A Desktop Quick Reference

Yiekeibivo Mealsteine

'REILLY"
O REI itk fretnsleatedd texd Dy Daicd £ Reynolads, fr



- Ruby in a Nutshell
i By Y ukihiro Matsumoto

.~. Publisher: O'Reilly
R Pub Date: November 2001

LT

ISBN: 0-59600-214-9
Pages: 218

Foreword

Preface
How This Book |s Organized
Conventions Used in This Book
Comments and Questions
Acknowledgments

Chapter 1. Introduction
Section 1.1. Ruby's Elegance
Section 1.2. Ruby in Action

Chapter 2. Language Basics
Section 2.1. Command-Line Options
Section 2.2. Environment Variables
Section 2.3. Lexica Conventions
Section 2.4. Literals
Section 2.5. Variables
Section 2.6. Operators
Section 2.7. Methods
Section 2.8. Control Structures
Section 2.9. Object-Oriented Programming
Section 2.10. Security

Chapter 3. Built-in Library Reference
Section 3.1. Predefined Variables
Section 3.2. Predefined Global Constants
Section 3.3. Built-in Functions
Section 3.4. Built-in Library

Chapter 4. Standard Library Reference
Section 4.1. Standard Library

Chapter 5. Ruby Tools
Section 5.1. Standard Tools
Section 5.2. Additional Tools




Section 5.3. Ruby Application Archive

Chapter 6. Ruby Updates
Section 6.1. Summary of Changes
Section 6.2. Changesfrom 1.6.5t01.7.1
Section 6.3. The Future of Ruby
Section 6.4. Participate in Ruby

Colophon



Foreword

Ruby is an object-oriented programming language devel oped for the purpose of
making programming both enjoyable and fast. With its easy-to-use interpreter,
easy-to-understand syntax, compl ete object-oriented functionality, and powerful
class libraries, Ruby has become alanguage that can be used in a broad range of
fields: from text processing and CGI scripts to professional, large-scale
programs.

As aprogrammer and a programming-language geek, | know what makes me
happy while programming, and | designed Ruby with these elementsin mind. |
based the language on an object-oriented paradigm, provided a solid feature set
(e.g., exceptions, iterators, etc.), and made sure to keep things consistent and
balanced. Ruby will help you concentrate on solving problems. It is
straightforward and not the least bit enigmatic.

It's my sincere hope that this book will help you enjoy programming in Ruby.

Happy programming!
—Yukihiro "Matz" Matsumoto, Japan



Preface

Ruby in aNutshell is apractical reference covering everything from Ruby syntax to the
specifications of its standard class libraries. With portability and convenience in mind, | have
arranged it into a concise tool that provides just the information you need while
programming. Although this book is based on Ruby 1.6.5, its contents should remain
applicable to future versions of Ruby, and many of the changes that will be included in
Version 1.8 are shown in Chapter 6.

This book covers all the built-in features and standard bundled libraries of Ruby. It isn't an
Introductory book; rather it works best sitting top of your desk when you program in Ruby.
The book assumes you have prior programming experience, preferably in Ruby. System
programming experience may be required to understand some parts of the book, for example,
network programming using sockets.

This book doesn't cover the Ruby C API for extending and embedding Ruby, nor doesiit
cover additional libraries, e.g., those available from RAA
(http://www.ruby-lang.org/en/raa.html). For information on these topics, please consult the
online documents available at http://www.ruby-lang.org, other books, or you can wait for

O'Reilly to publish books on them. :-)



http://www.ruby-lang.org/en/raa.html
http://www.ruby-lang.org/

How This Book Is Organized

Chapter 1 briefly introduces the Ruby programming language, highlights the language
features, and discusses what makes Ruby unique.

Chapter 2 describes Ruby language syntax and covers command-line options, environment

variables, lexical convention, literals, variables, operators, methods, control structures,
object-oriented programming, and security.

Chapter 3 describes the core functionality built into the standard Ruby interpreter. This part
contains descriptions for more than 800 built-in methods in 42 classes and modules.

Chapter 4 describes the useful libraries that come with the standard Ruby distribution, from
network accessviaHTTP and CGI programming to data persistence using the DBM library.

Chapter 5 describes the tools that come with the standard Ruby distribution—debugger,

profiler, and i r b (Interactive Ruby)—and some useful tools not bundled with the Ruby
standard distribution.

Chapter 6 describes the features added to the development version of Ruby (1.7). Those

features aren't yet available in the current stable Version 1.6.5 but will be in the next stable
version (1.8).



Conventions Used in This Book

The following conventions are used in this book:
Italic

Used for strings to be replaced for particular value.
Constant width

Indicates command-line options; environment variable names; fragments of Ruby
code, i.e., names and reserved words, including method names, variable names, class
names, etc.; examples; user input.

[]

Text in bracketsis usually optional.

Text followed by an ellipsis can be any number of sequences of the text.
[..Jor{..}

Ellipses between brackets or braces refers to omitted text.

o a Thisicon designates a note, which is an important aside to the
nearby text.

‘ Thisicon designates awarning relating to the nearby text.




Comments and Questions

Please address comments and questions concerning this book to the publisher:
O'Rellly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)
Thereis aweb page for this book, which lists errata, examples, or any additional
information. Y ou can access this page at:
http://www.oreilly.com/catal og/ruby

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly
Network, see the O'Rellly web site at:

http://www.oreilly.com



http://www.oreilly.com/catalog/ruby
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

Acknowledgments

| wish to thank the editors who made the impossible possible: Yumi Hayatsu for the original
Japanese version and Laura Lewin for this English version. Without their efforts, you
wouldn't be reading this book. The time | worked with Laura was fun and busy; she
succeeded in driving the lazy programmer to do the work of atechnical writer.

Thanksto David L. Reynolds, Jr., the trandlator of O'Reilly Japan's Ruby Pocket Reference
(from which this book was derived). He not only decrypted the mysterious Oriental language
but also fixed bugs in the book and polished up descriptions. | would also like to thank the
technical reviewers, Colin Steele and Todd Faulkner; they helped take a pocket reference
and expand it to the full-sized book you are reading.

Finally, thanks to my family, who endured their husband/father spending too many hours
before the computer.

-- A wife of noble character who can find? She isworth far more than rubies.

Proverbs 31:10



Chapter 1. Introduction

Ruby has been readily adopted by programmers in Japan and has had much documentation
written for it in Japanese. As programmers outside of Japan learn about the benefits of Ruby,
there is a growing need for documentation in English. The first book | wrote for O'Rellly,
Ruby Pocket Reference, was in Japanese. Since then Ruby has changed significantly. To
meet the needs of non-Japanese programmers, we translated, updated, and expanded Ruby
Pocket Reference into Ruby in a Nutshell.

Ruby is an object-oriented programming language that makes programming both enjoyable
and fast. With the easy-to-use interpreter, familiar syntax, complete object-oriented
functionality, and powerful class libraries, Ruby has become a language that can be applied
to a broad range of fields from text processing and CGI scripts to professional, large-scale
programs.

While Ruby is easy to learn, there are many details that you can't be expected to remember.
This book presents those details in a clean and concise format. It is areference to keep next
to your desktop or laptop, designed to make Ruby even easier to use.

For those of you who are new to Ruby, there are several online tutorials available to get you
started: Ruby's home page (http://www.ruby-lang.org) is agood starting pointing as it offers

Ruby tutorials and the Ruby Language FAQ.



http://www.ruby-lang.org/

1.1 Ruby's Elegance

Ruby is a genuine object-oriented scripting language designed from the ground up to support
the OOP model.

Most modern languages incorporate aspects of object-oriented programming. Because Ruby
was designed from the beginning to support OOP, most programmers fedl it is elegant, easy
to use, and a pleasure to program. Everything in Ruby is an object; there's no exception.

While Ruby is object-oriented, you can aso use Ruby to do procedural programming. But as
you do, Ruby is secretly turning your nifty procedures into methods on a globally accessible
object.

Throughout the development of the Ruby language, |'ve focused my energies on making
programming faster and easier. To do so, | developed what | call the principle of least
surprise. All features in Ruby, including object-oriented features, are designed to work as
ordinary programmers (e.g., me) expect them to work. Here are some of those features:

| nterpretive programming

No compilation is needed; you can edit and feed your program to the interpreter. The
faster development cycle helps you enjoy the programming process.

Dynamic programming

Almost everything in Ruby is done at runtime. Types of variables and expressions are
determined at runtime as are class and method definitions. Y ou can even generate
programs within programs and execute them.

Familiar syntax

If you've been programming in Java, Perl, Python, C/C++, or even Smalltalk, Ruby's
syntax is easy to learn. The following simple factorial function illustrates how easily
you can decipher its meaning:

def factorial (n)
If n ==
return 1
el se
return n * factorial (n-1)
end
end

|terators

The iterator feature for loop abstraction is built into the language, which means a
block of code can be attached to a method call. The method can call back the block
from within its execution. For example, Ar r ay hasthe each method to iterate over
its contents. With this feature, you don't need to worry about the loop counter or
boundary condition.

ary =[1,2,3,4,5]



ary.each do |i|
puts 1*2
end # prints 2,3,4,8,10 for each line

A block is used not only for loops. It can be used for various purposes including the
sel ect method of Ar r ay, which uses blocks to choose values that satisfy conditions from
contents:
ary = [1,2,3,4,5]
ary ary.select do |i]
I R ==
end # returns array of even nunbers.
Exceptions

Just as you'd expect in a modern OOP language, Ruby provides language-level
support for exception handling. For example, an attempt to open afile that doesn't
exist raises an exception, so that your program doesn't run, assuming an unmet
precondition. This feature obviously enhances the reliability of your programs.
Exceptions can be caught explicitly using ther escue clause of thebegi n
Statement:
begi n

f = open(pat h)
rescue

puts "#{path} does not exist."

exit 1
end

Class libraries

Ruby comes with a strong set of bundled class libraries that cover avariety of
domains, from basic datatypes (strings, arrays, and hashes) to networking and thread
programming. The following program retrieves the current time string from the local
host via a network socket connection:

require "socket™
print TCPSocket.open("l ocal host", "daytine").gets

In addition to bundled libraries, if you go to http://www.ruby-lang.org/en/raa.html
shows alist of the many unbundled useful libraries along with applications and
documentation. Since Ruby is rather young, the number of libraries availableis
smaller than that of Perl, for example, but new libraries are becoming available each
day.

Portable

Ruby ports to many platforms, including Unix, DOS, Windows, OS/2, etc. Ruby
programs run on many platforms without modification.

Garbage collection


http://www.ruby-lang.org/en/raa.html

Object-oriented programming tends to allocate many objects during execution. Ruby's
garbage collector recycles unused object automatically.

Built-in security check

Ruby's taint model provides safety when handling untrusted data or programs.



1.2 Ruby in Action

Like Python or Perl, Ruby is a scripting language. Scripting languages offer some great
advantages over other languages, such as C++ and Java. They allow programmers to show
off alot of programming concepts and principlesin arelatively small amount of space. Ruby
does this, while maintaining code readability.

# the "Hello World."
print "Hello World.\n"
# output file contents in reverse order
print File::readlines(path).reverse
# print lines that contains the word "Ruby".
while line = gets( )
I f /Ruby/ =~ line
print |ine
end
end
# cl ass and net hods
cl ass Ani ma
def | egs
puts 4
end
end
cl ass Dog<Ani na
def bark
puts "bow "
end
end
fred = Dog:: new
fred. | egs # prints 4
fred. bark # prints bow
# exception handling
begi n
printf "size of % is %l\n", path, File::size(path)
rescue
printf "error! probably % does not exist\n", path
end
# renane all files to | owercase nanes
ARGV. each {|path| File::renane(path, path.downcase)}
# networ k access
require 'socket'
print TCPSocket::open("l ocal host", "daytine").read
# Ruby/ Tk
require 'tk
TkButton.new(nil, "text'=>"hello', 'conmand' =>"exit'). pack



Tk. mai nl oop



Chapter 2. Language Basics

Ruby does what you'd expect it to do. It is highly consistent, and allows you to get down to
work without having to worry about the language itself getting in your way.



2.1 Command-Line Options

Like most scripting language interpreters, Ruby is generally run from the command line. The
interpreter can be invoked with the following options, which control the environment and
behavior of the interpreter itself:

ruby [ options ] [+ [ progranfile ] [ argument ... ]
-a

Used with - n or - p to split each line. Split output is stored in $F.

-C
Checks syntax only, without executing program.
-Cdir
Changes directory before executing (equivalent to - X).
-d

Enables debug mode (equivalent to - debug). Sets $DEBUGtO t r ue.
-eprog

Specifies pr og as the program from the command line. Specify multiple - e options
for multiline programs.

-F pat

Specifies pat asthe default separator pattern ($; ) used by spli t.
-h

Displays an overview of command-line options (equivaent to - hel p).
-i [ ext]

Overwrites the file contents with program output. The original fileis saved with the
extension ext . If ext isn't specified, the original fileis deleted.

-ldir

Addsdi r asthedirectory for loading libraries.
-K [ kcode]

Specifies the multibyte character set code (e or E for EUC (extended Unix code); s or
Sfor SIS (Shift-JIS); u or Ufor UTF-8; and a, A, n, or Nfor ASCII).

Enables automatic line-end processing. Chops a newline from input lines and appends
anewline to output lines.

Places code within aninput loop (asinwhi | e gets; ... end).



-0[ oct al ]
Sets default record separator ($/ ) asan octal. Defaultsto\ O if oct al not specified.

P

Places code within an input loop. Writes$__ for each iteration.
-rlib

Usesrequi retoload| i b asalibrary before executing.
-S

Interprets any arguments between the program name and filename arguments fitting
the pattern - xxx as a switch and defines the corresponding variable.

$xxX.-S

Searches for a program using the environment variable PATH.
-T [level]

Sets the level for tainting checks (1 if level not specified). Sets the $SAFE variable.

Displays version and enablesver bose mode (equivalent to - - ver bose).

Enables verbose mode. If pr ogr anf i | e not specified, reads from STDI N.
X [dir]
Strips text before #! r uby line. Changes directory to di r before executing if di r is
specified.
-Xdir
Changes directory before executing (equivalent to - c).
-y
Enables parser debug mode (equivalent to - - yydebug).
--copyright
Displays copyright notice.
--debug

Enables debug mode (equivalent to - d).
--help

Displays an overview of command-line options (equivaent to - h).
--version



Displays version.
--verbose

Enables verbose mode (equivalent to - v). Sets $VERBOSE to t r ue.
--yydebug

Enables parser debug mode (equivalent to - ).

. Single character command-line options can be combined. The following
P two lines express the same meaning:

& ruby -ne "print if /Ruby/"' /[usr/share/dict/words
" ruby -n -e "print if /Ruby/' /[usr/share/dict/words




2.2 Environment Variables

In addition to using arguments and options on the command line, the Ruby interpreter uses
the following environment variables to control its behavior. The ENV object contains alist of
current environment variables.

DLN_LIBRARY_PATH

Search path for dynamically loaded modules.
HOME

Directory moved to when no argument ispassedto Di r : : chdi r . Also used by
Fil e: : expand_pat h to expand "~".

LOGDIR

Directory moved to when no arguments are passed to Di r : : chdi r and environment
variable HOVE isn't set.

PATH

Search path for executing subprocesses and searching for Ruby programs with the - S
option. Separate each path with a colon (semicolon in DOS and Windows).

RUBYLIB

Search path for libraries. Separate each path with a colon (semicolon in DOS and
Windows).

RUBYLIB_PREFIX

Used to modify the RUBY LIB search path by replacing prefix of library pat h1l with
pat h2 using the format pat hl;pat h2 or pat hlpat h2. For example, if RUBYLI B
Is:

[usr/local/lib/ruby/site_ruby
and RUBYLI B_PREFI Xis:

[usr/local/lib/ruby;f:/ruby

Ruby searchesf : / r uby/ si t e_r uby. Works only with DOS, Windows, and OS/2
versions.

RUBY OPT

Command-line options passed to Ruby interpreter. Ignored in taint mode (where
$SAFE is greater than 0).

RUBYPATH

With - S option, search path for Ruby programs. Takes precedence over PATH.
Ignored in taint mode (where $SAFE is greater than 0).

RUBY SHELL



Specifies shell for spawned processes. If not set, SHELL or COVBPEC are checked.



2.3 Lexical Conventions

Ruby programs are composed of elements aready familiar to most programmers: lines,
whitespace, comments, identifiers, reserved words, literals, etc. Particularly for those
programmers coming from other scripting languages such as Perl, Python or tcl, you'll find
Ruby's conventions familiar, or at least straightforward enough not to cause much trouble.

2.3.1 Whitespace

WE'll leave the thorny questions like "How much whitespace makes code more readable and
how much is distracting?' for another day. If you haven't already caught onto this theme, the
Ruby interpreter will do pretty much what you expect with respect to whitespace in your
code.

Whitespace characters such as spaces and tabs are generally ignored in Ruby code, except
when they appear in strings. Sometimes, however, they are used to interpret ambiguous
statements. Interpretations of this sort produce warnings when the - woption is enabled.

a+b

Interpreted asa+b (a isalocal variable)
a+b

Interpreted asa( +b) (a, inthiscase, isamethod call)
2.3.2 Line Endings

Ruby interprets semicolons and newline characters as the ending of a statement. However, if
Ruby encounters operators, such as +, - , or backslash at the end of aline, they indicate the
continuation of a statement.

2.3.3 Comments

Comments are lines of annotation within Ruby code that are ignored at runtime. Comments
extend from # to the end of theline.

# This is a coment.

Ruby code can contain embedded documents too. Embedded documents extend from aline
beginning with =begi n to the next line beginning with =end. =begi n and =end must
come at the beginning of aline.

=begi n

This is an enbedded docunent.

=end

2.3.4 Identifiers

|dentifiers are names of variables, constants, and methods. Ruby distinguishes between



identifiers consisting of uppercase characters and those of lowercase characters. Identifier
names may consist of alphanumeric characters and the underscore character () . You
can distinguish avariable's type by the initial character of its identifier.

2.3.5 Reserved Words

The following list shows the reserved words in Ruby:

BEG N do next t hen

END el se ni | true

al i as el sif not undef

and end or unl ess

begi n ensure redo unti |

br eak fal se rescue when

case for retry whi | e

cl ass | f return yield

def In sel f ~ _FILE_  _
defi ned? nodul e super ~ _LINE_

These reserved words may not be used as constant or local variable names. They can,
however, be used as method names if areceiver is specified.



2.4 Literals

I've often wondered why we programmers are so enamored with literals. I'm waiting for the
day when alanguage comes along and introduces "figuratives." In the interim, the rules Ruby
usesfor literals are simple and intuitive, as you'll see the following sections.

2.4.1 Numbers

Strings and numbers are the bread and butter of literals. Ruby provides support for both
integers and floating-point numbers, using classes Fi xnum Bi gnum and Fl oat .

2.4.1.1 Integers

Integers are instances of class Fi xnumor Bi gnum

123 # deci mal

1 234 # decimal with underline

0377 # octal

Oxf f # hexadeci mal

Ob1011 # binary

?a # character code for 'a'
12345678901234567890 # Bignum an integer of infinite length

2.4.1.2 Floating-point numbers

Floating-point numbers are instances of class Fl oat :

123. 4 # floating point val ue
1. 0e6 # scientific notation
4E20 # dot not required
4e+20 # sign before exponenti al
2.4.2 Strings
A string is an array of bytes (octets) and an instance of class St r i ng:
"abC"

Double-quoted strings allow substitution and backslash notation.
Iabcl

Single-quoted strings don't allow substitution and allow backslash notation only for \ \
and\ ' .

2.4.2.1 String concatenation

Adjacent strings are concatenated at the same time Ruby parses the program.
"foo" "bar # means "foobar™



2.4.2.2 Expression substitution

#$var and#@ar areabbreviated forms of #{ $var } and #{ @ ar }. Embeds value of
expressionin#{. ..} intoastring.

2.4.2.3 Backslash notation

In double-quoted strings, regular expression literals, and command output, backslash notation
can be represent unprintable characters, as shown in Table 2-1.

Table 2-1. Backslash notations

Sequence Character represented
\n Newline (0x0a)
\r Carriage return (0x0d)
\ f Formfeed (0x0c)
\'b Backspace (0x08)
\a Bell (0x07)
\e Escape (0x1b)
\'s Space (0x20)
\ nnn Octal notation (n being 0-7)
\ xnn Hexadecimal notation (n being 0-9, af, or A-F)
\cx, \CGx Control-x
\ M x Meta-x (c | 0x80)
\ M\ G x Meta-Control-x
\ X Character x
“command’

Converts command output to a string. Allows substitution and backslash notation

2.4.2.4 General delimited strings

delimiter isany of thefollowing: ( [ { <, the end delimiter becomes the corresponding
closing delimiter, allowing for nested delimiter pairs.

%! foo!
%Q!foo!

Equivalent to double quoted string " f oo™
%0q!foo!

Equivalent to single quoted string ' f 00"
%x!foo!



Equivalentto " f oo™ command output
2.4.2.5 here documents

Builds strings from multiple lines. Contents span from next logical line to the line that starts
with the delimiter.

<<FQO
FOO

Using quoted delimiters after <<, you can specify the quoting mechanism used for St ri ng
literals. If aminus sign appears between << and the delimiter, you can indent the delimiter, as
shown here:

puts <<FQO # String in double quotes ("")
hell o world
FOO
puts <<"FQOO' # String in double quotes ("")
hell o world
FOO
puts <<' FOO # String in single quotes ('')
hell o world
FQOO
puts << FOO # String in backquotes ()
hell o world
FOO
puts <<-FQOO # Delimter can be indented
hello world
FOO

2.4.3 Symbols

A symbol is an object corresponding to an identifier or variable:

- foo # synbol for 'foo
. $f oo # synbol for variable '$foo

2.4.4 Arrays

An array is acontainer class that holds a collection of objects indexed by an integer. Any kind
of object may be stored in an array, and any given array can store a heterogeneous mix of
object types. Arrays grow as you add elements. Arrays can be created using ar r ay. newor
vialiterals. An array expression is a series of values between brackets| ] :

(]

An empty array (with no elements)
[1, 2, 3]



An array of three elements
[1,[2, 3]]

A nested array

2.4.4.1 General delimited string array

Y ou can construct arrays of strings using the shortcut notation, %4V Only whitespace
characters and closing parentheses can be escaped in the following notation:

o f oo bar baz) # ["foo", "bar", "baz"]
2.4.5 Hashes

A hash isacollection of key-value pairs or a collection that isindexed by arbitrary types of
objects.

A hash expression isa series of key=>val ue pairs between braces.
{keyl => val 1, key2 => val 2}

2.4.6 Regular Expressions

Regular expressions are a minilanguage used to describe patterns of strings. A regular
expression literal is a pattern between slashes or between arbitrary delimiters followed by % :

/ pattern/
/pattern/im # option can be specified
% !/usr/local! # general delimted regul ar expression

Regular expressions have their own power and mystery; for more on thistopic, see O'Rellly's
Mastering Regular Expressions by Jeffrey E.F. Friedl.

2.4.6.1 Regular-expression modifiers

Regular expression literals may include an optional modifier to control various aspects of
matching. The modifier is specified after the second slash character, as shown previously and
may be represented by one of these characters:

Case-insensitive

0

Substitutes only once
X

Ignores whitespace and allows comments in regular expressions
m

Matches multiple lines, recognizing newlines as normal characters



2.4.6.2 Regular-expression patterns

Except for control characters, (+? . *~$ () [ ] {} | \),al characters match
themselves. Y ou can escape a control character by preceding it with a backslash.

Regular characters that express repetition (* + { }) can match very long strings, but when
you follow such characters with control characters ?, you invoke a nongreedy match that
finishes at the first successful match (i.e., +, *, etc.) followed by ? (i.e, +?,* ?, etc.).

AN

Matches beginning of line.

$
Matches end of line.
Matches any single character except newline. Using moption allows it to match
newline as well.
[...]
Matches any single character in brackets.
[*...]
Matches any single character not in brackets.
rex
Matches O or more occurrences of preceding expression.
re+
Matches 1 or more occurrences of preceding expression.
re?
Matches O or 1 occurrence of preceding expression.
re{ n}

Matches exactly n number of occurrences of preceding expression.
re{ n}

Matches n or more occurrences of preceding expression.
re{n,n

Matches at least n and at most moccurrences of preceding expression.
alb

Matches either a or b.

(re)



Groups regular expressions and remembers matched text.

(AAmx)
Temporarily togglesoni , m or x options within aregular expression. If in parentheses,
only that areais affected.

(?-imXx)
Temporarily toggles off i , m or x options within aregular expression. If in
parentheses, only that areais affected.

(Zre)

Groups regular expressions without remembering matched text.
(Amx: re)

Temporarily togglesoni , m or x options within parentheses.
(?-imx: r e)

Temporarily toggles off i , m or x options within parentheses.
(?4...)

Comment.
(=re)

Specifies position using a pattern. Doesn't have a range.
(?re)

Specifies position using pattern negation. Doesn't have arange.

(>>re)

Matches independent pattern without backtracking.
\w

Matches word characters.
\W

Matches nonword characters.
\s

Matches whitespace. Equivalentto [\ t\ n\ r\ f].
\S

Matches nonwhitespace.
\d

Matches digits. Equivalent to [0-9].
\D



Matches nondigits.

\A
Matches beginning of string.
\Z
Matches end of string. If a newline exists, it matches just before newline.
\z
Matches end of string.
\G
Matches point where last match finished.
\b
Matches word boundaries when outside brackets. Matches backspace (0x08) when
inside brackets.
\B
Matches nonword boundaries.
\n, \t, etc.
Matches newlines, carriage returns, tabs, etc.
\1...\9
Matches nth grouped subexpression.
\10...

Matches nth grouped subexpression if it matched already. Otherwise refers to the octal
representation of a character code.



2.5 Variables

There are five types of variablesin Ruby: global, instance, class, locals and constants. As you might
expect, global variables are accessible globally to the program, instance variables belong to an object, class
variables to a class and constants are, well... constant. Ruby uses special characters to differentiate between
the different kinds of variables. At a glance, you can tell what kind of variable is being used.

Global Variables

$f oo

Global variables begin with $. Uninitialized global variables have the value ni | (and produce warnings
with the - woption). Some global variables have specia behavior. See Section 3.1 in Chapter 3.

I nstance Variables

@ oo

Instance variables begin with @ Uninitialized instance variables have the value ni | (and produce
warnings with the - woption).

Class Variables

@ oo

Class variables begin with @@and must be initialized before they can be used in method definitions.
Referencing an uninitialized class variable produces an error. Class variables are shared among
descendants of the class or module in which the class variables are defined. Overriding class variables
produce warnings with the -w option.

Local Variables

f oo

Local variables begin with alowercase letter or _. The scope of alocal variable rangesfrom cl ass,
nodul e, def , or do to the corresponding end or from a block's opening brace to its close brace { } . The
scope introduced by a block allowsit to reference local variables outside the block, but scopes introduced
by others don't. When an uninitialized local variableisreferenced, it isinterpreted as a call to a method that
has no arguments.

Constants

Foo

Constants begin with an uppercase letter. Constants defined within a class or module can be accessed from
within that class or module, and those defined outside a class or module can be accessed globally.
Constants may not be defined within methods. Referencing an uninitialized constant produces an error.



Making an assignment to a constant that is already initialized produces a warning, not an error. Y ou may
feel it contradicts the name "constant,” but remember, thisis listed under "variables."

Pseudo-Variables

In addition to the variables discussed, there are also afew pseudo-variables. Pseudo-variables have the
appearance of local variables but behave like constants. Assignments may not be made to
pseudo-variables.

self

The receiver object of the current method
true

Valuerepresentingt r ue
false

Valuerepresenting f al se
nil

Value representing "undefined"; interpreted asf al se in conditionals
__FILE

The name of the current sourcefile
__LINE__

The current line number in the sourcefile

Assignment

t ar get = expr

The following elements may assign targets:

Global variables
Assignment to global variables alters global status. It isn't recommended to use (or abuse) global
variables. They make programs cryptic.

Local variables
Assignment to uninitialized local variables also serves as variable declaration. The variables start to

exist until the end of the current scope is reached. The lifetime of local variablesis determined when
Ruby parses the program.

Constants
Assignment to constants may not appear within a method body. In Ruby, re-assignment to constants
isn't prohibited, but it does raise a warning.

Attributes

Attributes take the following form:
expr.attr



Assignment to attributes callsthe at t r = method of the result of expr .
Elements

Elements take the following form:
expr J[arg ...]

Assignment to elements callsthe [ ] = method of the result of expr .

Parallel Assignment

target [, target ...][, *target ]| = expr [, expr ...][, *expr ]

Targets on the left side receive assignment from their corresponding expressions on the right side. If the
last |eft-side target is preceded by *, al remaining right-side values are assigned to the target as an array. If
the last right-side expression is preceded by * , the array elements of expression are expanded in place
before assignment.

If there is no corresponding expression, ni | isassigned to the target. If there is no corresponding target,
the value of right-side expression is just ignored.

Abbreviated Assignment

t ar get op = expr
Thisisthe abbreviated form of:
target = target op expr

The following operators can be used for abbreviated assignment:
+= -= *= [= OF **= <<= >>S= &= |: N= = I I:



2.6 Operators

Ruby supports arich set of operators, as you'd expect from a modern language. However, in
keeping with Ruby's object-oriented nature, most operators are in fact method calls. This
flexibility allows you to change the semantics of these operators wherever it might make
sense.

2.6.1 Operator Expressions

Most operators are actually method calls. For example, a + b isinterpreted asa. +( b),
where the + method in the object referred to by variable a is called with b asits argument.

For each operator (+ - * / %** &| " <<>>&&| | ), thereisa corresponding form of
abbreviated assignment operator (+= - = etc.)

Here are the operators shown in order of precedence (highest to lowest):
[]

+(unary) -(unary) ! ~
* | %

+ -

<< >>

&

| AN

= (and abbreviated assignment operators such as +=, -=, &tc.)
not
and or

2.6.1.1 Nonmethod operators

The following operators aren't methods and, therefore, can't be redefined:

not



&&
and

or

+=, - =, (and other abbreviated assignment operators)
? . (ternary operator)

2.6.1.2 Range operators

Range operators function differently depending on whether or not they appear in
conditionals, i f expressions, and whi | e loops.

In conditionals, they returnt r ue from the point right operand ist r ue until left operand is
true:

exprl..expr?2

Evaluates expr 2 immediately after expr 1 turnst r ue.
exprl..expr2

Evaluates expr 2 on the iteration after expr 1 turnst r ue.

In other contexts, they create a range object:
exprl..expr2

Includes both expressions (expr 1 <= x <= expr 2)
exprl..expr2

Doesn't include the last expression (expr 1 <= x <expr 2)
2.6.1.3 Logical operators

If the value of the entire expression can be determined with the value of the left operand
alone, the right operand isn't evaluated.

& & and

Returnst r ue if both operands aret r ue. If the left operand isf al se, returnsthe
value of the left operand, otherwise returns the value of the right operand.

|| or

Returnst r ue if either operand ist r ue. If the left operand ist r ue, returns the value
of the left operand, otherwise returns the value of the right operand.

The operators and and or have extremely low precedence.



2.6.1.4 Ternary operator

Ternary ?: isthe conditional operator. It's another form of thei f statement.
a?b:c
If aistrue, evauatesb, otherwise evaluates c. It's best to insert spaces before and

after the operators to avoid mistaking the first part for the method a? and the second
part for the symbol : c.

2.6.1.5 defined? operator

def i ned? isaspecia operator that takes the form of a method call to determine whether or
not the passed expression is defined. It returns a description string of the expression, or ni |
If the expression isn't defined.

defined?vari abl e

Trueif vari abl e isinitialized

foo = 42

defi ned? foo # => "l ocal -vari abl e"
defined? $_ # => "gl obal -vari abl e"
defi ned? bar # => nil (undefined)

defined? met hod_cal |

True if amethod is defined (also checks arguments)

defi ned? puts # => "net hod"
defi ned? puts(bar) # => nil (bar is not defined here)
defi ned? unpack # => nil (not defined here)
defined? super
True if amethod exists that can be called with super
def i ned? super # => "super" (if it can be call ed)
defi ned? super # => nil (if it cannot be)
defined? yield

True if acode block has been passed

defined? yield # => "yield" (if there is a bl ock passed)
defined? yield # => nil (if there is no bl ock)



2.7 Methods

Methods are the workhorses of Ruby; all of your carefully crafted algorithms live in methods on objects (and
classes). In Ruby, "method" means both the named operation (e.g. "dump") and the code that a specific class
provides to perform an operation.

Strictly speaking, Ruby has no functions, by which I mean code not associated with any object. (In C++, thisis
what you might call a"global-scope function”.) All code in Ruby is amethod of some object. But Ruby alows
you the flexibility of having some methods appear and work just like functions in other languages, even though
behind the scenes they're till just methods.

Normal Method Calls

obj .method ([expr ...[, *expr [, &xpr 1]1]1])
obj . nethod [expr ...[, *expr [, &expr 1]]]
obj ::nmethod ([expr o[, *expr [, &expr 111)
obj ::nmethod [expr ...[, *expr [, &expr ]]]
method ([expr ...[, *expr [, &expr 1]1]1])

met hod [expr ...[,

*expr [, &expr ]]]

Calls amethod. May take as arguments any number of expr followed by * expr and &expr . Thelast expression
argument can be a hash declared directly without braces. * expr expands the array value of that expression and
passes it to the method. &expr passesthe Pr oc object value of that expression to the method as ablock. If itisn't
ambiguous, arguments need not be enclosed in parentheses. Either . or : : may be used to separate the object
from its method, but it is customary in Ruby codeto use: : asthe separator for class methods.

Callsamethod of sel f . Thisisthe only form by which private methods may be called.

Within modules, module methods and private instance methods with the same name and definition are referred to
by the general term module functions. This kind of method group can be called in either of the following ways:

Mat h. si n(1.0)

or:
I nclude Math
sin(1.0)
ol Y ou can append ! or ?to the name of a Ruby method. Traditionally, ! isappended to a
o method that requires more caution than the variant of the same name without ! . A

wh 4. question mark ? is appended to a method that determines the state of a Boolean value,
- trueorfal se.

Attempting to call a method without specifying either its arguments or parenthesesin a
context in which alocal variable of the same name exists results in the method call
being interpreted as a reference to the local variable, not acall to the method.

2.7.1 Specifying Blocks with Method Calls

Methods may be called with blocks of code specified that will be called from within the method.
met hod_cal | {[|[variable [, variable ...]]|] code }
met hod_cal | do [|[variable [, variable ...]]|] code end

Calls amethod with blocks specified. The code in the block is executed after avalue is passed from the method to
the block and assigned to the variable (the block's argument) enclosed between | | .



A block introduces its own scope for new local variables. The local variables that appear first in the block are local
to that block. The scope introduced by a block can refer local variables of outer scope; on the other hand, the scope
introduced by cl ass, nodul e and def statement can't refer outer local variables.

Theform{. ..} hasahigher precedencethando . .. end. Thefollowing:
identifierl identifier2 {|varizable| code}

actually means.
identifierl(identifier2 {]|variable| code})

On the other hand:
identifierl identifier2 do |variable| code end

actually means:
identifierl(identifier2) do |variable| code end

def Statement

def method([arg ..., arg =default ..., *arg
code

[rescue [exception_class [, exception_class ...]] [=> variable ] [then]
code ]...

[el se

code ]

[ ensure

code ]

end

, &rg ])

Defines a method. Arguments may include the following:
arg

Mandatory argument.
arg=defaul t

Optional argument. If argument isn't supplied by that which is calling the method, the def aul t isassigned
toar g. Thedef aul t isevauated at runtime.

*arg
If there are remaining actual arguments after assigning mandatory and optional arguments, they are assigned
toar g asan array. If there isno remainder, empty array isassigned to ar g.

& arg

If the method isinvoked with ablock, it is converted to a Pr oc object, then assigned to ar g. Otherwise,
ni | isassigned.
Operators can also be specified as method names. For example:

def +(other)
return sel f.value + other.val ue
end

Y ou should specify +@or - @for asingle plus or minus, respectively. Aswith abegi n block, amethod definition
may end withr escue, el se, and ensur e clauses.

2.7.2 Singleton Methods



In Ruby, methods can be defined that are associated with specific objects only. Such methods are called singleton
methods. Singleton methods are defined using def statements while specifying areceiver.

Defines a singleton method associated with a specific object specified by areceiver. Ther ecei ver may bea
constant (literal) or an expression enclosed in parentheses.

def Statement for Singleton Methods

def
receiver.method ([arg ...,arg =default ..., *arg , &arg 1)
code
[rescue [exception_class [, exception_class ...]] [=> variable ] [then]
code ...
[ el se
code ]
[ ensure
code ]
end
- A period. afterreceiver canbereplaced by two colons(: : ) . They work the
' sameway, but : : is often used for class methods.
L
TSN

A restriction in the implementation of Ruby prevents the definition of singleton methods associated with instances
of the Fi xnumor Synbol class.

a = "foo"
def a.foo
printf "%(%)\n", self, self.size
end
a.foo # "foo" is available for a only

2.7.3 Method Operations

Not only can you define new methods to classes and modules, you can also make aliases to the methods and even
remove them from the class.

alias Statement

alias new ol d

Creates an alias newfor an existing method, operator or global variable, specified by ol d. Thisfunctionality is
also available viaModul e#al i as_met hod. When making an alias of a method, it refers the current definition
of the method.

def foo
puts "foo!"
end
alias foo orig foo
def foo
puts "new foo!"
end
foo # => "new foo!"
foo_orig # => "fool"



undef Statement

undef met hod

Makes method defined in the current class undefined, even if the method is defined in the superclass. This
functionality isalso available viaModul e#undef et hod.

cl ass Foo

def foo

end

end

cl ass Bar <Foo

# Bar inherits "foo"

undef foo

end

b = Bar.new

b. foo # error!

2.7.4 Other Method-Related Statements

The following statements are to be used within method definitions. Theyi el d statement executes a block that is
passed to the method. The super statement executes the overridden method of the superclass.

yield Statement
yield([expr ...])
yield [expr ...]

Executes the block passed to the method. The expression passed to yi el d isassigned to the block's arguments.
Parallel assignment is performed when multiple expressions are passed. The output of the block, in other words
the result of the last expression in the block, is returned.

super Statement

super

super([expr ...])
super expr

super executes the method of the same name in the superclass. If neither arguments nor parentheses are
specified, the method's arguments are passed directly to the superclass method. In other words, acall to super (
) , which passes no arguments to the superclass method, has a different meaning from acall to super , where
neither arguments nor parentheses are specified.



2.8 Control Structures

Ruby offers control structures that are pretty common to modern languages, but it also has afew unique ones.

if Statement

I f conditional [t hen]
code

[el sif conditional [t hen]
code ]...

[ el se

code ]

end

Executescode if thecondi ti onal istrue. Trueisinterpreted as anything that isn't f al se or ni | . If the
condi ti onal isn'ttrue, code specifiedintheel se clauseisexecuted. Ani f expression'scondi ti onal
is separated from code by the reserved word t hen, anewline, or asemicolon. The reserved word i f can be used
as a statement modifier.

code i f conditional
Executescode if condi ti onal istrue.

unless Statement

unl ess condi ti onal [t hen]
code

[ el se

code ]

end

Executes codeif condi ti onal isfal se.Ifthecondi ti onal istrue, code specifiedintheel se clause
isexecuted. Likei f , unl ess can be used as a statement modifier.

code unl ess condi ti onal
Executescode unlesscondi ti onal istrue.

case Statement

case expression

[ when expression [, expression ...] [then]
code ...

[ el se

code ]

end

Comparesthe expr essi on specified by case and that specified by when using the === operator and executes
the code of thewhen clause that matches. The expr essi on specified by thewhen clause is evaluated as the
left operand. If no when clauses match, case executesthe code of theel se clause. A when statement's

expr essi on isseparated from code by thereserved word t hen, anewline, or a semicolon.

while Statement




whi |l e conditional [ do]
code
end

Executescode whilecondi ti onal istrue. A whil eloop'sconditi onal isseparated from code by the
reserved word do, anewline)\, or a semicolon. The reserved word whi | e can be used as statement modifier.

code whi | e condi ti onal

Executescode whilecondi ti onal istrue.
begi n code end whil e conditional

If awhi | e modifier followsabegi n statement withnor escue or ensur e clauses, code is executed once
beforecondi ti onal isevaluated.

until Statement

until conditional [ do]
code
end

code until conditiona
begin

code

end until conditi onal

Executescode whilecondi ti onal isfal se. Anunti| statement'scondi ti onal isseparated from code
by the reserved word do, anewline, or asemicolon. Likewhi | e, unti | can be used as statement modifier.

Executescode whilecondi ti onal isfal se.

If anunti | modifier followsabegi n statement with nor escue or ensur e clauses, code is executed once
beforecondi ti onal isevauated.

for Statement

for variable [, variable ...] in expression [ do]
code
end

Executes code once for each element in expr essi on. Almost exactly equivalent to:
expressi on. each do |variable[, variable...]| code end

except that af or loop doesn't create a new scope for local variables. A f or loop'sexpr essi on is separated
from code by the reserved word do, a newline, or a semicolon.

break Statement

br eak

Terminatesawhi | e/unt i | loop. Terminates a method with an associated block if called within the block (with
the method returning ni | ).

next Statement



next

Jumps to the point immediately before the evaluation of aloop's conditional. Terminates execution of a block if
called within ablock (withyi el d or cal returning ni | ).

redo Statement

redo

Jumps to the point immediately after the evaluation of the loop's conditional. Restartsyi el d or cal | if called
within a block.

retry Statement

retry

Repeats a call to amethod with an associated block when called from outside ar escue clause.
Jumpsto thetop of abegi n/end block if called from withinar escue clause.

begin Statement

begi n

code

[rescue [exception_class [, exception_class ...]] [=> variable ] [then]
code ]...

[ el se

code ]

[ ensure

code ]

end

Thebegi n statement encloses code and performs exception handling when used together with ther escue and
ensur e clauses.

When ar escue clauseis specified, exceptions belonging to theexcept i on_cl ass specified are caught, and
the code is executed. The value of the whole begi n enclosureisthe value of itslast line of code. If no
excepti on_cl ass isspecified, the program istreated as if the St andar dEr r or class had been specified. If
avari abl e isspecified, the exception object isstored to it. Ther escue except i on_cl ass is separated
from the rest of the code by the reserved word t hen, anewline, or a semicolon. If no exceptions are raised, the
el se clauseisexecuted if specified. If an ensur e clause is specified, itscode is aways executed before the
begi n/end block exits, even if for some reason the block is exited before it can be completed.

rescue Statement

code rescue expression

Evaluatesthe expr essi on if an exception (asubclass of St andar dEr r or ) israised during the execution of
the code. Thisisexactly equivalent to:

begi n



code

rescue Standar dError
expressi on

end

raise method

rai se exception_class , nessage
rai se exception_obj ect

rai senessage

rai se

Raises an exception. Assumes Runt i meErr or if noexcepti on_cl ass isspecified. Caling r ai se without
argumentsinar escue clause re-raises the exception. Doing so outside a rescue clause raises a message-less
Runti meError.

BEGIN Statement

BEG N {
code

}

Declares code to be called before the program is run.

END Statement

END {
code

}

Declarescode to be caled at the end of the program (when the interpreter quits).



2.9 Object-Oriented Programming

Phew, seems like along time since | introduced Ruby as "the object-oriented scripting
language,” eh? But now you have everything you need to get the nitty-gritty details on how
Ruby treats classes and objects. After you've mastered afew concepts and Ruby's syntax for
dealing with objects, you may never want to go back to your old languages, so beware!

2.9.1 Classes and Instances

All Ruby data consists of objects that are instances of some class. Even aclassitself isan
object that is an instance of the Cl ass class. Asageneral rule, new instances are created
using the new method of a class, but there are some exceptions (such as the Fi xnumclass).

a = Array::new
s = String::new
o = (bject::new

class Statement

cl ass cl ass_nane [ < superclass ]
code
end

Definesaclass. A cl ass_name must be a constant. The defined classis assigned to that
constant. If aclass of the same name already exists, the classand super cl ass must
match, or thesuper cl ass must not be specified, in order for the features of the new class
definition to be added to the existing class. cl ass statements introduce a new scope for
local variables.

2.9.2 Methods

Class methods are defined with the def statement. The def statement adds a method to the
Innermost class or module definition surrounding the def statement. A def statement
outside a class or module definition (at the top level) adds a method to the Obj ect class
itself, thus defining a method that can be referenced anywhere in the program.

When amethod is called, Ruby searches for it in a number of placesin the following order:
Among the methods defined in that object (i.e., singleton methods).

Among the methods defined by that object's class.

Among the methods of the modules included by that class.

Among the methods of the superclass.

a c W dpoE

Among the methods of the modules included by that superclass.



6. Repeats Steps 4 and 5 until the top-level object is reached.
2.9.3 Singleton Classes

Attribute definitions for a specific object can be made using the class definition construction.
Uses for thisform of class definition include the definition and a collection of singleton
methods.

cl ass << obj ect
code
end

Creates avirtual class for a specific object, defining the properties (methods and constants)
of the class using the class definition construction.

2.9.4 Modules

A moduleis similar to a class except that it has no superclass and can't be instantiated. The
Modul e classisthe superclass of the Cl ass class.

module Statement

nodul e nodul e_nane
code
end

A nmodul e statement defines amodule. nodul e _nane must be a constant. The defined
module is assigned to that constant. If a module of the same name already exists, the features
of the new module definition are added to the existing module. nodul e statements
Introduce a new scope for local variables.

2.9.5 Mix-ins

Properties (methods and constants) defined by a module can be added to a class or another
module with thei ncl ude method. They can also be added to a specific object using the
extend method. See Modul e#i ncl ude in Section 3.4.9, and the Obj ect #ext end in

Section 3.4.1.

2.9.6 Method Visibility

There are three types of method visibility:
Public

Callable from anywhere
Protected



Callable only from instances of the same class
Private

Callable only in functional form (i.e., without the receiver specified)

Method visibility is defined using the publ i c, pri vat e, and pr ot ect ed methods in
classes and modules.

public( [ symbol . . . ])

Makes the method specified by synbol public. The method must have been
previously defined. If no arguments are specified, the visibility of all subsequently
defined methods in the class or module is made public.

protected([ synbol ...])

Makes the method specified by synbol protected. The method must have been
previoudly defined. If no arguments are specified, the visibility of all subsequently
defined methods in the class or module is made protected.

private([ synbol ...])

Makes the method specified by synbol private. The method must have been
previously defined. If no arguments are specified, the visibility of all subsequently
defined methods in the class or module is made private.

2.9.7 Object Initialization

Objects are created using the new method of each object's class. After anewobject is
created by the new method, the object'si ni ti al i ze method is called with the arguments
of the newmethod passed to it. Blocks associated with the new method are also passed
directlytoi ni ti al i ze. For consistency, you should initialize objects by redefining the

I nitialize method, rather than the new method. The visibility of methods named

I nitialize isautomatically made private.

2.9.8 Attributes

Attributes are methods that can be referenced and assigned to externally asif they were
variables. For example, the Pr ocess module attribute egi d can be manipulated in the
following way:

Process. eqgid # Reference

Process. egid=id # Assi gnnent

These are actually two methods, one that takes no argument and another with a name ending
with = that takes one argument. Methods that form such attributes are referred to as accessor
methods.

2.9.9 Hooks



Ruby notifies you when a certain event happens, as shown in Table 2-2.

Table 2-2. Events and their hook methods

Event Hook method Of
Defining an instance method nmet hod_added Class
Defining a singleton method si ngl et on_net hod_added Object
Make subclass I nherited Superclass

These methods are called hooks. Ruby calls hook methods when the specific event occurs (at
runtime). The default behavior of these methods is to do nothing. Y ou have to override the
method if you want to do something on a certain event:

cl ass Foo
def Foo::inherited(sub)
printf "you made subcl ass of Foo, nanmed %s\n", sub.nane
end
end
cl ass Bar<Foo # prints "you nmade subcl ass of Foo, naned Bar"
end

There are other types of hook methods used by the mix-in feature. They are called by
I ncl ude and ext end to do the actual mixing-in, as shown in Table 2-3. You can use

these as hooks, but you have to call super when you override them.

Table 2-3. Mix-In hook methods

Event Hook method Of From
Mixinginamodule |append_features |Mix-inmodule |Modul e#i ncl ude
Extending a object ext end_obj ect Mix-inmodule |Obj ect #ext end

Ruby 1.7 and later provide more hooks. See Chapter 6 for more information on future
Versions.



2.10 Security

Ruby is portable and can easily use code distributed across a network. This property gives
you tremendous power and flexibility but introduces a commensurate burden: how do you
use this capability without possibly causing damage?

Part of the answer liesin Ruby's security system, which allows you to "lock down" the Ruby
environment when executing code that may be suspect. Ruby calls such data and code
tainted. Thisfeature introduces mechanisms that allow you to decide how and when
potentially "dangerous' data or code can be used inside your Ruby scripts.

2.10.1 Restricted Execution

Ruby can execute programs with security checking turned on. The global variable $SAFE
determines the level of the security check. The default safe level is 0, unless specified
explicitly by the command-line option - T, or the Ruby scriptisrun set ui d or set gi d.

$SAFE can be altered by assignment, but it isn't possible to lower the value of it:

$SAFE=1 # upgrade the safe |evel
$SAFE=4 # upgrade the safe | evel even higher
$SAFE=0 # SecurityError! you can't do it

$SAFE isthread local; in other words, the value of $SAFE in athread may be changed
without affecting the value in other threads. Using this feature, threads can be sandboxed for
untrusted programs.

Thread: :start { # starting "sandbox" thread
$SAFE = 4 # for this thread only
: # untrusted code
}
Level O

Level 0 isthe default safe level. No checks are performed on tainted data.

Any externally supplied string from | O, environment variables, and ARGV is automatically
flagged as tainted.

The environment variable PATH is an exception. Its value is checked, and tainted only if any
directory init iswritable by everybody.

Level 1




In thislevel, potentially dangerous operations using tainted data are forbidden. Thisisa
suitable level for programs that handle untrusted input, such as CGl.

Environment variables RUBYLI B and RUBYOPT areignored at startup.
Current directory (.) isn't included in $LOAD PATH.

The command-line options-e, -1 ,-1,-r,-s,-S, and- X are prohibited.
Process termination if the environment variable PATH is tainted.

Invoking methods and classmethodsof Di r, 1 O, Fi | e,and Fi | eTest for tainted
arguments is prohibited.

Invokingt est , eval ,requi re, | oad, andt r ap methods for tainted argument is
prohibited.

Level 2

In thislevel, potentially dangerous operations on processes and files are forbidden, in
addition to all restrictionsin level 1. The following operations are prohibited:

Dir::chdir
Dir::chroot
Dir::nkdir
Dir::rmdir

File::chown
File::chnod
File::umask
File::truncate
Fi | e#l st at

Fi | e#chnod

Fi | e#chown

Fi |l e#truncate

Fi | e#fl ock

| O#i oct |

| Of ctrl

Methods defined inthe Fi | eTest module
Process: :fork
Process: : set pgi d
Process: :setsid



Process::setpriority
Process: : egi d=

Process: : kill

| oad from aworld-writable directory
syscal |

exi t!

trap

Level 3

Inthislevel, all newly created objects are considered tainted, in addition to all restrictionsin
Level 2.

« All objects are created tainted.
o bj ect #unt ai nt isprohibited.

o Proc objectsretain current safe level to restore when their cal | methods are
Invoked.

Level 4

In this level, modification of global dataisforbidden, in addition to all restrictionsin Level
3.eval isalowed againinthislevel, since al dangerous operations are blocked in this
level.

def safe_eval (str)

Thread: :start { # start sandbox thread
$SAFE = 4 # upgrade safe |evel
eval (str) # eval in the sandbox

}.val ue # retrieve result

end

eval ("1 + 1') # => 2

eval (' system"rm-rf /"') # SecurityError
The following operations are prohibited:

o (Dbj ect #t ai nt

» autol oad, | oad,andi ncl ude

« Modifying Obj ect class



Modifying untainted objects

Modifying untainted classes or modules
Retrieving metainformation (e.g., variable list)
Manipulating instance variables

Manipulating threads other than current
Accessing thread local data

Terminating process (by exi t , abort)

File input/output

Modifying environment variables

sr and



Chapter 3. Built-in Library Reference

We will now explore the core functionality that is built into the standard Ruby interpreter.
Y ou will find descriptions of more than 800 built-in methods in 42 classes and modules.
Topics covered include predefined variables, predefined global constants, and built-in

functions.



3.1 Predefined Variables

Ruby's predefined (built-in) variables affect the behavior of the entire program, so their use
in libraries isn't recommended. The valuesin most predefined variables can be accessed by
alternative means.

$!

$@

$\

<

$?

The last exception object raised. The exception object can also be accessed using =>
inrescue clause.

Thest ack backt r ace for the last exception raised. Thest ack backtrace
information can retrieved by Except i on#backt r ace method of the last
exception.

The input record separator (newline by default). get s, r eadl i ne, etc., take their
input record separator as optional argument.

The output record separator (ni | by default).

The output separator between the arguments to print and Ar r ay#j oi n (ni | by
default). Y ou can specify separator explicitly to Ar r ay#j oi n.

The default separator for spl i t (ni | by default). Y ou can specify separator
explicitly for St ri ng#split.

The number of the last line read from the current input file. Equivaent to
ARGF. | i neno.

Synonym for ARGF.

Synonym for $def out .

The name of the current Ruby program being executed.

Thepr ocess. pi d of the current Ruby program being executed.



The exit status of the last process terminated.

Synonym for $LOAD_PATH.
$DEBUG

Trueif the- d or - - debug command-line option is specified.
$defout

The destination output for pri nt andpri ntf ($st dout by default).
$SF
The variable that receives the output from spl i t when - a is specified. Thisvariable
Isset if the - a command-line option is specified along with the - p or - n option.
$FILENAME

The name of the file currently being read from ARGF. Equivalent to
ARG-. fi | enane.

$LOAD_PATH

An array holding the directories to be searched when loading files with the load and
require methods.

$SAFE
The security level. See Section 2.10.
0
No checks are performed on externally supplied (tainted) data. (default)
1
Potentially dangerous operations using tainted data are forbidden.
2
Potentially dangerous operations on processes and files are forbidden.
3
All newly created objects are considered tainted.
4
Modification of global datais forbidden.
$stdin
Standard input (STDI N by default).
$stdout

Standard output (STDOUT by default).



$stderr

Standard error (STDERR by defauilt).
$VERBOSE

Trueif the- v, - w, or - - ver bose command-line option is specified.
$ X

The value of interpreter option - x (x=0,a,d, F,i ,K | ,p, V).

The following are local variables:
$

Thelast string read by get s or r eadl i ne in the current scope.

$~
Mat chDat a relating to the last match. Regex#mat ch method returns the last match
information.

The following variables hold values that change in accordance with the current value of $~
and can't receive assignment:

$n ($1, $2, $3..)

The string matched in the nth group of the last pattern match. Equivalent to nin],
where misaMat chDat a object.

$&
The string matched in the last pattern match. Equivalent to n{ 0] , wheremisa
Mat chDat a object.
¢
The string preceding the match in the last pattern match. Equivalent to
m pr e_mat ch, where misaMat chDat a object.
$I
The string following the match in the last pattern match. Equivalent to
m post _mat ch, where misaMat chDat a object.
$+

The string corresponding to the last successfully matched group in the last pattern
match.



3.2 Predefined Global Constants

TRUE, FALSE, and NI L are backward-compatible. It's preferableto uset r ue, f al se, and
nil.
TRUE

Synonymfor t r ue.
FALSE

Synonym for f al se.
NIL

Synonym for ni | .

ARGF
An object providing access to virtual concatenation of files passed as command-line
arguments or standard input if there are no command-line arguments. A synonym for
$<.

ARGV
An array containing the command-line arguments passed to the program. A synonym
for $* .

DATA

Aninput stream for reading the lines of code followingthe  END _ directive. Not
defined if __ END _ isn't present in code.
ENV

A hash-like object containing the program's environment variables. ENV can be
handled as a hash.

RUBY_PLATFORM

A string indicating the platform of the Ruby interpreter, e.g., i 686- | i nux.
RUBY_RELEASE DATE

A string indicating the release date of the Ruby interpreter, e.g., 2001- 09- 19.
RUBY_VERSION

A string indicating the version of the Ruby interpreter, eg., 1. 6. 5.
STDERR

Standard error output stream. Default value of $st derr .
STDIN

Standard input stream. Default value of $st di n.
STDOUT



Standard output stream. Default value of $st dout .
TOPLEVEL_BINDING

A Bi ndi ng object at Ruby'stop level.



3.3 Built-in Functions

Sincethe Ker nel moduleisincluded by Obj ect class, its methods are available everywhere in the Ruby
program. They can be called without areceiver (functional form), therefore, they are often called functions.

abort

Terminates program. If an exception israised (i.e., $! isn'tni | ), its error message is displayed.
Array( obj )

Returns obj after convertingittoanarray usingt o_ary ort o_a.
at_exit{..}

Registers a block for execution when the program exits. Similar to END statement (referenced in
Section 2.8), but END statement registers the block only once.

autoload( cl assnane,fil e)
Registersaclass cl assnane to be loaded from file the first timeit'sused. cl assnane may be a
string or a symbol.
aut ol oad : Foo, "foolib.rb".

binding
Returns the current variable and method bindings. The Bi ndi ng object that is returned may be
passed to theeval method asits second argument.

block_given?

Returnst r ue if the method was called with a block.
calcc{|c|...}

Passesa Cont i nuat i on object ¢ to the block and executes the block. cal | cc can be used for
global exit or loop construct.

def foo(c)
puts "in foo" #
c.call # junp out
puts "out foo" # this |ine never be executed
end
callcc{|c| foo(c)} # prints "in foo"
caller([ n])

Returns the current execution stack in an array of the stringsintheformfil e: i ne.lfnis
specified, returns stack entries from nth level on down.

catch(t ag) {...}

Catches anonlocal exit by athrow called during the execution of its block.

def throw ng(n)
throwm :exit, n+2)
end
catch(:exit) {
puts "before throw ng"
t hr owi ng(5)
puts "after throw ng" # this |ine never be executed
} # returns 7



chomp([ r s=%/)

Returns the value of variable $__ with the ending newline removed, assigning the result back to $_.
The value of the newline string can be specified withr s.

$ = "foo\n"

chonmp # $ => "foo"
$_ = ||f00||

chonp # no chonp

chomp!([ r s=$/])

Removes newline from $_, modifying the string in place.

chop
Returnsthe value of $_ with itslast character (one byte) removed, assigning the result back to $_.
$ = "foo\n"
chop # $ => "foo"
$_ - n f OoII
chop #$ => "fo"

chop!

Removes the last character from $_, modifying the string in place.
eva(str[,scope[,file,line]])
Executes st r as Ruby code. The binding in which to perform the evaluation may be specified with

scope. Thefilename and line number of the code to be compiled may be specified usingfi | e and
l'i ne.

exec(cnd[, ar g...])
Replaces the current process by running the command crd. If multiple arguments are specified, the
command is executed with no shell expansion.

exec "echo *" # wild card expansi on
exec "echo", "*" # no wld card expansion

exit([ resul t =0])

Exits program, with r esul t asthe status code returned.
exit!([ resul t =0])

Kills the program bypassing exit handling such asensur e, etc.
fail(...)

Seeraise(...)
Float( obj )

Returns obj after converting it to afloat. Numeric objects are converted directly; ni | is converted
to 0.0; strings are converted considering 0x, Ob radix prefix. The rest are converted using

obj.to_f.

Fl oat (1) # =>1.0
Fl oat (nil) # =>0.0
Fl oat ("1.5") # => 1.5
FI oat (" Oxaa") # => 170.0

fork



fork {...}

Creates a child process. ni | isreturned in the child process and the child process ID (integer) is
returned in the parent process. If ablock is specified, it's run in the child process.
# traditional fork
If cpid = fork
# parent process
el se
# child process
exit! # child process term nation
end
# fork using a bl ock
fork {
# child process
# child term nates automatically when bl ock finish

}
format(f nt [,arg..])

Seesprintf.
gets([ r s=9%/])
Reads the filename specified in the command line or one line from standard input. The record
separator string can be specified explicitly withr s.
# easiest cat(l) imtation
while gets

print $_ # gets updates $_
end

global_variables

Returns an array of global variable names.
gsub(x, y)
gsub( x) {...}
Replaces al strings matching x in$_ withy. If ablock is specified, matched strings are replaced

with the result of the block. The modified result isassignedto $_. See St r i ng#gsub in the next
section.

gsub!(x, y)
gsub!( x){...}

Performs the same substitution as gsub, except the string is changed in place.
Integer( obj )

Returns obj after converting it to an integer. Nurer i ¢ objects are converted directly; ni | is
converted to O; strings are converted considering Ox, Ob radix prefix. The rest are converted using

obj.to_i.

I nt eger (1. 2) #=>1

I nt eger (1.9) #=>1

I nteger(nil) #=>0

I nt eger (" 55") # => 55
I nt eger (" Oxaa") # => 170

lambda{| x|...}



proc {| x|...}

lambda

proc
Converts ablock into a Pr oc object. If no block is specified, the block associated with the calling
method is converted.

load(fi | e[, pri vat e=false])
Loads a Ruby program fromf i | e. Unliker equi r e, it doesn't load extension libraries. If

privat eist rue, the program isloaded into an anonymous module, thus protecting the namespace
of the calling program.

local_variables
Returns an array of local variable names.
loop{...}

Repeats a block of code.
open( pat h[, rode="r"])
open( pat h[, rode="r"]) {|f|...}
Opensafi | e. If ablock is specified, the block is executed with the opened stream passed as an

argument. Thefileis closed automatically when the block exits. If pat h beginswith apipe| , the
following string is run as a command, and the stream associated with that process is returned.

p(obj )

Displays obj using itsinspect method (often used for debugging).
print([ ar g...])

Printsar g to $def out . If no arguments are specified, the value of $__ is printed.
printf(f mt [, ar g...])

Formatsar g accordingtof nt using spri nt f and printsthe result to $def out . For formatting
specifications, seespri nt f for detail.

proc {| x|...}
proc
Seel anda.
putc( c)
Prints one character to the default output ($def out ).
puts([ str])

Prints string to the default output ($def out ). If the string doesn't end with anewline, anewlineis
appended to the string.

puts "foo" # prints: foo\n
puts "bar\n" # prints: bar\n
raise(...)
fail(...)

Raises an exception. Assumes Runt i meEr r or if no exception classis specified. Callingr ai se
without arguments in arescue clause re-raises the exception. Doing so outside a rescue clause raises a
message-lessRunt i neError.fai | isan obsolete namefor r ai se. See"r ai se method" in



Chapter 2.
rand([ max=0])
Generates a pseudo-random number greater than or equal to 0 and less than max. If max iseither not

specified or is set to 0, arandom number is returned as a floating-point number greater than or equal
to 0 and lessthan 1. sr and may be used to initialize pseudo-random stream.

rand( 10) # => 8 (initialized by arbitrary seed)

srand(42) # initialize pseudo random stream

rand # => 0.7445250001

r and # => 0. 3427014787

srand(42) # re-initialize pseudo random stream

r and # => 0.7445250001 (repeated random val ue)

r and # => 0.3427014787 (repeated random val ue)
readling([ r s=%/])

Equivalent to get s except it raises an EOFEr r or exception on reading ECF.
readlines([ r s=%/])

Returns an array of strings holding either the filenames specified as command-line arguments or the
contents of standard input.

require( | i b)

Loads the library (including extension libraries) | i b whenit'sfirst called. r equi r e will not load
the same library more than once. If no extension is specifiedinl i b, requi r e triestoadd. r b,
. SO, €tc., to it.

scan(re)
scan( r e) {|x|...}

Equivalentto$ . scan. See St ri ng#scan in the next section.

select(r eads[, wri t es=nil[, except s=nil[, t i meout =nil]]])
Checks for changes in the status of three types of | O objects—input, output, and exceptions—which
are passed as arrays of | Oobjects. ni | ispassed for arguments that don't need checking. A

three-element array containing arrays of the I O objects for which there were changesin statusis
returned. ni | isreturned on timeouit.

set_trace func( pr oc)

Sets a handler for tracing. pr oc may be astring or Pr oc object. set _trace_f unc isused by the
debugger and profiler.

sleep([ sec])
Suspends program execution for sec seconds. If sec isn't specified, the program is suspended
forever.
sleep 1
sleep 1.5 # wait for 1.5 sec.

split([ sep[, max]])

Equivalentto$ . split.SeeStri ng#split inthenext section.
sprintf(f nt [, arg...])
format(f nt [,arg..])



Returns astring in which ar g is formatted according to f nt . Formatting specifications are
essentially the same asthose for spr i nt f inthe C programming language. Conversion specifiers
(% followed by conversion field specifier) inf nt are replaced by formatted string of corresponding
argument.

The following conversion specifiers, are supported by Ruby's format:

b
Binary integer
C
Single character
d,i
Decimal integer
e
Exponential notation (e.g., 2.44€6)
E
Exponential notation (e.g., 2.44E6)
f
Floating-point number (e.g., 2.44)
g
use %e if exponent is less than -4, %f otherwise
G
use %E if exponent isless than -4, %f otherwise
o]
Octal integer
S
String, or any object converted usingt o_s
u
Unsigned decimal integer
X
Hexadecimal integer (e.g., 39ff)
X

Hexadecimal integer (e.g., 39FF)

Optional flags, width, and precision can be specified between % and conversion field specifiers.

sprintf("%\n", "abc") # => "abc\n" (sinplest form
sprintf("d=%", 42) # => "d=42" (deci mal out put)
sprintf("%4x", 255) # => "00ff" (wmdth 4, zero padded)
sprintf("98s", "hello") #=>" hel | " (space padded)
sprintf("% 2s", "hello") # => "he" (trinmmed by precision)

srand([ seed])



Initializes an array of random numbers. If seed isn't specified, initialization is performed using the
time and other system information for the seed. Also seer and.

String( obj )
Returns obj after converting it to astringusing obj . t o_s.
String(1) # => "1"
String(Qoject) # => "(bject”
String("1.5") # => "1.5"

syscal(sys[,arg..])
Calls an operating system call function specified by number sy s. The numbers and meaning of sys
IS system-dependant.

system( cnd[, ar g...])

Executes cnd as acall to the command line. If multiple arguments are specified, the command isrun
directly with no shell expansion. Returnst r ue if the return statusis O (success).

system "echo *" # wild card expansion
system "echo", "*" # no wild card expansion
sub( X, y)
sub( x) {...}

Replaces the first string matching x in$_ withy. If ablock is specified, matched strings are replaced
with the result of the block. The modified result isassignedto $_. See St r i ng#sub in Section 3.4.

sub!(x,y)
sub!( x) {...}

Performs the same replacement as sub, except the string is changed in place.
test(test,f1[,f2])

Performs one of the following file tests specified by the character t est . In order to improve

readability, you should use Fi | e class methods (for example Fi | e: : r eadabl e?) rather than this
function. Here are the file tests with one argument:

o

Isf 1 readable by the effective ui d of caller?
w

Isf 1 writable by the effective ui d of caller?
X

Isf 1 executable by the effective ui d of caller?
20

Isf 1 owned by the effective ui d of caller?
R

Isf 1 readable by thereal ui d of caller?
W

Isf 1 writable by thereal ui d of caller?
X



?A

Isf 1 executable by thereal ui d of caller?

Isf 1 owned by thereal ui d of caller?

Doesf 1 exist?

Doesf 1 have zero length?

Filesizeof f 1(ni | if O)

Isf 1 aregular file?

Isf 1 adirectory?

Isf 1 asymbolic link?

Isf 1 anamed pipe (FI FO?

Isf 1 asocket?

Isf 1 ablock device?

Isf 1 acharacter device?

Doesf 1 havethe set ui d bit set?

Doesf 1 havetheset gi d bit set?

Doesf 1 have the sticky bit set?

Last modification timefor f 1.

Last accesstimefor f 1.

Lasti node changetimeforf 1.

File tests with two arguments are as follows:



v

Aremodification timesof f 1 and f 2 equal?

>

Isthe modification time of f 1 morerecent thanf 2 ?
<

Isthe modification timeof f 1 older thanf 2 ?
2

Isf1ahardlinktof 2 ?
throw( t ag[, val ue=nil])

Jumpsto the cat ch function waiting with the symbol or stringt ag. val ue isthereturn value to be
used by cat ch.

trace var(var, cnd)

trace var(var){...}
Setstracing for aglobal variable. The variable name is specified as a symbol. cnd may be a string or
Pr oc object.

trace_var (: $foo) {]|v|
printf "$foo changed to %\n", v

}
$foo = 55 # prints: $foo changed to 55

trap( si g, cnd)
trap(si g){...}
Setsasignal handler. si g may be astring (like SI GUSR1) or an integer. SI Gmay be omitted from

signal name. Signal handler for EXI T signal or signal number O isinvoked just before process
termination.

cmd may be astring or Pr oc object. If cnd is| GNORE or SI G_| GN, the signal will beignored. If
cnd isDEFAULT or SI G_DFL, the default signal handler defined by the operating system will be
invoked.

trap("USRL") {
puts "receives Sl GUSRL"

}

# prints nessage if SIGUSRL is delivered to the process.
untrace var( var [, cnd])

Removes tracing for aglobal variable. If cnd is specified, only that command is removed.



3.4 Built-in Library

Ruby's built-in library provides you with arich set of classes that form the foundation for your Ruby
programs. There are classes for manipulating text (St r i ng), operating system services and abstractions (1 O,
Fi | e, Process, etc.), numbers(l nt eger, Fi xnum etc.), and so on.

Using these basic building blocks, you can build powerful Ruby programs. But wait, in the next chapter, | lay
out the Standard Library, which extends Ruby's flexibility.

3.4.1 Objects

Ruby couldn't lay claim to being an " object-oriented scripting language” without providing fundamental tools
for OOP. This basic support is provided through the Cbj ect class.

Object Superclass of all classes

hj ect isthe parent class of all other classes. When amethod is defined at the top level, it becomes a
private method of this class, making it executable by all classes asif it were afunction in other languages.

Included Modules

Ker nel

Private Instance Methods
initialize

Initializes an object. Any block and arguments associated with the new method are passed directly to
initialize.It'sassumed that this method will be redefined by subclasses for object initialization.

Kernel Module containing built-in functions

Ker nel isthe modulein which Ruby's built-in functions are defined as module functions. Since it's included
in Cbj ect , Ker nel isindirectly included in all classes.

Private Instance Methods

Function-like methods are private methods of Ker nel . Although the following methods fall into the same
category, they are more similar to standard private instance methods than function-like methods.

remove_instance variable( nane)

Removes instance variable specified by nane.
Instance Methods
0 == other

Determines if the values are equal.
0 === other

Comparison operator used by case statement (compares equality or confirms class membership).



0 =~ other

Checks for pattern matches. The definition in Ker nel cals===.
o.class

0.type

Returns the class of the object o.
o.clone

Creates a copy of the object o (in asfar as possible, including singleton methods).
o.display([ out =$defout])

Prints the object. The output is specified in the argument.
0.dup

Creates a copy of the object (copying the content).
o.eql?( obj )

Performs a hash comparison. In order for eql ? toreturnt r ue, the hash value of both objects must
have equal hash values.

o.equa?( obj )
Returnst r ue if the two objects are the same.
o0.extend( nod)

Adds module features (instance methods, etc.) of nod to the object o.
o.freeze

Freezes the object o0, preventing further modification.
o.frozen?

Returnst r ue if the object is frozen.
0.hash
Creates a hash value for the object 0. Used together with eql ? when the object is used as the key of a
hash.
o.id
o._ id__
Returns the unique identifier value (integer) of the object o.
0.inspect

Returns the human readabl e string representation of the object o.

o.instance eval(str)

o.instance eva { . . .}
Evaluates the string or block in the context of the object. Features of the object, such asitsinstance
variables, can be accessed directly.

o.instance _of?( ¢)

Returnst r ue if o isaninstance of theclassc.
o.instance variables



Returns an array of the object's instance variable names.
0.kind_of?( nod)
0.is_a nod)

Returnst r ue if the object is an instance of nod, one of its descendants, or includes nod.
0.method( nane)

Returns a Met hod object corresponding to name. An exception israised if the corresponding method

doesn't exist.

plus = 1. nethod(: +)

pl us. call (2) # => 3 (1+2)
0.methods

0.public_methods

Returns an array of the object's public method names.
0.nil?

Returnstrue ifoisnil .
o.private_methods

Returns an array of the object's private method names.
o.protected methods

Returns an array of the object’s protected method names.
0.public_methods

Seeo0. net hods.
o.respond_to?( namne)

Returnst r ue if method named namne existsin the object o.
o.send( nane[,arg...])
0.__send_ (nane[,arg...])

Calls the method named nane in the object.
o0.singleton_methods

Returns an array of the object's singleton method names.
o.taint

Marks the object as tainted (unsafe).
0.tainted?

Returnst r ue if the object o istainted.
0.to a

Returns an array representation of the object 0. For objects that can't be naturally converted into an
array, an array containing that o as the sole element is returned.

0.to s

Returns a string representation of the object.
0.type
Seeo. cl ass.



o.untaint

Removes the taint from the object.
3.4.2 Strings and Regular Expressions

Death, taxes, and ... processing text. Y es, these are virtually inescapable in a programmer's life. In Ruby, |
share your pain. Using the St r i ng, Regexp, and Mat chDat a classes, Ruby provides sharp toolsto dlice,
dice, and manipulate text to your heart's content.

String Character String class

St ri ng isone of Ruby's basic datatypes, which contain arbitrary sequences of bytes. St r i ng can contain
\ 0.

Included Module

Enuner abl e, Conpar abl e

Class Method

String::new( str)
Creates a string.

Instance Methods

Methods of the St r i ng classendingin! modify their receiver and return a string if modification took
place, otherwise ni | . Methods without a! return a modified copy of the string.

~S
Attempts to match pattern s against the $_ variable. This method is obsolete.
s %arg
An abbreviated form of spri ntf (s, arg...).Multiple elements are specified using an array.
s*n
Returns a string consisting of s copied end to end n times.

S+str

Returnsastring with st r concatenated to s.
S <<str

Concatenatesstr tos.
S =~X

Performs aregular expression match. If x isastring, it's turned into a Regexp object.
s[n]

Returns the code of the character at position n. If n isnegative, it's counted as an offset from the end of
the string.

s[n.m



s[n,l en]

Returns a partial string.

"bar"[1..2] # => "ar"
"bar"[1..-1] # => "ar"
"bar"[-2..2] # => "ar"
"bar"[-2..-1] # => "ar"
"bar"[1, 2] # => "ar"
"bar"[-1, 1] # =>"r"

s[ n]=val ue

Replaces the n th element in the string with val ue. val ue may be a character code or string.
s[n.m=str
s[n,l en]=str

Replaces a part of the string with st r .

s.capitalize

s.capitalize!
Returns a copy of s with the first character converted to uppercase and the remainder to lowercase.
"fooBar".capitalize # => "Foobar™

s.center( w)
Returns a string of length wwith s centered in the middle. s is padded with spacesif it has a length of
less than w.
"foo".center(10) #=>" f oo
"foo".center(2) # => "foo"

s.chomp([ r s=9%/])
s.chomp!([ r s=$)

Deletes the record separator from the end of the string. The record separator string can be specified

withr s.
"foo\n". chonp # => "foo"
"foo". chonp # => "foo" (no chonp)
a = "foo\n"
a. chonp! # => "foo"
a # => "foo" (original changed)
a = "foo"
a. chonp! # => nil (no chonp)
s.chop
s.chop!

Deletes the last character (byte) from the string.

"foo\n". chop # => "foo"
"foo". chop # => "fo" (last byte chopped off)

s.concat( str)

Concatenates st r to the string.
s.count(str...)

Returns the number of occurrences of the charactersincluded in st r (intersection of st r if multiple



str given)ins.str isnegated if st r startswith ~. The sequence c1-c2 meansall characters
between c1 and c2.

" 123456789" . count (" 2378") # => 4
"123456789". count ("2-8", ""4-6") # => 4

s.crypt(sal t)

Encryptsthe string s using a one way hash function. sal t isatwo-character string for seed. See
crypt(3).

S.delete(str...)

s.deletel(str...)

Deletes the charactersincluded in st r (intersection of st r if multiplest r given) from s. Usesthe
same rules for building the set of charactersass. count .

"123456789". del et e("2378") # =>"14569"
"123456789". del ete("2-8", ""4-6") # =>"14569"
s.downcase
s.downcase!

Replaces all uppercase charactersin the string with lowercase characters.
s.dump

Returns version of string with all nonprinting and special characters converted to backslash notation.
s.each([ r s=9%/]) {|ling]. . .}
s.each_ling([ r s=%/) {|ling]. . . }

Invokes the block for each linein s. The record separator string can be specified withr s.
s.each byte{|byte|...}

Invokes the block for each byteins.
s.empty?

Returnst r ue if s hasalength of O.

s.gsub(x,y)

s.gsub(x){...}

s.gsub!( x,y)

s.gaubl(x){...}
Replaces all strings matching x in the string withy. If ablock is specified, matched strings are
replaced with the result of the block.

"hell o worl d".gsub(/[aeiou]/, ".") #=>"h.ll. wr
"hell o worl d". gsub(/[aeiou]/){]| x| x.upcase} # => "hElI| O wOr

s.hex

| d"
| d"

Treats s asastring of hexadecimal digits and returnsitsinteger value.
s.include?( x[, pos=0])

Returnst r ue if str ispresentins. x may be an integer representing the character code, a string, or a
regular expression. If pos isgiven, the search is started at offset pos.

s.index( x[, pos=0])

Returnstheindex of x instring s, or ni | if x isn't present. x may be an integer representing the



character code, a string, or a pattern. If pos isgiven, the search is started at offset pos.
s.intern

Returns the symbol correspondingto s.
s.length

Sees. si ze.

s.ljust(w)
Returns a string of length wwith s left-justified. s is padded with spacesif it has alength of less than
W.

S.next

S.next!

S.succ

S.succ!

Retrieves the next logical successor of the string s.

"aa".succ # => "ab"
"99" . succ # => "100"
"a9".succ # => "b0O"
"Az" . succ # => "Ba"
"zz".succ # => "aaa"

s.oct

Treats s asastring of octal digits and returnsitsinteger value. If s beginswith 0x, it'streated as a
hexidecimal string; if s beginswith Ob, it's treated as a binary string.

s.replace( str)

Replaces contents of s with that of st r .

s = "abc"

s.repl ace("foobar") # => "foobar"

S # => "foobar" (contents repl aced)
S.reverse
S.reversel

Reverses the charactersin the string s.
s.rindex( X[, pos])
Returns the index of last occurrence of x in s as calculated from the end of the string, or ni | if x isn't

present. X may be an integer representing the character code, a string, or a pattern. If pos isgiven, the
search is ended at offset pos.

s.rjust(w)
Returns a string of length wwith s right-justified. s is padded with spacesif it has alength of less than
W.
"foo".rjust(10) #=>" f oo"
"foo".rjust(2) # => "foo"
s.scan(re)

s.scan(re){[x|...}

Attempts to match the regular expression r e, iterating through the string s. scan returns an array



containing either arrays, which hold the matched results from groups, or strings, which represent the
matched resultsif there were no groups in the expression. If ablock is specified, it executes, iterating
through each element in the array that would have been returned had scan been called without a

block.
"foobarbaz".scan(/(ba)(.)/)

"foobarbaz".scan(/(ba)(.)/) {]s]

# prints:
# ["ba", "r"]
# ["ba", "z"]
s.size
s.length

Returns the length of the string.
s.dlice( n)
s.dice(n..m
s.dice(n, | en)

Returns a partial string.
s.dicel( n)
s.dicel(n..m
s.dicel(n, | en)

# => [["ba", "r"], ["ba", "z"]]
p s}

Deletes the partial string specified and returnsiit.

a = "0123456789"
p a.slicel(1,2) # "12

p a # "03456789"

s.split([ sep[, max]])

Splits the contents of the string using sep as the delimiter and returns the resulting substrings as an
array. If sep isn't specified, whitespace (or the value of $; if itisn't ni | ) isused asthe delimiter. If
mex is specified, the string is split into a maximum of max elements.

abc'.split # =
"a:b:c".split(/:1/) # =>
"a:b:c:::".split(/:/,4) # =>
a:b:c::".split(/:/,-1) # =>
"abc".split(//) # =>

s.squeeze([ str...])
s.squeezel ([ str...])

—————

OO DD

n a"

b
" p
"

et

n bll

"G

"]
’""’""]
"]

0000

Reduces all running sequences of the same character included in st r (intersection of st r if multiple
str given) to asingle character. If st r isn't specified, running sequences of all characters are reduced

to asingle character.

"112233445" . squeeze # =>"12345"
"112233445" . squeeze("1-3") # =>"123445"

s.strip
S.strip!

Deletes leading and trailing whitespace.
s.sub( x,y)
s.sub(x){...}



s.subl( x,y)

ssubl(x){...}
Replaces the first string matching x withy. If ablock is specified, matched strings are replaced with
the result of the block.

S.succ

Sees. next.
s .succl!

Sees. next.
s.sum([ n=16])

Returns an n-bit checksum of the string s.
S.swapcase
S .swapcase!

Converts uppercase characters to lowercase and vice-versa.
s.to f

Converts the string into a floating point number. Returns 0. O for uninterpretive string. For more strict
conversion, use Fl oat ( ).

"1.5".to_f # => 1.5
"a".to_f # => 0.0
Float ("a") # error!
s.to i
Converts the string into an integer. Returns O for uninterpretive string. For more strict conversion, use
I nteger( ).
"1".to_ # => 1
"a".to_li # =>0
| nt eger ("a") # error!
s.to_str
Returns s itself. Every object that hast o_st r method istreated asif it'sastring.
s.tr(str,r)
s.tri(str,r)
Replaces the charactersin st r with the corresponding charactersinr .
s.tr s
s.tr_s
After replacing charactersasint r , replaces running sequences of the same character in sections that
were modified with a single character.
"foo".tr_s("o", "f") # => "ff"
“foo".tr("o", "f").squeeze("f") # =>"f"
S.succ
Sees. next.
S.succ!

Sees. next.



s.unpack(t enpl at e)

Unpacks s into arrays, decoding the string by performing the opposite of
Array#pack(tenpl ate) .t enpl at e can consist of acombination of the following directives:

a
ASCII string
A
ASCII string (deletes trailing spaces and null characters)
b
Bit string (ascending bit order)
B
Bit string (descending bit order)
c
Char
C
Unsigned char
d
Double (native format)
e
Little endian float (native format)
E
Little endian double (native format)
f
Float (native format)
g
Big endian float (native format)
G
Big endian double (native format)
h
Hex string (low nibble first)
H

Hex string (high nibble first)

| nteger

Unsigned integer



Long

Unsigned long

Base64 encoded string

Quoted printable string

Big-endian short (network byte order)

Big-endian long (network byte order)

Pointer to a null-terminated string

Pointer to a structure (fixed-length string)

Short

Unsigned short

UU-encoded string

UTF-8 string

Little-endian short (VAX byte order)

Little-endian long (VAX byte order)

BER-compressed integer

Null byte

Backs up one byte

ASCII string (deletes trailing null characters.)



Moves to absolute position

Each directive may be followed by a decimal number, indicating the number of elementsto
convert, or an asterisk, indicating that al remaining elements should be converted. Directives
may be separated with a space. DirectivessSi | | L followed by _ use the native size for that
type on the current platform.

"\ 001\ 002\ 003\ 004" . unpack(" COCC") # =>1[1, 2, 3, 4]
"\ 001\ 002\ 003\ 004" . unpack(" V") # => [ 67305985]
"\ 001\ 002\ 003\ 004" . unpack("N") # => [ 16909060]

S.upcase
S .upcase!

Replaces all lowercase characters in the string with uppercase characters.
s.upto( mex) {|x|. ..}
Returns x and continues to iterate to the next logical successor up to max. The method s. next is
used to generate each successor.
llall- upt 0(II ball) {l XI
print x
}# prints a, b, ¢, ... z,aa, ... az, ba

Regexp Regular expression class

Regex is object representation of regular expression. Regular expression is a mini-language to describe
patterns of strings. For its syntax, see "Regular-expression patterns,” which is under Section 2.4.6 in Chapter

2.

Class Methods
Regexp::new( st r [, opti on[, code]])
Regexp::compile( st r [, opt i on[, code]])

Createsa Regexp object. opt i on may be alogical OR of Regexp: : | GNORECASE,
Regexp: : EXTENDED, and Regexp: : MULTI LI NE. code may be a string specifying a multibyte
character set code.

Regexp::escape( st r)
Regexp::quote( st r)

Returns a copy of st r with all regular expression meta characters escaped.
Instance Methods
~r

Performs aregular expression match against $_. Equivalenttor =~ $_. Thismethod is obsolete.
r ===str

Synonym forr =~ str usedincase statements.
r=-str

Performs aregular expression match, returning the offset of the start of the match, or ni | if the match



failed.
r .casefold?

Returnst r ue if the Regexp object is case-insensitive.

r.match(str)
Performs aregular expression match, returning the resulting match information as a Mat chDat a
object, or ni | if the match failed.

if m=/fo*b.r+/.mtch(str)
puts nj 0] # print matched string
end

r .source
Returns the original regular expression pattern string.

MatchData Classfor holding regular expression pattern match data

Mat chDat a objects can be retrieved from the variable $~ or as return values from Regexp. mat ch.
Example

if m= pat.match(str) # Mat chData obj ect on success

print "matched: ", n{0], "\n"

print "pre: ", mpre_match, "\n"

print "post: ", mpost_match, "\n"
end

Instance Methods

nin]
Returns the match corresponding to the nth group of the regular expression. If n is0, the entire
matched string is returned.

mbegin( n)
Returns the offset of the start of the match corresponding to the nth group of the regular expression. If
n is0, the offset of the start of the entire matched string is returned.

mend( n)
Returns the offset of the end of the match corresponding to the nth group of the regular expression. If
n is0, the offset of the end of the entire matched string is returned.

mlength

Seem si ze

moffset( n)
Returns a two-element array containing the beginning and ending offsets of the string corresponding to
the nth group of the regular expression.

mpost_match

Returns the part of the original string following the matched string.
mpre_match



Returns the part of the original string preceding the matched string.
msize
mlength

Returns the number of groupsin the regular expression +1.
mstring

Returns the original string used for the match.
mto_a

Returns an array of the matches (i.e.,[ $& $1, $2...]).
3.4.3 Arrays and Hashes

One of the cornerstones of scripting languages is ssimple, flexible and powerful mechanisms for manipulating
program data. In Ruby, the Ar r ay and Hash classes provide intuitive and rich capabilities for doing just
that.

Array Array class

Array isaclassfor an ordered collection of objects, indexed by integer. Any kind of object may be stored in
anArray.Arrays grow asyou add elements.

Included Module
Enuner abl e

Class Methods

Array[ X. . . ]

Creates an array.
Array::new([ si ze=0[,fi | | =nil]])

Createsan array. Itssi ze and initial values may also be specified.
Array::new(4, "foo") # => ["foo","foo0","fo0","fo00"]

Instance Methods

Methods of the Ar r ay classending in! modify their receiver and return an array if modification took place,
otherwiseni | . Methods without a! return a modified copy of the array.

arr & array

Returns an array of elements common to both arrays.

[1,3,5]|[1, 2, 3] # =>[1,3]
[1,3,5]]|[2, 4, 6] # =>11,2,3,4,5, 6]
arr|array

Returns an array combining elements from both arrays.
[1,3,5]|[2, 4, 6] # =>11,2,3,4,5, 6]



arr *n
If n isan integer, returns a copy of array with n copiesof ar r concatenated to it. If n isastring, the
equivalent of arr . j oi n( n) isperformed.
[5] * 3 # => [5, 5, 5].
["foo", "bar"] * "-" # => "foo-bar"
arr +array

Returnsacopy of ar r withar r ay concatenated to its end.
arr -array

Returns anew array that isacopy of ar r , removing any itemsinarr ay.
[1, 2, 3, 4] - [2, 3] # => [1, 4]

arr <<item
Appendsi temtoarr.

arr[n]

References the nth element of ar r . If n isnegative, it'sinterpreted as an offset from theend of arr .

arr[n.m

arr[n,l en]
Returns a partial string.

arr[n]=item

arr[r.m=array

arr[r,l en]=array

Assignsitem or ar r to the specified elements.

arr = [0, 1, 2, 3, 4, 5]
arr[0..2] =["a", "b"] # arr => ["a", "b", 3, 4, 5]
arr[1, 0] =1["c"] # arr => ["a", "c", "b", 3, 4, 5]

ar r .assoc( key)

Searches through an array of arrays, returning the first array with aninitial element matching key.

a=1[[12],[24],[3, 6]]
a. assoc(2) # =>[2, 4]

arr .at(n)

Returns the nth element of arr .
arr .clear

Removes all elementsfromarrr .
arr.collect {|x|...}
arr .collect! {|x]|...}

arr.map{|x|...}

arr.map! {|x|...}
Invokes the block on each element returning an array holding the results.
[1,2,3].collect{]|x]|x*2} # =>12,4,6].



arr.
arr.

arr

arr.
arr.

arr.
arr.

arr

arr.
arr.

arr.
arr.

arr.
arr.

compact
compact!

Removesal ni | elementsfromarr .

.concat( ar r ay)

Appends the elements of array toar r .
delete(i t em)
delete(item {|iten...}

Deletes all elements matching i t emusing ==. With a block, it returns the result of the block if no
elements were deleted.

.delete_at( n)
Deletes the nth element of ar r .
delete if {|x|...}

Deletes elements where the value of block ist r ue.

each{|x|...}
Invokes the block on each element of ar r .

.each index {|i]...}
Invokes the block on each element, passing the index, which is an integer ranging from O to
arr.length - 1.

.empty?

Returnst r ue if thearray length isO.
fill(val ue[, begl[, | en]])
fill(val ue,n..m

Sets the specified element (or range of elements) inar r toval ue.

first
Returnsthe first element of ar r . Equivalenttoarr [ 0] .
flatten
flatten!
Returns aflattened, one-dimensional array by moving all elements and subelements of ar r into the
new array.
[1, [2, 3, [4], B]].flatten #=>[1, 2, 3, 4, 5]
include?(i t em)
member?(i t em)

Returnst r ue if ar r containsitem as an e ement.

index(item

Returns the index number of thefirst iteminar r equal to item (with O being the first index number),
orni | if itemisn't present.

indexes([ i ndex. . .])
indices([ i ndex. . .])



Returns an array of elements from the specified indexes.
arr .join([ s=$,))

Returns a string by joining together all elementsin ar r , separating each substring with s.

["foo", "bar].join # => "foobar"
["hello", "world].join(" ") # => "hello world"
arr last

Returnsthe last element of ar r . Equivalenttoarr[-1].
ar r .length
Seearr. si ze
arr.map{|x|...}
Seearr.collect {|x]...}
arr.map! {|x]|...}
Seearr.collect {|x]...}
arr.member?(item

Seearr.include?(item
ar r .nitems

Returns the number of elements with non-ni | values.
arr .pack(t enpl at e)

Packs the elements of an array into a string according to the directivesint enpl at e.t enpl at e
may consist of a combination of these directives:

a
ASCII string (null padded)
A
ASCII string (space padded)
b
Bit string (ascending bit order)
B
Bit string (descending bit order)
c
Char
C
Unsigned char
d
Double (native format)
e

Little endian float (native format)



Little endian double (native format)

Float (native format)

Big endian float (native format)

Big endian double (native format)

Hex string (low nibble first)

Hex string (high nibble first)

I nteger

Unsigned integer

Long

Unsigned long

Base64-encoded string

Quoted printable string

Big-endian short (network byte order)

Big-endian long (network byte order)

Pointer to a null-terminated string

Pointer to a structure (fixed-length string)

Short

Unsigned short



arr

arr.
arr.

arr.
arr.

UU-encoded string

U
UTF-8 string

%
Little-endian short (VAX byte order)

V
Little-endian long (VAX byte order)

w
BER-compressed integer

X
Null byte

X
Backs up one byte

Z
ASCII string (space padded)

@
Moves to absolute position
Each directive may be followed by either a decimal number, indicating the number of elements
to convert, or an asterisk, indicating that all remaining elements should be converted. Directives
may be separated with a space. DirectivessSi | | L followed by _ use the native size for that
type on the current platform.
[1, 2, 3, 4].pack("CCCC") # => "\ 001\ 002\ 003\ 004"
[ 1234] . pack(" V") # => "\ 322\ 004\ 000\ 000"
[ 1234] . pack("N") # => "\ 000\ 000\ 004\ 322"

-Pop
Removes the last element from ar r and returnsit.
Jpush(obj...)

Appendsobj toarr.

.rassoc( val ue)

Searches through an array of arrays, returning the first array with a second element matching val ue.
[[1,2],[2,4],[3,6]].rassoc(2) # =>[1, 2]

rgect {|x]|...}

reject! {|x|...}
Deletes elements where the value of block ist r ue.

replace( arr ay)

Replaces the contents of ar r with that of array.
reverse
reversel



Puts the elements of the array in reverse order.
arr .reverse each{|x|...}

Invokes the block on each element of ar r in reverse order.
arr.rindex(item

Returns the index of the last object inar r equal to item.
a=1[1 2, 3, 1, 3, 4]

a. rindex(3) #=> 4
a. rindex(9) #=> ni |
ar r .shift

Removesthe first element from ar r and returnsiit.

a=1[1 2, 3, 1, 3, 4]
a.shift
a

arr .size
arr .length

#=> 1
#=> |

2, 3, 1, 3, 4]

Returns the number of elementsinarr .
arr .dice( n)
arr .dice(n..m
arr .dice(n, | en)

Deletes the partial string specified and returnsit.

a = "0123456789"
a.slicel(1,2) # => "12"
a # => "03456789"

arr .glicel(n)
arr . dicel(n..m
arr .dicel(n, | en)

Deletes the partial string specified and returnsit.
a=1[0,1,2,3,4]

a.slicel!(4) # =>4
a # => 10,1, 2, 3]
a.slicel (1..2) # =>[1,2]
a # => [0, 3]
arr .sort
arr .sort!
Sortsthe array.
arr.sort{|a,b|...}
arr.sort! {|a,b|...}

Arrays can be sorted by specifying the conditions for the comparison using a block. The block must
compare a and b, returning O when a == b, a negative number when a < b, and a positive number
whena > b.

arr.uniq
ar r .uniqg



Deletes duplicate elements from ar r .
arr.unshift(i tem

Prependsi t emtoarr.
a=1[1,2,3]
a.unshift(0) #=> [0, 1, 2, 3]

Hash Hash class

Hash isaclassfor collection of key-value pairs, or in other words, a collection indexed by arbitrary type of
objects, which define proper hash and eql ? methods.

Included Module
Enuner abl e
Class Methods

Hash[key, value. . . ]

CreatesaHash.

Hash[ 1, 2,2,4] # => {1=>2, 2=>4}
Hash::new([default=nil])

CreatesaHash. A default value may also be specified.

h = Hash:: new( 15) # => {}
h[ 44] # => 15 (no key; default returned)

Instance Methods

Methods of the Hash classending in apipe! modify their receiver and return a hash if modification took
place, otherwise ni | . Methods without a! return a modified copy of the hash.

h[ key]

Returnsthe val ue associated with key.
h[ key]=val ue

Associatesval ue withkey.
h.clear

Deletes al key-value pairs from h.

h = {1=>2, 2=>4}

h. cl ear

h # => {}

h = {1=>2, 2=>4}
h.delete_if{|k,v] k %2 == 0}
h # => {1=>2}

h.default

Returns the default value for akey that doesn't exist. Note that the default value isn't copied, so that
modifying the default object may affect al default values thereafter.



h.default=val ue

Sets the default value.
h.delete( key)

Deletes a key-value pair with akey equal to key.
h.delete if {| key, val ue|. ..}

Deletes key-value pairs where the evaluated result of block ist r ue.
h.each {| key,val ue|.. .}
h.each pair {| key,val ue|. ..}

Executes the block once for each key-value pair. Pairs are in unspecified order.
h.each_key {| key|. ..}

Executes the block once for each key. Keys are in unspecified order.
h.each value{|val ue|...}

Executes the block once for each value. Values are in unspecified order.
h.empty?

Returnst r ue if the hash is empty.
h.fetch( key[, i f none=nil])
h.fetch( key) {| key]|. ..}

Returns the value associated with key. If key isn't present in h, the value of the block is returned. If
no block is specified, i f none isreturned.

h.has value?( val ue)

Seeh. val ue?(val ue)
h.index( val ue)

Returnsthe key for val ue, or ni | if it isn't present.
h = {1=>2, 2=>4}
h. i ndex(4) # => 2
h. i ndex( 6) # => nil
h.indexes([ key. . . ])

h.indices([ key. . . ])

Returns an array of values associated with the specified keys.
h.invert

Returns a hash containing h's values as keys and h's keys as values. If more than one keys have same
value, arbitrary key is chosen.

h = {"y" => 365, "n' => 31, "d" => 24, "h" => 60}
p h.invert # => {60=>"h", 365=>"y", 31=>"ni', 24=>"d"}
h.key?( key)
h.has key?( key)
h.include?( key)
h.member?( key)

Returnst r ue if key ispresent in h.



h.keys

Returns an array of all keys.
h.rehash

Rebuilds the hash. If a hash isn't rebuilt after one of its key hash valuesis changed, that key will no
longer be accessible.

a =1[1,2] # array as key

h = {a=>3}

h[ a] # => 3

a[0] =2 # nodify key

h[ a] # => nil (cannot find)
h. rehash

h[ a] # => 3

h.rgect {| key,val ue|. ..}
h.rgect! {| key, val ue|. ..}

Deletes key-value pairs where the value of block ist r ue.
h.replace( hash)

Replaces the contents of h with that of hash.
h.shift

Removes a key-value pair from h and returnsiit.
h.size
h.length

Returns the number of key-value pairsin h.
h.sort
h.sort{|a,b|...}

Produces an array using h. t o_a and returnsit sorted.
h.store( key, val ue)

Synonym for h[ key] =val ue.
h.to a

Returns an array containing the array equivalent (key, value) of h.
h = {"y" => 365 "ni' => 31, "d" => 24}

h.to_a # => [["nm', 31], ["d", 24], ["y", 365]]

h.to_hash
Returns h itself. Every object that hasat o _hash method istreated asif it'sahash by h. r epl ace
and h. updat e.

h.update( hash)

Updates h with the contents of the specified hash. If duplicate keys exist, the associated value of
hash takes precedence and overwrites that of h.
hi = { "a" => 100, "b" => 200 }
h2 = { "b" => 300, "c" => 400 }
h1l. updat e( h2) #=> {"a"=>100, "b"=>300, "c"=>300}
h.vaue?( val ue)



h.has value?( val ue)

Returnst r ue if valueis present in h.
h.values

Returns an array of all values.
h = {"y" => 365, "ni' => 31, "d" => 24}
p h.val ues # => [31, 24, 365]

Enumerable Enumerable mix-in module

The Enumrer abl e module assumes that the including class has an each method. Y ou can add the following
methods to a class that provides each, by just including this module.

Instance Methods

e.collect {|x|...}
e.map{|x|...}
Returns an array containing the results of running the block on each itemin e.
e.detect {| x|. ..}
Seee.find {|x]...}
e.each_with_index {|x,i |. ..}

Executes the block once for each item in e, passing both the item and its index to the block.
["foo","bar","baz"].each_w th_index {|x,i]

printf "%l: %\n", i, X
}
# prints:
# 0: foo
# 1: bar
# 2: baz.
e.entries
e.to a

Returns an array containing the items passed to it by e. each.
efind{|x]...}
e.detect {| x|. ..}

Returns the first item for which the block returnst r ue.
["foo","bar", "baz"].detect {|s| /~b/l =~ s} # => "bar"
efind al {|x]...}
e.select {|x|...}
Returns an array of all items for which the block returnst r ue.
["foo","bar","baz"].select {|s| /~b/l =~ s} # => ["bar", "baz"]
e.grep(re)
egrep(re){|x]...}



Returns an array containing all items matching r e. Uses ===. If ablock is specified, it's run on each
matching item, with the results returned as an array.

["foo","bar","baz"].grep(/"b/) # =>["bar","baz"]

[1,"bar",4.5].grep(Nuneric) # =>[1,4.5]
[1,"bar",4.5].grep(Nuneric) {]|x]|
puts x+1
}
# prints:
# 2
# 5.5

e.include?(item
e.member?(i t em
Returnst r ue if anitemequal to i t emis present in e. Items are compared using ==.
e.map{|x]|...}
Seee.collect {|x]...}
e.max

Returns the item in e with the maximum value. Assumes a <=> comparison is possible between the
items.
[1,5, 3, 2]. max # => 5

e.member?(i t em

Seee.include?(iten
e.min

Returns the item in e with the minimum value. Assumes a <=> comparison is possible between the
items.
[1,5,3,2].mn # =>1

e.rgect{|x|...}

Returns an array of al items for which the block returnsf al se.

["foo","bar","baz"].reject {|s| /"b/ =~ s} # => ["foo0o"]
e.sdect{|x|...}

Seee.find all {|x]|...}
e.sort
esort{|a,b|...}

Returns an array of sorted items from e. If ablock is specified, it's used for the comparison. Like <=>,
the block must compare the two items and return a positive number (a> b), O(a == b), or anegative
number (a<b).

eto a

Seee.entries
3.4.4 Numbers

Asyou'd expect, Ruby provides a suitably powerful set of classes for manipulating numeric data, through the
classesNuneri c, | nt eger, Fi xnum Bi gnum and Fl oat . In addition, further tools are available in the
Pr eci si on and Mat h modules for manipulating numeric data.



Numeric Superclass of all concrete numbers

Nurrer i ¢ provides common behavior of numbers. Nuner i ¢ isan abstract class, so you should not
instantiate this class.

Included Module
Conmpar abl e
Instance Methods
+n

Returnsn.

Returns n negated.
n + num
n - num
n* num
n / num

Performs arithmetic operations: addition, subtraction, multiplication, and division.
n % num

Returns the modulus of n.
n ** num

Exponentiation.
n.abs

Returns the absolute value of n.
n.ceil

Returns the smallest integer greater than or equal to n.

n.coerce( num)
Returns an array containing numand n both possibly converted to a type that allows them to be
operated on mutually. Used in automatic type conversion in numeric operators.

n.divmod( num)

Returns an array containing the quotient and modulus from dividing n by num
n.floor

Returns the largest integer less than or equal to n.

1.2.fl oor #=> 1
2.1.fl oor #=> 2



(-1.2).floor #=> -2
(-2.1).fl oor #=> -3

n.integer?
Returnst r ue if n isan integer.
n.modulo( num)

Returns the modulus obtained by dividing n by numand rounding the quotient with f | oor .
Equivalent ton. di vnod( nunm) [1].

n.nonzero?

Returnsn if it isn't zero, otherwiseni | .
n.remainder( num

Returns the remainder obtained by dividing n by numand removing decimals from the quotient. The
result and n always have same sign.

(13. nodul o(4)) #=> 1
(13. modul o(-4)) #=> -3
((-13).nodul o(4)) #=> 3
((-13).nodul o(-4)) #=> -1
(13.remai nder (4)) #=> 1
(13.remai nder (-4)) #=> 1
((-13).renmainder(4)) #=> -1
(-13).renmuinder(-4)) #=> -1
n.round
Returns n rounded to the nearest integer.
1.2.round #=> 1
2.5.round H#=> 3
(-1.2).round #=> -1
(-2.5).round #=> -3
n.truncate

Returns n as an integer with decimals removed.

1.2. truncate
2. 1. truncate
(-1.2).truncate
(-2.1).truncate

n.zero?

TN TS
V V V V
N

Returns zeroif n isO0.

| nteger Integer class

I nt eger provides common behavior of integers (Fi xnumand Bi gnun) . | nt eger isan abstract class,
so you should not instantiate this class.

Inherited Class

Nuneri c



Included Module
Pr eci si on
Class Method

Integer::induced_from(numeric)

Returns the result of converting numeric into an integer.

Instance Methods
~i

Bitwise operations: AND, OR, XOR, and inversion.
I &int
I ]int
I ~int
I <<int
I >>int
Bitwise left shift and right shift.
i [n]
Returns the value of the nth bit from the least significant bit, whichisi [ 0] .

5[ 0] # =>1
5[ 1] # =>0
5[ 2] # => 1.

i .chr

Returns a string containing the character for the character codei .

65. chr H# = "A"
?a. chr # => "a"

i .downto(mn){|i]...}
Invokes the block, decrementing each time fromi tomi n.

3.downto(1l) {]i]
puts i

Returns the next integer followingi . Equivalenttoi + 1.
| .Size

Returns the number of bytesin the machine representation of i .
i .step(upto,step){]i]|...}



Iterates the block fromi to upt o, incrementing by st ep each time.
10.step(5, -2) {]|i]

puts i
}
# prints:
# 10
# 8
# 6
i .succ
Seei . next
i times{|i]|...}

Iteratesthe block i times.

3.times {|i|
puts i

i .to f
Convertsi into afloating point number. Float conversion may lose precision information.
1234567891234567.t0_f # => 1.234567891e+15
I .to_int
Returnsi itself. Every object that hast o_i nt method istreated asif it's an integer.
I .upto( max) {|i]...}
Invokes the block, incrementing each time fromi to max.
1.upto(3) {]i]
puts i
}

# prints:
# 1
# 2

# 3
Fixnum Fixed-length number class

Fi xnumobjects are fixed-length numbers with a bit length of either 31 bits or 63 bits. If an operation
exceeds thisrange, it's automatically converted to aBi gnum

Inherited Class

| nt eger
Bignum Infinite-length integer class




Bi gnumobjects are infinite-length integers capable of handling numbers as large as memory can hold.
Conversions between Fi xnumand Bi gnumintegers are performed automatically.

Inherited Class

| nt eger

Float Floating-point number class

Fl oat objects represent floating-point numbers. They use double precision floating-point numbers as
internel representation of the platform architecture.

Inherited Class
Nuneri c
Included Module
Preci si on
Class Method
Float::induced from( num
Returns the result of converting numto a floating-point number.
Instance Methods
f finite?

Returnst r ue if f isntinfiniteandf . nan isf al se.
f .infinite?

Returns 1 if f ispositiveinfinity, - 1 if negative infinity, or ni | if anything else.
f .nan?

Returnst r ue if f isn't avalid |EEE floating point number.

Precision Precision conversion module

Pr eci si on isamodule to provide a conversion system between numbers.
Instance Methods

prec( c)

Returns the result of converted self to the precision of class c. The definition in the Precision module
actually returnsc. i nduced _fron{sel f).

prec_f



Equivalent to pr ec(Fl oat) .
prec i

Equivalent to prec( | nt eger) .

Comparable Compar able mix-in module

The Conpar abl e module assumes that the including class has a <=> method defined. The <=> method
compares two objects and returns a positive number if the |left operand is greater, O if it's equal to the right
operand, or a negative number if it's smaller. Y ou can add the following methods to a class that provides
<=>, by just including this module.

Instance Methods

c <ot her

Returnst r ue if c islessthan ot her (i.e, c <=> ot her returns a negative number).
c <=ot her

Returnst r ue if ¢ islessthan or equal to ot her (i.e., c <=> ot her returns either a negative number
or 0).

c > ot her

Returnst r ue if c isgreater than ot her (i.e., c <=> ot her returns a positive number).
c >=ot her

Returnst r ue if ¢ isgreater than or equal to ot her (i.e., c <=> ot her returns either a positive
number or 0).

Cc == other

Returnst r ue if the objects are equal (i.e., ¢ <=> ot her returns0).
c.between?( m n, max)

Returnst r ue if ¢ isbetween m n and max.

Math Module of math functions

The Mat h module provides a collection of math functions. The Mat h module defines private instance
methods and module methods that possess the same name and definition.

Module Functions

atan2( x, y)
Calculates the arc tangent.
cos( X)
Calculates the cosine of x.
exp( x)
Calculates an exponential function (e raised to the power of x).



frexp( x)

Returns a two-element array containing the nominalized fraction and exponent of X.
Idexp( x, exp)

Returns the value of x times 2 to the power of exp.
log( x)

Calculates the natural logarithm of x.
log10( x)

Calculates the base 10 logarithm of x.
sin( x)

Calculates the sine of x.
sart( x)

Returns the square root of x. X must be positive.
tan( x)

Calculates the tangent of x.
Constants

E

e, the base of natural logarithms

pi; the Ludolphian number
3.4.5 Operating System Services

Ruby's portability necessitates some level of abstraction between your Ruby scripts and the underlying
operating system. Abstractions of 1/O, filesystems and processes are provided through the Ruby built-in
classes| O File,File::Stat,Fil eTest,D r,andProcess.

10 I/O class

| Oisobject-oriented representation of st di 0. | Oisasuperclass of other 10 related classes, such asFi | e,
Basi cSocket , etc.

Included Module
Enuner abl e
Class Methods

|O::foreach( pat h) {|x]. ..}

Opens the file and executes the block once for each line, closing the file when the block exits.
n=1
| O :foreach(path) {|!ine|



print n, ":", |lib
n+=1
}
1O::new( f d[, node="r"])

Returns anew | Ostream for the specified integer file descriptor f d.
1O::pipe
Createsapair of | Ostreams connected to each other and returnsthem asan array ([ r eadl O,
witel Q).
|O::popen( cnd[, rode="r"])
|O::popen( cnd[, rode="r"]){|i o]...}
Executes the command specified by cnd as a subprocess and creates an associated stream connected to
it. If cnd is- , anew instance of Ruby is started as a subprocess with an | Oobject returned in the

parent and ni | returned in the child process. If ablock is specified, it's run with the | Oobject asa
parameter. The stream is closed when the block exits.

IO::readlines( pat h)

Returns the contents of afile as an array of strings.

|O::select( r eads[,wri t es=nil[, except s=nil[, t i meout =nil]]])
Checks for changes in the status of three types of | Oobjects, input, output, and exceptions, which are
passed as arrays of | Oaobjects. ni | ispassed for arguments that don't need checking. A three-element

array containing arrays of the | Oobjects for which there were changesin statusisreturned. ni | is
returned on timeout.

O :select([STDIN], nil, nil, 1.5) # wair data for STDIN for 1.5 sec
Instance Methods

fo<<str

Printsstr tol O

I 0.binmode
Enables binary mode (for use on DOS/Windows). Once a stream is in binary mode, it can't be reset to
non-binary mode.

i 0.close

Closesthei o.
i 0.close read

Closes the read-only end of aduplex | Ostream.
i 0.close write

Closes the write-only end of aduplex | Ostream.
I 0.closed?

Returnst r ue if i o isclosed.
i o.each{|x|...}
i o.each line{|x|...}

Reads in the contents of i 0 one line at atime, invoking the block each time.



f = open(path)
=1

—+ 5

.each_line {|line|
print n, ":", |lib
n+=1

}.
o.each byte{|x|. ..}

Reads in the contents of i 0 one byte at atime, invoking the block each time.

0.eof
0.eof?

Returnst r ue if EOF has been reached.

o.fentl(reql, ar g])
Calsfcntl (2) system call. Arguments and results are platform dependent. Not implemented on all
platforms.

o.fileno

o.to i

Returns the file descriptor number for i o.
o.flush

Flushes output buffers.
0.getc

Reads one character (8-bit byte) fromi o and returnsits character code. Returnsni | on EOF.
o.gets([ r s=%/])

Readsonelinefromi o. Returnsni | on ECF.
o.ioctl(req[, ar g])

Callsi oct | (2) system call. Arguments and results are platform dependent. Not implemented on all
platforms.
0.isatty
Seeio.tty?
o.lineno
Returns the current line number ini o.
o.lineno=n

Seats the current line number ini o.
0.pid

Returns the process ID associated withi 0. Returnsni | if no process exists.
0.pos
o.tel

Returns the current position of the file pointer.
0.pos= of f set

Sets the position of the file pointer.



o.print(arg...)
Writes the specified argumentstoi o.
o.printf(fm [,arg...])
Writes the specified argumentsto i o after formatting them. For formatting specifiers, seespri ntf in
Section 3.3.
0.putc( c)
Writes one character toi o.
o.puts(str)
Writesstr toi o, appending new i ne if st r doesn't end with newl i ne.

i 0. puts("foo") # prints "foo" and new i ne
i 0.puts("bar\n") # prints "bar" and new i ne

o.read([ | en])

Reads only the specified number of bytesfromi o. If | en isn't specified, the entirefileis read.
o.readchar

Reads one character (8-bit byte) fromi 0. Raisesan exception on ECF.
o.readline([ r s=9%/])

Reads onelinefromi 0. Raisesan exception on ECF.
o.readlines([ r s=9%/)

Reads all linesini o and returns them in an array.
o.reopen( f)

Resetsi o toacopy of f . Theclassof i 0 may be changed as well.
o.rewind

Moves the file pointer to the beginning of i 0.

0.seek( pos[, whence=I0::SEEK_SET])
Movesthe file pointer. The starting point whence may besetto| O : SEEK_SET (beginning of
stream), | O : SEEK CUR (current position) or | O : SEEK _END (end of stream).

o.stat

Calsfstat (2) syssemcal andreturnsaFi | e: : St at object.
0.sync

Returnst r ue if sync mode is enabled for output. In sync mode, the buffer is flushed after each write.
0.sync=node

Sets the sync mode for output tot r ue or f al se.
o.sysread( | en)

Reads| en bytesfromi o usingr ead( 2) systemcall. sysr ead should not be mixed with other
reading I Omethods.
0.Syswrite( st r)

Writesstr toi ousingwri te(2) systemcall. syswr i t e should not be mixed with other writing
| Omethods, or you may get unpredictable results.



i o.tell
Seei 0. pos
i 0.to i
Seeio.fileno
i 0.to_io

Returnsi o itself. Every object that hast o_i o method istreated asif it'san| Oby | O : sel ect and
i 0. reopen.

i 0.tty?

I O.isatty
Returnst rue if i o isconnectedtot t y (terminal device).

I 0.ungetc( c)

Pushes one character back ontoi o.
I o.write(str)

Writesst r toi 0. Every object that has a write method can be assigned to $def out , the default
output destination.

File File class

A Fi | e representsan st di 0 object that connected to aregular file. open returns an instance of this class
for regular files.

Inherited Class
IO

Class Methods
File::atime( pat h)

Returns the last access time for pat h.
File::basename( pat h[, suf fi x])

Returns the filename at the end of pat h. If suf f i x isspecified, it's deleted from the end of the

filename.
Fi | e. basenane("/ home/ mat z/ bi n/ ruby. exe") #=> "ruby. exe"
Fi | e. basenane("/ home/ mat z/ bi n/ ruby. exe", ".exe") #=> "ruby"

File::blockdev?( pat h)

Returnst r ue if pat h isablock device.
File::chardev? pat h)

Returnst r ue if pat h isacharacter device.
File:chmod( node, path...)

Changes the permission mode of the specified files.
File::chown( owner, group, path...)



Changes the owner and group of the specified files.
File::ctime( pat h)
Returnsthelast i node changetimefor pat h.

File::delete( pat h...)
File::unlink( pat h...)

Deletes the specified files.
File::directory?( pat h)

Returnst r ue if pat h isadirectory.
File::dirname( pat h)

Returns the directory portion of pat h, without the final filename.
File::executable?( pat h)

Returnst r ue if pat h isexecutable.
File::executable rea?( pat h)

Returnst r ue if pat h isexecutable with real user permissions.
File:exist?( pat h)

Returnst r ue if pat h exists.
File::expand_path( pat h[, di r])

Returns the absolute path of pat h, expanding ~ to the process owner's home directory, and ~user to
the user 'shome directory. Relative paths are resolved from the directory specified by di r, or the
current working directory if di r isomitted.

File::file? pat h)

Returnst r ue if pat h isaregular file.
File::ftype( pat h)
Returns one of the following strings representing afile type:

file
Regular file
directory
Directory

characterSpecial

Character special file
blockSpecial

Block specidl file
fifo

Named pipe (FIFO)
link

Symbolic link
socket



File:

Socket
unknown

Unknown file type
grpowned?( pat h)

Returnst r ue if pat h isowned by the user's group.

Filezjoin(item . .)

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

File:

Returns a string consisting of the specified items joined together with Fi | e: : Separ at or separating
each item.

File::join("", "home", "matz", "bin") # => "/honme/ matz/bin"
link( ol d, new)

Createsahard link to file ol d.

Istat( pat h)
Same as stat, except that it returns information on symbolic links themselves, not the files they point
to.

mtime( pat h)

Returns the last modification time for pat h.
new( pat h[, rode="r"])
open( pat h[, node="r"])
open( pat h[, node="r"]) {|f|. . . }
Opens afile. If ablock is specified, the block is executed with the new file passed as an argument. The

fileis closed automatically when the block exits. These methods differ from Ker nel #open in that
even if pat h beginswith | , the following string isn't run as a command.

owned?( pat h)

Returnst r ue if pat h isowned by the effective user.
pipe?( pat h)

Returnst r ue if pat h isapipe.
readable?( pat h)

Returnst r ue if pat h isreadable.
readable real?( pat h)

Returnst r ue if pat h isreadable with real user permissions.
readlink( pat h)

Returns the file pointed to by pat h.
rename( ol d, new)

Changes the filename from ol d to new.
setgid?( pat h)

Returnst r ue if pat h's set-group-id permission bit is set.
setuid?( pat h)

Returnst r ue if pat h's set-user-id permission bit is set.



File::size( pat h)

Returnsthe file size of pat h.
File::size?( pat h)

Returnsthefile size of pat h, or ni | if it'sO.
File::socket?( pat h)

Returnst r ue if pat h isasocket.
File::split( pat h)

Returns an array containing the contents of pat h splitintoFi | e: : di r nane( pat h) and
Fi | e:: basenane(path).

File::stat( pat h)

ReturnsaFi | e: : St at object with information on pat h.
File::sticky?( pat h)

Returnst r ue if pat h's sticky bit is set.
File::symlink( ol d, new)

Createsasymbolic link to file ol d.
File::symlink?( pat h)

Returnst r ue if pat h isasymbolic link.
File::truncate( pat h, | en)

Truncates the specified fileto | en bytes.
File::unlink( pat h...)

SeeFile::delete(path...)
File::umask([ mask])

Returns the current umask for this process if no argument is specified. If an argument is specified, the
umask is set, and the old umask is returned.

File:utime(ati me,nti me,path...)

Changes the access and modification times of the specified files.
File::writable?( pat h)

Returnst r ue if pat h iswritable.
File::writable rea?( pat h)

Returnst r ue if pat h iswritable with real user permissions.
File::zero?( pat h)

Returnst r ue if thefile size of pat hisO.
Instance Methods

f .aime

Returns the last accesstime for f .
f .chmode( node)



Changes the permission mode of f .
f .chown( owner , gr oup)

Changes the owner and group of f .
f .ctime

Returnsthelast i node changetimefor f .

f .flock( op)
Callsfl ock(2).op may beO oralogical or of the File class constants LOCK _EX, LOCK _NB,
LOCK_SH, and LOCK_UN.

f .lstat
Same as st at , except that it returns information on symbolic links themselves, not the files they point
to.

f .mtime

Returns the last modification time for f .
f .path

Returns the pathname used to createf .
f .reopen( pat h[, nrode="r"])

Reopens thefile.
f .truncate( | en)

Truncatesf to len bytes.
Constants

Constantsinthe Fi | e class are also defined inthemoduleFi | e: : Const ant s so that they may be
included separately if necessary.

open constants
RDONLY

Read-only mode
WRONLY

Write-only mode
RDWR

Read and write mode
APPEND

Append mode
CREAT

Createfile
EXCL

Exclusive open
ioctl constants
NONBLOCK



Nonblocking mode
TRUNC

Truncate to 0 bytes
NOCTTY

Don't alow aterminal device to become the controlling terminal
BINARY

Binary mode
SYNC

Sync mode
flock constants
LOCK_EX

Exclusive lock
LOCK_NB

Don't block when locking
LOCK_SH

Shared lock
LOCK_UN

Unlock

File::Stat File status class

Fi | e:: St at containsfile statusinformation given by Fi | e#st at and other similar methods.
Included Module

Conpar abl e

Instance Methods

S <=>st at

Compares the modification timesof s and st at .
s.atime

Returnsthe last accesstimefor s.
s.blksize

Returns the block size of s'sfile system.
s.blockdev?

Returnst r ue if s isablock device.
s.blocks

Returns the number of blocks allocated to s.



s.chardev?

Returnst r ue if s isacharacter device.
s.ctime

Returnsthelast i node changetimefor s.
s.dev

Returns an integer representing the device on which s islocated.
s.directory?

Returnst r ue if s isadirectory.
S.executable?

Returnst r ue if s is executable.
s.executable real?

Returnst r ue if s isexecutable with real user permissions.
s file?

Returnst r ue if s isaregular file.
s.ftype

Returns one of the following strings representing afile type of s:
file

Regular file
directory

Directory
characterSpecid

Character specidl file
blockSpecial

Block specid file
fifo

Named pipe (FIFO)
link

Symbolic link
socket

Socket
unknown

Unknown file type
s.gid

Returns the group ID.
Ss.grpowned?

Returnst r ue if s isowned by the user's group.



s.ino

Returnsthei node number for s.
s.mode

Returns the access permission mode for s.
s.mtime

Returns the modification timefor s.
s.nlink

Returns the number of hard linksto s.
s.owned?

Returnst r ue if s isowned by the effective user.
S.pipe?

Returnst r ue if s isapipe.
S.rdev

Returns an integer representing the device type on which s islocated.
S.readable?

Returnst r ue if s isreadable.
s.readable real?

Returnst r ue if s isreadable with real user permissions.
Ss.setgid?

Returnst r ue if s's set-group-id permission bit is set.
S.setuid?

Returnst r ue if s's set-user-id permission bit is set.
s.Size

Returnsthefilesize of s
s.size?

Returnsthefilesizeof s, or ni | if it'sO.
s.socket?

Returnst r ue if s is asocket.
s.sticky?

Returnst r ue if s'ssticky bit is set.
s.symlink?

Returnst r ue if s isasymbolic link.
s.uid

Returnsthe user ID.
s.writable?

Returnst r ue if s iswritable.



s.writable real?

Returnst r ue if s iswritable with real user permissions.
S.zero?

Returnst r ue if thefilesizeof s isO.

FileTest File testing module

TheFi | eTest module contains methods for testing files. The methods in this module are also provided as
class methods of the Fi | e class.

Module Functions

blockdev?( pat h)

Returnst r ue if pat h isablock device.
chardev?( pat h)

Returnst r ue if pat h isacharacter device.
directory?( pat h)

Returnst r ue if pat h isadirectory.
executable?( pat h)

Returnst r ue if pat h isexecutable.
executable real?( pat h)

Returnst r ue if pat h isexecutable with real user permissions.
exist?( pat h)

Returnst r ue if pat h exists.
file?( pat h)

Returnst r ue if pat h isaregular file.
grpowned?( pat h)

Returnst r ue if pat h isowned by the user's group.
owned?( pat h)

Returnst r ue if pat h isowned by the effective user.
pipe? pat h)

Returnst r ue if pat h isapipe.
readable?( pat h)

Returnst r ue if pat h isreadable.
readable real?( pat h)

Returnst r ue if pat h isreadable with real user permissions.
setgid?( pat h)

Returnst r ue if pat h's set-group-id permission bit is set.



setuid? pat h)

Returnst r ue if pat h's set-user-id permission bit is set.
size( pat h)

Returnsthefile size of pat h.
size?( pat h)

Returnsthefilesize of pat h orni | if it'sO.
socket?( pat h)

Returnst r ue if pat h isasocket.
sticky?( pat h)

Returnst r ue if pat h'ssticky bit is set.
symlink?( pat h)

Returnst r ue if pat h isasymbolic link.
writable?( pat h)

Returnst r ue if pat h iswritable.
writable rea? pat h)

Returnst r ue if pat h iswritable with real user permissions.
zero?( pat h)

Returnst r ue if thefile size of pat h isO.

Dir Directory class

A Di r isaclassto represent adirectory stream that gives filenames in the directory in the operating system.
Di r classaso holds directory related operations, such as wild card filename matching, changing current
working directory, etc. as class methods

Included Module
Enuner abl e
Class Methods

Dir[pat]
Dir::glob( pat )

Returns an array of filenames matching the specified wildcard pattern pat :
Matches any string including the null string

Matches any string recursively

Matches any single character



[.]

Matches any one of enclosed characters

{ab...}
Matches any one of strings
Dir["foo.*"] # matches "foo.c", "foo.rb", etc.
Dir["foo.?"] # matches "foo.c", "foo.h", etc.
Dir["*.[ch]"] # matches "main.c", "ruby.h", etc.
Dir["*.{rb,c}"] # matches "main.c", "config.rb", etc.
Dir["**/*.c"] # recursively matches any ".c" file

Dir::chdir( pat h)

Changes the current directory.
Dir::chroot( pat h)

Changes the root directory (only allowed by super user). Not available on al platforms.
Dir::delete( pat h)

SeeDir::rndir(path).
Dir::entries( pat h)

Returns an array of filenamesin directory path.
Dir::foreach( pat h) {|f].. .}

Executes the block once for each file in the directory specified by path.
Dir::getwd
Dir::pwd

Returns the current directory.
Dir::glob( pat )

SeeDir[pat].

Dir::mkdir( pat h[, rode=0777])
Creates the directory specified by pat h. Permission node may be modified by the value of
Fi | e: : umask andisignored on Win32 platforms.

Dir::new( pat h)

Dir::open( pat h)

Dir::open(pat h) {|dir|...}
Returns a new directory object for pat h. If open isgiven ablock, anew directory object is passed to
the block, which closes the directory object before terminating.

Dir::pwd
SeeDir:: getwd.

Dir::rmdir( pat h)

Dir::unlink( pat h)

Dir::delete( pat h)

Deletes the directory specified by pat h. The directory must be empty.



Instance Methods

d.close

Closes the directory stream.

d.each{|f]|...}

Executes the block once for each entry ind.
d.pos
d.tell

Returns the current position in d.
d.pos= of f set

Sets the position in the directory stream.
d.pos= pos
d.seek(po s)

Movesto apositionind. pos must be avalue returned by d. pos or 0.
d.read

Returns the next entry from d.
d.rewind

Moves positionin d to thefirst entry.
d.seek(po s)

Seed. pos=pos.
d.tell

Seed. pos.

Process Process handling module

The Pr ocess module provides methods to manipulate processes. Some operations are platform dependent.
Module Methods

Process.egid

Returns the effective group 1D of this process.
Process.egid=gi d

Sets the effective group ID of this process.
Process.euid

Returns the effective user ID of this process.
Process.euid=ui d

Sets the effective user ID of this process.
Process.gid



Returns the group ID of this process.
Process.gid=gi d

Sets the group 1D of this process.
Process.pid

Returns the process ID of this process.
Process.ppid

Returns the process ID of the parent of this process.
Process.uid

Returns the user 1D of this process.

Process.uid=ui d

Sets the user ID of this process.
Module Functions

exit!([ r esul t =0Q])

Kills the program bypassing exit handling such asensur e, etc.
fork
fork{...}

Creates a child process. ni | isreturned in the child process, and the child process ID (I nt eger) is
returned in the parent process. If ablock is specified, it's executed in the child process.

getpgid( pi d)
Returns the process group ID for process pi d. pi d O means the current process ID.
getpgrp([ pi d=$3])
Returns the process group ID for this process.
getpriority(whi ch, who)
Returns the current priority.
kill(sig, pid...)
Sends signal to aprocess. si g is specified with astring such as Kl LL or an integer.
setpgid( pi d)
Sets the process group 1D for process pi d.
setpgrp
Equivalent to set pgi d( 0, 0) ..
setpriority( whi ch, who, pri o)
Sets process priority.
setsid
Establishes this process as a new session.
wait

Waits for a child process to exit and returns its process ID.



wait2
Waits for achild process to exit and returnsits process ID and exit status as an array.
waitpid( pi d[, f | ags])

Waits for child process pi d to exit and returnsits process ID. Waits for any child processif pi d=0 is
specified. Flagsmay be 0 or alogical or of the constants WNOHANG and WUNTRACE.

waitpid2( pi d[, f | ags])
Waits for child process pi d to exit and returnsits process ID and exit status as an array.

Constants

PRIO_PROCESS

Process priority. Specified in alogical or asthe third argument of theset pri ori t y method.
PRIO_PGRP

Process group priority. Specified in alogical or asthe third argument of theset pri ori t y method.
PRIO_USER

User priority. Specified in alogical or asthe third argument of theset pri ori t y method.
WNOHANG

Terminate immediately without blocking if no child has exited. Specified in alogical or as the second
argument of thewai t pi d andwai t pi d2 methods.

WUNTRACED

Terminate any stopped children whose status has not been reported. Specified in alogical or asthe
second argument of thewai t pi d and wai t pi d2 methods.

3.4.6 Threads

Threads are a powerful tool for creating and maintaining cleaner code, and in many implementations, for
making your software more responsive. In Ruby, the former benefit is the one emphasi zed—cl eaner
code—since Ruby implements "microthreads." Microthreads are in-process threads simulated with

set | np/l ongj np inthe Ruby interpreter itself. Hence, Ruby's Thr ead classisn't dependent on the
underlying threads library or operating systems, making Ruby more portable.

Thread Thread class

The class for user-level threads. When the main thread terminates, the other threads are killed, and the
interpreter quits.

Class Methods

Thread::abort_on_exception

Returnst r ue if thread is set to abort on an exception.
Thread::abort_on_exception= bool

Sets whether or not to abort on an exception. When aborting on an exception, displays an error
message for exceptions raised in the thread and quits the program.



Thread::critica

Returnst r ue when scheduling of existing threads is prohibited.
Thread::critical= bool

Sets the status of thread-scheduling prohibition.
Thread::current

Returns the current thread.
Thread::exit
Terminates the current thread.
Thread::fork([arg. .. D {|x...|...}
SeeThread: :start([arg...]) {|x...]...}.
Thread::kill( t h)
Terminates the specified thread.
Thread::list
Returns an array of all threads.
Thread::main
Returns the main thread.
Thread::new([arg. .. ) {|x...|...}
SeeThread: :start([arg...]) {|x...]...}.
Thread::pass
Passes execution to another thread.
Thread::start(farg. . . ) {Ix...|...}
Thread::fork([arg. .. ) {|x...|...}
Thread::new([arg. .. D {|x...]...}

Creates a new thread and executes the block in it. Arguments are passed directly to the block.
Thread::stop

Stops the current thread.
Instance Methods

t [ nane]

Retrieves the value of athread-local variable associated with name. The nane iseither astring or a
symbol.

t [ nane]=val ue

Setstheval ue of athread-local variable.
t .abort_on_exception

Returnst r ue if thread is set to abort on an exception.
t .abort_on_exception= bool

Sets whether or not this thread will abort on an exception. When aborting on an exception, displays an



error message for exceptions raised in the thread and quits the program.
aive?
Returnst r ue if thethread is alive (slegping or running).
exit
Seet. kill.
Join
Waits for the thread to terminate. If the thread is terminated with an exception, that exception is raised
again.
key?( nane)
Returnst r ue if athread-local variable associated with nane exists.
Kill
exit
Terminates the thread.
raise( exc[, mesq])

Raises an exception from the thread.
run

Makes the thread eligible for scheduling and invokes the scheduler.
safe level

Returns the value of $SAFE, the thread's safe level.
.Status

Returns the status of thread (t r ue if alive, f al se if terminated normally, and ni | if terminated with
an exception).

.stop?

Returnst r ue if the thread is stopped.
vaue

Waits for the thread to terminate and returns the value of the last expression evaluated. If the thread is
terminated with an exception, that exception is raised again.

wakeup
Marks the thread as eligible for scheduling.
ThreadGroup Thread group class

A thread can belong to only one thread group at atime. Until a change of group is specified, a newly created
thread belongs to the same thread group as the thread that originally created it.

Class Method

ThreadGroup::new
Creates a new thread group.



Instance Methods

t g.add(t h)

Addst h to the thread group. A thread can belong to only one group at atime.
t g.list

Returns an array of threads belonging to the thread group.

Constants

Default
The default thread group.

3.4.7 Exceptions

Ruby's exception handling class, Except i on, and its descendents provide support for the notion that the
code discovering some sort of error condition may not be the same code that can handle that error condition.

Exception Superclass for exceptions

Instance Methods

e.backtrace

Returns backtrace information (from where exception occurred) as an array of strings.
e.exception

Returns clone of the exception object e. This method is used by r ai se method.
e.message
Returns exception message.

Errno System call exceptions module

Er r no: : ENOENT and other errors are defined in this module.
3.4.8 Built-in Exceptions

Except i on and the classes derived from it provide avariety of fundamental building blocks for handling
error conditions in your Ruby scripts. Of course with the power you know and love from OOP, you can easily
extend and adapt these basic classes as you seefit.

The following are abstract Except i on classes:
Exception

Superclass of all exceptions
ScriptError

Error originating from program mistakes



StandardError
Superclass of standard error exceptions; caught if no classis specified by rescue

The following are subclasses of St andar dEr r or :
ArgumentError

Argument error (incorrect number of arguments, etc.)
EOFError

End of file reached
FloatDomainError

Float calculation error
IndexError

Error related to index.
|OError

Error related to input or output.
L ocal JumpError

Error related to break, next, redo, retry, or return from wrong place.
NoMemoryError

Insufficient memory.
RangeError

Error produced when range exceeded
RegexpError

Regular expression error
RuntimeError

Generd runtime error
SecurityError

Error related to security
SystemCallError

Superclass of system call exceptions
SystemStackError

Insufficient stack area
TypeError

Error produced when types don't match
ZeroDivisionError

Error produced when attempting to divide by zero

The following are two subclasses of Syst entCal | Err or . See<sys/ err no. h> for details.
Errno::ENOENT

File or directory doesn't exist



Errno::EPERM
Insufficient access rights

The following are subclasses of Scri pt Err or:
LoadError

Error occurring during the loading of libraries
NameError

Name error caused by accessing undefined name, etc.
NotlmplementedError

Function not supported by interpreter called
SyntaxError

Error related to syntax

The following are subclasses of Except i on:
Fatal

Fatal error that can't ever be caught
Interrupt

Interrupt (SIGINT) received
SystemExit

exit cdled
3.4.9 Classes and Modules

Support for OOP in Ruby can be found in the Ruby classesCl ass and Modul e. All class objects are of
classd ass, and the Modul e class provides support for namespaces and mix-ins.

Module Module class

A Modul e issimilar to aclass, except that it has no superclass and can't be instantiated.
Class Methods

Module::class variables

Returns an array of class variable names.
Module::constants

Returns an array of constant names.
Module::nesting

Returns an array of classes and modules nested at the point of call.
Module::new

Creates a new anonymous module.

Instance Methods



m< nod

Returnst r ue if mis adescendant of nod.
m<= nmod

Returnst r ue if misadescendant of or equal to nod.
m<=> nod

Returns +1 if mis an ancestor of nod, O if misthe sasme as npd, and -1 if mis a descendant of nod.
m=== obj

Returnst r ue if obj isan instance of mor one of its descendants.
m> nod

Returnst r ue if misan ancestor of nod.
m>= nod

Returnst r ue if misan ancestor of or equal to nod.
mancestors

Returns an array of ancestors, including both classes and modules.
mconst_defined?( nane)

Returnst r ue if the constant specified by namne is defined.
mconst_get( nane)

Returns the value of the specified constant.
mconst_set( nane, val ue)

Setstheval ue of aconstant.
mconstants

Returns an array of constant names.
mincluded_modules

Returns an array of names of included modules.
minstance_method( nane)

ReturnsaUnboundMet hod object corresponding to nanme. An exception israised if the
corresponding method doesn't exist. UnboundMet hod should be bound before invocation.

unbound_pl us = Fi xnum i nstance_net hod(: +)
pl us = unbound_pl us. bi nd(1)
p plus.call(2) # => 3 (1+2)

minstance_methods([ al | =false])
Returns an array of instance method names. If al | ist r ue, instance methods from superclasses are
also returned.

mmethod_defined?( nane)

Returnst r ue if the method specified by nane isdefined m
mmodule eval( str)
mmodule eval { . . . }



Evaluatesst r or block in the context of m If amethod is defined, that method is added to m
mname

Returns the module's name.
mprivate_class_method( nane. . .)

Setsvisihility of class methodsto pri vat e. nanme can be either asymbol or string.

mprivate instance_methods([ al | =fase])
Returns an array of instance methods whose visibility isprivate. If al | ist r ue, instance methods
from superclasses are also returned.

mprotected instance_ methods([ al | =falsg])
Returns an array of instance methods whose visibility is protected. If al | ist r ue, instance methods
from superclasses are also returned.

mpublic_class method( nane. . .)

Setsvisibility of class methods to publ i c. name can be either a symbol or string.
mpublic_instance_methods([ al | =fase])

Returns an array of instance methods whose visibility ispublic. If al | ist r ue, instance methods
from superclasses are also returned.

Private Instance Methods

alias_method( new, ol d)
Creates an alias for amethod. Equivalent to the al i as statement except that the name is specified
with a symbol or string.

append_features( nod)
Adds module definitions (methods and constants) of nod to the current module. Thisis the callback

method used by i ncl ude. Can be redefined for callback processing during the inclusion of modules.
Used as a hook.

attr( nanme[, f | ag=false])
Defines anamed attribute, creating a method, namne, for accessing the instance variable @ane. If
fl agist rue, aso defines awritable method nanme= for setting the attribute.

attr_accessor( nane. . .)

Defines read accessor (nane) and write accessor (nane=) for each instance variable @arne.
attr_reader( nane. . .)

Defines read accessor (nane) for each instance variable @hane.
attr_writer( nane. . .)

Defines write accessor (nane=) for each instance variable @ane.
extend_object( obj )

Adds the current modul€'s methods and constants to obj . Thisisthe callback method used by
bj ect #ext end. Used as a hook.

include( nod. . .)

I ncludes the methods and constants of nod.



method_added( nane)

Method called by the interpreter every time a method is defined with the def statement. The standard
definition does nothing. Used as a callback.

module function( nane. . .)

Copiesthe definition of each of the instance methods specified by namne as a class method and
convertsit to amodule function.

private([ nane. . . ])

Sets the visibility of each instance method specified by name to pri vat e. If used with no arguments,
sets the visibility of subsequently defined methodsto pri vat e.

protected([ nane. . . ])

Sets the visibility of each instance method specified by nane to be protected. If used with no
arguments, sets the visibility of subsequently defined methods to be protected.

public([ name. . . ])

Setsthe visibility of each instance method specified by nane to public. If used with no arguments, sets
the visibility of subsequently defined methodsto publ i c.

remove_const( nane)

Removes the definition of constant, nane.
remove_method( nane)

Removes method (nane) from the current class. If amethod of the same nameisdefined in a
superclass, it becomes visible.

cl ass Foo
def foo
puts "Foo"
end
end
cl ass Bar <Foo
def foo
puts "Bar"
end
end
b = Bar. new
b. f oo
cl ass Bar
renove_net hod :foo
end
b. foo

undef_method( nane)

Turns method (nane) into an undefined method. Even if a method of the same name is defined in a
superclass, it becomes invisible to that class or module.

cl ass Foo
def foo
end
end
cl ass Bar <Foo
undef net hod : foo



end
b = Bar. new
b.foo

Class Class class

A classnamed Cl ass isaclassfor every class of Ruby :-). This means classes are first-class objects in
Ruby. C ass can be created by acl ass statement. In addition, even unnamed classes can be created by
G ass: : new.

Inherited Class
Modul e
Inherited Class
hj ect
Class Methods

Class::inherited( c)

Called when a subclassis defined. Used as a callback.
Class::new([ super cl ass=0bject])

Creates anew class.
Instance Methods
d ass classdoesn't inherit the nodul e_f unct i on method.
c.class evd

Aliasfor c. nodul e_eval .
c.name

Returns the class name.
c.new(farg...])

Creates an instance of the class. Any arguments or blocks get passed directly to the initialize method of
the object created.

C.superclass

Returns the class's superclass.
3.4.10 Proc Objects and Bindings

The Pr oc class provides support for converting blocks into objects and manipulating them just like other
objectsin Ruby. The nice thing isthat the Pr oc object you create can recreate its execution environment
when you need to call it. Ruby also provides you with atool for packaging up an execution environment for
use later, viathe Bi ndi ng class.

Proc Procedure object class




Pr oc isan objectified block that is given to amethod. Y ou can create a Pr oc object by calling the pr oc
method or by using the block argument of the method.

pl = proc{|al a + 1} # Proc froma bl ock

p2 = proc # Proc froma block given to this method

def foo(&proc) # Proc froma block given to this method
proc.call (42) # invoke Proc, equivalent to yield

end

Proc::new

Proc::new {| x| ...}

Convertsthe block into a Pr oc object. If ablock isn't passed, the block associated with the calling
method is converted into a Pr oc object. Equivalent to built-in functions| anmbda and pr oc.

Instance Methods

p[arg...]
p.cal(farg...])

Calls a Proc object.
p.arity

Returns the number of arguments accepted by a Pr oc object p. For p that take a variable number of
arguments, returns - n- 1, where n is the number of mandatory arguments. Notice{ | a| } gives- 1,
sinceit workslike{ | *a| } when multiple arguments are passed.

Proc.new{||}.arity 0
Proc.new{|al}.arity -1
Proc.new{|a,b|]}.arity 2
Proc.new{|a, b,c|}.arity 3
Proc.new| *al|}.arity -1
Proc.new{| a, *b|}.arity -2

Method Method object class

H:
I
V

iR
VVVYVYV

The method of an object that has been made into an object in its own right. Created using the method
obj . net hod( nane) .

Instance Methods
mMarg...]
marity

Returns the number of arguments accepted by m For methods that take a variable number of
arguments, returns - n- 1, where n isthe number of least required arguments.

mcal([arg. . .])

Callsanet hod object.
mto_proc

Converts minto aPr oc object.



munbind
Returns an UnboundMet hod object corresponding to m
UnboundMethod Method without receiver bind class

The method definition without areceiver relationship. You can't invoke UnboundMet hod. You have to
bind UnboundMet hod to get a callable Met hod object. Created using the method
Modul e#i nst ance_net hod( nane) or Met hod#unbi nd.

Inherited Class
Met hod
Instance Method
umbind( obj )

Returns callable Met hod object bound to obj . obj must be an instance of the class from which
UnboundMet hod retrieved.

unbound _plus = String.instance_nethod(: +)

pl us = unbound_pl us. bi nd("a") # bind it first

p pl us. Cal I ( n bll) # :> n abll (ll a.Il +II bll)

unbound_pl us. bi nd( 1) # error! 1 is not a String.
Binding Encapsulated execution context class

An object encapsul ating the execution context (variables, methods, self, blocks, etc.) at some place in the
code. Created using the built-in function bi ndi ng. Used as the second argument of the built-in function
eval . Seeeval inthe previous section.

Continuation Continuation class

Allows areturn to (continuation of) execution from a certain place in the code. Created using the built-in
functioncal | cc. Seecal | cc inthe previous section.

Instance Method

ccdl([arg...])
Continues execution from the end of thecal | cc block that created the Continuation. cal | cc returns
arg...,ornil if noarguments are specified.

3.4.11 Miscellaneous Classes and Modules

Of course, there'sawhole lot of other stuff that you need in just about every Ruby program: things like
garbage collection (GC module), Tr ut h (viaTr ueC ass and Fal seCl ass), the ability to poke around at
the objects inside a running Ruby script (viaQbj ect Space), and so on. There's nothing here that you won't



find consistent with Ruby's philosophy of transparency, so diveright in.

GC GC module

GC moduleis acollection of garbage collection related operations.
Module Methods

disable

Disables GC
enable

Enables GC
Start

Starts GC
Instance Method

g.garbage collect
Starts GC
ObjectSpace ObjectSpace module

hj ect Space module provides manipulation on collection of existing objects.
Module Functions
_id2ref(i d)

Obtains object from i d. Do not use this method (intended for internal use only), especialy in
finalizers. i d isaready made unavailable when finalizers are called.

define finalizer( obj , proc)

define finalizer(obj ) {]id|...}

Creates afinalizer for obj . obj should not be referenced directly nor indirectly from the finalizers.

cl ass Foo

def Foo::finalizer(io) # typical idiomfor finalizers
i 0.close

end

def initialize(path)

@o = open(path)

bj ect Space. define_finalizer(self, Foo::finalizer(@o))
end

each_object([ c]) {|x].. .}

Callsthe block once for all objects. When ¢ is specified, executes the block once for al objects that

match ¢ or are subclasses of ¢ (for which ki nd_of ?(c) istrue).



garbage collect

Starts GC. Aliasfor GC; : start .
undefine_finalizer( obj )

Removes all finalizersfor obj .

NilClass Nil class

Theonly instanceof Ni | Cl ass isni | . Ni | Cl ass has no special methods of its own.

TrueClass True class

Theonly instance of Tr ueC ass istrue. TrueCl ass provides afew logical operations, which evaluate
both operands before executing the methods, unlike && or | | operators.

Instance Methods

true & ot her

Logical AND, without short circuit behavior
true | ot her

Logical OR, without short circuit behavior
true” ot her

Logical exclusive Or (XOR)

FalseClass False class

Theonly instance of Fal seCl ass isf al se. Fal seCl ass provides afew logical operations, which do
evaluate both operands before, unlike & or | | operators.

Instance Methods

false & ot her

Logical AND, without short circuit behavior
false| ot her

Logical OR, without short circuit behavior
false” ot her

Exclusive Or (XOR)

Data C data wrapper class




Dat a isan external language data wrapper used by extension libraries. It has no special methods of its own.

Marshal Object storage module

Mar shal isamodule for dumping objects to and loading them from afile or string.
Module Functions

dump( obj [, port][,| evel ])

Dumps an object. Dumpsto port if an | Oobject is specified asport . If port isn't specified, obj is
returned as a dumped string. If | evel is specified, subobjects up to that depth are dumped.

load(from
restore(from
Restores a dumped object. The string or | Oobject dumped to is specified inf r om
Range Range class
Range isaclassfor interval. Ranges can be created using. . or. .. operatorsor using the Range: : new
method.

Included Module
Enuner abl e
Class Method

Range::new(first,| ast [, excl =falsg])

Creates a Range object. Does not include the end value if excl istrue.first andl ast should
be comparable using <=> and should have succ method.

Instance Methods
r ===ot her

Returnst r ue if ot her iswithin the range.
r .begin
r.first

Returns the first object in the range.
r.each{|x]|...}

Executes the block for each object within the range.

(1..5).each {|x|
puts X # prints 1 to 5

}
(1...5).each {] x|

puts X # prints 1 to 4



}

r.end
r last

Returns the last object in the range.
r.size
r length

Returns the number of objectsin the range. If the range is specified by something other than an integer,
the number of objectsis counted using the each method.

Struct Structure class

St uct isaabstract class that collects named attributes bundled in an object. Y ou have to generate your own
Struct class(subclassof St ruct ) using St ruct : : new, which returnsnew St r uct class.

Example

S = Struct::new:foo, :bar)

s = S :newm 1, 2)

s.foo #=>1

s.bar =5 # update the nenber

S. bar # =>5

S # => #<S foo=1, bar=5>

Included Module
Enuner abl e
Class Method

Struct::new([ nane,] mem..)

Creates a new structure class containing members specified by nem . . . If nane isgiven, the
structure classis bound to the constant under St r uct , for example St r uct : : Passwd. Note that
St ruct : : newdoesn't return a structure object itself, but rather a classthat is used as atemplate for
creating each structure.

Structure Class Methods

S::members

Returns an array of member names.
S::new(val ue..))

Creates a new structure object. val ue objects specify the initial value of each member and must
match the number of members specified when the structure was created.

Instance Methods

s[men]



Returns the value of member memwhere nemis a symbol or integer. If memis an integer, the value of
the menth member is returned.

s[ menj=val ue

Sets the value of member mem nemmay be a symbol or integer.
s.each {| x|...}

Calls block once for each member.
s.members

Returns an array of member names.
s.values

Returns an array containing the value of each member.

Time Time class

Time is an object corresponding to a certain time. Internally, it's stored as a number of seconds since the
epoch, 00:00:00, January 1, 1970 UTC. Ti e class can handle both a system's local time and UTC at the
same time, but no other time zones can be handled.

Included Module
Conpar abl e
Class Methods

Time:at(ti me[, usec=0])

Createsa Ti e object. t i me may beaTi ne object or an integer representing the number of seconds
elapsed since the epoch, 00:00:00, January 1, 1970 UTC.
Time::gm(year [, nont h=1[, day=1[, hour =0[, m n=0[, sec=0[, usec=0]]]]])
seeTi ne: : utc(year [, nont h=1[, day=1[, hour=0[, m n=0[ , sec=0
[ usec=]]1]111)
Time:local( year [, nont h=1[, day=1[, hour =0[, m n=0[, sec=0[, usec=0]]]11D
Time::mktime( year [, nont h=1[, day=1[, hour =0[, mi n=0[, sec=0[, usec=0]]]11D)

Createsa Ti nme object interpreted in the local time zone.
Time::new
Time::now
CreatesaTi nme object expressing the current system time.
Time::times
Returnsa Trrs structure containing user and system CPU times retrieved by the times system call.
Here are the Tns structure members:
utime

User CPU time
stime



System CPU time
cutime

CPU time elapsed for user child processes
cstime

CPU time elapsed for system child processes
Time::utc( year [, mont h=1[, day=1[, hour =0[,min=0[, sec=0[, usec=0]]]]1])
Time::gm(year [, nont h=1[, day=1[, hour =0[, m n=0[, sec=0[, usec=0]]]]])

CreatesaTi nme object interpreted as UTC (Coordinated Universal Time, formally known as GMT).
Instance Methods

t +n

ReturnsaTi nme object with n number of seconds added.
t-X
If X isanother Ti me object, the time differenceis returned in secondsasaFl oat . If x isanumber, a
Ti me object with x number of seconds subtracted is returned.
<=>ot her
> ot her
>= ot her
<ot her
<=ot her

~ ~ ~ ~ ~

Time comparisons.
t .asctime
t .ctime

Returnst asastring.
t .day
t .mday

Returns the day of the month (1-31) for t .
t .gmtime

Seet. utc
t .gmtime?

Seet . utc?
t .hour

Returns the hour of the day (0-23) for t .
t .isdst

Returnst r ue if t occurs during daylight saving time.
t .localtime

Turns on representation mode of t to local time.
t.min



Returns the minute of the hour (1-59) for t .
t .mon
t .month

Returns the month of the year (1-12) for t .
t.sec

Returns the second of the minute (1-60) for t . There can be a 60th second of the minute due to leap
second.

t .strftime( f or mat )

Formatst according to formatting directives, which may be any of these:

%A |Full weekday name (Sunday, Monday...)

% |Abbreviated weekday name (Sun, Mon...)

98 |Full month name (January, February...)

%b [Abbreviated month name (Jan, Feb...)

% |Date and time

%l |Day of the month in decimal (01-31)

% [Hour, 24-hour clock (00-23)

% |Hour, 12-hour clock (01-12)

% |Day of the year (001-366)

%V IMinutes (00-59)

%m |Month in decimal (01-12)

%p [Meridian indicator (A.M. or P.M.)

%5 |Seconds (00-60)

%) (Week number, with the first Sunday as the first day of the first week (00-53)

%N [Week number, with the first Monday as the first day of the first week (00-53)

% |Day of the week, Sunday being 0 (0-6)

%X [Time only

%« |Date only

% |Year with century

% |Year without century (00-99)

% |Time zone

980 |Literal Y%ocharacter

t.to f

Returnsthevalueof t asaFl oat of seconds since the epoch, including microseconds.
t.to i
t .tv_sec

Returnsthe value of t as an integer number of seconds since the epoch.
t .tv_usec
f .usec

Returns just the number of microsecondsof t .
t .utc



.gmtime

Convertst to UTC, modifying the receiver.
.utc?
.gmt?

Returnst r ue if t representsatimein UTC.
.\wday

Returns the day of the week (0-6, Sunday being O) for t .
yday

Returns the day of the year (1-366) for t .
.year

Returnsthe year for t .

.Z0he

Returnsthe local time zonefort .



Chapter 4. Standard Library Reference

We will now explore the useful libraries that come with the standard Ruby distribution, from
network accessviaHTTP and CGI programming to data persistence using the DBM library.



4.1 Standard Library

The Ruby standard library extends the foundation of the Ruby built-in library with classes and abstractions for a variety of
programming needs, including network programming, operating-system services, threads, and more. These classes provide flexible
capabilities at ahigh level of abstraction, giving you the ability to create powerful Ruby scripts useful in avariety of problem
domains.

Many common tasks are performed by Ruby programmers all over the world. Some of these tasks include network access such as
TCP/IP and CGlI, OS access, database access, controlling processes with threads, numeric calculations, implementing design classes,
and manipulating dates. These are used so frequently that they are included with all standard distributions of Ruby; when you access
these classes and methods from your programs, they will be available from the Standard Library. Could you write these libraries
yourself? Probably. Would you feel confident they have been exhaustively tested, optimized, and debugged? Usually not. The
Standard Library isagreat time saver. And as Ruby grows and evolves, so will its Standard Library, to everyone's benefit.

Although not every library section will contain al these entries, the basic format for each section is as follows:
« Required library
« Example
« Inherited class
« Class methods

« |nstance methods
4.1.1 Network

Use Ruby's network classes to let your scripts speak basic protocols such as TCP and UDP as a client, a server, or both. These
libraries provide socket access to a variety of Internet protocols and classes that make access to those protocols easier. Y ou can even
crawl up the protocol stack and find support for higher-level protocolslike FTP, HTTP, IMAP, and so on. All have an intuitive,
transparent interface that won't get in your way. Thisisthe largest group of libraries and one of the most frequently used.

Oh, and don't worry. There's support for doing web programming through the CGI, C3 : : Cooki e and C3 : : Sessi on classes.
BasicSocket Socket-related superclass

Basi cSocket isan abstract base class for network socket-related classes. This class provides common behavior among Socket
classes.

Required Library
reguire 'socket’
Inherited Class
IO

Class Methods

BasicSocket::do_not_reverse lookup

Returnst r ue if aquery returns numeric address, not hostname
BasicSocket::do_not_reverse lookup= bool

Setsr ever se_| ookup status
Instance Methods

S.getpeername

Returns information on this connection's peer socket asast r uct sockaddr packed into astring.
s.getsockname

Returnsinformation ons asast ruct sockaddr packed into astring.
s.getsockopt( | ev, opt namne)



Gets the specified socket option.
s.setsockopt( | ev, opt nane, val ue)

Sets the specified socket option.
s .shutdown([ how=2])

Shuts down the socket connection. 0 shuts down receiving, 1 sending, and 2 both.
s.recv(l en[, fl ags])

Receives datafrom s, and returnsit as a string.
s.send( mesg, f | ags[,t o])

Sends data over the socket s, returning the length of the datasent. t 0 may beast ruct sockaddr packedinto astring
indicating the recipient address.

| PSocket IP socket class

| PSocket classisabase classof TCPSocket and UDPSocket . | PSocket class provides common behavior among Internet
Protocol (1P) sockets. Sockets classes in Ruby support IPv6, if the native platform supportsit.

Required Library
require 'socket'
Inherited Class
Basi cSocket
Class Method

I PSocket::getaddress( host )

Returns the |P address of the specified host . The IP addressisreturned asastringsuchas127. 10. 0. 1 (IPvd) or: : 1
(IPv6).

Instance Methods

s .addr

Returns an array containing information on the socket connection (AF_I NET, port, hostname, and | P address)

s = TCPSocket. open("www. ruby-1| ang.org", "http")
s.addr# => ["AF_I NET", 4030, "dhcpl98.priv.netlab.jp",
"192.168.1.198"]

S.peeraddr

Returns an array containing information on the peer socket in the same format ass. addr

s = TCPSocket . open("ww. ruby-1 ang. org", "daytinme")

s. recvfron(255)

# => ["Wed Aug 1 00:30:54 2001\r\n", ["AF_INET", 13, "www/',
"210.251.121. 214"]]

s.recvfrom(| en[, f | ags])
Receives data and returnsit in an array that also includes information on the sender's socket in the same format ass. addr

UDPSocket UDP socket class

UDPSocket isaclassfor User Datagram Protocol (UDP), which is a connectionless, unreliable protocol.
Required Library

require 'socket'



Inherited Class

| PSocket

Class Methods

UDPSocket::new([ sockt ype=Socket::AF_INET])

UDPSocket::open([ sockt ype=Socket::AF_INET])
Creates a UDP datagram socket

Instance Methods

s.bind( host , port)
Binds the socket to port onhost . host may be an empty string (") for | NADDR_ANY or <br oadcast > for
| NADDR_BRQOADCAST.
s.connect( host , port)
Connectsthe socket to port on host . host may be an empty string ("") for | NADDR_ANY or <br oadcast > for
| NADDR_BRQOADCAST.
s.send( mesg, f | ags[,t o])
s.send( mesg, f | ags[, host , port])
Sends data on a socket s, returning the length of the data sent. If only two arguments are specified, the destination is assumed

to be the port of the existing connection. Otherwise, it may be specified using ast r uct sockaddr when caling the
method with three arguments or by indicating host and port when specifying four arguments.

TCPSocket TCP/IP socket class

TCPSocket isaclassfor Transmission Control Protocol (TCP), which is connection-oriented, reliable protocol.
Required Library

require 'socket'

Example

require 'socket'

host=(i f ARGV.length == 2; ARGV.shift; else "local host"; end)
print("Trying ", host, " ...")

STDQUT. f | ush

s = TCPsocket . open(host, ARGV.shift)

print(" done\n")

print("addr: ", s.addr.join(":"), "\n")
print("peer: ", s.peeraddr.join(":"), "\n")
while gets( )

s.wite($)

print(s.readline)
end
s. cl ose

Inherited Class
| PSocket
Class Methods

TCPSocket::new( host , servi ce)
TCPSocket::open( host , ser vi ce)

Opensa TCP connection to host for ser vi ce, which may also be a port number

TCPServer TCP/IP server socket class



TCPSer ver isaclassfor server-side TCP sockets. A TCPSer ver waits for client connection by theaccept method, then returns
aTCPSocket object connected to the client.

Required Library
require 'socket'
Example

require 'socket'

gs = TCPserver. open(0)
addr = gs. addr

addr . shi ft # renmoves "AF_|I NET"
printf("server is on %\n", addr.join(":"))
while true
Thread. start(gs. accept) do |s|
print(s, " is accepted\n")
while s.gets
s.wite($)
end
print(s, " is gone\n")
s. cl ose
end
end

Inherited Class
TCPSocket
Class Methods

TCPServer::new([ host ="localhost",] ser vi ce)
TCPServer::open([ host ="localhost",] ser vi ce)

Creates a server socket
Instance Method
s.accept

Waits for a connection and returns anew TCPSocket object once one is accepted

UNI XSocket Unix domain socket class

UNI XSocket isaclassfor the Unix domain, which can be specified by the path.
Required Library

require 'socket'

Inherited Class

Basi cSocket

Class Methods

UNIX Socket::new( pat h)
UNIX Socket::open( pat h)

Creates a Unix domain socket



Instance Methods

s.addr

Returns an array containing information on the socket (AF_UNI X and the path)
s.path

Returns the path of the Unix domain socket
S.peeraddr

Returns an array containing information on the peer socket in the same format ass. addr
s.recvfrom( | en[, f | ag=0Q])

Receives data and returnsit in an array that also includes information on the sender's socket in the same format as s. addr

UNI XServer Unix domain server socket class

UNI XSer ver isaclassfor server-side Unix domain sockets. A UNI XSer ver waitsfor client connection by theaccept method,
then returnsa UNI XSocket object connected to the client.

Required Library
require 'socket'
Inherited Class
UNI XSocket
Class Methods

UNIXServer::new( pat h)
UNIXServer::open( pat h)

Creates a server socket
Instance Method
s.accept

Waits for a connection and returnsanew UNI XSocket object once oneis accepted

Socket General socket class

The Socket classis necessary to gain access to all the operating system's socket interfaces. Interface structures can be created using
St ri ng#pack.

Required Library
require 'socket'
Inherited Class
Basi cSocket
Class Methods
Socket::for_fd( f d)

Creates a socket object corresponding to the file descriptor f d (an integer).
Socket::getaddrinfo( host , por t [, fam | y[, t ype[, pr ot o[, f | ags]l]])

Returns an array containing socket address information (address family, port number, hostname, host | P address, protocol
family, socket type, and protocol).



Socket : : get addri nf o("www. ruby- | ang. org", "echo", Socket::AF_| NET, Socket:: SOCK _DGRAM
# => [["AF_INET", 7, "www/', "210.251.121.214", 2, 2, 17]]

Socket::gethostbyaddr( addr [, t ype=Socket::AF_INET)
Returns an array containing socket address information (address family, port number, hostname, host | P address, pratocol
family, socket type, and protocal).

Socket : : get addri nf o("www. ruby- 1| ang. org", "echo", Socket::AF_| NET, Socket:: SOCK DGRAM
# => [["AF_INET", 7, "www/', "210.251.121.214", 2, 2, 17]]

Socket::gethostbyname( nane)

Returns an array containing host information retrieved from a host nare.

Socket . get host byaddr ( ([ 127, 0, 0, 1] . pack(" CCCC")))
# => ["ev", ["local host", "ev.netlab.jp"], 2, "\177\ 000\ 000\ 001"]

Socket::gethostname

Returns the current hostname.

Socket::getnameinfo( addr [, f | ags])
Returns an array containing the name of the host and service retrieved from the specified socket address information. addr
may beast ruct sockaddr packedinto astring or an array (address family, port, and hostname).

sockaddr = [ Socket::AF_I NET, 80, 127,0,0,1,""]. pack("snCCCCa8")
Socket : : get nanei nf o( sockaddr) # =>["ev","ww']
Socket : : get nanmei nf o([ " AF_I NET", 80, "l ocal host"]) # => ["ev", "www']

Socket::getservbyname( ser vi cel[, pr ot o="tcp"])

Returns the port number for ser vi ce and pr ot o specified.
Socket : : get servbyname("http") # => 80
Socket::new(domain, type, proto)
Socket::open(domain, type, proto)
Creates a socket.
Socket::socketpair( donai n, t ype, pr ot 0)
Socket::pair( donai n, t ype, pr ot 0)

Returns an array containing a pair of connected sockets.
Instance Methods

s.accept

Waits for a connection and, once one is accepted, returns a new socket object in an array that also includesast r uct
sockaddr packedinto astring.

s.addr

Synonym for s. get sockname. Returnsst ruct socaddr packedinastring.
s.bind( addr)

Bindss to addr, asockaddr structure packed into a string.
s.connect( addr)

Connectss toaddr , asockaddr structure packed into a string.
s.listen( backl og)

Specifiesthe size of the backl og queue.
s.recvfrom( | en[, f | ags])

Receives data and returnsit in an array that aso includes information on the sender's socket in the form of asockaddr
structure packed into a string.

S.peeraddr

Synonym for s. get peer nane. Returnsst ruct socaddr packedin astring.

Constants



The following constants are defined for use in socket specifications:
AF_I NET
AF_UNI X
MSG_00B
M5G_PEEK
SOCK_DGRAM
SOCK_STREAM
SOL_SOCKET
SO _KEEPALI VE
SO LI NGER
SO_SNDBUF

These constants are also defined in the module Socket : : Const ant s and are used by including them in your code.

Net::FTP FTP connection class

Net : : FTPisaclassfor File Transfer Protocol (FTP) client-side connection.
Required Library

require 'net/ftp’

Example

require 'net/ftp'

ftp = Net::FTP::new("ftp.ruby-Iang.org")

ftp.logi n("anonynous", "nmatz@ uby-|ang.org")

ftp.chdir("/pub/ruby")
tgz = ftp.list("ruby-*.tar.gz").sort. | ast

print "the latest versionis ", tgz, "\n"
ftp.getbinaryfile(tgz, tgz)
ftp.close

Class Methods

Net::FTP::new([ host [, user [, passwd[, acct ]]]])

Net::FTP::open( host [, user [, passwd[, acct ]]])
CreatesaNet : ; FTP object

Instance Methods

f .abort

Aborts the previous command.
f .acct(acct)

Sets the account.
f .chdir( pat h)

Changes the current directory.
f .close

Closes the connection.
f .closed?

Returnst r ue if the connection is closed.
f .connect( host [, por t =21])

Connects to host.



— —h —h —h

— —h —h —h

.debug_mode

Returns the debug mode status.

.debug_mode= bool

Sets the debug mode status.

delete(f il e)

Deletes afile.

.getbinaryfile(r emot e, | ocal [, bl ocksi ze=4096][, cal | back]])
.getbinaryfile(r emot e, | ocal [, bl ocksi ze=4096]) {|dat a|. . . }
.gettextfile(r emot e, | ocal [, cal | back])
.gettextfile(rempt e, | ocal ) {|data|. ..}

Retrieves aremote file from the server. If callback or ablock is specified, it's executed with the retrieved data. get t ext fi l e
performs newline code conversion.

help([ ar g])
Displays help.
Jastresp
Returns the server's last response.
list(path...)
dir(path...)
Is(path...)
Returns an array of file information in the directory. If ablock is specified, it iterates through the listing.
f.list("/pub/ruby") # =>
[ "drwxr-xr-x 2 matz users 4096 Jul 17 1998 1.0",...]
Jogin([ user ="anonymous'[, passwd[, acct ]]])

Logsinto the server.

.mkdir( pat h)

Creates adirectory.

.mtime(fil e[, ocal =falsg])

Returnsthe last modificationtimeof fi | e. If| ocal istrue, it'sreturned as alocal time, otherwise as Coordinated
Universal Time (UTC) time.

nist([dir])
Returns an array of filenames in the directory.
f.nlst("/pub/ruby") # => ["/pub/ruby/1.0",...]
Jputbinaryfile( r enot e, | ocal [, bl ocksi ze=4096[, cal | back]])
Jputbinaryfile( r enot e, | ocal [, bl ocksi ze=4096]) {|dat a]|. . .}
Jputtextfile( r enot e, | ocal [, cal | back])
Jputtextfile(r enot e, | ocal ) {|data|...}
Transfers afile. If callback or ablock is specified, the datais passed to it and isrun. put t ext fi | e performs newline code
conversion.
.pwd
.getdir
Returns the current directory.
.passive
Returnst r ue if passive mode is enabled.
.passive= bool
Sets passive mode on or off.
.quit



Exitsthe FTP session.
f .rename( ol d, new)

Renames filename ol d to new.
f .rmdir( pat h)

Removes the directory specified by pat h.
f .resume

Returnst r ue if resumption of file transfersis enabled.
f .resume= bool

Setsfile transfer resumption on or off.
f .return_code

Returns the newline code of the current session.
f .return_code=r et

Sets the newline code of the current session.
f.size(file)

Returns the size of file.
f .status

Returns the status.
f .system

Returns system information.
f .welcome

Returns the server's welcome message.
Net::HTTP HTTP connection class

Net : : HTTP isaclassfor Hypertext Transfer Pratocol (HTTP) client-side connection.
Required Library

require 'net/http'

Example

require 'net/http'

h = Net::HTTP:: new("www. ruby-1ang. org")
resp, data = h.get("/en/index.htnl")
print data

Class Methods

Net::HTTP::new([ host ="localhost"[, por t =80[, pr oxy[, pr oxy_por t]]]1)
Net::HTTP::start([ host ="localhost"[, por t =80[, pr oxy[, pr oxy_por t]]]])
Net::HTTP::start([ host ="localhost"[, por t =80[, pr oxy[, proxy_port]]]D {|http|...}

CreatesaNet : : HTTP connection object. If ablock is specified, the block is executed with the Net
an parameter. The connection is closed automatically when the block exits.

Instance Methods
h.finish
Closesthe HT TP session.

h.get( pat h[, header [, dest]])
h.get( pat h[, header]){|str]|...}

. HTTP object passed as



Retrieves datafrom pat h using a GET request, and returns an array containing an HTTPResponse object and the data.
header may be ahash indicating header names and values. dest may be a string to which the datais appended. If ablock is
specified, the retrieved datais passed to it.

h.head( pat h[, header ])

Sends a HEAD request for pat h, and returns the response.
h.post( pat h, dat a[, header [, dest]])
h.post( pat h, dat a[, header]) {|str]...}
Sends dat a to pat h using a POST request, and returns an array containing an HTTPResponse object and the reply body.

Although the post method's HTTP request type is different, the block and arguments, such asheader and dest , are handled
in the sameway ash. get .

h.start
hsart{|http|...}

Starts an HTTP session. If ablock is specified, the session is terminated when the block exits.

Net::IMAP IMAP access class

Net : : | MAP isaclassfor Internet Message Access Protocol Version 4 (IMAP4) client-side connection. IMAP4 alows you to store
and manage messages in the server side.

Required Library
require "net/imap"
Example

require "net/imp"

imp = Net::|MAP::new("imap.ruby-|ang.org")
i map. |l ogin("matz", "skwkgjv;")
i map. sel ect ("i nbox")
fetch_result = imap.fetch(1..-1, "UD")
search_result = inap.search(["BODY", "hello"])
i map. di sconnect

Class Methods

Net::IMAP;:add_authenticator( aut h_t ype, aut henti cat or)

Adds an authenticator for Net : : | MAP#aut hent i cat e.
Net::IMAP::debug

Returnst r ue if in the debug mode.
Net::IMAP::debug= bool

Sets the debug mode.
Net::IMAP::new( host [, por t =143])

Createsanew Net : : | MAP object and connectsit to the specified por t on the named host .
Instance Methods

i map.append( mai | box, message[,fl ags [,date_ti ne]])

Appendsthe nessage to the end of themai | box.

i map. append("i nbox", <<EOF.gsub(/\n/, "\r\n"), [:Seen], Time.now)
Subject: hello

From shugo@ uby-1ang.org

To: shugo@uby-1ang.org

hello world

EOF



map.authenticate( aut h_t ype,arg. . .)

Authenticates the client. The aut h_t ype parameter is a string that represents the authentication mechanism to be used.
Currently Net : : | MAP supports" LOd N' and " CRAM MD5" for theaut h_t ype.

i map. aut henti cat e(' CRAM MD5", "matz", "crampass")

map.capability

Returns an array of capabilities that the server supports.

i map. capability # => ["IMAP4", "I|MAP4AREV1", "NAMESPACE", ...]
map.check

Requests a checkpoint of the current mailbox.
map.close

Closes the current mailbox. Also permanently removes from the mailbox all messages that have the\ Del et ed flag set.
map.copy( mesgs, nai | box)

Copiesmesgs in the current mailbox to the end of the specified mai | box. mesgs isan array of message sequence numbers

or aRange object.
map.create( mai | box)

Createsanew mai | box.
map.delete( mai | box)

Removes the mai | box.
map.disconnect

Disconnects from the server.
map. exam ne( mai | box)

Selectsammai | box as acurrent mailbox so that messages in the mailbox can be accessed. The selected mailbox isidentified

asread-only.
map.expunge

Removes from the current mailbox all messages that have\ Del et ed flag set.
map.fetch( mesgs,attr)

Fetches data associated with a message in the mailbox. mesgs is an array of message sequence numbers or an Range object.

Ther et urn_val ue isanarray of Net : : | MAP: : Fet chDat a.

data = imap.uid_fetch(98, ["RFC322.SlIZE", "I NTERNALDATE"])[ 0]
dat a. segno #=> 6
data. attr["RFC822. SI ZE"] #=> 611
data. attr[" 1 NTERNALDATE"] #=> "12-Cct - 2000 22:40:59 +0900"
data.attr["U D'] #=> 98

map.greeting

Returns an initial greeting response from the server.
map.list(di r, pattern)

Returns an array of mailbox informationin di r matching pat t er n. Thereturn valueis an array of

Net : : | MAP: : Mai | boxLi st. patt er n may contain wildcards* (which matches any characters) and %(which matches

any characters except delimiter).

imap.list("foo", "*")# matches any mail box under foo recursively
imap.list("foo", "f%)
# matches any mail box start with "f" under "foo"
map.login( user , passwor d)

Logsinto the server.
map.logout

Logs out from the server.
map.lsub( r ef nane, nai | box)

Returns an array of subscribed mailbox informationin di r matching pat t er n. Thereturn valueis an array of



Net : : | MAP: : Mai | boxLi st . pattern may contain wildcards* (which matches any characters) and %(which matches
any characters except delimiter).

map.noop

Sends a NOOP command to the server. It does nothing.
map.rename( mai | box, newnarne)

Renamesthe mai | box to newnane.
nMap.responses

Returns recorded untagged responses.

i map. sel ect ("i nbox")
i map. responses["EXI STS"][-1]
i map. responses[" U DVALI D TY"][-1]

map.search( keys|[, char set])

> 2
> 968263756

Searches the mailbox for messages that match the given searching criteria, and returns an array of message sequence numbers.

i map. search(["SUBJECT", "hello"]) #=> [1, 6, 7, 8]
i map. search(' SUBJECT "hell 0"") #=>[1, 6, 7, 8]

map.select( mai | box)

Selectsammai | box asacurrent mailbox so that messages in the mailbox can be accessed.
map.sort(sort _keys,search_keys, charset)

Returns an array of message sequence numbersthat matchessear ch_keys_sorted according tothesort _keys.

i map. sort (["FROM'], ["ALL"], "US-ASCI ")

#=>[1, 2, 3, 5 6, 7, 8, 4, 9]
i map. sort (["DATE"], ["SUBJECT", "hello"], "US-ASCII")

#=> [6, 7, 8, 1]

map.status( mai | box, attr)

Returns the status of the mai | box. The return value is a hash of attributes.

i map. status("inbox", ["MESSAGES', "RECENT"]) #=>
{"RECENT"=>0, "MESSAGES"=>44}

map.store( nesgs, at tr, flags)

Stores data associated with a message in the mailbox. mesgs isan array of message sequence numbers or aRange object.

# add \Del eted to FLAGS attribute to mails No. 6, 7, 8.
i map.store(6..8, "+FLAGS", [:Deleted])

map.subscribe( mai | box)

Appends the specified nmai | box to the list of active or subscribed mailboxes.
map.unsubscribe( mai | box)

Removes the specified mai | box from thelist of active or subscribed mailboxes.

map.uid_copy( mesg, mai | box)
Copiesnmesgs in the current mailbox to the end of the specified mai | box. mesgs isan array of unique message identifiers
or aRange_object.

map.uid fetch( mesgs, attr)
Fetches data associated with a message in the current mailbox. mesgs isan array of unique message identifiers or an Range
object. Thereturn valueisan array of Net : : | MAP: : Fet chDat a.

map.uid_search( keys|[, char set])

Searches the mailbox for messages that match the given search criteria, and returns an array of unique identifiers.
map.uid _sort(sort _keys, search_keys, charset)

Returns an array of unique message identifiers that matches sear ch_keys sorted accordingtothesort _keys.
map.uid_store( mesgs, attr,fl ags)

Stores data associated with a message in the mailbox. mesgs isan array of unique message identifiersor aRange object. The
return valueisan array of Net : : | MAP: : Fet chDat a.



Net::POP3 POP3 connection class

Net : : POP3 isaclassfor Post Office Protocol Version 3 (POP3) client-side connection. POP3 is a simple protocol that retrieves
incoming mail from the server.

Required Library
require 'net/pop’
Example

require 'net/pop'
pop = Net:: POP3:: new"pop.ruby-Iang.org")
# authenticate just for SMIP before POP
pop.start("matz", "skwkgjv;") {

nmails = pop.mails # array of Net::POPMil
}

Class Methods

Net::POP3::new([ addr ="localhost"[, por t =80]])

Createsanew Net : : POP3 object.
Net::POP3::start([ addr ="localhost"[, por t =80[, . . . 111)
Net::POP3::start([ addr ="localhost"[, por t =80[, . . . 11]) {| pop|. . . }

Equivalent toNet : : POP3: : new( addr, port).start(...).A newlycreated Net : : POP3 object is passed to the
block, if specified. The POP3 session is terminated when the block exits.

Instance Methods
p.each{|mail|. . .}

Synonym for p. mai | s. each.
p.finish

Closes the POP3 session.
p.mails

Returns an array of Net : : POPMai | objects.
p.start( acct , passwd)
p.start( acct , passwd) {|pop| . . . }

Starts a POP3 session. If ablock is specified, the session is terminated when the block exits.

Net:: APOP APOP connection class

The Net : : APOP class has the same interface as Net::POP3. They differ only in their method of authentication.
Required Library
require 'net/pop’
Inherited Class
Net : : POP3
Net::POPMail POP mail class




TheNet : : POPMai | classisused by classesNet : : POP3 and Net : : APOP to return individual message objects.
Required Library

require 'net/pop’

Instance Methods

mall([ dest])
mmail([ dest])
mpop([ dest ])

Retrieves the contents of mail messages. If dest is specified, each message is appended to it using the << method. If ablock
is specified, it's passed the contents of each message as a string and run once for each line in the message.

mdelete

Deletes the message.
mdeleted?

Returnst r ue if the message has been deleted.
mheader([ dest ])

Returns the message header.
msize
Returns the message size in bytes.
mtop( | i neno[, dest])
Returns the message header and | i neno number of lines of the body.

Net::SMTP SMTP connection class

Net : : SMIP isaclassfor Simple Mail Transfer Protocol (SMTP) client-side connection. SMTP is a protocol to talk to Mail
Transfer Agent (MTA).

Required Library
require 'net/smtp'
Example

require 'net/smp'

user = "you@our-domai n. cont
from= "mtz@uby-1| ang. org"
server = "|ocal host"

smp = Net::SMIP:: newserver)
sntp.start

snt p. sendnmi | (<<BODY, from user)
From matz@ uby-Iang.org

Subject: this is atest mail.

this is body
BODY
sntp. finish

Class Methods

Net::SMTP::new([ addr ="localhost"[, por t =25]])

Createsanew Net : : SMIP object.
Net::SMTP::start([ addr ="localhost"[, por t =25][, . . . ]]])
Net::SMTP::start([ad dr="localhost"[, port =25[, . . . ]]]) {Ism p|. . . }

Equivalent toNet : : SMIP: : new( addr, port).start(...).A newlycreated Net : : SMIP object is passed to the



block, if specified. The SMTP session is terminated when the block exits.

Instance Methods
s .finish
Closes an SMTP session.

s.ready(from to) {|adapter]|...}

Sends amessage, passing an adapt er object to the block. The message is sent by calling the adapter'swr i t e method.
s.start([ domai n[, account [, passwor d[, aut ht ype]ll])
s.gtart([ domai n[, account [, passwor d[, aut ht ype]]]]) {Isntp]|.. .}
Startsan SMTP session. An Net : : SMI'P abject is passed to the block, if specified. The session is terminated when the block
exits.
s.send_mail(mai | src,fromt o)
s.sendmail( mai | src,fromto)

Sends mail. t 0 may be either a string or an array of strings.

Net:: Telnet Telnet connection class

Net : : Tel net isaclassfor a Telnet connection. This classisn't only a Telnet protocol client but also a useful tool to interact with
interactive services.

When ablock is specified with class and instance methods of the Net : : Tel net class, it's passed status output strings from the
server asthey are received by the method.

Required Library
require 'net/tel net'
Class Method

Net :: Tel net:: new( opti ons)

CreatesaNet : : Tel net object. opt i ons may be a hash specifying zero or more of the following options:

Key Function Default
Bi nnode Binary mode fal se
Host Telnet server "l ocal host"
Qut put _| og Output log nil (no output)
Dunp_| og Dump log nil (no output)
Por t Port to connect to 23
Pr onpt Pattern matching the server's prompt /[ $%t>/ \z/n
Tel net node Telnet mode true
Ti meout Timeout 10
VWaittinme Wait time 0
Pr oxy Proxy nil

Instance Methods

Besides the following methods, the Net : : Tel net object delegates its methods to Socket object, so that methods provided by the
Socket class (and its parent classes) are also availablefor Net : : Tel net .

t .binmode

Returnst r ue if binary modeis enabled.
t .binmode= bool

Sets binary mode on or off.
t.cmd( opt i ons)




Sends a command to the server. opt i ons may be the command string to be sent to the server or a hash specifying one or
more of the following options:

Key Function Default value
String String to be sent (Required)
Mat ch Pattern to match Value of Pronpt option
Ti meout Timeout Value of Ti meout option

t .login( opt i ons)
t login(user [, passwd])

Logsin to the server. The following hash options may be specified.:

Key Function

Nane Username

Passwor d Password

t.print(str)

Sends st r to the server, performing Telnet protocol trangation.
t .telnetmode

Returnst r ue if Telnet mode is enabled.
t .telnetmode= bool

Sets Telnet mode on or off,
t .waitfor( opt i ons)

Waits for aresponse from the server. The same hash options may specified aswitht . cnd.
t .write(str)

Sends st r to the server without performing Telnet protocol tranglation.

Cal CGl support class

CGA provides useful featuresto implement Common Gateway Interface (CGI) programs, such asretrieving CGI data from server,
manipulating cookies, and generating the HTTP header and the HTML body.

Example

require 'cgi'
cgi = CA::new"htm 3")

input, = cgi["input"]
i f input

i nput = Cd ::unescape(input)
end
p i nput
begi n

val ue = Thread:: new

$SAFE=4

eval input
}.val ue. i nspect
rescue SecurityError
value = "Sorry, you can't do this"
end
cgi.out {
cgi . htm{
cgi . head{cgi.title{"Walter's Wb Arithnetic Page"}} +
cgi . body{
cgi.form"post", "/cgi-bin/farith.rb") {
"input your favorite expression: " +
cgi.text _field("input", input) +
cgi.br +



"the result of you input: " +
CA :: escapeHTM_ (val ue) +
cgi.br +
cgi . subm t
}
}
}
}

Required Library

require ‘cgi’
Class Methods

CGl::new([ | evel ="query"])

Creates a CGl object. | evel may be one of the following options. If one of the HTML levelsis specified, the following
methods are defined for generating output conforming to that level:

query
No HTML output generated
html3

HTML3.2
html4

HTMLA4.0 Strict
html4Tr

HTML4.0 Transitiona
html4Fr

HTMLA4.0 Frameset

CGl::escape(str)

Escapes an unsafe string using URL -encoding.
CGl::unescape( st r)

Expands a string that has been escaped using URL-encoding.
CGl::escapeHTML(str)

Escapes HTML special characters, including: & < >.
CGl::unescapeHTML(str)

Expands escaped HTML special characters, including: & < >.
CGl::escapeElement(str[, el ement...])

Escapes HTML specia charactersin the specified HTML elements.
CGl::unescapeElement(str, el enent [,el ement . . . ])

Expands escaped HTML specia charactersin the specified HTML elements.
CGl::parse( query)

Parses the query and returns a hash containing its key-value pairs.
CGl::pretty(stri ng[,| eader=""])

Returns a neatly formatted version of the HTML string. If | eader is specified, it's written at the beginning of each line. The
default value for | eader istwo spaces.

CGl::rfc1123 date(ti me)
Formats the data and time according to RFC-1123 (for example, Sat, 1 Jan 2000 00:00:00 GMT).

Instance Methods

c[ nane]



Returns an array containing the value of the field name corresponding to nane.
c.checkbox( name[, val ue[, check=fasd]])
c.checkbox( opt i ons)

Returns an HTML string defining a checkbox field. Tag attributes may be specified in a hash passed as an argument.
c.checkbox_group( nane, val ue. . .)
c.checkbox_group( opt i ons)

Returns an HTML string defining a checkbox group. Tag attributes may be specified in a hash passed as an argument.
c.file_field( namel, si ze=20[, max]])
c.file_field( opt i ons)

Returns an HTML string defining afile field.

c.form([ met hod="post"[,url 1D{ ...}

c.form(opti ons)
Returns an HTML string defining aform. If ablock is specified, the string produced by its output creates the contents of the
form. Tag attributes may be specified in a hash passed as an argument.

c.cookies

Returns a hash containing aCd : : Cooki e object containing keys and values from a cookie.

c.header([ header])
Returns a CGI header containing the information in header . If header isahash, its key-value pairs are used to create the
header.

c.hidden( nane[, val ue])

c.hidden( opt i ons)

Returns an HTML string defining a Hl DDEN field. Tag attributes may be specified in a hash passed as an argument.
c.image_button(ur | [, nane[, al t]])
c.image _button( opt i ons)

Returns an HTML string defining an image button. Tag attributes may be specified in a hash passed as an argument.
c.keys

Returns an array containing the field names from the form.
c.key?( nane)
c.has key?( nane)
c.include?( nane)

Returnst r ue if the form contains the specified field name.

c.multipart_form([ url [,encode]]){ ...}

c.multipart_form(options){...}
Returns an HTML string defining a multipart form. If ablock is specified, the string produced by its output creates the contents
of the form. Tag attributes may be specified in a hash passed as an argument.

c.out([ header]D{ ...}

Generates HTML output. Uses the string produced by the block's output to create the body of the page.
C.params

Returns a hash containing field names and values from the form.
c.params= hash

Sets field names and values in the form using a hash.
c.password_field( name[, val uel, si ze=40[, max]]])
c.password_field( opt i ons)

Returns an HTML string defining a password field. Tag attributes may be specified in a hash passed as an argument.
c.popup_menu( nane, val ue. . .)
C.popup_menu( opt i ons)



c.scrolling_list( name, val ue. . .)
c.scrolling_list( opt i ons)

Returns an HTML string defining a pop-up menu. Tag attributes may be specified in a hash passed as an argument.
c.radio_button( nane[, val ue[, checked=fasg]])
c.radio_button( opt i ons)

Returns an HTML string defining a radio button. Tag attributes may be specified in a hash passed as an argument.
c.radio_group( nane, val ue. . .)
c.radio_group( opt i ons)

Returns an HTML string defining a radio button group. Tag attributes may be specified in a hash passed as an argument.
c.reset( nanel, val ue])
c.reset( opt i ons)

Returns an HTML string defining a reset button. Tag attributes may be specified in a hash passed as an argument.
c.text_field( name[, val ue[, si ze=40[, max]]])
c.text_field( opti ons)

Returns an HTML string defining atext field. Tag attributes may be specified in a hash passed as an argument.
c.textarea( nane[, col s=70[,rows=10]]){ . . . }
c.textarea(options){ ...}

Returns an HTML string defining atext area. If ablock is specified, the string produced by its output creates the contents of
the text area. Tag attributes may be specified in a hash passed as an argument.

HTML Generation Methods

In addition to the previous instance methods, each CA  object provides the following methods, which generate HTML tag strings
corresponding to the HTML level specified when the CA  object was created. These methods return a string that is produced by
adding any specified tags to a body created from the string output of the block. Tag attributes may be specified in a hash that is
passed as an argument to each method.

Here arethetagscommontoht m 3, ht m 4, ht m 4Tr,and ht m 4Fr .

a addr ess area b base

big bl ockquot e body br caption
cite code dd df n div

dl doct ype dt em form

hl h2 h3 h4 h5

h6 head hr ht m i

i my i nput kbd li I'i nk

map net a ol option p

par am pre sanp scri pt sel ect
smal | strong style sub submi t
sup tabl e td th title

tr tt ul var

Herearetheht m 3 tags:

appl et basef ont center dir f ont

i si ndex listing nenu pl ai nt ext stri ke
u Xmp

Herearethe ht m 4 tags:

abbr acronym bdo but t on col
col group del fieldset ins | abel
| egend noscri pt obj ect opt group q
span t body t f oot t head




Herearetheht m 4Tr tags

abbr acronym appl et basef ont bdo
but t on center col col group del
dir fieldset f ont i franme i ns
i si ndex | abel | egend map nmenu
nof r anes noscri pt obj ect opt gr oup q

S span strike t body t f oot
t head u

Herearetheht m Fr tags:

abbr acronym appl et basef ont bdo

button center col col group del

dir fiel dset font franme franeset

i frame ins i si ndex | abel | egend
nmenu nof r anes noscri pt obj ect opt group

q s span strike t body

t f oot t head u

Object Attributes

The CGlI class has the following accessors:

accept Acceptable MIME type
accept _char set Acceptable character set
accept _encodi ng Acceptable encoding
accept _| anguage Acceptable language
aut h_type Authentication type

raw_cooki e

Cookie data (raw string)

content _| ength

Content length

content _type

Content type

From Client email address
gateway_i nterface CGl version string

pat h_info Extra path

pat h_transl at ed Converted extra path
Query_string Query string

referer Previously accessed URL

renot e_addr

Client host address

renot e_host

Client hostname

renot e i dent

Client name

renot e_user

Authenticated user

request _net hod

Request method (GET, POST, etc.)

scri pt_nane Program name
server _nane Server name
server _port Server port

server _protocol

Server protocol

server_software

Server software

user _agent

User agent

CGl::Cookie

HTTP cookie class

Cd : : Cooki e representsthe HTTP cookie that carries information between HT TP sessions.




Required Library
reguire ‘cgi'
Object Attributes

The CGl::Cookie class has the following accessors:

C. nane Cookie name

c.val ue An array of cookie values

c.path The cooki€'s path

c.domain The domain

C.expires The expirationtime (asaTi ne object)

C.secure Trueif secure cookie

CGl::Session CGl session class

Cd : : Sessi on maintains a persistent session between HT TP accesses. Session information is represented by string to string

mapping. Session information can be stored via the user-defined database class.

Required Library
require 'cgi/session’
Example

request 'cgi/session'

cgi = CA::newm"htm 3")

s = Cd:: Session(cgi)
if s["last_nodified"]
# previously saved

dat a

t =s["last_nodified"].to_i

el se
t = Time.now.to_i

# save data to session database

s["last_nodified"]
end

# ... continues ...
Class Methods

CGl::Session::new( cgi [, opt

=t.to_s

i on])

Starts anew CGI session and returns the corresponding C3 : : Sessi on object. opt i on may be an option hash specifying
one or more of the following:

Key

Function

Default value

sessi on_key

Key name holding the session ID

session_id

session_id

Unigue session ID

Generated automatically

new sessi on

If t rue, anew session is created

fal se

dat abase_nanager

Database manager class for storing session data

Cd::Session::FileStore

An option hash can specify options when creating the database manager object. The default database manager class
(CA : : Sessi on: : Fi | eSt or e) recognizes the following options:

Key

Function

Default value

t npdi r Directory for temporary files

/[t

prefix Prefix for temporary files

None

Methods for Database Manager




Database manager object should have following methods:
initialize( sessi on[, opti ons])

Initializes the database. sessi on isaCQ : : Sessi on object. opt i ons isan option hash that passed to
Cd :: Sessi on: : new
restore

Returns the hash that contains session-specific data from the database
update

Updates the hash returned by r est or e
close

Closes the database
delete

Removes the session-specific data from the database

Instance Methods

s[key]
Returns the value for the specified session key
s[ key]=val ue

Sets the value for the specified session key
s.delete

Deletes the session
s.update

Writes session data to the database, calling the update method of the database manager object
4.1.2 Operating System Services

A mixed bag of OS services are provided in the Ruby standard library, including curses, filesystem searching and file handling,
command-line argument processing, and others.

If you're coming from another scripting language background, these classes will have interfaces you'll find familiar and
straightforward access to Unix services. No surprises, here.

Curses Character-based interface module

The Cur ses module provides an interface to the character-based interface library called cur ses.
Required Library

require ‘curses

Module Functions

addch( ch)

Outputs one character to the screen
addstr(str)

Outputs st r to the screen
beep

Beeps the bell
cbreak

Turnson cbr eak mode
nocbreak



Turns off cbr eak mode
clear

Clears the screen
close_screen

Finalizesthe cur ses system
cols

Returns the screen width
crmode

Aliasto thecbr eak
nocrmode

Aliastothenocbr eak
delch

Deletes a character at the cursor position
deleteln

Deletes aline at the cursor position
doupdate

Updates the screen by queued changes
echo

Turns on echo mode
noecho

Turns off echo mode
flash

Flashes the screen
getch

Reads one character from the keyboard
getstr

Reads aline of string from the keyboard
inch

Reads a character at the cursor position
init_screen

Initializesthecur ses system
insch( ch)

Outputs one character before the cursor
lines

Returns the screen height
Nl

Turns on newline mode, which translates the return key into newline (\ n)
nonl

Turns off newline mode
raw

Turns on raw mode
noraw

Turns off raw mode
refresh



Refreshes the screen
setpos( y, x)

Moves the cursor to the (y, x) position
standout

Turnson st andout (highlighting) mode
standend

Turn off st andout mode
stdscr

Returns the reference to the standard cur ses screen object
ungetch( ch)

Pushes ch back to input buffer

Curses::Window Character-based window class

Cur ses: : W ndowisaclassfor character-based windows implemented by the cur ses library.
Required Library

require "curses"

Class Method

Curses::Window::new( h, w, y, X)

Createsanew cur ses window of size (h, w) at position (y, X ).
Instance Methods

w<<str
w.addstr( st r)

Outputs st r to the screen.
w.addch( ch)

Outputs one character to the screen.
w.begx

Returns the window's beginning x position.
w.begy

Returns the window's beginning y position.
w.box( v, h)

Draws abox around the window. v is a character that draws avertical side. h is a character that draws a horizontal side.
w.clear

Clears the window.
w.close

Closes the window.
W.CUrX

Returns x position of the window's cursor.
w.cury

Returnsy position of the window's cursor.
w.delch

Deletes a character at the window's cursor position.



w.deleteln

Deletes aline at the window's cursor position.
w.getch

Reads one character from the keyboard.
w.getstr

Reads aline of string from the keyboard.
w.inch

Reads a character at the window's cursor position.
w.insch( ch)

Outputs one character before the window's cursor.
W.maxx

Returns the window's x size.
w.maxy

Returns the window's y size.
w.move( y, X)

Moves the window to the position (y, X).
w.refresh

Refreshes the window.
w.setpos( y, X)

Moves the window's cursor to the position (y, X).
w.standend

Turnson st andout (highlighting) mode in the window.
w.standout

Turns off st andout mode in the window.
w.subwin( h, w, y, X)

Createsanew cur ses subwindow of size (h, w ) in the window at position (y, X).

Etc Module for /etc directory data retrieval

The Et ¢ module provides functions to retrieve user account-related data from files under /etc directory. Thismoduleis
Unix-dependent.

Required Library
require 'etc'
Example

require 'etc'
print "you nust be ", Etc.getlogin, ".\n"

Module Functions
getlogin

Returnslogin name of the user. If thisfails, try get pwui d.
getpwnam( nane)

Searchesin/ et ¢/ passwd file (or equivalent database), and returns password entry for the user nane. See get pwnan( 3)
for details. Thereturn valueisapasswd structure, which includes the following members:

nane |Username(sxri ng)



passwd Encrypted password(string)

ui d User ID(integer)

gid Group ID(integer)

gecos Gecos field(string)

dir Home directory(string)

shel | Login shell(string)

change Password change time(integer)
quot a Quota value(integer)

age Password age(integer)

cl ass User access class(string)
conment Comment(string)

expire Account expiration time(integer)

getpwuid([ ui d])
Returns passwd entry for the specified ui d. If ui d isomitted, uses the value from get ui d. Seeget pwui d( 3) for details.
getgrgid(gi d)

Searchesin/ et ¢/ gr oup file (or equivalent database), and returns group entry for thegi d. Seeget gr gi d( 3) for detail.
The return value is a group structure, which includes the following members:

namne Group hame(string)

passwd Group password(string)

gid Group ID(integer)

mem Array of the group member names

getgrnam( nane)
Returns the group entry for the specified nane. The return value is the group structure. See get gr nan( 3) for details.
group

Iterates over all gr oup entries.
passwd

Iterates over al passwd entries.

Fentl Fcntl constant module

The Fcnt | module provides constant definitions for | O#f cnt | .

Required Library

require fentl’

Constants

F_DUPFD Duplicates file descriptor

F_GETFD Reads the close-on-exec flag

F_SETFD Sets the close-on-exec flags

F_GETFL Reads the descriptor's flags

F_SETFL Gets the descriptor's flags (O_APPEND, O_NONBLOCK, or O_ASYNC)
F_GETLK Getsthe flock structure

F_SETLK Gets lock according to the lock structure (nonblocking)
F_SETLKW Setslock like F_SETLK (blocking)

F_RDLCK Reads lock flag for flock structure

F WRLCK Writes lock flag for flock structure

F_UNLCK Unlocksflag for flock structure

FD_CLOEXEC Close-on-exec flag




O _CREAT Createsfileif it doesn't exist

O EXCL File shouldn't exist before creation

O _TRUNC Truncatesto | engt h O

O_APPEND Appends mode

O_NONBLOCK Nonblocking mode

O_NDELAY Nonblocking mode

O _RDONLY Read-only mode

O RDVWR Read-write mode

O WRONLY Write-only mode

Find Directory tree traversal module

The Fi nd module provides a depth-first directory traversal.
Required Library

reguire 'etc'

Example

require 'find'
# prints all files with ".c" extension.
Find. find(".") {]|f]
puts f if /\.c$/ =~ f
}

Module Functions

find(path. .. ){|f]...}

Traverses directory tree giving each filename to the block
prune

Terminates traversal down from the current directory

ftools File utility library

ft ool s isalibrary that enhances file handling utility class methods of the Fi | e class.
Required Library

require 'ftools

Class Methods

File:chmod( mode,fil es...[,ver bose=fasg])

ft ool s enhancesFi | e: : chnod to take verbose arguments. If the last argument ist r ue, printslog to st derr .
File:cmp( pat hl, pat h2[, ver bose=falsg])
File::compare( pat hl, pat h2[, ver bose=falsg])

Comparestwo filesand returnst r ue if they have identical contents. If ver bose ist r ue, printslogto st derr .
File::cp( pat hl, pat h2[, ver bose=false])
File::copy( pat h1, pat h2[, ver bose=fasg])

Copiesafileat pat hl topat h2. If ver bose ist r ue, prints operation logto st derr .
File:instal( pat hl, pat h2[, node [, ver bose=falsg]])

Copiesafileat pat hl topat h2. If node issupplied, itsfile permissionis set to node. If file at pat h2 exists, it's removed



before copying. If ver bose ist r ue, prints operation log to st der r .

File:makedirs( pat h. . . [, ver bose=fasg])

File::mkpath( pat h. . . [, ver bose=falsg])
Creates the specified directories. If any parent directoriesin pat h don't exist, it creates them aswell. If the last argument is
t r ue, prints operation log to st der r .

File:move( pat hl, pat h2[, ver bose=falsg])

File:mv( pat hl, pat h2[, ver bose=falsg])

Movesfilefrom pat hl to pat h2. If thelast argument ist r ue, prints operation logto st derr.
File:rm_f( pat h. .. [, ver bose=fasg])
File::safe_unlink( pat h. . . [, ver bose=false])

Removes files regardless of file-permission mode. If the last argument ist r ue, prints operation log to st der r .
File::syscopy( pat hl, pat h2)

Copiesafilefrom pat hl topat h2 using | O#sysread and | Ofsyswri t e. syscopy copies permissions of thefile as
well.

GetoptLong Command line option parser

The Get opt Long class parses command-line option argumentsin away similar to GNU get opt | ong library.
Required Library

require 'gettextfile

Example

require 'getoptlong'

opt = CetoptLong. new
["--max-size', '-m, GetoptLong:: REQU RED ARGUMENT],
['--quiet', '-q', CetoptLong:: NO ARGUVENT],
['--help', CGet opt Long: : NO_ ARGUMENT] ,
['--version', Get opt Long: : NO_ARGUMENT] )
opt. each_option do | nane, ar g|
case nane
when ' - - max- si ze'

printf "max-size is %\n", arg
when ' --quiet'
print "be quiet!\n"

when ' - - hel p'
print "hel p nessage here\n"
exi t
when ' --version'
print "version 0.1\n"
exi t
end
end

Inherited Class
oj ect
Class Method

GetoptLong::new( opti on. . .)
Creates and returns a Get opt Long object. If opt i ons are given, they are passed totheset _opt i ons method.

Instance Methods



opt
opt

opt
opt

opt
opt

opt

opt

opt

opt

opt
opt

opt

opt .

opt

.each{|opt nane, optarg|...}
.each_option {|opt nane,optarg|. ..}

Iterates over each command-line option. Option name and value are passed to the block.

et
.get_option

Retrieves an option from command-line arguments, and returns the name-value pair of option.

.error
.error?

Returns type of the current error or ni | if no error occurs.

.error_message

Returns an error message of the current error or ni | if no error occurs.

.ordering=or deri ng

Sets option ordering. or der i ng isany of PERMUTE, REQUI RE_ORDER, or RETURN | N_ORDER.

.ordering

Returns current ordering.

.quiet=bool

Sets status of quiet mode. In quiet mode, option parser doesn't output error messagesto st dout on errors. The default valueis
fal se.

.Quiet
.quiet?

Returns current status of quiet mode.

.set_options( option. ..)

Sets command-line options that your program accepts, specified by arrays of option names and option type constants.

Option typeisany of NO_ARGUVENT, REQUI RED_ARGUMENT, or OPTI ONAL_ ARGUMENT. Y ou have to call
set _opti ons beforeinvoking get , get _opti on,each, oreach_opti on.

terminate

Terminates option processing. Raises Runt i meEr r or exception if any errors occur before termination.

terminated?

Returnst r ue if option processing is finished without causing errors, otherwise returnsf al se.

Constants

Ordering specifiers

PERVMUTE
REQUI RE_ORDER
RETURN_| N_ORDER

Argument type specifiers

NO_ARGUVENT
REQUI RED_ARGUNVENT
OPTI ONAL_ ARGUVENT

PTY Pseudo TTY access module

The PTY module executes commands as if their standard /O is connected to ttys.

Required Library



require "pty"
Module Functions
getpty( conmand)
spawn( command)

Reserves a PTY, executes command over the PTY, and returns an array of three elements (reading 1/0O, writing 1/0, and the
PID of the child process). With ablock, the array is passed to the block as block parameters. SI GCHLD is captured while
conmand is running.

protect signal { . . .}

Protects block execution from SI GCHL D signal exception. Thisis required to invoke other subprocesses while using any PTY.
reset_signd

Disablesto handle SI GCHLD while PTY subprocessis active.

Readline GNU readline library interface

The Readl i ne module provides ainterface to the GNU line editing library named r eadl i ne.
Required Library

require 'readline’

Example

require 'readline'
i ncl ude Readline
line = readline("Pronpt> ", true)

Module Function

readline( pr onpt , add_hi st ory)
Reads one line with line editing. If theadd ist r ue, thelineis also added to the history.
Module Methods
Readline::completion_proc= pr oc
Specifies Pr oc object to determine completion behavior. Takes input string, and returns compl etion candidates.
Readline::completion_proc

Returns the completion Pr oc object.
Readline::completion_case fold=bo ol

Sets whether or not to ignore case on completion.
Readline::completion_case fold

Returnst r ue if completion ignores case.
Readline::completion_append character= char

Specifies a character to be appended on completion. If empty string (
Readline::completion_append character

) or nil is specified, nothing is appended.

Returns a string containing a character to be appended on completion. Default is a space.
Readline::vi_editing_mode

Specifies vi editing mode.
Readline::emacs_editing_mode

Specifies Emacs editing mode.



Constant

HISTORY
The history buffer; it behaves just like an array.

Tempfile Temporary file class

Temporary files are aways deleted when garbage collection is activated, and Ruby terminates.
Required Library

require 'tempfile

Example

require '"tenpfile’

f = Tempfil e. new("foo")

f.print("foo\n")

f.close

f. open

p f.gets # => "foo\n"

f.close(true) # f will be automatically renoved

Class Method
Tempfile:new( basenane[, t npdi r ="/tmp"])

Opens atemporary file that includes basenane as part of the filename in w+ mode.
Instance Methods

t .open

Reopens the temporary file, allowing its contents to be read from the beginning of the file.
t .close([ per manent | y=false])

Closes thetemporary file. If per manent | y ist r ue, thefileis also deleted.
t .path

Returns the path of the temporary file.
In addition to the previous methods, objects of class Tenpf i | e also possess all instance methods of classFi | e.

Win32API Microsoft Windows API access class

Win32API represents functions in Windows DLLSs.

Required Library

require 'Win32AP!'

Example

require ' Wn32API"

getch = Wn32API . new("crtdl 1", "_getch", [], 'L")
puts getch.Call.chr

Class Method

Win32API::new(dl | , proc,i nmport,export)
Returns the object representing the W n32API function specified by pr oc nameindl | , which has the signature specified by



i mport andexport.i nport isanarray of stringsdenoting types. export isatype specifying string. Type string is any
of the following:

"y
Number
IIIII
Number
llill
Integer
Ilpll
Pointer
IIVII
Void (export only)

Type strings are case-insensitive.
Instance Methods

cadl(arg...])
Cdl(arg...])

Invokesthe W n32API function. Arguments must conform the signature specified by W n32API : : new.

4.1.3 Threads

Threading classes in the Ruby standard library extend and enhance the built-in library support for parallel programming with support
for condition variables, monitors and mutexes, queues and a handy-dandy thread termination watcher class.

ConditionVariable Synchronization condition variable class

This class represents condition variables for synchronization between threads.
Required Library

require 'thread'

Class Method

ConditionVariable::new

CreatesaCondi ti onVari abl e object
Instance Methods

¢ .broadcast

Wakes up al waiting queued threads
c.signa

Wakes up the next thread in the queue
c.wait( mut ex)

Waitsoncondi ti on vari abl e

Monitor Exclusive monitor section class

This class represents exclusive sections between threads.

Required Library



require 'monitor’
Included Module
Moni t or M xi n
Class Method

Monitor::new

CreatesaMoni t or object
Instance Methods

menter

Enters exclusive section.
mexit

L eaves exclusive section.
mowner

Returns the thread that owns the monitor.
msynchronize{ . . . }

Enters exclusive section and executes the block. L eaves the exclusive section automatically when the block exits.
mtry_enter

Attempts to enter exclusive section. Returnsf al se if lock fails.

MonitorMixin Exclusive monitor section mix-in module

Adds monitor functionality to an arbitrary abject by mixing the moduleswithi ncl ude.
Required Library

require 'monitor’

Instance Methods

mmon_enter

Enters exclusive section.
mmon_exit

L eaves exclusive section.
mmon_owner

Returns the thread that owns the monitor.
mmon_synchronize{ . . . }

Enters exclusive section and executes the block. L eaves the exclusive section automatically when the block exits.
mtry_mon_enter

Attempts to enter exclusive section. Returnsf al se if lock fails.

Mutex Mutual exclusion class

This class represents mutually exclusive locks.

Required Library



require 'thread'
Class Method

Mutex::new

Creates a Mut ex object
Instance Methods

mlock

Locksthe Mut ex object m
mlocked?

Returnst r ue if mislocked.
msynchronize{...}

L ocks mand runs the block, then releases the lock when the block exits.
mtry_lock

Attemptsto lock m Returnsf al se if lock fails.
munlock

Releases lock on m

Queue Message queue class

This class provides the way to communicate data between threads.
Required Library

require 'thread'

Class Method

Queue::new

Createsagueue object
Instance Methods

g.empty?

Returnst r ue if the queueis empty.
g.num_waiting

Returns the number of threads waiting on the queue.
g.pop([ non_bl ock=false])

Retrieves data from the queue. If the queue is empty, the calling thread is suspended until datais pushed onto the queue. If
non_bl ock ist r ue, the thread isn't suspended, and an exception is raised.

g.push( obj )
g.enq( obj )
Pushes obj to the queue.
g.size
g.length

Returns the length of the queue.

SizedQueue Fixed-length queue class




This class represents queues of specified size capacity. The push operation may be blocked if the capacity is full.
Required Library
require 'thread'
Inherited Class
Queue
Class Method
SizedQueue::new( max)
Creates afixed-length queue with a maximum size of max
Instance Methods

g.max

Returns the maximum size of the queue
g.max=n

Sets the maximum length of the queue

ThreadsWait Thread termination watcher class

This class watches termination of multiple threads.
Required Library

require 'thwait'

Class Methods

ThreadsWait::all_waits(t h, .. .)
ThreadsWait::all_waits(th. .. ){ ...}

Waits until all specified threads are terminated. If ablock is supplied for the method, evaluates it for each thread termination.
ThreadsWait.new(t h. . .)

CreatesaThr eadsWai t object, specifying threads to wait.

Instance Methods

t h.threads

Lists threads to be synchronized
t h.empty?

Returnst r ue if thereis no thread to be synchronized.
t h.finished?

Returnst r ue if thereis any terminated thread.
thjoin(th...)

Waits for specified threads.

t h.join_nowait(th. ..)

Specifies threads to wait; non-blocking.
t h.next_wait

Waits until any specified thread is terminated.
t h.all_waits



th.al_waits{ . . .}
Waits until all specified threads are terminated. If ablock is supplied for the method, evaluates it for each thread termination.

4.1.4 Data Persistence

These libraries provide interfaces or hooks into databases via various implementations (OS, GNU, and public domain).

Ruby lets you store and retrieve "live" data and objectsin the filesystem with tools you're probably used through the DBM GDBM
SDBM and PSt or e classes.

DBM DBM class

DBMimplements a database with the same interface as a hash. Keys and values are limited to strings. Uses ndbmlibrary included in
operating systems.

Required Library
require ‘dom'’
Included Module
Enurer abl e
Class Methods

DBM::open( pat h[, mode=0666])
DBM::new( pat h[, rode=0666])

Opens a new DBMdatabase. Access rights to the database are specified in mode as an integer.
Instance Methods

The DBM class has all the methods of the Hash class except for def aul t , def aul t =, dup, andr ehash. DBMalso has the
cl ose method, whichisn'tin Hash.

d.close
Closes DBMdatabase
GDBM GDBM class

GNU implementation of DBM Has the same interface as DBM
Required Library

require 'gdom’

Instance Methods

In addition to methods from the DBMclass, the GDBMclass hasther eor gani ze method.
d.reorganize

Reconfigures the database; shouldn't be used with great frequency
SDBM SDBM class

Public domain implementation of DBM Has the same interface as DBM Runs almost anywhere but has inferior performance and
data-size limitations compared to other DBIVs.

Required Library



require 'sdom’

PStore Smple object-oriented database class

PSt or e isasimple object-oriented database class that provides almost arbitrary data persistence (using Mar shal ) and transaction.
Required Library

require 'pstore’

Class Method

PStore::new( pat h)
Creates a database object. Datais stored in afile specified by pat h.

Instance Methods

p.transaction {| ps|. . . }

Starts a transaction (a series of database operations). Access to the contents of the database can be achieved only through this
transaction method.

p[ nane]

Retrieves an object stored in the database under the key name.
p[ nane]= obj

Stores obj in the database under the key name. When the transaction is completed, all objects accessed reflexively by obj
(see Mar shal in Section 3.4) are saved in afile.

p.root?( nane)

Returnst r ue if the key name exists in the database.
p.commit

Completes the transaction. When this method is called, the block passed to the transaction method is executed, and changes to
the database are written to the database file.

p.abort

Aborts the transaction. When this method is called, the execution of the block passed to the transaction method is terminated,
and changes made to database objects during the transaction aren't written to the database file.

4.1.5 Numbers

These libraries let you handle numeric calculations using advanced numbers such as Conpl ex, Rat i onal ,and Matri x.

Complex Complex number class

When thislibrary isloaded with r equi r e, the ability of the Mat h module is expanded to handle complex numbers.
Required Library

require ‘complex’

Inherited Class

Nurreri c

Class Methods

Complex(r [,i =0])
Complex::new(r [,i =0])



Creates a complex number object. The former is recommended.
Instance Methods

c.abs

Returns the absolute value of the complex number c.
c.abs2

Returns the sguare of the absolute value of the complex number c.
c.arg

Returns the argument of the complex number c.
c.conjugate

Returns the conj ugat e of the complex number c.
c.image

Returns the imaginary part of the complex number ¢. The Conpl ex library adds the image method to the Nuner i ¢ class.
c.polar

Returnsthearray arr [ c. abs, c. arg] .
c.red

Returnsthe real part of the complex number c. The Conpl ex library adds the real method to the Numer i ¢ class.

Rational Rational number class

When thislibrary isloaded with r equi r e, the* * operator method of the | nt eger class can handle rational numbers, and the
following methods are added to the | nt eger class:

tor
Converts a number to arational number
lcm
Returns the least common multiple
gcd

Returns the greatest common divisor
Required Library
require 'rationa’
Inherited Class
Nureri c
Class Methods

Rational( a, b)
Rational::new( a, b)
Creates arational number object. The former, Rat i onal ( a, b) , isrecommended.

Matrix Matrix class

Required Library
reguire 'matrix'

Class Methods



Matrix::[ row. . . ]

Creates amatrix where r owindicates each row of the matrix.
Matri x[[ 11, 12], [21, 22]]

Matrix::identity( n)

Matrix::unit( n)

Matrix::I( n)

Creates an n-by-n unit matrix.
Matrix::columns( col ums)

Creates anew matrix using col urms as sets of column vectors.
Matrix::colums([[11, 12], [21, 22]]) # => Matrix[[11, 21], [12, 22]]
Matrix::column_vector( col umm)

Creates a 1-by-n matrix such that column vector iscol umm.
Matrix::diagonal( val ue. . .)

Creates a matrix where diagonal components are specified by val ue.
Matri x. di agonal (11, 22, 33) # => Matrix[[11, 0, O],
[0, 22, 0], [0, O, 33]]
Matrix::rows( r ows[, copy=trug])
Creates a matrix where r ows isan array of arrays that indicates rows of the matrix. If the optional argument copy isf al se,
use the given arrays asthe interna structure of the matrix without copying.
Matrix::rows([[211, 12], [21, 22]])
Matrix::row_vector(r ow)

Creates an 1-by-n matrix such that the row vector isr ow.
Matrix::scalar(n, val ue)

Creates an n-by-n diagonal matrix such that the diagonal components are given by val ue.
Matri x::scal ar (3, 81) # => Matrix[[81,0,0],[0,81,0],[0,0,81]]
Par seDat e: : parsedate("Fri Aug 3 17:16:57 JST 2001")

=> [2001, 8, 3, 17, 16, 57, "JST", 5]

Par seDat e: : par sedat e( " 1993-02-24")

=> [1993, 2, 24, nil, nil, nil, nil, nil]

Matrix::zero( n)

#T #* T

Creates an n-by-n zero matrix.

Instance Methods
nfi,jl
Returns (i , j ) component.
m* nt X
Multiplication.
m+ X

Addition.
m nt x

Subtraction.
m/ nt X

Returnsm* mt x. i nv.
m** n

Power of n over matrix.
mcollect{ . . .}



mmap{ . . .}
Creates amatrix that isthe result of iteration of the given block over all components of the matrix m

mcolumn(j )
Returnsthe | -th column vector of the matrix m When the block is supplied for the method, the block is iterated over all
column vectors.

mcolumn_size

Returns the number of columns.
mcolumn_vectors

Returns array of column vectors of the matrix m
mdeterminant
mdet

Returns the determinant of the matrix m
minverse
minv

Returns an inversed matrix of the matrix m
mminor(from row, row size, fromcol, col_size)
mminor(fromrow..to_row, fromcol..to _col)

Returns submatrix of the matrix m
mrank

Returns the rank of the matrix m

mrow( i )

mrow(i){...}
Returnsthei -th row vector of the matrix m When the block is supplied for the method, the block isiterated over al row
vectors.

mrow_size

Returns the number of rows.
mrow_vectors

Returns an array of row vectors of the matrix m
mregular?

Returnst r ue if misaregular matrix.
msingular?

Returnst r ue if misasingular (i.e., nonregular) matrix.
msquare?

Returnst r ue if misasguare matrix.
mtrace
mtr

Returns the trace of the matrix m
mtranspose
mt

Returns the transpose of the matrix m
4.1.6 Design Patterns

Design patterns are aterrific way to get your job done without reinventing the wheel. Ruby provides support in the standard library
for asmall number of commonly used design patterns. This group of libraries provides advanced object-oriented programming
techniques for delegators, forwardables, singletons, and observers.

Delegator Delegator pattern superclass



Del egat or isan abstract class for the Delegator design pattern. Delegation is actually achieved by creating a subclass of the
Del egat or class.

Required Library
require 'del egate’
Class Method
Delegator::new( obj )
Creates a delegate object to which methods of obj are forwarded.
Instance Method

__Qetobj_ _
Returns the object to which methods are forwarded. Needs to be redefined in the subclass.

SimpleDelegator Smple concrete Delegator pattern class

This class allows for easy implementation of the Delegator design pattern.
Required Library
require 'del egate
Inherited Class
Del egat or
Class Method
SimpleDelegator::new( obj )
Creates an object that forwards methods to ob)j
Instance Method

_ _setobj_
Sets the object to which methods are forwarded

DelegatorClass Class creation function for Delegator patterns

This function dynamically creates a class that delegates to other fixed classes.
Required Library
require 'delegate’
Function
DelegateClass( ¢)

Creates a new class to which the methods of class ¢ are forwarded
Method of Generated Class

D::new( obj )



Creates a delegate object with obj asthe object to which methods are forwarded
Forwardable Module to add selected method delegations to a class

The For war dabl e module provides more explicit method delegation. Y ou can specify method name and destination object
explicitly.

Required Library
require "forwardable’
Example

cl ass Foo

ext end Forwardabl e

# ...

def del egators("@ut", "printf", "print")

def _del egators(: @n, :gets)

def del egator(: @ontents, :[], "content_at")
end
f = Foo. new
f.printf("hello world\n") # forward to @ut.printf
f.gets # forward to @n.gets
f.content _at (1) # forward to @ontents.[]

Instance Methods

f .def_delegator(accessor, net hod[, al t = net hod])
f .def_instance delegator( accessor, met hod], at= et hod])

Defines delegation from met hod toaccessor . If al t isspecified, al t method is called instead of et hod.
f .def_delegators( accessor, net hod. . .)
f .def_instance delegators( accessor, net hod. . .)

Defines delegation to accessor for each met hod.

SingleForwardable Salective delegation module

The Si ngl eFor war dabl e module provides more explicit method delegation for a specific object.
Required Library

require ‘forwardabl €

Example

require 'forwardabl e'

# ...

g = Goo. new

g. extend Singl eForwar dabl e

g. def _del egator (" @ut", :puts)

g.puts("hello world") # forward to @ut. puts

Instance Methods

f .def_singleton_delegator( accessor, met hod][, al t = et hod])
f .def_delegator(accessor, net hod[, al t = net hod])

Defines delegation from net hod toaccessor . If al t isspecified, al t method is called instead of net hod.
f .def_singleton_delegators( accessor, met hod. . .)



f .def_delegators( accessor, net hod. . .)
Defines delegation to accessor for each et hod.

Singleton Sngleton pattern module

The Si ngl et on module allows the implementation of the Singleton design pattern. By including the module, you can ensure that
only one instance of aclassis created.

Required Library
require 'singleton’
Class Method

instance

Returns the only instance of the class. If an instance has already been created, it'sreused. i nst ance isaclass method added
to classes that include the Si ngl et on module.

Observable Observabl e pattern module

The Cbser vabl e module allows the implementation of the Observer design pattern. Classes that include this module can notify
multiple observers of changesin self. Any object can become an observer aslong asit has the update method.

Required Library
require 'observer'
Instance Methods

0.add_observer( obj )

Adds observer obj as an observer of 0.
o0.count_observers

Returns the number of observers of o.
o.changed([ st at e=trug])

Sets the changed state of 0.
0.changed?

Returnst r ue if o has been changed.
0.delete_observer( obj )

Removes observer obj as an observer of 0.
0.delete observers

Removes all observers of o.
o.notify_observers([ arg. . . ])

If o'schanged stateist r ue, invokesthe updat e method of each observer, passing it the specified arguments.
4.1.7 Miscellaneous Libraries

It almost goes without saying, but there's always a bunch of stuff that doesn't quite fit into any category. Ruby's standard library is no
exception. This group of libraries includes anything that isn't in one of the preceding groups.

In Ruby's standard library, you'll find classes providing abstractions for date manipulation, timeouts on long operations, and MD5 and
SHA1 message digests.

Date Date class




Dateisaclassto represent the calendar date. Date is based on the Julian day number, which is the number of days since midday,
January 1st 4713 BC.

Currently we use the Gregorian calendar, but the Julian calendar was used prior to that time (before 1752 in England, for example).
The calendar shift date is different in each country. Date class can handle both calendars and arbitrary shift dates.

There's no relation between Julian day number and Julian calendar; it's just coincidence.
Required Library

require 'date'

Example

require 'date'
# 3000 days after Ruby was born
puts Date::new 1993, 2, 24) +3000, "\n" # 2001-05-13

Included Module

Conpar abl e

Class Methods

Date:exist?( year, nonth, day[,start])
Date::exist3?(year, nonth, day[,start])

Returns the Julian day number corresponding to the specified year , mont h, and day of year, if they are correct. If they aren't
correct, returnsni | .

Date::exist2?(year, yday|[,start])

Returns the Julian day number corresponding to the specified year and day of year, if they are correct. If they aren't correct,
returnsni | .

Date::exissw?(year, week, wday[,start])

Returns the Julian day number corresponding to the specified calendar week-based year , calendar week, and calendar
weekday, if they are correct. If they aren't correct, returnsni | .

Date::new(year, nonth, day[,start])
Date::new3(year, nonth, day[,start])

Creates a Dat e aobject corresponding to the specified year , nont h, and day of the month.
Date::newl(j d[,start])

Creates a Dat e object corresponding to the specified Julian day number.
Date::new2(year, yday[,start])

Creates a Date object corresponding to the specified year and day of the year.
Date::neww(year, week, wday[,start])

Creates a Dat e object corresponding to the specified calendar week-based year , calendar week, and calendar weekday.
Date::today([ st art ])

Creates a Dat e object corresponding to today's date.
Instance Methods

d<<n

Returns aDat e object that isn months earlier than d.
d>>n

Returns aDat e object that isn months later than d.
d <=>x

Compares dates. x may be aDat e object or an integer (Julian day number).



d+n
Returns a Dat e object that isn days later than d.
d-x

Returns the difference in terms of daysif x isanother Dat e object. If x isan integer, returns a Dat e object that isx days
earlier than d.

d.cwday

Returns the calendar weekday (1-7, Monday being 1) for d.
d.cweek

Returns the calendar week (1-53) for d.
d.cwyear

Returns the calendar week-based year for d.
d.day
d.mday

Returns the day of the month (1-31) for d.
d.downto(mi n) {|date|...}

Runs block on dates ranging from d down to mi n. Equivalenttod. step(nin), -1) {|date|...}.
d.jd
Returns the Julian day number for d.
d.leap?
Returnst r ue if d isaleap year.
d.mjd
Returns the modified Julian day number for d. Modified Julian day number is the number of days since midnight November
17, 1858.
d.mon
d.month

Returns the month (1-12) for d.
d.newsg([ start])

Copies d to anew Dat e object and returns it after converting its cutover datetost art .
d.next
d.succ

Returns anew Dat e object one day later than d.
d.sg

Returns the Julian day number of the start of Gregorian dates for d.
dstep(limt, step){|date]|...}

Runs block on Dat e objectsfromd tol i ni t incrementing st ep number of days each time.
d.upto( max) {|date|...}

Runs block on dates ranging from d up to mex. Equivalenttod. st ep(max, 1) {|date|...}.
d.wday

Returns the day of the week for d (0-6, Sunday being 0).
d.yday

Returns the day of the year for d (1-366).
d.year

Returns the year for d.

Constants



MONTHNAMES

An array of the names of the months of the year
DAYNAMES

An array of the names of the days of the week (Sunday being the first element)
ITALY

Gregorian calendar start day number in Italy
ENGLAND

Gregorian calendar start day number in England
JULIAN

Start specifier for Julian calendar
GREGORIAN

Start specifier for Gregorian calendar

ParseDate Date representation parser module

The Par seDat e module parses strings that represent calendar dates in various formats.
Required Library

require 'parsedate’

Module Function

parsedate( st r [, cyear =false])

Parses a date and/or time expression within st r and returns the parsed elements (year, month, day, hour, minute, second, time
zone, and day of the week) as an array. Sunday is represented as 0 in the day-of-the-week element. ni | isreturned for
elements that can't be parsed or have no corresponding string representation. If cyear ist r ue, yearswith avaue of 68 or
less are interpreted as being in the 2000s and years ranging from 69 to 99 are interpreted as being in the 1900s. In summary,
beware of the Y 2K 69 problem!

timeout Time out a lengthy procedure

Times out alengthy procedure or those that continue execution beyond a set duration.
Required Library

require 'timeout’

Function

timeout(sec){ ...}

Executes the block and returnst r ue if the block execution terminates successfully prior to elapsing of the timeout period,
otherwise immediately terminates execution of the block and raisesa Ti meout Er r or exception.
require 'tinmeout'
status = tinmeout(5) {
# sonething that nmay take tine

}
MD5 MD5 message digest class

The MD5 class provides a one-way hash function from arbitrary text data by using the algorithm described in RFC-1321



Example

requires ' nd5'
nd5 = MD5::new("matz")
puts nd5. hexdi gest # prints: 3eb50a8d683006f df 941b9860798f 9aa

Class Methods
MD5::new([ str])
MD5::md5([ str])
Creates anew VD5 object. If astring argument is given, it's added to the object.

Instance Methods

nmd.clone

Copies the MD5 object.
nd.digest

Returns the MD5 hash of the added strings as a string of 16 bytes.
md.hexdigest

Returns the MD5 hash of the added strings as a string of 32 hexadecimal digits.

nd.update( st r)
md <<str

Updates the MD5 object with the string st r . Repeated calls are equivalent to asingle call with the concatenation of all the
arguments, i.e, m updat e(a) ; m updat e( b) isequivalent tom updat e(a+b) ,andm << a << b isequivaenttom
<< a+bh.

SHA1 SHAIL message digest class

The SHAL class provides a one-way hash function from arbitrary text data.
Class Methods
SHAZL:new([ str])
SHA1::shal([ str])
Creates anew SHAL object. If astring argument is given, it's added to the object.

Instance Methods

sh.clone

Copiesthe SHAL object.
sh.digest

Returns the SHAL hash of the added strings as a string of 16 bytes.
sh.hexdigest

Returns the SHA1 hash of the added strings as a string of 32 hexadecimal digits.
sh.update( str)
sh <<str
Updates the SHA1 object with the string st r . Repeated calls are equivalent to asingle call with the concatenation of al the

arguments, i.e, m updat e(a) ; m updat e( b) isequivalent tom updat e(a+b) ,andm << a << b iseguivaenttom
<< a+b.



Chapter 5. Ruby Tools

Asamatter of coursein Ruby, you edit your Ruby program and then feed it to the
interpreter. Theoretically, the editor and interpreter are al you need to program Ruby. But
you can get help from other tools. In this chapter, you will find descriptions of tools to help

Ruby programmers.



5.1 Standard Tools

The standard Ruby distribution contains useful tools along with the interpreter and standard libraries:
debugger, profiler, i r b (whichisinteractive ruby), and ruby-mode for Emacs. These tools help you debug
and improve your Ruby programs.

5.1.1 Debugger

It doesn't matter how easy alanguageisto use, it usualy contains some bugsif it is more than afew lines
long. To help deal with bugs, the standard distribution of Ruby includes a debugger. In order to start the
Ruby debugger, load the debug library using the command-line option- r debug. The debugger stops
before the first line of executable code and asks for the input of user commands.

Here are the debugger commands:
blreak] [<fi | e|cl ass>]<I| i ne|met hod>
Sets breakpoints
wat[ch] expr essi on
Sets watchpoints
b[reak]
Displays breakpoints and watchpoints
del[ete] [ n]
Deletes breakpoints
disp[lay] expr essi on
Displays value of expr essi on
undisp[lay] [ n]
Removes display of n
c[ont]
Continues execution
step] [ n]
Executes next n lines stepping into methods
n[ext] [ n]
Executes next n lines stepping over methods
w[here]
Displays stack frame
f[rame]
Synonym for where
I[ist][<-| n- nP]
Displays source linesfromn tom
up [ n]
Moves up n levelsin the stack frame
down [ n]



Moves down n levelsin the stack frame
fin[ish]

Finishes execution of the current method
tr[ace] [on|off]

Toggles trace mode on and off
gluit]

Exits debugger
v[ar] g[lobal]

Displays global variables
v[ar] l[ocal]

Displays local variables
v[ar] i[instance] obj ect

Displaysinstance variables of obj ect
v[ar] c[onst] obj ect

Displays constants of object
m[ethod] i[instance] obj ect

Displays instance methods of obj ect
m[ethod] cl ass|nodul e

Displays instance methods of thecl ass or nodul e
th[read] I[ist]

Displays threads
th[read] c[ur[rent]]

Displays current thread
th[read] n

Stops specified thread
th[read] stop n>

Synonym for th[read] n
th[read] c[ur[rent]] n>

Synonym for th[read] n
th[read] resume n>

Resumes thread n
pexpression

Evaluatesthe expr essi on
hlelp]

Displays help message
<everything el se>



Evaluates the expression

The following is a sample session that shows the debugger's output when it executes the Sieves of
Eratosthenes program (a famous algorithm to cal culate prime numbers). The interface is designed similarly
to that of gdb.

% ruby -r debug sieve.rb 100

Debug.rb

Emacs support avail abl e.

sieve.rb:2: max = I nteger (ARGV.shift || 100)
(rdb:1) Ilist

[-3, 6] in sieve.rb

1
2 max = Integer(ARGV.shift || 100)
3 sieve =[]

4 for i in 2 .. mx

5 sieve[i] =i

6 end

(rdb: 1) Ilist

[7, 16] in sieve.rb

8 for i in 2 .. Mth.sqgrt(max)

9 next unl ess sieve[i]

10 (i*i1).step(max, i) do |]j|

11 sieve[j] = ni

12 end

13 end

14 puts sieve.conpact.join ", "

(rdb:1) b 8

Set breakpoint 1 at sieve.rb:8
(rdb:1) c
Breakpoint 1, toplevel at sieve.rb:8
sieve.rb:8:for i in 2 .. Mth.sqgrt(max)
(rdb:1) p sieve
[nil, nil, 2, 3, 4, 5, 6, 7, 8 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100]
(rdb:1) del 1
(rdb:1) b 14
Set breakpoint 2 at sieve.rb: 14
(rdb:1) c
Breakpoint 2, toplevel at sieve.rb: 14
sieve.rb: 14: puts sieve.conpact.join ", "
(rdb:1) p sieve
[nil, nil, 2, 3, nil, 5 nil, 7, nil, nil, nil, 11, nil, 13, nil, nil,
nil, 17, nil, 19, nil, nil, nil, 23, nil, nil, nil, nil, nil, 29, nil,
31, nil, nil, nil, nil, nil, 37, nil, nil, nil, 41, nil, 43, nil, nil,
nil, 47, nil, nil, nil, nil, nil, 53, nil, nil, nil, nil, nil, 59, nil
61, nil, nil, nil, nil, nil, 67, nil, nil, nil, 71, nil, 73, nil, nil,
nil, nil, nil, 79, nil, nil, nil, 83, nil, nil, nil, nil, nil, 89, nil



nil, nil, nil, nil, nil, nil, 97, nil, nil, nil]

(rdb: 1) sieve. conpact

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97]

(rdb:1) c

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97

5.1.2 Profiler

In most cases, you can improve the performance of a slow program by removing the bottleneck. The profiler
isatool that finds the bottleneck. In order to add profiling to your Ruby program, you need to first load the
Pr of i | e library using the command-line option - r pr of i | e. Here isthe sample output from profiled
execution. You cantell Qbj ect #f act method is a bottleneck.

%ruby -r profile sanple/fact.rb 100
9332621544394415268169923885626670049071596826438162146859296389521759999
3229915608941463976156518286253697920827223758251185210916864000000000000

000000000000
% cunul ative sel f sel f t ot a
tinme seconds seconds calls ns/call ns/call name
66. 67 0. 07 0. 07 1 66. 67 66. 67 (Obj ect #f act
16. 67 0. 08 0.02 1 16. 67 16. 67 Bignun#to_s
0.00 0. 08 0.00 5 0.00 0.00 Fi xnun#*
0.00 0. 08 0.00 2 0.00 8.33 IOHwite
0.00 0. 08 0.00 1 0.00 0.00 Fi xnun#==
0.00 0. 08 0.00 95 0.00 0. 00 Bi gnum#*
0.00 0. 08 0. 00 1 0.00 0. 00 Mbdul e#net hod_added
0.00 0. 08 0. 00 101 0.00 0.00 Fi xnum#>
0. 00 0. 08 0. 00 1 0. 00 16. 67 Kernel.print
0.00 0. 08 0. 00 1 0.00 0.00 String#to i
0.00 0. 08 0.00 1 0.00 0.00 Array#]
0.00 0. 08 0.00 100 0.00 0. 00 Fi xnun¥#-
0.00 0. 08 0.00 1 0.00 100. 00 #topl eve
5.1.3 Tracer

When you want to trace the entrance and exit of each method, t r acer isthetool for you. In order to add
method call/return tracing to your Ruby program, load the Tr acer library using the command-line option
-r tracer.Hereissampleoutput fromtracer:

%ruby -r tracer fact.rb 2

#0:fact.rb: 1::-: def fact(n)

#0: fact.rb: 1: Modul e: >: def fact(n)

#0: fact.rb: 1: Modul e: <: def fact(n)

#0:fact.rb:10::-: print fact(ARGV[O].to i), "\n"
#0:fact.rb:10: Array: > print fact(ARGV[O].to i), "\n"
#0:fact.rb: 10: Array: <: print fact(ARGV[O].to i), "\n"
#0:fact.rb: 10: String:>:. print fact(ARGV[O].to_i), "\n"
#0:fact.rb:10: String:<: print fact(ARGV[O].to_ i), "\n"
#0:fact.rb: 1: Gbject: > def fact(n)

#0:fact.rb: 2: Cbj ect: -: return 1 if n ==

#0: fact.rb: 2: Fi xnum >: return 1 if n ==

#0: fact.rb: 2: Fi xnum <: return 1 if n ==



#0:fact.rb: 3: Cbj ect: -: f =1
#0:fact.rb: 4: Cbj ect: -: whil e n>0
#0: fact.rb: 4: Fi xnum >: whil e n>0
#0: fact.rb: 4: Fi xnum <: whil e n>0
#0:fact.rb:5: Qoject: -: f *=n
#0: fact.rb:5: Fi xnum >: f *=n
#0: fact.rb:5: Fi xnum <: f *=n
#0:fact.rb: 6: Gbject:-: n-=1
#0: fact.rb: 6: Fi xnum >: n-=1
#0: fact.rb: 6: Fi xnum <: n-=1
#0: fact.rb: 6: Fi xnum >: n-=1
#0: fact.rb: 6: Fi xnum <: n-=1
#0:fact.rb: 5: Cbj ect: -: f *=n
#0: fact.rb:5: Fi xnum >: f *=n
#0: fact.rb:5: Fi xnum <: f *=n
#0:fact.rb: 6: Object:-: n-=1
#0: fact.rb: 6: Fi xnum >: n-=1
#0: fact.rb: 6: Fi xnum <: n-=1
#0: fact.rb: 6: Fi xnum >: n-=1
#0: fact.rb: 6: Fi xnum <: n-=1
#0:fact.rb: 8: Cbj ect: -: return f
#0: fact.rb: 8: Obj ect: <: return f

#0:fact.rb: 10: Kernel :>: print fact(ARGV[O].to i), "\n"
#0:fact.rb:10: 1G> print fact(ARGVO].to_ i), "\n"
#0:fact.rb: 10: Fixnum >: print fact(ARGVO].to i), "\n"
#0:fact.rb: 10: Fixnum<: print fact(ARGVO0].to i), "\n"
2#0:fact.rb:10: 1O <: print fact(ARGV[O].to i), "\n"
#0:fact.rb:10: 1G> print fact(ARGVO].to_i), "\n"
#0:fact.rb:10: 1O <: print fact(ARGV[O].to_ i), "\n"
#0:fact.rb: 10: Kernel :<: print fact(ARGV[O].to_ i), "\n"

Y ou can turn on trace mode explicitly by invoking these methods from your program:

Tracer.on

Turns on trace mode
Tracer.on{...}

Evaluates the block with trace mode turned on
Tracer.off

Turns off trace mode
5.1.4irb

i rb (Interactive Ruby) was developed by Keiju Ishitsuka. It alows you to enter commands at the prompt
and have the interpreter respond asif you were executing aprogram. i r b is useful to experiment with or to
explore Ruby.

irb [ options ] [ progranfile ] [ argunent... ]

Herearethei r b options:
-f

Suppresses loading of ~/ . i rbrc.



Math mode. Performs calculations using rational numbers,

-d

Debugger mode. Sets $DEBUGto t r ue.
-rlib

Usesr equi r e toload thelibrary | i b before executing the program.
-V
--version

Displaystheversionof i r b.
--inspect

Inspect mode (default).
--noinspect

Noninspect mode (default for math mode).
--readline

Usesther eadl i ne library.
--noreadline

Suppresses use of ther eadl i ne library.
--prompt node
--prompt-mode node

Sets the prompt mode. Predefined prompt modes are def aul t, si npl e, xnp, andi nf - r uby.
--inf-ruby-mode

Sets the prompt modeto i nf - r uby and suppresses use of ther eadl| i ne library.
--simple-prompt

Sets the prompt mode to simple mode.
--noprompt

Suppresses the prompt display.
--tracer

Displays atrace of method calls.
--back-trace-limit n

Sets the depth of backtrace information to be displayed (default is 16).

Hereisasamplei r b interaction:

irb
i rb(main):001:0> a = 25
25
irb(main):002:0> a = 2

2
i rb(main):003: 0>
mat z@v[sanple] irb



irb(main):001:0> a = 3

i rb(mai n):002: 0> a.tinmes do |i|
I rb(main):003:1* puts i
i rb(main):004: 1> end

I rb(mai n):005: 0> cl ass Foo<Obj ect

I rb(main):006: 1> def foo

I rb(main):007:2> puts "foo"

i rb(main):008: 2> end

i rb(main):009: 1> end

ni |

i rb(mai n):010: 0> Foo: : new. f oo

f oo

ni

I rb(main):011: 0> exit

i rbloadsastartup filefromeither ~/ . irbrc,.irbrc,irb.rc, irbrc,$irbrc.AStartupfile
can contain an arbitrary Ruby program for per-user configuration. Within it, i r b context object | RB is
available.

i r b worksasif you fed the program line by line into the interpreter. But since the noninteractive interpreter
executes the program at once, thereis asmall difference. For example, in batch execution, the local variable
that appears only intheeval isn't treated as alocal variable outside of eval . That's because an identifier is
determined as alocal variable or not statically. In non-i r b mode, Ruby determines whether or not an
identifier isalocal variable during compile-time. Since Ruby compiles the whole program first and then
executes it, assignment ineval isn't considered. But ini r b mode, i r b normally executes inputs line by
line, so that assignment is done prior to compilation of the next line.

5.1.5 ruby-mode for Emacs

If you are an Emacs user, r uby- node will help you alot. It supports auto indent, colorizing program text,
etc. Touser uby- node, put ruby-mode.el into the directory included in your | oad- pat h variable, then
put the following code in your . emacsfile.

(aut ol oad ' ruby-node "ruby-node")

(setq auto-node-alist (append (list (cons \\.rb$ 'ruby-node)
aut o- node-al i st))

(setqg interpreter-node-alist (append ' (("ruby".ruby-node))
i nterpreter-node-alist))



5.2 Additional Tools

There are other useful tools that don't come bundled with the Ruby standard distribution.
However, you do need to install them yourself.

5.2.1ri: Ruby Interactive Reference

ri isaonline reference tool developed by Dave Thomas, the famous pragmatic
programmer. When you have a question about the behavior of a certain method, e.g.,

| O#get s, youcaninvokeri | O#get s to read the brief explanation of the method. You
cangetri from http://www.pragmaticprogrammer.com/ruby/downloads/ri.html.

ri [ options ] [ nane... ]

Herearetheri options:
--version,
-V

Displays version and exits.
--line-length=n
-l n

Sets the line length for the output (minimum is 30 characters).
--Synopsis
-S

Displaysjust a synopsis.
--format= nane
-f nane

Uses the nane module (default is Pl ai n) for output formatting. Here are the
available modules:

Tagged

Simple tagged output
Plain

Default plain output
namne should be specified in any of the following forms:
o Cl ass
o O ass::nethod

0 O ass#net hod


http://www.pragmaticprogrammer.com/ruby/downloads/ri.html

0 O ass. net hod

o nmet hod
5.2.2 eRuby

eRuby stands for embedded Ruby; it's atool that embeds fragments of Ruby code in other
filessuch asHTML files. Here's a sample eRuby file:

This is sanple eRuby fil e<br>
The current tine here is <%Ti me. now.
<% 1, 2,3].each{]| x| print x,"<br>\n"}%

Here's the output from this samplefile;

This is sanple eRuby fil e<br>

The current tine here is Wed Aug 29 18:54:45 JST 2001.
1

2

3

There are two eRuby implementations:
eruby

The original implementation of eRuby. eruby is available from
http://www.modruby.net.

Erb
A pure Ruby (subset) implementation of eRuby.

eRuby is available from http://www?2a.biglobe.ne.jp/~seki/ruby/erb-1.3.3.tar.gz; The version

number may be changed in the future. Unfortunately, the supporting page
http://www?2a.biglobe.ne.jp/~seki/ruby/ isin Japanese, but you can tell how to useit from its

source code.



http://www.modruby.net/
http://www2a.biglobe.ne.jp/~seki/ruby/erb-1.3.3.tar.gz
http://www2a.biglobe.ne.jp/~seki/ruby/

5.3 Ruby Application Archive

Do you want to access databases, such as PostgreSQL or MySQL from Ruby? Do you wish
to use such nonstandard GUI toolkits as Qt, Gtk, FOX, etc.? Y ou can with the Ruby
Application Archive (RAA), which has a collection of Ruby programs, libraries,
documentations, and binary packages compiled for specific platforms. Y ou can access RAA
at http://www.ruby-lang.org/en/raa.html. RAA is still far smaller than Perl's CPAN, but it's

growing every day.

RAA contains the following elements:

The latest 10 items

A list of Ruby applications

A list of Ruby libraries

A list of Ruby porting

« A list of Ruby documents

Y ou can enter your program in RAA by clicking "add new entry" at the top of the RAA
page, then following the instructions there. RAA itself is afully automated web application
written in Ruby. It uses eRuby and PStore as a backend.


http://www.ruby-lang.org/en/raa.html

Chapter 6. Ruby Updates

Compared to most other languages, Ruby is rather young. As aresult, it's still evolving fairly
rapidly.

If you find abug in Ruby, the first thing to do isto check the bug database and see if the
problem has already been reported. The bug database can be found at
http://www.ruby-lang.org/cgi-bin/ruby-bugs. Y ou can either send the bug report directly
from that page or send an email to ruby-bugs@ruby-lang.org. When you submit your bug,
try to include all relevant information such as source code, operating system, the output from
r uby - v, and what version/build of Ruby you are running. If you have compiled your own
build of Ruby, you should aso includether bconfi g. rb.

The current stable version of Ruby can always be found at
http://www.ruby-lang.org/en/download.html. There are also several mirror sites available.

The current developmental release can be obtained from the CV'S (Concurrent Version
System) repository. See http://www.ruby-lang.org/en/cvsrepo.html for instructions. Y ou can

get CV Stools from http://www.cvshome.com.



http://www.ruby-lang.org/cgi-bin/ruby-bugs
mailto:ruby-bugs@ruby-lang.org
http://www.ruby-lang.org/en/download.html
http://www.ruby-lang.org/en/cvsrepo.html
http://www.cvshome.com/

6.1 Summary of Changes

Developmental releases of Ruby always have an odd minor revision number such as 1.5 or
1.7. Once adevelopmental release is stable and finalized, it's then "promoted"” to a stable
release. Stable rel eases always have an even minor revision number such as 2.0 or 3.2.
Therefore, releases with even subversion numbers (1.4, 1.6, 1.8, etc.) are stable releases.
Releases with odd subversion numbers (1.5, 1.7, etc.) are developmental versions and are
available only from the CV S repository.

At of the writing of this book, the current stable release version is 1.6.5. The current
developmental version is 1.7.1. The changes presented here are currently reflected in 1.7.1
and will probably remain relatively unchanged in the next stable release—Version 1.8.



6.2 Changes from 1.6.5to0 1.7.1

The following information details the changes that are occurring in development versions
1.7.1 and 1.8 (though 1.8 will have additional changes aswell):

Multiple assignment behavior is clarified.
Syntax enhanced to interpret argument parenthesesto allow p ("xx"*2).t o_i .

br eak and next extended to take an optional expression, which isused asareturn
value of the iterating method and yi el d, respectively.

The following new methods (or modifications to methods) have been added:
Array#fetch
Array#i nsert
Enuner abl e#al | ?
Enunmer abl e#any?
Enuner abl e#i nj ect
Enuner abl e#sort by
Fi | e#f nmat ch
Mat chDat a#t o_ary
Met hod#==
Modul e#i ncl ude?
Modul e#i ncl uded
Modul e#mnet hod renoved
Modul e#net hod_undef i ned
hj ect #si ngl et on_net hod_r enoved
hj ect #si ngl et on_net hod_undef i ned
Proc#==
Proc#yi el d
Range#t o_ary
Range#st ep
Regexp#opti ons
Stri ng#casecnp
String#i nsert
Synbol #i ntern
Synbol ::all _synbol s
Syst enExi t #st at us
File::lchnod



File::lchown

| O :for_fd
| G :read

Mat h: : acos
Mat h: : asin
Mat h: : at an
Mat h: : cosh
Mat h: : hypot
Mat h: : si nh
Mat h: : t anh

Process::tines
Process: :wai tall
SystentCal | Error:: ===

St ri ng#eql ? isnow always case-sensitive.
Di r:: chdi r extended to take a block.
NoMet hodEr r or raised for undefined method.

| nt er r upt isasubclassof Si gnal Except i on (it was a subclass of Exceptionin
1.6 and prior).

$? now givesPr ocess: : St at us dongwithProcess: : wai t 2,
Process: :wai t pi d2.

Regexp. | ast _mat ch( n) extended to take an optional argument.

The Di gest module has been added as a replacement for the nd5 and shal
modules.

Line-range operation is now obsolete except when used in aone-liner (e.g., r uby - e
).

Comparison of exception classes in arescue clause now uses Modul e#===.

TCPSocket . newand TCPSocket . open extended to take an address and a port
number for the local side in optional third and fourth arguments.

Ti me extended to accept anegativet i me_t (only if the platform supportsit).
Objectsthat havet o_st r now behave more like strings.

The Si gnal module has been added.

Generational garbage collection has been added.



6.3 The Future of Ruby

As Ruby is now used by so many programmers worldwide, | don't see making any radical
changes in the near future. But 1'd like to keep Ruby competitive with other scripting
languages.

| don't have a concrete plan for future versions, even 2.0, but | do have plans to fix some of
the remaining drawbacks in the Ruby implementation. For example, Ruby's internals are too
complex to maintain and can be slower than other languages. I'm going to reimplement the
interpreter as a bytecode engine to simplify interpreter core and boost performance. Also,
recently an intriguing but still vague possibility of ajoint backend among Perl, Python, and
Ruby has surfaced.

I'd also like to support M17N (Multilingualization) in Ruby. M17N offers the ability to
handle various human languages along with the necessary encodings. We already
implemented a prototype that can handle ASCII, UTF-8, and several Japanese encodings.

The future is unknown, and my imagination is limited. But you can certainly contribute to
the evolution of Ruby viathe process called RCR (or Ruby Change Requests) explained in
the next section. We look forward to your contributions.



6.4 Participate in Ruby

Programmers often get ideas on how they'd like to improve Ruby. These ideas are sometimes
useful and interesting, sometimes not. Since the language needs to stay consistent, | often
need to choose which fixes or ideas to add and which to reject. To make this process easier,
we have instituted Ruby Change Requests (RCRS).

When you want to propose a new feature for Ruby, you have to submit your proposal to
http://www.rubygarden.org/topic=RCR. The more concrete and detailed the proposal, the

greater chance of success you have of getting it accepted. The proposal should preferably be
consistent, backward-compatible, and follow the principle of least surprise.

The RCR page offers a discussion forum and web-based voting box. Once you submit your
proposal, discussion is held on it. If it's decided (with the help of the community) that your
proposal isindeed useful, it will be added to future versions of Ruby.


http://www.rubygarden.org/?topic=RCR

Colophon

Our look isthe result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Ruby in a Nutshell isawild goat. Also known as a bezoar goat
(Capra aegagrus), this species, found on the Greek isands and in Turkey, Iran, Turkmenia,
and Pakistan, can grow to 300 pounds and up to 4 feet tall.

Goats have cloven hooves, which means they are split into two toes. Both males and females
have short beards the same color as their wool and horns that curve backward. Bezoar goat
horns are scimitar-shaped with sharp inside edges, and their bodies are covered in a coarse
wool that can be black, brown, gray, red, or white. Their wool helps them survive harsh
climates. Bezoar goats are herbivores, and their diet consists of grass, twigs, leaves, berries,
and bark. Wild female and baby goats live together in packs of about 50; males live by
themselves or in all-male packs. During the mating season, males give off an oily substance
from their skin that attracts females. Males can get into terrific fights over females, and the
winning male gets to mate. Females give birth to one or two babies, or kids.

Wild goats are listed as vulnerable in the 1996 IUCN Red List of Threatened Animals. An
animal islisted as vulnerable when it isn't critically endangered but faces a high risk of
extinction in the wild. Bezoar goats are losing more and more land to development in their
native countries.

Mary Anne Weeks Mayo was the production editor and proof reader, and Ellie Cutler was
the copyeditor for Ruby in a Nutshell. Darren Kelly and Sheryl Avruch provided quality
control. Derek DiMatteo provided production assistance. L ucie Haskins wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman.
The cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby
produced the cover layout with Quark& #8482; X Press 4.1 using Adobe's I'TC Garamond
font. Melanie Wang designed the interior layout based on a series design by Nancy Priest.
Nell Walls converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created
by Mike Sierra. The text and heading fonts are I TC Garamond Light and Garamond Book.
This colophon was compiled by Mary Anne Weeks Mayo.

The online edition of this book was created by the Safari production group (John Chodacki,
Becki Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup
tools written and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.



rpnmmirg 0PYrighted material; sample page 32 of 32

RUBY IN A NUTSHELL

A A T

| Rulw is 3 genuine attempt to combine the best of evernvthing in the
scripting wotld, Yukihiro Matsumoto, creator of Rolw and author of
this hook, designed Rulw with the strengths and capabilities of all of

the major scrpting lainguages in mind While s roots ane in Japan,
Ruby is slowly but surely gaining ground in the United States. [s
prrogims are high-level, easy w read and write, and olvect-oriented. These
possibilities make Buby very flexible and extensible, Additionally, Ruby suppons
ilenilors, exceplions, operator ovefoading, and garbage collection. Buby scnpls
are pormable across many platforms, including all major Unix sysems, Linux,
Windows 9598, Windows NT and BeOS. Rulw’s power comes from its straigla
forward svntax and rch sat of librarnes

Kb ine et Neeishel! cowers all of Ruby’s built-in features and standard bundled
libraries, Ruby programmers will want this book on their desks as they do their
jobes. It addresses evenvthing from command-line options, syatax. built-in variables,
and Functions o the many commonly used classes and modoles. Covering the
current stable version of Ruby (100 but also applicable (o development Version
1.7 amd the next planned stable Version LR, this book offers a thorough description
of Rubw's linguage syntax and the core functionality built into the stndiard Ruly
interpreir,

Rubw Ands s power through its built-in libearies, and this handy volume takes
vor thireugh the many useful libraries thar come with the stamdard Buby disinbaation,
from network access via HTTP and CGE progromming (o data persstence using
the DBM library.

Find out why Bulwy has captured the interest of 0 nomy open sOource rogrimmers
As et of the suceesstul “ina Nutshell” series of hooks from O Reilly & Assoctates
Fubay ine o Nntshell is tor readers who want a single deskiop reference for all

their needs

| - [ 1 . Visit 0'Reilly
[5BN 0-594-00214=9% I:Hi ;gg DRElLLY wwﬂlimaiiﬁ?nﬂ

0000
|| ||||| |‘ w H“ 4 il |.'-.H|-:|_|~-
| ! r y
e LA | 2

36920700214 1 PLANEHECH I,




	Ruby in a Nutshell
	Contents
	Foreword
	Preface
	How This Book Is Organized
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Chapter 1. Introduction
	Section 1.1. Ruby's Elegance
	Section 1.2. Ruby in Action

	Chapter 2. Language Basics
	Section 2.1. Command-Line Options
	Section 2.2. Environment Variables
	Section 2.3. Lexical Conventions
	Section 2.4. Literals
	Section 2.5. Variables
	Section 2.6. Operators
	Section 2.7. Methods
	Section 2.8. Control Structures
	Section 2.9. Object-Oriented Programming
	Section 2.10. Security

	Chapter 3. Built-in Library Reference
	Section 3.1. Predefined Variables
	Section 3.2. Predefined Global Constants
	Section 3.3. Built-in Functions
	Section 3.4. Built-in Library

	Chapter 4. Standard Library Reference
	Section 4.1. Standard Library

	Chapter 5. Ruby Tools
	Section 5.1. Standard Tools
	Section 5.2. Additional Tools
	Section 5.3. Ruby Application Archive

	Chapter 6. Ruby Updates
	Section 6.1. Summary of Changes
	Section 6.2. Changes from 1.6.5 to 1.7.1
	Section 6.3. The Future of Ruby
	Section 6.4. Participate in Ruby

	Colophon


