to string
mapping. Session information can be stored via the user-defined database class.

Required Library

require 'cgi/session'

Example

request 'cgi/session'
cgi = CGI::new("html3")
s = CGI::Session(cgi)
if s["last_modified"]
 # previously saved data
 t = s["last_modified"].to_i
else
 t = Time.now.to_i
 # save data to session database
 s["last_modified"] = t.to_s
end
 # ... continues ...

Class Methods

CGI::Session::new(cgi[, option])

Starts a new CGI session and returns the corresponding CGI::Session object. option may be an option hash specifying
one or more of the following:

Key Function Default value
session_key Key name holding the session ID _session_id

session_id Unique session ID Generated automatically

new_session If true, a new session is created false

database_manager Database manager class for storing session data CGI::Session::FileStore

An option hash can specify options when creating the database manager object. The default database manager class
(CGI::Session::FileStore) recognizes the following options:

Key Function Default value
tmpdir Directory for temporary files /tmp

prefix Prefix for temporary files None

Methods for Database Manager

Database manager object should have following methods:

initialize(session[, options])

Initializes the database. session is a CGI::Session object. options is an option hash that passed to
CGI::Session::new

restore

Returns the hash that contains session-specific data from the database

update

Updates the hash returned by restore

close

Closes the database

delete

Removes the session-specific data from the database

Instance Methods

s[key]

Returns the value for the specified session key

s[key]= value

Sets the value for the specified session key

s.delete

Deletes the session

s.update

Writes session data to the database, calling the update method of the database manager object

4.1.2 Operating System Services

A mixed bag of OS services are provided in the Ruby standard library, including curses, filesystem searching and file handling,
command-line argument processing, and others.

If you're coming from another scripting language background, these classes will have interfaces you'll find familiar and
straightforward access to Unix services. No surprises, here.

Curses Character-based interface module

The Curses module provides an interface to the character-based interface library called curses.

Required Library

require 'curses'

Module Functions

addch(ch)

Outputs one character to the screen

addstr(str)

Outputs str to the screen

beep

Beeps the bell

cbreak

Turns on cbreak mode

nocbreak

Turns off cbreak mode

clear

Clears the screen

close_screen

Finalizes the curses system

cols

Returns the screen width

crmode

Alias to the cbreak

nocrmode

Alias to the nocbreak

delch

Deletes a character at the cursor position

deleteln

Deletes a line at the cursor position

doupdate

Updates the screen by queued changes

echo

Turns on echo mode

noecho

Turns off echo mode

flash

Flashes the screen

getch

Reads one character from the keyboard

getstr

Reads a line of string from the keyboard

inch

Reads a character at the cursor position

init_screen

Initializes the curses system

insch(ch)

Outputs one character before the cursor

lines

Returns the screen height

nl

Turns on newline mode, which translates the return key into newline (\n)

nonl

Turns off newline mode

raw

Turns on raw mode

noraw

Turns off raw mode

refresh

Refreshes the screen

setpos(y, x)

Moves the cursor to the (y, x) position

standout

Turns on standout (highlighting) mode

standend

Turn off standout mode

stdscr

Returns the reference to the standard curses screen object

ungetch(ch)

Pushes ch back to input buffer

Curses::Window Character-based window class

Curses::Window is a class for character-based windows implemented by the curses library.

Required Library

require "curses"

Class Method

Curses::Window::new(h, w, y, x)

Creates a new curses window of size (h, w) at position (y, x).

Instance Methods

w << str

w.addstr(str)

Outputs str to the screen.

w.addch(ch)

Outputs one character to the screen.

w.begx

Returns the window's beginning x position.

w.begy

Returns the window's beginning y position.

w.box(v, h)

Draws a box around the window. v is a character that draws a vertical side. h is a character that draws a horizontal side.

w.clear

Clears the window.

w.close

Closes the window.

w.curx

Returns x position of the window's cursor.

w.cury

Returns y position of the window's cursor.

w.delch

Deletes a character at the window's cursor position.

w.deleteln

Deletes a line at the window's cursor position.

w.getch

Reads one character from the keyboard.

w.getstr

Reads a line of string from the keyboard.

w.inch

Reads a character at the window's cursor position.

w.insch(ch)

Outputs one character before the window's cursor.

w.maxx

Returns the window's x size.

w.maxy

Returns the window's y size.

w.move(y, x)

Moves the window to the position (y, x).

w.refresh

Refreshes the window.

w.setpos(y, x)

Moves the window's cursor to the position (y, x).

w.standend

Turns on standout (highlighting) mode in the window.

w.standout

Turns off standout mode in the window.

w.subwin(h, w, y, x)

Creates a new curses subwindow of size (h, w) in the window at position (y, x).

Etc Module for /etc directory data retrieval

The Etc module provides functions to retrieve user account-related data from files under /etc directory. This module is
Unix-dependent.

Required Library

require 'etc'

Example

require 'etc'
print "you must be ", Etc.getlogin, ".\n"

Module Functions

getlogin

Returns login name of the user. If this fails, try getpwuid.

getpwnam(name)

Searches in /etc/passwd file (or equivalent database), and returns password entry for the user name. See getpwnam(3)
for details. The return value is a passwd structure, which includes the following members:

name Username(string)

passwd Encrypted password(string)

uid User ID(integer)

gid Group ID(integer)

gecos Gecos field(string)

dir Home directory(string)

shell Login shell(string)

change Password change time(integer)

quota Quota value(integer)

age Password age(integer)

class User access class(string)

comment Comment(string)

expire Account expiration time(integer)

getpwuid([uid])

Returns passwd entry for the specified uid. If uid is omitted, uses the value from getuid. See getpwuid(3) for details.

getgrgid(gid)

Searches in /etc/group file (or equivalent database), and returns group entry for the gid. See getgrgid(3) for detail.
The return value is a group structure, which includes the following members:

name Group name(string)

passwd Group password(string)

gid Group ID(integer)

mem Array of the group member names

getgrnam(name)

Returns the group entry for the specified name. The return value is the group structure. See getgrnam(3) for details.

group

Iterates over all group entries.

passwd

Iterates over all passwd entries.

Fcntl Fcntl constant module

The Fcntl module provides constant definitions for IO#fcntl.

Required Library

require 'fcntl'

Constants

F_DUPFD Duplicates file descriptor

F_GETFD Reads the close-on-exec flag

F_SETFD Sets the close-on-exec flags

F_GETFL Reads the descriptor's flags

F_SETFL Gets the descriptor's flags (O_APPEND, O_NONBLOCK, or O_ASYNC)

F_GETLK Gets the flock structure

F_SETLK Gets lock according to the lock structure (nonblocking)

F_SETLKW Sets lock like F_SETLK (blocking)

F_RDLCK Reads lock flag for flock structure

F_WRLCK Writes lock flag for flock structure

F_UNLCK Unlocks flag for flock structure

FD_CLOEXEC Close-on-exec flag

O_CREAT Creates file if it doesn't exist

O_EXCL File shouldn't exist before creation

O_TRUNC Truncates to length 0

O_APPEND Appends mode

O_NONBLOCK Nonblocking mode

O_NDELAY Nonblocking mode

O_RDONLY Read-only mode

O_RDWR Read-write mode

O_WRONLY Write-only mode

Find Directory tree traversal module

The Find module provides a depth-first directory traversal.

Required Library

require 'etc'

Example

require 'find'
prints all files with ".c" extension.
Find.find(".") {|f|
 puts f if /\.c$/ =~ f
}

Module Functions

find(path...) {| f| ...}

Traverses directory tree giving each filename to the block

prune

Terminates traversal down from the current directory

ftools File utility library

ftools is a library that enhances file handling utility class methods of the File class.

Required Library

require 'ftools'

Class Methods

File::chmod(mode, files...[, verbose=false])

ftools enhances File::chmod to take verbose arguments. If the last argument is true, prints log to stderr.

File::cmp(path1, path2[, verbose=false])

File::compare(path1, path2[, verbose=false])

Compares two files and returns true if they have identical contents. If verbose is true, prints log to stderr.

File::cp(path1, path2[, verbose=false])

File::copy(path1, path2[, verbose=false])

Copies a file at path1 to path2. If verbose is true, prints operation log to stderr.

File::install(path1, path2[, mode [, verbose=false]])

Copies a file at path1 to path2. If mode is supplied, its file permission is set to mode. If file at path2 exists, it's removed

before copying. If verbose is true, prints operation log to stderr.

File::makedirs(path...[, verbose=false])

File::mkpath(path...[, verbose=false])

Creates the specified directories. If any parent directories in path don't exist, it creates them as well. If the last argument is
true, prints operation log to stderr.

File::move(path1, path2[, verbose=false])

File::mv(path1, path2[, verbose=false])

Moves file from path1 to path2. If the last argument is true, prints operation log to stderr.

File::rm_f(path...[, verbose=false])

File::safe_unlink(path...[, verbose=false])

Removes files regardless of file-permission mode. If the last argument is true, prints operation log to stderr.

File::syscopy(path1, path2)

Copies a file from path1 to path2 using IO#sysread and IO#syswrite. syscopy copies permissions of the file as
well.

GetoptLong Command line option parser

The GetoptLong class parses command-line option arguments in a way similar to GNU getoptlong library.

Required Library

require 'gettextfile'

Example

require 'getoptlong'
 opt = GetoptLong.new(
 ['--max-size', '-m', GetoptLong::REQUIRED_ARGUMENT],
 ['--quiet', '-q', GetoptLong::NO_ARGUMENT],
 ['--help', GetoptLong::NO_ARGUMENT],
 ['--version', GetoptLong::NO_ARGUMENT])
 opt.each_option do |name,arg|
 case name
 when '--max-size'
 printf "max-size is %d\n", arg
 when '--quiet'
 print "be quiet!\n"
 when '--help'
 print "help message here\n"
 exit
 when '--version'
 print "version 0.1\n"
 exit
 end
 end

Inherited Class

Object

Class Method

GetoptLong::new(option...)

Creates and returns a GetoptLong object. If options are given, they are passed to the set_options method.

Instance Methods

opt.each {| optname, optarg| ...}

opt.each_option {| optname, optarg| ...}

Iterates over each command-line option. Option name and value are passed to the block.

opt.get

opt.get_option

Retrieves an option from command-line arguments, and returns the name-value pair of option.

opt.error

opt.error?

Returns type of the current error or nil if no error occurs.

opt.error_message

Returns an error message of the current error or nil if no error occurs.

opt.ordering= ordering

Sets option ordering. ordering is any of PERMUTE, REQUIRE_ORDER, or RETURN_IN_ORDER.

opt.ordering

Returns current ordering.

opt.quiet= bool

Sets status of quiet mode. In quiet mode, option parser doesn't output error messages to stdout on errors. The default value is
false.

opt.quiet

opt.quiet?

Returns current status of quiet mode.

opt.set_options(option...)

Sets command-line options that your program accepts, specified by arrays of option names and option type constants.

Option type is any of NO_ARGUMENT, REQUIRED_ARGUMENT, or OPTIONAL_ARGUMENT. You have to call
set_options before invoking get, get_option, each, or each_option.

opt.terminate

Terminates option processing. Raises RuntimeError exception if any errors occur before termination.

opt.terminated?

Returns true if option processing is finished without causing errors, otherwise returns false.

Constants

Ordering specifiers

PERMUTE

REQUIRE_ORDER

RETURN_IN_ORDER

Argument type specifiers

NO_ARGUMENT

REQUIRED_ARGUMENT

OPTIONAL_ARGUMENT

PTY Pseudo TTY access module

The PTY module executes commands as if their standard I/O is connected to ttys.

Required Library

require "pty"

Module Functions

getpty(command)

spawn(command)

Reserves a PTY, executes command over the PTY, and returns an array of three elements (reading I/O, writing I/O, and the
PID of the child process). With a block, the array is passed to the block as block parameters. SIGCHLD is captured while
command is running.

protect_signal { ...}

Protects block execution from SIGCHLD signal exception. This is required to invoke other subprocesses while using any PTY.

reset_signal

Disables to handle SIGCHLD while PTY subprocess is active.

Readline GNU readline library interface

The Readline module provides a interface to the GNU line editing library named readline.

Required Library

require 'readline'

Example

require 'readline'
include Readline
line = readline("Prompt> ", true)

Module Function

readline(prompt, add_history)

Reads one line with line editing. If the add is true, the line is also added to the history.

Module Methods

Readline::completion_proc= proc

Specifies Proc object to determine completion behavior. Takes input string, and returns completion candidates.

Readline::completion_proc

Returns the completion Proc object.

Readline::completion_case_fold=bo ol

Sets whether or not to ignore case on completion.

Readline::completion_case_fold

Returns true if completion ignores case.

Readline::completion_append_character= char

Specifies a character to be appended on completion. If empty string ("") or nil is specified, nothing is appended.

Readline::completion_append_character

Returns a string containing a character to be appended on completion. Default is a space.

Readline::vi_editing_mode

Specifies vi editing mode.

Readline::emacs_editing_mode

Specifies Emacs editing mode.

Constant

HISTORY

The history buffer; it behaves just like an array.

Tempfile Temporary file class

Temporary files are always deleted when garbage collection is activated, and Ruby terminates.

Required Library

require 'tempfile'

Example

require 'tempfile'
f = Tempfile.new("foo")
f.print("foo\n")
f.close
f.open
p f.gets # => "foo\n"
f.close(true) # f will be automatically removed

Class Method

Tempfile::new(basename[, tmpdir="/tmp"])

Opens a temporary file that includes basename as part of the filename in w+ mode.

Instance Methods

t.open

Reopens the temporary file, allowing its contents to be read from the beginning of the file.

t.close([permanently=false])

Closes the temporary file. If permanently is true, the file is also deleted.

t.path

Returns the path of the temporary file.

In addition to the previous methods, objects of class Tempfile also possess all instance methods of class File.

Win32API Microsoft Windows API access class

Win32API represents functions in Windows DLLs.

Required Library

require 'Win32API'

Example

require 'Win32API'
getch = Win32API.new("crtdll", "_getch", [], 'L')
puts getch.Call.chr

Class Method

Win32API::new(dll, proc, import, export)

Returns the object representing the Win32API function specified by proc name in dll, which has the signature specified by

import and export. import is an array of strings denoting types. export is a type specifying string. Type string is any
of the following:

"n"

Number

"l"

Number

"i"

Integer

"p"

Pointer

"v"

Void (export only)

Type strings are case-insensitive.

Instance Methods

call([arg...])

Call([arg...])

Invokes the Win32API function. Arguments must conform the signature specified by Win32API::new.

4.1.3 Threads

Threading classes in the Ruby standard library extend and enhance the built-in library support for parallel programming with support
for condition variables, monitors and mutexes, queues and a handy-dandy thread termination watcher class.

ConditionVariable Synchronization condition variable class

This class represents condition variables for synchronization between threads.

Required Library

require 'thread'

Class Method

ConditionVariable::new

Creates a ConditionVariable object

Instance Methods

c.broadcast

Wakes up all waiting queued threads

c.signal

Wakes up the next thread in the queue

c.wait(mutex)

Waits on condition variable

Monitor Exclusive monitor section class

This class represents exclusive sections between threads.

Required Library

require 'monitor'

Included Module

MonitorMixin

Class Method

Monitor::new

Creates a Monitor object

Instance Methods

m.enter

Enters exclusive section.

m.exit

Leaves exclusive section.

m.owner

Returns the thread that owns the monitor.

m.synchronize{ ...}

Enters exclusive section and executes the block. Leaves the exclusive section automatically when the block exits.

m.try_enter

Attempts to enter exclusive section. Returns false if lock fails.

MonitorMixin Exclusive monitor section mix-in module

Adds monitor functionality to an arbitrary object by mixing the modules with include.

Required Library

require 'monitor'

Instance Methods

m.mon_enter

Enters exclusive section.

m.mon_exit

Leaves exclusive section.

m.mon_owner

Returns the thread that owns the monitor.

m.mon_synchronize{ ...}

Enters exclusive section and executes the block. Leaves the exclusive section automatically when the block exits.

m.try_mon_enter

Attempts to enter exclusive section. Returns false if lock fails.

Mutex Mutual exclusion class

This class represents mutually exclusive locks.

Required Library

require 'thread'

Class Method

Mutex::new

Creates a Mutex object

Instance Methods

m.lock

Locks the Mutex object m.

m.locked?

Returns true if m is locked.

m.synchronize {...}

Locks m and runs the block, then releases the lock when the block exits.

m.try_lock

Attempts to lock m. Returns false if lock fails.

m.unlock

Releases lock on m.

Queue Message queue class

This class provides the way to communicate data between threads.

Required Library

require 'thread'

Class Method

Queue::new

Creates a queue object

Instance Methods

q.empty?

Returns true if the queue is empty.

q.num_waiting

Returns the number of threads waiting on the queue.

q.pop([non_block=false])

Retrieves data from the queue. If the queue is empty, the calling thread is suspended until data is pushed onto the queue. If
non_block is true, the thread isn't suspended, and an exception is raised.

q.push(obj)

q.enq(obj)

Pushes obj to the queue.

q.size

q.length

Returns the length of the queue.

SizedQueue Fixed-length queue class

This class represents queues of specified size capacity. The push operation may be blocked if the capacity is full.

Required Library

require 'thread'

Inherited Class

Queue

Class Method

SizedQueue::new(max)

Creates a fixed-length queue with a maximum size of max

Instance Methods

q.max

Returns the maximum size of the queue

q.max= n

Sets the maximum length of the queue

ThreadsWait Thread termination watcher class

This class watches termination of multiple threads.

Required Library

require 'thwait'

Class Methods

ThreadsWait::all_waits(th,...)

ThreadsWait::all_waits(th...) { ...}

Waits until all specified threads are terminated. If a block is supplied for the method, evaluates it for each thread termination.

ThreadsWait.new(th...)

Creates a ThreadsWait object, specifying threads to wait.

Instance Methods

th.threads

Lists threads to be synchronized

th.empty?

Returns true if there is no thread to be synchronized.

th.finished?

Returns true if there is any terminated thread.

th.join(th...)

Waits for specified threads.

th.join_nowait(th...)

Specifies threads to wait; non-blocking.

th.next_wait

Waits until any specified thread is terminated.

th.all_waits

th.all_waits{ ...}

Waits until all specified threads are terminated. If a block is supplied for the method, evaluates it for each thread termination.

4.1.4 Data Persistence

These libraries provide interfaces or hooks into databases via various implementations (OS, GNU, and public domain).

Ruby lets you store and retrieve "live" data and objects in the filesystem with tools you're probably used through the DBM, GDBM,
SDBM, and PStore classes.

DBM DBM class

DBM implements a database with the same interface as a hash. Keys and values are limited to strings. Uses ndbm library included in
operating systems.

Required Library

require 'dbm'

Included Module

Enumerable

Class Methods

DBM::open(path[, mode=0666])

DBM::new(path[, mode=0666])

Opens a new DBM database. Access rights to the database are specified in mode as an integer.

Instance Methods

The DBM class has all the methods of the Hash class except for default, default=, dup, and rehash. DBM also has the
close method, which isn't in Hash.

d.close

Closes DBM database

GDBM GDBM class

GNU implementation of DBM. Has the same interface as DBM.

Required Library

require 'gdbm'

Instance Methods

In addition to methods from the DBM class, the GDBM class has the reorganize method.

d.reorganize

Reconfigures the database; shouldn't be used with great frequency

SDBM SDBM class

Public domain implementation of DBM. Has the same interface as DBM. Runs almost anywhere but has inferior performance and
data-size limitations compared to other DBMs.

Required Library

require 'sdbm'

PStore Simple object-oriented database class

PStore is a simple object-oriented database class that provides almost arbitrary data persistence (using Marshal) and transaction.

Required Library

require 'pstore'

Class Method

PStore::new(path)

Creates a database object. Data is stored in a file specified by path.

Instance Methods

p.transaction {| ps| ...}

Starts a transaction (a series of database operations). Access to the contents of the database can be achieved only through this
transaction method.

p[name]

Retrieves an object stored in the database under the key name.

p[name]= obj

Stores obj in the database under the key name. When the transaction is completed, all objects accessed reflexively by obj
(see Marshal in Section 3.4) are saved in a file.

p.root?(name)

Returns true if the key name exists in the database.

p.commit

Completes the transaction. When this method is called, the block passed to the transaction method is executed, and changes to
the database are written to the database file.

p.abort

Aborts the transaction. When this method is called, the execution of the block passed to the transaction method is terminated,
and changes made to database objects during the transaction aren't written to the database file.

4.1.5 Numbers

These libraries let you handle numeric calculations using advanced numbers such as Complex, Rational, and Matrix.

Complex Complex number class

When this library is loaded with require, the ability of the Math module is expanded to handle complex numbers.

Required Library

require 'complex'

Inherited Class

Numeric

Class Methods

Complex(r [, i=0])

Complex::new(r [, i=0])

Creates a complex number object. The former is recommended.

Instance Methods

c.abs

Returns the absolute value of the complex number c.

c.abs2

Returns the square of the absolute value of the complex number c.

c.arg

Returns the argument of the complex number c.

c.conjugate

Returns the conjugate of the complex number c.

c.image

Returns the imaginary part of the complex number c. The Complex library adds the image method to the Numeric class.

c.polar

Returns the array arr[c.abs, c.arg].

c.real

Returns the real part of the complex number c. The Complex library adds the real method to the Numeric class.

Rational Rational number class

When this library is loaded with require, the ** operator method of the Integer class can handle rational numbers, and the
following methods are added to the Integer class:

to_r

Converts a number to a rational number

lcm

Returns the least common multiple

gcd

Returns the greatest common divisor

Required Library

require 'rational'

Inherited Class

Numeric

Class Methods

Rational(a, b)

Rational::new(a, b)

Creates a rational number object. The former, Rational(a,b), is recommended.

Matrix Matrix class

Required Library

require 'matrix'

Class Methods

Matrix::[row...]

Creates a matrix where row indicates each row of the matrix.

Matrix[[11, 12], [21, 22]]

Matrix::identity(n)

Matrix::unit(n)

Matrix::I(n)

Creates an n-by-n unit matrix.

Matrix::columns(columns)

Creates a new matrix using columns as sets of column vectors.

Matrix::columns([[11, 12], [21, 22]]) # => Matrix[[11, 21], [12, 22]]

Matrix::column_vector(column)

Creates a 1-by-n matrix such that column vector is column.

Matrix::diagonal(value...)

Creates a matrix where diagonal components are specified by value.

Matrix.diagonal(11, 22, 33) # => Matrix[[11, 0, 0],
 [0, 22, 0], [0, 0, 33]]

Matrix::rows(rows[, copy=true])

Creates a matrix where rows is an array of arrays that indicates rows of the matrix. If the optional argument copy is false,
use the given arrays as the internal structure of the matrix without copying.

Matrix::rows([[11, 12], [21, 22]])

Matrix::row_vector(row)

Creates an 1-by-n matrix such that the row vector is row.

Matrix::scalar(n, value)

Creates an n-by-n diagonal matrix such that the diagonal components are given by value.

Matrix::scalar(3,81) # => Matrix[[81,0,0],[0,81,0],[0,0,81]]

p ParseDate::parsedate("Fri Aug 3 17:16:57 JST 2001")
=> [2001, 8, 3, 17, 16, 57, "JST", 5]
p ParseDate::parsedate("1993-02-24")
=> [1993, 2, 24, nil, nil, nil, nil, nil]

Matrix::zero(n)

Creates an n-by-n zero matrix.

Instance Methods

m[i, j]

Returns (i,j) component.

m * mtx

Multiplication.

m + mtx

Addition.

m- mtx

Subtraction.

m / mtx

Returns m * mtx.inv.

m ** n

Power of n over matrix.

m.collect{ ...}

m.map{ ...}

Creates a matrix that is the result of iteration of the given block over all components of the matrix m.

m.column(j)

Returns the j-th column vector of the matrix m. When the block is supplied for the method, the block is iterated over all
column vectors.

m.column_size

Returns the number of columns.

m.column_vectors

Returns array of column vectors of the matrix m.

m.determinant

m.det

Returns the determinant of the matrix m.

m.inverse

m.inv

Returns an inversed matrix of the matrix m.

m.minor(from_row, row_size, from_col, col_size)

m.minor(from_row..to_row, from_col..to_col)

Returns submatrix of the matrix m.

m.rank

Returns the rank of the matrix m.

m.row(i)

m.row(i) { ...}

Returns the i-th row vector of the matrix m. When the block is supplied for the method, the block is iterated over all row
vectors.

m.row_size

Returns the number of rows.

m.row_vectors

Returns an array of row vectors of the matrix m.

m.regular?

Returns true if m is a regular matrix.

m.singular?

Returns true if m is a singular (i.e., nonregular) matrix.

m.square?

Returns true if m is a square matrix.

m.trace

m.tr

Returns the trace of the matrix m.

m.transpose

m.t

Returns the transpose of the matrix m.

4.1.6 Design Patterns

Design patterns are a terrific way to get your job done without reinventing the wheel. Ruby provides support in the standard library
for a small number of commonly used design patterns. This group of libraries provides advanced object-oriented programming
techniques for delegators, forwardables, singletons, and observers.

Delegator Delegator pattern superclass

Delegator is an abstract class for the Delegator design pattern. Delegation is actually achieved by creating a subclass of the
Delegator class.

Required Library

require 'delegate'

Class Method

Delegator::new(obj)

Creates a delegate object to which methods of obj are forwarded.

Instance Method

_ _getobj_ _

Returns the object to which methods are forwarded. Needs to be redefined in the subclass.

SimpleDelegator Simple concrete Delegator pattern class

This class allows for easy implementation of the Delegator design pattern.

Required Library

require 'delegate'

Inherited Class

Delegator

Class Method

SimpleDelegator::new(obj)

Creates an object that forwards methods to obj

Instance Method

_ _setobj_ _

Sets the object to which methods are forwarded

DelegatorClass Class creation function for Delegator patterns

This function dynamically creates a class that delegates to other fixed classes.

Required Library

require 'delegate'

Function

DelegateClass(c)

Creates a new class to which the methods of class c are forwarded

Method of Generated Class

D::new(obj)

Creates a delegate object with obj as the object to which methods are forwarded

Forwardable Module to add selected method delegations to a class

The Forwardable module provides more explicit method delegation. You can specify method name and destination object
explicitly.

Required Library

require "forwardable"

Example

class Foo
 extend Forwardable
 # ...
 def_delegators("@out", "printf", "print")
 def_delegators(:@in, :gets)
 def_delegator(:@contents, :[], "content_at")
end
f = Foo.new
f.printf("hello world\n") # forward to @out.printf
f.gets # forward to @in.gets
f.content_at(1) # forward to @contents.[]

Instance Methods

f.def_delegator(accessor, method[, alt= method])

f.def_instance_delegator(accessor, method[, alt= method])

Defines delegation from method to accessor. If alt is specified, alt method is called instead of method.

f.def_delegators(accessor, method...)

f.def_instance_delegators(accessor, method...)

Defines delegation to accessor for each method.

SingleForwardable Selective delegation module

The SingleForwardable module provides more explicit method delegation for a specific object.

Required Library

require 'forwardable'

Example

require 'forwardable'
...
g = Goo.new
g.extend SingleForwardable
g.def_delegator("@out", :puts)
g.puts("hello world") # forward to @out.puts

Instance Methods

f.def_singleton_delegator(accessor, method[, alt= method])

f.def_delegator(accessor, method[, alt= method])

Defines delegation from method to accessor. If alt is specified, alt method is called instead of method.

f.def_singleton_delegators(accessor, method...)

f.def_delegators(accessor, method...)

Defines delegation to accessor for each method.

Singleton Singleton pattern module

The Singleton module allows the implementation of the Singleton design pattern. By including the module, you can ensure that
only one instance of a class is created.

Required Library

require 'singleton'

Class Method

instance

Returns the only instance of the class. If an instance has already been created, it's reused. instance is a class method added
to classes that include the Singleton module.

Observable Observable pattern module

The Observable module allows the implementation of the Observer design pattern. Classes that include this module can notify
multiple observers of changes in self. Any object can become an observer as long as it has the update method.

Required Library

require 'observer'

Instance Methods

o.add_observer(obj)

Adds observer obj as an observer of o.

o.count_observers

Returns the number of observers of o.

o.changed([state=true])

Sets the changed state of o.

o.changed?

Returns true if o has been changed.

o.delete_observer(obj)

Removes observer obj as an observer of o.

o.delete_observers

Removes all observers of o.

o.notify_observers([arg...])

If o's changed state is true, invokes the update method of each observer, passing it the specified arguments.

4.1.7 Miscellaneous Libraries

It almost goes without saying, but there's always a bunch of stuff that doesn't quite fit into any category. Ruby's standard library is no
exception. This group of libraries includes anything that isn't in one of the preceding groups.

In Ruby's standard library, you'll find classes providing abstractions for date manipulation, timeouts on long operations, and MD5 and
SHA1 message digests.

Date Date class

Date is a class to represent the calendar date. Date is based on the Julian day number, which is the number of days since midday,
January 1st 4713 BC.

Currently we use the Gregorian calendar, but the Julian calendar was used prior to that time (before 1752 in England, for example).
The calendar shift date is different in each country. Date class can handle both calendars and arbitrary shift dates.

There's no relation between Julian day number and Julian calendar; it's just coincidence.

Required Library

require 'date'

Example

require 'date'
3000 days after Ruby was born
puts Date::new(1993,2,24)+3000, "\n" # 2001-05-13

Included Module

Comparable

Class Methods

Date::exist?(year, month, day[, start])

Date::exist3?(year, month, day[, start])

Returns the Julian day number corresponding to the specified year, month, and day of year, if they are correct. If they aren't
correct, returns nil.

Date::exist2?(year, yday[, start])

Returns the Julian day number corresponding to the specified year and day of year, if they are correct. If they aren't correct,
returns nil.

Date::existw?(year, week, wday[, start])

Returns the Julian day number corresponding to the specified calendar week-based year, calendar week, and calendar
weekday, if they are correct. If they aren't correct, returns nil.

Date::new(year, month, day[, start])

Date::new3(year, month, day[, start])

Creates a Date object corresponding to the specified year, month, and day of the month.

Date::new1(jd[, start])

Creates a Date object corresponding to the specified Julian day number.

Date::new2(year, yday[, start])

Creates a Date object corresponding to the specified year and day of the year.

Date::neww(year, week, wday[, start])

Creates a Date object corresponding to the specified calendar week-based year, calendar week, and calendar weekday.

Date::today([start])

Creates a Date object corresponding to today's date.

Instance Methods

d << n

Returns a Date object that is n months earlier than d.

d >> n

Returns a Date object that is n months later than d.

d <=> x

Compares dates. x may be a Date object or an integer (Julian day number).

d + n

Returns a Date object that is n days later than d.

d - x

Returns the difference in terms of days if x is another Date object. If x is an integer, returns a Date object that is x days
earlier than d.

d.cwday

Returns the calendar weekday (1-7, Monday being 1) for d.

d.cweek

Returns the calendar week (1-53) for d.

d.cwyear

Returns the calendar week-based year for d.

d.day

d.mday

Returns the day of the month (1-31) for d.

d.downto(min) {| date| ...}

Runs block on dates ranging from d down to min. Equivalent to d.step(min), -1) {|date|...}.

d.jd

Returns the Julian day number for d.

d.leap?

Returns true if d is a leap year.

d.mjd

Returns the modified Julian day number for d. Modified Julian day number is the number of days since midnight November
17, 1858.

d.mon

d.month

Returns the month (1-12) for d.

d.newsg([start])

Copies d to a new Date object and returns it after converting its cutover date to start.

d.next

d.succ

Returns a new Date object one day later than d.

d.sg

Returns the Julian day number of the start of Gregorian dates for d.

d.step(limit, step) {| date| ...}

Runs block on Date objects from d to limit incrementing step number of days each time.

d.upto(max) {| date| ...}

Runs block on dates ranging from d up to max. Equivalent to d.step(max, 1) {|date|...}.

d.wday

Returns the day of the week for d (0-6, Sunday being 0).

d.yday

Returns the day of the year for d (1-366).

d.year

Returns the year for d.

Constants

MONTHNAMES

An array of the names of the months of the year

DAYNAMES

An array of the names of the days of the week (Sunday being the first element)

ITALY

Gregorian calendar start day number in Italy

ENGLAND

Gregorian calendar start day number in England

JULIAN

Start specifier for Julian calendar

GREGORIAN

Start specifier for Gregorian calendar

ParseDate Date representation parser module

The ParseDate module parses strings that represent calendar dates in various formats.

Required Library

require 'parsedate'

Module Function

parsedate(str[, cyear=false])

Parses a date and/or time expression within str and returns the parsed elements (year, month, day, hour, minute, second, time
zone, and day of the week) as an array. Sunday is represented as 0 in the day-of-the-week element. nil is returned for
elements that can't be parsed or have no corresponding string representation. If cyear is true, years with a value of 68 or
less are interpreted as being in the 2000s and years ranging from 69 to 99 are interpreted as being in the 1900s. In summary,
beware of the Y2K69 problem!

timeout Time out a lengthy procedure

Times out a lengthy procedure or those that continue execution beyond a set duration.

Required Library

require 'timeout'

Function

timeout(sec) { ...}

Executes the block and returns true if the block execution terminates successfully prior to elapsing of the timeout period,
otherwise immediately terminates execution of the block and raises a TimeoutError exception.

require 'timeout'
status = timeout(5) {
 # something that may take time
}

MD5 MD5 message digest class

The MD5 class provides a one-way hash function from arbitrary text data by using the algorithm described in RFC-1321

Example

requires 'md5'
md5 = MD5::new("matz")
puts md5.hexdigest # prints: 3eb50a8d683006fdf941b9860798f9aa

Class Methods

MD5::new([str])

MD5::md5([str])

Creates a new MD5 object. If a string argument is given, it's added to the object.

Instance Methods

md.clone

Copies the MD5 object.

md.digest

Returns the MD5 hash of the added strings as a string of 16 bytes.

md.hexdigest

Returns the MD5 hash of the added strings as a string of 32 hexadecimal digits.

md.update(str)

md << str

Updates the MD5 object with the string str. Repeated calls are equivalent to a single call with the concatenation of all the
arguments, i.e., m.update(a); m.update(b) is equivalent to m.update(a+b), and m << a << b is equivalent to m
<< a+b.

SHA1 SHA1 message digest class

The SHA1 class provides a one-way hash function from arbitrary text data.

Class Methods

SHA1::new([str])

SHA1::sha1([str])

Creates a new SHA1 object. If a string argument is given, it's added to the object.

Instance Methods

sh.clone

Copies the SHA1 object.

sh.digest

Returns the SHA1 hash of the added strings as a string of 16 bytes.

sh.hexdigest

Returns the SHA1 hash of the added strings as a string of 32 hexadecimal digits.

sh.update(str)

sh << str

Updates the SHA1 object with the string str. Repeated calls are equivalent to a single call with the concatenation of all the
arguments, i.e., m.update(a); m.update(b) is equivalent to m.update(a+b), and m << a << b is equivalent to m
<< a+b.

Chapter 5. Ruby Tools
As a matter of course in Ruby, you edit your Ruby program and then feed it to the
interpreter. Theoretically, the editor and interpreter are all you need to program Ruby. But
you can get help from other tools. In this chapter, you will find descriptions of tools to help
Ruby programmers.

5.1 Standard Tools

The standard Ruby distribution contains useful tools along with the interpreter and standard libraries:
debugger, profiler, irb (which is interactive ruby), and ruby-mode for Emacs. These tools help you debug
and improve your Ruby programs.

5.1.1 Debugger

It doesn't matter how easy a language is to use, it usually contains some bugs if it is more than a few lines
long. To help deal with bugs, the standard distribution of Ruby includes a debugger. In order to start the
Ruby debugger, load the debug library using the command-line option -r debug. The debugger stops
before the first line of executable code and asks for the input of user commands.

Here are the debugger commands:

b[reak] [< file| class>:]< line| method>

Sets breakpoints

wat[ch] expression

Sets watchpoints

b[reak]

Displays breakpoints and watchpoints

del[ete] [n]

Deletes breakpoints

disp[lay] expression

Displays value of expression

undisp[lay] [n]

Removes display of n

c[ont]

Continues execution

s[tep] [n]

Executes next n lines stepping into methods

n[ext] [n]

Executes next n lines stepping over methods

w[here]

Displays stack frame

f[rame]

Synonym for where

l[ist][<-| n- m>]

Displays source lines from n to m

up [n]

Moves up n levels in the stack frame

down [n]

Moves down n levels in the stack frame

fin[ish]

Finishes execution of the current method

tr[ace] [on|off]

Toggles trace mode on and off

q[uit]

Exits debugger

v[ar] g[lobal]

Displays global variables

v[ar] l[ocal]

Displays local variables

v[ar] i[instance] object

Displays instance variables of object

v[ar] c[onst] object

Displays constants of object

m[ethod] i[instance] object

Displays instance methods of object

m[ethod] class| module

Displays instance methods of the class or module

th[read] l[ist]

Displays threads

th[read] c[ur[rent]]

Displays current thread

th[read] n

Stops specified thread

th[read] stop n>

Synonym for th[read] n

th[read] c[ur[rent]] n>

Synonym for th[read] n

th[read] resume n>

Resumes thread n

p expression

Evaluates the expression

h[elp]

Displays help message

< everything else>

Evaluates the expression

The following is a sample session that shows the debugger's output when it executes the Sieves of
Eratosthenes program (a famous algorithm to calculate prime numbers). The interface is designed similarly
to that of gdb.

% ruby -r debug sieve.rb 100
Debug.rb
Emacs support available.
sieve.rb:2:max = Integer(ARGV.shift || 100)
(rdb:1) list
[-3, 6] in sieve.rb
 1
=> 2 max = Integer(ARGV.shift || 100)
 3 sieve = []
 4 for i in 2 .. max
 5 sieve[i] = i
 6 end
(rdb:1) list
[7, 16] in sieve.rb
 7
 8 for i in 2 .. Math.sqrt(max)
 9 next unless sieve[i]
 10 (i*i).step(max, i) do |j|
 11 sieve[j] = nil
 12 end
 13 end
 14 puts sieve.compact.join ", "
 (rdb:1) b 8
Set breakpoint 1 at sieve.rb:8
(rdb:1) c
Breakpoint 1, toplevel at sieve.rb:8
sieve.rb:8:for i in 2 .. Math.sqrt(max)
(rdb:1) p sieve
[nil, nil, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100]
(rdb:1) del 1
(rdb:1) b 14
Set breakpoint 2 at sieve.rb:14
(rdb:1) c
Breakpoint 2, toplevel at sieve.rb:14
sieve.rb:14:puts sieve.compact.join ", "
(rdb:1) p sieve
[nil, nil, 2, 3, nil, 5, nil, 7, nil, nil, nil, 11, nil, 13, nil, nil,
nil, 17, nil, 19, nil, nil, nil, 23, nil, nil, nil, nil, nil, 29, nil,
31, nil, nil, nil, nil, nil, 37, nil, nil, nil, 41, nil, 43, nil, nil,
nil, 47, nil, nil, nil, nil, nil, 53, nil, nil, nil, nil, nil, 59, nil,
61, nil, nil, nil, nil, nil, 67, nil, nil, nil, 71, nil, 73, nil, nil,
nil, nil, nil, 79, nil, nil, nil, 83, nil, nil, nil, nil, nil, 89, nil,

nil, nil, nil, nil, nil, nil, 97, nil, nil, nil]
(rdb:1) sieve.compact
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,67,
71, 73, 79, 83, 89, 97]
(rdb:1) c
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97

5.1.2 Profiler

In most cases, you can improve the performance of a slow program by removing the bottleneck. The profiler
is a tool that finds the bottleneck. In order to add profiling to your Ruby program, you need to first load the
Profile library using the command-line option -r profile. Here is the sample output from profiled
execution. You can tell Object#fact method is a bottleneck.

% ruby -r profile sample/fact.rb 100
9332621544394415268169923885626670049071596826438162146859296389521759999
3229915608941463976156518286253697920827223758251185210916864000000000000
000000000000
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 66.67 0.07 0.07 1 66.67 66.67 Object#fact
 16.67 0.08 0.02 1 16.67 16.67 Bignum#to_s
 0.00 0.08 0.00 5 0.00 0.00 Fixnum#*
 0.00 0.08 0.00 2 0.00 8.33 IO#write
 0.00 0.08 0.00 1 0.00 0.00 Fixnum#==
 0.00 0.08 0.00 95 0.00 0.00 Bignum#*
 0.00 0.08 0.00 1 0.00 0.00 Module#method_added
 0.00 0.08 0.00 101 0.00 0.00 Fixnum#>
 0.00 0.08 0.00 1 0.00 16.67 Kernel.print
 0.00 0.08 0.00 1 0.00 0.00 String#to_i
 0.00 0.08 0.00 1 0.00 0.00 Array#[]
 0.00 0.08 0.00 100 0.00 0.00 Fixnum#-
 0.00 0.08 0.00 1 0.00 100.00 #toplevel

5.1.3 Tracer

When you want to trace the entrance and exit of each method, tracer is the tool for you. In order to add
method call/return tracing to your Ruby program, load the Tracer library using the command-line option
-r tracer. Here is sample output from tracer:

% ruby -r tracer fact.rb 2
#0:fact.rb:1::-: def fact(n)
#0:fact.rb:1:Module:>: def fact(n)
#0:fact.rb:1:Module:<: def fact(n)
#0:fact.rb:10::-: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:Array:>: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:Array:<: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:String:>: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:String:<: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:1:Object:>: def fact(n)
#0:fact.rb:2:Object:-: return 1 if n == 0
#0:fact.rb:2:Fixnum:>: return 1 if n == 0
#0:fact.rb:2:Fixnum:<: return 1 if n == 0

#0:fact.rb:3:Object:-: f = 1
#0:fact.rb:4:Object:-: while n>0
#0:fact.rb:4:Fixnum:>: while n>0
#0:fact.rb:4:Fixnum:<: while n>0
#0:fact.rb:5:Object:-: f *= n
#0:fact.rb:5:Fixnum:>: f *= n
#0:fact.rb:5:Fixnum:<: f *= n
#0:fact.rb:6:Object:-: n -= 1
#0:fact.rb:6:Fixnum:>: n -= 1
#0:fact.rb:6:Fixnum:<: n -= 1
#0:fact.rb:6:Fixnum:>: n -= 1
#0:fact.rb:6:Fixnum:<: n -= 1
#0:fact.rb:5:Object:-: f *= n
#0:fact.rb:5:Fixnum:>: f *= n
#0:fact.rb:5:Fixnum:<: f *= n
#0:fact.rb:6:Object:-: n -= 1
#0:fact.rb:6:Fixnum:>: n -= 1
#0:fact.rb:6:Fixnum:<: n -= 1
#0:fact.rb:6:Fixnum:>: n -= 1
#0:fact.rb:6:Fixnum:<: n -= 1
#0:fact.rb:8:Object:-: return f
#0:fact.rb:8:Object:<: return f
#0:fact.rb:10:Kernel:>: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:IO:>: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:Fixnum:>: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:Fixnum:<: print fact(ARGV[0].to_i), "\n"
2#0:fact.rb:10:IO:<: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:IO:>: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:IO:<: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:Kernel:<: print fact(ARGV[0].to_i), "\n"

You can turn on trace mode explicitly by invoking these methods from your program:

Tracer.on

Turns on trace mode

Tracer.on {...}

Evaluates the block with trace mode turned on

Tracer.off

Turns off trace mode

5.1.4 irb

irb (Interactive Ruby) was developed by Keiju Ishitsuka. It allows you to enter commands at the prompt
and have the interpreter respond as if you were executing a program. irb is useful to experiment with or to
explore Ruby.

irb [options] [programfile] [argument...]

Here are the irb options:

-f

Suppresses loading of ~/.irbrc.

-m

Math mode. Performs calculations using rational numbers.

-d

Debugger mode. Sets $DEBUG to true.

-r lib

Uses require to load the library lib before executing the program.

-v

--version

Displays the version of irb.

--inspect

Inspect mode (default).

--noinspect

Noninspect mode (default for math mode).

--readline

Uses the readline library.

--noreadline

Suppresses use of the readline library.

--prompt mode

--prompt-mode mode

Sets the prompt mode. Predefined prompt modes are default, simple, xmp, and inf-ruby.

--inf-ruby-mode

Sets the prompt mode to inf-ruby and suppresses use of the readline library.

--simple-prompt

Sets the prompt mode to simple mode.

--noprompt

Suppresses the prompt display.

--tracer

Displays a trace of method calls.

--back-trace-limit n

Sets the depth of backtrace information to be displayed (default is 16).

Here is a sample irb interaction:

irb
irb(main):001:0> a = 25
25
irb(main):002:0> a = 2
2
irb(main):003:0>
matz@ev[sample] irb

irb(main):001:0> a = 3
3
irb(main):002:0> a.times do |i|
irb(main):003:1* puts i
irb(main):004:1> end
0
1
2
3
irb(main):005:0> class Foo<Object
irb(main):006:1> def foo
irb(main):007:2> puts "foo"
irb(main):008:2> end
irb(main):009:1> end
nil
irb(main):010:0> Foo::new.foo
foo
nil
irb(main):011:0> exit

irb loads a startup file from either ~/.irbrc, .irbrc, irb.rc, _irbrc, $irbrc. A Startup file
can contain an arbitrary Ruby program for per-user configuration. Within it, irb context object IRB is
available.

irb works as if you fed the program line by line into the interpreter. But since the noninteractive interpreter
executes the program at once, there is a small difference. For example, in batch execution, the local variable
that appears only in the eval isn't treated as a local variable outside of eval. That's because an identifier is
determined as a local variable or not statically. In non-irb mode, Ruby determines whether or not an
identifier is a local variable during compile-time. Since Ruby compiles the whole program first and then
executes it, assignment in eval isn't considered. But in irb mode, irb normally executes inputs line by
line, so that assignment is done prior to compilation of the next line.

5.1.5 ruby-mode for Emacs

If you are an Emacs user, ruby-mode will help you a lot. It supports auto indent, colorizing program text,
etc. To use ruby-mode, put ruby-mode.el into the directory included in your load-path variable, then
put the following code in your .emacs file.

(autoload 'ruby-mode "ruby-mode")
(setq auto-mode-alist (append (list (cons \\.rb$ 'ruby-mode)
 auto-mode-alist))
(setq interpreter-mode-alist (append '(("ruby".ruby-mode))
 interpreter-mode-alist))

5.2 Additional Tools

There are other useful tools that don't come bundled with the Ruby standard distribution.
However, you do need to install them yourself.

5.2.1 ri: Ruby Interactive Reference

ri is a online reference tool developed by Dave Thomas, the famous pragmatic
programmer. When you have a question about the behavior of a certain method, e.g.,
IO#gets, you can invoke ri IO#gets to read the brief explanation of the method. You
can get ri from http://www.pragmaticprogrammer.com/ruby/downloads/ri.html.

ri [options] [name...]

Here are the ri options:

--version,

-v

Displays version and exits.

--line-length=n

-l n

Sets the line length for the output (minimum is 30 characters).

--synopsis

-s

Displays just a synopsis.

--format= name

-f name

Uses the name module (default is Plain) for output formatting. Here are the
available modules:

Tagged

Simple tagged output

Plain

Default plain output

name should be specified in any of the following forms:

Class❍

Class::method❍

Class#method❍

http://www.pragmaticprogrammer.com/ruby/downloads/ri.html

Class.method❍

method❍

5.2.2 eRuby

eRuby stands for embedded Ruby; it's a tool that embeds fragments of Ruby code in other
files such as HTML files. Here's a sample eRuby file:

This is sample eRuby file

The current time here is <%=Time.now%>.
<%[1,2,3].each{|x|print x,"
\n"}%>

Here's the output from this sample file:

This is sample eRuby file

The current time here is Wed Aug 29 18:54:45 JST 2001.
1
2
3

There are two eRuby implementations:

eruby

The original implementation of eRuby. eruby is available from
http://www.modruby.net.

Erb

A pure Ruby (subset) implementation of eRuby.

eRuby is available from http://www2a.biglobe.ne.jp/~seki/ruby/erb-1.3.3.tar.gz; The version
number may be changed in the future. Unfortunately, the supporting page
http://www2a.biglobe.ne.jp/~seki/ruby/ is in Japanese, but you can tell how to use it from its
source code.

http://www.modruby.net/
http://www2a.biglobe.ne.jp/~seki/ruby/erb-1.3.3.tar.gz
http://www2a.biglobe.ne.jp/~seki/ruby/

5.3 Ruby Application Archive

Do you want to access databases, such as PostgreSQL or MySQL from Ruby? Do you wish
to use such nonstandard GUI toolkits as Qt, Gtk, FOX, etc.? You can with the Ruby
Application Archive (RAA), which has a collection of Ruby programs, libraries,
documentations, and binary packages compiled for specific platforms. You can access RAA
at http://www.ruby-lang.org/en/raa.html. RAA is still far smaller than Perl's CPAN, but it's
growing every day.

RAA contains the following elements:

The latest 10 items●

A list of Ruby applications●

A list of Ruby libraries●

A list of Ruby porting●

A list of Ruby documents●

You can enter your program in RAA by clicking "add new entry" at the top of the RAA
page, then following the instructions there. RAA itself is a fully automated web application
written in Ruby. It uses eRuby and PStore as a backend.

http://www.ruby-lang.org/en/raa.html

Chapter 6. Ruby Updates
Compared to most other languages, Ruby is rather young. As a result, it's still evolving fairly
rapidly.

If you find a bug in Ruby, the first thing to do is to check the bug database and see if the
problem has already been reported. The bug database can be found at
http://www.ruby-lang.org/cgi-bin/ruby-bugs. You can either send the bug report directly
from that page or send an email to ruby-bugs@ruby-lang.org. When you submit your bug,
try to include all relevant information such as source code, operating system, the output from
ruby -v, and what version/build of Ruby you are running. If you have compiled your own
build of Ruby, you should also include the rbconfig.rb.

The current stable version of Ruby can always be found at
http://www.ruby-lang.org/en/download.html. There are also several mirror sites available.

The current developmental release can be obtained from the CVS (Concurrent Version
System) repository. See http://www.ruby-lang.org/en/cvsrepo.html for instructions. You can
get CVS tools from http://www.cvshome.com.

http://www.ruby-lang.org/cgi-bin/ruby-bugs
mailto:ruby-bugs@ruby-lang.org
http://www.ruby-lang.org/en/download.html
http://www.ruby-lang.org/en/cvsrepo.html
http://www.cvshome.com/

6.1 Summary of Changes

Developmental releases of Ruby always have an odd minor revision number such as 1.5 or
1.7. Once a developmental release is stable and finalized, it's then "promoted" to a stable
release. Stable releases always have an even minor revision number such as 2.0 or 3.2.
Therefore, releases with even subversion numbers (1.4, 1.6, 1.8, etc.) are stable releases.
Releases with odd subversion numbers (1.5, 1.7, etc.) are developmental versions and are
available only from the CVS repository.

At of the writing of this book, the current stable release version is 1.6.5. The current
developmental version is 1.7.1. The changes presented here are currently reflected in 1.7.1
and will probably remain relatively unchanged in the next stable release—Version 1.8.

6.2 Changes from 1.6.5 to 1.7.1

The following information details the changes that are occurring in development versions
1.7.1 and 1.8 (though 1.8 will have additional changes as well):

Multiple assignment behavior is clarified.●

Syntax enhanced to interpret argument parentheses to allow p ("xx"*2).to_i.●

break and next extended to take an optional expression, which is used as a return
value of the iterating method and yield, respectively.

●

The following new methods (or modifications to methods) have been added:

Array#fetch

Array#insert

Enumerable#all?

Enumerable#any?

Enumerable#inject

Enumerable#sort_by

File#fnmatch

MatchData#to_ary

Method#==

Module#include?

Module#included

Module#method_removed

Module#method_undefined

Object#singleton_method_removed

Object#singleton_method_undefined

Proc#==

Proc#yield

Range#to_ary

Range#step

Regexp#options

String#casecmp

String#insert

Symbol#intern

Symbol::all_symbols

SystemExit#status

File::lchmod

●

File::lchown

IO::for_fd

IO::read

Math::acos

Math::asin

Math::atan

Math::cosh

Math::hypot

Math::sinh

Math::tanh

Process::times

Process::waitall

SystemCallError::===

String#eql? is now always case-sensitive.●

Dir::chdir extended to take a block.●

NoMethodError raised for undefined method.●

Interrupt is a subclass of SignalException (it was a subclass of Exception in
1.6 and prior).

●

$? now gives Process::Status along with Process::wait2,
Process::waitpid2.

●

Regexp.last_match(n) extended to take an optional argument.●

The Digest module has been added as a replacement for the md5 and sha1
modules.

●

Line-range operation is now obsolete except when used in a one-liner (e.g., ruby -e
...).

●

Comparison of exception classes in a rescue clause now uses Module#===.●

TCPSocket.new and TCPSocket.open extended to take an address and a port
number for the local side in optional third and fourth arguments.

●

Time extended to accept a negative time_t (only if the platform supports it).●

Objects that have to_str now behave more like strings.●

The Signal module has been added.●

Generational garbage collection has been added.●

6.3 The Future of Ruby

As Ruby is now used by so many programmers worldwide, I don't see making any radical
changes in the near future. But I'd like to keep Ruby competitive with other scripting
languages.

I don't have a concrete plan for future versions, even 2.0, but I do have plans to fix some of
the remaining drawbacks in the Ruby implementation. For example, Ruby's internals are too
complex to maintain and can be slower than other languages. I'm going to reimplement the
interpreter as a bytecode engine to simplify interpreter core and boost performance. Also,
recently an intriguing but still vague possibility of a joint backend among Perl, Python, and
Ruby has surfaced.

I'd also like to support M17N (Multilingualization) in Ruby. M17N offers the ability to
handle various human languages along with the necessary encodings. We already
implemented a prototype that can handle ASCII, UTF-8, and several Japanese encodings.

The future is unknown, and my imagination is limited. But you can certainly contribute to
the evolution of Ruby via the process called RCR (or Ruby Change Requests) explained in
the next section. We look forward to your contributions.

6.4 Participate in Ruby

Programmers often get ideas on how they'd like to improve Ruby. These ideas are sometimes
useful and interesting, sometimes not. Since the language needs to stay consistent, I often
need to choose which fixes or ideas to add and which to reject. To make this process easier,
we have instituted Ruby Change Requests (RCRs).

When you want to propose a new feature for Ruby, you have to submit your proposal to
http://www.rubygarden.org/?topic=RCR. The more concrete and detailed the proposal, the
greater chance of success you have of getting it accepted. The proposal should preferably be
consistent, backward-compatible, and follow the principle of least surprise.

The RCR page offers a discussion forum and web-based voting box. Once you submit your
proposal, discussion is held on it. If it's decided (with the help of the community) that your
proposal is indeed useful, it will be added to future versions of Ruby.

http://www.rubygarden.org/?topic=RCR

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Ruby in a Nutshell is a wild goat. Also known as a bezoar goat
(Capra aegagrus), this species, found on the Greek islands and in Turkey, Iran, Turkmenia,
and Pakistan, can grow to 300 pounds and up to 4 feet tall.

Goats have cloven hooves, which means they are split into two toes. Both males and females
have short beards the same color as their wool and horns that curve backward. Bezoar goat
horns are scimitar-shaped with sharp inside edges, and their bodies are covered in a coarse
wool that can be black, brown, gray, red, or white. Their wool helps them survive harsh
climates. Bezoar goats are herbivores, and their diet consists of grass, twigs, leaves, berries,
and bark. Wild female and baby goats live together in packs of about 50; males live by
themselves or in all-male packs. During the mating season, males give off an oily substance
from their skin that attracts females. Males can get into terrific fights over females, and the
winning male gets to mate. Females give birth to one or two babies, or kids.

Wild goats are listed as vulnerable in the 1996 IUCN Red List of Threatened Animals. An
animal is listed as vulnerable when it isn't critically endangered but faces a high risk of
extinction in the wild. Bezoar goats are losing more and more land to development in their
native countries.

Mary Anne Weeks Mayo was the production editor and proof reader, and Ellie Cutler was
the copyeditor for Ruby in a Nutshell. Darren Kelly and Sheryl Avruch provided quality
control. Derek DiMatteo provided production assistance. Lucie Haskins wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman.
The cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby
produced the cover layout with Quark™XPress 4.1 using Adobe's ITC Garamond
font. Melanie Wang designed the interior layout based on a series design by Nancy Priest.
Neil Walls converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created
by Mike Sierra. The text and heading fonts are ITC Garamond Light and Garamond Book.
This colophon was compiled by Mary Anne Weeks Mayo.

The online edition of this book was created by the Safari production group (John Chodacki,
Becki Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup
tools written and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

	Ruby in a Nutshell
	Contents
	Foreword
	Preface
	How This Book Is Organized
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Chapter 1. Introduction
	Section 1.1. Ruby's Elegance
	Section 1.2. Ruby in Action

	Chapter 2. Language Basics
	Section 2.1. Command-Line Options
	Section 2.2. Environment Variables
	Section 2.3. Lexical Conventions
	Section 2.4. Literals
	Section 2.5. Variables
	Section 2.6. Operators
	Section 2.7. Methods
	Section 2.8. Control Structures
	Section 2.9. Object-Oriented Programming
	Section 2.10. Security

	Chapter 3. Built-in Library Reference
	Section 3.1. Predefined Variables
	Section 3.2. Predefined Global Constants
	Section 3.3. Built-in Functions
	Section 3.4. Built-in Library

	Chapter 4. Standard Library Reference
	Section 4.1. Standard Library

	Chapter 5. Ruby Tools
	Section 5.1. Standard Tools
	Section 5.2. Additional Tools
	Section 5.3. Ruby Application Archive

	Chapter 6. Ruby Updates
	Section 6.1. Summary of Changes
	Section 6.2. Changes from 1.6.5 to 1.7.1
	Section 6.3. The Future of Ruby
	Section 6.4. Participate in Ruby

	Colophon

